WorldWideScience

Sample records for based aquatic bioaccumulation

  1. Bioaccumulation Dynamics of Arsenate at the Base of Aquatic Food Webs.

    Science.gov (United States)

    Lopez, Adeline R; Hesterberg, Dean R; Funk, David H; Buchwalter, David B

    2016-06-21

    Periphyton is an important food source at the base of freshwater ecosystems that tends to bioconcentrate trace elements making them trophically available. The potential for arsenic-a trace element of particular concern due to its widespread occurrence, toxicity, and carcinogenicity-to bioconcentrate in periphyton and thus be available to benthic grazers is less well characterized. To better understand arsenate bioaccumulation dynamics in lotic food webs, we used a radiotracer approach to characterize accumulation in periphyton and subsequent trophic transfer to benthic grazers. Periphyton bioconcentrated As between 3,200-9,700-fold (dry weight) over 8 days without reaching steady state, suggesting that periphyton is a major sink for arsenate. However, As-enriched periphyton as a food source for the mayfly Neocloeon triangulifer resulted in negligible As accumulation in a full lifecycle exposure. Additional studies estimate dietary assimilation efficiency in several primary consumers ranging from 22% in the mayfly N. triangulifer to 75% in the mayfly Isonychia sp. X-ray fluorescence mapping revealed that As was predominantly associated with iron oxides in periphyton. We speculate that As adsorption to Fe in periphyton may play a role in reducing dietary bioavailability. Together, these results suggest that trophic movement of As in lotic food webs is relatively low, though species differences in bioaccumulation patterns are important. PMID:27223406

  2. Bioavailability and Bioaccumulation of Metal-Based Engineered Nanomaterials in Aquatic Environments

    DEFF Research Database (Denmark)

    Luoma, Samuel; Khan, Farhan R.; Croteau, Marie-Noelle

    2014-01-01

    Bioavailability of Me-ENMs to aquatic organisms links their release into the environment to ecological implications. Close examination shows some important differences in the conceptual models that define bioavailability for metals and Me-ENMs. Metals are delivered to aquatic animals from Me-ENMs...

  3. Cyanotoxins: Bioaccumulation and Effects on Aquatic Animals

    Directory of Open Access Journals (Sweden)

    Betina Kozlowsky-Suzuki

    2011-12-01

    Full Text Available Cyanobacteria are photosynthetic prokaryotes with wide geographic distribution that can produce secondary metabolites named cyanotoxins. These toxins can be classified into three main types according to their mechanism of action in vertebrates: hepatotoxins, dermatotoxins and neurotoxins. Many studies on the effects of cyanobacteria and their toxins over a wide range of aquatic organisms, including invertebrates and vertebrates, have reported acute effects (e.g., reduction in survivorship, feeding inhibition, paralysis, chronic effects (e.g., reduction in growth and fecundity, biochemical alterations (e.g., activity of phosphatases, GST, AChE, proteases, and behavioral alterations. Research has also focused on the potential for bioaccumulation and transferring of these toxins through the food chain. Although the herbivorous zooplankton is hypothesized as the main target of cyanotoxins, there is not unquestionable evidence of the deleterious effects of cyanobacteria and their toxins on these organisms. Also, the low toxin burden in secondary consumers points towards biodilution of microcystins in the food web as the predominant process. In this broad review we discuss important issues on bioaccumulation and the effects of cyanotoxins, with emphasis on microcystins, as well as drawbacks and future needs in this field of research.

  4. Bioavailability and bioaccumulation of metal-based engineered nanomaterials in aquatic environments: concepts and processes: chapter 5

    Science.gov (United States)

    Luoma, Samuel N.; Khan, Farhan R.; Croteau, Marie-Noële

    2014-01-01

    Bioavailability of Me-ENMs to aquatic organisms links their release into the environment to ecological implications. Close examination shows some important differences in the conceptual models that define bioavailability for metals and Me-ENMs. Metals are delivered to aquatic animals from Me-ENMs via water, ingestion, and incidental surface exposure. Both metal released from the Me-ENM and uptake of the nanoparticle itself contribute to bioaccumulation. Some mechanisms of toxicity and some of the metrics describing exposure may differ from metals alone. Bioavailability is driven by complex interaction of particle attributes, environmental transformations, and biological traits. Characterization of Me-ENMs is an essential part of understanding bioavailability and requires novel methodologies. The relative importance of the array of processes that could affect Me-ENM bioavailability remains poorly known, but new approaches and models are developing rapidly. Enough is known, however, to conclude that traditional approaches to exposure assessment for metals would not be adequate to assess risks from Me-ENMs.

  5. Bioaccumulation in aquatic systems: methodological approaches, monitoring and assessment

    DEFF Research Database (Denmark)

    Schäfer, Sabine; Buchmeier, Georgia; Claus, Evelyn;

    2015-01-01

    , various scientific and regulatory aspects of bioaccumulation in aquatic systems and the relevant critical issues are discussed. Monitoring chemical concentrations in biota can be used for compliance checking with regulatory directives, for identification of chemical sources or event-related environmental...... bioaccumulation assessment still need to be harmonised for different regulations and groups of chemicals. To create awareness for critical issues and to mutually benefit from technical expertise and scientific findings, communication between risk assessment and monitoring communities needs to be improved...

  6. A method for partitioning cadmium bioaccumulated in small aquatic organisms

    Energy Technology Data Exchange (ETDEWEB)

    Siriwardena, S.N.; Rana, K.J.; Baird, D.J. [Univ. of Stirling (United Kingdom). Institute of Aquaculture

    1995-09-01

    A series of laboratory experiments was conducted to evaluate bioaccumulation and surface adsorption of aqueous cadmium (Cd) by sac-fry of the African tilapia Oreochromis niloticus. In the first experiment, the design consisted of two cadmium treatments: 15 {micro}g Cd{center_dot}L{sup {minus}1} in dilution water and a Cd-ethylenediaminetetraacetic acid (Cd-EDTA) complex at 15 {micro}m{center_dot}L{sup {minus}1}, and a water-only control. There were five replicates per treatment and 40 fish per replicate. It was found that EDTA significantly reduced the bioaccumulation of cadmium by tilapia sac-fry by 34%. Based on the results, a second experiment was conducted to evaluate four procedures: a no-rinse control; rinsing in EDTA; rinsing in distilled water; and rinsing in 5% nitric acid, for removing surface-bound Cd from exposed sac-fry. In this experiment, 30 fish in each of five replicates were exposed to 15 {micro}g Cd{center_dot}L{sup {minus}1} for 72 h, processed through the rinse procedures, and analyzed for total Cd. The EDTA rinse treatment significantly reduced (p<0.05) Cd concentrations of the exposed fish relative to those receiving no rinse. It was concluded that the EDTA rinse technique may be useful in studies evaluating the partitioning of surface-bound and accumulated cadmium in small aquatic organisms.

  7. Modeling the role of microplastics in Bioaccumulation of organic chemicals to marine aquatic organisms. Critical Review

    NARCIS (Netherlands)

    Koelmans, A.A.

    2015-01-01

    It has been shown that ingestion of microplastics may increase bioaccumulation of organic chemicals by aquatic organisms. This paper critically reviews the literature on the effects of plastic ingestion on the bioaccumulation of organic chemicals, emphasizing quantitative approaches and mechanistic

  8. Cyanotoxins: Bioaccumulation and Effects on Aquatic Animals

    OpenAIRE

    Betina Kozlowsky-Suzuki; Ferrão-Filho, Aloysio da S.

    2011-01-01

    Cyanobacteria are photosynthetic prokaryotes with wide geographic distribution that can produce secondary metabolites named cyanotoxins. These toxins can be classified into three main types according to their mechanism of action in vertebrates: hepatotoxins, dermatotoxins and neurotoxins. Many studies on the effects of cyanobacteria and their toxins over a wide range of aquatic organisms, including invertebrates and vertebrates, have reported acute effects (e.g., reduction in survivorship, fe...

  9. BIOACCUMULATION AND AQUATIC SYSTEM SIMULATOR (BASS) USER'S MANUAL BETA TEST VERSION 2.1

    Science.gov (United States)

    BASS (Bioaccumulation and Aquatic System Simulator) is a Fortran 95 simulation program that predicts the population and bioaccumulation dynamics of age-structured fish assemblages that are exposed to hydrophobic organic pollutants and class B and borderline metals that complex wi...

  10. A closer look at bioaccumulation of petroleum hydrocarbon mixtures in aquatic worms.

    NARCIS (Netherlands)

    Muijs, B.; Jonker, M.T.O.

    2010-01-01

    Petroleum hydrocarbons (oils) are ubiquitous in the aquatic environment, and adequate risk assessment is thus essential. Bioaccumulation plays a key role in risk assessment, but the current knowledge on bioaccumulation of oils is limited. Therefore, this process was studied in detail, using the aqua

  11. Bioaccumulation of metals in aquatic insects of streams located in areas with sugar cane cultivation

    OpenAIRE

    Juliano José Corbi; Claudio Gilberto Froehlich; Susana Trivinho Strixino; Ademir dos Santos

    2010-01-01

    Streams located in areas of sugar cane cultivation receive elevated concentrations of metal ions from soils of adjacent areas. The accumulation of metals in the sediments results in environmental problems and leads to bioaccumulation of metal ions by the aquatic organisms. In the present study, bioaccumulation of the metals ions Al, Cd, Cr, Cu, Fe, Mg, Mn and Zn in aquatic insects in streams impacted by the sugar cane was evaluated. The results pointed out that the insects were contaminated b...

  12. Bioaccumulation factors in aquatic ecosystems. A critical review

    Energy Technology Data Exchange (ETDEWEB)

    Karlsson, Sara; Meili, Markus; Bergstroem, Ulla [Studsvik Eco and Safety AB, Nykoeping (Sweden)

    2002-07-01

    The calculated concentrations of radionuclides in organisms are often obtained by means of bioaccumulation factors (BAF) that describe the internal concentration relative to an external concentration e.g. in the abiotic environments at steady-state conditions. Such factors are often used when modelling the dose to man from radio-nuclides released to the biosphere. Values of bioaccumulation factors vary widely in magnitude among elements, organisms, and environmental conditions which is not always considered. In order to relate the bioaccumulation factors for some radionuclides to environmental conditions as well as to the trophic level of the organism of concern we have compiled an extensive database with bioaccumulation factors (about 5,500 values) together with information on some environmental conditions. The data for nine radionuclides has been extracted and examined. A comparison between the bioaccumulation factors found in this study and values given in literature by IAEA and NCRP shows that the ranges presented in this study are generally somewhat higher with the exception of BAF for molybdenum in freshwater fish which is of the same order of magnitude. This is startling and calls for a thorough research. The amount of readily accessible and reliable values of BAF is limited, often because basic information such as e.g. units and part of organism examined, is not reported. This is surprising and also unfortunate for those who need such data for use in generic or specific models. A major update of recommended values appears to be necessary for many elements to account for the development of analytical methods and experiences from case studies over the past two decades.

  13. Bioaccumulation factors in aquatic ecosystems. A critical review

    International Nuclear Information System (INIS)

    The calculated concentrations of radionuclides in organisms are often obtained by means of bioaccumulation factors (BAF) that describe the internal concentration relative to an external concentration e.g. in the abiotic environments at steady-state conditions. Such factors are often used when modelling the dose to man from radio-nuclides released to the biosphere. Values of bioaccumulation factors vary widely in magnitude among elements, organisms, and environmental conditions which is not always considered. In order to relate the bioaccumulation factors for some radionuclides to environmental conditions as well as to the trophic level of the organism of concern we have compiled an extensive database with bioaccumulation factors (about 5,500 values) together with information on some environmental conditions. The data for nine radionuclides has been extracted and examined. A comparison between the bioaccumulation factors found in this study and values given in literature by IAEA and NCRP shows that the ranges presented in this study are generally somewhat higher with the exception of BAF for molybdenum in freshwater fish which is of the same order of magnitude. This is startling and calls for a thorough research. The amount of readily accessible and reliable values of BAF is limited, often because basic information such as e.g. units and part of organism examined, is not reported. This is surprising and also unfortunate for those who need such data for use in generic or specific models. A major update of recommended values appears to be necessary for many elements to account for the development of analytical methods and experiences from case studies over the past two decades

  14. A study of bioaccumulation occurring in a spatial and temporal aquatic environment

    International Nuclear Information System (INIS)

    The impacts of spatial, temporal, and hydrodynamics on the bioaccumulation in the Chernobyl cooling lake were evaluated using a two-dimensional aquatic exposure assessment model. The model framework integrated spatial and temporal heterogeneity effects of radioactive environments, changes in abundance and distribution of aquatic populations, spatial and temporal dependent (or density-dependent) radionuclide ingestion rates, and population biomass changes. Plankton population growth was integrated into the hydrodynamic-transport model to determine the plankton biomass density change and distributions. The exposure estimation was conducted in a two-dimensional finite element mesh which was used in the hydrodynamic-transport model. Results indicated that bioaccumulation factors with the assumption of steady-state and homogeneous conditions significantly over-estimated the radionuclide concentration accumulated in fish. The impacts of changes of biomass distributions and variable ingestion rates on the bioaccumulation varied spatially and temporally. Results also revealed that a higher radiobiological turn-over rate could be a dominate factor in determining the radionuclide fate in biota when the ecological processes, such as population growth, were relatively slow. Two different predator-prey relationships were applied. Their impacts on the bioaccumulation of fish varied spatially and temporally. Overall, the results suggest that a more realistic physical description of contaminated environments and ecosystems is necessary in studying bioaccumulation occurring in nature

  15. Bioaccumulation and trophic transfer of engineered nanoparticles in aquatic organisms

    DEFF Research Database (Denmark)

    Skjolding, Lars Michael

    their bulk forms. With release of ENPs to the environment a need for evaluation of the potential risk of ENPs is necessary. Potential risks are assessed through a chemical safety assessment. Test guidelines (TGs) to evaluate the risk of compounds for the chemical safety assessment were developed for...... soluble chemicals. However, with fundamentally different chemical and physical properties of ENPs compared to soluble chemicals current TGs could be inadequate and possibly lead to wrong interpretation of results obtained. One of the key issues is the dual action of ENPs consisting both of a chemical...... result of test carried out the intrinsic properties of the ENP becomes critical in relation to endpoints assessed. Consequently, a central theme in this thesis is to increase the understanding of the intrinsic properties of ENP and how it influence bioaccumulation. Different particle sizes, coatings and...

  16. Reviewing the serotonin reuptake inhibitors (SSRIs) footprint in the aquatic biota: Uptake, bioaccumulation and ecotoxicology

    International Nuclear Information System (INIS)

    Selective serotonin re-uptake inhibitors (SSRIs) antidepressants are amongst the most prescribed pharmaceutical active substances throughout the world. Their presence, already described in different environmental compartments such as wastewaters, surface, ground and drinking waters, and sediments, and their remarkable effects on non-target organisms justify the growing concern about these emerging environmental pollutants. A comprehensive review of the literature data with focus on their footprint in the aquatic biota, namely their uptake, bioaccumulation and both acute and chronic ecotoxicology is presented. Long-term multigenerational exposure studies, at environmental relevant concentrations and in mixtures of related compounds, such as oestrogenic endocrine disruptors, continue to be sparse and are imperative to better know their environmental impact. - Highlights: • Current knowledge of uptake and bioaccumulation of SSRIs. • Ecotoxicology and effects of SSRIs in the aquatic biota. • Identification of existing knowledge gaps. - A comprehensive review focussing SSRIs antidepressants footprint in the aquatic biota, namely their uptake, bioaccumulation, and both acute and chronic ecotoxicology is presented

  17. Bioaccumulation of heavy metals in Mbaa River and the impact on aquatic ecosystem.

    Science.gov (United States)

    Ajima, M N O; Nnodi, P C; Ogo, O A; Adaka, G S; Osuigwe, D I; Njoku, D C

    2015-12-01

    The bioaccumulation and toxic effects of heavy metals have caused ecological damage to aquatic ecosystem. In this study, concentration of heavy metals including zinc, lead, cadmium, iron, and copper were determined in the sediment and water as well as in the muscle, gill, and intestine of two fish species (Pelmatochromis guentheri and Pelmatochromis pulcher) of Mbaa River in Southeastern Nigeria. Samples were collected at three different spots from the river, and the level of heavy metals specified above were determined by atomic absorption spectroscopy (AAS) after a modified wet digestion process. The results indicated that sediment had the highest concentration of the heavy metals investigated while water had the lowest concentration. Fish tissues showed appreciable bioaccumulation of these metals as evidenced by a higher concentration profile when compared with that of water. Furthermore, the concentration of these heavy metals in water and their bioconcentration factor in the fish were above the recommended limit by WHO and FEPA, indicating that Mbaa River along Inyishi may not be suitable for drinking nor the fish safe for human consumption. The study also reveals the use of fish as bioindicator of aquatic environment. PMID:26597816

  18. EURL ECVAM Strategy to replace, reduce and refine the use of fish in aquatic toxicity and bioaccumulation testing

    OpenAIRE

    HALDER MARIA ELISABETH; KIENZLER AUDE; Whelan, Maurice; Worth, Andrew

    2014-01-01

    The assessment of aquatic toxicity and bioaccumulation are important components of the environmental hazard and risk assessment of all types of chemicals, and are therefore included in several pieces of European Union and international legislation. In this document, the European Union Reference Laboratory for Alternatives to Animal Testing (EURL ECVAM) outlines approaches which will deliver an impact on the replacement, reduction and refinement (3Rs) of fish tests used for aquatic toxicity...

  19. Aquatic bioaccumulation and trophic transfer of tetrabromobisphenol-A flame retardant introduced from a typical e-waste recycling site.

    Science.gov (United States)

    Tao, Lin; Wu, Jiang-Ping; Zhi, Hui; Zhang, Ying; Ren, Zi-He; Luo, Xiao-Jun; Mai, Bi-Xian

    2016-07-01

    While the flame retardant chemical, tetrabromobisphenol-A (TBBP-A), has been frequently detected in the environment, knowledge regarding its species-specific bioaccumulation and trophic transfer is limited, especially in the highly contaminated sites. In this study, the components of an aquatic food web, including two invertebrates, two prey fish, and one predator fish, collected from a natural pond at an electronic waste (e-waste) recycling site in South China were analyzed for TBBP-A, using liquid chromatography-tandem mass spectrometry. The aquatic species had TBBP-A concentrations ranging from 350 to 1970 pg/g wet weight, with higher concentrations in the invertebrates relative to the fish species. Field-determined bioaccumulation factors of TBBP-A in the two aquatic invertebrates were nearly or greater than 5000, suggesting that TBBP-A is highly bioaccumulative in the two species. The lipid-normalized concentrations of TBBP-A in the aquatic species were negatively correlated with the trophic levels determined from stable nitrogen isotope (δ(15)N) (r = -0.82, p = 0.09), indicating that this compound experienced trophic dilution in the current food web. PMID:27234832

  20. Studies on transfer, bioaccumulation and disappearance of glyphosate in the aquatic ecosystem by utilizing 14C tracer technique

    International Nuclear Information System (INIS)

    Studies on transfer, bioaccumulation and disappearance of glyphosate in the aquatic environment were conducted with methods of model tests and outdoor trials in the aquatic ecosystem. The result showed that glyphosate transferred rapidly into sediment and hormwort (Ceratopyllum demersum L.) after applied; and then, it was taken up faster and accumulated more by topmouth gudgeon (Psudorasobora parva) 5-10 days after application. The partitioning coefficient (sediment-water) and bioconcentration factors of glyphosate were 8.59, 27.96 and 45.79, respectively, in day 20. The concentration of glyphosate residue in the aquatic ecosystem followed the order of topmouth gudgeon > hormwort > sediment > water. And it was also indicated that glyphosate transferred and disappeared extremely fast in both pond and river after application

  1. The toxic effect and bioaccumulation in aquatic oligochaete Limnodrilus hoffmeisteri after combined exposure to cadmium and perfluorooctane sulfonate at different pH values.

    Science.gov (United States)

    Qu, Ruijuan; Liu, Jiaoqin; Wang, Liansheng; Wang, Zunyao

    2016-06-01

    Cadmium (Cd) and Perfluorooctane sulfonate (PFOS) have been detected in aquatic environment. In this study, we investigated the acute effect, bioaccumulation and oxidative stress status in the aquatic oligocheate Limnodrilus hoffmeisteri after exposure to Cd and PFOS at different pH values. In the studied pH range, acute Cd toxicity was significantly enhanced with pH increasing from 6.2 to 8.0, and the 48h-EC50 of Cd was (significantly) decreased in the presence of PFOS. Bioaccumulation analysis results show that the accumulated Cd/PFOS in single exposure group increased with increasing exposure concentrations, and co-exposure makes internal Cd concentration significantly lowered for Cd(0.1) group at pH 8.0. Significant changes in superoxide dismutase activity, glutathione level and malondialdehyde content were observed in single and combined treatments. Based on IBR value, single Cd and PFOS exposure caused largest damage to the antioxidant defense system at pH 8.0 and pH 6.2, respectively, while the harmful effects of joint exposure were always the "compromise" between single Cd and PFOS exposure. This work could provide useful information for the risk assessment of co-exposure to perfluorinated compounds and heavy metals in natural environment. PMID:27003372

  2. The bioconcentration and bioaccumulation factors for molybdenum in the aquatic environment from natural environmental concentrations up to the toxicity boundary

    International Nuclear Information System (INIS)

    In a regulatory context, bioaccumulation or bioconcentration factors are used for considering secondary poisoning potential and assessing risks to human health via the food chain. In this paper, literature data on the bioaccumulation of molybdenum in the aquatic organisms are reviewed and assessed for relevance and reliability. The data available in the literature were generated at exposure concentrations below those recommended in the REACH registration dossiers for molybdenum compounds i.e. PNECfreshwater 12.7 mg Mo/L. To address possible environmental concerns at regulatorily-relevant molybdenum concentrations, both a field study and a laboratory study were conducted. In the field study, whole body and organ-specific molybdenum levels were evaluated in fish (eel, stickleback, perch, carp bream, roach) held in the discharge water collector tanks of a molybdenum processing plant, containing a mean measured molybdenum level of 1.03 mg Mo/L. In the laboratory study, rainbow trout were exposed to two different nominal molybdenum levels (1.0 and 12.7 mg Mo/L), for 60 days followed by a 60-day depuration period. Whole body concentrations in rainbow trout during the exposure period were between < 0.20 and 0.53 mg Mo/L. Muscle tissue molybdenum concentrations in fish taken from both experiments remained below 0.2 mg/kg dry wt. These studies show an inverse relationship between exposure concentration and bioconcentration or bioaccumulation factor for molybdenum. In aquatic organisms, and in fish in particular, internal molybdenum concentrations are maintained in the presence of variation in external molybdenum concentrations. These observations must be considered when evaluating potential risks associated with the bioconcentration and/or bioaccumulation of molybdenum in the aquatic environment. -- Highlights: ► Addressing environmental concerns at regulatory-relevant molybdenum concentrations. ► Inverse relationship between exposure levels and BAF (BAF increases as Mo

  3. Trait-based modelling of bioaccumulation by freshwater benthic invertebrates.

    Science.gov (United States)

    Sidney, Livia Alvarenga; Diepens, Noël J; Guo, Xiaoying; Koelmans, Albert A

    2016-07-01

    Understanding the role of species traits in chemical exposure is crucial for bioaccumulation and toxicity assessment of chemicals. We measured and modelled bioaccumulation of polychlorinated biphenyls (PCBs) in Chironomus riparius, Hyalella azteca, Lumbriculus variegatus and Sphaerium corneum. We used a battery test procedure with multiple enclosures in one aquarium, which maximized uniformity of exposure for the different species, such that the remaining variability was due mostly to species traits. The relative importance of uptake from either pore water or sediment ingestion was manipulated by using 28 d aged standard OECD sediment with low (1%) and medium (5%) OM content and 13 months aged sediment with medium OM (5%) content. Survival was ≥76% and wet weight increased for all species. Reproduction of H. azteca and weight gain of H. azteca and S. corneum were significantly higher in the medium OM aged sediments than in other sediments, perhaps due to a more developed microbial community (i.e., increase in food resources). Biota-sediment accumulation factors (BSAF) ranged from 3 to 114, depending on species and PCB congener, with C. riparius (3-10)bioaccumulation model with species-specific bioaccumulation parameters fitted well to the experimental data and showed that bioaccumulation parameters were depended on species traits. Enclosure-based battery tests and mechanistic BSAF models are expected to improve the quality of the exposure assessment in whole sediment toxicity tests. PMID:27126443

  4. Use of 65 Zn as radioactive tracer in the bioaccumulation study of zinc by aquatic organisms

    International Nuclear Information System (INIS)

    The present work has as main objective to emphasize the importance of using radioactive tracers as well as to establish a methodology for the utilization of 65 Zn in the bioaccumulation study of zinc by Poecilia reticulata. The exposure time varied from 5 days (short term experiments) to 30 days (long term experiments). The bioaccumulation of zinc from the water as well as the elimination of the metal previously absorbed were determined by measuring the activity of 65 Zn which was added to the water in the beginning of the experiments. The technique chosen is suitable to study the behaviour of the stable zinc since the radionuclide used is an isotope of the same element and therefore presents the same chemical properties. (author)

  5. Assessing bioaccumulation of polybrominated diphenyl ethers for aquatic species by QSAR modeling.

    Science.gov (United States)

    Mansouri, Kamel; Consonni, Viviana; Durjava, Mojca Kos; Kolar, Boris; Öberg, Tomas; Todeschini, Roberto

    2012-10-01

    Polybrominated diphenyl ethers (PBDEs) are used as flame retardants in textiles, foams and plastics. Highly bioaccumulative with toxic effects including developmental neurotoxicity estrogen and thyroid hormones disruption, they are considered as persistent organic pollutants (POPs) and have been found in human tissues, wildlife and biota worldwide. But only some of them are banned from EU market. For the environmental fate studies of these compounds the bioconcentration factor (BCF) is one of the most important endpoints to start with. We applied quantitative structure-activity relationships techniques to overcome the limited experimental data and avoid more animal testing. The aim of this work was to assess the bioaccumulation of PBDEs by means of QSAR. First, a BCF dataset of specifically conducted experiments was modeled. Then the study was extended by predicting the bioaccumulation and biomagnification factors using some experimental values from the literature. Molecular descriptors were calculated using DRAGON 6. The most relevant ones were selected and resulting models were compared paying attention to the applicability domain. PMID:22704975

  6. Bioaccumulation and tissue distribution of a quaternary ammonium surfactant in three aquatic species

    Energy Technology Data Exchange (ETDEWEB)

    Knezovich, J.P.; Lawton, M.P.; Inouye, L.S.

    1989-01-01

    Quaternary ammonium compounds (QACs) are commonly used as surfactants in drilling muds and fabric softeners and as biocides in antiseptics and disinfectants. QACs and cationic polyelectrolytes elicit acute toxic effects in aquatic organisms by disrupting the structure and function of gill tissues, which may result in the suffocation of the organism. Little information is available, however, on the relative availability and distribution of QACs in the tissues of aquatic organisms. Information of this nature is required to understand the potential consequences of releases of sublethal concentrations of QACs into the aquatic environment. In this study, hexadecylpyridinium bromide (HPB; CAS 140-72-7) was selected as a compound for initial study because it belongs to a chemical class (alkylpyridinium QACs) that includes the most toxic and environmentally persistent QACs. Clams, minnows, and tadpoles were chosen as test organisms to define the relative availability of HPB to organisms that occupy distinctly different ecological niches.

  7. Chromium bioaccumulation: comparison of the capacity of two floating aquatic macrophytes.

    Science.gov (United States)

    Maine, María A; Suñé, Noemí L; Lagger, Susana C

    2004-03-01

    The capacity of Salvinia herzogii and Pistia stratiotes to remove Cr (III) from water and their behaviour at different Cr (III) concentrations were studied in outdoor experiments. Cr distribution in aerial parts and roots with time and the possible mechanisms of Cr uptake were analyzed. Both macrophytes efficiently removed Cr from water at concentrations of 1, 2, 4 and 6 mgCrL(-1). S. herzogii was the best adapted species. At a greater initial concentration, greater bioaccumulation rates were observed. Root Cr uptake was a rapid process that was completed within the first 24h. Cr uptake through direct contact between the leaves and the solution is the main cause of the increase of Cr in the aerial parts, Cr being poorly translocated from the roots to the aerial parts. Both mechanisms were fast processes. The Cr uptake mechanism involves two components: a fast component and a slow one. The former occurs mainly due to the roots and leaves adsorption and is similar for both species. The slow component is different for each species probably because in P. stratiotes a Cr precipitation occurs induced by the roots. PMID:15016526

  8. Aquatic hazard, bioaccumulation and screening risk assessment for ammonium 2,3,3,3-tetrafluoro-2-(heptafluoropropoxy)-propanoate.

    Science.gov (United States)

    Hoke, Robert A; Ferrell, Barbra D; Sloman, Terry L; Buck, Robert C; Buxton, L William

    2016-04-01

    The fluoropolymer manufacturing industry is moving to alternative polymerization processing aid technologies with more favorable toxicological and environmental profiles as part of a commitment to curtail the use of long-chain perfluoroalkyl acids (PFAAs). To facilitate the environmental product stewardship assessment and premanufacture notification (PMN) process for a candidate replacement chemical, we conducted acute and chronic aquatic toxicity tests to evaluate the toxicity of ammonium 2,3,3,3-tetrafluoro-2-(heptafluoropropoxy)-propanoate (C6HF11O3.H3N) or the acid form of the substance to the cladoceran, Daphnia magna, the green alga, Pseudokirchneriella subcapitata, and a number of freshwater fish species including the rainbow trout, Oncorhynchus mykiss, In addition, testing with the common carp, Cyprinus carpio, was conducted to determine the bioconcentration potential of the acid form of the compound. Based on the relevant criteria in current regulatory frameworks, the results of the aquatic toxicity and bioconcentration studies indicate the substance is of low concern for aquatic hazard and bioconcentration in aquatic organisms. Evaluation of environmental monitoring data in conjunction with the predicted no effect concentration (PNEC) based on the available data suggest low risk to aquatic organisms. PMID:26874062

  9. Nuclear microscopy as a tool in TiO2 nanoparticles bioaccumulation studies in aquatic species

    International Nuclear Information System (INIS)

    Engineered Titanium nanoparticles are used for a wide range of applications from coatings, sunscreen cosmetic additives to solar cells or water treatment agents. Inevitably environmental exposure can be expected and data on the ecotoxicological evaluation of nanoparticles are still scarce. The potential effects of nanoparticles of titanium dioxide (TiO2) on two model organisms, the water flea, Daphnia magna and the duckweed Lemna minor, were examined in semichronic toxicity tests. Daphnia and Lemna were exposed to TiO2 nanoparticles (average particle size value of 28 ± 11 nm (n = 42); concentration range, 1.4–25 mg/L) by dietary route and growth in medium containing the nanoparticles of TiO2, respectively. Both morphology and microdistribution of Ti in the individuals were examined by nuclear microscopy techniques. A significant amount of TiO2 was found accumulated in Daphnia exposed to nanoparticles. Nuclear microscopy imaging revealed that Ti was localized only in the digestive tract of the Daphnia, which displayed difficulty in eliminating the nanoparticles from their body. Daphnia showed higher mortality when exposed to higher concentrations of TiO2 (>10 mg/L). The exposure to TiO2 nanoparticles above 25 mg/L caused morphological alterations in Lemna. The roots became stiff and fronds colorless. The Ti mapping of cross-sections of roots and fronds showed that Ti was mainly deposited in the epidermis of the fronds and roots, with minor internalization. In summary, exposure of aquatic organisms to TiO2 nanoparticles may alter the physiology of these organisms at individual and population levels, posing risks to aquatic ecosystems

  10. Nuclear microscopy as a tool in TiO2 nanoparticles bioaccumulation studies in aquatic species

    Science.gov (United States)

    Pinheiro, Teresa; Moita, Liliana; Silva, Luís; Mendonça, Elsa; Picado, Ana

    2013-07-01

    Engineered Titanium nanoparticles are used for a wide range of applications from coatings, sunscreen cosmetic additives to solar cells or water treatment agents. Inevitably environmental exposure can be expected and data on the ecotoxicological evaluation of nanoparticles are still scarce. The potential effects of nanoparticles of titanium dioxide (TiO2) on two model organisms, the water flea, Daphnia magna and the duckweed Lemna minor, were examined in semichronic toxicity tests. Daphnia and Lemna were exposed to TiO2 nanoparticles (average particle size value of 28 ± 11 nm (n = 42); concentration range, 1.4-25 mg/L) by dietary route and growth in medium containing the nanoparticles of TiO2, respectively. Both morphology and microdistribution of Ti in the individuals were examined by nuclear microscopy techniques. A significant amount of TiO2 was found accumulated in Daphnia exposed to nanoparticles. Nuclear microscopy imaging revealed that Ti was localized only in the digestive tract of the Daphnia, which displayed difficulty in eliminating the nanoparticles from their body. Daphnia showed higher mortality when exposed to higher concentrations of TiO2 (>10 mg/L). The exposure to TiO2 nanoparticles above 25 mg/L caused morphological alterations in Lemna. The roots became stiff and fronds colorless. The Ti mapping of cross-sections of roots and fronds showed that Ti was mainly deposited in the epidermis of the fronds and roots, with minor internalization. In summary, exposure of aquatic organisms to TiO2 nanoparticles may alter the physiology of these organisms at individual and population levels, posing risks to aquatic ecosystems.

  11. CHROMIUM BIOACCUMULATION FROM COMPOSTS AND VERMICOMPOSTS BASED ON TANNERY SLUDGES

    Directory of Open Access Journals (Sweden)

    Krzysztof GONDEK

    2008-07-01

    Full Text Available Storage of waste substances is not indifferent to ecological equilibrium in the environment therefore should not be the ultimate way to limit waste arduousness. Therefore, the conducted investigations aimed to determine the effect of tannery composts and vermicomposts loaded with chromium on this element bioaccumulation in earthworm bodies and biomass of selected plants. Chromium in composts and vermicomposts based on tannery sludges occurred in small quantities and easily soluble compounds. Chromium concentrations in redworm biomass points to this metal accumulation in Eisenia fetida body tissues. This element content in redworm biomass was signifi cantly positively correlated with its content in composts. Chromium content in plants was diversifi ed and on treatments was generally smaller than on mineral treatment or farmyard manure. Chromium absorbed by plants was stored mainly in the root systems, and over the norm content of this element found in vermicomposts did not cause its excessive accumulation in plant biomass.

  12. Bioaccumulation and human health risk assessment of DDT and other organochlorine pesticides in an apex aquatic predator from a premier conservation area.

    Science.gov (United States)

    Gerber, Ruan; Smit, Nico J; Van Vuren, Johan H J; Nakayama, Shouta M M; Yohannes, Yared B; Ikenaka, Yoshinori; Ishizuka, Mayumi; Wepener, Victor

    2016-04-15

    With the second highest gross domestic product in Africa, South Africa is known to have a high pesticide usage, including the highly persistent and banned group of organochlorine pesticides (OCPs). South Africa is also one of few countries to still actively spray DDT as malaria vector control. The aim of the study was to determine the degree to which aquatic biota in selected rivers of the world renowned Kruger National Park (KNP) are exposed to by use of OCPs in the catchments outside the KNP and how this exposure relates to human health. Tigerfish (Hydrocynus vittatus) are economically important apex predators and was selected as bioindicator for this study. Fish were sampled from the KNP sections of the Luvuvhu, Letaba and Olifants rivers during the high and low flow periods from 2010 to 2011 within the KNP and 19 OCPs were determined in muscle tissue using GC-ECD techniques. Significant flow related and spatial OCP bioaccumulation was observed. Tigerfish from the Luvuvhu River displayed the highest OCP bioaccumulation. Concentrations of the majority of the OCPs including the DDTs were the highest levels ever recorded from South African freshwater systems and in many cases the concentrations were higher than most contaminated areas from around the world. The concentrations found in H. vittatus muscle also exceeded maximum residue levels in edible fat as set by the European Union. The health risk assessment also demonstrated that the levels of OCPs pose very high cancer risks to the local populations consuming tigerfish, as high as 2 in 10 increased risk factor. This is of concern not only when managing the water resources of the conservation area but also for surrounding communities consuming freshwater fish. Contaminants enter the park from outside the borders and pose potential risks to the mandated conservation of aquatic biota within the KNP. PMID:26845188

  13. A passive sampler based on solid phase microextraction (SPME) for sediment-associated organic pollutants: Comparing freely-dissolved concentration with bioaccumulation.

    Science.gov (United States)

    Maruya, Keith A; Lao, Wenjian; Tsukada, David; Diehl, Dario W

    2015-10-01

    The elevated occurrence of hydrophobic organic chemicals (HOCs) such as polycyclic aromatic hydrocarbons (PAH), polychlorinated biphenyls (PCBs) and legacy organchlorine pesticides (e.g. chlordane and DDT) in estuarine sediments continues to poses challenges for maintaining the health of aquatic ecosystems. Current efforts to develop and apply protective, science-based sediment quality regulations for impaired waterbodies are hampered by non-concordance between model predictions and measured bioaccumulation and toxicity. A passive sampler incorporating commercially available solid phase microextraction (SPME) fibers was employed in lab and field studies to measure the freely dissolved concentration of target HOCs (Cfree) and determine its suitability as a proxy for bioaccumulation. SPME deduced Cfree for organochlorines was highly correlated with tissue concentrations (Cb) of Macoma and Nereis spp. co-exposed in laboratory microcosms containing both spiked and naturally contaminated sediments. This positive association was also observed in situ for endemic bivalves, where SPME samplers were deployed for up to 1 month at an estuarine field site. The concordance between Cb and Cfree for PAH was more variable, in part due to likely biotransformation by model invertebrates. These results indicate that SPME passive samplers can serve as a proxy for bioaccumulation of sediment-associated organochlorines in both lab and field studies, reducing the uncertainty associated with model predictions that do not adequately account for differential bioavailability. PMID:26246043

  14. Estimation of bioaccumulation of lead in the aquatic plants using 14 MeV neutron activation analysis

    International Nuclear Information System (INIS)

    Three aquatic plants, water hyacinth, Hydrilla and Pithophora were exposed to different concentrations of lead and the accumulation of lead in these plants for different exposure period was studied using 14 MeV (with a flux of approximately equal to 2x108 ncm-2sec-1) neutron activation analysis technique. The lead uptake in these plants was estimated by measuring gamma activity due to sup(207m)Pb (T=0.8 sec) produced by 14 MeV neutrons. Possibility of using these plants for waste water treatment is discussed. (author)

  15. Aquatic insect ecophysiological traits reveal phylogenetically based differences in dissolved cadmium susceptibility

    Science.gov (United States)

    Buchwalter, D.B.; Cain, D.J.; Martin, C.A.; Xie, Lingtian; Luoma, S.N.; Garland, T., Jr.

    2008-01-01

    We used a phylogenetically based comparative approach to evaluate the potential for physiological studies to reveal patterns of diversity in traits related to susceptibility to an environmental stressor, the trace metal cadmium (Cd). Physiological traits related to Cd bioaccumulation, compartmentalization, and ultimately susceptibility were measured in 21 aquatic insect species representing the orders Ephemeroptera, Plecoptera, and Trichoptera. We mapped these experimentally derived physiological traits onto a phylogeny and quantified the tendency for related species to be similar (phylogenetic signal). All traits related to Cd bioaccumulation and susceptibility exhibited statistically significant phylogenetic signal, although the signal strength varied among traits. Conventional and phylogenetically based regression models were compared, revealing great variability within orders but consistent, strong differences among insect families. Uptake and elimination rate constants were positively correlated among species, but only when effects of body size and phylogeny were incorporated in the analysis. Together, uptake and elimination rates predicted dramatic Cd bioaccumulation differences among species that agreed with field-based measurements. We discovered a potential tradeoff between the ability to eliminate Cd and the ability to detoxify it across species, particularly mayflies. The best-fit regression models were driven by phylogenetic parameters (especially differences among families) rather than functional traits, suggesting that it may eventually be possible to predict a taxon's physiological performance based on its phylogenetic position, provided adequate physiological information is available for close relatives. There appears to be great potential for evolutionary physiological approaches to augment our understanding of insect responses to environmental stressors in nature. ?? 2008 by The National Academy of Sciences of the USA.

  16. Nuclear microscopy as a tool in TiO{sub 2} nanoparticles bioaccumulation studies in aquatic species

    Energy Technology Data Exchange (ETDEWEB)

    Pinheiro, Teresa, E-mail: murmur@itn.pt [IST/ITN, Instituto Superior Técnico, Universidade Técnica de Lisboa and Centro de Física Nuclear, Universidade de Lisboa (Portugal); Moita, Liliana; Silva, Luís; Mendonça, Elsa; Picado, Ana [LNEG, Laboratório Nacional de Energia e Geologia, I.P. Estrada do Paço do Lumiar 22, 1649-038 Lisboa (Portugal)

    2013-07-01

    Engineered Titanium nanoparticles are used for a wide range of applications from coatings, sunscreen cosmetic additives to solar cells or water treatment agents. Inevitably environmental exposure can be expected and data on the ecotoxicological evaluation of nanoparticles are still scarce. The potential effects of nanoparticles of titanium dioxide (TiO{sub 2}) on two model organisms, the water flea, Daphnia magna and the duckweed Lemna minor, were examined in semichronic toxicity tests. Daphnia and Lemna were exposed to TiO{sub 2} nanoparticles (average particle size value of 28 ± 11 nm (n = 42); concentration range, 1.4–25 mg/L) by dietary route and growth in medium containing the nanoparticles of TiO{sub 2}, respectively. Both morphology and microdistribution of Ti in the individuals were examined by nuclear microscopy techniques. A significant amount of TiO{sub 2} was found accumulated in Daphnia exposed to nanoparticles. Nuclear microscopy imaging revealed that Ti was localized only in the digestive tract of the Daphnia, which displayed difficulty in eliminating the nanoparticles from their body. Daphnia showed higher mortality when exposed to higher concentrations of TiO{sub 2} (>10 mg/L). The exposure to TiO{sub 2} nanoparticles above 25 mg/L caused morphological alterations in Lemna. The roots became stiff and fronds colorless. The Ti mapping of cross-sections of roots and fronds showed that Ti was mainly deposited in the epidermis of the fronds and roots, with minor internalization. In summary, exposure of aquatic organisms to TiO{sub 2} nanoparticles may alter the physiology of these organisms at individual and population levels, posing risks to aquatic ecosystems.

  17. Discrimination of trait-based characteristics by trace element bioaccumulation in riverine fishes

    Science.gov (United States)

    Short, T.M.; DeWeese, L.R.; Dubrovsky, N.M.

    2008-01-01

    Relations between tissue trace element concentrations and species traits were examined for 45 fish species to determine the extent to which trait-based characteristics accounted for relative differences among species in trace element bioaccumulation. Percentages of fish species correctly classified by discriminant analysis according to traits predicted by tissue trace element concentrations ranged from 72% to 87%. Tissue concentrations of copper, mercury, selenium, and zinc appeared to have the greatest overall influence on differentiating species according to trait characteristics. Discrimination of trait characteristics did not appear to be strongly influenced by local sources of trace elements in the streambed sediment. Bioaccumulation was greatest for those species classified as primarily detritivores, having relatively large adult body size, considered nonmigratory with respect to reproductive strategy, occurring mostly in large or variable size streams and rivers, preferring depositional areas within the stream channel, and preferring benthic rather than open-water habitats. Our findings provide evidence of the strong relationship between bioaccumulation of environmental trace elements and trait-based factors that influence contaminant exposure. ?? 2008 NRC.

  18. Enantioselective determination of triazole fungicide epoxiconazole bioaccumulation in tubifex based on HPLC-MS/MS.

    Science.gov (United States)

    Liu, Chunxiao; Wang, Bo; Xu, Peng; Liu, Tiantian; Di, Shanshan; Diao, Jinling

    2014-01-15

    In this study, the enantioselective bioaccumulation of epoxiconazole enantiomers in tubifex (Oligochaeta, Tubificida) was investigated in two uptake pathways. A sensitive and rapid chiral method was developed for the determination of epoxiconazole enantiomers in tubifex and soil based on high-performance liquid chromatography coupled with triple-quadrupole mass spectrometry (HPLC-MS/MS). In the spiked-water or spiked-soil treatments, enantioselective bioaccumulation of epoxiconazole in tubifex was obersved. For spiked-water treatment, (-)-epoxiconazole accumulated in tubifex to a greater extent than (+)-epoxiconazole, leading to enrichments with a composition (-) > (+). However, for spiked-soil treatment, the enantioselectivity in tubifex was reversed with a preferential accumulation of (+)-epoxiconazole. Calculated accumulation factors (AFs) indicated that epoxiconazole in spiked-water treatment had higher bioaccumulation potential than that in spiked-soil treatment. The results from the spiked-soil treatment also revealed that the dissipation of epoxiconazole in soil was enantioselective, and tubifex has positive effects on epoxiconazole diffusion from soil to overlying water. PMID:24364671

  19. A community-based framework for aquatic ecosystem models

    DEFF Research Database (Denmark)

    Trolle, Didde; Hamilton, D. P.; Hipsey, M. R.; Bolding, Karsten; Bruggeman, J.; Mooij, W. M.; Janse, J. H.; Nielsen, A.; Jeppesen, E.; Elliott, J. A.; Makler-Pick, V.; Petzoldt, T.; Rinke, K.; Flindt, M. R.; Arhonditsis, G. B.; Gal, G.; Bjerring, R.; Tominaga, K.; Hoen, J.; Downing, A. S.; Marques, D. M.; Fragoso, C. R.; Sondergaard, M.; Hanson, P. C.

    2012-01-01

    , and (viii) avoid 're-inventing the wheel', thus accelerating improvements to aquatic ecosystem models. We intend to achieve this as a community that fosters interactions amongst ecologists and model developers. Further, we outline scientific topics recently articulated by the scientific community...... a literature survey, we document the growing importance of numerical aquatic ecosystem models while also noting the difficulties, up until now, of the aquatic scientific community to make significant advances in these models during the past two decades. Through a common forum for aquatic ecosystem...... modellers we aim to (i) advance collaboration within the aquatic ecosystem modelling community, (ii) enable increased use of models for research, policy and ecosystem-based management, (iii) facilitate a collective framework using common (standardised) code to ensure that model development is incremental...

  20. Bioaccumulation and Toxicity of Single-Walled Carbon Nanotubes to Benthic Organisms at the Base of the Marine Food Chain

    Science.gov (United States)

    As the use of single-walled carbon nanotubes (SWNTs) increases over time, so does the potential for environmental release. This research aimed to determine the toxicity, bioavailability, and bioaccumulation of SWNTs in marine benthic organisms at the base of the food chain. The t...

  1. Effects of contaminants on reproductive success of aquatic birds nesting at Edwards Air Force Base, California.

    Science.gov (United States)

    Hothem, R L; Crayon, J J; Law, M A

    2006-11-01

    Contamination by organochlorine pesticides (OCs), polychlorinated biphenyls, metals, and trace elements at Edwards Air Force Base (EAFB), located in the Mojave Desert, could adversely affect nesting aquatic birds, especially at the sewage lagoons that comprise Piute Ponds. Estimates of avian reproduction, in conjunction with analyses of eggs and avian foods for contaminant residues, may indicate the potential for negative effects on avian populations. From 1996 to 1999, we conducted studies at the Piute Ponds area of EAFB to evaluate the impacts of contaminants on nesting birds. Avian reproduction was evaluated in 1999. Eggs were collected for chemical analyses in 1996 and 1999, and African clawed frogs (Xenopus laevis), a likely food source, were collected for chemical analyses in 1998. Avian species occupying the higher trophic levels--black-crowned night-heron (Nycticorax nycticorax), white-faced ibis (Plegadis chihi), and American avocet (Recurvirostra americana)--generally bioaccumulated higher concentrations of contaminants in their eggs. Reproductive success and egg hatchability of night-herons and white-faced ibises in the Piute Ponds were similar to results observed at other western colonies. Deformities were observed in only one embryo in this study, but concentrations of contaminants evaluated in this ibis embryo were considered insufficient to have caused the deformities. Because clawed frogs, a primary prey item for night-herons at Piute Ponds, had no detectable levels of any OCs, it is likely that OCs found in night-heron eggs were acquired from the wintering grounds rather than from EAFB. The presence of isomers of dichlorodiphenyltrichloroethane (DDT) in ibis eggs indicated recent exposure, but invertebrates used for food by ibises were not sampled at Piute Ponds, and conclusions about the source of OCs in ibis eggs could not be made. Concentrations of contaminants in random and failed eggs of individual species were not different, and we concluded

  2. Methylmercury bioaccumulation in invertebrates of boreal streams in Norway: Effects of aqueous methylmercury and diet retention

    International Nuclear Information System (INIS)

    Transfer of aqueous methylmercury (MeHg) to primary consumers in aquatic foodwebs is poorly understood despite its importance for bioaccumulation of MeHg. We studied bioaccumulation of MeHg in simple aquatic food chains of two humic boreal streams in relation to streamwater chemistry, food web characteristics and dietary fatty acid (FA) biomarkers. Transfer of aqueous MeHg into primary consumers was similar in both streams, resulting in higher MeHg in consumers in the MeHg-rich stream. Trophic enrichment of MeHg and dietary retention of FA biomarkers was the same in both streams, suggesting that exposure to aqueous MeHg at the base of the food chain determined levels of MeHg in biota. In addition, contents of dietary biomarkers suggested that ingestion of algae reduced MeHg bioaccumulation, while ingestion of bacteria stimulated MeHg uptake. Dietary uptake of bacteria could thus be an important pathway for MeHg-transfer at the bottom of food chains in humic streams. - Highlights: ► We examined MeHg bioaccumulation in simple food chains in two boreal streams. ► Higher MeHg in invertebrates was associated with higher aqueous MeHg. ► Dietary biomarkers showed that consumers in both streams accessed similar food sources. ► We concluded at exposure to aqueous MeHg determined bioaccumulation of MeHg. ► Seasonal variation in MeHg in biota could be related to diet using dietary biomarkers. - Exposure to aqueous methylmercury at the base of the food chain in boreal streams determines mercury in aquatic biota at higher trophic levels.

  3. Regionalizing Aquatic Ecosystems Based on the River Subbasin Taxonomy Concept and Spatial Clustering Techniques

    Directory of Open Access Journals (Sweden)

    Jiahu Zhao

    2011-11-01

    Full Text Available Aquatic ecoregions were increasingly used as spatial units for aquatic ecosystem management at the watershed scale. In this paper, the principle of including land area, comprehensiveness and dominance, conjugation and hierarchy were selected as regionalizing principles. Elevation and drainage density were selected as the regionalizing indicators for the delineation of level I aquatic ecoregions, and percent of construction land area, percent of cultivated land area, soil type and slope for the level II. Under the support of GIS technology, the spatial distribution maps of the two indicators for level I and the four indicators for level II aquatic ecoregion delineation were generated from the raster data based on the 1,107 subwatersheds. River subbasin taxonomy concept, two-step spatial clustering analysis approach and manual-assisted method were used to regionalize aquatic ecosystems in the Taihu Lake watershed. Then the Taihu Lake watershed was divided into two level I aquatic ecoregions, including Ecoregion I1 and Ecoregion I2, and five level II aquatic subecoregions, including Subecoregion II11, Subecoregion II12, Subecoregion II21, Subecoregion II22 and Subecoregion II23. Moreover, the characteristics of the two level I aquatic ecoregions and five level II aquatic subecoregions in the Taihu Lake watershed were summarized, showing that there were significant differences in topography, socio-economic development, water quality and aquatic ecology, etc. The results of quantitative comparison of aquatic life also indicated that the dominant species of fish, benthic density, biomass, dominant species, Shannon-Wiener diversity index, Margalef species richness index, Pielou evenness index and ecological dominance showed great spatial variability between the two level I aquatic ecoregions and five level II aquatic subecoregions. It reflected the spatial heterogeneities and the uneven natures of aquatic ecosystems in the Taihu Lake watershed.

  4. Potential risk of biochar-amended soil to aquatic systems: an evaluation based on aquatic bioassays.

    Science.gov (United States)

    Bastos, A C; Prodana, M; Abrantes, N; Keizer, J J; Soares, A M V M; Loureiro, S

    2014-11-01

    It is vital to address potential risks to aquatic ecosystems exposed to runoff and leachates from biochar-amended soils, before large scale applications can be considered. So far, there are no established approaches for such an assessment. This study used a battery of bioassays and representative aquatic organisms for assessing the acute toxicity of water-extractable fractions of biochar-amended soil, at reported application rates (80 t ha(-1)). Biochar-amended aqueous soil extracts contained cadmium (Cd), cobalt (Co), chromium (Cr), copper (Cu), manganese (Mn), zinc (Zn), nickel (Ni), lead (Pb), arsenic (As) and mercury (Hg) (Σmetals 96.3 µg l(-1)) as well as the 16 priority PAHs defined by the U.S. Environmental Protection Agency (Σ16PAHs 106 ng l(-1)) at contents in the range of current EU regulations for surface waters. Nevertheless, acute exposure to soil-biochar (SB) extracts resulted in species-specific effects and dose-response patterns. While the bioluminescent marine bacterium Vibrio fischeri was the most sensitive organism to aqueous SB extracts, there were no effects on the growth of the microalgae Pseudokirchneriella subcapitata. In contrast, up to 20 and 25% mobility impairment was obtained for the invertebrate Daphnia magna upon exposure to 50 and 100% SB extract concentrations (respectively). Results suggest that a battery of rapid and cost-effective aquatic bioassays that account for ecological representation can complement analytical characterization of biochar-amended soils and risk assessment approaches for surface and groundwater protection. PMID:25213286

  5. Bioaccumulation of cadmium in an experimental aquatic food chain involving phytoplankton (Chlorella vulgaris), zooplankton (Moina macrocopa), and the predatory catfish Clarias macrocephalus x C. gariepinus

    International Nuclear Information System (INIS)

    The accumulation of cadmium (Cd) was studied in an experimental aquatic food chain involving the phytoplankton Chlorella vulgaris as the primary producer, the zooplankton Moina macrocopa as the primary consumer, and the catfish Clarias macrocephalus x Clarias gariepinus as the secondary consumer. C. vulgaris was first exposed to Cd solutions at 0.00, 0.35, and 3.50 mg l-1, referred to as control group and experimental groups 1 and 2, respectively. Subsequently, each group was fed to three corresponding groups of M. macrocopa. Finally, three groups of catfish were fed these corresponding groups of M. macrocopa. After C. vulgaris was exposed to 3.50 mg l-1 Cd (experimental group 2), the residual Cd in solution was only 4.01 μg l-1, lower than the maximum allowable limit of Cd in natural water sources (5 μg l-1). Cd concentrations in C. vulgaris were 0.01 ± 0.00 μg g-1 (dry wt) in the control group, 194 ± 1.80 μg g-1 (dry wt) in experimental group 1, and 1140 ± 20.06 μg g-1 (dry wt) in experimental group 2. The Cd concentrations in M. macrocopa were 0.01 ± 0.00 μg g-1 (dry wt) in the control group, 16.48 ± 2.23 μg g-1 (dry wt) in experimental group 1, and 56.6 ± 3.23 μg g-1 (dry wt) in experimental group 2. The Cd concentrations in catfish muscle increased with increasing Cd concentrations in the food. After 60 days of fish culture, the mean concentrations of Cd in fish muscle were 0.01 ± 0.00 μg g-1 (dry wt) in the control group, 0.61 ± 0.02 μg g-1 (dry wt) in experimental group 1 and 1.04 ± 0.06 μg g-1 (dry wt) in experimental group 2. Cd concentration in fish muscle of experimental group 2 was equal to the permissible limit. Cd accumulation affected fish growth: at the end of the study, the mean fresh weight (12.81 g) of catfish in the control group, was significantly higher than those experimental group 1 (10.43 g) and experimental group 2 (10.00 g). The results showed that the measurement of Cd concentration in water does not necessarily give

  6. Bioaccumulation of heavy metals in water, sediments, aquatic plant and histopathological effects on the golden apple snail in Beung Boraphet reservoir, Thailand.

    Science.gov (United States)

    Dummee, Vipawee; Kruatrachue, Maleeya; Trinachartvanit, Wachareeporn; Tanhan, Phanwimol; Pokethitiyook, Prayad; Damrongphol, Praneet

    2012-12-01

    Changes in the seasonal concentrations of heavy metals (Cu, Mn, Fe, Zn, Pb and Cd) were determined in water, sediments, snails (Pomacea canaliculata) and aquatic plants (Ipomoea aquatica) in three selected tributaries of the Beung Boraphet reservoir, Nakhon Sawan Province, central Thailand. Only Fe, Cu, Mn and Zn were detected by FAAS in all samples collected. The water quality of Beung Boraphet was medium clean with Fe, Mn, Cu and Zn concentrations well below internationally accepted limits. According to the criteria proposed for sediments by the EPA Region V, Zn and Mn concentrations were within the non-polluted range while Fe and Cu (wet season) concentrations fell into the class of severely polluted sediment. Both P. canaliculata and I. aquatica bioconcentrated more Mn in their tissues than were found in sediments, especially in the wet season. The results of Pearson correlation study and BCF values also indicated similar findings. Only Mn showed the importance of sediment-to-snail concentration and high BCF values in both snails and plants. P. canaliculata exposed to contaminated sediment for two months, showed higher accumulation of metals (Fe, Mn, Cu and Zn) in the digestive tracts and digestive glands than in the foot muscles. Histopathological changes included alterations in the epithelial lining of the digestive tracts, digestive glands and the gills. Loss of cilia and increase in mucous cells were observed in the digestive tracts and gills, while the digestive glands exhibited an increase of dark granules and basophilic cells, and dilation of digestive cells. The results indicated that both P. canaliculata and I. aquatica could be used as biomonitors of sedimentary metal contamination for the Beung Boraphet reservoir. PMID:23079739

  7. Design and Promotion Strategy of Marketing Platform of Aquatic Auction based on Internet

    Science.gov (United States)

    Peng, Jianliang

    For the online trade and promotion of aquatic products and related materials through the network between supply and demand, the design content and effective promotional strategies of aquatic auctions online marketing platform is proposed in this paper. Design elements involve the location of customer service, the basic function of the platform including the purchase of general orders, online auctions, information dissemination, and recommendation of fine products, human services, and payment preferences. Based on network and mobile e-commerce transaction support, the auction platform makes the transaction of aquatic products well in advance. The results are important practical value for the design and application of online marketing platform of aquatic auction.

  8. Bioaccumulation of Chromium by Perna Viridis from Jakarta Bay Base on Radiotracer 51Cr Study

    International Nuclear Information System (INIS)

    The research of bioaccumulation chromium of Perna viridis from Jakarta Bay using 51Cr radiotracer have been done. The experiment was carried out by 3 steps such as: uptake, depuration and modelling. The result of experiment shown that Perna viridis can be used as bioindicator of chromium because its capability to accumulate Cr. Its concentration factor, uptake rate and depuration rate were 148.36 to 414.5, 14.836 to 65.754 μg per days and 9.04 to 15.48 % per days respectively. The value of BCF was under 500 so Perna viridis can not be used for environmental risk assesment. The result of modeling was find the Concentration Factor were 106 to 367 and the its decreasing from Perna viridis tissue can be 90 % after 14 days of depuration. (author)

  9. Sunlight-induced Transformations of Graphene-based Nanomaterials in Aquatic Environments

    Science.gov (United States)

    Graphene-based nanomaterials and other related carbon nanomaterials (CNMs) can be released from products during their life cycles. Upon entry into aquatic environments, they are potentially transformed by photochemical reactions, oxidation reactions and biological processes, all ...

  10. Significance of Xenobiotic Metabolism for Bioaccumulation Kinetics of Organic Chemicals in Gammarus pulex

    OpenAIRE

    Ashauer, Roman; Hintermeister, Anita; O’Connor, Isabel; Elumelu, Maline; Hollender, Juliane; Escher, Beate I

    2012-01-01

    Bioaccumulation and biotransformation are key toxicokinetic processes that modify toxicity of chemicals and sensitivity of organisms. Bioaccumulation kinetics vary greatly among organisms and chemicals; thus, we investigated the influence of biotransformation kinetics on bioaccumulation in a model aquatic invertebrate using fifteen 14C-labeled organic xenobiotics from diverse chemical classes and physicochemical properties (1,2,3-trichlorobenzene, imidacloprid, 4,6-dinitro-o-cresol, ethylacry...

  11. Lead Bioaccumulation Factor of Cockle Shell (Anadara granosa) Base on Biokinetic Study that Used Radiotracer 210Pb

    International Nuclear Information System (INIS)

    Lead is kind of hazardous heavy metal to human health and the concentration in the coastal environment should be monitored continuously because lead could be accumulated by marine biota. One of the monitoring techniques is bio indicator. Anadara granosa is a marine biota which spread in almost all Indonesian coastal, life in the bottom and mud sandy environment in the depth of until 4 meter and relatively still. Base on the book of environmental equilibrium balance DKI Jakarta, Anadara granosa is a macrozobenthos in Jakarta bay which have second highest density after Donax or with density of 14 individual per meter square. Base on the environmental equilibrium balance from 26 locations, 22 locations can be found Anadara granosa so this mollusk could be used for bio indicator. The objective of research for bioaccumulation that use 210Pb as a tracer is to find bio indicator base on biokinetic process which include concentration factor, uptake and depuration processes and biology half life. The result shows that Anadara granosa could be use as a lead bio indicator in Jakarta bay. (author)

  12. Great Lakes water quality initiative technical support document for the procedure to determine bioaccumulation factors. Draft report

    International Nuclear Information System (INIS)

    The purpose of the document is to provide the technical information and rationale in support of the proposed procedures to determine bioaccumulation factors. Bioaccumulation factors, together with the quantity of aquatic organisms eaten, determine the extent to which people and wildlife are exposed to chemicals through the consumption of aquatic organisms. The more bioaccumulative a pollutant is, the more important the consumption of aquatic organisms becomes as a potential source of contaminants to humans and wildlife. Bioaccumulation factors are needed to determine both human health and wildlife tier I water quality criteria and tier II values. Also, they are used to define Bioaccumulative Chemicals of Concern among the Great Lakes Initiative universe of pollutants. Bioaccumulation factors range from less than one to several million

  13. Physiologically-based pharmacokinetic modelling of distribution, bioaccumulation and excretion of POPs in Greenland sledge dogs (Canis familiaris).

