WorldWideScience

Sample records for based aquatic bioaccumulation

  1. Bioavailability and Bioaccumulation of Metal-Based Engineered Nanomaterials in Aquatic Environments

    DEFF Research Database (Denmark)

    Luoma, Samuel; Khan, Farhan R.; Croteau, Marie-Noelle

    2014-01-01

    Bioavailability of Me-ENMs to aquatic organisms links their release into the environment to ecological implications. Close examination shows some important differences in the conceptual models that define bioavailability for metals and Me-ENMs. Metals are delivered to aquatic animals from Me-ENMs...

  2. Cyanotoxins: Bioaccumulation and Effects on Aquatic Animals

    Directory of Open Access Journals (Sweden)

    Betina Kozlowsky-Suzuki

    2011-12-01

    Full Text Available Cyanobacteria are photosynthetic prokaryotes with wide geographic distribution that can produce secondary metabolites named cyanotoxins. These toxins can be classified into three main types according to their mechanism of action in vertebrates: hepatotoxins, dermatotoxins and neurotoxins. Many studies on the effects of cyanobacteria and their toxins over a wide range of aquatic organisms, including invertebrates and vertebrates, have reported acute effects (e.g., reduction in survivorship, feeding inhibition, paralysis, chronic effects (e.g., reduction in growth and fecundity, biochemical alterations (e.g., activity of phosphatases, GST, AChE, proteases, and behavioral alterations. Research has also focused on the potential for bioaccumulation and transferring of these toxins through the food chain. Although the herbivorous zooplankton is hypothesized as the main target of cyanotoxins, there is not unquestionable evidence of the deleterious effects of cyanobacteria and their toxins on these organisms. Also, the low toxin burden in secondary consumers points towards biodilution of microcystins in the food web as the predominant process. In this broad review we discuss important issues on bioaccumulation and the effects of cyanotoxins, with emphasis on microcystins, as well as drawbacks and future needs in this field of research.

  3. Bioavailability and bioaccumulation of metal-based engineered nanomaterials in aquatic environments: concepts and processes: chapter 5

    Science.gov (United States)

    Luoma, Samuel N.; Khan, Farhan R.; Croteau, Marie-Noële

    2014-01-01

    Bioavailability of Me-ENMs to aquatic organisms links their release into the environment to ecological implications. Close examination shows some important differences in the conceptual models that define bioavailability for metals and Me-ENMs. Metals are delivered to aquatic animals from Me-ENMs via water, ingestion, and incidental surface exposure. Both metal released from the Me-ENM and uptake of the nanoparticle itself contribute to bioaccumulation. Some mechanisms of toxicity and some of the metrics describing exposure may differ from metals alone. Bioavailability is driven by complex interaction of particle attributes, environmental transformations, and biological traits. Characterization of Me-ENMs is an essential part of understanding bioavailability and requires novel methodologies. The relative importance of the array of processes that could affect Me-ENM bioavailability remains poorly known, but new approaches and models are developing rapidly. Enough is known, however, to conclude that traditional approaches to exposure assessment for metals would not be adequate to assess risks from Me-ENMs.

  4. Bioaccumulation in aquatic systems: methodological approaches, monitoring and assessment

    DEFF Research Database (Denmark)

    Schäfer, Sabine; Buchmeier, Georgia; Claus, Evelyn;

    2015-01-01

    Bioaccumulation, the accumulation of a chemical in an organism relative to its level in the ambient medium, is of major environmental concern. Thus, monitoring chemical concentrations in biota are widely and increasingly used for assessing the chemical status of aquatic ecosystems. In this paper...... temporal and geographical range. Bioaccumulation is also assessed for regulation of chemicals of environmental concern whereby mainly data from laboratory studies on fish bioaccumulation are used. Field data can, however, provide additional important information for regulators. Strategies......, various scientific and regulatory aspects of bioaccumulation in aquatic systems and the relevant critical issues are discussed. Monitoring chemical concentrations in biota can be used for compliance checking with regulatory directives, for identification of chemical sources or event-related environmental...

  5. A method for partitioning cadmium bioaccumulated in small aquatic organisms

    Energy Technology Data Exchange (ETDEWEB)

    Siriwardena, S.N.; Rana, K.J.; Baird, D.J. [Univ. of Stirling (United Kingdom). Institute of Aquaculture

    1995-09-01

    A series of laboratory experiments was conducted to evaluate bioaccumulation and surface adsorption of aqueous cadmium (Cd) by sac-fry of the African tilapia Oreochromis niloticus. In the first experiment, the design consisted of two cadmium treatments: 15 {micro}g Cd{center_dot}L{sup {minus}1} in dilution water and a Cd-ethylenediaminetetraacetic acid (Cd-EDTA) complex at 15 {micro}m{center_dot}L{sup {minus}1}, and a water-only control. There were five replicates per treatment and 40 fish per replicate. It was found that EDTA significantly reduced the bioaccumulation of cadmium by tilapia sac-fry by 34%. Based on the results, a second experiment was conducted to evaluate four procedures: a no-rinse control; rinsing in EDTA; rinsing in distilled water; and rinsing in 5% nitric acid, for removing surface-bound Cd from exposed sac-fry. In this experiment, 30 fish in each of five replicates were exposed to 15 {micro}g Cd{center_dot}L{sup {minus}1} for 72 h, processed through the rinse procedures, and analyzed for total Cd. The EDTA rinse treatment significantly reduced (p<0.05) Cd concentrations of the exposed fish relative to those receiving no rinse. It was concluded that the EDTA rinse technique may be useful in studies evaluating the partitioning of surface-bound and accumulated cadmium in small aquatic organisms.

  6. Modeling the role of microplastics in Bioaccumulation of organic chemicals to marine aquatic organisms. Critical Review

    NARCIS (Netherlands)

    Koelmans, A.A.

    2015-01-01

    It has been shown that ingestion of microplastics may increase bioaccumulation of organic chemicals by aquatic organisms. This paper critically reviews the literature on the effects of plastic ingestion on the bioaccumulation of organic chemicals, emphasizing quantitative approaches and mechanistic

  7. Arsenic and mercury bioaccumulation in the aquatic plant, Vallisneria neotropicalis.

    Science.gov (United States)

    Lafabrie, C; Major, K M; Major, C S; Cebrián, J

    2011-03-01

    Arsenic (As) and mercury (Hg) are among the most toxic metals/metalloids. The overall goal of this study was to investigate the bioaccumulation of these trace elements in Vallisneria neotropicalis, a key trophic species in aquatic environments. For this purpose, As and Hg concentrations were determined in sediments and natural populations of V. neotropicalis in sub-estuaries of Mobile Bay (Alabama, USA), differing with respect to past and present anthropogenic impact. Analyses indicate that the Fish River is the most contaminated among the sub-estuaries investigated; levels of As found in Fish River sediments fall within a range that could potentially cause adverse effects in biota. Sediment As concentrations were only moderately correlated with those in V. neotropicalis; no correlation was found between sediment and plant Hg levels. However, several parameters could have masked such potential relationships (e.g., differences in sediment characteristics and "biological dilution" phenomena). Results presented herein highlight the numerous parameters that can influence metal/metalloids accumulation in aquatic plants as well as species-specific responses to trace element contamination. Finally, this study underscores the need for further investigation into contaminant bioaccumulation in ecologically and economically important coastal environments. PMID:21168896

  8. A closer look at bioaccumulation of petroleum hydrocarbon mixtures in aquatic worms.

    NARCIS (Netherlands)

    Muijs, B.; Jonker, M.T.O.

    2010-01-01

    Petroleum hydrocarbons (oils) are ubiquitous in the aquatic environment, and adequate risk assessment is thus essential. Bioaccumulation plays a key role in risk assessment, but the current knowledge on bioaccumulation of oils is limited. Therefore, this process was studied in detail, using the aqua

  9. Bioaccumulation of metals in aquatic insects of streams located in areas with sugar cane cultivation

    OpenAIRE

    Juliano José Corbi; Claudio Gilberto Froehlich; Susana Trivinho Strixino; Ademir dos Santos

    2010-01-01

    Streams located in areas of sugar cane cultivation receive elevated concentrations of metal ions from soils of adjacent areas. The accumulation of metals in the sediments results in environmental problems and leads to bioaccumulation of metal ions by the aquatic organisms. In the present study, bioaccumulation of the metals ions Al, Cd, Cr, Cu, Fe, Mg, Mn and Zn in aquatic insects in streams impacted by the sugar cane was evaluated. The results pointed out that the insects were contaminated b...

  10. Bioaccumulation of metals in aquatic insects of streams located in areas with sugar cane cultivation

    Directory of Open Access Journals (Sweden)

    Juliano José Corbi

    2010-01-01

    Full Text Available Streams located in areas of sugar cane cultivation receive elevated concentrations of metal ions from soils of adjacent areas. The accumulation of metals in the sediments results in environmental problems and leads to bioaccumulation of metal ions by the aquatic organisms. In the present study, bioaccumulation of the metals ions Al, Cd, Cr, Cu, Fe, Mg, Mn and Zn in aquatic insects in streams impacted by the sugar cane was evaluated. The results pointed out that the insects were contaminated by the sediment and that the collector organisms as Chironomus species accumulated higher concentration of metals than the predator organisms.

  11. Bioaccumulation factors in aquatic ecosystems. A critical review

    Energy Technology Data Exchange (ETDEWEB)

    Karlsson, Sara; Meili, Markus; Bergstroem, Ulla [Studsvik Eco and Safety AB, Nykoeping (Sweden)

    2002-07-01

    The calculated concentrations of radionuclides in organisms are often obtained by means of bioaccumulation factors (BAF) that describe the internal concentration relative to an external concentration e.g. in the abiotic environments at steady-state conditions. Such factors are often used when modelling the dose to man from radio-nuclides released to the biosphere. Values of bioaccumulation factors vary widely in magnitude among elements, organisms, and environmental conditions which is not always considered. In order to relate the bioaccumulation factors for some radionuclides to environmental conditions as well as to the trophic level of the organism of concern we have compiled an extensive database with bioaccumulation factors (about 5,500 values) together with information on some environmental conditions. The data for nine radionuclides has been extracted and examined. A comparison between the bioaccumulation factors found in this study and values given in literature by IAEA and NCRP shows that the ranges presented in this study are generally somewhat higher with the exception of BAF for molybdenum in freshwater fish which is of the same order of magnitude. This is startling and calls for a thorough research. The amount of readily accessible and reliable values of BAF is limited, often because basic information such as e.g. units and part of organism examined, is not reported. This is surprising and also unfortunate for those who need such data for use in generic or specific models. A major update of recommended values appears to be necessary for many elements to account for the development of analytical methods and experiences from case studies over the past two decades.

  12. Bioaccumulation and biomagnification potential of pharmaceuticals with a focus to the aquatic environment.

    Science.gov (United States)

    Zenker, Armin; Cicero, Maria Rita; Prestinaci, Francesca; Bottoni, Paola; Carere, Mario

    2014-01-15

    Pharmaceuticals, among the emerging contaminants, are one of the most relevant groups of substances in aquatic ecosystems due to universal use, their chemico-physical properties and known mode of action in aquatic organisms at low concentrations. After administration many drugs and their transformation products are only retained to some extent in wastewater treatment plants therefore entering the aquatic environment in considerable high amounts. The yearly consumption to treat human and animal diseases, also in livestock and aquaculture was estimated to be hundred thousands tons per year leading to high concentrations in surface water of developed countries. Mostly, pharmaceutical residues in effluents of wastewater treatment plants or in the water column of surface waters have been reported, but data about concentrations in the aquatic biota, partitioning of pharmaceuticals to biosolids, soils, and sediments and the bioaccumulation properties are often lacking. Chronic and subtle effects can be expected when aquatic organisms are long term exposed by pseudo-persistent, persistent and accumulative compounds. This review aims to summarize the current state of research about the fate of pharmaceuticals regarding bioconcentration, bioaccumulation and potential biomagnification in aquatic ecosystems. More comprehensive approaches for the evaluation of environmental (ERA) and human health risk assessment (HRA) are included and analytical methods required to detect bioaccumulation of pharmaceuticals are discussed.

  13. Modelling bioaccumulation of oil constituents in aquatic species

    NARCIS (Netherlands)

    Hoop, de L.; Huijbregts, M.A.J.; Schipper, A.M.; Veltman, K.; Laender, de F.; Viaene, K.P.J.; Klok, C.; Hendriks, A.J.

    2013-01-01

    Crude oil poses a risk to marine ecosystems due to its toxicity and tendency to accumulate in biota. The present study evaluated the applicability of the OMEGA model for estimating oil accumulation in aquatic species by comparing model predictions of kinetic rates (absorption and elimination) and bi

  14. Mercury bioaccumulation along food webs in temperate aquatic ecosystems colonized by aquatic macrophytes in south western France.

    Science.gov (United States)

    Gentès, Sophie; Maury-Brachet, Régine; Guyoneaud, Rémy; Monperrus, Mathilde; André, Jean-Marc; Davail, Stéphane; Legeay, Alexia

    2013-05-01

    Mercury (Hg) is considered as an important pollutant for aquatic systems as its organic form, methylmercury (MeHg), is easily bioaccumulated and bioamplified along food webs. In various ecosystems, aquatic periphyton associated with macrophyte was identified as an important place for Hg storage and methylation by microorganisms. Our study concerns temperate aquatic ecosystems (South Western France) colonized by invasive macrophytes and characterized by high mercury methylation potentials. This work establishes original data concerning Hg bioaccumulation in organisms (plants, crustaceans, molluscs and fish) from five contrasting ecosystems. For low trophic level species, total Hg (THg) concentrations were low (from 27±2ngTHgg(-1)dw in asiatic clam Corbicula fluminea to 418±114ngTHgg(-1)dw in crayfish Procambarus clarkii). THg concentrations in some carnivorous fish (high trophic level) were close to or exceeded the International Marketing Level (IML) with values ranging from 1049±220ngTHgg(-1)dw in pike perch muscle (Sander lucioperca) to 3910±1307ngTHgg(-1)dw in eel muscle (Anguilla Anguilla). Trophic levels for the individuals were also evaluated through stable isotope analysis, and linked to Hg concentrations of organisms. A significant Hg biomagnification (r(2)= 0.9) was observed in the Aureilhan lake, despite the absence of top predator fish. For this site, Ludwigia sp. periphyton, as an entry point of Hg into food webs, is a serious hypothesis which remains to be confirmed. This study provides a first investigation of Hg transfer in the ecosystems of south western France and allows the assessment of the risk associated with the presence of Hg in aquatic food webs.

  15. Bioaccumulation of heavy metals in Mbaa River and the impact on aquatic ecosystem.

    Science.gov (United States)

    Ajima, M N O; Nnodi, P C; Ogo, O A; Adaka, G S; Osuigwe, D I; Njoku, D C

    2015-12-01

    The bioaccumulation and toxic effects of heavy metals have caused ecological damage to aquatic ecosystem. In this study, concentration of heavy metals including zinc, lead, cadmium, iron, and copper were determined in the sediment and water as well as in the muscle, gill, and intestine of two fish species (Pelmatochromis guentheri and Pelmatochromis pulcher) of Mbaa River in Southeastern Nigeria. Samples were collected at three different spots from the river, and the level of heavy metals specified above were determined by atomic absorption spectroscopy (AAS) after a modified wet digestion process. The results indicated that sediment had the highest concentration of the heavy metals investigated while water had the lowest concentration. Fish tissues showed appreciable bioaccumulation of these metals as evidenced by a higher concentration profile when compared with that of water. Furthermore, the concentration of these heavy metals in water and their bioconcentration factor in the fish were above the recommended limit by WHO and FEPA, indicating that Mbaa River along Inyishi may not be suitable for drinking nor the fish safe for human consumption. The study also reveals the use of fish as bioindicator of aquatic environment. PMID:26597816

  16. Medium-chain chlorinated paraffins (MCCPs): a review of bioaccumulation potential in the aquatic environment.

    Science.gov (United States)

    Thompson, Roy; Vaughan, Martin

    2014-01-01

    Chlorinated paraffins (CPs) are high molecular weight organochlorine compounds that have been used in a variety of industrial applications for many years. Medium-chain chlorinated paraffins (MCCPs) (CAS 85535-85-9; Alkanes, C14-17 , chloro) are currently under investigation as potential persistent bioaccumulative toxic (PBT) compounds. In this article, the bioaccumulation potential of MCCPs is assessed using a tiered framework proposed after a recent Society of Environmental Toxicology and Chemistry (SETAC) Pellston Workshop in 2008. The framework proposes the use of physicochemical properties and modeling assessment, bioconcentration/bioaccumulation (BCF/BAF) assessment, biomagnification (BMF) assessment, and trophic magnification factor (TMF) assessment. It is hoped that use of this framework could harmonize and improve the efficiency and effectiveness of the chemical substance evaluation screening process for PBT properties. When applied to MCCPs, the following conclusions were made: empirical physiochemical data is available negating the use of models; laboratory BCFs range from 1000 to 15 000 (growth-corrected lipid normalized values) for 2 MCCP structures; field BAFs were an order of magnitude higher than the trigger criterion for "B status possible"; although results may not meet acceptance criteria for field studies, laboratory-derived BMFs for a number of C14-17 chlorinated alkanes were less than the trigger value of 1 (based on whole-body concentrations) whereas field-derived BMFs were less than 1 (based on lipid corrected values [generally used for field data] excluding one measure for sculpin, [Cottus cognatus]-Diporeia that was based on only one detectable sample); and finally, TMFs were less than the trigger criterion value of 1, which are considered the most convincing evidence for bioaccumulative properties of a compound and the "Gold Standard" measure of bioaccumulation. This article also discusses the uncertainties surrounding the published data

  17. Aquatic and terrestrial organic matter in the diet of stream consumers: implications for mercury bioaccumulation.

    Science.gov (United States)

    Jardine, Timothy D; Kidd, Karen A; Rasmussen, Joseph B

    2012-04-01

    The relative contribution of aquatic vs. terrestrial organic matter to the diet of consumers in fluvial environments and its effects on bioaccumulation of contaminants such as mercury (Hg) remain poorly understood. We used stable isotopes of carbon and nitrogen in a gradient approach (consumer isotope ratio vs. periphyton isotope ratio) across temperate streams that range in their pH to assess consumer reliance on aquatic (periphyton) vs. terrestrial (riparian vegetation) organic matter, and whether Hg concentrations in fish and their prey were related to these energy sources. Taxa varied in their use of the two sources, with grazing mayflies (Heptageniidae), predatory stoneflies (Perlidae), one species of water strider (Metrobates hesperius), and the fish blacknose dace (Rhinichthys atratulus) showing strong connections to aquatic sources, while Aquarius remigis water striders and brook trout (Salvelinus fontinalis) showed a weak link to in-stream production. The aquatic food source for consumers, periphyton, had higher Hg concentrations in low-pH waters, and pH was a much better predictor of Hg in predatory invertebrates that relied mainly on this food source vs. those that used terrestrial C. These findings suggest that stream biota relying mainly on dietary inputs from the riparian zone will be partially insulated from the effects of water chemistry on Hg availability. This has implications for the development of a whole-system understanding of nutrient and material cycling in streams, the choice of taxa in contaminant monitoring studies, and in understanding the fate of Hg in stream food webs. PMID:22645815

  18. EURL ECVAM Strategy to replace, reduce and refine the use of fish in aquatic toxicity and bioaccumulation testing

    OpenAIRE

    HALDER MARIA ELISABETH; KIENZLER AUDE; Whelan, Maurice; Worth, Andrew

    2014-01-01

    The assessment of aquatic toxicity and bioaccumulation are important components of the environmental hazard and risk assessment of all types of chemicals, and are therefore included in several pieces of European Union and international legislation. In this document, the European Union Reference Laboratory for Alternatives to Animal Testing (EURL ECVAM) outlines approaches which will deliver an impact on the replacement, reduction and refinement (3Rs) of fish tests used for aquatic toxicity...

  19. Reviewing the serotonin reuptake inhibitors (SSRIs) footprint in the aquatic biota: uptake, bioaccumulation and ecotoxicology.

    Science.gov (United States)

    Silva, Liliana J G; Pereira, André M P T; Meisel, Leonor M; Lino, Celeste M; Pena, Angelina

    2015-02-01

    Selective serotonin re-uptake inhibitors (SSRIs) antidepressants are amongst the most prescribed pharmaceutical active substances throughout the world. Their presence, already described in different environmental compartments such as wastewaters, surface, ground and drinking waters, and sediments, and their remarkable effects on non-target organisms justify the growing concern about these emerging environmental pollutants. A comprehensive review of the literature data with focus on their footprint in the aquatic biota, namely their uptake, bioaccumulation and both acute and chronic ecotoxicology is presented. Long-term multigenerational exposure studies, at environmental relevant concentrations and in mixtures of related compounds, such as oestrogenic endocrine disruptors, continue to be sparse and are imperative to better know their environmental impact.

  20. Aquatic bioaccumulation and trophic transfer of tetrabromobisphenol-A flame retardant introduced from a typical e-waste recycling site.

    Science.gov (United States)

    Tao, Lin; Wu, Jiang-Ping; Zhi, Hui; Zhang, Ying; Ren, Zi-He; Luo, Xiao-Jun; Mai, Bi-Xian

    2016-07-01

    While the flame retardant chemical, tetrabromobisphenol-A (TBBP-A), has been frequently detected in the environment, knowledge regarding its species-specific bioaccumulation and trophic transfer is limited, especially in the highly contaminated sites. In this study, the components of an aquatic food web, including two invertebrates, two prey fish, and one predator fish, collected from a natural pond at an electronic waste (e-waste) recycling site in South China were analyzed for TBBP-A, using liquid chromatography-tandem mass spectrometry. The aquatic species had TBBP-A concentrations ranging from 350 to 1970 pg/g wet weight, with higher concentrations in the invertebrates relative to the fish species. Field-determined bioaccumulation factors of TBBP-A in the two aquatic invertebrates were nearly or greater than 5000, suggesting that TBBP-A is highly bioaccumulative in the two species. The lipid-normalized concentrations of TBBP-A in the aquatic species were negatively correlated with the trophic levels determined from stable nitrogen isotope (δ(15)N) (r = -0.82, p = 0.09), indicating that this compound experienced trophic dilution in the current food web. PMID:27234832

  1. Studies on transfer, bioaccumulation and disappearance of glyphosate in the aquatic ecosystem by utilizing 14C tracer technique

    International Nuclear Information System (INIS)

    Studies on transfer, bioaccumulation and disappearance of glyphosate in the aquatic environment were conducted with methods of model tests and outdoor trials in the aquatic ecosystem. The result showed that glyphosate transferred rapidly into sediment and hormwort (Ceratopyllum demersum L.) after applied; and then, it was taken up faster and accumulated more by topmouth gudgeon (Psudorasobora parva) 5-10 days after application. The partitioning coefficient (sediment-water) and bioconcentration factors of glyphosate were 8.59, 27.96 and 45.79, respectively, in day 20. The concentration of glyphosate residue in the aquatic ecosystem followed the order of topmouth gudgeon > hormwort > sediment > water. And it was also indicated that glyphosate transferred and disappeared extremely fast in both pond and river after application

  2. The bioconcentration and bioaccumulation factors for molybdenum in the aquatic environment from natural environmental concentrations up to the toxicity boundary

    International Nuclear Information System (INIS)

    In a regulatory context, bioaccumulation or bioconcentration factors are used for considering secondary poisoning potential and assessing risks to human health via the food chain. In this paper, literature data on the bioaccumulation of molybdenum in the aquatic organisms are reviewed and assessed for relevance and reliability. The data available in the literature were generated at exposure concentrations below those recommended in the REACH registration dossiers for molybdenum compounds i.e. PNECfreshwater 12.7 mg Mo/L. To address possible environmental concerns at regulatorily-relevant molybdenum concentrations, both a field study and a laboratory study were conducted. In the field study, whole body and organ-specific molybdenum levels were evaluated in fish (eel, stickleback, perch, carp bream, roach) held in the discharge water collector tanks of a molybdenum processing plant, containing a mean measured molybdenum level of 1.03 mg Mo/L. In the laboratory study, rainbow trout were exposed to two different nominal molybdenum levels (1.0 and 12.7 mg Mo/L), for 60 days followed by a 60-day depuration period. Whole body concentrations in rainbow trout during the exposure period were between < 0.20 and 0.53 mg Mo/L. Muscle tissue molybdenum concentrations in fish taken from both experiments remained below 0.2 mg/kg dry wt. These studies show an inverse relationship between exposure concentration and bioconcentration or bioaccumulation factor for molybdenum. In aquatic organisms, and in fish in particular, internal molybdenum concentrations are maintained in the presence of variation in external molybdenum concentrations. These observations must be considered when evaluating potential risks associated with the bioconcentration and/or bioaccumulation of molybdenum in the aquatic environment. -- Highlights: ► Addressing environmental concerns at regulatory-relevant molybdenum concentrations. ► Inverse relationship between exposure levels and BAF (BAF increases as Mo

  3. Bioaccumulation dynamics and exposure routes of Cd and Cu among species of aquatic mayflies

    Science.gov (United States)

    Cain, D.; Croteau, M.-N.; Luoma, S.

    2011-01-01

    Consumption of periphyton is a potentially important route of metal exposure to benthic invertebrate grazers. The present study examined the bioaccumulation kinetics of dissolved and dietary Cd and Cu in five species of mayflies (class Insecta). Artificial stream water and benthic diatoms were separately labeled with enriched stable metal isotopes to determine physiological rate constants used by a biokinetic bioaccumulation model. The model was employed to simulate the effects of metal partitioning between water and food, expressed as the bioconcentration factor (BCF), as well as ingestion rate (IR) and metal assimilation efficiency of food (AE), on the relative importance of water and food to metal bioaccumulation. For all test species, the contribution of dietary uptake of Cd and Cu increased with BCF. For a given BCF, the contribution of food to the body burden increased with kuf, the metal uptake rate constant from food that combined variation in IR and AE. To explore the relative importance of water and diet exposure routes under field conditions, we used estimated site-specific aqueous free-ion concentrations to model Cd and Cu accumulation from aqueous exposure, exclusively. The predicted concentrations accounted for less than 5% of the observed concentrations, implying that most bioaccumulated metal was acquired from food. At least for the taxa considered in this study, we conclude that consumption of metal-contaminated periphyton can result in elevated metal body burdens and potentially increase the risk of metal toxicity. ?? 2011 SETAC.

  4. Trait-based modelling of bioaccumulation by freshwater benthic invertebrates.

    Science.gov (United States)

    Sidney, Livia Alvarenga; Diepens, Noël J; Guo, Xiaoying; Koelmans, Albert A

    2016-07-01

    Understanding the role of species traits in chemical exposure is crucial for bioaccumulation and toxicity assessment of chemicals. We measured and modelled bioaccumulation of polychlorinated biphenyls (PCBs) in Chironomus riparius, Hyalella azteca, Lumbriculus variegatus and Sphaerium corneum. We used a battery test procedure with multiple enclosures in one aquarium, which maximized uniformity of exposure for the different species, such that the remaining variability was due mostly to species traits. The relative importance of uptake from either pore water or sediment ingestion was manipulated by using 28 d aged standard OECD sediment with low (1%) and medium (5%) OM content and 13 months aged sediment with medium OM (5%) content. Survival was ≥76% and wet weight increased for all species. Reproduction of H. azteca and weight gain of H. azteca and S. corneum were significantly higher in the medium OM aged sediments than in other sediments, perhaps due to a more developed microbial community (i.e., increase in food resources). Biota-sediment accumulation factors (BSAF) ranged from 3 to 114, depending on species and PCB congener, with C. riparius (3-10)bioaccumulation model with species-specific bioaccumulation parameters fitted well to the experimental data and showed that bioaccumulation parameters were depended on species traits. Enclosure-based battery tests and mechanistic BSAF models are expected to improve the quality of the exposure assessment in whole sediment toxicity tests. PMID:27126443

  5. Use of 65 Zn as radioactive tracer in the bioaccumulation study of zinc by aquatic organisms

    International Nuclear Information System (INIS)

    The present work has as main objective to emphasize the importance of using radioactive tracers as well as to establish a methodology for the utilization of 65 Zn in the bioaccumulation study of zinc by Poecilia reticulata. The exposure time varied from 5 days (short term experiments) to 30 days (long term experiments). The bioaccumulation of zinc from the water as well as the elimination of the metal previously absorbed were determined by measuring the activity of 65 Zn which was added to the water in the beginning of the experiments. The technique chosen is suitable to study the behaviour of the stable zinc since the radionuclide used is an isotope of the same element and therefore presents the same chemical properties. (author)

  6. Bioaccumulation and tissue distribution of a quaternary ammonium surfactant in three aquatic species

    Energy Technology Data Exchange (ETDEWEB)

    Knezovich, J.P.; Lawton, M.P.; Inouye, L.S.

    1989-01-01

    Quaternary ammonium compounds (QACs) are commonly used as surfactants in drilling muds and fabric softeners and as biocides in antiseptics and disinfectants. QACs and cationic polyelectrolytes elicit acute toxic effects in aquatic organisms by disrupting the structure and function of gill tissues, which may result in the suffocation of the organism. Little information is available, however, on the relative availability and distribution of QACs in the tissues of aquatic organisms. Information of this nature is required to understand the potential consequences of releases of sublethal concentrations of QACs into the aquatic environment. In this study, hexadecylpyridinium bromide (HPB; CAS 140-72-7) was selected as a compound for initial study because it belongs to a chemical class (alkylpyridinium QACs) that includes the most toxic and environmentally persistent QACs. Clams, minnows, and tadpoles were chosen as test organisms to define the relative availability of HPB to organisms that occupy distinctly different ecological niches.

  7. Nuclear microscopy as a tool in TiO2 nanoparticles bioaccumulation studies in aquatic species

    Science.gov (United States)

    Pinheiro, Teresa; Moita, Liliana; Silva, Luís; Mendonça, Elsa; Picado, Ana

    2013-07-01

    Engineered Titanium nanoparticles are used for a wide range of applications from coatings, sunscreen cosmetic additives to solar cells or water treatment agents. Inevitably environmental exposure can be expected and data on the ecotoxicological evaluation of nanoparticles are still scarce. The potential effects of nanoparticles of titanium dioxide (TiO2) on two model organisms, the water flea, Daphnia magna and the duckweed Lemna minor, were examined in semichronic toxicity tests. Daphnia and Lemna were exposed to TiO2 nanoparticles (average particle size value of 28 ± 11 nm (n = 42); concentration range, 1.4-25 mg/L) by dietary route and growth in medium containing the nanoparticles of TiO2, respectively. Both morphology and microdistribution of Ti in the individuals were examined by nuclear microscopy techniques. A significant amount of TiO2 was found accumulated in Daphnia exposed to nanoparticles. Nuclear microscopy imaging revealed that Ti was localized only in the digestive tract of the Daphnia, which displayed difficulty in eliminating the nanoparticles from their body. Daphnia showed higher mortality when exposed to higher concentrations of TiO2 (>10 mg/L). The exposure to TiO2 nanoparticles above 25 mg/L caused morphological alterations in Lemna. The roots became stiff and fronds colorless. The Ti mapping of cross-sections of roots and fronds showed that Ti was mainly deposited in the epidermis of the fronds and roots, with minor internalization. In summary, exposure of aquatic organisms to TiO2 nanoparticles may alter the physiology of these organisms at individual and population levels, posing risks to aquatic ecosystems.

  8. Influence of lead-doped hydroponic medium on the adsorption/bioaccumulation processes of lead and phosphorus in roots and leaves of the aquatic macrophyte Eicchornia crassipes.

    Science.gov (United States)

    Espinoza-Quiñones, Fernando R; Módenes, Aparecido Nivaldo; de Oliveira, Ana Paula; Trigueros, Daniela Estelita Goes

    2013-11-30

    In this study, lead bioaccumulation by the living free-floating aquatic macrophyte Eicchornia crassipes in different hydroponic conditions with variations in phosphorus and lead concentrations was investigated. A set of growth experiments in hydroponic media doped with lead and phosphorus within a wide concentration range was performed for 32 days in a greenhouse. All experiments were carried out with periodic replacement of all nutrients and lead. The concentration of lead and nutrients in biomass was determined by synchrotron radiation-excited total reflection X-ray fluorescence. By increasing the lead concentration in the medium, a reduction in biomass growth was observed, but a higher phosphorus retention in roots and leaves was shown at lower lead concentrations. In addition, an increase in the amount of bioaccumulated lead and phosphorus in roots was observed for higher lead and phosphorus concentrations in the medium, reaching saturation values of 4 mg Pb g(-1) and 7 mg P g(-1), respectively. Four non-structural kinetic models were tested, to represent the bioaccumulation of lead and phosphorus in roots. Pseudo-second order and irreversible kinetic models described the lead bioaccumulation data well, however, an irreversible kinetic model better fitted phosphorus uptake in roots.

  9. CHROMIUM BIOACCUMULATION FROM COMPOSTS AND VERMICOMPOSTS BASED ON TANNERY SLUDGES

    Directory of Open Access Journals (Sweden)

    Krzysztof GONDEK

    2008-07-01

    Full Text Available Storage of waste substances is not indifferent to ecological equilibrium in the environment therefore should not be the ultimate way to limit waste arduousness. Therefore, the conducted investigations aimed to determine the effect of tannery composts and vermicomposts loaded with chromium on this element bioaccumulation in earthworm bodies and biomass of selected plants. Chromium in composts and vermicomposts based on tannery sludges occurred in small quantities and easily soluble compounds. Chromium concentrations in redworm biomass points to this metal accumulation in Eisenia fetida body tissues. This element content in redworm biomass was signifi cantly positively correlated with its content in composts. Chromium content in plants was diversifi ed and on treatments was generally smaller than on mineral treatment or farmyard manure. Chromium absorbed by plants was stored mainly in the root systems, and over the norm content of this element found in vermicomposts did not cause its excessive accumulation in plant biomass.

  10. Bioaccumulation and human health risk assessment of DDT and other organochlorine pesticides in an apex aquatic predator from a premier conservation area.

    Science.gov (United States)

    Gerber, Ruan; Smit, Nico J; Van Vuren, Johan H J; Nakayama, Shouta M M; Yohannes, Yared B; Ikenaka, Yoshinori; Ishizuka, Mayumi; Wepener, Victor

    2016-04-15

    With the second highest gross domestic product in Africa, South Africa is known to have a high pesticide usage, including the highly persistent and banned group of organochlorine pesticides (OCPs). South Africa is also one of few countries to still actively spray DDT as malaria vector control. The aim of the study was to determine the degree to which aquatic biota in selected rivers of the world renowned Kruger National Park (KNP) are exposed to by use of OCPs in the catchments outside the KNP and how this exposure relates to human health. Tigerfish (Hydrocynus vittatus) are economically important apex predators and was selected as bioindicator for this study. Fish were sampled from the KNP sections of the Luvuvhu, Letaba and Olifants rivers during the high and low flow periods from 2010 to 2011 within the KNP and 19 OCPs were determined in muscle tissue using GC-ECD techniques. Significant flow related and spatial OCP bioaccumulation was observed. Tigerfish from the Luvuvhu River displayed the highest OCP bioaccumulation. Concentrations of the majority of the OCPs including the DDTs were the highest levels ever recorded from South African freshwater systems and in many cases the concentrations were higher than most contaminated areas from around the world. The concentrations found in H. vittatus muscle also exceeded maximum residue levels in edible fat as set by the European Union. The health risk assessment also demonstrated that the levels of OCPs pose very high cancer risks to the local populations consuming tigerfish, as high as 2 in 10 increased risk factor. This is of concern not only when managing the water resources of the conservation area but also for surrounding communities consuming freshwater fish. Contaminants enter the park from outside the borders and pose potential risks to the mandated conservation of aquatic biota within the KNP.

  11. Bioaccumulation and human health risk assessment of DDT and other organochlorine pesticides in an apex aquatic predator from a premier conservation area.

    Science.gov (United States)

    Gerber, Ruan; Smit, Nico J; Van Vuren, Johan H J; Nakayama, Shouta M M; Yohannes, Yared B; Ikenaka, Yoshinori; Ishizuka, Mayumi; Wepener, Victor

    2016-04-15

    With the second highest gross domestic product in Africa, South Africa is known to have a high pesticide usage, including the highly persistent and banned group of organochlorine pesticides (OCPs). South Africa is also one of few countries to still actively spray DDT as malaria vector control. The aim of the study was to determine the degree to which aquatic biota in selected rivers of the world renowned Kruger National Park (KNP) are exposed to by use of OCPs in the catchments outside the KNP and how this exposure relates to human health. Tigerfish (Hydrocynus vittatus) are economically important apex predators and was selected as bioindicator for this study. Fish were sampled from the KNP sections of the Luvuvhu, Letaba and Olifants rivers during the high and low flow periods from 2010 to 2011 within the KNP and 19 OCPs were determined in muscle tissue using GC-ECD techniques. Significant flow related and spatial OCP bioaccumulation was observed. Tigerfish from the Luvuvhu River displayed the highest OCP bioaccumulation. Concentrations of the majority of the OCPs including the DDTs were the highest levels ever recorded from South African freshwater systems and in many cases the concentrations were higher than most contaminated areas from around the world. The concentrations found in H. vittatus muscle also exceeded maximum residue levels in edible fat as set by the European Union. The health risk assessment also demonstrated that the levels of OCPs pose very high cancer risks to the local populations consuming tigerfish, as high as 2 in 10 increased risk factor. This is of concern not only when managing the water resources of the conservation area but also for surrounding communities consuming freshwater fish. Contaminants enter the park from outside the borders and pose potential risks to the mandated conservation of aquatic biota within the KNP. PMID:26845188

  12. Impact of polychlorinated biphenyl and polycyclic aromatic hydrocarbon sequestration in sediment on bioaccumulation in aquatic food webs

    NARCIS (Netherlands)

    Moermond, C.T.A.; Roessink, I.; Jonker, M.T.O.; Meijer, T.; Koelmans, A.A.

    2007-01-01

    It is not clear whether sequestration or aging of organic chemicals like polychlorinated biphenyls (PCBs) and polycyclic aromatic hydrocarbons (PAHs) limits accumulation in higher levels of aquatic food chains. Therefore, the effect of aging on accumulation was studied in 1-m3 model ecosystems that

  13. Nuclear microscopy as a tool in TiO{sub 2} nanoparticles bioaccumulation studies in aquatic species

    Energy Technology Data Exchange (ETDEWEB)

    Pinheiro, Teresa, E-mail: murmur@itn.pt [IST/ITN, Instituto Superior Técnico, Universidade Técnica de Lisboa and Centro de Física Nuclear, Universidade de Lisboa (Portugal); Moita, Liliana; Silva, Luís; Mendonça, Elsa; Picado, Ana [LNEG, Laboratório Nacional de Energia e Geologia, I.P. Estrada do Paço do Lumiar 22, 1649-038 Lisboa (Portugal)

    2013-07-01

    Engineered Titanium nanoparticles are used for a wide range of applications from coatings, sunscreen cosmetic additives to solar cells or water treatment agents. Inevitably environmental exposure can be expected and data on the ecotoxicological evaluation of nanoparticles are still scarce. The potential effects of nanoparticles of titanium dioxide (TiO{sub 2}) on two model organisms, the water flea, Daphnia magna and the duckweed Lemna minor, were examined in semichronic toxicity tests. Daphnia and Lemna were exposed to TiO{sub 2} nanoparticles (average particle size value of 28 ± 11 nm (n = 42); concentration range, 1.4–25 mg/L) by dietary route and growth in medium containing the nanoparticles of TiO{sub 2}, respectively. Both morphology and microdistribution of Ti in the individuals were examined by nuclear microscopy techniques. A significant amount of TiO{sub 2} was found accumulated in Daphnia exposed to nanoparticles. Nuclear microscopy imaging revealed that Ti was localized only in the digestive tract of the Daphnia, which displayed difficulty in eliminating the nanoparticles from their body. Daphnia showed higher mortality when exposed to higher concentrations of TiO{sub 2} (>10 mg/L). The exposure to TiO{sub 2} nanoparticles above 25 mg/L caused morphological alterations in Lemna. The roots became stiff and fronds colorless. The Ti mapping of cross-sections of roots and fronds showed that Ti was mainly deposited in the epidermis of the fronds and roots, with minor internalization. In summary, exposure of aquatic organisms to TiO{sub 2} nanoparticles may alter the physiology of these organisms at individual and population levels, posing risks to aquatic ecosystems.

  14. A community-based framework for aquatic ecosystem models

    DEFF Research Database (Denmark)

    Trolle, Didde; Hamilton, D. P.; Hipsey, M. R.;

    2012-01-01

    Here, we communicate a point of departure in the development of aquatic ecosystem models, namely a new community-based framework, which supports an enhanced and transparent union between the collective expertise that exists in the communities of traditional ecologists and model developers. Through...... aim to (i) advance collaboration within the aquatic ecosystem modelling community, (ii) enable increased use of models for research, policy and ecosystem-based management, (iii) facilitate a collective framework using common (standardised) code to ensure that model development is incremental, (iv......) avoid 're-inventing the wheel', thus accelerating improvements to aquatic ecosystem models. We intend to achieve this as a community that fosters interactions amongst ecologists and model developers. Further, we outline scientific topics recently articulated by the scientific community, which lend...

  15. Development of predictive models for xenobiotic bioaccumulation in terrestrial ecosystems

    Energy Technology Data Exchange (ETDEWEB)

    Trabalka, J.R.; Garten, C.T. Jr.

    1982-10-01

    We evaluated the suitability of existing, simple empirical models developed for aquatic organisms and the question of extending such models to terrestrial systems. Data sets of other investigators were expanded, and edited showing r/sup 2/ values associated with regressions fell significantly. Expansion of the analysis to include nonruminant mammals and birds produced similar conclusions. A simple sorting model based on hydrophobic tendency was able to successfully separate all but one bioaccumulation hazards from groups of organic compounds (N > 100) when the screening criterion was a specified bioconcentration factor for fish/water (in water-only exposure systems or model ecosystems) or mammal-bird/diet (long-term feeding under laboratory conditions). Approximately one-fourth of the chemicals sorted into the hazardous category did not exhibit significant bioaccumulation and the one hazardous material, which would not have been identified as such, was methylmercury. Results indicate that, although a measure of hydrophobicity is a highly satisfactory first approximation indicator for bioaccumulation potential for most organics in both terrestrial and aquatic vertebrates, this potential is frequently controlled by environmental factors and specific metabolic/steric interactions not adequately represented in existing SARs.

  16. Bioaccumulation Studies Associated with the Kingston Fly Ash Spill, Spring 2009 - Fall 2010

    Energy Technology Data Exchange (ETDEWEB)

    Adams, Marshall [ORNL; Brandt, Craig C [ORNL; Fortner, Allison M [ORNL

    2012-05-01

    In December 2008, an ash dike at the Tennessee Valley Authority (TVA) Kingston Fossil Plant ruptured, releasing over one billion gallons of coal fly ash into the Emory and Clinch Rivers. Coal fly ash may contain several contaminants of concern, but of these selenium (Se) and arsenic (As) have been highlighted because of their toxicity and tendency to bioaccumulate in aquatic food chains. To assess the potential impact of the spilled fly ash on humans and the environment, a comprehensive biological and environmental monitoring program was established, for which resident aquatic organisms (among other sample media) are collected to determine contaminant exposure and evaluate the risk to humans and wildlife. Studies on bioaccumulation and fish health are major components of the TVA Biological Monitoring Program for the Kingston fly ash project. These studies were initiated in early Spring 2009 for the purposes of: (1) documenting the levels of fly ash-associated metals in various tissues of representative sentinel fish species in the area of the fly ash spill, (2) determining if exposure to fly ash-associated metals causes short, intermediate, or long-term health effects on these sentinel fish species, (3) assessing if there are causal relationships between exposure (to metals) and effects on fish, (4) evaluating, along with information regarding other ecological and physicochemical studies, the nature and route of contaminant transfer though food chains into higher level consumers, (5) providing important information for the Ecological Risk Assessment (ERA) for the Kingston fly ash project, and (6) serving as an important technology transfer or model study focused on how to best evaluate the environmental effects of fly ash, not only at the Kingston site, but also at sites on other aquatic systems where coal-fired generating stations are located. This report summarizes the bioaccumulation results from the first two years of study after the fly ash spill, including

  17. Effects of contaminants on reproductive success of aquatic birds nesting at Edwards Air Force Base, California

    Science.gov (United States)

    Hothem, R.L.; Crayon, J.J.; Law, M.A.

    2006-01-01

    Contamination by organochlorine pesticides (OCs), polychlorinated biphenyls, metals, and trace elements at Edwards Air Force Base (EAFB), located in the Mojave Desert, could adversely affect nesting aquatic birds, especially at the sewage lagoons that comprise Piute Ponds. Estimates of avian reproduction, in conjunction with analyses of eggs and avian foods for contaminant residues, may indicate the potential for negative effects on avian populations. From 1996 to 1999, we conducted studies at the Piute Ponds area of EAFB to evaluate the impacts of contaminants on nesting birds. Avian reproduction was evaluated in 1999. Eggs were collected for chemical analyses in 1996 and 1999, and African clawed frogs (Xenopus laevis), a likely food source, were collected for chemical analyses in 1998. Avian species occupying the higher trophic levels-black-crowned night-heron (Nycticorax nycticorax), white-faced ibis (Plegadis chihi), and American avocet (Recurvirostra americana)-generally bioaccumulated higher concentrations of contaminants in their eggs. Reproductive success and egg hatchability of night-herons and white-faced ibises in the Piute Ponds were similar to results observed at other western colonies. Deformities were observed in only one embryo in this study, but concentrations of contaminants evaluated in this ibis embryo were considered insufficient to have caused the deformities. Because clawed frogs, a primary prey item for night-herons at Piute Ponds, had no detectable levels of any OCs, it is likely that OCs found in night-heron eggs were acquired from the wintering grounds rather than from EAFB. The presence of isomers of dichlorodiphenyltrichloroethane (DDT) in ibis eggs indicated recent exposure, but invertebrates used for food by ibises were not sampled at Piute Ponds, and conclusions about the source of OCs in ibis eggs could not be made. Concentrations of contaminants in random and failed eggs of individual species were not different, and we concluded

  18. Bioaccumulation of cadmium in an experimental aquatic food chain involving phytoplankton (Chlorella vulgaris), zooplankton (Moina macrocopa), and the predatory catfish Clarias macrocephalus x C. gariepinus

    Energy Technology Data Exchange (ETDEWEB)

    Ruangsomboon, Suneerat [Faculty of Agricultural Technology, King Mongkut' s Institute of Technology Ladkrabang, Chalongkrung Road, Bangkok 10520 (Thailand)]. E-mail: krsuneer@kmitl.ac.th; Wongrat, Ladda [Faculty of Fishery, Kasetsart University, Bangkok 10900 (Thailand)

    2006-06-10

    The accumulation of cadmium (Cd) was studied in an experimental aquatic food chain involving the phytoplankton Chlorella vulgaris as the primary producer, the zooplankton Moina macrocopa as the primary consumer, and the catfish Clarias macrocephalus x Clarias gariepinus as the secondary consumer. C. vulgaris was first exposed to Cd solutions at 0.00, 0.35, and 3.50 mg l{sup -1}, referred to as control group and experimental groups 1 and 2, respectively. Subsequently, each group was fed to three corresponding groups of M. macrocopa. Finally, three groups of catfish were fed these corresponding groups of M. macrocopa. After C. vulgaris was exposed to 3.50 mg l{sup -1} Cd (experimental group 2), the residual Cd in solution was only 4.01 {mu}g l{sup -1}, lower than the maximum allowable limit of Cd in natural water sources (5 {mu}g l{sup -1}). Cd concentrations in C. vulgaris were 0.01 {+-} 0.00 {mu}g g{sup -1} (dry wt) in the control group, 194 {+-} 1.80 {mu}g g{sup -1} (dry wt) in experimental group 1, and 1140 {+-} 20.06 {mu}g g{sup -1} (dry wt) in experimental group 2. The Cd concentrations in M. macrocopa were 0.01 {+-} 0.00 {mu}g g{sup -1} (dry wt) in the control group, 16.48 {+-} 2.23 {mu}g g{sup -1} (dry wt) in experimental group 1, and 56.6 {+-} 3.23 {mu}g g{sup -1} (dry wt) in experimental group 2. The Cd concentrations in catfish muscle increased with increasing Cd concentrations in the food. After 60 days of fish culture, the mean concentrations of Cd in fish muscle were 0.01 {+-} 0.00 {mu}g g{sup -1} (dry wt) in the control group, 0.61 {+-} 0.02 {mu}g g{sup -1} (dry wt) in experimental group 1 and 1.04 {+-} 0.06 {mu}g g{sup -1} (dry wt) in experimental group 2. Cd concentration in fish muscle of experimental group 2 was equal to the permissible limit. Cd accumulation affected fish growth: at the end of the study, the mean fresh weight (12.81 g) of catfish in the control group, was significantly higher than those experimental group 1 (10.43 g) and

  19. Bioaccumulation of cadmium in an experimental aquatic food chain involving phytoplankton (Chlorella vulgaris), zooplankton (Moina macrocopa), and the predatory catfish Clarias macrocephalus x C. gariepinus

    International Nuclear Information System (INIS)

    The accumulation of cadmium (Cd) was studied in an experimental aquatic food chain involving the phytoplankton Chlorella vulgaris as the primary producer, the zooplankton Moina macrocopa as the primary consumer, and the catfish Clarias macrocephalus x Clarias gariepinus as the secondary consumer. C. vulgaris was first exposed to Cd solutions at 0.00, 0.35, and 3.50 mg l-1, referred to as control group and experimental groups 1 and 2, respectively. Subsequently, each group was fed to three corresponding groups of M. macrocopa. Finally, three groups of catfish were fed these corresponding groups of M. macrocopa. After C. vulgaris was exposed to 3.50 mg l-1 Cd (experimental group 2), the residual Cd in solution was only 4.01 μg l-1, lower than the maximum allowable limit of Cd in natural water sources (5 μg l-1). Cd concentrations in C. vulgaris were 0.01 ± 0.00 μg g-1 (dry wt) in the control group, 194 ± 1.80 μg g-1 (dry wt) in experimental group 1, and 1140 ± 20.06 μg g-1 (dry wt) in experimental group 2. The Cd concentrations in M. macrocopa were 0.01 ± 0.00 μg g-1 (dry wt) in the control group, 16.48 ± 2.23 μg g-1 (dry wt) in experimental group 1, and 56.6 ± 3.23 μg g-1 (dry wt) in experimental group 2. The Cd concentrations in catfish muscle increased with increasing Cd concentrations in the food. After 60 days of fish culture, the mean concentrations of Cd in fish muscle were 0.01 ± 0.00 μg g-1 (dry wt) in the control group, 0.61 ± 0.02 μg g-1 (dry wt) in experimental group 1 and 1.04 ± 0.06 μg g-1 (dry wt) in experimental group 2. Cd concentration in fish muscle of experimental group 2 was equal to the permissible limit. Cd accumulation affected fish growth: at the end of the study, the mean fresh weight (12.81 g) of catfish in the control group, was significantly higher than those experimental group 1 (10.43 g) and experimental group 2 (10.00 g). The results showed that the measurement of Cd concentration in water does not necessarily give

  20. Regionalizing Aquatic Ecosystems Based on the River Subbasin Taxonomy Concept and Spatial Clustering Techniques

    Directory of Open Access Journals (Sweden)

    Jiahu Zhao

    2011-11-01

    Full Text Available Aquatic ecoregions were increasingly used as spatial units for aquatic ecosystem management at the watershed scale. In this paper, the principle of including land area, comprehensiveness and dominance, conjugation and hierarchy were selected as regionalizing principles. Elevation and drainage density were selected as the regionalizing indicators for the delineation of level I aquatic ecoregions, and percent of construction land area, percent of cultivated land area, soil type and slope for the level II. Under the support of GIS technology, the spatial distribution maps of the two indicators for level I and the four indicators for level II aquatic ecoregion delineation were generated from the raster data based on the 1,107 subwatersheds. River subbasin taxonomy concept, two-step spatial clustering analysis approach and manual-assisted method were used to regionalize aquatic ecosystems in the Taihu Lake watershed. Then the Taihu Lake watershed was divided into two level I aquatic ecoregions, including Ecoregion I1 and Ecoregion I2, and five level II aquatic subecoregions, including Subecoregion II11, Subecoregion II12, Subecoregion II21, Subecoregion II22 and Subecoregion II23. Moreover, the characteristics of the two level I aquatic ecoregions and five level II aquatic subecoregions in the Taihu Lake watershed were summarized, showing that there were significant differences in topography, socio-economic development, water quality and aquatic ecology, etc. The results of quantitative comparison of aquatic life also indicated that the dominant species of fish, benthic density, biomass, dominant species, Shannon-Wiener diversity index, Margalef species richness index, Pielou evenness index and ecological dominance showed great spatial variability between the two level I aquatic ecoregions and five level II aquatic subecoregions. It reflected the spatial heterogeneities and the uneven natures of aquatic ecosystems in the Taihu Lake watershed.

  1. Design and Promotion Strategy of Marketing Platform of Aquatic Auction based on Internet

    Science.gov (United States)

    Peng, Jianliang

    For the online trade and promotion of aquatic products and related materials through the network between supply and demand, the design content and effective promotional strategies of aquatic auctions online marketing platform is proposed in this paper. Design elements involve the location of customer service, the basic function of the platform including the purchase of general orders, online auctions, information dissemination, and recommendation of fine products, human services, and payment preferences. Based on network and mobile e-commerce transaction support, the auction platform makes the transaction of aquatic products well in advance. The results are important practical value for the design and application of online marketing platform of aquatic auction.

  2. Ecotoxicity of engineered nanoparticles to aquatic invertebrates: a brief review and recommendations for future toxicity testing

    DEFF Research Database (Denmark)

    Baun, Anders; Hartmann, Nanna Isabella Bloch; Grieger, Khara Deanne;

    2008-01-01

    Daphnia magna as the test organism. To date, the limited number of studies has indicated acute toxicity in the low mgl(-1) range and higher of engineered nanoparticles to aquatic invertebrates, although some indications of chronic toxicity and behavioral changes have also been described at concentrations...... through standardized short-term (lethality) tests with invertebrates as a basis for investigating behaviour and bioavailability of engineered nanoparticles in the aquatic environment. Based on this literature review, we further recommend that research is directed towards invertebrate tests employing long......-term low exposure with chronic endpoints along with more research in bioaccumulation of engineered nanoparticles in aquatic invertebrates....

  3. Sunlight-induced Transformations of Graphene-based Nanomaterials in Aquatic Environments

    Science.gov (United States)

    Graphene-based nanomaterials and other related carbon nanomaterials (CNMs) can be released from products during their life cycles. Upon entry into aquatic environments, they are potentially transformed by photochemical reactions, oxidation reactions and biological processes, all ...

  4. Significance of Xenobiotic Metabolism for Bioaccumulation Kinetics of Organic Chemicals in Gammarus pulex

    OpenAIRE

    Ashauer, Roman; Hintermeister, Anita; O’Connor, Isabel; Elumelu, Maline; Hollender, Juliane; Escher, Beate I

    2012-01-01

    Bioaccumulation and biotransformation are key toxicokinetic processes that modify toxicity of chemicals and sensitivity of organisms. Bioaccumulation kinetics vary greatly among organisms and chemicals; thus, we investigated the influence of biotransformation kinetics on bioaccumulation in a model aquatic invertebrate using fifteen 14C-labeled organic xenobiotics from diverse chemical classes and physicochemical properties (1,2,3-trichlorobenzene, imidacloprid, 4,6-dinitro-o-cresol, ethylacry...

  5. Metals Bioaccumulation Mechanism in Neem Bark.

    Science.gov (United States)

    Krishnani, Kishore K; Boddu, Veera M; Moon, Deok Hyun; Ghadge, S V; Sarkar, Biplab; Brahmane, M P; Choudhary, K; Kathiravan, V; Meng, Xiaoguang

    2015-09-01

    The aim of this work was to define the bioaccumulation mechanism of metals onto the non-living biomaterial prepared from an extensively available plant bark biomass of neem (Azadirachta indica). Based on maximum ultimate fixation capacities (mmol/g) of the product, metals ions could be arranged as Hg(2+) Neem bark can be used as bioindicators, bioaccumulators and biomonitors while determining environmental pressures. Metal bioaccumulative properties and structural investigation of plant bark has potential in providing quantitative information on the metal contamination in the surrounding environment.

  6. Physiologically-based pharmacokinetic modelling of distribution, bioaccumulation and excretion of POPs in Greenland sledge dogs (Canis familiaris).

    Science.gov (United States)

    Sonne, Christian; Gustavson, Kim; Letcher, Robert J; Dietz, Rune

    2015-10-01

    We used PBPK (physiologically-based pharmacokinetic) modelling to investigate distribution, bioaccumulation and excretion of the seven POPs (persistent organic pollutants) CB-99, CB-153, HCB, oxychlordane, p,p'-DDE, BDE-47 and BDE-99 in 4 adult captive Greenland sledge dog (Canis familiaris) bitches fed minke whale (Balaenoptera acuterostrata) blubber for 500-635 days. The PBPK modelled POP concentrations in adipose tissue, liver, kidney and plasma were mostly within a factor 2 of actual measured tissue levels even for those at the lower concentration end. The excretion route for oxychlordane and CB-153 was modelled to be via faeces while lung alveolar excretion dominated for BDE-47, BDE-99, HCB, p,p'-DDE and CB-99. Furthermore the model suggested the retained mass of POPs after 500 and 635 days of exposure, respectively, to be relatively low despite these POPs being highly recalcitrant. The retention increased in the following order (% of total intake); p,p'-DDE (1%)tool in risk assessment of POPs in arctic mammals. PMID:26210746

  7. Habitat type-based bioaccumulation and risk assessment of metal and As contamination in earthworms, beetles and woodlice.

    Science.gov (United States)

    Vermeulen, Frouke; Van den Brink, Nico W; D'Havé, Helga; Mubiana, Valentine K; Blust, Ronny; Bervoets, Lieven; De Coen, Wim

    2009-11-01

    The present study investigated the contribution of environmental factors to the accumulation of As, Cd, Cu, Pb and Zn in earthworms, beetles and woodlice, and framed within an exposure assessment of the European hedgehog. Soil and invertebrate samples were collected in three distinct habitat types. Results showed habitat-specific differences in soil and invertebrate metal concentrations and bioaccumulation factors when normalized to soil metal concentration. Further multiple regression analysis showed residual variability (habitat differences) in bioaccumulation that could not be fully explained by differences in soil metal contamination, pH or organic carbon (OC). Therefore, the study demonstrated that in bioaccumulation studies involving terrestrial invertebrates or in risk assessment of metals, it is not sufficient to differentiate habitat types on general soil characteristics such as pH and/or OC alone. Furthermore, simple generic soil risk assessments for Cd and Cu showed that risk characterization was more accurate when performed in a habitat-specific way.

  8. Habitat type-based bioaccumulation and risk assessment of metal and As contamination in earthworms, beetles and woodlice

    International Nuclear Information System (INIS)

    The present study investigated the contribution of environmental factors to the accumulation of As, Cd, Cu, Pb and Zn in earthworms, beetles and woodlice, and framed within an exposure assessment of the European hedgehog. Soil and invertebrate samples were collected in three distinct habitat types. Results showed habitat-specific differences in soil and invertebrate metal concentrations and bioaccumulation factors when normalized to soil metal concentration. Further multiple regression analysis showed residual variability (habitat differences) in bioaccumulation that could not be fully explained by differences in soil metal contamination, pH or organic carbon (OC). Therefore, the study demonstrated that in bioaccumulation studies involving terrestrial invertebrates or in risk assessment of metals, it is not sufficient to differentiate habitat types on general soil characteristics such as pH and/or OC alone. Furthermore, simple generic soil risk assessments for Cd and Cu showed that risk characterization was more accurate when performed in a habitat-specific way. - Our study provided essential insights into habitat-specific accumulation patterns with respect to factors influencing metal bioaccumulation, BAFs, and site-specific risk assessment.

  9. Habitat type-based bioaccumulation and risk assessment of metal and As contamination in earthworms, beetles and woodlice

    Energy Technology Data Exchange (ETDEWEB)

    Vermeulen, Frouke, E-mail: frouke.vermeulen@ua.ac.b [Ecophysiology, Biochemistry and Toxicology Group (U7), University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp (Belgium); Van den Brink, Nico W., E-mail: nico.vandenbrink@wur.n [Alterra, Wageningen UR, Box 47, NL6700AA Wageningen (Netherlands); D' Have, Helga [Ecophysiology, Biochemistry and Toxicology Group (U7), University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp (Belgium); Mubiana, Valentine K., E-mail: kayawe.mubiana@ua.ac.b [Ecophysiology, Biochemistry and Toxicology Group (U7), University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp (Belgium); Blust, Ronny, E-mail: ronny.blust@ua.ac.b [Ecophysiology, Biochemistry and Toxicology Group (U7), University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp (Belgium); Bervoets, Lieven, E-mail: lieven.bervoets@ua.ac.b [Ecophysiology, Biochemistry and Toxicology Group (U7), University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp (Belgium); De Coen, Wim, E-mail: wim.decoen@ua.ac.b [Ecophysiology, Biochemistry and Toxicology Group (U7), University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp (Belgium)

    2009-11-15

    The present study investigated the contribution of environmental factors to the accumulation of As, Cd, Cu, Pb and Zn in earthworms, beetles and woodlice, and framed within an exposure assessment of the European hedgehog. Soil and invertebrate samples were collected in three distinct habitat types. Results showed habitat-specific differences in soil and invertebrate metal concentrations and bioaccumulation factors when normalized to soil metal concentration. Further multiple regression analysis showed residual variability (habitat differences) in bioaccumulation that could not be fully explained by differences in soil metal contamination, pH or organic carbon (OC). Therefore, the study demonstrated that in bioaccumulation studies involving terrestrial invertebrates or in risk assessment of metals, it is not sufficient to differentiate habitat types on general soil characteristics such as pH and/or OC alone. Furthermore, simple generic soil risk assessments for Cd and Cu showed that risk characterization was more accurate when performed in a habitat-specific way. - Our study provided essential insights into habitat-specific accumulation patterns with respect to factors influencing metal bioaccumulation, BAFs, and site-specific risk assessment.

  10. A randomized controlled trial of aquatic and land-based exercise in patients with knee osteoarthritis

    DEFF Research Database (Denmark)

    Lund, H.; Weile, U.; Christensen, R.;

    2008-01-01

    patients reported adverse events (i.e. discomfort) in land-based exercise, while only 3 reported adverse events in the aquatic exercise. Conclusion: Only land-based exercise showed some improvement in pain and muscle strength compared with the control group, while no clinical benefits were detectable after......Objective: To compare the efficacy of aquatic exercise and a land-based exercise programme vs control in patients with knee osteoarthritis. Methods: Primary outcome was change in pain, and in addition Knee Injury and Osteoarthritis Outcome Score questionnaire (KOOS). Standing balance and strength...... was also measured after and at 3-month follow-up. Seventy-nine patients (62 women), with a mean age of 68 years (age range 40-89 years) were randomized to aquatic exercise (n = 27), land-based exercise (n = 25) or control (n = 27). Results: No effect was observed immediately after exercise cessation...

  11. An environmental forensic approach for tropical estuaries based on metal bioaccumulation in tissues of Callinectes danae.

    Science.gov (United States)

    Bordon, Isabella C A C; Sarkis, Jorge E S; Andrade, Nathalia P; Hortellani, Marcos A; Favaro, Deborah I T; Kakazu, Mauricio H; Cotrim, Marycel E B; Lavradas, Raquel T; Moreira, Isabel; Saint'Pierre, Tatiana D; Hauser-Davis, Rachel Ann

    2016-01-01

    The blue crab Callinectes danae is distributed throughout the Atlantic coast and this study aimed to evaluate a environmental forensics approach that could be applied at tropical estuarine systems where this species is distributed, based on the metal concentrations in its tissues. For this purpose, blue crab samples were collected in 9 sites (distributed in 3 areas) along the Santos Estuarine System, state of São Paulo, Brazil. The concentrations of Al, Cd, Co, Cr, Cu, Fe, Hg, Mn, Ni, Pb and Zn were determined in gills, hepatopancreas and muscle tissues. Sediment samples were collected and analyzed in these same sites. A data distribution pattern was identified during both sampling periods (August and December 2011). In order to validate this model, a new sampling campaign was performed in March 2013 at the Santos Estuarine System and also at Ilha Grande (state of Rio de Janeiro). These data were added to the previous database (composed of the August and December 2011 samples) and a discriminant analysis was applied. The results confirmed an environmental fingerprint for the Santos Estuarine System. PMID:26475048

  12. Aquatic food production modules in bioregenerative life support systems based on higher plants

    Science.gov (United States)

    Bluem, V.; Paris, F.

    Most bioregenerative life support systems (BLSS) are based on gravitropic higher plants which exhibit growth and seed generation disturbances in microgravity. Even when used for a lunar or martian base the reduced gravity may induce a decreased productivity in comparison to Earth. Therefore, the implementation of aquatic biomass production modules in higher plant and/or hybrid BLSS may compensate for this and offer, in addition, the possibility to produce animal protein for human nutrition. It was shown on the SLS-89 and SLS-90 space shuttle missions with the C.E.B.A.S.-MINI MODULE that the edible non gravitropic rootless higher aquatic plant Ceratophyllum demeresum exhibits an undisturbed high biomass production rate in space and that the teleost fish species, Xiphophorus helleri, adapts rapidly to space conditions without loss of its normal reproductive functions. Based on these findings a series of ground-based aquatic food production systems were developed which are disposed for utilization in space. These are plant production bioreactors for the species mentioned above and another suitable candidate, the lemnacean (duckweed) species, Wolffia arrhiza. Moreover, combined intensive aquaculture systems with a closed food loop between herbivorous fishes and aquatic and land plants are being developed which may be suitable for integration into a BLSS of higher complexity.

  13. A randomized controlled trial of aquatic and land-based exercise in patients with knee osteoarthritis

    DEFF Research Database (Denmark)

    Lund, Hans; Weile, Ulla; Christensen, Robin;

    2008-01-01

    OBJECTIVE: To compare the efficacy of aquatic exercise and a land-based exercise programme vs control in patients with knee osteoarthritis. METHODS: Primary outcome was change in pain, and in addition Knee Injury and Osteoarthritis Outcome Score questionnaire (KOOS). Standing balance and strength...

  14. EcoCasting: Using NetLogo models of aquatic ecosystems to teach scientific inquiry

    Science.gov (United States)

    Buzby, C. K.; Jona, K.

    2010-12-01

    The EcoCasting project from the Office of STEM Education Partnerships (OSEP) at Northwestern University has developed a computer model-based curriculum for high school environmental science classes to study complexity in aquatic ecosystems. EcoCasting aims to deliver cutting edge scientific research on bioaccumulation in invaded Great Lakes food webs to high school classes. Scientists and environmental engineers at Northwestern are investigating unusual bioaccumulation patterns in invaded food webs of the Great Lakes. High school students are exploring this authentic data to understand what is causing the anomalies in the data. Students use a series of NetLogo agent-based models of an aquatic ecosystem to study how toxins accumulate in the food web. Using these models, students learn about predator-prey relationships, bioaccumulation, and invasive species. Students are confronted with contradictory data collected by scientists and investigate alternative food web mechanisms at work. By studying the individual variables, students learn common scientific principles. When multiple variables are combined in a unifying model, students learn that the interactions lead to unexpected outcomes. Students learn about the complexity of the ecosystem and gain proficiency interpreting computer models and scientific data collection in this curriculum. Model of aquatic food chain

  15. Risk assessment of butyltins based on a fugacity-based food web bioaccumulation model in the Jincheng Bay mariculture area: II. Risk assessment.

    Science.gov (United States)

    Hu, Yanbing; Song, Xiukai; Gong, Xianghong; Xu, Yingjiang; Liu, Huihui; Deng, Xuxiu; Ru, Shaoguo

    2014-08-01

    A fugacity-based food web bioaccumulation model was constructed, and the biotic concentrations of butyltins in the food web of the Jincheng Bay mariculture area were estimated accordingly, using the water and sediment concentrations described in the accompanying paper (Part I). This paper presents an ecological risk assessment (ERA) and a human health risk assessment (HHRA) of the butyltins, based on the estimated tissue residues in the marine life in this area. The results showed that the ecological risk probability was greater than 0.05. At this level, management control is critical since sensitive marine species would be profoundly endangered by butyltin contamination. Few if any detrimental effects, however, would be generated for humans from exposure to butyltins through seafood consumption. The fugacity-based model can refine the ERA and HHRA of pollutants in marine areas, provide a basis for protecting marine ecology and the security of fishery products, and thus help determine the feasibility of a proposed aquaculture project. PMID:24947127

  16. Toxic metals in aquatic ecosystems: a microbiological perspective.

    Science.gov (United States)

    Ford, T; Ryan, D

    1995-02-01

    Microbe-metal interactions in aquatic environments and their exact role in transport and transformations of toxic metals are poorly understood. This paper will briefly review our understanding of these interactions. Ongoing research in Lake Chapala, Mexico, the major water source for the City of Guadalajara, provides an opportunity to study the microbiological aspects of metal-cycling in the water column. Constant resuspension of sediments provides a microbiologically rich aggregate-based system. Data indicate that toxic metals are concentrated on aggregate material and bioaccumulate in the food chain. A provisional model is presented for involvement of microbial aggregates in metal-cycling in Lake Chapala. PMID:7621793

  17. Assessment of Mercury Bioaccumulation in Zebra Cichlid (Cichlasoma Nigrofasciatum) Exposed to Sublethal Concentrations of Permethrin

    OpenAIRE

    Mahdi Banaee; Amal Beitsayah; Isar Jorabdoz

    2014-01-01

    Background: Aquatic ecosystems are frequently subjected to contamination by toxic heavy metals and pesticides, yet very little is known about the influence of pesticides on bioaccumulation of heavy metals in aquatic organisms. Mercury is a toxic metal with no known biological benefit to organisms. Bioavailability of mercury in aquatic environments depends on biological and non-biological parameters including other pollutants. Therefore, the objectives of this research were to determine the ef...

  18. Bioaccumulation and trophic magnification of pharmaceuticals and endocrine disruptors in a Mediterranean river food web.

    Science.gov (United States)

    Ruhí, Albert; Acuña, Vicenç; Barceló, Damià; Huerta, Belinda; Mor, Jordi-Rene; Rodríguez-Mozaz, Sara; Sabater, Sergi

    2016-01-01

    Increasing evidence exists that emerging pollutants such as pharmaceuticals (PhACs) and endocrine-disrupting compounds (EDCs) can be bioaccumulated by aquatic organisms. However, the relative role of trophic transfers in the acquisition of emerging pollutants by aquatic organisms remains largely unexplored. In freshwater ecosystems, wastewater treatment plants are a major source of PhACs and EDCs. Here we studied the entrance of emerging pollutants and their flow through riverine food webs in an effluent-influenced river. To this end we assembled a data set on the composition and concentrations of a broad spectrum of PhACs (25 compounds) and EDCs (12 compounds) in water, biofilm, and three aquatic macroinvertebrate taxa with different trophic positions and feeding strategies (Ancylus fluviatilis, Hydropsyche sp., Phagocata vitta). We tested for similarities in pollutant levels among these compartments, and we compared observed bioaccumulation factors (BAFs) to those predicted by a previously-developed empirical model based on octanol-water distribution coefficients (Dow). Despite a high variation in composition and levels of emerging pollutants across food web compartments, observed BAFs in Hydropsyche and Phagocata matched, on average, those already predicted. Three compounds (the anti-inflammatory drug diclofenac, the lipid regulator gemfibrozil, and the flame retardant TBEP) were detected in water, biofilm and (at least) one macroinvertebrate taxa. TBEP was the only compound present in all taxa and showed magnification across trophic levels. This suggests that prey consumption may be, in some cases, a significant exposure route. This study advances the notion that both waterborne exposure and trophic interactions need to be taken into account when assessing the potential ecological risks of emerging pollutants in aquatic ecosystems. PMID:26170111

  19. IMPROVED VALUATION OF ECOLOGICAL BENEFITS ASSOCIATED WITH AQUATIC LIVING RESOURCES: DEVELOPMENT AND TESTING OF INDICATOR-BASED STATED PREFERENCE VALUATION AND TRANSFER

    Science.gov (United States)

    In addition to development and systematic qualitative/quantitative testing of indicator-based valuation for aquatic living resources, the proposed work will improve interdisciplinary mechanisms to model and communicate aquatic ecosystem change within SP valuation—an area...

  20. Metals bioaccumulation mechanism in neem bark

    Science.gov (United States)

    The aim of this work was to define the bioaccumulation mechanism of metals onto the non-living biomaterial prepared from an extensively available plant bark biomass of neem (Azadirachta indica). Based on maximum ultimate fixation capacities (mmol/g) of the product, metals ions could be arranged as H...

  1. New textbooks of science and their reference to the application of scientific method based on the aquatic resources.

    OpenAIRE

    Héctor Toledo Muñoz; Sara Zelada Muñoz; Carmen Soto Martínez

    2012-01-01

    A new didactical curriculum model for teaching science based on aquatic resources has been applied to a group four hundred and fourteen students from primary education, just in establishments situated on the coastal edge of the Tenth Region of Los Lagos, Chile. The themes of the learning strategy were suggested activities in science texts, drawn from interdisciplinary workshops involving classroom teachers, aquatic resources, professional didactic teaching, marine ecology experts, geneticist,...

  2. Mapping Aquatic Vegetation in a Large, Shallow Eutrophic Lake: A Frequency-Based Approach Using Multiple Years of MODIS Data

    Directory of Open Access Journals (Sweden)

    Xiaohan Liu

    2015-08-01

    Full Text Available Aquatic vegetation serves many important ecological and socioeconomic functions in lake ecosystems. The presence of floating algae poses difficulties for accurately estimating the distribution of aquatic vegetation in eutrophic lakes. We present an approach to map the distribution of aquatic vegetation in Lake Taihu (a large, shallow eutrophic lake in China and reduce the influence of floating algae on aquatic vegetation mapping. Our approach involved a frequency analysis over a 2003–2013 time series of the floating algal index (FAI based on moderate-resolution imaging spectroradiometer (MODIS data. Three phenological periods were defined based on the vegetation presence frequency (VPF and the growth of algae and aquatic vegetation: December and January composed the period of wintering aquatic vegetation; February and March composed the period of prolonged coexistence of algal blooms and wintering aquatic vegetation; and June to October was the peak period of the coexistence of algal blooms and aquatic vegetation. By comparing and analyzing the satellite-derived aquatic vegetation distribution and 244 in situ measurements made in 2013, we established a FAI threshold of −0.025 and VPF thresholds of 0.55, 0.45 and 0.85 for the three phenological periods. We validated the accuracy of our approach by comparing the results between the satellite-derived maps and the in situ results obtained from 2008–2012. The overall classification accuracy was 87%, 81%, 77%, 88% and 73% in the five years from 2008–2012, respectively. We then applied the approach to the MODIS images from 2003–2013 and obtained the total area of the aquatic vegetation, which varied from 265.94 km2 in 2007 to 503.38 km2 in 2008, with an average area of 359.62 ± 69.20 km2 over the 11 years. Our findings suggest that (1 the proposed approach can be used to map the distribution of aquatic vegetation in eutrophic algae-rich waters and (2 dramatic changes occurred in the

  3. Bioaccumulation of silver nanoparticles in rainbow trout (Oncorhynchus mykiss): Influence of concentration and salinity

    Energy Technology Data Exchange (ETDEWEB)

    Salari Joo, Hamid, E-mail: h.salary1365@gmail.com [Department of Aquaculture, Marine Science Faculty, Tarbiat Modares University, Mazandaran, Noor (Iran, Islamic Republic of); Kalbassi, Mohammad Reza, E-mail: kalbassi_m@modares.ac.ir [Department of Aquaculture, Marine Science Faculty, Tarbiat Modares University, Mazandaran, Noor (Iran, Islamic Republic of); Yu, Il Je, E-mail: u1670916@chol.com [Institute of Nano-product Safety Research, Hoseo University, 165 Sechul-ri, Baebang-myun, Asan 336-795 (Korea, Republic of); Lee, Ji Hyun, E-mail: toxin@dreamwiz.com [Institute of Nano-product Safety Research, Hoseo University, Asan (Korea, Republic of); Johari, Seyed Ali, E-mail: a.johari@uok.ac.ir [Aquaculture Department, Natural Resources Faculty, University of Kurdistan, Kurdistan, Sanandaj (Iran, Islamic Republic of)

    2013-09-15

    Highlights: •We studied influence of concentration and salinity on bioaccumulation of silver nanoparticles in rainbow trout (Oncorhynchus mykiss). •The Ag-NPs were characterized using standard methods. •The organisms were exposed to Ag-NPs in three different salinity concentrations, for 14 days in static renewal systems. •The bioaccumulation of Ag in the studied tissues was concentration-dependent in all the salinities and its order were liver > kidneys ≈ gills > white muscles respectively. -- Abstract: With the increasing use of silver nanoparticles (Ag-NPs), their entrance into aquatic ecosystems is inevitable. Thus, the present study simulated the potential fate, toxicity, and bioaccumulation of Ag-NPs released into aquatic systems with different salinities. The Ag-NPs were characterized using inductively coupled plasma-atomic emission spectroscopy (ICP-AES), dynamic light scattering (DLS), transmission electron microscopy (TEM), energy-dispersive X-ray analysis (EDX), and UV–vis spectroscopy. Juvenile rainbow trout were exposed to Ag-NPs in three different salinity concentrations, including low (0.4 ppt), moderate (6 ± 0.3 ppt), and high (12 ± 0.2 ppt) salinity, for 14 days in static renewal systems. The nominal Ag-NP concentrations in the low salinity were 0.032, 0.1, 0.32, and 1 ppm, while the Ag-NP concentrations in the moderate and high salinity were 3.2, 10, 32, and 100 ppm. UV–vis spectroscopy was used during 48 h (re-dosing time) to evaluate the stability and possible changes in size of the Ag-NPs in the water. The results revealed that the λ{sub max} of the Ag-NPs remained stable (415–420 nm) at all concentrations in the low salinity with a reduction of absorbance between 380 and 550 nm. In contrast, the λ{sub max} quickly shifted to a longer wavelength and reduced absorbance in the moderate and higher salinity. The bioaccumulation of Ag in the studied tissues was concentration-dependent in all the salinities based on the following

  4. Evaluating Aquatic invertebrate vulnerability to insecticides based on intrinsic sensitivuty, biological traits, and toxic mode of action

    NARCIS (Netherlands)

    Rico, A.; Brink, van den P.J.

    2015-01-01

    In the present study, the authors evaluated the vulnerability of aquatic invertebrates to insecticides based on their intrinsic sensitivity and their population-level recovery potential. The relative sensitivity of invertebrates to 5 different classes of insecticides was calculated at the genus, fam

  5. [Aquatic Ecological Index based on freshwater (ICE(RN-MAE)) for the Rio Negro watershed, Colombia].