    Science.gov (United States)

    Sonne, Christian; Gustavson, Kim; Letcher, Robert J; Dietz, Rune

    2015-10-01

    We used PBPK (physiologically-based pharmacokinetic) modelling to investigate distribution, bioaccumulation and excretion of the seven POPs (persistent organic pollutants) CB-99, CB-153, HCB, oxychlordane, p,p'-DDE, BDE-47 and BDE-99 in 4 adult captive Greenland sledge dog (Canis familiaris) bitches fed minke whale (Balaenoptera acuterostrata) blubber for 500-635 days. The PBPK modelled POP concentrations in adipose tissue, liver, kidney and plasma were mostly within a factor 2 of actual measured tissue levels even for those at the lower concentration end. The excretion route for oxychlordane and CB-153 was modelled to be via faeces while lung alveolar excretion dominated for BDE-47, BDE-99, HCB, p,p'-DDE and CB-99. Furthermore the model suggested the retained mass of POPs after 500 and 635 days of exposure, respectively, to be relatively low despite these POPs being highly recalcitrant. The retention increased in the following order (% of total intake); p,p'-DDE (1%)tool in risk assessment of POPs in arctic mammals. PMID:26210746

  14. Bioaccumulation Studies Associated with the Kingston Fly Ash Spill, Spring 2009 - Fall 2010

    Energy Technology Data Exchange (ETDEWEB)

    Adams, Marshall [ORNL; Brandt, Craig C [ORNL; Fortner, Allison M [ORNL

    2012-05-01

    In December 2008, an ash dike at the Tennessee Valley Authority (TVA) Kingston Fossil Plant ruptured, releasing over one billion gallons of coal fly ash into the Emory and Clinch Rivers. Coal fly ash may contain several contaminants of concern, but of these selenium (Se) and arsenic (As) have been highlighted because of their toxicity and tendency to bioaccumulate in aquatic food chains. To assess the potential impact of the spilled fly ash on humans and the environment, a comprehensive biological and environmental monitoring program was established, for which resident aquatic organisms (among other sample media) are collected to determine contaminant exposure and evaluate the risk to humans and wildlife. Studies on bioaccumulation and fish health are major components of the TVA Biological Monitoring Program for the Kingston fly ash project. These studies were initiated in early Spring 2009 for the purposes of: (1) documenting the levels of fly ash-associated metals in various tissues of representative sentinel fish species in the area of the fly ash spill, (2) determining if exposure to fly ash-associated metals causes short, intermediate, or long-term health effects on these sentinel fish species, (3) assessing if there are causal relationships between exposure (to metals) and effects on fish, (4) evaluating, along with information regarding other ecological and physicochemical studies, the nature and route of contaminant transfer though food chains into higher level consumers, (5) providing important information for the Ecological Risk Assessment (ERA) for the Kingston fly ash project, and (6) serving as an important technology transfer or model study focused on how to best evaluate the environmental effects of fly ash, not only at the Kingston site, but also at sites on other aquatic systems where coal-fired generating stations are located. This report summarizes the bioaccumulation results from the first two years of study after the fly ash spill, including

  15. A randomized controlled trial of aquatic and land-based exercise in patients with knee osteoarthritis

    DEFF Research Database (Denmark)

    Lund, H.; Weile, U.; Christensen, R.;

    2008-01-01

    patients reported adverse events (i.e. discomfort) in land-based exercise, while only 3 reported adverse events in the aquatic exercise. Conclusion: Only land-based exercise showed some improvement in pain and muscle strength compared with the control group, while no clinical benefits were detectable after......Objective: To compare the efficacy of aquatic exercise and a land-based exercise programme vs control in patients with knee osteoarthritis. Methods: Primary outcome was change in pain, and in addition Knee Injury and Osteoarthritis Outcome Score questionnaire (KOOS). Standing balance and strength...... was also measured after and at 3-month follow-up. Seventy-nine patients (62 women), with a mean age of 68 years (age range 40-89 years) were randomized to aquatic exercise (n = 27), land-based exercise (n = 25) or control (n = 27). Results: No effect was observed immediately after exercise cessation...

  16. Removal of pharmaceuticals and personal care products in aquatic plant-based systems: A review

    International Nuclear Information System (INIS)

    Pharmaceuticals and personal care products (PPCPs) in the aquatic environment are regarded as emerging contaminants and have attracted increasing concern. The use of aquatic plant-based systems such as constructed wetlands (CWs) for treatment of conventional pollutants has been well documented. However, available research studies on aquatic plant-based systems for PPCP removal are still limited. The removal of PPCPs in CWs often involves a diverse and complex set of physical, chemical and biological processes, which can be affected by the design and operational parameters selected for treatment. This review summarizes the PPCP removal performance in different aquatic plant-based systems. We also review the recent progress made towards a better understanding of the various mechanisms and pathways of PPCP attenuation during such phytoremediation. Additionally, the effect of key CW design characteristics and their interaction with the physico-chemical parameters that may influence the removal of PPCPs in functioning aquatic plant-based systems is discussed. -- Highlights: • Investigation of the removal performance of PPCPs in CW systems. • Investigation of the mechanisms and pathways contributing to PPCP removal in CWs. • Investigation of the effect of CW design parameters on PPCP removal. • Investigation of the correlation between physico-chemical parameters and PPCP removal. -- This review gives an overview of the present state of research on the removal of pharmaceutical and personal care products by means of constructed wetlands

  17. Habitat type-based bioaccumulation and risk assessment of metal and As contamination in earthworms, beetles and woodlice

    Energy Technology Data Exchange (ETDEWEB)

    Vermeulen, Frouke, E-mail: frouke.vermeulen@ua.ac.b [Ecophysiology, Biochemistry and Toxicology Group (U7), University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp (Belgium); Van den Brink, Nico W., E-mail: nico.vandenbrink@wur.n [Alterra, Wageningen UR, Box 47, NL6700AA Wageningen (Netherlands); D' Have, Helga [Ecophysiology, Biochemistry and Toxicology Group (U7), University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp (Belgium); Mubiana, Valentine K., E-mail: kayawe.mubiana@ua.ac.b [Ecophysiology, Biochemistry and Toxicology Group (U7), University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp (Belgium); Blust, Ronny, E-mail: ronny.blust@ua.ac.b [Ecophysiology, Biochemistry and Toxicology Group (U7), University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp (Belgium); Bervoets, Lieven, E-mail: lieven.bervoets@ua.ac.b [Ecophysiology, Biochemistry and Toxicology Group (U7), University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp (Belgium); De Coen, Wim, E-mail: wim.decoen@ua.ac.b [Ecophysiology, Biochemistry and Toxicology Group (U7), University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp (Belgium)

    2009-11-15

    The present study investigated the contribution of environmental factors to the accumulation of As, Cd, Cu, Pb and Zn in earthworms, beetles and woodlice, and framed within an exposure assessment of the European hedgehog. Soil and invertebrate samples were collected in three distinct habitat types. Results showed habitat-specific differences in soil and invertebrate metal concentrations and bioaccumulation factors when normalized to soil metal concentration. Further multiple regression analysis showed residual variability (habitat differences) in bioaccumulation that could not be fully explained by differences in soil metal contamination, pH or organic carbon (OC). Therefore, the study demonstrated that in bioaccumulation studies involving terrestrial invertebrates or in risk assessment of metals, it is not sufficient to differentiate habitat types on general soil characteristics such as pH and/or OC alone. Furthermore, simple generic soil risk assessments for Cd and Cu showed that risk characterization was more accurate when performed in a habitat-specific way. - Our study provided essential insights into habitat-specific accumulation patterns with respect to factors influencing metal bioaccumulation, BAFs, and site-specific risk assessment.

  18. Habitat type-based bioaccumulation and risk assessment of metal and As contamination in earthworms, beetles and woodlice

    International Nuclear Information System (INIS)

    The present study investigated the contribution of environmental factors to the accumulation of As, Cd, Cu, Pb and Zn in earthworms, beetles and woodlice, and framed within an exposure assessment of the European hedgehog. Soil and invertebrate samples were collected in three distinct habitat types. Results showed habitat-specific differences in soil and invertebrate metal concentrations and bioaccumulation factors when normalized to soil metal concentration. Further multiple regression analysis showed residual variability (habitat differences) in bioaccumulation that could not be fully explained by differences in soil metal contamination, pH or organic carbon (OC). Therefore, the study demonstrated that in bioaccumulation studies involving terrestrial invertebrates or in risk assessment of metals, it is not sufficient to differentiate habitat types on general soil characteristics such as pH and/or OC alone. Furthermore, simple generic soil risk assessments for Cd and Cu showed that risk characterization was more accurate when performed in a habitat-specific way. - Our study provided essential insights into habitat-specific accumulation patterns with respect to factors influencing metal bioaccumulation, BAFs, and site-specific risk assessment.

  19. A randomized controlled trial of aquatic and land-based exercise in patients with knee osteoarthritis

    DEFF Research Database (Denmark)

    Lund, Hans; Weile, Ulla; Christensen, Robin;

    2008-01-01

    patients reported adverse events (i.e. discomfort) in land-based exercise, while only 3 reported adverse events in the aquatic exercise. CONCLUSION: Only land-based exercise showed some improvement in pain and muscle strength compared with the control group, while no clinical benefits were detectable after...

  20. An environmental forensic approach for tropical estuaries based on metal bioaccumulation in tissues of Callinectes danae.

    Science.gov (United States)

    Bordon, Isabella C A C; Sarkis, Jorge E S; Andrade, Nathalia P; Hortellani, Marcos A; Favaro, Deborah I T; Kakazu, Mauricio H; Cotrim, Marycel E B; Lavradas, Raquel T; Moreira, Isabel; Saint'Pierre, Tatiana D; Hauser-Davis, Rachel Ann

    2016-01-01

    The blue crab Callinectes danae is distributed throughout the Atlantic coast and this study aimed to evaluate a environmental forensics approach that could be applied at tropical estuarine systems where this species is distributed, based on the metal concentrations in its tissues. For this purpose, blue crab samples were collected in 9 sites (distributed in 3 areas) along the Santos Estuarine System, state of São Paulo, Brazil. The concentrations of Al, Cd, Co, Cr, Cu, Fe, Hg, Mn, Ni, Pb and Zn were determined in gills, hepatopancreas and muscle tissues. Sediment samples were collected and analyzed in these same sites. A data distribution pattern was identified during both sampling periods (August and December 2011). In order to validate this model, a new sampling campaign was performed in March 2013 at the Santos Estuarine System and also at Ilha Grande (state of Rio de Janeiro). These data were added to the previous database (composed of the August and December 2011 samples) and a discriminant analysis was applied. The results confirmed an environmental fingerprint for the Santos Estuarine System. PMID:26475048

  1. EcoCasting: Using NetLogo models of aquatic ecosystems to teach scientific inquiry

    Science.gov (United States)

    Buzby, C. K.; Jona, K.

    2010-12-01

    The EcoCasting project from the Office of STEM Education Partnerships (OSEP) at Northwestern University has developed a computer model-based curriculum for high school environmental science classes to study complexity in aquatic ecosystems. EcoCasting aims to deliver cutting edge scientific research on bioaccumulation in invaded Great Lakes food webs to high school classes. Scientists and environmental engineers at Northwestern are investigating unusual bioaccumulation patterns in invaded food webs of the Great Lakes. High school students are exploring this authentic data to understand what is causing the anomalies in the data. Students use a series of NetLogo agent-based models of an aquatic ecosystem to study how toxins accumulate in the food web. Using these models, students learn about predator-prey relationships, bioaccumulation, and invasive species. Students are confronted with contradictory data collected by scientists and investigate alternative food web mechanisms at work. By studying the individual variables, students learn common scientific principles. When multiple variables are combined in a unifying model, students learn that the interactions lead to unexpected outcomes. Students learn about the complexity of the ecosystem and gain proficiency interpreting computer models and scientific data collection in this curriculum. Model of aquatic food chain

  2. Bioaccumulation and Ecotoxicity of Carbon Nanotubes

    DEFF Research Database (Denmark)

    Kühnel, Dana; Jacokson, Petra; Raun Jacobsen, Nicklas;

    2014-01-01

    A review of the existing literature on ecotoxicity of CNT has been performed and the results are presented here. Several studies provide evidence that CNT do not cross biological barriers readily. When ingested by living organisms, CNT are subsequently excreted. When internalized, only a minimal...... fraction translocates into other body compartments. Thus bioaccumulation is limited; however organisms containing CNT may become source of entry of CNT into the food chain, potentially leading to biomagnification. Toxicity depends on exposure, model organism, CNT type and dispersion state. Aquatic...

  3. Toxic metals in aquatic ecosystems: a microbiological perspective.

    Science.gov (United States)

    Ford, T; Ryan, D

    1995-02-01

    Microbe-metal interactions in aquatic environments and their exact role in transport and transformations of toxic metals are poorly understood. This paper will briefly review our understanding of these interactions. Ongoing research in Lake Chapala, Mexico, the major water source for the City of Guadalajara, provides an opportunity to study the microbiological aspects of metal-cycling in the water column. Constant resuspension of sediments provides a microbiologically rich aggregate-based system. Data indicate that toxic metals are concentrated on aggregate material and bioaccumulate in the food chain. A provisional model is presented for involvement of microbial aggregates in metal-cycling in Lake Chapala. PMID:7621793

  4. Risk assessment of butyltins based on a fugacity-based food web bioaccumulation model in the Jincheng Bay mariculture area: II. Risk assessment.

    Science.gov (United States)

    Hu, Yanbing; Song, Xiukai; Gong, Xianghong; Xu, Yingjiang; Liu, Huihui; Deng, Xuxiu; Ru, Shaoguo

    2014-08-01

    A fugacity-based food web bioaccumulation model was constructed, and the biotic concentrations of butyltins in the food web of the Jincheng Bay mariculture area were estimated accordingly, using the water and sediment concentrations described in the accompanying paper (Part I). This paper presents an ecological risk assessment (ERA) and a human health risk assessment (HHRA) of the butyltins, based on the estimated tissue residues in the marine life in this area. The results showed that the ecological risk probability was greater than 0.05. At this level, management control is critical since sensitive marine species would be profoundly endangered by butyltin contamination. Few if any detrimental effects, however, would be generated for humans from exposure to butyltins through seafood consumption. The fugacity-based model can refine the ERA and HHRA of pollutants in marine areas, provide a basis for protecting marine ecology and the security of fishery products, and thus help determine the feasibility of a proposed aquaculture project. PMID:24947127

  5. Assessment of Mercury Bioaccumulation in Zebra Cichlid (Cichlasoma Nigrofasciatum) Exposed to Sublethal Concentrations of Permethrin

    OpenAIRE

    Mahdi Banaee; Amal Beitsayah; Isar Jorabdoz

    2014-01-01

    Background: Aquatic ecosystems are frequently subjected to contamination by toxic heavy metals and pesticides, yet very little is known about the influence of pesticides on bioaccumulation of heavy metals in aquatic organisms. Mercury is a toxic metal with no known biological benefit to organisms. Bioavailability of mercury in aquatic environments depends on biological and non-biological parameters including other pollutants. Therefore, the objectives of this research were to determine the ef...

  6. Bioaccumulation and trophic magnification of pharmaceuticals and endocrine disruptors in a Mediterranean river food web.

    Science.gov (United States)

    Ruhí, Albert; Acuña, Vicenç; Barceló, Damià; Huerta, Belinda; Mor, Jordi-Rene; Rodríguez-Mozaz, Sara; Sabater, Sergi

    2016-01-01

    Increasing evidence exists that emerging pollutants such as pharmaceuticals (PhACs) and endocrine-disrupting compounds (EDCs) can be bioaccumulated by aquatic organisms. However, the relative role of trophic transfers in the acquisition of emerging pollutants by aquatic organisms remains largely unexplored. In freshwater ecosystems, wastewater treatment plants are a major source of PhACs and EDCs. Here we studied the entrance of emerging pollutants and their flow through riverine food webs in an effluent-influenced river. To this end we assembled a data set on the composition and concentrations of a broad spectrum of PhACs (25 compounds) and EDCs (12 compounds) in water, biofilm, and three aquatic macroinvertebrate taxa with different trophic positions and feeding strategies (Ancylus fluviatilis, Hydropsyche sp., Phagocata vitta). We tested for similarities in pollutant levels among these compartments, and we compared observed bioaccumulation factors (BAFs) to those predicted by a previously-developed empirical model based on octanol-water distribution coefficients (Dow). Despite a high variation in composition and levels of emerging pollutants across food web compartments, observed BAFs in Hydropsyche and Phagocata matched, on average, those already predicted. Three compounds (the anti-inflammatory drug diclofenac, the lipid regulator gemfibrozil, and the flame retardant TBEP) were detected in water, biofilm and (at least) one macroinvertebrate taxa. TBEP was the only compound present in all taxa and showed magnification across trophic levels. This suggests that prey consumption may be, in some cases, a significant exposure route. This study advances the notion that both waterborne exposure and trophic interactions need to be taken into account when assessing the potential ecological risks of emerging pollutants in aquatic ecosystems. PMID:26170111

  7. IMPROVED VALUATION OF ECOLOGICAL BENEFITS ASSOCIATED WITH AQUATIC LIVING RESOURCES: DEVELOPMENT AND TESTING OF INDICATOR-BASED STATED PREFERENCE VALUATION AND TRANSFER

    Science.gov (United States)

    In addition to development and systematic qualitative/quantitative testing of indicator-based valuation for aquatic living resources, the proposed work will improve interdisciplinary mechanisms to model and communicate aquatic ecosystem change within SP valuation—an area...

  8. Selection of bioaccumulation criteria for environmental emergency (E2) planning

    International Nuclear Information System (INIS)

    Environment Canada's Environmental Emergency regulations require the evaluation of a substance by a Risk Evaluation Framework (REF). Bioaccumulation criteria are used within the environmental hazard ratings section of the REF to determine the risk of a substance to organisms and are obtained from 3 types of measurements depending on data reliability: (1) bioaccumulation factors (BAF); (2) bioconcentration factors (BCF); and (3) an octanol-water partition coefficient (log Kow). This paper presented details of a study of international and regional bioaccumulation criteria conducted to aid in determining appropriate criteria for E2 regulations and plans, with specific reference to substances toxic to aquatic organisms. An E2 plan is required if a substance has a bioconcentration factor of more than 500 in conjunction with aquatic toxicity. Bioaccumulation criteria from several sources for 745 substances were obtained to aid in choosing the most important parameters. Various international and regional criteria were examined and corresponding sources were summarized, and different source criteria was compared with empirical chemical data. The criteria chosen included both log Kow values and BCF values, although it was suggested that BCF and BAF are more realistic measures of bioaccumulation than log Kow, as they are derived from animal studies. The chosen values agreed with the virtual elimination criteria set out by the Canadian Environmental Protection Act (CEPA) 1999 as well as United States Environmental Protection Agency (EPA) criteria. It was concluded that the bioaccumulation criteria for E2 planning will help Environment Canada ensure the protection of the environment from hazardous substances. 11 refs., 3 tabs., 5 figs

  9. Metals bioaccumulation mechanism in neem bark

    Science.gov (United States)

    The aim of this work was to define the bioaccumulation mechanism of metals onto the non-living biomaterial prepared from an extensively available plant bark biomass of neem (Azadirachta indica). Based on maximum ultimate fixation capacities (mmol/g) of the product, metals ions could be arranged as H...

  10. Mapping Aquatic Vegetation in a Large, Shallow Eutrophic Lake: A Frequency-Based Approach Using Multiple Years of MODIS Data

    Directory of Open Access Journals (Sweden)

    Xiaohan Liu

    2015-08-01

    Full Text Available Aquatic vegetation serves many important ecological and socioeconomic functions in lake ecosystems. The presence of floating algae poses difficulties for accurately estimating the distribution of aquatic vegetation in eutrophic lakes. We present an approach to map the distribution of aquatic vegetation in Lake Taihu (a large, shallow eutrophic lake in China and reduce the influence of floating algae on aquatic vegetation mapping. Our approach involved a frequency analysis over a 2003–2013 time series of the floating algal index (FAI based on moderate-resolution imaging spectroradiometer (MODIS data. Three phenological periods were defined based on the vegetation presence frequency (VPF and the growth of algae and aquatic vegetation: December and January composed the period of wintering aquatic vegetation; February and March composed the period of prolonged coexistence of algal blooms and wintering aquatic vegetation; and June to October was the peak period of the coexistence of algal blooms and aquatic vegetation. By comparing and analyzing the satellite-derived aquatic vegetation distribution and 244 in situ measurements made in 2013, we established a FAI threshold of −0.025 and VPF thresholds of 0.55, 0.45 and 0.85 for the three phenological periods. We validated the accuracy of our approach by comparing the results between the satellite-derived maps and the in situ results obtained from 2008–2012. The overall classification accuracy was 87%, 81%, 77%, 88% and 73% in the five years from 2008–2012, respectively. We then applied the approach to the MODIS images from 2003–2013 and obtained the total area of the aquatic vegetation, which varied from 265.94 km2 in 2007 to 503.38 km2 in 2008, with an average area of 359.62 ± 69.20 km2 over the 11 years. Our findings suggest that (1 the proposed approach can be used to map the distribution of aquatic vegetation in eutrophic algae-rich waters and (2 dramatic changes occurred in the

  11. New textbooks of science and their reference to the application of scientific method based on the aquatic resources.

    OpenAIRE

    Héctor Toledo Muñoz; Sara Zelada Muñoz; Carmen Soto Martínez

    2012-01-01

    A new didactical curriculum model for teaching science based on aquatic resources has been applied to a group four hundred and fourteen students from primary education, just in establishments situated on the coastal edge of the Tenth Region of Los Lagos, Chile. The themes of the learning strategy were suggested activities in science texts, drawn from interdisciplinary workshops involving classroom teachers, aquatic resources, professional didactic teaching, marine ecology experts, geneticist,...

  12. Elucidating differences in metal absorption efficiencies between terrestrial soft-bodied and aquatic species

    DEFF Research Database (Denmark)

    Owsianiak, Mikolaj; Veltman, Karin; Hauschild, Michael Zwicky;

    2014-01-01

    It is unknown whether metal absorption efficiencies in terrestrial soft-bodied species can be predicted with the same metal properties as for aquatic species. Here, we developed models for metal absorption efficiency from the dissolved phase for terrestrial worms and several aquatic species, based...... species, with the covalent index being the best predictor. It is hypothesized that metal absorption by soft-bodied species in soil systems is influenced by the rate of metal supply to the membrane, while in aquatic systems accumulation is solely determined by metal affinity to membrane bound transport...... proteins. Our results imply that developing predictive terrestrial bioaccumulation and toxicity models for metals must consider metal interactions with soil solids. This may include desorption of a cation bound to soil solids through ion exchange, or metal release from soil surfaces involving breaking of...

  13. Increased Mercury Bioaccumulation Follows Water Quality Improvement

    International Nuclear Information System (INIS)

    Changes in physical and chemical characteristics of aquatic habitats made to reduce or eliminate ecological risks can sometimes have unforeseen consequences. Environmental management activities on the U.S. Dept. of Energy reservation in Oak Ridge, Tennessee,have succeeded in improving water quality in streams impacted by discharges fi-om industrial facilities and waste disposal sites. The diversity and abundance of pollution-sensitive components of the benthic macroinvertebrate communities of three streams improved after new waste treatment systems or remedial actions reduced inputs of various toxic chemicals. Two of the streams were known to be mercury-contaminated from historical spills and waste disposal practices. Waterborne mercury concentrations in the third were typical of uncontaminated systems. In each case, concentrations of mercury in fish, or the apparent biological availability of mercury increased over the period during which ecological metrics indicated improved water quality. In the system where waterborne mercury concentrations were at background levels, increased mercury bioaccumulation was probably a result of reduced aqueous selenium concentrations; however, the mechanisms for increased mercury accumulation in the other two streams remain under investigation. In each of the three systems, reduced inputs of metals and inorganic anions was followed by improvements in the health of aquatic invertebrate communities. However, this reduction in risk to aquatic invertebrates was accompanied by increased risk to humans and piscivorous wildlife related to increased mercury concentrations in fish

  14. Bioaccumulation of silver nanoparticles in rainbow trout (Oncorhynchus mykiss): Influence of concentration and salinity

    Energy Technology Data Exchange (ETDEWEB)

    Salari Joo, Hamid, E-mail: h.salary1365@gmail.com [Department of Aquaculture, Marine Science Faculty, Tarbiat Modares University, Mazandaran, Noor (Iran, Islamic Republic of); Kalbassi, Mohammad Reza, E-mail: kalbassi_m@modares.ac.ir [Department of Aquaculture, Marine Science Faculty, Tarbiat Modares University, Mazandaran, Noor (Iran, Islamic Republic of); Yu, Il Je, E-mail: u1670916@chol.com [Institute of Nano-product Safety Research, Hoseo University, 165 Sechul-ri, Baebang-myun, Asan 336-795 (Korea, Republic of); Lee, Ji Hyun, E-mail: toxin@dreamwiz.com [Institute of Nano-product Safety Research, Hoseo University, Asan (Korea, Republic of); Johari, Seyed Ali, E-mail: a.johari@uok.ac.ir [Aquaculture Department, Natural Resources Faculty, University of Kurdistan, Kurdistan, Sanandaj (Iran, Islamic Republic of)

    2013-09-15

    Highlights: •We studied influence of concentration and salinity on bioaccumulation of silver nanoparticles in rainbow trout (Oncorhynchus mykiss). •The Ag-NPs were characterized using standard methods. •The organisms were exposed to Ag-NPs in three different salinity concentrations, for 14 days in static renewal systems. •The bioaccumulation of Ag in the studied tissues was concentration-dependent in all the salinities and its order were liver > kidneys ≈ gills > white muscles respectively. -- Abstract: With the increasing use of silver nanoparticles (Ag-NPs), their entrance into aquatic ecosystems is inevitable. Thus, the present study simulated the potential fate, toxicity, and bioaccumulation of Ag-NPs released into aquatic systems with different salinities. The Ag-NPs were characterized using inductively coupled plasma-atomic emission spectroscopy (ICP-AES), dynamic light scattering (DLS), transmission electron microscopy (TEM), energy-dispersive X-ray analysis (EDX), and UV–vis spectroscopy. Juvenile rainbow trout were exposed to Ag-NPs in three different salinity concentrations, including low (0.4 ppt), moderate (6 ± 0.3 ppt), and high (12 ± 0.2 ppt) salinity, for 14 days in static renewal systems. The nominal Ag-NP concentrations in the low salinity were 0.032, 0.1, 0.32, and 1 ppm, while the Ag-NP concentrations in the moderate and high salinity were 3.2, 10, 32, and 100 ppm. UV–vis spectroscopy was used during 48 h (re-dosing time) to evaluate the stability and possible changes in size of the Ag-NPs in the water. The results revealed that the λ{sub max} of the Ag-NPs remained stable (415–420 nm) at all concentrations in the low salinity with a reduction of absorbance between 380 and 550 nm. In contrast, the λ{sub max} quickly shifted to a longer wavelength and reduced absorbance in the moderate and higher salinity. The bioaccumulation of Ag in the studied tissues was concentration-dependent in all the salinities based on the following

  15. Bioaccumulation of silver nanoparticles in rainbow trout (Oncorhynchus mykiss): Influence of concentration and salinity

    International Nuclear Information System (INIS)

    Highlights: •We studied influence of concentration and salinity on bioaccumulation of silver nanoparticles in rainbow trout (Oncorhynchus mykiss). •The Ag-NPs were characterized using standard methods. •The organisms were exposed to Ag-NPs in three different salinity concentrations, for 14 days in static renewal systems. •The bioaccumulation of Ag in the studied tissues was concentration-dependent in all the salinities and its order were liver > kidneys ≈ gills > white muscles respectively. -- Abstract: With the increasing use of silver nanoparticles (Ag-NPs), their entrance into aquatic ecosystems is inevitable. Thus, the present study simulated the potential fate, toxicity, and bioaccumulation of Ag-NPs released into aquatic systems with different salinities. The Ag-NPs were characterized using inductively coupled plasma-atomic emission spectroscopy (ICP-AES), dynamic light scattering (DLS), transmission electron microscopy (TEM), energy-dispersive X-ray analysis (EDX), and UV–vis spectroscopy. Juvenile rainbow trout were exposed to Ag-NPs in three different salinity concentrations, including low (0.4 ppt), moderate (6 ± 0.3 ppt), and high (12 ± 0.2 ppt) salinity, for 14 days in static renewal systems. The nominal Ag-NP concentrations in the low salinity were 0.032, 0.1, 0.32, and 1 ppm, while the Ag-NP concentrations in the moderate and high salinity were 3.2, 10, 32, and 100 ppm. UV–vis spectroscopy was used during 48 h (re-dosing time) to evaluate the stability and possible changes in size of the Ag-NPs in the water. The results revealed that the λmax of the Ag-NPs remained stable (415–420 nm) at all concentrations in the low salinity with a reduction of absorbance between 380 and 550 nm. In contrast, the λmax quickly shifted to a longer wavelength and reduced absorbance in the moderate and higher salinity. The bioaccumulation of Ag in the studied tissues was concentration-dependent in all the salinities based on the following order: liver

  16. Theoretical training bases for young athletes in aquatic sports on the natural environment: Bodyboard.

    Directory of Open Access Journals (Sweden)

    Marcos Mecías Calvo

    2015-09-01

    Full Text Available The bodyboard is a surfing discipline whose growth has been considerably since the 60s, so it is considered one of the fastest growing aquatic sport in the world. Despite this, scientific research of this discipline has been reflected poorly compared to other sports. As in any other sport, the bodyboarder requires of specific physical and physiological conditions to help it to practice the sport effectively as it does not follow a specific training or develop conditioning programs. Therefore, this article comes up with the idea of providing a basis for determining the most appropriate training based on study objectives and bodyboard actions to improve physical, technical and psychological condition of the bodyboarders based on the particularities of their own sport and the athlete, taking into account scientific studies in the field at hand: the Bodyboard.

  17. Citrate coated silver nanoparticles change heavy metal toxicities and bioaccumulation of Daphnia magna.

    Science.gov (United States)

    Kim, Injeong; Lee, Byung-Tae; Kim, Hyun-A; Kim, Kyoung-Woong; Kim, Sang Don; Hwang, Yu-Sik

    2016-01-01

    Citrate-coated AgNPs (c-AgNPs) have negatively charged surfaces and their surface interactions with heavy metals can affect metal toxicity in aquatic environments. This study used Daphnia magna to compare the acute toxicities and bioaccumulation of As(V), Cd, and Cu when they interact with c-AgNPs. The 24-h acute toxicities of As(V) and Cu were not affected by the addition of c-AgNPs, while bioaccumulation significantly decreased in the presence of c-AgNPs. In contrast, both the 24-h acute toxicity and bioaccumulation of Cd increased in the presence of c-AgNPs. These toxicity and bioaccumulation trends can be attributed to the interactions between the AgNP surface and the heavy metals. As(V) and c-AgNPs compete by negative charge, decreasing As(V) toxicity. Copper adheres readily to c-AgNP citrate, decreasing Cu bioavailability, and thus reducing Cu toxicity and bioaccumulation. Citrate complexes with divalent cations such as Ca and Mg reduce the competition between divalent cations and Cd on biotic ligand, increasing toxicity and bioaccumulation of Cd. This study shows that surface properties determine the effect of c-AgNPs on heavy metal toxicities and bioaccumulations; hence, further studies on the effect of nanoparticle by it surface properties are warranted. PMID:26188498

  18. BIOACCUMULATION AND BIOTRANSFORMATION OF CHIRAL TRIAZOLE FUNGICIDES IN RAINBOW TROUT (ONCORHYNCHUS MYKISS)

    Science.gov (United States)

    There are very little data on the bioaccumulation and biotransformation of current-use pesticides (CUPs) despite the fact that such data are critical in assessing their fate and potential toxic effects in aquatic organisms. To help address this issue, juvenile rainbow trout (Onco...

  19. Satellite-Based Assessment of the spatial extent of Aquatic Vegetation in Lake Victoria

    Science.gov (United States)

    Clark, W.; Aligeti, N.; Jeyaprakash, T.; Martins, M.; Stodghill, J.; Winstanley, H.

    2011-12-01

    Lake Victoria in Africa is the second largest freshwater lake in the world and is known for its abundance of aquatic wildlife. In particular over 200 different fish species are caught and sold by local fisherman. The lake is a major contributor to the local economy as a corridor of transportation, source of drinking water, and source of hydropower. However, the invasion of aquatic vegetation such as water hyacinth in the lake has disrupted each of these markets. Aquatic vegetation now covers a substantial area of the coastline blocking waterways, disrupting hydropower, hindering the collection of drinking water and decreasing the profitability of fishing. The vegetation serves as a habitat for disease carrying mosquitoes as well as snakes and snails that spread the parasitic disease bilharzia. The current control measures of invasive aquatic vegetation rely on biological, chemical and mechanical control. The objective of this study was to utilize remote sensing to map aquatic vegetation within Lake Victoria from 2000 to 2011. MODIS, Landsat 4-5TM, and Landsat 7-ETM imagery was employed to perform change detections in vegetation and identify the extent of aquatic vegetation throughout the years. The efficiency of containment efforts were evaluated and ideal time for application of such efforts were suggested. A methodology for aquatic vegetation surveillance was created. The results of this project were presented as a workshop to the Lake Victoria Fisheries Organization, SERVIR, and other partner organizations. The workshop provided instruction into the use of NASA and other satellite derived products. Time series animations of the spatial extent of aquatic vegetation within the lake were created. By identifying seasons of decreased aquatic vegetation, ideal times to employ control efforts were identified. SERVIR will subsequently utilize the methodologies and mapping results of this study to develop operational aquatic vegetation surveillance for Lake Victoria.

  20. [Aquatic Ecological Index based on freshwater (ICE(RN-MAE)) for the Rio Negro watershed, Colombia].

    Science.gov (United States)

    Forero, Laura Cristina; Longo, Magnolia; John Jairo, Ramirez; Guillermo, Chalar

    2014-04-01

    Aquatic Ecological Index based on freshwater (ICE(RN-MAE)) for the Rio Negro watershed, Colombia. Available indices to assess the ecological status of rivers in Colombia are mostly based on subjective hypotheses about macroinvertebrate tolerance to pollution, which have important limitations. Here we present the application of a method to establish an index of ecological quality for lotic systems in Colombia. The index, based on macroinvertebrate abundance and physicochemical variables, was developed as an alternative to the BMWP-Col index. The method consists on determining an environmental gradient from correlations between physicochemical variables and abundance. The scores obtained in each sampling point are used in a standardized correlation for a model of weighted averages (WA). In the WA model abundances are also weighted to estimate the optimum and tolerance values of each taxon; using this information we estimated the index of ecological quality based also on macroinvertebrate (ICE(RN-MAE)) abundance in each sampling site. Subsequently, we classified all sites using the index and concentrations of total phosphorus (TP) in a cluster analysis. Using TP and ICE(RN-MAE), mean, maximum, minimum and standard deviation, we defined threshold values corresponding to three categories of ecological status: good, fair and critical. PMID:25189081

  1. Curative and health enhancement effects of aquatic exercise: evidence based on interventional studies

    Directory of Open Access Journals (Sweden)

    Honda T

    2012-03-01

    Full Text Available Takuya Honda1, Hiroharu Kamioka21Research Fellow of the Japanese Society for the Promotion of Science, 2Laboratory of Physical and Health Education, Faculty of Regional Environment Science, Tokyo University of Agriculture, Tokyo, JapanBackground: The purpose of this study was to report on the health benefits and curative effects of aquatic exercise.Methods: We adopted the results of high-grade study designs (ie, randomized controlled trials and nonrandomized controlled trials, for which there were many studies on aquatic exercise. Aquatic exercise, in this study, means walking in all directions, stretching, and various exercises and conditioning performed with the feet grounded on the floor of a swimming pool. We excluded swimming. We decided to treat aquatic exercise, underwater exercise, hydrotherapy, and pool exercise as all having the same meaning.Results: Aquatic exercise had significant effects on pain relief and related outcome measurements for locomotor diseases.Conclusion: Patients may become more active, and improve their quality of life, as a result of aquatic exercise.Keywords: aquatic exercise, health enhancement, evidence

  2. Heavy Metal Accumulation as Phytoremediation Potential of Aquatic Macrophyte, Monochoria vaginalis (Burm.F. K. Presl Ex Kunth

    Directory of Open Access Journals (Sweden)

    Tulika Talukdar

    2015-03-01

    Full Text Available Bioaccumulation potential of six ecotypes, collected from six different industrial zones of lower Indo-Gangetic basin of West Bengal, India,of Monochoria vaginalis, commonly known as oval-leafed pondweed has been investigated based on chromium (Cr, cadmium (Cd andCopper (Cu accumulation pattern in different plant organs. Bioaccumulation potential was assessed by bioaccumulation factors (BFs-leavesmetal concentration/soil metal concentration, bioconcentration factors (BCFs- roots metal/soil metal, transfer factors (TFs-leaves +rhizomes/roots and enrichment factors (EFs-metals in edible parts/soil metal. Accumulation pattern significantly differed among ecotypes,and accumulation in plant organs was highly metal-specific. BFs for Cr and Cd were >>1 in most of the ecotypes while high TFs (>>1 werenoticed in six ecotypes for Cr and Cu. BCFs was >>1 in all the ecotypes for Cd accumulation only. EFs values for the three metals hoveredaround 1 but it was > 1.0 for Cu in all the six ecotypes. The results suggested that Cr and Cu predominantly accumulated in leaves and rhizomeswhile Cd was predominantly sequestered in roots of M. vaginalis ecotypes. Cu, a redox active metal, showed higher capability than Cd and Crto accumulate in edible parts. In the present study, potential plant parts in M. vaginalis have been identified as bioaccumulation organs withoutany apparent symptoms of toxicity which can be used as phytoremediation of heavy metal contamination in aquatic ecosystems of lower Indo-Gangetic basin of India.

  3. Un modèle biodynamique pour prédire la bioaccumulation du plomb par voie dissoute chez Gammarus pulex: Influence de la chimie de l'eau et validation in situ

    OpenAIRE

    Urien, N.; Uher, E.; Billoir, E.; Geffard, O.; Fechner, L.C.; Lebrun, J.D.

    2015-01-01

    Metals bioaccumulated in aquatic organisms are considered to be a good indicator of bioavailable metal contamination levels in freshwaters. However, bioaccumulation depends on the metal, the species, and the water chemistry that influences metal bioavailability. In the laboratory, a kinetic model was used to describe waterborne Pb bioaccumulated in Gammarus pulex. Uptake and elimination rate constants were successfully determined and the effect of Ca2+ on Pb uptake was integrated into the mod...

  4. Biodegradability and aquatic toxicity of quaternary ammonium-based gemini surfactants: Effect of the spacer on their ecological properties.

    Science.gov (United States)

    Garcia, M Teresa; Kaczerewska, Olga; Ribosa, Isabel; Brycki, Bogumił; Materna, Paulina; Drgas, Małgorzata

    2016-07-01

    Aerobic biodegradability and aquatic toxicity of five types of quaternary ammonium-based gemini surfactants have been examined. The effect of the spacer structure and the head group polarity on the ecological properties of a series of dimeric dodecyl ammonium surfactants has been investigated. Standard tests for ready biodegradability assessment (OECD 310) were conducted for C12 alkyl chain gemini surfactants containing oxygen, nitrogen or a benzene ring in the spacer linkage and/or a hydroxyethyl group attached to the nitrogen atom of the head groups. According to the results obtained, the gemini surfactants examined cannot be considered as readily biodegradable compounds. The negligible biotransformation of the gemini surfactants under the standard biodegradation test conditions was found to be due to their toxic effects on the microbial population responsible for aerobic biodegradation. Aquatic toxicity of gemini surfactants was evaluated against Daphnia magna. The acute toxicity values to Daphnia magna, IC50 at 48 h exposure, ranged from 0.6 to 1 mg/L. On the basis of these values, the gemini surfactants tested should be classified as toxic or very toxic to the aquatic environment. However, the dimeric quaternary ammonium-based surfactants examined result to be less toxic than their corresponding monomeric analogs. Nevertheless the aquatic toxicity of these gemini surfactants can be reduced by increasing the molecule hydrophilicity by adding a heteroatom to the spacer or a hydroxyethyl group to the polar head groups. PMID:27045632

  5. Aquatic plants

    DEFF Research Database (Denmark)

    Madsen, T. V.; Sand-Jensen, K.

    2006-01-01

    Aquatic fl owering plants form a relatively young plant group on an evolutionary timescale. The group has developed over the past 80 million years from terrestrial fl owering plants that re-colonised the aquatic environment after 60-100 million years on land. The exchange of species between...... terrestrial and aquatic environments continues today and is very intensive along stream banks. In this chapter we describe the physical and chemical barriers to the exchange of plants between land and water....

  6. Modeling PCB dechlorination in aquatic sediments by principal component based factor analysis and positive matrix factorization

    Science.gov (United States)

    Christensen, E. R.; Bzdusek, P. A.

    2003-04-01

    Anaerobic PCB dechlorination in aquatic sediments is a naturally occurring process that reduces the dioxin-like PCB toxicity. The PCB biphenyl structure is kept intact but the number of substituted chlorine atoms is reduced, primarily from the para and meta positions. Flanked para and meta chlorine dechlorination, as in process H/H', appears to be more common in-situ than flanked and unflanked para, and meta dechlorination as in process Q. Aroclors that are susceptible to these reactions include 1242, 1248, 1254, and 1260. These dechlorination reactions have recently been modeled by a least squares method for Ashtabula River, Ohio, and Fox River, Wisconsin sediments. Prior to modeling the dechlorination reactions for an ecosystem it is desirable to generate overall PCB source functions. One method to determine source functions is to use loading matrices of a factor analytical model. We have developed such models based both on a principal component approach including nonnegative oblique rotations, and positive matrix factorization (PMF). While the principal component method first requires an eigenvalue analysis of a covariance matrix, the PMF method is based on a direct least squares analysis considering simultaneously the loading and score matrices. Loading matrices obtained from the PMF method are somewhat sensitive to the initial guess of source functions. Preliminary work indicates that a hybrid approach considering first principal components and then PMF may offer an optimum solution. The relationship of PMF to conventional chemical mass balance modeling with or without some prior knowledge of source functions is also discussed.

  7. Presence, fate and effects of the intense sweetener sucralose in the aquatic environment

    International Nuclear Information System (INIS)

    Sucralose (1,6-dichloro-1,6-dideoxy-b-D-fructo-furanosyl 4-chloro-4-deoxy-a-D-galactopyranoside), sold under the trade name Splenda®, has been detected in municipal effluents and surface waters in the United States and Europe. The environmental presence of sucralose has led to interest in the possibility of toxic effects in non-target species. This review presents an environmental risk assessment of sucralose based on available data concerning its presence, fate and effects in the environment. Sucralose, which is made by selective chlorination of sucrose, is a highly stable compound, which undergoes negligible metabolism in mammals, including humans, and displays a low biodegradation potential in the environment. This intense sweetener is highly soluble in water, displays a low bioaccumulation potential and a low sorption potential to soil and organic matter, and thus is predominantly present in the water column. The predicted environmental concentration (PEC) for sucralose, based on measured data in surface waters, was determined to be 10 μg/L. Aquatic toxicity studies using standardized, validated protocols used in regulatory decision making indicate that sucralose does not alter survival, growth and reproduction of aquatic organisms (such as plants, algae, crustaceans and fish) at concentrations > 9000 times higher than those detected in the environment. Some studies, using non-standardized protocols, have reported behavioral and other non-traditional responses in aquatic organisms, but the relevance of these findings for assessing adverse effects on individuals and populations will require further investigation. In terms of traditional risk assessment, the proposed predicted no effect concentration for aquatic organisms (PNEC) was determined to be 0.93 mg/L, based on the lowest no effect concentration (NOEC) from a validated chronic study with mysid shrimp and an application factor of 100. The resultant PEC/PNEC quotient was determined to be well below 1 (PEC

  8. Presence, fate and effects of the intense sweetener sucralose in the aquatic environment

    Energy Technology Data Exchange (ETDEWEB)

    Tollefsen, Knut Erik, E-mail: ket@niva.no [Norwegian Institute for Water Research (NIVA), Gaustadalleen 21, N-0349 Oslo (Norway); Nizzetto, Luca [Norwegian Institute for Water Research (NIVA), Gaustadalleen 21, N-0349 Oslo (Norway); Huggett, Duane B. [Department of Biological Sciences, University of North Texas, P.O. Box 310559, Denton, TX 76203 (United States)

    2012-11-01

    Sucralose (1,6-dichloro-1,6-dideoxy-b-D-fructo-furanosyl 4-chloro-4-deoxy-a-D-galactopyranoside), sold under the trade name Splenda Registered-Sign , has been detected in municipal effluents and surface waters in the United States and Europe. The environmental presence of sucralose has led to interest in the possibility of toxic effects in non-target species. This review presents an environmental risk assessment of sucralose based on available data concerning its presence, fate and effects in the environment. Sucralose, which is made by selective chlorination of sucrose, is a highly stable compound, which undergoes negligible metabolism in mammals, including humans, and displays a low biodegradation potential in the environment. This intense sweetener is highly soluble in water, displays a low bioaccumulation potential and a low sorption potential to soil and organic matter, and thus is predominantly present in the water column. The predicted environmental concentration (PEC) for sucralose, based on measured data in surface waters, was determined to be 10 {mu}g/L. Aquatic toxicity studies using standardized, validated protocols used in regulatory decision making indicate that sucralose does not alter survival, growth and reproduction of aquatic organisms (such as plants, algae, crustaceans and fish) at concentrations > 9000 times higher than those detected in the environment. Some studies, using non-standardized protocols, have reported behavioral and other non-traditional responses in aquatic organisms, but the relevance of these findings for assessing adverse effects on individuals and populations will require further investigation. In terms of traditional risk assessment, the proposed predicted no effect concentration for aquatic organisms (PNEC) was determined to be 0.93 mg/L, based on the lowest no effect concentration (NOEC) from a validated chronic study with mysid shrimp and an application factor of 100. The resultant PEC/PNEC quotient was determined to be

  9. Bioaccumulation of Aluminium in Hydromacrophytes in Polish Coastal Lakes

    Directory of Open Access Journals (Sweden)

    Senze Magdalena

    2015-03-01

    Full Text Available The research on aluminium content was conducted in water and on aquatic flora of Polish lakes in the central part of the coast. The study included the lakes Sarbsko, Choczewskie, Bia.e, K.odno, D.brze and Salino investigated in the summer of 2013. The examined lakes belong mainly to the direct basin of the Baltic Sea. Samples of aquatic plants and lake waters were collected. In the water samples pH and electrolytic conductivity were measured. The aluminium content was determined both in water and aquatic plants. Submerged hydromacrophyte studies included Myriophyllum alterniflorum L., Potamogeton perfoliatus L. and Ceratophyllum demersum L. Emergent hydromacrophyte studies included Phragmites australis (Cav. Trin. ex Steud., Juncus bulbosus L., Iris pseudacorus L., Eleocharis palustris (L. Roem. % Schult., Phalaris arundinacea L., Carex riparia Curt., Mentha aquatic L., Stratiotes aloides L., Alisma plantago-aquatica L., Glyceria maxima (Hartman Holmb., Sagittaria sagittifolia L., Scirpus lacustris L. and Typha angustifolia L. The purpose of this investigation was the determination of the aluminium content in submerged and emergent hydromacrophytes and also the definition of their bioaccumulative abilities. The average concentration of aluminium in water was 2.68 fęg Al dm.3. The average content of aluminium in plants was 2.8015 mg Al kg.1. The bioaccumulation factor ranged from BCF=19.74 to BCF=16619. On the basis of the analysis of the aluminium content in water and aquatic plants results show that both water and plants were characterized by a moderate level of aluminium. The recorded concentrations indicate a mid-range value and are much lower than those which are quoted for a variety of surface waters in various parts of the world.

  10. Assessment of Mercury Bioaccumulation in Zebra Cichlid (Cichlasoma Nigrofasciatum Exposed to Sublethal Concentrations of Permethrin

    Directory of Open Access Journals (Sweden)

    Mahdi Banaee

    2014-12-01

    Full Text Available Background: Aquatic ecosystems are frequently subjected to contamination by toxic heavy metals and pesticides, yet very little is known about the influence of pesticides on bioaccumulation of heavy metals in aquatic organisms. Mercury is a toxic metal with no known biological benefit to organisms. Bioavailability of mercury in aquatic environments depends on biological and non-biological parameters including other pollutants. Therefore, the objectives of this research were to determine the effects of permethrin on bioaccumulation of mercury in zebra cichlid. Methods: Acute toxicity (LC50 of permethrin and mercury chloride was evaluated by estimating mortality in Probit Model in SPSS (version 19.0 IBM. In sub-lethal toxicity, zebra cichlid (Cichlasoma nigrofasciatum was exposed to various concentrations of permethrin (0.0, 0.40, 0.80, 1.20 and 1.60 µg.L-1 combined with 20 µg.L-1 mercury chloride for 15 days. At the end of the experiment, mercury concentrations were measured using ICP-OES-Perkin elmer (optima 7300-DV. Results: 96 h LC50 values of permethrin and mercury for C. nigrofasciatum were calculated to be 17.55 µg.L-1 and 140.38 µg.L-1, respectively. Our results clearly showed that the bioaccumulation of mercury in the specimens increased with increasing concentrations of permethrin to 1.20 and 1.60 µg.L-1. Conclusion: Increasing the concentration of permethrin had synergistic effects on the bioaccumulation of mercury in fish.

  11. Aquatic Life Benchmarks

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Aquatic Life Benchmarks is an EPA-developed set of criteria for freshwater species. These benchmarks are based on toxicity values reviewed by EPA and used in...

  12. Combined effects of titanium dioxide and humic acid on the bioaccumulation of cadmium in Zebrafish

    Energy Technology Data Exchange (ETDEWEB)

    Hu Xialin [State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092 (China); Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092 (China); Chen Qiqing; Jiang Lei; Yu Zhenyang; Jiang Danlie [State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092 (China); Yin Daqiang, E-mail: yindq@tongji.edu.cn [State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092 (China)

    2011-05-15

    The combined effects of titanium dioxide (TiO{sub 2}) nanoparticles and humic acid (HA) on the bioaccumulation of cadmium (Cd) in Zebrafish were investigated. Experimental data on the equilibrium Cd bioaccumulation suggest that only the dissolved Cd effectively contributed to Cd bioaccumulation in HA solutions whereas both the dissolved and TiO{sub 2} associated Cd were accumulated in TiO{sub 2} or the mixture of HA and TiO{sub 2} solutions, due likely to the additional intestine uptake of the TiO{sub 2}-bound Cd. The equilibrium Cd bioaccumulation in the mixed system was comparable to that in the corresponding HA solutions, and significantly lower than that in the corresponding TiO{sub 2} solutions (n = 3, p < 0.05). The presence of either HA or TiO{sub 2} (5-20 mg L{sup -1}) in water slightly increased the uptake rate constants of Cd bioaccumulation whereas combining HA and TiO{sub 2} reduced the uptake rate constants. - Graphical abstract: Both titanium dioxide (TiO{sub 2}) and mixtures of TiO{sub 2} and humic acid (HA) facilitate the bioaccumulation of Cd in Zebrafish. The asterisk denotes significant differences of the values in solution with and without matrices. Significant differences between the test systems with 5 mg L{sup -1} HA, 5 mg L{sup -1} TiO{sub 2} and [5 + 5] mg L{sup -1} HA and TiO{sub 2} as well as 10 mg L{sup -1} HA, 10 mg L{sup -1} TiO{sub 2} and [10 + 10] mg L{sup -1} HA and TiO{sub 2} are indicated by different letters. C and C{sub 0} represent dissolved Cd concentrations (a) and Cd bioaccumulation (b) in solutions with and without matrices, respectively. Display Omitted Highlights: > TiO{sub 2} facilitated the bioaccumulation of Cd in Zebrafish. > TiO{sub 2} associated Cd added to Cd bioaccumulation in TiO{sub 2} or mixtures of HA and TiO{sub 2}. > Coexistence with HA reduced Cd bioaccumulation in TiO{sub 2} solutions. > HA or TiO{sub 2} increased the bioaccumulation rate constants whereas mixtures not. - Titanium dioxide in the aquatic

  13. A nanoparticulate liquid binding phase based DGT device for aquatic arsenic measurement.

    Science.gov (United States)

    Liu, Shengwen; Qin, Nannan; Song, Jieyao; Zhang, Ya; Cai, Weiping; Zhang, Haimin; Wang, Guozhong; Zhao, Huijun

    2016-11-01

    A nanomaterials-based DGT device constructed with commercial dialysis membrane as diffusive layer and nanoparticulate Fe3O4 aqueous suspension as binding phase is developed and validated for in situ aquatic arsenic measurement. The Fe3O4NPs binding phase is capable of quantitatively accumulated both As(III) and As(V) species. As(III) and As(V) species coexist in the vast majority of environmental water samples. The large difference in diffusion coefficients of As(III) (DAs(III)=3.05×10(-7)cm(2)s(-1)) and As(V) (DAs(V)=1.63×10(-7)cm(2)s(-1)) makes the accurate DGT determination of total arsenic concentration of samples containing both species difficult. An effective diffusion coefficient (DAs¯=DAs(III)[1/(1+x)]+DAs(V)[x/(1+x)],where,x=As(V)/As(III)) approach is therefore proposed and validated for accurate DGT determination of total arsenic when As(III) and As(V) coexist. The experimental results demonstrate that for samples having As(V)/As(III) ratios between 0.1 and 0.9, the DGT determined total arsenic concentrations using DAs¯are within ±93-99% of that determined by ICP-MS. The general principle demonstrated in this work opens up a new avenue of utilizing functional nanomaterials as DGT binding phase, paving a way for developing new generation nanomaterials-based DGT devices that can be readily produced in massive numbers at low costs, facilitating the widespread use of DGT for large-scale environmental assessment and other applications. PMID:27591608

  14. Are We Eating Our Way to Prostate Cancer—A Hypothesis Based on the Evolution, Bioaccumulation, and Interspecific Transfer of miR-150

    Directory of Open Access Journals (Sweden)

    Venkatesh Vaidyanathan

    2016-04-01

    Full Text Available MicroRNAs (miRNAs are well established epigenetic modifiers. There is a lot of work being done to identify the evolutionary transfer of miRNAs both at intra- and interspecific levels. In this hypothesis-driven review, we have suggested a possible reason as to why miR-150 can be a promising diagnostic biomarker for prostate cancer using theories of evolution, bio-accumulation, and interspecific transfer of miRNAs.

  15. Modelling PCB bioaccumulation in a Baltic food web

    International Nuclear Information System (INIS)

    A steady state model is developed to describe the bioaccumulation of organic contaminants by 14 species in a Baltic food web including pelagic and benthic aquatic organisms. The model is used to study the bioaccumulation of five PCB congeners of different chlorination levels. The model predictions are evaluated against monitoring data for five of the species in the food web. Predicted concentrations are on average within a factor of two of measured concentrations. The model shows that all PCB congeners were biomagnified in the food web, which is consistent with observations. Sensitivity analysis reveals that the single most sensitive parameter is log K OW. The most sensitive environmental parameter is the annual average temperature. Although not identified amongst the most sensitive input parameters, the dissolved concentration in water is believed to be important because of the uncertainty in its determination. The most sensitive organism-specific input parameters are the fractional respiration of species from the water column and sediment pore water, which are also difficult to determine. Parameters such as feeding rate, growth rate and lipid content of organism are only important at higher trophic levels. - The bioaccumulation behaviour of PCB congeners in a Baltic food web is studied using a novel mechanistic model

  16. Toxicological impact of cadmium-based quantum dots towards aquatic biota: Effect of natural sunlight exposure.

    Science.gov (United States)

    Silva, B F; Andreani, T; Gavina, A; Vieira, M N; Pereira, C M; Rocha-Santos, T; Pereira, R

    2016-07-01

    Cadmium-based quantum dots (QDs) are increasingly applied in existent and emerging technologies, especially in biological applications due to their exceptional photophysical and functionalization properties. However, they are very toxic compounds due to the high reactive and toxic cadmium core. The present study aimed to determine the toxicity of three different QDs (CdS 380, CdS 480 and CdSeS/ZnS) before and after the exposure of suspensions to sunlight, in order to assess the effect of environmentally relevant irradiation levels in their toxicity, which will act after their release to the environment. Therefore, a battery of ecotoxicological tests was performed with organisms that cover different functional and trophic levels, such as Vibrio fischeri, Raphidocelis subcapitata, Chlorella vulgaris and Daphnia magna. The results showed that core-shell type QDs showed lower toxic effects to V. fischeri in comparison to core type QDs before sunlight exposure. However, after sunlight exposure, there was a decrease of CdS 380 and CdS 480 QD toxicity to bacterium. Also, after sunlight exposure, an effective decrease of CdSeS/ZnS and CdS 480 toxicity for D. magna and R. subcapitata, and an evident increase in CdS 380 QD toxicity, at least for D. magna, were observed. The results of this study suggest that sunlight exposure has an effect in the aggregation and precipitation reactions of larger QDs, causing the degradation of functional groups and formation of larger bulks which may be less prone to photo-oxidation due to their diminished surface area. The same aggregation behaviour after sunlight exposure was observed for bare QDs. These results further emphasize that the shell of QDs seems to make them less harmful to aquatic biota, both under standard environmental conditions and after the exposure to a relevant abiotic factor like sunlight. PMID:27162069

  17. Bioaccumulation and trophic dilution of human pharmaceuticals across trophic positions of an effluent-dependent wadeable stream

    OpenAIRE

    Du, Bowen; Haddad, Samuel P.; Luek, Andreas; Scott, W. Casan; Saari, Gavin N.; Kristofco, Lauren A.; Connors, Kristin A.; Rash, Christopher; Rasmussen, Joseph B.; Chambliss, C. Kevin; Brooks, Bryan W.

    2014-01-01

    Though pharmaceuticals are increasingly observed in a variety of organisms from coastal and inland aquatic systems, trophic transfer of pharmaceuticals in aquatic food webs have not been reported. In this study, bioaccumulation of select pharmaceuticals was investigated in a lower order effluent-dependent stream in central Texas, USA, using isotope dilution liquid chromatography–tandem mass spectrometry (MS). A fish plasma model, initially developed from laboratory studies, was tested to exam...

  18. The antihistamine hydroxyzine and Odonata : Bioaccumulation and effects on predator-prey interactions between dragonfly and damselfly larvae

    OpenAIRE

    Bomark, Ellinor

    2014-01-01

    Through wastewater entering aquatic environments, aquatic insects are continuously exposed to pharmaceuticals including neurologically active antihistamines. The antihistamine hydroxyzine has previously been found to lower activity in damselflies and to reach 2000 times the concentration of surrounding water in damselfly tissue. The purpose of this short-term exposure study was to investigate if hydroxyzine also bioaccumulates in dragonflies and if dilute hydroxyzine (362 ± 50, mean ng/l ± SD...

  19. Spatial and taxonomic variation in trace element bioaccumulation in two herbivores from a coal combustion waste contaminated stream.

    Science.gov (United States)

    Fletcher, Dean E; Lindell, Angela H; Stillings, Garrett K; Mills, Gary L; Blas, Susan A; Vaun McArthur, J

    2014-03-01

    Dissimilarities in habitat use, feeding habits, life histories, and physiology can result in syntopic aquatic taxa of similar trophic position bioaccumulating trace elements in vastly different patterns. We compared bioaccumulation in a clam, Corbicula fluminea and mayfly nymph Maccaffertium modestum from a coal combustion waste contaminated stream. Collection sites differed in distance to contaminant sources, incision, floodplain activity, and sources of flood event water and organic matter. Contaminants variably accumulated in both sediment and biofilm. Bioaccumulation differed between species and sites with C. fluminea accumulating higher concentrations of Hg, Cs, Sr, Se, As, Be, and Cu, but M. modestum higher Pb and V. Stable isotope analyses suggested both spatial and taxonomic differences in resource use with greater variability and overlap between species in the more physically disturbed site. The complex but essential interactions between organismal biology, divergence in resource use, and bioaccumulation as related to stream habitat requires further studies essential to understand impacts of metal pollution on stream systems. PMID:24507146

  20. Enantioselective bioaccumulation and degradation of sediment-associated metalaxyl enantiomers in Tubifex tubifex.

    Science.gov (United States)

    Di, Shanshan; Liu, Tiantian; Diao, Jinling; Zhou, Zhiqiang

    2013-05-29

    Knowledge about the enantioselective bioavailability of chiral pesticides in aquatic organisms facilitates more accurate interpretation of their environmental behaviors. In this study, the enantioselective bioaccumulation of metalaxyl enantiomers in Tubifex tubifex was detected in two uptake pathways. For the spike water treatment, a 16 day exposure experiment was employed and the enantiomer fractions (EFs) in tubifex tissue were maintained approximately at 0.47 during the experiment. For the spike sediment treatment, a 14 day bioaccumulation period indicated the concentrations of (-)-(R)-metalaxyl were higher than those of (+)-(S)-metalaxyl. Therefore, the bioaccumulation of metalaxyl in worms was enantioselective for these treatments. With the presence of tubifex, higher concentrations of metalaxyl in overlying water and lower concentrations in sediment were detected than in worm-free treatments. This means that tubifex has positive functions in metalaxyl's diffusion from the sediment to overlying water and in the degradation of the sediment-associated metalaxyl. PMID:23635317

  1. Bioaccumulation of sediment-bound Cr-51, Ni-63 and C-14 by benthic invertebrates

    International Nuclear Information System (INIS)

    Sediments in many areas of the Baltic Sea are highly contaminated with particle-reactive trace metals and/or radionuclides. These may be re-mobilised into aquatic food chains by bioaccumulation into benthic organisms. In this study, we examined and compared assimilation efficiencies and bioaccumulation kinetics (rates of uptake and elimination) of sediment-associated Cr-51, Ni-63 and organic-associated C- 14 in three common benthic invertebrates from the Baltic Sea (the bivalve Macoma balthica, the amphipod Monoporeia affinis and the priapulid worm Halicryptus spinulosus). There were differences between animals and radionuclides in both the rate of uptake and elimination and the maximum amount accumulated. Understanding how and to what degree different deposit-feeding benthic invertebrates are exposed to and bio-accumulate sediment-associated metals are important for both ecological risk assessment and management decisions in coastal ecosystems. (author)

  2. Environmental relevance of laboratory-derived kinetic models to predict trace metal bioaccumulation in gammarids: Field experimentation at a large spatial scale (France).

    Science.gov (United States)

    Urien, N; Lebrun, J D; Fechner, L C; Uher, E; François, A; Quéau, H; Coquery, M; Chaumot, A; Geffard, O

    2016-05-15

    Kinetic models have become established tools for describing trace metal bioaccumulation in aquatic organisms and offer a promising approach for linking water contamination to trace metal bioaccumulation in biota. Nevertheless, models are based on laboratory-derived kinetic parameters, and the question of their relevance to predict trace metal bioaccumulation in the field is poorly addressed. In the present study, we propose to assess the capacity of kinetic models to predict trace metal bioaccumulation in gammarids in the field at a wide spatial scale. The field validation consisted of measuring dissolved Cd, Cu, Ni and Pb concentrations in the water column at 141 sites in France, running the models with laboratory-derived kinetic parameters, and comparing model predictions and measurements of trace metal concentrations in gammarids caged for 7 days to the same sites. We observed that gammarids poorly accumulated Cu showing the limited relevance of that species to monitor Cu contamination. Therefore, Cu was not considered for model predictions. In contrast, gammarids significantly accumulated Pb, Cd, and Ni over a wide range of exposure concentrations. These results highlight the relevance of using gammarids for active biomonitoring to detect spatial trends of bioavailable Pb, Cd, and Ni contamination in freshwaters. The best agreements between model predictions and field measurements were observed for Cd with 71% of good estimations (i.e. field measurements were predicted within a factor of two), which highlighted the potential for kinetic models to link Cd contamination to bioaccumulation in the field. The poorest agreements were observed for Ni and Pb (39% and 48% of good estimations, respectively). However, models developed for Ni, Pb, and to a lesser extent for Cd, globally underestimated bioaccumulation in caged gammarids. These results showed that the link between trace metal concentration in water and in biota remains complex, and underlined the limits of

  3. Curative and health enhancement effects of aquatic exercise: evidence based on interventional studies

    OpenAIRE

    Honda T.; Kamioka H

    2012-01-01

    Takuya Honda1, Hiroharu Kamioka21Research Fellow of the Japanese Society for the Promotion of Science, 2Laboratory of Physical and Health Education, Faculty of Regional Environment Science, Tokyo University of Agriculture, Tokyo, JapanBackground: The purpose of this study was to report on the health benefits and curative effects of aquatic exercise.Methods: We adopted the results of high-grade study designs (ie, randomized controlled trials and nonrandomized controlled trials), for which ther...

  4. Distribution and bioaccumulation of organochlorine pesticides (OCPs) in food web of Nansi Lake, China.

    Science.gov (United States)

    Zhang, Guizhai; Pan, Zhaoke; Bai, Aiying; Li, Jing; Li, Xiaoming

    2014-04-01

    The concentration of 12 organochlorine pesticides (OCPs) were measured in water, sediment, aquatic plant, and animal (shrimp and fish) of Nansi Lake by gas chromatography equipped with an electron capture detector. The total OCPs concentrations were 65.31-100.31 ng L(-1) in water, 2.9-6.91 ng g(-1) dry weight (dw) in sediments, 1.29-6.42 ng g(-1) dw in aquatic plants and 7.57-17.22 ng g(-1) dw in animals. The OCPs composition profiles showed that heptachlor compounds was also the predominant OCPs contaminants in addition to hexachlorocyclohexanes (HCHs) and dichlorodiphenyltrichloroethanes (DDTs) in Nansi Lake. According to the source of HCHs and DDTs in sediment samples, there was no new input and the HCHs pollution mainly came from the use of Lindane in Nansi Lake. Bioaccumulation of OCPs in aquatic biota indicated that DDTs and heptachlor compounds had a strong accumulation, followed by HCHs and drins. The accumulation abilities of fish for OCPs were higher than those of plants and shrimps. The OCPs biota-sediment accumulation factor values of Channa argus was the highest in fish samples, followed by Carassius auratus, and Cyprinus caspio. Risk assessment of sediment showed that heptachlor epoxide had a higher occurrence possibility of adverse ecological effects to benthic species. Based on the calculation of acceptable daily intake and hazard ratio, HCHs in fish and shrimps from Nansi Lake had a lifetime cancer risk of greater than one per million. The risk assessment of water, sediment, and fish indicated the water environment of Nansi Lake is at a safe level at present. PMID:24213638

  5. Bioaccumulation and oxidative stress in Daphnia magna exposed to arsenite and arsenate.

    Science.gov (United States)

    Fan, Wenhong; Ren, Jinqian; Li, Xiaomin; Wei, Chaoyang; Xue, Feng; Zhang, Nan

    2015-11-01

    Arsenic pollution and its toxicity to aquatic organisms have attracted worldwide attention. The bioavailability and toxicity of arsenic are highly related to its speciation. The present study investigated the differences in bioaccumulation and oxidative stress responses in an aquatic organism, Daphnia magna, induced by 2 inorganic arsenic species (As(III) and As(V)). The bioaccumulation of arsenic, Na(+) /K(+) -adenosine triphosphatase (ATPase) activity, reactive oxygen species (ROS) content, total superoxide dismutase (SOD) activity, total antioxidative capability, and malondialdehyde content in D. magna were determined after exposure to 500 µg/L of arsenite and arsenate for 48 h. The results showed that the oxidative stress and antioxidative process in D. magna exposed to arsenite and arsenate could be divided into 3 phases, which were antioxidative response, oxidation inhibition, and antioxidative recovery. In addition, differences in bioaccumulation, Na(+) /K(+) -ATPase activity, and total SOD activity were also found in D. magna exposed to As(III) and As(V). These differences might have been the result of the high affinity of As(III) with sulfhydryl groups in enzymes and the structural similarity of As(V) to phosphate. Therefore, arsenate could be taken up by organisms through phosphate transporters, could substitute for phosphate in biochemical reactions, and could lead to a change in the bioaccumulation of arsenic and activity of enzymes. These characteristics were the possible reasons for the different toxicity mechanisms in the oxidative stress process of arsenite and arsenate. PMID:26084717

  6. An assessment of Hg in the freshwater aquatic environment related to long-range transported air pollution in Europe and North America (ICP Waters report 97/2009)

    OpenAIRE

    Ranneklev, S.; de Wit, H; Jenssen, M.; Skjelkvåle, B. L.

    2009-01-01

    Long-range transboundary atmospheric transport of the pollutant mercury (Hg) (LTRAP-Hg) poses an ecological threat to aquatic ecosystems and biota. Through fish consumption, mercury and its highly toxic and bioaccumulative organic form methylmercury (MeHg) may cause harmful effects on human health. Factors controlling the bioaccumulation of Hg in aquatic ecosystems are not well understood. In Scandinavia an increased content of Hg in piscivorous fish has been observed the last decade. Today, ...

  7. Tool use by aquatic animals

    OpenAIRE

    Mann, Janet; Patterson, Eric M.

    2013-01-01

    Tool-use research has focused primarily on land-based animals, with less consideration given to aquatic animals and the environmental challenges and conditions they face. Here, we review aquatic tool use and examine the contributing ecological, physiological, cognitive and social factors. Tool use among aquatic animals is rare but taxonomically diverse, occurring in fish, cephalopods, mammals, crabs, urchins and possibly gastropods. While additional research is required, the scarcity of tool ...

  8. Bioavailability and bioaccumulation as crucial factors linking contamination and ecological status

    Czech Academy of Sciences Publication Activity Database

    van Hattum, B.; Leonards, P.; Kukkonen, J.; Sormunen, A.; Tuikka, A.; van Vliet, S.; Bakker, J.; Smedes, F.; van Noort, P.; Streck, G.; Brack, W.; Bandow, N.; Kocan, A.; Lopez de Alda, M.; Brix, R.; Munoz, I.; de Deckere, E.; Van Liefferinge, C.; Leloup, V.; Jurajda, Pavel; Adámek, Zdeněk; Machala, M.; van Gils, J.; Morales, Y.; de Zwart, D.

    Leipzig : UFZ, 2009. s. 29-30. [MODELKEY - How to assess the impact of key pollutants. 30.11.2009-02.12.2009, Leipzig] Grant ostatní: 6th Framework Programme EC(XE) MODELKEY (511237GOCE) Institutional research plan: CEZ:AV0Z60930519 Keywords : aquatic environment * risk assessment Subject RIV: EH - Ecology, Behaviour http://www.modelkey.ufz.de/data/BertvanHattum_Bioavailability_bioaccumulation11966.pdf

  9. Physiological bases for detecting and predicting photoinhibition of aquatic photosynthesis by PAR and UV radiation

    International Nuclear Information System (INIS)

    Phytoplankton photosynthesis is the basis of almost all aquatic primary production in the world's oceans, estuaries and lakes. Oceanic primary production is a major portion of the global carbon budget (see other contributions this volume). Currently, we are unable to account for all the CO2 that is leaving the atmosphere and debate continues whether the ''missing carbon'' is going into either terrestrial and oceanic sinks (7). In this context, it is important to improve our knowledge of how phytoplankton photosynthesis responds to the aquatic environment. The aquatic light environment is primary among several factors governing aquatic photosynthesis. To understand phytoplankton response to aquatic irradiance, we must consider how light propagates underwater, variations in light spectral quality as well as intensity. Also important is how these optical characteristics relate to processes of light absorption and utilization by phytoplankton cells. Considerable progress has been made on answering many of these questions (e.g. 27). One topic, phytoplankton responses to irradiance stress induced by photosynthetically available radiation (PAR2) and UJV, has become increasingly important. The primary consequence in both cases is a time-dependent loss of photosynthetic activity (photo inhibition). Concern over the effects of solar UV irradiance has recently intensified with the advent of stratospheric ozone depletion, which allows for an increase of the mid-ultraviolet (UVB 280-320 nm)irradiance, especially in the Antarctic. The sensitivity of phytoplankton photosynthesis to irradiance stress can be readily demonstrated (36), however,showing whether this stress actually occurs in the aquatic environment remains difficult. The essential problem is that phytoplankton are in suspension. Their irradiance exposure will be determined by mixing processes that transport cells over a vertical gradient in light availability. The response to irradiance stress

  10. Mercury bioaccumulation in the Mediterranean

    OpenAIRE

    Cinnirella S.; Pirrone N.; Horvat M.; Kocman D.; Kotnik J.

    2013-01-01

    This study details mercury pollution within the food chain of the Mediterranean by analysing the most comprehensive mercury dataset available for biota and water measurements. In this study we computed a bioaccumulation factor (BAF) for datasets in the existing mercury-related scientific literature, in on-going programs, and in past measurement campaigns. Preliminary results indicate a major lack of information, making the outcome of any assessment very uncertain. Importantly, not all marine ...

  11. A label free aptamer-based LPG sensor for detection of mercury in aquatic solutions

    Science.gov (United States)

    Nikbakht, Hamed; Latifi, Hamid; Ziaee, Farzaneh

    2015-09-01

    We demonstrate a label free fiber optic sensor for detection of mercury ions in aquatic solutions. This sensor utilizes aptamers as bio-recognition element which traps mercury ions and cause a refractive index change in the vicinity of the sensor. Refractive index variations lead to a change in the transmission spectrum that can be used to calculate the concentration of mercury ions in that solution. The concentration of 1 nM mercury ions was detected which is below the specific amount determined by the US environmental protection agency as the maximum authorized contaminant level of Hg2+ ions in drinking water.

  12. Aquatic Sediments.

    Science.gov (United States)

    Sanville, W. D.; And Others

    1978-01-01

    Presents a literature review of aquatic sediments and its effect upon water quality, covering publications of 1976-77. This review includes: (1) sediment water interchange; (2) chemical and physical characterization; and (3) heavy water in sediments. A list of 129 references is also presented. (HM)

  13. A mid-infrared sensor for the determination of perfluorocarbon-based compounds in aquatic systems for geosequestration purposes.

    Science.gov (United States)

    Rauh, Florian; Schwenk, Matthias; Pejcic, Bobby; Myers, Matthew; Ho, Koon-Bay; Stalker, Linda; Mizaikoff, Boris

    2014-12-01

    Perfluorocarbon (PFC) compounds have been used as chemical tracer molecules to understand the movement of supercritical carbon dioxide for geosequestration monitoring and verification purposes. A commonly used method for detecting PFCs involves the collection of a sample from either soil-gas or the atmosphere via carbon-based sorbents which are then analyzed in a laboratory. However, PFC analysis in aquatic environments is neglected and this is an issue that needs to be considered since the PFC is likely to undergo permeation through the overlying water formations. This paper presents for the first time an innovative analytical method for the trace level in situ detection of PFCs in water. It reports on the development of a sensor based on mid-infrared attenuated total reflection (MIR-ATR) spectroscopy for determining the concentration of perfluoromethylcyclohexane (PMCH) and perfluoro-1,3-dimethylcyclohexane (PDCH) in aquatic systems. The sensor comprises a zinc selenide waveguide with the surface modified by a thin polymer film. The sensitivity of this device was investigated as a function of polymer type, coating thickness, and solution flow rates. The limit of detection (LOD) was determined to be 23 ppb and 79 ppb for PMCH and PDCH, respectively when using a 5 μm thick polyisobutylene (PIB) coated waveguide. This study has shown that the MIR-ATR sensor can be used to directly quantify PFC-based chemical tracer compounds in water over the 20-400 ppb concentration range. PMID:25159442

  14. Bioaccumulation factors for radionuclides in freshwater biota

    International Nuclear Information System (INIS)

    This report analyzes over 200 carefully selected papers to provide concise data sets and methodology for estimation of bioaccumulation factors for tritium and isotopes of strontium, cesium, iodine, manganese, and cobalt in major biotic components of freshwater environments. Bioaccumulation factors of different tissues are distinguished where significant differences occur. Since conditions in the laboratory are often unnatural in terms of chemical and ecological relationships, this review was restricted as far as possible to bioaccumulation factors determined for natural systems. Because bioaccumulation factors were not available for some shorter-lived radionuclides, a methodology for converting bioaccumulation factors of stable isotopes to those of shorter-lived radionuclides was derived and utilized. The bioaccumulation factor for a radionuclide in a given organism or tissue may exhibit wide variations among bodies of water that are related to differences in ambient concentrations of stable-element and carrier-element analogues. To account for these variations, simple models are presented that relate bioaccumulation factors to stable-element and carrier-element concentrations in water. The effects of physicochemical form and other factors in causing deviations from these models are discussed. Bioaccumulation factor data are examined in the context of these models, and bioaccumulation factor relations for the selected radionuclides are presented

  15. The Price Model of Aquatic Products Based on Predictive Control Theory

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    This paper discusses a disequilibrium cobweb model of price of aquatic products, and applies predictive control theory, so that the system operates stably, and the deviation between supply and demand of aquatic products smoothly tracks the pre-given target. It defines the supply and demand change model, and researches the impact of parameter selection in this model on dynamic state and robustness of the system. I conduct simulation by Matlab software, to get the response curve of this model. The results show that in the early period of commodities coming into the market, affected by lack of market information and many other factors, the price fluctuates greatly in a short time. The market will gradually achieve balance between supply and demand over time, and the price fluctuations in the neighbouring two periods are broadly consistent. The increase in model parameter can decrease overshoot, to promote the stability of system, but the slower the dynamic response, the longer the deviation between supply and demand to accurately track a given target. Therefore, by selecting different parameters, the decision-makers can establish different models of supply and demand changes to meet the actual needs, and ensure stable development of market. Simulation results verify the excellent performance of this algorithm.

  16. Contribution of aqueous and dietary uptakes to lead (Pb) bioaccumulation in Gammarus pulex: From multipathway modeling to in situ validation.

    Science.gov (United States)

    Hadji, Rym; Urien, Nastassia; Uher, Emmanuelle; Fechner, Lise C; Lebrun, Jérémie D

    2016-07-01

    Although dynamic approaches are nowadays used increasingly to describe metal bioaccumulation in aquatic organisms, the validation of such laboratory-derived modeling is rarely assessed under environmental conditions. Furthermore, information on bioaccumulation kinetics of Pb and the significance of its uptake by dietary route is scarce in freshwater species. This study aims at modeling aqueous and dietary uptakes of Pb in the litter-degrader Gammarus pulex and assessing the predictive quality of multipathway modeling from in situ bioaccumulation data. In microcosms, G. pulex were exposed to environmentally realistic concentrations of Pb (from 0.1 to 10µg/L) in the presence of Pb-contaminated poplar leaves, which were enclosed or not in a net to distinguish aqueous and dietary uptakes. Results show that water and food both constitute contamination sources for gammarids. Establishing biodynamic parameters involved in Pb aqueous and dietary uptake and elimination rates enabled to construct a multipathway model to describe Pb bioaccumulation in gammarids. This laboratory-derived model successfully predicted bioaccumulation measured in native populations of G. pulex collected in situ when local litter was used as dietary exposure source. This study demonstrates not only the suitable applicability of biodynamic parameters for predicting Pb bioaccumulation but also the necessity of taking dietary uptake into account for a better interpretation of the gammarids' contamination in natural conditions. PMID:27057993

  17. Aquatic modules for bioregenerative life support systems based on the C.E.B.A.S. biotechnology [correction of biotechnilogy].

    Science.gov (United States)

    Bluem, V; Paris, F

    2001-01-01

    Most concepts for bioregenerative life support systems are based on edible higher land plants which create some problems with growth and seed generation under space conditions. Animal protein production is mostly neglected because of the tremendous waste management problems with tetrapods under reduced weightlessness. Therefore, the "Closed Equilibrated Biological Aquatic System" (C.E.B.A.S.) was developed which represents an artificial aquatic ecosystem containing aquatic organisms which are adapted at all to "near weightlessness conditions" (fishes Xiphophorus helleri, water snails Biomphalaria glabrata, ammonia oxidizing bacteria and the rootless non-gravitropic edible water plant Ceratophyllum demersum). Basically the C.E.B.A.S. consists of 4 subsystems: a ZOOLOGICAL (correction of ZOOLOGICASL) COMPONENT (animal aquarium), a BOTANICAL COMPONENT (aquatic plant bioreactor), a MICROBIAL COMPONENT (bacteria filter) and an ELECTRONICAL COMPONENT (data acquisition and control unit). Superficially, the function principle appears simple: the plants convert light energy into chemical energy via photosynthesis thus producing biomass and oxygen. The animals and microorganisms use the oxygen for respiration and produce the carbon dioxide which is essential for plant photosynthesis. The ammonia ions excreted by the animals are converted by the bacteria to nitrite and then to nitrate ions which serve as a nitrogen source for the plants. Other essential ions derive from biological degradation of animal waste products and dead organic matter. The C.E.B.A.S. exists in 2 basic versions: the original C.E.B.A.S. with a volume of 150 liters and a self-sustaining standing time of more than 13 month and the so-called C.E.B.A.S. MINI MODULE with a volume of about 8.5 liters. In the latter there is no closed food loop by reasons of available space so that animal food has to be provided via an automated feeder. This device was flown already successfully on the STS-89 and STS-90

  18. Aquatic modules for bioregenerative life support systems based on the C.E.B.A.S. biotechnology

    Science.gov (United States)

    Bluem, Volker; Paris, Frank

    2001-03-01

    Most concepts for bioregenerative life support systems are based on edible higher land plants which create some problems with growth and seed generation under space conditions. Animal protein production is mostly neglected because of the tremendous waste management problems with tetrapods under reduced weightlessness. Therefore, the "Closed Equilibrated Biological Aquatic System" (C.E.B.A.S.) was developed which represents an artificial aquatic ecosystem containing aquatic organisms which are adpated at all to "near weightlessness conditions" (fishes Xiphophorus helleri, water snails Biomphalaria glabrata, ammonia oxidizing bacteria and the rootless non-gravitropic edible water plant Ceratophyllum demersum). Basically the C.E.B.A.S. consists of 4 subsystems: a ZOOLOGICASL COMPONENT (animal aquarium), a BOTANICAL COMPONENT (aquatic plant bioreactor), a MICROBIAL COMPONENT (bacteria filter) and an ELECTRONICAL COMPONENT (data acquisition and control unit). Superficially, the function principle appears simple: the plants convert light energy into chemical energy via photosynthesis thus producing biomass and oxygen. The animals and microorganisms use the oxygen for respiration and produce the carbon dioxide which is essential for plant photosynthesis. The ammonia ions excreted by the animals are converted by the bacteria to nitrite and then to nitrate ions which serve as a nitrogen source for the plants. Other essential ions derive from biological degradation of animal waste products and dead organic matter. The C.E.B.A.S. exists in 2 basic versions: the original C.E.B.A.S. with a volume of 150 liters and a self-sustaining standing time of more than 13 month and the so-called C.E.B.A.S. MINI MODULE with a volume of about 8.5 liters. In the latter there is no closed food loop by reasons of available space so that animal food has to be provided via an automated feeder. This device was flown already successfully on the STS-89 and STS-90 spaceshuttle missions and the

  19. Tool use by aquatic animals.

    Science.gov (United States)

    Mann, Janet; Patterson, Eric M

    2013-11-19

    Tool-use research has focused primarily on land-based animals, with less consideration given to aquatic animals and the environmental challenges and conditions they face. Here, we review aquatic tool use and examine the contributing ecological, physiological, cognitive and social factors. Tool use among aquatic animals is rare but taxonomically diverse, occurring in fish, cephalopods, mammals, crabs, urchins and possibly gastropods. While additional research is required, the scarcity of tool use can likely be attributable to the characteristics of aquatic habitats, which are generally not conducive to tool use. Nonetheless, studying tool use by aquatic animals provides insights into the conditions that promote and inhibit tool-use behaviour across biomes. Like land-based tool users, aquatic animals tend to find tools on the substrate and use tools during foraging. However, unlike on land, tool users in water often use other animals (and their products) and water itself as a tool. Among sea otters and dolphins, the two aquatic tool users studied in greatest detail, some individuals specialize in tool use, which is vertically socially transmitted possibly because of their long dependency periods. In all, the contrasts between aquatic- and land-based tool users enlighten our understanding of the adaptive value of tool-use behaviour. PMID:24101631

  20. Bioaccumulation of animal adenoviruses in the pink shrimp

    Directory of Open Access Journals (Sweden)

    Roger B. Luz

    2015-09-01

    Full Text Available Adenoviruses are among the most promising viral markers of fecal contamination. They are frequently found in the water, sediment and soil of regions impacted by human activity. Studies of the bioaccumulation of enteric viruses in shrimp are scarce. The cities located in the northern coast of the lake systems in Southern Brazil have high urbanization and intensive farming rates, and poor sewage collection and treatment. One hundred (n = 100 Farfantepenaeus paulensis pink-shrimp specimens and 48 water samples were collected from coastal lagoons between June 2012 and May 2013. Water samples were concentrated and the shrimp, mashed. After DNA extraction, samples were analyzed by real time polymerase chain reaction (qPCR in order to detect and quantify viral genomes. Thirty-five percent of shrimp samples were positive for contamination, predominantly by avian adenoviruses. A total of 91.7% of water samples contained adenoviruses DNA, with the human form being the most frequent. Our results provided evidence of significant bioaccumulation of adenoviruses in shrimp, showing the extent of the impact of fecal pollution on aquatic ecosystems.

  1. Bioaccumulation of animal adenoviruses in the pink shrimp.

    Science.gov (United States)

    Luz, Roger B; Staggemeier, Rodrigo; Fabres, Rafael B; Soliman, Mayra C; Souza, Fernanda G; Gonçalves, Raoni; Fausto, Ivone V; Rigotto, Caroline; Heinzelmann, Larissa S; Henzel, Andréia; Fleck, Juliane D; Spilki, Fernando R

    2015-01-01

    Adenoviruses are among the most promising viral markers of fecal contamination. They are frequently found in the water, sediment and soil of regions impacted by human activity. Studies of the bioaccumulation of enteric viruses in shrimp are scarce. The cities located in the northern coast of the lake systems in Southern Brazil have high urbanization and intensive farming rates, and poor sewage collection and treatment. One hundred (n = 100) Farfantepenaeus paulensis pink-shrimp specimens and 48 water samples were collected from coastal lagoons between June 2012 and May 2013. Water samples were concentrated and the shrimp, mashed. After DNA extraction, samples were analyzed by real time polymerase chain reaction (qPCR) in order to detect and quantify viral genomes. Thirty-five percent of shrimp samples were positive for contamination, predominantly by avian adenoviruses. A total of 91.7% of water samples contained adenoviruses DNA, with the human form being the most frequent. Our results provided evidence of significant bioaccumulation of adenoviruses in shrimp, showing the extent of the impact of fecal pollution on aquatic ecosystems. PMID:26413052

  2. Critical body residues, Michaelis-Menten analysis of bioaccumulation, lethality and behaviour as endpoints of waterborne Ni toxicity in two teleosts.

    Science.gov (United States)

    Leonard, Erin M; Marentette, Julie R; Balshine, Sigal; Wood, Chris M

    2014-03-01

    Traditionally, water quality guidelines/criteria are based on lethality tests where results are expressed as a function of waterborne concentrations (e.g. LC50). However, there is growing interest in the use of uptake and binding relationships, such as biotic ligand models (BLM), and in bioaccumulation parameters, such as critical body residue values (e.g. CBR50), to predict metal toxicity in aquatic organisms. Nevertheless, all these approaches only protect species against physiological death (e.g. mortality, failed recruitment), and do not consider ecological death which can occur at much lower concentrations when the animal cannot perform normal behaviours essential for survival. Therefore, we investigated acute (96 h) Ni toxicity in two freshwater fish species, the round goby (Neogobius melanostomus) and rainbow trout (Oncorhynchus mykiss) and compared LC, BLM, and CBR parameters for various organs, as well as behavioural responses (spontaneous activity). In general, round goby were more sensitive. Ni bioaccumulation displayed Michaelis-Menten kinetics in most tissues, and round goby gills had lower Kd (higher binding affinity) but similar Bmax (binding site density) values relative to rainbow trout gills. Round goby also accumulated more Ni than did trout in most tissues at a given exposure concentration. Organ-specific 96 h acute CBR values tended to be higher in round goby but 96 h acute CBR50 and CBR10 values in the gills were very similar in the two species. In contrast, LC50 and LC10 values were significantly higher in rainbow trout. With respect to BLM parameters, gill log KNiBL values for bioaccumulation were higher by 0.4-0.8 log units than the log KNiBL values for toxicity in both species, and both values were higher in goby (more sensitive). Round goby were also more sensitive with respect to the behavioural response, exhibiting a significant decline of 63-75 % in movements per minute at Ni concentrations at and above only 8 % of the LC50 value

  3. Elemental bioaccumulators in air pollution studies

    International Nuclear Information System (INIS)

    K0-Based instrumental neutron activation analysis (k0 INAA) was used to determine the concentrations of Cr, Fe, Co, Zn, Se, Sb and Hg in the vascular plants Cistus salvifolius and Inula viscosa and in the lichen Parmelia sulcata. The samples were collected in the neighbourhood of industrial complexes. The elemental accumulation in the vascular plants and the lichen are compared to optimize the choice of the bioaccumulator. It is concluded that P.sulcata seems to be the best accumulator of the three species for the element studied; Cistus salvifolius is sensitive to the contents of Zn, Fe, Cr and Sb in the air; Inula viscosa seems to accumulate Fe, Sb, Co, Cr and Zn. Nevertheless, it is concluded that lichen is a good air pollution indicator, while the vascular plants are not due to the large seasonal variations found in the elemental concentrations. (author) 11 refs.; 7 figs.; 2 tabs

  4. Sub-aquatic response of a scintillator, fibre optic and silicon photomultiplier based radiation sensor

    International Nuclear Information System (INIS)

    We describe here, the sub-aquatic response of the RadLineR detector (a small, novel, remotely operated radiation detection instrument) when irradiated with gamma doses between 6 and 400 Svhr-1. The National Nuclear Laboratory's (NNL, UK) RadLineR consists of an inorganic scintillating crystal coupled to a fibre optic cable which transports scintillation photons to a detector at the other end. A CCD camera is normally used for photon collection, however in this paper we trial a newer technology; the silicon photomultiplier (SiPM), namely SensL's MiniSL. SiPMs have performance characteristics similar to photomultiplier tubes (PMT), whilst benefiting from the practical advantages of solid-state technology which include; low operating voltage, robustness, compactness, insensitivity to magnetic fields and over-exposure to light. The MiniSL was chosen as its peak photon wavelength is well matched to the output from the scintillation crystal, as well as its fast recovery time (within the nano-second range). We use a clinical radiotherapy linear accelerator (linac) machine which produces x-rays by accelerating elections onto a target which then emits x-rays by Bremsstrahlung. The linac is rated at 6 MeV in energy, with a peak of approximately 2 MeV. The machine is capable of generating a highly precise dose at known distances between treatment head and scintillation crystal. Analysing the data gathered we were also able consider how the RadLineR might perform in larger aquatic environments for example First Generation Magnox Storage Ponds (FGMSP). Built in the 1950's they were originally intended to hold spent nuclear fuel for reprocessing, however now parts of the spent fuel have corroded; some of which are buried under a layer of sediment. Removal is not a trivial task due to elevated radiation levels, and the complexity of the environment. RadLineR has the potential to be of significant use for this and in other similar situations. (authors)

  5. Uranium in Aquatic Sediments; Where are the Guidelines?

    International Nuclear Information System (INIS)

    Sediment data has been collected on and around the Ranger uranium mine for over 20 years. This included studies such as annual routine monitoring of metal concentrations, adsorption-desorption conditions, phase associations, transport mechanism, release potential, bioaccumulation and bioconcentration etc. Building on this, performance-based monitoring of the sediments from on-site water bodies was undertaken to ascertain the spatial and temporal distribution of contaminants as a basis to determine ecological risks associated with the sediments which in turn underpins closure planning. Highlights of these studies are interpreted using an ecological risk assessment approach. Ideally interpretation of aquatic sediment contamination in Australia is guided by the national guidelines for water quality and a weighted multiple lines of evidence approach whereby the chemistry of sediments is compared with reference and guideline values and predictions of bio-availability, and biological effects data allows cause and effect relationships to be derived. However, where uranium in aquatic sediments is concerned there is a lack of national (Australian) and international guidelines that are applicable to tropical sediments and the biological effects data available are limited or confounded by other variables. In the absence of clear uranium guidelines for sediments an internationally reported “Predicted No Effect Concentration” (PNEC) for uranium in temperate sediments was used as a “pseudo-guideline” value to identify sites with concentrations that might present an environmental risk and that should be further investigated. The applicability of the PNEC to the tropical Ranger site was understandably questioned by stakeholders and peers. The issues raised highlighted the need for international guidelines for uranium in aquatic sediments for tropical and temperate climates and an internationally accepted approach for deriving same. (author)

  6. Mercury bioaccumulation in the food web of Three Gorges Reservoir (China): Tempo-spatial patterns and effect of reservoir management.

    Science.gov (United States)

    Li, Jun; Zhou, Qiong; Yuan, Gailing; He, Xugang; Xie, Ping

    2015-09-15

    Tempo-spatial patterns of mercury bioaccumulation and tropho-dynamics, and the potential for a reservoir effect were evaluated in the Three Gorges Reservoir (TGR, China) from 2011 to 2012, using total mercury concentrations (THg) and stable isotopes (δ(13)C and δ(15)N) of food web components (seston, aquatic invertebrates and fish). Hg concentrations in aquatic invertebrates and fish indicated a significant temporal trend associated with regular seasonal water-level manipulation. This includes water level lowering to allow for storage of water during the wet season (summer); a decrease of water levels from September to June providing a setting for flood storage. Hg concentrations in organisms were the highest after flooding. Higher Hg concentrations in fish were observed at the location farthest from the dam. Hg concentrations in water and sediment were correlated. Compared with the reservoirs of United States and Canada, TGR had lower trophic magnification factors (0.046-0.066), that are explained primarily by organic carbon concentrations in sediment, and the effect of "growth dilution". Based on comparison before and after the impoundment of TGR, THg concentration in biota did not display an obvious long-term reservoir effect due to (i) short time since inundation, (ii) regular water discharge associated with water-level regulation, and/or (iii) low organic matter content in the sediment. PMID:25958367

  7. Mercury bioaccumulation in the Mediterranean

    Directory of Open Access Journals (Sweden)

    Cinnirella S.

    2013-04-01

    Full Text Available This study details mercury pollution within the food chain of the Mediterranean by analysing the most comprehensive mercury dataset available for biota and water measurements. In this study we computed a bioaccumulation factor (BAF for datasets in the existing mercury-related scientific literature, in on-going programs, and in past measurement campaigns. Preliminary results indicate a major lack of information, making the outcome of any assessment very uncertain. Importantly, not all marine eco-regions are (or have ever been covered by measurement campaigns. Most lacking is information associated with the South-Eastern part of the Mediterranean, and in several eco-regions it is still impossible to reconstruct a trophic net, as the required species were not accounted for when mercury measurements were taken. The datasets also have additional temporal sampling problems, as species were often not sampled systematically (but only sporadically during any given sampling period. Moreover, datasets composed of mercury concentrations in water also suffer from similar geographic limitations, as they are concentrated in the North-Western Mediterranean. Despite these concerns, we found a very clear bioaccumulation trend in 1999, the only year where comprehensive information on both methylmercury concentrations in water and biota was available.

  8. Sub-aquatic response of a scintillator, fibre optic and silicon photomultiplier based radiation sensor

    Energy Technology Data Exchange (ETDEWEB)

    Jackson, Sarah F., E-mail: s.f.jackson@lancaster.ac.uk [Engineering Department, Lancaster University, Lancaster (United Kingdom); Monk, Stephen D., E-mail: s.monk@lancaster.ac.uk [Engineering Department, Lancaster University, Lancaster (United Kingdom); Stanley, Steven J., E-mail: steven.j.stanley@nnl.co.uk [National Nuclear Laboratory, A709 Springfields, Preston (United Kingdom); Lennox, Kathryn, E-mail: kathryn.lennox@nnl.co.uk [National Nuclear Laboratory, A709 Springfields, Preston (United Kingdom)

    2014-07-01

    We describe an attempt at the utilisation of two low level light sensors to improve on the design of a dose monitoring system, specifically for underwater applications with consideration for the effects of water attenuation. The gamma radiation ‘RadLine{sup ®}’ detector consists of an inorganic scintillating crystal coupled to a fibre optic cable which transports scintillation photons, up to hundreds of metres, to an optical sensor. Analysed here are two contemporary technologies; SensL's MiniSL a silicon photomultiplier (SiPM) and a Sens-Tech photon counting photomultiplier tube (PMT). A clinical radiotherapy linear accelerator (linac) is implemented as test beam, subjecting the RadLine{sup ®} to a highly controlled dose rate (ranging from 0 Sv h{sup −1} to 320 Sv h{sup −1}), averaging at 2 MeV in energy. The RadLine's underwater dose monitoring capabilities are tested with the aid of epoxy resin ‘solid water’ phantom blocks, used as a substitute for water. Our results show that the MiniSL SiPM is unsuitable for this application due to extremely high background noise levels, however the Sens-Tech PMT performs satisfactorily and the detected dose rate due to the effects of water attenuation compares strongly with MCNP simulation data and NIST database values. We conclude that the PMT shows promise for its ultimate use in the First Generation Magnox Storage Pond (FGMSP) on the Sellafield site. - Highlights: • RadLine{sup ®} consists of a scintillating crystal coupled to a fibre optic cable and photon detector. • Here the dose monitoring system is trialled with SiPM and PMT type photon detectors. • A clinical linear accelerator (linac) is used as a test beam. • Sub-aquatic response is compared to Monte Carlo simulations and the NIST database.

  9. Sub-aquatic response of a scintillator, fibre optic and silicon photomultiplier based radiation sensor

    International Nuclear Information System (INIS)

    We describe an attempt at the utilisation of two low level light sensors to improve on the design of a dose monitoring system, specifically for underwater applications with consideration for the effects of water attenuation. The gamma radiation ‘RadLine®’ detector consists of an inorganic scintillating crystal coupled to a fibre optic cable which transports scintillation photons, up to hundreds of metres, to an optical sensor. Analysed here are two contemporary technologies; SensL's MiniSL a silicon photomultiplier (SiPM) and a Sens-Tech photon counting photomultiplier tube (PMT). A clinical radiotherapy linear accelerator (linac) is implemented as test beam, subjecting the RadLine® to a highly controlled dose rate (ranging from 0 Sv h−1 to 320 Sv h−1), averaging at 2 MeV in energy. The RadLine's underwater dose monitoring capabilities are tested with the aid of epoxy resin ‘solid water’ phantom blocks, used as a substitute for water. Our results show that the MiniSL SiPM is unsuitable for this application due to extremely high background noise levels, however the Sens-Tech PMT performs satisfactorily and the detected dose rate due to the effects of water attenuation compares strongly with MCNP simulation data and NIST database values. We conclude that the PMT shows promise for its ultimate use in the First Generation Magnox Storage Pond (FGMSP) on the Sellafield site. - Highlights: • RadLine® consists of a scintillating crystal coupled to a fibre optic cable and photon detector. • Here the dose monitoring system is trialled with SiPM and PMT type photon detectors. • A clinical linear accelerator (linac) is used as a test beam. • Sub-aquatic response is compared to Monte Carlo simulations and the NIST database

  10. Bioaccumulation of human waterborne protozoa by zebra mussel (Dreissena polymorpha): interest for water biomonitoring.

    Science.gov (United States)

    Palos Ladeiro, M; Aubert, D; Villena, I; Geffard, A; Bigot, A

    2014-01-01

    Cryptosporidium parvum, Giardia duodenalis and Toxoplasma gondii are ubiquitous pathogens, which waterborne transmission has been largely demonstrated. Since they can be found in various watercourses, interactions with aquatic organisms are possible. Protozoan detection for watercourses biomonitoring is currently based on large water filtration. The zebra mussel, Dreissena polymorpha, is a choice biological model in ecotoxicological studies which are already in use to detect chemical contaminations in watercourses. In the present study, the zebra mussel was tested as a new tool for detecting water contamination by protozoa. In vivo exposures were conducted in laboratory experiments. Zebra mussel was exposed to various protozoan concentrations for one week. Detection of protozoa was realized by Taqman real time qPCR. Our experiments evidenced C. parvum, G. duodenalis and T. gondii oocyst bioaccumulation by mussels proportionally to ambient contamination, and significant T. gondii prevalence was observed in muscle tissue. To our knowledge, this is the first study that demonstrates T. gondii oocyst accumulation by zebra mussel. The results from this study highlight the capacity of zebra mussels to reveal ambient biological contamination, and thus to be used as a new effective tool in sanitary biomonitoring of water bodies. PMID:24112626

  11. Insights into low fish mercury bioaccumulation in a mercury-contaminated reservoir, Guizhou, China

    International Nuclear Information System (INIS)

    We examined Hg biogeochemistry in Baihua Reservoir, a system affected by industrial wastewater containing mercury (Hg). As expected, we found high levels of total Hg (THg, 664–7421 ng g−1) and monomethylmercury (MMHg, 3–21 ng g−1) in the surface sediments (0–10 cm). In the water column, both THg and MMHg showed strong vertical variations with higher concentrations in the anoxic layer (>4m) than in the oxic layer (0–4 m), which was most pronounced for the dissolved MMHg (p −1) for human consumption. We identified three main reasons to explain the low fish Hg bioaccumulation: disconnection of the aquatic food web from the high MMHg zone, simple food web structures, and biodilution effect at the base of the food chain in this eutrophic reservoir. - Highlights: ► Baihua Reservoir was contaminated by industrial wastewater containing Hg. ► Elevated Hg levels were found in the sediment and anoxic water column. ► However, Hg concentration in biota samples (mostly carps) remained low. ► We found three main explanations for the low fish Hg levels in Baihua Reservoir. - The low fish Hg level found in Hg-contaminated Baihua Reservoir is mainly due to limited accessbility to high MMHg zone, short food chains, and biodilution effect.

  12. Heavy metals and metallothionein in vespertilionid bats foraging over aquatic habitats in the Czech Republic

    Czech Academy of Sciences Publication Activity Database

    Pikula, J.; Zukal, Jan; Adam, V.; Bandouchová, H.; Beklová, M.; Hájková, P.; Horáková, J.; Kizek, R.; Valentíková, L.

    2010-01-01

    Roč. 29, č. 3 (2010), s. 501-506. ISSN 0730-7268. [International Workshop on Aquatic Toxicology and Biomonitoring /1./. Vodňany, 27.08.2008-29.08.2008] Institutional research plan: CEZ:AV0Z60930519 Keywords : Microchiroptera * insect foraging * metallic elements * bioaccumulation Subject RIV: EG - Zoology Impact factor: 3.026, year: 2010

  13. Effect-Based Tools for Monitoring and Predicting the Ecotoxicological Effects of Chemicals in the Aquatic Environment

    Directory of Open Access Journals (Sweden)

    Richard E. Connon

    2012-09-01

    Full Text Available Ecotoxicology faces the challenge of assessing and predicting the effects of an increasing number of chemical stressors on aquatic species and ecosystems. Herein we review currently applied tools in ecological risk assessment, combining information on exposure with expected biological effects or environmental water quality standards; currently applied effect-based tools are presented based on whether exposure occurs in a controlled laboratory environment or in the field. With increasing ecological relevance the reproducibility, specificity and thus suitability for standardisation of methods tends to diminish. We discuss the use of biomarkers in ecotoxicology including ecotoxicogenomics-based endpoints, which are becoming increasingly important for the detection of sublethal effects. Carefully selected sets of biomarkers allow an assessment of exposure to and effects of toxic chemicals, as well as the health status of organisms and, when combined with chemical analysis, identification of toxicant(s. The promising concept of “adverse outcome pathways (AOP” links mechanistic responses on the cellular level with whole organism, population, community and potentially ecosystem effects and services. For most toxic mechanisms, however, practical application of AOPs will require more information and the identification of key links between responses, as well as key indicators, at different levels of biological organization, ecosystem functioning and ecosystem services.

  14. Bioaccumulation of Triclocarban in Lumbriculus variegatus

    OpenAIRE

    Higgins, Christopher P.; J.Paesani, Zachary; Abbot Chalew, Talia E.; Halden, Rolf U.

    2009-01-01

    The antimicrobial triclocarban (TCC) has been detected in streams and municipal biosolids throughout the United States. In addition, TCC and potential TCC transformation products have been detected at high levels (ppm range) in sediments near major United States cities. Previous work has suggested that TCC is relatively stable in these environments, thereby raising concerns about the potential for bioaccumulation in sediment-dwelling organisms. Bioaccumulation of TCC from sediments was assess...

  15. Multispecies toxicity test for silver nanoparticles to derive hazardous concentration based on species sensitivity distribution for the protection of aquatic ecosystems.

    Science.gov (United States)

    Kwak, Jin Il; Cui, Rongxue; Nam, Sun-Hwa; Kim, Shin Woong; Chae, Yooeun; An, Youn-Joo

    2016-06-01

    With increasing concerns about the release of silver nanoparticles (AgNPs) into the environment and the risks they pose to ecological and human health, a number of studies of AgNP toxicity to aquatic organisms have been conducted. USEPA and EU JRC have published risk assessment reports for AgNPs. However, most previous studies have focused on the adverse effects of AgNPs on individual species. Hazardous concentration (HC) of AgNPs for protection of aquatic ecosystems that are based on species sensitivity distributions (SSDs) have not yet been derived because sufficient data have not been available. In this study, we conducted multispecies toxicity tests, including acute assays using eight species from five different taxonomic groups (bacteria, algae, flagellates, crustaceans and fish) and chronic assays using six species from four different taxonomic groups (algae, flagellates, crustaceans and fish). Using the results of these assays, we used a SSD approach to derive an AgNP aquatic HC5 (Hazard concentrations at the 5% species) of 0.614 μg/L. To our knowledge, this is the first report of a proposed HC of AgNPs for the protection of aquatic ecosystems that is based on SSDs and uses chronic toxicity data. PMID:26634622

  16. Integrated assessment of river health based on the conditions of water quality,aquatic life and physical habitat

    Institute of Scientific and Technical Information of China (English)

    MENG Wei; ZHANG Nan; ZHANG Yuan; ZHENG Binghui

    2009-01-01

    The health conditions of Liao River were assessed using 25 sampling sites in April 2005, with water quality index, biotic index and physical habitat quality index.Based on the method of cluster analysis (CA) for water quality indices, it reveals that heavily polluted sites of Liao River are located at estuary and mainstream.The aquatic species surveyed were attached algae and benthic invertebrates.The result shows that the diversity and biomass of attached algae and benthic index of biotic integrity (B-IBI) are degrading as the chemical and physical quality of water bodies deteriorating.Physiochemical parameters, BOD5, CODCr, TN, TP, NH3-N, DO, petroleum hydrocarbon and conductivity, were statistically analyzed with principal component analysis and correlation analysis.The statistical results were incorporated into the integrated assessing water quality index, combining fecal coliform count, attached algae diversity, B-IBI and physical habitat quality score, a comprehensive integrated assessing system of river ecological health was established.Based on the systimetic assesment, the assessed sites are categorized into 9 "healthy" and "sub-healthy" sites and 8 "sub-sick" and "sick" sites.

  17. Animal protein production modules in biological life support systems: Novel combined aquaculture techniques based on the closed equilibrated biological aquatic system (C.E.B.A.S.)

    Science.gov (United States)

    Blüm, V.; Andriske, M.; Kreuzberg, K.; Schreibman, M. P.

    Based on the experiences made with the Closed Equilibrated Biological Aquatic System (C.E.B.A.S.) which was primarily deveoloped for long-term and multi-generation experiments with aquatic animals and plants in a space station highly effective fresh water recycling modules were elaborated utilizing a combination of ammonia oxidizing bacteria filters and higher plants. These exhibit a high effectivity to eliminate phosphate and anorganic nitrogen compounds and arc. in addidition. able to contribute to the oxygen supply of the aquatic animals. The C.E.B.A.S. filter system is able to keep a closed artificial aquatic ecosystem containing teleost fishes and water snails biologically stable for several month and to eliminate waste products deriving from degraded dead fishes without a decrease of the oxygen concentration down to less than 3.5 mg/l at 25 °C. More advanced C.E.B.A.S. filter systems, the BIOCURE filters, were also developed for utilization in semiintensive and intensive aquaculture systems for fishes. In fact such combined animal-plant aquaculture systems represent highly effective productions sites for human food if proper plant and fish species are selected The present papers elucidates ways to novel aquaculture systems in which herbivorous fishes are raised by feeding them with plant biomass produced in the BIOCURE filters and presents the scheme of a modification which utilizes a plant species suitable also for human nutrition. Special attention is paid to the benefits of closed aquaculture system modules which may be integrated into bioregenerative life support systems of a higher complexity for, e. g.. lunar or planetary bases including some psychologiccal aspects of the introduction of animal protein production into plant-based life support systems. Moreover, the basic reproductive biological problems of aquatic animal breeding under reduced gravity are explained leading to a disposition of essential research programs in this context.

  18. Hydrologic-Based Ecological Risk Assessment of Urban, Agriculture, and Coal Mining Impacts Upon Aquatic Habitat, Toxicity, and Biodiversity

    OpenAIRE

    Babendreier, Justin Eric

    2000-01-01

    Urban, agriculture and coal mining land use/cover impacts upon aquatic habitat, toxicity and biodiversity were investigated in Leading Creek, a 388 km2 watershed in southeastern Ohio. Abandoned strip mine land (ASML) and active deep underground mines were examined along with abandoned near-surface underground mine land (AUML). The work focused on assessment of aquatic toxicity, water quality, and biodiversity through investigation of associated ecological responses for both treated and untr...

  19. MODEL-BASED CLUSTERING FOR CLASSIFICATION OF AQUATIC SYSTEMS AND DIAGNOSIS OF ECOLOGICAL STRESS

    Science.gov (United States)

    Clustering approaches were developed using the classification likelihood, the mixture likelihood, and also using a randomization approach with a model index. Using a clustering approach based on the mixture and classification likelihoods, we have developed an algorithm that...

  20. Cell-Based Sensor System Using L6 Cells for Broad Band Continuous Pollutant Monitoring in Aquatic Environments

    Directory of Open Access Journals (Sweden)

    Evamaria Stütz

    2012-03-01

    Full Text Available Pollution of drinking water sources represents a continuously emerging problem in global environmental protection. Novel techniques for real-time monitoring of water quality, capable of the detection of unanticipated toxic and bioactive substances, are urgently needed. In this study, the applicability of a cell-based sensor system using selected eukaryotic cell lines for the detection of aquatic pollutants is shown. Readout parameters of the cells were the acidification (metabolism, oxygen consumption (respiration and impedance (morphology of the cells. A variety of potential cytotoxic classes of substances (heavy metals, pharmaceuticals, neurotoxins, waste water was tested with monolayers of L6 cells (rat myoblasts. The cytotoxicity or cellular effects induced by inorganic ions (Ni2+ and Cu2+ can be detected with the metabolic parameters acidification and respiration down to 0.5 mg/L, whereas the detection limit for other substances like nicotine and acetaminophen are rather high, in the range of 0.1 mg/L and 100 mg/L. In a close to application model a real waste water sample shows detectable signals, indicating the existence of cytotoxic substances. The results support the paradigm change from single substance detection to the monitoring of overall toxicity.

  1. Cell-based sensor system using L6 cells for broad band continuous pollutant monitoring in aquatic environments.

    Science.gov (United States)

    Kubisch, Rebekka; Bohrn, Ulrich; Fleischer, Maximilian; Stütz, Evamaria

    2012-01-01

    Pollution of drinking water sources represents a continuously emerging problem in global environmental protection. Novel techniques for real-time monitoring of water quality, capable of the detection of unanticipated toxic and bioactive substances, are urgently needed. In this study, the applicability of a cell-based sensor system using selected eukaryotic cell lines for the detection of aquatic pollutants is shown. Readout parameters of the cells were the acidification (metabolism), oxygen consumption (respiration) and impedance (morphology) of the cells. A variety of potential cytotoxic classes of substances (heavy metals, pharmaceuticals, neurotoxins, waste water) was tested with monolayers of L6 cells (rat myoblasts). The cytotoxicity or cellular effects induced by inorganic ions (Ni(2+) and Cu(2+)) can be detected with the metabolic parameters acidification and respiration down to 0.5 mg/L, whereas the detection limit for other substances like nicotine and acetaminophen are rather high, in the range of 0.1 mg/L and 100 mg/L. In a close to application model a real waste water sample shows detectable signals, indicating the existence of cytotoxic substances. The results support the paradigm change from single substance detection to the monitoring of overall toxicity. PMID:22737014

  2. Bioaccumulation surveillance in Milford Haven Waterway.

    Science.gov (United States)

    Langston, W J; O'Hara, S; Pope, N D; Davey, M; Shortridge, E; Imamura, M; Harino, H; Kim, A; Vane, C H

    2012-01-01

    Biomonitoring of contaminants (metals, organotins, polyaromatic hydrocarbons (PAHs), PCBs) was undertaken in Milford Haven Waterway (MHW) and a reference site in the Tywi Estuary (St Ishmael/Ferryside) during 2007-2008. Bioindicator species encompassed various uptake routes-Fucus vesiculosus (dissolved contaminants); Littorina littorea (grazer); Mytilus edulis and Cerastoderma edule (suspension feeders); and Hediste (=Nereis) diversicolor (sediments). Differences in feeding and habitat preference have subtle implications for bioaccumulation trends though, with few exceptions, contaminant burdens in MHW were higher than the Tywi reference site, reflecting inputs. Elevated metal concentrations were observed at some MHW sites, whilst As and Se (molluscs and seaweed) were consistently at the higher end of the UK range. However, for most metals, distributions in MH biota were not exceptional. Several metal-species combinations indicated increases in bioavailability upstream, which may reflect the influence of geogenic/land-based sources-perhaps enhanced by lower salinity. TBT levels in MH mussels were below OSPAR toxicity thresholds and in the Tywi were close to zero. Phenyltins were not accumulated appreciably in M. edulis, whereas some H. diversicolor populations appear subjected to localized (historical) sources. PAHs in H. diversicolor were distributed evenly across most of MHW, although acenaphthene, fluoranthene, pyrene, benzo(a)anthracene and chrysene were highest at one site near the mouth; naphthalenes in H. diversicolor were enriched in the mid-upper Haven (a pattern seen in M. edulis for most PAHs). Whilst PAH (and PCB) concentrations in MH mussels were mostly above reference and OSPAR backgrounds, they are unlikely to exceed ecotoxicological thresholds. Bivalve Condition indices (CI) were highest at the Tywi reference site and at the seaward end of MH, decreasing upstream-giving rise to several significant (negative) relationships between CI and body burdens

  3. Wake-based unsteady modeling of the aquatic beetle Dytiscus marginalis.

    Science.gov (United States)

    Whittlesey, Robert W

    2011-12-21

    Dytiscus marginalis simultaneously uses its hind legs to propel itself through the water. Previous work has suggested that use of synchronized leg motions, such as that used by D. marginalis, allows it to swim with higher hydrodynamic efficiency than similarly sized insects that alternate their legs during swimming. A model is developed based on the generation of vortices in the wake to calculate the relative efficiency of synchronized-leg-swimming kinematics compared to alternating-leg-swimming kinematics. The model agrees well with measured values of swimming speeds during steady state and predicts an overall hydrodynamic swimming efficiency of 18% for synchronized-leg-swimming. Additionally, synchronized-leg swimming is calculated to be 39% more hydrodynamically efficient than alternating-leg-swimming kinematics, thus verifying previous suggestions of greater hydrodynamic efficiency in D. marginalis based on swimming observation. PMID:21920372

  4. A novel protocol for assessing aquatic pollution, based on the feeding inhibition of Daphnia magna

    OpenAIRE

    Kovács A.; Abdel-Hameid N.-A.; Ács A.; Á. Ferincz; Kováts N.

    2012-01-01

    In this study, sensitivity of a novel acute bioassay based on the feeding activity of Daphnia magna was assessed, using 2 and 4 h of exposure. For calibration purposes, results were compared with those of the standard immobility test as described by the ISO 6341:1996 standard. Using potassium dichromate as the reference chemical, after 4 h of exposure the proposed protocol showed similar sensitivity in comparison with the stan...

  5. Wake-based unsteady modeling of the aquatic beetle Dytiscus marginalis

    OpenAIRE

    Whittlesey, Robert W.

    2011-01-01

    Dytiscus marginalis simultaneously uses its hind legs to propel itself through the water. Previous work has suggested that use of synchronized leg motions, such as that used by D. marginalis, allows it to swim with higher hydrodynamic efficiency than similarly sized insects that alternate their legs during swimming. A model is developed based on the generation of vortices in the wake to calculate the relative efficiency of synchronized-leg-swimming kinematics compared to alternating-leg-swimm...

  6. An outline of a model-based expert system to identify optimal remedial strategies for restoring contaminated aquatic ecosystems: the project MOIRA

    International Nuclear Information System (INIS)

    The present report describes the fundamental principles of the research programme MOIRA (a model based computerized system for management support to Identify optimal remedial strategies for Restoring radionuclide contaminated Aquatic ecosystems and drainage areas) financed by the EC (European Community) (Contract N F14P-CT96-0036). The interventions to restore radionuclides contaminated aquatic systems may result in detrimental ecological, social and economical effects. Decision makers must carefully evaluate these impacts. The main aim of the MOIRA project is the development of an expert system based on validated models predicting the evolution of the radioactive contamination of fresh water systems following countermeasure applications and their relevant ecological, social and economical impacts. The expert system will help decision makers, that are not necessarily gifted with experience in environmental modeling, to identify optimal remedial strategies for restoring contaminated fresh water systems

  7. Fatty acid composition at the base of aquatic food webs is influenced by habitat type and watershed land use.

    Directory of Open Access Journals (Sweden)

    James H Larson

    Full Text Available Spatial variation in food resources strongly influences many aspects of aquatic consumer ecology. Although large-scale controls over spatial variation in many aspects of food resources are well known, others have received little study. Here we investigated variation in the fatty acid (FA composition of seston and primary consumers within (i.e., among habitats and among tributary systems of Lake Michigan, USA. FA composition of food is important because all metazoans require certain FAs for proper growth and development that cannot be produced de novo, including many polyunsaturated fatty acids (PUFAs. Here we sampled three habitat types (river, rivermouth and nearshore zone in 11 tributaries of Lake Michigan to assess the amount of FA in seston and primary consumers of seston. We hypothesize that among-system and among-habitat variation in FAs at the base of food webs would be related to algal production, which in turn is influenced by three land cover characteristics: 1 combined agriculture and urban lands (an indication of anthropogenic nutrient inputs that fuel algal production, 2 the proportion of surface waters (an indication of water residence times that allow algal producers to accumulate and 3 the extent of riparian forested buffers (an indication of stream shading that reduces algal production. Of these three land cover characteristics, only intense land use appeared to strongly related to seston and consumer FA and this effect was only strong in rivermouth and nearshore lake sites. River seston and consumer FA composition was highly variable, but that variation does not appear to be driven by the watershed land cover characteristics investigated here. Whether the spatial variation in FA content at the base of these food webs significantly influences the production of economically important species higher in the food web should be a focus of future research.

  8. Application of PIV-based pressure measurements to the study of aquatic propulsion

    Science.gov (United States)

    Lucas, Kelsey; Dabiri, John; Lauder, George

    2015-11-01

    Although it is relatively straightforward to image how fluid moves around a swimmer, translation of these motions to mechanisms that generate forces for propulsion is more difficult. This process is greatly facilitated by a recently developed technique for non-invasive pressure measurements that generate 2D pressure fields. Here, we explore how accurate a purely pressure-based calculation of propulsive forces can be. By comparing these calculations to forces and torques measured directly using a sensor on a robotic flapping foil system, we characterize the effects of motion frequency and out-of-plane flows on the calculation's accuracy. We then apply this calculation to study the dynamics of fish-like swimming of a foil model with non-uniform flexural stiffness, and to those of a freely swimming fish.

  9. Modeling Microbial Biogeochemistry from Terrestrial to Aquatic Ecosystems Using Trait-Based Approaches

    Science.gov (United States)

    King, E.; Molins, S.; Karaoz, U.; Johnson, J. N.; Bouskill, N.; Hug, L. A.; Thomas, B. C.; Castelle, C. J.; Beller, H. R.; Banfield, J. F.; Steefel, C. I.; Brodie, E.

    2014-12-01

    Currently, there is uncertainty in how climate or land-use-induced changes in hydrology and vegetation will affect subsurface carbon flux, the spatial and temporal distribution of flow and transport, biogeochemical cycling, and microbial metabolic activity. Here we focus on the initial development of a Genome-Enabled Watershed Simulation Capability (GEWaSC), which provides a predictive framework for understanding how genomic information stored in a subsurface microbiome affects biogeochemical watershed functioning, how watershed-scale processes affect microbial function, and how these interactions co-evolve. This multiscale framework builds on a hierarchical approach to multiscale modeling, which considers coupling between defined microscale and macroscale components of a system (e.g., a catchment being defined as macroscale and biogeofacies as microscale). Here, we report our progress in the development of a trait-based modeling approach within a reactive transport framework that simulates coupled guilds of microbes. Guild selection is driven by traits extracted from, and physiological properties inferred from, large-scale assembly of metagenome data. Meta-genomic, -transcriptomic and -proteomic information are also used to complement our existing biogeochemical reaction networks and contributes key reactions where biogeochemical analyses are unequivocal. Our approach models the rate of nutrient uptake and the thermodynamics of coupled electron donors and acceptors for a range of microbial metabolisms including heterotrophs and chemolitho(auto)trophs. Metabolism of exogenous substrates fuels catabolic and anabolic processes, with the proportion of energy used for each based upon dynamic intracellular and environmental conditions. In addition to biomass development, anabolism includes the production of key enzymes, such as nitrogenase for nitrogen fixation or exo-enzymes for the hydrolysis of extracellular polymers. This internal resource partitioning represents a

  10. A novel protocol for assessing aquatic pollution, based on the feeding inhibition of Daphnia magna

    Directory of Open Access Journals (Sweden)

    Kovács A.

    2012-03-01

    Full Text Available In this study, sensitivity of a novel acute bioassay based on the feeding activity of Daphnia magna was assessed, using 2 and 4 h of exposure. For calibration purposes, results were compared with those of the standard immobility test as described by the ISO 6341:1996 standard. Using potassium dichromate as the reference chemical, after 4 h of exposure the proposed protocol showed similar sensitivity in comparison with the standard, as the EC50 of the immobility test was 1.093 ± 0.098 mg·L–1, whereas the EC50 of the feeding inhibition bioassay was 1.742 ± 0.133 mg·L–1. In order to test the sensitivity of the bioassay, toxicity of two other contaminants, copper and wastewater, was estimated and the results were compared with those of the standard immobility test. For both cases, the feeding inhibition test showed higher sensitivity, as in the case of copper the EC50s were 0.0952 ± 0.0087 and 0.0753 ± 0.0152 mg·L–1, whilst the EC50 recorded for the 24-h immobility test was 0.2407 ± 0.0159 mg·L–1. In the case of the effluent, EC50 values after 2 and 4 h of exposure were 15.698 ± 2.681 and 12.557 ± 2.358 expressed as % of the wastewater, respectively, whereas the EC50 of the immobility test was calculated to be 36.4688 ± 5.4887.

  11. Application of fundamental aquatic chemistry to the safety case and the role of thermodynamic reference data bases

    Energy Technology Data Exchange (ETDEWEB)

    Altmaier, Marcus; Gaona, Xavier; Fellhauer, David; Geckeis, Horst [Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen (Germany). Inst. for Nuclear Waste Disposal

    2015-07-01

    All national and international programs developing a Nuclear Waste Disposal Safety Case have recognized the essential requirement of assessing aqueous (radionuclide) chemistry and establishing reliable thermodynamic databases. Long-term disposal of nuclear waste in deep underground repositories is the safest option to separate highly hazardous radionuclides from the environment. In order to predict the long-term performance of a repository for different evolution scenarios, the potentially relevant specific (geo)chemical systems are analyzed. This requires a detailed understanding of solubility, speciation and thermodynamics for all relevant components including radionuclides, and the availability of reliable thermodynamic data and databases as fundamental input for integral geochemical model calculations and hence PA. Radionuclide solubility and speciation strongly depend on chemical conditions (pH, E{sub h}, matrix electrolyte system and ionic strength) with additional factors like the presence of complexing ligands or temperature further impacting solution chemistry. As the fundamental chemical key processes are known and convincingly described by general laws of nature (→ solution thermodynamics), the long-term behavior of a repository system can be analyzed over geological timescales using geochemical tools. A key application of fundamental aquatic chemistry in the Safety Case is the determination of solubility limits (radionuclide source terms). Based upon fundamental chemical information (on solid phases, complexation reactions, activity coefficients, etc.), the maximum amount of radionuclides potentially dissolved in a given volume of solution and transported away from the repository, are quantified. A detailed understanding of radionuclide chemistry is also crucial for neighboring fields. For example, advanced mechanistic understanding and modeling of sorption processes at the solid liquid interphase, waste dissolution processes, secondary phase and

  12. Application of fundamental aquatic chemistry to the safety case and the role of thermodynamic reference data bases

    International Nuclear Information System (INIS)

    All national and international programs developing a Nuclear Waste Disposal Safety Case have recognized the essential requirement of assessing aqueous (radionuclide) chemistry and establishing reliable thermodynamic databases. Long-term disposal of nuclear waste in deep underground repositories is the safest option to separate highly hazardous radionuclides from the environment. In order to predict the long-term performance of a repository for different evolution scenarios, the potentially relevant specific (geo)chemical systems are analyzed. This requires a detailed understanding of solubility, speciation and thermodynamics for all relevant components including radionuclides, and the availability of reliable thermodynamic data and databases as fundamental input for integral geochemical model calculations and hence PA. Radionuclide solubility and speciation strongly depend on chemical conditions (pH, Eh, matrix electrolyte system and ionic strength) with additional factors like the presence of complexing ligands or temperature further impacting solution chemistry. As the fundamental chemical key processes are known and convincingly described by general laws of nature (→ solution thermodynamics), the long-term behavior of a repository system can be analyzed over geological timescales using geochemical tools. A key application of fundamental aquatic chemistry in the Safety Case is the determination of solubility limits (radionuclide source terms). Based upon fundamental chemical information (on solid phases, complexation reactions, activity coefficients, etc.), the maximum amount of radionuclides potentially dissolved in a given volume of solution and transported away from the repository, are quantified. A detailed understanding of radionuclide chemistry is also crucial for neighboring fields. For example, advanced mechanistic understanding and modeling of sorption processes at the solid liquid interphase, waste dissolution processes, secondary phase and solid

  13. [Research Progress in Norovirus Bioaccumulation in Shellfish].

    Science.gov (United States)

    Zhou, Deqing; Su, Laijin; Zhao, Feng; Ma, Liping

    2015-05-01

    Noroviruses (NoVs) are one of the most important foodborne viral pathogens worldwide. Shellfish are the most common carriers of NoVs as they can concentrate and accumulate large amounts of the virus through filter feeding from seawater. Shellfish may selectively accumulate NoVs with different genotypes, and this bioaccumulation may depend on the season and location. Our previous studies found various histo-blood group antigens (HBGAs) in shellfish tissues. While HBGAs might be the main reason that NoVs are accumulated in shellfish, the detailed mechanism behind NoV concentration and bioaccumulation in shellfish is not clear. Here we review current research into NoV bioaccumulation, tissue distribution, seasonal variation, and binding mechanism in shellfish. This paper may provide insight into controlling NoV transmission and decreasing the risks associated with shellfish consumption. PMID:26470540

  14. Assessment of mechanisms of metal-induced reproductive toxicity in aquatic species as a biomarker of exposure

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, M.; George, W.; Preslan, J. [and others

    1996-05-02

    This project discusses the following studies: identification and quantitation of heavy metals and petroleum products present in Bayou Trepagnier relative to control sites; assessment of the uptake and bioaccumulation of metals and organic contaminants of interest in aquatic species; establishment and use of polarographic methods for use in metal speciation studies to identify specific chemical forms present in sediments, waters and organism; and evaluation of contaminants on reproductive function of aquatic species as potential biomarkers of exposure. 14 refs.

  15. Sensitivity and accuracy of DNA based methods used to describe aquatic communities for early detection of invasive fish species

    Science.gov (United States)

    For biomonitoring efforts aimed at early detection of aquatic invasive species (AIS), the ability to detect rare individuals is key and requires accurate species level identification to maintain a low occurrence probability of non-detection errors (failure to detect a present spe...