    Science.gov (United States)

    Forero, Laura Cristina; Longo, Magnolia; John Jairo, Ramirez; Guillermo, Chalar

    2014-04-01

    Aquatic Ecological Index based on freshwater (ICE(RN-MAE)) for the Rio Negro watershed, Colombia. Available indices to assess the ecological status of rivers in Colombia are mostly based on subjective hypotheses about macroinvertebrate tolerance to pollution, which have important limitations. Here we present the application of a method to establish an index of ecological quality for lotic systems in Colombia. The index, based on macroinvertebrate abundance and physicochemical variables, was developed as an alternative to the BMWP-Col index. The method consists on determining an environmental gradient from correlations between physicochemical variables and abundance. The scores obtained in each sampling point are used in a standardized correlation for a model of weighted averages (WA). In the WA model abundances are also weighted to estimate the optimum and tolerance values of each taxon; using this information we estimated the index of ecological quality based also on macroinvertebrate (ICE(RN-MAE)) abundance in each sampling site. Subsequently, we classified all sites using the index and concentrations of total phosphorus (TP) in a cluster analysis. Using TP and ICE(RN-MAE), mean, maximum, minimum and standard deviation, we defined threshold values corresponding to three categories of ecological status: good, fair and critical. PMID:25189081

  6. Effects of aqueous effluents from in situ fossil fuel processing technologies on aquatic systems. Annual progress report

    Energy Technology Data Exchange (ETDEWEB)

    Bergman, H.L.; Anderson, A.D.

    1977-12-01

    This is the first annual report issued under a project to evaluate the effects of aqueous effluents from in-situ fossil fuel processing technologies on aquatic biota. Briefly, the goals of the project are to: evaluate the toxicity of process water effluents on aquatic biota; recommend maximum exposure concentrations for process water constituents; and assist DOE in using project data and recommendations to design control technologies and to assess environmental impacts. The project objectives for Year 1 were pursued through the following five tasks: a literature review on process water constituents; toxicity studies on the effect of process waters and six process water constituents on aquatic biota; degradation rate studies on four to six process water constituents; bioaccumulation studies on four to six process water constituents; and recommendations on maximum exposure concentrations for process water constituents based on data from the project and from the literature. Progress toward completion of these goals is presented.

  7. Curative and health enhancement effects of aquatic exercise: evidence based on interventional studies

    Directory of Open Access Journals (Sweden)

    Honda T

    2012-03-01

    Full Text Available Takuya Honda1, Hiroharu Kamioka21Research Fellow of the Japanese Society for the Promotion of Science, 2Laboratory of Physical and Health Education, Faculty of Regional Environment Science, Tokyo University of Agriculture, Tokyo, JapanBackground: The purpose of this study was to report on the health benefits and curative effects of aquatic exercise.Methods: We adopted the results of high-grade study designs (ie, randomized controlled trials and nonrandomized controlled trials, for which there were many studies on aquatic exercise. Aquatic exercise, in this study, means walking in all directions, stretching, and various exercises and conditioning performed with the feet grounded on the floor of a swimming pool. We excluded swimming. We decided to treat aquatic exercise, underwater exercise, hydrotherapy, and pool exercise as all having the same meaning.Results: Aquatic exercise had significant effects on pain relief and related outcome measurements for locomotor diseases.Conclusion: Patients may become more active, and improve their quality of life, as a result of aquatic exercise.Keywords: aquatic exercise, health enhancement, evidence

  8. Aquatic plants

    DEFF Research Database (Denmark)

    Madsen, T. V.; Sand-Jensen, K.

    2006-01-01

    Aquatic fl owering plants form a relatively young plant group on an evolutionary timescale. The group has developed over the past 80 million years from terrestrial fl owering plants that re-colonised the aquatic environment after 60-100 million years on land. The exchange of species between...... terrestrial and aquatic environments continues today and is very intensive along stream banks. In this chapter we describe the physical and chemical barriers to the exchange of plants between land and water....

  9. Bioaccumulation of Aluminium in Hydromacrophytes in Polish Coastal Lakes

    Directory of Open Access Journals (Sweden)

    Senze Magdalena

    2015-03-01

    Full Text Available The research on aluminium content was conducted in water and on aquatic flora of Polish lakes in the central part of the coast. The study included the lakes Sarbsko, Choczewskie, Bia.e, K.odno, D.brze and Salino investigated in the summer of 2013. The examined lakes belong mainly to the direct basin of the Baltic Sea. Samples of aquatic plants and lake waters were collected. In the water samples pH and electrolytic conductivity were measured. The aluminium content was determined both in water and aquatic plants. Submerged hydromacrophyte studies included Myriophyllum alterniflorum L., Potamogeton perfoliatus L. and Ceratophyllum demersum L. Emergent hydromacrophyte studies included Phragmites australis (Cav. Trin. ex Steud., Juncus bulbosus L., Iris pseudacorus L., Eleocharis palustris (L. Roem. % Schult., Phalaris arundinacea L., Carex riparia Curt., Mentha aquatic L., Stratiotes aloides L., Alisma plantago-aquatica L., Glyceria maxima (Hartman Holmb., Sagittaria sagittifolia L., Scirpus lacustris L. and Typha angustifolia L. The purpose of this investigation was the determination of the aluminium content in submerged and emergent hydromacrophytes and also the definition of their bioaccumulative abilities. The average concentration of aluminium in water was 2.68 fęg Al dm.3. The average content of aluminium in plants was 2.8015 mg Al kg.1. The bioaccumulation factor ranged from BCF=19.74 to BCF=16619. On the basis of the analysis of the aluminium content in water and aquatic plants results show that both water and plants were characterized by a moderate level of aluminium. The recorded concentrations indicate a mid-range value and are much lower than those which are quoted for a variety of surface waters in various parts of the world.

  10. Biodegradability and aquatic toxicity of quaternary ammonium-based gemini surfactants: Effect of the spacer on their ecological properties.

    Science.gov (United States)

    Garcia, M Teresa; Kaczerewska, Olga; Ribosa, Isabel; Brycki, Bogumił; Materna, Paulina; Drgas, Małgorzata

    2016-07-01

    Aerobic biodegradability and aquatic toxicity of five types of quaternary ammonium-based gemini surfactants have been examined. The effect of the spacer structure and the head group polarity on the ecological properties of a series of dimeric dodecyl ammonium surfactants has been investigated. Standard tests for ready biodegradability assessment (OECD 310) were conducted for C12 alkyl chain gemini surfactants containing oxygen, nitrogen or a benzene ring in the spacer linkage and/or a hydroxyethyl group attached to the nitrogen atom of the head groups. According to the results obtained, the gemini surfactants examined cannot be considered as readily biodegradable compounds. The negligible biotransformation of the gemini surfactants under the standard biodegradation test conditions was found to be due to their toxic effects on the microbial population responsible for aerobic biodegradation. Aquatic toxicity of gemini surfactants was evaluated against Daphnia magna. The acute toxicity values to Daphnia magna, IC50 at 48 h exposure, ranged from 0.6 to 1 mg/L. On the basis of these values, the gemini surfactants tested should be classified as toxic or very toxic to the aquatic environment. However, the dimeric quaternary ammonium-based surfactants examined result to be less toxic than their corresponding monomeric analogs. Nevertheless the aquatic toxicity of these gemini surfactants can be reduced by increasing the molecule hydrophilicity by adding a heteroatom to the spacer or a hydroxyethyl group to the polar head groups. PMID:27045632

  11. Determination of multi-walled carbon nanotube bioaccumulation in earthworms measured by a microwave-based detection technique

    Science.gov (United States)

    Reliable quantification techniques for carbon nanotubes (CNTs) are limited. In this study, a new procedure was developed for quantifying multi-walled carbon nanotubes (MWNTs) in earthworms (Eisenia fetida) based on freeze drying and microwave-induced heating. Specifically, earthw...

  12. Assessment of Mercury Bioaccumulation in Zebra Cichlid (Cichlasoma Nigrofasciatum Exposed to Sublethal Concentrations of Permethrin

    Directory of Open Access Journals (Sweden)

    Mahdi Banaee

    2014-12-01

    Full Text Available Background: Aquatic ecosystems are frequently subjected to contamination by toxic heavy metals and pesticides, yet very little is known about the influence of pesticides on bioaccumulation of heavy metals in aquatic organisms. Mercury is a toxic metal with no known biological benefit to organisms. Bioavailability of mercury in aquatic environments depends on biological and non-biological parameters including other pollutants. Therefore, the objectives of this research were to determine the effects of permethrin on bioaccumulation of mercury in zebra cichlid. Methods: Acute toxicity (LC50 of permethrin and mercury chloride was evaluated by estimating mortality in Probit Model in SPSS (version 19.0 IBM. In sub-lethal toxicity, zebra cichlid (Cichlasoma nigrofasciatum was exposed to various concentrations of permethrin (0.0, 0.40, 0.80, 1.20 and 1.60 µg.L-1 combined with 20 µg.L-1 mercury chloride for 15 days. At the end of the experiment, mercury concentrations were measured using ICP-OES-Perkin elmer (optima 7300-DV. Results: 96 h LC50 values of permethrin and mercury for C. nigrofasciatum were calculated to be 17.55 µg.L-1 and 140.38 µg.L-1, respectively. Our results clearly showed that the bioaccumulation of mercury in the specimens increased with increasing concentrations of permethrin to 1.20 and 1.60 µg.L-1. Conclusion: Increasing the concentration of permethrin had synergistic effects on the bioaccumulation of mercury in fish.

  13. Presence, fate and effects of the intense sweetener sucralose in the aquatic environment

    International Nuclear Information System (INIS)

    Sucralose (1,6-dichloro-1,6-dideoxy-b-D-fructo-furanosyl 4-chloro-4-deoxy-a-D-galactopyranoside), sold under the trade name Splenda®, has been detected in municipal effluents and surface waters in the United States and Europe. The environmental presence of sucralose has led to interest in the possibility of toxic effects in non-target species. This review presents an environmental risk assessment of sucralose based on available data concerning its presence, fate and effects in the environment. Sucralose, which is made by selective chlorination of sucrose, is a highly stable compound, which undergoes negligible metabolism in mammals, including humans, and displays a low biodegradation potential in the environment. This intense sweetener is highly soluble in water, displays a low bioaccumulation potential and a low sorption potential to soil and organic matter, and thus is predominantly present in the water column. The predicted environmental concentration (PEC) for sucralose, based on measured data in surface waters, was determined to be 10 μg/L. Aquatic toxicity studies using standardized, validated protocols used in regulatory decision making indicate that sucralose does not alter survival, growth and reproduction of aquatic organisms (such as plants, algae, crustaceans and fish) at concentrations > 9000 times higher than those detected in the environment. Some studies, using non-standardized protocols, have reported behavioral and other non-traditional responses in aquatic organisms, but the relevance of these findings for assessing adverse effects on individuals and populations will require further investigation. In terms of traditional risk assessment, the proposed predicted no effect concentration for aquatic organisms (PNEC) was determined to be 0.93 mg/L, based on the lowest no effect concentration (NOEC) from a validated chronic study with mysid shrimp and an application factor of 100. The resultant PEC/PNEC quotient was determined to be well below 1 (PEC

  14. Presence, fate and effects of the intense sweetener sucralose in the aquatic environment

    Energy Technology Data Exchange (ETDEWEB)

    Tollefsen, Knut Erik, E-mail: ket@niva.no [Norwegian Institute for Water Research (NIVA), Gaustadalleen 21, N-0349 Oslo (Norway); Nizzetto, Luca [Norwegian Institute for Water Research (NIVA), Gaustadalleen 21, N-0349 Oslo (Norway); Huggett, Duane B. [Department of Biological Sciences, University of North Texas, P.O. Box 310559, Denton, TX 76203 (United States)

    2012-11-01

    Sucralose (1,6-dichloro-1,6-dideoxy-b-D-fructo-furanosyl 4-chloro-4-deoxy-a-D-galactopyranoside), sold under the trade name Splenda Registered-Sign , has been detected in municipal effluents and surface waters in the United States and Europe. The environmental presence of sucralose has led to interest in the possibility of toxic effects in non-target species. This review presents an environmental risk assessment of sucralose based on available data concerning its presence, fate and effects in the environment. Sucralose, which is made by selective chlorination of sucrose, is a highly stable compound, which undergoes negligible metabolism in mammals, including humans, and displays a low biodegradation potential in the environment. This intense sweetener is highly soluble in water, displays a low bioaccumulation potential and a low sorption potential to soil and organic matter, and thus is predominantly present in the water column. The predicted environmental concentration (PEC) for sucralose, based on measured data in surface waters, was determined to be 10 {mu}g/L. Aquatic toxicity studies using standardized, validated protocols used in regulatory decision making indicate that sucralose does not alter survival, growth and reproduction of aquatic organisms (such as plants, algae, crustaceans and fish) at concentrations > 9000 times higher than those detected in the environment. Some studies, using non-standardized protocols, have reported behavioral and other non-traditional responses in aquatic organisms, but the relevance of these findings for assessing adverse effects on individuals and populations will require further investigation. In terms of traditional risk assessment, the proposed predicted no effect concentration for aquatic organisms (PNEC) was determined to be 0.93 mg/L, based on the lowest no effect concentration (NOEC) from a validated chronic study with mysid shrimp and an application factor of 100. The resultant PEC/PNEC quotient was determined to be

  15. Bioaccumulation and trophic transfer of engineered nanoparticles in aquatic organisms

    DEFF Research Database (Denmark)

    Skjolding, Lars Michael

    Use of engineered nanoparticles (ENPs) (particles with a diameter of 1 to 100nm) is increasing. Engineered NPs are used in a wide variety of consumer product, industrial uses and remediation of pollutants. The increasing use is due to novel physical and chemical properties varying from that of th......Use of engineered nanoparticles (ENPs) (particles with a diameter of 1 to 100nm) is increasing. Engineered NPs are used in a wide variety of consumer product, industrial uses and remediation of pollutants. The increasing use is due to novel physical and chemical properties varying from...... was highlighted to identify artefacts and avoid misinterpretation of results. Furthermore, a general lack of understanding of internalization processes of ENPs after in vivo exposure was identified in the literature in regards to intrinsic properties of ENPs (e.g. particle sizes, coatings and functionalizations...

  16. Aquatic Life Benchmarks

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Aquatic Life Benchmarks is an EPA-developed set of criteria for freshwater species. These benchmarks are based on toxicity values reviewed by EPA and used in...

  17. A nanoparticulate liquid binding phase based DGT device for aquatic arsenic measurement.

    Science.gov (United States)

    Liu, Shengwen; Qin, Nannan; Song, Jieyao; Zhang, Ya; Cai, Weiping; Zhang, Haimin; Wang, Guozhong; Zhao, Huijun

    2016-11-01

    A nanomaterials-based DGT device constructed with commercial dialysis membrane as diffusive layer and nanoparticulate Fe3O4 aqueous suspension as binding phase is developed and validated for in situ aquatic arsenic measurement. The Fe3O4NPs binding phase is capable of quantitatively accumulated both As(III) and As(V) species. As(III) and As(V) species coexist in the vast majority of environmental water samples. The large difference in diffusion coefficients of As(III) (DAs(III)=3.05×10(-7)cm(2)s(-1)) and As(V) (DAs(V)=1.63×10(-7)cm(2)s(-1)) makes the accurate DGT determination of total arsenic concentration of samples containing both species difficult. An effective diffusion coefficient (DAs¯=DAs(III)[1/(1+x)]+DAs(V)[x/(1+x)],where,x=As(V)/As(III)) approach is therefore proposed and validated for accurate DGT determination of total arsenic when As(III) and As(V) coexist. The experimental results demonstrate that for samples having As(V)/As(III) ratios between 0.1 and 0.9, the DGT determined total arsenic concentrations using DAs¯are within ±93-99% of that determined by ICP-MS. The general principle demonstrated in this work opens up a new avenue of utilizing functional nanomaterials as DGT binding phase, paving a way for developing new generation nanomaterials-based DGT devices that can be readily produced in massive numbers at low costs, facilitating the widespread use of DGT for large-scale environmental assessment and other applications. PMID:27591608

  18. A Fatty Acid Based Bayesian Approach for Inferring Diet in Aquatic Consumers.

    Science.gov (United States)

    Galloway, Aaron W E; Brett, Michael T; Holtgrieve, Gordon W; Ward, Eric J; Ballantyne, Ashley P; Burns, Carolyn W; Kainz, Martin J; Müller-Navarra, Doerthe C; Persson, Jonas; Ravet, Joseph L; Strandberg, Ursula; Taipale, Sami J; Alhgren, Gunnel

    2015-01-01

    We modified the stable isotope mixing model MixSIR to infer primary producer contributions to consumer diets based on their fatty acid composition. To parameterize the algorithm, we generated a 'consumer-resource library' of FA signatures of Daphnia fed different algal diets, using 34 feeding trials representing diverse phytoplankton lineages. This library corresponds to the resource or producer file in classic Bayesian mixing models such as MixSIR or SIAR. Because this library is based on the FA profiles of zooplankton consuming known diets, and not the FA profiles of algae directly, trophic modification of consumer lipids is directly accounted for. To test the model, we simulated hypothetical Daphnia comprised of 80% diatoms, 10% green algae, and 10% cryptophytes and compared the FA signatures of these known pseudo-mixtures to outputs generated by the mixing model. The algorithm inferred these simulated consumers were comprised of 82% (63-92%) [median (2.5th to 97.5th percentile credible interval)] diatoms, 11% (4-22%) green algae, and 6% (0-25%) cryptophytes. We used the same model with published phytoplankton stable isotope (SI) data for δ13C and δ15N to examine how a SI based approach resolved a similar scenario. With SI, the algorithm inferred that the simulated consumer assimilated 52% (4-91%) diatoms, 23% (1-78%) green algae, and 18% (1-73%) cyanobacteria. The accuracy and precision of SI based estimates was extremely sensitive to both resource and consumer uncertainty, as well as the trophic fractionation assumption. These results indicate that when using only two tracers with substantial uncertainty for the putative resources, as is often the case in this class of analyses, the underdetermined constraint in consumer-resource SI analyses may be intractable. The FA based approach alleviated the underdetermined constraint because many more FA biomarkers were utilized (n algae, and cryptophytes) have very characteristic FA compositions, and the FA profiles

  19. A Fatty Acid Based Bayesian Approach for Inferring Diet in Aquatic Consumers.

    Directory of Open Access Journals (Sweden)

    Aaron W E Galloway

    Full Text Available We modified the stable isotope mixing model MixSIR to infer primary producer contributions to consumer diets based on their fatty acid composition. To parameterize the algorithm, we generated a 'consumer-resource library' of FA signatures of Daphnia fed different algal diets, using 34 feeding trials representing diverse phytoplankton lineages. This library corresponds to the resource or producer file in classic Bayesian mixing models such as MixSIR or SIAR. Because this library is based on the FA profiles of zooplankton consuming known diets, and not the FA profiles of algae directly, trophic modification of consumer lipids is directly accounted for. To test the model, we simulated hypothetical Daphnia comprised of 80% diatoms, 10% green algae, and 10% cryptophytes and compared the FA signatures of these known pseudo-mixtures to outputs generated by the mixing model. The algorithm inferred these simulated consumers were comprised of 82% (63-92% [median (2.5th to 97.5th percentile credible interval] diatoms, 11% (4-22% green algae, and 6% (0-25% cryptophytes. We used the same model with published phytoplankton stable isotope (SI data for δ13C and δ15N to examine how a SI based approach resolved a similar scenario. With SI, the algorithm inferred that the simulated consumer assimilated 52% (4-91% diatoms, 23% (1-78% green algae, and 18% (1-73% cyanobacteria. The accuracy and precision of SI based estimates was extremely sensitive to both resource and consumer uncertainty, as well as the trophic fractionation assumption. These results indicate that when using only two tracers with substantial uncertainty for the putative resources, as is often the case in this class of analyses, the underdetermined constraint in consumer-resource SI analyses may be intractable. The FA based approach alleviated the underdetermined constraint because many more FA biomarkers were utilized (n < 20, different primary producers (e.g., diatoms, green algae, and

  20. Bioaccumulation and trophic dilution of human pharmaceuticals across trophic positions of an effluent-dependent wadeable stream

    OpenAIRE

    Du, Bowen; Haddad, Samuel P.; Luek, Andreas; Scott, W. Casan; Saari, Gavin N.; Kristofco, Lauren A.; Connors, Kristin A.; Rash, Christopher; Rasmussen, Joseph B.; Chambliss, C. Kevin; Brooks, Bryan W.

    2014-01-01

    Though pharmaceuticals are increasingly observed in a variety of organisms from coastal and inland aquatic systems, trophic transfer of pharmaceuticals in aquatic food webs have not been reported. In this study, bioaccumulation of select pharmaceuticals was investigated in a lower order effluent-dependent stream in central Texas, USA, using isotope dilution liquid chromatography–tandem mass spectrometry (MS). A fish plasma model, initially developed from laboratory studies, was tested to exam...

  1. The antihistamine hydroxyzine and Odonata : Bioaccumulation and effects on predator-prey interactions between dragonfly and damselfly larvae

    OpenAIRE

    Bomark, Ellinor

    2014-01-01

    Through wastewater entering aquatic environments, aquatic insects are continuously exposed to pharmaceuticals including neurologically active antihistamines. The antihistamine hydroxyzine has previously been found to lower activity in damselflies and to reach 2000 times the concentration of surrounding water in damselfly tissue. The purpose of this short-term exposure study was to investigate if hydroxyzine also bioaccumulates in dragonflies and if dilute hydroxyzine (362 ± 50, mean ng/l ± SD...

  2. Toxicological impact of cadmium-based quantum dots towards aquatic biota: Effect of natural sunlight exposure.

    Science.gov (United States)

    Silva, B F; Andreani, T; Gavina, A; Vieira, M N; Pereira, C M; Rocha-Santos, T; Pereira, R

    2016-07-01

    Cadmium-based quantum dots (QDs) are increasingly applied in existent and emerging technologies, especially in biological applications due to their exceptional photophysical and functionalization properties. However, they are very toxic compounds due to the high reactive and toxic cadmium core. The present study aimed to determine the toxicity of three different QDs (CdS 380, CdS 480 and CdSeS/ZnS) before and after the exposure of suspensions to sunlight, in order to assess the effect of environmentally relevant irradiation levels in their toxicity, which will act after their release to the environment. Therefore, a battery of ecotoxicological tests was performed with organisms that cover different functional and trophic levels, such as Vibrio fischeri, Raphidocelis subcapitata, Chlorella vulgaris and Daphnia magna. The results showed that core-shell type QDs showed lower toxic effects to V. fischeri in comparison to core type QDs before sunlight exposure. However, after sunlight exposure, there was a decrease of CdS 380 and CdS 480 QD toxicity to bacterium. Also, after sunlight exposure, an effective decrease of CdSeS/ZnS and CdS 480 toxicity for D. magna and R. subcapitata, and an evident increase in CdS 380 QD toxicity, at least for D. magna, were observed. The results of this study suggest that sunlight exposure has an effect in the aggregation and precipitation reactions of larger QDs, causing the degradation of functional groups and formation of larger bulks which may be less prone to photo-oxidation due to their diminished surface area. The same aggregation behaviour after sunlight exposure was observed for bare QDs. These results further emphasize that the shell of QDs seems to make them less harmful to aquatic biota, both under standard environmental conditions and after the exposure to a relevant abiotic factor like sunlight. PMID:27162069

  3. AquaEnv: an aquatic acid–base modelling environment in R

    NARCIS (Netherlands)

    Hofmann, A.F.; Soetaert, K.E.R.; Middelburg, J.J.; Meysman, F.J.R.

    2010-01-01

    AquaEnv is an integrated software package for aquatic chemical model generation focused on ocean acidification and antropogenic CO2 uptake. However, the package is not restricted to the carbon cycle or the oceans: it calculates, converts, and visualizes information necessary to describe pH, related

  4. Environmental relevance of laboratory-derived kinetic models to predict trace metal bioaccumulation in gammarids: Field experimentation at a large spatial scale (France).

    Science.gov (United States)

    Urien, N; Lebrun, J D; Fechner, L C; Uher, E; François, A; Quéau, H; Coquery, M; Chaumot, A; Geffard, O

    2016-05-15

    Kinetic models have become established tools for describing trace metal bioaccumulation in aquatic organisms and offer a promising approach for linking water contamination to trace metal bioaccumulation in biota. Nevertheless, models are based on laboratory-derived kinetic parameters, and the question of their relevance to predict trace metal bioaccumulation in the field is poorly addressed. In the present study, we propose to assess the capacity of kinetic models to predict trace metal bioaccumulation in gammarids in the field at a wide spatial scale. The field validation consisted of measuring dissolved Cd, Cu, Ni and Pb concentrations in the water column at 141 sites in France, running the models with laboratory-derived kinetic parameters, and comparing model predictions and measurements of trace metal concentrations in gammarids caged for 7 days to the same sites. We observed that gammarids poorly accumulated Cu showing the limited relevance of that species to monitor Cu contamination. Therefore, Cu was not considered for model predictions. In contrast, gammarids significantly accumulated Pb, Cd, and Ni over a wide range of exposure concentrations. These results highlight the relevance of using gammarids for active biomonitoring to detect spatial trends of bioavailable Pb, Cd, and Ni contamination in freshwaters. The best agreements between model predictions and field measurements were observed for Cd with 71% of good estimations (i.e. field measurements were predicted within a factor of two), which highlighted the potential for kinetic models to link Cd contamination to bioaccumulation in the field. The poorest agreements were observed for Ni and Pb (39% and 48% of good estimations, respectively). However, models developed for Ni, Pb, and to a lesser extent for Cd, globally underestimated bioaccumulation in caged gammarids. These results showed that the link between trace metal concentration in water and in biota remains complex, and underlined the limits of

  5. Bioaccumulation and oxidative stress in Daphnia magna exposed to arsenite and arsenate.

    Science.gov (United States)

    Fan, Wenhong; Ren, Jinqian; Li, Xiaomin; Wei, Chaoyang; Xue, Feng; Zhang, Nan

    2015-11-01

    Arsenic pollution and its toxicity to aquatic organisms have attracted worldwide attention. The bioavailability and toxicity of arsenic are highly related to its speciation. The present study investigated the differences in bioaccumulation and oxidative stress responses in an aquatic organism, Daphnia magna, induced by 2 inorganic arsenic species (As(III) and As(V)). The bioaccumulation of arsenic, Na(+) /K(+) -adenosine triphosphatase (ATPase) activity, reactive oxygen species (ROS) content, total superoxide dismutase (SOD) activity, total antioxidative capability, and malondialdehyde content in D. magna were determined after exposure to 500 µg/L of arsenite and arsenate for 48 h. The results showed that the oxidative stress and antioxidative process in D. magna exposed to arsenite and arsenate could be divided into 3 phases, which were antioxidative response, oxidation inhibition, and antioxidative recovery. In addition, differences in bioaccumulation, Na(+) /K(+) -ATPase activity, and total SOD activity were also found in D. magna exposed to As(III) and As(V). These differences might have been the result of the high affinity of As(III) with sulfhydryl groups in enzymes and the structural similarity of As(V) to phosphate. Therefore, arsenate could be taken up by organisms through phosphate transporters, could substitute for phosphate in biochemical reactions, and could lead to a change in the bioaccumulation of arsenic and activity of enzymes. These characteristics were the possible reasons for the different toxicity mechanisms in the oxidative stress process of arsenite and arsenate. PMID:26084717

  6. Bioaccumulation of ionic titanium and titanium dioxide nanoparticles in zebrafish eleutheroembryos.

    Science.gov (United States)

    López-Serrano Oliver, Ana; Muñoz-Olivas, Riansares; Sanz Landaluze, Jon; Rainieri, Sandra; Cámara, Carmen

    2015-01-01

    The production of titanium dioxide nanoparticles (TiO(2) NPs) for commercial applications has greatly increased over the last years and consequently the potential risk for human health. There is a growing awareness of the need to understand the behavior and influence these nanoparticles exert on the environment. Bioaccumulation serves as a good integrator to assess chemical exposure in aquatic systems and is dependent on factors, such as the exposure routes, diet and the aqueous medium. We analyzed the experimental bioaccumulation capability of ionic titanium and TiO(2) NPs by zebrafish (Danio rerio) eleutheroembryos through bioconcentration factors (BCFs), after 48 or 72 h of exposure. The stability of both chemical forms in an aquatic medium was fully characterized for further bioaccumulation studies. Several stabilizing agents (humic acids, soluble starch, polyethylene glycol, Na(4)P(2)O(7) and Na(2)HPO(4)) for anatase and rutile, the two allotrophs of TiO(2) NPs, were evaluated to check the evolution of the aggregation process. Around 60% of TiO(2) NPs remained disaggregated under simulated environmental conditions with the addition of 50 mg L(-1) of humic acids. However, the presence of eleutheroembryos in the exposure medium increased TiO(2) NPs aggregation in the experimental tests. The BCFs values obtained in all cases were <100, which classifies ionic titanium and TiO(2) NPs as non-bioaccumulative substances, under the REACH regulations.

  7. Hyperspectral Aquatic Radiative Transfer Modeling Using a High-Performance Cluster Computing Based Approach

    Energy Technology Data Exchange (ETDEWEB)

    Fillippi, Anthony [Texas A& M University; Bhaduri, Budhendra L [ORNL; Naughton, III, Thomas J [ORNL; King, Amy L [ORNL; Scott, Stephen L [ORNL; Guneralp, Inci [Texas A& M University

    2012-01-01

    For aquatic studies, radiative transfer (RT) modeling can be used to compute hyperspectral above-surface remote sensing reflectance that can be utilized for inverse model development. Inverse models can provide bathymetry and inherent- and bottom-optical property estimation. Because measured oceanic field/organic datasets are often spatio-temporally sparse, synthetic data generation is useful in yielding sufficiently large datasets for inversion model development; however, these forward-modeled data are computationally expensive and time-consuming to generate. This study establishes the magnitude of wall-clock-time savings achieved for performing large, aquatic RT batch-runs using parallel computing versus a sequential approach. Given 2,600 simulations and identical compute-node characteristics, sequential architecture required {approx}100 hours until termination, whereas a parallel approach required only {approx}2.5 hours (42 compute nodes) - a 40x speed-up. Tools developed for this parallel execution are discussed.

  8. Hyperspectral Aquatic Radiative Transfer Modeling Using a High-Performance Cluster Computing-Based Approach

    Energy Technology Data Exchange (ETDEWEB)

    Filippi, Anthony M [ORNL; Bhaduri, Budhendra L [ORNL; Naughton, III, Thomas J [ORNL; King, Amy L [ORNL; Scott, Stephen L [ORNL; Guneralp, Inci [Texas A& M University

    2012-01-01

    Abstract For aquatic studies, radiative transfer (RT) modeling can be used to compute hyperspectral above-surface remote sensing reflectance that can be utilized for inverse model development. Inverse models can provide bathymetry and inherent-and bottom-optical property estimation. Because measured oceanic field/organic datasets are often spatio-temporally sparse, synthetic data generation is useful in yielding sufficiently large datasets for inversion model development; however, these forward-modeled data are computationally expensive and time-consuming to generate. This study establishes the magnitude of wall-clock-time savings achieved for performing large, aquatic RT batch-runs using parallel computing versus a sequential approach. Given 2,600 simulations and identical compute-node characteristics, sequential architecture required ~100 hours until termination, whereas a parallel approach required only ~2.5 hours (42 compute nodes) a 40x speed-up. Tools developed for this parallel execution are discussed.

  9. Curative and health enhancement effects of aquatic exercise: evidence based on interventional studies

    OpenAIRE

    Honda T.; Kamioka H

    2012-01-01

    Takuya Honda1, Hiroharu Kamioka21Research Fellow of the Japanese Society for the Promotion of Science, 2Laboratory of Physical and Health Education, Faculty of Regional Environment Science, Tokyo University of Agriculture, Tokyo, JapanBackground: The purpose of this study was to report on the health benefits and curative effects of aquatic exercise.Methods: We adopted the results of high-grade study designs (ie, randomized controlled trials and nonrandomized controlled trials), for which ther...

  10. The role of exopolymeric substances in the bioaccumulation and toxicity of Ag nanoparticles to algae.

    Science.gov (United States)

    Zhou, Kaijun; Hu, Yi; Zhang, Luqing; Yang, Kun; Lin, Daohui

    2016-01-01

    Exopolymeric substances (EPS) have an important role in bioaccumulation and toxicity of nanoparticles (NPs) to algae, which warrants specific studies. The interaction of EPS with citrate and polyvinyl pyrrolidone (PVP) coated AgNPs (C-AgNPs and P-AgNPs, respectively) and its roles in bioaccumulation and toxicity of the AgNPs to Chlorella pyrenoidosa were investigated. The amino and aromatic carboxylic groups in the EPS were involved in the EPS-AgNP interactions. Compared with Ag(+), C-AgNPs had comparable total bioaccumulation but greater absorption by intact algae with EPS; P-AgNPs had the smallest total bioaccumulation and were mainly adsorbed on algal surfaces. With EPS removed, the total bioaccumulations and surface adsorptions for the three Ag species decreased but the cell internalizations increased; the 96 h half growth inhibition concentrations decreased, indicating EPS alleviated the algal toxicity of Ag. The cell-internalized but not the adsorbed AgNPs could contribute to the nanotoxicity. The EPS could bind both AgNPs and Ag(+), and thus inhibited the cell internalization and the nanotoxicity. However, the EPS-bound Ag on the cell surfaces would migrate along with the algae and be biologically amplified in the aquatic food chains, presenting ecological risks. These results are helpful for understanding the fate and ecological effects of NPs. PMID:27615743

  11. Bioaccumulation factors for radionuclides in freshwater biota

    International Nuclear Information System (INIS)

    This report analyzes over 200 carefully selected papers to provide concise data sets and methodology for estimation of bioaccumulation factors for tritium and isotopes of strontium, cesium, iodine, manganese, and cobalt in major biotic components of freshwater environments. Bioaccumulation factors of different tissues are distinguished where significant differences occur. Since conditions in the laboratory are often unnatural in terms of chemical and ecological relationships, this review was restricted as far as possible to bioaccumulation factors determined for natural systems. Because bioaccumulation factors were not available for some shorter-lived radionuclides, a methodology for converting bioaccumulation factors of stable isotopes to those of shorter-lived radionuclides was derived and utilized. The bioaccumulation factor for a radionuclide in a given organism or tissue may exhibit wide variations among bodies of water that are related to differences in ambient concentrations of stable-element and carrier-element analogues. To account for these variations, simple models are presented that relate bioaccumulation factors to stable-element and carrier-element concentrations in water. The effects of physicochemical form and other factors in causing deviations from these models are discussed. Bioaccumulation factor data are examined in the context of these models, and bioaccumulation factor relations for the selected radionuclides are presented

  12. Aquatic Sediments.

    Science.gov (United States)

    Sanville, W. D.; And Others

    1978-01-01

    Presents a literature review of aquatic sediments and its effect upon water quality, covering publications of 1976-77. This review includes: (1) sediment water interchange; (2) chemical and physical characterization; and (3) heavy water in sediments. A list of 129 references is also presented. (HM)

  13. Physiological bases for detecting and predicting photoinhibition of aquatic photosynthesis by PAR and UV radiation

    International Nuclear Information System (INIS)

    Phytoplankton photosynthesis is the basis of almost all aquatic primary production in the world's oceans, estuaries and lakes. Oceanic primary production is a major portion of the global carbon budget (see other contributions this volume). Currently, we are unable to account for all the CO2 that is leaving the atmosphere and debate continues whether the ''missing carbon'' is going into either terrestrial and oceanic sinks (7). In this context, it is important to improve our knowledge of how phytoplankton photosynthesis responds to the aquatic environment. The aquatic light environment is primary among several factors governing aquatic photosynthesis. To understand phytoplankton response to aquatic irradiance, we must consider how light propagates underwater, variations in light spectral quality as well as intensity. Also important is how these optical characteristics relate to processes of light absorption and utilization by phytoplankton cells. Considerable progress has been made on answering many of these questions (e.g. 27). One topic, phytoplankton responses to irradiance stress induced by photosynthetically available radiation (PAR2) and UJV, has become increasingly important. The primary consequence in both cases is a time-dependent loss of photosynthetic activity (photo inhibition). Concern over the effects of solar UV irradiance has recently intensified with the advent of stratospheric ozone depletion, which allows for an increase of the mid-ultraviolet (UVB 280-320 nm)irradiance, especially in the Antarctic. The sensitivity of phytoplankton photosynthesis to irradiance stress can be readily demonstrated (36), however,showing whether this stress actually occurs in the aquatic environment remains difficult. The essential problem is that phytoplankton are in suspension. Their irradiance exposure will be determined by mixing processes that transport cells over a vertical gradient in light availability. The response to irradiance stress

  14. A label free aptamer-based LPG sensor for detection of mercury in aquatic solutions

    Science.gov (United States)

    Nikbakht, Hamed; Latifi, Hamid; Ziaee, Farzaneh

    2015-09-01

    We demonstrate a label free fiber optic sensor for detection of mercury ions in aquatic solutions. This sensor utilizes aptamers as bio-recognition element which traps mercury ions and cause a refractive index change in the vicinity of the sensor. Refractive index variations lead to a change in the transmission spectrum that can be used to calculate the concentration of mercury ions in that solution. The concentration of 1 nM mercury ions was detected which is below the specific amount determined by the US environmental protection agency as the maximum authorized contaminant level of Hg2+ ions in drinking water.

  15. The Price Model of Aquatic Products Based on Predictive Control Theory

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    This paper discusses a disequilibrium cobweb model of price of aquatic products, and applies predictive control theory, so that the system operates stably, and the deviation between supply and demand of aquatic products smoothly tracks the pre-given target. It defines the supply and demand change model, and researches the impact of parameter selection in this model on dynamic state and robustness of the system. I conduct simulation by Matlab software, to get the response curve of this model. The results show that in the early period of commodities coming into the market, affected by lack of market information and many other factors, the price fluctuates greatly in a short time. The market will gradually achieve balance between supply and demand over time, and the price fluctuations in the neighbouring two periods are broadly consistent. The increase in model parameter can decrease overshoot, to promote the stability of system, but the slower the dynamic response, the longer the deviation between supply and demand to accurately track a given target. Therefore, by selecting different parameters, the decision-makers can establish different models of supply and demand changes to meet the actual needs, and ensure stable development of market. Simulation results verify the excellent performance of this algorithm.

  16. Use of terrestrial field studies in the derivation of bioaccumulation potential of chemicals

    Science.gov (United States)

    van den Brink, Nico W.; Arblaster, Jennifer A.; Bowman, Sarah R.; Conder, Jason M.; Elliott, John E.; Johnson, Mark S.; Muir, Derek C.G.; Natal-da-Luz, Tiago; Rattner, Barnett A.; Sample, Bradley E.; Shore, Richard F.

    2016-01-01

    Field-based studies are an essential component of research addressing the behavior of organic chemicals, and a unique line of evidence that can be used to assess bioaccumulation potential in chemical registration programs and aid in development of associated laboratory and modeling efforts. To aid scientific and regulatory discourse on the application of terrestrial field data in this manner, this article provides practical recommendations regarding the generation and interpretation of terrestrial field data. Currently, biota-to-soil-accumulation factors (BSAFs), biomagnification factors (BMFs), and bioaccumulation factors (BAFs) are the most suitable bioaccumulation metrics that are applicable to bioaccumulation assessment evaluations and able to be generated from terrestrial field studies with relatively low uncertainty. Biomagnification factors calculated from field-collected samples of terrestrial carnivores and their prey appear to be particularly robust indicators of bioaccumulation potential. The use of stable isotope ratios for quantification of trophic relationships in terrestrial ecosystems needs to be further developed to resolve uncertainties associated with the calculation of terrestrial trophic magnification factors (TMFs). Sampling efforts for terrestrial field studies should strive for efficiency, and advice on optimization of study sample sizes, practical considerations for obtaining samples, selection of tissues for analysis, and data interpretation is provided. Although there is still much to be learned regarding terrestrial bioaccumulation, these recommendations provide some initial guidance to the present application of terrestrial field data as a line of evidence in the assessment of chemical bioaccumulation potential and a resource to inform laboratory and modeling efforts.

  17. Elemental bioaccumulators in air pollution studies

    International Nuclear Information System (INIS)

    K0-Based instrumental neutron activation analysis (k0 INAA) was used to determine the concentrations of Cr, Fe, Co, Zn, Se, Sb and Hg in the vascular plants Cistus salvifolius and Inula viscosa and in the lichen Parmelia sulcata. The samples were collected in the neighbourhood of industrial complexes. The elemental accumulation in the vascular plants and the lichen are compared to optimize the choice of the bioaccumulator. It is concluded that P.sulcata seems to be the best accumulator of the three species for the element studied; Cistus salvifolius is sensitive to the contents of Zn, Fe, Cr and Sb in the air; Inula viscosa seems to accumulate Fe, Sb, Co, Cr and Zn. Nevertheless, it is concluded that lichen is a good air pollution indicator, while the vascular plants are not due to the large seasonal variations found in the elemental concentrations. (author) 11 refs.; 7 figs.; 2 tabs

  18. Aquatic modules for bioregenerative life support systems based on the C.E.B.A.S. biotechnology

    Science.gov (United States)

    Bluem, Volker; Paris, Frank

    2001-03-01

    Most concepts for bioregenerative life support systems are based on edible higher land plants which create some problems with growth and seed generation under space conditions. Animal protein production is mostly neglected because of the tremendous waste management problems with tetrapods under reduced weightlessness. Therefore, the "Closed Equilibrated Biological Aquatic System" (C.E.B.A.S.) was developed which represents an artificial aquatic ecosystem containing aquatic organisms which are adpated at all to "near weightlessness conditions" (fishes Xiphophorus helleri, water snails Biomphalaria glabrata, ammonia oxidizing bacteria and the rootless non-gravitropic edible water plant Ceratophyllum demersum). Basically the C.E.B.A.S. consists of 4 subsystems: a ZOOLOGICASL COMPONENT (animal aquarium), a BOTANICAL COMPONENT (aquatic plant bioreactor), a MICROBIAL COMPONENT (bacteria filter) and an ELECTRONICAL COMPONENT (data acquisition and control unit). Superficially, the function principle appears simple: the plants convert light energy into chemical energy via photosynthesis thus producing biomass and oxygen. The animals and microorganisms use the oxygen for respiration and produce the carbon dioxide which is essential for plant photosynthesis. The ammonia ions excreted by the animals are converted by the bacteria to nitrite and then to nitrate ions which serve as a nitrogen source for the plants. Other essential ions derive from biological degradation of animal waste products and dead organic matter. The C.E.B.A.S. exists in 2 basic versions: the original C.E.B.A.S. with a volume of 150 liters and a self-sustaining standing time of more than 13 month and the so-called C.E.B.A.S. MINI MODULE with a volume of about 8.5 liters. In the latter there is no closed food loop by reasons of available space so that animal food has to be provided via an automated feeder. This device was flown already successfully on the STS-89 and STS-90 spaceshuttle missions and the

  19. Bioaccumulation of animal adenoviruses in the pink shrimp

    Directory of Open Access Journals (Sweden)

    Roger B. Luz

    2015-09-01

    Full Text Available Adenoviruses are among the most promising viral markers of fecal contamination. They are frequently found in the water, sediment and soil of regions impacted by human activity. Studies of the bioaccumulation of enteric viruses in shrimp are scarce. The cities located in the northern coast of the lake systems in Southern Brazil have high urbanization and intensive farming rates, and poor sewage collection and treatment. One hundred (n = 100 Farfantepenaeus paulensis pink-shrimp specimens and 48 water samples were collected from coastal lagoons between June 2012 and May 2013. Water samples were concentrated and the shrimp, mashed. After DNA extraction, samples were analyzed by real time polymerase chain reaction (qPCR in order to detect and quantify viral genomes. Thirty-five percent of shrimp samples were positive for contamination, predominantly by avian adenoviruses. A total of 91.7% of water samples contained adenoviruses DNA, with the human form being the most frequent. Our results provided evidence of significant bioaccumulation of adenoviruses in shrimp, showing the extent of the impact of fecal pollution on aquatic ecosystems.

  20. New textbooks of science and their reference to the application of scientific method based on the aquatic resources.

    Directory of Open Access Journals (Sweden)

    Héctor Toledo Muñoz

    2012-12-01

    Full Text Available A new didactical curriculum model for teaching science based on aquatic resources has been applied to a group four hundred and fourteen students from primary education, just in establishments situated on the coastal edge of the Tenth Region of Los Lagos, Chile. The themes of the learning strategy were suggested activities in science texts, drawn from interdisciplinary workshops involving classroom teachers, aquatic resources, professional didactic teaching, marine ecology experts, geneticist, sea farmers, water resource management and scientists. The new texts were analyzed in comparison with textbooks commonly used by students of 7th and 8th grade of Basic Education, in Chile; in the lecture of “Study and Understanding of Nature”. The test result showed a variety of procedural in the activities. It highlights the practical procedures, proposition of hypotheses, direct observation. We conclude that the textbooks of Natural Sciences - in the framework of a new teaching that integrates advances in scientific knowledge, technology and constructivism - are an innovative contribution to the meaningful, efficient and effective learning of science.

  1. Tool use by aquatic animals.

    Science.gov (United States)

    Mann, Janet; Patterson, Eric M

    2013-11-19

    Tool-use research has focused primarily on land-based animals, with less consideration given to aquatic animals and the environmental challenges and conditions they face. Here, we review aquatic tool use and examine the contributing ecological, physiological, cognitive and social factors. Tool use among aquatic animals is rare but taxonomically diverse, occurring in fish, cephalopods, mammals, crabs, urchins and possibly gastropods. While additional research is required, the scarcity of tool use can likely be attributable to the characteristics of aquatic habitats, which are generally not conducive to tool use. Nonetheless, studying tool use by aquatic animals provides insights into the conditions that promote and inhibit tool-use behaviour across biomes. Like land-based tool users, aquatic animals tend to find tools on the substrate and use tools during foraging. However, unlike on land, tool users in water often use other animals (and their products) and water itself as a tool. Among sea otters and dolphins, the two aquatic tool users studied in greatest detail, some individuals specialize in tool use, which is vertically socially transmitted possibly because of their long dependency periods. In all, the contrasts between aquatic- and land-based tool users enlighten our understanding of the adaptive value of tool-use behaviour. PMID:24101631

  2. Mercury bioaccumulation in the Mediterranean

    Directory of Open Access Journals (Sweden)

    Cinnirella S.

    2013-04-01

    Full Text Available This study details mercury pollution within the food chain of the Mediterranean by analysing the most comprehensive mercury dataset available for biota and water measurements. In this study we computed a bioaccumulation factor (BAF for datasets in the existing mercury-related scientific literature, in on-going programs, and in past measurement campaigns. Preliminary results indicate a major lack of information, making the outcome of any assessment very uncertain. Importantly, not all marine eco-regions are (or have ever been covered by measurement campaigns. Most lacking is information associated with the South-Eastern part of the Mediterranean, and in several eco-regions it is still impossible to reconstruct a trophic net, as the required species were not accounted for when mercury measurements were taken. The datasets also have additional temporal sampling problems, as species were often not sampled systematically (but only sporadically during any given sampling period. Moreover, datasets composed of mercury concentrations in water also suffer from similar geographic limitations, as they are concentrated in the North-Western Mediterranean. Despite these concerns, we found a very clear bioaccumulation trend in 1999, the only year where comprehensive information on both methylmercury concentrations in water and biota was available.

  3. Uranium in Aquatic Sediments; Where are the Guidelines?

    International Nuclear Information System (INIS)

    Sediment data has been collected on and around the Ranger uranium mine for over 20 years. This included studies such as annual routine monitoring of metal concentrations, adsorption-desorption conditions, phase associations, transport mechanism, release potential, bioaccumulation and bioconcentration etc. Building on this, performance-based monitoring of the sediments from on-site water bodies was undertaken to ascertain the spatial and temporal distribution of contaminants as a basis to determine ecological risks associated with the sediments which in turn underpins closure planning. Highlights of these studies are interpreted using an ecological risk assessment approach. Ideally interpretation of aquatic sediment contamination in Australia is guided by the national guidelines for water quality and a weighted multiple lines of evidence approach whereby the chemistry of sediments is compared with reference and guideline values and predictions of bio-availability, and biological effects data allows cause and effect relationships to be derived. However, where uranium in aquatic sediments is concerned there is a lack of national (Australian) and international guidelines that are applicable to tropical sediments and the biological effects data available are limited or confounded by other variables. In the absence of clear uranium guidelines for sediments an internationally reported “Predicted No Effect Concentration” (PNEC) for uranium in temperate sediments was used as a “pseudo-guideline” value to identify sites with concentrations that might present an environmental risk and that should be further investigated. The applicability of the PNEC to the tropical Ranger site was understandably questioned by stakeholders and peers. The issues raised highlighted the need for international guidelines for uranium in aquatic sediments for tropical and temperate climates and an internationally accepted approach for deriving same. (author)

  4. Iron bioaccumulation in mycelium of Pleurotus ostreatus

    Directory of Open Access Journals (Sweden)

    Sandra M. Almeida

    2015-03-01

    Full Text Available Pleurotus ostreatus is able to bioaccumulate several metals in its cell structures; however, there are no reports on its capacity to bioaccumulate iron. The objective of this study was to evaluate cultivation variables to increase iron bioaccumulation in P. ostreatusmycelium. A full factorial design and a central composite design were utilized to evaluate the effect of the following variables: nitrogen and carbon sources, pH and iron concentration in the solid culture medium to produce iron bioaccumulated in mycelial biomass. The maximum production of P. ostreatus mycelial biomass was obtained with yeast extract at 2.96 g of nitrogen L−1 and glucose at 28.45 g L−1. The most important variable to bioaccumulation was the iron concentration in the cultivation medium. Iron concentration at 175 mg L−1 or higher in the culture medium strongly inhibits the mycelial growth. The highest iron concentration in the mycelium was 3500 mg kg−1 produced with iron addition of 300 mg L−1. The highest iron bioaccumulation in the mycelium was obtained in culture medium with 150 mg L−1 of iron. Iron bioaccumulation in P. ostreatus mycelium is a potential alternative to produce non-animal food sources of iron.

  5. Sub-aquatic response of a scintillator, fibre optic and silicon photomultiplier based radiation sensor

    Energy Technology Data Exchange (ETDEWEB)

    Jackson, Sarah F., E-mail: s.f.jackson@lancaster.ac.uk [Engineering Department, Lancaster University, Lancaster (United Kingdom); Monk, Stephen D., E-mail: s.monk@lancaster.ac.uk [Engineering Department, Lancaster University, Lancaster (United Kingdom); Stanley, Steven J., E-mail: steven.j.stanley@nnl.co.uk [National Nuclear Laboratory, A709 Springfields, Preston (United Kingdom); Lennox, Kathryn, E-mail: kathryn.lennox@nnl.co.uk [National Nuclear Laboratory, A709 Springfields, Preston (United Kingdom)

    2014-07-01

    We describe an attempt at the utilisation of two low level light sensors to improve on the design of a dose monitoring system, specifically for underwater applications with consideration for the effects of water attenuation. The gamma radiation ‘RadLine{sup ®}’ detector consists of an inorganic scintillating crystal coupled to a fibre optic cable which transports scintillation photons, up to hundreds of metres, to an optical sensor. Analysed here are two contemporary technologies; SensL's MiniSL a silicon photomultiplier (SiPM) and a Sens-Tech photon counting photomultiplier tube (PMT). A clinical radiotherapy linear accelerator (linac) is implemented as test beam, subjecting the RadLine{sup ®} to a highly controlled dose rate (ranging from 0 Sv h{sup −1} to 320 Sv h{sup −1}), averaging at 2 MeV in energy. The RadLine's underwater dose monitoring capabilities are tested with the aid of epoxy resin ‘solid water’ phantom blocks, used as a substitute for water. Our results show that the MiniSL SiPM is unsuitable for this application due to extremely high background noise levels, however the Sens-Tech PMT performs satisfactorily and the detected dose rate due to the effects of water attenuation compares strongly with MCNP simulation data and NIST database values. We conclude that the PMT shows promise for its ultimate use in the First Generation Magnox Storage Pond (FGMSP) on the Sellafield site. - Highlights: • RadLine{sup ®} consists of a scintillating crystal coupled to a fibre optic cable and photon detector. • Here the dose monitoring system is trialled with SiPM and PMT type photon detectors. • A clinical linear accelerator (linac) is used as a test beam. • Sub-aquatic response is compared to Monte Carlo simulations and the NIST database.

  6. Ecological risk assessment for aquatic organisms from over-water uses of glyphosate.

    Science.gov (United States)

    Solomon, Keith R; Thompson, Dean G

    2003-01-01

    Although the herbicide glyphosate is most widely used in agriculture, some is used for the control of emergent aquatic weeds in ditches, wetlands, and margins of water bodies, largely as the formulation Rodeo. This article presents an ecological risk assessment (ERA) of glyphosate and some of the recommended surfactants as used in or near aquatic systems. Glyphosate does not bioaccumulate, biomagnify, or persist in a biologically available form in the environment. Its mechanism of action is specific to plants and it is relatively nontoxic to animals. As a commercial product, glyphosate may be formulated with surfactants that increased efficacy but, in some cases, are more toxic to aquatic organisms than the parent material. For this risk assessment, three model exposure scenarios--static or low-flow systems such as ponds, flowing waters such as streams, and systems subjected to tidal flows such as estuaries--were chosen and application rates from 1 to 8 kg glyphosate/ha were modeled. Additional measured exposure data from several field studies were also used. As acute exposures are most likely to occur, acute toxicity data were used as effect measures for the purposes of risk assessment. Toxicity data were obtained from the literature and characterized using probabilistic techniques. Risk assessments based on estimated and measured concentrations of glyphosate that would result from its use for the control of undesirable plants in wetlands and over-water situations showed that the risk to aquatic organisms is negligible or small at application rates less than 4 kg/ha and only slightly greater at application rates of 8 kg/ha. Less is known about the environmental fate and toxicology of the surfactants commonly used in combination with the Rodeo formulation of glyphosate. The surfactants used for this purpose were judged not to be persistent nor bioaccumulative in the environment. Distributional analysis of measured deposition concentrations of LI 700, suggest that

  7. Bioaccumulation of Triclocarban in Lumbriculus variegatus

    OpenAIRE

    Higgins, Christopher P.; J.Paesani, Zachary; Abbot Chalew, Talia E.; Halden, Rolf U.

    2009-01-01

    The antimicrobial triclocarban (TCC) has been detected in streams and municipal biosolids throughout the United States. In addition, TCC and potential TCC transformation products have been detected at high levels (ppm range) in sediments near major United States cities. Previous work has suggested that TCC is relatively stable in these environments, thereby raising concerns about the potential for bioaccumulation in sediment-dwelling organisms. Bioaccumulation of TCC from sediments was assess...

  8. Toxicity and bioaccumulation of copper in Limnodrilus hoffmeisteri under different pH values: Impacts of perfluorooctane sulfonate.

    Science.gov (United States)

    Meng, Lingjun; Yang, Shaogui; Feng, Mingbao; Qu, Ruijuan; Li, Yong; Liu, Jiaoqin; Wang, Zunyao; Sun, Cheng

    2016-03-15

    Aquatic oligochaete Limnodrilus hoffmeisteri (L. hoffmeisteri) has been commonly used as a lethal and/or sub-lethal toxicological model organism in ecological risk assessments in contaminated water environments. In this study, experiments were conducted to investigate the potential toxic effects of copper (Cu(II)) with or without perfluorooctane sulfonate (PFOS) under different pH values (6.0, 7.0 and 8.0) on LC50, bioaccumulation, and oxidative stress biomarkers in L. hoffmeisteri after 3 and 7 days. The LC50 values of Cu(II) decreased with the increasing pH and the addition of PFOS. After each exposure, increasing bioaccumulation of Cu(II) in L. hoffmeisteri was observed in the combined exposure treatments, whereas the bioaccumulation of PFOS decreased. Moreover, the activity of superoxide dismutase, the level of glutathione, and the content of malondialdehyde were significantly altered after these exposures, possibly indicating that the bioaccumulation of Cu(II) and PFOS caused adverse effects on antioxidant defenses of L. hoffmeisteri. The integrated biomarker response index, indicates that the combined effect was proposed as synergism, which is coincided with the results of toxic unit. Moreover, this work showed that aquatic environment may become more livable when water conditions changed from acidic to near-neutral or alkaline.

  9. pH modelling in aquatic systems with time-variable acid-base dissociation constants applied to the turbid, tidal Scheldt estuary

    NARCIS (Netherlands)

    Hofmann, A.F.; Middelburg, J.J.; Soetaert, K.; Meysman, F.J.R.

    2009-01-01

    A new pH modelling approach is presented that explicitly quantifies the influence of biogeochemical processes on proton cycling and pH in an aquatic ecosystem, and which accounts for time variable acid-base dissociation constants. As a case study, the method is applied to investigate proton cycling

  10. Plastic as a Carrier of POPs to Aquatic Organisms: A Model Analysis

    NARCIS (Netherlands)

    Koelmans, A.A.; Besseling, E.; Wegner, A.; Foekema, E.M.

    2013-01-01

    It has been hypothesized that persistent organic pollutants (POPs) in microplastic may pose a risk to aquatic organisms. Here we develop and analyze a conceptual model that simulates the effects of plastic on bioaccumulation of POPs. The model accounts for dilution of exposure concentration by sorpt

  11. Effect-Based Tools for Monitoring and Predicting the Ecotoxicological Effects of Chemicals in the Aquatic Environment

    Directory of Open Access Journals (Sweden)

    Richard E. Connon

    2012-09-01

    Full Text Available Ecotoxicology faces the challenge of assessing and predicting the effects of an increasing number of chemical stressors on aquatic species and ecosystems. Herein we review currently applied tools in ecological risk assessment, combining information on exposure with expected biological effects or environmental water quality standards; currently applied effect-based tools are presented based on whether exposure occurs in a controlled laboratory environment or in the field. With increasing ecological relevance the reproducibility, specificity and thus suitability for standardisation of methods tends to diminish. We discuss the use of biomarkers in ecotoxicology including ecotoxicogenomics-based endpoints, which are becoming increasingly important for the detection of sublethal effects. Carefully selected sets of biomarkers allow an assessment of exposure to and effects of toxic chemicals, as well as the health status of organisms and, when combined with chemical analysis, identification of toxicant(s. The promising concept of “adverse outcome pathways (AOP” links mechanistic responses on the cellular level with whole organism, population, community and potentially ecosystem effects and services. For most toxic mechanisms, however, practical application of AOPs will require more information and the identification of key links between responses, as well as key indicators, at different levels of biological organization, ecosystem functioning and ecosystem services.

  12. Multispecies toxicity test for silver nanoparticles to derive hazardous concentration based on species sensitivity distribution for the protection of aquatic ecosystems.

    Science.gov (United States)

    Kwak, Jin Il; Cui, Rongxue; Nam, Sun-Hwa; Kim, Shin Woong; Chae, Yooeun; An, Youn-Joo

    2016-06-01

    With increasing concerns about the release of silver nanoparticles (AgNPs) into the environment and the risks they pose to ecological and human health, a number of studies of AgNP toxicity to aquatic organisms have been conducted. USEPA and EU JRC have published risk assessment reports for AgNPs. However, most previous studies have focused on the adverse effects of AgNPs on individual species. Hazardous concentration (HC) of AgNPs for protection of aquatic ecosystems that are based on species sensitivity distributions (SSDs) have not yet been derived because sufficient data have not been available. In this study, we conducted multispecies toxicity tests, including acute assays using eight species from five different taxonomic groups (bacteria, algae, flagellates, crustaceans and fish) and chronic assays using six species from four different taxonomic groups (algae, flagellates, crustaceans and fish). Using the results of these assays, we used a SSD approach to derive an AgNP aquatic HC5 (Hazard concentrations at the 5% species) of 0.614 μg/L. To our knowledge, this is the first report of a proposed HC of AgNPs for the protection of aquatic ecosystems that is based on SSDs and uses chronic toxicity data. PMID:26634622

  13. Integrated assessment of river health based on the conditions of water quality,aquatic life and physical habitat

    Institute of Scientific and Technical Information of China (English)

    MENG Wei; ZHANG Nan; ZHANG Yuan; ZHENG Binghui

    2009-01-01

    The health conditions of Liao River were assessed using 25 sampling sites in April 2005, with water quality index, biotic index and physical habitat quality index.Based on the method of cluster analysis (CA) for water quality indices, it reveals that heavily polluted sites of Liao River are located at estuary and mainstream.The aquatic species surveyed were attached algae and benthic invertebrates.The result shows that the diversity and biomass of attached algae and benthic index of biotic integrity (B-IBI) are degrading as the chemical and physical quality of water bodies deteriorating.Physiochemical parameters, BOD5, CODCr, TN, TP, NH3-N, DO, petroleum hydrocarbon and conductivity, were statistically analyzed with principal component analysis and correlation analysis.The statistical results were incorporated into the integrated assessing water quality index, combining fecal coliform count, attached algae diversity, B-IBI and physical habitat quality score, a comprehensive integrated assessing system of river ecological health was established.Based on the systimetic assesment, the assessed sites are categorized into 9 "healthy" and "sub-healthy" sites and 8 "sub-sick" and "sick" sites.

  14. Animal protein production modules in biological life support systems: Novel combined aquaculture techniques based on the closed equilibrated biological aquatic system (C.E.B.A.S.)

    Science.gov (United States)

    Blüm, V.; Andriske, M.; Kreuzberg, K.; Schreibman, M. P.

    Based on the experiences made with the Closed Equilibrated Biological Aquatic System (C.E.B.A.S.) which was primarily deveoloped for long-term and multi-generation experiments with aquatic animals and plants in a space station highly effective fresh water recycling modules were elaborated utilizing a combination of ammonia oxidizing bacteria filters and higher plants. These exhibit a high effectivity to eliminate phosphate and anorganic nitrogen compounds and arc. in addidition. able to contribute to the oxygen supply of the aquatic animals. The C.E.B.A.S. filter system is able to keep a closed artificial aquatic ecosystem containing teleost fishes and water snails biologically stable for several month and to eliminate waste products deriving from degraded dead fishes without a decrease of the oxygen concentration down to less than 3.5 mg/l at 25 °C. More advanced C.E.B.A.S. filter systems, the BIOCURE filters, were also developed for utilization in semiintensive and intensive aquaculture systems for fishes. In fact such combined animal-plant aquaculture systems represent highly effective productions sites for human food if proper plant and fish species are selected The present papers elucidates ways to novel aquaculture systems in which herbivorous fishes are raised by feeding them with plant biomass produced in the BIOCURE filters and presents the scheme of a modification which utilizes a plant species suitable also for human nutrition. Special attention is paid to the benefits of closed aquaculture system modules which may be integrated into bioregenerative life support systems of a higher complexity for, e. g.. lunar or planetary bases including some psychologiccal aspects of the introduction of animal protein production into plant-based life support systems. Moreover, the basic reproductive biological problems of aquatic animal breeding under reduced gravity are explained leading to a disposition of essential research programs in this context.

  15. Evaluation of Colloidal Stability and Ecotoxicity of Metal-based Nanoparticles in the Aquatic and Terrestrial Systems

    Science.gov (United States)

    Pokhrel, Lok Raj

    NPs, ZnONPs, or their ions. Overall, various metal-based nanoparticles revealed lower toxicity than their ions against multiple organisms. This study showed that particle size, surface properties, and ion release kinetics of AgNPs modify following release into aquatic environment, suggesting potential implications to ecosystem health and functions, and that caution be applied when extending one species toxicity results to another because obvious differences in organism biology---supporting species sensitivity paradigm---can significantly alter nanoparticle or ionic toxicity.

  16. Cell-based sensor system using L6 cells for broad band continuous pollutant monitoring in aquatic environments.

    Science.gov (United States)

    Kubisch, Rebekka; Bohrn, Ulrich; Fleischer, Maximilian; Stütz, Evamaria

    2012-01-01

    Pollution of drinking water sources represents a continuously emerging problem in global environmental protection. Novel techniques for real-time monitoring of water quality, capable of the detection of unanticipated toxic and bioactive substances, are urgently needed. In this study, the applicability of a cell-based sensor system using selected eukaryotic cell lines for the detection of aquatic pollutants is shown. Readout parameters of the cells were the acidification (metabolism), oxygen consumption (respiration) and impedance (morphology) of the cells. A variety of potential cytotoxic classes of substances (heavy metals, pharmaceuticals, neurotoxins, waste water) was tested with monolayers of L6 cells (rat myoblasts). The cytotoxicity or cellular effects induced by inorganic ions (Ni(2+) and Cu(2+)) can be detected with the metabolic parameters acidification and respiration down to 0.5 mg/L, whereas the detection limit for other substances like nicotine and acetaminophen are rather high, in the range of 0.1 mg/L and 100 mg/L. In a close to application model a real waste water sample shows detectable signals, indicating the existence of cytotoxic substances. The results support the paradigm change from single substance detection to the monitoring of overall toxicity. PMID:22737014

  17. Cell-Based Sensor System Using L6 Cells for Broad Band Continuous Pollutant Monitoring in Aquatic Environments

    Directory of Open Access Journals (Sweden)

    Evamaria Stütz

    2012-03-01

    Full Text Available Pollution of drinking water sources represents a continuously emerging problem in global environmental protection. Novel techniques for real-time monitoring of water quality, capable of the detection of unanticipated toxic and bioactive substances, are urgently needed. In this study, the applicability of a cell-based sensor system using selected eukaryotic cell lines for the detection of aquatic pollutants is shown. Readout parameters of the cells were the acidification (metabolism, oxygen consumption (respiration and impedance (morphology of the cells. A variety of potential cytotoxic classes of substances (heavy metals, pharmaceuticals, neurotoxins, waste water was tested with monolayers of L6 cells (rat myoblasts. The cytotoxicity or cellular effects induced by inorganic ions (Ni2+ and Cu2+ can be detected with the metabolic parameters acidification and respiration down to 0.5 mg/L, whereas the detection limit for other substances like nicotine and acetaminophen are rather high, in the range of 0.1 mg/L and 100 mg/L. In a close to application model a real waste water sample shows detectable signals, indicating the existence of cytotoxic substances. The results support the paradigm change from single substance detection to the monitoring of overall toxicity.

  18. Wake-based unsteady modeling of the aquatic beetle Dytiscus marginalis

    OpenAIRE

    Whittlesey, Robert W.

    2011-01-01

    Dytiscus marginalis simultaneously uses its hind legs to propel itself through the water. Previous work has suggested that use of synchronized leg motions, such as that used by D. marginalis, allows it to swim with higher hydrodynamic efficiency than similarly sized insects that alternate their legs during swimming. A model is developed based on the generation of vortices in the wake to calculate the relative efficiency of synchronized-leg-swimming kinematics compared to alternating-leg-swimm...

  19. A novel protocol for assessing aquatic pollution, based on the feeding inhibition of Daphnia magna

    OpenAIRE

    Kovács A.; Abdel-Hameid N.-A.; Ács A.; Á. Ferincz; Kováts N.

    2012-01-01

    In this study, sensitivity of a novel acute bioassay based on the feeding activity of Daphnia magna was assessed, using 2 and 4 h of exposure. For calibration purposes, results were compared with those of the standard immobility test as described by the ISO 6341:1996 standard. Using potassium dichromate as the reference chemical, after 4 h of exposure the proposed protocol showed similar sensitivity in comparison with the stan...

  20. Application of PIV-based pressure measurements to the study of aquatic propulsion

    Science.gov (United States)

    Lucas, Kelsey; Dabiri, John; Lauder, George

    2015-11-01

    Although it is relatively straightforward to image how fluid moves around a swimmer, translation of these motions to mechanisms that generate forces for propulsion is more difficult. This process is greatly facilitated by a recently developed technique for non-invasive pressure measurements that generate 2D pressure fields. Here, we explore how accurate a purely pressure-based calculation of propulsive forces can be. By comparing these calculations to forces and torques measured directly using a sensor on a robotic flapping foil system, we characterize the effects of motion frequency and out-of-plane flows on the calculation's accuracy. We then apply this calculation to study the dynamics of fish-like swimming of a foil model with non-uniform flexural stiffness, and to those of a freely swimming fish.

  1. Modeling Microbial Biogeochemistry from Terrestrial to Aquatic Ecosystems Using Trait-Based Approaches

    Science.gov (United States)

    King, E.; Molins, S.; Karaoz, U.; Johnson, J. N.; Bouskill, N.; Hug, L. A.; Thomas, B. C.; Castelle, C. J.; Beller, H. R.; Banfield, J. F.; Steefel, C. I.; Brodie, E.

    2014-12-01

    Currently, there is uncertainty in how climate or land-use-induced changes in hydrology and vegetation will affect subsurface carbon flux, the spatial and temporal distribution of flow and transport, biogeochemical cycling, and microbial metabolic activity. Here we focus on the initial development of a Genome-Enabled Watershed Simulation Capability (GEWaSC), which provides a predictive framework for understanding how genomic information stored in a subsurface microbiome affects biogeochemical watershed functioning, how watershed-scale processes affect microbial function, and how these interactions co-evolve. This multiscale framework builds on a hierarchical approach to multiscale modeling, which considers coupling between defined microscale and macroscale components of a system (e.g., a catchment being defined as macroscale and biogeofacies as microscale). Here, we report our progress in the development of a trait-based modeling approach within a reactive transport framework that simulates coupled guilds of microbes. Guild selection is driven by traits extracted from, and physiological properties inferred from, large-scale assembly of metagenome data. Meta-genomic, -transcriptomic and -proteomic information are also used to complement our existing biogeochemical reaction networks and contributes key reactions where biogeochemical analyses are unequivocal. Our approach models the rate of nutrient uptake and the thermodynamics of coupled electron donors and acceptors for a range of microbial metabolisms including heterotrophs and chemolitho(auto)trophs. Metabolism of exogenous substrates fuels catabolic and anabolic processes, with the proportion of energy used for each based upon dynamic intracellular and environmental conditions. In addition to biomass development, anabolism includes the production of key enzymes, such as nitrogenase for nitrogen fixation or exo-enzymes for the hydrolysis of extracellular polymers. This internal resource partitioning represents a

  2. Fatty acid composition at the base of aquatic food webs is influenced by habitat type and watershed land use.

    Directory of Open Access Journals (Sweden)

    James H Larson

    Full Text Available Spatial variation in food resources strongly influences many aspects of aquatic consumer ecology. Although large-scale controls over spatial variation in many aspects of food resources are well known, others have received little study. Here we investigated variation in the fatty acid (FA composition of seston and primary consumers within (i.e., among habitats and among tributary systems of Lake Michigan, USA. FA composition of food is important because all metazoans require certain FAs for proper growth and development that cannot be produced de novo, including many polyunsaturated fatty acids (PUFAs. Here we sampled three habitat types (river, rivermouth and nearshore zone in 11 tributaries of Lake Michigan to assess the amount of FA in seston and primary consumers of seston. We hypothesize that among-system and among-habitat variation in FAs at the base of food webs would be related to algal production, which in turn is influenced by three land cover characteristics: 1 combined agriculture and urban lands (an indication of anthropogenic nutrient inputs that fuel algal production, 2 the proportion of surface waters (an indication of water residence times that allow algal producers to accumulate and 3 the extent of riparian forested buffers (an indication of stream shading that reduces algal production. Of these three land cover characteristics, only intense land use appeared to strongly related to seston and consumer FA and this effect was only strong in rivermouth and nearshore lake sites. River seston and consumer FA composition was highly variable, but that variation does not appear to be driven by the watershed land cover characteristics investigated here. Whether the spatial variation in FA content at the base of these food webs significantly influences the production of economically important species higher in the food web should be a focus of future research.

  3. An outline of a model-based expert system to identify optimal remedial strategies for restoring contaminated aquatic ecosystems: the project MOIRA

    International Nuclear Information System (INIS)

    The present report describes the fundamental principles of the research programme MOIRA (a model based computerized system for management support to Identify optimal remedial strategies for Restoring radionuclide contaminated Aquatic ecosystems and drainage areas) financed by the EC (European Community) (Contract N F14P-CT96-0036). The interventions to restore radionuclides contaminated aquatic systems may result in detrimental ecological, social and economical effects. Decision makers must carefully evaluate these impacts. The main aim of the MOIRA project is the development of an expert system based on validated models predicting the evolution of the radioactive contamination of fresh water systems following countermeasure applications and their relevant ecological, social and economical impacts. The expert system will help decision makers, that are not necessarily gifted with experience in environmental modeling, to identify optimal remedial strategies for restoring contaminated fresh water systems

  4. A novel protocol for assessing aquatic pollution, based on the feeding inhibition of Daphnia magna

    Directory of Open Access Journals (Sweden)

    Kovács A.

    2012-03-01

    Full Text Available In this study, sensitivity of a novel acute bioassay based on the feeding activity of Daphnia magna was assessed, using 2 and 4 h of exposure. For calibration purposes, results were compared with those of the standard immobility test as described by the ISO 6341:1996 standard. Using potassium dichromate as the reference chemical, after 4 h of exposure the proposed protocol showed similar sensitivity in comparison with the standard, as the EC50 of the immobility test was 1.093 ± 0.098 mg·L–1, whereas the EC50 of the feeding inhibition bioassay was 1.742 ± 0.133 mg·L–1. In order to test the sensitivity of the bioassay, toxicity of two other contaminants, copper and wastewater, was estimated and the results were compared with those of the standard immobility test. For both cases, the feeding inhibition test showed higher sensitivity, as in the case of copper the EC50s were 0.0952 ± 0.0087 and 0.0753 ± 0.0152 mg·L–1, whilst the EC50 recorded for the 24-h immobility test was 0.2407 ± 0.0159 mg·L–1. In the case of the effluent, EC50 values after 2 and 4 h of exposure were 15.698 ± 2.681 and 12.557 ± 2.358 expressed as % of the wastewater, respectively, whereas the EC50 of the immobility test was calculated to be 36.4688 ± 5.4887.

  5. Optimal choice of pH for toxicity and bioaccumulation studies of ionizing organic chemicals

    DEFF Research Database (Denmark)

    Rendal, Cecilie; Kusk, Kresten Ole; Trapp, Stefan

    2011-01-01

    at multiple pH levels. Toxicity and bioconcentration factors (BCFs) were higher for acids at lower pH values, whereas the opposite was true for bases. The effect of pH was most pronounced when pH-pKa was in the range of -1 to 3 for acids, and -3 to 1 for bases. The factor by which toxicity and BCF changed......It is recognized that the pH of exposure solutions can influence the toxicity and bioaccumulation of ionizing compounds. The present study investigates whether it can be considered a general rule that an ionizable compound is more toxic and more bioaccumulative when in the neutral state. Three...... processes were identified to explain the behavior of ionizing compounds with changing pH: the change in lipophilicity when a neutral compound becomes ionized, electrical attraction, and the ion trap. The literature was screened for bioaccumulation and toxicity tests of ionizing organic compounds performed...

  6. Bioaccumulation of Arsenic by Fungi

    Directory of Open Access Journals (Sweden)

    Ademola O. Adeyemi

    2009-01-01

    Full Text Available Problem statement: Arsenic is a known toxic element and its presence and toxicity in nature is a worldwide environmental problem. The use of microorganisms in bioremediation is a potential method to reduce as concentration in contaminated areas. Approach: In order to explore the possible bioremediation of this element, three filamentous fungi-Aspergillus niger, Serpula himantioides and Trametes versicolor were investigated for their potential abilities to accumulate (and possibly solubilize arsenic from an agar environment consisting of non buffered mineral salts media amended with 0.2, 0.4, 0.6 and 0.8% (w/v arsenopyrite (FeAsS. Growth rates, dry weights, arsenic accumulation and oxalate production by the fungi as well as the pH of the growth media were all assessed during this study. Results: There was no visible solubilization of FeAsS particles underneath any of the growing fungal colonies or elsewhere in the respective agar plates. No specific patterns of growth changes were observed from the growth ratios of the fungi on agar amended with different amounts of FeAsS although growth of all fungi was stimulated by the incorporation of varying amounts of FeAsS into the agar with the exception of A. niger on 0.4% (w/v amended agar and T. versicolor on 0.8% (w/v amended agar. The amounts of dry weights obtained for all three fungi also did not follow any specific patterns with different amounts of FeAsS and the quantities obtained were in the order A. niger > S. himantioides > T. versicolor. All fungi accumulated as in their biomasses with all amounts of FeAsS although to varying levels and T. versicolor was the most effective with all amounts of FeAsS while A. niger was the least effective. Conclusion: The accumulation of arsenic in the biomasses of the test fungi as shown in this study may suggested a role for fungi through their bioaccumulating capabilities as agents in the possible bioremediation of arsenic contaminated environments.

  7. Application of fundamental aquatic chemistry to the safety case and the role of thermodynamic reference data bases

    Energy Technology Data Exchange (ETDEWEB)

    Altmaier, Marcus; Gaona, Xavier; Fellhauer, David; Geckeis, Horst [Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen (Germany). Inst. for Nuclear Waste Disposal

    2015-07-01

    All national and international programs developing a Nuclear Waste Disposal Safety Case have recognized the essential requirement of assessing aqueous (radionuclide) chemistry and establishing reliable thermodynamic databases. Long-term disposal of nuclear waste in deep underground repositories is the safest option to separate highly hazardous radionuclides from the environment. In order to predict the long-term performance of a repository for different evolution scenarios, the potentially relevant specific (geo)chemical systems are analyzed. This requires a detailed understanding of solubility, speciation and thermodynamics for all relevant components including radionuclides, and the availability of reliable thermodynamic data and databases as fundamental input for integral geochemical model calculations and hence PA. Radionuclide solubility and speciation strongly depend on chemical conditions (pH, E{sub h}, matrix electrolyte system and ionic strength) with additional factors like the presence of complexing ligands or temperature further impacting solution chemistry. As the fundamental chemical key processes are known and convincingly described by general laws of nature (→ solution thermodynamics), the long-term behavior of a repository system can be analyzed over geological timescales using geochemical tools. A key application of fundamental aquatic chemistry in the Safety Case is the determination of solubility limits (radionuclide source terms). Based upon fundamental chemical information (on solid phases, complexation reactions, activity coefficients, etc.), the maximum amount of radionuclides potentially dissolved in a given volume of solution and transported away from the repository, are quantified. A detailed understanding of radionuclide chemistry is also crucial for neighboring fields. For example, advanced mechanistic understanding and modeling of sorption processes at the solid liquid interphase, waste dissolution processes, secondary phase and

  8. Application of fundamental aquatic chemistry to the safety case and the role of thermodynamic reference data bases

    International Nuclear Information System (INIS)

    All national and international programs developing a Nuclear Waste Disposal Safety Case have recognized the essential requirement of assessing aqueous (radionuclide) chemistry and establishing reliable thermodynamic databases. Long-term disposal of nuclear waste in deep underground repositories is the safest option to separate highly hazardous radionuclides from the environment. In order to predict the long-term performance of a repository for different evolution scenarios, the potentially relevant specific (geo)chemical systems are analyzed. This requires a detailed understanding of solubility, speciation and thermodynamics for all relevant components including radionuclides, and the availability of reliable thermodynamic data and databases as fundamental input for integral geochemical model calculations and hence PA. Radionuclide solubility and speciation strongly depend on chemical conditions (pH, Eh, matrix electrolyte system and ionic strength) with additional factors like the presence of complexing ligands or temperature further impacting solution chemistry. As the fundamental chemical key processes are known and convincingly described by general laws of nature (→ solution thermodynamics), the long-term behavior of a repository system can be analyzed over geological timescales using geochemical tools. A key application of fundamental aquatic chemistry in the Safety Case is the determination of solubility limits (radionuclide source terms). Based upon fundamental chemical information (on solid phases, complexation reactions, activity coefficients, etc.), the maximum amount of radionuclides potentially dissolved in a given volume of solution and transported away from the repository, are quantified. A detailed understanding of radionuclide chemistry is also crucial for neighboring fields. For example, advanced mechanistic understanding and modeling of sorption processes at the solid liquid interphase, waste dissolution processes, secondary phase and solid

  9. Assessment of mechanisms of metal-induced reproductive toxicity in aquatic species as a biomarker of exposure

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, M.; George, W.; Preslan, J. [and others

    1996-05-02

    This project discusses the following studies: identification and quantitation of heavy metals and petroleum products present in Bayou Trepagnier relative to control sites; assessment of the uptake and bioaccumulation of metals and organic contaminants of interest in aquatic species; establishment and use of polarographic methods for use in metal speciation studies to identify specific chemical forms present in sediments, waters and organism; and evaluation of contaminants on reproductive function of aquatic species as potential biomarkers of exposure. 14 refs.