  16. Enantioselective bioaccumulation of soil-associated fipronil enantiomers in Tubifex tubifex.

    Science.gov (United States)

    Liu, Tiantian; Wang, Peng; Lu, Yuele; Zhou, Gaoxin; Diao, Jinling; Zhou, Zhiqiang

    2012-06-15

    Enantioselective behavior of chiral pesticides in the aquatic environment has been a subject of growing interest. In this study, the enantioselective bioaccumulation of fipronil enantiomers in Tubifex tubifex (Oligochaeta, Tubificida) was detected in both spike-water and spike-soil systems, respectively. For the spike-water treatment, a 9-day exposure experiment was employed and the enantiomer fraction in tubifex tissue was maintained approximately at 0.58 during the experiment. In addition, a 14-day bioaccumulation period was chosen for the spike-soil treatment and a more significant deviation of enantiomer fraction from 0.5 in tubifex tissue was detected, with concentrations of the R-form higher than that of the S-form. Therefore, the bioaccumulation of fipronil was enantioselective in tubifex tissue for the two treatments and the magnitude of enantioselectivity may be influenced by different exposure conditions. For the spike-soil treatment, the concentrations of fipronil in verlying water and soil were also determined. With the presence of tubifex worms, higher concentrations of fipronil in overlying water and lower concentrations in soil were detected than that in the absence of tubifex treatment during the whole 14-day exposure period. This means that tubifex has positive functions in fipronil's diffusion from soil to overlying water and in the degradation of the soil-associated fipronil. PMID:22502899

  17. Tissue-specific bioaccumulation of human and veterinary antibiotics in bile, plasma, liver and muscle tissues of wild fish from a highly urbanized region

    International Nuclear Information System (INIS)

    We investigated the bioaccumulation of antibiotics in bile, plasma, liver and muscle tissues of wild fish from four rivers in the Pearl River Delta region. In total, 12 antibiotics were present in at least one type of fish tissues from nine wild fish species in the four rivers. The mean values of log bioaccumulation factors (log BAFs) for the detected antibiotics in fish bile, plasma, liver, and muscle tissues were at the range of 2.06–4.08, 1.85–3.47, 1.41–3.51, and 0.48–2.70, respectively. As the digestion tissues, fish bile, plasma, and liver showed strong bioaccumulation ability for some antibiotics, indicating a different bioaccumulation pattern from hydrophobic organic contaminants. Human health risk assessment based on potential fish consumption indicates that these antibiotics do not appear to pose an appreciable risk to human health. To the best of our knowledge, this is first report of bioaccumulation patterns of antibiotics in wild fish bile and plasma. - Highlights: • We investigated the bioaccumulation of antibiotics in wild fish from the Pearl River Delta region. • Twelve antibiotics were found in fish bile, plasma, liver and muscle tissues. • High log bioaccumulation factors suggested strong bioaccumulation ability for some antibiotics in wild fish tissues. • The presence of antibiotics in fish bile and plasma tissues indicates a novel bioaccumulation pattern. • Potential adverse effects are possibly caused by the high internal antibiotic concentrations in tissues. - Fish bile and plasma displayed strong bioaccumulation ability for some antibiotics, indicating a novel bioaccumulation pattern for antibiotics in the contaminated environment

  18. Bioaccumulation of Arsenic by Fungi

    Directory of Open Access Journals (Sweden)

    Ademola O. Adeyemi

    2009-01-01

    Full Text Available Problem statement: Arsenic is a known toxic element and its presence and toxicity in nature is a worldwide environmental problem. The use of microorganisms in bioremediation is a potential method to reduce as concentration in contaminated areas. Approach: In order to explore the possible bioremediation of this element, three filamentous fungi-Aspergillus niger, Serpula himantioides and Trametes versicolor were investigated for their potential abilities to accumulate (and possibly solubilize arsenic from an agar environment consisting of non buffered mineral salts media amended with 0.2, 0.4, 0.6 and 0.8% (w/v arsenopyrite (FeAsS. Growth rates, dry weights, arsenic accumulation and oxalate production by the fungi as well as the pH of the growth media were all assessed during this study. Results: There was no visible solubilization of FeAsS particles underneath any of the growing fungal colonies or elsewhere in the respective agar plates. No specific patterns of growth changes were observed from the growth ratios of the fungi on agar amended with different amounts of FeAsS although growth of all fungi was stimulated by the incorporation of varying amounts of FeAsS into the agar with the exception of A. niger on 0.4% (w/v amended agar and T. versicolor on 0.8% (w/v amended agar. The amounts of dry weights obtained for all three fungi also did not follow any specific patterns with different amounts of FeAsS and the quantities obtained were in the order A. niger > S. himantioides > T. versicolor. All fungi accumulated as in their biomasses with all amounts of FeAsS although to varying levels and T. versicolor was the most effective with all amounts of FeAsS while A. niger was the least effective. Conclusion: The accumulation of arsenic in the biomasses of the test fungi as shown in this study may suggested a role for fungi through their bioaccumulating capabilities as agents in the possible bioremediation of arsenic contaminated environments.

  19. UV filters bioaccumulation in fish from Iberian river basins

    International Nuclear Information System (INIS)

    The occurrence of eight organic UV filters (UV-Fs) was assessed in fish from four Iberian river basins. This group of compounds is extensively used in cosmetic products and other industrial goods to avoid the damaging effects of UV radiation, and has been found to be ubiquitous contaminants in the aquatic ecosystem. In particular, fish are considered by the scientific community to be the most feasible organism for contamination monitoring in aquatic ecosystems. Despite that, studies on the bioaccumulation of UV-F are scarce. In this study fish samples from four Iberian river basins under high anthropogenic pressure were analysed by liquid chromatography–tandem mass spectrometry (HPLC–MS/MS). Benzophenone-3 (BP3), ethylhexyl methoxycinnamate (EHMC), 4-methylbenzylidene camphor (4MBC) and octocrylene (OC) were the predominant pollutants in the fish samples, with concentrations in the range of ng/g dry weight (d.w.). The results indicated that most polluted area corresponded to Guadalquivir River basin, where maximum concentrations were found for EHMC (241.7 ng/g d.w.). Sediments from this river basin were also analysed. Lower values were observed in relation to fish for OC and EHMC, ranging from below the limits of detection to 23 ng/g d.w. Accumulation levels of UV-F in the fish were used to calculate biota-sediment accumulation factors (BSAFs). These values were always below 1, in the range of 0.04–0.3, indicating that the target UV-Fs are excreted by fish only to some extent. The fact that the highest concentrations were determined in predators suggests that biomagnification of UV-F may take place along the freshwater food web. - Highlights: • First evidence of UV filters in fish from Iberian rivers • Biota-sediment accumulation factors (BSAFs) were always below 1. • Predator species presented higher UV-F concentrations suggesting trophic magnification

  20. UV filters bioaccumulation in fish from Iberian river basins

    Energy Technology Data Exchange (ETDEWEB)

    Gago-Ferrero, Pablo [Dept. of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA), Spanish Council for Scientific Research (CSIC), Jordi Girona 18-26, E-08034 Barcelona (Spain); Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, 15771 Athens (Greece); Díaz-Cruz, M. Silvia, E-mail: sdcqam@cid.csic.es [Dept. of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA), Spanish Council for Scientific Research (CSIC), Jordi Girona 18-26, E-08034 Barcelona (Spain); Barceló, Damià [Dept. of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA), Spanish Council for Scientific Research (CSIC), Jordi Girona 18-26, E-08034 Barcelona (Spain); Catalan Institute for Water Research (ICRA), Parc Científic i Tecnològic de la Universitat de Girona, C/ Emili Grahit, 101 Edifici H2O, E-17003 Girona (Spain)

    2015-06-15

    The occurrence of eight organic UV filters (UV-Fs) was assessed in fish from four Iberian river basins. This group of compounds is extensively used in cosmetic products and other industrial goods to avoid the damaging effects of UV radiation, and has been found to be ubiquitous contaminants in the aquatic ecosystem. In particular, fish are considered by the scientific community to be the most feasible organism for contamination monitoring in aquatic ecosystems. Despite that, studies on the bioaccumulation of UV-F are scarce. In this study fish samples from four Iberian river basins under high anthropogenic pressure were analysed by liquid chromatography–tandem mass spectrometry (HPLC–MS/MS). Benzophenone-3 (BP3), ethylhexyl methoxycinnamate (EHMC), 4-methylbenzylidene camphor (4MBC) and octocrylene (OC) were the predominant pollutants in the fish samples, with concentrations in the range of ng/g dry weight (d.w.). The results indicated that most polluted area corresponded to Guadalquivir River basin, where maximum concentrations were found for EHMC (241.7 ng/g d.w.). Sediments from this river basin were also analysed. Lower values were observed in relation to fish for OC and EHMC, ranging from below the limits of detection to 23 ng/g d.w. Accumulation levels of UV-F in the fish were used to calculate biota-sediment accumulation factors (BSAFs). These values were always below 1, in the range of 0.04–0.3, indicating that the target UV-Fs are excreted by fish only to some extent. The fact that the highest concentrations were determined in predators suggests that biomagnification of UV-F may take place along the freshwater food web. - Highlights: • First evidence of UV filters in fish from Iberian rivers • Biota-sediment accumulation factors (BSAFs) were always below 1. • Predator species presented higher UV-F concentrations suggesting trophic magnification.

  1. Uranium bioaccumulation and biological disorders induced in zebrafish (Danio rerio) after a depleted uranium waterborne exposure

    International Nuclear Information System (INIS)

    Because of its toxicity and its ubiquity within aquatic compartments, uranium (U) represents a significant hazard to aquatic species such as fish. In a previous study, we investigated some biological responses in zebrafish either exposed to depleted or to enriched U (i.e., to different radiological activities). However, results required further experiments to better understand biological responses. Moreover, we failed to clearly demonstrate a significant relationship between biological effects and U radiological activity. We therefore chose to herein examine U bioaccumulation and induced effects in zebrafish according to a chemical dose-response approach. Results showed that U is highly bioconcentrated in fish, according to a time- and concentration-dependent model. Additionally, hepatic antioxidant defenses, red blood cells DNA integrity and brain acetylcholinesterase activity were found to be significantly altered. Generally, the higher the U concentration, the sooner and/or the greater the effect, suggesting a close relationship between accumulation and effect. - Research highlights: → Depleted U bioconcentration factor is of about 1000 in zebrafish exposed to 20 μg/L. → Hepatic antioxidant disorders are noticed as soon as the first hours of exposure. → DNA damage is induced in red blood cells after 20 d of exposure to 500 μg DU/L. → The brain cholinergic system (AChE activity) is impacted. - This study demonstrates that U is highly bioaccumulated in fish, resulting in biological disorders such as hepatic oxidative stress as well as genotoxic and neurotoxic events.

  2. Uranium bioaccumulation and biological disorders induced in zebrafish (Danio rerio) after a depleted uranium waterborne exposure

    Energy Technology Data Exchange (ETDEWEB)

    Barillet, Sabrina, E-mail: sabrina.barillet@free.f [Laboratory of Radioecology and Ecotoxicology, IRSN (Institute for Radiological protection and Nuclear Safety), DEI/SECRE/LRE, Cadarache, Bat 186, BP 3, 13115 St-Paul-Lez-Durance cedex (France); Adam-Guillermin, Christelle, E-mail: christelle.adam-guillermin@irsn.f [Laboratory of Radioecology and Ecotoxicology, IRSN (Institute for Radiological protection and Nuclear Safety), DEI/SECRE/LRE, Cadarache, Bat 186, BP 3, 13115 St-Paul-Lez-Durance cedex (France); Palluel, Olivier, E-mail: olivier.palluel@ineris.f [Ecotoxicological Risk Assessment Unit, INERIS (National Institute for Industrial Environment and Risks), Parc technologique ALATA, 60 550 Verneuil-en-Halatte (France); Porcher, Jean-Marc, E-mail: jean-marc.porcher@ineris.f [Ecotoxicological Risk Assessment Unit, INERIS (National Institute for Industrial Environment and Risks), Parc technologique ALATA, 60 550 Verneuil-en-Halatte (France); Devaux, Alain, E-mail: alain.devaux@entpe.f [Universite de Lyon, INRA, EFPA-SA, Environmental Science Laboratory (LSE), ENTPE, 69518 Vaulx en Velin cedex (France)

    2011-02-15

    Because of its toxicity and its ubiquity within aquatic compartments, uranium (U) represents a significant hazard to aquatic species such as fish. In a previous study, we investigated some biological responses in zebrafish either exposed to depleted or to enriched U (i.e., to different radiological activities). However, results required further experiments to better understand biological responses. Moreover, we failed to clearly demonstrate a significant relationship between biological effects and U radiological activity. We therefore chose to herein examine U bioaccumulation and induced effects in zebrafish according to a chemical dose-response approach. Results showed that U is highly bioconcentrated in fish, according to a time- and concentration-dependent model. Additionally, hepatic antioxidant defenses, red blood cells DNA integrity and brain acetylcholinesterase activity were found to be significantly altered. Generally, the higher the U concentration, the sooner and/or the greater the effect, suggesting a close relationship between accumulation and effect. - Research highlights: Depleted U bioconcentration factor is of about 1000 in zebrafish exposed to 20 {mu}g/L. Hepatic antioxidant disorders are noticed as soon as the first hours of exposure. DNA damage is induced in red blood cells after 20 d of exposure to 500 {mu}g DU/L. The brain cholinergic system (AChE activity) is impacted. - This study demonstrates that U is highly bioaccumulated in fish, resulting in biological disorders such as hepatic oxidative stress as well as genotoxic and neurotoxic events.

  3. Mercury bioaccumulation in the food web of Three Gorges Reservoir (China): Tempo-spatial patterns and effect of reservoir management

    International Nuclear Information System (INIS)

    Tempo-spatial patterns of mercury bioaccumulation and tropho-dynamics, and the potential for a reservoir effect were evaluated in the Three Gorges Reservoir (TGR, China) from 2011 to 2012, using total mercury concentrations (THg) and stable isotopes (δ13C and δ15N) of food web components (seston, aquatic invertebrates and fish). Hg concentrations in aquatic invertebrates and fish indicated a significant temporal trend associated with regular seasonal water-level manipulation. This includes water level lowering to allow for storage of water during the wet season (summer); a decrease of water levels from September to June providing a setting for flood storage. Hg concentrations in organisms were the highest after flooding. Higher Hg concentrations in fish were observed at the location farthest from the dam. Hg concentrations in water and sediment were correlated. Compared with the reservoirs of United States and Canada, TGR had lower trophic magnification factors (0.046–0.066), that are explained primarily by organic carbon concentrations in sediment, and the effect of “growth dilution”. Based on comparison before and after the impoundment of TGR, THg concentration in biota did not display an obvious long-term reservoir effect due to (i) short time since inundation, (ii) regular water discharge associated with water-level regulation, and/or (iii) low organic matter content in the sediment. - Highlights: • Hg concentrations were measured in biota of the main stem of 3 Gorges Reservoir. • Fish Hg concentration post-flood period > pre-flood period > flood period. • Fish Hg concentrations were the highest farthest from the dam. • THg in fish 2 years after inundation were the same as before impoundment. • Low biomagnification was ascribed to low DOC content in the sediment

  4. Mercury bioaccumulation in the food web of Three Gorges Reservoir (China): Tempo-spatial patterns and effect of reservoir management

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jun [College of Fisheries, Huazhong Agricultural University, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan 430070 (China); Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070 (China); Zhou, Qiong, E-mail: hainan@mail.hzau.edu.cn [College of Fisheries, Huazhong Agricultural University, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan 430070 (China); Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070 (China); Yuan, Gailing; He, Xugang [College of Fisheries, Huazhong Agricultural University, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan 430070 (China); Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070 (China); Xie, Ping [College of Fisheries, Huazhong Agricultural University, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan 430070 (China); Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology of China, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072 (China)

    2015-09-15

    Tempo-spatial patterns of mercury bioaccumulation and tropho-dynamics, and the potential for a reservoir effect were evaluated in the Three Gorges Reservoir (TGR, China) from 2011 to 2012, using total mercury concentrations (THg) and stable isotopes (δ{sup 13}C and δ{sup 15}N) of food web components (seston, aquatic invertebrates and fish). Hg concentrations in aquatic invertebrates and fish indicated a significant temporal trend associated with regular seasonal water-level manipulation. This includes water level lowering to allow for storage of water during the wet season (summer); a decrease of water levels from September to June providing a setting for flood storage. Hg concentrations in organisms were the highest after flooding. Higher Hg concentrations in fish were observed at the location farthest from the dam. Hg concentrations in water and sediment were correlated. Compared with the reservoirs of United States and Canada, TGR had lower trophic magnification factors (0.046–0.066), that are explained primarily by organic carbon concentrations in sediment, and the effect of “growth dilution”. Based on comparison before and after the impoundment of TGR, THg concentration in biota did not display an obvious long-term reservoir effect due to (i) short time since inundation, (ii) regular water discharge associated with water-level regulation, and/or (iii) low organic matter content in the sediment. - Highlights: • Hg concentrations were measured in biota of the main stem of 3 Gorges Reservoir. • Fish Hg concentration post-flood period > pre-flood period > flood period. • Fish Hg concentrations were the highest farthest from the dam. • THg in fish 2 years after inundation were the same as before impoundment. • Low biomagnification was ascribed to low DOC content in the sediment.

  5. Habitat-specific bioaccumulation of methylmercury in invertebrates of small mid-latitude lakes in North America

    Energy Technology Data Exchange (ETDEWEB)

    Chetelat, John, E-mail: john.chetelat@ec.gc.c [Groupe de recherche interuniversitaire en limnologie, Departement de sciences biologiques, Universite de Montreal, Montreal, Quebec H3C 3J7 (Canada); Amyot, Marc; Garcia, Edenise [Groupe de recherche interuniversitaire en limnologie, Departement de sciences biologiques, Universite de Montreal, Montreal, Quebec H3C 3J7 (Canada)

    2011-01-15

    We examined habitat-specific bioaccumulation of methylmercury (MeHg) in aquatic food webs by comparing concentrations in pelagic zooplankton to those in littoral macroinvertebrates from 52 mid-latitude lakes in North America. Invertebrate MeHg concentrations were primarily correlated with water pH, and after controlling for this influence, pelagic zooplankton had significantly higher MeHg concentrations than littoral primary consumers but lower MeHg than littoral secondary consumers. Littoral primary consumers and pelagic zooplankton are two dominant prey for fish, and greater MeHg in zooplankton is likely sufficient to increase bioaccumulation in pelagic feeders. Intensive sampling of 8 lakes indicated that habitat-specific bioaccumulation in invertebrates (of similar trophic level) may result from spatial variation in aqueous MeHg concentration or from more efficient uptake of aqueous MeHg into the pelagic food web. Our findings demonstrate that littoral-pelagic differences in MeHg bioaccumulation are widespread in small mid-latitude lakes. - Methylmercury levels in dominant invertebrate prey for fish differ between littoral and pelagic habitats within a lake.

  6. Habitat-specific bioaccumulation of methylmercury in invertebrates of small mid-latitude lakes in North America

    International Nuclear Information System (INIS)

    We examined habitat-specific bioaccumulation of methylmercury (MeHg) in aquatic food webs by comparing concentrations in pelagic zooplankton to those in littoral macroinvertebrates from 52 mid-latitude lakes in North America. Invertebrate MeHg concentrations were primarily correlated with water pH, and after controlling for this influence, pelagic zooplankton had significantly higher MeHg concentrations than littoral primary consumers but lower MeHg than littoral secondary consumers. Littoral primary consumers and pelagic zooplankton are two dominant prey for fish, and greater MeHg in zooplankton is likely sufficient to increase bioaccumulation in pelagic feeders. Intensive sampling of 8 lakes indicated that habitat-specific bioaccumulation in invertebrates (of similar trophic level) may result from spatial variation in aqueous MeHg concentration or from more efficient uptake of aqueous MeHg into the pelagic food web. Our findings demonstrate that littoral-pelagic differences in MeHg bioaccumulation are widespread in small mid-latitude lakes. - Methylmercury levels in dominant invertebrate prey for fish differ between littoral and pelagic habitats within a lake.

  7. Microcystin-LR bioaccumulation and depuration kinetics in lettuce and arugula: Human health risk assessment.

    Science.gov (United States)

    Cordeiro-Araújo, Micheline Kézia; Chia, Mathias Ahii; Arruda-Neto, João Dias de Toledo; Tornisielo, Valdemar Luiz; Vilca, Franz Zirena; Bittencourt-Oliveira, Maria do Carmo

    2016-10-01

    Microcystin-LR (MC-LR) is one of the most toxic and common microcystins (MCs) variant found in aquatic ecosystems. Little is known about the possibility of recovering microcystins contaminated agricultural crops. The objectives of this study were to determine the bioaccumulation and depuration kinetics of MC-LR in leaf tissues of lettuce and arugula, and estimate the total daily intake (ToDI) of MC-LR via contaminated vegetables by humans. Arugula and lettuce were irrigated with contaminated water having 5 and 10μgL(-1) of MC-LR for 7days (bioaccumulation), and subsequently, with uncontaminated water for 7days (depuration). Quantification of MC-LR was performed by LC-MS/MS. The one-compartment biokinetic model was employed for MC-LR bioaccumulation and depuration data analysis. MC-LR was only accumulated in lettuce. After 7days of irrigation with uncontaminated water, over 25% of accumulated MC-LR was still retained in leaf tissues of plants treated with 10μgL(-1) MC-LR. Total daily toxin intake by adult consumers (60kg-bw) exceeded the 0.04μgMC-LRkg(-1) limit recommended by WHO. Bioaccumulation was found to be linearly proportional to the exposure concentration of the toxin, increasing over time; and estimated to become saturated after 30days of uninterrupted exposure. On the other hand, MC-LR depuration was less efficient at higher exposure concentrations. This is because biokinetic half-life calculations gave 2.9 and 3.7days for 5 and 10μgL(-1) MC-LR treatments, which means 29-37days are required to eliminate the toxin. For the first time, our results demonstrated the possibility of MC-LR decontamination of lettuce plants. PMID:27267723

  8. Heavy Metal Accumulation as Phytoremediation Potential of Aquatic Macrophyte, Monochoria vaginalis (Burm.F.) K. Presl Ex Kunth

    OpenAIRE

    Tulika Talukdar; Dibyendu Talukdar

    2015-01-01

    Bioaccumulation potential of six ecotypes, collected from six different industrial zones of lower Indo-Gangetic basin of West Bengal, India,of Monochoria vaginalis, commonly known as oval-leafed pondweed has been investigated based on chromium (Cr), cadmium (Cd) andCopper (Cu) accumulation pattern in different plant organs. Bioaccumulation potential was assessed by bioaccumulation factors (BFs-leavesmetal concentration/soil metal concentration), bioconcentration factors (BCFs- roots metal/soi...

  9. Integrated testing strategies (ITS) for bioaccumulation: hierarchical scheme of chemistrydriven modules and definition of applicability domains

    DEFF Research Database (Denmark)

    Nendza, M.; Scheringer, M.; Strempel, S.;

    2011-01-01

    , Reduce, Replace) modules The ITS components for bioaccumulation listed in the ECHA Guidance on information requirements and chemical safety assessment [1,2] have been extended with new knowledge generated in OSIRIS and complemented with feedback from stakeholders on the actual problems in using ITS for...... studies, that are scientifically unnecessary or technically not feasible · Waiving of BCF studies, that provide no risk-relevant information The OSIRIS ITS for bioaccumulation will be publicly available (webtool) after further refinement based on stakeholder feedback. Its concepts and modules, as well as...

  10. POP bioaccumulation in macroinvertebrates of alpine freshwater systems

    Energy Technology Data Exchange (ETDEWEB)

    Bizzotto, E.C.; Villa, S. [Department of Environmental and Landscape Sciences, University of Milano-Bicocca, Piazza della Scienza 1, 20126 Milano (Italy); Vighi, M., E-mail: marco.vighi@unimib.i [Department of Environmental and Landscape Sciences, University of Milano-Bicocca, Piazza della Scienza 1, 20126 Milano (Italy)

    2009-12-15

    This study serves to investigate the uptake of POPs in the different trophic levels (scrapers, collectors, predators, shredders) of macroinvertebrate communities sampled from a glacial and a non-glacial stream in the Italian Alps. The presented results show that the contaminant concentrations in glacial communities are generally higher compared to those from non-glacial catchments, highlighting the importance of glaciers as temporary sinks of atmospherically transported pollutants. Moreover, the data also suggests that in mountain systems snow plays an important role in influencing macroinvertebrate contamination. The main chemical uptake process to the macroinvertebrates is considered to be bioconcentration from water, as similar contaminant profiles were observed between the different trophic levels. The role of biomagnification/bioaccumulation is thought to be absent or negligible. The enrichment of chemicals observed in the predators is likely to be related to their greater lipid content compared to that of other feeding groups. - Influence of POP release in glacial-fed streams, enhanced by global warming, on pristine aquatic ecosystems.

  11. POP bioaccumulation in macroinvertebrates of alpine freshwater systems

    International Nuclear Information System (INIS)

    This study serves to investigate the uptake of POPs in the different trophic levels (scrapers, collectors, predators, shredders) of macroinvertebrate communities sampled from a glacial and a non-glacial stream in the Italian Alps. The presented results show that the contaminant concentrations in glacial communities are generally higher compared to those from non-glacial catchments, highlighting the importance of glaciers as temporary sinks of atmospherically transported pollutants. Moreover, the data also suggests that in mountain systems snow plays an important role in influencing macroinvertebrate contamination. The main chemical uptake process to the macroinvertebrates is considered to be bioconcentration from water, as similar contaminant profiles were observed between the different trophic levels. The role of biomagnification/bioaccumulation is thought to be absent or negligible. The enrichment of chemicals observed in the predators is likely to be related to their greater lipid content compared to that of other feeding groups. - Influence of POP release in glacial-fed streams, enhanced by global warming, on pristine aquatic ecosystems.

  12. Triclosan: Current Status, Occurrence, Environmental Risks and Bioaccumulation Potential

    Directory of Open Access Journals (Sweden)

    Gurpreet Singh Dhillon

    2015-05-01

    Full Text Available Triclosan (TCS is a multi-purpose antimicrobial agent used as a common ingredient in everyday household personal care and consumer products. The expanded use of TCS provides a number of pathways for the compound to enter the environment and it has been detected in sewage treatment plant effluents; surface; ground and drinking water. The physico-chemical properties indicate the bioaccumulation and persistence potential of TCS in the environment. Hence, there is an increasing concern about the presence of TCS in the environment and its potential negative effects on human and animal health. Nevertheless, scarce monitoring data could be one reason for not prioritizing TCS as emerging contaminant. Conventional water and wastewater treatment processes are unable to completely remove the TCS and even form toxic intermediates. Considering the worldwide application of personal care products containing TCS and inefficient removal and its toxic effects on aquatic organisms, the compound should be considered on the priority list of emerging contaminants and its utilization in all products should be regulated.

  13. Study of Bioaccumulation Hg by Oreochromis mossambicus Using Radiotracer Techniques

    International Nuclear Information System (INIS)

    Industrial wastes are considered critical factors for disturbing the natural environment. Composite effluents tainted with different heavy metals are major environmental pollutants of varied wetland ecosystems. Coastal and estuarine areas seem to play a minor role in the global cycle of mercury. However, these areas can exhibit locally high levels of mercury directly resulting from human pollution. To reveal the presence of pollutants over time and to measure their toxic effect, the use of bio-monitors or bio-indicators can play a prominent role in the monitoring of aquatic ecosystems. Oreochromis mossambicus concentrate heavy metals in their tissues as a result of their capabilities to remove dissolved metals from the water column and can be candidate as bio-indicator. Uptake and loss kinetics of gamma-emitting radiotracers of 203Hg were determined following exposures to a one order of magnitude-range of environmentally realistic concentrations of Hg, using highly sensitive nuclear detection techniques. Using the simplest model of accumulation and loss, some of these various factors can be demonstrated, e.g., the effect of respiration rate on the uptake process. In this study, we quantified the various physiological parameters characterizing the metal bioaccumulation from dissolved uptake by Oreochromis mossambicus. (authors)

  14. Heavy Metal Bioaccumulation and Toxicity with Special Reference to Microalgae

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The bioaccumulation and toxicity of heavy metals were reviewed with special reference to microalgae, the key component of the food web in aquatic ecosystems. Heavy metals enter algal cells either by means of active transport or by endocytosis through chelating proteins and affect various physiological and biochemical processes of the algae. The toxicity primarily results from their binding to the sulphydryl groups in proteins or disrupting protein structure or displacing essential elements. Metals can break the oxidative balance of the algae, inducing antioxidant enzymes, such as superoxide dismutase (SOD), glutathione peroxidase (GPX) and ascorbate peroxidase (APX). The amount of oxidized proteins and lipids in the algal cells thus indicates the severity of the stress. Algal tolerance to heavy metal is highly dependent upon the defense response against the probable oxidative damages. Production of binding factors and proteins, exclusion of metals from cells by ion-selective transporters and excretion or compartmentalization have been suggested with regard to reducing heavy metal toxicity. However, a comprehensive description on the mechanisms underlining metal toxicity of microalgae and gaining tolerance is yet to be elaborated.

  15. Preliminary studies of quality assessment of aquatic environments from Cluj suburban areas, based on some invertebrates bioindicators and chemical indicators

    OpenAIRE

    Gheorghe Stan; Laurenţiu C. Stoian; A. Bianca Badea; Andrea Gagyi-Palffy

    2010-01-01

    Systematic categories of invertebrates bioindicators correlated with some chemical parameters,were an effective way to characterize the quality of lotic (Someş River) and lentic (Lake Gilău) aquatic environment from Cluj-Napoca area. Invertebrate fauna was represented by species belonging to the following dominant systematic categories: Nematoda, Annelida, Crustacea and Insecta. This paper containsalso some preliminary data on the bioindicators species belonging to Protozoa phylum. Dominant g...

  16. Bioaccumulation patterns of methyl mercury and essential fatty acids in lacustrine planktonic food webs and fish.

    Science.gov (United States)

    Kainz, Martin; Telmer, Kevin; Mazumder, Asit

    2006-09-01

    Organisms of the planktonic food web convey essential nutrients as well as contaminants to animals at higher trophic levels. We measured concentrations of methyl mercury (MeHg) and essential fatty acids (EFAs, key nutrients for aquatic food webs) in four size categories of planktonic organisms - seston (10-64 microm), micro-(100-200 microm), meso-(200-500 microm), and macrozooplankton (>500 microm) - as well as total mercury (THg) and EFAs in rainbow trout (Oncorhynchus mykiss) in coastal lakes. We demonstrate that, in all lakes during this summer sampling, MeHg concentrations of planktonic organisms increase significantly with plankton size, independent of their taxonomic composition, and that their MeHg accumulation patterns predict significantly THg concentrations in rainbow trout (R2=0.71, pzooplankton size fraction. Moreover, concentrations of individual EFA compounds in rainbow trout are consistently lower, with the exception of docosahexaenoic acid, than those in macrozooplankton. The continuous increase of MeHg concentrations in aquatic organisms, therefore, differs from patterns of EFA accumulation in zooplankton and fish. We interpret these contrasting accumulation patterns of MeHg and EFA compounds as the inability of aquatic organisms to regulate the assimilation of dietary MeHg, whereas the rate of EFA retention may be controlled to optimize their physiological performance. Therefore, we conclude that bioaccumulation patterns of Hg in these aquatic food webs are not controlled by lipid solubility and/or the retention of EFA compounds. PMID:16226794

  17. Mercury in western North America: A synthesis of environmental contamination, fluxes, bioaccumulation, and risk to fish and wildlife

    Science.gov (United States)

    Eagles-Smith, Collin A.; Wiener, James G.; Eckley, Chris S.; Willacker, James J.; Evers, David C.; Marvin-DiPasquale, Mark C.; Obrist, Daniel; Fleck, Jacob; Aiken, George R.; Lepak, Jesse M.; Jackson, Allyson K.; Webster, Jackson; Stewart, Robin; Davis, Jay; Alpers, Charles N.; Ackerman, Josh

    2016-01-01

    Western North America is a region defined by extreme gradients in geomorphology and climate, which support a diverse array of ecological communities and natural resources. The region also has extreme gradients in mercury (Hg) contamination due to a broad distribution of inorganic Hg sources. These diverse Hg sources and a varied landscape create a unique and complex mosaic of ecological risk from Hg impairment associated with differential methylmercury (MeHg) production and bioaccumulation. Understanding the landscape-scale variation in the magnitude and relative importance of processes associated with Hg transport, methylation, and MeHg bioaccumulation requires a multidisciplinary synthesis that transcends small-scale variability. The Western North America Mercury Synthesis compiled, analyzed, and interpreted spatial and temporal patterns and drivers of Hg and MeHg in air, soil, vegetation, sediments, fish, and wildlife across western North America. This collaboration evaluated the potential risk from Hg to fish, and wildlife health, human exposure, and examined resource management activities that influenced the risk of Hg contamination. This paper integrates the key information presented across the individual papers that comprise the synthesis. The compiled information indicates that Hg contamination is widespread, but heterogeneous, across western North America. The storage and transport of inorganic Hg across landscape gradients are largely regulated by climate and land-cover factors such as plant productivity and precipitation. Importantly, there was a striking lack of concordance between pools and sources of inorganic Hg, and MeHg in aquatic food webs. Additionally, water management had a widespread influence on MeHg bioaccumulation in aquatic ecosystems, whereas mining impacts where relatively localized. These results highlight the decoupling of inorganic Hg sources with MeHg production and bioaccumulation. Together the findings indicate that developing

  18. Biodiversity, bioaccumulation and physiological changes in lichens growing in the vicinity of coal-based thermal power plant of Raebareli district, north India.

    Science.gov (United States)

    Bajpai, Rajesh; Upreti, Dalip K; Nayaka, S; Kumari, B

    2010-02-15

    The lichen diversity assessment carried out around a coal-based thermal power plant indicated the increase in lichen abundance with the increase in distance from power plant in general. The photosynthetic pigments, protein and heavy metals were estimated in Pyxine cocoes (Sw.) Nyl., a common lichen growing around thermal power plant for further inference. Distributions of heavy metals from power plant showed positive correlation with distance for all directions, however western direction has received better dispersion as indicated by the concentration coefficient-R(2). Least significant difference analysis showed that speed of wind and its direction plays a major role in dispersion of heavy metals. Accumulation of Al, Cr, Fe, Pb and Zn in the thallus suppressed the concentrations of pigments like chlorophyll a, chlorophyll b and total chlorophyll, however, enhanced the level of protein. Further, the concentrations of chlorophyll contents in P. cocoes increased with the decreasing the distance from the power plant, while protein, carotenoid and phaeophytisation exhibited significant decrease. PMID:19818555

  19. Bioaccumulation of selected heavy metals by the water fern, Azolla filiculoides Lam. in a wetland ecosystem affected by sewage, mine and industrial pollution

    Energy Technology Data Exchange (ETDEWEB)

    Wet, L.P.D. de; Schoonbee, H.J.; Pretorius, J.; Bezuidenhout, L.M. (Rand Afrikaans University, Johannesburg (South Africa). Depts. of Zoology and Botany, Research Unit for Aquatic and Terrestrial Ecosystems)

    1990-10-01

    The bio-accumulation of the heavy metals, Fe, Cu, Ni, Pb, Zn, Mn and Cr by the water fern, Azolla filiculoides Lam. in a wetland ecosystem polluted by effluents from sewage works, mines and industries was investigated. Results showed that the different metals can be accumulated by the water fern at concentration levels not necessarily related to their actual concentrations in the aquatic environment, as measured in this case, in the bottom sediments. 45 refs., 1 fig., 3 tabs.

  20. Bioaccumulation of gasoline in brackish green algae and popular clams

    Directory of Open Access Journals (Sweden)

    Gihan A. El-Shoubaky

    2016-03-01

    Full Text Available The green algae (Ulva lactuca and Enteromorpha clathrata and the clams (Tapes decussates and Venerupis aurea grow together in Timsah Lake, Suez Canal, Egypt. Our ultimate goal is to validate the bioaccumulation of gasoline in the marine organisms and their behavior after exposure to the pollutant, experimentally. These species were treated with a serial treatment of gasoline (1000, 4000, 16,000 and 64,000 μl in aquaria with brackish sea-water for 72 h. The tested green algae and clams were taken for an analysis of total hydrocarbon accumulation daily. The statistical analysis showed significant differences between the four species and also between the duration of exposure. The accumulation of gasoline in U. lactuca and E. clathrata reached their maximum after 48 h at 1000 and 4000 μl. The highest absorption was registered after 24 h only at 16,000 and at 64,000 μl. U. lactuca recorded complete mortality in 64,000 μl at 72 h whereas E. clathrata registered death at 48 h and 72 h in the same treatment. V. aurea was more sensitive than T. decussates. The accumulation of gasoline reached its maximum in V. aurea after only 24 h in the first treatment while it retarded to 48 h in T. decussates with a lesser accumulation. However, both clam species accumulated the highest amount of petroleum hydrocarbons during the first hour of exposure at the first treatment. In the third and fourth treatments, clams did not accumulate gasoline but began to dispose it from their tissues till it became less than that in the control. Mortality gradually increased with time in each treatment except the last one (64,000 μl in which 100% death of the specimens was observed. In general, the bioaccumulation of gasoline level was in a descending order as follows: U. lactuca > E. clathrata > V. aurea > T. decussates. Their behavior changed from accumulation to detoxification with time and with the increase in pollutant concentration. Generally, these

  1. Novel control and steady-state correction method for standard 28-day bioaccumulation tests using Nereis virens.

    Science.gov (United States)

    Bennett, Erin R; Steevens, Jeffery A; Lotufo, Guilherme R; Paterson, Gord; Drouillard, Ken G

    2011-06-01

    Evaluation of dredged material for aquatic placement requires assessment of bioaccumulation potentials for benthic organisms using standardized laboratory bioaccumulation tests. Critical to the interpretation of these data is the assessment of steady state for bioaccumulated residues needed to generate biota sediment accumulation factors (BSAFs) and to address control correction of day 0 contaminant residues measured in bioassay organisms. This study applied a novel performance reference compound approach with a pulse-chase experimental design to investigate elimination of a series of isotopically labeled polychlorinated biphenyl ((13)C-PCBs) in the polychaete worm Nereis virens while simultaneously evaluating native PCB bioaccumulation from field-collected sediments. Results demonstrated that all (13)C-PCBs, with the exception of (13)C-PCB209 (> 80%), were eliminated by more than 90% after 28 d. The three sediment types yielded similar (13)C-PCB whole-body elimination rate constants (k(tot)) producing the following predictive equation: log k(tot)  =  - 0.09 × log K(OW)  - 0.45. The rapid loss of (13)C-PCBs from worms over the bioassay period indicated that control correction, by subtracting day 0 residues, would result in underestimates of bioavailable sediment residues. Significant uptake of native PCBs was observed only in the most contaminated sediment and proceeded according to kinetic model predictions with steady-state BSAFs ranging from 1 to 3 and peaking for congeners of log K(OW) between 6.2 and 6.5. The performance reference compound approach can provide novel information about chemical toxicokinetics and also serve as a quality check for the physiological performance of the bioassay organism during standardized bioaccumulation testing. PMID:21381091

  2. An investigation into ciguatoxin bioaccumulation in sharks.

    Science.gov (United States)

    Meyer, Lauren; Capper, Angela; Carter, Steve; Simpfendorfer, Colin

    2016-09-01

    Ciguatoxins (CTXs) produced by benthic Gambierdiscus dinoflagellates, readily biotransform and bioaccumulate in food chains ultimately bioconcentrating in high-order, carnivorous marine species. Certain shark species, often feeding at, or near the top of the food-chain have the ability to bioaccumulate a suite of toxins, from both anthropogenic and algal sources. As such, these apex predators are likely sinks for CTXs. This assumption, in conjunction with anecdotal knowledge of poisoning incidents, several non-specific feeding trials whereby various terrestrial animals were fed suspect fish flesh, and a single incident in Madagascar in 1994, have resulted in the widespread acceptance that sharks may accumulate CTXs. This prompted a study to investigate original claims within the literature, as well as investigate CTX bioaccumulation in the muscle and liver of 22 individual sharks from nine species, across four locations along the east coast of Australia. Utilizing an updated ciguatoxin extraction method with HPLC-MS/MS, we were unable to detect P-CTX-1, P-CTX-2 or P-CTX-3, the three primary CTX congeners, in muscle or liver samples. We propose four theories to address this finding: (1) to date, methods have been optimized for teleost species and may not be appropriate for elasmobranchs, or the CTXs may be below the limit of detection; (2) CTX may be biotransformed into elasmobranch-specific congeners as a result of unique metabolic properties; (3) 22 individuals may be an inadequate sample size given the rare occurrence of high-order ciguatoxic organisms and potential for CTX depuration; and (4) the ephemeral nature and inconsistent toxin profiles of Gambierdiscus blooms may have undermined our classifications of certain areas as CTX hotspots. These results, in combination with the lack of clarity within the literature, suggest that ciguatoxin bioaccumulation in sharks remains elusive, and warrants further investigation to determine the dynamics of toxin production

  3. Bioaccumulation of radiocaesium in Arctic seals

    International Nuclear Information System (INIS)

    Seals are high trophic level feeders that bioaccumulate many contaminants to a greater deg.ree than most lower trophic level organisms. Their trophic status in the marine food web and wide-spread distribution make seals useful sentinels of arctic environmental change. The purpose of this investigation is to document the levels and bioaccumulation potential of radiocaesium in high latitude seal species for which data have not previously been available. The study was carried out on harp, ringed, and hooded seals caught along the northeast coast of Greenland (75-80 deg.. N) in 1999. The results are then compared with previous studies in order to elucidate factors responsible for bioaccumulation in Arctic seals. Concentrations of 137Cs were determined in muscle and liver samples from a total of 22 juvenile seals. The mean concentration in muscle and liver samples for all animals was 0.36±0.13 Bq/kg f.w. and 0.26±0.08 Bq/kg f.w. respectively. The results are consistent with previous studies indicating low levels of radiocaesium in Arctic seals in response to a long term trend of decreasing levels of 137Cs in the Barents Sea region. Bioconcentration factors (BCFs) estimated for seals from NE Greenland are similar to those reported earlier for the northern Barents Sea, ranging from 32-150. Comparing these values with reported BCFs from other sectors of the European Arctic, we suggest that the combination of physiological and ecological factors on radiocaesium bioaccumulation is comparable among different Arctic seal populations

  4. Bioaccumulation of radiocaesium in Arctic seals.

    Science.gov (United States)

    Carroll, Jolynn; Wolkers, Hans; Andersen, Magnus; Rissanen, Kristina

    2002-12-01

    Seals are high trophic level feeders that bioaccumulate many contaminants to a greater degree than most lower trophic level organisms. Their trophic status in the marine food web and wide-spread distribution make seals useful sentinels of arctic environmental change. The purpose of this investigation is to document the levels and bioaccumulation potential of radiocaesium in high latitude seal species for which data have not previously been available. The study was carried out on harp, ringed, and bearded seals caught north of the island archipelago of Svalbard (82 degrees N) in 1999. The results are then compared with previous studies in order to elucidate factors responsible for bioaccumulation in Arctic seals. Concentrations of 137Cs were determined in muscle, liver and kidney samples from a total of 10 juvenile and one adult seal. The mean concentration in muscle samples for all animals was 0.23 +/- 0.045 Bq/kg f.w. 137Cs concentrations in both liver and kidney samples were near detection limits (approximately 0.2 Bq/kg f.w.). The results are consistent with previous studies indicating low levels of radiocaesium in Arctic seals in response to a long term trend of decreasing levels of 137Cs in the Barents Sea region. Bioconcentration factors (BCFs) estimated for seals from NE Svalbard are low, ranging from 34 to 130. Comparing these values with reported BCFs for Greenland seals from other sectors of the European Arctic, we suggest that the combination of physiological and ecological factors on radiocaesium bioaccumulation is comparable among different Arctic seal populations. The application of this work to Arctic monitoring and assessment programs is discussed. PMID:12523541

  5. Bioaccumulation of radiocaesium in Arctic seals

    International Nuclear Information System (INIS)

    Seals are high trophic level feeders that bioaccumulate many contaminants to a greater degree than most lower trophic level organisms. Their trophic status in the marine food web and wide-spread distribution make seals useful sentinels of arctic environmental change. The purpose of this investigation is to document the levels and bioaccumulation potential of radiocaesium in high latitude seal species for which data have not previously been available. The study was carried out on harp, ringed, and bearded seals caught north of the island archipelago of Svalbard (82 deg. N) in 1999. The results are then compared with previous studies in order to elucidate factors responsible for bioaccumulation in Arctic seals. Concentrations of 137Cs were determined in muscle, liver and kidney samples from a total of 10 juvenile and one adult seal. The mean concentration in muscle samples for all animals was 0.23±0.045 Bq/kg f.w. 137Cs concentrations in both liver and kidney samples were near detection limits (∼0.2 Bq/kg f.w.). The results are consistent with previous studies indicating low levels of radiocaesium in Arctic seals in response to a long term trend of decreasing levels of 137Cs in the Barents Sea region. Bioconcentration factors (BCFs) estimated for seals from NE Svalbard are low, ranging from 34 to 130. Comparing these values with reported BCFs for Greenland seals from other sectors of the European Arctic, we suggest that the combination of physiological and ecological factors on radiocaesium bioaccumulation is comparable among different Arctic seal populations. The application of this work to Arctic monitoring and assessment programs is discussed

  6. Bioaccumulation of radiocaesium in Arctic seals

    Energy Technology Data Exchange (ETDEWEB)

    Carroll, JoLynn; Wolkers, Hans; Andersen, Magnus; Rissanen, Kristina

    2002-12-01

    Seals are high trophic level feeders that bioaccumulate many contaminants to a greater degree than most lower trophic level organisms. Their trophic status in the marine food web and wide-spread distribution make seals useful sentinels of arctic environmental change. The purpose of this investigation is to document the levels and bioaccumulation potential of radiocaesium in high latitude seal species for which data have not previously been available. The study was carried out on harp, ringed, and bearded seals caught north of the island archipelago of Svalbard (82 deg. N) in 1999. The results are then compared with previous studies in order to elucidate factors responsible for bioaccumulation in Arctic seals. Concentrations of {sup 137}Cs were determined in muscle, liver and kidney samples from a total of 10 juvenile and one adult seal. The mean concentration in muscle samples for all animals was 0.23{+-}0.045 Bq/kg f.w. {sup 137}Cs concentrations in both liver and kidney samples were near detection limits ({approx}0.2 Bq/kg f.w.). The results are consistent with previous studies indicating low levels of radiocaesium in Arctic seals in response to a long term trend of decreasing levels of {sup 137}Cs in the Barents Sea region. Bioconcentration factors (BCFs) estimated for seals from NE Svalbard are low, ranging from 34 to 130. Comparing these values with reported BCFs for Greenland seals from other sectors of the European Arctic, we suggest that the combination of physiological and ecological factors on radiocaesium bioaccumulation is comparable among different Arctic seal populations. The application of this work to Arctic monitoring and assessment programs is discussed.

  7. A protocell design for bioaccumulation applications

    OpenAIRE

    von Hegner, Ian

    2015-01-01

    This article provides a specific example of recombinant cell and protocell technology, moving from what is presently known to suggesting how novel application of existing methodologies could be utilized to design a complex synthetic system in form of a self-sufficient light empowered protocell. A practical application of protocells using a primary example of desalination in water treatment is given, followed by a more general approach to bioaccumulation and bio-diagnostics, outlining the poss...

  8. Aquatic modules for bioregenerative life support systems: Developmental aspects based on the space flight results of the C.E.B.A. Mini Module

    Science.gov (United States)

    Bluem, S. V.

    the feeding of the animals. Although C.E.B.A.S.-based aquaculture modules are disposed to be closed food loop systems (edible herbivorous fish species and edible water plants) which are already verified on Earth this will not be possible in space without previous devices in which the animals are fed from a food storage. This has to be done at least once daily which would waste too much crew time when done by astronauts. So, the development of a reliable aut omated food dis penser has highest priority. Also in this case basic technical solutions are already elaborated. So, the paper will give a comprehensive overview about the disposed further C.E.B.A.S. -based developments of aquatic food production modules.

  9. Lake Bathymetric Aquatic Vegetation

    Data.gov (United States)

    Minnesota Department of Natural Resources — Aquatic vegetation represented as polygon features, coded with vegetation type (emergent, submergent, etc.) and field survey date. Polygons were digitized from...

  10. Enantiomerization and enantioselective bioaccumulation of metalaxyl in Tenebrio molitor larvae.

    Science.gov (United States)

    Gao, Yongxin; Wang, Huili; Qin, Fang; Xu, Peng; Lv, Xiaotian; Li, Jianzhong; Guo, Baoyuan

    2014-02-01

    The enantiomerization and enantioselective bioaccumulation of metalaxyl by a single dose of exposure to Tenebrio molitor larvae under laboratory condition were studied by high-performance liquid chromatography tandem mass spectroscopy (HPLC-MS/MS) based on a ChiralcelOD-3R [cellulosetris-tris-(3, 5-dichlorophenyl-carbamate)] column. Exposure of enantiopure R-metalaxyl and S-metalaxyl in Tenebrio molitor larvae exhibited significant enantiomerization, with formation of the R enantiomers from the S enantiomers, and vice versa, which might be attributed to the chiral pesticide catalyzed by a certain enzyme in Tenebrio molitor larvae. Enantiomerization was not observed in wheat bran during the period of 21 d. In addition, bioaccumulation of rac-metalaxyl in Tenebrio molitor larvae was enantioselective with a preferential accumulation of S-metalaxyl. These results showed that enantioselectivity was caused not only by actual degradation and metabolism but also by enantiomerization, which was an important process in the environmental fate and behavior of metalaxyl enantiomers. PMID:24302540

  11. A Cosserat-based formulation for elastic, axisymmetric shells with implications to the pulsed-jetting propulsion of soft-bodied aquatic vehicles

    Science.gov (United States)

    Renda, Federico; Giorgio-Serchi, Francesco; Boyer, Frederic

    We take the cue from recent development in geometric-based modelling in order to describe the dynamics of a novel soft-structured aquatic vehicle. The Cosserat-like formulation for an axisymmetric, elastic shell subject to concentrated dynamic loadings lends itself to the case of this new vehicle, recently designed by the authors, which consists of a shell of rubber-like materials undergoing sequential stages of inflation and deflation in order to propel itself in water via pulsed-jetting. The experiments performed on the existing robotic prototypes are used for the validation of the geometric model. This is eventually employed for deriving an accurate measure of the efficiency of propulsion which explicitly accounts for the elastic energy involved during the propulsion routine. The model yields a-priori estimations of swimming efficiency based on vehicle specifications and mode of actuation. These provide invaluable information for both design optimization and control, as well as a means to study the biomechanics of soft-bodied aquatic organisms. Presenting author.

  12. Fluvial geomorphology and aquatic-to-terrestrial Hg export are weakly coupled in small urban streams of Columbus, Ohio

    Science.gov (United States)

    Sullivan, S. Mažeika P.; Boaz, Lindsey E.; Hossler, Katie

    2016-04-01

    Although mercury (Hg) contamination is common in stream ecosystems, mechanisms governing bioavailability and bioaccumulation in fluvial systems remain poorly resolved as compared to lentic systems. In particular, streams in urbanized catchments are subject to fluvial geomorphic alterations that may contribute to Hg distribution, bioaccumulation, and export across the aquatic-to-terrestrial boundary. In 12 streams of urban Columbus, Ohio, we investigated the influence of fluvial geomorphic characteristics related to channel geometry, streamflow, and sediment size and distribution on (1) Hg concentrations in sediment and body burdens in benthic larval and adult emergent aquatic insects and (2) aquatic-to-terrestrial contaminant transfer to common riparian spiders of the families Pisauridae and Tetragnathidae via changes in aquatic insect Hg body burdens as well as in aquatic insect density and community composition. Hydrogeomorphic characteristics were weakly related to Hg body burdens in emergent insects (channel geometry) and tetragnathid spiders (streamflow), but not to Hg concentrations in sediment or benthic insects. Streamflow characteristics were also related to emergent insect density, while wider channels were associated with benthic insect community shifts toward smaller-bodied and more tolerant taxa (e.g., Chironomidae). Thus, our results provide initial evidence that fluvial geomorphology may influence aquatic-to-terrestrial contaminant Hg transfer through the collective effects on emergent insect body burdens as well as on aquatic insect community composition and abundance.

  13. Reactivity and transfer of tributyl-tin and mercury in aquatic environments; Etude de la reactivite et du transfert du tributyletain et du mercure dans les environnements aquatiques

    Energy Technology Data Exchange (ETDEWEB)

    Tessier, E.

    2004-12-15

    Aquatic ecosystems are particularly affected by tributyl-tin (TBT) and mercury (Hg) chronic contamination. These micro-pollutants are ubiquitous and persistent and occurred at trace level, likely to drastically impair aquatic environments. TBT and Hg biogeochemical cycles are driven by transformation and transfer mechanisms between the different environmental compartments. These natural processes have been studied in details by using novel analytical methods and environmental design to improve the risk assessment. The first part of this work focus on the mechanistic study of TBT and Hg reactivity and transfer in reconstituted aquatic ecosystems. These experiments involve both state-of-the-art analytical speciation techniques, partly based on quantification by isotopic dilution and experimental tools simulating the environmental conditions. Kinetics of TBT and Hg distribution (adsorption, bioaccumulation, biodegradation, clearance) have been simultaneously characterized in all compartments of the microcosms presenting a simple biological organization. In a second step, volatilization kinetics of TBT at real interfaces have been studied to assess the potential remobilization and elimination pathways of butyl-tin compounds. Finally, in a third part, stable isotopic tracers of Hg have been employed to discriminate and quantify the coupled methylation and demethylation kinetics in estuarine sediments, by forcing different environmental factors (oxygenation, microbial activity). (author)

  14. Antibiotics promote aggregation within aquatic bacterial communities

    Directory of Open Access Journals (Sweden)

    ManuelaCoci

    2014-07-01

    These results represent the first observation of co-aggregation as a successful strategy of AB resistance based on phenotype in aquatic bacterial communities, and can represent a fundamental step in the understanding of the effects of AB.

  15. Evaluation of the potential bioaccumulation ability of the blood cockle (Anadara granosa L.) for assessment of environmental matrices of mudflats.

    Science.gov (United States)

    Mirsadeghi, Seiedeh Aghileh; Zakaria, Mohamad Pauzi; Yap, Chee Kong; Gobas, Frank

    2013-06-01

    The spatial distribution of 19 polycyclic aromatic hydrocarbons (tPAHs) was quantified in aquacultures located in intertidal mudflats of the west coast of Peninsular Malaysia in order to investigate bioaccumulation of PAH in blood cockles, Anadara granosa (A. granosa). Fifty-four samples from environmental matrices and A. granosa were collected. The sampling locations were representative of a remote area as well as PAH-polluted areas. The relationship of increased background levels of PAH to anthropogenic PAH sources in the environment and their effects on bioaccumulation levels of A. granosa are investigated in this study. The levels of PAH in the most polluted station were found to be up to ten-fold higher than in remote areas in blood cockle. These high concentrations of PAHs reflected background contamination, which originates from distant airborne and waterborne transportation of contaminated particles. The fraction and source identification of PAHs, based on fate and transport considerations, showed a mix of petrogenic and pyrogenic sources. The relative biota-sediment accumulation factors (RBSAF), relative bioaccumulation factors from filtered water (RBAFw), and from suspended particulate matter (SPM) (RBAFSP) showed higher bioaccumulations of the lower molecular weight of PAHs (LMWs) in all stations, except Kuala Juru, which showed higher bioaccumulation of the higher molecular weight of PAHs (HMWs). Calculations of bioaccumulation factors showed that blood cockle can accumulate PAHs from sediment as well as water samples, based on the physico-chemical characteristics of habitat and behaviour of blood cockles. Correlations among concentrations of PAHs in water, SPM, sediment and A. granosa at the same sites were also found. Identification of PAH levels in different matrices showed that A. granosa can be used as a good biomonitor for LMW of PAHs and tPAHs in mudflats. Considering the toxicity and carcinogenicity of PAHs, the bioaccumulation by blood cockles

  16. Allelopathy of Aquatic Autotrophs

    OpenAIRE

    Gross, Elisabeth

    2003-01-01

    Allelopathy in aquatic environments may provide a competitive advantage to angiosperms, algae, or cyanobacteria in their interaction with other primary producers. Allelopathy can influence the competition between different photoautotrophs for resources and change the succession of species, for exarnple, in phytoplankton cornmunities. Field evidence and laboratory studies indicate that allelopathy occurs in all aquatic habitats (marine and freshwater), and that ail prirnary producing organisms...

  17. Preliminary studies of quality assessment of aquatic environments from Cluj suburban areas, based on some invertebrates bioindicators and chemical indicators

    Directory of Open Access Journals (Sweden)

    Gheorghe Stan

    2010-02-01

    Full Text Available Systematic categories of invertebrates bioindicators correlated with some chemical parameters,were an effective way to characterize the quality of lotic (Someş River and lentic (Lake Gilău aquatic environment from Cluj-Napoca area. Invertebrate fauna was represented by species belonging to the following dominant systematic categories: Nematoda, Annelida, Crustacea and Insecta. This paper containsalso some preliminary data on the bioindicators species belonging to Protozoa phylum. Dominant groups were crustaceans (the sampling points in Lake Gilău and annelids (Somes River and among species Gammarus pulex, Daphnia pulex, Tubifex tubifex. The fauna composition shows the β-α mesosaprobic character of the water, with an evolution from β mesosaprobity upstream the Cluj-Napoca city to polysaprobic downstream of the city. This aspect has been observed and analyzed according to chemical parameters (pH, TDS, ORP, EC, t and indices of saprobity (relative cleanliness, state of relative pollution, the deficit of species, saprobiological index.Systematic categories of invertebrates bioindicators correlated with some chemical parameters, were an effective way to characterize the quality of lotic (Someş River and lentic (Lake Gilău aquatic environment from Cluj-Napoca area. Invertebrate fauna was represented by species belonging to the following dominant systematic categories: Nematoda, Annelida, Crustacea and Insecta. This paper contains also some preliminary data on the bioindicators species belonging to Protozoa phylum. Dominant groups were crustaceans (the sampling points in Lake Gilău and annelids (Somes River and among species Gammarus pulex, Daphnia pulex, Tubifex tubifex. The fauna composition shows the β-α mesosaprobic character of the water, with an evolution from β mesosaprobity upstream the Cluj-Napoca city to polysaprobic downstream of the city. This aspect has been observed and analyzed according to chemical parameters (pH, TDS, ORP

  18. Bioaccumulation study of acrylate monomers in algae (Chlorella Kessleri) by PY-GC and PY-GC/MS

    International Nuclear Information System (INIS)

    Acrylate monomers methylmethacrylate (MMA) and cyclohexylmethacrylate (CHMA) bioaccumulation has been determined in aquatic organism, algae (Chlorella kessleri). Algae were collected in amount of 0.4 mg and directly injected to the paralytic cell. In algae bodies accumulated monomers were analysed by pyrolysis gas chromatography (Py-GC) and pyrolysis gas chromatography coupled with mass spectrometry (Py-GC/MS). Traces of the accumulated monomers in algae body can be determined after 1-, 2 -, 3-weeks of incubation. Maximum content of MMA was determined after 3-week of experiment, contrariwise in the case of CHMA after 2-week exposition. Relationship with pyrolysis temperature has also been studied. (authors)

  19. In vivo bioaccumulation of contaminants from historically polluted sediments - relation to bioavailability estimates.

    Science.gov (United States)

    Ruus, Anders; Allan, Ian J; Oxnevad, Sigurd; Schaanning, Morten T; Borgå, Katrine; Bakke, Torgeir; Næs, Kristoffer

    2013-01-01

    Many contaminants are recalcitrant against degradation. Therefore, when primary sources have been discontinued, contaminated sediments often function as important secondary pollution sources. Since the management and potential remediation of contaminated marine sediments may be very costly, it is important that the environmental risks of contaminants present in these sediments and benefits of remediation are evaluated as accurately as possible. The objective of this study was to evaluate the bioavailability of common organochlorine contaminants and polycyclic aromatic hydrocarbons (PAHs) in selected polluted sediments from Norway by simple generic sorption models (free energy relationships), as well as by pore water concentration measurements. Furthermore, the aim was to predict bioaccumulation from these bioavailability estimates for comparison with in vivo bioaccumulation assessments using ragworm (Nereis virens) and netted dogwhelk (Hinia reticulata). Predicted biota-to-sediment accumulation factors (BSAFs) derived from pore water concentration estimates were in better agreement with the bioaccumulation observed in the test organisms, than the generic BSAFs expected based on linear sorption models. The results therefore support that site-specific evaluations of bioaccumulation provide useful information for more accurate risk assessments. A need for increased knowledge of the specific characteristics of benthic organisms, which may influence the exposure, uptake and elimination of contaminants, is however emphasized. PMID:23178838

  20. Ethoprophos fate on soil-water interface and effects on non-target terrestrial and aquatic biota under Mediterranean crop-based scenarios.

    Science.gov (United States)

    Leitão, Sara; Moreira-Santos, Matilde; Van den Brink, Paul J; Ribeiro, Rui; José Cerejeira, M; Sousa, José Paulo

    2014-05-01

    The present study aimed to assess the environmental fate of the insecticide and nematicide ethoprophos in the soil-water interface following the pesticide application in simulated maize and potato crops under Mediterranean agricultural conditions, particularly of irrigation. Focus was given to the soil-water transfer pathways (leaching and runoff), to the pesticide transport in soil between pesticide application (crop row) and non-application areas (between crop rows), as well as to toxic effects of the various matrices on terrestrial and aquatic biota. A semi-field methodology mimicking a "worst-case" ethoprophos application (twice the recommended dosage for maize and potato crops: 100% concentration v/v) in agricultural field situations was used, in order to mimic a possible misuse by the farmer under realistic conditions. A rainfall was simulated under a slope of 20° for both crop-based scenarios. Soil and water samples were collected for the analysis of pesticide residues. Ecotoxicity of soil and aquatic samples was assessed by performing lethal and sublethal bioassays with organisms from different trophic levels: the collembolan Folsomia candida, the earthworm Eisenia andrei and the cladoceran Daphnia magna. Although the majority of ethoprophos sorbed to the soil application area, pesticide concentrations were detected in all water matrices illustrating pesticide transfer pathways of water contamination between environmental compartments. Leaching to groundwater proved to be an important transfer pathway of ethoprophos under both crop-based scenarios, as it resulted in high pesticide concentration in leachates from Maize (130µgL(-1)) and Potato (630µgL(-1)) crop scenarios, respectively. Ethoprophos application at the Potato crop scenario caused more toxic effects on terrestrial and aquatic biota than at the Maize scenario at the recommended dosage and lower concentrations. In both crop-based scenarios, ethoprophos moved with the irrigation water flow to the

  1. Open, Sharable, and Extensible Data Management for the Korea National Aquatic Ecological Monitoring and Assessment Program: A RESTful API-Based Approach

    OpenAIRE

    Meilan Jiang; Karpjoo Jeong; Jung-Hwan Park; Nan-Young Kim; Soon-Jin Hwang; Sang-Hun Kim

    2016-01-01

    Implemented by a national law, the National Aquatic Ecological Monitoring Program (NAEMP) has been assessing the ecological health status of surface waters, focusing on streams and rivers, in Korea since 2007. The program involves ecological monitoring of multiple aquatic biota such as benthic diatoms, macroinvertebrates, fish, and plants as well as water quality and habitat parameters. Taking advantage of the national scale of long-term aquatic ecological monitoring and the standardization o...

  2. Hot Spots of Mercury Bioaccumulation in Amphibian Populations From the Conterminous United States

    Science.gov (United States)

    Bank, M. S.