  10. Tissue-specific bioaccumulation of human and veterinary antibiotics in bile, plasma, liver and muscle tissues of wild fish from a highly urbanized region

    International Nuclear Information System (INIS)

    We investigated the bioaccumulation of antibiotics in bile, plasma, liver and muscle tissues of wild fish from four rivers in the Pearl River Delta region. In total, 12 antibiotics were present in at least one type of fish tissues from nine wild fish species in the four rivers. The mean values of log bioaccumulation factors (log BAFs) for the detected antibiotics in fish bile, plasma, liver, and muscle tissues were at the range of 2.06–4.08, 1.85–3.47, 1.41–3.51, and 0.48–2.70, respectively. As the digestion tissues, fish bile, plasma, and liver showed strong bioaccumulation ability for some antibiotics, indicating a different bioaccumulation pattern from hydrophobic organic contaminants. Human health risk assessment based on potential fish consumption indicates that these antibiotics do not appear to pose an appreciable risk to human health. To the best of our knowledge, this is first report of bioaccumulation patterns of antibiotics in wild fish bile and plasma. - Highlights: • We investigated the bioaccumulation of antibiotics in wild fish from the Pearl River Delta region. • Twelve antibiotics were found in fish bile, plasma, liver and muscle tissues. • High log bioaccumulation factors suggested strong bioaccumulation ability for some antibiotics in wild fish tissues. • The presence of antibiotics in fish bile and plasma tissues indicates a novel bioaccumulation pattern. • Potential adverse effects are possibly caused by the high internal antibiotic concentrations in tissues. - Fish bile and plasma displayed strong bioaccumulation ability for some antibiotics, indicating a novel bioaccumulation pattern for antibiotics in the contaminated environment

  11. Sensitivity and accuracy of DNA based methods used to describe aquatic communities for early detection of invasive fish species

    Science.gov (United States)

    For biomonitoring efforts aimed at early detection of aquatic invasive species (AIS), the ability to detect rare individuals is key and requires accurate species level identification to maintain a low occurrence probability of non-detection errors (failure to detect a present spe...

  12. UV filters bioaccumulation in fish from Iberian river basins

    Energy Technology Data Exchange (ETDEWEB)

    Gago-Ferrero, Pablo [Dept. of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA), Spanish Council for Scientific Research (CSIC), Jordi Girona 18-26, E-08034 Barcelona (Spain); Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, 15771 Athens (Greece); Díaz-Cruz, M. Silvia, E-mail: sdcqam@cid.csic.es [Dept. of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA), Spanish Council for Scientific Research (CSIC), Jordi Girona 18-26, E-08034 Barcelona (Spain); Barceló, Damià [Dept. of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA), Spanish Council for Scientific Research (CSIC), Jordi Girona 18-26, E-08034 Barcelona (Spain); Catalan Institute for Water Research (ICRA), Parc Científic i Tecnològic de la Universitat de Girona, C/ Emili Grahit, 101 Edifici H2O, E-17003 Girona (Spain)

    2015-06-15

    The occurrence of eight organic UV filters (UV-Fs) was assessed in fish from four Iberian river basins. This group of compounds is extensively used in cosmetic products and other industrial goods to avoid the damaging effects of UV radiation, and has been found to be ubiquitous contaminants in the aquatic ecosystem. In particular, fish are considered by the scientific community to be the most feasible organism for contamination monitoring in aquatic ecosystems. Despite that, studies on the bioaccumulation of UV-F are scarce. In this study fish samples from four Iberian river basins under high anthropogenic pressure were analysed by liquid chromatography–tandem mass spectrometry (HPLC–MS/MS). Benzophenone-3 (BP3), ethylhexyl methoxycinnamate (EHMC), 4-methylbenzylidene camphor (4MBC) and octocrylene (OC) were the predominant pollutants in the fish samples, with concentrations in the range of ng/g dry weight (d.w.). The results indicated that most polluted area corresponded to Guadalquivir River basin, where maximum concentrations were found for EHMC (241.7 ng/g d.w.). Sediments from this river basin were also analysed. Lower values were observed in relation to fish for OC and EHMC, ranging from below the limits of detection to 23 ng/g d.w. Accumulation levels of UV-F in the fish were used to calculate biota-sediment accumulation factors (BSAFs). These values were always below 1, in the range of 0.04–0.3, indicating that the target UV-Fs are excreted by fish only to some extent. The fact that the highest concentrations were determined in predators suggests that biomagnification of UV-F may take place along the freshwater food web. - Highlights: • First evidence of UV filters in fish from Iberian rivers • Biota-sediment accumulation factors (BSAFs) were always below 1. • Predator species presented higher UV-F concentrations suggesting trophic magnification.

  13. UV filters bioaccumulation in fish from Iberian river basins

    International Nuclear Information System (INIS)

    The occurrence of eight organic UV filters (UV-Fs) was assessed in fish from four Iberian river basins. This group of compounds is extensively used in cosmetic products and other industrial goods to avoid the damaging effects of UV radiation, and has been found to be ubiquitous contaminants in the aquatic ecosystem. In particular, fish are considered by the scientific community to be the most feasible organism for contamination monitoring in aquatic ecosystems. Despite that, studies on the bioaccumulation of UV-F are scarce. In this study fish samples from four Iberian river basins under high anthropogenic pressure were analysed by liquid chromatography–tandem mass spectrometry (HPLC–MS/MS). Benzophenone-3 (BP3), ethylhexyl methoxycinnamate (EHMC), 4-methylbenzylidene camphor (4MBC) and octocrylene (OC) were the predominant pollutants in the fish samples, with concentrations in the range of ng/g dry weight (d.w.). The results indicated that most polluted area corresponded to Guadalquivir River basin, where maximum concentrations were found for EHMC (241.7 ng/g d.w.). Sediments from this river basin were also analysed. Lower values were observed in relation to fish for OC and EHMC, ranging from below the limits of detection to 23 ng/g d.w. Accumulation levels of UV-F in the fish were used to calculate biota-sediment accumulation factors (BSAFs). These values were always below 1, in the range of 0.04–0.3, indicating that the target UV-Fs are excreted by fish only to some extent. The fact that the highest concentrations were determined in predators suggests that biomagnification of UV-F may take place along the freshwater food web. - Highlights: • First evidence of UV filters in fish from Iberian rivers • Biota-sediment accumulation factors (BSAFs) were always below 1. • Predator species presented higher UV-F concentrations suggesting trophic magnification

  14. Uranium bioaccumulation and biological disorders induced in zebrafish (Danio rerio) after a depleted uranium waterborne exposure

    Energy Technology Data Exchange (ETDEWEB)

    Barillet, Sabrina, E-mail: sabrina.barillet@free.f [Laboratory of Radioecology and Ecotoxicology, IRSN (Institute for Radiological protection and Nuclear Safety), DEI/SECRE/LRE, Cadarache, Bat 186, BP 3, 13115 St-Paul-Lez-Durance cedex (France); Adam-Guillermin, Christelle, E-mail: christelle.adam-guillermin@irsn.f [Laboratory of Radioecology and Ecotoxicology, IRSN (Institute for Radiological protection and Nuclear Safety), DEI/SECRE/LRE, Cadarache, Bat 186, BP 3, 13115 St-Paul-Lez-Durance cedex (France); Palluel, Olivier, E-mail: olivier.palluel@ineris.f [Ecotoxicological Risk Assessment Unit, INERIS (National Institute for Industrial Environment and Risks), Parc technologique ALATA, 60 550 Verneuil-en-Halatte (France); Porcher, Jean-Marc, E-mail: jean-marc.porcher@ineris.f [Ecotoxicological Risk Assessment Unit, INERIS (National Institute for Industrial Environment and Risks), Parc technologique ALATA, 60 550 Verneuil-en-Halatte (France); Devaux, Alain, E-mail: alain.devaux@entpe.f [Universite de Lyon, INRA, EFPA-SA, Environmental Science Laboratory (LSE), ENTPE, 69518 Vaulx en Velin cedex (France)

    2011-02-15

    Because of its toxicity and its ubiquity within aquatic compartments, uranium (U) represents a significant hazard to aquatic species such as fish. In a previous study, we investigated some biological responses in zebrafish either exposed to depleted or to enriched U (i.e., to different radiological activities). However, results required further experiments to better understand biological responses. Moreover, we failed to clearly demonstrate a significant relationship between biological effects and U radiological activity. We therefore chose to herein examine U bioaccumulation and induced effects in zebrafish according to a chemical dose-response approach. Results showed that U is highly bioconcentrated in fish, according to a time- and concentration-dependent model. Additionally, hepatic antioxidant defenses, red blood cells DNA integrity and brain acetylcholinesterase activity were found to be significantly altered. Generally, the higher the U concentration, the sooner and/or the greater the effect, suggesting a close relationship between accumulation and effect. - Research highlights: Depleted U bioconcentration factor is of about 1000 in zebrafish exposed to 20 {mu}g/L. Hepatic antioxidant disorders are noticed as soon as the first hours of exposure. DNA damage is induced in red blood cells after 20 d of exposure to 500 {mu}g DU/L. The brain cholinergic system (AChE activity) is impacted. - This study demonstrates that U is highly bioaccumulated in fish, resulting in biological disorders such as hepatic oxidative stress as well as genotoxic and neurotoxic events.

  15. Uranium bioaccumulation and biological disorders induced in zebrafish (Danio rerio) after a depleted uranium waterborne exposure

    International Nuclear Information System (INIS)

    Because of its toxicity and its ubiquity within aquatic compartments, uranium (U) represents a significant hazard to aquatic species such as fish. In a previous study, we investigated some biological responses in zebrafish either exposed to depleted or to enriched U (i.e., to different radiological activities). However, results required further experiments to better understand biological responses. Moreover, we failed to clearly demonstrate a significant relationship between biological effects and U radiological activity. We therefore chose to herein examine U bioaccumulation and induced effects in zebrafish according to a chemical dose-response approach. Results showed that U is highly bioconcentrated in fish, according to a time- and concentration-dependent model. Additionally, hepatic antioxidant defenses, red blood cells DNA integrity and brain acetylcholinesterase activity were found to be significantly altered. Generally, the higher the U concentration, the sooner and/or the greater the effect, suggesting a close relationship between accumulation and effect. - Research highlights: → Depleted U bioconcentration factor is of about 1000 in zebrafish exposed to 20 μg/L. → Hepatic antioxidant disorders are noticed as soon as the first hours of exposure. → DNA damage is induced in red blood cells after 20 d of exposure to 500 μg DU/L. → The brain cholinergic system (AChE activity) is impacted. - This study demonstrates that U is highly bioaccumulated in fish, resulting in biological disorders such as hepatic oxidative stress as well as genotoxic and neurotoxic events.

  16. Microcystin-LR bioaccumulation and depuration kinetics in lettuce and arugula: Human health risk assessment.

    Science.gov (United States)

    Cordeiro-Araújo, Micheline Kézia; Chia, Mathias Ahii; Arruda-Neto, João Dias de Toledo; Tornisielo, Valdemar Luiz; Vilca, Franz Zirena; Bittencourt-Oliveira, Maria do Carmo

    2016-10-01

    Microcystin-LR (MC-LR) is one of the most toxic and common microcystins (MCs) variant found in aquatic ecosystems. Little is known about the possibility of recovering microcystins contaminated agricultural crops. The objectives of this study were to determine the bioaccumulation and depuration kinetics of MC-LR in leaf tissues of lettuce and arugula, and estimate the total daily intake (ToDI) of MC-LR via contaminated vegetables by humans. Arugula and lettuce were irrigated with contaminated water having 5 and 10μgL(-1) of MC-LR for 7days (bioaccumulation), and subsequently, with uncontaminated water for 7days (depuration). Quantification of MC-LR was performed by LC-MS/MS. The one-compartment biokinetic model was employed for MC-LR bioaccumulation and depuration data analysis. MC-LR was only accumulated in lettuce. After 7days of irrigation with uncontaminated water, over 25% of accumulated MC-LR was still retained in leaf tissues of plants treated with 10μgL(-1) MC-LR. Total daily toxin intake by adult consumers (60kg-bw) exceeded the 0.04μgMC-LRkg(-1) limit recommended by WHO. Bioaccumulation was found to be linearly proportional to the exposure concentration of the toxin, increasing over time; and estimated to become saturated after 30days of uninterrupted exposure. On the other hand, MC-LR depuration was less efficient at higher exposure concentrations. This is because biokinetic half-life calculations gave 2.9 and 3.7days for 5 and 10μgL(-1) MC-LR treatments, which means 29-37days are required to eliminate the toxin. For the first time, our results demonstrated the possibility of MC-LR decontamination of lettuce plants.

  17. Microcystin-LR bioaccumulation and depuration kinetics in lettuce and arugula: Human health risk assessment.

    Science.gov (United States)

    Cordeiro-Araújo, Micheline Kézia; Chia, Mathias Ahii; Arruda-Neto, João Dias de Toledo; Tornisielo, Valdemar Luiz; Vilca, Franz Zirena; Bittencourt-Oliveira, Maria do Carmo

    2016-10-01

    Microcystin-LR (MC-LR) is one of the most toxic and common microcystins (MCs) variant found in aquatic ecosystems. Little is known about the possibility of recovering microcystins contaminated agricultural crops. The objectives of this study were to determine the bioaccumulation and depuration kinetics of MC-LR in leaf tissues of lettuce and arugula, and estimate the total daily intake (ToDI) of MC-LR via contaminated vegetables by humans. Arugula and lettuce were irrigated with contaminated water having 5 and 10μgL(-1) of MC-LR for 7days (bioaccumulation), and subsequently, with uncontaminated water for 7days (depuration). Quantification of MC-LR was performed by LC-MS/MS. The one-compartment biokinetic model was employed for MC-LR bioaccumulation and depuration data analysis. MC-LR was only accumulated in lettuce. After 7days of irrigation with uncontaminated water, over 25% of accumulated MC-LR was still retained in leaf tissues of plants treated with 10μgL(-1) MC-LR. Total daily toxin intake by adult consumers (60kg-bw) exceeded the 0.04μgMC-LRkg(-1) limit recommended by WHO. Bioaccumulation was found to be linearly proportional to the exposure concentration of the toxin, increasing over time; and estimated to become saturated after 30days of uninterrupted exposure. On the other hand, MC-LR depuration was less efficient at higher exposure concentrations. This is because biokinetic half-life calculations gave 2.9 and 3.7days for 5 and 10μgL(-1) MC-LR treatments, which means 29-37days are required to eliminate the toxin. For the first time, our results demonstrated the possibility of MC-LR decontamination of lettuce plants. PMID:27267723

  18. Habitat-specific bioaccumulation of methylmercury in invertebrates of small mid-latitude lakes in North America

    Energy Technology Data Exchange (ETDEWEB)

    Chetelat, John, E-mail: john.chetelat@ec.gc.c [Groupe de recherche interuniversitaire en limnologie, Departement de sciences biologiques, Universite de Montreal, Montreal, Quebec H3C 3J7 (Canada); Amyot, Marc; Garcia, Edenise [Groupe de recherche interuniversitaire en limnologie, Departement de sciences biologiques, Universite de Montreal, Montreal, Quebec H3C 3J7 (Canada)

    2011-01-15

    We examined habitat-specific bioaccumulation of methylmercury (MeHg) in aquatic food webs by comparing concentrations in pelagic zooplankton to those in littoral macroinvertebrates from 52 mid-latitude lakes in North America. Invertebrate MeHg concentrations were primarily correlated with water pH, and after controlling for this influence, pelagic zooplankton had significantly higher MeHg concentrations than littoral primary consumers but lower MeHg than littoral secondary consumers. Littoral primary consumers and pelagic zooplankton are two dominant prey for fish, and greater MeHg in zooplankton is likely sufficient to increase bioaccumulation in pelagic feeders. Intensive sampling of 8 lakes indicated that habitat-specific bioaccumulation in invertebrates (of similar trophic level) may result from spatial variation in aqueous MeHg concentration or from more efficient uptake of aqueous MeHg into the pelagic food web. Our findings demonstrate that littoral-pelagic differences in MeHg bioaccumulation are widespread in small mid-latitude lakes. - Methylmercury levels in dominant invertebrate prey for fish differ between littoral and pelagic habitats within a lake.

  19. Habitat-specific bioaccumulation of methylmercury in invertebrates of small mid-latitude lakes in North America

    International Nuclear Information System (INIS)

    We examined habitat-specific bioaccumulation of methylmercury (MeHg) in aquatic food webs by comparing concentrations in pelagic zooplankton to those in littoral macroinvertebrates from 52 mid-latitude lakes in North America. Invertebrate MeHg concentrations were primarily correlated with water pH, and after controlling for this influence, pelagic zooplankton had significantly higher MeHg concentrations than littoral primary consumers but lower MeHg than littoral secondary consumers. Littoral primary consumers and pelagic zooplankton are two dominant prey for fish, and greater MeHg in zooplankton is likely sufficient to increase bioaccumulation in pelagic feeders. Intensive sampling of 8 lakes indicated that habitat-specific bioaccumulation in invertebrates (of similar trophic level) may result from spatial variation in aqueous MeHg concentration or from more efficient uptake of aqueous MeHg into the pelagic food web. Our findings demonstrate that littoral-pelagic differences in MeHg bioaccumulation are widespread in small mid-latitude lakes. - Methylmercury levels in dominant invertebrate prey for fish differ between littoral and pelagic habitats within a lake.

  20. Aquatic Therapy for Children

    Science.gov (United States)

    Kucher, Greta; Moore, Kelsey; Rodia, Rachel; Moser, Christy Szczech

    2015-01-01

    Aquatic therapy has long been highlighted in the literature as a potentially powerful therapeutic intervention. This review will highlight basic definitions of aquatic therapy, review salient research, and identify specific diagnoses that may benefit from aquatic therapy. Online resources, blogs, and books that occupational therapists may find…

  1. Toxicity evaluation of copper oxide bulk and nanoparticles in Nile tilapia, Oreochromis niloticus, using hematological, bioaccumulation and histological biomarkers.

    Science.gov (United States)

    Abdel-Khalek, Amr A; Badran, Shereen R; Marie, Mohamed-Assem S

    2016-08-01

    The increased industrial applications of nanoparticles (NPs) augment the possibility of their deposition into aquatic ecosystems and threatening the aquatic life. So, this study aimed to provide a comparable toxicological effects of nano-CuO and bulk CuO on a common freshwater fish, Oreochromis niloticus. Fish were exposed to two selected doses (1/10 and 1/20 of the LC50/96 h) of both nano-/bulk CuO for 30 days. Based on the studied hematological parameters (RBCs count, hemoglobin content and hematocrit%), the two selected concentrations of CuO in their nano- and bulk sizes were found to induce significant decrease in all studied parameters. But, nano-CuO-treated fish showed the maximum decrease in all recorded parameters among the all studied groups especially at the low concentration of 1/20 LC50/96 h. Hematological status was also confirmed using the calculated blood indices (MCV, MHC and MCHC). In case of bulk CuO-treated groups, the significant decrease in the studied hematological parameters was not followed by any change in MCV and MCH (normocytic anemia), while fish that exposed to NPs showed a significant increase in all calculated blood parameters reflecting erythrocytes swelling which is related to the intracellular osmotic disorders (macrocytic anemia). Regarding metal bioaccumulation factor, the results showed that CuO NPs had more efficiency to internalize fish tissues (liver, kidneys, gills, skin and muscle). The accumulation pattern of Cu metal was ensured by histopathological investigation of liver, kidneys and gills. The histopathological analysis revealed various alterations that varied between adaptation responses and permanent tissue damage.

  2. Toxicity evaluation of copper oxide bulk and nanoparticles in Nile tilapia, Oreochromis niloticus, using hematological, bioaccumulation and histological biomarkers.

    Science.gov (United States)

    Abdel-Khalek, Amr A; Badran, Shereen R; Marie, Mohamed-Assem S

    2016-08-01

    The increased industrial applications of nanoparticles (NPs) augment the possibility of their deposition into aquatic ecosystems and threatening the aquatic life. So, this study aimed to provide a comparable toxicological effects of nano-CuO and bulk CuO on a common freshwater fish, Oreochromis niloticus. Fish were exposed to two selected doses (1/10 and 1/20 of the LC50/96 h) of both nano-/bulk CuO for 30 days. Based on the studied hematological parameters (RBCs count, hemoglobin content and hematocrit%), the two selected concentrations of CuO in their nano- and bulk sizes were found to induce significant decrease in all studied parameters. But, nano-CuO-treated fish showed the maximum decrease in all recorded parameters among the all studied groups especially at the low concentration of 1/20 LC50/96 h. Hematological status was also confirmed using the calculated blood indices (MCV, MHC and MCHC). In case of bulk CuO-treated groups, the significant decrease in the studied hematological parameters was not followed by any change in MCV and MCH (normocytic anemia), while fish that exposed to NPs showed a significant increase in all calculated blood parameters reflecting erythrocytes swelling which is related to the intracellular osmotic disorders (macrocytic anemia). Regarding metal bioaccumulation factor, the results showed that CuO NPs had more efficiency to internalize fish tissues (liver, kidneys, gills, skin and muscle). The accumulation pattern of Cu metal was ensured by histopathological investigation of liver, kidneys and gills. The histopathological analysis revealed various alterations that varied between adaptation responses and permanent tissue damage. PMID:26947705

  3. Mercury bioaccumulation in the food web of Three Gorges Reservoir (China): Tempo-spatial patterns and effect of reservoir management

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jun [College of Fisheries, Huazhong Agricultural University, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan 430070 (China); Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070 (China); Zhou, Qiong, E-mail: hainan@mail.hzau.edu.cn [College of Fisheries, Huazhong Agricultural University, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan 430070 (China); Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070 (China); Yuan, Gailing; He, Xugang [College of Fisheries, Huazhong Agricultural University, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan 430070 (China); Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070 (China); Xie, Ping [College of Fisheries, Huazhong Agricultural University, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan 430070 (China); Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology of China, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072 (China)

    2015-09-15

    Tempo-spatial patterns of mercury bioaccumulation and tropho-dynamics, and the potential for a reservoir effect were evaluated in the Three Gorges Reservoir (TGR, China) from 2011 to 2012, using total mercury concentrations (THg) and stable isotopes (δ{sup 13}C and δ{sup 15}N) of food web components (seston, aquatic invertebrates and fish). Hg concentrations in aquatic invertebrates and fish indicated a significant temporal trend associated with regular seasonal water-level manipulation. This includes water level lowering to allow for storage of water during the wet season (summer); a decrease of water levels from September to June providing a setting for flood storage. Hg concentrations in organisms were the highest after flooding. Higher Hg concentrations in fish were observed at the location farthest from the dam. Hg concentrations in water and sediment were correlated. Compared with the reservoirs of United States and Canada, TGR had lower trophic magnification factors (0.046–0.066), that are explained primarily by organic carbon concentrations in sediment, and the effect of “growth dilution”. Based on comparison before and after the impoundment of TGR, THg concentration in biota did not display an obvious long-term reservoir effect due to (i) short time since inundation, (ii) regular water discharge associated with water-level regulation, and/or (iii) low organic matter content in the sediment. - Highlights: • Hg concentrations were measured in biota of the main stem of 3 Gorges Reservoir. • Fish Hg concentration post-flood period > pre-flood period > flood period. • Fish Hg concentrations were the highest farthest from the dam. • THg in fish 2 years after inundation were the same as before impoundment. • Low biomagnification was ascribed to low DOC content in the sediment.

  4. Mercury bioaccumulation in the food web of Three Gorges Reservoir (China): Tempo-spatial patterns and effect of reservoir management

    International Nuclear Information System (INIS)

    Tempo-spatial patterns of mercury bioaccumulation and tropho-dynamics, and the potential for a reservoir effect were evaluated in the Three Gorges Reservoir (TGR, China) from 2011 to 2012, using total mercury concentrations (THg) and stable isotopes (δ13C and δ15N) of food web components (seston, aquatic invertebrates and fish). Hg concentrations in aquatic invertebrates and fish indicated a significant temporal trend associated with regular seasonal water-level manipulation. This includes water level lowering to allow for storage of water during the wet season (summer); a decrease of water levels from September to June providing a setting for flood storage. Hg concentrations in organisms were the highest after flooding. Higher Hg concentrations in fish were observed at the location farthest from the dam. Hg concentrations in water and sediment were correlated. Compared with the reservoirs of United States and Canada, TGR had lower trophic magnification factors (0.046–0.066), that are explained primarily by organic carbon concentrations in sediment, and the effect of “growth dilution”. Based on comparison before and after the impoundment of TGR, THg concentration in biota did not display an obvious long-term reservoir effect due to (i) short time since inundation, (ii) regular water discharge associated with water-level regulation, and/or (iii) low organic matter content in the sediment. - Highlights: • Hg concentrations were measured in biota of the main stem of 3 Gorges Reservoir. • Fish Hg concentration post-flood period > pre-flood period > flood period. • Fish Hg concentrations were the highest farthest from the dam. • THg in fish 2 years after inundation were the same as before impoundment. • Low biomagnification was ascribed to low DOC content in the sediment

  5. Heavy Metal Bioaccumulation and Toxicity with Special Reference to Microalgae

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The bioaccumulation and toxicity of heavy metals were reviewed with special reference to microalgae, the key component of the food web in aquatic ecosystems. Heavy metals enter algal cells either by means of active transport or by endocytosis through chelating proteins and affect various physiological and biochemical processes of the algae. The toxicity primarily results from their binding to the sulphydryl groups in proteins or disrupting protein structure or displacing essential elements. Metals can break the oxidative balance of the algae, inducing antioxidant enzymes, such as superoxide dismutase (SOD), glutathione peroxidase (GPX) and ascorbate peroxidase (APX). The amount of oxidized proteins and lipids in the algal cells thus indicates the severity of the stress. Algal tolerance to heavy metal is highly dependent upon the defense response against the probable oxidative damages. Production of binding factors and proteins, exclusion of metals from cells by ion-selective transporters and excretion or compartmentalization have been suggested with regard to reducing heavy metal toxicity. However, a comprehensive description on the mechanisms underlining metal toxicity of microalgae and gaining tolerance is yet to be elaborated.

  6. Triclosan: Current Status, Occurrence, Environmental Risks and Bioaccumulation Potential

    Directory of Open Access Journals (Sweden)

    Gurpreet Singh Dhillon

    2015-05-01

    Full Text Available Triclosan (TCS is a multi-purpose antimicrobial agent used as a common ingredient in everyday household personal care and consumer products. The expanded use of TCS provides a number of pathways for the compound to enter the environment and it has been detected in sewage treatment plant effluents; surface; ground and drinking water. The physico-chemical properties indicate the bioaccumulation and persistence potential of TCS in the environment. Hence, there is an increasing concern about the presence of TCS in the environment and its potential negative effects on human and animal health. Nevertheless, scarce monitoring data could be one reason for not prioritizing TCS as emerging contaminant. Conventional water and wastewater treatment processes are unable to completely remove the TCS and even form toxic intermediates. Considering the worldwide application of personal care products containing TCS and inefficient removal and its toxic effects on aquatic organisms, the compound should be considered on the priority list of emerging contaminants and its utilization in all products should be regulated.

  7. Bioaccumulation patterns of methyl mercury and essential fatty acids in lacustrine planktonic food webs and fish.

    Science.gov (United States)

    Kainz, Martin; Telmer, Kevin; Mazumder, Asit

    2006-09-01

    Organisms of the planktonic food web convey essential nutrients as well as contaminants to animals at higher trophic levels. We measured concentrations of methyl mercury (MeHg) and essential fatty acids (EFAs, key nutrients for aquatic food webs) in four size categories of planktonic organisms - seston (10-64 microm), micro-(100-200 microm), meso-(200-500 microm), and macrozooplankton (>500 microm) - as well as total mercury (THg) and EFAs in rainbow trout (Oncorhynchus mykiss) in coastal lakes. We demonstrate that, in all lakes during this summer sampling, MeHg concentrations of planktonic organisms increase significantly with plankton size, independent of their taxonomic composition, and that their MeHg accumulation patterns predict significantly THg concentrations in rainbow trout (R2=0.71, pzooplankton size fraction. Moreover, concentrations of individual EFA compounds in rainbow trout are consistently lower, with the exception of docosahexaenoic acid, than those in macrozooplankton. The continuous increase of MeHg concentrations in aquatic organisms, therefore, differs from patterns of EFA accumulation in zooplankton and fish. We interpret these contrasting accumulation patterns of MeHg and EFA compounds as the inability of aquatic organisms to regulate the assimilation of dietary MeHg, whereas the rate of EFA retention may be controlled to optimize their physiological performance. Therefore, we conclude that bioaccumulation patterns of Hg in these aquatic food webs are not controlled by lipid solubility and/or the retention of EFA compounds. PMID:16226794

  8. Jumping into the deep-end: results from a pilot impact evaluation of a community-based aquatic exercise program.

    Science.gov (United States)

    Barker, Anna L; Talevski, Jason; Morello, Renata T; Nolan, Genevieve A; De Silva, Renee D; Briggs, Andrew M

    2016-06-01

    This multi-center quasi-experimental pilot study aimed to evaluate changes in pain, joint stiffness, physical function, and quality of life over 12 weeks in adults with musculoskeletal conditions attending 'Waves' aquatic exercise classes. A total of 109 adults (mean age, 65.2 years; range, 24-93 years) with musculoskeletal conditions were recruited across 18 Australian community aquatic centers. The intervention is a peer-led, 45 min, weekly aquatic exercise class including aerobic, strength, flexibility, and balance exercises (n = 67). The study also included a control group of people not participating in Waves or other formal exercise (n = 42). Outcomes were measured using the Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) and EuroQoL five dimensions survey (EQ-5D) at baseline and 12 weeks. Satisfaction with Waves classes was also measured at 12 weeks. Eighty two participants (43 Waves and 39 control) completed the study protocol and were included in the analysis. High levels of satisfaction with classes were reported by Waves participants. Over 90 % of participants reported Waves classes were enjoyable and would recommend classes to others. Waves participants demonstrated improvements in WOMAC and EQ-5D scores however between-group differences did not reach statistical significance. Peer-led aquatic exercise classes appear to improve pain, joint stiffness, physical function and quality of life for people with musculoskeletal conditions. The diverse study sample is likely to have limited the power to detect significant changes in outcomes. Larger studies with an adequate follow-up period are needed to confirm effects.

  9. Purification of Water by Aquatic Plants

    OpenAIRE

    Morimitsu, Katsuhito; Kawahigashi, Tatsuo

    2013-01-01

    [Abstract] Water quality purification of many water systems including those occurring in rivers depends to a great degree on water quality purification activities of aquatic plants and microbes. This paper presents a discussion of results, based on laboratory experiments, of purification by aquatic plants.

  10. Biodiversity, bioaccumulation and physiological changes in lichens growing in the vicinity of coal-based thermal power plant of Raebareli district, north India.

    Science.gov (United States)

    Bajpai, Rajesh; Upreti, Dalip K; Nayaka, S; Kumari, B

    2010-02-15

    The lichen diversity assessment carried out around a coal-based thermal power plant indicated the increase in lichen abundance with the increase in distance from power plant in general. The photosynthetic pigments, protein and heavy metals were estimated in Pyxine cocoes (Sw.) Nyl., a common lichen growing around thermal power plant for further inference. Distributions of heavy metals from power plant showed positive correlation with distance for all directions, however western direction has received better dispersion as indicated by the concentration coefficient-R(2). Least significant difference analysis showed that speed of wind and its direction plays a major role in dispersion of heavy metals. Accumulation of Al, Cr, Fe, Pb and Zn in the thallus suppressed the concentrations of pigments like chlorophyll a, chlorophyll b and total chlorophyll, however, enhanced the level of protein. Further, the concentrations of chlorophyll contents in P. cocoes increased with the decreasing the distance from the power plant, while protein, carotenoid and phaeophytisation exhibited significant decrease. PMID:19818555

  11. Biodiversity, bioaccumulation and physiological changes in lichens growing in the vicinity of coal-based thermal power plant of Raebareli district, north India.

    Science.gov (United States)

    Bajpai, Rajesh; Upreti, Dalip K; Nayaka, S; Kumari, B

    2010-02-15

    The lichen diversity assessment carried out around a coal-based thermal power plant indicated the increase in lichen abundance with the increase in distance from power plant in general. The photosynthetic pigments, protein and heavy metals were estimated in Pyxine cocoes (Sw.) Nyl., a common lichen growing around thermal power plant for further inference. Distributions of heavy metals from power plant showed positive correlation with distance for all directions, however western direction has received better dispersion as indicated by the concentration coefficient-R(2). Least significant difference analysis showed that speed of wind and its direction plays a major role in dispersion of heavy metals. Accumulation of Al, Cr, Fe, Pb and Zn in the thallus suppressed the concentrations of pigments like chlorophyll a, chlorophyll b and total chlorophyll, however, enhanced the level of protein. Further, the concentrations of chlorophyll contents in P. cocoes increased with the decreasing the distance from the power plant, while protein, carotenoid and phaeophytisation exhibited significant decrease.

  12. Bioaccumulation of radiocaesium in Arctic seals

    Energy Technology Data Exchange (ETDEWEB)

    Carroll, JoLynn; Wolkers, Hans; Andersen, Magnus; Rissanen, Kristina

    2002-12-01

    Seals are high trophic level feeders that bioaccumulate many contaminants to a greater degree than most lower trophic level organisms. Their trophic status in the marine food web and wide-spread distribution make seals useful sentinels of arctic environmental change. The purpose of this investigation is to document the levels and bioaccumulation potential of radiocaesium in high latitude seal species for which data have not previously been available. The study was carried out on harp, ringed, and bearded seals caught north of the island archipelago of Svalbard (82 deg. N) in 1999. The results are then compared with previous studies in order to elucidate factors responsible for bioaccumulation in Arctic seals. Concentrations of {sup 137}Cs were determined in muscle, liver and kidney samples from a total of 10 juvenile and one adult seal. The mean concentration in muscle samples for all animals was 0.23{+-}0.045 Bq/kg f.w. {sup 137}Cs concentrations in both liver and kidney samples were near detection limits ({approx}0.2 Bq/kg f.w.). The results are consistent with previous studies indicating low levels of radiocaesium in Arctic seals in response to a long term trend of decreasing levels of {sup 137}Cs in the Barents Sea region. Bioconcentration factors (BCFs) estimated for seals from NE Svalbard are low, ranging from 34 to 130. Comparing these values with reported BCFs for Greenland seals from other sectors of the European Arctic, we suggest that the combination of physiological and ecological factors on radiocaesium bioaccumulation is comparable among different Arctic seal populations. The application of this work to Arctic monitoring and assessment programs is discussed.

  13. A protocell design for bioaccumulation applications

    OpenAIRE

    von Hegner, Ian

    2015-01-01

    This article provides a specific example of recombinant cell and protocell technology, moving from what is presently known to suggesting how novel application of existing methodologies could be utilized to design a complex synthetic system in form of a self-sufficient light empowered protocell. A practical application of protocells using a primary example of desalination in water treatment is given, followed by a more general approach to bioaccumulation and bio-diagnostics, outlining the poss...

  14. An investigation into ciguatoxin bioaccumulation in sharks.

    Science.gov (United States)

    Meyer, Lauren; Capper, Angela; Carter, Steve; Simpfendorfer, Colin

    2016-09-01

    Ciguatoxins (CTXs) produced by benthic Gambierdiscus dinoflagellates, readily biotransform and bioaccumulate in food chains ultimately bioconcentrating in high-order, carnivorous marine species. Certain shark species, often feeding at, or near the top of the food-chain have the ability to bioaccumulate a suite of toxins, from both anthropogenic and algal sources. As such, these apex predators are likely sinks for CTXs. This assumption, in conjunction with anecdotal knowledge of poisoning incidents, several non-specific feeding trials whereby various terrestrial animals were fed suspect fish flesh, and a single incident in Madagascar in 1994, have resulted in the widespread acceptance that sharks may accumulate CTXs. This prompted a study to investigate original claims within the literature, as well as investigate CTX bioaccumulation in the muscle and liver of 22 individual sharks from nine species, across four locations along the east coast of Australia. Utilizing an updated ciguatoxin extraction method with HPLC-MS/MS, we were unable to detect P-CTX-1, P-CTX-2 or P-CTX-3, the three primary CTX congeners, in muscle or liver samples. We propose four theories to address this finding: (1) to date, methods have been optimized for teleost species and may not be appropriate for elasmobranchs, or the CTXs may be below the limit of detection; (2) CTX may be biotransformed into elasmobranch-specific congeners as a result of unique metabolic properties; (3) 22 individuals may be an inadequate sample size given the rare occurrence of high-order ciguatoxic organisms and potential for CTX depuration; and (4) the ephemeral nature and inconsistent toxin profiles of Gambierdiscus blooms may have undermined our classifications of certain areas as CTX hotspots. These results, in combination with the lack of clarity within the literature, suggest that ciguatoxin bioaccumulation in sharks remains elusive, and warrants further investigation to determine the dynamics of toxin production

  15. Mercury in western North America: A synthesis of environmental contamination, fluxes, bioaccumulation, and risk to fish and wildlife

    Science.gov (United States)

    Eagles-Smith, Collin A.; Wiener, James G.; Eckley, Chris S.; Willacker, James J.; Evers, David C.; Marvin-DiPasquale, Mark C.; Obrist, Daniel; Fleck, Jacob; Aiken, George R.; Lepak, Jesse M.; Jackson, Allyson K.; Webster, Jackson; Stewart, Robin; Davis, Jay; Alpers, Charles N.; Ackerman, Josh

    2016-01-01

    Western North America is a region defined by extreme gradients in geomorphology and climate, which support a diverse array of ecological communities and natural resources. The region also has extreme gradients in mercury (Hg) contamination due to a broad distribution of inorganic Hg sources. These diverse Hg sources and a varied landscape create a unique and complex mosaic of ecological risk from Hg impairment associated with differential methylmercury (MeHg) production and bioaccumulation. Understanding the landscape-scale variation in the magnitude and relative importance of processes associated with Hg transport, methylation, and MeHg bioaccumulation requires a multidisciplinary synthesis that transcends small-scale variability. The Western North America Mercury Synthesis compiled, analyzed, and interpreted spatial and temporal patterns and drivers of Hg and MeHg in air, soil, vegetation, sediments, fish, and wildlife across western North America. This collaboration evaluated the potential risk from Hg to fish, and wildlife health, human exposure, and examined resource management activities that influenced the risk of Hg contamination. This paper integrates the key information presented across the individual papers that comprise the synthesis. The compiled information indicates that Hg contamination is widespread, but heterogeneous, across western North America. The storage and transport of inorganic Hg across landscape gradients are largely regulated by climate and land-cover factors such as plant productivity and precipitation. Importantly, there was a striking lack of concordance between pools and sources of inorganic Hg, and MeHg in aquatic food webs. Additionally, water management had a widespread influence on MeHg bioaccumulation in aquatic ecosystems, whereas mining impacts where relatively localized. These results highlight the decoupling of inorganic Hg sources with MeHg production and bioaccumulation. Together the findings indicate that developing

  16. Mercury in western North America: A synthesis of environmental contamination, fluxes, bioaccumulation, and risk to fish and wildlife.

    Science.gov (United States)

    Eagles-Smith, Collin A; Wiener, James G; Eckley, Chris S; Willacker, James J; Evers, David C; Marvin-DiPasquale, Mark; Obrist, Daniel; Fleck, Jacob A; Aiken, George R; Lepak, Jesse M; Jackson, Allyson K; Webster, Jackson P; Stewart, A Robin; Davis, Jay A; Alpers, Charles N; Ackerman, Joshua T

    2016-10-15

    Western North America is a region defined by extreme gradients in geomorphology and climate, which support a diverse array of ecological communities and natural resources. The region also has extreme gradients in mercury (Hg) contamination due to a broad distribution of inorganic Hg sources. These diverse Hg sources and a varied landscape create a unique and complex mosaic of ecological risk from Hg impairment associated with differential methylmercury (MeHg) production and bioaccumulation. Understanding the landscape-scale variation in the magnitude and relative importance of processes associated with Hg transport, methylation, and MeHg bioaccumulation requires a multidisciplinary synthesis that transcends small-scale variability. The Western North America Mercury Synthesis compiled, analyzed, and interpreted spatial and temporal patterns and drivers of Hg and MeHg in air, soil, vegetation, sediments, fish, and wildlife across western North America. This collaboration evaluated the potential risk from Hg to fish, and wildlife health, human exposure, and examined resource management activities that influenced the risk of Hg contamination. This paper integrates the key information presented across the individual papers that comprise the synthesis. The compiled information indicates that Hg contamination is widespread, but heterogeneous, across western North America. The storage and transport of inorganic Hg across landscape gradients are largely regulated by climate and land-cover factors such as plant productivity and precipitation. Importantly, there was a striking lack of concordance between pools and sources of inorganic Hg, and MeHg in aquatic food webs. Additionally, water management had a widespread influence on MeHg bioaccumulation in aquatic ecosystems, whereas mining impacts where relatively localized. These results highlight the decoupling of inorganic Hg sources with MeHg production and bioaccumulation. Together the findings indicate that developing

  17. Bioaccumulation of gasoline in brackish green algae and popular clams

    Directory of Open Access Journals (Sweden)

    Gihan A. El-Shoubaky

    2016-03-01

    Full Text Available The green algae (Ulva lactuca and Enteromorpha clathrata and the clams (Tapes decussates and Venerupis aurea grow together in Timsah Lake, Suez Canal, Egypt. Our ultimate goal is to validate the bioaccumulation of gasoline in the marine organisms and their behavior after exposure to the pollutant, experimentally. These species were treated with a serial treatment of gasoline (1000, 4000, 16,000 and 64,000 μl in aquaria with brackish sea-water for 72 h. The tested green algae and clams were taken for an analysis of total hydrocarbon accumulation daily. The statistical analysis showed significant differences between the four species and also between the duration of exposure. The accumulation of gasoline in U. lactuca and E. clathrata reached their maximum after 48 h at 1000 and 4000 μl. The highest absorption was registered after 24 h only at 16,000 and at 64,000 μl. U. lactuca recorded complete mortality in 64,000 μl at 72 h whereas E. clathrata registered death at 48 h and 72 h in the same treatment. V. aurea was more sensitive than T. decussates. The accumulation of gasoline reached its maximum in V. aurea after only 24 h in the first treatment while it retarded to 48 h in T. decussates with a lesser accumulation. However, both clam species accumulated the highest amount of petroleum hydrocarbons during the first hour of exposure at the first treatment. In the third and fourth treatments, clams did not accumulate gasoline but began to dispose it from their tissues till it became less than that in the control. Mortality gradually increased with time in each treatment except the last one (64,000 μl in which 100% death of the specimens was observed. In general, the bioaccumulation of gasoline level was in a descending order as follows: U. lactuca > E. clathrata > V. aurea > T. decussates. Their behavior changed from accumulation to detoxification with time and with the increase in pollutant concentration. Generally, these

  18. Bioaccumulation of selected heavy metals by the water fern, Azolla filiculoides Lam. in a wetland ecosystem affected by sewage, mine and industrial pollution

    Energy Technology Data Exchange (ETDEWEB)

    Wet, L.P.D. de; Schoonbee, H.J.; Pretorius, J.; Bezuidenhout, L.M. (Rand Afrikaans University, Johannesburg (South Africa). Depts. of Zoology and Botany, Research Unit for Aquatic and Terrestrial Ecosystems)

    1990-10-01

    The bio-accumulation of the heavy metals, Fe, Cu, Ni, Pb, Zn, Mn and Cr by the water fern, Azolla filiculoides Lam. in a wetland ecosystem polluted by effluents from sewage works, mines and industries was investigated. Results showed that the different metals can be accumulated by the water fern at concentration levels not necessarily related to their actual concentrations in the aquatic environment, as measured in this case, in the bottom sediments. 45 refs., 1 fig., 3 tabs.

  19. A rational approach to selecting and ranking some pharmaceuticals of concern for the aquatic environment and their relative importance compared with other chemicals.

    Science.gov (United States)

    Donnachie, Rachel L; Johnson, Andrew C; Sumpter, John P

    2016-04-01

    Aquatic organisms can be exposed to thousands of chemicals discharged by the human population. Many of these chemicals are considered disruptive to aquatic wildlife, and the literature on the impacts of these chemicals grows daily. However, because time and resources are not infinite, research must focus on the chemicals that represent the greatest threat. One group of chemicals of increasing concern is pharmaceuticals, for which the primary challenge is to identify which represent the greatest threat. In the present study, a list of 12 pharmaceuticals was compiled based on scoring the prevalence of different compounds from previous prioritization reviews. These included rankings based on prescription data, environmental concentrations, predicted environmental concentration/predicted no-effect concentration (PEC/PNEC) ratios, persistency/bioaccumulation/(eco)toxicity (PBT), and fish plasma model approaches. The most frequently cited were diclofenac, paracetamol, ibuprofen, carbamazepine, naproxen, atenolol, ethinyl estradiol, aspirin, fluoxetine, propranolol, metoprolol, and sulfamethoxazole. For each pharmaceutical, literature on effect concentrations was compiled and compared with river concentrations in the United Kingdom. The pharmaceuticals were ranked by degree of difference between the median effect and median river concentrations. Ethinyl estradiol was ranked as the highest concern, followed by fluoxetine, propranolol, and paracetamol. The relative risk of these pharmaceuticals was compared with those of metals and some persistent organic pollutants. Pharmaceuticals appear to be less of a threat to aquatic organisms than some metals (Cu, Al, Zn) and triclosan, using this ranking approach.

  20. Lake Bathymetric Aquatic Vegetation

    Data.gov (United States)

    Minnesota Department of Natural Resources — Aquatic vegetation represented as polygon features, coded with vegetation type (emergent, submergent, etc.) and field survey date. Polygons were digitized from...

  1. Aquatic modules for bioregenerative life support systems: Developmental aspects based on the space flight results of the C.E.B.A. Mini Module

    Science.gov (United States)

    Bluem, S. V.

    the feeding of the animals. Although C.E.B.A.S.-based aquaculture modules are disposed to be closed food loop systems (edible herbivorous fish species and edible water plants) which are already verified on Earth this will not be possible in space without previous devices in which the animals are fed from a food storage. This has to be done at least once daily which would waste too much crew time when done by astronauts. So, the development of a reliable aut omated food dis penser has highest priority. Also in this case basic technical solutions are already elaborated. So, the paper will give a comprehensive overview about the disposed further C.E.B.A.S. -based developments of aquatic food production modules.

  2. Aquatic modules for bioregenerative life support systems: Developmental aspects based on the space flight results of the C.E.B.A.S. mini-module

    Science.gov (United States)

    Blüm, V.

    animals. Although C.E.B.A.S.-based aquaculture modules are designed to be closed food loop systems (edible herbivorous fish species and edible water plants) which are already verified on Earth this will not be possible in space without devices in which the animals are fed from a food storage. This has to be done at least once daily which would waste too much crew time when done by astronauts. So, the development of a reliable automated food dispenser has highest priority. Also in this case basic technical solutions are already elaborated. The paper gives a comprehensive overview of the poposed fiuther C.E.B.A.S.-based development of longer-term duration aquatic food production modules.

  3. Evaluation of the potential bioaccumulation ability of the blood cockle (Anadara granosa L.) for assessment of environmental matrices of mudflats.

    Science.gov (United States)

    Mirsadeghi, Seiedeh Aghileh; Zakaria, Mohamad Pauzi; Yap, Chee Kong; Gobas, Frank

    2013-06-01

    The spatial distribution of 19 polycyclic aromatic hydrocarbons (tPAHs) was quantified in aquacultures located in intertidal mudflats of the west coast of Peninsular Malaysia in order to investigate bioaccumulation of PAH in blood cockles, Anadara granosa (A. granosa). Fifty-four samples from environmental matrices and A. granosa were collected. The sampling locations were representative of a remote area as well as PAH-polluted areas. The relationship of increased background levels of PAH to anthropogenic PAH sources in the environment and their effects on bioaccumulation levels of A. granosa are investigated in this study. The levels of PAH in the most polluted station were found to be up to ten-fold higher than in remote areas in blood cockle. These high concentrations of PAHs reflected background contamination, which originates from distant airborne and waterborne transportation of contaminated particles. The fraction and source identification of PAHs, based on fate and transport considerations, showed a mix of petrogenic and pyrogenic sources. The relative biota-sediment accumulation factors (RBSAF), relative bioaccumulation factors from filtered water (RBAFw), and from suspended particulate matter (SPM) (RBAFSP) showed higher bioaccumulations of the lower molecular weight of PAHs (LMWs) in all stations, except Kuala Juru, which showed higher bioaccumulation of the higher molecular weight of PAHs (HMWs). Calculations of bioaccumulation factors showed that blood cockle can accumulate PAHs from sediment as well as water samples, based on the physico-chemical characteristics of habitat and behaviour of blood cockles. Correlations among concentrations of PAHs in water, SPM, sediment and A. granosa at the same sites were also found. Identification of PAH levels in different matrices showed that A. granosa can be used as a good biomonitor for LMW of PAHs and tPAHs in mudflats. Considering the toxicity and carcinogenicity of PAHs, the bioaccumulation by blood cockles

  4. Evaluation of the potential bioaccumulation ability of the blood cockle (Anadara granosa L.) for assessment of environmental matrices of mudflats.

    Science.gov (United States)

    Mirsadeghi, Seiedeh Aghileh; Zakaria, Mohamad Pauzi; Yap, Chee Kong; Gobas, Frank

    2013-06-01

    The spatial distribution of 19 polycyclic aromatic hydrocarbons (tPAHs) was quantified in aquacultures located in intertidal mudflats of the west coast of Peninsular Malaysia in order to investigate bioaccumulation of PAH in blood cockles, Anadara granosa (A. granosa). Fifty-four samples from environmental matrices and A. granosa were collected. The sampling locations were representative of a remote area as well as PAH-polluted areas. The relationship of increased background levels of PAH to anthropogenic PAH sources in the environment and their effects on bioaccumulation levels of A. granosa are investigated in this study. The levels of PAH in the most polluted station were found to be up to ten-fold higher than in remote areas in blood cockle. These high concentrations of PAHs reflected background contamination, which originates from distant airborne and waterborne transportation of contaminated particles. The fraction and source identification of PAHs, based on fate and transport considerations, showed a mix of petrogenic and pyrogenic sources. The relative biota-sediment accumulation factors (RBSAF), relative bioaccumulation factors from filtered water (RBAFw), and from suspended particulate matter (SPM) (RBAFSP) showed higher bioaccumulations of the lower molecular weight of PAHs (LMWs) in all stations, except Kuala Juru, which showed higher bioaccumulation of the higher molecular weight of PAHs (HMWs). Calculations of bioaccumulation factors showed that blood cockle can accumulate PAHs from sediment as well as water samples, based on the physico-chemical characteristics of habitat and behaviour of blood cockles. Correlations among concentrations of PAHs in water, SPM, sediment and A. granosa at the same sites were also found. Identification of PAH levels in different matrices showed that A. granosa can be used as a good biomonitor for LMW of PAHs and tPAHs in mudflats. Considering the toxicity and carcinogenicity of PAHs, the bioaccumulation by blood cockles

  5. A Cosserat-based formulation for elastic, axisymmetric shells with implications to the pulsed-jetting propulsion of soft-bodied aquatic vehicles

    Science.gov (United States)

    Renda, Federico; Giorgio-Serchi, Francesco; Boyer, Frederic

    We take the cue from recent development in geometric-based modelling in order to describe the dynamics of a novel soft-structured aquatic vehicle. The Cosserat-like formulation for an axisymmetric, elastic shell subject to concentrated dynamic loadings lends itself to the case of this new vehicle, recently designed by the authors, which consists of a shell of rubber-like materials undergoing sequential stages of inflation and deflation in order to propel itself in water via pulsed-jetting. The experiments performed on the existing robotic prototypes are used for the validation of the geometric model. This is eventually employed for deriving an accurate measure of the efficiency of propulsion which explicitly accounts for the elastic energy involved during the propulsion routine. The model yields a-priori estimations of swimming efficiency based on vehicle specifications and mode of actuation. These provide invaluable information for both design optimization and control, as well as a means to study the biomechanics of soft-bodied aquatic organisms. Presenting author.

  6. Effect of aquatic and land-based exercise programs on the pain and motor function of weight lifters with patellofemoral pain syndrome

    Directory of Open Access Journals (Sweden)

    Farideh Babakhani

    2015-09-01

    Full Text Available Background: Patellofemoral Syndrome (PFPS is one of the most common knee joint problems among the athletes. The present study was aimed to compare the effect of aquatic and land-based exercise methods on the pain level and motor function of the weight lifters with patellofemoral syndrome. Methods: A total of twenty weight lifters with patellofemoral syndrome participated in this quasi-experimental study. They were randomly divided to two groups of aquatic exercise and land-based exercise. Visual Analog Scale (VAS and Kujala Scale were used before and after the exercise period to measure the pain and motor function, respectively. To compare the pre-test and post-test scores of the participating groups, dependent t-test was used and to compare the differences between groups, ANOVA was applied. Results: The results of post-test showed a significant difference in both groups in terms of pain level and motor function compared to pre-test after eight weeks of strength exercise. However, the comparison of data indicated no significant difference between groups with regard to pain level and motor function. Conclusion: According to the findings of this study, exercise in water and on land can reduce the pain and improve the performance of the patients with patellofemoral syndrome.

  7. Bioaccumulation of Polycyclic Aromatic Hydrocarbons and Mercury in Oysters (Crassostrea rhizophorae from Two Brazilian Estuarine Zones

    Directory of Open Access Journals (Sweden)

    Ronaldo J. Torres

    2012-01-01

    Full Text Available Nowadays, organisms are increasingly being used in biomonitoring to assess bioavailability and bioaccumulation of contaminants. This approach can use both native and transplanted organisms in order to accomplish this task. In Brazil, most of the studies related to bioaccumulation of contaminants in oysters deal with metals. The present work employs this kind of test in Brazilian coastal estuaries (Santos and Paranaguá to evaluate total mercury and polycyclic aromatic hydrocarbon contamination in sediments and oysters (native and caged Crassostrea rhizophorae. The methodologies employed were based on known USEPA methods. Results have shown a significant contamination in Santos sediments and consequent bioavailability of organisms. Paranaguá sediments presented lower contamination in sediments, but native oysters were able to accumulate total Hg. The experiments done with caged oysters did not show significant bioaccumulation of Hg and PAHs in the Paranaguá site, but proved to be an excellent tool to assess bioavailability in the Santos estuary since they were able to bioaccumulate up to 1,600% of total PAH in the samples from the inner part of this estuary when compared to control organisms. Multivariate statistical analyses employed to these results have separated the sites evaluated and the most contaminated samples from the least contaminated.

  8. Fluvial geomorphology and aquatic-to-terrestrial Hg export are weakly coupled in small urban streams of Columbus, Ohio

    Science.gov (United States)

    Sullivan, S. Mažeika P.; Boaz, Lindsey E.; Hossler, Katie

    2016-04-01

    Although mercury (Hg) contamination is common in stream ecosystems, mechanisms governing bioavailability and bioaccumulation in fluvial systems remain poorly resolved as compared to lentic systems. In particular, streams in urbanized catchments are subject to fluvial geomorphic alterations that may contribute to Hg distribution, bioaccumulation, and export across the aquatic-to-terrestrial boundary. In 12 streams of urban Columbus, Ohio, we investigated the influence of fluvial geomorphic characteristics related to channel geometry, streamflow, and sediment size and distribution on (1) Hg concentrations in sediment and body burdens in benthic larval and adult emergent aquatic insects and (2) aquatic-to-terrestrial contaminant transfer to common riparian spiders of the families Pisauridae and Tetragnathidae via changes in aquatic insect Hg body burdens as well as in aquatic insect density and community composition. Hydrogeomorphic characteristics were weakly related to Hg body burdens in emergent insects (channel geometry) and tetragnathid spiders (streamflow), but not to Hg concentrations in sediment or benthic insects. Streamflow characteristics were also related to emergent insect density, while wider channels were associated with benthic insect community shifts toward smaller-bodied and more tolerant taxa (e.g., Chironomidae). Thus, our results provide initial evidence that fluvial geomorphology may influence aquatic-to-terrestrial contaminant Hg transfer through the collective effects on emergent insect body burdens as well as on aquatic insect community composition and abundance.

  9. The Relative Influence of Aquatic and Terrestrial Processes on Methylmercury Transport in River Basins

    Science.gov (United States)

    Burns, D. A.; Bradley, P. M.; Marvin-DiPasquale, M. C.; Aiken, G.; Brigham, M. E.

    2012-12-01

    Conceptual understanding of the mercury (Hg) cycle in river basins is important for the development of improved Hg models that can inform Hg emissions policies, and, therefore, decrease the health risk that stems from widespread high Hg levels found in fresh water fish throughout the US and globally. Distinguishing the relative roles of aquatic and terrestrial ecosystems in Hg transport and transformation is fundamental to improved Hg risk management. The principal zones where Hg is transformed to its methyl form (MeHg), the transport of that MeHg to aquatic ecosystems, and subsequent bioaccumulation in aquatic food webs have been the focus of our investigations for more than 10 years in several small river basins across the US. Our data indicate that most MeHg in these rivers originates at the interface of the terrestrial and aquatic ecosystem in wetlands and riparian areas where anaerobic conditions and abundant organic matter favor methylation. Key factors in addition to methylation potential are those that influence the hydrologic transport of MeHg to adjacent streams and rivers such as hydraulic conductivity in the shallow subsurface and the depth of the water table in riparian areas. The presence and quality of organic matter in wetland soils and in water that moves through wetland areas also plays a pivotal role in MeHg source and transport. We discuss how these factors affect aquatic MeHg concentrations in light of a recently completed investigation of the Hg cycle in river basins in the Adirondack Mountains of New York and Coastal Plain of South Carolina. At each site, MeHg originates primarily in riparian wetland areas and is transported to the streams via shallow groundwater flow. The presence of open water bodies in these basins favors losses of MeHg by any of several processes, though smaller open water bodies may act as net MeHg sources. Ongoing work is building on this conceptualization of the Hg cycle through development of a model based on the

  10. Reactivity and transfer of tributyl-tin and mercury in aquatic environments; Etude de la reactivite et du transfert du tributyletain et du mercure dans les environnements aquatiques

    Energy Technology Data Exchange (ETDEWEB)

    Tessier, E.

    2004-12-15

    Aquatic ecosystems are particularly affected by tributyl-tin (TBT) and mercury (Hg) chronic contamination. These micro-pollutants are ubiquitous and persistent and occurred at trace level, likely to drastically impair aquatic environments. TBT and Hg biogeochemical cycles are driven by transformation and transfer mechanisms between the different environmental compartments. These natural processes have been studied in details by using novel analytical methods and environmental design to improve the risk assessment. The first part of this work focus on the mechanistic study of TBT and Hg reactivity and transfer in reconstituted aquatic ecosystems. These experiments involve both state-of-the-art analytical speciation techniques, partly based on quantification by isotopic dilution and experimental tools simulating the environmental conditions. Kinetics of TBT and Hg distribution (adsorption, bioaccumulation, biodegradation, clearance) have been simultaneously characterized in all compartments of the microcosms presenting a simple biological organization. In a second step, volatilization kinetics of TBT at real interfaces have been studied to assess the potential remobilization and elimination pathways of butyl-tin compounds. Finally, in a third part, stable isotopic tracers of Hg have been employed to discriminate and quantify the coupled methylation and demethylation kinetics in estuarine sediments, by forcing different environmental factors (oxygenation, microbial activity). (author)

  11. Development of advanced process-based model towards evaluation of boundless biogeochemical cycles in terrestrial-aquatic continuum

    Science.gov (United States)

    Nakayama, Tadanobu; Maksyutov, Shamil

    2014-05-01

    Recent research shows inland water may play some role in continental biogeochemical cycling though its contribution has remained uncertain due to a paucity of data (Battin et al. 2009). The author has developed process-based National Integrated Catchment-based Eco-hydrology (NICE) model (Nakayama, 2008a-b, 2010, 2011a-b, 2012a-c, 2013; Nakayama and Fujita, 2010; Nakayama and Hashimoto, 2011; Nakayama and Shankman, 2013a-b; Nakayama and Watanabe, 2004, 2006, 2008a-b; Nakayama et al., 2006, 2007, 2010, 2012), which incorporates surface-groundwater interactions, includes up- and down-scaling processes between local, regional and global scales, and can simulate iteratively nonlinear feedback between hydrologic, geomorphic, and ecological processes. In this study, NICE was extended to evaluate global hydrologic cycle by using various global datasets. The simulated result agreed reasonably with that in the previous research (Fan et al., 2013) and extended to clarify further eco-hydrological process in global scale. Then, NICE was further developed to incorporate the biogeochemical cycle including the reaction between inorganic and organic carbons (DOC, POC, DIC, pCO2, etc.) in the biosphere (terrestrial and aquatic ecosystems including surface water and groundwater). The model simulated the carbon cycle, for example, CO2 evasion from inland water in global scale, which is relatively in good agreement in that estimated by empirical relation using the previous pCO2 data (Aufdenkampe et al., 2011; Global River Chemistry Database, 2013). This simulation system would play important role in identification of full greenhouse gas balance of the biosphere and spatio-temporal hot spots in boundless biogeochemical cycle (Cole et al. 2007; Frei et al. 2012). References; Aufdenkampe, A.K., et al., Front. Ecol. Environ., doi:10.1890/100014, 2011. Battin, T.J., et al., Nat. Geosci., 2, 598-600, 2009. Cole, J.J. et al., Ecosystems, doi:10.1007/s10021-006-9013-8, 2007. Fan, Y. et al

  12. Preliminary studies of quality assessment of aquatic environments from Cluj suburban areas, based on some invertebrates bioindicators and chemical indicators

    Directory of Open Access Journals (Sweden)

    Gheorghe Stan

    2010-02-01

    Full Text Available Systematic categories of invertebrates bioindicators correlated with some chemical parameters,were an effective way to characterize the quality of lotic (Someş River and lentic (Lake Gilău aquatic environment from Cluj-Napoca area. Invertebrate fauna was represented by species belonging to the following dominant systematic categories: Nematoda, Annelida, Crustacea and Insecta. This paper containsalso some preliminary data on the bioindicators species belonging to Protozoa phylum. Dominant groups were crustaceans (the sampling points in Lake Gilău and annelids (Somes River and among species Gammarus pulex, Daphnia pulex, Tubifex tubifex. The fauna composition shows the β-α mesosaprobic character of the water, with an evolution from β mesosaprobity upstream the Cluj-Napoca city to polysaprobic downstream of the city. This aspect has been observed and analyzed according to chemical parameters (pH, TDS, ORP, EC, t and indices of saprobity (relative cleanliness, state of relative pollution, the deficit of species, saprobiological index.Systematic categories of invertebrates bioindicators correlated with some chemical parameters, were an effective way to characterize the quality of lotic (Someş River and lentic (Lake Gilău aquatic environment from Cluj-Napoca area. Invertebrate fauna was represented by species belonging to the following dominant systematic categories: Nematoda, Annelida, Crustacea and Insecta. This paper contains also some preliminary data on the bioindicators species belonging to Protozoa phylum. Dominant groups were crustaceans (the sampling points in Lake Gilău and annelids (Somes River and among species Gammarus pulex, Daphnia pulex, Tubifex tubifex. The fauna composition shows the β-α mesosaprobic character of the water, with an evolution from β mesosaprobity upstream the Cluj-Napoca city to polysaprobic downstream of the city. This aspect has been observed and analyzed according to chemical parameters (pH, TDS, ORP

  13. Toxicity and bioaccumulation of biosolids-borne triclocarban (TCC) in terrestrial organisms.

    Science.gov (United States)

    Snyder, Elizabeth Hodges; O'Connor, George A; McAvoy, Drew C

    2011-01-01

    Triclocarban (TCC) toxicity and bioaccumulation data are primarily limited to direct human and animal dermal exposures, animal ingestion exposures to neat and feed-spiked TCC, and/or aquatic organism exposures. Three non-human, terrestrial organism groups anticipated to be the most highly exposed to land-applied, biosolids-borne TCC are soil microbes, earthworms, and plants. The three ecological receptors are expected to be at particular risk due to unique modes of exposure (e.g. constant, direct contact with soil; uptake of amended soil and pore water), inherently greater sensitivity to environmental contaminants (e.g. increased body burdens, permeable membranes), and susceptibility to minute changes in the soil environment. The toxicities of biosolids-borne TCC to Eisenia fetida earthworms and soil microbial communities were characterized using adaptations of the USEPA Office of Prevention, Pesticides, and Toxic Substances (OPPTS) Guidelines 850.6200 (Earthworm Subchronic Toxicity Test) and 850.5100 (Soil Microbial Community Toxicity Test), respectively. The resultant calculated TCC LC50 value for E. fetida was 40 mg TCC kg amended fine sand(-1). Biosolids-borne TCC in an amended fine sand had no significant effect on soil microbial community respiration, ammonification, or nitrification. Bioaccumulation of biosolids-borne TCC by E. fetida and Paspulum notatum was measured to characterize potential biosolids-borne TCC movement through the food chain. Dry-weight TCC bioaccumulation factor (BAF) values in E. fetida and P. notatum ranged from 5.2-18 and 0.00041-0.007 (gsoil gtissue(-1)), respectively.

  14. Hot Spots of Mercury Bioaccumulation in Amphibian Populations From the Conterminous United States

    Science.gov (United States)

    Bank, M. S.

    2008-12-01

    Mercury (Hg) contamination in the United States (U.S.) is well-documented and continues to be a public- health issue of great concern. Fish consumption advisories have been issued throughout much of the U.S. due to elevated levels of methylmercury (MeHg). Methylmercury contamination in the developing fetus and in young children is a major public health issue for certain sectors of the global human population. Moreover, identifying MeHg hot spots and the effects of MeHg pollution on environmental health and biodiversity are also considered a high priority for land managers, risk assessors, and conservation scientists. Despite their overall biomass and importance to aquatic and terrestrial ecosystems, Hg and MeHg bioaccumulation dynamics and toxicity in amphibians are not well studied, especially when compared to other vertebrate taxa such as birds, mammals, and fish species. Population declines in amphibians are well documented and likely caused by synergistic and interacting, multiple stressors such as climate change, exposure to toxic pollutants, fungal pathogens, and habitat loss and ecosystem degradation. Protecting quality of terrestrial ecosystems in the U.S. has enormous ramifications for economic and public health of the nation's residents and is fundamental to maintaining the biotic integrity of surface waters, riparian zones, and environmental health of forested landscapes nationwide. Determining Hg concentration levels for terrestrial and surface water ecosystems also has important implications for protecting the nation's fauna. Here I present an overview of the National Amphibian Mercury Program and evaluate variation in MeHg hotspots, Hg bioaccumulation and distribution in freshwater and terrestrial habitats across a broad gradient of physical, climatic, biotic, and ecosystem settings to identify the environmental conditions and ecosystem types that are most sensitive to Hg pollution. The role of geography, disturbance mechanisms, and abiotic and biotic

  15. Ethoprophos fate on soil-water interface and effects on non-target terrestrial and aquatic biota under Mediterranean crop-based scenarios.

    Science.gov (United States)

    Leitão, Sara; Moreira-Santos, Matilde; Van den Brink, Paul J; Ribeiro, Rui; José Cerejeira, M; Sousa, José Paulo

    2014-05-01

    The present study aimed to assess the environmental fate of the insecticide and nematicide ethoprophos in the soil-water interface following the pesticide application in simulated maize and potato crops under Mediterranean agricultural conditions, particularly of irrigation. Focus was given to the soil-water transfer pathways (leaching and runoff), to the pesticide transport in soil between pesticide application (crop row) and non-application areas (between crop rows), as well as to toxic effects of the various matrices on terrestrial and aquatic biota. A semi-field methodology mimicking a "worst-case" ethoprophos application (twice the recommended dosage for maize and potato crops: 100% concentration v/v) in agricultural field situations was used, in order to mimic a possible misuse by the farmer under realistic conditions. A rainfall was simulated under a slope of 20° for both crop-based scenarios. Soil and water samples were collected for the analysis of pesticide residues. Ecotoxicity of soil and aquatic samples was assessed by performing lethal and sublethal bioassays with organisms from different trophic levels: the collembolan Folsomia candida, the earthworm Eisenia andrei and the cladoceran Daphnia magna. Although the majority of ethoprophos sorbed to the soil application area, pesticide concentrations were detected in all water matrices illustrating pesticide transfer pathways of water contamination between environmental compartments. Leaching to groundwater proved to be an important transfer pathway of ethoprophos under both crop-based scenarios, as it resulted in high pesticide concentration in leachates from Maize (130µgL(-1)) and Potato (630µgL(-1)) crop scenarios, respectively. Ethoprophos application at the Potato crop scenario caused more toxic effects on terrestrial and aquatic biota than at the Maize scenario at the recommended dosage and lower concentrations. In both crop-based scenarios, ethoprophos moved with the irrigation water flow to the

  16. Bioaccumulation of metals in sediments, fish and plant from Tisza river (Serbia)

    Science.gov (United States)

    Štrbac, Snežana; Gajica, Gordana; Kašanin-Grubin, Milica; Šajnović, Aleksandra; Vasić, Nebojša; Jovančićević, Branimir; Simonović, Predrag

    2014-05-01

    In the aquatic environments metals originate from various natural and anthropogenic sources. The purpose of the study was to assess the bioaccumulation level of metals in sediments fish and common reed at four different localities of the Tisza River stretch in Serbia. For purpose of this study concentrations of Al, As, B, Cd, Co, Cr, Cu, Fe, Hg, Mn, Ni, Pb, Se, Sr and Zn were determined in sediment, common reed (Phragmites australis (Cav.) Trin. ex Steud. 1841) and four ecologically different fish species (piscivorous northern pike (Esox lucius L.), benthivorous sterlet (Acipenser ruthenus L.) silver bream (Brama brama L.), omnivorous common carp (Cyprinus carpio L.)). Analysis of metals was carried out for liver, gills, brain, testicles and ovaries in fish and in the rhizome, stem and leaves of the common reed and sediment fraction leaves>stems. Obtained results indicate that the location does not have impact to the level of bioaccumulation. On the basis of this research the under-ground organ (rhizome) of common reed, liver and gills and omnivorous fish species could be recommended as environmental indicators for the presence of metals during environmental monitoring.

  17. Antioxidative responses and bioaccumulation in Japanese flounder larvae and juveniles under chronic mercury exposure.

    Science.gov (United States)

    Huang, Wei; Cao, Liang; Ye, Zhenjiang; Yin, Xuebo; Dou, Shuozeng

    2010-06-01

    This study investigated the sub-lethal effects of waterborne mercury on growth, bioaccumulation and antioxidative responses of larvae and juveniles of Japanese flounder (Paralichthys olivaceus). Fish were exposed to 0-10 microg Hg(2)(+)L(-1) solutions from embryonic to the juvenile stages for 80 days. Antioxidative responses to mercury exposure were studied in metamorphosing larvae (18 days post hatching, dph), settling larvae (33 dph) and juveniles (78 dph). Results showed that increasing mercury concentration led to increased mercury bioaccumulation and reduced flounder growth. Of the antioxidants investigated, superoxide dismutase (SOD) and catalase (CAT) activities at the three developmental stages were sensitive to mercury exposure and increased with increasing mercury concentration. Glutathione (GSH) content was elevated in metamorphosing larvae, but decreased in juveniles as mercury concentration increased. Glutathione-S-transferase (GST) activity did not significantly vary with mercury concentration in either larvae or juveniles. Mercury exposure did not affect malondialdehyde (MDA) content of larvae, but significantly increased MDA content of juveniles. Results suggest that flounder larvae and juveniles have the potential to manipulate the levels of antioxidants such as SOD, CAT and GSH, which protect flounder from oxidative stress induced by mercury exposure. These antioxidants could serve as biomarkers of mercury contamination in the aquatic environment.

  18. Open, Sharable, and Extensible Data Management for the Korea National Aquatic Ecological Monitoring and Assessment Program: A RESTful API-Based Approach

    OpenAIRE

    Meilan Jiang; Karpjoo Jeong; Jung-Hwan Park; Nan-Young Kim; Soon-Jin Hwang; Sang-Hun Kim

    2016-01-01

    Implemented by a national law, the National Aquatic Ecological Monitoring Program (NAEMP) has been assessing the ecological health status of surface waters, focusing on streams and rivers, in Korea since 2007. The program involves ecological monitoring of multiple aquatic biota such as benthic diatoms, macroinvertebrates, fish, and plants as well as water quality and habitat parameters. Taking advantage of the national scale of long-term aquatic ecological monitoring and the standardization o...

  19. A method for improving predictive modeling by taking into account lag time: Example of selenium bioaccumulation in a flowing system.

    Science.gov (United States)

    Beckon, William N

    2016-07-01

    For bioaccumulative substances, efforts to predict concentrations in organisms at upper trophic levels, based on measurements of environmental exposure, have been confounded by the appreciable but hitherto unknown amount of time it may take for bioaccumulation to occur through various pathways and across several trophic transfers. The study summarized here demonstrates an objective method of estimating this lag time by testing a large array of potential lag times for selenium bioaccumulation, selecting the lag that provides the best regression between environmental exposure (concentration in ambient water) and concentration in the tissue of the target organism. Bioaccumulation lag is generally greater for organisms at higher trophic levels, reaching times of more than a year in piscivorous fish. Predictive modeling of bioaccumulation is improved appreciably by taking into account this lag. More generally, the method demonstrated here may improve the accuracy of predictive modeling in a wide variety of other cause-effect relationships in which lag time is substantial but inadequately known, in disciplines as diverse as climatology (e.g., the effect of greenhouse gases on sea levels) and economics (e.g., the effects of fiscal stimulus on employment). PMID:27149556

  20. Monitoring of the aquatic environment by species accumulator of pollutants: a review

    Directory of Open Access Journals (Sweden)

    Oscar RAVERA

    2001-09-01

    Full Text Available This paper is a short review on the biomonitoring of aquatic environments by animal and plant species accumulators of toxic pollutants ("scavengers". This monitoring is based on the relationship between the pollutant concentration in the organism and that in its environment, and not on alterations produced by pollution on the biota. The latter is the basis of other types of biomonitoring, such as those based on the biotic and diversity indices and saprobic scale. The various aspects of monitoring by pollutant accumulators are illustrated; for example, the uptake and loss of pollutants, the "critical organs" and "tissues", the detoxification mechanisms and the most common factors (C.F., BAF, BSAF for establishing a connection between the pollutant concentration in the organism and that in its environment. Several examples of this monitoring on heavy metals, radioisotopes and organic micropollutants are reported. The advantages of this monitoring, the characteristics of the species to be used as bioaccumulators and some practical suggestions are listed. A close collaboration between the scientific teams working on the biomonitoring based on accumulator organisms and on the chemical monitoring is recommended from the scientific and economic point of view.

  1. Aquatic Research Laboratory (ARL)

    Data.gov (United States)

    Federal Laboratory Consortium — Columbia River and groundwater well water sources are delivered to the Aquatic Research Laboratory (ARL), where these resources are used to conduct research on fish...

  2. Restoring Damaged Aquatic Ecosystems

    OpenAIRE

    Cairns, John

    2006-01-01

    Aquatic ecosystems must play a major role to ensure that water, which is both essential and scarce, is always available for both present and future generations. This has become even more urgent in light of the ongoing increase in total world population and predicted changes in the world climate. Since aquatic ecosystems have been damaged at a rate far in excess of both natural restoration and anthropogenic restoration, it is essential that both restorative processes be accelerated. However, e...

  3. Introducing Aquatic Biology

    OpenAIRE

    Kinne, Otto; Browman, Howard I.; Seaman, Matthias

    2007-01-01

    The Inter-Research Science Center (IR) journals Marine Ecology Progress Series (MEPS) and Aquatic Microbial Ecology (AME) have been receiving increasing numbers of high-quality manuscripts that are principally biological, rather than ecological. With regret, we have had to turn these submissions away. Also, leading limnologists have for many years suggested that IR should provide an outlet for top quality articles on freshwater biology and ecology. Aquatic Biology (...

  4. Uranium in aquatic sediments: Where are the guidelines?

    International Nuclear Information System (INIS)

    Full text: Water management at Ranger uranium mine in tropical northern Australia, involves the use of constructed biological wetland filters to passively reduce the concentrations of metals, including uranium and radium, in mine waters before their release off-site. The concentration reduction is achieved principally through partitioning of the metals from the water column into the sediments, resulting in contaminant build-up in the sediments. Environmental Requirements (ERs) for Ranger, enshrined in both Commonwealth and Northern Territory regulations, specify environmental objectives to be achieved during the life of the mine and following closure. While the ERs describe the broad objectives for rehabilitation, specific criteria are required to determine whether these objectives are met; including criteria for the rehabilitation of aquatic sediments contaminated by uptake of uranium and heavy metals. Routine monitoring of sediments in selected billabongs on and adjoining the Ranger Project Area and strategic environmental research has formed part of the regulatory framework governing the authority to operate for over 20 years. This included studies such as annual routine monitoring of metal concentrations, adsorption-desorption conditions, phase associations, transport mechanisms, release potential, bioaccumulation and bioconcentration etc. Building on this, performance-based monitoring of the sediments from on-site water bodies was undertaken to ascertain the spatial and temporal distribution of contaminants as a basis to determine ecological risks associated with the sediments which in turn underpins closure planning. Highlights of these studies are interpreted using an ecological risk assessment approach. Ideally interpretation of aquatic sediment contamination in Australia is guided by the national guidelines for water quality (ANZECC and ARMCANZ 2000) and a weighted multiple lines of evidence approach (Simpson et. al., 2005) whereby the chemistry of

  5. Molecular ecology of aquatic microbes

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-31

    Abstracts of reports are presented from a meeting on Molecular Ecology of Aquatic Microbes. Topics included: opportunities offered to aquatic ecology by molecular biology; the role of aquatic microbes in biogeochemical cycles; characterization of the microbial community; the effect of the environment on aquatic microbes; and the targeting of specific biological processes.