    2008-12-01

    Mercury (Hg) contamination in the United States (U.S.) is well-documented and continues to be a public- health issue of great concern. Fish consumption advisories have been issued throughout much of the U.S. due to elevated levels of methylmercury (MeHg). Methylmercury contamination in the developing fetus and in young children is a major public health issue for certain sectors of the global human population. Moreover, identifying MeHg hot spots and the effects of MeHg pollution on environmental health and biodiversity are also considered a high priority for land managers, risk assessors, and conservation scientists. Despite their overall biomass and importance to aquatic and terrestrial ecosystems, Hg and MeHg bioaccumulation dynamics and toxicity in amphibians are not well studied, especially when compared to other vertebrate taxa such as birds, mammals, and fish species. Population declines in amphibians are well documented and likely caused by synergistic and interacting, multiple stressors such as climate change, exposure to toxic pollutants, fungal pathogens, and habitat loss and ecosystem degradation. Protecting quality of terrestrial ecosystems in the U.S. has enormous ramifications for economic and public health of the nation's residents and is fundamental to maintaining the biotic integrity of surface waters, riparian zones, and environmental health of forested landscapes nationwide. Determining Hg concentration levels for terrestrial and surface water ecosystems also has important implications for protecting the nation's fauna. Here I present an overview of the National Amphibian Mercury Program and evaluate variation in MeHg hotspots, Hg bioaccumulation and distribution in freshwater and terrestrial habitats across a broad gradient of physical, climatic, biotic, and ecosystem settings to identify the environmental conditions and ecosystem types that are most sensitive to Hg pollution. The role of geography, disturbance mechanisms, and abiotic and biotic

  3. Bioaccumulation of metals in sediments, fish and plant from Tisza river (Serbia)

    Science.gov (United States)

    Štrbac, Snežana; Gajica, Gordana; Kašanin-Grubin, Milica; Šajnović, Aleksandra; Vasić, Nebojša; Jovančićević, Branimir; Simonović, Predrag

    2014-05-01

    In the aquatic environments metals originate from various natural and anthropogenic sources. The purpose of the study was to assess the bioaccumulation level of metals in sediments fish and common reed at four different localities of the Tisza River stretch in Serbia. For purpose of this study concentrations of Al, As, B, Cd, Co, Cr, Cu, Fe, Hg, Mn, Ni, Pb, Se, Sr and Zn were determined in sediment, common reed (Phragmites australis (Cav.) Trin. ex Steud. 1841) and four ecologically different fish species (piscivorous northern pike (Esox lucius L.), benthivorous sterlet (Acipenser ruthenus L.) silver bream (Brama brama L.), omnivorous common carp (Cyprinus carpio L.)). Analysis of metals was carried out for liver, gills, brain, testicles and ovaries in fish and in the rhizome, stem and leaves of the common reed and sediment fraction leaves>stems. Obtained results indicate that the location does not have impact to the level of bioaccumulation. On the basis of this research the under-ground organ (rhizome) of common reed, liver and gills and omnivorous fish species could be recommended as environmental indicators for the presence of metals during environmental monitoring.

  4. Enantioselective bioaccumulation and dissipation of soil-associated metalaxyl enantiomers in tubifex.

    Science.gov (United States)

    Di, Shanshan; Liu, Tiantian; Lu, Yuele; Zhou, Zhiqiang; Diao, Jinling

    2014-01-01

    Many pesticides are chiral compounds and stereochemistry is an important factor for any reaction of chiral structures in biological systems. In this study, experiment about bioaccumulation of the two metalaxyl enantiomers in Tubifex (Oligochaeta, Tubificida) was conducted in laboratory aquatic ecosystems. Terrestrial soil spiked with two dose levels of metalaxyl was employed as the artificial bottom substrate. A method of determination of metalaxyl enantiomers in tubifex tissue, soil and overlying water were developed by HPLC. During a 14-day exposure, concentrations of metalaxyl in tubifex increased with the of soil concentration, however, the enantioselective bioaccumulation was only detected at high-dose exposure group, with the preferential accumulation of (-)-(R)-metalaxyl. The bioturbation activity of tubifex decreased water clarity and released soil-associated metalaxyl to overlying water. In those experiments where tubifex was exposed to metalaxyl from soil, pore water and overlying water, each route contributed to the total body burden, and our results indicated the pore water and soil are the primary exposure routes for high-dose exposure concentration treatment. PMID:24174372

  5. Monitoring of the aquatic environment by species accumulator of pollutants: a review

    Directory of Open Access Journals (Sweden)

    Oscar RAVERA

    2001-09-01

    Full Text Available This paper is a short review on the biomonitoring of aquatic environments by animal and plant species accumulators of toxic pollutants ("scavengers". This monitoring is based on the relationship between the pollutant concentration in the organism and that in its environment, and not on alterations produced by pollution on the biota. The latter is the basis of other types of biomonitoring, such as those based on the biotic and diversity indices and saprobic scale. The various aspects of monitoring by pollutant accumulators are illustrated; for example, the uptake and loss of pollutants, the "critical organs" and "tissues", the detoxification mechanisms and the most common factors (C.F., BAF, BSAF for establishing a connection between the pollutant concentration in the organism and that in its environment. Several examples of this monitoring on heavy metals, radioisotopes and organic micropollutants are reported. The advantages of this monitoring, the characteristics of the species to be used as bioaccumulators and some practical suggestions are listed. A close collaboration between the scientific teams working on the biomonitoring based on accumulator organisms and on the chemical monitoring is recommended from the scientific and economic point of view.

  6. Bioaccumulation and toxicity of CuO nanoparticles by a freshwater invertebrate after waterborne and dietborne exposures

    Science.gov (United States)

    Croteau, Marie-Noele; Misra, Superb K.; Luoma, Samuel N.; Valsami-Jones, Eugenia

    2014-01-01

    The incidental ingestion of engineered nanoparticles (NPs) can be an important route of uptake for aquatic organisms. Yet, knowledge of dietary bioavailability and toxicity of NPs is scarce. Here we used isotopically modified copper oxide (65CuO) NPs to characterize the processes governing their bioaccumulation in a freshwater snail after waterborne and dietborne exposures. Lymnaea stagnalis efficiently accumulated 65Cu after aqueous and dietary exposures to 65CuO NPs. Cu assimilation efficiency and feeding rates averaged 83% and 0.61 g g–1 d–1 at low exposure concentrations (–1), and declined by nearly 50% above this concentration. We estimated that 80–90% of the bioaccumulated 65Cu concentration in L. stagnalis originated from the 65CuO NPs, suggesting that dissolution had a negligible influence on Cu uptake from the NPs under our experimental conditions. The physiological loss of 65Cu incorporated into tissues after exposures to 65CuO NPs was rapid over the first days of depuration and not detectable thereafter. As a result, large Cu body concentrations are expected in L. stagnalis after exposure to CuO NPs. To the degree that there is a link between bioaccumulation and toxicity, dietborne exposures to CuO NPs are likely to elicit adverse effects more readily than waterborne exposures.

  7. Aquatic Research Laboratory (ARL)

    Data.gov (United States)

    Federal Laboratory Consortium — Columbia River and groundwater well water sources are delivered to the Aquatic Research Laboratory (ARL), where these resources are used to conduct research on fish...

  8. Antibiotics in typical marine aquaculture farms surrounding Hailing Island, South China: Occurrence, bioaccumulation and human dietary exposure

    International Nuclear Information System (INIS)

    Highlights: • Thirty-seven antibiotics were systematically investigated in typical marine aquaculture farms. • Enrofloxacin was widely detected in the feed samples (16.6–31.8 ng/g). • ETM-H2O in the adult shrimp samples may pose a potential risk to human safety. • TMP was bioaccumulative in fish muscles. • Antibiotics were weakly bioaccumulated in mollusks. - Abstract: The occurrence, bioaccumulation, and human dietary exposure via seafood consumption of 37 antibiotics in six typical marine aquaculture farms surrounding Hailing Island, South China were investigated in this study. Sulfamethoxazole, salinomycin and trimethoprim were widely detected in the water samples (0.4–36.9 ng/L), while oxytetracycline was the predominant antibiotic in the water samples of shrimp larvae pond. Enrofloxacin was widely detected in the feed samples (16.6–31.8 ng/g) and erythromycin–H2O was the most frequently detected antibiotic in the sediment samples (0.8–4.8 ng/g). Erythromycin–H2O was the dominant antibiotic in the adult Fenneropenaeus penicillatus with concentrations ranging from 2498 to 15,090 ng/g. In addition, trimethoprim was found to be bioaccumulative in young Lutjanus russelli with a median bioaccumulation factor of 6488 L/kg. Based on daily intake estimation, the erythromycin–H2O in adult F. penicillatus presented a potential risk to human safety

  9. A method for improving predictive modeling by taking into account lag time: Example of selenium bioaccumulation in a flowing system.

    Science.gov (United States)

    Beckon, William N

    2016-07-01

    For bioaccumulative substances, efforts to predict concentrations in organisms at upper trophic levels, based on measurements of environmental exposure, have been confounded by the appreciable but hitherto unknown amount of time it may take for bioaccumulation to occur through various pathways and across several trophic transfers. The study summarized here demonstrates an objective method of estimating this lag time by testing a large array of potential lag times for selenium bioaccumulation, selecting the lag that provides the best regression between environmental exposure (concentration in ambient water) and concentration in the tissue of the target organism. Bioaccumulation lag is generally greater for organisms at higher trophic levels, reaching times of more than a year in piscivorous fish. Predictive modeling of bioaccumulation is improved appreciably by taking into account this lag. More generally, the method demonstrated here may improve the accuracy of predictive modeling in a wide variety of other cause-effect relationships in which lag time is substantial but inadequately known, in disciplines as diverse as climatology (e.g., the effect of greenhouse gases on sea levels) and economics (e.g., the effects of fiscal stimulus on employment). PMID:27149556

  10. Uranium in aquatic sediments: Where are the guidelines?

    International Nuclear Information System (INIS)

    Full text: Water management at Ranger uranium mine in tropical northern Australia, involves the use of constructed biological wetland filters to passively reduce the concentrations of metals, including uranium and radium, in mine waters before their release off-site. The concentration reduction is achieved principally through partitioning of the metals from the water column into the sediments, resulting in contaminant build-up in the sediments. Environmental Requirements (ERs) for Ranger, enshrined in both Commonwealth and Northern Territory regulations, specify environmental objectives to be achieved during the life of the mine and following closure. While the ERs describe the broad objectives for rehabilitation, specific criteria are required to determine whether these objectives are met; including criteria for the rehabilitation of aquatic sediments contaminated by uptake of uranium and heavy metals. Routine monitoring of sediments in selected billabongs on and adjoining the Ranger Project Area and strategic environmental research has formed part of the regulatory framework governing the authority to operate for over 20 years. This included studies such as annual routine monitoring of metal concentrations, adsorption-desorption conditions, phase associations, transport mechanisms, release potential, bioaccumulation and bioconcentration etc. Building on this, performance-based monitoring of the sediments from on-site water bodies was undertaken to ascertain the spatial and temporal distribution of contaminants as a basis to determine ecological risks associated with the sediments which in turn underpins closure planning. Highlights of these studies are interpreted using an ecological risk assessment approach. Ideally interpretation of aquatic sediment contamination in Australia is guided by the national guidelines for water quality (ANZECC and ARMCANZ 2000) and a weighted multiple lines of evidence approach (Simpson et. al., 2005) whereby the chemistry of

  11. Molecular ecology of aquatic microbes

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-31

    Abstracts of reports are presented from a meeting on Molecular Ecology of Aquatic Microbes. Topics included: opportunities offered to aquatic ecology by molecular biology; the role of aquatic microbes in biogeochemical cycles; characterization of the microbial community; the effect of the environment on aquatic microbes; and the targeting of specific biological processes.

  12. Introducing Aquatic Biology

    OpenAIRE

    Kinne, Otto; Browman, Howard I.; Seaman, Matthias

    2007-01-01

    The Inter-Research Science Center (IR) journals Marine Ecology Progress Series (MEPS) and Aquatic Microbial Ecology (AME) have been receiving increasing numbers of high-quality manuscripts that are principally biological, rather than ecological. With regret, we have had to turn these submissions away. Also, leading limnologists have for many years suggested that IR should provide an outlet for top quality articles on freshwater biology and ecology. Aquatic Biology (...

  13. Restoring Damaged Aquatic Ecosystems

    OpenAIRE

    Cairns, John

    2006-01-01

    Aquatic ecosystems must play a major role to ensure that water, which is both essential and scarce, is always available for both present and future generations. This has become even more urgent in light of the ongoing increase in total world population and predicted changes in the world climate. Since aquatic ecosystems have been damaged at a rate far in excess of both natural restoration and anthropogenic restoration, it is essential that both restorative processes be accelerated. However, e...

  14. Preservation of natural aquatic ecosystems by application of bottom coal ash based bioreactor for in situ treatment of anthropogenic effluents

    Science.gov (United States)

    Anker, Y.; Nisnevitch, M.; Tal, M.; Cahan, R.; Michael, E.

    2012-12-01

    One consequence of global climate change is recharge decrease at sub tropical and Mediterranean regions to both the surface and the ground fresh water resources. As a general rule, when water source quantity is reduced, the level of salination, as well as chemical and biological pollutants, tends to increase. The situation is more severe whenever the drainage basin is (a) heavily populated from urban, industrial and agricultural areas, (b) has wide areas of thin or non soil cover and (c) has a karstic structure and morphology. These latter conditions are typical to many regions around the Middle East; whereas pollution hazard to Mid Eastern streams is greater than to those in more humid regions owing to their relative small size and poor dilution capacity. The consequence of this ongoing and increasing anthropogenic pollution is endangerment of natural aquatic habitats and due to decrease in fresh water supply availability also to human sustainability. The ecological impact may involve transition of ephemeral (Wadi) streams into intermittent ones with the accompanied biodiversity change or extinction once the pollution is extreme. The impact on indigenous human communities might be as severe owing to drinking water quality decrease and the consequent decrease id quantity as well as damage to dryland farming. In setting of operations applied to the Yarkon Taninim watershed (central Israel) management, a pilot biofilter facility for sustainable preservation and rehabilitation of natural fluvial ecosystems was tested. This biofilter is planned to operate through low impact concept assimilating natural treatment processes occurring during runoff recharge through a porous flow media. The facility is constructed out of several grain sizes of bottom coal ash aggregate, which was found to be a better microbial mats growing stratum, compared to common natural aggregates such as tuff and lime pebbles (and also has an EPA directive for wastewater treatment). The biofilter is

  15. Contrasting effects of black carbon amendments on PAH bioaccumulation by Chironomus plumosus larvae in two distinct sediments: Role of water absorption and particle ingestion

    International Nuclear Information System (INIS)

    Two sediment matrices with different characteristics were amended with chars from different sources for bioaccumulation assay with filter-feeding Chironomus plumosus larvae. Chars greatly decreased porewater concentrations of PAHs (Ciw) measured using polyethylene devices in sediments. In organic rich sediment matrix-based systems where suspended char particles were absent, PAH concentrations in larvae (CiB) were significantly correlated with Ciw, and there was no difference in water-based bioaccumulation factors (BAFs) between different treatments, suggesting that water absorption was the main contaminant uptake route for larvae. In organic poor sediment matrix-based systems where suspended char particles were present, poor Pearson correlation between CiB and Ciw was found, but there was a significant linear increase of BAF values with char contents, which indicated that ingestion of suspended char particles could also be important for PAH bioaccumulation. Therefore, we need to rethink of the effectiveness and risks for the application of black carbon to sediment/soil remediation. - Highlights: → Chars greatly decreased PAH porewater concentrations. → Without char suspension, PAH bioaccumulation depended on porewater concentrations. → With char suspension, ingestion could also be important for PAH bioaccumulation. - Contrasting effects of chars on PAH bioaccumulation by Chironomus plumosus larvae in two distinct sediments were attributed to the shift of main biouptake routes.

  16. Strain-Dependent Norovirus Bioaccumulation in Oysters ▿

    Science.gov (United States)

    Maalouf, Haifa; Schaeffer, Julien; Parnaudeau, Sylvain; Le Pendu, Jacques; Atmar, Robert L.; Crawford, Sue E.; Le Guyader, Françoise S.

    2011-01-01

    Noroviruses (NoVs) are the main agents of gastroenteritis in humans and the primary pathogens of shellfish-related outbreaks. Some NoV strains bind to shellfish tissues by using carbohydrate structures similar to their human ligands, leading to the hypothesis that such ligands may influence bioaccumulation. This study compares the bioaccumulation efficiencies and tissue distributions in oysters (Crassostrea gigas) of three strains from the two principal human norovirus genogroups. Clear differences between strains were observed. The GI.1 strain was the most efficiently concentrated strain. Bioaccumulation specifically occurred in digestive tissues in a dose-dependent manner, and its efficiency paralleled ligand expression, which was highest during the cold months. In comparison, the GII.4 strain was very poorly bioaccumulated and was recovered in almost all tissues without seasonal influence. The GII.3 strain presented an intermediate behavior, without seasonal effect and with less bioaccumulation efficiency than that of the GI.1 strain during the cold months. In addition, the GII.3 strain was transiently concentrated in gills and mantle before being almost specifically accumulated in digestive tissues. Carbohydrate ligand specificities of the strains at least partly explain the strain-dependent bioaccumulation characteristics. In particular, binding to the digestive-tube-specific ligand should contribute to bioaccumulation, whereas we hypothesize that binding to the sialic acid-containing ligand present in all tissues would contribute to retain virus particles in the gills or mantle and lead to rapid destruction. PMID:21441327

  17. Influence of relative trophic position and carbon source on selenium bioaccumulation in turtles from a coal fly-ash spill site

    International Nuclear Information System (INIS)

    Selenium (Se) is a bioaccumulative constituent of coal fly-ash that can disrupt reproduction of oviparous wildlife. In food webs, the greatest enrichment of Se occurs at the lowest trophic levels, making it readily bioavailable to higher consumers. However, subsequent enrichment at higher trophic levels is less pronounced, leading to mixed tendencies for Se to biomagnify. We used stable isotopes (15N and 13C) in claws to infer relative trophic positions and relative carbon sources, respectively, of seven turtle species near the site of a recently-remediated coal fly-ash spill. We then tested whether Se concentrations differed with relative trophic position or relative carbon source. We did not observe a strong relationship between δ15N and Se concentration. Instead, selenium concentrations decreased with increasing δ13C among species. Therefore, in an assemblage of closely-related aquatic vertebrates, relative carbon source was a better predictor of Se bioaccumulation than was relative trophic position. -- Highlights: •Stable isotope results showed trophic separation among turtle species. •Selenium concentrations did not biomagnify with relative trophic position. •Selenium concentrations decreased with increasing δ13C among species. •Carbon source influenced Se bioaccumulation in an assemblage of related vertebrates. -- Stable isotope differences indicate that claw selenium concentrations differ among relative carbon sources, and not among relative trophic positions, in an assemblage of aquatic turtles

  18. Bioaccumulation and ecotoxicity of carbon nanotubes

    DEFF Research Database (Denmark)

    Jackson, Petra; Jacobsen, Nicklas Raun; Baun, Anders;

    2013-01-01

    Carbon nanotubes (CNT) have numerous industrial applications and may be released to the environment. In the aquatic environment, pristine or functionalized CNT have different dispersion behavior, potentially leading to different risks of exposure along the water column. Data included in this review...

  19. Rapid screening of aquatic toxicity of several metal-based nanoparticles using the MetPLATE Trade-Mark-Sign bioassay

    Energy Technology Data Exchange (ETDEWEB)

    Pokhrel, Lok R.; Silva, Thilini [Department of Environmental Health, College of Public Health, East Tennessee State University, Johnson City, TN 37614 (United States); Dubey, Brajesh, E-mail: bdubey@uoguelph.ca [Environmental Engineering, School of Engineering, University of Guelph, 50 Stone Road East, Guelph, Ontario (Canada); El Badawy, Amro M. [Department of Civil and Environmental Engineering, University of Cincinnati, Cincinnati, OH (United States); Tolaymat, Thabet M. [USEPA, Office of Research and Development, National Risk Management Laboratory, 26 West Martin Luther King Drive, Cincinnati, OH 45224 (United States); Scheuerman, Phillip R. [Department of Environmental Health, College of Public Health, East Tennessee State University, Johnson City, TN 37614 (United States)

    2012-06-01

    Current understanding of potential toxicity of engineered nanomaterials to aquatic microorganisms is limited for risk assessment and management. Here we evaluate if the MetPLATE Trade-Mark-Sign test can be used as an effective and rapid screening tool to test for potential aquatic toxicity of various metal-based nanoparticles (NPs). The MetPLATE bioassay is a heavy metal sensitive test based on {beta}-galactosidase activity in Escherichia coli. Five different types of metal-based NPs were screened for toxicity: (1) citrate coated nAg (Citrate-nanosilver), (2) polyvinylpyrrolidone coated nAg (PVP-nAg), (3) uncoated nZnO, (4) uncoated nTiO{sub 2} and (5) 1-Octadecylamine coated CdSe Quantum Dots (CdSe QDs); and compared with their corresponding ionic salt toxicity. Citrate-nAg was further fractionated into clean Citrate-nAg, unclean Citrate-nAg and permeate using a tangential flow filtration (TFF) system to eliminate residual ions and impurities from the stock Citrate-nAg suspension and also to differentiate between ionic- versus nano-specific toxicity. Our results showed that nAg, nZnO and CdSe QDs were less toxic than their corresponding ionic salts tested, while nano- or ionic form of TiO{sub 2} was not toxic as high as 2.5 g L{sup -1} to the MetPLATE Trade-Mark-Sign bacteria. Although coating-dependent toxicity was noticeable between two types of Ag NPs evaluated, particle size and surface charge were not adequate to explain the observed toxicity; hence, the toxicity appeared to be material-specific. Overall, the toxicity followed the trend: CdCl{sub 2} > AgNO{sub 3} > PVP-nAg > unclean Citrate-nAg > clean Citrate-nAg > ZnSO{sub 4} > nZnO > CdSe QDs > nTiO{sub 2}/TiO{sub 2}. These results indicate that an evaluation of {beta}-galactosidase inhibition in MetPLATE Trade-Mark-Sign E. coli can be an important consideration for rapid screening of metal-based NP toxicity, and should facilitate ecological risk assessment of these emerging contaminants. - Highlights

  20. Aquatic and Terrestrial Environment 2004

    DEFF Research Database (Denmark)

    Andersen, J. M.; Boutrup, S.; Bijl, L. van der;

    This report presents the 2004 results of the Danish National Monitoring and Assess-ment Programme for the Aquatic and Terrestrial Environments (NOVANA). 2004 was the first year in which terrestrial nature was included in the monitoring pro-gramme. The report reviews the state of the groundwater......, watercourses, lakes and marine waters and the pressures upon them and reviews the monitoring of terrestrial natural habitats and selected plants and animals. The report is based on the annual reports prepared for each subprogramme by the Topic Centres. The latter reports are mainly based on data collected and...

  1. Enhanced phytoextraction of chromium by the aquatic macrophyte Potamogeton pusillus in presence of copper

    International Nuclear Information System (INIS)

    The aquatic macrophyte, Potamogeton pusillus was evaluated for the removal of Cu2+ and Cr+6 from aqueous solutions during 15 days phytoextraction experiments. Results show that P. pusillus is capable of accumulating substantial amount of Cu and Cr from individual solutions (either Cu2+ or Cr+6). Significant correlations between metal removal and bioaccumulation were obtained. Roots and leaves accumulated the highest amount of Cu and Cr followed by stems. The bioaccumulation of Cr was significantly enhanced in the presence of Cu, showing a synergic effect on Cr+6 removal, presenting a good alternative for the removal of these metals from polluted aquifers. To the extent of our knowledge, this is the first report on both enhanced phytoextraction of Cr+6 in presence of Cu+2 and bioaccumulation of these heavy metals by P. pusillus. - Highlights: ► First report on enhanced phytoextraction of Cr+6 in the presence of Cu+2 by P. pusillus. ► P. pusillus can be a good candidate for phytoremediation of contaminated water bodies. ► Roots and leaves presented higher accumulation, suggesting that they are in charge of metal uptake. - We report enhanced effect of Cu+2 upon phytoextraction of Cr+6 by Potamogeton pusillus from water. Metals accumulation occurs mainly in roots and leaves of this aquatic plant.

  2. A protocell design for bioaccumulation applications

    CERN Document Server

    von Hegner, Ian

    2015-01-01

    This article provides a specific example of recombinant cell and protocell technology, moving from what is presently known to suggesting how novel application of existing methodologies could be utilized to design a complex synthetic system in form of a self-sufficient light empowered protocell. A practical application of protocells using a primary example of desalination in water treatment is given, followed by a more general approach to bioaccumulation and bio-diagnostics, outlining the possibilities associated with applications of protocells. The key hypothesis is that the inside-negative electrochemical membrane potential generated by chloride pump activity via halorhodopsin could also be utilized to drive the accumulation of cations into a protocell. Thus, the functional expression of halorhodopsin could energize proton-coupled uptake of substances or metals through a selective cotransport channel for a number of applications in biotechnology, molecular medicine, and water biotechnology.

  3. Aquatic arsenic: phytoremediation using floating macrophytes.

    Science.gov (United States)

    Rahman, M Azizur; Hasegawa, H

    2011-04-01

    Phytoremediation, a plant based green technology, has received increasing attention after the discovery of hyperaccumulating plants which are able to accumulate, translocate, and concentrate high amount of certain toxic elements in their above-ground/harvestable parts. Phytoremediation includes several processes namely, phytoextraction, phytodegradation, rhizofiltration, phytostabilization and phytovolatilization. Both terrestrial and aquatic plants have been tested to remediate contaminated soils and waters, respectively. A number of aquatic plant species have been investigated for the remediation of toxic contaminants such as As, Zn, Cd, Cu, Pb, Cr, Hg, etc. Arsenic, one of the deadly toxic elements, is widely distributed in the aquatic systems as a result of mineral dissolution from volcanic or sedimentary rocks as well as from the dilution of geothermal waters. In addition, the agricultural and industrial effluent discharges are also considered for arsenic contamination in natural waters. Some aquatic plants have been reported to accumulate high level of arsenic from contaminated water. Water hyacinth (Eichhornia crassipes), duckweeds (Lemna gibba, Lemna minor, Spirodela polyrhiza), water spinach (Ipomoea aquatica), water ferns (Azolla caroliniana, Azolla filiculoides, and Azolla pinnata), water cabbage (Pistia stratiotes), hydrilla (Hydrilla verticillata) and watercress (Lepidium sativum) have been studied to investigate their arsenic uptake ability and mechanisms, and to evaluate their potential in phytoremediation technology. It has been suggested that the aquatic macrophytes would be potential for arsenic phytoremediation, and this paper reviews up to date knowledge on arsenic phytoremediation by common aquatic macrophytes. PMID:21435676

  4. Influences of sediment geochemistry on metal accumulation rates and toxicity in the aquatic oligochaete Tubifex tubifex

    OpenAIRE

    Mendez-Fernandez, L; De Jonge, M.; Bervoets, L.

    2014-01-01

    Metal bioaccumulation and toxicity in the aquatic oligochaete Tubifex tubifex exposed to three metal-contaminated field-sediments was studied in order to assess whether sediment-geochemistry (AVS, TOC) plays a major role in influencing these parameters, and to assess if the biodynamic concept can be used to explain observed effects in T. tubifex tissue residues and/or toxicity. An active autotomy promotion was observed in three studied sediments at different time points and reproduction impai...

  5. In situ Treatment with Activated Carbon Reduces Bioaccumulation in Aquatic Food Chains

    NARCIS (Netherlands)

    Kupryianchyk, D.; Rakowska, M.I.; Roessink, I.; Reichman, E.P.; Grotenhuis, J.T.C.; Koelmans, A.A.

    2013-01-01

    In situ activated carbon (AC) amendment is a new direction in contaminated sediment management, yet its effectiveness and safety have never been tested on the level of entire food chains including fish. Here we tested the effects of three different AC treatments on hydrophobic organic chemical (HOC)

  6. Bioaccumulation and chemical forms of cadmium, copper and lead in aquatic plants

    Directory of Open Access Journals (Sweden)

    JinZhao Hu

    2010-02-01

    Full Text Available The cadmium(Cd, copper(Cu and lead(Pb accumulation, as well as their relative content of different chemical forms in Sagittaria sagittifolia L. and Potamogeton crispus L. were determined. The results showed that both the plants had the ability to accumulate large amounts of Cd, Cu and Pb, and they absorbed metals in dose-dependent manners. The roots of S. sagittifolia appeared more sensitive to Cd and Pb than the leaves of P. crispus. The potential of Cu uptake by these two plant tissues was similar. Under the same concentration, the uptake of Cu for both the plants was higher than Pb and Cd, while that of Pb was lowest. The Cd, Cu and Pb existed with various forms in the plants. Cd and Pb were mainly in the NaCl extractable form in S. sagittifolia and P. crispus. The HAc and ethanol extractable Cu were the main forms in the root, whereas the ethanol extractable form was the dominant chemical form in the caulis and bulb of the S. sagittifolia L.

  7. In situ treatment with activated carbon reduces bioaccumulation in aquatic food chains.

    Science.gov (United States)

    Kupryianchyk, D; Rakowska, M I; Roessink, I; Reichman, E P; Grotenhuis, J T C; Koelmans, A A

    2013-05-01

    In situ activated carbon (AC) amendment is a new direction in contaminated sediment management, yet its effectiveness and safety have never been tested on the level of entire food chains including fish. Here we tested the effects of three different AC treatments on hydrophobic organic chemical (HOC) concentrations in pore water, benthic invertebrates, zooplankton, and fish (Leuciscus idus melanotus). AC treatments were mixing with powdered AC (PAC), mixing with granular AC (GAC), and addition-removal of GAC (sediment stripping). The AC treatments resulted in a significant decrease in HOC concentrations in pore water, benthic invertebrates, zooplankton, macrophytes, and fish. In 6 months, PAC treatment caused a reduction of accumulation of polychlorobiphenyls (PCB) in fish by a factor of 20, bringing pollutant levels below toxic thresholds. All AC treatments supported growth of fish, but growth was inhibited in the PAC treatment, which was likely explained by reduced nutrient concentrations, resulting in lower zooplankton (i.e., food) densities for the fish. PAC treatment may be advised for sites where immediate ecosystem protection is required. GAC treatment may be equally effective in the longer term and may be adequate for vulnerable ecosystems where longer-term protection suffices. PMID:23544454

  8. Mercury methylation, export and bioaccumulation in rice agriculture - model results from comparative and experimental studies in 3 regions of the California Delta, USA

    Science.gov (United States)

    Windham-Myers, L.; Fleck, J.; Eagles-Smith, C.; Ackerman, J.

    2013-12-01

    Seasonally flooded wetland ecosystems are often poised for mercury (Hg) methylation, thus becoming sources of methylmercury (MeHg) to in situ and downstream biota. The seasonal flooding associated with cultivation of rice (Oryza sativa) also generates MeHg, which may be stored in sediment or plants, bioaccumulated into fauna, degraded or exported, depending on hydrologic and seasonal conditions. While many U.S. waters are regulated for total Hg concentrations based on fish targets, California's Sacramento-San Joaquin Delta (Delta) will soon implement the first MeHg total maximum daily load (TMDL) control program. Since 2007, a conceptual model (DRERIP-MCM) and several ecosystem-level studies have been advanced to better understand the mechanisms behind Hg methylation, export and bioaccumulation within Delta wetlands, including rice agriculture. Three Delta rice-growing regions (Yolo Bypass, Cosumnes River, Central Delta) of varied soil characteristics, mining influences and hydrology, were monitored over full crop years to evaluate annual MeHg dynamics. In addition to fish tissue Hg accumulation, a broad suite of biogeochemical and hydrologic indices were assessed and compared between wetland types, seasons, and regions. In general, Delta rice fields were found to export MeHg during the post-harvest winter season, and promote MeHg uptake in fish and rice grain during the summer growing season. As described in a companion presentation (Eagles-Smith et al., this session), the experimental Cosumnes River study suggests that rice-derived dissolved organic carbon (DOC) fuels MeHg production and uptake into aquatic foodwebs. Explicit DRERIP-MCM linkages for the role of rice-DOC in MeHg production, export and bioaccumulation were verified across two summers (2011, 2012): rice biomass and root productivity influenced porewater DOC availability and microbial processes, which drove sediment MeHg production and flux to surface water, promoting MeHg bioaccumulation in fish

  9. Bioaccumulation of {sup 137}Cs and {sup 57}Co by five marine phytoplankton species

    Energy Technology Data Exchange (ETDEWEB)

    Heldal, H.E. E-mail: hilde.elise.heldal@imr.no; Stupakoff, I.; Fisher, N.S

    2001-07-01

    Under controlled laboratory conditions, we have examined the bioaccumulation of {sup 137}Cs and {sup 57}Co in three prymnesiophytes, the coccolithophorid Emiliania huxleyi and the non-calcareous species Isochrysis galbana and Phaeocystis globosa, and two diatoms Skeletonema costatum and Thalassiosira pseudonana. We measured the uptake in growing and non-growing cells and determined concentration factors on both volume and dry weight bases. For uptake of {sup 57}Co in non-growing cells, volume concentration factors (VCF) at equilibrium ranged from 0.2x10{sup 3} for E. huxleyi to 4x10{sup 3} for T. pseudonana. For uptake of {sup 137}Cs in non-growing cells, the VCFs were low for all species and the uptake pattern seemed unsystematic. The results suggest that, in contrast to Co, the cycling and bioaccumulation of Cs in marine animals are unlikely to be affected by Cs accumulation in primary producers.

  10. BIOACCUMULATION OF HEAVY METALS BY BACILLUS MEGATERIUM FROM PHOSPHOGYPSUM WASTE

    Directory of Open Access Journals (Sweden)

    IOANA ADRIANA STEFANESCU

    2015-05-01

    Full Text Available The aim of present study was to characterize the bioaccumulation capacity of heavy metals by Bacillus megaterium from phosphogypsum waste. The Bacillus megaterium strain (BM30 was isolated from soil near the phosphogypsum (PG dump. For the bioaccumulation quantification produced by BM30 strain were used three experimental treatments respectively with 2, 6 and 10 gL-1 PG. Cellular biomass samples were collected punctually at ages corresponding to the three stages of the development cycle of the microorganism: exponential phase, stationary phase and decline phase and the heavy metals concentrations were measured by atomic absorption spectroscopy. The bioaccumulation yields in cell biomass, relative to the total amount of analyte introduced in the reaction medium were between 20 - 80 %, the lowest value was recorded by Cu and highest by Mn. The study results indicated that the isolated strain near the dump PG, BM30, bioaccumulate heavy metals monitored in cell biomass in the order Cu > Fe > Zn = Mn.

  11. VERIFICATION OF A TOXIC ORGANIC SUBSTANCE TRANSPORT AND BIOACCUMULATION MODEL

    Science.gov (United States)

    A field verification of the Toxic Organic Substance Transport and Bioaccumulation Model (TOXIC) was conducted using the insecticide dieldrin and the herbicides alachlor and atrazine as the test compounds. The test sites were two Iowa reservoirs. The verification procedure include...

  12. Bioaccumulation of heavy metals in two wet retention ponds

    DEFF Research Database (Denmark)

    Søberg, Laila C.; Vollertsen, Jes; Blecken, Godecke-Tobias; Nielsen, Asbjørn Haaning; Viklander, Maria

    2016-01-01

    Metal accumulation in stormwater ponds may contaminate the inhabiting fauna, thus jeopardizing their ecosystem servicing function. We evaluated bioaccumulation of metals in natural fauna and caged mussel indicator organisms in two wet retention ponds. Mussel cages were distributed throughout the ...

  13. Bioaccumulation dynamics of polychlorinated biphenyls (PCBs) and organochlorine pesticides

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Bioaccumulation dynamics of polychlorinated biphenyls (PCBs) and organochlorine pesticides was examined in young-of-the-year bluefish from seven sub-estuaries of...

  14. Aquatic intervention in children with neuro-motor impairments

    OpenAIRE

    Getz, M.D.

    2006-01-01

    The present thesis addresses the influence of aquatic interventions on motor performance of children with neuro-motor deficiencies in a functional context. The theoretical framework is based on a functional approach in compliance to the International Classification of Function and Disability (ICF). Chapter 2 addresses the relationship between motor performance in the aquatic environment setting as measured by the Aquatic Independence Measure (AIM) to motor performance on land as measured by t...

  15. Aquatic Models, Genomics and Chemical Risk Management§

    OpenAIRE

    Cheng, Keith C.; Hinton, David E.; Mattingly, Carolyn J.; Planchart, Antonio

    2011-01-01

    The 5th Aquatic Animal Models for Human Disease meeting follows four previous meetings (Hinton et al., 2009; Schmale et al., 2007; Schmale, 2004; Nairn et al., 2001) in which advances in aquatic animal models for human disease research were reported, and community discussion of future direction was pursued. At this meeting, discussion at a workshop entitled Bioinformatics and Computational Biology with Web-based Resources (20 September 2010) led to an important conclusion: Aquatic model resea...

  16. Sustaining America's Aquatic Biodiversity. Why is Aquatic Biodiversity Declining?

    OpenAIRE

    Helfrich, Louis A.; Neves, Richard J.; Parkhurst, James A. (James Albert)

    2005-01-01

    Discusses reasons for declining aquatic biodiversity and focuses mainly on the issues of habitat loss, introduced species (aquatic exotics), and water pollution; document also includes web links to more information on exotic, invasive species and endangered animals.

  17. Heavy metal bioaccumulation in the soft tissues of the green mussels, Perna viridis (L.) Bivalve: Mytilacea

    International Nuclear Information System (INIS)

    Untreated agro-industrial and domestic waste continuously being damped along the shores of its surrounding provinces and cities pollute the Manila Bay coastal waters. Presumably, its oyster and mussel culture farms are contaminated with toxic heavy metals. Yet, this alarming signs remain barely investigated. Pollution enhanced, the bioavailability and toxicity of heavy metals threaten the flora and fauna of the aquatic ecosystem. Trace concentrations of toxic elements in the marine food chain can trigger deleterious biochemical, physiological and ecological impact. Known to be bio-accumulated by aquatic organisms, the mean concentrations of Hg, Cd, Pb, Cu, and Zn in the edible tissues of Perna viridis were determined. Water and sediments sampled from the mussel culture farms were also analyzed. Results revealed that despite the apparent pollution, except for Cu and Zn, which registered slightly higher values, Hg, Cd and Pb concentrations were much lower than the maximum permissible limits. Even water and sediments samples tested showed that mean concentrations of these elements were still below sublethal limits. (auth.). 79 refs.; 8 figs.; 13 tabs.; 16 plates

  18. Predicting the bioaccumulation of polyaromatic hydrocarbons and polychlorinated biphenyls in benthic animals in sediments.

    Science.gov (United States)

    Tuikka, A I; Leppänen, M T; Akkanen, J; Sormunen, A J; Leonards, P E G; van Hattum, B; van Vliet, L A; Brack, W; Smedes, F; Kukkonen, J V K

    2016-09-01

    There were two main objectives in this study. The first was to compare the accuracy of different prediction methods for the chemical concentrations of polyaromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) in the organism, based on the measured chemical concentrations existing in sediment dry matter or pore water. The predicted tissue concentrations were compared to the measured ones after 28-day laboratory test using oligochaeta worms (Lumbriculus variegatus). The second objective was to compare the bioaccumulation of PAHs and PCBs in the laboratory test with the in situ bioaccumulation of these compounds. Using the traditional organic carbon-water partitioning model, tissue concentrations were greatly overestimated, based on the concentrations in the sediment dry matter. Use of an additional correction factor for black carbon with a two-carbon model, significantly improved the bioaccumulation predictions, thus confirming that black carbon was important in binding the chemicals and reducing their accumulation. The predicted PAH tissue concentrations were, however, high compared to the observed values. The chemical concentrations were most accurately predicted from their freely dissolved pore water concentrations, determined using equilibrium passive sampling. The patterns of PCB and PAH accumulation in sediments for laboratory-exposed L. variegatus were similar to those in field-collected Lumbriculidae worms. Field-collected benthic invertebrates and L. variegatus accumulated less PAHs than PCBs with similar lipophilicity. The biota to sediment accumulation factors of PAHs tended to decrease with increasing sediment organic carbon normalized concentrations. The presented data yields bioconcentration factors (BCF) describing the chemical water-lipid partition, which were found to be higher than the octanol-water partition coefficients, but on a similar level with BCFs drawn from relevant literature. In conclusion, using the two-carbon model method

  19. 基于RFID和EPC物联网的水产品供应链可追溯平台开发%Development of traceability system of aquatic foods supply chain based on RFID and EPC internet of things

    Institute of Scientific and Technical Information of China (English)

    颜波; 石平; 黄广文

    2013-01-01

    Food safety has become an important global public-health issue, and aquatic safety issues were never suspended. With the exposure and the emergence of some aquatic products’ quality and safety issues in China, safety issues for the quality of aquatic products has become the bottleneck of the sustainable development of fisheries and aquatic products for import and export trade. In response to the risk in the aquatic foods supply chain and to improve services, the traceable platform of the aquatic foods supply chain is highly required. Quality problems of aquatic products could occur in every aspect of the aquatic foods supply chain, including breeding, processing, distribution, and sale. So not only policies, but also technical supports are needed to ensure the quality and safety of aquatic products and to bottom out the safety hazards. In response to these issues, this paper takes tilapia as the object of study and designs and develops a traceable platform of the aquatic foods supply chain based on Radio Frequency Identification (RFID) and Electronic Product Code (EPC) Internet of Things, and focuses on designing Object Name Service (ONS) and EPC Information Service (EPCIS) of this platform. Tracking, traceability, recall, and monitoring of tilapia products in the food supply chain can be achieved with the participation of consumers, enterprises, and the government. This platform contains an aquaculture management system, process management system, distribution management system, sales management system, and querying and monitoring system, and realizes all-the-way traceability of aquatic products from breeding, processing, and distribution to sales. This platform has the following characteristics: 1) It has a monitoring function of tilapia farming, and can track and trace all aspects of information from breeding, production, processing, and distribution to sale; 2) It brings out informationization on the production and management of enterprises, and achieves all

  20. Contaminated Aquatic Sediments.

    Science.gov (United States)

    Jaglal, Kendrick

    2016-10-01

    A review of the literature published in 2015 relating to the assessment, evaluation and remediation of contaminated aquatic sediments is presented. The review is divided into the following main sections: policy and guidance, methodology, distribution, fate and transport, risk, toxicity and remediation. PMID:27620103

  1. Aquatic Environment 2000

    DEFF Research Database (Denmark)

    Svendsen, L. M.; Bijl, L. van der; Boutrup, S.; Iversen, T. M.; Ellermann, T.; Hovmand, M. F.; Bøgestrand, J.; Grant, R.; Hansen, J.; Jensen, J. P.; Stockmarr, J.; Laursen, K. D.

    The report summarizes the results of the Danish Aquatic Monitoring and Assessment Programme 1998-2003. Danish Environmental Protection Agency 2000: NOVA-2003. Programbeskrivelse for det nationale program for overvågning af vandmiljøet 1998-2003. 397 pp. - Redegørelse fra Miljøstyrelsen nr. 1 (in...

  2. Aquatic Pest Control. Manual 99.

    Science.gov (United States)

    Missouri Univ., Columbia. Agricultural Experiment Station.

    This training manual provides information needed to meet the minimum EPA standards for certification as a commercial applicator of pesticides in the aquatic pest control category. The text discusses various water use situations; aquatic weed identification; herbicide use and effects; and aquatic insects and their control. (CS)

  3. Introduced aquatic plants and algae

    Science.gov (United States)

    Non-native aquatic plants such as waterhyacinth and hydrilla severely impair the uses of aquatic resources including recreational faculties (lakes, reservoirs, rivers) as well as timely delivery of irrigation water for agriculture. Costs associated with impacts and management of all types of aquatic...

  4. Modeling of Bioaccumulation in Marine Benthic Invertebrates Using a Multispecies Experimental Approach.

    Science.gov (United States)

    Diepens, Noël J; Van den Heuvel-Greve, Martine J; Koelmans, Albert A

    2015-11-17

    The causal links between species traits and bioaccumulation by marine invertebrates are poorly understood. We assessed these links by measuring and modeling polychlorinated biphenyl bioaccumulation by four marine benthic species. Uniformity of exposure was achieved by testing each species in the same aquarium, separated by enclosures, to ensure that the observed variability in bioaccumulation was due to species traits. The relative importance of chemical uptake from pore water or food (organic matter, OM) ingestion was manipulated by using artificial sediment with different OM contents. Biota sediment accumulation factors (BSAFs) ranged from 5 to 318, in the order Nereis virens < Arenicola marina ≈ Macoma balthica < Corophium volutator. Calibration of a kinetic model provided species-specific parameters that represented the key species traits, thus illustrating how models provide an opportunity to read across benthic species with different feeding strategies. Key traits included species-specific differentiation between (1) ingestion rates, (2) ingestion of suspended and settled OM, and (3) elimination rates. The high BSAF values and their concomitant variability across the species challenges approaches for exposure assessment based on pore water concentration analysis and equilibrium partition theory. We propose that combining multienclosure testing and modeling will substantially improve exposure assessment in sediment toxicity tests. PMID:26465976

  5. Using biodynamic models to reconcile differences between laboratory toxicity tests and field biomonitoring with aquatic insects

    Science.gov (United States)

    Buchwalter, D.B.; Cain, D.J.; Clements, W.H.; Luoma, S.N.

    2007-01-01

    Aquatic insects often dominate lotic ecosystems, yet these organisms are under-represented in trace metal toxicity databases. Furthermore, toxicity data for aquatic insects do not appear to reflect their actual sensitivities to metals in nature, because the concentrations required to elicit toxicity in the laboratory are considerably higher than those found to impact insect communities in the field. New approaches are therefore needed to better understand how and why insects are differentially susceptible to metal exposures. Biodynamic modeling is a powerful tool for understanding interspecific differences in trace metal bioaccumulation. Because bioaccumulation alone does not necessarily correlate with toxicity, we combined biokinetic parameters associated with dissolved cadmium exposures with studies of the subcellular compartmentalization of accumulated Cd. This combination of physiological traits allowed us to make predictions of susceptibility differences to dissolved Cd in three aquatic insect taxa: Ephemerella excrucians, Rhithrogena morrisoni, and Rhyacophila sp. We compared these predictions with long-term field monitoring data and toxicity tests with closely related taxa: Ephemerella infrequens, Rhithrogena hageni, and Rhyacophila brunea. Kinetic parameters allowed us to estimate steady-state concentrations, the time required to reach steady state, and the concentrations of Cd projected to be in potentially toxic compartments for different species. Species-specific physiological traits identified using biodynamic models provided a means for better understanding why toxicity assays with insects have failed to provide meaningful estimates for metal concentrations that would be expected to be protective in nature. ?? 2007 American Chemical Society.

  6. Five-year bio-monitoring of aquatic ecosystems near Artigas Antarctic Scientific Base, King George Island

    Institute of Scientific and Technical Information of China (English)

    Mara A Morel; Victoria Braa; Cecilia Martnez-Rosales; Clica Cagide; Susana Castro-Sowinski

    2015-01-01

    Fildes Peninsula, in King George Island, Antarctica, has a great concentration of international facilities, and it has clearly been affected by human activities. The objective of this 5-year study was to assess the impact of anthropogenic activities on the bacterial abundance in water bodies close to Artigas Antarctic Scientific Base (BCAA, in Spanish Base Científica Antártica Artigas). Water samples from areas under different human influence (Uruguay Lake, nearby ponds, and meltwater from Collins Glacier) were aseptically collected and refrigerated until processed. The number of heterotrophic bacteria and Pseudomonas spp. was analyzed using a culture-dependent approach. Physico-chemical properties of the water samples (temperature, pH, and conductivity) were also determined. Results showed that water from the highly affected area, Uruguay Lake, where the pump that provides water to the BCAA is located, did not suffer significant fluctuations in heterotrophic bacterial abundance (104–105 CFU∙mL−1); however, Pseudomonas abundance increased until becoming the predominant population. In other water samples, the number of heterotrophic bacteria and Pseudomonas gradually increased during this 5-year study, by 2014 reaching similar values to those observed for Uruguay Lake. The implications of human activities on Antarctic bacterial abundance are discussed.

  7. Holocene climate variability on the Kola Peninsula, Russian Subarctic, based on aquatic invertebrate records from lake sediments

    Science.gov (United States)

    Ilyashuk, Elena A.; Ilyashuk, Boris P.; Kolka, Vasily V.; Hammarlund, Dan

    2013-05-01

    Sedimentary records of invertebrate assemblages were obtained from a small lake in the Khibiny Mountains, Kola Peninsula. Together with a quantitative chironomid-based reconstruction of mean July air temperature, these data provide evidence of Holocene climate variability in the western sector of the Russian Subarctic. The results suggest that the amplitude of climate change was more pronounced in the interior mountain area than near the White Sea coast. A chironomid-based temperature reconstruction reflects a warming trend in the early Holocene, interrupted by a transient cooling at ca. 8500-8000 cal yr BP with a maximum drop in temperature (ca. 1°C) around 8200 cal yr BP. The regional Holocene Thermal Maximum, characterized by maximum warmth and dryness occurred at ca. 7900-5400 cal yr BP. During this period, July temperatures were at least 1°C higher than at present. The relatively warm and dry climate persisted until ca. 4000 cal yr BP, when a pronounced neoglacial cooling was initiated. Minimum temperatures, ca. 1-2°C lower than at present, were inferred at ca. 3200-3000 cal yr BP. Faunal shifts in the stratigraphic profile imply also that the late-Holocene cooling was followed by a general increase in effective moisture.

  8. Bioaccumulation of trace elements by Avicennia marina

    Directory of Open Access Journals (Sweden)

    Kandasamy Kathiresan

    2014-11-01

    Full Text Available Objective: To analyze the concentrations of 12 micro-nutrients (Al, B, Cd, Co, Cr, Cu, Fe, Mg, Mn, Ni, Pb, and Zn in different plant parts of Avicennia marina and its rhizosphere soil of the south east coast of India. Methods: The samples were acid digested, then analyzed by using inductively coupled plasma system (ICP-Optical Emission Spectrophotometer. Results: Levels of metals were found in the decreasing order: Cd>Co>Ni>Pb>B >Cr>Zn>Mg>Mn>Cu>Fe>Al. The soil held more levels of metals than plant parts, but within the permissible limits of concentration. Bark and root accumulated higher levels of trace elements in a magnitude of 10-80 folds than other plant parts. The overall bioaccumulation factor in the sampling sites of Vellar, Pichavaram and Cuddalore was 2.88, 1.42 0.47 respectively. Essential elements accumulate high in mature mangroves forest while non-essential elements accumulate high in the industrially polluted mangroves. Conclusions: The ratio between essential and non-essential elements was found higher in young mangrove forest than that in mature mangrove forest and polluted mangrove areas. Thus, the ratio of accumulation can be used as an index of the growth and pollution status of mangroves.

  9. Bioaccumulation of trace elements by Avicennia marina

    Institute of Scientific and Technical Information of China (English)

    Kandasamy Kathiresan; Kandasamy Saravanakumar; Pandiyan Mullai

    2014-01-01

    Objective: To analyze the concentrations of 12 micro-nutrients (Al, B, Cd, Co, Cr, Cu, Fe, Mg, Mn, Ni, Pb, and Zn) in different plant parts of Avicennia marina and its rhizosphere soil of the south east coast of India. Methods: The samples were acid digested, then analyzed by using inductively coupled plasma system (ICP-Optical Emission Spectrophotometer). Results: Levels of metals were found in the decreasing order: Cd>Co>Ni>Pb>B>Cr>Zn>Mg>Mn>Cu>Fe>Al. The soil held more levels of metals than plant parts, but within the permissible limits of concentration. Bark and root accumulated higher levels of trace elements in a magnitude of 10-80 folds than other plant parts. The overall bioaccumulation factor in the sampling sites of Vellar, Pichavaram and Cuddalore was 2.88, 1.42 0.47 respectively. Essential elements accumulate high in mature mangroves forest while non-essential elements accumulate high in the industrially polluted mangroves. Conclusions:The ratio between essential and non-essential elements was found higher in young mangrove forest than that in mature mangrove forest and polluted mangrove areas. Thus, the ratio of accumulation can be used as an index of the growth and pollution status of mangroves.

  10. A GIS-based vulnerability assessment of brine contamination to aquatic resources from oil and gas development in eastern Sheridan County, Montana.

    Science.gov (United States)

    Preston, Todd M; Chesley-Preston, Tara L; Thamke, Joanna N

    2014-02-15

    Water (brine) co-produced with oil in the Williston Basin is some of the most saline in the nation. The Prairie Pothole Region (PPR), characterized by glacial sediments and numerous wetlands, covers the northern and eastern portion of the Williston Basin. Sheridan County, Montana, lies within the PPR and has a documented history of brine contamination. Surface water and shallow groundwater in the PPR are saline and sulfate dominated while the deeper brines are much more saline and chloride dominated. A Contamination Index (CI), defined as the ratio of chloride concentration to specific conductance in a water sample, was developed by the Montana Bureau of Mines and Geology to delineate the magnitude of brine contamination in Sheridan County. Values >0.035 indicate contamination. Recently, the U.S. Geological Survey completed a county level geographic information system (GIS)-based vulnerability assessment of brine contamination to aquatic resources in the PPR of the Williston Basin based on the age and density of oil wells, number of wetlands, and stream length per county. To validate and better define this assessment, a similar approach was applied in eastern Sheridan County at a greater level of detail (the 2.59 km(2) Public Land Survey System section grid) and included surficial geology. Vulnerability assessment scores were calculated for the 780 modeled sections and these scores were divided into ten equal interval bins representing similar probabilities of contamination. Two surface water and two groundwater samples were collected from the section with the greatest acreage of Federal land in each bin. Nineteen of the forty water samples, and at least one water sample from seven of the ten selected sections, had CI values indicating contamination. Additionally, CI values generally increased with increasing vulnerability assessment score, with a stronger correlation for groundwater samples (R(2)=0.78) than surface water samples (R(2)=0.53). PMID:24364993

  11. A GIS-based vulnerability assessment of brine contamination to aquatic resources from oil and gas development in eastern Sheridan County, Montana

    Science.gov (United States)

    Preston, Todd M.; Chesley-Preston, Tara L.; Thamke, Joanna N.

    2014-01-01

    Water (brine) co-produced with oil in the Williston Basin is some of the most saline in the nation. The Prairie Pothole Region (PPR), characterized by glacial sediments and numerous wetlands, covers the northern and eastern portion of the Williston Basin. Sheridan County, Montana, lies within the PPR and has a documented history of brine contamination. Surface water and shallow groundwater in the PPR are saline and sulfate dominated while the deeper brines are much more saline and chloride dominated. A Contamination Index (CI), defined as the ratio of chloride concentration to specific conductance in a water sample, was developed by the Montana Bureau of Mines and Geology to delineate the magnitude of brine contamination in Sheridan County. Values > 0.035 indicate contamination. Recently, the U.S. Geological Survey completed a county level geographic information system (GIS)-based vulnerability assessment of brine contamination to aquatic resources in the PPR of the Williston Basin based on the age and density of oil wells, number of wetlands, and stream length per county. To validate and better define this assessment, a similar approach was applied in eastern Sheridan County at a greater level of detail (the 2.59 km2 Public Land Survey System section grid) and included surficial geology. Vulnerability assessment scores were calculated for the 780 modeled sections and these scores were divided into ten equal interval bins representing similar probabilities of contamination. Two surface water and two groundwater samples were collected from the section with the greatest acreage of Federal land in each bin. Nineteen of the forty water samples, and at least one water sample from seven of the ten selected sections, had CI values indicating contamination. Additionally, CI values generally increased with increasing vulnerability assessment score, with a stronger correlation for groundwater samples (R2 = 0.78) than surface water samples (R2 = 0.53).

  12. Aquatic subsidies transport anthropogenic nitrogen to riparian spiders

    International Nuclear Information System (INIS)

    Stable nitrogen isotopic composition (δ15N) of aquatic biota increases with anthropogenic N inputs such as sewage and livestock waste downstream. Increase in δ15N of riparian spiders downstream may reflect the anthropogenic pollution exposure through predation on aquatic insects. A two-source mixing model based on stable carbon isotopic composition showed the greatest dependence on aquatic insects (84%) by horizontal web-building spiders, followed by intermediate (48%) and low (31%) dependence by cursorial and vertical web-building spiders, respectively. The spider body size was negatively correlated with the dietary proportion of aquatic insects and spider δ15N. The aquatic subsidies transported anthropogenic N to smaller riparian spiders downstream. This transport of anthropogenic N was regulated by spider's guild designation and body size. - Highlights: → δ15N of aquatic insects increases downstream with anthropogenic nitrogen inputs. → δ15N of riparian spiders increases with a high dietary proportion of aquatic insects and smaller spider body size. → The aquatic subsidies transport anthropogenic nitrogen to smaller riparian spiders downstream. - Smaller spiders assimilate anthropogenic nitrogen through the predation on aquatic subsides.

  13. Toxic effects and bioaccumulation of nano-, micron- and ionic-Ag in the polychaete, Nereis diversicolor.

    Science.gov (United States)

    Cong, Yi; Banta, Gary T; Selck, Henriette; Berhanu, Deborah; Valsami-Jones, Eugenia; Forbes, Valery E

    2011-10-01

    There is increasing concern about the toxicities and potential risks, both still poorly understood, of silver nanoparticles for the aquatic environment after their eventual release via wastewater discharges. In this study, the toxicities of sediment associated nano (Nereis diversicolor, were compared after 10 days of sediment exposure, using survival, DNA damage (comet assay) and bioaccumulation as endpoints. The nominal concentrations used in all exposure scenarios were 0, 1, 5, 10, 25, and 50 μg Ag/g dry weight (dw) sediment. Our results showed that Ag was able to cause DNA damage in Nereis coelomocytes, and that this effect was both concentration- and Ag form-related. There was significantly greater genotoxicity (higher tail moment and tail DNA intensities) at 25 and 50 μg/g dw in nano- and micron-Ag treatments and at 50 μg/g dw in the ionic-Ag treatment compared to the controls (0μg/g dw). The nano-Ag treatment had the greatest genotoxic effect of the three tested Ag forms, and the ionic-Ag treatment was the least genotoxic. N. diversicolor did accumulate sediment-associated Ag from all three forms. Ag body burdens at the highest exposure concentration were 8.56 ± 6.63, 6.92 ± 5.86 and 9.86 ± 4.94 μg/g dw for worms in nano-, micron- and ionic-Ag treatments, respectively, but there was no significant difference in Ag bioaccumulation among the three treatments. PMID:21831346

  14. Aquatic Ecology Section

    International Nuclear Information System (INIS)

    Population studies were concerned with predicting long-term consequences of mortality imposed on animal populations by man's activities. These studies consisted of development of a generalized life cycle model and an empirical impingement model for use in impact analysis. Chemical effects studies were conducted on chlorine minimization; fouling by the Asiatic clam; identification of halogenated organics in cooling water; and effects of halogenated organics in cooling systems on aquatic organisms. Ecological transport studies were conducted on availability of sediment-bound 137Cs and 60Co to fish; 137Cs and 60Co in White Oak Lake fish; and chromium levels in fish from a lake chronically contaminated with chromates from cooling towers. Progress is also reported on the following: effects of irradiation on thermal tolerance of mosquito fish; toxicity of nickel to the developing eggs and larvae of carp; accumulation of selected heavy metals associated with fly ash; and environmental monitoring of aquatic ecosystems

  15. Modeling total phosphorus removal in an aquatic environment restoring horizontal subsurface flow constructed wetland based on artificial neural networks.

    Science.gov (United States)

    Li, Wei; Zhang, Yan; Cui, Lijuan; Zhang, Manyin; Wang, Yifei

    2015-08-01

    A horizontal subsurface flow constructed wetland (HSSF-CW) was designed to improve the water quality of an artificial lake in Beijing Wildlife Rescue and Rehabilitation Center, Beijing, China. Artificial neural networks (ANNs), including multilayer perceptron (MLP) and radial basis function (RBF), were used to model the removal of total phosphorus (TP). Four variables were selected as the input parameters based on the principal component analysis: the influent TP concentration, water temperature, flow rate, and porosity. In order to improve model accuracy, alternative ANNs were developed by incorporating meteorological variables, including precipitation, air humidity, evapotranspiration, solar heat flux, and barometric pressure. A genetic algorithm and cross-validation were used to find the optimal network architectures for the ANNs. Comparison of the observed data and the model predictions indicated that, with careful variable selection, ANNs appeared to be an efficient and robust tool for predicting TP removal in the HSSF-CW. Comparison of the accuracy and efficiency of MLP and RBF for predicting TP removal showed that the RBF with additional meteorological variables produced the most accurate results, indicating a high potentiality for modeling TP removal in the HSSF-CW. PMID:25903184

  16. A rational approach to selecting and ranking some pharmaceuticals of concern for the aquatic environment and their relative importance compared with other chemicals.

    Science.gov (United States)

    Donnachie, Rachel L; Johnson, Andrew C; Sumpter, John P

    2016-04-01

    Aquatic organisms can be exposed to thousands of chemicals discharged by the human population. Many of these chemicals are considered disruptive to aquatic wildlife, and the literature on the impacts of these chemicals grows daily. However, because time and resources are not infinite, research must focus on the chemicals that represent the greatest threat. One group of chemicals of increasing concern is pharmaceuticals, for which the primary challenge is to identify which represent the greatest threat. In the present study, a list of 12 pharmaceuticals was compiled based on scoring the prevalence of different compounds from previous prioritization reviews. These included rankings based on prescription data, environmental concentrations, predicted environmental concentration/predicted no-effect concentration (PEC/PNEC) ratios, persistency/bioaccumulation/(eco)toxicity (PBT), and fish plasma model approaches. The most frequently cited were diclofenac, paracetamol, ibuprofen, carbamazepine, naproxen, atenolol, ethinyl estradiol, aspirin, fluoxetine, propranolol, metoprolol, and sulfamethoxazole. For each pharmaceutical, literature on effect concentrations was compiled and compared with river concentrations in the United Kingdom. The pharmaceuticals were ranked by degree of difference between the median effect and median river concentrations. Ethinyl estradiol was ranked as the highest concern, followed by fluoxetine, propranolol, and paracetamol. The relative risk of these pharmaceuticals was compared with those of metals and some persistent organic pollutants. Pharmaceuticals appear to be less of a threat to aquatic organisms than some metals (Cu, Al, Zn) and triclosan, using this ranking approach. Environ Toxicol Chem 2016;35:1021-1027. © 2015 The Authors. Environmental Toxicology and Chemistry Published by Wiley Periodicals, Inc. on behalf of SETAC. PMID:26184376

  17. Bioavailability of PAHs in aluminum smelter affected sediments: evaluation through assessment of pore water concentrations and in vivo bioaccumulation.

    Science.gov (United States)

    Ruus, Anders; Bøyum, Olav; Grung, Merete; Næs, Kristoffer

    2010-12-15

    Bioaccumulation of polycyclic aromatic hydrocarbons (PAHs) from coal tar pitch polluted sediments was predicted by (1) a generic approach based on organic carbon-water partitioning and Gibbs linear free energy relationship (between K(OW) and K(OC)), and (2) measurements of freely dissolved concentrations of PAHs in the sediment pore water, using passive samplers and solid phase extraction. Results from these predictions were compared with those from in vivo bioaccumulation experiments using Nereis diversicolor (Polychaeta), Hinia reticulata (Gastropoda), and Nuculoma tenuis (Bivalvia). Measured sediment/water partition coefficients were higher than predicted by the generic approach. Furthermore, predicted biota-to-sediment accumulation factors (BSAFs) derived from measured pore water concentrations were more in agreement with the bioaccumulation observed for two of the three species. Discrepancies associated with the third species (N. tenuis) were likely a result of particles remaining in the intestine (as shown by microscopic evaluation). These results indicate the importance of conducting site-specific evaluations of pore water concentrations and/or bioaccumulation studies by direct measurements to accurately provide a basis for risk assessment and remediation plans. The importance of knowledge regarding specific characteristics of model organisms is emphasized. PMID:21077669

  18. Uranium bioaccumulation in a freshwater ecosystem: Impact of feeding ecology

    Energy Technology Data Exchange (ETDEWEB)

    Kraemer, Lisa D., E-mail: lisakraemer@trentu.ca [Trent University, 1600 West Bank Drive, Peterborough, ON, K9J 7B8 (Canada); Evans, Douglas [Trent University, 1600 West Bank Drive, Peterborough, ON, K9J 7B8 (Canada)

    2012-11-15

    Uranium bioaccumulation in a lake that had been historically affected by a U mine and (2) to use a combined approach of gut content examination and stable nitrogen and carbon isotope analysis to determine if U bioaccumulation in fish was linked to foodweb ecology. We collected three species of fish: smallmouth bass (Micropterus dolomieu), yellow perch (Perca flavescens) and bluegill (Lepomis macrochirus), in addition to several invertebrate species including freshwater bivalves (family: Sphaeriidae), dragonfly nymphs (order: Odonata), snails (class: Gastropoda) and zooplankton (family: Daphniidae). Results showed significant U bioaccumulation in the lake impacted by historical mining activities. Uranium accumulation was 2-3 orders of magnitude higher in invertebrates than in the fish species. Within fish, U was measured in operculum (bone), liver and muscle tissue and accumulation followed the order: operculum > liver > muscle. There was a negative relationship between stable nitrogen ratios ({sup 15}N/{sup 14}N) and U bioaccumulation, suggesting U biodilution in the foodweb. Uranium bioaccumulation in all three tissues (bone, liver, muscle) varied among fish species in a consistent manner and followed the order: bluegill > yellow perch > smallmouth bass. Collectively, gut content and stable isotope analysis suggests that invertebrate-consuming fish species (i.e. bluegill) have the highest U levels, while fish species that were mainly piscivores (i.e. smallmouth bass) have the lowest U levels. Our study highlights the importance of understanding the feeding ecology of fish when trying to predict U accumulation.

  19. Uranium bioaccumulation in a freshwater ecosystem: Impact of feeding ecology

    International Nuclear Information System (INIS)

    Uranium bioaccumulation in a lake that had been historically affected by a U mine and (2) to use a combined approach of gut content examination and stable nitrogen and carbon isotope analysis to determine if U bioaccumulation in fish was linked to foodweb ecology. We collected three species of fish: smallmouth bass (Micropterus dolomieu), yellow perch (Perca flavescens) and bluegill (Lepomis macrochirus), in addition to several invertebrate species including freshwater bivalves (family: Sphaeriidae), dragonfly nymphs (order: Odonata), snails (class: Gastropoda) and zooplankton (family: Daphniidae). Results showed significant U bioaccumulation in the lake impacted by historical mining activities. Uranium accumulation was 2–3 orders of magnitude higher in invertebrates than in the fish species. Within fish, U was measured in operculum (bone), liver and muscle tissue and accumulation followed the order: operculum > liver > muscle. There was a negative relationship between stable nitrogen ratios (15N/14N) and U bioaccumulation, suggesting U biodilution in the foodweb. Uranium bioaccumulation in all three tissues (bone, liver, muscle) varied among fish species in a consistent manner and followed the order: bluegill > yellow perch > smallmouth bass. Collectively, gut content and stable isotope analysis suggests that invertebrate-consuming fish species (i.e. bluegill) have the highest U levels, while fish species that were mainly piscivores (i.e. smallmouth bass) have the lowest U levels. Our study highlights the importance of understanding the feeding ecology of fish when trying to predict U accumulation.

  20. The mismatch between bioaccumulation in field and laboratory environments: Interpreting the differences for metals in benthic bivalves

    International Nuclear Information System (INIS)

    Laboratory-based bioaccumulation and toxicity bioassays are frequently used to predict the ecological risk of contaminated sediments in the field. This study investigates the bioassay conditions most relevant to achieving environmentally relevant field exposures. An identical series of metal-contaminated marine sediments were deployed in the field and laboratory over 31 days. Changes in metal concentrations and partitioning in both sediments and waters were used to interpret differences in metal exposure and bioaccumulation to the benthic bivalve Tellina deltoidalis. Loss of resuspended sediments and deposition of suspended particulate matter from the overlying water resulted in the concentrations of Cu, Pb and Zn (major contaminants) becoming lower in the 1-cm surface layer of field-deployed sediments. Lower exchange rates of overlying waters in the laboratory resulted in higher dissolved metal exposures. The prediction of metal bioaccumulation by the bivalves in field and laboratory was improved by considering the metal partitioning within the surface sediments. - Highlights: • Particulate metals are the dominant metal exposure route in laboratory and field tests (87). • There is an over-representation of the dissolved metal exposure in the laboratory (81). • Laboratory bioassays result in higher bioaccumulation of major metals, Cu, Pb, Zn (82). • Differences in exposure must be considered for a proper sediment quality evaluation (83). • Traditional measurements are not sufficient to explain bioaccumulation results (79). - To improve the value of field- and laboratory-based sediment bioassays in ecological risk assessments, it is necessary to create exposure conditions that resemble those in the field

  1. Bioaccumulation of dissociating substances; Bioakkumulation dissoziierender Stoffe

    Energy Technology Data Exchange (ETDEWEB)

    Butte, W.; Plegge, V.; Schettgen, C.; Willenborg, R.; Zauke, G.P. [Oldenburg Univ. (Germany). Fachbereich Chemie; Kuhlmann, H. [Oldenburg Univ. (Germany). Fachbereich Chemie]|[Bundesforschungsanstalt fuer Fischerei, Ahrensburg (Germany). Inst. fuer Fischereioekologie

    2000-02-01

    Bioconcentration factors (BCF) are important parameters to assess the environmental fate of chemicals. In this report we describe the determination of BCF for Triclosan, a trichlorophenoxy phenol, for some dissociating herbicides like Dichlorprop, MCPA, Mecoprop, Triclopyr and Picloram as well as for selected pyrethroids like Cyfluthrin, Cypermethrin, Deltamethrin and Permethrin. It was shown that BCF and rate constants for the uptake of Triclosan are decreasing with an increasing pH of the test water. The BCF for the herbicides evaluated are all below 10, confirming data already reported for herbicides of similar structure. Thus, for these compounds there is no tendency to bioaccumulate. Furthermore, there was no correlation between BCF and n-octanol/water partition coefficients or dissociation constants. BCF of pyrethroids were between 860 and 2200. For the analysis of pyrenthroid metabolites a gas chromatographic method using daughter-ion mass spectrometry for detection was established. The detection limit of this method was 1 {mu}g/kg, but metabolites could not be detected in fish during the bioaccumulation experiments. The high toxicity of pyrethroids for fish was approved; LC50-values were between 1 and 5 {mu}g/l. To evaluate physiological effects in fish, produced by pyrethroids, EROD activities in preparations of trout liver were measured. No increase in activity could be detected, but there was a tendency to lower values. We think this to result from the high toxicity of pyrethroids that could have impaired this enzyme system. (orig.) [German] Biokonzentrationsfaktoren (BCF) sind wichtige Parameter, mit Hilfe derer das Umweltverhalten von Chemikalien abgeschaetzt werden kann. Im Rahmen dieses Forschungsvorhabens wurden BCF-Werte fuer Triclosan, ein Trichlorphenoxyphenol, fuer einige dissoziierende Herbizide: Dichlorprop, MCPA, Mecoprop, Triclopyr und Picloram sowie fuer ausgewaehlte Pyrethroide: Cyfluthrin, Cypermethrin, Deltamethrin und Permethrin

  2. Bioaccumulation of total mercury in the earthworm Eisenia andrei

    OpenAIRE

    Le Roux, Shirley; Baker, Priscilla; Crouch, Andrew

    2016-01-01

    Earthworms are a major part of the total biomass of soil fauna and play a vital role in soil maintenance. They process large amounts of plant and soil material and can accumulate many pollutants that may be present in the soil. Earthworms have been explored as bioaccumulators for many heavy metal species such as Pb, Cu and Zn but limited information is available for mercury uptake and bioaccumulation in earthworms and very few report on the factors that influence the kinetics of Hg uptake by ...

  3. Effects of Cr III and Pb on the bioaccumulation and toxicity of Cd in tropical periphyton communities: Implications of pulsed metal exposures

    International Nuclear Information System (INIS)

    Metal exposure pattern, timing, frequency, duration, recovery period, metal type and interactions, has obscured effects on periphyton communities in lotic systems. The objective of this study was to investigate the effects of intermittent exposures of Cr III and Pb on Cd toxicity and bioaccumulation in tropical periphyton communities. Natural periphyton communities were transferred to artificial stream chambers and exposed to metal mixtures at different pulse timing, duration, frequency and recovery periods. Chlorophyll a, dry mass and metal accumulation kinetics were recorded. Cr and Pb decrease the toxic effects of Cd on periphyton communities. Periphyton has high Cd, Cr and Pb accumulation capacity. Cr and Pb reduced the levels of Cd sequestrated by periphyton communities. The closer the frequency and duration of the pulse is to a continuous exposure, the greater the effects of the contaminant on periphyton growth and metal bioaccumulation. Light increased toxic and accumulative effects of metals on the periphyton community. - Highlights: ► We investigated toxicity effects of pulsed metal exposures on bioaccumulation and toxicity in periphyton. ► High frequency of short duration pulses has effects equal to long duration exposures. ► Important role of light in modulating metal toxicity on periphyton demonstrated. ► Factors other than magnitude and duration must be considered in water quality criteria. ► Accurate prediction of metal effects on biofilms requires data on effluent variability. - The study highlights the importance of pulse timing, frequency, duration, recovery period and chemical type on aquatic life.

  4. Pharmacokinetic modeling in aquatic animals. 1. Models and concepts

    Science.gov (United States)

    Barron, M.G.; Stehly, Guy R.; Hayton, W.L.

    1990-01-01

    While clinical and toxicological applications of pharmacokinetics have continued to evolve both conceptually and experimentally, pharmacokinetics modeling in aquatic animals has not progressed accordingly. In this paper we present methods and concepts of pharmacokinetic modeling in aquatic animals using multicompartmental, clearance-based, non-compartmental and physiologically-based pharmacokinetic models. These models should be considered as alternatives to traditional approaches, which assume that the animal acts as a single homogeneous compartment based on apparent monoexponential elimination.

  5. PIXE analysis of chromium phytoaccumulation by the aquatic macrophytes Eicchornia crassipes

    International Nuclear Information System (INIS)

    The uptake of hexavalent chromium in free living floating aquatic macrophytes Eicchornia crassipes cultivated in non-toxic chromium-doped hydroponic solutions is presented. A Cr-uptake bioaccumulation experiment was carried out using healthy macrophytes grown in a temperature controlled greenhouse. Six samples of nutrient media and plants were collected during the 23 day experiment. Roots and leaves were acid digested with the addition of an internal Gallium standard, for thin film sample preparation and quantitative Cr analysis by PIXE method. The Cr6+ mass uptake by the macrophytes reached up to 70% of the initial concentration, comparable to former results and literature data. The Cr-uptake data were described using a non-structural first order kinetic model. Due to low cost and high removal efficiency, living aquatic macrophytes E. crassipes are a viable biosorbent in an artificial wetland of a water effluent treatment plant.

  6. PIXE analysis of chromium phytoaccumulation by the aquatic macrophytes Eicchornia crassipes

    Energy Technology Data Exchange (ETDEWEB)

    Espinoza-Quinones, F.R. [Department of Chemical Engineering - Postgraduate Program - NBQ, West Parana State University, Rua da Faculdade, 645, Jardim Santa Maria, 85903-000 Toledo, Parana (Brazil)], E-mail: f.espinoza@terra.com.br; Rizzutto, M.A.; Added, N.; Tabacniks, M.H. [Physics Institute, University of Sao Paulo, Rua do Matao s/n, Travessa R 187, 05508-900 Sao Paulo, SP (Brazil); Modenes, A.N.; Palacio, S.M.; Silva, E.A.; Rossi, F.L.; Martin, N.; Szymanski, N. [Department of Chemical Engineering - Postgraduate Program - NBQ, West Parana State University, Rua da Faculdade, 645, Jardim Santa Maria, 85903-000 Toledo, Parana (Brazil)

    2009-04-15

    The uptake of hexavalent chromium in free living floating aquatic macrophytes Eicchornia crassipes cultivated in non-toxic chromium-doped hydroponic solutions is presented. A Cr-uptake bioaccumulation experiment was carried out using healthy macrophytes grown in a temperature controlled greenhouse. Six samples of nutrient media and plants were collected during the 23 day experiment. Roots and leaves were acid digested with the addition of an internal Gallium standard, for thin film sample preparation and quantitative Cr analysis by PIXE method. The Cr{sup 6+} mass uptake by the macrophytes reached up to 70% of the initial concentration, comparable to former results and literature data. The Cr-uptake data were described using a non-structural first order kinetic model. Due to low cost and high removal efficiency, living aquatic macrophytes E. crassipes are a viable biosorbent in an artificial wetland of a water effluent treatment plant.

  7. Influences of sediment geochemistry on metal accumulation rates and toxicity in the aquatic oligochaete Tubifex tubifex.

    Science.gov (United States)

    Méndez-Fernández, Leire; De Jonge, Maarten; Bervoets, Lieven

    2014-12-01

    Metal bioaccumulation and toxicity in the aquatic oligochaete Tubifex tubifex exposed to three metal-contaminated field-sediments was studied in order to assess whether sediment-geochemistry (AVS, TOC) plays a major role in influencing these parameters, and to assess if the biodynamic concept can be used to explain observed effects in T. tubifex tissue residues and/or toxicity. An active autotomy promotion was observed in three studied sediments at different time points and reproduction impairment could be inferred in T. tubifex exposed to two of the tested sites after 28 days. The present study showed that sediment metal concentration and tissue residues followed significant regression models for four essential metals (Cu, Co, Ni and Zn) and one non-essential metal (Pb). Organic content normalization for As also showed a significant relationship with As tissue residue. Porewater was also revealed to be an important source of metal uptake for essential metals (e.g. Cu, Ni and Zn) and for As, but AVS content was not relevant for metal uptake in T. tubifex in studied sediments. Under the biodynamic concept, it was shown that influx rate from food (IF, sediment ingestion) in T. tubifex, in a range of sediment geochemistry, was able to predict metal bioaccumulation, especially of the essential metals Cu, Ni and Zn, and for the non-essential metal Pb. Additionally, IF appeared to be a better predictor for metal bioaccumulation in T. tubifex compared to sediment geochemistry normalization. PMID:25456225

  8. Toxicity and critical body residues of Cd, Cu and Cr in the aquatic oligochaete Tubifex tubifex (Müller) based on lethal and sublethal effects.

    Science.gov (United States)

    Méndez-Fernández, Leire; Martínez-Madrid, Maite; Rodriguez, Pilar

    2013-12-01

    The aim of the present study was to estimate critical body residues (CBRs) of three metals [cadmium (Cd), copper (Cu), chromium (Cr)] in the aquatic oligochaete Tubifex tubifex based on lethal (LBR) and sublethal effects (CBR), and to discuss the relevance of the exposure to sediment for deriving CBR. Toxicity parameters (LC50, EC50, LBR50 and CBR50) were estimated for each metal by means of data on survival and on several sublethal variables measured in short-term (4 days), water-only exposures and in long-term, chronic (14 and 28 days) exposures using metal-spiked sediment. Sublethal endpoints included autotomy in short-term exposure, as well as reproduction and growth in chronic bioassays. LBR50 and CBR50 were 3-6 times higher in sediment than in water-only exposure to Cd and about 2-11 times higher for Cu, depending on the measured endpoint; however, for Cr these parameters varied only by a factor of 1.2. Cu and Cr LBR50 and CBR50 values in 96 h water-only exposure were very similar (survival 2.39 μmol Cu g(-1) dw, 2.73 μmol Cr g(-1) dw; autotomy 0.53 μmol Cu g(-1) dw, 0.78 μmol Cr g(-1) dw). However, in metal-spiked sediments, 28 d CBR50 values for autotomy, reproduction and growth ranged 6.76-29.54 μmol g(-1) dw for Cd, 3.88-6.23 μmol g(-1) dw for Cu, 0.65 μmol g(-1) dw for Cr (calculated only on total number of young). Exposure conditions (time and presence/absence of sediment) seem to be influential in deriving metal CBR values of Cd and Cu, while appear to be irrelevant for Cr. Thus, CBR approach for metals is complex and tissue residue-toxicity relationship is not directly applicable so far. PMID:24085604

  9. A controlled aquatic ecological life support system (CAELSS) for combined production of fish and higher plant biomass suitable for integration into a lunar or planetary base.

    Science.gov (United States)

    Blum, V; Andriske, M; Eichhorn, H; Kreuzberg, K; Schreibman, M P

    1995-10-01

    Based on the construction principle of the already operative Closed Equilibrated Biological Aquatic System (C.E.B.A.S.) the concept of an aquaculture system for combined production of animal and plant biomass was developed. It consists of a tank for intensive fish culture which is equipped with a feeding lock representing also a trap for biomass removal followed by a water recycling system. This is an optimized version of the original C.E.B.A.S. filters adapted to higher water pollutions. It operates in a fully biological mode and is able to convert the high ammonia ion concentrations excreted by the fish gills into nitrite ions. The second biomass production site is a higher plant cultivator with an internal fiber optics light distributor which may utilize of solar energy. The selected water plant is a tropical rootless duckweed of the genus Wolffia which possesses a high capacity in nitrate elimination and is terrestrially cultured as a vegetable for human nutrition in Southeast Asia. It is produced in an improved suspension culture which allows the removal of excess biomass by tangential centrifugation. The plant cultivator is able to supply the whole system with oxygen for respiration and eliminates vice versa the carbon dioxide exhaled by the fish via photosynthesis. A gas exchanger may be used for emergency purposes or to deliver excess oxygen into the environment and may be implemented into the air regeneration system of a closed environment of higher order. The plant biomass is fed into a biomass processor which delivers condensed fresh and dried biomass as pellets. The recovered water is fed back into the aquaculture loop. The fresh plants can be used for human nutrition immediately or can be stored after sterilization in an adequate packing. The dried Wolffia pellets are collected and brought into the fish tank by an automated feeder. In parallel the water from the plant cultivator is driven back to the animal tank by a pump. The special feature of the

  10. Bioaccumulation and toxicity of selenium during a life-cycle exposure with desert pupfish (Cyprinodon macularius)

    Science.gov (United States)

    2012-01-01

    Populations of desert pupfish (Cyprinodon macularius; pupfish), a federally-listed endangered species, inhabit irrigation drains in the Imperial Valley agricultural area of southern California. These drains have varying degrees of selenium (Se) contamination of water, sediment, and aquatic biota. Published Se toxicity studies suggest that these levels of Se contamination may pose risk of chronic toxicity to Se-sensitive fish, but until recently there have been no studies of the chronic toxicity of Se to desert pupfish. A life-cycle Se exposure with pupfish was conducted to estimate dietary and tissue thresholds for toxic effects of Se on all life stages. The dietary exposure was based on live oligochaete worms (Lumbriculus variegatus) dosed with Se by a laboratory food chain based on selenized yeast. Oligochaetes readily accumulated Se from mixtures of selenized and control yeasts. The protocol for dosing oligochaetes for pupfish feeding studies included long-term (at least 28 days) feeding of a low-ration of yeast mixtures to large batches of oligochaetes. Oligochaetes were dosed at five Se levels in a 50-percent dilution series. Pupfish were simultaneously fed Se-dosed oligochaetes and exposed to a series of Se concentrations in water (consisting of 85 percent selenate and 15 percent selenite) to produce exposures that were consistent with Se concentrations and speciation in pupfish habitats. The nutritional characteristics of oligochaete diets were consistent across the range of oligochaete Se concentrations tested. The life-cycle exposure started with laboratory-cultured juvenile pupfish that were exposed to Se through sexual maturation and reproduction (150 days; F0 exposure). The Se exposure continued with eggs, larvae, and juveniles produced by Se-exposed parents (79 days; F1 exposure). Selenium exposure (water and diets), Se bioaccumulation (whole-body and eggs), and toxicity endpoints (juvenile and adult survival and growth; egg production and hatching

  11. Bioaccumulation of uranium from the contaminated water by Saccaromyces cerevisiae

    Czech Academy of Sciences Publication Activity Database

    Podracká, Eva; Popa, K.; Novák, Jaroslav; Tykva, Richard

    Praha : Czech Chemical Society, 2004, 6 KB. [International Conference LiquiSci 2004 on LSC in Radiochemistry and Environmental Sciences. Praha (CZ), 17.05.2004-19.05.2004] R&D Projects: GA AV ČR IBS4055014 Institutional research plan: CEZ:AV0Z4055905 Keywords : bioaccumulation * uranium * wastewater Subject RIV: CC - Organic Chemistry

  12. Optimizing fish sampling for fish–mercury bioaccumulation factors

    Science.gov (United States)

    Fish Bioaccumulation Factors (BAFs; ratios of mercury (Hg) in fish (Hgfish) and water (Hgwater)) are used to develop total maximum daily load and water quality criteria for Hg-impaired waters. Both applications require representative Hgfish estimates and, thus, are sensitive to s...

  13. Stereoselective bioaccumulation and metabolite formation of triadimefon in Tubifex tubifex.

    Science.gov (United States)

    Liu, Tiantian; Diao, Jinling; Di, Shanshan; Zhou, Zhiqiang

    2014-06-17

    Triadimefon, a chiral fungicide, could be metabolized to triadimenol which has two chiral centers. In this work, Tubifex tubifex was exposed to triadimefon through the aqueous and soil phase to explore the relative importance of the routes of uptake. Bioaccumulation of triadimefon in tubifex was detected in both treatments, and the kinetics of the accumulation processes were significantly different in these two experiments. In spiked water treatment, (S)-triadimefon was preferentially accumulated over the (R)-triadimefon, whereas the enantioselective bioaccumulation was not detected in the spiked soil microenvironment. Simultaneously, four stereoisomers of triadimenol were also found in the tubifex tissue. Although the amount of these stereoisomers were different from each other with relatively more accumulation of the most fungi-toxic stereoisomer (1S,2R), the abundance ratios in the two exposure treatments were similar at the same sampling, following the order (1S,2S) > (1R,2S) > (1R,2R) > (1S,2R). The bioaccumulation factor was calculated for parent compound triadimefon and metabolite enrichment factor for metabolite. The results showed that both uptake routes, epidermal contact in the aqueous phase and ingestion of solid particles in soil, were important to the bioaccumulation of the triadimefon and triadimenol in tubifex. PMID:24846121

  14. Mercury bioaccumulation and elimination by Xenomelanires brasiliensis - radioactive tracers technique

    International Nuclear Information System (INIS)

    The present work has as main objective to emphasized the importance of using radioactive tracers as well as to establish a methodology for the utilization of 203 Hg in the bioaccumulation study of mercury by X enomelanires brasiliensis. The exposure time was 168 hours. The bioaccumulation of mercury from the water as well as the elimination of the metal previously absorbed were determined by measuring the activity of 203 Hg, which was added to the water in the beginning of the experiments. The technique chosen is suitable to study the behavior of the stable mercury since the radioisotope used is an isotope of the same element and therefore presents the same chemical properties. The results obtained show that the absorption and elimination of mercury by Xenomelanires brasiliensis is slow, 168 hours being necessary for the elimination of 38 % of the previously absorbed mercury. The results are of main concern if it is considered that the literature about bioaccumulation of mercury by the Brazilian ichthyofauna is scarce. Furthermore the species Xenomelanires brasiliensis is part of the food chain and the results can be used in the evaluation of the potential risk of the mercury bioaccumulation by fishes of higher trophic levels and by men who are the final link of the food chain. (author)

  15. Modeling bioaccumulation in humans using poly-parameter linear free energy relationships (PPLFERS)

    International Nuclear Information System (INIS)

    Chemical partition coefficients between environmental media and biological tissues are a key component of bioaccumulation models. The single-parameter linear free energy relationships (spLFERs) commonly used for predicting partitioning are often derived using apolar chemicals and may not accurately capture polar chemicals. In this study, a poly-parameter LFER (ppLFER) based model of organic chemical bioaccumulation in humans is presented. Chemical partitioning was described by an air-body partition coefficient that was a volume weighted average of ppLFER based partition coefficients for the major organs and tissues constituting the human body. This model was compared to a spLFER model treating the body as a mixture of lipid (∼ octanol) and water. Although model agreement was good for hydrophobic chemicals (average difference 15% for log KOW > 4 and log KOA > 8), the ppLFER model predicted ∼ 90% lower body burdens for hydrophilic chemicals (log KOW < 0). This was mainly due to lower predictions of muscle and adipose tissue sorption capacity for these chemicals. A comparison of the predicted muscle and adipose tissue sorption capacities of hydrophilic chemicals with measurements indicated that the ppLFER and spLFER models' uncertainties were similar. Consequently, little benefit from the implementation of ppLFERs in this model was identified. - Research Highlights: →Implementation of ppLFERs resulted in on average 90% lower predicted body burdens. →Uncertainties in spLFER and ppLFER predictions were similar. →The benefit from implementation of ppLFERs in bioaccumulation models was limited.

  16. Accumulation and fluxes of mercury in terrestrial and aquatic food chains with special reference to Finland

    Directory of Open Access Journals (Sweden)

    Martin Lodenius

    2013-03-01

    Full Text Available Mercury is known for its biomagnification especially in aquatic food chains and for its toxic effects on different organisms including man. In Finland mercury has formerly been used in industry and agriculture and in addition many anthropogenic activities may increase the mercury levels in ecosystems. Phenyl mercury was widely used as slimicide in the pulp and paper industry in the 1950s and 1960s. In the chlor-alkali industry metallic mercury was used as catalyst at three plants. The most toxic form of mercury, methyl mercury, may be formed in soils, water, sediments and organisms. Many factors, including microbial activity, temperature, oxygen status etc., affect the methylation rate. In the lake ecosystem bioaccumulation of methyl mercury is very strong. In early 1980s there was a restriction of fishing concerning approximately 4000 km2 of lakes and sea areas because of mercury pollution. In aquatic systems we still find elevated concentrations near former emission sources. Long-range atmospheric transport and mechanical operations like ditching and water regulation may cause increased levels of mercury in the aquatic ecosystems. In the Finnish agriculture organic mercury compounds were used for seed dressing until 1992. Although the amounts used were substantial the concentrations in agricultural soils have remained rather low. In terrestrial food chains bioaccumulation is normally weak with low or moderate concentration at all ecosystem levels. Due to a weak uptake through roots terrestrial, vascular plants normally contain only small amounts of mercury. There is a bidirectional exchange of mercury between vegetation and atmosphere. Contrary to vascular plants, there is a very wide range of concentrations in fungi. Mercury may pose a threat to human health especially when accumulated in aquatic food chains.

  17. Toxicokinetic modeling challenges for aquatic nanotoxicology

    Directory of Open Access Journals (Sweden)

    Wei-Yu eChen

    2016-01-01

    Full Text Available Nanotoxicity has become of increasing concern since the rapid development of metal nanoparticles (NPs. Aquatic nanotoxicity depends on crucial qualitative and quantitative properties of nanomaterials that induce adverse effects on subcellular, tissue, and organ level. The dose-response effects of size-dependent metal NPs, however, are not well investigated in aquatic organisms. In order to determine the uptake and elimination rate constants for metal NPs in the metabolically active/ detoxified pool of tissues, a one-compartmental toxicokinetic model can be applied when subcellular partitioning of metal NPs data would be available. The present review is an attempt to describe the nano-characteristics of toxicokinetics and subcellular partitioning on aquatic organisms with the help of the mechanistic modeling for NP size-dependent physiochemical properties and parameters. Physiologically-based pharmacokinetic (PBPK models can provide an effective tool to estimate the time course of NP accumulation in target organs and is useful in quantitative risk assessments. NP accumulation in fish should take into account different effects of different NP sizes to better understand tissue accumulative capacities and dynamics. The size-dependent NP partition coefficient is a crucial parameter that influences tissue accumulation levels in PBPK modeling. Further research is needed to construct the effective systems-level oriented toxicokinetic model that can provide a useful tool to develop quantitatively the robustly approximate relations that convey a better insight into the impacts of environmental metal NPs on subcellular and tissue/organ responses in aquatic organisms.

  18. How reliable are field-derived biomagnification factors and trophic magnification factors as indicators of bioaccumulation potential? Conclusions from a case study on per- and polyfluoroalkyl substances.

    Science.gov (United States)

    Franklin, James

    2016-01-01

    This review examines the usefulness of the metrics BMF (biomagnification factor) and TMF (trophic magnification factor), derived from field measurements of the levels of contaminants in naturally occurring biota, for characterizing the bioaccumulation potential ("B") of chemicals. Trophic magnification factor and BMF values greater than 1.0 are often considered to be the most conclusive indicators of B status, and the TMF criterion has been referred to as the "gold standard" for B categorization. Although not wishing to dispute the theoretical primacy of field-derived BMFs and TMFs as B metrics, we make the case that, in practice, the study-to-study (and even within-study) variability of the results is so great that they are of very restricted usefulness for assessing B status, at least in the case of the per- and polyfluoroalkyl substances (PFASs), on which we focus here. This conclusion is based on an analysis of the results of 24 peer-reviewed studies reporting field-derived BMFs or TMFs for 14 PFASs, for which BMF values often range over several orders of magnitude from 1.0, sometimes even in the same study. For TMFs, the range is a factor of approximately 20 for the most intensely studied PFASs (perfluorooctanoic acid [PFOA] and perfluorooctanesulfonic acid [PFOS]). We analyze the possible causes for such variability: To some extent it results from the differing ways in which the metrics are expressed, but most of the scatter is likely attributable to such factors as nonachievement of the tacitly assumed steady-state conditions, uncertainties in the feeding ecology, the impact of metabolism of precursor compounds, and so forth. As more trustworthy alternatives to field-derived BMFs and TMFs, we suggest the implementation of dietary BMF studies performed under strictly controlled conditions on aquatic, terrestrial, and avian species, as well as the consideration of measured elimination half-lives, which have been demonstrated to be directly related to BMF

  19. Bioaccumulation patterns, element partitioning and biochemical performance of Venerupis corrugata from a low contaminated system.

    Science.gov (United States)

    Velez, Catia; Freitas, Rosa; Soares, Amadeu; Figueira, Etelvina

    2016-05-01

    The current study reports metals and arsenic (As) concentrations present in sediments and in the native clam Venerupis corrugata, collected in the Ria de Aveiro, one of the most important aquatic systems of the Portuguese coast with high biodiversity and socio-economic value. Because of its ecological importance in its habitat, and being one of the most exploited bivalve mollusks in Portugal, several biochemical biomarkers were evaluated in order to illustrate the species status when under environmental conditions. The concentration of metals and As in the sediments showed an increase of contamination among areas (areas A-E). The results proved higher bioaccumulation in organisms from the area less contaminated (area A, BAF > 1). The concentration of metals and As was predominant (63.4%) in the insoluble fraction of clams. The biochemical evaluation evidenced an increase of oxidative stress in organisms from the most (D and E) and the less (area A) contaminated areas, demonstrated by higher LPO levels, CAT, and GSHt activities at these areas and the increase of methalotionines (MTs) along the concentration gradient. This suggests a preventive mechanism in order to protect cells against pollutants (metals and As). © 2014 Wiley Periodicals, Inc. Environ Toxicol 31: 569-583, 2016. PMID:25410524

  20. The effect of natural organic matter on bioaccumulation and toxicity of chlorobenzenes to green algae.

    Science.gov (United States)

    Zhang, Shuai; Lin, Daohui; Wu, Fengchang

    2016-07-01

    The effect of natural organic matter (NOM) on toxicity and bioavailability of hydrophobic organic contaminants (HOCs) to aquatic organisms has been investigated with conflicting results and undefined mechanisms, and few studies have been conducted on volatile HOCs. In this study, six volatile chlorobenzenes (CBs) with 1-6 chlorine substitutions were investigated for their bioaccumulation in an acute toxicity to a green alga (Chlorella pyrenoidosa) in the presence/absence of Suwannee River NOM (SRNOM). The fluorescence quenching efficiency of SRNOM increased as the number of chlorine substitutions of CBs increased. SRNOM increased the cell-surface hydrophobicity of algae and decreased the release rates of algae-accumulated CBs, thus increasing the concentration factor (CF) and accumulation of the CBs in the algae. SRNOM increased the toxicity of monochlorobenzene and 1,2-dichlorobenzene, decreased the toxicity of pentachlorobenzene and hexachlorobenzene, and had no significant effect on the toxicity of 1,2,3-trichlorobenzene and 1,2,3,4-tetrachlorobenzene. Relationships between the 96h CF/IC50 (i.e., the CB concentration leading to a 50% algal growth reduction compared with the control) and physicochemical properties of CBs with/without SRNOM were established, providing reasonable explanations for the experimental results. These findings will help with the accurate assessment of ecological risks of organic pollutants in the presence of NOM. PMID:26989981

  1. Uranium bioaccumulation in a freshwater ecosystem: impact of feeding ecology.

    Science.gov (United States)

    Kraemer, Lisa D; Evans, Douglas

    2012-11-15

    The objectives of our study were: (1) to determine if there was significant uranium (U) bioaccumulation in a lake that had been historically affected by a U mine and (2) to use a combined approach of gut content examination and stable nitrogen and carbon isotope analysis to determine if U bioaccumulation in fish was linked to foodweb ecology. We collected three species of fish: smallmouth bass (Micropterus dolomieu), yellow perch (Perca flavescens) and bluegill (Lepomis macrochirus), in addition to several invertebrate species including freshwater bivalves (family: Sphaeriidae), dragonfly nymphs (order: Odonata), snails (class: Gastropoda) and zooplankton (family: Daphniidae). Results showed significant U bioaccumulation in the lake impacted by historical mining activities. Uranium accumulation was 2-3 orders of magnitude higher in invertebrates than in the fish species. Within fish, U was measured in operculum (bone), liver and muscle tissue and accumulation followed the order: operculum>liver>muscle. There was a negative relationship between stable nitrogen ratios ((15)N/(14)N) and U bioaccumulation, suggesting U biodilution in the foodweb. Uranium bioaccumulation in all three tissues (bone, liver, muscle) varied among fish species in a consistent manner and followed the order: bluegill>yellow perch>smallmouth bass. Collectively, gut content and stable isotope analysis suggests that invertebrate-consuming fish species (i.e. bluegill) have the highest U levels, while fish species that were mainly piscivores (i.e. smallmouth bass) have the lowest U levels. Our study highlights the importance of understanding the feeding ecology of fish when trying to predict U accumulation. PMID:22963859

  2. Exposures from aquatic pathways

    International Nuclear Information System (INIS)

    Methods for estimation aquatic pathways contribution to the total population exposure are discussed. Aquatic pathways are the major factor for radionuclides spreading from the Chernobyl Exclusion zone. An annual outflow of 90Sr and 137Cs comprised 10-20 TBq and 2-4 TBq respectively and the population exposed by this effluence constitutes almost 30 million people. The dynamic of doses from 90Sr and 'Cs, which Dnieper water have to delivered, is calculated. The special software has been developed to simulate the process of dose formation in the of diverse Dnieper regions. Regional peculiarities of municipal tap, fishing and irrigation are considered. Seventy-year prediction of dose structure and function of dose forming is performed. The exposure is estimated for 12 regions of the Dnieper basin and the Crimea. The maximal individual annual committed effective doses due to the use of water by ordinary members of the population in Kiev region from 90Sr and 137Cs in 1986 are 1.7*10-5 Sv and 2.7*10-5 Sv respectively. A commercial fisherman on Kiev reservoir in 1986 received 4.7*10-4 Sv and 5*10-3 Sv from 90Sr and 137Cs, respectively. The contributions to the collective cumulative (over 70 years) committed effective dose (CCCED70) of irrigation, municipal tap water and fish consumption for members of the population respectively are 18%, 43%, 39% in Kiev region, 8%, 25%, 67% in Poltava region, and 50%, 50%, 0% (consumption of Dnieper fish is absent) in the Crimea. The predicted contribution of the Strontium-90 to CCCED70 resulting from the use of water is 80%. The CCCED70 to the population of the Dnieper regions (32.5 million people) is 3000 person-Sv due to the use the Dnieper water

  3. Accumulation of selenium in aquatic systems downstream of a uranium mining operation in northern Saskatchewan, Canada

    International Nuclear Information System (INIS)

    The objective of this study was to investigate the accumulation of selenium in lakes downstream of a uranium mine operation in northern Saskatchewan, Canada. Selenium concentrations in sediment and biota were elevated in exposure areas even though water concentrations were low (<5 μg/L). The pattern (from smallest to largest) of selenium accumulation was: periphyton < plankton and filterer invertebrates < detritivore and predator invertebrates < small bodied (forage) fish and predatory fish. Biomagnification of selenium resulted in an approximately 1.5-6 fold increase in the selenium content between plankton, invertebrates and forage fish. However, no biomagnification was observed between forage fish and predatory fish. Selenium content in organisms from exposure areas exceeded the proposed 3-11 μg/g (dry weight) dietary toxicity threshold for fish, suggesting that the selenium released into these aquatic systems has the potential to bioaccumulate and reach levels that could impair fish reproduction. - Selenium bioaccumulation patterns in a north temperate, cold water aquatic ecosystem were similar to those reported from warm water systems

  4. A dynamic and mechanistic model of PCB bioaccumulation in the European hake ( Merluccius merluccius)

    Science.gov (United States)

    Bodiguel, Xavier; Maury, Olivier; Mellon-Duval, Capucine; Roupsard, François; Le Guellec, Anne-Marie; Loizeau, Véronique

    2009-08-01

    Bioaccumulation is difficult to document because responses differ among chemical compounds, with environmental conditions, and physiological processes characteristic of each species. We use a mechanistic model, based on the Dynamic Energy Budget (DEB) theory, to take into account this complexity and study factors impacting accumulation of organic pollutants in fish through ontogeny. The bioaccumulation model proposed is a comprehensive approach that relates evolution of hake PCB contamination to physiological information about the fish, such as diet, metabolism, reserve and reproduction status. The species studied is the European hake ( Merluccius merluccius, L. 1758). The model is applied to study the total concentration and the lipid normalised concentration of 4 PCB congeners in male and female hakes from the Gulf of Lions (NW Mediterranean sea) and the Bay of Biscay (NE Atlantic ocean). Outputs of the model compare consistently to measurements over the life span of fish. Simulation results clearly demonstrate the relative effects of food contamination, growth and reproduction on the PCB bioaccumulation in hake. The same species living in different habitats and exposed to different PCB prey concentrations exhibit marked difference in the body accumulation of PCBs. At the adult stage, female hakes have a lower PCB concentration compared to males for a given length. We successfully simulated these sex-specific PCB concentrations by considering two mechanisms: a higher energy allocation to growth for females and a transfer of PCBs from the female to its eggs when allocating lipids from reserve to eggs. Finally, by its mechanistic description of physiological processes, the model is relevant for other species and sets the stage for a mechanistic understanding of toxicity and ecological effects of organic contaminants in marine organisms.

  5. Interactions between zooplankton and crude oil: toxic effects and bioaccumulation of polycyclic aromatic hydrocarbons.

    Directory of Open Access Journals (Sweden)

    Rodrigo Almeda

    Full Text Available We conducted ship-, shore- and laboratory-based crude oil exposure experiments to investigate (1 the effects of crude oil (Louisiana light sweet oil on survival and bioaccumulation of polycyclic aromatic hydrocarbons (PAHs in mesozooplankton communities, (2 the lethal effects of dispersant (Corexit 9500A and dispersant-treated oil on mesozooplankton, (3 the influence of UVB radiation/sunlight exposure on the toxicity of dispersed crude oil to mesozooplankton, and (4 the role of marine protozoans on the sublethal effects of crude oil and in the bioaccumulation of PAHs in the copepod Acartia tonsa. Mortality of mesozooplankton increased with increasing oil concentration following a sigmoid model with a median lethal concentration of 32.4 µl L(-1 in 16 h. At the ratio of dispersant to oil commonly used in the treatment of oil spills (i.e. 1∶20, dispersant (0.25 µl L(-1 and dispersant-treated oil were 2.3 and 3.4 times more toxic, respectively, than crude oil alone (5 µl L(-1 to mesozooplankton. UVB radiation increased the lethal effects of dispersed crude oil in mesozooplankton communities by 35%. We observed selective bioaccumulation of five PAHs, fluoranthene, phenanthrene, pyrene, chrysene and benzo[b]fluoranthene in both mesozooplankton communities and in the copepod A. tonsa. The presence of the protozoan Oxyrrhis marina reduced sublethal effects of oil on A. tonsa and was related to lower accumulations of PAHs in tissues and fecal pellets, suggesting that protozoa may be important in mitigating the harmful effects of crude oil exposure in copepods and the transfer of PAHs to higher trophic levels. Overall, our results indicate that the negative impact of oil spills on mesozooplankton may be increased by the use of chemical dispersant and UV radiation, but attenuated by crude oil-microbial food webs interactions, and that both mesozooplankton and protozoans may play an important role in fate of PAHs in marine environments.

  6. Sediment toxicity and bioaccumulation of nano and micron-sized aluminum oxide.

    Science.gov (United States)

    Stanley, Jacob K; Coleman, Jessica G; Weiss, Charles A; Steevens, Jeffery A

    2010-02-01

    Nano-aluminum oxide (Al(2)O(3)) is used commercially in coatings and abrasives. Nano-Al(2)O(3) can also be generated through the oxidation of nano-aluminum in military propellants and energetics. The purpose of the present study was to assess toxicity and bioaccumulation of nano-Al(2)O(3) to a variety of sediment organisms (Tubifex tubifex, Hyalella azteca, Lumbriculus variegatus, and Corbicula fluminea). The bioaccumulation and toxicity of nano-Al(2)O(3) was compared with that of micron-sized Al(2)O(3) to investigate potential size-related effects. Results of the present study show species-specific differences in relative bioaccumulation of nano and micron-sized Al(2)O(3). Significant toxic effects (survival and growth) were observed in H. azteca testing, but only at high concentrations unlikely to be found in the environment. Nano-Al(2)O(3) was found to be more toxic than micron-sized Al(2)O(3) to H. azteca survival in a 14-d study in which organisms were in direct contact with a thin layer of 625 or 2,500 mg of Al(2)O(3) dispersed on the surface of either sediment or sand. A significant growth effect was also observed for nano but not micron-sized Al(2)O(3) at the highest treatment level tested (100 g/kg Al(2)O(3)) in a 10-d H. azteca bioassay in which Al(2)O(3) was homogenized with sediment. However, differences in measured sediment Al concentrations (micron-sized = 55.1 [+/-0.6] g/kg Al; nano-sized = 66.2 [+/-0.6] g/kg Al) in the nano and micron-sized Al(2)O(3) preclude direct comparison of the toxicity of these two treatments based on particle size. PMID:20821462

  7. Development of traceability system of aquatic foods supply chain based on RFID and EPC internet of things%基于RFID和EPC物联网的水产品供应链可追溯平台开发

    Institute of Scientific and Technical Information of China (English)

    颜波; 石平; 黄广文

    2013-01-01

      为实现对水产品流通过程的全程追溯,该文以供应链为视角,以罗非鱼为具体研究对象,立足消费者、企业和政府监管部门等三方,本着可跟踪、可追溯、可召回等基本目标,设计并开发了基于射频识别(radio frequency identification,RFID)和产品电子代码(electronic product code,EPC)物联网的,包含养殖管理系统、加工管理系统、配送管理系统、销售管理系统、查询监管系统5个子系统的水产品供应链可追溯平台,并着重对平台的对象名称服务(object name service,ONS)和EPC信息服务(electronic product code information service,EPCIS)进行了详细的设计与实现,利用该平台可以实现水产品从养殖、加工、配送到销售的全程跟踪与追溯。该研究可为水产品供应链可追溯系统模型与软件的开发提供参考。%Food safety has become an important global public-health issue, and aquatic safety issues were never suspended. With the exposure and the emergence of some aquatic products’ quality and safety issues in China, safety issues for the quality of aquatic products has become the bottleneck of the sustainable development of fisheries and aquatic products for import and export trade. In response to the risk in the aquatic foods supply chain and to improve services, the traceable platform of the aquatic foods supply chain is highly required. Quality problems of aquatic products could occur in every aspect of the aquatic foods supply chain, including breeding, processing, distribution, and sale. So not only policies, but also technical supports are needed to ensure the quality and safety of aquatic products and to bottom out the safety hazards. In response to these issues, this paper takes tilapia as the object of study and designs and develops a traceable platform of the aquatic foods supply chain based on Radio Frequency Identification (RFID) and Electronic Product Code

  8. CAM Photosynthesis in Submerged Aquatic Plants

    Science.gov (United States)

    Keeley, J.E.

    1998-01-01

    and terrestrial floras have evolved CAM photosynthesis. Aquatic Isoe??tes (Lycophyta) represent the oldest lineage of CAM plants and cladistic analysis supports an origin for CAM in seasonal wetlands, from which it has radiated into oligotrophic lakes and into terrestrial habitats. Temperate Zone terrestrial species share many characteristics with amphibious ancestors, which in their temporary terrestrial stage, produce functional stomata and switch from CAM to C3. Many lacustrine Isoe??tes have retained the phenotypic plasticity of amphibious species and can adapt to an aerial environment by development of stomata and switching to C3. However, in some neotropical alpine species, adaptations to the lacustrine environment are genetically fixed and these constitutive species fail to produce stomata or loose CAM when artificially maintained in an aerial environment. It is hypothesized that neotropical lacustrine species may be more ancient in origin and have given rise to terrestrial species, which have retained most of the characteristics of their aquatic ancestry, including astomatous leaves, CAM and sediment-based carbon nutrition.

  9. Development of aquatic life criteria for nitrobenzene in China

    International Nuclear Information System (INIS)

    Nitrobenzene is a toxic pollutant and was the main compound involved in the Songhuajiang accident in 2007, one of the largest water pollution accidents in China in the last decade. No aquatic life criteria for nitrobenzene have previously been proposed. In this study, published toxicity data of nitrobenzene to Chinese aquatic species were gathered, and six resident Chinese aquatic organisms were used in toxicity tests to supplement the existing toxicity data for nitrobenzene. Seventeen genuses mean acute values, three genuses mean chronic values to freshwater aquatic animals, and six genus toxicity values to aquatic plants were collected in total. A criterion maximum concentration of 0.018 mg/L and a criterion continuous concentration of 0.001 mg/L were developed based on these data, according to the U.S. Environmental Protection Agency guidelines. These criteria may be useful in the determination of water quality standard of nitrobenzene. - Highlights: ► China is embarking on development of national water quality criteria system. ► Nitrobenzene is a valuable case in development of water quality criteria in China. ► Several Chinese resident aquatic organisms were chosen to be tested. ► The aquatic life criteria for nitrobenzene were developed. - An acute criterion of 0.018 mg/L and a chronic criterion of 0.001 mg/L for nitrobenzene in China were developed according to the U.S. Environmental Protection Agency (USEPA) guidelines.

  10. Measuring Complexity in an Aquatic Ecosystem

    OpenAIRE

    Fernandez, Nelson; Gershenson, Carlos

    2013-01-01

    We apply formal measures of emergence, self-organization, homeostasis, autopoiesis and complexity to an aquatic ecosystem; in particular to the physiochemical component of an Arctic lake. These measures are based on information theory. Variables with an homogeneous distribution have higher values of emergence, while variables with a more heterogeneous distribution have a higher self-organization. Variables with a high complexity reflect a balance between change (emergence) and regularity/orde...

  11. Bioaccumulation of 226Ra by plants growing in fresh water ecosystem around the uranium industry at Jaduguda, India

    International Nuclear Information System (INIS)

    A field study has been conducted to evaluate the 226Ra bioaccumulation among aquatic plants growing in the stream/river adjoining the uranium mining and ore-processing complex at Jaduguda, India. Two types of plant group have been investigated namely free floating algal species submerged into water and plants rooted in stream and riverbed. The highest 226Ra activity concentration (9850 Bq kg-1) was found in filamentous algae growing in the residual water of tailings pond. The concentration ratios of 226Ra in filamentous algae (activity concentration of 226Ra in plant Bq kg-1 fresh weight/activity concentration of 226Ra in water Bq l-1) widely varied i.e. from 1.1 x 103 to 8.6 x 104. Other aquatic plants were also showing wide variability in the 226Ra activity concentration. The ln-transformed filamentous algae 226Ra activity concentration was significantly correlated with that of ln-transformed water concentration (r = 0.89, p 226Ra in stream/riverbed rooted plants and the substrate. For this group, correlation between 226Ra activity concentration and Mn, Fe, Cu concentration in plants were statistically significant.

  12. Bioaccumulation, subcellular, and molecular localization and damage to physiology and ultrastructure in Nymphoides peltata (Gmel.) O. Kuntze exposed to yttrium.

    Science.gov (United States)

    Fu, Yongyang; Li, Feifei; Xu, Ting; Cai, Sanjuan; Chu, Weiyue; Qiu, Han; Sha, Sha; Cheng, Guangyu; Xu, Qinsong

    2014-02-01

    Bioaccumulation, subcellular distribution, and acute toxicity of yttrium (Y) were evaluated in Nymphoides peltata. The effects of Y concentrations of 1-5 mg L(-1) applied for 4 days were assessed by measuring changes in photosynthetic pigments, nutrient contents, enzymatic and non-enzymatic antioxidants, and ultrastructure. The accumulation of Y in subcellular fractions decreased in the order of cell wall > organelle > soluble fraction. Much more Y was located in cellulose and pectin than in other biomacromolecules. The content of some mineral elements (Mg, Ca, Fe, Mn, and Mo) increased in N. peltata, but there was an opposite effect for P and K. Meanwhile, ascorbate, and catalase activity decreased significantly for all Y concentrations. In contrast, peroxidase activity was induced, while initial rises in superoxide dismutase activity and glutathione content were followed by subsequent declines. Morphological symptoms of senescence, such as chlorosis and damage to chloroplasts and mitochondria, were observed even at the lowest Y concentration. Pigment content decreased as the Y concentration rose and the calculated EC50 and MPC of Y for N. peltata were 2 and 0.2 mg L(-1) after 4 days of exposure, respectively. The results showed that exogenous Y was highly available in water and that its high concentration in water bodies might produce harmful effects on aquatic organisms. N. peltata is proposed as a biomonitor for the assessment of metal pollution in aquatic ecosystems. PMID:24170501

  13. The Removal of Cyanobacterial Hepatotoxin [Dha(7)] Microcystin-LR via Bioaccumulation in Water Lettuce (Pistia stratiotes L.).

    Science.gov (United States)

    Somdee, Theerasak; Thathong, Benjamad; Somdee, Anchana

    2016-03-01

    The removal of [Dha(7)] microcystin-LR through bioaccumulation in six aquatic plants was investigated. The aquatic plant water lettuce (Pistia stratiotes L.) exhibited the highest removal, with 13 % of the toxin remaining after a 7-day exposure period. Removal by P. stratiotes (with 0.5 and 1.0 mg/L of the toxin) was faster and greater in static systems than in continuous flow systems. In the static experiment, P. stratiotes roots accumulated [Dha(7)] microcystin-LR up to a concentration of 0.0088 ng/mg wet wt. plant material, whereas in the continuous flow system, the plant root tissue accumulated the toxin up to a concentration of 0.0041 ng/mg wet wt. plant material. Exposure to the toxin at concentrations of 0.5 and 1.0 mg/L induced changes in the development of P. stratiotes, including short, thin and rotted roots with decreased leaf counts after 3 days of exposure. PMID:26687499

  14. Aquatic models, genomics and chemical risk management.

    Science.gov (United States)

    Cheng, Keith C; Hinton, David E; Mattingly, Carolyn J; Planchart, Antonio

    2012-01-01

    The 5th Aquatic Animal Models for Human Disease meeting follows four previous meetings (Nairn et al., 2001; Schmale, 2004; Schmale et al., 2007; Hinton et al., 2009) in which advances in aquatic animal models for human disease research were reported, and community discussion of future direction was pursued. At this meeting, discussion at a workshop entitled Bioinformatics and Computational Biology with Web-based Resources (20 September 2010) led to an important conclusion: Aquatic model research using feral and experimental fish, in combination with web-based access to annotated anatomical atlases and toxicological databases, yields data that advance our understanding of human gene function, and can be used to facilitate environmental management and drug development. We propose here that the effects of genes and environment are best appreciated within an anatomical context - the specifically affected cells and organs in the whole animal. We envision the use of automated, whole-animal imaging at cellular resolution and computational morphometry facilitated by high-performance computing and automated entry into toxicological databases, as anchors for genetic and toxicological data, and as connectors between human and model system data. These principles should be applied to both laboratory and feral fish populations, which have been virtually irreplaceable sentinals for environmental contamination that results in human morbidity and mortality. We conclude that automation, database generation, and web-based accessibility, facilitated by genomic/transcriptomic data and high-performance and cloud computing, will potentiate the unique and potentially key roles that aquatic models play in advancing systems biology, drug development, and environmental risk management. PMID:21763781

  15. Tunison Laboratory of Aquatic Science

    Data.gov (United States)

    Federal Laboratory Consortium — Tunison Laboratory of Aquatic Science (TLAS), located in Cortland, New York, is a field station of the USGS Great Lakes Science Center (GLSC). TLAS was established...

  16. Role Models in Aquatic Occupations.

    Science.gov (United States)

    Brown, Mabel C.

    1982-01-01

    Provided for each of 12 minority group role models in aquatic occupations are job responsibilities, educational requirements, comments on a typical day at the job, salary range, and recommendations for students wishing to enter the field described. (JN)

  17. Bioaccumulation of Cs-137 and Co-57 by marine phytoplankton

    Energy Technology Data Exchange (ETDEWEB)

    Heldal, H.E. [Inst. of Marine Research, Bergen (Norway); Stupakoff, I.; Fisher, N.S. [State Univ. of New York, Marine Sciences Research Center, Stone Brook, NY (United States)

    1999-11-01

    Under controlled laboratory conditions we have examined the bioaccumulation of Cs-137 and Co-57 in three prymnesiophytes, the coccolithophorid Emiliania huxleyi and the non-calcareous species Isochrysis galbana and Phaeocystis globosa, and two diatoms Skeletonema costatum and Thalassiosira pseudonana. We measured uptake in growing and non-growing cells, and determined concentration factors on both volume and dry weight basis. For Co-57 uptake in non-growing cells, volume concentration factors (VCF) at equilibrium ranged from 0.2{sup *}10{sup 3} for Emiliana huxleyi to 4{sup *}10{sup 3} for the diatom Thalassiosira pseudonana. For Cs-137 uptake in non-growing cells the VCFs were close to zero. The results suggest that, in contrast to Co, the cycling and bioaccumulation in animals of Cs in marine systems is unlikely to be affected by primary producers. (au)

  18. On the Spirulina platensis - 60 Co2+ bioaccumulation system

    International Nuclear Information System (INIS)

    Radiochemical studies, IR spectrometry and electron microscopy studies have been carried out with the purpose of establishing the mechanisms involved in the bioaccumulation of 60 Co2+ in the blue alga Spirulina platensis. By measuring the radioactivity it was determined that, without ionic competition, an one week old culture of Spirulina platensis can retain up to 65% of the 60 Co2+ ions from a slightly radioactive solution. Sodium carbonate is involved in the mechanism of the bioaccumulation of these β + γ - radiocations (a phenomenon evidenced by IR spectrometry). Electronic microscopy studies point out that the compounds resulted from the interaction between the exopolysaccharides and 60 Co2+ disperse in the solution. Thus, even though the radiocobalt is completely blocked up in complex compounds, it is not completely retained on the surface and inside of the alga. (authors)

  19. Bioaccumulation of heavy metals by fimbrial designer adhesins

    DEFF Research Database (Denmark)

    Schembri, Mark; Kjærgaard, Kristian; Klemm, Per

    1999-01-01

    . By serial selection and enrichment procedures specific sequences were identified which conferred the ability on recombinant cells to adhere to various metal oxides (PbO2, CoO, MnO2, Cr2O3 ) The properties inherent in these sequences permitted the distinct recognition of metals to varying degrees...... for the bioaccumulation of heavy metals from the environment. (C) 1999 Federation of European Microbiological Societies. Published by Elsevier Science B.V. All rights reserved....

  20. Bioaccumulation of heavy metals by fimbrial designer adhesins

    DEFF Research Database (Denmark)

    Schembri, Mark; Kjærgaard, Kristian; Klemm, Per

    1999-01-01

    Naturally occurring adhesins bind to specific molecular targets in a lock-and-key fashion due to the composition of the binding domain of the adhesin. By introduction of random peptide libraries in a suitable surface exposed carrier protein it is possible to create and select designer adhesins wi...... for the bioaccumulation of heavy metals from the environment. (C) 1999 Federation of European Microbiological Societies. Published by Elsevier Science B.V. All rights reserved....

  1. Modeling bioaccumulation and biomagnification of nonylphenol and its ethoxylates in estuarine-marine food chains.

    Science.gov (United States)

    Korsman, John C; Schipper, Aafke M; de Vos, Martine G; van den Heuvel-Greve, Martine J; Vethaak, A Dick; de Voogt, Pim; Hendriks, A Jan

    2015-11-01

    There are several studies on bioaccumulation and biomagnification of nonylphenol (NP) and its ethoxylates (NPEOs), but their toxico-kinetic mechanisms remain unclear. In the present investigation, we explored the accumulation of NP and NPEOs in estuarine-marine food chains with a bioaccumulation model comprising five trophic levels. Using this model, we estimated uptake and elimination rate constants for NPEOs based on the organisms' weight and lipid content and the chemicals' Kow. Further, we calculated accumulation factors for NP and NPEOs, including biota-sediment accumulation factors (BSAF) and biomagnification factors (BMF), and compared these to independent field measurements collected in the Western Scheldt estuary in The Netherlands and field data reported in the literature. The estimated BSAF values for NP and total NPEOs were below 1 for all trophic levels. The estimated BMF values were around 1 for all trophic levels except for the highest level (carnivorous mammals and birds). For this trophic level, the estimated BMF value varied between 0.1 and 2.4, depending on the biotransformation capacity. For all trophic levels, except primary producers, the accumulation estimates that accounted for biotransformation of NPEOs into NP were closer to the field data than model estimates that did not include biotransformation, indicating that NP formation by biotransformation of NPEOs might occur in organisms. PMID:26026901

  2. Review of OPFRs in animals and humans: Absorption, bioaccumulation, metabolism, and internal exposure research.

    Science.gov (United States)

    Hou, Rui; Xu, Yiping; Wang, Zijian

    2016-06-01

    Due to their widespread use, organophosphate flame retardants (OPFRs) are commonly detected in various environmental matrices and have been identified as emerging contaminants. Considering the adverse effects of OPFRs, many researchers have paid their attention on the absorption, bioaccumulation, metabolism and internal exposure processes of OPFRs in animals and humans. In this article, we first review the diverse absorption routes of OPFRs by animals and humans (e.g., inhalation, ingestion, dermal absorption and gill absorption). Bioaccumulation and biomagnification potentials of OPFRs in different types of organisms and food webs are also summarized, based on quite limited available data and results. For metabolism, we review the Phase-I and Phase-II metabolic processes for each type of OPFRs (chlorinated OPFRs, alkyl-OPFRs and aryl-OPFRs) in the animals and humans, as well as toxicokinetic information and putative exposure biomarkers on OPFRs. Finally, we highlight gaps in our knowledge and critical directions for future internal exposure studies of OPFRs in animals and humans. PMID:27010170

  3. Zinc and copper bioaccumulation in fish from Laizhou Bay, the Bohai Sea

    Science.gov (United States)

    Liu, Jinhu; Cao, Liang; Huang, Wei; Zhang, Chuantao; Dou, Shuozeng

    2014-05-01

    Zinc (Zn) and copper (Cu) concentrations were determined in the tissues (muscle, stomach, liver, gills, skin, and gonads) of five commercial fish species (mullet Liza haematocheilus, flathead Platycephalus indicus, mackerel Scomberomorus niphonius, silver pomfret Pampus argenteus, and sea bass Lateolabrax japonicus) from Laizhou Bay in the Bohai Sea. Metal bioaccumulation was highest in the metabolically active tissues of the gonads and liver. Bioconcentration factors for Zn were higher in all tissues (gonads 44.35, stomach 7.73, gills 7.72, liver 5.61, skin 4.88, and muscle 1.63) than the corresponding values for Cu (gonads 3.50, stomach 3.00, gills 1.60, liver 5.43, skin 1.50, and muscle 0.93). Mackerel tissues accumulated metal to higher concentrations than did other fish species, but bioaccumulation levels were not significantly correlated with the trophic levels of the fish. Zn and Cu concentrations in the tissues were generally negatively correlated with fish length, except for a few tissues of sea bass. Risk assessment based on national and international permissible limits and provisional tolerances for weekly intake of Zn and Cu revealed that the concentrations of these two metals in muscle were relatively low and would not pose hazards to human health.

  4. Review on visual characteristic measurement research of aquatic animals based on computer vision%基于计算机视觉的水产动物视觉特征测量研究综述

    Institute of Scientific and Technical Information of China (English)

    段延娥; 李道亮; 李振波; 傅泽田

    2015-01-01

    In aquaculture, visual attribute information of aquatic animals is the basis of determining growth condition, feed conversion, medication dosage, harvesting date and grading for aquaculture farmers and managers. For improving the quality of aquatic products, the automatic and non-destructive measurement of visual attributes is becoming more and more important in modern fishery. For decades, computer vision, as a non-destructive, rapid, economic, consistent, reliable and objective inspection tool based on image analysis and processing with a variety of applications, has been gradually used in visual quality detection of aquatic animals. Quite a number of researches have highlighted its potential application in aquaculture. Underwater or overwater video/image measurement systems based on image processing technologies have been used widely for automatically counting and measuring fish in aquaculture, fisheries and conservation management. However, the application of computer vision technologies in aquaculture is very challenging because the inspected objects are sensitive, easily stressed and free to move in an environment in which lighting, visibility and stability are generally not controllable, and the camera must be operated underwater or in a wet environment. This review updates and summarizes recent representative researches and industrial solutions proposed in order to evaluate the general trends of computer vision and image processing in the visible range applied for inspection of aquatic animals. On the basis of introducing the mode of operation and the components of a computer vision detection system, this paper presents a review of the overseas and domestic research status in visual attribute measurement of aquatic animals according to inspection tasks that are common to almost all visual attribute detection systems of aquatic animal: measurement of size and shape parameters, estimation of mass and quantification of color, etc. Specially, the techniques

  5. Cadmium bioaccumulation factors for terrestrial species: Application of the mechanistic bioaccumulation model OMEGA to explain field data

    Energy Technology Data Exchange (ETDEWEB)

    Veltman, Karin [Department of Environmental Science, Radboud University Nijmegen, P.O. Box 9010, Toernooiveld 1, 6500 GL Nijmegen (Netherlands)], E-mail: K.Veltman@science.ru.nl; Huijbregts, Mark A.J.; Hendriks, A. Jan [Department of Environmental Science, Radboud University Nijmegen, P.O. Box 9010, Toernooiveld 1, 6500 GL Nijmegen (Netherlands)

    2008-12-01

    In environmental risk assessment of metals it is often assumed that the biota-to-soil accumulation factor (BSAF) is generic and constant. However, previous studies have shown that cadmium bioaccumulation factors of earthworms and small mammals are inversely related to total soil concentrations. Here, we provide an overview of cadmium accumulation in terrestrial species belonging to different trophic levels, including plants, snails and moles. Internal metal concentrations of these species are less than linearly related to total soil levels, which is in accordance with previously observed trends. The mechanistic bioaccumulation model OMEGA (Optimal Modeling for Ecotoxicological Applications) is used to provide a quantitative explanation of these trends in cadmium accumulation. Our results indicate that the model accurately predicts cadmium accumulation in earthworms, voles and shrews when accounting for geochemical availability of metals and saturable uptake kinetics.