  6. Preservation of natural aquatic ecosystems by application of bottom coal ash based bioreactor for in situ treatment of anthropogenic effluents

    Science.gov (United States)

    Anker, Y.; Nisnevitch, M.; Tal, M.; Cahan, R.; Michael, E.

    2012-12-01

    One consequence of global climate change is recharge decrease at sub tropical and Mediterranean regions to both the surface and the ground fresh water resources. As a general rule, when water source quantity is reduced, the level of salination, as well as chemical and biological pollutants, tends to increase. The situation is more severe whenever the drainage basin is (a) heavily populated from urban, industrial and agricultural areas, (b) has wide areas of thin or non soil cover and (c) has a karstic structure and morphology. These latter conditions are typical to many regions around the Middle East; whereas pollution hazard to Mid Eastern streams is greater than to those in more humid regions owing to their relative small size and poor dilution capacity. The consequence of this ongoing and increasing anthropogenic pollution is endangerment of natural aquatic habitats and due to decrease in fresh water supply availability also to human sustainability. The ecological impact may involve transition of ephemeral (Wadi) streams into intermittent ones with the accompanied biodiversity change or extinction once the pollution is extreme. The impact on indigenous human communities might be as severe owing to drinking water quality decrease and the consequent decrease id quantity as well as damage to dryland farming. In setting of operations applied to the Yarkon Taninim watershed (central Israel) management, a pilot biofilter facility for sustainable preservation and rehabilitation of natural fluvial ecosystems was tested. This biofilter is planned to operate through low impact concept assimilating natural treatment processes occurring during runoff recharge through a porous flow media. The facility is constructed out of several grain sizes of bottom coal ash aggregate, which was found to be a better microbial mats growing stratum, compared to common natural aggregates such as tuff and lime pebbles (and also has an EPA directive for wastewater treatment). The biofilter is

  7. Toxicological effects of pyrethroids on non-target aquatic insects.

    Science.gov (United States)

    Antwi, Frank B; Reddy, Gadi V P

    2015-11-01

    The toxicological effects of pyrethroids on non-target aquatic insects are mediated by several modes of entry of pyrethroids into aquatic ecosystems, as well as the toxicological characteristics of particular pyrethroids under field conditions. Toxicokinetics, movement across the integument of aquatic insects, and the toxicodynamics of pyrethroids are discussed, and their physiological, symptomatic and ecological effects evaluated. The relationship between pyrethroid toxicity and insecticide uptake is not fully defined. Based on laboratory and field data, it is likely that the susceptibility of aquatic insects (vector and non-vector) is related to biochemical and physiological constraints associated with life in aquatic ecosystems. Understanding factors that influence aquatic insects susceptibility to pyrethroids is critical for the effective and safe use of these compounds in areas adjacent to aquatic environments.

  8. Analysis of Moms Across America report suggesting bioaccumulation of glyphosate in U.S. mother's breast milk: Implausibility based on inconsistency with available body of glyphosate animal toxicokinetic, human biomonitoring, and physico-chemical data.

    Science.gov (United States)

    Bus, James S

    2015-12-01

    The non-peer-reviewed biomonitoring report published online by Moms Across America (MAA; Honeycutt and Rowlands, 2014) does not support the conclusion that glyphosate concentrations detected in a limited number of urine samples from women, men and children, or breast milk from nursing mothers, pose a health risk to the public, including nursing children. Systemically absorbed doses of glyphosate estimated from the MAA urine biomonitoring data and from other published biomonitoring studies indicate that daily glyphosate doses are substantially below health protective reference standards (ADIs; RfDs) established by regulatory agencies. The MAA report also suggested that detection of relatively high glyphosate concentrations in breast milk in 3 of 10 sampled women raised a concern for bioaccumulation in breast milk. However, the breast milk concentrations reported by MAA are highly implausible when considered in context to low daily systemic doses of glyphosate estimated from human urine biomonitoring data, and also are inconsistent with animal toxicokinetic data demonstrating no evidence of retention in tissues or milk after single- or multiple-dose glyphosate treatment. In addition, toxicokinetic studies in lactating goats have shown that glyphosate does not partition into milk at concentrations greater than blood, and that only a very small percentage of the total administered dose (glyphosate exposures estimated from urine biomonitoring fall thousands-of-fold short of external doses capable of producing blood concentrations sufficient to result in the breast milk concentrations described in the MAA report. Finally, in contrast to highly lipophilic compounds with bioaccumulation potential in breast milk, the physico-chemical properties of glyphosate indicate that it is highly hydrophilic (ionized) at physiological pH and unlikely to preferentially distribute into breast milk.

  9. A protocell design for bioaccumulation applications

    CERN Document Server

    von Hegner, Ian

    2015-01-01

    This article provides a specific example of recombinant cell and protocell technology, moving from what is presently known to suggesting how novel application of existing methodologies could be utilized to design a complex synthetic system in form of a self-sufficient light empowered protocell. A practical application of protocells using a primary example of desalination in water treatment is given, followed by a more general approach to bioaccumulation and bio-diagnostics, outlining the possibilities associated with applications of protocells. The key hypothesis is that the inside-negative electrochemical membrane potential generated by chloride pump activity via halorhodopsin could also be utilized to drive the accumulation of cations into a protocell. Thus, the functional expression of halorhodopsin could energize proton-coupled uptake of substances or metals through a selective cotransport channel for a number of applications in biotechnology, molecular medicine, and water biotechnology.

  10. Bioaccumulation and ecotoxicity of carbon nanotubes

    DEFF Research Database (Denmark)

    Jackson, Petra; Jacobsen, Nicklas Raun; Baun, Anders;

    2013-01-01

    Carbon nanotubes (CNT) have numerous industrial applications and may be released to the environment. In the aquatic environment, pristine or functionalized CNT have different dispersion behavior, potentially leading to different risks of exposure along the water column. Data included in this review...

  11. In situ Treatment with Activated Carbon Reduces Bioaccumulation in Aquatic Food Chains

    NARCIS (Netherlands)

    Kupryianchyk, D.; Rakowska, M.I.; Roessink, I.; Reichman, E.P.; Grotenhuis, J.T.C.; Koelmans, A.A.

    2013-01-01

    In situ activated carbon (AC) amendment is a new direction in contaminated sediment management, yet its effectiveness and safety have never been tested on the level of entire food chains including fish. Here we tested the effects of three different AC treatments on hydrophobic organic chemical (HOC)

  12. In situ treatment with activated carbon reduces bioaccumulation in aquatic food chains.

    Science.gov (United States)

    Kupryianchyk, D; Rakowska, M I; Roessink, I; Reichman, E P; Grotenhuis, J T C; Koelmans, A A

    2013-05-01

    In situ activated carbon (AC) amendment is a new direction in contaminated sediment management, yet its effectiveness and safety have never been tested on the level of entire food chains including fish. Here we tested the effects of three different AC treatments on hydrophobic organic chemical (HOC) concentrations in pore water, benthic invertebrates, zooplankton, and fish (Leuciscus idus melanotus). AC treatments were mixing with powdered AC (PAC), mixing with granular AC (GAC), and addition-removal of GAC (sediment stripping). The AC treatments resulted in a significant decrease in HOC concentrations in pore water, benthic invertebrates, zooplankton, macrophytes, and fish. In 6 months, PAC treatment caused a reduction of accumulation of polychlorobiphenyls (PCB) in fish by a factor of 20, bringing pollutant levels below toxic thresholds. All AC treatments supported growth of fish, but growth was inhibited in the PAC treatment, which was likely explained by reduced nutrient concentrations, resulting in lower zooplankton (i.e., food) densities for the fish. PAC treatment may be advised for sites where immediate ecosystem protection is required. GAC treatment may be equally effective in the longer term and may be adequate for vulnerable ecosystems where longer-term protection suffices. PMID:23544454

  13. VERIFICATION OF A TOXIC ORGANIC SUBSTANCE TRANSPORT AND BIOACCUMULATION MODEL

    Science.gov (United States)

    A field verification of the Toxic Organic Substance Transport and Bioaccumulation Model (TOXIC) was conducted using the insecticide dieldrin and the herbicides alachlor and atrazine as the test compounds. The test sites were two Iowa reservoirs. The verification procedure include...

  14. BIOACCUMULATION OF HEAVY METALS BY BACILLUS MEGATERIUM FROM PHOSPHOGYPSUM WASTE

    Directory of Open Access Journals (Sweden)

    IOANA ADRIANA STEFANESCU

    2015-05-01

    Full Text Available The aim of present study was to characterize the bioaccumulation capacity of heavy metals by Bacillus megaterium from phosphogypsum waste. The Bacillus megaterium strain (BM30 was isolated from soil near the phosphogypsum (PG dump. For the bioaccumulation quantification produced by BM30 strain were used three experimental treatments respectively with 2, 6 and 10 gL-1 PG. Cellular biomass samples were collected punctually at ages corresponding to the three stages of the development cycle of the microorganism: exponential phase, stationary phase and decline phase and the heavy metals concentrations were measured by atomic absorption spectroscopy. The bioaccumulation yields in cell biomass, relative to the total amount of analyte introduced in the reaction medium were between 20 - 80 %, the lowest value was recorded by Cu and highest by Mn. The study results indicated that the isolated strain near the dump PG, BM30, bioaccumulate heavy metals monitored in cell biomass in the order Cu > Fe > Zn = Mn.

  15. Bioaccumulation dynamics of polychlorinated biphenyls (PCBs) and organochlorine pesticides

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Bioaccumulation dynamics of polychlorinated biphenyls (PCBs) and organochlorine pesticides was examined in young-of-the-year bluefish from seven sub-estuaries of...

  16. Bioaccumulation of {sup 137}Cs and {sup 57}Co by five marine phytoplankton species

    Energy Technology Data Exchange (ETDEWEB)

    Heldal, H.E. E-mail: hilde.elise.heldal@imr.no; Stupakoff, I.; Fisher, N.S

    2001-07-01

    Under controlled laboratory conditions, we have examined the bioaccumulation of {sup 137}Cs and {sup 57}Co in three prymnesiophytes, the coccolithophorid Emiliania huxleyi and the non-calcareous species Isochrysis galbana and Phaeocystis globosa, and two diatoms Skeletonema costatum and Thalassiosira pseudonana. We measured the uptake in growing and non-growing cells and determined concentration factors on both volume and dry weight bases. For uptake of {sup 57}Co in non-growing cells, volume concentration factors (VCF) at equilibrium ranged from 0.2x10{sup 3} for E. huxleyi to 4x10{sup 3} for T. pseudonana. For uptake of {sup 137}Cs in non-growing cells, the VCFs were low for all species and the uptake pattern seemed unsystematic. The results suggest that, in contrast to Co, the cycling and bioaccumulation of Cs in marine animals are unlikely to be affected by Cs accumulation in primary producers.

  17. Methylmercury cycling, bioaccumulation, and export from agricultural and non-agricultural wetlands in the Yolo Bypass

    Science.gov (United States)

    Windham-Myers, Lisamarie; Marvin-DiPasquale, Mark; Fleck, Jacob; Alpers, Charles N.; Ackerman, Josh; Eagles-Smith, Collin; Stricker, Craig; Stephenson, Mark; Feliz, David; Gill, Gary; Bachand, Philip; Brice, Ann; Kulakow, Robin

    2010-01-01

    This 18-month field study addresses the seasonal and spatial patterns and processes controlling methylmercury (MeHg) production, bioaccumulation, and export from natural and agricultural wetlands of the Yolo Bypass Wildlife Area (YBWA). The data were collected in conjuntion with a Proposition 40 grant from the State Water Resources Control Board in support of the development of Best Management Practices (BMP's) for reducing MeHg loading from agricultural lands in the wetland-dominated Yolo Bypass to the Sacramento-San Joaquin River Delta. The four managemenr-based questions addressed in this study were: 1. Is there a different among agricultural and managfed wetland types in terms of Me Hg dynamic (production, degradation, bioaccumulation, or export)?

  18. Mercury methylation, export and bioaccumulation in rice agriculture - model results from comparative and experimental studies in 3 regions of the California Delta, USA

    Science.gov (United States)

    Windham-Myers, L.; Fleck, J.; Eagles-Smith, C.; Ackerman, J.

    2013-12-01

    Seasonally flooded wetland ecosystems are often poised for mercury (Hg) methylation, thus becoming sources of methylmercury (MeHg) to in situ and downstream biota. The seasonal flooding associated with cultivation of rice (Oryza sativa) also generates MeHg, which may be stored in sediment or plants, bioaccumulated into fauna, degraded or exported, depending on hydrologic and seasonal conditions. While many U.S. waters are regulated for total Hg concentrations based on fish targets, California's Sacramento-San Joaquin Delta (Delta) will soon implement the first MeHg total maximum daily load (TMDL) control program. Since 2007, a conceptual model (DRERIP-MCM) and several ecosystem-level studies have been advanced to better understand the mechanisms behind Hg methylation, export and bioaccumulation within Delta wetlands, including rice agriculture. Three Delta rice-growing regions (Yolo Bypass, Cosumnes River, Central Delta) of varied soil characteristics, mining influences and hydrology, were monitored over full crop years to evaluate annual MeHg dynamics. In addition to fish tissue Hg accumulation, a broad suite of biogeochemical and hydrologic indices were assessed and compared between wetland types, seasons, and regions. In general, Delta rice fields were found to export MeHg during the post-harvest winter season, and promote MeHg uptake in fish and rice grain during the summer growing season. As described in a companion presentation (Eagles-Smith et al., this session), the experimental Cosumnes River study suggests that rice-derived dissolved organic carbon (DOC) fuels MeHg production and uptake into aquatic foodwebs. Explicit DRERIP-MCM linkages for the role of rice-DOC in MeHg production, export and bioaccumulation were verified across two summers (2011, 2012): rice biomass and root productivity influenced porewater DOC availability and microbial processes, which drove sediment MeHg production and flux to surface water, promoting MeHg bioaccumulation in fish

  19. Rapid screening of aquatic toxicity of several metal-based nanoparticles using the MetPLATE Trade-Mark-Sign bioassay

    Energy Technology Data Exchange (ETDEWEB)

    Pokhrel, Lok R.; Silva, Thilini [Department of Environmental Health, College of Public Health, East Tennessee State University, Johnson City, TN 37614 (United States); Dubey, Brajesh, E-mail: bdubey@uoguelph.ca [Environmental Engineering, School of Engineering, University of Guelph, 50 Stone Road East, Guelph, Ontario (Canada); El Badawy, Amro M. [Department of Civil and Environmental Engineering, University of Cincinnati, Cincinnati, OH (United States); Tolaymat, Thabet M. [USEPA, Office of Research and Development, National Risk Management Laboratory, 26 West Martin Luther King Drive, Cincinnati, OH 45224 (United States); Scheuerman, Phillip R. [Department of Environmental Health, College of Public Health, East Tennessee State University, Johnson City, TN 37614 (United States)

    2012-06-01

    Current understanding of potential toxicity of engineered nanomaterials to aquatic microorganisms is limited for risk assessment and management. Here we evaluate if the MetPLATE Trade-Mark-Sign test can be used as an effective and rapid screening tool to test for potential aquatic toxicity of various metal-based nanoparticles (NPs). The MetPLATE bioassay is a heavy metal sensitive test based on {beta}-galactosidase activity in Escherichia coli. Five different types of metal-based NPs were screened for toxicity: (1) citrate coated nAg (Citrate-nanosilver), (2) polyvinylpyrrolidone coated nAg (PVP-nAg), (3) uncoated nZnO, (4) uncoated nTiO{sub 2} and (5) 1-Octadecylamine coated CdSe Quantum Dots (CdSe QDs); and compared with their corresponding ionic salt toxicity. Citrate-nAg was further fractionated into clean Citrate-nAg, unclean Citrate-nAg and permeate using a tangential flow filtration (TFF) system to eliminate residual ions and impurities from the stock Citrate-nAg suspension and also to differentiate between ionic- versus nano-specific toxicity. Our results showed that nAg, nZnO and CdSe QDs were less toxic than their corresponding ionic salts tested, while nano- or ionic form of TiO{sub 2} was not toxic as high as 2.5 g L{sup -1} to the MetPLATE Trade-Mark-Sign bacteria. Although coating-dependent toxicity was noticeable between two types of Ag NPs evaluated, particle size and surface charge were not adequate to explain the observed toxicity; hence, the toxicity appeared to be material-specific. Overall, the toxicity followed the trend: CdCl{sub 2} > AgNO{sub 3} > PVP-nAg > unclean Citrate-nAg > clean Citrate-nAg > ZnSO{sub 4} > nZnO > CdSe QDs > nTiO{sub 2}/TiO{sub 2}. These results indicate that an evaluation of {beta}-galactosidase inhibition in MetPLATE Trade-Mark-Sign E. coli can be an important consideration for rapid screening of metal-based NP toxicity, and should facilitate ecological risk assessment of these emerging contaminants. - Highlights

  20. Aquatic arsenic: phytoremediation using floating macrophytes.

    Science.gov (United States)

    Rahman, M Azizur; Hasegawa, H

    2011-04-01

    Phytoremediation, a plant based green technology, has received increasing attention after the discovery of hyperaccumulating plants which are able to accumulate, translocate, and concentrate high amount of certain toxic elements in their above-ground/harvestable parts. Phytoremediation includes several processes namely, phytoextraction, phytodegradation, rhizofiltration, phytostabilization and phytovolatilization. Both terrestrial and aquatic plants have been tested to remediate contaminated soils and waters, respectively. A number of aquatic plant species have been investigated for the remediation of toxic contaminants such as As, Zn, Cd, Cu, Pb, Cr, Hg, etc. Arsenic, one of the deadly toxic elements, is widely distributed in the aquatic systems as a result of mineral dissolution from volcanic or sedimentary rocks as well as from the dilution of geothermal waters. In addition, the agricultural and industrial effluent discharges are also considered for arsenic contamination in natural waters. Some aquatic plants have been reported to accumulate high level of arsenic from contaminated water. Water hyacinth (Eichhornia crassipes), duckweeds (Lemna gibba, Lemna minor, Spirodela polyrhiza), water spinach (Ipomoea aquatica), water ferns (Azolla caroliniana, Azolla filiculoides, and Azolla pinnata), water cabbage (Pistia stratiotes), hydrilla (Hydrilla verticillata) and watercress (Lepidium sativum) have been studied to investigate their arsenic uptake ability and mechanisms, and to evaluate their potential in phytoremediation technology. It has been suggested that the aquatic macrophytes would be potential for arsenic phytoremediation, and this paper reviews up to date knowledge on arsenic phytoremediation by common aquatic macrophytes. PMID:21435676

  1. Predicting the bioaccumulation of polyaromatic hydrocarbons and polychlorinated biphenyls in benthic animals in sediments.

    Science.gov (United States)

    Tuikka, A I; Leppänen, M T; Akkanen, J; Sormunen, A J; Leonards, P E G; van Hattum, B; van Vliet, L A; Brack, W; Smedes, F; Kukkonen, J V K

    2016-09-01

    There were two main objectives in this study. The first was to compare the accuracy of different prediction methods for the chemical concentrations of polyaromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) in the organism, based on the measured chemical concentrations existing in sediment dry matter or pore water. The predicted tissue concentrations were compared to the measured ones after 28-day laboratory test using oligochaeta worms (Lumbriculus variegatus). The second objective was to compare the bioaccumulation of PAHs and PCBs in the laboratory test with the in situ bioaccumulation of these compounds. Using the traditional organic carbon-water partitioning model, tissue concentrations were greatly overestimated, based on the concentrations in the sediment dry matter. Use of an additional correction factor for black carbon with a two-carbon model, significantly improved the bioaccumulation predictions, thus confirming that black carbon was important in binding the chemicals and reducing their accumulation. The predicted PAH tissue concentrations were, however, high compared to the observed values. The chemical concentrations were most accurately predicted from their freely dissolved pore water concentrations, determined using equilibrium passive sampling. The patterns of PCB and PAH accumulation in sediments for laboratory-exposed L. variegatus were similar to those in field-collected Lumbriculidae worms. Field-collected benthic invertebrates and L. variegatus accumulated less PAHs than PCBs with similar lipophilicity. The biota to sediment accumulation factors of PAHs tended to decrease with increasing sediment organic carbon normalized concentrations. The presented data yields bioconcentration factors (BCF) describing the chemical water-lipid partition, which were found to be higher than the octanol-water partition coefficients, but on a similar level with BCFs drawn from relevant literature. In conclusion, using the two-carbon model method

  2. Proceedings of the twentieth annual aquatic toxicity workshop. Comptes rendus du vingtieme colloque annuel de toxicologie aquatique

    Energy Technology Data Exchange (ETDEWEB)

    Coillie, R. van; Roy, Y.; Bois, Y.; Campbell, P.G.C.; Lundahl, P.; Martel, L.; Michaud, M.; Riebel, P.; Thellen, C. (eds.)

    1994-01-01

    A workshop was held as part of a continuing series of meetings on toxicity testing methods and pathways of contaminants in the aquatic environment. Papers were presented at the workshop on topics including biodegradation of contaminants, ecological assessments of priority substances, micro-scale bioassays, mercury in the northern aquatic environment, ecotoxicological risk assessment, bioaccumulation of contaminants, effects assessment, the St. Lawrence River Action Plan, polycyclic aromatic hydrocarbons, industrial effluents and environment management, microcosms and mesocosms, and biomarkers. Separate abstracts have been prepared for five papers from this workshop.

  3. Optimizing fish sampling for fish - mercury bioaccumulation factors

    Science.gov (United States)

    Scudder Eikenberry, Barbara C.; Riva-Murray, Karen; Knightes, Christopher D.; Journey, Celeste A.; Chasar, Lia C.; Brigham, Mark E.; Bradley, Paul M.

    2015-01-01

    Fish Bioaccumulation Factors (BAFs; ratios of mercury (Hg) in fish (Hgfish) and water (Hgwater)) are used to develop Total Maximum Daily Load and water quality criteria for Hg-impaired waters. Both applications require representative Hgfish estimates and, thus, are sensitive to sampling and data-treatment methods. Data collected by fixed protocol from 11 streams in 5 states distributed across the US were used to assess the effects of Hgfish normalization/standardization methods and fish sample numbers on BAF estimates. Fish length, followed by weight, was most correlated to adult top-predator Hgfish. Site-specific BAFs based on length-normalized and standardized Hgfish estimates demonstrated up to 50% less variability than those based on non-normalized Hgfish. Permutation analysis indicated that length-normalized and standardized Hgfish estimates based on at least 8 trout or 5 bass resulted in mean Hgfish coefficients of variation less than 20%. These results are intended to support regulatory mercury monitoring and load-reduction program improvements.

  4. Contaminated Aquatic Sediments.

    Science.gov (United States)

    Jaglal, Kendrick

    2016-10-01

    A review of the literature published in 2015 relating to the assessment, evaluation and remediation of contaminated aquatic sediments is presented. The review is divided into the following main sections: policy and guidance, methodology, distribution, fate and transport, risk, toxicity and remediation. PMID:27620103

  5. Aquatic Environment 2000

    DEFF Research Database (Denmark)

    Svendsen, L. M.; Bijl, L. van der; Boutrup, S.;

    The report summarizes the results of the Danish Aquatic Monitoring and Assessment Programme 1998-2003. Danish Environmental Protection Agency 2000: NOVA-2003. Programbeskrivelse for det nationale program for overvågning af vandmiljøet 1998-2003. 397 pp. - Redegørelse fra Miljøstyrelsen nr. 1 (in...

  6. Bioaccumulation of trace elements by Avicennia marina

    Directory of Open Access Journals (Sweden)

    Kandasamy Kathiresan

    2014-11-01

    Full Text Available Objective: To analyze the concentrations of 12 micro-nutrients (Al, B, Cd, Co, Cr, Cu, Fe, Mg, Mn, Ni, Pb, and Zn in different plant parts of Avicennia marina and its rhizosphere soil of the south east coast of India. Methods: The samples were acid digested, then analyzed by using inductively coupled plasma system (ICP-Optical Emission Spectrophotometer. Results: Levels of metals were found in the decreasing order: Cd>Co>Ni>Pb>B >Cr>Zn>Mg>Mn>Cu>Fe>Al. The soil held more levels of metals than plant parts, but within the permissible limits of concentration. Bark and root accumulated higher levels of trace elements in a magnitude of 10-80 folds than other plant parts. The overall bioaccumulation factor in the sampling sites of Vellar, Pichavaram and Cuddalore was 2.88, 1.42 0.47 respectively. Essential elements accumulate high in mature mangroves forest while non-essential elements accumulate high in the industrially polluted mangroves. Conclusions: The ratio between essential and non-essential elements was found higher in young mangrove forest than that in mature mangrove forest and polluted mangrove areas. Thus, the ratio of accumulation can be used as an index of the growth and pollution status of mangroves.

  7. Bioaccumulation of trace elements by Avicennia marina

    Institute of Scientific and Technical Information of China (English)

    Kandasamy Kathiresan; Kandasamy Saravanakumar; Pandiyan Mullai

    2014-01-01

    Objective: To analyze the concentrations of 12 micro-nutrients (Al, B, Cd, Co, Cr, Cu, Fe, Mg, Mn, Ni, Pb, and Zn) in different plant parts of Avicennia marina and its rhizosphere soil of the south east coast of India. Methods: The samples were acid digested, then analyzed by using inductively coupled plasma system (ICP-Optical Emission Spectrophotometer). Results: Levels of metals were found in the decreasing order: Cd>Co>Ni>Pb>B>Cr>Zn>Mg>Mn>Cu>Fe>Al. The soil held more levels of metals than plant parts, but within the permissible limits of concentration. Bark and root accumulated higher levels of trace elements in a magnitude of 10-80 folds than other plant parts. The overall bioaccumulation factor in the sampling sites of Vellar, Pichavaram and Cuddalore was 2.88, 1.42 0.47 respectively. Essential elements accumulate high in mature mangroves forest while non-essential elements accumulate high in the industrially polluted mangroves. Conclusions:The ratio between essential and non-essential elements was found higher in young mangrove forest than that in mature mangrove forest and polluted mangrove areas. Thus, the ratio of accumulation can be used as an index of the growth and pollution status of mangroves.

  8. Aquatic Pest Control. Manual 99.

    Science.gov (United States)

    Missouri Univ., Columbia. Agricultural Experiment Station.

    This training manual provides information needed to meet the minimum EPA standards for certification as a commercial applicator of pesticides in the aquatic pest control category. The text discusses various water use situations; aquatic weed identification; herbicide use and effects; and aquatic insects and their control. (CS)

  9. Introduced aquatic plants and algae

    Science.gov (United States)

    Non-native aquatic plants such as waterhyacinth and hydrilla severely impair the uses of aquatic resources including recreational faculties (lakes, reservoirs, rivers) as well as timely delivery of irrigation water for agriculture. Costs associated with impacts and management of all types of aquatic...

  10. Inter- and intraspecific variation in mercury bioaccumulation by snakes inhabiting a contaminated river floodplain.

    Science.gov (United States)

    Drewett, David V V; Willson, John D; Cristol, Daniel A; Chin, Stephanie Y; Hopkins, William A

    2013-04-01

    Although mercury (Hg) is a well-studied contaminant, knowledge about Hg accumulation in snakes is limited. The authors evaluated Hg bioaccumulation within and among four snake species (northern watersnakes, Nerodia sipedon; queen snakes, Regina septemvittata; common garter snakes, Thamnophis sirtalis; and rat snakes, Elaphe obsoleta [Pantherophis alleghaniensis]) from a contaminated site on the South River (Waynesboro, VA, USA) and two nearby reference sites. Total Hg (THg) concentrations in northern watersnake tail tissue at the contaminated site ranged from 2.25 to 13.84 mg/kg dry weight (mean: 4.85 ± 0.29), or 11 to 19 times higher than reference sites. Blood THg concentrations (0.03-7.04 mg/kg wet wt; mean: 2.24 ± 0.42) were strongly correlated with tail concentrations and were the highest yet reported in a snake species. Within watersnakes, nitrogen stable isotope values indicated ontogenetic trophic shifts that correlated with THg bioaccumulation, suggesting that diet plays a substantial role in Hg exposure. Female watersnakes had higher mean THg concentrations (5.67 ± 0.46 mg/kg) than males (4.93 ± 0.49 mg/kg), but no significant differences between sexes were observed after correcting for body size. Interspecific comparisons identified differences in THg concentrations among snake species, with more aquatic species (watersnakes and queen snakes) accumulating higher mean concentrations (5.60 ± 0.40 and 4.59 ± 0.38 mg/kg in tail tissue, respectively) than the more terrestrial species, garter snakes and rat snakes (1.28 ± 0.32 and 0.26 ± 0.09 mg/kg, respectively). The results of the present study warrant further investigation of potential adverse effects and will aid in prioritizing conservation efforts.

  11. Bioavailability of PAHs in aluminum smelter affected sediments: evaluation through assessment of pore water concentrations and in vivo bioaccumulation.

    Science.gov (United States)

    Ruus, Anders; Bøyum, Olav; Grung, Merete; Næs, Kristoffer

    2010-12-15

    Bioaccumulation of polycyclic aromatic hydrocarbons (PAHs) from coal tar pitch polluted sediments was predicted by (1) a generic approach based on organic carbon-water partitioning and Gibbs linear free energy relationship (between K(OW) and K(OC)), and (2) measurements of freely dissolved concentrations of PAHs in the sediment pore water, using passive samplers and solid phase extraction. Results from these predictions were compared with those from in vivo bioaccumulation experiments using Nereis diversicolor (Polychaeta), Hinia reticulata (Gastropoda), and Nuculoma tenuis (Bivalvia). Measured sediment/water partition coefficients were higher than predicted by the generic approach. Furthermore, predicted biota-to-sediment accumulation factors (BSAFs) derived from measured pore water concentrations were more in agreement with the bioaccumulation observed for two of the three species. Discrepancies associated with the third species (N. tenuis) were likely a result of particles remaining in the intestine (as shown by microscopic evaluation). These results indicate the importance of conducting site-specific evaluations of pore water concentrations and/or bioaccumulation studies by direct measurements to accurately provide a basis for risk assessment and remediation plans. The importance of knowledge regarding specific characteristics of model organisms is emphasized.

  12. Uranium bioaccumulation in a freshwater ecosystem: Impact of feeding ecology

    Energy Technology Data Exchange (ETDEWEB)

    Kraemer, Lisa D., E-mail: lisakraemer@trentu.ca [Trent University, 1600 West Bank Drive, Peterborough, ON, K9J 7B8 (Canada); Evans, Douglas [Trent University, 1600 West Bank Drive, Peterborough, ON, K9J 7B8 (Canada)

    2012-11-15

    Uranium bioaccumulation in a lake that had been historically affected by a U mine and (2) to use a combined approach of gut content examination and stable nitrogen and carbon isotope analysis to determine if U bioaccumulation in fish was linked to foodweb ecology. We collected three species of fish: smallmouth bass (Micropterus dolomieu), yellow perch (Perca flavescens) and bluegill (Lepomis macrochirus), in addition to several invertebrate species including freshwater bivalves (family: Sphaeriidae), dragonfly nymphs (order: Odonata), snails (class: Gastropoda) and zooplankton (family: Daphniidae). Results showed significant U bioaccumulation in the lake impacted by historical mining activities. Uranium accumulation was 2-3 orders of magnitude higher in invertebrates than in the fish species. Within fish, U was measured in operculum (bone), liver and muscle tissue and accumulation followed the order: operculum > liver > muscle. There was a negative relationship between stable nitrogen ratios ({sup 15}N/{sup 14}N) and U bioaccumulation, suggesting U biodilution in the foodweb. Uranium bioaccumulation in all three tissues (bone, liver, muscle) varied among fish species in a consistent manner and followed the order: bluegill > yellow perch > smallmouth bass. Collectively, gut content and stable isotope analysis suggests that invertebrate-consuming fish species (i.e. bluegill) have the highest U levels, while fish species that were mainly piscivores (i.e. smallmouth bass) have the lowest U levels. Our study highlights the importance of understanding the feeding ecology of fish when trying to predict U accumulation.

  13. Uranium bioaccumulation in a freshwater ecosystem: Impact of feeding ecology

    International Nuclear Information System (INIS)

    Uranium bioaccumulation in a lake that had been historically affected by a U mine and (2) to use a combined approach of gut content examination and stable nitrogen and carbon isotope analysis to determine if U bioaccumulation in fish was linked to foodweb ecology. We collected three species of fish: smallmouth bass (Micropterus dolomieu), yellow perch (Perca flavescens) and bluegill (Lepomis macrochirus), in addition to several invertebrate species including freshwater bivalves (family: Sphaeriidae), dragonfly nymphs (order: Odonata), snails (class: Gastropoda) and zooplankton (family: Daphniidae). Results showed significant U bioaccumulation in the lake impacted by historical mining activities. Uranium accumulation was 2–3 orders of magnitude higher in invertebrates than in the fish species. Within fish, U was measured in operculum (bone), liver and muscle tissue and accumulation followed the order: operculum > liver > muscle. There was a negative relationship between stable nitrogen ratios (15N/14N) and U bioaccumulation, suggesting U biodilution in the foodweb. Uranium bioaccumulation in all three tissues (bone, liver, muscle) varied among fish species in a consistent manner and followed the order: bluegill > yellow perch > smallmouth bass. Collectively, gut content and stable isotope analysis suggests that invertebrate-consuming fish species (i.e. bluegill) have the highest U levels, while fish species that were mainly piscivores (i.e. smallmouth bass) have the lowest U levels. Our study highlights the importance of understanding the feeding ecology of fish when trying to predict U accumulation.

  14. Five-year bio-monitoring of aquatic ecosystems near Artigas Antarctic Scientific Base, King George Island

    Institute of Scientific and Technical Information of China (English)

    Mara A Morel; Victoria Braa; Cecilia Martnez-Rosales; Clica Cagide; Susana Castro-Sowinski

    2015-01-01

    Fildes Peninsula, in King George Island, Antarctica, has a great concentration of international facilities, and it has clearly been affected by human activities. The objective of this 5-year study was to assess the impact of anthropogenic activities on the bacterial abundance in water bodies close to Artigas Antarctic Scientific Base (BCAA, in Spanish Base Científica Antártica Artigas). Water samples from areas under different human influence (Uruguay Lake, nearby ponds, and meltwater from Collins Glacier) were aseptically collected and refrigerated until processed. The number of heterotrophic bacteria and Pseudomonas spp. was analyzed using a culture-dependent approach. Physico-chemical properties of the water samples (temperature, pH, and conductivity) were also determined. Results showed that water from the highly affected area, Uruguay Lake, where the pump that provides water to the BCAA is located, did not suffer significant fluctuations in heterotrophic bacterial abundance (104–105 CFU∙mL−1); however, Pseudomonas abundance increased until becoming the predominant population. In other water samples, the number of heterotrophic bacteria and Pseudomonas gradually increased during this 5-year study, by 2014 reaching similar values to those observed for Uruguay Lake. The implications of human activities on Antarctic bacterial abundance are discussed.

  15. Development of a Geographic Information System-Based Decision Support Tool for Evaluating Windfarm Sitings in Great Lakes Aquatic Habitats

    Energy Technology Data Exchange (ETDEWEB)

    Wehrly, Kevin E.; Rutherford, Edward S; Wang, Lizhu; Breck, Jason; Mason, Lacey [University of Michigan School of Natural Resources and Environment; Nelson, Scott

    2012-10-01

    : As an outcome of our research project, we developed software and data for the Lakebed Alteration Decision Support Tool (LADST), a web-based decision support program to assist resource managers in making siting decisions for offshore wind farms (as well as other lakebed-altering projects) in the United States' waters of the Great Lakes. Users of the LADST can create their own offshore wind farm suitability maps, based upon suitability criteria of their own choosing by visiting a public web site. The LADST can be used to represent the different priorities or values of different Great Lakes stakeholders for wind farm siting, as well as the different suitability requirements of wind farms (or different types of development projects) in a single suitability analysis system. The LADST makes this type of customized suitability analysis easily accessible to users who have no specialized software or experience with geographic information systems (GIS). It also may increase the transparency of the siting and permitting process for offshore wind farms, as it makes the suitability analysis equally accessible to resource managers, wind farm developers, and concerned citizens.

  16. Heavy metal bioaccumulation by wild edible saprophytic and ectomycorrhizal mushrooms.

    Science.gov (United States)

    Širić, Ivan; Humar, Miha; Kasap, Ante; Kos, Ivica; Mioč, Boro; Pohleven, Franc

    2016-09-01

    Heavy metals cause serious problems in the environment, and they can be accumulated in organisms, especially in the higher fungi. The concentration of Ni, Cr, Pb, Cd, and Hg in 10 species of edible mushrooms in Medvednica Nature Park, Croatia was therefore determined. In addition, the similarity between the studied species was determined by cluster analysis based on concentrations of the aforementioned metals in the fruiting bodies. The contents of nickel, chromium, lead, cadmium, and mercury in the fruiting bodies of mushrooms were obtained by X-ray fluorescence spectrometry. The highest concentrations of Ni (3.62 mg kg(-1)), Cr (3.01 mg kg(-1)), and Cd (2.67 mg kg(-1)) were determined in Agaricus campestris. The highest concentration of Pb (1.67 mg kg(-1)) was determined in Macrolepiota procera, and the highest concentration of Hg (2.39 mg kg(-1)) was determined in Boletus edulis. The concentration of all heavy metals significantly differed (p Cr, and Pb and bioaccumulators of Cd and Hg. Cluster analysis performed on the basis of the accumulation of the studied metals revealed great phenotypic similarity of mushroom species belonging to the same genus and partial similarity of species of the same ecological affiliation. PMID:27272918

  17. 75 FR 18499 - The Effects of Mountaintop Mines and Valley Fills on Aquatic Ecosystems of the Central...

    Science.gov (United States)

    2010-04-12

    ... AGENCY The Effects of Mountaintop Mines and Valley Fills on Aquatic Ecosystems of the Central Appalachian... Valley Fills on Aquatic Ecosystems of the Central Appalachian Coalfields'' (EPA/600/R-09/138A) and (2... Fills on Aquatic Ecosystems of the Central Appalachian Coalfields'' and ``A Field-based Aquatic...

  18. The mismatch between bioaccumulation in field and laboratory environments: Interpreting the differences for metals in benthic bivalves

    International Nuclear Information System (INIS)

    Laboratory-based bioaccumulation and toxicity bioassays are frequently used to predict the ecological risk of contaminated sediments in the field. This study investigates the bioassay conditions most relevant to achieving environmentally relevant field exposures. An identical series of metal-contaminated marine sediments were deployed in the field and laboratory over 31 days. Changes in metal concentrations and partitioning in both sediments and waters were used to interpret differences in metal exposure and bioaccumulation to the benthic bivalve Tellina deltoidalis. Loss of resuspended sediments and deposition of suspended particulate matter from the overlying water resulted in the concentrations of Cu, Pb and Zn (major contaminants) becoming lower in the 1-cm surface layer of field-deployed sediments. Lower exchange rates of overlying waters in the laboratory resulted in higher dissolved metal exposures. The prediction of metal bioaccumulation by the bivalves in field and laboratory was improved by considering the metal partitioning within the surface sediments. - Highlights: • Particulate metals are the dominant metal exposure route in laboratory and field tests (87). • There is an over-representation of the dissolved metal exposure in the laboratory (81). • Laboratory bioassays result in higher bioaccumulation of major metals, Cu, Pb, Zn (82). • Differences in exposure must be considered for a proper sediment quality evaluation (83). • Traditional measurements are not sufficient to explain bioaccumulation results (79). - To improve the value of field- and laboratory-based sediment bioassays in ecological risk assessments, it is necessary to create exposure conditions that resemble those in the field

  19. Aquatic Ecology Section

    International Nuclear Information System (INIS)

    Population studies were concerned with predicting long-term consequences of mortality imposed on animal populations by man's activities. These studies consisted of development of a generalized life cycle model and an empirical impingement model for use in impact analysis. Chemical effects studies were conducted on chlorine minimization; fouling by the Asiatic clam; identification of halogenated organics in cooling water; and effects of halogenated organics in cooling systems on aquatic organisms. Ecological transport studies were conducted on availability of sediment-bound 137Cs and 60Co to fish; 137Cs and 60Co in White Oak Lake fish; and chromium levels in fish from a lake chronically contaminated with chromates from cooling towers. Progress is also reported on the following: effects of irradiation on thermal tolerance of mosquito fish; toxicity of nickel to the developing eggs and larvae of carp; accumulation of selected heavy metals associated with fly ash; and environmental monitoring of aquatic ecosystems

  20. Scaling macroscopic aquatic locomotion

    Science.gov (United States)

    Gazzola, Mattia; Argentina, Mederic; Mahadevan, Lakshminarayanan

    2014-11-01

    Inertial aquatic swimmers that use undulatory gaits range in length L from a few millimeters to 30 meters, across a wide array of biological taxa. Using elementary hydrodynamic arguments, we uncover a unifying mechanistic principle characterizing their locomotion by deriving a scaling relation that links swimming speed U to body kinematics (tail beat amplitude A and frequency ω) and fluid properties (kinematic viscosity ν). This principle can be simply couched as the power law Re ~ Swα , where Re = UL / ν >> 1 and Sw = ωAL / ν , with α = 4 / 3 for laminar flows, and α = 1 for turbulent flows. Existing data from over 1000 measurements on fish, amphibians, larvae, reptiles, mammals and birds, as well as direct numerical simulations are consistent with our scaling. We interpret our results as the consequence of the convergence of aquatic gaits to the performance limits imposed by hydrodynamics.

  1. Bioaccumulation of dissociating substances; Bioakkumulation dissoziierender Stoffe

    Energy Technology Data Exchange (ETDEWEB)

    Butte, W.; Plegge, V.; Schettgen, C.; Willenborg, R.; Zauke, G.P. [Oldenburg Univ. (Germany). Fachbereich Chemie; Kuhlmann, H. [Oldenburg Univ. (Germany). Fachbereich Chemie]|[Bundesforschungsanstalt fuer Fischerei, Ahrensburg (Germany). Inst. fuer Fischereioekologie

    2000-02-01

    Bioconcentration factors (BCF) are important parameters to assess the environmental fate of chemicals. In this report we describe the determination of BCF for Triclosan, a trichlorophenoxy phenol, for some dissociating herbicides like Dichlorprop, MCPA, Mecoprop, Triclopyr and Picloram as well as for selected pyrethroids like Cyfluthrin, Cypermethrin, Deltamethrin and Permethrin. It was shown that BCF and rate constants for the uptake of Triclosan are decreasing with an increasing pH of the test water. The BCF for the herbicides evaluated are all below 10, confirming data already reported for herbicides of similar structure. Thus, for these compounds there is no tendency to bioaccumulate. Furthermore, there was no correlation between BCF and n-octanol/water partition coefficients or dissociation constants. BCF of pyrethroids were between 860 and 2200. For the analysis of pyrenthroid metabolites a gas chromatographic method using daughter-ion mass spectrometry for detection was established. The detection limit of this method was 1 {mu}g/kg, but metabolites could not be detected in fish during the bioaccumulation experiments. The high toxicity of pyrethroids for fish was approved; LC50-values were between 1 and 5 {mu}g/l. To evaluate physiological effects in fish, produced by pyrethroids, EROD activities in preparations of trout liver were measured. No increase in activity could be detected, but there was a tendency to lower values. We think this to result from the high toxicity of pyrethroids that could have impaired this enzyme system. (orig.) [German] Biokonzentrationsfaktoren (BCF) sind wichtige Parameter, mit Hilfe derer das Umweltverhalten von Chemikalien abgeschaetzt werden kann. Im Rahmen dieses Forschungsvorhabens wurden BCF-Werte fuer Triclosan, ein Trichlorphenoxyphenol, fuer einige dissoziierende Herbizide: Dichlorprop, MCPA, Mecoprop, Triclopyr und Picloram sowie fuer ausgewaehlte Pyrethroide: Cyfluthrin, Cypermethrin, Deltamethrin und Permethrin

  2. A GIS-based vulnerability assessment of brine contamination to aquatic resources from oil and gas development in eastern Sheridan County, Montana.

    Science.gov (United States)

    Preston, Todd M; Chesley-Preston, Tara L; Thamke, Joanna N

    2014-02-15

    Water (brine) co-produced with oil in the Williston Basin is some of the most saline in the nation. The Prairie Pothole Region (PPR), characterized by glacial sediments and numerous wetlands, covers the northern and eastern portion of the Williston Basin. Sheridan County, Montana, lies within the PPR and has a documented history of brine contamination. Surface water and shallow groundwater in the PPR are saline and sulfate dominated while the deeper brines are much more saline and chloride dominated. A Contamination Index (CI), defined as the ratio of chloride concentration to specific conductance in a water sample, was developed by the Montana Bureau of Mines and Geology to delineate the magnitude of brine contamination in Sheridan County. Values >0.035 indicate contamination. Recently, the U.S. Geological Survey completed a county level geographic information system (GIS)-based vulnerability assessment of brine contamination to aquatic resources in the PPR of the Williston Basin based on the age and density of oil wells, number of wetlands, and stream length per county. To validate and better define this assessment, a similar approach was applied in eastern Sheridan County at a greater level of detail (the 2.59 km(2) Public Land Survey System section grid) and included surficial geology. Vulnerability assessment scores were calculated for the 780 modeled sections and these scores were divided into ten equal interval bins representing similar probabilities of contamination. Two surface water and two groundwater samples were collected from the section with the greatest acreage of Federal land in each bin. Nineteen of the forty water samples, and at least one water sample from seven of the ten selected sections, had CI values indicating contamination. Additionally, CI values generally increased with increasing vulnerability assessment score, with a stronger correlation for groundwater samples (R(2)=0.78) than surface water samples (R(2)=0.53). PMID:24364993

  3. A GIS-based vulnerability assessment of brine contamination to aquatic resources from oil and gas development in eastern Sheridan County, Montana

    Science.gov (United States)

    Preston, Todd M.; Chesley-Preston, Tara L.; Thamke, Joanna N.

    2014-01-01

    Water (brine) co-produced with oil in the Williston Basin is some of the most saline in the nation. The Prairie Pothole Region (PPR), characterized by glacial sediments and numerous wetlands, covers the northern and eastern portion of the Williston Basin. Sheridan County, Montana, lies within the PPR and has a documented history of brine contamination. Surface water and shallow groundwater in the PPR are saline and sulfate dominated while the deeper brines are much more saline and chloride dominated. A Contamination Index (CI), defined as the ratio of chloride concentration to specific conductance in a water sample, was developed by the Montana Bureau of Mines and Geology to delineate the magnitude of brine contamination in Sheridan County. Values > 0.035 indicate contamination. Recently, the U.S. Geological Survey completed a county level geographic information system (GIS)-based vulnerability assessment of brine contamination to aquatic resources in the PPR of the Williston Basin based on the age and density of oil wells, number of wetlands, and stream length per county. To validate and better define this assessment, a similar approach was applied in eastern Sheridan County at a greater level of detail (the 2.59 km2 Public Land Survey System section grid) and included surficial geology. Vulnerability assessment scores were calculated for the 780 modeled sections and these scores were divided into ten equal interval bins representing similar probabilities of contamination. Two surface water and two groundwater samples were collected from the section with the greatest acreage of Federal land in each bin. Nineteen of the forty water samples, and at least one water sample from seven of the ten selected sections, had CI values indicating contamination. Additionally, CI values generally increased with increasing vulnerability assessment score, with a stronger correlation for groundwater samples (R2 = 0.78) than surface water samples (R2 = 0.53).

  4. A rational approach to selecting and ranking some pharmaceuticals of concern for the aquatic environment and their relative importance compared with other chemicals.

    Science.gov (United States)

    Donnachie, Rachel L; Johnson, Andrew C; Sumpter, John P

    2016-04-01

    Aquatic organisms can be exposed to thousands of chemicals discharged by the human population. Many of these chemicals are considered disruptive to aquatic wildlife, and the literature on the impacts of these chemicals grows daily. However, because time and resources are not infinite, research must focus on the chemicals that represent the greatest threat. One group of chemicals of increasing concern is pharmaceuticals, for which the primary challenge is to identify which represent the greatest threat. In the present study, a list of 12 pharmaceuticals was compiled based on scoring the prevalence of different compounds from previous prioritization reviews. These included rankings based on prescription data, environmental concentrations, predicted environmental concentration/predicted no-effect concentration (PEC/PNEC) ratios, persistency/bioaccumulation/(eco)toxicity (PBT), and fish plasma model approaches. The most frequently cited were diclofenac, paracetamol, ibuprofen, carbamazepine, naproxen, atenolol, ethinyl estradiol, aspirin, fluoxetine, propranolol, metoprolol, and sulfamethoxazole. For each pharmaceutical, literature on effect concentrations was compiled and compared with river concentrations in the United Kingdom. The pharmaceuticals were ranked by degree of difference between the median effect and median river concentrations. Ethinyl estradiol was ranked as the highest concern, followed by fluoxetine, propranolol, and paracetamol. The relative risk of these pharmaceuticals was compared with those of metals and some persistent organic pollutants. Pharmaceuticals appear to be less of a threat to aquatic organisms than some metals (Cu, Al, Zn) and triclosan, using this ranking approach. Environ Toxicol Chem 2016;35:1021-1027. © 2015 The Authors. Environmental Toxicology and Chemistry Published by Wiley Periodicals, Inc. on behalf of SETAC. PMID:26184376

  5. Emergent aquatic plants: biological and economic perspectives

    Energy Technology Data Exchange (ETDEWEB)

    Kresovich, S.; Wagner, C.K.; Scantland, D.A.; Lawhon, W.T.

    1981-01-01

    One of the most productive, but least exploited, biomass resources is the group classified as the emergent aquatic plants. Information is presented concerning the biological and economic factors that must be considered if emergent aquatic plants are to become viable feedstocks for multipurpose systems. The feedstock purposes highlighted include fuel and/or chemical production and the species identified as potential candidates for production in biomass systems include Arundo donax, Cyperus papyrus, Phragmites communis, Saccharum spontaneum, Spartina alterniflora, and Typha latifolla. If these species are to be viable candidates in biomass systems, a number of research areas must be investigated further. Issues such as the development of base-line yield data for managed systems, mechanization and harvesting conceptualization, genetic (crop) improvement, identification of secondary plant products, and economic considerations require refinement. However, the potential pay-off for developing emergent aquatic systems will be significant if successful. 19 references.

  6. Bioaccumulation of total mercury in the earthworm Eisenia andrei

    OpenAIRE

    Le Roux, Shirley; Baker, Priscilla; Crouch, Andrew

    2016-01-01

    Earthworms are a major part of the total biomass of soil fauna and play a vital role in soil maintenance. They process large amounts of plant and soil material and can accumulate many pollutants that may be present in the soil. Earthworms have been explored as bioaccumulators for many heavy metal species such as Pb, Cu and Zn but limited information is available for mercury uptake and bioaccumulation in earthworms and very few report on the factors that influence the kinetics of Hg uptake by ...

  7. The fate of mercury in Arctic terrestrial and aquatic ecosystems, a review

    DEFF Research Database (Denmark)

    Douglas, Thomas A.; Loseto, Lisa L.; MacDonald, Robie W.;

    2012-01-01

    into the Arctic by oceanic, atmospheric and terrestrial pathways. Our focus is on the movement, transformation and bioaccumulation of Hg in aquatic (marine and fresh water) and terrestrial ecosystems. The processes most relevant to biological Hg uptake and the potential risk associated with Hg exposure...... the fate of Hg in most ecosystems, and the role of trophic processes in controlling Hg in higher order animals are also included. Case studies on Eastern Beaufort Sea beluga (Delphinapterus leucas) and landlocked Arctic char (Salvelinus alpinus) are presented as examples of the relationship between...

  8. Bioaccumulation of copper and toxic effects on feeding, growth, fecundity and development of pond snail Lymnaea luteola L.

    Science.gov (United States)

    Das, Sangita; Khangarot, B S

    2011-01-15

    We studied the bioaccumulation and the toxic effects of Cu on survival, number of eggs and eggmasses laying, embryo development, growth, and food consumption in an Indian pond snail, Lymnaea luteola L. exposed for 7 weeks. Copper caused loss of chemoreception, locomotion and inhibited food consumption significantly during 7 weeks of exposure. Food consumption in Cu exposed snails significantly decreased and at 56 and 100 μg L(-1), snail stopped feeding activity. Mean number of eggmasses or eggs significantly decreased in Cu concentrations during the 7 week study. The percentage hatching decreased in Cu concentrations but there was more than 95% hatched in control in 10-11 days after spawning. Egg development was completely inhibited at 100 μg L(-1), while abnormal embryonic development observed at 32 and 56 μg L(-1) of Cu. The Cu concentration in tissues increased in Cu treated snails and bioaccumulation factor ranged from 2.3 to 18.7. Snail growth at 5.6 and 10 μg L(-1) was reduced by 6.2% and 16.9%, respectively. The study revealed that snail embryos and adults could be used as in vivo test models for ecotoxicological studies. Findings of present study are helpful for advancing water quality guidelines for protecting aquatic biota.

  9. Conceptual Framework for Aquatic Interfaces

    Science.gov (United States)

    Lewandowski, J.; Krause, S.

    2015-12-01

    Aquatic interfaces are generally characterized by steep gradients of physical, chemical and biological properties due to the contrast between the two adjacent environments. Innovative measurement techniques are required to study the spatially heterogeneous and temporally variable processes. Especially the different spatial and temporal scales are a large challenge. Due to the steep biogeochemical gradients and the intensive structural and compositional heterogeneity, enhanced biogeochemical processing rates are inherent to aquatic interfaces. Nevertheless, the effective turnover depends strongly on the residence time distribution along the flow paths and in sections with particular biogeochemical milieus and reaction kinetics. Thus, identification and characterization of the highly complex flow patterns in and across aquatic interfaces are crucial to understand biogeochemical processing along exchange flow paths and to quantify transport across aquatic interfaces. Hydrodynamic and biogeochemical processes are closely coupled at aquatic interfaces. However, interface processing rates are not only enhanced compared to the adjacent compartments that they connect; also completely different reactions might occur if certain thresholds are exceeded or the biogeochemical milieu differs significantly from the adjacent environments. Single events, temporal variability and spatial heterogeneity might increase overall processing rates of aquatic interfaces and thus, should not be neglected when studying aquatic interfaces. Aquatic interfaces are key zones relevant for the ecological state of the entire ecosystem and thus, understanding interface functioning and controls is paramount for ecosystem management. The overall aim of this contribution is a general conceptual framework for aquatic interfaces that is applicable to a wide range of systems, scales and processes.

  10. Optimizing fish sampling for fish–mercury bioaccumulation factors

    Science.gov (United States)

    Fish Bioaccumulation Factors (BAFs; ratios of mercury (Hg) in fish (Hgfish) and water (Hgwater)) are used to develop total maximum daily load and water quality criteria for Hg-impaired waters. Both applications require representative Hgfish estimates and, thus, are sensitive to s...

  11. Modeling bioaccumulation in humans using poly-parameter linear free energy relationships (PPLFERS)

    International Nuclear Information System (INIS)

    Chemical partition coefficients between environmental media and biological tissues are a key component of bioaccumulation models. The single-parameter linear free energy relationships (spLFERs) commonly used for predicting partitioning are often derived using apolar chemicals and may not accurately capture polar chemicals. In this study, a poly-parameter LFER (ppLFER) based model of organic chemical bioaccumulation in humans is presented. Chemical partitioning was described by an air-body partition coefficient that was a volume weighted average of ppLFER based partition coefficients for the major organs and tissues constituting the human body. This model was compared to a spLFER model treating the body as a mixture of lipid (∼ octanol) and water. Although model agreement was good for hydrophobic chemicals (average difference 15% for log KOW > 4 and log KOA > 8), the ppLFER model predicted ∼ 90% lower body burdens for hydrophilic chemicals (log KOW < 0). This was mainly due to lower predictions of muscle and adipose tissue sorption capacity for these chemicals. A comparison of the predicted muscle and adipose tissue sorption capacities of hydrophilic chemicals with measurements indicated that the ppLFER and spLFER models' uncertainties were similar. Consequently, little benefit from the implementation of ppLFERs in this model was identified. - Research Highlights: →Implementation of ppLFERs resulted in on average 90% lower predicted body burdens. →Uncertainties in spLFER and ppLFER predictions were similar. →The benefit from implementation of ppLFERs in bioaccumulation models was limited.

  12. Pharmacokinetic modeling in aquatic animals. 1. Models and concepts

    Science.gov (United States)

    Barron, M.G.; Stehly, Guy R.; Hayton, W.L.

    1990-01-01

    While clinical and toxicological applications of pharmacokinetics have continued to evolve both conceptually and experimentally, pharmacokinetics modeling in aquatic animals has not progressed accordingly. In this paper we present methods and concepts of pharmacokinetic modeling in aquatic animals using multicompartmental, clearance-based, non-compartmental and physiologically-based pharmacokinetic models. These models should be considered as alternatives to traditional approaches, which assume that the animal acts as a single homogeneous compartment based on apparent monoexponential elimination.

  13. Bioaccumulation and toxicity of selenium during a life-cycle exposure with desert pupfish (Cyprinodon macularius)

    Science.gov (United States)

    2012-01-01

    Populations of desert pupfish (Cyprinodon macularius; pupfish), a federally-listed endangered species, inhabit irrigation drains in the Imperial Valley agricultural area of southern California. These drains have varying degrees of selenium (Se) contamination of water, sediment, and aquatic biota. Published Se toxicity studies suggest that these levels of Se contamination may pose risk of chronic toxicity to Se-sensitive fish, but until recently there have been no studies of the chronic toxicity of Se to desert pupfish. A life-cycle Se exposure with pupfish was conducted to estimate dietary and tissue thresholds for toxic effects of Se on all life stages. The dietary exposure was based on live oligochaete worms (Lumbriculus variegatus) dosed with Se by a laboratory food chain based on selenized yeast. Oligochaetes readily accumulated Se from mixtures of selenized and control yeasts. The protocol for dosing oligochaetes for pupfish feeding studies included long-term (at least 28 days) feeding of a low-ration of yeast mixtures to large batches of oligochaetes. Oligochaetes were dosed at five Se levels in a 50-percent dilution series. Pupfish were simultaneously fed Se-dosed oligochaetes and exposed to a series of Se concentrations in water (consisting of 85 percent selenate and 15 percent selenite) to produce exposures that were consistent with Se concentrations and speciation in pupfish habitats. The nutritional characteristics of oligochaete diets were consistent across the range of oligochaete Se concentrations tested. The life-cycle exposure started with laboratory-cultured juvenile pupfish that were exposed to Se through sexual maturation and reproduction (150 days; F0 exposure). The Se exposure continued with eggs, larvae, and juveniles produced by Se-exposed parents (79 days; F1 exposure). Selenium exposure (water and diets), Se bioaccumulation (whole-body and eggs), and toxicity endpoints (juvenile and adult survival and growth; egg production and hatching

  14. Uranium bioaccumulation in a freshwater ecosystem: impact of feeding ecology.

    Science.gov (United States)

    Kraemer, Lisa D; Evans, Douglas

    2012-11-15

    The objectives of our study were: (1) to determine if there was significant uranium (U) bioaccumulation in a lake that had been historically affected by a U mine and (2) to use a combined approach of gut content examination and stable nitrogen and carbon isotope analysis to determine if U bioaccumulation in fish was linked to foodweb ecology. We collected three species of fish: smallmouth bass (Micropterus dolomieu), yellow perch (Perca flavescens) and bluegill (Lepomis macrochirus), in addition to several invertebrate species including freshwater bivalves (family: Sphaeriidae), dragonfly nymphs (order: Odonata), snails (class: Gastropoda) and zooplankton (family: Daphniidae). Results showed significant U bioaccumulation in the lake impacted by historical mining activities. Uranium accumulation was 2-3 orders of magnitude higher in invertebrates than in the fish species. Within fish, U was measured in operculum (bone), liver and muscle tissue and accumulation followed the order: operculum>liver>muscle. There was a negative relationship between stable nitrogen ratios ((15)N/(14)N) and U bioaccumulation, suggesting U biodilution in the foodweb. Uranium bioaccumulation in all three tissues (bone, liver, muscle) varied among fish species in a consistent manner and followed the order: bluegill>yellow perch>smallmouth bass. Collectively, gut content and stable isotope analysis suggests that invertebrate-consuming fish species (i.e. bluegill) have the highest U levels, while fish species that were mainly piscivores (i.e. smallmouth bass) have the lowest U levels. Our study highlights the importance of understanding the feeding ecology of fish when trying to predict U accumulation. PMID:22963859

  15. PIXE analysis of chromium phytoaccumulation by the aquatic macrophytes Eicchornia crassipes

    Energy Technology Data Exchange (ETDEWEB)

    Espinoza-Quinones, F.R. [Department of Chemical Engineering - Postgraduate Program - NBQ, West Parana State University, Rua da Faculdade, 645, Jardim Santa Maria, 85903-000 Toledo, Parana (Brazil)], E-mail: f.espinoza@terra.com.br; Rizzutto, M.A.; Added, N.; Tabacniks, M.H. [Physics Institute, University of Sao Paulo, Rua do Matao s/n, Travessa R 187, 05508-900 Sao Paulo, SP (Brazil); Modenes, A.N.; Palacio, S.M.; Silva, E.A.; Rossi, F.L.; Martin, N.; Szymanski, N. [Department of Chemical Engineering - Postgraduate Program - NBQ, West Parana State University, Rua da Faculdade, 645, Jardim Santa Maria, 85903-000 Toledo, Parana (Brazil)

    2009-04-15

    The uptake of hexavalent chromium in free living floating aquatic macrophytes Eicchornia crassipes cultivated in non-toxic chromium-doped hydroponic solutions is presented. A Cr-uptake bioaccumulation experiment was carried out using healthy macrophytes grown in a temperature controlled greenhouse. Six samples of nutrient media and plants were collected during the 23 day experiment. Roots and leaves were acid digested with the addition of an internal Gallium standard, for thin film sample preparation and quantitative Cr analysis by PIXE method. The Cr{sup 6+} mass uptake by the macrophytes reached up to 70% of the initial concentration, comparable to former results and literature data. The Cr-uptake data were described using a non-structural first order kinetic model. Due to low cost and high removal efficiency, living aquatic macrophytes E. crassipes are a viable biosorbent in an artificial wetland of a water effluent treatment plant.

  16. PIXE analysis of chromium phytoaccumulation by the aquatic macrophytes Eicchornia crassipes

    International Nuclear Information System (INIS)

    The uptake of hexavalent chromium in free living floating aquatic macrophytes Eicchornia crassipes cultivated in non-toxic chromium-doped hydroponic solutions is presented. A Cr-uptake bioaccumulation experiment was carried out using healthy macrophytes grown in a temperature controlled greenhouse. Six samples of nutrient media and plants were collected during the 23 day experiment. Roots and leaves were acid digested with the addition of an internal Gallium standard, for thin film sample preparation and quantitative Cr analysis by PIXE method. The Cr6+ mass uptake by the macrophytes reached up to 70% of the initial concentration, comparable to former results and literature data. The Cr-uptake data were described using a non-structural first order kinetic model. Due to low cost and high removal efficiency, living aquatic macrophytes E. crassipes are a viable biosorbent in an artificial wetland of a water effluent treatment plant.

  17. A controlled aquatic ecological life support system (CAELSS) for combined production of fish and higher plant biomass suitable for integration into a lunar or planetary base.

    Science.gov (United States)

    Blum, V; Andriske, M; Eichhorn, H; Kreuzberg, K; Schreibman, M P

    1995-10-01

    Based on the construction principle of the already operative Closed Equilibrated Biological Aquatic System (C.E.B.A.S.) the concept of an aquaculture system for combined production of animal and plant biomass was developed. It consists of a tank for intensive fish culture which is equipped with a feeding lock representing also a trap for biomass removal followed by a water recycling system. This is an optimized version of the original C.E.B.A.S. filters adapted to higher water pollutions. It operates in a fully biological mode and is able to convert the high ammonia ion concentrations excreted by the fish gills into nitrite ions. The second biomass production site is a higher plant cultivator with an internal fiber optics light distributor which may utilize of solar energy. The selected water plant is a tropical rootless duckweed of the genus Wolffia which possesses a high capacity in nitrate elimination and is terrestrially cultured as a vegetable for human nutrition in Southeast Asia. It is produced in an improved suspension culture which allows the removal of excess biomass by tangential centrifugation. The plant cultivator is able to supply the whole system with oxygen for respiration and eliminates vice versa the carbon dioxide exhaled by the fish via photosynthesis. A gas exchanger may be used for emergency purposes or to deliver excess oxygen into the environment and may be implemented into the air regeneration system of a closed environment of higher order. The plant biomass is fed into a biomass processor which delivers condensed fresh and dried biomass as pellets. The recovered water is fed back into the aquaculture loop. The fresh plants can be used for human nutrition immediately or can be stored after sterilization in an adequate packing. The dried Wolffia pellets are collected and brought into the fish tank by an automated feeder. In parallel the water from the plant cultivator is driven back to the animal tank by a pump. The special feature of the

  18. Enantiomer-specific toxicity and bioaccumulation of alpha-cypermethrin to earthworm Eisenia fetida.

    Science.gov (United States)

    Diao, Jinling; Xu, Peng; Liu, Donghui; Lu, Yule; Zhou, Zhiqiang

    2011-09-15

    Alpha-cypermethrin, a synthetic pyrethroid, is highly effective against a wide range of chewing and sucking insects in crops, and it is a racemic mixture of two enantiomers ((+)-1R-cis-αS+(-)-1S-cis-αR). Studies about the toxicity of alpha-cypermethrin to non-target organisms are mainly focused on aquatic organisms, whereas information regarding terrestrial organisms is relatively much less. Very little report about its enantioselective toxicity is known, so the present study tested the enantiomer-specific acute toxicity to earthworm Eisenia fetida. Experiment about bioaccumulation of two enantiomers in soil was conducted, peak-shaped accumulation curves were observed for both enantiomers, and the calculated biota to soil accumulations factor (BSAF) have significant difference between the two enantiomers. It was obvious that earthworm can uptake alpha-cypermethrin enantioselectively, preferentially accumulating (-)-(1S-cis-αR)-enantiomer. Great difference in toxicity to earthworm between two enantiomers was found, and the calculated LC(50) values for (+)-(1R-cis-αS)-, (-)-(1S-cis-αR)-, and rac-alpha-cypermethrin were 49.53, 1663.87 and 165.61 ng/cm(2), respectively. The acute toxicity of alpha-cypermethrin enantiomers was enantioselective.

  19. Bioaccumulation of selenium (Se) in the Cienega de Santa Clara wetland, Sonora, Mexico.

    Science.gov (United States)

    García-Hernández, J; Glenn, E P; Artiola, J; Baumgartner, D J

    2000-07-01

    The Cienega de Santa Clara, on the east side of the Colorado River delta, is a brackish wetland supported by agricultural drainage water from the United States that provides habitat for endangered fish and bird species. Bioaccumulation of selenium has created toxicity problems for wildlife in similar wetlands in the United States. This is the first selenium survey in the Cienega de Santa Clara. Ten sites were selected to collect water (dissolved), sediments (total), plants, invertebrates, and fish. Samples were collected from October 1996 to March 1997. Selenium was detected in all samples. Concentrations in water ranged from 5 to 19 microg/L and increased along a salinity gradient. Although water levels of selenium exceeded EPA criterion for protection of wildlife, levels in sediments (0.8-1.8 mg/kg), aquatic plants (0.03-0.17 mg/kg), and fish (2.5-5.1 mg/kg whole body, dry wt) did not exceed USFWS recommended levels. It is concluded from this study that the levels of selenium in water did not affect the overall health of the fish sampled. Therefore, it is important to maintain or improve the water quality entering this wetland to continue to have normal levels of Se in the food chain components.

  20. Heavy metals toxicity and bioaccumulation patterns in the body organs of four fresh water fish species

    Directory of Open Access Journals (Sweden)

    Safina Kousar and Muhammad Javed

    2014-04-01

    Full Text Available Various environmental pollutants, including metals can cause toxicological effects on aquatic animals especially fish species. Laboratory experiments were conducted to determine acute toxicity and bioaccumulation patterns of arsenic (As, nickel (Ni and zinc (Zn in 150-day old fish species (Labeo rohita, Cirrhina mrigala, Catla catla and Ctenopharyngodon idella, separately, in glass aquaria under constant water temperature (30oC, total hardness (300 mg L-1 and pH (7.5. Catla catla showed significantly (PNi>As. Among exposed fish species, Cirrhina mrigala exhibited significantly higher ability to amass Ni (146.8±149.1 μg g-1 and Zn (243.0±190.5 μg g-1, followed by Ctenopharyngodon idella, Labeo rohita and Catla catla at 96-h LC50. Liver showed higher tendency to accumulate Ni, followed by gills and kidney with significant differences while kidney showed higher tendency to accumulate As, followed by liver. Fins and scales exhibited significantly (P<0.05 least tendency to accumulate all the three metals. Accumulation of metals in different fish species is the function of their membrane permeability, which is highly species specific. Due to this reason different fish species showed different amount of metal accumulated in their bodies. This study also reveals that the metals, being conservative in nature have higher ability of biomagnifications.

  1. Strategies to Quantify and Decrease Mercury Bioavailability and Methylation Potential in the Aquatic Environment

    Science.gov (United States)

    Hsu-Kim, H.; Deshusses, M.; Elias, D. A.

    2015-12-01

    Mercury (Hg) contamination in aquatic environments is a concern due to the production of monomethylmercury (MeHg), the highly bioaccumulative form that can impart neurotoxic effects to wildlife and humans. One strategy for remediation is to minimize MeHg production by anaerobic microorganisms that are prevalent in benthic settings. However, the factors that influence MeHg production and, in particular, the bioavailability of inorganic Hg for methylating microorganisms are poorly understood and difficult to quantify. This presentation will discuss the application of a thiol-based selective leaching assay to quantify the bioavailable fraction of Hg in sediments. This leaching assay involves quantification of leachable Hg concentrations in samples that are exposed to anoxic solutions containing glutathione (GSH). This thiol-based approach was chosen because cellular uptake and methylation of Hg by methylating bacteria are known to increase with the addition of GSH to cultures. This assay was applied to sediment-slurry microcosms that were amended with multiple types of inorganic Hg (dissolved Hg2+, Hg-sorbed to FeS, nanoparticulate HgS, microcrystalline HgS) that are known to span a range of bioavailability and methylation potential. The results demonstrated that the GSH-leachable Hg concentration correlated with MeHg production in cultures and microcosms. Methylation potential did not correlate to the concentration of Hg in the filtered aqueous fraction in the microcosm (i.e., passable though 0.2 um filters). These results suggest that a portion of the particle-bound Hg is available for methylation in a way that cannot be assessed by conventional filtration methods. The results of this work will be discussed in the context of management and in-situ remediation of contaminated sediments.

  2. Accumulation and fluxes of mercury in terrestrial and aquatic food chains with special reference to Finland

    Directory of Open Access Journals (Sweden)

    Martin Lodenius

    2013-03-01

    Full Text Available Mercury is known for its biomagnification especially in aquatic food chains and for its toxic effects on different organisms including man. In Finland mercury has formerly been used in industry and agriculture and in addition many anthropogenic activities may increase the mercury levels in ecosystems. Phenyl mercury was widely used as slimicide in the pulp and paper industry in the 1950s and 1960s. In the chlor-alkali industry metallic mercury was used as catalyst at three plants. The most toxic form of mercury, methyl mercury, may be formed in soils, water, sediments and organisms. Many factors, including microbial activity, temperature, oxygen status etc., affect the methylation rate. In the lake ecosystem bioaccumulation of methyl mercury is very strong. In early 1980s there was a restriction of fishing concerning approximately 4000 km2 of lakes and sea areas because of mercury pollution. In aquatic systems we still find elevated concentrations near former emission sources. Long-range atmospheric transport and mechanical operations like ditching and water regulation may cause increased levels of mercury in the aquatic ecosystems. In the Finnish agriculture organic mercury compounds were used for seed dressing until 1992. Although the amounts used were substantial the concentrations in agricultural soils have remained rather low. In terrestrial food chains bioaccumulation is normally weak with low or moderate concentration at all ecosystem levels. Due to a weak uptake through roots terrestrial, vascular plants normally contain only small amounts of mercury. There is a bidirectional exchange of mercury between vegetation and atmosphere. Contrary to vascular plants, there is a very wide range of concentrations in fungi. Mercury may pose a threat to human health especially when accumulated in aquatic food chains.

  3. Interactions between zooplankton and crude oil: toxic effects and bioaccumulation of polycyclic aromatic hydrocarbons.

    Directory of Open Access Journals (Sweden)

    Rodrigo Almeda

    Full Text Available We conducted ship-, shore- and laboratory-based crude oil exposure experiments to investigate (1 the effects of crude oil (Louisiana light sweet oil on survival and bioaccumulation of polycyclic aromatic hydrocarbons (PAHs in mesozooplankton communities, (2 the lethal effects of dispersant (Corexit 9500A and dispersant-treated oil on mesozooplankton, (3 the influence of UVB radiation/sunlight exposure on the toxicity of dispersed crude oil to mesozooplankton, and (4 the role of marine protozoans on the sublethal effects of crude oil and in the bioaccumulation of PAHs in the copepod Acartia tonsa. Mortality of mesozooplankton increased with increasing oil concentration following a sigmoid model with a median lethal concentration of 32.4 µl L(-1 in 16 h. At the ratio of dispersant to oil commonly used in the treatment of oil spills (i.e. 1∶20, dispersant (0.25 µl L(-1 and dispersant-treated oil were 2.3 and 3.4 times more toxic, respectively, than crude oil alone (5 µl L(-1 to mesozooplankton. UVB radiation increased the lethal effects of dispersed crude oil in mesozooplankton communities by 35%. We observed selective bioaccumulation of five PAHs, fluoranthene, phenanthrene, pyrene, chrysene and benzo[b]fluoranthene in both mesozooplankton communities and in the copepod A. tonsa. The presence of the protozoan Oxyrrhis marina reduced sublethal effects of oil on A. tonsa and was related to lower accumulations of PAHs in tissues and fecal pellets, suggesting that protozoa may be important in mitigating the harmful effects of crude oil exposure in copepods and the transfer of PAHs to higher trophic levels. Overall, our results indicate that the negative impact of oil spills on mesozooplankton may be increased by the use of chemical dispersant and UV radiation, but attenuated by crude oil-microbial food webs interactions, and that both mesozooplankton and protozoans may play an important role in fate of PAHs in marine environments.

  4. Toxicokinetic modeling challenges for aquatic nanotoxicology

    Directory of Open Access Journals (Sweden)

    Wei-Yu eChen

    2016-01-01

    Full Text Available Nanotoxicity has become of increasing concern since the rapid development of metal nanoparticles (NPs. Aquatic nanotoxicity depends on crucial qualitative and quantitative properties of nanomaterials that induce adverse effects on subcellular, tissue, and organ level. The dose-response effects of size-dependent metal NPs, however, are not well investigated in aquatic organisms. In order to determine the uptake and elimination rate constants for metal NPs in the metabolically active/ detoxified pool of tissues, a one-compartmental toxicokinetic model can be applied when subcellular partitioning of metal NPs data would be available. The present review is an attempt to describe the nano-characteristics of toxicokinetics and subcellular partitioning on aquatic organisms with the help of the mechanistic modeling for NP size-dependent physiochemical properties and parameters. Physiologically-based pharmacokinetic (PBPK models can provide an effective tool to estimate the time course of NP accumulation in target organs and is useful in quantitative risk assessments. NP accumulation in fish should take into account different effects of different NP sizes to better understand tissue accumulative capacities and dynamics. The size-dependent NP partition coefficient is a crucial parameter that influences tissue accumulation levels in PBPK modeling. Further research is needed to construct the effective systems-level oriented toxicokinetic model that can provide a useful tool to develop quantitatively the robustly approximate relations that convey a better insight into the impacts of environmental metal NPs on subcellular and tissue/organ responses in aquatic organisms.

  5. Exposures from aquatic pathways

    International Nuclear Information System (INIS)

    Methods for estimation aquatic pathways contribution to the total population exposure are discussed. Aquatic pathways are the major factor for radionuclides spreading from the Chernobyl Exclusion zone. An annual outflow of 90Sr and 137Cs comprised 10-20 TBq and 2-4 TBq respectively and the population exposed by this effluence constitutes almost 30 million people. The dynamic of doses from 90Sr and 'Cs, which Dnieper water have to delivered, is calculated. The special software has been developed to simulate the process of dose formation in the of diverse Dnieper regions. Regional peculiarities of municipal tap, fishing and irrigation are considered. Seventy-year prediction of dose structure and function of dose forming is performed. The exposure is estimated for 12 regions of the Dnieper basin and the Crimea. The maximal individual annual committed effective doses due to the use of water by ordinary members of the population in Kiev region from 90Sr and 137Cs in 1986 are 1.7*10-5 Sv and 2.7*10-5 Sv respectively. A commercial fisherman on Kiev reservoir in 1986 received 4.7*10-4 Sv and 5*10-3 Sv from 90Sr and 137Cs, respectively. The contributions to the collective cumulative (over 70 years) committed effective dose (CCCED70) of irrigation, municipal tap water and fish consumption for members of the population respectively are 18%, 43%, 39% in Kiev region, 8%, 25%, 67% in Poltava region, and 50%, 50%, 0% (consumption of Dnieper fish is absent) in the Crimea. The predicted contribution of the Strontium-90 to CCCED70 resulting from the use of water is 80%. The CCCED70 to the population of the Dnieper regions (32.5 million people) is 3000 person-Sv due to the use the Dnieper water

  6. Early Pleistocene aquatic resource use in the Turkana Basin.

    Science.gov (United States)

    Archer, Will; Braun, David R; Harris, Jack W K; McCoy, Jack T; Richmond, Brian G

    2014-12-01

    Evidence for the acquisition of nutritionally dense food resources by early Pleistocene hominins has implications for both hominin biology and behavior. Aquatic fauna may have comprised a source of highly nutritious resources to hominins in the Turkana Basin at ∼1.95 Ma. Here we employ multiple datasets to examine the issue of aquatic resource use in the early Pleistocene. This study focuses on four components of aquatic faunal assemblages (1) taxonomic diversity, (2) skeletal element proportion, (3) bone fragmentation and (4) bone surface modification. These components are used to identify associations between early Pleistocene aquatic remains and hominin behavior at the site of FwJj20 in the Koobi Fora Fm. (Kenya). We focus on two dominant aquatic species: catfish and turtles. Further we suggest that data on aquatic resource availability as well as ethnographic examples of aquatic resource use complement our observations on the archaeological remains from FwJj20. Aquatic food items provided hominins with a valuable nutritional alternative to an exclusively terrestrial resource base. We argue that specific advantages afforded by an aquatic alternative to terrestrial resources include (1) a probable reduction in required investment of energy relative to economic return in the form of nutritionally dense food items, (2) a decrease in the technological costs of resource acquisition, and (3) a reduced level of inter-specific competition associated with carcass access and an associated reduction of predation risk relative to terrestrial sources of food. The combined evidence from FwJj20 suggests that aquatic resources may have played a substantial role in early Pleistocene diets and these resources may have been overlooked in previous interpretations of hominin behavior.