  6. Bioaccumulation of Zn and Ag Nanoparticles in the Earthworms (Eisenia fetida)

    Science.gov (United States)

    Ha, Lee Seung; Sung-Dae, Kim; Yi, Yang Song; Byeong-Gweon, Lee

    2014-05-01

    Many studies are carried out to evaluate environmental effects of engineered nanoparticles (ENPs). Most of the previous studies primarily focused on the effects of nanoparticles into the aquatic environment and human. Model studies predict that ENPs released into environment would transferred primarily to the soil of the terrestrial environment. Despite this prediction, biogeochemical behavior of ENPs in soil environment as well as bioavailability of ENPs to soil-dwelling organisms such as earthworm, springtail, isopod and nematodes are poorly understood. The main goal of this study was to compare the bioaccumulation factor (BAFs) and subcellular partitioning of nanoparticles in the soil-dwelling earthworm (Eisenia fetida) from ENP (ZnO and Ag nanoparticles) or ionic metal (Zn2+, Ag+) contaminated soil. And the sequential extraction was also used to determine the mobility of metals in soil which could be used as to predict bioavailability and compare that with bioaccumulation factor. The radiotracer method was employed to trace the transfer of ENPs and ionic metal among different environmental media and animals. Radiolabeled 65ZnO, 110mAgNPs coated with PVP or citrate were synthesized in the laboratory and their chemical and biological behavior was compared to ionic 65Zn and 110mAg. The BAFs of Zn and Ag in the earthworms were determined after animals exposed to the contaminated soils. After the 7 days of elimination phase, subcellular partitioning of metals were also obtained. BAF for ZnO(0.06) was 31 times lower than that for Zn ion (1.86), suggesting that ZnO was less bioavailable than its ionic form from contaminated soil. On the other hands, BAFs for AgNPs coated with PVP (0.12) or with citrate (0.11) were comparable to those for Ag ion (0.17), indicating that Ag from contaminated soil was bioavailable in a similar rate regardless of chemical forms. The subcellular partitioning results showed that bioaccumulated Zn from Zn ion and ZnO contaminated soil were

  7. Biogeochemical analysis of ancient Pacific Cod bone suggests Hg bioaccumulation was linked to paleo sea level rise and climate change

    Directory of Open Access Journals (Sweden)

    Maribeth S. Murray

    2015-02-01

    Full Text Available Deglaciation at the end of the Pleistocene initiated major changes in ocean circulation and distribution. Within a brief geological time, large areas of land were inundated by sea-level rise and today global sea level is 120 m above its minimum stand during the last glacial maximum. This was the era of modern sea shelf formation; climate change caused coastal plain flooding and created broad continental shelves with innumerable consequences to marine and terrestrial ecosystems and human populations. In Alaska, the Bering Sea nearly doubled in size and stretches of coastline to the south were flooded, with regional variability in the timing and extent of submergence. Here we suggest how past climate change and coastal flooding are linked to mercury bioaccumulation that could have had profound impacts on past human populations and that, under conditions of continued climate warming, may have future impacts. Biogeochemical analysis of total mercury (tHg and 13C/15N ratios in the bone collagen of archaeologically recovered Pacific Cod (Gadus macrocephalus bone shows high levels of tHg during early/mid-Holocene. This pattern cannot be linked to anthropogenic activity or to food web trophic changes, but may result from natural phenomena such as increases in productivity, carbon supply and coastal flooding driven by glacial melting and sea-level rise. The coastal flooding could have led to increased methylation of Hg in newly submerged terrestrial land and vegetation. Methylmercury is bioaccumulated through aquatic food webs with attendant consequences for the health of fish and their consumers, including people. This is the first study of tHg levels in a marine species from the Gulf of Alaska to provide a time series spanning nearly the entire Holocene and we propose that past coastal flooding resulting from climate change had the potential to input significant quantities of Hg into marine food webs and subsequently to human consumers.

  8. Modeling (137)Cs bioaccumulation in the salmon-resident killer whale food web of the Northeastern Pacific following the Fukushima Nuclear Accident.

    Science.gov (United States)

    Alava, Juan José; Gobas, Frank A P C

    2016-02-15

    To track the long term bioaccumulation of (137)Cs in marine organisms off the Pacific Northwest coast of Canada, we developed a time dependent bioaccumulation model for (137)Cs in a marine mammalian food web that included fish-eating resident killer whales. The model outcomes show that (137)Cs can be expected to gradually bioaccumulate in the food web over time as demonstrated by the increase of the apparent trophic magnification factor of (137)Cs, ranging from 0.76 after 1 month of exposure to 2.0 following 30 years of exposure. (137)Cs bioaccumulation is driven by relatively rapid dietary uptake rates, moderate depuration rates in lower trophic level organisms and slow elimination rates in high trophic level organisms. Model estimates of the (137)Cs activity in species of the food web, based on current measurements and forecasts of (137)Cs activities in oceanic waters and sediments off the Canadian Pacific Northwest, indicate that the long term (137)Cs activities in fish species including Pacific herring, wild Pacific salmon, sablefish and halibut will remain well below the current (137)Cs-Canada Action Level for consumption (1000 Bq/kg) following a nuclear emergency. Killer whales and Pacific salmon are expected to exhibit the largest long term (137)Cs activities and may be good sentinels for monitoring (137)Cs in the region. Assessment of the long term consequences of (137)Cs releases from the Fukushima aftermath should consider the extent of ecological magnification in addition to ocean dilution. PMID:26657356

  9. Tritium in the aquatic environment

    International Nuclear Information System (INIS)

    Tritium is of environmental importance because it is released from nuclear facilities in relatively large quantities and because it has a half life of 12.26 y. Most of the tritium released into the atmosphere eventually reaches the aqueous environment, where it is rapidly taken up by aquatic organisms. This paper reviews the current literature on tritium in the aquatic environment. Conclusions from the review, which covered studies of algae, aquatic macrophytes, invertebrates, fish, and the food chain, were that aquatic organisms incorporate tritium into their tissue-free water very rapidly and reach concentrations near those of the external medium. The rate at which tritium from tritiated water is incorporated into the organic matter of cells is slower than the rate of its incorporation into the tissue-free water. If organisms consume tritiated food, incorporation of tritium into the organic matter is faster, and a higher tritium concentration is reached than when the organisms are exposed to only tritiated water alone. Incorporation of tritium bound to molecules into the organic matter depends on the chemical form of the ''carrier'' molecule. No evidence was found that biomagnification of tritium occurs at higher trophic levels. Radiation doses from tritium releases to large populations of humans will most likely come from the consumption of contaminated water rather than contaminated aquatic food products

  10. Tritium in the aquatic environment

    Energy Technology Data Exchange (ETDEWEB)

    Blaylock, B.G.; Hoffman, F.O.; Frank, M.L.

    1986-02-01

    Tritium is of environmental importance because it is released from nuclear facilities in relatively large quantities and because it has a half life of 12.26 y. Most of the tritium released into the atmosphere eventually reaches the aqueous environment, where it is rapidly taken up by aquatic organisms. This paper reviews the current literature on tritium in the aquatic environment. Conclusions from the review, which covered studies of algae, aquatic macrophytes, invertebrates, fish, and the food chain, were that aquatic organisms incorporate tritium into their tissue-free water very rapidly and reach concentrations near those of the external medium. The rate at which tritium from tritiated water is incorporated into the organic matter of cells is slower than the rate of its incorporation into the tissue-free water. If organisms consume tritiated food, incorporation of tritium into the organic matter is faster, and a higher tritium concentration is reached than when the organisms are exposed to only tritiated water alone. Incorporation of tritium bound to molecules into the organic matter depends on the chemical form of the ''carrier'' molecule. No evidence was found that biomagnification of tritium occurs at higher trophic levels. Radiation doses from tritium releases to large populations of humans will most likely come from the consumption of contaminated water rather than contaminated aquatic food products.

  11. Tritium in the aquatic environment

    International Nuclear Information System (INIS)

    Most of the tritium released from nuclear facilities into the atmosphere eventually reaches the aqueous environment where it is rapidly taken up by aquatic organisms. This paper reviews the current literature on tritium in the aquatic environment. Conclusions from the review, which covered algae, aquatic plants, invertebrates, fish, and food chain studies, were that aquatic organisms incorporate tritium into their tissue free water very rapidly and reach concentrations near that of the external medium. Incorporation of tritium from triated water into the organic matter of cells is at a slower rate than incorporation into the tissue free water. If organisms consume tritiated food, incorporation of tritium into the organic matter is faster and a higher tritium concentration is reached than when the organisms are exposed to only tritiated water. Incorporation of tritium bound to molecules into the organic matter depends on the chemical form of the 'carrier' molecule. No evidence was found that biomagnification of tritium occurs at higher tropic levels. Radiation doses to large populations of humans from tritium releases will most likely be from the consumption of contaminated water rather than contaminated aquatic food products. (author)

  12. Public lakes, private lakeshore: modeling protection of native aquatic plants.

    Science.gov (United States)

    Schroeder, Susan A; Fulton, David C

    2013-07-01

    Protection of native aquatic plants is an important proenvironmental behavior, because plant loss coupled with nutrient loading can produce changes in lake ecosystems. Removal of aquatic plants by lakeshore property owners is a diffuse behavior that may lead to cumulative impacts on lake ecosystems. This class of behavior is challenging to manage because collective impacts are not obvious to the actors. This paper distinguishes positive and negative beliefs about aquatic plants, in models derived from norm activation theory (Schwartz, Adv Exp Soc Psychol 10:221-279, 1977) and the theory of reasoned action (Fishbein and Ajzen, Belief, attitude, intention, and behavior: an introduction to theory and research, Addison-Wesley, Boston 1975), to examine protection of native aquatic plants by Minnesota lakeshore property owners. We clarify how positive and negative evaluations of native aquatic plants affect protection or removal of these plants. Results are based on a mail survey (n = 3,115). Results suggest that positive evaluations of aquatic plants (i.e., as valuable to lake ecology) may not connect with the global attitudes and behavioral intentions that direct plant protection or removal. Lakeshore property owners' behavior related to aquatic plants may be driven more by tangible personal benefits derived from accessible, carefully managed lakeshore than intentional action taken to sustain lake ecosystems. The limited connection of positive evaluations of aquatic plants to global attitudes and behavioral intentions may reflect either lack of knowledge of what actions are needed to protect lake health and/or unwillingness to lose perceived benefits derived from lakeshore property. PMID:23609308

  13. Comparative radiological and conventional pollution impact recording in the aquatic environment by use of a cytogenetic tool

    International Nuclear Information System (INIS)

    Complete text of publication follows. The effects of ionizing radiation can be viewed at all levels of biological organization, ranging from the molecular to ecosystem level. Effects on organisms can be traced to molecular and cellular responses, as radiation impact does not necessarily lead to observable effects on specimens, population or ecosystem. This is because the measurable attributes of the levels differ, despite the fact that all levels are interrelated. The cytogenetic effects of radioactive and conventional pollution as they are recorded in organisms of natural ecosystem and the apportionment of causes to each kind of pollutants is a relative new field in radioecological research. There is limited evidence on field observations in international literature; even there is a lot of evidence in concerning laboratory experiments. The study of in situ effects of ionizing radiation in the cytogenetic level is the key for determining the radiological status of the ecosystem considered, based on the relation: concentration of pollutant in abiotic components and/or bioaccumulation → dose rate → effect on organism at the cellular level. Several field studies on the comparative effects of ionizing radiation and chemical pollution in some selected areas in the Mediterranean, the Black Sea and in inland waters combined with laboratory experiments have shown a conceptual model of response of organisms, which is unique for ionizing radiation and chemical pollution. This model is based on the effects of different pollutants on aquatic biota (Crustacea, Polychaeta, Oligochatea, Fish embryos etc), as they have been recorded at the cellular level. The environmental assessment of an aquatic ecosystem with regards to ionizing radiation in comparison to effects of chemical pollutants is based on determining the distribution frequency of chromosomal aberrations induced in cells of natural populations. Cytogenetic methods are used in pollution research because of their high

  14. Nanomaterials in the aquatic environment: A European Union-United States perspective on the status of ecotoxicity testing, research priorities, and challenges ahead.

    Science.gov (United States)

    Selck, Henriette; Handy, Richard D; Fernandes, Teresa F; Klaine, Stephen J; Petersen, Elijah J

    2016-05-01

    The European Union-United States Communities of Research were established in 2012 to provide a platform for scientists to develop a "shared repertoire of protocols and methods to overcome nanotechnology environmental health and safety (nanoEHS) research gaps and barriers" (www.us-eu.org/). Based on work within the Ecotoxicology Community of Research (2012-2015) the present Focus article provides an overview of the state of the art of nanomaterials (NMs) in the aquatic environment by addressing different research questions, with a focus on ecotoxicological test systems and the challenges faced when assessing NM hazards (e.g., uptake routes, bioaccumulation, toxicity, test protocols, and model organisms). The authors' recommendation is to place particular importance on studying the ecological effects of aged/weathered NMs, as-manufactured NMs, and NMs released from consumer products in addressing the following overarching research topics: 1) NM characterization and quantification in environmental and biological matrices; 2) NM transformation in the environment and consequences for bioavailability and toxicity; 3) alternative methods to assess exposure; 4) influence of exposure scenarios on bioavailability and toxicity; 5) development of more environmentally realistic bioassays; and 6) uptake, internal distribution, and depuration of NMs. Research addressing these key topics will reduce uncertainty in ecological risk assessment and support the sustainable development of nanotechnology. Environ Toxicol Chem 2016;35:1055-1067. © 2016 SETAC. PMID:27089437

  15. LC-MS/MS method development for quantitative analysis of acetaminophen uptake by the aquatic fungus Mucor hiemalis.

    Science.gov (United States)

    Esterhuizen-Londt, Maranda; Schwartz, Katrin; Balsano, Evelyn; Kühn, Sandra; Pflugmacher, Stephan

    2016-06-01

    Acetaminophen is a pharmaceutical, frequently found in surface water as a contaminant. Bioremediation, in particular, mycoremediation of acetaminophen is a method to remove this compound from waters. Owing to the lack of quantitative analytical method for acetaminophen in aquatic organisms, the present study aimed to develop a method for the determination of acetaminophen using LC-MS/MS in the aquatic fungus Mucor hiemalis. The method was then applied to evaluate the uptake of acetaminophen by M. hiemalis, cultured in pellet morphology. The method was robust, sensitive and reproducible with a lower limit of quantification of 5pg acetaminophen on column. It was found that M. hiemalis internalize the pharmaceutical, and bioaccumulate it with time. Therefore, M. hiemalis was deemed a suitable candidate for further studies to elucidate its pharmaceutical tolerance and the longevity in mycoremediation applications. PMID:26950900

  16. Production in aquatic macrophyte communities

    DEFF Research Database (Denmark)

    Binzer, Thomas; Sand-Jensen, Kaj

    2002-01-01

    combined a simple mechanistic model and empirical measurements on artificially structured macroalgal communities (Ulva lactuca) with varying thallus absorptance and community density. Predicted and measured values corresponded closely and revealed that gross production in high-light environments...... that inefficient distribution of light can account for the low community production rates in aquatic habitats and the depth distribution of form-functional groups of macroalgae with different canopy structure.......-dimensional structure because of the strong drag and shear forces of moving water. This difference in canopy structure has been suggested to account for the three- to fivefold higher gross production rates in terrestrial than aquatic communities. To evaluate the effect of community structure in aquatic habitats, we...

  17. Bioaccumulation of organohalogenated compounds in sharks and rays from the southeastern USA.

    Science.gov (United States)

    Weijs, Liesbeth; Briels, Nathalie; Adams, Douglas H; Lepoint, Gilles; Das, Krishna; Blust, Ronny; Covaci, Adrian

    2015-02-01

    Organohalogenated compounds are widespread in the marine environment and can be a serious threat to organisms in all levels of aquatic food webs, including elasmobranch species. Information about the concentrations of POPs (persistent organic pollutants) and of MeO-PBDEs (methoxylated polybrominated diphenyl ethers) in elasmobranchs is scarce and potential toxic effects are poorly understood. The aims of the present study were therefore to investigate the occurrence of multiple POP classes (PCBs, PBDEs, DDXs, HCB, CHLs) and of MeO-PBDEs in various elasmobranch species from different trophic levels in estuarine and marine waters of the southeastern United States. Overall, levels and patterns of PCBs, PBDEs, DDXs, HCB, CHLs and of MeO-PBDEs varied according to the species, maturity stage, gender and habitat type. The lowest levels of POPs were found in Atlantic stingrays and the highest levels were found in bull sharks. As both species are respectively near the bottom and at top of the trophic web, with juvenile bull sharks frequently feeding on Atlantic stingrays, these findings further suggest a bioaccumulation and biomagnification process with trophic position. MeO-PBDEs were not detected in Atlantic stingrays, but were found in all shark species. HCB was not found in Atlantic stingrays, bonnetheads or lemon sharks, but was detected in the majority of bull sharks examined. Comparison with previous studies suggests that Atlantic stingrays may be experiencing toxic effects of PCBs and DDXs on their immune system. However, the effect of these compounds on the health of shark species remains unclear. PMID:25569844

  18. Mercury Bioaccumulation in the Brazilian Amazonian Tucunares (Cichla sp., Cichlidae, Perciformes

    Directory of Open Access Journals (Sweden)

    Maria Josefina Reyna Kurtz

    2008-08-01

    Full Text Available There are emissions of mercury to the atmosphere, soil and rivers of the Brazilian Amazon stem from many sources. Once in the atmosphere, the metal is oxidized and immediately deposited. In the water, the transformation to methylmercury takes place mostly by the action of microorganisms. The formation of methylmercury increases the dispersion and bioavailability of the element in the aquatic environment. Methylmercury can be assimilated by plankton and enters the food chain. The concentration of mercury increases further up in the trophic levels of the chain and reaches the highest values in carnivorous fishes like tucunare. Therefore, mercury emissions cause the contamination of natural resources and increase risks to the health of regular fish consumers. The objective of this work was to study the bioaccumulation of mercury in tucunares (Cichla sp., top predators of the food chain. The fishes were collected at two locations representative of the Amazonian fluvial ecosystem, in the state of Pará, Brazil, in 1992 and 2001. One location is near a former informal gold mining area. The other is far from the mining area and is considered pristine. Average values of total mercury concentration and accumulation rates for four different collection groups were compared and discussed. Tucunares collected in 2001 presented higher mercury contents and accumulated mercury faster than tucunares collected in 1992 notwithstanding the decline of mining activities in this period. The aggravation of the mercury contamination with time not only in an area where informal gold mining was practiced but also far from this area is confirmed.

  19. The bioaccumulation of nonyphenol and its adverse effect on the liver of rainbow trout (Onchorynchus mykiss)

    International Nuclear Information System (INIS)

    Alkylphenol polyethoxylates (APEs) are widely used as nonionic surfactants. Nonylphenol (NP), one of the derivatives of APEs, has been found in the aquatic environment in ranges from nanograms per liter to milligrams per liter. In this study, juvenile rainbow trout were exposed to 0 (control), 66, 220, or 660 μg NP/L for up to 28 days. Fish remained healthy under NP exposures of 0, 66, and 220 μg/L for the length of the experiment. All fish died after 4 days of exposure to 660 μg NP/L. Time-dependent NP bioaccumulation was detected in the tissues of fish exposed to 220 μg NP/L (P<0.05) and histopathological changes were observed in the livers of fish exposed to 220 μg NP/L. Furthermore, an increase in the activity of glutathione-S-transferase (GST) was found in the liver of fish exposed to 220 μg NP/L for 1 week (P<0.05). There was an increase in GST activity in the liver of fish exposed to 66 μg NP/L but it did not occur before 2 weeks of exposure to NP. The GST activity then decreased in a time-dependent manner in treatment groups, and this decrease was lower in the livers of fish treated with 66 and 220 μg NP/L than in control fish after 3 weeks of exposure (P<0.05). These results indicated that sublethal doses of NP were accumulating in the bodies of the fish and causing histopathological and biochemical changes in the livers of rainbow trout

  20. Bioaccumulation kinetics of polybrominated diphenyl ethers from estuarine sediments to the marine polychaete, Nereis virens.

    Science.gov (United States)

    Klosterhaus, Susan L; Dreis, Erin; Baker, Joel E

    2011-05-01

    Polybrominated diphenyl ethers (PBDEs) are flame-retardant chemicals that have become ubiquitous environmental contaminants. Polybrominated diphenyl ether no-uptake rates from estuarine or marine sediments to deposit-feeding organisms have not yet been reported. In the present study, the marine polychaete worm Nereis virens was exposed to field-contaminated and spiked sediments containing the penta- and deca-BDE commercial mixtures in a 28-d experiment to characterize the relative bioavailability of PBDE congeners from estuarine sediments. A time series sampling regimen was conducted to estimate uptake rate constants. In both field-collected and laboratory-spiked sediment exposures, worms selectively accumulated congeners in the penta-BDE mixture over BDE 209 and other components of the deca-BDE mixture, supporting the prevalence of these congeners in higher trophic level species. Brominated diphenyl ether 209 was not bioavailable to N. virens from field sediment and was only minimally detected in worms exposed to spiked sediments in which bioavailability was maximized. Chemical hydrophobicity was not a good predictor of bioavailability for congeners in the penta-BDE mixture. Direct comparison of bioavailability from the spiked and field sediments for the predominant congeners in the penta-BDE mixture was confounded by the considerable difference in exposure concentration between treatments. Biota-sediment accumulation factors (BSAFs) for N. virens after 28 d of exposure to the field sediment were lower than the BSAFs for Nereis succinea collected from the field site, indicating that 28-d bioaccumulation tests using N. virens may underestimate the in situ concentration of PBDEs in deposit-feeding species. The bioavailability of PBDEs to N. virens indicates that these chemicals can be remobilized from estuarine sediments and transferred to aquatic food webs. PMID:21337608

  1. Modeling bioaccumulation and biomagnification of nonylphenol and its ethoxylates in estuarine-marine food chains

    NARCIS (Netherlands)

    Korsman, J.C.; Schipper, A.M.; Vos, de M.G.; Heuvel-Greve, van den M.J.; Vethaak, A.D.; Voogt, de Pim; Hendriks, A.J.

    2015-01-01

    There are several studies on bioaccumulation and biomagnification of nonylphenol (NP) and its ethoxylates (NPEOs), but their toxico-kinetic mechanisms remain unclear. In the present investigation, we explored the accumulation of NP and NPEOs in estuarine-marine food chains with a bioaccumulation

  2. Modeling bioaccumulation and biomagnification of nonylphenol and its ethoxylates in estuarine-marine food chains

    NARCIS (Netherlands)

    J.C. Korsman; A.M. Schipper; M.G. de Vos; M.J. van den Heuvel-Greve; A.D. Vethaak; P. de Voogt; A.J. Hendriks

    2015-01-01

    There are several studies on bioaccumulation and biomagnification of nonylphenol (NP) and its ethoxylates (NPEOs), but their toxico-kinetic mechanisms remain unclear. In the present investigation, we explored the accumulation of NP and NPEOs in estuarine-marine food chains with a bioaccumulation mod

  3. Bioaccumulation of 226Ra in the plants growing near uranium facilities

    Czech Academy of Sciences Publication Activity Database

    Tykva, Richard; Podracká, Eva

    Warsaw : Warsaw University, 2005. s. 13. [Conference: Mechanism of radionuclides and heavy metals bioaccumulation and their relevance for biomonitoring . 07.10.2005-08.10.2005, Warsaw] Institutional research plan: CEZ:AV0Z40550506 Keywords : bioaccumulation * 226Ra in soil * uranium facilities Subject RIV: DL - Nuclear Waste, Radioactive Pollution ; Quality

  4. Experimental results on bioaccumulation of metals and organic contaminants from marine sediments.

    Science.gov (United States)

    Ruus, Anders; Schaanning, Morten; Oxnevad, Sigurd; Hylland, Ketil

    2005-04-30

    A test-system for the assessment of bioavailability and bioaccumulation of metals and organic contaminants in marine benthic organisms is described and results from studies where this system has been applied are assessed. Sediments tested were polluted harbour sediment (from Norway), and clean sediments spikes with metal containing weight materials for drilling muds. Contaminants that may bioaccumulate under relevant conditions are indicated. The test-system uses two species of ecological relevance (Nereis diversicolor and Hinia reticulata). Interspecies differences in bioaccumulation were found for several compounds, which show the importance of using species with different modes of living in such tests. Compared to other PAHs, pyrene was found to bioaccumulate to a high degree (BioAccumulation Ratio, BAR=213.5>sediment concentration ratio, SCR=97.4; bioaccumulation factor, organism dw. conc. to sediment dw. conc., BAF=1.02), which shows that extrapolating bioaccumulation results between different substances is difficult. When assessing bioavailability of specific compounds, it is most adequate to perform direct measurements on exposed organisms, such as the experiments described here. The high bioaccumulation of compounds such as pyrene and nickel may in some cases be attributed to manipulation of the sediments and (for pyrene) lack of subsequent aging, thereby overestimating bioavailability. PMID:15820107

  5. Estimation of the bioaccumulation potential of a nonchlorinated bisphenol and an ionogenic xanthene dye to Eisenia andrei in field-collected soils, in conjunction with predictive in silico profiling.

    Science.gov (United States)

    Princz, Juliska; Bonnell, Mark; Ritchie, Ellyn; Velicogna, Jessica; Robidoux, Pierre-Yves; Scroggins, Rick

    2014-02-01

    In silico-based model predictions, originating from structural and mechanistic (e.g., transport, bioavailability, reactivity, and binding potential) profiling, were compared against laboratory-derived data to estimate the bioaccumulation potential in earthworms of 2 organic substances (1 neutral, 1 ionogenic) known to primarily partition to soil. Two compounds representative of specific classes of chemicals were evaluated: a nonchlorinated bisphenol containing an -OH group (4,4′-methylenebis[2,6-di-tert-butylphenol] [Binox]), and an ionogenic xanthene dye (2′,4′,5′,7′-tetrabromo-4,5,6,7-tetrachloro-3′,6′-dihydroxy-, disodium salt [Phloxine B]). Soil bioaccumulation studies were conducted using Eisenia andrei and 2 field-collected soils (a clay loam and a sandy soil). In general, the in silico structural and mechanistic profiling was consistent with the observed soil bioaccumulation tests. Binox did not bioaccumulate to a significant extent in E. andrei in either soil type; however, Phloxine B not only accumulated within tissue, but was not depurated from the earthworms during the course of the elimination phase. Structural and mechanistic profiling demonstrated the binding and reactivity potential of Phloxine B; this would not be accounted for using traditional bioaccumulation metrics, which are founded on passive-based diffusion mechanisms. This illustrates the importance of profiling for reactive ionogenic substances; even limited bioavailability combined with reactivity can result in exposures to a hazardous substance not predictable by traditional in silico modeling methods. PMID:24173968

  6. Bioaccumulation of Legacy and Emerging Organochlorine Contaminants in Lumbriculus variegatus.

    Science.gov (United States)

    Dang, Viet D; Kroll, Kevin J; Supowit, Samuel D; Halden, Rolf U; Denslow, Nancy D

    2016-07-01

    Freshwater sediment-dwelling Lumbriculus variegatus is known to serve as a vector for the transfer of contaminants from sediments to higher trophic level organisms, but limited data exist on the bioaccumulation of chemicals associated with sediments containing high total organic carbon (TOC). In the current study, sediments from the north shore area of Lake Apopka (Florida, USA), containing very high TOC [39 % (w/w)], were spiked with four chemicals-p,p'-dichlorordiphenyldichloroethylene (p,p'-DDE), dieldrin, fipronil, and triclosan-individually or in a mixture of the four and then used for bioaccumulation studies. Tissue concentrations of chemicals in L. variegatus were measured at 2, 7, 14, 21, and 28 days of exposure, and the bioaccumulation potential was evaluated using biosediment accumulation factors [BSAF (goc/glipid)]. Increase in total body burdens of all four chemicals in L. variegatus was rapid at day 2 and reached a steady-state level after 7 days in both single and mixture experiments. Tissue concentrations of fipronil peaked after 2 days and then decreased by 70 % in sediment experiments suggesting that in addition to the degradation of fipronil that occurred in the sediment, L. variegatus may also be able to metabolize fipronil. The calculated 28-day BSAF values varied among the chemicals and increased in the order fipronil (1.1) < triclosan (1.4) < dieldrin (21.8) < p,p'-DDE (49.8) in correspondence with the increasing degree of their hydrophobicity. The relatively high BSAF values for p,p'-DDE and dieldrin probably resulted from lower-than-expected sorption of chemicals to sediment organic matter either due to the nature of the plant-derived organic matter, as a result of the relatively short equilibration time among the various compartments, or due to ingestion of sediment particles by the worms. PMID:26833202

  7. Arsenic bioaccumulation in a marine juvenile fish Terapon jarbua

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Wei [State Key Laboratory of Oceanography in the Tropics, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301 (China); Graduate School, Chinese Academy of Sciences, Beijing 100049 (China); Huang Liangmin [State Key Laboratory of Oceanography in the Tropics, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301 (China); Wang Wenxiong, E-mail: wwang@ust.hk [Division of Life Science, HKUST, Clear Water Bay, Kowloon (Hong Kong)

    2011-10-15

    Highlights: Radiotracer technique was used to quantify the biokinetics of As(V) in a marine fish. As(V) had a low bioavailability to Terapon jarbua. Dietary assimilation of As was only 3.1-7.4% for fish fed with different preys. Dietary uptake could be the primary route for As bioaccumulation in fish. - Abstract: Arsenic (As) is a ubiquitous toxic metalloid that is causing widespread public concern. Recent measurements have indicated that some marine fish in China might be seriously contaminated with As. Yet the biokinetics and bioaccumulation pathway of As in fish remain little understood. In this study, we employed a radiotracer technique to quantify the dissolved uptake, dietary assimilation and subsequent efflux of As(V) in a marine predatory fish, Terapon jarbua. The dissolved uptake of As showed a linear pattern over a range of dissolved concentrations from 0.5 to 50 {mu}g L{sup -1}, with a corresponding uptake rate constant of 0.0015 L g{sup -1} d{sup -1}. The assimilation efficiencies (AEs) of dietary As were only 3.1-7.4% for fish fed with copepods, clams, prey fish, or artificial diets, and were much lower than the As that entered the trophically available metal fraction in the prey. The dietary AEs were independent of the As(V) concentrations in the artificial diets. The efflux rate constant of As in fish following the dietary exposure was 0.03 d{sup -1}. Modeling calculations showed that dietary uptake could be the primary route for As bioaccumulation in fish, and the corresponding contributions of waterborne and dietary uptakes were related to the bioconcentration factor (BCF) of the prey and the ingestion rate of fish. This study demonstrates that As(V) has a low bioavailability to T. jarbua.

  8. Arsenic bioaccumulation in a marine juvenile fish Terapon jarbua

    International Nuclear Information System (INIS)

    Highlights: Radiotracer technique was used to quantify the biokinetics of As(V) in a marine fish. As(V) had a low bioavailability to Terapon jarbua. Dietary assimilation of As was only 3.1–7.4% for fish fed with different preys. Dietary uptake could be the primary route for As bioaccumulation in fish. - Abstract: Arsenic (As) is a ubiquitous toxic metalloid that is causing widespread public concern. Recent measurements have indicated that some marine fish in China might be seriously contaminated with As. Yet the biokinetics and bioaccumulation pathway of As in fish remain little understood. In this study, we employed a radiotracer technique to quantify the dissolved uptake, dietary assimilation and subsequent efflux of As(V) in a marine predatory fish, Terapon jarbua. The dissolved uptake of As showed a linear pattern over a range of dissolved concentrations from 0.5 to 50 μg L−1, with a corresponding uptake rate constant of 0.0015 L g−1 d−1. The assimilation efficiencies (AEs) of dietary As were only 3.1–7.4% for fish fed with copepods, clams, prey fish, or artificial diets, and were much lower than the As that entered the trophically available metal fraction in the prey. The dietary AEs were independent of the As(V) concentrations in the artificial diets. The efflux rate constant of As in fish following the dietary exposure was 0.03 d−1. Modeling calculations showed that dietary uptake could be the primary route for As bioaccumulation in fish, and the corresponding contributions of waterborne and dietary uptakes were related to the bioconcentration factor (BCF) of the prey and the ingestion rate of fish. This study demonstrates that As(V) has a low bioavailability to T. jarbua.

  9. Phenolic endocrine disrupting chemicals in an urban receiving river (Panlong river) of Yunnan-Guizhou plateau: Occurrence, bioaccumulation and sources.

    Science.gov (United States)

    Wang, Bin; Dong, Faqin; Chen, Shu; Chen, Mengjun; Bai, Yingchen; Tan, Jiangyue; Li, Fucheng; Wang, Qing

    2016-06-01

    The objectives of this study were to track the occurrence, bioaccumulation and sources of phenolic endocrine disrupting chemicals (EDCs) in a representative urban river (Panlong River) of Yunnan-Guizhou Plateau. It provided more comprehensive fundamental data for risk assessment and contamination control of phenolic EDCs in aquatic environments. Phenolic EDCs, such as nonylphenol-di-ethoxylate (NP2EO), nonylphenol-mono-ethoxylate (NP1EO), 4-nonylphenol (4-NP), bisphenol A (BPA), 4-cumylphenol (4-CP) and 4-tert-octylphenol (4-t-OP), were ubiquitously present in Panlong River. The distribution of phenolic EDCs in the water and sediment tended to assume a shape like an inverted letter "W". The residual levels of phenolic EDCs increased dramatically in certain areas. The concentrations of NP2EO, NP1EO, 4-NP, BPA, 4-CP, 4-t-OP and the total phenolic EDCs (ΣPEDCs) were up to 202, 154, 17, 79, 3.3, 4.6 and 429ng/L in water, and were up to 352, 316, 124, 18, 14, 4.8 and 813ng/g in sediment, respectively. However, the concentrations of 4-NP, BPA, 4-CP, 4-t-OP and ΣPEDCs in the three predominant fish species (Carassius auratus, Cyprinus carpio and Anabarilius alburnops) were up to 63, 113, 12, 14 and 201ng/g, respectively. Distribution characteristics of phenolic EDCs in water were significantly similar to those found in sediment, but different in fish. Occurrence, bioaccumulation and sources of phenolic EDCs were mainly subjected to the distribution characteristics of industry, agriculture and residential areas in Panlong catchment. Moreover, the bioconcentration factors (BCFs) were closely related to the octanol-water partition coefficients (logKow) of phenolic EDCs. Without direct input, the redissolution of phenolic EDCs from sediments seems conceivable. The concentrations of phenolic EDCs in the sections of urban areas were remarkably higher than those in suburban sections, since there could exist a potential risk to aquatic organisms and even to human. PMID:26921547

  10. Guidelines for biomonitoring persistent organic pollutants (POPs), using lichens and aquatic mosses – A review

    International Nuclear Information System (INIS)

    During the last decades, awareness regarding persistent organic pollutants (POPs), such dioxins and furans (PCDD/Fs) and polycyclic aromatic hydrocarbons (PAHs), has become a cutting-edge topic, due to their toxicity, bioaccumulation and persistency in the environment. Monitoring of PCDD/Fs and PAHs in air and water has proven to be insufficient to capture deposition and effects of these compounds in the biota. To overcome this limitation, environmental biomonitoring using lichens and aquatic mosses, have aroused as promising tools. The main aim of this work is to provide a review of: i) factors that influence the interception and accumulation of POPs by lichens; ii) how lichens and aquatic bryophytes can be used to track different pollution sources and; iii) how can these biomonitors contribute to environmental health studies. This review will allow designing a set of guidelines to be followed when using biomonitors to assess environmental POP pollution. -- Highlights: •We've reviewed the use of lichens and mosses as POP biomonitors. •We've discussed the factors that influence accumulation of POPs in lichens. •We've shown how biomonitors have been used to track pollution sources. •We've designed guidelines for the use of biomonitors to assess POP pollution. -- This review fulfils the lack of knowledge regarding the use of lichens and aquatic mosses as biomonitors of POPs, providing a set of guidelines to be followed

  11. Bioaccumulation of ergovaline in bovine lateral saphenous veins in vitro.

    Science.gov (United States)

    Klotz, J L; Kirch, B H; Aiken, G E; Bush, L P; Strickland, J R

    2009-07-01

    Ergot alkaloids have been associated with vasoconstriction in grazing livestock affected by the fescue toxicosis syndrome. Previous in vitro investigations studying how ergot alkaloids caused vasoconstriction have shown that ergovaline has a distinct receptor affinity and sustained contractile response. A similar contractile response has not been noted for lysergic acid. The objectives of this study were to determine if repetitive in vitro exposure of bovine lateral saphenous vein to lysergic acid or ergovaline would result in an increasing contractile response and if a measurable bioaccumulation of the alkaloids in the vascular tissue occurs over time. Segments of vein were surgically biopsied from healthy, Angus x Brangus cross-bred, fescue-naïve yearling heifers (n = 16) or collected from healthy mixed breed and sex cattle immediately after slaughter (n = 12) at a local abattoir. Veins were trimmed of excess fat and connective tissue, sliced into cross-sections, and suspended in a myograph chamber containing 5 mL of oxygenated Krebs-Henseleit buffer (95% O(2)/5% CO(2); pH = 7.4; 37 degrees C). Contractile responses to repetitive additions of ergovaline (1 x 10(-9) and 1 x 10(-7) M) and lysergic acid (1 x 10(-5) and 1 x 10(-4) M) were evaluated using the biopsied veins. For the bioaccumulation experiments, veins collected at the abattoir underwent repetitive additions of 1 x 10(-7) M ergovaline and 1 x 10(-5) M lysergic acid and the segments were removed after every 2 additions and media rinses for alkaloid quantification via HPLC/mass spectrometry. Contractile data were normalized as a percentage of contractile response induced by a reference dose of norepinephrine (1 x 10(-4) M). Repetitive additions of 1 x 10(-9) M ergovaline and 1 x 10(-5) and 1 x 10(-4) M lysergic acid resulted in contractile response with a negative slope (P < 0.02). In contrast, repetitive addition of 1 x 10(-7) M ergovaline resulted in a contractile response that increased with each

  12. Bioaccumulation of total mercury in the earthworm Eisenia andrei.

    Science.gov (United States)

    Le Roux, Shirley; Baker, Priscilla; Crouch, Andrew

    2016-01-01

    Earthworms are a major part of the total biomass of soil fauna and play a vital role in soil maintenance. They process large amounts of plant and soil material and can accumulate many pollutants that may be present in the soil. Earthworms have been explored as bioaccumulators for many heavy metal species such as Pb, Cu and Zn but limited information is available for mercury uptake and bioaccumulation in earthworms and very few report on the factors that influence the kinetics of Hg uptake by earthworms. It is known however that the uptake of Hg is strongly influenced by the presence of organic matter, hence the influence of ligands are a major factor contributing to the kinetics of mercury uptake in biosystems. In this work we have focused on the uptake of mercury by earthworms (Eisenia andrei) in the presence of humic acid (HA) under varying physical conditions of pH and temperature, done to assess the role of humic acid in the bioaccumulation of mercury by earthworms from soils. The study was conducted over a 5-day uptake period and all earthworm samples were analysed by direct mercury analysis. Mercury distribution profiles as a function of time, bioaccumulation factors (BAFs), first order rate constants and body burden constants for mercury uptake under selected conditions of temperature, pH as well as via the dermal and gut route were evaluated in one comprehensive approach. The results showed that the uptake of Hg was influenced by pH, temperature and the presence of HA. Uptake of Hg(2+) was improved at low pH and temperature when the earthworms in soil were in contact with a saturating aqueous phase. The total amount of Hg(2+) uptake decreased from 75 to 48 % as a function of pH. For earthworms in dry soil, the uptake was strongly influenced by the presence of the ligand. Calculated BAF values ranged from 0.1 to 0.8. Mercury uptake typically followed first order kinetics with rate constants determined as 0.2 to 1 h(-1). PMID:27347466

  13. Heavy metal distribution and bioaccumulation in Chihuahuan Desert Rough Harvester ant (Pogonomyrmex rugosus) populations

    International Nuclear Information System (INIS)

    Heavy metal contamination can negatively impact arid ecosystems; however a thorough examination of bioaccumulation patterns has not been completed. We analyzed the distribution of As, Cd, Cu, Pb and Zn in soils, seeds and ant (Pogonomyrmex rugosus) populations of the Chihuahuan Desert near El Paso, TX, USA. Concentrations of As, Cd, Cu, and Pb in soils, seeds and ants declined as a function of distance from a now inactive Cu and Pb smelter and all five metals bioaccumulated in the granivorous ants. The average bioaccumulation factors for the metals from seeds to ants ranged from 1.04x (As) to 8.12x (Cd). The findings show bioaccumulation trends in linked trophic levels in an arid ecosystem and further investigation should focus on the impacts of heavy metal contamination at the community level. - Heavy metals bioaccumulate in desert ants.

  14. Heavy metal distribution and bioaccumulation in Chihuahuan Desert Rough Harvester ant (Pogonomyrmex rugosus) populations

    Energy Technology Data Exchange (ETDEWEB)

    Del Toro, I., E-mail: ideltoro@nsm.umass.ed [Department of Organismic and Evolutionary Biology, University of Massachusetts at Amherst, 611 N. Pleasant Street Amherst, MA 01003 (United States); Floyd, K. [Environmental Science and Engineering, University of Texas at El Paso, 500 W. University Ave., El Paso, TX 79968 (United States); Gardea-Torresdey, J. [Department of Chemistry, University of Texas at El Paso, 500 W. University Ave., El Paso, TX 79968 (United States); Borrok, D. [Department of Geological Sciences, University of Texas at El Paso, 500 W. University Ave., El Paso, TX 79968 (United States)

    2010-05-15

    Heavy metal contamination can negatively impact arid ecosystems; however a thorough examination of bioaccumulation patterns has not been completed. We analyzed the distribution of As, Cd, Cu, Pb and Zn in soils, seeds and ant (Pogonomyrmex rugosus) populations of the Chihuahuan Desert near El Paso, TX, USA. Concentrations of As, Cd, Cu, and Pb in soils, seeds and ants declined as a function of distance from a now inactive Cu and Pb smelter and all five metals bioaccumulated in the granivorous ants. The average bioaccumulation factors for the metals from seeds to ants ranged from 1.04x (As) to 8.12x (Cd). The findings show bioaccumulation trends in linked trophic levels in an arid ecosystem and further investigation should focus on the impacts of heavy metal contamination at the community level. - Heavy metals bioaccumulate in desert ants.

  15. Bioaccumulation potential of contaminants from bedded and suspended Oakland Harbor deepening project sediments to San Francisco Bay flatfish and bivalve mollusks. Final report

    Energy Technology Data Exchange (ETDEWEB)

    McFarland, V.A.; Clarke, J.U.; Lutz, C.H.; Jarvis, A.S.; Mulhearn, B.

    1994-08-01

    The Oakland Harbor Deepening Project (OHDP) has been on hold since 1987 due to public and resource agency concerns regarding further disposal of dredged sediments within San Francisco (SF) Bay. Dispersal of the fines fraction throughout the Bay was thought to occur following disposal operations at the Alcatraz site, resulting in transport of contaminants throughout the Bay system. The study described in this report was designed to address the potential for contaminant uptake in estuarine organisms through exposure to suspended and bedded OHDP sediments. Bioaccumulation that occurred from these sediments was put into perspective with bioaccumulation from sediments normally resuspended in the Bay by natural processes, and from a demonstrably contaminated sediment. Indigenous SF Bay organisms were exposed to either bedded or suspended sediment in replicate experimental units of the Flow-through Aquatic Toxicology Exposure System (FATES) at the WES. Sediments and tissues were analyzed for a suite of contaminants, including organotins, polynuclear aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), pesticides and DDE, and ten metals.

  16. Biomarkers and heavy metal bioaccumulation in mussels transplanted to coastal waters of the Beagle Channel.

    Science.gov (United States)

    Giarratano, Erica; Duarte, Claudia A; Amin, Oscar A

    2010-03-01

    Mussels coming from a mussel farm at Brown Bay (Beagle Channel) were transplanted to four sites inside Ushuaia Bay for 2 and 4 weeks. The objective of this study was to assess the quality of coastal waters of Ushuaia Bay by measuring catalase activity, lipid peroxidation, total lipid content, bioaccumulation of heavy metals and condition index in transplanted mussel Mytilus edulis chilensis. Biomarkers except condition index showed significant differences among exposure times as well as among tissues. Digestive gland presented the highest catalase activity, malondialdehyde level and total lipid content. Digestive gland also was the main target tissue of accumulation of iron and copper, while gill accumulated the highest levels of zinc. A principal component analyzes with the whole set of data allowed to separate stations based on physicochemical conditions and biochemical responses of each studied area. PMID:19913913

  17. TCDD/TCDF levels in bioaccumulation test tissues and their corresponding sediments

    Energy Technology Data Exchange (ETDEWEB)

    Schrock, M.E. [Battelle Memorial Inst., Columbus, OH (United States); Barrows, E.S. [Battelle/Marine Sciences Lab., Sequim, WA (United States); Rosman, L.B. [Army Corps of Engineers, New York, NY (United States)

    1995-12-31

    Sediments from eight highly urbanized, industrial areas were analyzed for 2,3,7,8-tetrachlorodibenzo-p-dioxin and 2,3,7,8 tetrachlorodibenzofuran (TCDD/TCDF) contamination. The polychaete Nereis virens was exposed to the contaminated sediment for 28 days and then analyzed for TCDD/TCDF to evaluate the potential bioaccumulation of these contaminants, Levels of TCDD/TCDF accumulated in N. virens in general increased as the amount of sediment contamination increased and were significantly greater than levels in N. virens exposed to uncontaminated sediment. In addition, accumulation factors were calculated based on the levels of TCDD/TCDF in the test organisms and sediments, the organism lipid content, and the sediment total organic carbon content to predict the maximum amount of TCDD/TCDF likely to be accumulated from the sediments.

  18. Treatment of wastewater and restoration of aquatic systems through an eco-technology based constructed treatment wetlands - a successful experience in Central India.

    Science.gov (United States)

    Billore, S K; Sharma, J K; Singh, N; Ram, H

    2013-01-01

    In the last couple of decades constructed wetlands (CWs) have drawn considerable interest in Central India. CWs offer an effective means of integrating wastewater treatment and resource enhancement, often at competitive cost in comparison to conventional wastewater treatments, with additional benefits of Green Urban Landscaping and wildlife habitat. This paper describes treatment performances and the design of some Sub Surface Flow CWs (SSFCW) and Artificial Floating Islands (AFIs) in Central India. Central Indian CWs show significant pollution reduction load for total suspended solids (TSS) (62-82%), biochemical oxygen demand (BOD) (40-75%), NH(4)-N (67-78%) and total Kjeldahl nitrogen (TKN) (59-78%). Field scale SSFCWs installed so far in Central India are rectangular, earthen, single/multiple celled having similar depths of 0.60-0.90 m, hydraulic retention capacity 18-221 m(3) with effective size 41.8-1,050 m(2). The major components of CWs incorporate puddled bottom/side walls, sealed with impermeable low-density polyethylene, a bed of locally available river gravel planted with Phragmites karka, and an inlet distribution and outlet collection system. A new variant on CWs are AFIs working under hydroponics. The field scale experimental AFIs installed in-situ in a slowly flowing local river were composed of hollow bamboo, a bed of coconut coir, floating arrangements and Phragmites karka as nutrient stripping plant species. The AFIs polish the aquatic system by reducing 46.6% of TSS, 45-55% of NH(4)-N, 33-45% of NO(3)-N, 45-50% of TKN and 40-50% of BOD. The study established that there is a need for further research and sufficient data to assist the development of CWs by instilling confidence in policymakers, planners and in the public. PMID:24135106

  19. Deep-ocean foraging northern elephant seals bioaccumulate persistent organic pollutants

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, Sarah H., E-mail: sarahpeterson23@gmail.com [Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, 100 Shaffer Road, Santa Cruz, CA 95060 (United States); Peterson, Michael G. [Department of Environmental Science, Policy and Management, University of California, Berkeley, 130 Mulford Hall, Berkeley, CA 94720 (United States); Debier, Cathy [Institut des Sciences de la Vie, Université catholique de Louvain, Croix du Sud 2/L7.05.08, 1348 Louvain-la-Neuve (Belgium); Covaci, Adrian [Toxicological Center, Campus Drie Eiken, Universiteit Antwerpen, Universiteitsplein 1, 2610 Wilrijk (Belgium); Dirtu, Alin C. [Toxicological Center, Campus Drie Eiken, Universiteit Antwerpen, Universiteitsplein 1, 2610 Wilrijk (Belgium); Department of Chemistry, “Al. I. Cuza” University of Iasi, 700506 Iasi (Romania); Malarvannan, Govindan [Toxicological Center, Campus Drie Eiken, Universiteit Antwerpen, Universiteitsplein 1, 2610 Wilrijk (Belgium); Crocker, Daniel E. [Department of Biology, Sonoma State University, 1801 East Cotati Ave, Rohnert Park, CA 94928 (United States); Schwarz, Lisa K. [Institute of Marine Sciences, University of California, Santa Cruz, 100 Shaffer Road, Santa Cruz, CA 95060 (United States); Costa, Daniel P. [Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, 100 Shaffer Road, Santa Cruz, CA 95060 (United States)

    2015-11-15

    As top predators in the northeast Pacific Ocean, northern elephant seals (Mirounga angustirostris) are vulnerable to bioaccumulation of persistent organic pollutants (POPs). Our study examined a suite of POPs in blubber (inner and outer) and blood (serum) of free-ranging northern elephant seals. For adult females (N = 24), we satellite tracked and sampled the same seals before and after their approximately seven month long foraging trip. For males, we sampled different adults and sub-adults before (N = 14) and after (N = 15) the same foraging trip. For females, we calculated blubber burdens for all compounds. The highest POP concentrations in males and females were found for ∑ DDTs and ∑ PCBs. In blubber and serum, males had significantly greater concentrations than females for almost all compounds. For males and females, ∑ DDT and ∑ PBDEs were highly correlated in blubber and serum. While ∑ PCBs were highly correlated with ∑ DDTs and ∑ PBDEs in blubber and serum for males, ∑ PCBs showed weaker correlations with both compounds in females. As females gained mass while foraging, concentrations of nearly all POPs in inner and outer blubber significantly decreased; however, the absolute burden in blubber significantly increased, indicating ingestion of contaminants while foraging. Additionally, we identified three clusters of seal foraging behavior, based on geography, diving behavior, and stable carbon and nitrogen isotopes, which corresponded with differences in ∑ DDTs, ∑ PBDEs, MeO-BDE 47, as well as the ratio of ∑ DDTs to ∑ PCBs, indicating the potential for behavior to heighten or mitigate contaminant exposure. The greatest concentrations of ∑ DDTs and ∑ PBDEs were observed in the cluster that foraged closer to the coast and had blood samples more enriched in {sup 13}C. Bioaccumulation of POPs by elephant seals supports mesopelagic food webs as a sink for POPs and highlights elephant seals as a potential sentinel of contamination in

  20. Deep-ocean foraging northern elephant seals bioaccumulate persistent organic pollutants

    International Nuclear Information System (INIS)

    As top predators in the northeast Pacific Ocean, northern elephant seals (Mirounga angustirostris) are vulnerable to bioaccumulation of persistent organic pollutants (POPs). Our study examined a suite of POPs in blubber (inner and outer) and blood (serum) of free-ranging northern elephant seals. For adult females (N = 24), we satellite tracked and sampled the same seals before and after their approximately seven month long foraging trip. For males, we sampled different adults and sub-adults before (N = 14) and after (N = 15) the same foraging trip. For females, we calculated blubber burdens for all compounds. The highest POP concentrations in males and females were found for ∑ DDTs and ∑ PCBs. In blubber and serum, males had significantly greater concentrations than females for almost all compounds. For males and females, ∑ DDT and ∑ PBDEs were highly correlated in blubber and serum. While ∑ PCBs were highly correlated with ∑ DDTs and ∑ PBDEs in blubber and serum for males, ∑ PCBs showed weaker correlations with both compounds in females. As females gained mass while foraging, concentrations of nearly all POPs in inner and outer blubber significantly decreased; however, the absolute burden in blubber significantly increased, indicating ingestion of contaminants while foraging. Additionally, we identified three clusters of seal foraging behavior, based on geography, diving behavior, and stable carbon and nitrogen isotopes, which corresponded with differences in ∑ DDTs, ∑ PBDEs, MeO-BDE 47, as well as the ratio of ∑ DDTs to ∑ PCBs, indicating the potential for behavior to heighten or mitigate contaminant exposure. The greatest concentrations of ∑ DDTs and ∑ PBDEs were observed in the cluster that foraged closer to the coast and had blood samples more enriched in 13C. Bioaccumulation of POPs by elephant seals supports mesopelagic food webs as a sink for POPs and highlights elephant seals as a potential sentinel of contamination in deep

  1. Aquatic Plants and Lake Ecosystems

    Czech Academy of Sciences Publication Activity Database

    Pokorný, Jan; Květ, Jan

    Oxford : Blackwell Science Ltd, 2003 - (O´Sullivan, P.; Reynolds, C.), s. 309-340 ISBN 0-632-04797-6 R&D Projects: GA ČR GA206/01/1113 Institutional research plan: CEZ:AV0Z6087904 Keywords : Aquatic macrophytes * green algae Subject RIV: EH - Ecology, Behaviour

  2. Macrophytes: Ecology of aquatic plants

    NARCIS (Netherlands)

    Bornette, G.; Puijalon, S.

    2009-01-01

    Aquatic plants contribute to maintaining key functions and related biodiversity in freshwater ecosystems, and to provide the needs of human societies. The way the ecological niches of macrophytes are determined by abiotic filters and biotic ones is considered. A simple, broadly applicable model of t

  3. Relevance and analysis of traffic related platinum group metals (Pt, Pd, Rh) in the aquatic biosphere, with emphasis on palladium.

    Science.gov (United States)

    Sures, Bernd; Zimmermann, Sonja; Messerschmidt, Jürgen; von Bohlen, Alex

    2002-10-01

    Following the introduction of automobile catalysts in the middle of the Eighties in Germany there is an increasing emission of the platinum-group-metals (PGM) platinum (Pt), palladium (Pd) and rhodium (Rh). Still, it remains unclear if these metals are bioavailable for aquatic animals and to which extent they accumulate in the aquatic biosphere. Zebra mussels (Dreissena polymorpha) were maintained in water containing road dust at a concentration of 1 kg/10 l. Following an exposure period of 26 weeks, soft tissues of the mussels were analysed applying adsorptive cathodic stripping voltammetry (ACSV) for the determination of Pt and Rh and total-reflection X-ray fluorescence analysis after co-precipitation of Pd with mercury. This experiment revealed for the first time that all the three catalyst emitted metals were accumulated by mussels. The bioaccumulation increased in the following manner: Rh < Pt < Pd. Thus, the application of sentinel organisms in combination with modern trace analytical procedures in environmental impact studies does allow an assessment of the distribution and the degree of bioaccumulation of PGM in the environment, which is highly appreciated. PMID:12463686

  4. Elemental analysis of lichen bioaccumulators before exposure as transplants in air pollution monitoring

    International Nuclear Information System (INIS)

    Lichen transplants from relatively unpolluted sites are successfully used as heavy metal bioaccumulators for long-term air pollution monitoring. Significant element accumulations are generally revealed after 6 to 12 months of exposure. The main objective of this interdisciplinary research is to get a low-price survey of the air pollution level in some critical areas of Romania by nuclear and atomic analytical methods, based on the element accumulating property of transplanted lichens. The lichen species Evernia prunastri and Pseudevernia furfuracea collected from the Prealps, northeast Italy, have been selected for this study. Experimental setup for standardized lichen exposure needs special plastic frames ('little traps': 15 · 15 · 1.5 cm, with 1cm2 mesh) which are fixed horizontally on stainless steel posts at about 1.5 m above the ground. Prior to exposure, the lichen material is cleansed of some vegetal impurities and then shortly washed using de-ionised water. The initial (zero-level) contents of lichens were determined by Instrumental Neutron Activation Analysis (INAA) and Energy Dispersive X-Ray Fluorescence Analysis (EDXRFA) methods. INAA was carried out at the Institute of Physics and Nuclear Engineering in Bucharest (IFIN) and while EDXRFA at the University of Hohenheim in Stuttgart. The investigated elements were: As, Br, Ca, Cd, Co, Cr, Cu, Fe, K, Mn, Ni, Pb, S, Sb, Se, V and Zn. From among them, Cd, Co and Sb can be determined only by INAA and ICP-MS, Pb only by EDXRFA and PIXE, and S only by EDXRFA. A statistical intercomparison of the results allowed a good quality control of the used analytical methods for these specific matrices. This work was supported in part by European Commission Center of Excellence Project ICA1-CT-2000-70023: IDRANAP (Inter-Disciplinary Research and Applications based on Nuclear and Atomic Physics), Work Package 2 (Air pollution monitoring by sampling airborne particulate matter combined with lichen bioaccumulator exposure

  5. Antibiotics promote aggregation within aquatic bacterial communities.

    Science.gov (United States)

    Corno, Gianluca; Coci, Manuela; Giardina, Marco; Plechuk, Sonia; Campanile, Floriana; Stefani, Stefania

    2014-01-01

    The release of antibiotics (AB) into the environment poses several threats for human health due to potential development of AB-resistant natural bacteria. Even though the use of low-dose antibiotics has been promoted in health care and farming, significant amounts of AB are observed in aquatic environments. Knowledge on the impact of AB on natural bacterial communities is missing both in terms of spread and evolution of resistance mechanisms, and of modifications of community composition and productivity. New approaches are required to study the response of microbial communities rather than individual resistance genes. In this study a chemostat-based experiment with 4 coexisting bacterial strains has been performed to mimicking the response of a freshwater bacterial community to the presence of antibiotics in low and high doses. Bacterial abundance rapidly decreased by 75% in the presence of AB, independently of their concentration, and remained constant until the end of the experiment. The bacterial community was mainly dominated by Aeromonas hydrophila and Brevundimonas intermedia while the other two strains, Micrococcus luteus and Rhodococcus sp. never exceed 10%. Interestingly, the bacterial strains, which were isolated at the end of the experiment, were not AB-resistant, while reassembled communities composed of the 4 strains, isolated from treatments under AB stress, significantly raised their performance (growth rate, abundance) in the presence of AB compared to the communities reassembled with strains isolated from the treatment without AB. By investigating the phenotypic adaptations of the communities subjected to the different treatments, we found that the presence of AB significantly increased co-aggregation by 5-6 fold. These results represent the first observation of co-aggregation as a successful strategy of AB resistance based on phenotype in aquatic bacterial communities, and can represent a fundamental step in the understanding of the effects of AB

  6. Aquatic Macrophyte Risk Assessment for Pesticides

    NARCIS (Netherlands)

    Maltby, L.; Arnold, D.; Arts, G.H.P.; Davies, J.; Heimbach, F.; Pickl, C.; Poulsen, V.

    2009-01-01

    Given the essential role that primary producers play in aquatic ecosystems, it is imperative that the potential risk of pesticides to the structure and functioning of aquatic plants is adequately assessed. This book discusses the assessment of the risk of pesticides with herbicidal activity to aquat

  7. Late cretaceous aquatic plant world in Patagonia, Argentina.

    Science.gov (United States)

    Cúneo, N Rubén; Gandolfo, María A; Zamaloa, María C; Hermsen, Elizabeth

    2014-01-01

    In this contribution, we describe latest Cretaceous aquatic plant communities from the La Colonia Formation, Patagonia, Argentina, based on their taxonomic components and paleoecological attributes. The La Colonia Formation is a geological unit deposited during a Maastrichtian-Danian transgressive episode of the South Atlantic Ocean. This event resulted in the deposition of a series of fine-grained sediments associated with lagoon systems occurring along irregular coastal plains in northern Patagonia. These deposits preserved a diverse biota, including aquatic and terrestrial plants and animals. The aquatic macrophytes can be broadly divided into two groups: free-floating and rooted, the latter with emergent or floating leaves. Free-floating macrophytes include ferns in Salviniaceae (Azolla and Paleoazolla) and a monocot (Araceae). Floating microphytes include green algae (Botryoccocus, Pediastrum and Zygnemataceae). Among the rooted components, marsileaceous water ferns (including Regnellidium and an extinct form) and the eudicot angiosperm Nelumbo (Nelumbonaceae) are the dominant groups. Terrestrial plants occurring in the vegetation surrounding the lagoons include monocots (palms and Typhaceae), ferns with affinities to Dicksoniaceae, conifers, and dicots. A reconstruction of the aquatic plant paleocommuniy is provided based on the distribution of the fossils along a freshwater horizon within the La Colonia Formation. This contribution constitutes the first reconstruction of a Cretaceous aquatic habitat for southern South America. PMID:25148081

  8. Late cretaceous aquatic plant world in Patagonia, Argentina.

    Directory of Open Access Journals (Sweden)

    N Rubén Cúneo

    Full Text Available In this contribution, we describe latest Cretaceous aquatic plant communities from the La Colonia Formation, Patagonia, Argentina, based on their taxonomic components and paleoecological attributes. The La Colonia Formation is a geological unit deposited during a Maastrichtian-Danian transgressive episode of the South Atlantic Ocean. This event resulted in the deposition of a series of fine-grained sediments associated with lagoon systems occurring along irregular coastal plains in northern Patagonia. These deposits preserved a diverse biota, including aquatic and terrestrial plants and animals. The aquatic macrophytes can be broadly divided into two groups: free-floating and rooted, the latter with emergent or floating leaves. Free-floating macrophytes include ferns in Salviniaceae (Azolla and Paleoazolla and a monocot (Araceae. Floating microphytes include green algae (Botryoccocus, Pediastrum and Zygnemataceae. Among the rooted components, marsileaceous water ferns (including Regnellidium and an extinct form and the eudicot angiosperm Nelumbo (Nelumbonaceae are the dominant groups. Terrestrial plants occurring in the vegetation surrounding the lagoons include monocots (palms and Typhaceae, ferns with affinities to Dicksoniaceae, conifers, and dicots. A reconstruction of the aquatic plant paleocommuniy is provided based on the distribution of the fossils along a freshwater horizon within the La Colonia Formation. This contribution constitutes the first reconstruction of a Cretaceous aquatic habitat for southern South America.

  9. Sediment Bioaccumulation Test with Lumbriculus variegatus: Effects of Organism Loading.

    Science.gov (United States)

    Burkhard, Lawrence P; Hubin-Barrows, Dylan; Billa, Nanditha; Highland, Terry L; Hockett, James R; Mount, David R; Norberg-King, Teresa J

    2016-07-01

    At contaminated sediment sites, the bioavailability of contaminants in sediments is assessed using sediment-bioaccumulation tests with Lumbriculus variegates (Lv). The testing protocols recommend that ratio of total organic carbon (TOC) in sediment to L. variegatus (dry weight) (TOC/Lv) should be no less than 50:1. Occasionally, this recommendation is not followed, especially with sediments having low TOC, e.g., polychlorinated biphenyls (PCBs) in the L. variegatus were measured in six of the seven sediments tested, and differences in PCB residues among loading ratios across all sediments were small, i.e., ±50 %, from those measured at the minimum recommended ratio of 50:1 TOC/Lv. In all sediment, PCB residues increased with increasing loading of the organisms for the mono-, di-, and tri-chloro-PCBs. For tetra-chloro and heavier PCBs, residues increased with increasing loading of organisms for only two of the six sediments. PCB residues were not significantly different between TOC/Lv loadings of 50:1 and mid-20:1 ratios indicating that equivalent results can be obtained with TOC/Lv ratios into the mid-20:1 ratios. Overall, the testing results suggest that when testing recommendation of 50:1 TOC/Lv is not followed, potential biases in the biota-sediment accumulations factors from the sediment-bioaccumulation test will be small. PMID:27165691

  10. Arsenic bioaccumulation in a marine juvenile fish Terapon jarbua.

    Science.gov (United States)

    Zhang, Wei; Huang, Liangmin; Wang, Wen-Xiong

    2011-10-01

    Arsenic (As) is a ubiquitous toxic metalloid that is causing widespread public concern. Recent measurements have indicated that some marine fish in China might be seriously contaminated with As. Yet the biokinetics and bioaccumulation pathway of As in fish remain little understood. In this study, we employed a radiotracer technique to quantify the dissolved uptake, dietary assimilation and subsequent efflux of As(V) in a marine predatory fish, Terapon jarbua. The dissolved uptake of As showed a linear pattern over a range of dissolved concentrations from 0.5 to 50 μg L(-1), with a corresponding uptake rate constant of 0.0015 L g(-1)d(-1). The assimilation efficiencies (AEs) of dietary As were only 3.1-7.4% for fish fed with copepods, clams, prey fish, or artificial diets, and were much lower than the As that entered the trophically available metal fraction in the prey. The dietary AEs were independent of the As(V) concentrations in the artificial diets. The efflux rate constant of As in fish following the dietary exposure was 0.03 d(-1). Modeling calculations showed that dietary uptake could be the primary route for As bioaccumulation in fish, and the corresponding contributions of waterborne and dietary uptakes were related to the bioconcentration factor (BCF) of the prey and the ingestion rate of fish. This study demonstrates that As(V) has a low bioavailability to T. jarbua. PMID:21945928

  11. Bioaccumulation Pattern of Mercury in Bacopa monnieri (L. Pennell

    Directory of Open Access Journals (Sweden)

    Hussain K

    2012-05-01

    Full Text Available Bioaccumulation pattern of mercury was studied in Bacopa monnieri plants cultivated in Hoagland nutrient medium artificially contaminated with 5 and 10μM HgCl2. Mercury content of roots, stem and leaves were analysed using Atomic Absorption Spectrophotometry (AAS. During a period 12 days of growth, more accumulation was noticed in roots followed by stem and leaves. Repeated addition of HgCl2 and enhanced growth period up to 50 days showed only negligible increase in accumulation maintaining a threshold level of mercury in the root. When a comparison was done between the quantities of HgCl2 added to the growth medium and the sum of total accumulation of the plant and content present in the residual medium, a significant quantity of mercury is found to be lost presumably through the process of phytovolatilization from the plant. Studies on the effect of pH on bioaccumulation of mercury showed that acidic pH enhanced accumulation rate and hence for phytoremediation technology ‘chlorination’ is recommended whereas for medicinal purpose, Bacopa monnieri plants can be harvested after ‘liming’ to increase the pH and thereby reducing accumulation rate of mercury.