  7. Bioaccumulation of 226Ra by plants growing in fresh water ecosystem around the uranium industry at Jaduguda, India

    International Nuclear Information System (INIS)

    A field study has been conducted to evaluate the 226Ra bioaccumulation among aquatic plants growing in the stream/river adjoining the uranium mining and ore-processing complex at Jaduguda, India. Two types of plant group have been investigated namely free floating algal species submerged into water and plants rooted in stream and riverbed. The highest 226Ra activity concentration (9850 Bq kg-1) was found in filamentous algae growing in the residual water of tailings pond. The concentration ratios of 226Ra in filamentous algae (activity concentration of 226Ra in plant Bq kg-1 fresh weight/activity concentration of 226Ra in water Bq l-1) widely varied i.e. from 1.1 x 103 to 8.6 x 104. Other aquatic plants were also showing wide variability in the 226Ra activity concentration. The ln-transformed filamentous algae 226Ra activity concentration was significantly correlated with that of ln-transformed water concentration (r = 0.89, p 226Ra in stream/riverbed rooted plants and the substrate. For this group, correlation between 226Ra activity concentration and Mn, Fe, Cu concentration in plants were statistically significant.

  8. Bioaccumulation, subcellular, and molecular localization and damage to physiology and ultrastructure in Nymphoides peltata (Gmel.) O. Kuntze exposed to yttrium.

    Science.gov (United States)

    Fu, Yongyang; Li, Feifei; Xu, Ting; Cai, Sanjuan; Chu, Weiyue; Qiu, Han; Sha, Sha; Cheng, Guangyu; Xu, Qinsong

    2014-02-01

    Bioaccumulation, subcellular distribution, and acute toxicity of yttrium (Y) were evaluated in Nymphoides peltata. The effects of Y concentrations of 1-5 mg L(-1) applied for 4 days were assessed by measuring changes in photosynthetic pigments, nutrient contents, enzymatic and non-enzymatic antioxidants, and ultrastructure. The accumulation of Y in subcellular fractions decreased in the order of cell wall > organelle > soluble fraction. Much more Y was located in cellulose and pectin than in other biomacromolecules. The content of some mineral elements (Mg, Ca, Fe, Mn, and Mo) increased in N. peltata, but there was an opposite effect for P and K. Meanwhile, ascorbate, and catalase activity decreased significantly for all Y concentrations. In contrast, peroxidase activity was induced, while initial rises in superoxide dismutase activity and glutathione content were followed by subsequent declines. Morphological symptoms of senescence, such as chlorosis and damage to chloroplasts and mitochondria, were observed even at the lowest Y concentration. Pigment content decreased as the Y concentration rose and the calculated EC50 and MPC of Y for N. peltata were 2 and 0.2 mg L(-1) after 4 days of exposure, respectively. The results showed that exogenous Y was highly available in water and that its high concentration in water bodies might produce harmful effects on aquatic organisms. N. peltata is proposed as a biomonitor for the assessment of metal pollution in aquatic ecosystems. PMID:24170501

  9. CAM Photosynthesis in Submerged Aquatic Plants

    Science.gov (United States)

    Keeley, J.E.

    1998-01-01

    and terrestrial floras have evolved CAM photosynthesis. Aquatic Isoe??tes (Lycophyta) represent the oldest lineage of CAM plants and cladistic analysis supports an origin for CAM in seasonal wetlands, from which it has radiated into oligotrophic lakes and into terrestrial habitats. Temperate Zone terrestrial species share many characteristics with amphibious ancestors, which in their temporary terrestrial stage, produce functional stomata and switch from CAM to C3. Many lacustrine Isoe??tes have retained the phenotypic plasticity of amphibious species and can adapt to an aerial environment by development of stomata and switching to C3. However, in some neotropical alpine species, adaptations to the lacustrine environment are genetically fixed and these constitutive species fail to produce stomata or loose CAM when artificially maintained in an aerial environment. It is hypothesized that neotropical lacustrine species may be more ancient in origin and have given rise to terrestrial species, which have retained most of the characteristics of their aquatic ancestry, including astomatous leaves, CAM and sediment-based carbon nutrition.

  10. Development of traceability system of aquatic foods supply chain based on RFID and EPC internet of things%基于RFID和EPC物联网的水产品供应链可追溯平台开发

    Institute of Scientific and Technical Information of China (English)

    颜波; 石平; 黄广文

    2013-01-01

      为实现对水产品流通过程的全程追溯,该文以供应链为视角,以罗非鱼为具体研究对象,立足消费者、企业和政府监管部门等三方,本着可跟踪、可追溯、可召回等基本目标,设计并开发了基于射频识别(radio frequency identification,RFID)和产品电子代码(electronic product code,EPC)物联网的,包含养殖管理系统、加工管理系统、配送管理系统、销售管理系统、查询监管系统5个子系统的水产品供应链可追溯平台,并着重对平台的对象名称服务(object name service,ONS)和EPC信息服务(electronic product code information service,EPCIS)进行了详细的设计与实现,利用该平台可以实现水产品从养殖、加工、配送到销售的全程跟踪与追溯。该研究可为水产品供应链可追溯系统模型与软件的开发提供参考。%Food safety has become an important global public-health issue, and aquatic safety issues were never suspended. With the exposure and the emergence of some aquatic products’ quality and safety issues in China, safety issues for the quality of aquatic products has become the bottleneck of the sustainable development of fisheries and aquatic products for import and export trade. In response to the risk in the aquatic foods supply chain and to improve services, the traceable platform of the aquatic foods supply chain is highly required. Quality problems of aquatic products could occur in every aspect of the aquatic foods supply chain, including breeding, processing, distribution, and sale. So not only policies, but also technical supports are needed to ensure the quality and safety of aquatic products and to bottom out the safety hazards. In response to these issues, this paper takes tilapia as the object of study and designs and develops a traceable platform of the aquatic foods supply chain based on Radio Frequency Identification (RFID) and Electronic Product Code

  11. 基于RFID和EPC物联网的水产品供应链可追溯平台开发%Development of traceability system of aquatic foods supply chain based on RFID and EPC internet of things

    Institute of Scientific and Technical Information of China (English)

    颜波; 石平; 黄广文

    2013-01-01

    Food safety has become an important global public-health issue, and aquatic safety issues were never suspended. With the exposure and the emergence of some aquatic products’ quality and safety issues in China, safety issues for the quality of aquatic products has become the bottleneck of the sustainable development of fisheries and aquatic products for import and export trade. In response to the risk in the aquatic foods supply chain and to improve services, the traceable platform of the aquatic foods supply chain is highly required. Quality problems of aquatic products could occur in every aspect of the aquatic foods supply chain, including breeding, processing, distribution, and sale. So not only policies, but also technical supports are needed to ensure the quality and safety of aquatic products and to bottom out the safety hazards. In response to these issues, this paper takes tilapia as the object of study and designs and develops a traceable platform of the aquatic foods supply chain based on Radio Frequency Identification (RFID) and Electronic Product Code (EPC) Internet of Things, and focuses on designing Object Name Service (ONS) and EPC Information Service (EPCIS) of this platform. Tracking, traceability, recall, and monitoring of tilapia products in the food supply chain can be achieved with the participation of consumers, enterprises, and the government. This platform contains an aquaculture management system, process management system, distribution management system, sales management system, and querying and monitoring system, and realizes all-the-way traceability of aquatic products from breeding, processing, and distribution to sales. This platform has the following characteristics: 1) It has a monitoring function of tilapia farming, and can track and trace all aspects of information from breeding, production, processing, and distribution to sale; 2) It brings out informationization on the production and management of enterprises, and achieves all

  12. Bioaccumulation of Cs-137 and Co-57 by marine phytoplankton

    Energy Technology Data Exchange (ETDEWEB)

    Heldal, H.E. [Inst. of Marine Research, Bergen (Norway); Stupakoff, I.; Fisher, N.S. [State Univ. of New York, Marine Sciences Research Center, Stone Brook, NY (United States)

    1999-11-01

    Under controlled laboratory conditions we have examined the bioaccumulation of Cs-137 and Co-57 in three prymnesiophytes, the coccolithophorid Emiliania huxleyi and the non-calcareous species Isochrysis galbana and Phaeocystis globosa, and two diatoms Skeletonema costatum and Thalassiosira pseudonana. We measured uptake in growing and non-growing cells, and determined concentration factors on both volume and dry weight basis. For Co-57 uptake in non-growing cells, volume concentration factors (VCF) at equilibrium ranged from 0.2{sup *}10{sup 3} for Emiliana huxleyi to 4{sup *}10{sup 3} for the diatom Thalassiosira pseudonana. For Cs-137 uptake in non-growing cells the VCFs were close to zero. The results suggest that, in contrast to Co, the cycling and bioaccumulation in animals of Cs in marine systems is unlikely to be affected by primary producers. (au)

  13. Improving plant bioaccumulation science through consistent reporting of experimental data

    DEFF Research Database (Denmark)

    Fantke, Peter; Arnot, Jon A.; Doucette, William J.

    2016-01-01

    Experimental data and models for plant bioaccumulation of organic contaminants play a crucial role for assessing the potential human and ecological risks associated with chemical use. Plants are receptor organisms and direct or indirect vectors for chemical exposures to all other organisms. As new...... experimental data are generated they are used to improve our understanding of plant-chemical interactions that in turn allows for the development of better scientific knowledge and conceptual and predictive models. The interrelationship between experimental data and model development is an ongoing, never......-ending process needed to advance our ability to provide reliable quality information that can be used in various contexts including regulatory risk assessment. However, relatively few standard experimental protocols for generating plant bioaccumulation data are currently available and because of inconsistent...

  14. Integrated testing strategy (ITS) for bioaccumulation assessment under REACH

    DEFF Research Database (Denmark)

    Lombardo, Anna; Roncaglioni, Alessandra; Benfentati, Emilio;

    2014-01-01

    present an ITS for evaluating the bioaccumulation potential of organic chemicals. The scheme includes the use of all available data (also the non-optimal ones), waiving schemes, analysis of physicochemical properties related to the end point and alternative methods (both in silico and in vitro). In vivo...... in a dossier. REACH promotes the use of alternative methods to replace, refine and reduce the use of animal (eco)toxicity testing. Within the EU OSIRIS project, integrated testing strategies (ITSs) have been developed for the rational use of non-animal testing approaches in chemical hazard assessment. Here we...... methods are used only as last resort. Using the ITS, in vivo testing could be waived for about 67% of the examined compounds, but bioaccumulation potential could be estimated on the basis of non-animal methods. The presented ITS is freely available through a web tool. © 2014 Elsevier Ltd....

  15. Bioaccumulation of heavy metals in two wet retention ponds

    DEFF Research Database (Denmark)

    Søberg, Laila C.; Vollertsen, Jes; Blecken, Godecke-Tobias;

    2016-01-01

    Metal accumulation in stormwater ponds may contaminate the inhabiting fauna, thus jeopardizing their ecosystem servicing function. We evaluated bioaccumulation of metals in natural fauna and caged mussel indicator organisms in two wet retention ponds. Mussel cages were distributed throughout...... the ponds to detect bioaccumulation gradients and obtain a time-integrated measure of metal bioavailability. We further investigated if sediment metal concentrations correlate with those in the fauna and mussels. Metal concentrations in the fauna tended to be higher in the ponds than in a reference lake......, but statistical significance was only shown for Cu. Positive correlations were found for some metals in fauna and sediment. Sediment metal concentrations in one pond decreased from inlet to outlet while no gradients were observed in the mussels in either pond. These findings indicate that metal accumulation...

  16. Measuring Complexity in an Aquatic Ecosystem

    OpenAIRE

    Fernandez, Nelson; Gershenson, Carlos

    2013-01-01

    We apply formal measures of emergence, self-organization, homeostasis, autopoiesis and complexity to an aquatic ecosystem; in particular to the physiochemical component of an Arctic lake. These measures are based on information theory. Variables with an homogeneous distribution have higher values of emergence, while variables with a more heterogeneous distribution have a higher self-organization. Variables with a high complexity reflect a balance between change (emergence) and regularity/orde...

  17. Influence of Lipophilicity on the Toxicity of Bisphenol A and Phthalates to Aquatic Organisms.

    Science.gov (United States)

    Mathieu-Denoncourt, Justine; Wallace, Sarah J; de Solla, Shane R; Langlois, Valerie S

    2016-07-01

    Bisphenol A (BPA) and phthalates are among the most popular plasticizers used today and have been reported ubiquitously in surface water, ground water, and sediment. For aquatic organisms, BPA was the most toxic (96 h LC50s) to aquatic invertebrates (0.96-2.70 mg/L) and less toxic to fish (6.8-17.9 mg/L). The toxicity of BPA to amphibians differed among developmental stages, with embryos having an LC50 of 4.6-6.8 mg/L and juveniles 0.50-1.4 mg/L. The toxicity of phthalates is affected by aromatic ring substitution, alkyl chain length, and metabolism. The toxicity (96 h LC50s) of phthalates was similar to aquatic invertebrates (0.46-377 mg/L) and fish (0.48-121 mg/L). In general, the toxicity of phthalates appears to be highest around a log KOW of 6, which corresponds to the highest potential for bioconcentration and bioaccumulation. In conclusion, the lipophilicity of BPA and phthalates influence their toxicity to aquatic species.

  18. Development of aquatic life criteria for nitrobenzene in China

    International Nuclear Information System (INIS)

    Nitrobenzene is a toxic pollutant and was the main compound involved in the Songhuajiang accident in 2007, one of the largest water pollution accidents in China in the last decade. No aquatic life criteria for nitrobenzene have previously been proposed. In this study, published toxicity data of nitrobenzene to Chinese aquatic species were gathered, and six resident Chinese aquatic organisms were used in toxicity tests to supplement the existing toxicity data for nitrobenzene. Seventeen genuses mean acute values, three genuses mean chronic values to freshwater aquatic animals, and six genus toxicity values to aquatic plants were collected in total. A criterion maximum concentration of 0.018 mg/L and a criterion continuous concentration of 0.001 mg/L were developed based on these data, according to the U.S. Environmental Protection Agency guidelines. These criteria may be useful in the determination of water quality standard of nitrobenzene. - Highlights: ► China is embarking on development of national water quality criteria system. ► Nitrobenzene is a valuable case in development of water quality criteria in China. ► Several Chinese resident aquatic organisms were chosen to be tested. ► The aquatic life criteria for nitrobenzene were developed. - An acute criterion of 0.018 mg/L and a chronic criterion of 0.001 mg/L for nitrobenzene in China were developed according to the U.S. Environmental Protection Agency (USEPA) guidelines.

  19. Uptake and bioaccumulation of Cry toxins by an aphidophagous predator.

    Science.gov (United States)

    Paula, Débora P; Andow, David A

    2016-02-01

    Uptake of Cry toxins by insect natural enemies has rarely been considered and bioaccumulation has not yet been demonstrated. Uptake can be demonstrated by the continued presence of Cry toxin after exposure has stopped and gut contents eliminated. Bioaccumulation can be demonstrated by showing uptake and that the concentration of Cry toxin in the natural enemy exceeds that in its food. We exposed larvae of the aphidophagous predator, Harmonia axyridis, to Cry1Ac and Cry1F through uniform and constant tritrophic exposure via an aphid, Myzus persicae, and looked for toxin presence in the pupae. We repeated the experiment using only Cry1F and tested newly emerged adults. Both Cry toxins were detected in pupae, and Cry1F was detected in recently emerged, unfed adults. Cry1Ac was present 2.05 times and Cry1F 3.09 times higher in predator pupae than in the aphid prey. Uptake and bioaccumulation in the third trophic level might increase the persistence of Cry toxins in the food web and mediate new exposure routes to natural enemies. PMID:26686057

  20. Review of OPFRs in animals and humans: Absorption, bioaccumulation, metabolism, and internal exposure research.

    Science.gov (United States)

    Hou, Rui; Xu, Yiping; Wang, Zijian

    2016-06-01

    Due to their widespread use, organophosphate flame retardants (OPFRs) are commonly detected in various environmental matrices and have been identified as emerging contaminants. Considering the adverse effects of OPFRs, many researchers have paid their attention on the absorption, bioaccumulation, metabolism and internal exposure processes of OPFRs in animals and humans. In this article, we first review the diverse absorption routes of OPFRs by animals and humans (e.g., inhalation, ingestion, dermal absorption and gill absorption). Bioaccumulation and biomagnification potentials of OPFRs in different types of organisms and food webs are also summarized, based on quite limited available data and results. For metabolism, we review the Phase-I and Phase-II metabolic processes for each type of OPFRs (chlorinated OPFRs, alkyl-OPFRs and aryl-OPFRs) in the animals and humans, as well as toxicokinetic information and putative exposure biomarkers on OPFRs. Finally, we highlight gaps in our knowledge and critical directions for future internal exposure studies of OPFRs in animals and humans. PMID:27010170

  1. Zinc and copper bioaccumulation in fish from Laizhou Bay, the Bohai Sea

    Science.gov (United States)

    Liu, Jinhu; Cao, Liang; Huang, Wei; Zhang, Chuantao; Dou, Shuozeng

    2014-05-01

    Zinc (Zn) and copper (Cu) concentrations were determined in the tissues (muscle, stomach, liver, gills, skin, and gonads) of five commercial fish species (mullet Liza haematocheilus, flathead Platycephalus indicus, mackerel Scomberomorus niphonius, silver pomfret Pampus argenteus, and sea bass Lateolabrax japonicus) from Laizhou Bay in the Bohai Sea. Metal bioaccumulation was highest in the metabolically active tissues of the gonads and liver. Bioconcentration factors for Zn were higher in all tissues (gonads 44.35, stomach 7.73, gills 7.72, liver 5.61, skin 4.88, and muscle 1.63) than the corresponding values for Cu (gonads 3.50, stomach 3.00, gills 1.60, liver 5.43, skin 1.50, and muscle 0.93). Mackerel tissues accumulated metal to higher concentrations than did other fish species, but bioaccumulation levels were not significantly correlated with the trophic levels of the fish. Zn and Cu concentrations in the tissues were generally negatively correlated with fish length, except for a few tissues of sea bass. Risk assessment based on national and international permissible limits and provisional tolerances for weekly intake of Zn and Cu revealed that the concentrations of these two metals in muscle were relatively low and would not pose hazards to human health.

  2. Modeling bioaccumulation and biomagnification of nonylphenol and its ethoxylates in estuarine-marine food chains.

    Science.gov (United States)

    Korsman, John C; Schipper, Aafke M; de Vos, Martine G; van den Heuvel-Greve, Martine J; Vethaak, A Dick; de Voogt, Pim; Hendriks, A Jan

    2015-11-01

    There are several studies on bioaccumulation and biomagnification of nonylphenol (NP) and its ethoxylates (NPEOs), but their toxico-kinetic mechanisms remain unclear. In the present investigation, we explored the accumulation of NP and NPEOs in estuarine-marine food chains with a bioaccumulation model comprising five trophic levels. Using this model, we estimated uptake and elimination rate constants for NPEOs based on the organisms' weight and lipid content and the chemicals' Kow. Further, we calculated accumulation factors for NP and NPEOs, including biota-sediment accumulation factors (BSAF) and biomagnification factors (BMF), and compared these to independent field measurements collected in the Western Scheldt estuary in The Netherlands and field data reported in the literature. The estimated BSAF values for NP and total NPEOs were below 1 for all trophic levels. The estimated BMF values were around 1 for all trophic levels except for the highest level (carnivorous mammals and birds). For this trophic level, the estimated BMF value varied between 0.1 and 2.4, depending on the biotransformation capacity. For all trophic levels, except primary producers, the accumulation estimates that accounted for biotransformation of NPEOs into NP were closer to the field data than model estimates that did not include biotransformation, indicating that NP formation by biotransformation of NPEOs might occur in organisms. PMID:26026901

  3. 75 FR 30393 - The Effects of Mountaintop Mines and Valley Fills on Aquatic Ecosystems of the Central...

    Science.gov (United States)

    2010-06-01

    ... aquatic life benchmark for conductivity. Conductivity is a measurement of the salt content of water. The... Coalfields and a Field-Based Aquatic Life Benchmark for Conductivity in Central Appalachian Streams AGENCY...'' (EPA/600/R-09/138A) and (2) ``A Field-based Aquatic Life Benchmark for Conductivity in...

  4. Dietary supplements for aquatic sports.

    Science.gov (United States)

    Derave, Wim; Tipton, Kevin D

    2014-08-01

    Many athletes use dietary supplements, with use more prevalent among those competing at the highest level. Supplements are often self-prescribed, and their use is likely to be based on an inadequate understanding of the issues at stake. Supplementation with essential micronutrients may be useful when a diagnosed deficiency cannot be promptly and effectively corrected with food-based dietary solutions. When used in high doses, some supplements may do more harm than good: Iron supplementation, for example, is potentially harmful. There is good evidence from laboratory studies and some evidence from field studies to support health or performance benefits from appropriate use of a few supplements. The available evidence from studies of aquatic sports is small and is often contradictory. Evidence from elite performers is almost entirely absent, but some athletes may benefit from informed use of creatine, caffeine, and buffering agents. Poor quality assurance in some parts of the dietary supplements industry raises concerns about the safety of some products. Some do not contain the active ingredients listed on the label, and some contain toxic substances, including prescription drugs, that can cause health problems. Some supplements contain compounds that will cause an athlete to fail a doping test. Supplement quality assurance programs can reduce, but not entirely eliminate, this risk.

  5. Cadmium bioaccumulation factors for terrestrial species: Application of the mechanistic bioaccumulation model OMEGA to explain field data

    Energy Technology Data Exchange (ETDEWEB)

    Veltman, Karin [Department of Environmental Science, Radboud University Nijmegen, P.O. Box 9010, Toernooiveld 1, 6500 GL Nijmegen (Netherlands)], E-mail: K.Veltman@science.ru.nl; Huijbregts, Mark A.J.; Hendriks, A. Jan [Department of Environmental Science, Radboud University Nijmegen, P.O. Box 9010, Toernooiveld 1, 6500 GL Nijmegen (Netherlands)

    2008-12-01

    In environmental risk assessment of metals it is often assumed that the biota-to-soil accumulation factor (BSAF) is generic and constant. However, previous studies have shown that cadmium bioaccumulation factors of earthworms and small mammals are inversely related to total soil concentrations. Here, we provide an overview of cadmium accumulation in terrestrial species belonging to different trophic levels, including plants, snails and moles. Internal metal concentrations of these species are less than linearly related to total soil levels, which is in accordance with previously observed trends. The mechanistic bioaccumulation model OMEGA (Optimal Modeling for Ecotoxicological Applications) is used to provide a quantitative explanation of these trends in cadmium accumulation. Our results indicate that the model accurately predicts cadmium accumulation in earthworms, voles and shrews when accounting for geochemical availability of metals and saturable uptake kinetics.

  6. Tunison Laboratory of Aquatic Science

    Data.gov (United States)

    Federal Laboratory Consortium — Tunison Laboratory of Aquatic Science (TLAS), located in Cortland, New York, is a field station of the USGS Great Lakes Science Center (GLSC). TLAS was established...

  7. Role Models in Aquatic Occupations.

    Science.gov (United States)

    Brown, Mabel C.

    1982-01-01

    Provided for each of 12 minority group role models in aquatic occupations are job responsibilities, educational requirements, comments on a typical day at the job, salary range, and recommendations for students wishing to enter the field described. (JN)

  8. Bioaccumulation of Zn and Ag Nanoparticles in the Earthworms (Eisenia fetida)

    Science.gov (United States)

    Ha, Lee Seung; Sung-Dae, Kim; Yi, Yang Song; Byeong-Gweon, Lee

    2014-05-01

    Many studies are carried out to evaluate environmental effects of engineered nanoparticles (ENPs). Most of the previous studies primarily focused on the effects of nanoparticles into the aquatic environment and human. Model studies predict that ENPs released into environment would transferred primarily to the soil of the terrestrial environment. Despite this prediction, biogeochemical behavior of ENPs in soil environment as well as bioavailability of ENPs to soil-dwelling organisms such as earthworm, springtail, isopod and nematodes are poorly understood. The main goal of this study was to compare the bioaccumulation factor (BAFs) and subcellular partitioning of nanoparticles in the soil-dwelling earthworm (Eisenia fetida) from ENP (ZnO and Ag nanoparticles) or ionic metal (Zn2+, Ag+) contaminated soil. And the sequential extraction was also used to determine the mobility of metals in soil which could be used as to predict bioavailability and compare that with bioaccumulation factor. The radiotracer method was employed to trace the transfer of ENPs and ionic metal among different environmental media and animals. Radiolabeled 65ZnO, 110mAgNPs coated with PVP or citrate were synthesized in the laboratory and their chemical and biological behavior was compared to ionic 65Zn and 110mAg. The BAFs of Zn and Ag in the earthworms were determined after animals exposed to the contaminated soils. After the 7 days of elimination phase, subcellular partitioning of metals were also obtained. BAF for ZnO(0.06) was 31 times lower than that for Zn ion (1.86), suggesting that ZnO was less bioavailable than its ionic form from contaminated soil. On the other hands, BAFs for AgNPs coated with PVP (0.12) or with citrate (0.11) were comparable to those for Ag ion (0.17), indicating that Ag from contaminated soil was bioavailable in a similar rate regardless of chemical forms. The subcellular partitioning results showed that bioaccumulated Zn from Zn ion and ZnO contaminated soil were

  9. Review on visual characteristic measurement research of aquatic animals based on computer vision%基于计算机视觉的水产动物视觉特征测量研究综述

    Institute of Scientific and Technical Information of China (English)

    段延娥; 李道亮; 李振波; 傅泽田

    2015-01-01

    In aquaculture, visual attribute information of aquatic animals is the basis of determining growth condition, feed conversion, medication dosage, harvesting date and grading for aquaculture farmers and managers. For improving the quality of aquatic products, the automatic and non-destructive measurement of visual attributes is becoming more and more important in modern fishery. For decades, computer vision, as a non-destructive, rapid, economic, consistent, reliable and objective inspection tool based on image analysis and processing with a variety of applications, has been gradually used in visual quality detection of aquatic animals. Quite a number of researches have highlighted its potential application in aquaculture. Underwater or overwater video/image measurement systems based on image processing technologies have been used widely for automatically counting and measuring fish in aquaculture, fisheries and conservation management. However, the application of computer vision technologies in aquaculture is very challenging because the inspected objects are sensitive, easily stressed and free to move in an environment in which lighting, visibility and stability are generally not controllable, and the camera must be operated underwater or in a wet environment. This review updates and summarizes recent representative researches and industrial solutions proposed in order to evaluate the general trends of computer vision and image processing in the visible range applied for inspection of aquatic animals. On the basis of introducing the mode of operation and the components of a computer vision detection system, this paper presents a review of the overseas and domestic research status in visual attribute measurement of aquatic animals according to inspection tasks that are common to almost all visual attribute detection systems of aquatic animal: measurement of size and shape parameters, estimation of mass and quantification of color, etc. Specially, the techniques

  10. Economic valuation of aquatic ecosystem services in developing countries

    DEFF Research Database (Denmark)

    Korsgaard, Louise; Schou, Jesper S.

    2010-01-01

    -the silent water user. A promising way of placing aquatic ecosystems on the water agenda is by economic valuation of services sustained by ecosystems. In developing countries, the livelihoods of rural people often depend directly on the provision of aquatic ecosystem services. In such situations, economic...... valuation of ecosystem services becomes particularly challenging. This paper reviews recent literature on economic valuation of aquatic ecosystem services in developing countries. "Market price" is the most widespread method used for valuating marketed ecosystem services in developing countries. "Cost based......" and "revealed preference" methods are frequently used when ecosystem services are non-marketed. A review of 27 existing valuation studies reveals a considerable range of estimated total economic value of aquatic ecosystem services in developing countries, that is from US$30 to 3,000/ha/year. The paper concludes...

  11. Biogeochemical analysis of ancient Pacific Cod bone suggests Hg bioaccumulation was linked to paleo sea level rise and climate change

    Directory of Open Access Journals (Sweden)

    Maribeth S. Murray

    2015-02-01

    Full Text Available Deglaciation at the end of the Pleistocene initiated major changes in ocean circulation and distribution. Within a brief geological time, large areas of land were inundated by sea-level rise and today global sea level is 120 m above its minimum stand during the last glacial maximum. This was the era of modern sea shelf formation; climate change caused coastal plain flooding and created broad continental shelves with innumerable consequences to marine and terrestrial ecosystems and human populations. In Alaska, the Bering Sea nearly doubled in size and stretches of coastline to the south were flooded, with regional variability in the timing and extent of submergence. Here we suggest how past climate change and coastal flooding are linked to mercury bioaccumulation that could have had profound impacts on past human populations and that, under conditions of continued climate warming, may have future impacts. Biogeochemical analysis of total mercury (tHg and 13C/15N ratios in the bone collagen of archaeologically recovered Pacific Cod (Gadus macrocephalus bone shows high levels of tHg during early/mid-Holocene. This pattern cannot be linked to anthropogenic activity or to food web trophic changes, but may result from natural phenomena such as increases in productivity, carbon supply and coastal flooding driven by glacial melting and sea-level rise. The coastal flooding could have led to increased methylation of Hg in newly submerged terrestrial land and vegetation. Methylmercury is bioaccumulated through aquatic food webs with attendant consequences for the health of fish and their consumers, including people. This is the first study of tHg levels in a marine species from the Gulf of Alaska to provide a time series spanning nearly the entire Holocene and we propose that past coastal flooding resulting from climate change had the potential to input significant quantities of Hg into marine food webs and subsequently to human consumers.

  12. Modeling (137)Cs bioaccumulation in the salmon-resident killer whale food web of the Northeastern Pacific following the Fukushima Nuclear Accident.

    Science.gov (United States)

    Alava, Juan José; Gobas, Frank A P C

    2016-02-15

    To track the long term bioaccumulation of (137)Cs in marine organisms off the Pacific Northwest coast of Canada, we developed a time dependent bioaccumulation model for (137)Cs in a marine mammalian food web that included fish-eating resident killer whales. The model outcomes show that (137)Cs can be expected to gradually bioaccumulate in the food web over time as demonstrated by the increase of the apparent trophic magnification factor of (137)Cs, ranging from 0.76 after 1 month of exposure to 2.0 following 30 years of exposure. (137)Cs bioaccumulation is driven by relatively rapid dietary uptake rates, moderate depuration rates in lower trophic level organisms and slow elimination rates in high trophic level organisms. Model estimates of the (137)Cs activity in species of the food web, based on current measurements and forecasts of (137)Cs activities in oceanic waters and sediments off the Canadian Pacific Northwest, indicate that the long term (137)Cs activities in fish species including Pacific herring, wild Pacific salmon, sablefish and halibut will remain well below the current (137)Cs-Canada Action Level for consumption (1000 Bq/kg) following a nuclear emergency. Killer whales and Pacific salmon are expected to exhibit the largest long term (137)Cs activities and may be good sentinels for monitoring (137)Cs in the region. Assessment of the long term consequences of (137)Cs releases from the Fukushima aftermath should consider the extent of ecological magnification in addition to ocean dilution.

  13. Modeling (137)Cs bioaccumulation in the salmon-resident killer whale food web of the Northeastern Pacific following the Fukushima Nuclear Accident.

    Science.gov (United States)

    Alava, Juan José; Gobas, Frank A P C

    2016-02-15

    To track the long term bioaccumulation of (137)Cs in marine organisms off the Pacific Northwest coast of Canada, we developed a time dependent bioaccumulation model for (137)Cs in a marine mammalian food web that included fish-eating resident killer whales. The model outcomes show that (137)Cs can be expected to gradually bioaccumulate in the food web over time as demonstrated by the increase of the apparent trophic magnification factor of (137)Cs, ranging from 0.76 after 1 month of exposure to 2.0 following 30 years of exposure. (137)Cs bioaccumulation is driven by relatively rapid dietary uptake rates, moderate depuration rates in lower trophic level organisms and slow elimination rates in high trophic level organisms. Model estimates of the (137)Cs activity in species of the food web, based on current measurements and forecasts of (137)Cs activities in oceanic waters and sediments off the Canadian Pacific Northwest, indicate that the long term (137)Cs activities in fish species including Pacific herring, wild Pacific salmon, sablefish and halibut will remain well below the current (137)Cs-Canada Action Level for consumption (1000 Bq/kg) following a nuclear emergency. Killer whales and Pacific salmon are expected to exhibit the largest long term (137)Cs activities and may be good sentinels for monitoring (137)Cs in the region. Assessment of the long term consequences of (137)Cs releases from the Fukushima aftermath should consider the extent of ecological magnification in addition to ocean dilution. PMID:26657356

  14. Refining atmospheric correction for aquatic remote spectroscopy

    Science.gov (United States)

    Thompson, D. R.; Guild, L. S.; Negrey, K.; Kudela, R. M.; Palacios, S. L.; Gao, B. C.; Green, R. O.

    2015-12-01

    Remote spectroscopic investigations of aquatic ecosystems typically measure radiance at high spectral resolution and then correct these data for atmospheric effects to estimate Remote Sensing Reflectance (Rrs) at the surface. These reflectance spectra reveal phytoplankton absorption and scattering features, enabling accurate retrieval of traditional remote sensing parameters, such as chlorophyll-a, and new retrievals of additional parameters, such as phytoplankton functional type. Future missions will significantly expand coverage of these datasets with airborne campaigns (CORAL, ORCAS, and the HyspIRI Preparatory Campaign) and orbital instruments (EnMAP, HyspIRI). Remote characterization of phytoplankton can be influenced by errors in atmospheric correction due to uncertain atmospheric constituents such as aerosols. The "empirical line method" is an expedient solution that estimates a linear relationship between observed radiances and in-situ reflectance measurements. While this approach is common for terrestrial data, there are few examples involving aquatic scenes. Aquatic scenes are challenging due to the difficulty of acquiring in situ measurements from open water; with only a handful of reference spectra, the resulting corrections may not be stable. Here we present a brief overview of methods for atmospheric correction, and describe ongoing experiments on empirical line adjustment with AVIRIS overflights of Monterey Bay from the 2013-2014 HyspIRI preparatory campaign. We present new methods, based on generalized Tikhonov regularization, to improve stability and performance when few reference spectra are available. Copyright 2015 California Institute of Technology. All Rights Reserved. US Government Support Acknowledged.

  15. Tritium in the aquatic environment

    International Nuclear Information System (INIS)

    Tritium is of environmental importance because it is released from nuclear facilities in relatively large quantities and because it has a half life of 12.26 y. Most of the tritium released into the atmosphere eventually reaches the aqueous environment, where it is rapidly taken up by aquatic organisms. This paper reviews the current literature on tritium in the aquatic environment. Conclusions from the review, which covered studies of algae, aquatic macrophytes, invertebrates, fish, and the food chain, were that aquatic organisms incorporate tritium into their tissue-free water very rapidly and reach concentrations near those of the external medium. The rate at which tritium from tritiated water is incorporated into the organic matter of cells is slower than the rate of its incorporation into the tissue-free water. If organisms consume tritiated food, incorporation of tritium into the organic matter is faster, and a higher tritium concentration is reached than when the organisms are exposed to only tritiated water alone. Incorporation of tritium bound to molecules into the organic matter depends on the chemical form of the ''carrier'' molecule. No evidence was found that biomagnification of tritium occurs at higher trophic levels. Radiation doses from tritium releases to large populations of humans will most likely come from the consumption of contaminated water rather than contaminated aquatic food products

  16. Tritium in the aquatic environment

    Energy Technology Data Exchange (ETDEWEB)

    Blaylock, B.G.; Hoffman, F.O.; Frank, M.L.

    1986-02-01

    Tritium is of environmental importance because it is released from nuclear facilities in relatively large quantities and because it has a half life of 12.26 y. Most of the tritium released into the atmosphere eventually reaches the aqueous environment, where it is rapidly taken up by aquatic organisms. This paper reviews the current literature on tritium in the aquatic environment. Conclusions from the review, which covered studies of algae, aquatic macrophytes, invertebrates, fish, and the food chain, were that aquatic organisms incorporate tritium into their tissue-free water very rapidly and reach concentrations near those of the external medium. The rate at which tritium from tritiated water is incorporated into the organic matter of cells is slower than the rate of its incorporation into the tissue-free water. If organisms consume tritiated food, incorporation of tritium into the organic matter is faster, and a higher tritium concentration is reached than when the organisms are exposed to only tritiated water alone. Incorporation of tritium bound to molecules into the organic matter depends on the chemical form of the ''carrier'' molecule. No evidence was found that biomagnification of tritium occurs at higher trophic levels. Radiation doses from tritium releases to large populations of humans will most likely come from the consumption of contaminated water rather than contaminated aquatic food products.

  17. Bioaccumulation of organohalogenated compounds in sharks and rays from the southeastern USA.

    Science.gov (United States)

    Weijs, Liesbeth; Briels, Nathalie; Adams, Douglas H; Lepoint, Gilles; Das, Krishna; Blust, Ronny; Covaci, Adrian

    2015-02-01

    Organohalogenated compounds are widespread in the marine environment and can be a serious threat to organisms in all levels of aquatic food webs, including elasmobranch species. Information about the concentrations of POPs (persistent organic pollutants) and of MeO-PBDEs (methoxylated polybrominated diphenyl ethers) in elasmobranchs is scarce and potential toxic effects are poorly understood. The aims of the present study were therefore to investigate the occurrence of multiple POP classes (PCBs, PBDEs, DDXs, HCB, CHLs) and of MeO-PBDEs in various elasmobranch species from different trophic levels in estuarine and marine waters of the southeastern United States. Overall, levels and patterns of PCBs, PBDEs, DDXs, HCB, CHLs and of MeO-PBDEs varied according to the species, maturity stage, gender and habitat type. The lowest levels of POPs were found in Atlantic stingrays and the highest levels were found in bull sharks. As both species are respectively near the bottom and at top of the trophic web, with juvenile bull sharks frequently feeding on Atlantic stingrays, these findings further suggest a bioaccumulation and biomagnification process with trophic position. MeO-PBDEs were not detected in Atlantic stingrays, but were found in all shark species. HCB was not found in Atlantic stingrays, bonnetheads or lemon sharks, but was detected in the majority of bull sharks examined. Comparison with previous studies suggests that Atlantic stingrays may be experiencing toxic effects of PCBs and DDXs on their immune system. However, the effect of these compounds on the health of shark species remains unclear. PMID:25569844

  18. Mercury Bioaccumulation in the Brazilian Amazonian Tucunares (Cichla sp., Cichlidae, Perciformes

    Directory of Open Access Journals (Sweden)

    Maria Josefina Reyna Kurtz

    2008-08-01

    Full Text Available There are emissions of mercury to the atmosphere, soil and rivers of the Brazilian Amazon stem from many sources. Once in the atmosphere, the metal is oxidized and immediately deposited. In the water, the transformation to methylmercury takes place mostly by the action of microorganisms. The formation of methylmercury increases the dispersion and bioavailability of the element in the aquatic environment. Methylmercury can be assimilated by plankton and enters the food chain. The concentration of mercury increases further up in the trophic levels of the chain and reaches the highest values in carnivorous fishes like tucunare. Therefore, mercury emissions cause the contamination of natural resources and increase risks to the health of regular fish consumers. The objective of this work was to study the bioaccumulation of mercury in tucunares (Cichla sp., top predators of the food chain. The fishes were collected at two locations representative of the Amazonian fluvial ecosystem, in the state of Pará, Brazil, in 1992 and 2001. One location is near a former informal gold mining area. The other is far from the mining area and is considered pristine. Average values of total mercury concentration and accumulation rates for four different collection groups were compared and discussed. Tucunares collected in 2001 presented higher mercury contents and accumulated mercury faster than tucunares collected in 1992 notwithstanding the decline of mining activities in this period. The aggravation of the mercury contamination with time not only in an area where informal gold mining was practiced but also far from this area is confirmed.

  19. Bioaccumulation of Legacy and Emerging Organochlorine Contaminants in Lumbriculus variegatus.

    Science.gov (United States)

    Dang, Viet D; Kroll, Kevin J; Supowit, Samuel D; Halden, Rolf U; Denslow, Nancy D

    2016-07-01

    Freshwater sediment-dwelling Lumbriculus variegatus is known to serve as a vector for the transfer of contaminants from sediments to higher trophic level organisms, but limited data exist on the bioaccumulation of chemicals associated with sediments containing high total organic carbon (TOC). In the current study, sediments from the north shore area of Lake Apopka (Florida, USA), containing very high TOC [39 % (w/w)], were spiked with four chemicals-p,p'-dichlorordiphenyldichloroethylene (p,p'-DDE), dieldrin, fipronil, and triclosan-individually or in a mixture of the four and then used for bioaccumulation studies. Tissue concentrations of chemicals in L. variegatus were measured at 2, 7, 14, 21, and 28 days of exposure, and the bioaccumulation potential was evaluated using biosediment accumulation factors [BSAF (goc/glipid)]. Increase in total body burdens of all four chemicals in L. variegatus was rapid at day 2 and reached a steady-state level after 7 days in both single and mixture experiments. Tissue concentrations of fipronil peaked after 2 days and then decreased by 70 % in sediment experiments suggesting that in addition to the degradation of fipronil that occurred in the sediment, L. variegatus may also be able to metabolize fipronil. The calculated 28-day BSAF values varied among the chemicals and increased in the order fipronil (1.1) < triclosan (1.4) < dieldrin (21.8) < p,p'-DDE (49.8) in correspondence with the increasing degree of their hydrophobicity. The relatively high BSAF values for p,p'-DDE and dieldrin probably resulted from lower-than-expected sorption of chemicals to sediment organic matter either due to the nature of the plant-derived organic matter, as a result of the relatively short equilibration time among the various compartments, or due to ingestion of sediment particles by the worms. PMID:26833202

  20. Arsenic bioaccumulation in a marine juvenile fish Terapon jarbua

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Wei [State Key Laboratory of Oceanography in the Tropics, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301 (China); Graduate School, Chinese Academy of Sciences, Beijing 100049 (China); Huang Liangmin [State Key Laboratory of Oceanography in the Tropics, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301 (China); Wang Wenxiong, E-mail: wwang@ust.hk [Division of Life Science, HKUST, Clear Water Bay, Kowloon (Hong Kong)

    2011-10-15

    Highlights: Radiotracer technique was used to quantify the biokinetics of As(V) in a marine fish. As(V) had a low bioavailability to Terapon jarbua. Dietary assimilation of As was only 3.1-7.4% for fish fed with different preys. Dietary uptake could be the primary route for As bioaccumulation in fish. - Abstract: Arsenic (As) is a ubiquitous toxic metalloid that is causing widespread public concern. Recent measurements have indicated that some marine fish in China might be seriously contaminated with As. Yet the biokinetics and bioaccumulation pathway of As in fish remain little understood. In this study, we employed a radiotracer technique to quantify the dissolved uptake, dietary assimilation and subsequent efflux of As(V) in a marine predatory fish, Terapon jarbua. The dissolved uptake of As showed a linear pattern over a range of dissolved concentrations from 0.5 to 50 {mu}g L{sup -1}, with a corresponding uptake rate constant of 0.0015 L g{sup -1} d{sup -1}. The assimilation efficiencies (AEs) of dietary As were only 3.1-7.4% for fish fed with copepods, clams, prey fish, or artificial diets, and were much lower than the As that entered the trophically available metal fraction in the prey. The dietary AEs were independent of the As(V) concentrations in the artificial diets. The efflux rate constant of As in fish following the dietary exposure was 0.03 d{sup -1}. Modeling calculations showed that dietary uptake could be the primary route for As bioaccumulation in fish, and the corresponding contributions of waterborne and dietary uptakes were related to the bioconcentration factor (BCF) of the prey and the ingestion rate of fish. This study demonstrates that As(V) has a low bioavailability to T. jarbua.

  1. Arsenic bioaccumulation in a marine juvenile fish Terapon jarbua

    International Nuclear Information System (INIS)

    Highlights: Radiotracer technique was used to quantify the biokinetics of As(V) in a marine fish. As(V) had a low bioavailability to Terapon jarbua. Dietary assimilation of As was only 3.1–7.4% for fish fed with different preys. Dietary uptake could be the primary route for As bioaccumulation in fish. - Abstract: Arsenic (As) is a ubiquitous toxic metalloid that is causing widespread public concern. Recent measurements have indicated that some marine fish in China might be seriously contaminated with As. Yet the biokinetics and bioaccumulation pathway of As in fish remain little understood. In this study, we employed a radiotracer technique to quantify the dissolved uptake, dietary assimilation and subsequent efflux of As(V) in a marine predatory fish, Terapon jarbua. The dissolved uptake of As showed a linear pattern over a range of dissolved concentrations from 0.5 to 50 μg L−1, with a corresponding uptake rate constant of 0.0015 L g−1 d−1. The assimilation efficiencies (AEs) of dietary As were only 3.1–7.4% for fish fed with copepods, clams, prey fish, or artificial diets, and were much lower than the As that entered the trophically available metal fraction in the prey. The dietary AEs were independent of the As(V) concentrations in the artificial diets. The efflux rate constant of As in fish following the dietary exposure was 0.03 d−1. Modeling calculations showed that dietary uptake could be the primary route for As bioaccumulation in fish, and the corresponding contributions of waterborne and dietary uptakes were related to the bioconcentration factor (BCF) of the prey and the ingestion rate of fish. This study demonstrates that As(V) has a low bioavailability to T. jarbua.

  2. Bioaccumulation and toxicity of selenium during a life-cycle exposure with desert pupfish (Cyprinodon macularius)

    Science.gov (United States)

    Besser, John M.; Brumbaugh, William G.; Papoulias, Diana M.; Ivey, Chris D.; Kunz, James L.; Annis, Mandy; Ingersoll, Christopher G.

    2012-01-01

    Populations of desert pupfish (Cyprinodon macularius; pupfish), a federally-listed endangered species, inhabit irrigation drains in the Imperial Valley agricultural area of southern California. These drains have varying degrees of selenium (Se) contamination of water, sediment, and aquatic biota. Published Se toxicity studies suggest that these levels of Se contamination may pose risk of chronic toxicity to Se-sensitive fish, but until recently there have been no studies of the chronic toxicity of Se to desert pupfish.A life-cycle Se exposure with pupfish was conducted to estimate dietary and tissue thresholds for toxic effects of Se on all life stages. The dietary exposure was based on live oligochaete worms (Lumbriculus variegatus) dosed with Se by a laboratory food chain based on selenized yeast. Oligochaetes readily accumulated Se from mixtures of selenized and control yeasts. The protocol for dosing oligochaetes for pupfish feeding studies included long-term (at least 28 days) feeding of a low-ration of yeast mixtures to large batches of oligochaetes. Oligochaetes were dosed at five Se levels in a 50-percent dilution series. Pupfish were simultaneously fed Se-dosed oligochaetes and exposed to a series of Se concentrations in water (consisting of 85 percent selenate and 15 percent selenite) to produce exposures that were consistent with Se concentrations and speciation in pupfish habitats. The nutritional characteristics of oligochaete diets were consistent across the range of oligochaete Se concentrations tested.The life-cycle exposure started with laboratory-cultured juvenile pupfish that were exposed to Se through sexual maturation and reproduction (150 days; F0 exposure). The Se exposure continued with eggs, larvae, and juveniles produced by Se-exposed parents (79 days; F1 exposure). Selenium exposure (water and diets), Se bioaccumulation (whole-body and eggs), and toxicity endpoints (juvenile and adult survival and growth; egg production and hatching

  3. Effects of sedimentary soot-like materials on bioaccumulation and sorption of polychlorinated biphenyls

    NARCIS (Netherlands)

    Jonker, M.T.O.; Hoenderboom, A.M.; Koelmans, A.A.

    2004-01-01

    Bioaccumulation of hydrophobic organic chemicals from sediments containing soot or sootlike materials has been hypothesized to be limited by strong sorption of the chemicals to the soot matrixes. To test this hypothesis, we quantified bioaccumulation of 11 polychlorinated biphenyls (PCBs) into the a

  4. Modeling bioaccumulation and biomagnification of nonylphenol and its ethoxylates in estuarine-marine food chains

    NARCIS (Netherlands)

    Korsman, J.C.; Schipper, A.M.; Vos, de M.G.; Heuvel-Greve, van den M.J.; Vethaak, A.D.; Voogt, de Pim; Hendriks, A.J.

    2015-01-01

    There are several studies on bioaccumulation and biomagnification of nonylphenol (NP) and its ethoxylates (NPEOs), but their toxico-kinetic mechanisms remain unclear. In the present investigation, we explored the accumulation of NP and NPEOs in estuarine-marine food chains with a bioaccumulation

  5. Modeling bioaccumulation and biomagnification of nonylphenol and its ethoxylates in estuarine-marine food chains

    NARCIS (Netherlands)

    J.C. Korsman; A.M. Schipper; M.G. de Vos; M.J. van den Heuvel-Greve; A.D. Vethaak; P. de Voogt; A.J. Hendriks

    2015-01-01

    There are several studies on bioaccumulation and biomagnification of nonylphenol (NP) and its ethoxylates (NPEOs), but their toxico-kinetic mechanisms remain unclear. In the present investigation, we explored the accumulation of NP and NPEOs in estuarine-marine food chains with a bioaccumulation mod

  6. Bioaccumulation of total mercury in the earthworm Eisenia andrei.

    Science.gov (United States)

    Le Roux, Shirley; Baker, Priscilla; Crouch, Andrew

    2016-01-01

    Earthworms are a major part of the total biomass of soil fauna and play a vital role in soil maintenance. They process large amounts of plant and soil material and can accumulate many pollutants that may be present in the soil. Earthworms have been explored as bioaccumulators for many heavy metal species such as Pb, Cu and Zn but limited information is available for mercury uptake and bioaccumulation in earthworms and very few report on the factors that influence the kinetics of Hg uptake by earthworms. It is known however that the uptake of Hg is strongly influenced by the presence of organic matter, hence the influence of ligands are a major factor contributing to the kinetics of mercury uptake in biosystems. In this work we have focused on the uptake of mercury by earthworms (Eisenia andrei) in the presence of humic acid (HA) under varying physical conditions of pH and temperature, done to assess the role of humic acid in the bioaccumulation of mercury by earthworms from soils. The study was conducted over a 5-day uptake period and all earthworm samples were analysed by direct mercury analysis. Mercury distribution profiles as a function of time, bioaccumulation factors (BAFs), first order rate constants and body burden constants for mercury uptake under selected conditions of temperature, pH as well as via the dermal and gut route were evaluated in one comprehensive approach. The results showed that the uptake of Hg was influenced by pH, temperature and the presence of HA. Uptake of Hg(2+) was improved at low pH and temperature when the earthworms in soil were in contact with a saturating aqueous phase. The total amount of Hg(2+) uptake decreased from 75 to 48 % as a function of pH. For earthworms in dry soil, the uptake was strongly influenced by the presence of the ligand. Calculated BAF values ranged from 0.1 to 0.8. Mercury uptake typically followed first order kinetics with rate constants determined as 0.2 to 1 h(-1). PMID:27347466

  7. Bioaccumulation of ergovaline in bovine lateral saphenous veins in vitro.

    Science.gov (United States)

    Klotz, J L; Kirch, B H; Aiken, G E; Bush, L P; Strickland, J R

    2009-07-01

    Ergot alkaloids have been associated with vasoconstriction in grazing livestock affected by the fescue toxicosis syndrome. Previous in vitro investigations studying how ergot alkaloids caused vasoconstriction have shown that ergovaline has a distinct receptor affinity and sustained contractile response. A similar contractile response has not been noted for lysergic acid. The objectives of this study were to determine if repetitive in vitro exposure of bovine lateral saphenous vein to lysergic acid or ergovaline would result in an increasing contractile response and if a measurable bioaccumulation of the alkaloids in the vascular tissue occurs over time. Segments of vein were surgically biopsied from healthy, Angus x Brangus cross-bred, fescue-naïve yearling heifers (n = 16) or collected from healthy mixed breed and sex cattle immediately after slaughter (n = 12) at a local abattoir. Veins were trimmed of excess fat and connective tissue, sliced into cross-sections, and suspended in a myograph chamber containing 5 mL of oxygenated Krebs-Henseleit buffer (95% O(2)/5% CO(2); pH = 7.4; 37 degrees C). Contractile responses to repetitive additions of ergovaline (1 x 10(-9) and 1 x 10(-7) M) and lysergic acid (1 x 10(-5) and 1 x 10(-4) M) were evaluated using the biopsied veins. For the bioaccumulation experiments, veins collected at the abattoir underwent repetitive additions of 1 x 10(-7) M ergovaline and 1 x 10(-5) M lysergic acid and the segments were removed after every 2 additions and media rinses for alkaloid quantification via HPLC/mass spectrometry. Contractile data were normalized as a percentage of contractile response induced by a reference dose of norepinephrine (1 x 10(-4) M). Repetitive additions of 1 x 10(-9) M ergovaline and 1 x 10(-5) and 1 x 10(-4) M lysergic acid resulted in contractile response with a negative slope (P < 0.02). In contrast, repetitive addition of 1 x 10(-7) M ergovaline resulted in a contractile response that increased with each

  8. Public lakes, private lakeshore: modeling protection of native aquatic plants.

    Science.gov (United States)

    Schroeder, Susan A; Fulton, David C

    2013-07-01

    Protection of native aquatic plants is an important proenvironmental behavior, because plant loss coupled with nutrient loading can produce changes in lake ecosystems. Removal of aquatic plants by lakeshore property owners is a diffuse behavior that may lead to cumulative impacts on lake ecosystems. This class of behavior is challenging to manage because collective impacts are not obvious to the actors. This paper distinguishes positive and negative beliefs about aquatic plants, in models derived from norm activation theory (Schwartz, Adv Exp Soc Psychol 10:221-279, 1977) and the theory of reasoned action (Fishbein and Ajzen, Belief, attitude, intention, and behavior: an introduction to theory and research, Addison-Wesley, Boston 1975), to examine protection of native aquatic plants by Minnesota lakeshore property owners. We clarify how positive and negative evaluations of native aquatic plants affect protection or removal of these plants. Results are based on a mail survey (n = 3,115). Results suggest that positive evaluations of aquatic plants (i.e., as valuable to lake ecology) may not connect with the global attitudes and behavioral intentions that direct plant protection or removal. Lakeshore property owners' behavior related to aquatic plants may be driven more by tangible personal benefits derived from accessible, carefully managed lakeshore than intentional action taken to sustain lake ecosystems. The limited connection of positive evaluations of aquatic plants to global attitudes and behavioral intentions may reflect either lack of knowledge of what actions are needed to protect lake health and/or unwillingness to lose perceived benefits derived from lakeshore property. PMID:23609308

  9. Production in aquatic macrophyte communities

    DEFF Research Database (Denmark)

    Binzer, Thomas; Sand-Jensen, Kaj

    2002-01-01

    -dimensional structure because of the strong drag and shear forces of moving water. This difference in canopy structure has been suggested to account for the three- to fivefold higher gross production rates in terrestrial than aquatic communities. To evaluate the effect of community structure in aquatic habitats, we...... combined a simple mechanistic model and empirical measurements on artificially structured macroalgal communities (Ulva lactuca) with varying thallus absorptance and community density. Predicted and measured values corresponded closely and revealed that gross production in high-light environments...... was markedly enhanced by a vertical orientation of thalli when absorptance and community density were both high. This result implies that aquatic macrophytes of high thallus absorptance and community density exposed to high light are limited in attaining high gross production rates because of their inability...

  10. An aquatic ecosystem in space.

    Science.gov (United States)

    Voeste, D; Andriske, M; Paris, F; Levine, H G; Blum, V

    1999-07-01

    The Closed Equilibrated Biological Aquatic System (CEBAS) Mini-Module experiment was designed to study aquatic ecosystem performance within a middeck locker on the Space Shuttle. CEBAS was flown aboard STS-89 in January 1998 with a population of four pregnant Xiphophorus helleri female fish and eleven adult Biomphalaria glabrata snails in the first compartment and 200 juvenile X. helleri and 48 adult and juvenile B. glabrata in the second compartment. A plant compartment contained eleven snails and 53 g of the aquatic angiosperm Ceratophyllum demersum. During the flight, Ceratophyllum fresh weight increased from 53 g to 117 g. All adult fish and 65 juveniles survived the flight experiment and 37 adult snails and 40 newly laid snail spawn packs were recovered after the flight. Oxygen production and pH were as expected.

  11. Estimation of the bioaccumulation potential of a nonchlorinated bisphenol and an ionogenic xanthene dye to Eisenia andrei in field-collected soils, in conjunction with predictive in silico profiling.

    Science.gov (United States)

    Princz, Juliska; Bonnell, Mark; Ritchie, Ellyn; Velicogna, Jessica; Robidoux, Pierre-Yves; Scroggins, Rick

    2014-02-01

    In silico-based model predictions, originating from structural and mechanistic (e.g., transport, bioavailability, reactivity, and binding potential) profiling, were compared against laboratory-derived data to estimate the bioaccumulation potential in earthworms of 2 organic substances (1 neutral, 1 ionogenic) known to primarily partition to soil. Two compounds representative of specific classes of chemicals were evaluated: a nonchlorinated bisphenol containing an -OH group (4,4′-methylenebis[2,6-di-tert-butylphenol] [Binox]), and an ionogenic xanthene dye (2′,4′,5′,7′-tetrabromo-4,5,6,7-tetrachloro-3′,6′-dihydroxy-, disodium salt [Phloxine B]). Soil bioaccumulation studies were conducted using Eisenia andrei and 2 field-collected soils (a clay loam and a sandy soil). In general, the in silico structural and mechanistic profiling was consistent with the observed soil bioaccumulation tests. Binox did not bioaccumulate to a significant extent in E. andrei in either soil type; however, Phloxine B not only accumulated within tissue, but was not depurated from the earthworms during the course of the elimination phase. Structural and mechanistic profiling demonstrated the binding and reactivity potential of Phloxine B; this would not be accounted for using traditional bioaccumulation metrics, which are founded on passive-based diffusion mechanisms. This illustrates the importance of profiling for reactive ionogenic substances; even limited bioavailability combined with reactivity can result in exposures to a hazardous substance not predictable by traditional in silico modeling methods.

  12. Estimation of the bioaccumulation potential of a nonchlorinated bisphenol and an ionogenic xanthene dye to Eisenia andrei in field-collected soils, in conjunction with predictive in silico profiling.

    Science.gov (United States)

    Princz, Juliska; Bonnell, Mark; Ritchie, Ellyn; Velicogna, Jessica; Robidoux, Pierre-Yves; Scroggins, Rick

    2014-02-01

    In silico-based model predictions, originating from structural and mechanistic (e.g., transport, bioavailability, reactivity, and binding potential) profiling, were compared against laboratory-derived data to estimate the bioaccumulation potential in earthworms of 2 organic substances (1 neutral, 1 ionogenic) known to primarily partition to soil. Two compounds representative of specific classes of chemicals were evaluated: a nonchlorinated bisphenol containing an -OH group (4,4′-methylenebis[2,6-di-tert-butylphenol] [Binox]), and an ionogenic xanthene dye (2′,4′,5′,7′-tetrabromo-4,5,6,7-tetrachloro-3′,6′-dihydroxy-, disodium salt [Phloxine B]). Soil bioaccumulation studies were conducted using Eisenia andrei and 2 field-collected soils (a clay loam and a sandy soil). In general, the in silico structural and mechanistic profiling was consistent with the observed soil bioaccumulation tests. Binox did not bioaccumulate to a significant extent in E. andrei in either soil type; however, Phloxine B not only accumulated within tissue, but was not depurated from the earthworms during the course of the elimination phase. Structural and mechanistic profiling demonstrated the binding and reactivity potential of Phloxine B; this would not be accounted for using traditional bioaccumulation metrics, which are founded on passive-based diffusion mechanisms. This illustrates the importance of profiling for reactive ionogenic substances; even limited bioavailability combined with reactivity can result in exposures to a hazardous substance not predictable by traditional in silico modeling methods. PMID:24173968

  13. Biomarkers and heavy metal bioaccumulation in mussels transplanted to coastal waters of the Beagle Channel.

    Science.gov (United States)

    Giarratano, Erica; Duarte, Claudia A; Amin, Oscar A

    2010-03-01

    Mussels coming from a mussel farm at Brown Bay (Beagle Channel) were transplanted to four sites inside Ushuaia Bay for 2 and 4 weeks. The objective of this study was to assess the quality of coastal waters of Ushuaia Bay by measuring catalase activity, lipid peroxidation, total lipid content, bioaccumulation of heavy metals and condition index in transplanted mussel Mytilus edulis chilensis. Biomarkers except condition index showed significant differences among exposure times as well as among tissues. Digestive gland presented the highest catalase activity, malondialdehyde level and total lipid content. Digestive gland also was the main target tissue of accumulation of iron and copper, while gill accumulated the highest levels of zinc. A principal component analyzes with the whole set of data allowed to separate stations based on physicochemical conditions and biochemical responses of each studied area. PMID:19913913

  14. The pH dependent toxicity and bioaccumulation of chloroquine tested on S. viminalis (basket willow)

    DEFF Research Database (Denmark)

    Rendal, Cecilie; Trapp, Stefan; Legind, Charlotte Nielsen

    2010-01-01

    divalent weak base) on S. viminalis (basket willow). The transpiration of sprouted S. viminalis cuttings was monitored under the exposure of increasing concentrations (1, 10, 20, and 40 mg/L) of chloroquine at pH levels of 6, 7, 8, and 9. Solutions were buffered with phosphate (pH 6 and 7) and TRIS...... (hydroxymethyl) – aminomethane (pH 8 and 9). Concentrations were determined with spectrophotometer. Toxicity was derived from calculations of normalized transpiration over time, and RCF (root concentration factor) values were calculated. Increasing BCF values were found for increasing pH levels, and the toxicity......It is known that the uptake and accumulation of electrolytes is very sensitive to pH owing to the slower diffusion of charged compounds across membranes, and other factors such as the Nernst effect and the ion trap effect. However, the significance of pH to the bioaccumulation of electrolytes has...

  15. Recovery of high-value metals from geothermal sites by biosorption and bioaccumulation.

    Science.gov (United States)

    Lo, Yung-Chung; Cheng, Chieh-Lun; Han, Yin-Lung; Chen, Bor-Yann; Chang, Jo-Shu

    2014-05-01

    Generation of geothermal energy is associated with a significant amount of geothermal fluids, which may be abundant in high-value metals, such as lithium, cesium, rubidium, and other precious and rare earth metals. The recovery of high-value metals from geothermal fluids would thus have both economic and environmental benefits. The conventional technologies applied to achieve this are mostly physicochemical, which may be energy intensive, pose the risk of secondary pollution whilst being inefficient in recovering metals from dilute solutions. Biological methods, based on biosorption or bioaccumulation, have recently emerged as alternative approaches, as they are more environmentally friendly, cost effective, and suitable for treating wastewater with dilute metal contents. This article provides a comprehensive review of the related biological technologies used to recover the high-value metals present in geothermal fluids as well as critical discussion on the key issues that are often used to evaluate the effectiveness of those methods.

  16. Deep-ocean foraging northern elephant seals bioaccumulate persistent organic pollutants

    International Nuclear Information System (INIS)

    As top predators in the northeast Pacific Ocean, northern elephant seals (Mirounga angustirostris) are vulnerable to bioaccumulation of persistent organic pollutants (POPs). Our study examined a suite of POPs in blubber (inner and outer) and blood (serum) of free-ranging northern elephant seals. For adult females (N = 24), we satellite tracked and sampled the same seals before and after their approximately seven month long foraging trip. For males, we sampled different adults and sub-adults before (N = 14) and after (N = 15) the same foraging trip. For females, we calculated blubber burdens for all compounds. The highest POP concentrations in males and females were found for ∑ DDTs and ∑ PCBs. In blubber and serum, males had significantly greater concentrations than females for almost all compounds. For males and females, ∑ DDT and ∑ PBDEs were highly correlated in blubber and serum. While ∑ PCBs were highly correlated with ∑ DDTs and ∑ PBDEs in blubber and serum for males, ∑ PCBs showed weaker correlations with both compounds in females. As females gained mass while foraging, concentrations of nearly all POPs in inner and outer blubber significantly decreased; however, the absolute burden in blubber significantly increased, indicating ingestion of contaminants while foraging. Additionally, we identified three clusters of seal foraging behavior, based on geography, diving behavior, and stable carbon and nitrogen isotopes, which corresponded with differences in ∑ DDTs, ∑ PBDEs, MeO-BDE 47, as well as the ratio of ∑ DDTs to ∑ PCBs, indicating the potential for behavior to heighten or mitigate contaminant exposure. The greatest concentrations of ∑ DDTs and ∑ PBDEs were observed in the cluster that foraged closer to the coast and had blood samples more enriched in 13C. Bioaccumulation of POPs by elephant seals supports mesopelagic food webs as a sink for POPs and highlights elephant seals as a potential sentinel of contamination in deep

  17. Deep-ocean foraging northern elephant seals bioaccumulate persistent organic pollutants

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, Sarah H., E-mail: sarahpeterson23@gmail.com [Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, 100 Shaffer Road, Santa Cruz, CA 95060 (United States); Peterson, Michael G. [Department of Environmental Science, Policy and Management, University of California, Berkeley, 130 Mulford Hall, Berkeley, CA 94720 (United States); Debier, Cathy [Institut des Sciences de la Vie, Université catholique de Louvain, Croix du Sud 2/L7.05.08, 1348 Louvain-la-Neuve (Belgium); Covaci, Adrian [Toxicological Center, Campus Drie Eiken, Universiteit Antwerpen, Universiteitsplein 1, 2610 Wilrijk (Belgium); Dirtu, Alin C. [Toxicological Center, Campus Drie Eiken, Universiteit Antwerpen, Universiteitsplein 1, 2610 Wilrijk (Belgium); Department of Chemistry, “Al. I. Cuza” University of Iasi, 700506 Iasi (Romania); Malarvannan, Govindan [Toxicological Center, Campus Drie Eiken, Universiteit Antwerpen, Universiteitsplein 1, 2610 Wilrijk (Belgium); Crocker, Daniel E. [Department of Biology, Sonoma State University, 1801 East Cotati Ave, Rohnert Park, CA 94928 (United States); Schwarz, Lisa K. [Institute of Marine Sciences, University of California, Santa Cruz, 100 Shaffer Road, Santa Cruz, CA 95060 (United States); Costa, Daniel P. [Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, 100 Shaffer Road, Santa Cruz, CA 95060 (United States)

    2015-11-15

    As top predators in the northeast Pacific Ocean, northern elephant seals (Mirounga angustirostris) are vulnerable to bioaccumulation of persistent organic pollutants (POPs). Our study examined a suite of POPs in blubber (inner and outer) and blood (serum) of free-ranging northern elephant seals. For adult females (N = 24), we satellite tracked and sampled the same seals before and after their approximately seven month long foraging trip. For males, we sampled different adults and sub-adults before (N = 14) and after (N = 15) the same foraging trip. For females, we calculated blubber burdens for all compounds. The highest POP concentrations in males and females were found for ∑ DDTs and ∑ PCBs. In blubber and serum, males had significantly greater concentrations than females for almost all compounds. For males and females, ∑ DDT and ∑ PBDEs were highly correlated in blubber and serum. While ∑ PCBs were highly correlated with ∑ DDTs and ∑ PBDEs in blubber and serum for males, ∑ PCBs showed weaker correlations with both compounds in females. As females gained mass while foraging, concentrations of nearly all POPs in inner and outer blubber significantly decreased; however, the absolute burden in blubber significantly increased, indicating ingestion of contaminants while foraging. Additionally, we identified three clusters of seal foraging behavior, based on geography, diving behavior, and stable carbon and nitrogen isotopes, which corresponded with differences in ∑ DDTs, ∑ PBDEs, MeO-BDE 47, as well as the ratio of ∑ DDTs to ∑ PCBs, indicating the potential for behavior to heighten or mitigate contaminant exposure. The greatest concentrations of ∑ DDTs and ∑ PBDEs were observed in the cluster that foraged closer to the coast and had blood samples more enriched in {sup 13}C. Bioaccumulation of POPs by elephant seals supports mesopelagic food webs as a sink for POPs and highlights elephant seals as a potential sentinel of contamination in

  18. Bioaccumulation potential of contaminants from bedded and suspended Oakland Harbor deepening project sediments to San Francisco Bay flatfish and bivalve mollusks. Final report

    Energy Technology Data Exchange (ETDEWEB)

    McFarland, V.A.; Clarke, J.U.; Lutz, C.H.; Jarvis, A.S.; Mulhearn, B.

    1994-08-01

    The Oakland Harbor Deepening Project (OHDP) has been on hold since 1987 due to public and resource agency concerns regarding further disposal of dredged sediments within San Francisco (SF) Bay. Dispersal of the fines fraction throughout the Bay was thought to occur following disposal operations at the Alcatraz site, resulting in transport of contaminants throughout the Bay system. The study described in this report was designed to address the potential for contaminant uptake in estuarine organisms through exposure to suspended and bedded OHDP sediments. Bioaccumulation that occurred from these sediments was put into perspective with bioaccumulation from sediments normally resuspended in the Bay by natural processes, and from a demonstrably contaminated sediment. Indigenous SF Bay organisms were exposed to either bedded or suspended sediment in replicate experimental units of the Flow-through Aquatic Toxicology Exposure System (FATES) at the WES. Sediments and tissues were analyzed for a suite of contaminants, including organotins, polynuclear aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), pesticides and DDE, and ten metals.

  19. Metal bioaccumulation in the Mediterranean barbel (Barbus meridionalis) in a Mediterranean river receiving effluents from urban and industrial wastewater treatment plants.

    Science.gov (United States)

    Maceda-Veiga, Alberto; Monroy, Mario; de Sostoa, Adolfo

    2012-02-01

    Although sewage treatment plants (STPs) play a crucial role in maintaining the water quality and flow of Mediterranean rivers, particularly during drought periods, few studies have addressed their impact on aquatic fauna. Here we analyzed the role of STPs as a source of metals in the Ripoll River, a heavily urbanized and industrialized watercourse with a long history of anthropogenic disturbance. For this purpose, we measured iron, mercury, cadmium, zinc, lead, nickel and copper accumulation in the liver and muscle of the Mediterranean barbel, Barbus meridionalis and also the concentrations of these metals in the river water. Industrial and urban sewage treatment plants are source of metals in Ripoll River but the former mainly increases Zn and Ni values. Significant differences in metal bioaccumulation between reference and polluted sites were detected. Nevertheless, there was only a significant positive relationship between bioaccumulation of Cu and Hg, and their concentration in water. In addition, the lead concentration in fish was not clearly associated with the presence of STPs. On the basis of morphometric parameters, the hepato-somatic index was the only one denoting significant differences between polluted and references sites. Given that fish are key elements in food webs, recreational fishing is practice in this area and that river water is used for agricultural purposes, we recommend long-term studies to analyze the impact of metal pollution in this river.

  20. Phylogenetic consistencies among chondrichthyan and teleost fishes in their bioaccumulation of multiple trace elements from seawater

    Energy Technology Data Exchange (ETDEWEB)

    Jeffree, Ross A., E-mail: R.Jeffree@iaea.org [IAEA Marine Environment Laboratories, 4, Quai Antoine 1er, MC 98000 (Monaco); Oberhansli, Francois; Teyssie, Jean-Louis [IAEA Marine Environment Laboratories, 4, Quai Antoine 1er, MC 98000 (Monaco)

    2010-07-15

    Multi-tracer experiments determined the accumulation from seawater of selected radioactive trace elements (Mn-54, Co-60, Zn-65, Cs-134, Am-241, Cd-109, Ag-110m, Se-75 and Cr-51) by three teleost and three chondrichthyan fish species to test the hypothesis that these phylogenetic groups have different bioaccumulation characteristics, based on previously established contrasts between the carcharhiniform chondrichthyan Scyliorhinus canicula (dogfish) and the pleuronectiform teleost Psetta maxima (turbot). Discriminant function analysis on whole body: water concentration factors (CFs) separated dogfish and turbot in two independent experiments. Classification functions grouped the perciform teleosts, seabream (Sparus aurata) and seabass (Dicentrarchus labrax), with turbot and grouped the chondrichthyans, undulate ray (Raja undulata; Rajiformes) and spotted torpedo (Torpedo marmorata; Torpediniformes), with dogfish, thus supporting our hypothesis. Hierarchical classificatory, multi-dimensional scaling and similarity analyses based on the CFs for the nine radiotracers, also separated all three teleosts (that aggregated lower in the hierarchy) from the three chondrichthyan species. The three chondrichthyans were also more diverse amongst themselves compared to the three teleosts. Particular trace elements that were more important in separating teleosts and chondrichthyans were Cs-134 that was elevated in teleosts and Zn-65 that was elevated in chondrichthyans, these differences being due to their differential rates of uptake rather than loss. Chondrichthyans were also higher in Cr-51, Co-60, Ag-110m and Am-241, whereas teleosts were higher only in Mn-54. These contrasts in bioaccumulation patterns between teleosts and chondrichthyans are interpreted in the context of both proximate causes of underlying differences in physiology and anatomy, as well as the ultimate cause of their evolutionary divergence over more than 500 million years before present (MyBP). Our results

  1. Elemental analysis of lichen bioaccumulators before exposure as transplants in air pollution monitoring

    International Nuclear Information System (INIS)

    Lichen transplants from relatively unpolluted sites are successfully used as heavy metal bioaccumulators for long-term air pollution monitoring. Significant element accumulations are generally revealed after 6 to 12 months of exposure. The main objective of this interdisciplinary research is to get a low-price survey of the air pollution level in some critical areas of Romania by nuclear and atomic analytical methods, based on the element accumulating property of transplanted lichens. The lichen species Evernia prunastri and Pseudevernia furfuracea collected from the Prealps, northeast Italy, have been selected for this study. Experimental setup for standardized lichen exposure needs special plastic frames ('little traps': 15 · 15 · 1.5 cm, with 1cm2 mesh) which are fixed horizontally on stainless steel posts at about 1.5 m above the ground. Prior to exposure, the lichen material is cleansed of some vegetal impurities and then shortly washed using de-ionised water. The initial (zero-level) contents of lichens were determined by Instrumental Neutron Activation Analysis (INAA) and Energy Dispersive X-Ray Fluorescence Analysis (EDXRFA) methods. INAA was carried out at the Institute of Physics and Nuclear Engineering in Bucharest (IFIN) and while EDXRFA at the University of Hohenheim in Stuttgart. The investigated elements were: As, Br, Ca, Cd, Co, Cr, Cu, Fe, K, Mn, Ni, Pb, S, Sb, Se, V and Zn. From among them, Cd, Co and Sb can be determined only by INAA and ICP-MS, Pb only by EDXRFA and PIXE, and S only by EDXRFA. A statistical intercomparison of the results allowed a good quality control of the used analytical methods for these specific matrices. This work was supported in part by European Commission Center of Excellence Project ICA1-CT-2000-70023: IDRANAP (Inter-Disciplinary Research and Applications based on Nuclear and Atomic Physics), Work Package 2 (Air pollution monitoring by sampling airborne particulate matter combined with lichen bioaccumulator exposure

  2. Development of a dynamic model for estimating the food web transfer of chemicals in small aquatic ecosystems.

    Science.gov (United States)

    Nfon, Erick; Armitage, James M; Cousins, Ian T

    2011-11-15

    A dynamic combined fate and food web model was developed to estimate the food web transfer of chemicals in small aquatic ecosystems (i.e. ponds). A novel feature of the modeling approach is that aquatic macrophytes (submerged aquatic vegetation) were included in the fate model and were also a food item in the food web model. The paper aims to investigate whether macrophytes are effective at mitigating chemical exposure and to compare the modeling approach developed here with previous modeling approaches recommended in the European Union (EU) guideline for risk assessment of pesticides. The model was used to estimate bioaccumulation of three hypothetical chemicals of varying hydrophobicity in a pond food web comprising 11 species. Three different macrophyte biomass densities were simulated in the model experiments to determine the influence of macrophytes on fate and bioaccumulation. Macrophytes were shown to have a significant effect on the fate and food web transfer of highly hydrophobic compounds with log KOW>=5. Modeled peak concentrations in biota were highest for the scenarios with the lowest macrophyte biomass density. The distribution and food web transfer of the hypothetical compound with the lowest hydrophobicity (log KOW=3) was not affected by the inclusion of aquatic macrophytes in the pond environment. For the three different hypothetical chemicals and at all macrophyte biomass densities, the maximum predicted concentrations in the top predator in the food web model were at least one order of magnitude lower than the values estimated using methods suggested in EU guidelines. The EU guideline thus provides a highly conservative estimate of risk. In our opinion, and subject to further model evaluation, a realistic assessment of dynamic food web transfer and risk can be obtained using the model presented here. PMID:21962596

  3. Molecular Species Delimitation and Morphology of Aquatic and Sub-Aquatic Bugs (Heteroptera) in Cameroon

    Science.gov (United States)

    Le Gall, Philippe; Chen, Ping-Ping; Nieser, Nico; Guilbert, Eric; Njiokou, Flobert; Marsollier, Laurent; Guégan, Jean-François; Pluot-Sigwalt, Dominique; Eyangoh, Sara; Harry, Myriam

    2016-01-01

    Aquatic and semi-aquatic bugs (Heteroptera) represent a remarkable diversity and a resurging interest has been given to documenting at the species level these insects inhabiting Cameroon in Central Africa due to their potential implication in the transmission of the bacterium Mycobacterium ulcerans, the causal agent of Buruli ulcer, an emerging human disease. A survey was carried out over two years in Cameroon. Morphological analyses were done in two steps. A first step consisted in separating the specimens based on broadly shared characters into morphotypes. The specimens were then separated into two independent batches containing each the same representation of each morphotype. One batch (309 specimens) was used by taxonomy experts on aquatic bugs for species level identification and/or to reconcile nymph with their corresponding adult species. The second batch (188 specimens) was used to define species based on the COI DNA sequences (standard sequence used for “DNA barcoding”) and using the Automatic Barcode Gap Discovery (ABGD) method. The first morphological analysis step separated the specimens into 63 different morphotypes (49 adults and 14 nymphs), which were then found to belong to 54 morphological species in the infra-orders Gerromorpha and Nepomorpha based on the species-level morphological identification, and 41–45 putative molecular species according to the gap value retained in the ABGD. Integrating morphology and “DNA barcoding” reconciled all the specimens into 62 aquatic bug species in Cameroon. Generally, we obtained a good congruence between species a priori identified based on morphology from adult morphotypes and molecular putative species. Moreover, molecular identification has allowed the association of 86% of nymphs with adults. This work illustrates the importance of integrative taxonomy. PMID:27149077

  4. Molecular Species Delimitation and Morphology of Aquatic and Sub-Aquatic Bugs (Heteroptera in Cameroon.

    Directory of Open Access Journals (Sweden)

    Solange Meyin A Ebong

    Full Text Available Aquatic and semi-aquatic bugs (Heteroptera represent a remarkable diversity and a resurging interest has been given to documenting at the species level these insects inhabiting Cameroon in Central Africa due to their potential implication in the transmission of the bacterium Mycobacterium ulcerans, the causal agent of Buruli ulcer, an emerging human disease. A survey was carried out over two years in Cameroon. Morphological analyses were done in two steps. A first step consisted in separating the specimens based on broadly shared characters into morphotypes. The specimens were then separated into two independent batches containing each the same representation of each morphotype. One batch (309 specimens was used by taxonomy experts on aquatic bugs for species level identification and/or to reconcile nymph with their corresponding adult species. The second batch (188 specimens was used to define species based on the COI DNA sequences (standard sequence used for "DNA barcoding" and using the Automatic Barcode Gap Discovery (ABGD method. The first morphological analysis step separated the specimens into 63 different morphotypes (49 adults and 14 nymphs, which were then found to belong to 54 morphological species in the infra-orders Gerromorpha and Nepomorpha based on the species-level morphological identification, and 41-45 putative molecular species according to the gap value retained in the ABGD. Integrating morphology and "DNA barcoding" reconciled all the specimens into 62 aquatic bug species in Cameroon. Generally, we obtained a good congruence between species a priori identified based on morphology from adult morphotypes and molecular putative species. Moreover, molecular identification has allowed the association of 86% of nymphs with adults. This work illustrates the importance of integrative taxonomy.

  5. Species-specific mercury bioaccumulation in a diverse fish community.

    Science.gov (United States)

    Donald, David B; Wissel, Björn; Anas, M U Mohamed

    2015-12-01

    Mercury bioaccumulation models developed for fish provide insight into the sources and transfer of Hg within ecosystems. Mercury concentrations were assessed for 16 fish species of the western reach of Lake Diefenbaker, Saskatchewan, Canada. For top predators (northern pike, Esox Lucius; walleye, Sander vitreum), Hg concentrations were positively correlated to δ(15)N, and δ(15)N to fish age, suggesting that throughout life these fish fed on organisms with increasingly higher trophic values and Hg concentrations. However, fish mass and/or age were the principal parameters related to Hg concentrations for most species. For 9 common species combined, individual variation in Hg concentration was explained in declining order of importance by fish mass, trophic position (δ(15)N), and fish age. Delta (15)N value was not the leading variable related to Hg concentration for the assemblage, probably because of the longevity of lower--trophic-level species (3 species ≥ 20 yr), substantial overlap in Hg concentration and δ(15)N values for large-bodied fish up to 3000 g, and complex relationships between Hg concentration and δ(15)N among species. These results suggest that the quantity of food (and Hg) consumed each year and converted to fish mass, the quantity of Hg bioaccumulated over years and decades, and trophic position were significant determinants of Hg concentration in Lake Diefenbaker fish.

  6. Sediment Bioaccumulation Test with Lumbriculus variegatus: Effects of Organism Loading.

    Science.gov (United States)

    Burkhard, Lawrence P; Hubin-Barrows, Dylan; Billa, Nanditha; Highland, Terry L; Hockett, James R; Mount, David R; Norberg-King, Teresa J

    2016-07-01

    At contaminated sediment sites, the bioavailability of contaminants in sediments is assessed using sediment-bioaccumulation tests with Lumbriculus variegates (Lv). The testing protocols recommend that ratio of total organic carbon (TOC) in sediment to L. variegatus (dry weight) (TOC/Lv) should be no less than 50:1. Occasionally, this recommendation is not followed, especially with sediments having low TOC, e.g., polychlorinated biphenyls (PCBs) in the L. variegatus were measured in six of the seven sediments tested, and differences in PCB residues among loading ratios across all sediments were small, i.e., ±50 %, from those measured at the minimum recommended ratio of 50:1 TOC/Lv. In all sediment, PCB residues increased with increasing loading of the organisms for the mono-, di-, and tri-chloro-PCBs. For tetra-chloro and heavier PCBs, residues increased with increasing loading of organisms for only two of the six sediments. PCB residues were not significantly different between TOC/Lv loadings of 50:1 and mid-20:1 ratios indicating that equivalent results can be obtained with TOC/Lv ratios into the mid-20:1 ratios. Overall, the testing results suggest that when testing recommendation of 50:1 TOC/Lv is not followed, potential biases in the biota-sediment accumulations factors from the sediment-bioaccumulation test will be small. PMID:27165691

  7. Arsenic bioaccumulation in a marine juvenile fish Terapon jarbua.

    Science.gov (United States)

    Zhang, Wei; Huang, Liangmin; Wang, Wen-Xiong

    2011-10-01

    Arsenic (As) is a ubiquitous toxic metalloid that is causing widespread public concern. Recent measurements have indicated that some marine fish in China might be seriously contaminated with As. Yet the biokinetics and bioaccumulation pathway of As in fish remain little understood. In this study, we employed a radiotracer technique to quantify the dissolved uptake, dietary assimilation and subsequent efflux of As(V) in a marine predatory fish, Terapon jarbua. The dissolved uptake of As showed a linear pattern over a range of dissolved concentrations from 0.5 to 50 μg L(-1), with a corresponding uptake rate constant of 0.0015 L g(-1)d(-1). The assimilation efficiencies (AEs) of dietary As were only 3.1-7.4% for fish fed with copepods, clams, prey fish, or artificial diets, and were much lower than the As that entered the trophically available metal fraction in the prey. The dietary AEs were independent of the As(V) concentrations in the artificial diets. The efflux rate constant of As in fish following the dietary exposure was 0.03 d(-1). Modeling calculations showed that dietary uptake could be the primary route for As bioaccumulation in fish, and the corresponding contributions of waterborne and dietary uptakes were related to the bioconcentration factor (BCF) of the prey and the ingestion rate of fish. This study demonstrates that As(V) has a low bioavailability to T. jarbua. PMID:21945928

  8. Bioaccumulation of hexachlorobenzene in Eisenia foetida at different aging stages

    Institute of Scientific and Technical Information of China (English)

    GAO Hongjian

    2009-01-01

    The impacts of contact time on the extractability, the availability of hexachlorobenzene (HCB) in different soils (paddy soil, red soil, and fluvo-aquic soil) and bioaccurnulation in earthworm Eisenia foetida were investigated under controlled conditions in laboratory. Results indicated that the aging rate of HCB displaying a biphasic character in different soils: a rapid aging in the first 60 d followed by a slow aging in the next 120 d incubation time. Moreover, most of extractable HCB (about 90%) decline occurred in the first 60 d after HCB was spiked into the soils. The aging rate of HCB in the paddy soil was higher than that in the fluvo-aquic soil or the red soil. The amount of HCB accumulated in the earthworms and its accumulative ability, expressed as a bioaccumulation factor (BAF), declined as the aging time increased from 1 to 180 d. Although the extractable HCB decreased with increasing residence time in soil, much of HCB could still be accumulated by earthworms (457.6-984.3 ng/g) through bioaccumulation, which poses a potential risk to soil ecological safety.

  9. Bioaccumulation Pattern of Mercury in Bacopa monnieri (L. Pennell

    Directory of Open Access Journals (Sweden)

    Hussain K

    2012-05-01

    Full Text Available Bioaccumulation pattern of mercury was studied in Bacopa monnieri plants cultivated in Hoagland nutrient medium artificially contaminated with 5 and 10μM HgCl2. Mercury content of roots, stem and leaves were analysed using Atomic Absorption Spectrophotometry (AAS. During a period 12 days of growth, more accumulation was noticed in roots followed by stem and leaves. Repeated addition of HgCl2 and enhanced growth period up to 50 days showed only negligible increase in accumulation maintaining a threshold level of mercury in the root. When a comparison was done between the quantities of HgCl2 added to the growth medium and the sum of total accumulation of the plant and content present in the residual medium, a significant quantity of mercury is found to be lost presumably through the process of phytovolatilization from the plant. Studies on the effect of pH on bioaccumulation of mercury showed that acidic pH enhanced accumulation rate and hence for phytoremediation technology ‘chlorination’ is recommended whereas for medicinal purpose, Bacopa monnieri plants can be harvested after ‘liming’ to increase the pH and thereby reducing accumulation rate of mercury.

  10. Morbillivirus infections in aquatic mammals

    NARCIS (Netherlands)

    I.K.G. Visser (Ilona); M.F. van Bressem; T. Barrett (Thomas); A.D.M.E. Osterhaus (Ab)

    1993-01-01

    textabstractInfections with morbilliviruses have caused heavy losses among different populations of aquatic mammals during the last 5 years. Two different morbilliviruses were isolated from disease outbreaks among seals in Europe and Siberia: phocid distemper virus-1 (PDV-1) and phocid distemper vir

  11. Macrophytes: Ecology of aquatic plants

    NARCIS (Netherlands)

    Bornette, G.; Puijalon, S.

    2009-01-01

    Aquatic plants contribute to maintaining key functions and related biodiversity in freshwater ecosystems, and to provide the needs of human societies. The way the ecological niches of macrophytes are determined by abiotic filters and biotic ones is considered. A simple, broadly applicable model of t

  12. Treatment of wastewater and restoration of aquatic systems through an eco-technology based constructed treatment wetlands - a successful experience in Central India.

    Science.gov (United States)

    Billore, S K; Sharma, J K; Singh, N; Ram, H

    2013-01-01

    In the last couple of decades constructed wetlands (CWs) have drawn considerable interest in Central India. CWs offer an effective means of integrating wastewater treatment and resource enhancement, often at competitive cost in comparison to conventional wastewater treatments, with additional benefits of Green Urban Landscaping and wildlife habitat. This paper describes treatment performances and the design of some Sub Surface Flow CWs (SSFCW) and Artificial Floating Islands (AFIs) in Central India. Central Indian CWs show significant pollution reduction load for total suspended solids (TSS) (62-82%), biochemical oxygen demand (BOD) (40-75%), NH(4)-N (67-78%) and total Kjeldahl nitrogen (TKN) (59-78%). Field scale SSFCWs installed so far in Central India are rectangular, earthen, single/multiple celled having similar depths of 0.60-0.90 m, hydraulic retention capacity 18-221 m(3) with effective size 41.8-1,050 m(2). The major components of CWs incorporate puddled bottom/side walls, sealed with impermeable low-density polyethylene, a bed of locally available river gravel planted with Phragmites karka, and an inlet distribution and outlet collection system. A new variant on CWs are AFIs working under hydroponics. The field scale experimental AFIs installed in-situ in a slowly flowing local river were composed of hollow bamboo, a bed of coconut coir, floating arrangements and Phragmites karka as nutrient stripping plant species. The AFIs polish the aquatic system by reducing 46.6% of TSS, 45-55% of NH(4)-N, 33-45% of NO(3)-N, 45-50% of TKN and 40-50% of BOD. The study established that there is a need for further research and sufficient data to assist the development of CWs by instilling confidence in policymakers, planners and in the public. PMID:24135106

  13. Relevance and analysis of traffic related platinum group metals (Pt, Pd, Rh) in the aquatic biosphere, with emphasis on palladium.

    Science.gov (United States)

    Sures, Bernd; Zimmermann, Sonja; Messerschmidt, Jürgen; von Bohlen, Alex

    2002-10-01

    Following the introduction of automobile catalysts in the middle of the Eighties in Germany there is an increasing emission of the platinum-group-metals (PGM) platinum (Pt), palladium (Pd) and rhodium (Rh). Still, it remains unclear if these metals are bioavailable for aquatic animals and to which extent they accumulate in the aquatic biosphere. Zebra mussels (Dreissena polymorpha) were maintained in water containing road dust at a concentration of 1 kg/10 l. Following an exposure period of 26 weeks, soft tissues of the mussels were analysed applying adsorptive cathodic stripping voltammetry (ACSV) for the determination of Pt and Rh and total-reflection X-ray fluorescence analysis after co-precipitation of Pd with mercury. This experiment revealed for the first time that all the three catalyst emitted metals were accumulated by mussels. The bioaccumulation increased in the following manner: Rh < Pt < Pd. Thus, the application of sentinel organisms in combination with modern trace analytical procedures in environmental impact studies does allow an assessment of the distribution and the degree of bioaccumulation of PGM in the environment, which is highly appreciated. PMID:12463686

  14. Bioaccumulation and Depuration of Copper in the Kidney and Liver of a Freshwater Fish, Capoeta fusca

    Directory of Open Access Journals (Sweden)

    Borhan Mansouri

    2016-07-01

    Full Text Available Background: This study aims to investigate the patterns of bioaccumulation and depuration of copper in the selected kidney and liver of Capoeta fusca. Methods: The fish were collected between September and November 2010 from a qanat in Birjand. They were exposed to two types treatments with copper (0.25 and 0.75 mg/L for a period of 41 days. The fish under study were exposed to the above-mentioned sub-lethal concentrations separately for 14 and 21 days (accumulation period. At the end of this period, the remaining fish were kept in tap water (elimination period for 31 and 41 days. Results: The findings showed that the accumulation of copper in lower and higher sub-lethal concentrations was higher in kidney as the mean accumulation of copper on day 21 was 1.9±0.1 μg/g and 2.93±0.47 μg/g respectively, in 0.25 μg/g and 0.75 μg/g concentrations. On the other hand, the results also showed that the depuration level of copper in the given concentrations was higher in liver than kidney. The bioaccumulation and depuration of copper significantly increased in the kidney and liver of C. fusca (P<0.01. Conclusion: Based on the present work, it is concluded that C. fusca has a potential for the rapid accumulation and depuration of copper in freshwater. Also, the results indicate that the fish C. fusca, as representative fish species in the East of Iran, can be a useful bioindicator organism of water contamination with copper.

  15. Molecular effects and bioaccumulation of levonorgestrel in the non-target organism Dreissena polymorpha

    Energy Technology Data Exchange (ETDEWEB)

    Contardo-Jara, Valeska, E-mail: contardo@igb-berlin.d [Department of Ecophysiology and Aquaculture, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Mueggelseedamm 301, 12587 Berlin (Germany); Lorenz, Claudia, E-mail: claudia.lorenz@igb-berlin.d [Department of Ecophysiology and Aquaculture, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Mueggelseedamm 301, 12587 Berlin (Germany); Pflugmacher, Stephan, E-mail: pflugmacher@igb-berlin.d [Department of Ecophysiology and Aquaculture, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Mueggelseedamm 301, 12587 Berlin (Germany); Nuetzmann, Gunnar, E-mail: nuetzmann@igb-berlin.d [Department of Ecohydrology, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Mueggelseedamm 301, 12587 Berlin (Germany); Kloas, Werner, E-mail: werner.kloas@igb-berlin.d [Department of Ecophysiology and Aquaculture, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Mueggelseedamm 301, 12587 Berlin (Germany); Wiegand, Claudia, E-mail: wiegand@biology.sdu.d [University of Southern Denmark, Institute of Biology, Campusvej 55, 5230 Odense M (Denmark)

    2011-01-15

    Bioaccumulation and effects of the contraceptive hormone levonorgestrel were examined in the non-target organism Dreissena polymorpha. Molecular biomarkers of biotransformation, elimination, antioxidant defence and protein damage were analyzed after exposure to increasing concentrations of levonorgestrel in a flow-through system. The lowest concentration (0.312 {mu}g L{sup -1}) was 100-fold bioconcentrated within four days. A decrease of the bioconcentration factor was observed within one week for the highest test concentrations (3.12 and 6.24 {mu}g L{sup -1}) suggesting enhanced excretory processes. The immediate mRNA up-regulation of pi class glutathione S-transferase proved that phase II biotransformation processes were induced. Disturbance of fundamental cell functions was assumed since the aryl hydrocarbon receptor has been permanently down-regulated. mRNA up-regulation of P-glycoprotein, superoxide dismutase and metallothioneine suggested enhanced elimination processes and ongoing oxidative stress. mRNA up-regulation of heat shock protein 70 in mussels exposed to the two highest concentrations clearly indicated impacts on protein damage. - Fundamental cell processes as biotransformation, elimination and prevention from oxidative stress are influenced by exposure of the contraceptive levonorgestrel in non-target organisms. - Research highlights: Bioaccumulation of levonorgestrel in mussels is higher than expected based on its lipophilicity. Exposure to levonorgestrel causes oxidative stress and enhanced elimination processes. Glutathione S-transferase (pi class) mRNA induction after one day hint on phase II biotransformation. mRNA induction of heat shock protein 70 after one week prove protein damage.

  16. Aquatic Macrophyte Risk Assessment for Pesticides

    NARCIS (Netherlands)

    Maltby, L.; Arnold, D.; Arts, G.H.P.; Davies, J.; Heimbach, F.; Pickl, C.; Poulsen, V.

    2009-01-01

    Given the essential role that primary producers play in aquatic ecosystems, it is imperative that the potential risk of pesticides to the structure and functioning of aquatic plants is adequately assessed. This book discusses the assessment of the risk of pesticides with herbicidal activity to aquat

  17. Role of metal mixtures (Ca, Cu and Pb) on Cd bioaccumulation and phytochelatin production by Chlamydomonas reinhardtii

    International Nuclear Information System (INIS)

    The goal of the study was to determine whether metal uptake and biological effects could be predicted by free ion concentrations when organisms were exposed to Cd and a second metal. Bioaccumulation and algal phytochelatin (PC) concentrations were determined for Chlamydomonas reinhardtii following a 6-h exposure. Bioaccumulation results, after six hours of exposure, showed that Cd uptake decreased in the presence of relatively high concentrations of Ca, Cu and Pb, however, Cd bioaccumulation increased in the presence of ca. equimolar concentrations of Cu. A good correlation was observed between the production of PCs and the amount of metals bioaccumulated for the binary mixtures of Cd–Pb and Cd–Cu, but not the Cd–Ca mixture. Overall, the results suggested that, in the case of mixtures, bioaccumulated metal rather than free ion concentrations would be a better predictor of biological effect. -- Highlights: •Cd bioaccumulation and phytochelatin production were evaluated for metal mixtures. •Bioaccumulated metal rather than free ion was a better predictor of biological effect. •Calcium additions decreased Cd bioaccumulation but increased phytochelatin production. •Copper additions increased Cd bioaccumulation and phytochelatin production. •Lead additions had little effect on either Cd bioaccumulation or phytochelatin production. -- In metal mixtures containing Cd and Ca, Pb or Cu, bioaccumulated metal rather than free ion was a better predictor of biological effect

  18. Late cretaceous aquatic plant world in Patagonia, Argentina.

    Directory of Open Access Journals (Sweden)

    N Rubén Cúneo

    Full Text Available In this contribution, we describe latest Cretaceous aquatic plant communities from the La Colonia Formation, Patagonia, Argentina, based on their taxonomic components and paleoecological attributes. The La Colonia Formation is a geological unit deposited during a Maastrichtian-Danian transgressive episode of the South Atlantic Ocean. This event resulted in the deposition of a series of fine-grained sediments associated with lagoon systems occurring along irregular coastal plains in northern Patagonia. These deposits preserved a diverse biota, including aquatic and terrestrial plants and animals. The aquatic macrophytes can be broadly divided into two groups: free-floating and rooted, the latter with emergent or floating leaves. Free-floating macrophytes include ferns in Salviniaceae (Azolla and Paleoazolla and a monocot (Araceae. Floating microphytes include green algae (Botryoccocus, Pediastrum and Zygnemataceae. Among the rooted components, marsileaceous water ferns (including Regnellidium and an extinct form and the eudicot angiosperm Nelumbo (Nelumbonaceae are the dominant groups. Terrestrial plants occurring in the vegetation surrounding the lagoons include monocots (palms and Typhaceae, ferns with affinities to Dicksoniaceae, conifers, and dicots. A reconstruction of the aquatic plant paleocommuniy is provided based on the distribution of the fossils along a freshwater horizon within the La Colonia Formation. This contribution constitutes the first reconstruction of a Cretaceous aquatic habitat for southern South America.

  19. Late cretaceous aquatic plant world in Patagonia, Argentina.

    Science.gov (United States)

    Cúneo, N Rubén; Gandolfo, María A; Zamaloa, María C; Hermsen, Elizabeth

    2014-01-01

    In this contribution, we describe latest Cretaceous aquatic plant communities from the La Colonia Formation, Patagonia, Argentina, based on their taxonomic components and paleoecological attributes. The La Colonia Formation is a geological unit deposited during a Maastrichtian-Danian transgressive episode of the South Atlantic Ocean. This event resulted in the deposition of a series of fine-grained sediments associated with lagoon systems occurring along irregular coastal plains in northern Patagonia. These deposits preserved a diverse biota, including aquatic and terrestrial plants and animals. The aquatic macrophytes can be broadly divided into two groups: free-floating and rooted, the latter with emergent or floating leaves. Free-floating macrophytes include ferns in Salviniaceae (Azolla and Paleoazolla) and a monocot (Araceae). Floating microphytes include green algae (Botryoccocus, Pediastrum and Zygnemataceae). Among the rooted components, marsileaceous water ferns (including Regnellidium and an extinct form) and the eudicot angiosperm Nelumbo (Nelumbonaceae) are the dominant groups. Terrestrial plants occurring in the vegetation surrounding the lagoons include monocots (palms and Typhaceae), ferns with affinities to Dicksoniaceae, conifers, and dicots. A reconstruction of the aquatic plant paleocommuniy is provided based on the distribution of the fossils along a freshwater horizon within the La Colonia Formation. This contribution constitutes the first reconstruction of a Cretaceous aquatic habitat for southern South America. PMID:25148081

  20. Visualizing aquatic bacteria by light and transmission electron microscopy.

    Science.gov (United States)

    Silva, Thiago P; Noyma, Natália P; Duque, Thabata L A; Gamalier, Juliana P; Vidal, Luciana O; Lobão, Lúcia M; Chiarini-Garcia, Hélio; Roland, Fábio; Melo, Rossana C N

    2014-01-01

    The understanding of the functional role of aquatic bacteria in microbial food webs is largely dependent on methods applied to the direct visualization and enumeration of these organisms. While the ultrastructure of aquatic bacteria is still poorly known, routine observation of aquatic bacteria by light microscopy requires staining with fluorochromes, followed by filtration and direct counting on filter surfaces. Here, we used a new strategy to visualize and enumerate aquatic bacteria by light microscopy. By spinning water samples from varied tropical ecosystems in a cytocentrifuge, we found that bacteria firmly adhere to regular slides, can be stained by fluorochoromes with no background formation and fast enumerated. Significant correlations were found between the cytocentrifugation and filter-based methods. Moreover, preparations through cytocentrifugation were more adequate for bacterial viability evaluation than filter-based preparations. Transmission electron microscopic analyses revealed a morphological diversity of bacteria with different internal and external structures, such as large variation in the cell envelope and capsule thickness, and presence or not of thylakoid membranes. Our results demonstrate that aquatic bacteria represent an ultrastructurally diverse population and open avenues for easy handling/quantification and better visualization of bacteria by light microscopy without the need of filter membranes.

  1. Assessment of potential aquatic herbicide impacts to California aquatic ecosystems.

    Science.gov (United States)

    Siemering, Geoffrey S; Hayworth, Jennifer D; Greenfield, Ben K

    2008-10-01

    A series of legal decisions culminated in 2002 with the California State Water Resources Control Board funding the San Francisco Estuary Institute to develop and implement a 3-year monitoring program to determine the potential environmental impacts of aquatic herbicide applications. The monitoring program was intended to investigate the behavior of all aquatic pesticides in use in California, to determine potential impacts in a wide range of water-body types receiving applications, and to help regulators determine where to direct future resources. A tiered monitoring approach was developed to achieve a balance between program goals and what was practically achievable within the project time and budget constraints. Water, sediment, and biota were collected under "worst-case" scenarios in close association with herbicide applications. Applications of acrolein, copper sulfate, chelated copper, diquat dibromide, glyphosate, fluridone, triclopyr, and 2,4-D were monitored. A range of chemical analyses, toxicity tests, and bioassessments were conducted. At each site, risk quotients were calculated to determine potential impacts. For sediment-partitioning herbicides, sediment quality triad analysis was performed. Worst-case scenario monitoring and special studies showed limited short-term and no long-term toxicity directly attributable to aquatic herbicide applications. Risk quotient calculations called for additional risk characterizations; these included limited assessments for glyphosate and fluridone and more extensive risk assessments for diquat dibromide, chelated copper products, and copper sulfate. Use of surfactants in conjunction with aquatic herbicides was positively associated with greater ecosystem impacts. Results therefore warrant full risk characterization for all adjuvant compounds. PMID:18293029

  2. Review on environmental alterations propagating from aquatic to terrestrial ecosystems.

    Science.gov (United States)

    Schulz, Ralf; Bundschuh, Mirco; Gergs, René; Brühl, Carsten A; Diehl, Dörte; Entling, Martin H; Fahse, Lorenz; Frör, Oliver; Jungkunst, Hermann F; Lorke, Andreas; Schäfer, Ralf B; Schaumann, Gabriele E; Schwenk, Klaus

    2015-12-15

    Terrestrial inputs into freshwater ecosystems are a classical field of environmental science. Resource fluxes (subsidy) from aquatic to terrestrial systems have been less studied, although they are of high ecological relevance particularly for the receiving ecosystem. These fluxes may, however, be impacted by anthropogenically driven alterations modifying structure and functioning of aquatic ecosystems. In this context, we reviewed the peer-reviewed literature for studies addressing the subsidy of terrestrial by aquatic ecosystems with special emphasis on the role that anthropogenic alterations play in this water-land coupling. Our analysis revealed a continuously increasing interest in the coupling of aquatic to terrestrial ecosystems between 1990 and 2014 (total: 661 studies), while the research domains focusing on abiotic (502 studies) and biotic (159 studies) processes are strongly separated. Approximately 35% (abiotic) and 25% (biotic) of the studies focused on the propagation of anthropogenic alterations from the aquatic to the terrestrial system. Among these studies, hydromorphological and hydrological alterations were predominantly assessed, whereas water pollution and invasive species were less frequently investigated. Less than 5% of these studies considered indirect effects in the terrestrial system e.g. via food web responses, as a result of anthropogenic alterations in aquatic ecosystems. Nonetheless, these very few publications indicate far-reaching consequences in the receiving terrestrial ecosystem. For example, bottom-up mediated responses via soil quality can cascade over plant communities up to the level of herbivorous arthropods, while top-down mediated responses via predatory spiders can cascade down to herbivorous arthropods and even plants. Overall, the current state of knowledge calls for an integrated assessment on how these interactions within terrestrial ecosystems are affected by propagation of aquatic ecosystem alterations. To fill

  3. Review on environmental alterations propagating from aquatic to terrestrial ecosystems.

    Science.gov (United States)

    Schulz, Ralf; Bundschuh, Mirco; Gergs, René; Brühl, Carsten A; Diehl, Dörte; Entling, Martin H; Fahse, Lorenz; Frör, Oliver; Jungkunst, Hermann F; Lorke, Andreas; Schäfer, Ralf B; Schaumann, Gabriele E; Schwenk, Klaus

    2015-12-15

    Terrestrial inputs into freshwater ecosystems are a classical field of environmental science. Resource fluxes (subsidy) from aquatic to terrestrial systems have been less studied, although they are of high ecological relevance particularly for the receiving ecosystem. These fluxes may, however, be impacted by anthropogenically driven alterations modifying structure and functioning of aquatic ecosystems. In this context, we reviewed the peer-reviewed literature for studies addressing the subsidy of terrestrial by aquatic ecosystems with special emphasis on the role that anthropogenic alterations play in this water-land coupling. Our analysis revealed a continuously increasing interest in the coupling of aquatic to terrestrial ecosystems between 1990 and 2014 (total: 661 studies), while the research domains focusing on abiotic (502 studies) and biotic (159 studies) processes are strongly separated. Approximately 35% (abiotic) and 25% (biotic) of the studies focused on the propagation of anthropogenic alterations from the aquatic to the terrestrial system. Among these studies, hydromorphological and hydrological alterations were predominantly assessed, whereas water pollution and invasive species were less frequently investigated. Less than 5% of these studies considered indirect effects in the terrestrial system e.g. via food web responses, as a result of anthropogenic alterations in aquatic ecosystems. Nonetheless, these very few publications indicate far-reaching consequences in the receiving terrestrial ecosystem. For example, bottom-up mediated responses via soil quality can cascade over plant communities up to the level of herbivorous arthropods, while top-down mediated responses via predatory spiders can cascade down to herbivorous arthropods and even plants. Overall, the current state of knowledge calls for an integrated assessment on how these interactions within terrestrial ecosystems are affected by propagation of aquatic ecosystem alterations. To fill

  4. Mercury in mercury(II)-spiked soils is highly susceptible to plant bioaccumulation.

    Science.gov (United States)

    Hlodák, Michal; Urík, Martin; Matúš, Peter; Kořenková, Lucia

    2016-01-01

    Heavy metal phytotoxicity assessments usually use soluble metal compounds in spiked soils to evaluate metal bioaccumulation, growth inhibition and adverse effects on physiological parameters. However, exampling mercury phytotoxicity for barley (Hordeum vulgare) this paper highlights unsuitability of this experimental approach. Mercury(II) in spiked soils is extremely bioavailable, and there experimentally determined bioaccumulation is significantly higher compared to reported mercury bioaccumulation efficiency from soils collected from mercury-polluted areas. Our results indicate this is not affected by soil sorption capacity, thus soil ageing and formation of more stable mercuric complexes with soil fractions is necessary for reasonable metal phytotoxicity assessments.

  5. Proposed Release Guides to Protect Aquatic Biota

    Energy Technology Data Exchange (ETDEWEB)

    Marter, W.L.

    2001-03-28

    At the request of South Carolina Department of Health and Environmental Control (SCDHEC) and the Department of Energy (DOE), the Savannah River Laboratory was assigned the task of developing the release guides to protect aquatic biota. A review of aquatic radioecology literature by two leading experts in the field of radioecology concludes that exposure of aquatic biota at one rad per day or less will not produce detectable deleterious effects on aquatic organisms. On the basis of this report, DOE recommends the use of one rad per day as an interim dose standard to protect aquatic biota.

  6. Optimization of methodology by X-ray fluorescence for the metals determination in aquatic plants of the high course of the Lerma river; Optimizacion de la metodologia por fluorescencia de rayos X para la determinacion de metales en plantas acuaticas del curso alto del Rio Lerma

    Energy Technology Data Exchange (ETDEWEB)

    Albino P, E.

    2015-07-01

    The high course of the Lerma river has a pollution problem in its hydrological system due to discharges of urban wastewater and industrial areas; the pollutants that affect the hydrological system are metals, which are absorbed by living organisms and probably incorporated into the food chain. For this reason in this work the technique of X-ray fluorescence total reflection was applied in six species of aquatic plants that grow in the high course of the Lerma river: Arroyo Mezapa (Eichhornia crassipes, Juncus efusus, Hydrocotyle, Schoenoplectus validus) Ameyalco river (Lemna gibba) and Atarasquillo river (Berula erecta) in order to evaluate the metals concentration (Cr, Mn, Fe, Ni, Cu, Zn and Pb) as well as the translocation factor and bioaccumulation factor for each aquatic species. According to the results, was observed that the highest concentration of metals is located in the deeper parts; metals which present a significant concentration are Mn and Fe in the six species of aquatic plants. According to the translocation factor the species having a higher translocation of metals are: Juncus efusus in Mn (1.19 mg/L) and Zn (1.31 mg/L), Hydrocotyle (1.14 mg/L), the species Eichhornia crassipes not show translocation. For bioaccumulation factor, was observed that the most bioaccumulation of metals is found in the soluble fraction of the six species of aquatic plants, especially Fe followed of Cu and Zn. Also was considered that the Berula erecta plant had a higher bioaccumulation of metals such as Cr, Mn, Fe, Cu and Zn so it can be considered as a hyper-accumulating species of these elements. With the results can be considered that the technique of X-ray fluorescence total reflection is 95% reliable to determine the concentration of metals within the structures of the aquatic plants used for this study. (Author)

  7. Bioaccumulation of heavy metals by fimbrial designer adhesins

    DEFF Research Database (Denmark)

    Schembri, Mark; Kjærgaard, Kristian; Klemm, Per

    1999-01-01

    Naturally occurring adhesins bind to specific molecular targets in a lock-and-key fashion due to the composition of the binding domain of the adhesin. By introduction of random peptide libraries in a suitable surface exposed carrier protein it is possible to create and select designer adhesins wi...... for the bioaccumulation of heavy metals from the environment. (C) 1999 Federation of European Microbiological Societies. Published by Elsevier Science B.V. All rights reserved........ By serial selection and enrichment procedures specific sequences were identified which conferred the ability on recombinant cells to adhere to various metal oxides (PbO2, CoO, MnO2, Cr2O3 ) The properties inherent in these sequences permitted the distinct recognition of metals to varying degrees, indicating...

  8. Bioaccumulation and transformation of cadmium by Phaeodactylum tricornutum

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    In this paper,we report the bioaccumulation and transformation of cadmium (Cd) by Phaeodactylum tricornutum in the presence of ethylenediamine tetra acetic acid (EDTA) and cysteine (Cys). Both EDTA and Cys can alleviate the toxicity of Cd to P. tricornutum. Short term intracellular uptake and extracellular adsorption experiments using ICP-MS indicated that the amounts of Cd accumulated on the cell surface of P. tricornutum and inside the cell decreased along with the increase of EDTA concentration,which conformed to the prediction of the Free Ion Activity Model (FIAM). However,extracellular adsorption of Cd increased at first and then decreased along with the increase in the concentration of Cys,while intracellular uptake increased under Cys concentrations from the blank value to 4.45 μmol/L,and then tended to remain at the same level when the Cys concentration was greater than 4.45 μmol/L,and this deviated remarkably from the FIAM. The interactions of Cd with _Si_OH,_C_OH and NH2(CO) _OH on the cell wall were confirmed using FT-IR and XPS studies. The results obtained using HPLC of the phytochelatins (PCs) produced by P. tricornutum under CdCl2,Cd_EDTA and Cd_Cys stress suggested that the main reason for the different effects of EDTA and Cys on the bioaccumulation and transformation of Cd by P. tricornutum was that Cys is not only a complexing ligand to Cd,as is EDTA,but also it is a precursor of the intracellular synthesizing PCs participating in the cellular defense mechanism against Cd. Furthermore,the discovery of in vivo PCs and oxidized_PCs as well as Cd-PC2 in P. tricornutum using ESI-IT-MS provided the evidence for deactivation of Cd by the PCs,reducing Cd-toxicity to P. tricornutum.

  9. Enantioseletive bioaccumulation of tebuconazole in earthworm Eisenia fetida

    Institute of Scientific and Technical Information of China (English)

    Dingyi Yu; Jianzhong Li; Yanfeng Zhang; Huili Wang; Baoyuan Guo; Lin Zheng

    2012-01-01

    Methods of extraction and determination of tebuconazole enantiomers in earthworm (Eisenia fetida) were developed by capillary electrophoresis (CE) and high performance liquid chromatography (HPLC).Both CE and HPLC have excellent resolution and recovery.The linearity ranges were 2.9-102.4 mg/kg and 3.0-99.6 mg/kg for (+)-R-tebuconazole and (-)-S-tebuconazole respectively in CE,and from 0.56 to 1000 mg/kg for both enantiomers in HPLC.Enantioselective bioaccumulation in earthworms from soil was investigated under laboratory condition at concentrations of 10 and 50 mg/kg dw in soil.The uptake kinetics of (+)-R-tebuconazole fitted the firstorder kinetics well with r2 0.97 and 0.94 under 10 and 50 mg/kg dw exposure condition,respectively,while (-)-S-tebueonazole with r2 0.75 and 0.22 did not show the same.Bioaccumulation of tebuconazole in earthworm tissues was enantioselective with a preferential accumulation of (+)-R-tebuconazole.The (+)-R-tebuconazole might also have biomagnifying effect potential in earthworm food chain with biota-sediment accumulation factor (BSAF) of 1.64 kg OC/kg lip in 10 mg/kg dw exposure group and 2.61 kg OC/kg lip in 50 mg/kg dw exposure group from soil to earthworm after 36 days.Although (-)-S-tebuconazole shares the same physicochemical properties with (+)-R-tebuconazole,it did not biomagnify.BSAFs of (-)-S-tebuconazole were 0.50 kg OC/kg lip (10 mg/kg dw tebuconazole exposure) and 0.28 kg OC/kg lip (50 mg/kg dw tebuconazole exposure) after 36 days,which was possibly owing to biotransformation or metabolism in earthworm tissues.

  10. A Review of the Aquatic Environmental Fate of Triclopyr and its Major Metabolites

    OpenAIRE

    Petty, David G.; Getsinger, K.D.; Woodburn, K. B.

    2003-01-01

    The purpose of this paper is to provide an overview of the aquatic environmental fate of triclopyr and its major metabolites, TCP and TMP. This review is primarily based on results of laboratory and field studies conducted by various Federal Agencies and the registrant to support the US aquatic registration for triclopyr TEA.

  11. Aquatic environmental remediation approaches

    International Nuclear Information System (INIS)

    The 2011 Fukushima Daiichi Nuclear Plant's nuclear accident contaminated a significant portion of Fukushima Prefecture, and environmental remediation activities have been performed. To reduce the human exposure to the radiation induced by the nuclear contamination, one can reduce the radiation level in the environment, and/or eliminate radionuclide pathways to humans. This paper presents some case studies that are relevant to the Fukushima case. These examples include the Chernobyl nuclear accident's environmental and remediation assessments, U.S. Hanford environmental remediation activities, and the pesticide remediation assessment for the James River Estuary, Virginia, U.S.A. 1-D TODAM, 2-D FETRA and 3-D FLESCOT codes have been applied to the surface waters. TODAM code is currently being applied to the Ukedo and Takase rivers in Fukushima to predict cesium-137 migration in these rivers. A lesson learned from these experiences is that to achieve the effective clean-up, remediation decision makers must include knowledgeable scientists and competent engineers, so that environmental remediation activities are based on a scientifically-valid approach for a given contaminated location. Local participation to the remediation decision making is critically important. (author)

  12. A Study on the Fluid Mechanics Performance of Aquatics Equipment

    Directory of Open Access Journals (Sweden)

    Jiao Jian

    2015-01-01

    Based on the theoretical foundation of fluid mechanics performance, this paper carries out an analysis on mechanical characteristics of aquatic sports. First, basic features of windsurfing are studied in this paper. Performance of windsurfing changes with its parameters, requiring a lot for windsurfers. It can be known from variance analysis that the best performance of NP plate and a relatively small resistance should be the direction of sail-board design. Meanwhile, by building up a mathematical model with fuzzy comprehensive evaluation and correlation analysis, it can be also found that the fluid resistance characteristic is a key factor that influences the performance of windsurfers. Besides, this paper also takes into account external factors, including the influences of regional difference on aquatic events. Different regions with various geographical conditions have different influences on aquatic events.

  13. Protozoa interaction with aquatic invertebrate: interest for watercourses biomonitoring.

    Science.gov (United States)

    Palos Ladeiro, M; Bigot, A; Aubert, D; Hohweyer, J; Favennec, L; Villena, I; Geffard, A

    2013-02-01

    Toxoplasma gondii, Cryptosporidium parvum, and Giardia duodenalis are human waterborne protozoa. These worldwide parasites had been detected in various watercourses as recreational, surface, drinking, river, and seawater. As of today, water protozoa detection was based on large water filtration and on sample concentration. Another tool like aquatic invertebrate parasitism could be used for sanitary and environmental biomonitoring. In fact, organisms like filter feeders could already filtrate and concentrate protozoa directly in their tissues in proportion to ambient concentration. So molluscan shellfish can be used as a bioindicator of protozoa contamination level in a site since they were sedentary. Nevertheless, only a few researches had focused on nonspecific parasitism like protozoa infection on aquatic invertebrates. Objectives of this review are twofold: Firstly, an overview of protozoa in worldwide water was presented. Secondly, current knowledge of protozoa parasitism on aquatic invertebrates was detailed and the lack of data of their biological impact was pointed out.

  14. A Model-Based Prioritisation Exercise for the European Water Framework Directive

    Directory of Open Access Journals (Sweden)

    Paul Whitehouse

    2011-02-01

    Full Text Available A model-based prioritisation exercise has been carried out for the Water Framework Directive (WFD implementation. The approach considers two aspects: the hazard of a certain chemical and its exposure levels, and focuses on aquatic ecosystems, but also takes into account hazards due to secondary poisoning, bioaccumulation through the food chain and potential human health effects. A list provided by EU Member States, Stakeholders and Non-Governmental Organizations comprising 2,034 substances was evaluated according to hazard and exposure criteria. Then 78 substances classified as “of high concern” where analysed and ranked in terms of risk ratio (Predicted Environmental Concentration/Predicted No-Effect Concentration. This exercise has been complemented by a monitoring-based prioritization exercise using data provided by Member States. The proposed approach constitutes the first step in setting the basis for an open modular screening tool that could be used for the next prioritization exercises foreseen by the WFD.

  15. A model-based prioritisation exercise for the European water framework directive.

    Science.gov (United States)

    Daginnus, Klaus; Gottardo, Stefania; Payá-Pérez, Ana; Whitehouse, Paul; Wilkinson, Helen; Zaldívar, José-Manuel

    2011-02-01

    A model-based prioritisation exercise has been carried out for the Water Framework Directive (WFD) implementation. The approach considers two aspects: the hazard of a certain chemical and its exposure levels, and focuses on aquatic ecosystems, but also takes into account hazards due to secondary poisoning, bioaccumulation through the food chain and potential human health effects. A list provided by EU Member States, Stakeholders and Non-Governmental Organizations comprising 2,034 substances was evaluated according to hazard and exposure criteria. Then 78 substances classified as "of high concern" where analysed and ranked in terms of risk ratio (Predicted Environmental Concentration/Predicted No-Effect Concentration). This exercise has been complemented by a monitoring-based prioritization exercise using data provided by Member States. The proposed approach constitutes the first step in setting the basis for an open modular screening tool that could be used for the next prioritization exercises foreseen by the WFD. PMID:21556195

  16. Optimizing Stream Water Mercury Sampling for Calculation of Fish Bioaccumulation Factors

    Science.gov (United States)

    Mercury (Hg) bioaccumulation factors (BAFs) for game fishes are widely employed for monitoring, assessment, and regulatory purposes. Mercury BAFs are calculated as the fish Hg concentration (Hgfish) divided by the water Hg concentration (Hgwater) and, consequently, are sensitive ...

  17. Optimizing the use of rainbow trout hepatocytes for bioaccumulation assessments with fish

    Science.gov (United States)

    Measured rates of biotransformation by cryopreserved trout hepatocytes can be extrapolated to the whole animal as a means of predicting metabolism impacts on chemical bioaccumulation. Future use of these methods within a regulatory context requires, however, that they be standar...

  18. Molecular effects and bioaccumulation of levonorgestrel in the non-target organism Dreissena polymorpha

    DEFF Research Database (Denmark)

    Contardo-Jara, V.; Lorenz, Claudia; Pflugmacher, S.;

    2011-01-01

    Bioaccumulation and effects of the contraceptive hormone levonorgestrel were examined in the nontarget organism Dreissena polymorpha. Molecular biomarkers of biotransformation, elimination, antioxidant defence and protein damage were analyzed after exposure to increasing concentrations of levonor...

  19. DISTRIBUTION OF TOTAL AND METHYLMERCURY IN DIFFERENT ECOSYSTEM COMPARTMENTS IN THE EVERGLADES: IMPLICATIONS FOR MERCURY BIOACCUMULATION

    Science.gov (United States)

    Mercury (Hg) species distribution patterns among ecosystem compartments in the Everglades were analyzed at the landscape level in order to explore the implications of Hg distribution for Hg bioaccumulation, and to investigate major biogeochemical processes that are pertinent to t...

  20. Rubber tire leachates in the aquatic environment.

    Science.gov (United States)

    Evans, J J

    1997-01-01

    Tires have a deleterious effect on the environment. This review discusses the background of scrap tires discarded in the environment, including tire composition, adverse environmental effects, threats to public health and safety, and solid waste management. Despite the widespread use of scrap tires in environmental applications, both land-based and aquatic, data on the indicators of environmental degradation are extremely scarce. Indicators of environmental degradation include analysis of chemicals within the water and sediment, analysis of contaminants within organisms, and analysis of the biological effects of these compounds on plants, animals, microbes, and organelles. Although these indicators are most useful when used in parallel, a review of the available information on chemical characterization of tire leachate from tire storage facilities, manufacturing, usage in recycling applications, and toxicity exposure studies, of vegetation surveys from waste tire areas and reviews of mammalian tire product toxicity, and of toxicity, mutagenicity, and carcinogenicity of tire exposure in experimental aquatic animals, microbes, and organelles is presented. The major characteristics of these studies are discussed in specific sections. The "Discussion and Conclusions" section discusses and summarizes the biological effects and chemical characterization of tire leachates. A global environmental perspective is included to improve our understanding of the deficiency of the current knowledge of tire leachate toxicity from various sources and to encourage interdisciplinary studies to establish the pattern of pollution associated with waste tire management. PMID:9216257

  1. NMR-based Metabolomics in Aquatic Organisms:Progress%基于核磁共振的代谢组学技术在水产动物中的应用

    Institute of Scientific and Technical Information of China (English)

    邵铱娜; 李成华

    2014-01-01

    This report briefly introduces the concept of metabolomics, its detection techniques and the advantage of NMR-based metabolomics. Also, summarized are the basic procedure for aquatic sample pretreatment and data analysis for NMR-based metabolomics, as well as its research advancements in water environment pollution, aquaculture and integration of different techniques.%介绍了代谢组学的概念、分析技术以及核磁共振代谢组学的优势,探讨了水产动物核磁共振代谢组学样品处理和数据分析;重点综述了核磁共振代谢组学在水产动物水环境污染、水产养殖以及不同技术整合方面的研究现状,以进一步促进核磁共振代谢组学在水产动物中的运用。

  2. Procedures for Collecting and Processing Aquatic Invertebrates and Fish for Analysis of Mercury as Part of the National Water-Quality Assessment Program

    Science.gov (United States)

    Scudder, Barbara C.; Chasar, Lia C.; DeWeese, L. Rod; Brigham, Mark E.; Wentz, Dennis A.; Brumbaugh, William G.

    2008-01-01

    Mercury studies conducted as part of the U.S. Geological Survey's National Water-Quality Assessment (NAWQA) Program have included nationwide reconnaissance samplings of hundreds of stream sites, as well as detailed, process-oriented research at selected sites. These reconnaissance and detailed studies are intended to provide a better understanding of methylmercury bioaccumulation in stream ecosystems over a range of environmental settings. This publication describes trace-element-clean techniques used for collection and processing of aquatic invertebrates and fish to be analyzed for total mercury, methylmercury, and stable isotopes as part of NAWQA studies.

  3. An automated platform for phytoplankton ecology and aquatic ecosystem monitoring

    NARCIS (Netherlands)

    Pomati, F.; Jokela, J.; Simona, M.; Veronesi, M.; Ibelings, B.W.

    2011-01-01

    High quality monitoring data are vital for tracking and understanding the causes of ecosystem change. We present a potentially powerful approach for phytoplankton and aquatic ecosystem monitoring, based on integration of scanning flow-cytometry for the characterization and counting of algal cells wi

  4. Classifying aquatic macrophytes as indicators of eutrophication in European lakes

    NARCIS (Netherlands)

    Penning, W.E.; Mjelde, M.; Dudley, B.; Hellsten, S.; Hanganu, J.; Kolada, A.; van den Berg, Marcel S.; Poikane, S.; Phillips, G.; Willby, N.; Ecke, F.

    2008-01-01

    Aquatic macrophytes are one of the biological quality elements in the Water Framework Directive (WFD) for which status assessments must be defined. We tested two methods to classify macrophyte species and their response to eutrophication pressure: one based on percentiles of occurrence along a phosp

  5. 应用Abraham方程研究有机污染物对七种水生生物的毒性∗%Study on the toxicity of organic pollutants to seven aquatic organisms based on Abraham model

    Institute of Scientific and Technical Information of China (English)

    于洋; 王晓红; 闻洋; 赵元慧

    2015-01-01

    The toxicities of 141 organic pollutants to seven aquatic organisms ( Vibrio fischeri, River bacteria, Scenedesmus obliguue, Daphnia magna, Cyprinuscarpio, Pimephalespromelas, Poeciliareticulata) were analyzed. A linear relationship between the toxicity data of non⁃polar or polar narcotics and hydrophobicity (lgKow) was established for the seven species, respectively. This relationship was interpretated based on the theoretical consideration. Meanwhile, quantitative structure⁃activity relationship ( QSAR) studies were performed between the toxicities of seven aquatic organisms and Abraham descriptors. The mechanisms of action to seven species were analyzed theoretically based on Abraham descriptors and model coefficients. The principal component analysis carried out on the regression coefficients of Abraham models shows that there are interspecies similarities and differences between the species. In the same time, the interspecies correlation of organic pollutants to seven aquatic organisms was analyzed. The results show that there are good interspecies corrections between fish species, marine bacterium and fish or daphnia magna and fish. It is suggested that some compounds shared the same toxic mechanism of action between the species. However , poor interspecies relationships found between toxicities to algae and daphnia magna or fish suggested that compounds have different toxic mechanism of action between these species.%通过研究141种对7种水生生物(发光菌、江水细菌、绿藻、大型溞、鲤鱼、黑头呆鱼,古比鱼)的毒性,建立了非极性麻醉型和极性麻醉型有机物的毒性与辛醇/水分配系数的对数lgKow的相关性,并对该相关性进行了理论解释。同时,建立了Abraham参数与7种水生生物毒性的预测模型,根据Abraham参数和预测模型的系数,对有机污染物与生物毒性作用机理进行了理论分析。在此基础上,对Abraham毒性模型回归系数进行主

  6. Effects of storage on sediment toxicity, bioaccumulation potential, and chemistry. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Tatem, H.E.; Brandon, D.L.; Lee, C.R.; Jarvis, A.S.; Rhett, R.G.

    1991-01-01

    Current guidance on storage of sediments for bioassay/bioaccumulation tests requires that samples be held at 4 C and used within 2 weeks of collection. The objective of this study was to determine the effects of sediment storage for 40 weeks on sediment toxicity, bioaccumulation potential, and chemical analyses. Toxicity and bioaccumulation tests were conducted five times during 40 weeks of storage. Chemical analyses were performed three times during this period. The data indicate that sediments can be held for longer than 2 to 4 weeks, in many cases, without significant effect on test results. However, results of the study also show that tests performed at different times can produce different results. This study showed that a sediment that was toxic to mysids remained toxic during 16 weeks of sediment storage. Two sediments that were toxic initially continued to show significant toxicity after 8 and 16 weeks of sediment storage. One sediment, not toxic initially or at 4 weeks, changed during storage, becoming significantly toxic compared to the Atlantic Ocean (Ref) sediment. The bioaccumulation results showed that certain sediment contaminants (lead, mercury, polychlorinated biphenyls, and some polycyclic aromatic hydrocarbons, PAHs), generally do not reveal a statistical change in bioaccumulation, relative to Ref animals, during 16 weeks of sediment storage. Other PAHs, including phenanthrene, anthracene, benzo (a) anthracene, and chrysene, did change in bioaccumulation potential during storage.

  7. Bioaccumulation and depuration of chromium in the selected organs and whole body tissues of freshwater fish Cirrhinus mrigala individually and in binary solutions with nickel

    Institute of Scientific and Technical Information of China (English)

    PL. RM. Palaniappan; S. Karthikeyan

    2009-01-01

    Contamination of aquatic ecosystems with heavy metals has been receiving increased worldwide attention due to their harmful effects on human health and other organisms in the environment.Most of the studies dealing with toxic effects of metals deal with single metal species, while the aquatic organisms are typically exposed to mixtures of metals.Hence, in order to provide data supporting the usefulness of freshwater fish as indicators of heavy metal pollution, it has been proposed in the present study to investigate the bioaccumulation and depuration of chromium in the selected organs of freshwater fingerlings Cirrhinus mrigala, individually and in binary solutions with nickel.The results show that the kidney is a target organ for chromium accumulation, which implies that it is also the "critical" organ for toxic symptoms.The results further show that accumulation of nickel in all the tissues of C.mrigala is higher than that of chromium.In addition, the metal accumulations of the binary mixtures of chromium and nickel are substantially higher than those of the individual metals, indicating synergistic interactions between the two metals.Theoretically the simplest explanation for an additive joint action of toxicants in a mixture is that they act in a qualitatively similar way.The observed data suggest that C.mrigala could be suitable monitoring organisms to study the bioavailability of water-bound metals in freshwater habitats.

  8. Invertebrates in stormwater wet detention ponds - Sediment accumulation and bioaccumulation of heavy metals have no effect on biodiversity and community structure.

    Science.gov (United States)

    Stephansen, Diana Agnete; Nielsen, Asbjørn Haaning; Hvitved-Jacobsen, Thorkild; Pedersen, Morten Lauge; Vollertsen, Jes

    2016-10-01

    The invertebrate diversity in nine stormwater wet detention ponds (SWDP) was compared with the diversity in eleven small shallow lakes in the western part of Denmark. The SWDPs and lakes were chosen to reflect as large a gradient of pollutant loads and urbanization as possible. The invertebrates as well as the bottom sediments of the ponds and shallow lakes were analyzed for copper, iron, zinc, cadmium, chromium, lead, aluminum, nickel, arsenic and the potentially limiting nutrient, phosphorus. The Principal Component Analysis showed that invertebrates in SWDPs and lakes differed with respect to bioaccumulation of these elements, as did the sediments, albeit to a lesser degree. However, the Detrended Correspondence Analysis and the TWINSPAN showed that the invertebrate populations of the ponds and lakes could not be distinguished, with the possible exception of highway ponds presenting a distinct sub-group of wet detention ponds. The SWDPs and shallow lakes studied seemed to constitute aquatic ecosystems of similar taxon richness and composition as did the 11 small and shallow lakes. This indicates that SWDPs, originally constructed for treatment and flood protection purposes, become aquatic environments which play a local role for biodiversity similar to that of natural small and shallow lakes. PMID:27302374

  9. Aquatic insect community of lake, Phulbari anua in Cachar, Assam.

    Science.gov (United States)

    Gupta, Susmita; Narzary, Rupali

    2013-05-01

    An investigation on the water quality and aquatic insect community of an oxbow lake (Phulbari anua) of south Assam, North-East India was carried out during February to April, 2010. Aquatic insect community of the oxbow lake was represented by 9 species belonging to 9 families and 4 orders during the study period. Order Ephemeroptera and Hemiptera were found to be dominant. Record of 5 species and 5 families from the order Hemiptera showed that this is the largest order in terms of aquatic insect diversity of the lake. Computation of dominance status of different species of aquatic insects of the lake based on Engelmann's Scale revealed that Anisops lundbladiana and Cloeon sp. were eudominant in the system. The Shannon- Weiner's Diversity Index (H') and Shannon evenness values (J') were found to range from 0.3-0.69 and 0.53 -0.97, respectively indicating perturbation of the system. Again in terms of physico-chemical properties of water the lake is in a satisfactory condition where all the parameters are well within the range of IS 10500. The DO values were found to range from 6.8 to 14.8 mgl(-1). Free CO2 fluctuated from 1 to 4.98 mgl(-1) and nitrate in water ranged from 0.4 to 2.1 mgl(-1). Margalef's water quality index values of most of the samplings also indicated clean water condition of the lake. Correlation coefficient analyses of the environmental variables, aquatic insect diversity and density of the lake revealed that aquatic insect diversity of the lake is mainly governed by dissolved oxygen, nitrate, and free carbon dioxide. PMID:24617147

  10. Marine envenomations and aquatic dermatology.

    Science.gov (United States)

    Soppe, G G

    1989-08-01

    Jellyfish stings are usually mild except those caused by species in the South Pacific. The box jellyfish can produce a severe cardiorespiratory insult. The sting of the Portuguese man-of-war is more potent than that of the common jellyfish. The Indo-Pacific area is the source of the most venomous bony fish. Many injuries can be avoided by wearing shoes when walking in shallow water or tide pools. Aquatic-related skin infections may involve unusual organisms. Swimmer's itch, a disease of freshwater bathing, is caused by cercariae. Seabather's eruption produces a rash in swimsuit-covered areas; the etiology is not clear. PMID:2569260

  11. Bioaccumulation of macro- and trace elements by European frogbit (Hydrocharis morsus-ranae L.) in relation to environmental pollution.

    Science.gov (United States)

    Polechońska, Ludmiła; Samecka-Cymerman, Aleksandra

    2016-02-01

    The aim of present study was to investigate the level of trace metals and macroelements in Hydrocharis morsus-ranae collected from regions differing in the degree and type of pollution. Concentrations of 17 macro- and microelements were determined in roots and shoots of European frogbit as well as in water and bottom sediments from 30 study sites. Plants differed in concentrations of elements and bioaccumulation capacity depending on the characteristics of dominant anthropogenic activities in the vicinity of the sampling site. Shoots of H. morsus-ranae growing in the vicinity of organic chemistry plants and automotive industry contained particularly high levels of Cd, Co, and S. Plants from area close to heat and power plant, former ferrochrome industry and new highway, were distinguished by the highest concentrations of Cr, Cu, and Pb. European frogbit from both these regions contained more Fe, Hg, Mn, Ni, and Zn than plants from agricultural and recreational areas. The concentrations of alkali metals and Co, Fe, and N in H. morsus-ranae were elevated in relation to the natural content in macrophytes irrespectively to their content in the environment. Based on the values of Bioaccumulation and Translocation Factors, European frogbit is an accumulator for Co, Cr, Cu, Fe, K, Mn, Ni, Pb, and Zn and a good candidate for phytoremediation of water polluted with Co, Cu, Hg, K, Mn, and Ni. The amount of Co and Mn removed from water and accumulated in the plant biomass during the vegetation season was considerably high. PMID:26490926

  12. Bioaccumulation of macro- and trace elements by European frogbit (Hydrocharis morsus-ranae L.) in relation to environmental pollution.

    Science.gov (United States)

    Polechońska, Ludmiła; Samecka-Cymerman, Aleksandra

    2016-02-01

    The aim of present study was to investigate the level of trace metals and macroelements in Hydrocharis morsus-ranae collected from regions differing in the degree and type of pollution. Concentrations of 17 macro- and microelements were determined in roots and shoots of European frogbit as well as in water and bottom sediments from 30 study sites. Plants differed in concentrations of elements and bioaccumulation capacity depending on the characteristics of dominant anthropogenic activities in the vicinity of the sampling site. Shoots of H. morsus-ranae growing in the vicinity of organic chemistry plants and automotive industry contained particularly high levels of Cd, Co, and S. Plants from area close to heat and power plant, former ferrochrome industry and new highway, were distinguished by the highest concentrations of Cr, Cu, and Pb. European frogbit from both these regions contained more Fe, Hg, Mn, Ni, and Zn than plants from agricultural and recreational areas. The concentrations of alkali metals and Co, Fe, and N in H. morsus-ranae were elevated in relation to the natural content in macrophytes irrespectively to their content in the environment. Based on the values of Bioaccumulation and Translocation Factors, European frogbit is an accumulator for Co, Cr, Cu, Fe, K, Mn, Ni, Pb, and Zn and a good candidate for phytoremediation of water polluted with Co, Cu, Hg, K, Mn, and Ni. The amount of Co and Mn removed from water and accumulated in the plant biomass during the vegetation season was considerably high.

  13. Differentiating aquatic plant communities in a eutrophic river using hyperspectral and multispectral remote sensing

    Science.gov (United States)

    Tian, Y.Q.; Yu, Q.; Zimmerman, M.J.; Flint, S.; Waldron, M.C.

    2010-01-01

    This study evaluates the efficacy of remote sensing technology to monitor species composition, areal extent and density of aquatic plants (macrophytes and filamentous algae) in impoundments where their presence may violate water-quality standards. Multispectral satellite (IKONOS) images and more than 500 in situ hyperspectral samples were acquired to map aquatic plant distributions. By analyzing field measurements, we created a library of hyperspectral signatures for a variety of aquatic plant species, associations and densities. We also used three vegetation indices. Normalized Difference Vegetation Index (NDVI), near-infrared (NIR)-Green Angle Index (NGAI) and normalized water absorption depth (DH), at wavelengths 554, 680, 820 and 977 nm to differentiate among aquatic plant species composition, areal density and thickness in cases where hyperspectral analysis yielded potentially ambiguous interpretations. We compared the NDVI derived from IKONOS imagery with the in situ, hyperspectral-derived NDVI. The IKONOS-based images were also compared to data obtained through routine visual observations. Our results confirmed that aquatic species composition alters spectral signatures and affects the accuracy of remote sensing of aquatic plant density. The results also demonstrated that the NGAI has apparent advantages in estimating density over the NDVI and the DH. In the feature space of the three indices, 3D scatter plot analysis revealed that hyperspectral data can differentiate several aquatic plant associations. High-resolution multispectral imagery provided useful information to distinguish among biophysical aquatic plant characteristics. Classification analysis indicated that using satellite imagery to assess Lemna coverage yielded an overall agreement of 79% with visual observations and >90% agreement for the densest aquatic plant coverages. Interpretation of biophysical parameters derived from high-resolution satellite or airborne imagery should prove to be a

  14. Phytoremediation Potential of Aquatic Macrophyte, Azolla

    OpenAIRE

    Sood, Anjuli; Uniyal, Perm L.; Prasanna, Radha; Ahluwalia, Amrik S.

    2011-01-01

    Aquatic macrophytes play an important role in the structural and functional aspects of aquatic ecosystems by altering water movement regimes, providing shelter to fish and aquatic invertebrates, serving as a food source, and altering water quality by regulating oxygen balance, nutrient cycles, and accumulating heavy metals. The ability to hyperaccumulate heavy metals makes them interesting research candidates, especially for the treatment of industrial effluents and sewage waste water. The us...

  15. Analysis of Aquatic Product Cold Chain Logistics Cost Based on Time-driven ABC%基于时间驱动作业法的水产品冷链物流成本分析

    Institute of Scientific and Technical Information of China (English)

    曲文强; 刘璐; 李翠平

    2015-01-01

    以水产品为研究对象,以作业成本核算法为基础,通过定义作业池与冷链消耗资源对冷链成本建立内部关联,并加入时间驱动模型对传统的成本核算方法进行改进,对冷链管理成本进行全面分析,从而实现优化冷链流程、节约资源消耗、提高冷链管理有效性与准确性的目的。%In this paper, with the aquatic product as the subject and on the basis of the activity-based costing, we first defined the activity pool and the resource consumption of the cold chain, established the internal linkage of the cold chain cost, then improved the traditional costing process by introducing the time-driven model and at the end, analyzed comprehensively the cold chain management cost.

  16. Comparing trace metal bioaccumulation characteristics of three freshwater decapods of the genus Macrobrachium

    Energy Technology Data Exchange (ETDEWEB)

    Cresswell, Tom, E-mail: tom.cresswell@ansto.gov.au [Centre for Environmental Contaminants Research, CSIRO Land and Water, New Illawarra Rd, Lucas Heights, 2234, NSW (Australia); School of Applied Sciences, RMIT University, Plenty Road, Bundoora 3083, VIC (Australia); Smith, Ross E.W. [Hydrobiology, Lang Parade, Auchenflower 4066, QLD (Australia); Nugegoda, Dayanthi [School of Applied Sciences, RMIT University, Plenty Road, Bundoora 3083, VIC (Australia); Simpson, Stuart L. [Centre for Environmental Contaminants Research, CSIRO Land and Water, New Illawarra Rd, Lucas Heights, 2234, NSW (Australia)

    2014-07-01

    Highlights: • Exposed three species of prawns of same genus to solid- and dissolved-phase metals. • Cd bioaccumulated from dissolved phase was significantly different between species. • All three species retained >95% of bioaccumulated Cd during the depuration phase. • Bioaccumulation of As, Pb and Zn from solid phase was different between species. • Results highlight variability among species, even under controlled conditions. - Abstract: Potential sources and kinetics of metal bioaccumulation by the three Macrobrachium prawn species M. australiense, M. rosenbergii and M. latidactylus were assessed in laboratory experiments. The prawns were exposed to two scenarios: cadmium in water only; and exposure to metal-rich mine tailings in the same water. The cadmium accumulation from the dissolved exposure during 7 days, followed by depuration in cadmium-free water for 7 days, was compared with predictions from a biokinetic model that had previously been developed for M. australiense. M. australiense and M. latidactylus accumulated significant tissue cadmium during the exposure phase, albeit with different uptake rates. All three species retained >95% of the bioaccumulated cadmium during the depuration phase, indicating very slow efflux rates. Following exposure to tailings, there were significant (p < 0.05) differences in tissue arsenic, cadmium, lead and zinc concentrations among species. Cadmium and zinc concentrations were increased relative to controls for all three species but were not different between treatments (direct/indirect contact with tailings), suggesting these metals were primarily accumulated via the dissolved phase. All species bioaccumulated significantly greater arsenic and lead when in direct contact with mine tailings, demonstrating the importance of an ingestion pathway for these metals. Copper was not bioaccumulated above control concentrations for any species. The differences between the metal accumulation of the three prawns indicated

  17. Radioactivity in the Canadian aquatic environment

    International Nuclear Information System (INIS)

    Sources of radionuclides arising from natural anthropogenic processes as well as technologically enhanced natural radiation are discussed. Transport, distribution and behaviour of these radionuclides in aquatic systems are influenced by physical, chemical, biological and geological processes and conditions in freshwater and marine environments. Dosimetry of aquatic organisms, as well as various methods of measuring dose rate are presented. Effects of ionizing radiation (acute and chronic exposure) on aquatic organisms, populations and ecosystems are reviewed. This review covers the entire spectrum of the aquatic environment. Results of many studies are summarized. 300+ refs

  18. Think before you flush! A sustainable aquatic eco-system's relation to human health.

    Science.gov (United States)

    McKeown, Elaine; Pawloski, Judith

    2013-01-01

    What we do every day at work and in our home lives can make a difference in the quality of our environment. Consider, for example, the flushing of pharmaceuticals into the sewer system can lead to water pollution resulting in a threat to aquatic and human life. In contrast, keeping aquatic life healthy may contribute to human health. Some aquatic-based medications are currently on the market. Others are in various stages of development. In this article the authors argue that, for the benefit of both human and marine life, it is time to implement safer disposal methods for unwanted medications. The authors begin by sharing nursing's guiding principles for environmental health; after which they review research related to pharmaceutical pollution of water resources; describe health care treatments derived from marine life; and discuss suggestions for promoting aquatic health. They conclude that by taking care to preserve aquatic life, we contribute to the quality of our own human lives. PMID:23452193

  19. Chromium accumulation in submerged aquatic plants treated with tannery effluent at Kanpur, India.

    Science.gov (United States)

    Gupta, Kiran; Gaumat, Sumati; Mishra, Kumkum

    2011-09-01

    Aquatic macrophytes have been widely studied because of their capability of absorbing contaminants from water and their subsequent use in biomonitoring. This study presents a comparison of Cr accumulating potential of submerged aquatic plants viz Vallisneria spiralis and Hydrilla verticillata. These plants were treated with various concentrations of treated tannery effluent collected from UASB, Jajmau, Kanpur under repeated exposure in controlled laboratory conditions in order to assess their maximum bioaccumulation potential. The maximum accumulation of 385.6 and 201.6 microg g(-1) dry weight was found in roots of V. spiralis and the whole plants of H. verticillata, respectively at 100% concentration after 9th day of effluent exposure. The chlorophyll and protein content of both species decreased with increase in effluent concentration and duration. At highest concentration and duration a maximum reduction of 67.4 and 62.66% in total chlorophyll content, 9.97 and 4.66% in carotenoid content and 62.66 and 59.36% in protein content was found in V. spiralis and H. verticillata respectively. Anatomical studies in both V. spiralis and H. verticillata was carried out to assess the effects of metal accumulation within the plants. Changes in the anatomical structures of both plants exhibits the capacity of these species to act as indicator of effluent toxicity. The high accumulation potential of Cr by both plants revealed their capability to remove pollutants from effluent. PMID:22319874

  20. Cadmium tolerance and bioaccumulation of 18 hemp accessions.

    Science.gov (United States)

    Shi, Gangrong; Liu, Caifeng; Cui, Meicheng; Ma, Yuhua; Cai, Qingsheng

    2012-09-01

    Hemp (Cannabis sativa L.) is a fast-growing and high biomass producing plant species, which has been traditionally grown as multiple-use crop and recently considered as an energy crop. In order to screen accessions that can be cultivated in cadmium (Cd)-contaminated soils for biodiesel production, the ability of Cd tolerance and bioaccumulation of 18 hemp cultivars or ecotypes were evaluated in pot experiment under 25 mg Cd kg(-1) (dry weight, DW) soil condition, in terms of plant growth, pigment contents, chlorophyll fluorescence, and Cd accumulation at 45 days after seedling emergence. Results showed that seedlings of all cultivars, except USO-31, Shenyang and Shengmu, could grow quite well under 25 mg Cd kg(-1) (DW) soil condition. Among them, Yunma 1, Yunma 2, Yunma 3, Yunma 4, Qujing, Longxi, Lu'an, Xingtai, and Shuyang showed great biomass (>0.5 g plant(-1)), high tolerance factors (68.6-92.3%), and little reduction of pigment content and chlorophyll fluorescence under 25 mg Cd kg(-1) (DW) soil stress, indicating these cultivars had a strong tolerance to Cd stress and could be cultivated in Cd-contaminated soils. Cultivars Longxi, Lu'an, Xingtai, Yunma 2, Yunma 3, Yunma 4, and Qujing exhibited higher Cd concentrations and total Cd in shoots. These cultivars, therefore, are good candidates for the implementation of the new strategy of cultivating biodiesel crops for phytoremediation of Cd-contaminated soils.

  1. Bioaccumulation and bioavailability of polybrominated diphynel ethers (PBDEs) in soil

    Energy Technology Data Exchange (ETDEWEB)

    Liang Xianwei; Zhu Shuzhen; Chen Peng [College of Environmental Science and Engineering, Nankai University, Weijin Road 94, Tianjin 300071 (China); Key Laboratory of Pollution Processes and Environmental Criteria (Nankai University), Ministry of Education, Tianjin 300071 (China); Tianjin Key Laboratory of Urban Ecology Environmental Remediation and Pollution Control, Nankai University, Tianjin 300071 (China); Zhu Lingyan, E-mail: zhuly@nankai.edu.c [College of Environmental Science and Engineering, Nankai University, Weijin Road 94, Tianjin 300071 (China); Key Laboratory of Pollution Processes and Environmental Criteria (Nankai University), Ministry of Education, Tianjin 300071 (China); Tianjin Key Laboratory of Urban Ecology Environmental Remediation and Pollution Control, Nankai University, Tianjin 300071 (China)

    2010-07-15

    Earthworms were exposed to artificially contaminated soils of DE-71 and DE-79 to investigate the bioaccumulation and bioavailability of PBDEs in soil. All major congeners were bioavailable to earthworms. The uptake and elimination rate coefficients of PBDEs decreased with their logK{sub ow}s. The biota soil accumulation factors of PBDEs also declined with logK{sub ow}. These may be due to the large molecular size and the high affinity of PBDEs to soil particles. The concentrations extracted by Tenax for 6 h correlated very well with those found in earthworms, suggesting that the bioavailability of PBDEs in soil is related to the fraction of rapid desorption from soil. This also indicates that 6 h Tenax extraction is a good proxy for the bioavailability of PBDEs to earthworms in soil. The BSAFs of PBDEs in aged soil decreased 22-84% compared to freshly spiked soil, indicating that aging may diminish the bioavailability of PBDEs in soil significantly. - PBDEs are bioavailable to earthworms in soil and the uptake and elimination rate coefficients and BSAFs declined with their logK{sub ow}s.

  2. Persistence and bioaccumulation of oxyfluorfen residues in onion.

    Science.gov (United States)

    Sondhia, Shobha

    2010-03-01

    A field study was conducted to determine persistence and bioaccumulation of oxyflorfen residues in onion crop at two growth stages. Oxyfluorfen (23.5% EC) was sprayed at 250 and 500 g ai/ha on the crop (variety, N53). Mature onion and soil samples were collected at harvest. Green onion were collected at 55 days from each treated and control plot and analyzed for oxyfluorfen residues by a validated high-performance liquid chromatography method with an accepted recovery of 78-92% at the minimum detectable concentration of 0.003 microg g(-1). Analysis showed 0.015 and 0.005 microg g(-1) residues of oxyfluorfen at 250 g a.i. ha(-1) rate in green and mature onion samples, respectively; however, at 500 g a.i.ha(-1) rates, 0.025 and 0.011 microg g(-1) of oxyfluorfen residues were detected in green and mature onion samples, respectively. Soil samples collected at harvest showed 0.003 and 0.003 microg g(-1) of oxyfluorfen residues at the doses 250 and 500 g a.i. ha(-1), respectively. From the study, a pre-harvest interval of 118 days for onion crop after the herbicide application is suggested. PMID:19238567

  3. Bioaccumulation of Hg in the mushroom Pleurotus ostreatus

    Energy Technology Data Exchange (ETDEWEB)

    Bressa, G.; Cima, L.; Costa, P.

    1988-10-01

    The possibility of utilizing industrial, urban, and other wastes for the growth of a product which is directly edible by humans is fascinating. However, it is possible that many wastes containing toxic substances, for example, heavy metals, could reach the food chain and produce adverse effects on human health. To this end, we studied the possibility of bioaccumulation of Hg by a mushroom, Pleurotus ostreatus, grown on an artificial compost containing this element. Concentrations of 0.05, 0.1, and 0.2 mg/kg of Hg as Hg(NO/sub 3/)/sub 2/.H/sub 2/O were added to three groups of the same compost, successively inoculated with the mycelia of the mushroom. Higher concentrations strongly reduced the growth of the mycelia and therefore were not utilized. The concentrations of Hg in the substrate and in the mushroom were evaluated by AAS. The range of the accumulation factor was found to be 65-140, i.e., very marked. This finding suggests that the cultivation of P. ostreatus on substrates containing Hg from industrial and urban wastes could involve possible risks to human health.

  4. Bioaccumulation and biosorption of chromium by Aspergillus niger MTCC 2594.

    Science.gov (United States)

    Sandana Mala, John Geraldine; Unni Nair, Balachandran; Puvanakrishnan, Rengarajulu

    2006-06-01

    Chromium toxicity is of prime concern due to chrome tanning processes in the leather sector. Chrome tanning results in the discharge of toxic levels of chromium causing pollution hazards. Chromium levels of Cr(III) and Cr(VI) were high above permissible limits in chrome samples after chrome tanning. The potential of Aspergillus niger MTCC 2594 to accumulate chromium as well as its biosorption capacity is investigated in this study. Bioaccumulation of Cr(III) and Cr(VI) in the spent chrome liquor has resulted in a 75-78% reduction of the initial Cr content in 24-36 h. A. niger biomass is found to be very effective in the biosorption of Cr(III) and Cr(VI) in spent chrome liquor. Maximum adsorption of 83% for biosorption of Cr(III) at 48 h and 79% of Cr(VI) at 36 h in spent chrome liquor is observed. The biosorption characteristics fit well with Langmuir and Freundlich isotherms and the adsorption parameters are evaluated. The biosorption of Cr also follows Lagergren kinetics. A. niger biomass is effectively used for the biosorption of chromium with 79-83% Cr removal in 36-48 h.

  5. Lotus corniculatus Crop Growth of in Crude Oil Contaminated Soil. Part 2 Biomass Metals Bioaccumulation

    Directory of Open Access Journals (Sweden)

    Florica Morariu

    2016-05-01

    Full Text Available Phytoremediation involves the ability of plants to remove pollutants and is a promise on low costs and efficient processes for cleaning oil polluted soil. Studies for phytoremediation of soils polluted with petroleum products were critical and were based on monitoring strategies implemented efficiency. These strategies are based on the necessity of treating polluted soil and plant cultivation. Treatment was performed with recycled materials, sewage sludge as fertilizer and fly ash as amendment. The studies took on the characteristics of qualitative and quantitative of Lotus corniculatus crops, plants tolerant to conditions for phytoremediation strategy implemented on polluted soils by 80.5 ± 3.9 g·kg-1 D.M. The use of sewage sludge mixed with fly ash resulted in formation of a layer covering the surface with vegetable grown by 85 - 94 % in July and by 67 - 83 % in August. In Lotus corniculatus crops have not been registered bioaccumulation of toxic metals according to legislation from Romania.

  6. Cone visual pigments of aquatic mammals.

    Science.gov (United States)

    Newman, Lucy A; Robinson, Phyllis R

    2005-01-01

    It has long been hypothesized that the visual systems of animals are evolutionarily adapted to their visual environment. The entrance many millions of years ago of mammals into the sea gave these new aquatic mammals completely novel visual surroundings with respect to light availability and predominant wavelengths. This study examines the cone opsins of marine mammals, hypothesizing, based on previous studies [Fasick et al. (1998) and Levenson & Dizon (2003)], that the deep-dwelling marine mammals would not have color vision because the pressure to maintain color vision in the dark monochromatic ocean environment has been relaxed. Short-wavelength-sensitive (SWS) and long-wavelength-sensitive (LWS) cone opsin genes from two orders (Cetacea and Sirenia) and an additional suborder (Pinnipedia) of aquatic mammals were amplified from genomic DNA (for SWS) and cDNA (for LWS) by PCR, cloned, and sequenced. All animals studied from the order Cetacea have SWS pseudogenes, whereas a representative from the order Sirenia has an intact SWS gene, for which the corresponding mRNA was found in the retina. One of the pinnipeds studied (harp seal) has an SWS pseudogene, while another species (harbor seal) appeared to have an intact SWS gene. However, no SWS cone opsin mRNA was found in the harbor seal retina, suggesting a promoter or splice site mutation preventing transcription of the gene. The LWS opsins from the different species were expressed in mammalian cells and reconstituted with the 11-cis-retinal chromophore in order to determine maximal absorption wavelengths (lambda(max)) for each. The deeper dwelling Cetacean species had blue shifted lambda(max) values compared to shallower-dwelling aquatic species. Taken together, these findings support the hypothesis that in the monochromatic oceanic habitat, the pressure to maintain color vision has been relaxed and mutations are retained in the SWS genes, resulting in pseudogenes. Additionally, LWS opsins are retained in the

  7. Phytotoxic effects of cyanobacteria extract on the aquatic plant Lemna gibba: microcystin accumulation, detoxication and oxidative stress induction.

    Science.gov (United States)

    Saqrane, Sana; Ghazali, Issam El; Ouahid, Youness; Hassni, Majida El; Hadrami, Ismaïl El; Bouarab, Lahcen; del Campo, Franscica F; Oudra, Brahim; Vasconcelos, Vitor

    2007-08-01

    The occurrence of toxic cyanobacteria in the aquatic environment constitutes a serious risk for the ecological balance and the functioning of ecosystems. The presence of cyanotoxins in ecosystems could have eventual adverse effects on aquatic plants, which play an important biological role as primary producers. The original aim of this study was to investigate microcystin (MC) accumulation, detoxication and oxidative stress induction in the free-floating aquatic vascular plant Lemna gibba (Duckweed, Lemnaceae). Experiments were carried out with a range of MC levels, obtained from toxic Microcystis culture extracts (0.075, 0.15, 0.22 and 0.3 microg equiv.MC-LR mL(-1)). During chronic exposure of the plant to MC, we examined the growth, photosynthetic pigment contents and also the physiological behavior related to toxin accumulation, possible biodegradation and stress oxidative processes of L. gibba. For the last reason, changes in peroxidase activity and phenol compound content were determined. This is a first report using phenol compounds as indicators of biotic stress induced by MC contamination in aquatic plants. Following MC exposure, a significant decrease of plant growth and chlorophyll content was observed. Also, it was demonstrated that L. gibba could take up and bio-transform microcystins. A suspected MC degradation metabolite was detected in treated Lemna cells. In response to chronic contamination with MCs, changes in the peroxidase activity and qualitative and quantitative changes in phenolic compounds were observed after 24h of plant exposure. The physiological effects induced by chronic exposure to microcystins confirm that in aquatic ecosystems plants coexisting with toxic cyanobacterial blooms may suffer an important negative ecological impact. This may represent a sanitary risk due to toxin bioaccumulation and biotransfer through the food chain. PMID:17582520

  8. Aquatic Therapy: A Viable Therapeutic Recreation Intervention.

    Science.gov (United States)

    Broach, Ellen; Dattilo, John

    1996-01-01

    Reviews literature on the effects of aquatic therapy (swimming and exercise) to improve function. Research shows that aquatic therapy has numerous psychological and physical benefits, and it supports the belief that participation can provide a realistic solution to maintaining physical fitness and rehabilitation goals while engaging in enjoyable…

  9. Estimating Aquatic Insect Populations. Introduction to Sampling.

    Science.gov (United States)

    Chihuahuan Desert Research Inst., Alpine, TX.

    This booklet introduces high school and junior high school students to the major groups of aquatic insects and to population sampling techniques. Chapter 1 consists of a short field guide which can be used to identify five separate orders of aquatic insects: odonata (dragonflies and damselflies); ephemeroptera (mayflies); diptera (true flies);…

  10. Control of Fish and Aquatic Plants.

    Science.gov (United States)

    Hesser, R. B.; And Others

    This agriculture extension service publication from Pennsylvania State University is a handbook for the water body manager. The bulk of the contents deals with aquatic plant control. The different types of aquatic plants, their reproduction and growth, and their role in the ecology of the water body are introduced in this main section. Also, the…

  11. Spatial Pattern Dynamics in Aquatic Ecosystem Modelling

    NARCIS (Netherlands)

    Hong Li

    2009-01-01

    In this thesis, several modelling approaches are explored to represent spatial pattern dynamics of aquatic populations in aquatic ecosystems by the combination of models, knowledge and data in different scales. It is shown that including spatially distributed inputs retrieved from Remote Sensing i

  12. Aquatic Species Project report, FY 1989--1990

    Energy Technology Data Exchange (ETDEWEB)

    Brown, L.M.; Sprague, S.

    1992-01-01

    This report summarizes the progress and research accomplishments of the Aquatic Species Project. The four articles included are summaries of individual research projects and are entered into the EDB as such. The goal of the Aquatic Species Project is to develop the technology base for large-scale production of oil-rich microalgae. The project is also developing methods to convert the microalgal lipids into liquid fuels needed for industry and transportation. Researchers in the Aquatics Species Project focus on the use of microalgae as a feedstock for producing renewable, high-energy liquid fuels such as diesel. It is important for the United States to develop alternative renewable oil sources because 42% of the current energy market in the United States is for liquid fuels, and 38% of these fuels are imported. In 1979, the US Department of Energy (DOE) and the National Renewable Energy Laboratory (NREL) initiated the Aquatic Species Project as part of the overall effort in biofuels. The project began to focus exclusively on fuels from microalgae in 1982. Estimates show that the technology being developed by the project can provide as much as 7% of the total current energy demand. The program`s basic premise is that microalgae, which have been called the most productive biochemical factories in the world, can produce up to 30 times more oil per unit of growth area than land plants. Selected papers were processed separately for inclusion in the Energy Science and Technology Database.

  13. Aquatic plant surface as a niche for methanotrophs

    Directory of Open Access Journals (Sweden)

    Naoko eYoshida

    2014-02-01

    Full Text Available This study investigated the potential local CH4 sink in various plant parts as a boundary environment of CH4 emission and consumption. By comparing CH4 consumption activities in cultures inoculated with parts from 39 plant species, we observed significantly higher consumption of CH4 associated with aquatic plants than other emergent plant parts such as woody plant leaves, macrophytic marine algae, and sea grass. In situ activity of CH4 consumption by methanotrophs associated with different species of aquatic plants was in the range of 3.7 – 37 μmol⋅h-1⋅g-1 dry weight, which was ca 5.7-370 fold higher than epiphytic CH4 consumption in submerged parts of emergent plants. The qPCR-estimated copy numbers of the particulate methane monooxygenase-encoding gene pmoA were variable among the aquatic plants and ranged in the order of 105 to 107 copies⋅g-1 dry weight, which correlated with the observed CH4 consumption activities. Phylogenetic identification of methanotrophs on aquatic plants based on the pmoA sequence analysis revealed a predominance of diverse gammaproteobacterial type-I methanotrophs, including a phylotype of a possible plant-associated methanotroph with the closest identity (86-89% to Methylocaldum gracile.

  14. Evaluation of seven aquatic sampling methods for amphibians and other aquatic fauna

    Science.gov (United States)

    Gunzburger, M.S.

    2007-01-01

    To design effective and efficient research and monitoring programs researchers must have a thorough understanding of the capabilities and limitations of their sampling methods. Few direct comparative studies exist for aquatic sampling methods for amphibians. The objective of this study was to simultaneously employ seven aquatic sampling methods in 10 wetlands to compare amphibian species richness and number of individuals detected with each method. Four sampling methods allowed counts of individuals (metal dipnet, D-frame dipnet, box trap, crayfish trap), whereas the other three methods allowed detection of species (visual encounter, aural, and froglogger). Amphibian species richness was greatest with froglogger, box trap, and aural samples. For anuran species, the sampling methods by which each life stage was detected was related to relative length of larval and breeding periods and tadpole size. Detection probability of amphibians varied across sampling methods. Box trap sampling resulted in the most precise amphibian count, but the precision of all four count-based methods was low (coefficient of variation > 145 for all methods). The efficacy of the four count sampling methods at sampling fish and aquatic invertebrates was also analyzed because these predatory taxa are known to be important predictors of amphibian habitat distribution. Species richness and counts were similar for fish with the four methods, whereas invertebrate species richness and counts were greatest in box traps. An effective wetland amphibian monitoring program in the southeastern United States should include multiple sampling methods to obtain the most accurate assessment of species community composition at each site. The combined use of frogloggers, crayfish traps, and dipnets may be the most efficient and effective amphibian monitoring protocol. ?? 2007 Brill Academic Publishers.

  15. Combination of synchrotron radiation-based Fourier transforms infrared microspectroscopy and confocal laser scanning microscopy to understand spatial heterogeneity in aquatic multispecies biofilms.

    Science.gov (United States)

    Reuben, Sheela; Banas, Krzysztof; Banas, Agnieszka; Swarup, Sanjay

    2014-11-01

    Understanding the spatial heterogeneity within environmental biofilms can provide an insight into compartmentalization of different functions in biofilm communities. We used a non-destructive and label-free method by combining Synchrotron Radiation-based Fourier Transform Infrared Microspectroscopy (SR-FTIR) with Confocal Laser Scanning Microscopy (CLSM) to distinguish the spatial chemical changes within multispecies biofilms grown from natural storm waters in flow cells. Among the different surfaces tested for biofilm growth and optimal imaging, mylar membranes were most suited and it enabled successful spatial infrared imaging of natural biofilms for obtaining reliable and interpretable FTIR spectra. Time series analysis of biofilm growth showed that influx of water during biofilm growth, results in significant changes in biofilm formation. Early biofilms showed active nutrient acquisition and desiccation tolerance mechanisms corresponding with accumulation of secreted proteins. Statistical approach used for the evaluation of chemical spectra allowed for clustering and classification of various regions of the biofilm. Microheterogeneity was observed in the polymeric components of the biofilm matrix, including cellulose, glycocalyx and dextran-like molecules. Fructan and glycan-rich regions were distinguishable and glycocalyx was abundant in the strongly adhering peripheral regions of biofilms. Inner core showed coexistence of oxygen dimers and ferrihydrite that will likely support growth of Fe (II)-oxidising bacteria. The combined SR-FTIR microspectroscopy and CSLM approach for complex natural biofilms described here will be useful both in understanding heterogeneity of matrix components and in correlating functions of juxtaposed microbial species in complex natural biofilms with physicochemical microenvironment to which they are exposed.

  16. Colorado Plateau Rapid Ecoregion Assessment Conservation Elements: Aquatic Intactness (HUC5)

    Data.gov (United States)

    Bureau of Land Management, Department of the Interior — This map provides an estimate of current and near-term aquatic intactness, which is based on the results of a fuzzy logic model integrating land use, water quality,...

  17. Effects of nano-TiO2 on perfluorooctanesulfonate bioaccumulation in fishes living in different water layers: Implications for enhanced risk of perfluorooctanesulfonate.

    Science.gov (United States)

    Qiang, Liwen; Pan, Xiaoyu; Zhu, Lingyan; Fang, Shuhong; Tian, Shengyan

    2016-01-01

    Nano-titanium dioxide (nano-TiO2) is one of the most universal engineered nano-materials while perfluorooctanesulfonate (PFOS) is a typical new persistent organic pollutant. They are widely used and present in aquatic environment. In this study, a novel semi-static multilayer microcosm was setup to investigate the impacts of nano-TiO2 on PFOS bioaccumulation in fish species [Danio rerio (D. rerio), Ctenopharyngodon idella (C. idella), Hypostomus plecostomus (H. plecostomus)] living in different vertical layers. As a result of aggregation and deposition, the concentration of TiO2 increased from upper to bottom layers in the water column. Concomitantly, due to adsorption of PFOS on the nano-TiO2 particles, PFOS also displayed an increasing trend from upper to bottom layer. Owing to ingestion of the TiO2-PFOS complexes, more PFOS was taken-up by fish. With the aid of intestinal fluid, PFOS was readily released from TiO2 particles and absorbed by fish. As a result, accumulation of PFOS in whole fish was facilitated and the bioaccumulation factors of PFOS in D. rerio, C. idella and H. plecostomus were 3.01, 2.42 and 1.11 times of that in the groups without TiO2. However, TiO2 aggregates were too large to penetrate biological membranes to participate body circulation, and no significant accumulation of TiO2 was observed in fish muscle. The results suggested that the ecological risk of PFOS could be enhanced due to the presence of nano-TiO2 in water.

  18. Phytoremediation potential of aquatic macrophyte, Azolla.

    Science.gov (United States)

    Sood, Anjuli; Uniyal, Perm L; Prasanna, Radha; Ahluwalia, Amrik S

    2012-03-01

    Aquatic macrophytes play an important role in the structural and functional aspects of aquatic ecosystems by altering water movement regimes, providing shelter to fish and aquatic invertebrates, serving as a food source, and altering water quality by regulating oxygen balance, nutrient cycles, and accumulating heavy metals. The ability to hyperaccumulate heavy metals makes them interesting research candidates, especially for the treatment of industrial effluents and sewage waste water. The use of aquatic macrophytes, such as Azolla with hyper accumulating ability is known to be an environmentally friendly option to restore polluted aquatic resources. The present review highlights the phytoaccumulation potential of macrophytes with emphasis on utilization of Azolla as a promising candidate for phytoremediation. The impact of uptake of heavy metals on morphology and metabolic processes of Azolla has also been discussed for a better understanding and utilization of this symbiotic association in the field of phytoremediation. PMID:22396093

  19. Persistent toxic substances in Mediterranean aquatic species.

    Science.gov (United States)

    Miniero, Roberto; Abate, Vittorio; Brambilla, Gianfranco; Davoli, Enrico; De Felip, Elena; De Filippis, Stefania P; Dellatte, Elena; De Luca, Silvia; Fanelli, Roberto; Fattore, Elena; Ferri, Fabiola; Fochi, Igor; Rita Fulgenzi, Anna; Iacovella, Nicola; Iamiceli, Anna Laura; Lucchetti, Dario; Melotti, Paolo; Moret, Ivo; Piazza, Rossano; Roncarati, Alessandra; Ubaldi, Alessandro; Zambon, Stefano; di Domenico, Alessandro

    2014-10-01

    Fish and fishery products may represent one of the main sources of dietary exposure to persistent toxic substances (PTSs) such as polychlorinated dibenzodioxins, dibenzofurans, and biphenyls; polybromodiphenyl ethers; organochlorine pesticides; perfluorooctanoic acid and perfluorooctane sulfonate; and inorganic mercury and methyl mercury. In this study, PTS contamination of Mediterranean fish and crustaceans caught in Italian coastal waters was investigated in order to increase the representativeness of the occurrence database for wild species. The objectives were to verify the suitability of regulatory limits for PTSs, identify background concentrations values, if any, and examine the possible sources of variability when assessing the chemical body burdens of aquatic species. Twelve wild species of commercial interest and two farmed fish species were chosen. Excluding methyl mercury, chemical concentrations found in wild species fell generally towards the low ends of the concentration ranges found in Europe according to EFSA database and were quite lower than the tolerable maximum levels established in the European Union; farmed fish always showed contamination levels quite lower than those detected in wild species. The data obtained for wild species seemed to confirm the absence of local sources of contamination in the chosen sampling areas; however, species contamination could exceed regulatory levels even in the absence of specific local sources of contamination as a result of the position in the food web and natural variability in species' lifestyle. A species-specific approach to the management of contamination in aquatic organisms is therefore suggested as an alternative to a general approach based only on contaminant body burden. A chemical-specific analysis performed according to organism position in the food chain strengthened the need to develop this approach. PMID:25020099

  20. Persistent toxic substances in Mediterranean aquatic species.

    Science.gov (United States)

    Miniero, Roberto; Abate, Vittorio; Brambilla, Gianfranco; Davoli, Enrico; De Felip, Elena; De Filippis, Stefania P; Dellatte, Elena; De Luca, Silvia; Fanelli, Roberto; Fattore, Elena; Ferri, Fabiola; Fochi, Igor; Rita Fulgenzi, Anna; Iacovella, Nicola; Iamiceli, Anna Laura; Lucchetti, Dario; Melotti, Paolo; Moret, Ivo; Piazza, Rossano; Roncarati, Alessandra; Ubaldi, Alessandro; Zambon, Stefano; di Domenico, Alessandro

    2014-10-01

    Fish and fishery products may represent one of the main sources of dietary exposure to persistent toxic substances (PTSs) such as polychlorinated dibenzodioxins, dibenzofurans, and biphenyls; polybromodiphenyl ethers; organochlorine pesticides; perfluorooctanoic acid and perfluorooctane sulfonate; and inorganic mercury and methyl mercury. In this study, PTS contamination of Mediterranean fish and crustaceans caught in Italian coastal waters was investigated in order to increase the representativeness of the occurrence database for wild species. The objectives were to verify the suitability of regulatory limits for PTSs, identify background concentrations values, if any, and examine the possible sources of variability when assessing the chemical body burdens of aquatic species. Twelve wild species of commercial interest and two farmed fish species were chosen. Excluding methyl mercury, chemical concentrations found in wild species fell generally towards the low ends of the concentration ranges found in Europe according to EFSA database and were quite lower than the tolerable maximum levels established in the European Union; farmed fish always showed contamination levels quite lower than those detected in wild species. The data obtained for wild species seemed to confirm the absence of local sources of contamination in the chosen sampling areas; however, species contamination could exceed regulatory levels even in the absence of specific local sources of contamination as a result of the position in the food web and natural variability in species' lifestyle. A species-specific approach to the management of contamination in aquatic organisms is therefore suggested as an alternative to a general approach based only on contaminant body burden. A chemical-specific analysis performed according to organism position in the food chain strengthened the need to develop this approach.

  1. Effects of Zinc and Lead Toxicity on the Growth and their Bioaccumulation in Fish

    Directory of Open Access Journals (Sweden)

    M. Javed

    2012-06-01

    Full Text Available This study evaluated the impacts of chronic exposure of waterborne zinc (Zn and lead (Pb on the growth and their bioaccumulation in three fish species viz. Catla catla, Labeo rohita and Cirrhina mrigala. Three fish species responded similarly for their feed intakes while weight increments and feed conversion efficiency (FCE varied significantly due to Zn and Pb exposures. Younger fish were significantly more sensitive to metallic ion toxicity. Chronic exposure of both Zn and Pb (at 1/3rd of LC50 to the fish caused significantly lesser gain in weight, feed intakes and FCE than that of control (un-stressed fish. Amongst 9 age groups, 330-day fish exhibited significantly better growth in terms of weight gain and feed intake than the other age groups. Both Zn and Pb bioaccumulations varied significantly among fish organs while the patterns of their bioaccumulation did not vary significantly within three fish species. Fish liver and kidney accumulated significantly higher Zn and Pb during chronic exposures. However, Zn accumulation was significantly more than that of Pb in the fish body. Amongst three fish species, Labeo rohita exhibited significantly higher tendency to accumulate Zn while Catla catla amassed higher Pb in its body. The bioaccumulation of both Zn and Pb was positively dependent upon fish age and exposure concentration of metals. Zn bioaccumulation in fish body followed the order: liver>kidney>skin>gills>scale=muscle while that of Pb was: kidney>liver>gills>skin>muscle=scales.

  2. Bioaccumulation factor of 137Cs in some marine biotas from West Bangka Indonesia

    International Nuclear Information System (INIS)

    Radionuclides may be released from nuclear facilities to the marine environment. Concentrations of radionuclides within marine biotic systems can be influenced by a number of factors, including the type of biota, its source, the radionuclide, and specific characteristics of the sampled specimens and the marine environment (salinity, etc.). The bioconcentration factor for a marine organism is the ratio of the concentration of a radionuclide in that organism to the concentration found in its marine water environment - under conditions of equilibrium. Information on the bioaccumulation of Cs-137 in marine organisms is required to risk assessment evaluates the potential risks to human health. Bioaccumulation of Cs was investigated in marine biota from west Bangka such as Marine cat fish (Arius thalassinus), Baramundi (Lates calcarifer), Mackerel (Scomberomorus commerson), Striped eel catfish (Plotosus lineatus), eel tailed fish (Euristhmus microceps), Yellowtail fusilier (Caesio erythrogaster), Coastal crab (Scylla sp), White shrimp (Penaeus merguiensis) and marine bivalve mollusk (Anadara granosa). Muscle of these marine biota, sediments and water were assayed for Cs-137 by HPGe gamma spectrometer. The bioaccumulation factor for fishes were calculated by ratio of concentration Cs-137 in muscle biota to the its concentration in water. The bioaccumulation factor for mollusks were calculates by ratio of concentration Cs-137 in muscle biota to the its concentration in sediments. The bioaccumulation factor were range 4.99 to 136.34

  3. Organochlorine pollution in tropical rivers (Guadeloupe): Role of ecological factors in food web bioaccumulation

    Energy Technology Data Exchange (ETDEWEB)

    Coat, Sophie, E-mail: coatsophie@gmail.com [EA 926 DYNECAR, Laboratoire de Biologie Marine, UFR Sciences, Universite des Antilles et de la Guyane, BP592, 97159 Pointe-a-Pitre Cedex (France); Monti, Dominique, E-mail: dominique.monti@univ-ag.fr [EA 926 DYNECAR, Laboratoire de Biologie Marine, UFR Sciences, Universite des Antilles et de la Guyane, BP592, 97159 Pointe-a-Pitre Cedex (France); Legendre, Pierre, E-mail: pierre.legendre@umontreal.ca [Departement de Sciences Biologique, Universite de Montreal, C.P. 6128, succursale A, Montreal, Quebec H3C 3J7 (Canada); Bouchon, Claude, E-mail: claude.bouchon@univ-ag.fr [EA 926 DYNECAR, Laboratoire de Biologie Marine, UFR Sciences, Universite des Antilles et de la Guyane, BP592, 97159 Pointe-a-Pitre Cedex (France); Massat, Felix, E-mail: fmassat@ladrome.fr [LDA26, laboratoire Departemental d' Analyses de la Drome, 27 avenue Lautagne, 26000 Valence (France); Lepoint, Gilles, E-mail: g.lepoint@ulg.ac.be [MARE Centre, Laboratoire d' Oceanologie, Universite de Liege, Bat. B6, 4000 Sart Tilman, Belgique (Belgium)

    2011-06-15

    Concentrations of organochlorine pesticides and stable isotope ratios of nitrogen and carbon were measured in a tropical freshwater ecosystem to evaluate the contamination level of biota and examine the bioaccumulation patterns of pollutants through the food web. Chemical analyses showed a general and heavy contamination of the entire food web. They revealed the strong accumulation of pollutants by juveniles of diadromous fishes and shrimps, as they re-enter the river. The role of ecological factors in the bioaccumulation of pesticides was evaluated. Whereas the most persistent pollutants (chlordecone and monohydro-chlordecone) were related to the organisms diet and habitat, bioaccumulation of {beta}-HCH was only influenced by animal lipid content. The biomagnification potential of chlordecone through the food chain has been demonstrated. It highlighted the importance of trophic transfer in this compound bioaccumulation process. In contrast, bioconcentration by passive diffusion from water seemed to be the main exposure route of biota to {beta}-HCH. - Highlights: > We measured OC pesticides and stable isotope ratios in a tropical stream. > Results showed a strong and ubiquitous contamination of the entire food web. > Diadromous juveniles strongly accumulated pollutants when they re-enter the river. > The most persistent pollutant (chlordecone) was related to species diet and habitat. > {beta}-HCH was only influenced by animal lipid content. - This paper determines the bioaccumulation and transfer processes of organochlorine pesticides within the stream food web in Guadeloupe (Caribbean).

  4. Organochlorine pollution in tropical rivers (Guadeloupe): Role of ecological factors in food web bioaccumulation

    International Nuclear Information System (INIS)

    Concentrations of organochlorine pesticides and stable isotope ratios of nitrogen and carbon were measured in a tropical freshwater ecosystem to evaluate the contamination level of biota and examine the bioaccumulation patterns of pollutants through the food web. Chemical analyses showed a general and heavy contamination of the entire food web. They revealed the strong accumulation of pollutants by juveniles of diadromous fishes and shrimps, as they re-enter the river. The role of ecological factors in the bioaccumulation of pesticides was evaluated. Whereas the most persistent pollutants (chlordecone and monohydro-chlordecone) were related to the organisms diet and habitat, bioaccumulation of β-HCH was only influenced by animal lipid content. The biomagnification potential of chlordecone through the food chain has been demonstrated. It highlighted the importance of trophic transfer in this compound bioaccumulation process. In contrast, bioconcentration by passive diffusion from water seemed to be the main exposure route of biota to β-HCH. - Highlights: → We measured OC pesticides and stable isotope ratios in a tropical stream. → Results showed a strong and ubiquitous contamination of the entire food web. → Diadromous juveniles strongly accumulated pollutants when they re-enter the river. → The most persistent pollutant (chlordecone) was related to species diet and habitat. → β-HCH was only influenced by animal lipid content. - This paper determines the bioaccumulation and transfer processes of organochlorine pesticides within the stream food web in Guadeloupe (Caribbean).

  5. Bioaccumulation of 137Cs by culture collection strains of bacteria and fungi

    International Nuclear Information System (INIS)

    Soil decontamination of soil contaminated by low-level activities of radionuclides, mainly by caesium-137, which come from accidental releases by maintenance of nuclear devices and by liquid wastes reprocessing, is long-term and expensive technology. Knowledge of the causations, which control the processes of bioaccumulation of radionuclides, is a necessary condition for critical assessment and successful utilization of processes of bioremediation in situ in practise. The authors present the experimentally gained quantitative values of bioaccumulation of caesium-137 from water solutions by micro organism cultures of Rhodotorula aurantiaca CCY 20-9-1, Sacharomyces cerevisiae, Rhodococcus rhodochrous ATCC 15906, Streptomyces sp. DX-IX, Coriolus versicolor CCWDF-14 and Rhizopus sp. R-18. Intensively growing cultures reach the highest values of bioaccumulation; the cultures in non-growing phase reach several orders lower values. From researched micro organisms the highest values of bioaccumulation of Cs+ 5.1 pmol/g (wet weight) at initial concentration of Cs+ in solution co = 1 nmol/l (without carrier) and 29.2 μmol/g (wet weight) at co = 6 mmol/l Cs+ (adding of carrier CsCl) were found out at growing culture S. cerevisiae as model of eukaryotic cell after an achievement of maximal stationary grow phase. Acquired information refer to the possible role of soil micro organisms at bioaccumulation of 137Cs in contaminated soils and their potential utilization in lowering of radioactive contamination of environment (authors)

  6. Bioaccumulation factor of {sup 137}Cs in some marine biotas from West Bangka Indonesia

    Energy Technology Data Exchange (ETDEWEB)

    Suseno, Heny, E-mail: henis@batan.go.id [Radioactive Waste Technology Center - The Indonesia Nuclear Energy Agency (BATAN) (Indonesia)

    2014-03-24

    Radionuclides may be released from nuclear facilities to the marine environment. Concentrations of radionuclides within marine biotic systems can be influenced by a number of factors, including the type of biota, its source, the radionuclide, and specific characteristics of the sampled specimens and the marine environment (salinity, etc.). The bioconcentration factor for a marine organism is the ratio of the concentration of a radionuclide in that organism to the concentration found in its marine water environment - under conditions of equilibrium. Information on the bioaccumulation of Cs-137 in marine organisms is required to risk assessment evaluates the potential risks to human health. Bioaccumulation of Cs was investigated in marine biota from west Bangka such as Marine cat fish (Arius thalassinus), Baramundi (Lates calcarifer), Mackerel (Scomberomorus commerson), Striped eel catfish (Plotosus lineatus), eel tailed fish (Euristhmus microceps), Yellowtail fusilier (Caesio erythrogaster), Coastal crab (Scylla sp), White shrimp (Penaeus merguiensis) and marine bivalve mollusk (Anadara granosa). Muscle of these marine biota, sediments and water were assayed for Cs-137 by HPGe gamma spectrometer. The bioaccumulation factor for fishes were calculated by ratio of concentration Cs-137 in muscle biota to the its concentration in water. The bioaccumulation factor for mollusks were calculates by ratio of concentration Cs-137 in muscle biota to the its concentration in sediments. The bioaccumulation factor were range 4.99 to 136.34.

  7. PIXE application for measurement of bioaccumulation of lead by marine micro-algae

    International Nuclear Information System (INIS)

    Marine micro-algae (Nannochloropsis sp., and Phaeodactylum sp.,) were obtained from the Pacific Ocean of Iwate Pref., Japan and purely cultured in nutritive seawater as a culture solution. The culture size for algae was 10-250 ml and every apparatus was small and of low cost. Marine micro-algae were given in different culture solutions including Pb2+ from 0.01 to 1.0 mg/l. The algae in 5 ml of the culture solution were collected on a polycarbonate filter (pore size: 1.0 μm) by suction filtration. The algae on the filter were subjected to PIXE analysis. Concentrations of Na, Mg, Si, P, S, Cl, K, Ca, Cr, Mn, Fe, Cu, Zn, Sr and Pb were simultaneously determined. PIXE can do multi-element analysis for a sample of below 1 mg. The quantity of lead in marine micro-algae increases in proportion to the Pb2+ concentration in the culture solution. The concentration factor (wet weight base) for lead is given as 200±20 ml/g for Nannochloropsis sp. and 1900±400 ml/g for Phaeodactylum sp.. It is shown that PIXE is a powerful tool for the measurement of the bioaccumulation of trace elements. (author)

  8. Comparative contribution of trophic transfer and biotransformation on arsenobetaine bioaccumulation in two marine fish.

    Science.gov (United States)

    Zhang, Wei; Guo, Zhiqiang; Zhou, Yanyan; Chen, Lizhao; Zhang, Li

    2016-10-01

    Marine fish can accumulate high arsenic (As) concentrations, with arsenobetaine (AsB) as the major species in the body. However, whether the high AsB accumulation in fish occurs mainly through trophic transfer from diet or biotransformation in the fish body remains unclear. This study investigated the trophic transfer and biotransformation of As in two marine fish (seabream Acanthopagrus schlegeli and grunt Terapon jarbua) fed artificial and clam diets for 28 d. The different diets contained different proportions of inorganic [As(III) and As(V)] and organic [methylarsenate (MMA), dimethylarsenate (DMA), and AsB] As compounds. Positive correlations were observed between the accumulated As concentrations and AsB concentrations in both fish, suggesting that AsB contributed to the accumulation of total As in marine fish. Based on the calculated total input of AsB and detected AsB concentrations in the muscle of the seabream and grunt, the ingested amounts of AsB accounted for 0.1-0.3%, 8.1-14.4% of detected AsB concentrations, respectively, in the muscle of seabream and grunt fish species, suggesting that AsB was mainly biotransformed versus trophically transferred in these marine fish. In summary, this study demonstrates that marine fish prefer to biotransform inorganic As forms into AsB, resulting in high bioaccumulation of total As. PMID:27584085

  9. Bioaccumulation of thallium by the wild plants grown in soils of mining area.

    Science.gov (United States)

    Sasmaz, Merve; Akgul, Bunyamin; Yıldırım, Derya; Sasmaz, Ahmet

    2016-11-01

    Gümüsköy Ag (As, Pb, and Tl) deposits are one of the largest silver deposits in the country and located about 25 km west of Kütahya, Turkey. This study investigated the accumulation and transport of thallium into 11 wild plants in soil of the mining area. Plant samples and their associated soils were collected from the field and Tl contents were measured with inductively coupled plasma mass spectroscopy (ICP-MS). The mean concentrations in the soil, roots, and shoots of the studied plants were, respectively, 170, 318, and 315 mg kg(-1) for Tl. The plants analyzed and collected from the studied area were separated into different groups based on enrichment coefficients of roots and shoots (ECR and ECS). The results showed that because of their higher ECR and ECS, the following could be good bioaccumulators: CY, IS, SL, and VR for Tl. Therefore, these plants can be useful for remediation or phytoremediation of soils polluted by Tl. PMID:27196508

  10. Doses from aquatic pathways in CSA-N288.1: deterministic and stochastic predictions compared

    Energy Technology Data Exchange (ETDEWEB)

    Chouhan, S.L.; Davis, P

    2002-04-01

    The conservatism and uncertainty in the Canadian Standards Association (CSA) model for calculating derived release limits (DRLs) for aquatic emissions of radionuclides from nuclear facilities was investigated. The model was run deterministically using the recommended default values for its parameters, and its predictions were compared with the distributed doses obtained by running the model stochastically. Probability density functions (PDFs) for the model parameters for the stochastic runs were constructed using data reported in the literature and results from experimental work done by AECL. The default values recommended for the CSA model for some parameters were found to be lower than the central values of the PDFs in about half of the cases. Doses (ingestion, groundshine and immersion) calculated as the median of 400 stochastic runs were higher than the deterministic doses predicted using the CSA default values of the parameters for more than half (85 out of the 163) of the cases. Thus, the CSA model is not conservative for calculating DRLs for aquatic radionuclide emissions, as it was intended to be. The output of the stochastic runs was used to determine the uncertainty in the CSA model predictions. The uncertainty in the total dose was high, with the 95% confidence interval exceeding an order of magnitude for all radionuclides. A sensitivity study revealed that total ingestion doses to adults predicted by the CSA model are sensitive primarily to water intake rates, bioaccumulation factors for fish and marine biota, dietary intakes of fish and marine biota, the fraction of consumed food arising from contaminated sources, the irrigation rate, occupancy factors and the sediment solid/liquid distribution coefficient. To improve DRL models, further research into aquatic exposure pathways should concentrate on reducing the uncertainty in these parameters. The PDFs given here can he used by other modellers to test and improve their models and to ensure that DRLs

  11. Cyanobacteria and prawn farming in northern New South Wales, Australia--a case study on cyanobacteria diversity and hepatotoxin bioaccumulation

    International Nuclear Information System (INIS)

    Harmful cyanobacteria pose a hazard to aquatic ecosystems due to toxins (hepatotoxic microcystins, nodularins, and cylindrospermopsin) they produce. The microcystins and nodularins are potent toxins, which are also tumor promoters. The microcystins and nodularins may accumulate into aquatic organisms and be transferred to higher trophic levels, and eventually affect vector animals and consumers. Prawn farming is a rapidly growing industry in Australia. Because information regarding effects of cyanobacteria at prawn farms was lacking, we examined diversity of cyanobacteria and toxin production plus bioaccumulation into black tiger prawns (Penaeus monodon) under both field (northern New South Wales, Australia, December 2001-April 2002) and laboratory conditions. Samples were analyzed for hepatotoxins using enzyme-linked immunosorbent assay (ELISA) and high-performance liquid chromatography (HPLC). The maximum density of cyanobacteria (1 x 106 to 4 x 106 cells/l) was reached in April. Cyanobacteria encountered were Oscillatoria sp. (up to 4 x 106 cells/l), Pseudanabaena sp. (up to 1.8 x 106 cells/l), Microcystis sp. (up to 3.5 x 104 cells/l), and Aphanocapsa sp. (up to 2 x 104 cells/l). An uncommon cyanobacterium, Romeria sp. (up to 2.2 x 106 cells/l), was also observed. Contrasting earlier indications, toxic Nodularia spumigena was absent. Despite that both Oscillatoria sp. and Microcystis sp. are potentially hepatotoxic, hepatotoxin levels in phytoplankton samples remained low (up to 0.5-1.2 mg/kg dw; ELISA) in 2001-2002. ELISA was found suitable not only for phytoplankton but prawn tissues as well. Enzymatic pretreatment improved extractability of hepatotoxin from cyanobacteria (nodularin from N. spumigena as an example), but did not generally increase toxin recovery from prawn hepatopancreas. There were slightly increasing hepatotoxin concentrations in prawn hepatopancreas (from 6-20 to 20-80 μg/kg dw; ELISA) during the study. Hepatotoxin concentrations in

  12. Mercury bioaccumulation and biomagnification in a small Arctic polynya ecosystem

    Energy Technology Data Exchange (ETDEWEB)

    Clayden, Meredith G., E-mail: meredith.clayden@gmail.com [Canadian Rivers Institute and Biology Department, University of New Brunswick, Saint John, NB E2L 4L5 (Canada); Arsenault, Lilianne M. [Canadian Rivers Institute and Biology Department, University of New Brunswick, Saint John, NB E2L 4L5 (Canada); Department of Earth and Environmental Science, Acadia University, Wolfville, NS B4P 2R6 (Canada); Department of Biology, Acadia University, Wolfville, NS B4P 2R6 (Canada); Kidd, Karen A. [Canadian Rivers Institute and Biology Department, University of New Brunswick, Saint John, NB E2L 4L5 (Canada); O' Driscoll, Nelson J. [Department of Earth and Environmental Science, Acadia University, Wolfville, NS B4P 2R6 (Canada); Mallory, Mark L. [Department of Biology, Acadia University, Wolfville, NS B4P 2R6 (Canada)

    2015-03-15

    Recurring polynyas are important areas of biological productivity and feeding grounds for seabirds and mammals in the Arctic marine environment. In this study, we examined food web structure (using carbon and nitrogen isotopes, δ{sup 13}C and δ{sup 15}N) and mercury (Hg) bioaccumulation and biomagnification in a small recurring polynya ecosystem near Nasaruvaalik Island (Nunavut, Canada). Methyl Hg (MeHg) concentrations increased by more than 50-fold from copepods (Calanus hyperboreus) to Arctic terns (Sterna paradisaea), the abundant predators at this site. The biomagnification of MeHg through members of the food web – using the slope of log MeHg versus δ{sup 15}N – was 0.157 from copepods (C. hyperboreus) to fish. This slope was higher (0.267) when seabird chicks were included in the analyses. Collectively, our results indicate that MeHg biomagnification is occurring in this small polynya and that its trophic transfer is at the lower end of the range of estimates from other Arctic marine ecosystems. In addition, we measured Hg concentrations in some poorly studied members of Arctic marine food webs [e.g. Arctic alligatorfish (Ulcina olrikii) and jellyfish, Medusozoa], and found that MeHg concentrations in jellyfish were lower than expected given their trophic position. Overall, these findings provide fundamental information about food web structure and mercury contamination in a small Arctic polynya, which will inform future research in such ecosystems and provide a baseline against which to assess changes over time resulting from environmental disturbance. - Highlights: • Polynyas are recurring sites of open water in polar marine areas • Mercury (Hg) biomagnification was studied in a small polynya near Nasaruvaalik Island, NU, Canada • Hg biomagnification estimates for invertebrates to fish were low compared to other Arctic systems • Factors underlying this result are unknown but may relate to primary productivity in small polynyas.

  13. Bioaccumulation of P-32 in bluegill and catfish

    International Nuclear Information System (INIS)

    Bluegill and catfish were fed P-32 at a constant feeding rate per body weight to determine the bioaccummulation factor (BF/sub r/) for P-32 in muscle relative to water. The fish were maintained in flow-through tanks at two feeding levels. The bluegill accumulated P-32 for 51 days, followed by depuration for 28 days. The catfish study had to be teminated after 11 days. Fish were analyzed in triplicte for P-32 and phosphorus at intervals of 1 to 8 days. Additional aquaria experiments were performed to determine the effects of water temperature, feeding rate, and type of food (worms vs. pellets) on P-32 uptake, and to observe P-32 uptake from water by unfed fish (including fish with blocked esophagus). A simple calculational model was used to determine the phosphorus turnover constant from the specific activity in tissue relative to food. This ratio at steady state approaches the BF/sub r/BF ratio (where BF is the phosphorus bioaccumulation factor) if P-32 transfers rapidly from water to food. The bluegill showed a weight gain of 0.2 %/d, a phosphorous turnover constant in muscle of 0.43 %/d, and a BF/sub r//BF ratio of 0.081 at the higher feeding rate, and 0.05 %/d, 0.34 %/d, and 0.064 at the lower feeding rate. Hence, respective P-32 BF/sub r/ values are 6000 and 4000 at a phosphorus BF of 70,000. The BF/sub r/ values for catfish were approximately twice as high. The aquarium experiments suggest that the higher factors are due to a much higher phosphorus intake, higher water temperature, higher retention from pellets than from worms, and possible higher retention by catfish than bluegill under the same conditions. 36 references, 15 figures, 22 tables

  14. Bioaccumulation and maternal transfer of mercury and selenium in amphibians.

    Science.gov (United States)

    Bergeron, Christine M; Bodinof, Catherine M; Unrine, Jason M; Hopkins, William A

    2010-04-01

    Amphibian population declines have been documented worldwide and environmental contaminants are believed to contribute to some declines. Maternal transfer of bioaccumulated contaminants to offspring may be an important and overlooked mechanism of impaired reproductive success that affects amphibian populations. Mercury (Hg) is of particular concern due to its ubiquity in the environment, known toxicity to other wildlife, and complex relationships with other elements, such as selenium (Se). The objectives of the present study were to describe the relationships between total Hg (THg), methlymercury (MMHg), and Se in three amphibian species (Plethodon cinereus, Eurycea bislineata cirrigera, and Bufo americanus) along a Hg-polluted river and floodplain, and to determine if B. americanus maternally transfers Hg and Se to its eggs in a tissue residue-dependent manner. Total Hg and MMHg concentrations in all species spanned two orders of magnitude between the reference and contaminated areas, while Se concentrations were generally low in all species at both sites. Strong positive relationships between THg and MMHg in tissues of all species were observed throughout. Both Hg and Se were maternally transferred from females to eggs in B. americanus, but the percentage of the females' Hg body burden transferred to eggs was low compared with Se. In addition, Hg concentrations appeared to positively influence the amount of Se transferred from female to eggs. The present study is the first to confirm a correlation between Hg concentrations in female carcass and eggs in amphibians and among the first to describe co-transference of Se and Hg in an anamniotic vertebrate. The results suggest future work is needed to determine whether maternal transfer of Hg has transgenerational implications for amphibian progeny.

  15. Mercury bioaccumulation and biomagnification in a small Arctic polynya ecosystem

    International Nuclear Information System (INIS)

    Recurring polynyas are important areas of biological productivity and feeding grounds for seabirds and mammals in the Arctic marine environment. In this study, we examined food web structure (using carbon and nitrogen isotopes, δ13C and δ15N) and mercury (Hg) bioaccumulation and biomagnification in a small recurring polynya ecosystem near Nasaruvaalik Island (Nunavut, Canada). Methyl Hg (MeHg) concentrations increased by more than 50-fold from copepods (Calanus hyperboreus) to Arctic terns (Sterna paradisaea), the abundant predators at this site. The biomagnification of MeHg through members of the food web – using the slope of log MeHg versus δ15N – was 0.157 from copepods (C. hyperboreus) to fish. This slope was higher (0.267) when seabird chicks were included in the analyses. Collectively, our results indicate that MeHg biomagnification is occurring in this small polynya and that its trophic transfer is at the lower end of the range of estimates from other Arctic marine ecosystems. In addition, we measured Hg concentrations in some poorly studied members of Arctic marine food webs [e.g. Arctic alligatorfish (Ulcina olrikii) and jellyfish, Medusozoa], and found that MeHg concentrations in jellyfish were lower than expected given their trophic position. Overall, these findings provide fundamental information about food web structure and mercury contamination in a small Arctic polynya, which will inform future research in such ecosystems and provide a baseline against which to assess changes over time resulting from environmental disturbance. - Highlights: • Polynyas are recurring sites of open water in polar marine areas • Mercury (Hg) biomagnification was studied in a small polynya near Nasaruvaalik Island, NU, Canada • Hg biomagnification estimates for invertebrates to fish were low compared to other Arctic systems • Factors underlying this result are unknown but may relate to primary productivity in small polynyas

  16. The bioaccumulation and effects of selenium in the oligochaete Lumbriculus variegatus via dissolved and dietary exposure routes.

    Science.gov (United States)

    Xie, Lingtian; Wu, Xing; Chen, Hongxing; Luo, Yongju; Guo, Zhongbao; Mu, Jingli; Blankson, Emmanuel R; Dong, Wu; Klerks, Paul L

    2016-09-01

    Aquatic organisms take up selenium from solution and from their diets. Many questions remain regarding the relative importance of selenium accumulation from these sources and resulting effects in benthic invertebrates. The present study addressed the toxicity and accumulation of Se via dissolved and dietary exposures to three different Se species, in the freshwater oligochaete Lumbriculus variegatus. Worms were exposed to 20μg/g dry weight of selenite (Se(IV)), selenate (Se(VI)), or seleno-l-methionine (Se-Met) in their diet (sediment) or to 15μg/L dissolved Se in water-only exposures. While the dissolved and sediment Se levels differed greatly, such levels may co-occur at a Se-contaminated site. Se accumulation, worm population growth, lipid peroxidation (as TBARS), and Na(+)/K(+)-ATPase activity were quantified at the end of the 2-week exposure. The sediment Se-Met exposure caused 100% mortality, while worm densities were reduced by the other exposures except the Se(VI) one. Se bioaccumulation was generally higher for the sediment-Se exposure than the dissolved-Se ones, and was higher for Se(IV) than Se(VI) in the dissolved-Se exposure but not the sediment-Se one. The Se accumulation was highest for Se-Met. The oligochaetes that accumulated Se had higher levels of lipid peroxidation and reduced Na(+)/K(+)-ATPase activity. The present study's findings of differences in Se accumulation and toxicity for the three Se species, with effects generally but not exclusively a function of Se body burdens, underscore the need for research on these issues in invertebrates. Moreover, the results imply that the dietary uptake route is the predominant one for Se accumulation in L. variegatus. PMID:27450235

  17. Wetland management and rice farming strategies to decrease methylmercury bioaccumulation and loads from the Cosumnes River Preserve, California

    Science.gov (United States)

    Eagles-Smith, Collin A.; Ackerman, Joshua T.; Fleck, Jacob; Windham-Myers, Lisamarie; McQuillen, Harry; Heim, Wes

    2014-01-01

    We evaluated mercury (Hg) concentrations in caged fish (deployed for 30 days) and water from agricultural wetland (rice fields), managed wetland, slough, and river habitats in the Cosumnes River Preserve, California. We also implemented experimental hydrological regimes on managed wetlands and post-harvest rice straw management techniques on rice fields in order to evaluate potential Best Management Practices to decrease methylmercury bioaccumulation within wetlands and loads to the Sacramento-San Joaquin River Delta. Total Hg concentrations in caged fish were twice as high in rice fields as in managed wetland, slough, or riverine habitats, including seasonal managed wetlands subjected to identical hydrological regimes. Caged fish Hg concentrations also differed among managed wetland treatments and post-harvest rice straw treatments. Specifically, Hg concentrations in caged fish decreased from inlets to outlets in seasonal managed wetlands with either a single (fall-only) or dual (fall and spring) drawdown and flood-up events, whereas Hg concentrations increased slightly from inlets to outlets in permanent managed wetlands. In rice fields, experimental post-harvest straw management did not decrease Hg concentrations in caged fish. In fact, in fields in which rice straw was chopped and either disked into the soil or baled and removed from the fields, fish Hg concentrations increased from inlets to outlets and were higher than Hg concentrations in fish from rice fields subjected to the more standard post-harvest practice of simply chopping rice straw prior to fall flood-up. Finally, aqueous methylmercury (MeHg) concentrations and export were highly variable, and seasonal trends in particular were often opposite to those of caged fish. Aqueous MeHg concentrations and loads were substantially higher in winter than in summer, whereas caged fish Hg concentrations were relatively low in winter and substantially higher in summer. Together, our results highlight the

  18. Global ecological impacts of invasive species in aquatic ecosystems.

    Science.gov (United States)

    Gallardo, Belinda; Clavero, Miguel; Sánchez, Marta I; Vilà, Montserrat

    2016-01-01

    The introduction of invasive species, which often differ functionally from the components of the recipient community, generates ecological impacts that propagate along the food web. This review aims to determine how consistent the impacts of aquatic invasions are across taxa and habitats. To that end, we present a global meta-analysis from 151 publications (733 cases), covering a wide range of invaders (primary producers, filter collectors, omnivores and predators), resident aquatic community components (macrophytes, phytoplankton, zooplankton, benthic invertebrates and fish) and habitats (rivers, lakes and estuaries). Our synthesis suggests a strong negative influence of invasive species on the abundance of aquatic communities, particularly macrophytes, zooplankton and fish. In contrast, there was no general evidence for a decrease in species diversity in invaded habitats, suggesting a time lag between rapid abundance changes and local extinctions. Invaded habitats showed increased water turbidity, nitrogen and organic matter concentration, which are related to the capacity of invaders to transform habitats and increase eutrophication. The expansion of invasive macrophytes caused the largest decrease in fish abundance, the filtering activity of filter collectors depleted planktonic communities, omnivores (including both facultative and obligate herbivores) were responsible for the greatest decline in macrophyte abundance, and benthic invertebrates were most negatively affected by the introduction of new predators. These impacts were relatively consistent across habitats and experimental approaches. Based on our results, we propose a framework of positive and negative links between invasive species at four trophic positions and the five different components of recipient communities. This framework incorporates both direct biotic interactions (predation, competition, grazing) and indirect changes to the water physicochemical conditions mediated by invaders (habitat

  19. Structural changes in response to bioaccumulation of iron and mercury in Chromolaena odorata (L.) King & Robins.

    Science.gov (United States)

    Swapna, K S; Salim, Nabeesa; Chandra, Ratheesh; Puthur, Jos T

    2015-09-01

    A comparative study was designed to elucidate the effect of iron and mercury on the morphological and anatomical changes as well as bioaccumulation potential in Chromolaena odorata. Plants were grown in half-strength Hoagland nutrient medium artificially contaminated with known quantities of HgCl2 (15 μM) and FeCl3 (1000 μM). Bioaccumulation of Hg and Fe was maximum in the root, and comparatively reduced bioaccumulation was recorded in the stem and leaves. Microscopic studies on morphology and anatomy revealed development of trichomes and lenticels on the stem and modified trichomes on leaves. Localized deposits of stained masses in various internal parts of the root, stem and leaf also were observed. Differential adaptation/strategy of C. odorata to attain tolerance towards Hg and Fe and phytoremediation potential of the plant is discussed. PMID:26239568

  20. Equilibrium Sampling to Determine the Thermodynamic Potential for Bioaccumulation of Persistent Organic Pollutants from Sediment

    DEFF Research Database (Denmark)

    Jahnke, Annika; MacLeod, Matthew; Wickström, Håkan;

    2014-01-01

    Equilibrium partitioning (EqP) theory is currently the most widely used approach for linking sediment pollution by persistent hydrophobic organic chemicals to bioaccumulation. Most applications of the EqP approach assume (I) a generic relationship between organic carbon-normalized chemical...... concentrations in sediments and lipid-normalized concentrations in biota and (II) that bioaccumulation does not induce levels exceeding those expected from equilibrium partitioning. Here, we demonstrate that assumption I can be obviated by equilibrating a silicone sampler with chemicals in sediment, measuring...... chemical concentrations in the silicone, and applying lipid/silicone partition ratios to yield concentrations in lipid at thermodynamic equilibrium with the sediment (CLip⇌Sed). Furthermore, we evaluated the validity of assumption II by comparing CLip⇌Sed of selected persistent, bioaccumulative and toxic...

  1. Bioaccumulation and food chain transfer of corrosion products from radioactive stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Young, J.S.

    1986-07-01

    Two sets of experiments were conducted to determine if corrosion products from radioactive Type 347 stainless steel could be biologically transferred from sediment through a marine food chain, and whether corrosion products dissolved in seawater could be bioaccumulated and then eliminated. Corrosion products containing /sup 60/Co and /sup 63/Ni from the radioactive stainless steel were introduced into marine sediments. Infaunal polychaete worms exposed to these sediments bioaccumulated the radionuclides. The feeding of these worms to shrimp and fish resulted in a trophic transfer of the radioactive products across a one-step food chain. The magnitude of the transfers are described in terms of transfer factors. Dissolved corrosion products as measured by the radionuclides were also bioaccumulated by shrimp and fish concentrating more than fish. Concentration factors were calculated.

  2. Effect of incorporation of uncertainty in PCB bioaccumulation factors on modeled receptor doses

    Energy Technology Data Exchange (ETDEWEB)

    Welsh, C.; Duncan, J.; Purucker, S. [Oak Ridge National Lab., TN (United States). Center for Risk Management; Richardson, N. [ABB Environmental Services, Inc., Wakefield, MA (United States); Redfearn, A. [Automated Sciences Group, Inc., Oak Ridge, TN (United States)

    1995-12-31

    Bioaccumulation factors (BAFs) are regularly employed in ecological risk assessments to model contaminant transfer through ecological food chains. The authors compiled data on bioaccumulation of PCBs in plants, invertebrates, birds, and mammals from published literature and used these data to develop regression equations relating soil or food concentrations to bioaccumulation. They then used Latin Hypercube simulation techniques and simple food chain models to incorporate uncertainty in the BAF regressions into the derivation of exposure dose estimates for selected wildlife receptors. The authors present their preliminary results in this paper. Dose estimates ranged over several orders of magnitude for herbivorous, insectivorous, and carnivorous receptors. These results suggest incorporating the uncertainty in BAF values into food chain exposure models could provide risk assessors and risk managers with information on the probability of a given outcome that can be used in interpreting the potential risks at hazardous waste sites.

  3. Bioaccumulation and food chain transfer of corrosion products from radioactive stainless steel

    International Nuclear Information System (INIS)

    Two sets of experiments were conducted to determine if corrosion products from radioactive Type 347 stainless steel could be biologically transferred from sediment through a marine food chain, and whether corrosion products dissolved in seawater could be bioaccumulated and then eliminated. Corrosion products containing 60Co and 63Ni from the radioactive stainless steel were introduced into marine sediments. Infaunal polychaete worms exposed to these sediments bioaccumulated the radionuclides. The feeding of these worms to shrimp and fish resulted in a trophic transfer of the radioactive products across a one-step food chain. The magnitude of the transfers are described in terms of transfer factors. Dissolved corrosion products as measured by the radionuclides were also bioaccumulated by shrimp and fish concentrating more than fish. Concentration factors were calculated

  4. Identification of evolutionary hotspots based on genetic data from multiple terrestrial and aquatic taxa and gap analysis of hotspots in protected lands encompassed by the South Atlantic Landscape Conservation Cooperative.

    Science.gov (United States)

    Robinson, J.; Snider, M.; Duke, J.; Moyer, G.R.

    2014-01-01

     The southeastern United States is a recognized hotspot of biodiversity for a variety of aquatic taxa, including fish, amphibians, and mollusks. Unfortunately, the great diversity of the area is accompanied by a large proportion of species at risk of extinction . Gap analysis was employed to assess the representation of evolutionary hotspots in protected lands w h ere an evolutionary hotspot was defined as an area with high evolutionary potential and measured by atypical patterns of genetic divergence, genetic diversity, and to a lesser extent genetic similarity across multiple terrestrial or aquatic taxa. A survey of the primary literature produced 16 terrestrial and 14 aquatic genetic datasets for estimation of genetic divergence and diversity. Relative genetic diversity and divergence values for each terrestrial and aquatic dataset were used for interpolation of multispecies genetic surfaces and subsequent visualization using ArcGIS. The multispecies surfaces interpolated from relative divergences and diversity data identified numerous evolutionary hotspots for both terrestrial and aquatic taxa , many of which were afforded some current protection. For instance, 14% of the cells identified as hotspots of aquatic diversity were encompassed by currently protected areas. Additionally, 25% of the highest 1% of terrestrial diversity cells were afforded some level of protection. In contrast, areas of high and low divergence among species, and areas of high variance in diversity were poorly represented in the protected lands. Of particular interest were two areas that were consistently identified by several different measures as important from a conservation perspective. These included an area encompassing the panhandle of Florida and southern Georgia near the Apalachicola National Forest (displaying varying levels of genetic divergence and greater than average levels of genetic diversity) and a large portion of the coastal regions of North and South Carolina

  5. Bioaccumulation of microcystins in two freshwater gastropods from a cyanobacteria-bloom plateau lake, Lake Dianchi

    International Nuclear Information System (INIS)

    To investigate the bioaccumulation patterns of microcystins (MCs) in organs of two gastropods, samples were collected in Lake Dianchi monthly from May to October, 2008, when cyanobacteria typically bloom. The average MCs concentrations for Radix swinhoei (pulmonate) and Margarya melanioides (prosobranch) tended to be similar for the different organs: the highest values in the hepatopancreas (9.33 by 3.74 μg/g DW), followed by digestive tracts (1.66 by 3.03 μg/g DW), gonads (0.45 by 1.34 μg/g DW) and muscles (0.22 by 0.40 μg/g DW). Pulmonate had higher value than prosobranch because of the stronger bioaccumulation ability in hepatopancreas. The levels in organs of R. swinhoei were correlated with environmentally dissolved MCs, but influenced by intracellular MCs for M. melanioides. The estimated MCs concentrations in edible parts of M. melanioides were beyond the WHO’s provisional tolerable daily intake (0.04 μg/kg), suggesting the risk of consumption of M. melanioides from the lake. Highlights: ► We probe bioaccumulated patterns of microcystins in organs of pulmonate and prosobranch. ► The highest microcystins in hepatopancreas for both snails. ► The higher microcystins for pulmonate results from the stronger bioaccumulation ability in hepatopancreas. ► Environmentally dissolved microcystins are the main sources for pulmonate, but intracellular for prosobranch. ► Suggesting the risk of consumption snails in the studying regions. - Higher bioaccumulation MCs level for pulmonate mainly contributed to the stronger bioaccumulation ability in its hepatopancreas.

  6. Assessing element-specific patterns of bioaccumulation across New England lakes

    International Nuclear Information System (INIS)

    Little is known about differences among trace elements in patterns of bioaccumulation in freshwater food webs. Our goal was to identify patterns in bioaccumulation of different elements that are large and consistent enough to discern despite variation across lakes. We measured methylmercury (MeHg) and trace element (As, Cd, Hg, Pb, and Zn) concentrations in food web components of seven New England lakes on 3–5 dates per lake, and contrasted patterns of bioaccumulation across lakes, metals and seasons. In each lake, trace element concentrations were compared across trophic levels, including three size fractions of zooplankton, planktivorous fish, and piscivorous fish. The trophic position of each food web component was estimated from N isotope analysis. Trace element concentrations varied widely among taxa, lakes and sampling dates. Yet, we identified four consistent patterns of bioaccumulation that were consistent across lakes: (1) MeHg concentration increased (i.e., was biomagnified) and Pb concentration decreased (i.e., was biodiminished) with increased trophic position. (2) Zinc concentration (as with MeHg) was higher in fish than in zooplankton, but overall variation in Zn concentration (unlike MeHg) was low. (3) Arsenic and Cd concentrations (as with Pb) were lower in fish than in zooplankton, but (unlike Pb) were not significantly correlated with trophic position within zooplankton or fish groups. (4) Average summer concentrations of As, Pb, Hg, and MeHg in zooplankton significantly predicted their concentrations in either planktivorous or piscivorous fish. Our secondary goal was to review sampling approaches in forty-five published studies to determine the extent to which current sampling programs facilitate cross-lake and cross-study comparisons of bioaccumulation. We found that studies include different components of the food web and sample too infrequently to enable strong cross-lake and cross-study comparisons. We discuss sampling strategies that would

  7. Bioaccumulation of heavy metals in fauna from wet detention ponds for stormwater runoff

    DEFF Research Database (Denmark)

    Stephansen, Diana; Nielsen, Asbjørn Haaning; Hvitved-Jacobsen, Thorkild;

    2012-01-01

    Stormwater detention ponds remove pollutants e.g. heavy metals and nutrients from stormwater runoff. These pollutants accumulate in the pond sediment and thereby become available for bioaccumulation in fauna living in the ponds. In this study the bioaccumulation was investigated by fauna samples...... from 5 wet detention ponds for analyses of heavy metal contents. Five rural shallow lakes were included in the study to survey the natural occurrence of heavy metals in water-dwelling fauna. Heavy metal concentrations in water-dwelling fauna were generally found higher in wet detention ponds compared...

  8. Assessing element-specific patterns of bioaccumulation across New England lakes

    Energy Technology Data Exchange (ETDEWEB)

    Ward, Darren M.; Mayes, Brandon; Sturup, Stefan; Folt, Carol L.; Chen, Celia Y., E-mail: celia.chen@dartmouth.edu

    2012-04-01

    Little is known about differences among trace elements in patterns of bioaccumulation in freshwater food webs. Our goal was to identify patterns in bioaccumulation of different elements that are large and consistent enough to discern despite variation across lakes. We measured methylmercury (MeHg) and trace element (As, Cd, Hg, Pb, and Zn) concentrations in food web components of seven New England lakes on 3-5 dates per lake, and contrasted patterns of bioaccumulation across lakes, metals and seasons. In each lake, trace element concentrations were compared across trophic levels, including three size fractions of zooplankton, planktivorous fish, and piscivorous fish. The trophic position of each food web component was estimated from N isotope analysis. Trace element concentrations varied widely among taxa, lakes and sampling dates. Yet, we identified four consistent patterns of bioaccumulation that were consistent across lakes: (1) MeHg concentration increased (i.e., was biomagnified) and Pb concentration decreased (i.e., was biodiminished) with increased trophic position. (2) Zinc concentration (as with MeHg) was higher in fish than in zooplankton, but overall variation in Zn concentration (unlike MeHg) was low. (3) Arsenic and Cd concentrations (as with Pb) were lower in fish than in zooplankton, but (unlike Pb) were not significantly correlated with trophic position within zooplankton or fish groups. (4) Average summer concentrations of As, Pb, Hg, and MeHg in zooplankton significantly predicted their concentrations in either planktivorous or piscivorous fish. Our secondary goal was to review sampling approaches in forty-five published studies to determine the extent to which current sampling programs facilitate cross-lake and cross-study comparisons of bioaccumulation. We found that studies include different components of the food web and sample too infrequently to enable strong cross-lake and cross-study comparisons. We discuss sampling strategies that would

  9. Human Exploitation of Aquatic Landscapes. Editorial

    Directory of Open Access Journals (Sweden)

    Ricardo Fernandes

    2014-11-01

    Full Text Available Aquatic landscapes such as rivers, lakes, and seas played an important role in past human behaviour, affecting modes of subsistence, patterns of mobility, access to material resources, and technological choices and their developments. The interaction with aquatic landscapes was also influential in the establishment of economic and social structures and in the formation of communal identities. The aim of this special themed issue of Internet Archaeology is to contribute to a better understanding of different forms of human interaction with aquatic landscapes.

  10. Aquatic invasive species: Lessons from cancer research

    Science.gov (United States)

    Sepulveda, Adam; Ray, Andrew; Al-Chokhachy, Robert K.; Muhlfeld, Clint C.; Gresswell, Robert E.; Gross, Jackson A.; Kershner, Jeffrey L.

    2014-01-01

    Aquatic invasive species are disrupting ecosystems with increasing frequency. Successful control of these invasions has been rare: Biologists and managers have few tools for fighting aquatic invaders. In contrast, the medical community has long worked to develop tools for preventing and fighting cancer. Its successes are marked by a coordinated research approach with multiple steps: prevention, early detection, diagnosis, treatment options and rehabilitation. The authors discuss how these steps can be applied to aquatic invasive species, such as the American bullfrog (Lithobates catesbeianus), in the Northern Rocky Mountain region of the United States, to expedite tool development and implementation along with achievement of biodiversity conservation goals.

  11. A Mixed Picture of AQUATIC PRODUCTS

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    @@ Aquatic products constitute an important part of China's international trade in agricultural products with the strongest competitiveness for export.The aquatic products industry of apparent competitive edge has maintained a considerable trade surplus despite the general trend of trade deficit among agricultural products in recent years.Nevertheless,the great changes taking place in the global economic and trade pattern in late years have given rise to the increasing uncertainties of the supply and demand as well as the price in the international aquatic products market.

  12. Assessment of trace metal bioaccumulation by Avicennia marina (Forsk.) in the last remaining mangrove stands in Manila Bay, the Philippines.

    Science.gov (United States)

    Gabriel, Ana Veronica S; Salmo, Severino G

    2014-12-01

    Concentrations of lead (Pb), copper (Cu), zinc (Zn), and cadmium (Cd) were evaluated in the sediments, roots and leaves of a mangrove species (Avicennia marina) in Las Piñas-Parañaque Critical Habitat and Ecotourism Area (LPPCHEA), Manila Bay. The concentrations showed a general pattern of Zn > Pb > Cu > Cd in sediments, Cu > Pb > Zn > Cd in roots and Cu > Zn > Pb > Cd in leaves. The trace metal concentrations in both sediments and plant tissues were below contamination threshold levels. Based on computed bioaccumulation indices, A. marina could be used for the phytostabilization and phytoextraction of Cu and Cd. The LPPCHEA mangrove ecosystem is an ecologically important ecosystem that will limit the spread of trace metals to the surrounding environment. PMID:25365960

  13. Assessment of heavy metals in clarins buthopogon (fish) parts and nymphaea lotus (aquatic plant) in river niger, delta state of nigeria

    International Nuclear Information System (INIS)

    River Niger, the largest river in Nigeria flows southwards across Asaba and Onitsha to the Delta areas. The clarins buthopogon (fish) and Nymphaea lotus (aquatic plant) from the River Niger at Asaba were sampled for analysis using Atomic Absorption Spectrometer (AAS). The concentration of the heavy metals from the three parts of the fish (head, muscle and tail) had the following ranges: Cr, 8.90-9.70, Cu, 2.90-3.90, Fe, 6.00-113.20; Mg, 138.00-3398; Ni, 5.48-14.68, Pb, 0.20-1.60; Hg, 0.38-2.00 and Cd, 1.41-1.78 mg kg/sup -1/ on dry weight basis. These values were higher than those obtained in Kaduna River and Mediterranean coaster waters. The concentrations in Nymphaea Lotus (aquatic plant) were extremely high (Cr, 20.30; Cu, 10.70; Fe, 569.20; Mg, 6798.00; Ni, 72.08; Pb, 6.00; Hg, 51.30 and Cd, 31.10 mg kg/sup -1/ dry weight) and were also higher than those of fish part. The bioaccumulation of heavy metals in fish parts and aquatic plant indicated pollution, as per WHO and FEPA standards for aquatic life. (author)

  14. Heavy metal contamination in sediments and mangroves from the coast of Red Sea: Avicennia marina as potential metal bioaccumulator.

    Science.gov (United States)

    Usman, Adel R A; Alkredaa, Raed S; Al-Wabel, M I

    2013-11-01

    The aim of this study was to investigate the concentrations and pollution status of heavy metals (Cu, Cd, Ni, Pb, Zn and Cr) in the mangrove surface sediments from the Farasan Island, Coast of Red Sea, Saudi Arabia. The ability of mangroves (Avicennia marina) to accumulate and translocate heavy metal within their different compartments was also investigated. Five sampling sites were chosen for collection of sediments and different compartments (leaf, branch and root) of A. marina. The results showed that the maximum and average concentrations of Cd, Cu and Pb in the studied area exceeded their world average concentration of shale. Additionally, only the maximum concentration of Zn exceeded its world average shale concentration. Based on the quality guidelines of sediment (SQGs), the collected sediment samples were in moderate to heavy rate for Cu, non-polluted to heavy rate for Pb and Zn, and non-polluted to moderate rate for Cr and Ni. The average metal concentrations of A. marina in the studied area were observed in the order Cu (256.0-356.6mgkg(-1))>Zn (29.5-36.8mgkg(-1))>Cr (8.15-14.9mgkg(-1))>Ni (1.37-4.02mgkg(-1))>Cd (not detectable-1.04mgkg(-1))>Pb (not detectable). Based on bio-concentration factors (BCF), their most obtained values were considered too high (>1), suggesting that A. marina can be considered as a high-efficient plant for bioaccumulation of heavy metals. Among all metals, Cu and Cr were highly bio-accumulated in different parts of A. marina. In terms of heavy metal contamination control via phyto-extraction, our findings suggest also that A. marina may be classified as potential accumulator for Cu in aboveground parts, as indicated by higher metal accumulation in the leaves combined with bio-concentration factor (BCF) and translocation factor (TF) values >1. PMID:24011858

  15. The occurrence and ecological risk assessment of phthalate esters (PAEs) in urban aquatic environments of China.

    Science.gov (United States)

    Zhang, Lulu; Liu, Jingling; Liu, Huayong; Wan, Guisheng; Zhang, Shaowei

    2015-07-01

    Phthalate esters (PAEs) are widely used in the manufacturing of plastics, and the demand for PAEs has grown rapidly, especially in China. This trend will lead to much more environmental PAE contamination. PAEs are listed as priority substances in the European Union and are therefore subject to ecological risk assessments. This paper reviews the literature concerning the pollution status of PAEs and their ecological risk to aquatic environments. Risk quotients (RQs) based on the predicted no effect concentration and PAE concentrations in aquatic environments demonstrated significant (10 ≤ RQ effects for algae, Daphnia, and fish in aquatic environments near PAE-based industrial and urban areas. Thus, the ecological risk of PAEs in Chinese aquatic environments should be considered, especially in areas where commercial plastics are produced. PMID:25847103

  16. Variation in terrestrial and aquatic sources of methylmercury in stream predators as revealed by stable mercury isotopes.

    Science.gov (United States)

    Tsui, Martin Tsz-Ki; Blum, Joel D; Finlay, Jacques C; Balogh, Steven J; Nollet, Yabing H; Palen, Wendy J; Power, Mary E

    2014-09-01

    Mercury (Hg) is widely distributed in the environment, and its organic form, methylmercury (MeHg), can extensively bioaccumulate and biomagnify in aquatic and terrestrial food webs. Concentrations of MeHg in organisms are highly variable, and the sources in natural food webs are often not well understood. This study examined stable isotope ratios of MeHg (mass-dependent fractionation, as δ(202)HgMeHg; and mass-independent fractionation, as Δ(199)HgMeHg) in benthic invertebrates, juvenile steelhead trout (Oncorhynchus mykiss), and water striders (Gerris remigis) along a stream productivity gradient, as well as carnivorous terrestrial invertebrates, in a forested watershed at the headwater of South Fork Eel River in northern California. Throughout the sampling sites, δ(202)HgMeHg (after correction due to the effect of MeHg photodegradation) was significantly different between benthic (median = -1.40‰; range, -2.34 to -0.78‰; total number of samples = 29) and terrestrial invertebrates (median = +0.51‰; range, -0.37 to +1.40‰; total number of samples = 9), but no major difference between these two groups was found for Δ(199)HgMeHg. Steelhead trout (52 individual fishes) have MeHg of predominantly aquatic origins, with a few exceptions at the upstream locations (e.g., 1 fish collected in a tributary had a purely terrestrial MeHg source and 4 fishes had mixed aquatic and terrestrial MeHg sources). Water striders (seven pooled samples) derive MeHg largely from terrestrial sources throughout headwater sections. These data suggest that direct terrestrial subsidy (e.g., terrestrial invertebrates falling into water) can be important for some stream predators in headwater streams and could represent an important means of transfer of terrestrially derived MeHg (e.g., in situ methylation within forests, atmospheric sources) to aquatic ecosystems. Moreover, these findings show that terrestrial subsidies can enhance MeHg bioaccumulation of consumers in headwater

  17. MOIRA models and methodologies for assessing the effectiveness of countermeasures in complex aquatic systems contaminated by radionuclides

    International Nuclear Information System (INIS)

    The present report is composed of a set of articles written by the partners of the MOIRA project (a model-based computerized system for management support to identify optimal remedial strategies for restoring radionuclide contaminated aquatic ecosystems and drainage areas). The report describes models for predicting the behaviour of radionuclides in complex aquatic systems and the effects of countermeasures for their restoration

  18. Nitrous oxide emission by aquatic macrofauna

    DEFF Research Database (Denmark)

    Stief, Peter; Poulsen, Morten; Nielsen, Lars Peter;

    2009-01-01

      A large variety of aquatic animals was found to emit the potent greenhouse gas nitrous oxide when nitrate was present in the environment. The emission was ascribed to denitrification by ingested bacteria in the anoxic animal gut, and the exceptionally high N2O-to-N2 production ratio suggested...... delayed induction of the last step of denitrification. Filter- and deposit-feeding animal species showed the highest rates of nitrous oxide emission and predators the lowest, probably reflecting the different amounts of denitrifying bacteria in the diet. We estimate that nitrous oxide emission by aquatic...... animals is quantitatively important in nitraterich aquatic environments like freshwater, coastal marine, and deep-sea ecosystems. The contribution of this source to overall nitrous oxide emission from aquatic environments might further increase because of the projected increase of nitrate availability...

  19. Submerged Aquatic Vegetation (SAV) - Volusia County Seagrass

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — Aquatic vegetation in Volusia County. DEP SEA_GRASSES This polygon GIS data set represents a compilation of statewide seagrass data from various source agencies and...

  20. Nonindigenous Aquatic Species Database Marine Fishes

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The Nonindigenous Aquatic Species Database (NAS) information resource is an established central repository for spatially referenced biogeographic accounts of...

  1. Freshwater aquatic plant biomass production in Florida

    Energy Technology Data Exchange (ETDEWEB)

    Reddy, K.R.; Sutton, D.L.; Bowes, G.

    1983-01-01

    About 8% (1.2 million ha) of the total surface area of Florida is occupied by freshwater. Many of these water bodies are eutrophic. Nutrients present in these water bodies can be potentially used to culture aquatic plants as a possible feedstock for methane production. This paper summarizes the results of known research findings on biomass production potential of freshwater aquatic plants in Florida and identifies key research needs to improve the quality and quantity of biomass yields. Among floating aquatic plants, biomass yield potential was in the order of water-hyacinth > water lettuce > pennywort > salvinia > duckweed > azolla. Pennywort, duckweed, and azolla appear to perform well during the cooler months compared to other aquatic plants. Among emergent plants, biomass yield potential was in the order of southern wild rice > cattails > soft rush > bulrush. Cultural techniques, nutrient management, and environmental factors influencing the biomass yields were discussed. 68 references.

  2. Nitrous oxide emission by aquatic macrofauna

    Science.gov (United States)

    Stief, Peter; Poulsen, Morten; Nielsen, Lars Peter; Brix, Hans; Schramm, Andreas

    2009-01-01

    A large variety of aquatic animals was found to emit the potent greenhouse gas nitrous oxide when nitrate was present in the environment. The emission was ascribed to denitrification by ingested bacteria in the anoxic animal gut, and the exceptionally high N2O-to-N2 production ratio suggested delayed induction of the last step of denitrification. Filter- and deposit-feeding animal species showed the highest rates of nitrous oxide emission and predators the lowest, probably reflecting the different amounts of denitrifying bacteria in the diet. We estimate that nitrous oxide emission by aquatic animals is quantitatively important in nitrate-rich aquatic environments like freshwater, coastal marine, and deep-sea ecosystems. The contribution of this source to overall nitrous oxide emission from aquatic environments might further increase because of the projected increase of nitrate availability in tropical regions and the numeric dominance of filter- and deposit-feeders in eutrophic ecosystems. PMID:19255427

  3. Study on the Quality and Safety of Information Transmission in China’s Export of Aquatic Products Supply Chain Based on a Traceability System%基于可追溯体系的我国出口水产品供应链质量安全信息传递研究

    Institute of Scientific and Technical Information of China (English)

    郄海拓; 李忠诚

    2013-01-01

    通过分析我国传统出口水产品供应链运作模式中质量安全信息传递存在的问题,提出可追溯体系在出口水产品供应链的养殖、加工、仓储、运输四个环节质量安全信息传递中的具体应用,得出建立基于可追溯体系的出口水产品供应链运作模式在质量安全信息传递方面的优势,最后提出建立出口水产品可追溯体系的相应对策。%The problems of the traditional operation mode in the quality and safety of information transmission in China’s export of aquatic products supply chain were analyzed, and the traceability system’s specific application in the export of aquatic products supply chain was put forward from four aspects, including farming, pro-cessing, storage and transportation. In addition, an aquatic product supply chain based on a traceability system has some advantages in terms of strengthening visi-bility of supply chain information and information communication among supply chain enterprises, reducing test cost, and effectively integrating internal and external supply chain. Final y, corresponding countermeasures for establishing export aquatic product traceability system were proposed.

  4. Effects of Eichhornia crassipes Growth on Aquatic Plants in Dianchi Lake

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    [Objective] The aim was to study the effects of Eichhornia crassipes as an invasive plant on aquatic plants in Dianchi Lake. [Method] Based on the determination of chlorophyll content of phytoplankton and submerged plant (Potamogeton pectinatus) in Dianchi Lake in different months, the effects of E. crassipes on aquatic plants in Dianchi Lake were studied, and the allelopathy effect of root culture solution of E. crassipes on Microcystis aquaticum was discussed. [Result] The growth of E. crassipes in Dianch...

  5. Effect of Aquatic Immersion on Static Balance

    OpenAIRE

    Louder, Talin J.

    2013-01-01

    Objective To quantitatively assess measures of static balance and limits of stability (LOS) in an aquatic environment compared to on land. Methods Fifteen healthy, young adults (23 + or - 2 years) performed 90 s static balance trials on land and aquatic immersion at two different depths (greater trochanter, xiphoid process). Measures of 95% ellipse area and center of pressure (CoP) mean velocity were computed from the force data. Additionally, participants completed a visual analog scale (VAS...

  6. Development and validation of an in-house quantitative analysis method for cylindrospermopsin using hydrophilic interaction liquid chromatography-tandem mass spectrometry: Quantification demonstrated in 4 aquatic organisms.

    Science.gov (United States)

    Esterhuizen-Londt, Maranda; Kühn, Sandra; Pflugmacher, Stephan

    2015-12-01

    The cyanobacterial toxin cylindrospermopsin (CYN) is of great concern in aquatic environments because of its incidence, multiple toxicity endpoints, and, therefore, the severity of health implications. It may bioaccumulate in aquatic food webs, resulting in high exposure concentrations to higher-order trophic levels, particularly humans. Because of accumulation at primary levels resulting from exposure to trace amounts of toxin, a sensitive analytical technique with proven aquatic applications is required. In the present study, a hydrophilic interaction liquid chromatographic-tandem mass spectrometric method with a lower limit of detection of 200 fg on column (signal-to-noise ratio = 3, n = 9) and a lower limit of quantification of 1 pg on column (signal-to-noise ratio = 11, n = 9) with demonstrated application in 4 aquatic organisms is described. The analytical method was optimized and validated with a linear range (r(2) = 0.999) from 0.1 ng mL(-1) to 100 ng mL(-1) CYN. Mean recovery of the extraction method was 98 ± 2%. Application of the method was demonstrated by quantifying CYN uptake in Scenedesmus subspicatus (green algae), Egeria densa (Brazilian waterweed), Daphnia magna (water flea), and Lumbriculus variegatus (blackworm) after 24 h of static exposure to 50 μg L(-1) CYN. Uptake ranged from 0.05% to 0.11% of the nominal CYN exposure amount. This constitutes a sensitive and reproducible method for extraction and quantification of unconjugated CYN with demonstrated application in 4 aquatic organisms, which can be used in further aquatic toxicological investigations. PMID:26126753

  7. Development and validation of an in-house quantitative analysis method for cylindrospermopsin using hydrophilic interaction liquid chromatography-tandem mass spectrometry: Quantification demonstrated in 4 aquatic organisms.

    Science.gov (United States)

    Esterhuizen-Londt, Maranda; Kühn, Sandra; Pflugmacher, Stephan

    2015-12-01

    The cyanobacterial toxin cylindrospermopsin (CYN) is of great concern in aquatic environments because of its incidence, multiple toxicity endpoints, and, therefore, the severity of health implications. It may bioaccumulate in aquatic food webs, resulting in high exposure concentrations to higher-order trophic levels, particularly humans. Because of accumulation at primary levels resulting from exposure to trace amounts of toxin, a sensitive analytical technique with proven aquatic applications is required. In the present study, a hydrophilic interaction liquid chromatographic-tandem mass spectrometric method with a lower limit of detection of 200 fg on column (signal-to-noise ratio = 3, n = 9) and a lower limit of quantification of 1 pg on column (signal-to-noise ratio = 11, n = 9) with demonstrated application in 4 aquatic organisms is described. The analytical method was optimized and validated with a linear range (r(2) = 0.999) from 0.1 ng mL(-1) to 100 ng mL(-1) CYN. Mean recovery of the extraction method was 98 ± 2%. Application of the method was demonstrated by quantifying CYN uptake in Scenedesmus subspicatus (green algae), Egeria densa (Brazilian waterweed), Daphnia magna (water flea), and Lumbriculus variegatus (blackworm) after 24 h of static exposure to 50 μg L(-1) CYN. Uptake ranged from 0.05% to 0.11% of the nominal CYN exposure amount. This constitutes a sensitive and reproducible method for extraction and quantification of unconjugated CYN with demonstrated application in 4 aquatic organisms, which can be used in further aquatic toxicological investigations.

  8. Nutrition and training adaptations in aquatic sports.

    Science.gov (United States)

    Mujika, Iñigo; Stellingwerff, Trent; Tipton, Kevin

    2014-08-01

    The adaptive response to training is determined by the combination of the intensity, volume, and frequency of the training. Various periodized approaches to training are used by aquatic sports athletes to achieve performance peaks. Nutritional support to optimize training adaptations should take periodization into consideration; that is, nutrition should also be periodized to optimally support training and facilitate adaptations. Moreover, other aspects of training (e.g., overload training, tapering and detraining) should be considered when making nutrition recommendations for aquatic athletes. There is evidence, albeit not in aquatic sports, that restricting carbohydrate availability may enhance some training adaptations. More research needs to be performed, particularly in aquatic sports, to determine the optimal strategy for periodizing carbohydrate intake to optimize adaptations. Protein nutrition is an important consideration for optimal training adaptations. Factors other than the total amount of daily protein intake should be considered. For instance, the type of protein, timing and pattern of protein intake and the amount of protein ingested at any one time influence the metabolic response to protein ingestion. Body mass and composition are important for aquatic sport athletes in relation to power-to-mass and for aesthetic reasons. Protein may be particularly important for athletes desiring to maintain muscle while losing body mass. Nutritional supplements, such as b-alanine and sodium bicarbonate, may have particular usefulness for aquatic athletes' training adaptation.

  9. Ohio Aquatic Gap Analysis-An Assessment of the Biodiversity and Conservation Status of Native Aquatic Animal Species

    Science.gov (United States)

    Covert, S. Alex; Kula, Stephanie P.; Simonson, Laura A.

    2007-01-01

    homogeneity and labeling these areas using categories defined by the classification system. The variables were linked to the 1:100,000-scale streams of the National Hydrography Dataset of the USGS. Through discussions with Ohio aquatic experts, OH-GAP identified eight separate enduring physical features which, when combined, form the physical habitat type: * Shreve link (a measure of stream size) * Downstream Shreve link (a measure of stream connectivity and size) * Sinuosity * Gradient * Bedrock * Stream temperature * Character of glacial drift * Glacial-drift thickness Potential distribution models were developed for 130 fish, 70 bivalve, and 17 native crayfish species. These models are based on 5,686 fish, 4,469 crayfish, and 2,899 freshwater bivalve (mussels and clams) sampling locations, the variables describing the physical habitat types, and variables indicating the major drainage basins and Omernik's Level III ecoregion. All potential species distributions are displayed and analyzed at the 14-digit hydrologic unit (14-HUs), or subwatershed, level. Mainland Ohio contains 1,749 14-HUs. All statistics and conclusions, as well as spatial data, are discussed and presented in terms of these units. The Ohio Aquatic Gap Analysis Project compiled a map of public and private conservation lands and OH-GAP classified the lands into four status categories (status 1 through status 4) by the degree of protection offered based on management practices. A status of 1 denotes the highest, most permanent level of maintenance, and status 4 represents the lowest level of biodiversity management, or unknown status. The results of this mapping show that only about 3.7 percent of the state's land (4.3 percent if lakes and reservoirs are also included) is protected for conservation, either publicly or privately. Of this total, state agencies control about 52 percent, and Federal agencies control about 29 percent. Conservation areas that presently protect

  10. Prioritizing veterinary pharmaceuticals for aquatic environment in Korea.

    Science.gov (United States)

    Kim, Younghee; Jung, Jinyong; Kim, Myunghyun; Park, Jeongim; Boxall, Alistair B A; Choi, Kyungho

    2008-09-01

    Pharmaceutical residues may have serious impacts on nontarget biological organisms in aquatic ecosystems, and have therefore precipitated numerous investigations worldwide. Many pharmaceutical compounds available on the market need to be prioritized based on their potential ecological and human health risks in order to develop sound management decisions. We prioritized veterinary pharmaceuticals in Korea by their usage, potential to enter the environment, and toxicological hazard. Twenty compounds were identified in the top priority class, most of which were antibiotics. Among these compounds, 8 were identified as deserving more immediate attention: amoxicillin, enramycin, fenbendazole, florfenicol, ivermectin, oxytetracycline, tylosin, and virginiamycin. A limitation of this study is that we initially screened veterinary pharmaceuticals by sales tonnage for veterinary use only. However, this is the first attempt to prioritize veterinary pharmaceuticals in Korea, and it provides important concepts for developing environmental risk management plans for such contaminants in aquatic systems. PMID:21783906

  11. Aquatic vegetation indices assessment through radiative transfer modeling and linear mixture simulation

    Science.gov (United States)

    Villa, Paolo; Mousivand, Alijafar; Bresciani, Mariano

    2014-08-01

    Although spectral vegetation indices (VIs) have been widely used for remote sensing of vegetation in general, such indices have been traditionally targeted at terrestrial, more than aquatic, vegetation. This study introduces two new VIs specifically targeted at aquatic vegetation: NDAVI and WAVI and assesses their performance in capturing information about aquatic vegetation features by comparison with pre-existing indices: NDVI, SAVI and EVI. The assessment methodology is based on: (i) theoretical radiative transfer modeling of vegetation canopy-backgrounds coupling, and (ii) spectral linear mixture simulation based on real-case endmembers. Two study areas, Lake Garda and Lakes of Mantua, in Northern Italy, and a multisensor dataset have been exploited for our study. Our results demonstrate the advantages of the new indices. In particular, NDAVI and WAVI sensitivity scores to LAI and LIDF parameters were generally higher than pre-existing indices' ones. Radiative transfer modeling and real-case based linear mixture simulation showed a general positive, non-linear correlation of vegetation indices with increasing LAI and vegetation fractional cover (FC), more marked for NDVI and NDAVI. Moreover, NDAVI and WAVI show enhanced capabilities in separating terrestrial from aquatic vegetation response, compared to pre-existing indices, especially of NDVI. The new indices provide good performance in distinguishing aquatic from terrestrial vegetation: NDAVI over low density vegetation (LAI 1.0, FC > 50%). Specific vegetation indices can therefore improve remote sensing applications for aquatic vegetation monitoring.

  12. Energetic extremes in aquatic locomotion by coral reef fishes.

    Directory of Open Access Journals (Sweden)

    Christopher J Fulton

    Full Text Available Underwater locomotion is challenging due to the high friction and resistance imposed on a body moving through water and energy lost in the wake during undulatory propulsion. While aquatic organisms have evolved streamlined shapes to overcome such resistance, underwater locomotion has long been considered a costly exercise. Recent evidence for a range of swimming vertebrates, however, has suggested that flapping paired appendages around a rigid body may be an extremely efficient means of aquatic locomotion. Using intermittent flow-through respirometry, we found exceptional energetic performance in the Bluelined wrasse Stethojulis bandanensis, which maintains tuna-like optimum cruising speeds (up to 1 metre s(-1 while using 40% less energy than expected for their body size. Displaying an exceptional aerobic scope (22-fold above resting, streamlined rigid-body posture, and wing-like fins that generate lift-based thrust, S. bandanensis literally flies underwater to efficiently maintain high optimum swimming speeds. Extreme energetic performance may be key to the colonization of highly variable environments, such as the wave-swept habitats where S. bandanensis and other wing-finned species tend to occur. Challenging preconceived notions of how best to power aquatic locomotion, biomimicry of such lift-based fin movements could yield dramatic reductions in the power needed to propel underwater vehicles at high speed.

  13. Risk Analysis and Control of Aquatic Product Supply Chain Based on Internet of Things%基于物联网的水产品供应链风险分析与控制

    Institute of Scientific and Technical Information of China (English)

    吴大冬; 严凌

    2016-01-01

    Along with the production and trade of volume of aquatic products in china increasing, supply chain risk issues of aquatic products are increasingly concerned. Since the development of the Internet of things technology, the supply chain of aquatic products is moving from the traditional to the modern. New technology to improve the value of the supply chain also brought new risks. According to three levels of Internet of things identify the supply chain risk of aquatic product, by using AHP method analysis the risk factors ,and puts forward the risk management and control measures in the water supply chain of the Internet of things.%随着我国水产品贸易量与生产量的不断增加,由此带来的水产品供应链风险问题越来越被重视。近年来,由于物联网技术的广泛使用使得水产品供应链模式正从传统走向现代。它在改变传统风险的同时也带来了新风险。文中把水产品供应链风险按照物联网的层次进行划分,运用层次分析法评估风险指标,找出影响水产品供应链的风险因素,最后提出了风险管控措施建议。

  14. Toxicity and bioaccumulation of sediment-associated silvernanoparticles in the estuarine polychaete, Nereis (Hediste) diversicolor

    DEFF Research Database (Denmark)

    Cong, Yi; Banta, Gary Thomas; Selck, Henriette;

    2014-01-01

    damage (comet assay tail moment and tail DNA intensity %) of Nereis coelomocytes increased in a concentration-dependent manner in all three Ag treatments. Ag NP treatments were more toxic than aqueous Ag for all toxicity endpoints, even though bioaccumulation did not differ significantly among Ag forms...

  15. Forecasting fish biomasses, densities, productions, and bioaccumulation potentials of Mid-Atlantic wadeable streams

    Science.gov (United States)

    Regional fishery conditions of Mid-Atlantic wadeable streams in the eastern United States are estimated using the BASS bioaccumulation and fish community model and data collected by the U.S. Environmental Protection Agency's Environmental Monitoring and Assessment Program (EMAP)....

  16. Seasonal Trends in Bioaccumulation of Heavy Metals in Fauna of Stormwater Ponds

    DEFF Research Database (Denmark)

    Stephansen, Diana; Nielsen, Asbjørn Haaning; Hvitved-Jacobsen, Thorkild;

    2013-01-01

    Fauna caught in three stormwater ponds, two receiving highway run-off and one receiving runoff from a center for trucks, was analyzed for copper, iron, zinc, cadmium, chromium, and lead. The fauna was monitored from March to October with 1-month intervals to evaluate seasonal trends in bioaccumul...

  17. ENHANCED BIOACCUMULATION OF HEAVY METAL BY BACTERIA CELLS DISPLAYING SYNTHETIC PHYTOCHELATINS. (R827227)

    Science.gov (United States)

    A novel strategy using synthetic phytochelatins is described for the purpose of developing microbial agents for enhanced bioaccumulation of toxic metals. Synthetic genes encoding for several metal-chelating phytochelatin analogs (Glu-Cys)nGly (EC8 (n = 8), EC11 (n = 11...

  18. Total mercury bioaccumulation tracking in a fresh water food chain, (Sanandaj Gheshlagh Dam Reservoir, Iran

    Directory of Open Access Journals (Sweden)

    Shahnaz Zare

    2014-05-01

    Conclusion: Due to the high bioaccumulation, biomagnifications factors and mercury concentration recorded in edible parts of SGR fish, local consumers should not eat more than 1182 gram of this fish weekly without accounting for other potential sources of total mercury in their food basket.

  19. Organophosphorus and Organochlorine Pesticides Bioaccumulation by Eichhornia crassipes in Irrigation Canals in an Urban Agricultural System.

    Science.gov (United States)

    Mercado-Borrayo, B M; Heydrich, Silke Cram; Pérez, Irma Rosas; Quiroz, Manuel Hernández; Hill, Claudia Ponce De León

    2015-01-01

    A natural wetland in Mexico City Metropolitan Area is one of the main suppliers of crops and flowers, and in consequence its canals hold a high concentration of organochlorine (OC) and organophosphorus (OP) pesticides. There is also an extensive population of water hyacinth (Eichhornia crassipes), which is considered a plague; but literature suggests water hyacinth may be used as a phytoremediator. This study demonstrates bioaccumulation difference for the OC in vivo suggesting their bioaccumulation is ruled by their log K(ow), while all the OP showed bioaccumulation regardless of their log K(ow). The higher bioaccumulation factors (BAF) of the accumulated OC pesticides cannot be explained by their log K(ow), suggesting that the OC pesticides may also be transported passively into the plant. Translocation ratios showed that water hyacinth is an accumulating plant with phytoremediation potential for all organophosphorus pesticides studied and some organochlorine pesticides. An equation for free water surface wetlands with floating macrophytes, commonly used for the construction of water-cleaning wetlands, showed removal of the pesticides by the wetland with room for improvement with appropriate management. PMID:25976884

  20. Effects of microplastic on fitness and PCB bioaccumulation by the lugworm Arenicola marina

    NARCIS (Netherlands)

    Besseling, E.; Wegner, A.; Foekema, E.M.; Heuvel_Greve, van den M.J.; Koelmans, A.A.

    2013-01-01

    It has been speculated that marine microplastics may cause negative effects on benthic marine organisms and increase bioaccumulation of persistent organic pollutants (POPs). Here, we provide the first controlled study of plastic effects on benthic organisms including transfer of POPs. The effects of

  1. Bioaccumulation of chemical warfare agents, energetic materials, and metals in deep-sea shrimp from discarded military munitions sites off Pearl Harbor

    Science.gov (United States)

    Koide, Shelby; Silva, Jeff A. K.; Dupra, Vilma; Edwards, Margo

    2016-06-01

    The bioaccumulation of munitions-related chemicals at former military deep-water disposal sites is poorly understood. This paper presents the results of human-food-item biota sampling to assess the potential for bioaccumulation of chemical warfare agents, energetic materials, arsenic, and additional munitions-related metals in deep-sea shrimp tissue samples collected during the Hawai'i Undersea Military Munitions Assessment (HUMMA) project to date. The HUMMA investigation area is located within a former munitions sea-disposal site located south of Pearl Harbor on the island of O'ahu, Hawai'i, designated site Hawaii-05 (HI-05) by the United States Department of Defense. Indigenous deep-sea shrimp (Heterocarpus ensifer) were caught adjacent to discarded military munitions (DMM) and at control sites where munitions were absent. Tissue analysis results showed that chemical warfare agents and their degradation products were not present within the edible portions of these samples at detectable concentrations, and energetic materials and their degradation products were detected in only a few samples at concentrations below the laboratory reporting limits. Likewise, arsenic, copper, and lead concentrations were below the United States Food and Drug Administration's permitted concentrations of metals in marine biota tissue (if defined), and their presence within these samples could not be attributed to the presence of DMM within the study area based on a comparative analysis of munitions-adjacent and control samples collected. Based on this current dataset, it can be concluded that DMM existing within the HUMMA study area is not contributing to the bioaccumulation of munitions-related chemicals for the biota species investigated to date.

  2. FY 1987 Aquatic Species Program: Annual report

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, D.A.; Sprague, S.

    1987-09-01

    The goal of the Department of Energy/Solar Energy Research Institute Aquatic Species Program is to develop the technology base to produce liquid fuels from microalagae at prices competitive with conventional alternatives. Microalgae are unusual plants that can accumulate large quantities of oil and can thrive in high-salinity water, which currently has no competing uses. The algal oils, in turn, are readily converted into gasoline and diesel fuels. The best site for successful microalgae production was determined to be the US desert Southwest, with potential applications to other warm areas. Aggressive research is needed, but the improvements required are attainable. The four prime research areas in the development of this technology are growth and production, engineering design, harvesting, and conversion. Algae are selected for three criteria: tolerance to environmental fluctuations, high growth rates, and high lipid production. From 1982 to 1986, the program collected more than 3000 strains of microalgae that are more than twice as tolerant to temperature and salinity fluctuation than the initial strains. Productivity has been increased by a factor of two in outdoor culture systems since 1982, and lipid content has also been increased from 20% of body weight in 1982 to greater than 66% of body weight in 1987. Research programs are ongoing in lipid biochemistry and genetic engineering so that ultimately strains can be modified and improved to combine their best characteristics. An outdoor test facility is being built in Roswell, New Mexico.

  3. Bioaccumulation of Pb and Cd on Broiler Chicken Fed in Difference Diets

    Directory of Open Access Journals (Sweden)

    Bambang Dwiloka

    2012-10-01

    Full Text Available The study was aimed to compute Pb and Cd bioaccumulation in different organs of broiler. Carcass, heart, liver, gizzard, intestine, and excreta. The data were obtained from broiler reared in the litter cage. Four treatments of feed were given to the broiler chicken, i.e.  T1 = X brand of commercial feed, T2 = Y brand of commercial feed, T3 = self-prepared feed without fish meal addition and T4 = self prepared feed without fish meal but contaminated with cadmium chloride (Cd.Cl2.4H2O. For each treatment, five broiler chicken were grouped each week (from week I up to week VI. Results of the first stage of this study was analyzed descriptively. A polinomial regression equation was used as an empirical model to describe the heavy metal bioaccumulation phenomenon in broiler carcasses. The quadratic equation  turned out to be the most suitable model for describing the bioaccumulation of heavy metal in broiler carcasses. From the simulation, it was found that  quadratic model fit to 61.31% and 54.17%  bioaccumulation data of Pb and Cd respectively. According to the model, initially metal concentrations declined since the first week and started to rebound at the fifth week, both in terms of chronological and physiological age. The patterns of Pb and Cd bioaccumulation in this study can be used as a reference to determine the proper slaughter period. It can be concluded that for reducing the risk of metal contamination the proper slaughter time of the broiler is before the fifth week.

  4. Contrasting PCB bioaccumulation patterns among Lake Huron lake trout reflect basin-specific ecology.

    Science.gov (United States)

    Paterson, Gordon; Ryder, Mark; Drouillard, Ken G; Haffner, G Douglas

    2016-01-01

    This study collected multiple age classes of lake trout from Lake Huron's Main Basin, Georgian Bay, and North Channel regions to compare and contrast top predator polychlorinated biphenyl (PCB) bioaccumulation patterns in separate compartments of the same ecosystem. Sum PCB concentrations were highest for Main Basin (260 ± 24.9 ng g(-1) wet wt) fish, followed by Georgian Bay (74.6 ± 16.2 ng g(-1) ) and North Channel (42.0 ± 3.3 ng g(-1)) fish. Discriminant functions analysis of lake trout PCB profiles and stable carbon (δ(13)C) and nitrogen (δ(15)N) isotope values clearly distinguished fish by location, indicating high degrees of basin fidelity throughout their lifetimes in addition to highly contrasting PCB bioaccumulation profiles. These unique profiles were not attributable to significant differences in lake trout lipid contents (p = 0.856) or trophic position (δ(15)N; p = 0.334), with rainbow smelt representing the primary prey across the basins. Furthermore, significant differences were observed among the basins for the relationships between PCB biomagnification factors and hydrophobicity. An empirical model for predicting PCB biomagnification in Lake Huron lake trout indicated that basin-specific population growth rates and prey abundances were significant for explaining these contrasting patterns of PCB bioaccumulation. The results of the present study are fundamental for understanding the role of ecology in legacy persistent organic pollutant (POP) bioaccumulation. Specifically, ecosystem characteristics such as prey abundances, foraging ecology, and ultimately consumer growth can regulate the variability of legacy POP bioaccumulation as observed within and among a wide range of freshwater ecosystems.

  5. Bioaccumulation of mercury in reared and wild Ruditapes philippinarum of a Mediterranean lagoon

    Science.gov (United States)

    Giani, Michele; Rampazzo, Federico; Berto, Daniela; Maggi, Chiara; Mao, Andrea; Horvat, Milena; Emili, Andrea; Covelli, Stefano

    2012-11-01

    The Marano and Grado lagoon, one of the largest wetlands in the Mediterranean Sea, has been subject to mercury contamination by industrial and mining activities. This must be considered a severe threat for Manila clam harvesting, which is an important fishing and commercial activity in the area. Contamination levels and potential risk for human consumption both in reared and wild clams collected from the lagoon were assessed by analyzing total mercury (THg) and methylmercury (MeHg) contents. In addition, relationships between THg and MeHg in sediments and in the bivalves were investigated. Increased bioaccumulation of THg but not of MeHg with increasing size of wild clam populations was observed at most sites. Higher concentrations both of THg (605 ± 210 ng g-1 ww) and MeHg (147 ± 37 ng g-1 ww) were detected in the eastern lagoon where the highest THg contents in sediments were observed as a consequence of the long-term supply of cinnabar rich suspended material from the Isonzo river. The variation of Hg content in seeded Manila clams during growth was monitored over a period of 18 months at two sites of the western sector of the lagoon. Results showed that the two areas were suitable for clam farming, with THg levels in reared bivalves always lower than the 0.5 mg kg-1 ww European Community limit. At the same time, as clams grew bigger in size, their THg and MeHg concentrations decreased, becoming lower than in the starting seeded pool. Reared clams presented lower THg (84 ± 55 ng g-1 ww) and MeHg (44.1 ± 24.6 ng g-1 ww) content than wild clams of the same commercial size (>30 mm). Based on a precautionary approach, intake of Hg and MeHg with the estimated clam consumption does not seem to constitute a risk for human health in the studied area.

  6. PHYSIOLOGICAL ASSESSMENT OF HEAD-OUT AQUATIC EXERCISES IN HEALTHY SUBJECTS: A QUALITATIVE REVIEW

    Directory of Open Access Journals (Sweden)

    Tiago M Barbosa

    2009-06-01

    Full Text Available In the last decades head-out aquatic exercises became one of the most important physical activities within the health system. Massive research has been produced throughout these decades in order to better understand the role of head-out aquatic exercises in populations' health. Such studies aimed to obtain comprehensive knowledge about the acute and chronic response of subjects performing head-out aquatic exercises. For that, it is assumed that chronic adaptations represent the accumulation of acute responses during each aquatic session. The purpose of this study was to describe the "state of the art" about physiological assessment of head-out aquatic exercises based on acute and chronic adaptations in healthy subjects based on a qualitative review. The main findings about acute response of head-out aquatic exercise according to water temperature, water depth, type of exercise, additional equipment used, body segments exercising and music cadence will be described. In what concerns chronic adaptations, the main results related to cardiovascular and metabolic adaptations, muscular strength, flexibility and body composition improvements will be reported

  7. Bioaccumulation of mercury, cadmium, zinc, chromium, and lead in muscle, liver, and spleen tissues of a large commercially valuable catfish species from Brazil

    Directory of Open Access Journals (Sweden)

    Fábio P. Arantes

    2016-03-01

    Full Text Available The increasing amounts of heavy metals entering aquatic environments can result in high accumulation levels of these contaminants in fish and their consumers, which pose a serious risk to ecosystems and human health. We investigated the concentrations of mercury (Hg, cadmium (Cd, zinc (Zn, chromium (Cr, and lead (Pb in muscle, liver, and spleen tissues of Pseudoplatystoma corruscans specimens collected from two sites on the Paraopeba River, Brazil. The level of heavy metals concentrations in the tissues was often higher in viscera (i.e. liver and spleen than in muscle, and thus, the viscera should not be considered for human consumption. Correlations between metal concentrations and fish size were not significant. Although the levels of muscle bioaccumulation of Hg, Cd, Zn, Cr, and Pb, generally do not exceed the safe levels for human consumption, the constant presence of heavy metals in concentrations near those limits considered safe for human consumption, is a reason for concern, and populations who constantly consume fish from polluted rivers should be warned. Our findings also indicate that in a river network where certain areas are connected to other areas with high rates of environmental pollutants, people should be cautious about the regular consumption of fish, even when the fish consumed are caught in stretches of the basin where contamination levels are considered low, since many of the freshwater fish with high commercial value, such as the catfish surubim, are migratory.

  8. Uptake and bioaccumulation of platinum group metals (Pd, Pt, Rh) from automobile catalytic converter materials by the zebra mussel (Dreissena polymorpha).

    Science.gov (United States)

    Zimmermann, Sonja; Messerschmidt, Jürgen; von Bohlen, Alex; Sures, Bernd

    2005-06-01

    The uptake and bioaccumulation of the platinum group metals (PGM) platinum (Pt), palladium (Pd), and rhodium (Rh) by the zebra mussel (Dreissena polymorpha) were investigated in exposure studies using ground material from unused automobile catalytic converters as metal source. The mussels were exposed to the metals in tap water or humic water. In the soft tissue samples of exposed mussels mean Pt levels ranged in dependence on the type of tank water and the exposure period (6, 9, or 18 weeks) between 780 and 4300 ng/g, the Pd levels ranged between 720 and 6300 ng/g, and the Rh levels ranged between 270 and 1900 ng/g. In contrast, the control mussels had metal concentrations of <20 ng/g (Pt), <50 ng/g (Pd), and <40 ng/g (Rh). Considerably higher PGM levels were found in the exposed mussels of the humic water group than in those of the tap water group. Although there is a cumulative increase of the PGM concentrations in the environment since the introduction of the automobile catalyst more than 20 years ago, only little information about the PGM contamination in the biosphere, especially the fauna, is available. Due to the high capacity of D. polymorpha to accumulate PGM, this bivalve could be used as a potential sentinel for monitoring the noble metals in aquatic ecosystems. PMID:15820726

  9. BIOACCUMULATION OF METALS IN MUSCLE, LIVER AND GILLS OF SIX COMMERCIAL FISH SPECIES AT ANAIKARAI DAM OF RIVER KAVERI, SOUTH INDIA

    Directory of Open Access Journals (Sweden)

    R.Bhuvaneshwari

    2013-03-01

    Full Text Available Metals are an inherent component of the environment that pose a potential hazard to human beings and animals. The consumption of fish from the polluted site may result in bioaccumulation of persistent pollutants in ultimate recipient of the food web. In the present investigation muscle tissue, gill and liver of six species of fish collected from Anaikarai dam (11°8’N latitude and 79°27’E longitude of River Kaveri, South India were analyzed to study the metal accumulation in various tissues. The mean concentrations of Co, Cr, Mn and Zn were found to be higher in gills, but Cu, Ni and Fe were more in liver of all fishes. The mean concentrations of Cr (11.8 μg g-1, Mn (4.4 μg g-1 and Fe (139 μg g-1 in the muscle were exceeding the permissible limit of FAO and WHO which is 1, 0.5 – 1.2 and 1.0 – 4.5 μg g-1 for Cr, Mn and Fe respectively. The fish Parastromateus niger has shown higher concentration of zinc in all the tissues and thus it can be used as a bioindicator species for zinc pollution in aquatic environment.

  10. Pesticide runoff from energy crops: A threat to aquatic invertebrates?

    Science.gov (United States)

    Bunzel, Katja; Schäfer, Ralf B; Thrän, Daniela; Kattwinkel, Mira

    2015-12-15

    The European Union aims to reach a 10% share of biofuels in the transport sector by 2020. The major burden is most likely to fall on already established annual energy crops such as rapeseed and cereals for the production of biodiesel and bioethanol, respectively. Annual energy crops are typically cultivated in intensive agricultural production systems, which require the application of pesticides. Agricultural pesticides can have adverse effects on aquatic invertebrates in adjacent streams. We assessed the relative ecological risk to aquatic invertebrates associated with the chemical pest management from six energy crops (maize, potato, sugar beet, winter barley, winter rapeseed, and winter wheat) as well as from mixed cultivation scenarios. The pesticide exposure related to energy crops and cultivation scenarios was estimated as surface runoff for 253 small stream sites in Central Germany using a GIS-based runoff potential model. The ecological risk for aquatic invertebrates, an important organism group for the functioning of stream ecosystems, was assessed using acute toxicity data (48-h LC50 values) of the crustacean Daphnia magna. We calculated the Ecological Risk from potential Pesticide Runoff (ERPR) for all three main groups of pesticides (herbicides, fungicides, and insecticides). Our findings suggest that the crops potato, sugar beet, and rapeseed pose a higher ecological risk to aquatic invertebrates than maize, barley, and wheat. As maize had by far the lowest ERPR values, from the perspective of pesticide pollution, its cultivation as substrate for the production of the gaseous biofuel biomethane may be preferable compared to the production of, for example, biodiesel from rapeseed. PMID:26282752

  11. Passive Sampling in Regulatory Chemical Monitoring of Nonpolar Organic Compounds in the Aquatic Environment

    DEFF Research Database (Denmark)

    Booij, Kees; Robinson, Craig D; Burgess, Robert M;

    2016-01-01

    in water, but this definition has little scientific basis. Insufficient quality control is a present weakness of passive sampling in water. Laboratory performance studies and the development of standardized methods are needed to improve data quality and to encourage the use of passive sampling...... by commercial laboratories and monitoring agencies. Successful prediction of bioaccumulation based on passive sampling is well documented for organisms at the lower trophic levels, but requires more research for higher levels. Despite the existence of several knowledge gaps, passive sampling presently...... is the best available technology for chemical monitoring of nonpolar organic compounds. Key issues to be addressed by scientists and environmental managers are outlined....

  12. FINAL REPORT ON THE AQUATIC MERCURY ASSESSMENT STUDY

    Energy Technology Data Exchange (ETDEWEB)

    Halverson, N

    2008-09-30

    In February 2000, the United States Environmental Protection Agency (EPA) Region 4 issued a proposed Total Maximum Daily Load (TMDL) for total mercury in the middle and lower Savannah River. The initial TMDL, which would have imposed a 1 ng/l mercury limit for discharges to the middle/lower Savannah River, was revised to 2.8 ng/l in the final TMDL released in February 2001. The TMDL was intended to protect people from the consumption of contaminated fish, which is the major route of mercury exposure to humans. The most bioaccumulative form of mercury is methylmercury, which is produced in aquatic environments by the action of microorganisms on inorganic mercury. Because of the environmental and economic significance of the mercury discharge limits that would have been imposed by the TMDL, the Savannah River Site (SRS) initiated several studies concerning: (1) mercury in SRS discharges, SRS streams and the Savannah River, (2) mercury bioaccumulation factors for Savannah River fish, (3) the use of clams to monitor the influence of mercury from tributary streams on biota in the Savannah River, and (4) mercury in rainwater falling on the SRS. The results of these studies are presented in detail in this report. The first study documented the occurrence, distribution and variation of total and methylmercury at SRS industrial outfalls, principal SRS streams and the Savannah River where it forms the border with the SRS. All of the analyses were performed using the EPA Method 1630/31 ultra low-level and contaminant-free techniques for measuring total and methylmercury. Total mercury at National Pollutant Discharge Elimination System (NPDES) outfalls ranged from 0.31-604 ng/l with a mean of 8.71 ng/l. Mercury-contaminated groundwater was the source for outfalls with significantly elevated mercury concentrations. Total mercury in SRS streams ranged from 0.95-15.7 ng/l. Mean total mercury levels in the streams varied from 2.39 ng/l in Pen Branch to 5.26 ng/l in Tims Branch

  13. Biological conservation of aquatic inland habitats: these are better days

    Directory of Open Access Journals (Sweden)

    Ian J. Winfield

    2013-08-01

    Full Text Available The biodiversity of aquatic inland habitats currently faces unprecedented threats from human activities. At the same time, although much is known about the functioning of freshwater ecosystems the successful transfer of such knowledge to practical conservation has not been universal. Global awareness of aquatic conservation issues is also hampered by the fact that conditions under the water surface are largely hidden from the direct experience of most members of society. Connectivity, or lack of it, is another challenge to the conservation of freshwater habitats, while urban areas can play a perhaps unexpectedly important positive role. Freshwater habitats frequently enjoy benefits accruing from a sense of ownership or stewardship by local inhabitants, which has led to the development of conservation movements which commonly started life centred on the aquatic inland habitat itself but of which many have now matured into wider catchment-based conservation programmes. A demonstrable need for evidence-based conservation management in turn requires scientific assessments to be increasingly robust and standardised, while at the same time remaining open to the adoption of technological advances and welcoming the rapidly developing citizen science movement. There is evidence of real progress in this context and conservation scientists are now communicating their findings to environmental managers in a way and on a scale that was rarely seen a couple of decades ago. It is only in this way that scientific knowledge can be efficiently transferred to conservation planning, prioritisation and ultimately management in an increasingly scaled-up, joined-up and resource-limited world. The principle of ‘prevention is better than cure’ is particularly appropriate to most biological conservation issues in aquatic inland habitats and is inextricably linked to educating and/or nudging appropriate human behaviours. When prevention fails, some form of emergency

  14. Nutrition, illness, and injury in aquatic sports.

    Science.gov (United States)

    Pyne, David B; Verhagen, Evert A; Mountjoy, Margo

    2014-08-01

    In this review, we outline key principles for prevention of injury and illness in aquatic sports, detail the epidemiology of injury and illness in aquatic athletes at major international competitions and in training, and examine the relevant scientific evidence on nutrients for reducing the risk of illness and injury. Aquatic athletes are encouraged to consume a well-planned diet with sufficient calories, macronutrients (particularly carbohydrate and protein), and micronutrients (particularly iron, zinc, and vitamins A, D, E, B6, and B12) to maintain health and performance. Ingesting carbohydrate via sports drinks, gels, or sports foods during prolonged training sessions is beneficial in maintaining energy availability. Studies of foods or supplements containing plant polyphenols and selected strains of probiotic species are promising, but further research is required. In terms of injury, intake of vitamin D, protein, and total caloric intake, in combination with treatment and resistance training, promotes recovery back to full health and training. PMID:24937101

  15. Nutrition, illness, and injury in aquatic sports.

    Science.gov (United States)

    Pyne, David B; Verhagen, Evert A; Mountjoy, Margo

    2014-08-01

    In this review, we outline key principles for prevention of injury and illness in aquatic sports, detail the epidemiology of injury and illness in aquatic athletes at major international competitions and in training, and examine the relevant scientific evidence on nutrients for reducing the risk of illness and injury. Aquatic athletes are encouraged to consume a well-planned diet with sufficient calories, macronutrients (particularly carbohydrate and protein), and micronutrients (particularly iron, zinc, and vitamins A, D, E, B6, and B12) to maintain health and performance. Ingesting carbohydrate via sports drinks, gels, or sports foods during prolonged training sessions is beneficial in maintaining energy availability. Studies of foods or supplements containing plant polyphenols and selected strains of probiotic species are promising, but further research is required. In terms of injury, intake of vitamin D, protein, and total caloric intake, in combination with treatment and resistance training, promotes recovery back to full health and training.

  16. Exploring the effects of temperature and resource limitation on mercury bioaccumulation in Fundulus heteroclitus using dynamic energy budget modeling

    Science.gov (United States)

    Dynamic energy budget (DEB) theory provides a generalizable and broadly applicable framework to connect sublethal toxic effects on individuals to changes in population survival and growth. To explore this approach, we conducted growth and bioaccumulation studies that contribute t...

  17. Intra- and inter-laboratory reliability of a cryopreserved trout hepatocyte assay for the prediction of chemical bioaccumulation potential

    Science.gov (United States)

    Cryopreserved trout hepatocytes provide a convenient in vitro system for measuring the intrinsic clearance of xenobiotics. Measured clearance rates can then be extrapolated to the whole animal as a means of improving modeled bioaccumulation predictions. To date, however, the in...

  18. Speciation of bioaccumulated uranium(VI) by Euglena mutabilis cells obtained by laser fluorescence spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Brockmann, Sina; Bernhard, Gert [Technical Univ. Dresden (Germany). Radiochemistry; Helmholtz-Zentrum Dresden-Rossendorf (HZDR) e.V., Dresden (Germany). Inst. of Resource Ecology; Arnold, Thuro [Helmholtz-Zentrum Dresden-Rossendorf (HZDR) e.V., Dresden (Germany). Inst. of Resource Ecology

    2014-07-01

    The ability of Euglena mutabilis cells - a unicellular protozoan with a flexible pellicle, which is typically found in acid mine drainage (AMD) environments - to bioaccumulate uranium under acid conditions was studied in batch sorption experiments at pH 3 and 4 using Na{sub 2}SO{sub 4} and NaClO{sub 4} as background media. It was found that axenic cultures of Euglena mutabilis Schmitz were able to bioaccumulate in 5 days 94.9 to 99.2% of uranium from a 1 x 10{sup -5} mol/L uranium solution in perchlorate medium and 95.1 to 95.9% in sodium sulfate medium, respectively. The speciation of uranium in solution and uranium bioaccumulated by Euglena mutabilis cells, were studied by laser induced fluorescence spectroscopy (LIFS). The LIFS investigations showed that the uranium speciation in the NaClO{sub 4} systems was dominated by free uranyl(VI) species and that the UO{sub 2}SO{sub 4} species was dominating in the Na{sub 2}SO{sub 4} medium. Fluorescence spectra of the bioaccumulated uranium revealed that aqueous uranium binds to carboxylic and/or (organo)phosphate groups located on the euglenid pellicle or inside the Euglena mutabilis cells. Reduced uranium immobilization rates of 0.93-1.43 mg uranium per g Euglena mutabilis biomass were observed in similar experiments, using sterile filtrated AMD waters containing, 4.4 x 10{sup -5} mol/L uranium. These lower rates were attributed to competition with other cations for available sorption sites. Additional LIFS measurements, however, showed that the speciation of the bioaccumulated uranium by the Euglena mutabilis cells was found to be identical with the uranium speciation found in the bioaccumulation experiments carried out in Na{sub 2}SO{sub 4} and NaClO{sub 4} media. The results indicate that Euglena mutabilis has the potential to immobilize aqueous uranium under acid condition and thus may be used in future as promising agent for immobilizing uranium in low pH waste water environments. (orig.)

  19. Food Web Bioaccumulation Model for Resident Killer Whales from the Northeastern Pacific Ocean as a Tool for the Derivation of PBDE-Sediment Quality Guidelines.

    Science.gov (United States)

    Alava, Juan José; Ross, Peter S; Gobas, Frank A P C

    2016-01-01

    Resident killer whale populations in the NE Pacific Ocean are at risk due to the accumulation of pollutants, including polybrominated diphenyl ethers (PBDEs). To assess the impact of PBDEs in water and sediments in killer whale critical habitat, we developed a food web bioaccumulation model. The model was designed to estimate PBDE concentrations in killer whales based on PBDE concentrations in sediments and the water column throughout a lifetime of exposure. Calculated and observed PBDE concentrations exceeded the only toxicity reference value available for PBDEs in marine mammals (1500 μg/kg lipid) in southern resident killer whales but not in northern resident killer whales. Temporal trends (1993-2006) for PBDEs observed in southern resident killer whales showed a doubling time of ≈5 years. If current sediment quality guidelines available in Canada for polychlorinated biphenyls are applied to PBDEs, it can be expected that PBDE concentrations in killer whales will exceed available toxicity reference values by a large margin. Model calculations suggest that a PBDE concentration in sediments of approximately 1.0 μg/kg dw produces PBDE concentrations in resident killer whales that are below the current toxicity reference value for 95 % of the population, with this value serving as a precautionary benchmark for a management-based approach to reducing PBDE health risks to killer whales. The food web bioaccumulation model may be a useful risk management tool in support of regulatory protection for killer whales. PMID:26289814

  20. Effects of modifications of aquatic ecosystems

    International Nuclear Information System (INIS)

    Studies under this program historically have been concerned with the effects of a variety of stress factors on aquatic populations and communities. Current research was focused principally on ionizing radiation, and includes studies on the interaction of acute radiation and temperature on fish, the in situ measurement of radiation exposure in an aquatic environment, and the uptake and retention of tritium in a simulated pond community. In response to the expanded responsibilities of the recently formed Energy Research and Development Administration in dealing with all forms of energy related problems, this program will be redirected in the coming year to nonnuclear energy research

  1. Microbial ecology of Antarctic aquatic systems.

    Science.gov (United States)

    Cavicchioli, Ricardo

    2015-11-01

    The Earth's biosphere is dominated by cold environments, and the cold biosphere is dominated by microorganisms. Microorganisms in cold Southern Ocean waters are recognized for having crucial roles in global biogeochemical cycles, including carbon sequestration, whereas microorganisms in other Antarctic aquatic biomes are not as well understood. In this Review, I consider what has been learned about Antarctic aquatic microbial ecology from 'omic' studies. I assess the factors that shape the biogeography of Antarctic microorganisms, reflect on some of the unusual biogeochemical cycles that they are associated with and discuss the important roles that viruses have in controlling ecosystem function.

  2. Aquatic macroinvertebrates of the Jablanica river, Serbia

    Directory of Open Access Journals (Sweden)

    Stefanović Katarina S.

    2009-01-01

    Full Text Available Research on the community of aquatic macroinvertebrates was carried out during 2005 and 2006 at four sampling sites along the Jablanica River, a right-hand tributary of the Kolubara River. Fifty-seven taxa were recorded in the course of the investigation. The most diverse group was Ephemeroptera, followed by Trichoptera and Plecoptera. Members of the Rhitrogena semicolorata group were the most abundant. Our results could be the basis for evaluation of the influence of damming of the Jablanica River on the status of its water and can serve as a model for studying the influ­ence of hydromorphological degradation of aquatic ecosystems.

  3. Aquatic ape theory and fossil hominids.

    Science.gov (United States)

    Verhaegen, M J

    1991-06-01

    While most older palaeo-anthropological studies emphasise the similarities of the fossil hominids with modern man, recent studies often stress the unique and the apelike features of the australopithecine dentitions, skulls and postcranial bones. It is worth reconsidering the features of Australopithecus, Homo erectus and Homo neanderthalensis in the light of the so-called Aquatic Ape Theory (AAT) of Hardy and Morgan, and to compare the skeletal parts of our fossil relatives with those of (semi)aquatic animals. Possible convergences are observed with proboscis monkeys, beavers, sea-otters, hippopotamuses, seals, sea-lions, walruses, sea-cows, whales, dolphins, porpoises, penguins and crocodiles. PMID:1909768

  4. Radioactive contamination of aquatic media and organisms

    International Nuclear Information System (INIS)

    After a brief account of the radioactive wastes produced by peaceful or military uses of Atomic Industry, the author first describes a series of observations carried out 'in the field' on the extent of contamination in aquatic organisms with respect to that of the medium. The experimental studies are then analysed, with reference both to the radioisotope metabolism and to the factors and types of contamination of aquatic organisms by wastes from atomic industry. A precise experimental project is presented at the end of the paper, including almost 300 references. (author)

  5. Copper-induced response of physiological parameters and antioxidant enzymes in the aquatic macrophyte Potamogeton pusillus

    Energy Technology Data Exchange (ETDEWEB)

    Monferran, Magdalena V.; Sanchez Agudo, Jose A. [Universidad Nacional de Cordoba - CONICET, Facultad de Ciencias Quimicas, Dto. Bioquimica Clinica - CIBICI, Medina Allende Esq., Haya de la Torre, Ciudad Universitaria, 5000 Cordoba (Argentina); Pignata, Maria L. [Universidad Nacional de Cordoba - CONICET, Facultad de Ciencias Exactas, Fisicas y Naturales - IMBIV, Ciudad Universitaria, 5000 Cordoba (Argentina); Wunderlin, Daniel A., E-mail: dwunder@fcq.unc.edu.a [Universidad Nacional de Cordoba - CONICET, Facultad de Ciencias Quimicas, Dto. Bioquimica Clinica - CIBICI, Medina Allende Esq., Haya de la Torre, Ciudad Universitaria, 5000 Cordoba (Argentina)

    2009-08-15

    Bioaccumulation and toxicity of copper was evaluated on Potamogeton pusillus L. The effect of copper (5-100 mug L{sup -1}) applied for several days was assessed by measuring changes in the chlorophyll's, phaeophytin's, malondialdehyde, electrical conductivity, glutathione peroxidase (GPX), glutathione reductase (GR) and guaiacol peroxidase (POD) activities. Plants accumulated copper with a maximum of 162 mug g{sup -1} dw after 7-days exposure at 100 mug L{sup -1}, however most of the metal was accumulated after 1-day exposure. The toxic effect caused by Cu was evident by the reduction of photosynthetic pigments, increase of malondialdehyde and electrical conductivity. P. pusillus shows Cu-induced oxidative stress by modulating antioxidant enzymes like GPX, GR and POD. Antioxidant enzymes activity increased significantly after exposure to 40 mug L{sup -1} during 24 h, followed by a drop at longer times. Thus, P. pusillus is proposed as a good biomonitor for the assessment of metal pollution in aquatic ecosystems. - The tolerance of Potamogeton pusillus to copper largely depends on the enhanced activity of its antioxidant system, showing that a decrease on its activity favored oxidative stress and cell damage.

  6. Biosorption of Strontium from Simulated Nuclear Wastewater by Scenedesmus spinosus under Culture Conditions: Adsorption and Bioaccumulation Processes and Models

    OpenAIRE

    Mingxue Liu; Faqin Dong; Wu Kang; Shiyong Sun; Hongfu Wei; , Wei Zhang; Xiaoqin Nie; Yuting Guo; Ting Huang; Yuanyuan Liu

    2014-01-01

    Algae biosorption is an ideal wastewater treatment method when coupled with algae growth and biosorption. The adsorption and bioaccumulation of strontium from simulated nuclear wastewater by Scenedesmus spinosus were investigated in this research. One hundred mL of cultured S. spinosus cells with a dry weight of 1.0 mg in simulated nuclear wastewater were used to analyze the effects on S. spinosus cell growth as well as the adsorption and bioaccumulation characters under conditions of 25 ± 1 ...

  7. Age and trophic position dominate bioaccumulation of mercury and organochlorines in the food web of Lake Washington

    International Nuclear Information System (INIS)

    Understanding the mechanisms of bioaccumulation in food webs is critical to predicting which food webs are at risk for higher rates of bioaccumulation that endanger the health of upper-trophic predators, including humans. Mercury and organochlorines were measured concurrently with stable isotopes of nitrogen and carbon in key fishes and invertebrates of Lake Washington to explore important pathways of bioaccumulation in this food web. Across the food web, age and trophic position together were highly significant predictors of bioaccumulation. Trophic position was more important than age for predicting accumulation of mercury, ΣDDT, and Σ-chlordane, whereas age was more important than trophic position for predicting PCB. Excluding age from the analysis inflated the apparent importance of trophic position to bioaccumulation for all contaminants. Benthic and pelagic habitats had similar potential to bioaccumulate contaminants, although higher Σ-chlordane concentrations in organisms were weakly associated with more benthic carbon signals. In individual fish species, contaminant concentrations increased with age, size, and trophic position (δ15N), whereas relationships with carbon source (δ13C) were not consistent. Lipid concentrations were correlated with contaminant concentrations in some but not all fishes, suggesting that lipids were not involved mechanistically in bioaccumulation. Contaminant concentrations in biota did not vary among littoral sites. Collectively, these results suggest that age may be an important determinant of bioaccumulation in many food webs and could help explain a significant amount of the variability in apparent biomagnification rates among food webs. As such, effort should be made when possible to collect information on organism age in addition to stable isotopes when assessing food webs for rates of biomagnification

  8. Metal and metalloid bioaccumulation in the Pacific blue shrimp Litopenaeus stylirostris (Stimpson) from New Caledonia: laboratory and field studies

    OpenAIRE

    Metian, Marc; Eltayeb, Mohamed M.; Hédouin, Laëtitia; Lacoue-Labarthe, Thomas; Teyssié, Jean-Louis; Mugnier, Chantal; Bustamante, Paco; Warnau, Michel

    2010-01-01

    The present work aimed at better understanding metal and metalloid bioaccumulation in the edible Pacific blue shrimp Litopenaeus stylirostris, using both laboratory and field approaches. In the laboratory, the bioaccumulation kinetics of Ag, Cd, Co, Cr, and Zn have been investigated in shrimp exposed via seawater and food, using the corresponding gamma-emitting radiotracers (Ag-110m, Cd-109, Co-57, Cr-51, and Zn-65) and highly sensitive nuclear detection techniques. Results showed that hepato...

  9. Aquatic Organic Matter Fluorescence - from phenomenon to application

    Science.gov (United States)

    Reynolds, Darren

    2014-05-01

    The use of fluorescence to quantify and characterise aquatic organic matter in river, ocean, ground water and drinking and waste waters has come along way since its discovery as a phenomenon in the early 20th century. For example, there are over 100 papers published each year in international peer reviewed journals, an order of magnitude increase since a decade ago (see Figure taken from ISI database from 1989 to 2007 for publications in the fields of river water and waste water). Since then it has been extensively used as a research tool since the 1990's by scientists and is currently used for a wide variety of applications within a number of sectors. Universities, organisations and companies that research into aquatic organic matter have either recently readily use appropriate fluorescence based techniques and instrumentation. In industry and government, the technology is being taken up by environmental regulators and water and wastewater companies. This keynote presentation will give an overview of aquatic organic matter fluorescence from its conception as a phenomenon through to its current use in a variety of emerging applications within the sectors concerned with understanding, managing and monitoring the aquatic environment. About the Speaker Darren Reynolds pioneered the use of fluorescence spectroscopy for the analysis of wastewaters in the 1990's. He currently leads a research group within the Centre for Research in Biosciences and sits on the Scientific Advisory Board for the Institute of Bio-Sensing Technology at the University of the West of England, Bristol. He is a multidisciplinary scientist concerned with the development of technology platforms for applications in the fields of environment/agri-food and health. His current research interests include the development of optical technologies and techniques for environmental and biological sensing and bio-prospecting applications. He is currently involved in the development and use of synthetic biology

  10. Combined effects of sugarcane bagasse extract and Zinc(II ions on the growth and bioaccumulation properties of yeast isolates.

    Directory of Open Access Journals (Sweden)

    Geetanjali Basak

    2011-08-01

    Full Text Available Bioaccumulation of zinc(II ions by yeast isolates viz. Candida rugosa and Cryptococcus laurentii was investigated in different growth media. Both the isolates showed maximum bioaccumulation of zinc(II in the medium prepared from sugarcane bagasse extract. The growth and zinc(II bioaccumulation properties of yeasts in sugar cane bagasse extract were tested as a function of pH, temperature and initial metal concentrations. The combined effects of sugar extracted from bagasse and initial zinc(II ion concentrations on specific growth rate and bioaccumulation efficiencies of yeasts were investigated. At a constant zinc(II concentration, the growthand zinc(II bioaccumulation increased with increasing concentrations of sugar up to 24 g/L. The inhibition effect of zinc(II ions on the specific growth rate of yeasts was studied by non competitive and uncompetitive inhibition models at various concentrations of zinc(II ranging from 0-50 mg/L at constant sugar concentrations (8- 24 g/L. Bioaccumulation of zinc(II by the yeast isolates followed first-order-reaction kinetics.

  11. Aquatic and Terrestrial Environment 2004

    DEFF Research Database (Denmark)

    Andersen, J. M.; Boutrup, S.; Bijl, L. van der;

    , watercourses, lakes and marine waters and the pressures upon them and reviews the monitoring of terrestrial natural habitats and selected plants and animals. The report is based on the annual reports prepared for each subprogramme by the Topic Centres. The latter reports are mainly based on data collected...

  12. Biotic ligand modeling approach: Synthesis of the effect of major cations on the toxicity of metals to soil and aquatic organisms.

    Science.gov (United States)

    Ardestani, Masoud M; van Straalen, Nico M; van Gestel, Cornelis A M

    2015-10-01

    The biotic ligand model (BLM) approach is used to assess metal toxicity, taking into account the competition of other cations with the free metal ions for binding to the biotic ligand sites of aquatic and soil organisms. The bioavailable fraction of metals, represented by the free metal ion, is a better measure than the total concentration for assessing their potential risk to the environment. Because BLMs are relating toxicity to the fraction of biotic ligands occupied by the metal, they can be useful for investigating factors affecting metal bioaccumulation and toxicity. In the present review, the effects of major cations on the toxicity of metals to soil and aquatic organisms were comprehensively studied by performing a meta-analysis of BLM literature data. Interactions at the binding sites were shown to be species- and metal-specific. The main factors affecting the relationships between toxicity and conditional binding constants for metal binding at the biotic ligand appeared to be Ca(2+) , Mg(2+) , and protons. Other important characteristics of the exposure medium, such as levels of dissolved organic carbon and concentrations of other cations, should also be considered to obtain a proper assessment of metal toxicity to soil and aquatic organisms.

  13. Bioaccumulation of heavy metals in marine organisms and sediments from Admiralty Bay, King George Island, Antarctica.

    Science.gov (United States)

    Trevizani, Tailisi Hoppe; Figueira, Rubens Cesar Lopes; Ribeiro, Andreza Portella; Theophilo, Carolina Yume Sawamura; Majer, Alessandra Pereira; Petti, Monica Angélica Varella; Corbisier, Thais Navajas; Montone, Rosalinda Carmela

    2016-05-15

    The Antarctic continent is considered a low-impact environment; however, there is a tendency to increase the contaminants' levels due to human activities in the research stations. In this study, As, Cd, Cr, Cu, Hg, Ni, Pb and Zn levels in sediment and biota were determined in the environmental samples from Admiralty Bay (King George Island, Antarctica) collected in 2003. The results demonstrated high concentrations of Cu and Zn in the sediments. There was bioaccumulation of As in the biota from Admiralty Bay and bioaccumulation of Zn specifically in the biota from Martel Inlet. In addition, the results were useful in order to understand the heavy metal levels for the pre-accident condition of Comandante Ferraz Antarctic Station, where an accident occurred in 2012, and also for the comparison with current conditions within the monitoring work developed by INCT-APA (National Institute of Science and Technology for Environmental Research Antarctic). PMID:26936119

  14. Heavy Metals Bioaccumulation by Iranian and Australian Earthworms (Eisenia fetida in the Sewage Sludge Vermicomposting

    Directory of Open Access Journals (Sweden)

    MR Shahmansouri, H Pourmoghadas, AR Parvaresh, H Alidadi

    2005-01-01

    Full Text Available Vermicomposting of organic waste has an important part to play in an integrated waste management strategy. In this study, the possibility of heavy metals accumulation with two groups of Iranian and Australian earthworms in sewage sludge vermicompost was investigated. Eisenia fetida was the species of earthworms used in the vermicomposting process. The bioaccumulation of Cr, Cd, Pb, Cu, and Zn as heavy metals by Iranian and Australian earthworms was studied. The results indicated that heavy metals concentration decreased with increasing vermicomposting time. Comparison of the two groups of earthworms showed that the Iranian earthworms consumed higher quantities of micronutrients such as Cu and Zn comparing with the Australian earthworms, while the bioaccumulation of non-essential elements such as Cr, Cd, and Pb by the Australian group was higher. The significant decrease in heavy metal concentrations in the final vermicompost indicated the capability of both Iranian and Australian E.fetida species in accumulating heavy metals in their body tissues.

  15. Influence of feeding and earthworm density on compound bioaccumulation in earthworms Eisenia andrei.

    Science.gov (United States)

    Šmídová, Klára; Šerá, Jana; Bielská, Lucie; Hofman, Jakub

    2015-12-01

    Earthworm density and feeding during exposure to contaminated soil have been used inconsistently in bioaccumulation studies, which may lead to possible errors in risk assessment and modeling. Hydrophobic organic pollutants with a wide range of environmental properties (phenanthrene, pyrene, lindane, p,p'-DDT, and PCB 153) were used to study the effect of different earthworm densities in combination with the presence or absence of feeding on bioaccumulation factors (BAFs). Similar BAFs were found at various soil-to-worm ratios, with the exception of phenanthrene. We recommend using at least 15 gsoil dw per earthworm. The absence of feeding doubled the BAFs and, thus, using no food ration can be considered as "the worst case scenario". Whenever food is to be applied (i.e. to ensure the validity of the test in earthworm mass loss), we suggest feeding depending on the organic carbon content of the studied soil. PMID:26378968

  16. 基于引力模型的中国-东盟水产品贸易流量与潜力研究%A Study of Trade Flow and Potential of Sino-ASEAN Aquatic Product Trade Based on a Gravity Model

    Institute of Scientific and Technical Information of China (English)

    邵桂兰; 胡新

    2013-01-01

    截取中国与东盟2000-2011年水产品贸易面板数据,运用引力模型测算贸易流量表明,经济规模、人均GDP差额及中国东盟自由贸易区建立后的零关税对双边水产品贸易增量影响较强且呈正相关性,地理距离对其影响较弱且呈负相关性,人口规模和中国水产品总产量并没有如预期中对中国-东盟水产品贸易起到显著作用。在发展潜力方面,中国与越南、新加坡、马来西亚属于潜力再造型,中国与菲律宾属于潜力开拓型,中国与泰国、印度尼西亚属于潜力巨大型。%Based on 2000 -2011 panel data ,this paper constructs trade gravity model to study the trade flow of aquatic products between China and ASEAN .The results show that economic scales per capi-ta GDP gap and zero-tariff policy have great positive correlations with trade flow ,and geographic distance has a slightly negative correlation with it ,while the size of the population and the output of Chinese aquat-ic products have no significant effect on it .In terms of trade potential ,China ,Vietnam ,Singapore ,and Malaysia have potential repeating ability ,China and Philippines have the potential of development ,and China ,Thailand ,and Indonesia have great potential .

  17. Influence of foraging ecology and body condition on contaminant bioaccumulation in a top marine predator

    OpenAIRE

    Peterson, Sarah Elendil Hardee

    2015-01-01

    Environmental contaminants are a continued threat to marine wildlife because they are globally dispersed, bioaccumulate in top predators, and can disrupt physiological pathways, thus leading to adverse health effects. For adult marine mammals, the main source of contaminants is through their diet, therefore foraging behavior, including geographic location, foraging depth, and prey type, may exacerbate or mitigate contaminant exposure. Fluctuating body condition can also significantly affect c...

  18. Bioaccumulation of Fe2O3(magnetic) nanoparticles in Ceriodaphnia dubia

    International Nuclear Information System (INIS)

    While nano-Fe2O3(magnetic) is generally considered non-toxic, it could serve as a carrier of other toxic chemicals such as As(V) and enhance their toxicity. The bioaccumulation of nano-Fe2O3(m) with different exposure times, NP concentrations, and pH conditions was investigated using Ceriodaphnia dubia (C. dubia) as the model organism. Under natural pH conditions, C. dubia significantly accumulated nano-Fe2O3(m) in the gut, with the maximum accumulation being achieved after 6 h of exposure. The concentration of nano-Fe2O3 also impacted its accumulation, with the maximum uptake occurring at 20 mg/L or more. In addition, the highest bioaccumulation occurred in a pH range of 7–8 where the highest feeding rate was reported, confirming that the ingestion of NPs is the main route of nano-Fe2O3(m) bioaccumulation. In a clean environment without NPs, depuration of nano-Fe2O3(m) occurred, and food addition accelerated the depuration process. - Highlights: ► Nano-Fe2O3(m) enhances the toxicity of As(V). ► C. dubia significantly accumulate nano-Fe2O3(m) through ingestion. ► The bioaccumulation of nano-Fe2O3(m) is affected by time, NP concentration, and pH. ► Food addition accelerates the depuration process of accumulated nano-Fe2O3(m). - Nano-Fe2O3(m) could enhance the toxicity of As(V) due to the significant accumulation of nano-Fe2O3(m) along with sorbed As(V) by C. dubia through ingestion.

  19. Feeding reduces waterborne Cu bioaccumulation in a marine rabbitfish Siganus oramin.

    Science.gov (United States)

    Guo, Zhiqiang; Zhang, Wei; Du, Sen; Zhou, Yanyan; Gao, Na; Zhang, Li; Green, Iain

    2016-01-01

    Waterborne metal uptake has been extensively studied and dietary metal assimilation is increasingly recognized in fish, whilst the interaction between the two uptake routes is largely overlooked. This study compared the waterborne Cu bioaccumulation ((65)Cu as tracer) in a juvenile rabbitfish at different feeding regimes (starvation (SG), feeding normal diet (NDG) or diet supplemented with extra Cu (DCG)) to test the hypothesis that feeding can influence waterborne metal uptake in marine fish. NDG and DCG diet was fed as a single meal and then all fish were exposed to waterborne (65)Cu for 48 h, during which the time course sampling was conducted to determine (65)Cu bioaccumulation, chyme flow and dietary Cu assimilation. The results revealed that SG fish accumulated the highest (65)Cu, followed by NDG (61% of SG), whilst DCG fish accumulated the lowest (65)Cu (34% of SG). These results suggested a protective effect of feeding against waterborne Cu bioaccumulation. This effect was most notable between 10 min and 16 h when there was chyme in gastrointestinal tract (GT). Dietary Cu assimilation mainly occurred before 16 h after feeding. Waterborne (65)Cu influx rate in the GT was positively correlated with (65)Cu contents of chyme in NDG, whereas it was largely negatively correlated with (65)Cu contents of chyme in DCG. The waterborne Cu uptake in the GT was mainly influenced by the chyme flow and dietary Cu assimilation. Overall, our findings suggested that feeding has an important effect on waterborne metal uptake and that both the feeding status of the fish and the relative metal exposure through water and food should be considered in prediction of the metal bioaccumulation and biomonitoring programs.

  20. FRESHWATER ULVA (CHLOROPHYTA) AS A BIOACCUMULATOR OF HEAVY METALS POLLUTION IN NIELBA RIVER (WIELKOPOLSKA REGION)

    OpenAIRE

    Messyasz, Beata; Rybak, Andrzej; Pikosz, Marta

    2012-01-01

    Messyasz B., Rybak A., Pikosz M. (2012). Freshwater Ulva (Chlorophyta) as a bioaccumulator of heavy metals pollution in Nielba river (Wielkopolska region). I Konferencja Młodych Naukowców z okazji Światowego Dnia Wody, Poznań-Morasko, 22-23 marzec 2012, pp. 59-60 (POSTER). Human activities still increase and causes negative impact to environment and consequently lead to ecological degradation. Water pollution, whose source are pesticides and chemical fertilizers from catchment areas, in re...

  1. Selective processes for bioaccumulative up-take of persistent organic pollutants (POPs) in Arctic food webs

    OpenAIRE

    Carlsson, Pernilla Marianne

    2013-01-01

    The overall aim of the present study was to elucidate selective environmental up-take processes in Arctic food webs that lead to the bioaccumulation of persistent organic pollutants (POP) in food items consumed by Arctic indigenous people. In addition, this study aimed to increase the scientific understanding of the principles behind climate change related influences on transport processes of contaminants. Svalbard and Nuuk, Greenland were chosen as study areas since they represent Arctic con...

  2. Quantum dots exhibit less bioaccumulation than free cadmium and selenium in the earthworm Eisenia andrei.

    Science.gov (United States)

    Stewart, David T R; Noguera-Oviedo, Katia; Lee, Vincent; Banerjee, Sarbajit; Watson, David F; Aga, Diana S

    2013-06-01

    The present study addresses the bioaccumulation behavior of cadmium selenide quantum dots by Eisenia andrei earthworms in a terrestrial environment. Earthworms were exposed to quantum dot-treated soil for up to 4 wk and analyzed for cadmium and selenium concentration using inductively coupled plasma mass spectrometry. Results were compared with those from earthworms exposed to cadmium nitrate and selenious acid, as positive controls, and those exposed in untreated soil (negative control). Earthworms exposed to quantum dots showed significant bioaccumulation of cadmium and selenium (5.3- and 1.5-fold higher concentration over negative controls, respectively) after 4 wk. Over the same 4 wk, positive control earthworms accumulated 9.2- and 2.2-fold higher cadmium and selenium, respectively, than negative controls for a much more substantial final body burden of the 2 elements. The concentrations also increased with exposure time; cadmium concentrations increased from 3600 ± 310 ng/g to 8080 ± 660 ng/g, from 1 to 4 wk, suggesting that further bioaccumulation may take place with even longer exposure time. The molar ratio of cadmium to selenium in the quantum dot-exposed worms (6.2) is closer to the ratios seen in positive control worms (7.2) than to the pure quantum dots (1.8), which implies that quantum dots are taken up predominantly in the degraded form. The results suggest that chemical modification of quantum dots to protect them from environmental degradation could potentially reduce bioaccumulation of the nanoparticles by earthworms. PMID:23417745

  3. TOTAL MERCURY (HgT) BIOACCUMULATION AND FISH FOOD HABITS IN NEGRO RIVER BASIN, AMAZON, BRAZIL

    OpenAIRE

    Jean Louchard Ferreira Soares; Ynglea Georgina de Freitas Goch; José Reinaldo Pacheco Peleja; Bruce Rider Forsberg; Edivaldo Júnior de Souza Lemos; Otávio Peleja de Sousa

    2016-01-01

    In the Amazon, the fish is the main nutritional source for the riverine. Thus, fish have been commonly used in environmental monitoring work to be good biomonitors. This study analyzed the total mercury concentration (THg) in fish of different species and feeding habits in order to investigate the existence of bioaccumulation in species in the basin of the Negro river and verify that the THg levels found are in accordance with the stipulated limit for consumption human. Sampling points were d...

  4. Impact of biodegradation on the potential bioaccumulation and toxicity of refinery effluents.

    Science.gov (United States)

    Leonards, Pim E G; Postma, Jaap F; Comber, Mike; Whale, Graham; Stalter, George

    2011-10-01

    Whole effluent assessments (WEA) are being investigated as potential tools for controlling aqueous industrial discharges and minimizing environmental impact. The present study investigated how toxicity and the presence of potentially bioaccumulative substances altered when refinery effluents were subjected to biodegradation tests. Three petrochemical effluents were assessed, two freshwater and one saline, and subjected to two different types of biodegradation tests, resembling either a ready style (dissolved organic carbon (DOC)-die away) or an inherent style (Zahn-Wellens) test and the toxicity and potential to bioaccumulate parameters were re-analysed during and after biodegradation. A high proportion of the potentially bioaccumulative substances (PBS) in these effluents was easily biodegradable. Biodegradation not only lowered the PBS concentration but also toxicity. Appropriate controls are required however, as some increases in toxicity were observed after 4 h. In the present study, six other petrochemical effluents were also assessed for their PBS content and toxicity to increase the understanding of the relationship between PBS and toxicity. The results showed that the PBS concentrations in these samples were lower than the estimated benchmarks of acute toxicity for algae, fish and crustacean, although two samples were above the critical PBS values for chronic narcotic toxicity for Daphnia magna, which support the assumption that narcotic effects are mainly responsible for the observed toxicity in refinery effluents. It can be concluded that for facilities processing petroleum products that the measurement of PBS is a suitable surrogate for toxicity tests at the screening stage. Finally, the combination of persistency, bioaccumulation, and toxicity tests was shown to have additional value compared to an approach using only toxicity tests. PMID:21796668

  5. Feeding reduces waterborne Cu bioaccumulation in a marine rabbitfish Siganus oramin.

    Science.gov (United States)

    Guo, Zhiqiang; Zhang, Wei; Du, Sen; Zhou, Yanyan; Gao, Na; Zhang, Li; Green, Iain

    2016-01-01

    Waterborne metal uptake has been extensively studied and dietary metal assimilation is increasingly recognized in fish, whilst the interaction between the two uptake routes is largely overlooked. This study compared the waterborne Cu bioaccumulation ((65)Cu as tracer) in a juvenile rabbitfish at different feeding regimes (starvation (SG), feeding normal diet (NDG) or diet supplemented with extra Cu (DCG)) to test the hypothesis that feeding can influence waterborne metal uptake in marine fish. NDG and DCG diet was fed as a single meal and then all fish were exposed to waterborne (65)Cu for 48 h, during which the time course sampling was conducted to determine (65)Cu bioaccumulation, chyme flow and dietary Cu assimilation. The results revealed that SG fish accumulated the highest (65)Cu, followed by NDG (61% of SG), whilst DCG fish accumulated the lowest (65)Cu (34% of SG). These results suggested a protective effect of feeding against waterborne Cu bioaccumulation. This effect was most notable between 10 min and 16 h when there was chyme in gastrointestinal tract (GT). Dietary Cu assimilation mainly occurred before 16 h after feeding. Waterborne (65)Cu influx rate in the GT was positively correlated with (65)Cu contents of chyme in NDG, whereas it was largely negatively correlated with (65)Cu contents of chyme in DCG. The waterborne Cu uptake in the GT was mainly influenced by the chyme flow and dietary Cu assimilation. Overall, our findings suggested that feeding has an important effect on waterborne metal uptake and that both the feeding status of the fish and the relative metal exposure through water and food should be considered in prediction of the metal bioaccumulation and biomonitoring programs. PMID:26552536

  6. Heavy metals toxicity and bioaccumulation in vegetables from potentially polluted area

    OpenAIRE

    Balabanova, Biljana; Stafilov, Trajče; Baceva, Katerina; Vuckovic, Ivana

    2013-01-01

    Food safety and quality are a major public concern worldwide, regarding the risk associated with consumption of food stuffs contaminated with heavy metals as toxins. The levels of 8 elements contents were determined in various vegetables [garlic (Allium sativum), onion (Allium cepa) and parsley (Petroselinum crispum)], cultivated around copper mine environ. Bioaccumulation and mobility of heavy metals were determinate with three soil extraction methods: in 0.1 M HCl; in H2O and in a mixed buf...

  7. The bioaccumulation of persistent organic pollutants in marine species from Irish and surrounding waters

    OpenAIRE

    McHugh, Brendan

    2007-01-01

    The presence of anthropogenic pollutants throughout all compartments of the marine environment have been of international concern for a number of decades. While a great number of datasets documenting “absolute” concentrations of persistent organic pollutants in a variety of marine biota are available, bioaccumulation, biomagnification and the fate of these compounds in the marine food web or marine ecosystem is often not possible. This thesis reports various analytical methodologies employed ...

  8. Mercury bioaccumulation and trophic transfer in sympatric snapper species from the Gulf of Mexico.

    Science.gov (United States)

    Bank, Michael S; Chesney, Edward; Shine, James P; Maage, Amund; Senn, David B

    2007-10-01

    Consumption of marine fish is a major route of toxic methyl mercury (MeHg) exposure to ocean apex predators and human populations. Here we explore the influence of trophic structure on total mercury (Hg) accumulation in red snapper (RS, Lutjanus campechanus) and gray snapper (GS, Lutjanus griseus) from the coastal Louisiana region of the Gulf of Mexico, west of the Mississippi River. The objectives of this investigation were to: (1) determine the effectiveness of the use of offshore recreational fishing charter boats and marinas as sources of fish samples and (2) compare species differences in Hg bioaccumulation, trophic position, and carbon sources. Our data show that length-normalized Hg concentrations (> or = 97% as MeHg in tissue of both species) were 230% greater in GS in comparison to RS collected from the same general area. Stable C and N isotope signatures (delta15N and delta13C) indicate that GS occupy a slightly higher trophic position (approximately 30% of one trophic position higher) on the Gulf food web in comparison to RS and that GS appear to incorporate higher trophic positioned prey, continually and at smaller sizes. Mercury was strongly correlated with combined delta15N and delta13C in pooled species data, arguing that most of the substantial difference in Hg bioaccumulation between RS and GS can be explained by modest differences in their trophic position and, to a lesser degree, carbon sources, which had low variation and high overlap among species. These observations demonstrate that even minor to moderate differences in trophic position and food habits in sympatric species can create relatively large differences in bioaccumulation regimes and underscores the importance of quantitative characterization of trophic structure in marine MeHg bioaccumulation studies. PMID:17974344

  9. Rapid detection of microbial cell abundance in aquatic systems.

    Science.gov (United States)

    Rocha, Andrea M; Yuan, Quan; Close, Dan M; O'Dell, Kaela B; Fortney, Julian L; Wu, Jayne; Hazen, Terry C

    2016-11-15

    The detection and quantification of naturally occurring microbial cellular densities is an essential component of environmental systems monitoring. While there are a number of commonly utilized approaches for monitoring microbial abundance, capacitance-based biosensors represent a promising approach because of their low-cost and label-free detection of microbial cells, but are not as well characterized as more traditional methods. Here, we investigate the applicability of enhanced alternating current electrokinetics (ACEK) capacitive sensing as a new application for rapidly detecting and quantifying microbial cellular densities in cultured and environmentally sourced aquatic samples. ACEK capacitive sensor performance was evaluated using two distinct and dynamic systems - the Great Australian Bight and groundwater from the Oak Ridge Reservation in Oak Ridge, TN. Results demonstrate that ACEK capacitance-based sensing can accurately determine microbial cell counts throughout cellular concentrations typically encountered in naturally occurring microbial communities (10(3)-10(6) cells/mL). A linear relationship was observed between cellular density and capacitance change correlations, allowing a simple linear curve fitting equation to be used for determining microbial abundances in unknown samples. This work provides a foundation for understanding the limits of capacitance-based sensing in natural environmental samples and supports future efforts focusing on evaluating the robustness ACEK capacitance-based within aquatic environments. PMID:27315516

  10. Systems and Cycles: Learning about Aquatic Ecosystems

    Science.gov (United States)

    Hmelo-Silver, Cindy E.; Jordan, Rebecca; Eberbach, Catherine; Rugaber, Spencer; Goel, Ashok

    2011-01-01

    In this research, the authors present both the design and preliminary testing of a technology-intensive classroom intervention designed to support middle schools students' understanding of an aquatic ecosystem. The goals of their intervention are to help learners develop deep understanding of ecosystems and to use tools that make the relationships…

  11. Aquatics Therapy and the Halliwick Concept

    Science.gov (United States)

    Skinner, Alison; Thomson, Ann

    2008-01-01

    Aquatic therapy is the use of the properties of water for the therapeutic benefit of people of all ages and abilities. This article illustrates how people with disabilities may maximize the benefits of activities in water, including individual and group work and swimming. The overall aim is to encourage family activity and social interaction. The…

  12. Science to support aquatic animal health

    Science.gov (United States)

    Purcell, Maureen K.; Harris, M. Camille

    2016-10-18

    Healthy aquatic ecosystems are home to a diversity of plants, invertebrates, fish and wildlife. Aquatic animal populations face unprecedented threats to their health and survival from climate change, water shortages, habitat alteration, invasive species and environmental contaminants. These environmental stressors can directly impact the prevalence and severity of disease in aquatic populations. For example, periodic fish kills in the upper Chesapeake Bay Watershed are associated with many different opportunistic pathogens that proliferate in stressed fish populations. An estimated 80 percent of endangered juvenile Puget Sound steelhead trout die within two weeks of entering the marine environment, and a role for disease in these losses is being investigated. The introduction of viral hemorrhagic septicemia virus (VHSV) into the Great Lakes—a fishery worth an estimated 7 billion dollars annually—resulted in widespread fish die-offs and virus detections in 28 different fish species. Millions of dying sea stars along the west coast of North America have led to investigations into sea star wasting disease. U.S. Geological Survey (USGS) scientists are assisting managers with these issues through ecological investigations of aquatic animal diseases, field surveillance, and research to promote the development of mitigation strategies.

  13. Aquatic ecotoxicity effect of engineered aminoclay nanoparticles

    DEFF Research Database (Denmark)

    Choi, Moon-Hee; Hwang, Yuhoon; Uk Lee, Hyun;

    2014-01-01

    In the present study the short term aquatic ecotoxicity of water-solubilized aminoclay nanoparticles (ANPs) of ~51±31 nm average hydrodynamic diameter was characterized. An ecotoxicological evaluation was carried out utilizing standard test organisms of different phyla and trophic levels namely t...

  14. Aquatic Pest Control. Sale Publication 4071.

    Science.gov (United States)

    Wamsley, Mary Ann, Ed.; Vermeire, Donna M., Ed.

    The information in this manual applies to control of aquatic pests in recreational waters, agricultural reservoirs, ornamental ponds, coastal bays, estuaries and channels, and drinking water reservoirs. Mechanical, cultural, biological, and chemical control methods are discussed. The majority of the material is devoted to weed control in static…

  15. Aquatic Habitat Bottom Classification Using ADCP

    Science.gov (United States)

    Description of physical aquatic habitat often includes data describing distributions of water depth, velocity and bed material type. Water depth and velocity in streams deeper than about 1 m may be continuously mapped using an acoustic Doppler current profiler from a moving boat. Herein we examine...

  16. Aquatic ecotoxicological indicators in life cycle assessment

    DEFF Research Database (Denmark)

    Pennington, David W.; Payet, Jerome; Hauschild, Michael Zwicky

    2004-01-01

    This paper compares available options for the aquatic ecotoxicological effect factor component in life cycle assessment (LCA). The effect factor is expressed here as the change in risk per unit change in cumulative exposure, ƒ´Effect/ƒ´Exposure. The comparison is restricted to approaches linked...

  17. SUBMERGED AQUATIC VEGETATION GARDENING MX974861

    Science.gov (United States)

    The Submerged Aquatic Vegetation Gardening project will acquire the seed/seedlings of SAVs for planting, will create an SAV gardening guide; and will create SAV plots at volunteers waterfront properties. Volunteers will gather data on plant size and spacing. Water quality test ...

  18. Black magic in the aquatic environment

    NARCIS (Netherlands)

    Jonker, M.T.O.

    2004-01-01

    Sorption to sediment controlsthe actual fate and risks ofhydrophobic organic contaminants (HOCs)in most aquatic environments. Sediment-bound HOCs are not readily available for uptake by organisms and degra

  19. Nano-plastics in the aquatic environment.

    Science.gov (United States)

    Mattsson, K; Hansson, L-A; Cedervall, T

    2015-10-01

    The amount of plastics released to the environment in modern days has increased substantially since the development of modern plastics in the early 1900s. As a result, concerns have been raised by the public about the impact of plastics on nature and on, specifically, aquatic wildlife. Lately, much attention has been paid to macro- and micro-sized plastics and their impact on aquatic organisms. However, micro-sized plastics degrade subsequently into nano-sizes whereas nano-sized particles may be released directly into nature. Such particles have a different impact on aquatic organisms than larger pieces of plastic due to their small size, high surface curvature, and large surface area. This review describes the possible sources of nano-sized plastic, its distribution and behavior in nature, the impact of nano-sized plastic on the well-being of aquatic organisms, and the difference of impact between nano- and micro-sized particles. We also identify research areas which urgently need more attention and suggest experimental methods to obtain useful data. PMID:26337600

  20. Effects of radiation on aquatic organisms

    International Nuclear Information System (INIS)

    With the onset of nuclear age, nuclear fuel cycle products, nuclear medicine techniques, disposal of radio active wastes on land or in water, fall out of testing nuclear weapons has contributed large amount of radio nuclides to the water bodies. Radio nuclides can imbalance aquatic ecosystem resulting in danger to natural life. The biological effects of radiation on aquatic life are mortality, pathophysiological, reproductive, developmental and genetic changes. A broad review of the results obtained about the aquatic organisms related to different phyla indicates that the lower or less developed or more primitive organisms are more resistant than the higher or more advanced, developed and complex organisms to ionizing radiation. The algae, protozoa are more resistant than the insects, crustaceans, molluscs and fishes. The changes in sensitivity between different stages of development have also been noted. A review of the results of exposing salmonoid gametes, eggs, fingerlings and adults to X-rays supports the concepts that radio sensitivity decreases with age. This paper presents a selective review on effects of radiation and radio nuclides on the aquatic life. It include uses and sources of radiation, effective quantity of radiation, lethal and sub lethal effect, effects on survival, growth, reproduction, behaviour, metabolism, carcinogenicity and mutagenicity. (author)