  12. Influence of biological and ecological factors on the bioaccumulation of polybrominated diphenyl ethers in aquatic food webs from French estuaries.

    Science.gov (United States)

    Bragigand, Virginie; Amiard-Triquet, Claude; Parlier, Emmanuel; Boury, Pauline; Marchand, Philippe; El Hourch, Mohamed

    2006-09-15

    Previous studies have shown the worldwide presence of six congeners of polybrominated diphenyl ethers (PBDEs) in marine biota (BDE-28, -47, -99, -100, -153 and -154). The objective of the present study was to document their presence, their level and their transfer in the food web of two major estuaries in France, the Loire and the Seine. PBDEs were quantified in eight principal species from the Loire, representing primary consumers (the bivalve Scrobicularia plana), omnivores (the worm Nereis diversicolor, the shrimps Crangon crangon, Palaemon elegans and Palaemon serratus, the flatfish Platichthys flesus and Solea solea) and supercarnivores (the eel Anguilla anguilla). In the Seine, only worms, bivalves, sole and eels have been studied. Parameters, which can interfere with the interpretation of contamination data (organ distribution, influence of weight or size of specimens, lipid richness, intrinsic variability), have been examined. BDE-47 was the predominant congener in all biota. Higher contamination was observed in most of the species collected from the Seine, in agreement with the higher human presence and economic activity in the Seine than in the Loire basin. PBDEs have been shown to biomagnify in both of the studied estuarine food webs. However, assessment of PBDE transfer from seafood products exposed to contaminants in the Seine estuary showed that human daily intake is far below the no observed adverse effect levels. PMID:16764911

  13. Review on environmental alterations propagating from aquatic to terrestrial ecosystems.

    Science.gov (United States)

    Schulz, Ralf; Bundschuh, Mirco; Gergs, René; Brühl, Carsten A; Diehl, Dörte; Entling, Martin H; Fahse, Lorenz; Frör, Oliver; Jungkunst, Hermann F; Lorke, Andreas; Schäfer, Ralf B; Schaumann, Gabriele E; Schwenk, Klaus

    2015-12-15

    Terrestrial inputs into freshwater ecosystems are a classical field of environmental science. Resource fluxes (subsidy) from aquatic to terrestrial systems have been less studied, although they are of high ecological relevance particularly for the receiving ecosystem. These fluxes may, however, be impacted by anthropogenically driven alterations modifying structure and functioning of aquatic ecosystems. In this context, we reviewed the peer-reviewed literature for studies addressing the subsidy of terrestrial by aquatic ecosystems with special emphasis on the role that anthropogenic alterations play in this water-land coupling. Our analysis revealed a continuously increasing interest in the coupling of aquatic to terrestrial ecosystems between 1990 and 2014 (total: 661 studies), while the research domains focusing on abiotic (502 studies) and biotic (159 studies) processes are strongly separated. Approximately 35% (abiotic) and 25% (biotic) of the studies focused on the propagation of anthropogenic alterations from the aquatic to the terrestrial system. Among these studies, hydromorphological and hydrological alterations were predominantly assessed, whereas water pollution and invasive species were less frequently investigated. Less than 5% of these studies considered indirect effects in the terrestrial system e.g. via food web responses, as a result of anthropogenic alterations in aquatic ecosystems. Nonetheless, these very few publications indicate far-reaching consequences in the receiving terrestrial ecosystem. For example, bottom-up mediated responses via soil quality can cascade over plant communities up to the level of herbivorous arthropods, while top-down mediated responses via predatory spiders can cascade down to herbivorous arthropods and even plants. Overall, the current state of knowledge calls for an integrated assessment on how these interactions within terrestrial ecosystems are affected by propagation of aquatic ecosystem alterations. To fill

  14. Assessment of potential aquatic herbicide impacts to California aquatic ecosystems.

    Science.gov (United States)

    Siemering, Geoffrey S; Hayworth, Jennifer D; Greenfield, Ben K

    2008-10-01

    A series of legal decisions culminated in 2002 with the California State Water Resources Control Board funding the San Francisco Estuary Institute to develop and implement a 3-year monitoring program to determine the potential environmental impacts of aquatic herbicide applications. The monitoring program was intended to investigate the behavior of all aquatic pesticides in use in California, to determine potential impacts in a wide range of water-body types receiving applications, and to help regulators determine where to direct future resources. A tiered monitoring approach was developed to achieve a balance between program goals and what was practically achievable within the project time and budget constraints. Water, sediment, and biota were collected under "worst-case" scenarios in close association with herbicide applications. Applications of acrolein, copper sulfate, chelated copper, diquat dibromide, glyphosate, fluridone, triclopyr, and 2,4-D were monitored. A range of chemical analyses, toxicity tests, and bioassessments were conducted. At each site, risk quotients were calculated to determine potential impacts. For sediment-partitioning herbicides, sediment quality triad analysis was performed. Worst-case scenario monitoring and special studies showed limited short-term and no long-term toxicity directly attributable to aquatic herbicide applications. Risk quotient calculations called for additional risk characterizations; these included limited assessments for glyphosate and fluridone and more extensive risk assessments for diquat dibromide, chelated copper products, and copper sulfate. Use of surfactants in conjunction with aquatic herbicides was positively associated with greater ecosystem impacts. Results therefore warrant full risk characterization for all adjuvant compounds. PMID:18293029

  15. Molecular effects and bioaccumulation of levonorgestrel in the non-target organism Dreissena polymorpha

    Energy Technology Data Exchange (ETDEWEB)

    Contardo-Jara, Valeska, E-mail: contardo@igb-berlin.d [Department of Ecophysiology and Aquaculture, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Mueggelseedamm 301, 12587 Berlin (Germany); Lorenz, Claudia, E-mail: claudia.lorenz@igb-berlin.d [Department of Ecophysiology and Aquaculture, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Mueggelseedamm 301, 12587 Berlin (Germany); Pflugmacher, Stephan, E-mail: pflugmacher@igb-berlin.d [Department of Ecophysiology and Aquaculture, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Mueggelseedamm 301, 12587 Berlin (Germany); Nuetzmann, Gunnar, E-mail: nuetzmann@igb-berlin.d [Department of Ecohydrology, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Mueggelseedamm 301, 12587 Berlin (Germany); Kloas, Werner, E-mail: werner.kloas@igb-berlin.d [Department of Ecophysiology and Aquaculture, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Mueggelseedamm 301, 12587 Berlin (Germany); Wiegand, Claudia, E-mail: wiegand@biology.sdu.d [University of Southern Denmark, Institute of Biology, Campusvej 55, 5230 Odense M (Denmark)

    2011-01-15

    Bioaccumulation and effects of the contraceptive hormone levonorgestrel were examined in the non-target organism Dreissena polymorpha. Molecular biomarkers of biotransformation, elimination, antioxidant defence and protein damage were analyzed after exposure to increasing concentrations of levonorgestrel in a flow-through system. The lowest concentration (0.312 {mu}g L{sup -1}) was 100-fold bioconcentrated within four days. A decrease of the bioconcentration factor was observed within one week for the highest test concentrations (3.12 and 6.24 {mu}g L{sup -1}) suggesting enhanced excretory processes. The immediate mRNA up-regulation of pi class glutathione S-transferase proved that phase II biotransformation processes were induced. Disturbance of fundamental cell functions was assumed since the aryl hydrocarbon receptor has been permanently down-regulated. mRNA up-regulation of P-glycoprotein, superoxide dismutase and metallothioneine suggested enhanced elimination processes and ongoing oxidative stress. mRNA up-regulation of heat shock protein 70 in mussels exposed to the two highest concentrations clearly indicated impacts on protein damage. - Fundamental cell processes as biotransformation, elimination and prevention from oxidative stress are influenced by exposure of the contraceptive levonorgestrel in non-target organisms. - Research highlights: Bioaccumulation of levonorgestrel in mussels is higher than expected based on its lipophilicity. Exposure to levonorgestrel causes oxidative stress and enhanced elimination processes. Glutathione S-transferase (pi class) mRNA induction after one day hint on phase II biotransformation. mRNA induction of heat shock protein 70 after one week prove protein damage.

  16. Modeling metal bioaccumulation in a deposit-feeding polychaete from labile sediment fractions and from pore water.

    Science.gov (United States)

    Baumann, Zofia; Fisher, Nicholas S

    2011-06-01

    Estuarine sediments are often highly enriched in particle-reactive metal contaminants and because aquatic animals have often been shown to acquire metals predominantly from their diet, benthic animals feeding on deposited or resuspended sediments may also accumulate metals through this uptake pathway. Laboratory experiments were performed in which the surface deposit-feeding polychaete, Nereis succinea, was exposed to As(+5), Cd, and Cr(+3) in pore water or in estuarine sediments with and without enrichment with algal debris. These experiments generated metal uptake parameters (assimilation efficiency of ingested metal [AE], uptake rate constant of dissolved metal, efflux rate constants following dietary or aqueous metal exposures) used in a kinetic model of metal bioaccumulation. The model showed that > 97% of the body burden of these metals is accumulated through ingested sediment. The kinetic model was further modified to consider the geochemical fractionation of the metals in the sediments because metals bound to some fractions were shown to be unavailable to these polychaetes. The modified model substituted the AE term for each metal by the percentage of metal extracted in neutral and weak acid exchangeable fractions (termed "carbonex" fraction) multiplied by the slope of the regression between the metal AE and its fractionation in carbonex. The modified model generated predictions of As, Cd, and Cr body burdens in polychaetes at three different estuarine sites that matched independent field observations at these sites (r²=0.84 for sediments without organic enrichment, r²=0.87 with organic enrichment). Model predictions that relied on total metal concentrations showed weaker relationships (r²=0.11-0.50). This study adds to the evidence for the dominance of dietary uptake of metals in aquatic animals and identifies a key sedimentary fraction of metals that can account for bioavailability of sediment-bound metals. PMID:21481438

  17. Role of metal mixtures (Ca, Cu and Pb) on Cd bioaccumulation and phytochelatin production by Chlamydomonas reinhardtii

    International Nuclear Information System (INIS)

    The goal of the study was to determine whether metal uptake and biological effects could be predicted by free ion concentrations when organisms were exposed to Cd and a second metal. Bioaccumulation and algal phytochelatin (PC) concentrations were determined for Chlamydomonas reinhardtii following a 6-h exposure. Bioaccumulation results, after six hours of exposure, showed that Cd uptake decreased in the presence of relatively high concentrations of Ca, Cu and Pb, however, Cd bioaccumulation increased in the presence of ca. equimolar concentrations of Cu. A good correlation was observed between the production of PCs and the amount of metals bioaccumulated for the binary mixtures of Cd–Pb and Cd–Cu, but not the Cd–Ca mixture. Overall, the results suggested that, in the case of mixtures, bioaccumulated metal rather than free ion concentrations would be a better predictor of biological effect. -- Highlights: •Cd bioaccumulation and phytochelatin production were evaluated for metal mixtures. •Bioaccumulated metal rather than free ion was a better predictor of biological effect. •Calcium additions decreased Cd bioaccumulation but increased phytochelatin production. •Copper additions increased Cd bioaccumulation and phytochelatin production. •Lead additions had little effect on either Cd bioaccumulation or phytochelatin production. -- In metal mixtures containing Cd and Ca, Pb or Cu, bioaccumulated metal rather than free ion was a better predictor of biological effect

  18. Proposed Release Guides to Protect Aquatic Biota

    Energy Technology Data Exchange (ETDEWEB)

    Marter, W.L.

    2001-03-28

    At the request of South Carolina Department of Health and Environmental Control (SCDHEC) and the Department of Energy (DOE), the Savannah River Laboratory was assigned the task of developing the release guides to protect aquatic biota. A review of aquatic radioecology literature by two leading experts in the field of radioecology concludes that exposure of aquatic biota at one rad per day or less will not produce detectable deleterious effects on aquatic organisms. On the basis of this report, DOE recommends the use of one rad per day as an interim dose standard to protect aquatic biota.

  19. A Review of the Aquatic Environmental Fate of Triclopyr and its Major Metabolites

    OpenAIRE

    Petty, David G.; Getsinger, K.D.; Woodburn, K. B.

    2003-01-01

    The purpose of this paper is to provide an overview of the aquatic environmental fate of triclopyr and its major metabolites, TCP and TMP. This review is primarily based on results of laboratory and field studies conducted by various Federal Agencies and the registrant to support the US aquatic registration for triclopyr TEA.

  20. The Life Cycle of Mercury Within the Clear Lake Aquatic Ecosystem: From Ore to Organism

    Science.gov (United States)

    Suchanek, T. H.; Suchanek, T. H.; Nelson, D. C.; Nelson, D. C.; Zierenberg, R. A.; King, P.; King, P.; McElroy, K.; McElroy, K.

    2001-12-01

    Clear Lake (Lake County) is located in the geologically active Clear Lake volcanics mercury (Hg) bearing Franciscan formation within the Coast Range of California, which includes over 300 abandoned Hg mines and prospects. Intermittent mining at the Sulphur Bank Mercury Mine (from 1872-1957), now a USEPA SuperFund site, has resulted in approximately 100 metric tonnes of Hg being deposited into the aquatic ecosystem of Clear Lake, with sediment concentrations of total-Hg as high as 650 mg/kg (parts per million = ppm) near the mine, making Clear Lake one of the most Hg contaminated lakes in the world. As a result, largemouth bass and other top predatory fish species often exceed both the Federal USFDA recommended maximum recommended concentrations of 1.0 ppm and the State of California level of 0.5 ppm. Acid rock drainage leaches Hg and high concentrations of sulfate from the mine site through wasterock and subsurface conduits through subsediment advection and eventually upward diffusion into lake sediments and water. When mineral-laden pH 3 fluids from the mine mix with Clear Lake water (pH 8), an alumino-silicate precipitate (floc) is produced that promotes the localized production of toxic methyl Hg. Floc "hot spots" in sediments near the mine exhibit low pH, high sulfate, anoxia and high organic loading which create conditions that promote Hg methylation by microbial activity, especially in late summer and fall. Wind-driven currents transport methyl-Hg laden floc particles throughout Clear Lake, where they are consumed by plankton and benthic invertebrates and bioaccumulated throughout the food web. While Clear Lake biota have elevated concentrations of methyl-Hg, they are not as elevated as might be expected based on the total Hg loading into the lake. A science-based management approach, utilizing over 10 years of data collected on Hg cycling within the physical and biological compartments of Clear Lake, is necessary to affect a sensible remediation plan.

  1. Abstracts of the 34. aquatic toxicity workshop : navigating new waters

    International Nuclear Information System (INIS)

    This workshop provided an opportunity to discuss current research findings in the field of aquatic toxicology and the biological effect on biota. It addressed the challenges of assessing and protecting the health of aquatic ecosystems in Canada. Topics of discussion ranged from basic aquatic toxicology to applications in environmental monitoring, setting regulations and developing criteria for sediment and water quality. The sessions were entitled: acid rain; agricultural stressors; amphibian ecotoxicology; aquaculture; aquatic ecotoxicology and human health; biological test methods development and their application; effects based pesticides research; emerging technologies for tracing contaminants; endocrine disruption; environmental/climate change in aquatic toxicology; environmental effects monitoring; environmental impacts of mercury; environmental risk assessment; Gulfs of Maine and St. Lawrence/Bay of Fundy issues; Maritimes leaders in marine ecotoxicology and prevention; metal and diamond mining; microscale ecotoxicology; multiple stressors in estuaries; municipal wastewaters and water treatment; non-lethal sampling; oil and gas development and production; parasites as indicators of contamination; persistent contaminants; sediment/soil toxicology; selenium ecotoxicology; and, stable isotopes in ecotoxicology. This book featured 162 abstracts, of which 19 have been catalogued separately for inclusion in this database

  2. Geologic processes influence the effects of mining on aquatic ecosystems

    Science.gov (United States)

    Schmidt, Travis S.; Clements, William H.; Wanty, Richard B.; Verplanck, Philip L.; Church, Stanley E.; San Juan, Carma A.; Fey, David L.; Rockwell, Barnaby W.; DeWitt, Ed H.; Klein, Terry L.

    2012-01-01

    Geologic processes strongly influence water and sediment quality in aquatic ecosystems but rarely are geologic principles incorporated into routine biomonitoring studies. We test if elevated concentrations of metals in water and sediment are restricted to streams downstream of mines or areas that may discharge mine wastes. We surveyed 198 catchments classified as “historically mined” or “unmined,” and based on mineral-deposit criteria, to determine whether water and sediment quality were influenced by naturally occurring mineralized rock, by historical mining, or by a combination of both. By accounting for different geologic sources of metals to the environment, we were able to distinguish aquatic ecosystems limited by metals derived from natural processes from those due to mining. Elevated concentrations of metals in water and sediment were not restricted to mined catchments; depauperate aquatic communities were found in unmined catchments. The type and intensity of hydrothermal alteration and the mineral deposit type were important determinants of water and sediment quality as well as the aquatic community in both mined and unmined catchments. This study distinguished the effects of different rock types and geologic sources of metals on ecosystems by incorporating basic geologic processes into reference and baseline site selection, resulting in a refined assessment. Our results indicate that biomonitoring studies should account for natural sources of metals in some geologic environments as contributors to the effect of mines on aquatic ecosystems, recognizing that in mining-impacted drainages there may have been high pre-mining background metal concentrations.

  3. Effects of Activated Carbon on PCB Bioaccumulation and Biological Responses of Chironomus riparius in Full Life Cycle Test.

    Science.gov (United States)

    Nybom, Inna; Abel, Sebastian; Waissi, Greta; Väänänen, Kristiina; Mäenpää, Kimmo; Leppänen, Matti T; Kukkonen, Jussi V K; Akkanen, Jarkko

    2016-05-17

    The nonbiting midge Chironomus riparius was used to study the remediation potential and secondary effects of activated carbon (AC, ø 63-200 μm) in PCB contaminated sediments. AC amendments efficiently reduced PCB bioavailability determined by Chironomus riparius bioaccumulation tests and passive samplers. PCBs were shown to transfer from larvae to adults. Lower PCB concentrations were observed in adult midges emerging from AC amended compared to unamended sediments. Increased reproduction, survival, larval growth and gut wall microvilli length were observed with low AC dose (0.5% sediment dw) compared to unamended sediment, indicating an improved success of larvae in the sediment with low organic carbon content. On the other hand, higher AC doses (2.5% sediment dw) caused adverse effects on emergence and larval development. In addition, morphological changes in the gut wall microvilli layer were observed. This study showed that the secondary effects of AC amendments are dependent on the dose and the sediment characteristics. Metamorphic species, such as C. riparius, may act as a vector for organic pollutants from aquatic to terrestrial ecosystems and according to this study the AC amendments may reduce this transport. PMID:27100921

  4. Pre-natal Aquatic Preparation

    OpenAIRE

    Frias, Ana; Serra, Célia

    2013-01-01

    Introduction: Water, a source of well-being, peace, fullness, freedom and harmony. For quite some time now, water is sought after for its renowned benefits in terms of relieving the physical and emotional changes which commonly occur during pregnancy. Objectives: 1) Describe the process of intervention, arising from the use of the aquatic environment in prenatal preparation 2) Relate the gains in health from prenatal preparation aquatica Method: Descriptive creating and applying a prep...

  5. A Study on the Fluid Mechanics Performance of Aquatics Equipment

    Directory of Open Access Journals (Sweden)

    Jiao Jian

    2015-01-01

    Based on the theoretical foundation of fluid mechanics performance, this paper carries out an analysis on mechanical characteristics of aquatic sports. First, basic features of windsurfing are studied in this paper. Performance of windsurfing changes with its parameters, requiring a lot for windsurfers. It can be known from variance analysis that the best performance of NP plate and a relatively small resistance should be the direction of sail-board design. Meanwhile, by building up a mathematical model with fuzzy comprehensive evaluation and correlation analysis, it can be also found that the fluid resistance characteristic is a key factor that influences the performance of windsurfers. Besides, this paper also takes into account external factors, including the influences of regional difference on aquatic events. Different regions with various geographical conditions have different influences on aquatic events.

  6. Protozoa interaction with aquatic invertebrate: interest for watercourses biomonitoring.

    Science.gov (United States)

    Palos Ladeiro, M; Bigot, A; Aubert, D; Hohweyer, J; Favennec, L; Villena, I; Geffard, A

    2013-02-01

    Toxoplasma gondii, Cryptosporidium parvum, and Giardia duodenalis are human waterborne protozoa. These worldwide parasites had been detected in various watercourses as recreational, surface, drinking, river, and seawater. As of today, water protozoa detection was based on large water filtration and on sample concentration. Another tool like aquatic invertebrate parasitism could be used for sanitary and environmental biomonitoring. In fact, organisms like filter feeders could already filtrate and concentrate protozoa directly in their tissues in proportion to ambient concentration. So molluscan shellfish can be used as a bioindicator of protozoa contamination level in a site since they were sedentary. Nevertheless, only a few researches had focused on nonspecific parasitism like protozoa infection on aquatic invertebrates. Objectives of this review are twofold: Firstly, an overview of protozoa in worldwide water was presented. Secondly, current knowledge of protozoa parasitism on aquatic invertebrates was detailed and the lack of data of their biological impact was pointed out. PMID:23001759

  7. Carcinogenic hazards in aquatic ecosystems

    Energy Technology Data Exchange (ETDEWEB)

    Black, J.J.

    1979-01-01

    The chemical characterization of contaminants in bottom sediments from the Great Lakes in western New York (Lake Erie) was carried out by applying reversed-phase high-pressure liquid chromatography (HPLC) to fractions derived by routine organic extraction and separation methods. A comparison of the chromatograms from the sediments with those from analogous fractions isolated from tissue samples of aquatic biota showed correlations in the polynuclear aromatic hydrocarbon (PAH) composition. In the HPLC analysis of fractions isolated from sediment, Tubifex worms, aquatic snails, and fish tissue samples clearly indicated a characteristic PAH ''fingerprint' in all segments of the aquatic food chain. The patterns of horizontal distribution of the relative PAH levels indicated a point source of the pollution in the Buffalo River. Feral fish population samples showed several kinds of lesions that appear to be neoplasms. The histology of these lesions is described, and the significance of the data in terms of a possible human health hazard is discussed.

  8. Aquatic environmental remediation approaches

    International Nuclear Information System (INIS)

    The 2011 Fukushima Daiichi Nuclear Plant's nuclear accident contaminated a significant portion of Fukushima Prefecture, and environmental remediation activities have been performed. To reduce the human exposure to the radiation induced by the nuclear contamination, one can reduce the radiation level in the environment, and/or eliminate radionuclide pathways to humans. This paper presents some case studies that are relevant to the Fukushima case. These examples include the Chernobyl nuclear accident's environmental and remediation assessments, U.S. Hanford environmental remediation activities, and the pesticide remediation assessment for the James River Estuary, Virginia, U.S.A. 1-D TODAM, 2-D FETRA and 3-D FLESCOT codes have been applied to the surface waters. TODAM code is currently being applied to the Ukedo and Takase rivers in Fukushima to predict cesium-137 migration in these rivers. A lesson learned from these experiences is that to achieve the effective clean-up, remediation decision makers must include knowledgeable scientists and competent engineers, so that environmental remediation activities are based on a scientifically-valid approach for a given contaminated location. Local participation to the remediation decision making is critically important. (author)

  9. Metal bioaccumulation by the freshwater alga Scenedesmus quadricauda

    International Nuclear Information System (INIS)

    Bioaccumulation of six metals (Cu2+, Cu+, Mo6+, Mn2+, V5+, Ni2+) and their combinations by alga Scenedesmus quadricauda was determined by using radio nuclide X-ray fluorescence (RXFA). The metals were added into the cultivation medium in concentrations corresponding with EC50 value for each metal. The obtained results indicate that Ni2+, Cu2+ and Cu+ were accumulated in high amounts (20%, 17.5% and 15.9%) the Mo6+ ion (2+, Ni, Mn, V; V→Ni, Mn; Mn→Ni, Cu2+, Cu+; Cu+→Ni; Cu2+→Ni; Ni→Mn, V), enhancement (V→Cu+; Cu2+→Mn; Cu+→V, Mn; Mn→V; Ni→Cu2+, Cu+) and neutral effect (V→Mo; Cu2+→Mo; Cu+→Mo; Mn→Mo; Ni→Mo). (author)

  10. An automated platform for phytoplankton ecology and aquatic ecosystem monitoring

    NARCIS (Netherlands)

    Pomati, F.; Jokela, J.; Simona, M.; Veronesi, M.; Ibelings, B.W.

    2011-01-01

    High quality monitoring data are vital for tracking and understanding the causes of ecosystem change. We present a potentially powerful approach for phytoplankton and aquatic ecosystem monitoring, based on integration of scanning flow-cytometry for the characterization and counting of algal cells wi

  11. Procedures for Collecting and Processing Aquatic Invertebrates and Fish for Analysis of Mercury as Part of the National Water-Quality Assessment Program

    Science.gov (United States)

    Scudder, Barbara C.; Chasar, Lia C.; DeWeese, L. Rod; Brigham, Mark E.; Wentz, Dennis A.; Brumbaugh, William G.

    2008-01-01

    Mercury studies conducted as part of the U.S. Geological Survey's National Water-Quality Assessment (NAWQA) Program have included nationwide reconnaissance samplings of hundreds of stream sites, as well as detailed, process-oriented research at selected sites. These reconnaissance and detailed studies are intended to provide a better understanding of methylmercury bioaccumulation in stream ecosystems over a range of environmental settings. This publication describes trace-element-clean techniques used for collection and processing of aquatic invertebrates and fish to be analyzed for total mercury, methylmercury, and stable isotopes as part of NAWQA studies.

  12. Rubber tire leachates in the aquatic environment.

    Science.gov (United States)

    Evans, J J

    1997-01-01

    Tires have a deleterious effect on the environment. This review discusses the background of scrap tires discarded in the environment, including tire composition, adverse environmental effects, threats to public health and safety, and solid waste management. Despite the widespread use of scrap tires in environmental applications, both land-based and aquatic, data on the indicators of environmental degradation are extremely scarce. Indicators of environmental degradation include analysis of chemicals within the water and sediment, analysis of contaminants within organisms, and analysis of the biological effects of these compounds on plants, animals, microbes, and organelles. Although these indicators are most useful when used in parallel, a review of the available information on chemical characterization of tire leachate from tire storage facilities, manufacturing, usage in recycling applications, and toxicity exposure studies, of vegetation surveys from waste tire areas and reviews of mammalian tire product toxicity, and of toxicity, mutagenicity, and carcinogenicity of tire exposure in experimental aquatic animals, microbes, and organelles is presented. The major characteristics of these studies are discussed in specific sections. The "Discussion and Conclusions" section discusses and summarizes the biological effects and chemical characterization of tire leachates. A global environmental perspective is included to improve our understanding of the deficiency of the current knowledge of tire leachate toxicity from various sources and to encourage interdisciplinary studies to establish the pattern of pollution associated with waste tire management. PMID:9216257

  13. Metal bioaccumulation in consumed marine bivalves in Southeast Brazilian coast.

    Science.gov (United States)

    Lino, A S; Galvão, P M A; Longo, R T L; Azevedo-Silva, C E; Dorneles, P R; Torres, J P M; Malm, O

    2016-03-01

    This work aimed to investigate metal bioaccumulation by mussels (Perna perna) and Lion's Scallop (Nodipecten nodosus) farmed in tropical bays, in order to estimate spatial and temporal variation in the exposure to these elements, as well as human health risk. The concentration of each measured element was considered for this evaluation, using maximum residue level (MRL) in foods established by the Brazilian (ANVISA), American (USFDA) and European Communities (EC) legislations. Values for estimated daily ingestion (EDI) were determined for metals intake through mussel and scallop consumption. These estimates were compared with the reference value of (PTDI) proposed by World Health Organization (WHO). Trace elements concentration was measured on ninety mussels P. perna (tissue) and ninety Lion's Scallop N. nodosus (muscle and gonad) reared in four different tropical areas of the Southeast Brazilian coast, between 2009 and 2010. Zinc (Zn), Iron (Fe), Copper (Cu), Manganese (Mn), Chrome (Cr), Nickel (Ni), Cadmium (Cd) and Lead (Pb) concentrations were measured by flame atomic absorption spectrometry after acid mineralization. Cd and Mn were more efficiently bioaccumulated by scallops than mussels and the opposite was found for Fe, Cu and Ni. Guanabara Bay and Sepetiba Bay were considered the most impacted between ecosystems studied. Higher Cd values in Arraial do Cabo in the other sites studied were associated with upwelling that occurs in the region. Consumption of both species cannot be considered safe, because the Cu and Cr concentrations, in accordance with the limits established by the Brazilian Agency (ANVISA). On the other hand, any EDI value exceeded the corresponding value of the PTDI, proposed by World Health Organization (WHO). PMID:26854245

  14. Monitoring aquatic environments with autonomous systems

    DEFF Research Database (Denmark)

    Christensen, Jesper Philip Aagaard

    High frequency measurements from autonomous sensors have become a widely used tool among aquatic scientists. This report focus primarily on the use of ecosystem metabolism based on high frequency oxygen measurements and relates the calculations to spatial variation, biomass of the primary producers...... in epilimnion were primarily a result of metabolism and gas exchange with the atmosphere, while only 10% of the variation was due to physical movement of water across the thermocline. 3) Dense macrophyte populations in oligotrophic systems may have a higher GPP than expected based on nutrient...... conditions in the water phase and in shallow systems the macrophytes can completely dominate primary production. This was despite the fact that the plants in the studied system were light-saturated most of the light hours and occasionally carbon limited. It was also shown that the GPP and the total...

  15. Transfer of a cyanobacterial neurotoxin within a temperate aquatic ecosystem suggests pathways for human exposure

    OpenAIRE

    Jonasson, Sara; Eriksson, Johan; Berntzon, Lotta; Spáčil, Zdenĕk; Ilag, Leopold L.; Ronnevi, Lars-Olof; Rasmussen, Ulla; Bergman, Birgitta

    2010-01-01

    β-methylamino-L-alanine (BMAA), a neurotoxic nonprotein amino acid produced by most cyanobacteria, has been proposed to be the causative agent of devastating neurodegenerative diseases on the island of Guam in the Pacific Ocean. Because cyanobacteria are widespread globally, we hypothesized that BMAA might occur and bioaccumulate in other ecosystems. Here we demonstrate, based on a recently developed extraction and HPLC-MS/MS method and long-term monitoring of BMAA in cyanobacterial populatio...

  16. Evaluation of PCB bioaccumulation by Lumbriculus variegatus in field-collected sediments

    Science.gov (United States)

    Sediment bioaccumulation tests with Lumbriculus variegatus were performed on polychlorinated biphenyl (PCBs) contaminated sediment samples from the Hudson, Grasse, and Fox Rivers Superfund sites with concurrent measurement of PCB concentrations in sediment interstitial water. Th...

  17. Optimizing Stream Water Mercury Sampling for Calculation of Fish Bioaccumulation Factors

    Science.gov (United States)

    Mercury (Hg) bioaccumulation factors (BAFs) for game fishes are widely employed for monitoring, assessment, and regulatory purposes. Mercury BAFs are calculated as the fish Hg concentration (Hgfish) divided by the water Hg concentration (Hgwater) and, consequently, are sensitive ...

  18. Optimizing the use of rainbow trout hepatocytes for bioaccumulation assessments with fish

    Science.gov (United States)

    Measured rates of biotransformation by cryopreserved trout hepatocytes can be extrapolated to the whole animal as a means of predicting metabolism impacts on chemical bioaccumulation. Future use of these methods within a regulatory context requires, however, that they be standar...

  19. Molecular effects and bioaccumulation of levonorgestrel in the non-target organism Dreissena polymorpha

    DEFF Research Database (Denmark)

    Contardo-Jara, V.; Lorenz, Claudia; Pflugmacher, S.;

    2011-01-01

    Bioaccumulation and effects of the contraceptive hormone levonorgestrel were examined in the nontarget organism Dreissena polymorpha. Molecular biomarkers of biotransformation, elimination, antioxidant defence and protein damage were analyzed after exposure to increasing concentrations of levonor...

  20. DISTRIBUTION OF TOTAL AND METHYLMERCURY IN DIFFERENT ECOSYSTEM COMPARTMENTS IN THE EVERGLADES: IMPLICATIONS FOR MERCURY BIOACCUMULATION

    Science.gov (United States)

    Mercury (Hg) species distribution patterns among ecosystem compartments in the Everglades were analyzed at the landscape level in order to explore the implications of Hg distribution for Hg bioaccumulation, and to investigate major biogeochemical processes that are pertinent to t...

  1. Re-evaluation of metal bioaccumulation and chronic toxicity in Hyalella azteca using saturation curves and the biotic ligand model

    Energy Technology Data Exchange (ETDEWEB)

    Borgmann, U.; Norwood, W.P.; Dixon, D.G

    2004-10-01

    Bioaccumulation by Hyalella of all metals studied so far in our laboratory was re-evaluated to determine if the data could be explained satisfactorily using saturation models. Saturation kinetics are predicted by the biotic ligand model (BLM), now widely used in modelling acute toxicity, and are a pre-requisite if the BLM is to be applied to chronic toxicity. Saturation models provided a good fit to all the data. Since these are mechanistically based, they provide additional insights into metal accumulation mechanisms not immediately apparent when using allometric models. For example, maximum Cd accumulation is dependent on the hardness of the water to which Hyalella are acclimated. The BLM may need to be modified when applied to chronic toxicity. Use of saturation models for bioaccumulation, however, also necessitates the need for using saturation models for dose-response relationships in order to produce unambiguous estimates of LC50 values based on water and body concentrations. This affects predictions of toxicity at very low metal concentrations and results in lower predicted toxicity of mixtures when many metals are present at low concentrations.

  2. Differentiating aquatic plant communities in a eutrophic river using hyperspectral and multispectral remote sensing

    Science.gov (United States)

    Tian, Y.Q.; Yu, Q.; Zimmerman, M.J.; Flint, S.; Waldron, M.C.

    2010-01-01

    This study evaluates the efficacy of remote sensing technology to monitor species composition, areal extent and density of aquatic plants (macrophytes and filamentous algae) in impoundments where their presence may violate water-quality standards. Multispectral satellite (IKONOS) images and more than 500 in situ hyperspectral samples were acquired to map aquatic plant distributions. By analyzing field measurements, we created a library of hyperspectral signatures for a variety of aquatic plant species, associations and densities. We also used three vegetation indices. Normalized Difference Vegetation Index (NDVI), near-infrared (NIR)-Green Angle Index (NGAI) and normalized water absorption depth (DH), at wavelengths 554, 680, 820 and 977 nm to differentiate among aquatic plant species composition, areal density and thickness in cases where hyperspectral analysis yielded potentially ambiguous interpretations. We compared the NDVI derived from IKONOS imagery with the in situ, hyperspectral-derived NDVI. The IKONOS-based images were also compared to data obtained through routine visual observations. Our results confirmed that aquatic species composition alters spectral signatures and affects the accuracy of remote sensing of aquatic plant density. The results also demonstrated that the NGAI has apparent advantages in estimating density over the NDVI and the DH. In the feature space of the three indices, 3D scatter plot analysis revealed that hyperspectral data can differentiate several aquatic plant associations. High-resolution multispectral imagery provided useful information to distinguish among biophysical aquatic plant characteristics. Classification analysis indicated that using satellite imagery to assess Lemna coverage yielded an overall agreement of 79% with visual observations and >90% agreement for the densest aquatic plant coverages. Interpretation of biophysical parameters derived from high-resolution satellite or airborne imagery should prove to be a

  3. Bioaccumulation and depuration of chromium in the selected organs and whole body tissues of freshwater fish Cirrhinus mrigala individually and in binary solutions with nickel

    Institute of Scientific and Technical Information of China (English)

    PL. RM. Palaniappan; S. Karthikeyan

    2009-01-01

    Contamination of aquatic ecosystems with heavy metals has been receiving increased worldwide attention due to their harmful effects on human health and other organisms in the environment.Most of the studies dealing with toxic effects of metals deal with single metal species, while the aquatic organisms are typically exposed to mixtures of metals.Hence, in order to provide data supporting the usefulness of freshwater fish as indicators of heavy metal pollution, it has been proposed in the present study to investigate the bioaccumulation and depuration of chromium in the selected organs of freshwater fingerlings Cirrhinus mrigala, individually and in binary solutions with nickel.The results show that the kidney is a target organ for chromium accumulation, which implies that it is also the "critical" organ for toxic symptoms.The results further show that accumulation of nickel in all the tissues of C.mrigala is higher than that of chromium.In addition, the metal accumulations of the binary mixtures of chromium and nickel are substantially higher than those of the individual metals, indicating synergistic interactions between the two metals.Theoretically the simplest explanation for an additive joint action of toxicants in a mixture is that they act in a qualitatively similar way.The observed data suggest that C.mrigala could be suitable monitoring organisms to study the bioavailability of water-bound metals in freshwater habitats.

  4. Invertebrates in stormwater wet detention ponds - Sediment accumulation and bioaccumulation of heavy metals have no effect on biodiversity and community structure.

    Science.gov (United States)

    Stephansen, Diana Agnete; Nielsen, Asbjørn Haaning; Hvitved-Jacobsen, Thorkild; Pedersen, Morten Lauge; Vollertsen, Jes

    2016-10-01

    The invertebrate diversity in nine stormwater wet detention ponds (SWDP) was compared with the diversity in eleven small shallow lakes in the western part of Denmark. The SWDPs and lakes were chosen to reflect as large a gradient of pollutant loads and urbanization as possible. The invertebrates as well as the bottom sediments of the ponds and shallow lakes were analyzed for copper, iron, zinc, cadmium, chromium, lead, aluminum, nickel, arsenic and the potentially limiting nutrient, phosphorus. The Principal Component Analysis showed that invertebrates in SWDPs and lakes differed with respect to bioaccumulation of these elements, as did the sediments, albeit to a lesser degree. However, the Detrended Correspondence Analysis and the TWINSPAN showed that the invertebrate populations of the ponds and lakes could not be distinguished, with the possible exception of highway ponds presenting a distinct sub-group of wet detention ponds. The SWDPs and shallow lakes studied seemed to constitute aquatic ecosystems of similar taxon richness and composition as did the 11 small and shallow lakes. This indicates that SWDPs, originally constructed for treatment and flood protection purposes, become aquatic environments which play a local role for biodiversity similar to that of natural small and shallow lakes. PMID:27302374

  5. A Study on Bioaccumulation of Heavy Metals in two Anuran Tadpoles:Clinotarsus Alticola and Leptobrachium Smithi From Rosekandy Tea Estate, Cachar, Assam

    Directory of Open Access Journals (Sweden)

    Pammi Singh1,

    2016-04-01

    Full Text Available Considering the significance of heavy metal pollution in aquatic system bioaccumulation of heavy metals in two species of tadpoles namely Clinotarsus alticola and Leptobrachium smithicollected from tea gardens of Barak valley, Assam was studied. Aquatic life is affected by heavy metal pollutants present in water as well as in sediment. The result of the study revealed that the concentration of iron, chromium, cadmium and lead in water samples was higher than the permissible limit of 0.3, 0.05, 0.003, 0.01 mg/L respectively but that of copper and zinc concentration was within the maximum permissible limit of 2 mg/L and 3 mg/L (WHO, 2005. The accumulation pattern of different heavy metals in different organs viz., intestine, liver and tail was studied.Overall the metal burden in different organs of Clinotarsus alticola and Leptobrachium smithi was in the order of liver>tail>intestine. Liver had highest accumulation of metals while intestine accumulated the least.Iron (Fe was highly and zinc (Zn was the least accumulated metal in both the tadpoles. The accumulation of heavy metals might be due to tea plantation influx water, domestic and associated anthropogenic activities.

  6. Uptake and Bioaccumulation of Heavy Metals in Rice Plants as Affect by Water Saving Irrigation

    OpenAIRE

    Linxian Liao; Junzeng Xu; Shizhang Peng; Zhenfang Qiao; Xiaoli Gao

    2013-01-01

    To reveal the impact of Non-Flooding controlled Irrigation (NFI) on the bioavailability and bioaccumulation of metals (Cu, Pb, Cd and Cr) in rice fields, metals concentration in different organs of rice plant growing under both Flooding Irrigation (FI) and NFI were measured. It indicated that metals concentrations in root are always the highest one among all the plant organs and in the spike is the lowest. Compared with FI rice, NFI resulted in higher metal concentrations, bioaccumulation fac...

  7. Bioaccumulation and histopathological alteration of total lead in selected fishes from Manila Bay, Philippines

    OpenAIRE

    GLENN L. SIA SU; Gliceria B. Ramos; Sia Su, Maria Lilibeth L.

    2013-01-01

    This study aims to assess the bioaccumulation of total lead and the effect of heavy metal on the muscles of fish obtained in the coastal lagoon of the Manila Bay. Fish species muscles were assessed for lead concentrations and were examined for histological alterations. Results showed that lead bioaccumulation in the muscles, and a degree of disintegration in the muscle fibers of all the fish examined were found.

  8. Phytoremediation Potential of Aquatic Macrophyte, Azolla

    OpenAIRE

    Sood, Anjuli; Uniyal, Perm L.; Prasanna, Radha; Ahluwalia, Amrik S.

    2011-01-01

    Aquatic macrophytes play an important role in the structural and functional aspects of aquatic ecosystems by altering water movement regimes, providing shelter to fish and aquatic invertebrates, serving as a food source, and altering water quality by regulating oxygen balance, nutrient cycles, and accumulating heavy metals. The ability to hyperaccumulate heavy metals makes them interesting research candidates, especially for the treatment of industrial effluents and sewage waste water. The us...

  9. Systematic model of metal and radionuclide bioaccumulation in crocodilian and molluscan calcified tissues

    International Nuclear Information System (INIS)

    Bioaccumulating organisms routinely concentrate a variety of contaminants from their aquatic medium. Discerning any underlying factors that explain patterns of accumulation in a systematic way improves both the theoretical basis of our understanding of bioacccumulation and our ability to correctly interpret environmental signals that are represented by a tissue concentration or set of contaminant concentrations. Operational predictors of variance between individuals in their contaminant tissue concentrations also enhance our ability to statistically demonstrate increases above background, allowing us to infer increased environmental exposure with more confidence. Our recent investigations have focussed on concentrations of Pb in the osteoderms (dermal bones on the dorsal surface) of crocodiles in a study designed to monitor their contemporary and historical contamination status. The associated environmental sampling program also provided the opportunity to more broadly investigate patterns of metal and radionuclide accumulation in this calcified vertebrate tissue. These studies on the estuarine crocodile (Crocodylus porosus) showed that both biotic and geographical factors can affect osteodermal and flesh concentrations for a variety of elements. A current study determined the metal concentrations and their predictors for the osteoderms of Australian freshwater crocodiles (Crocodylus johnstoni) from a single geographically restricted area, where each sampled individual was well characterised with respect to site fidelity, reproductive status and age, extending up to 63 years. Crocodile size, age and osteoderm calcium concentration were highly significant (P<0.001) predictors of the osteoderm concentrations of a range of metals. Osteodermal metal concentrations were inversely related to both size and age, but positively related to osteoderm calcium concentration, that could explain up to 92% of variance between individuals. Relative to calcium concentration, the

  10. Effects of storage on sediment toxicity, bioaccumulation potential, and chemistry. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Tatem, H.E.; Brandon, D.L.; Lee, C.R.; Jarvis, A.S.; Rhett, R.G.

    1991-01-01

    Current guidance on storage of sediments for bioassay/bioaccumulation tests requires that samples be held at 4 C and used within 2 weeks of collection. The objective of this study was to determine the effects of sediment storage for 40 weeks on sediment toxicity, bioaccumulation potential, and chemical analyses. Toxicity and bioaccumulation tests were conducted five times during 40 weeks of storage. Chemical analyses were performed three times during this period. The data indicate that sediments can be held for longer than 2 to 4 weeks, in many cases, without significant effect on test results. However, results of the study also show that tests performed at different times can produce different results. This study showed that a sediment that was toxic to mysids remained toxic during 16 weeks of sediment storage. Two sediments that were toxic initially continued to show significant toxicity after 8 and 16 weeks of sediment storage. One sediment, not toxic initially or at 4 weeks, changed during storage, becoming significantly toxic compared to the Atlantic Ocean (Ref) sediment. The bioaccumulation results showed that certain sediment contaminants (lead, mercury, polychlorinated biphenyls, and some polycyclic aromatic hydrocarbons, PAHs), generally do not reveal a statistical change in bioaccumulation, relative to Ref animals, during 16 weeks of sediment storage. Other PAHs, including phenanthrene, anthracene, benzo (a) anthracene, and chrysene, did change in bioaccumulation potential during storage.

  11. Bioaccumulation of cadmium bound to ferric hydroxide and particulate organic matter by the bivalve M. meretrix

    International Nuclear Information System (INIS)

    Ferric hydroxide and particulate organic matter are important pools of trace metals in sediments and control their accumulation by benthic animals. We investigated bioaccumulation of cadmium in bivalve Meretrix meretrix by using a simplified system of laboratory synthesized iron oxides and commercially obtained humic acids to represent the inorganic and organic matrix found in nature. The results showed that bioaccumulation characteristics were distinctly different for these two substrates. Bioaccumulation from ferric hydroxide was not observed at 70 and 140 mg/kg, while the clams started to absorb Cd at 140 mg/kg from organic matter and the bioaccumulation rate was faster than that from ferric hydroxide. Within 28 d, accumulation of Cd from organic matter appeared to reach a steady state after rising to a certain level, while absorption from ferric hydroxide appeared to follow a linear profile. The findings have implications about the assimilation of trace metals from sediments by benthic animals. - Highlights: ► Accumulation of Cd adsorbed on ferric hydroxide and particulate organics was studied. ► Bioaccumulation characteristics were distinctly different for the substrates. ► The result was attributed to different properties and bio-responses of the particles. ► Bivalves may not accumulate more metals associated with more bioavailable particles. - Bioaccumulation characteristics of adsorbed Cd on ferric hydroxide and particulate organic matter by bivalve M. meretrix are distinctly different.

  12. Comparing trace metal bioaccumulation characteristics of three freshwater decapods of the genus Macrobrachium.

    Science.gov (United States)

    Cresswell, Tom; Smith, Ross E W; Nugegoda, Dayanthi; Simpson, Stuart L

    2014-07-01

    Potential sources and kinetics of metal bioaccumulation by the three Macrobrachium prawn species M. australiense, M. rosenbergii and M. latidactylus were assessed in laboratory experiments. The prawns were exposed to two scenarios: cadmium in water only; and exposure to metal-rich mine tailings in the same water. The cadmium accumulation from the dissolved exposure during 7 days, followed by depuration in cadmium-free water for 7 days, was compared with predictions from a biokinetic model that had previously been developed for M. australiense. M. australiense and M. latidactylus accumulated significant tissue cadmium during the exposure phase, albeit with different uptake rates. All three species retained >95% of the bioaccumulated cadmium during the depuration phase, indicating very slow efflux rates. Following exposure to tailings, there were significant (pmine tailings, demonstrating the importance of an ingestion pathway for these metals. Copper was not bioaccumulated above control concentrations for any species. The differences between the metal accumulation of the three prawns indicated that a biokinetic model of cadmium bioaccumulation for M. australiense could potentially be used to describe the metal bioaccumulation of the other two prawn species, albeit with an over-prediction of 3-9 times. Despite these being the same genus of decapod crustacean, the study highlights the issues with using surrogate species, even under controlled laboratory conditions. It is recommended that future studies using surrogate species quantify the metal bioaccumulation characteristics of each species in order to account for any differences between species. PMID:24800868

  13. Aquatic plants clean wastewater lagoons

    Energy Technology Data Exchange (ETDEWEB)

    1980-09-01

    Water weeds that grow profusely in warm tropical and subtropical regions have always been considered a nuisance; current research is focusing on methods to cull benefits from such aquatic proliferations. Weeds, especially the water hyacinth, are proving to be useful in the purification of wastewater lagoons. The plants extract inorganic and organic toxicants from the effluent. Hyacinths employed in experiments conducted in Puerto Rico are removed from the lagoons to prevent overcrowding. This harvest is sent through a digester to produce methane. (2 diagrams, 3 photos)

  14. EPA Region 7 Aquatic Focus Areas (ECO_RES.R7_AQUATIC_FOCUS_AREAS)

    Data.gov (United States)

    U.S. Environmental Protection Agency — This shapefile consists of 347 individual Aquatic Ecological System (AES) polygons that are the Aquatic Conservation Focus Areas for EPA Region 7. The focus areas...

  15. Radioactivity in the Canadian aquatic environment

    International Nuclear Information System (INIS)

    Sources of radionuclides arising from natural anthropogenic processes as well as technologically enhanced natural radiation are discussed. Transport, distribution and behaviour of these radionuclides in aquatic systems are influenced by physical, chemical, biological and geological processes and conditions in freshwater and marine environments. Dosimetry of aquatic organisms, as well as various methods of measuring dose rate are presented. Effects of ionizing radiation (acute and chronic exposure) on aquatic organisms, populations and ecosystems are reviewed. This review covers the entire spectrum of the aquatic environment. Results of many studies are summarized. 300+ refs

  16. Think before you flush! A sustainable aquatic eco-system's relation to human health.

    Science.gov (United States)

    McKeown, Elaine; Pawloski, Judith

    2013-01-01

    What we do every day at work and in our home lives can make a difference in the quality of our environment. Consider, for example, the flushing of pharmaceuticals into the sewer system can lead to water pollution resulting in a threat to aquatic and human life. In contrast, keeping aquatic life healthy may contribute to human health. Some aquatic-based medications are currently on the market. Others are in various stages of development. In this article the authors argue that, for the benefit of both human and marine life, it is time to implement safer disposal methods for unwanted medications. The authors begin by sharing nursing's guiding principles for environmental health; after which they review research related to pharmaceutical pollution of water resources; describe health care treatments derived from marine life; and discuss suggestions for promoting aquatic health. They conclude that by taking care to preserve aquatic life, we contribute to the quality of our own human lives. PMID:23452193

  17. Development of freshwater aquatic life criteria for Tetrabromobisphenol A in China

    International Nuclear Information System (INIS)

    Tetrabromobisphenol A (TBBPA) is the most widely used brominated flame retardant. It has been detected in the environment and has shown to high toxicity to aquatic organisms. To date no aquatic life criteria for TBBPA have been proposed. This work compiled all literature toxicity data of TBBPA on Chinese aquatic species. Eight resident Chinese aquatic organisms were used in toxicity tests to supplement the existing toxicity data for TBBPA. Ten genera mean acute values and three genera mean chronic values to freshwater aquatic animals, as well as two genera toxicity values to aquatic plants were collected. A criterion maximum concentration of 0.1475 mg/L and a criterion continuous concentration of 0.0126 mg/L were derived based on these data, according to the U.S. Environmental Protection Agency guidelines. These criteria may be useful in risk assessment of TBBPA in the ambient water environment. - Highlights: ► We collected all the published toxicity data of TBBPA to aquatic organisms. ► We performed acute and chronic toxicity testes with eight Chinese resident aquatic species. ► The acute and chronic water quality criteria of TBBPA were developed and validated. ► This work is valuable to predict the risks posed by TBBPA in ambient water environment. - An acute water quality criterion of 0.1475 mg/L and a chronic water quality criterion of 0.0126 mg/L for TBBPA in China were developed according to USEPA guidelines.

  18. Chromium accumulation in submerged aquatic plants treated with tannery effluent at Kanpur, India.

    Science.gov (United States)

    Gupta, Kiran; Gaumat, Sumati; Mishra, Kumkum

    2011-09-01

    Aquatic macrophytes have been widely studied because of their capability of absorbing contaminants from water and their subsequent use in biomonitoring. This study presents a comparison of Cr accumulating potential of submerged aquatic plants viz Vallisneria spiralis and Hydrilla verticillata. These plants were treated with various concentrations of treated tannery effluent collected from UASB, Jajmau, Kanpur under repeated exposure in controlled laboratory conditions in order to assess their maximum bioaccumulation potential. The maximum accumulation of 385.6 and 201.6 microg g(-1) dry weight was found in roots of V. spiralis and the whole plants of H. verticillata, respectively at 100% concentration after 9th day of effluent exposure. The chlorophyll and protein content of both species decreased with increase in effluent concentration and duration. At highest concentration and duration a maximum reduction of 67.4 and 62.66% in total chlorophyll content, 9.97 and 4.66% in carotenoid content and 62.66 and 59.36% in protein content was found in V. spiralis and H. verticillata respectively. Anatomical studies in both V. spiralis and H. verticillata was carried out to assess the effects of metal accumulation within the plants. Changes in the anatomical structures of both plants exhibits the capacity of these species to act as indicator of effluent toxicity. The high accumulation potential of Cr by both plants revealed their capability to remove pollutants from effluent. PMID:22319874

  19. β-N-methylamino-L-alanine (BMAA) metabolism in the aquatic macrophyte Ceratophyllum demersum.

    Science.gov (United States)

    Downing, Simoné; Esterhuizen-Londt, Maranda; Grant Downing, Timothy

    2015-10-01

    The cyanobacterial neurotoxin, β-N-methylamino-l-alanine (BMAA) bioaccumulates and biomagnifies within the environment. However, most reports on the environmental presence of BMAA focus on the presence of BMAA in animals rather than in plants. Various laboratory studies have reported that this neurotoxin, implicated in neurodegenerative disease, is rapidly taken up by various aquatic and terrestrial plants, including crop plants. In this study the metabolism of BMAA in the aquatic macrophyte, Ceratophyllum demersum, was investigated using stable isotopically labelled BMAA. Data show that the toxin is rapidly removed from the environment by the plant. However, during depuration cellular BMAA concentrations decrease considerably, without excretion of the toxin back into the environment and without catabolism of BMAA, evidenced by the absence of label transfer to other amino acids. This strongly suggests that BMAA is metabolised via covalent modification and sequestered inside the plant as a BMAA-derivative. This modification may be reversed in humans following consumption of BMAA-containing plant material. These data therefore impact on the assessment of the risk of human exposure to this neurotoxin. PMID:26036420

  20. Bioaccumulation of macro- and trace elements by European frogbit (Hydrocharis morsus-ranae L.) in relation to environmental pollution.

    Science.gov (United States)

    Polechońska, Ludmiła; Samecka-Cymerman, Aleksandra

    2016-02-01

    The aim of present study was to investigate the level of trace metals and macroelements in Hydrocharis morsus-ranae collected from regions differing in the degree and type of pollution. Concentrations of 17 macro- and microelements were determined in roots and shoots of European frogbit as well as in water and bottom sediments from 30 study sites. Plants differed in concentrations of elements and bioaccumulation capacity depending on the characteristics of dominant anthropogenic activities in the vicinity of the sampling site. Shoots of H. morsus-ranae growing in the vicinity of organic chemistry plants and automotive industry contained particularly high levels of Cd, Co, and S. Plants from area close to heat and power plant, former ferrochrome industry and new highway, were distinguished by the highest concentrations of Cr, Cu, and Pb. European frogbit from both these regions contained more Fe, Hg, Mn, Ni, and Zn than plants from agricultural and recreational areas. The concentrations of alkali metals and Co, Fe, and N in H. morsus-ranae were elevated in relation to the natural content in macrophytes irrespectively to their content in the environment. Based on the values of Bioaccumulation and Translocation Factors, European frogbit is an accumulator for Co, Cr, Cu, Fe, K, Mn, Ni, Pb, and Zn and a good candidate for phytoremediation of water polluted with Co, Cu, Hg, K, Mn, and Ni. The amount of Co and Mn removed from water and accumulated in the plant biomass during the vegetation season was considerably high. PMID:26490926

  1. Application of silicone rubber passive samplers to investigate the bioaccumulation of PAHs by Nereis virens from marine sediments

    International Nuclear Information System (INIS)

    The availability of polycyclic aromatic hydrocarbons (PAHs) from marine sediments to the ragworm (Nereis virens) was studied. Concentrations of PAHs in pore waters were determined using silicone rubber passive samplers. Calculated bioconcentration factors confirmed that partitioning of PAHs between the lipid phase of the polychaetes and pore water is a passive process. Low biota-sediment accumulation factors (BSAF) calculated using total sediment concentration suggested a fraction of the total PAH burden in the sediment may be strongly sorbed to organic carbon and not available to the polychaete. Organic carbon normalised concentrations of the potentially exchangeable fractions of contaminants and freely dissolved concentrations (measured using silicone rubber samplers) provide a better description of the observed bioaccumulation by the ragworms. These data indicate that the concept of availability should be included in environmental risk assessments based upon equilibrium partitioning models, and that silicone rubber samplers can provide the necessary information for these models. - Highlights: → PAH availability from marine sediments to Nereis virens. → Utilised silicone rubber samplers to measure PAH freely dissolved concentrations. → Fraction of PAH burden not available for uptake by polychaete. → Concept of availability should be incorporated in equilibrium partitioning models. - Silicone rubber samplers provide data on availability of PAHs from marine sediments which improves determination of bioaccumulation potential in Nereis virens.

  2. Application of silicone rubber passive samplers to investigate the bioaccumulation of PAHs by Nereis virens from marine sediments

    Energy Technology Data Exchange (ETDEWEB)

    Yates, Kyari, E-mail: k.yates@rgu.ac.uk [School of Pharmacy and Life Sciences, Robert Gordon University, Aberdeen, AB25 1HG (United Kingdom); Pollard, Pat [School of Pharmacy and Life Sciences, Robert Gordon University, Aberdeen, AB25 1HG (United Kingdom); Davies, Ian M.; Webster, Lynda [Marine Scotland Science Marine Laboratory, 375 Victoria Road, Aberdeen, AB11 9DB (United Kingdom); Moffat, Colin F. [Marine Scotland Science Marine Laboratory, 375 Victoria Road, Aberdeen, AB11 9DB (United Kingdom); School of Pharmacy and Life Sciences, Robert Gordon University, Aberdeen, AB25 1HG (United Kingdom)

    2011-12-15

    The availability of polycyclic aromatic hydrocarbons (PAHs) from marine sediments to the ragworm (Nereis virens) was studied. Concentrations of PAHs in pore waters were determined using silicone rubber passive samplers. Calculated bioconcentration factors confirmed that partitioning of PAHs between the lipid phase of the polychaetes and pore water is a passive process. Low biota-sediment accumulation factors (BSAF) calculated using total sediment concentration suggested a fraction of the total PAH burden in the sediment may be strongly sorbed to organic carbon and not available to the polychaete. Organic carbon normalised concentrations of the potentially exchangeable fractions of contaminants and freely dissolved concentrations (measured using silicone rubber samplers) provide a better description of the observed bioaccumulation by the ragworms. These data indicate that the concept of availability should be included in environmental risk assessments based upon equilibrium partitioning models, and that silicone rubber samplers can provide the necessary information for these models. - Highlights: > PAH availability from marine sediments to Nereis virens. > Utilised silicone rubber samplers to measure PAH freely dissolved concentrations. > Fraction of PAH burden not available for uptake by polychaete. > Concept of availability should be incorporated in equilibrium partitioning models. - Silicone rubber samplers provide data on availability of PAHs from marine sediments which improves determination of bioaccumulation potential in Nereis virens.

  3. Passive electroreception in aquatic mammals.

    Science.gov (United States)

    Czech-Damal, Nicole U; Dehnhardt, Guido; Manger, Paul; Hanke, Wolf

    2013-06-01

    Passive electroreception is a sensory modality in many aquatic vertebrates, predominantly fishes. Using passive electroreception, the animal can detect and analyze electric fields in its environment. Most electric fields in the environment are of biogenic origin, often produced by prey items. These electric fields can be relatively strong and can be a highly valuable source of information for a predator, as underlined by the fact that electroreception has evolved multiple times independently. The only mammals that possess electroreception are the platypus (Ornithorhynchus anatinus) and the echidnas (Tachyglossidae) from the monotreme order, and, recently discovered, the Guiana dolphin (Sotalia guianensis) from the cetacean order. Here we review the morphology, function and origin of the electroreceptors in the two aquatic species, the platypus and the Guiana dolphin. The morphology shows certain similarities, also similar to ampullary electroreceptors in fishes, that provide cues for the search for electroreceptors in more vertebrate and invertebrate species. The function of these organs appears to be very similar. Both species search for prey animals in low-visibility conditions or while digging in the substrate, and sensory thresholds are within one order of magnitude. The electroreceptors in both species are innervated by the trigeminal nerve. The origin of the accessory structures, however, is completely different; electroreceptors in the platypus have developed from skin glands, in the Guiana dolphin, from the vibrissal system. PMID:23187861

  4. Radiotracer techniques for studying pollutant bioaccumulation in marine organisms

    International Nuclear Information System (INIS)

    Full text: Nuclear techniques can be used to improve our understanding of the processes involved in the transfer of radionuclides and conventional contaminants through coastal marine environments. In particular, the ability to radio analyse live organisms and the increased sensitivity of radiotracer detection allows reducing considerably biological variation, measuring contaminant biokinetics over the long term in a limited number of individuals, and studying marine organisms and contaminant transfer mechanisms that can not be easily investigated using standard analytical techniques. This overview highlights some of the advantages of radiotracer techniques by illustrating three examples of studies carried out at IAEA-MEL. Jellyfish is a primary example of organisms whose study involves several practical problems due to their gelatinous nature and high water content. Hence, data are extremely sparse on the bioaccumulation of metals and other contaminants in these organisms. The use of radiotracer approaches has allowed us to demonstrate that jellyfish readily take up heavy metals and radionuclides (e.g., Co, Zn, Ag, Cd, 137Cs, 241Am) both from sea water and food (CF up to 4x102 ) and efficiently retain them in their tissues (Tb. up to several weeks). Given the fact that they constitute an important biomass in the oceans and are also efficient metal bio accumulators, our results indicate that jellyfish likely plays an important role in the biological transfer and recycling of heavy metal contaminants in the marine environment. Another example of a major constraint of classical analytical techniques is evaluating contaminant biokinetics over the long term. Using γspectrometric techniques (Ge detector), we were able to follow the heavy metal silver in a small number of crabs (n=20) that were allowed to ingest briefly (single feeding) shrimp previously labeled with 110mAg. Loss kinetics of ingested 110mAg followed in each crab for 4 months indicated that the turnover

  5. Comparing trace metal bioaccumulation characteristics of three freshwater decapods of the genus Macrobrachium

    International Nuclear Information System (INIS)

    Highlights: • Exposed three species of prawns of same genus to solid- and dissolved-phase metals. • Cd bioaccumulated from dissolved phase was significantly different between species. • All three species retained >95% of bioaccumulated Cd during the depuration phase. • Bioaccumulation of As, Pb and Zn from solid phase was different between species. • Results highlight variability among species, even under controlled conditions. - Abstract: Potential sources and kinetics of metal bioaccumulation by the three Macrobrachium prawn species M. australiense, M. rosenbergii and M. latidactylus were assessed in laboratory experiments. The prawns were exposed to two scenarios: cadmium in water only; and exposure to metal-rich mine tailings in the same water. The cadmium accumulation from the dissolved exposure during 7 days, followed by depuration in cadmium-free water for 7 days, was compared with predictions from a biokinetic model that had previously been developed for M. australiense. M. australiense and M. latidactylus accumulated significant tissue cadmium during the exposure phase, albeit with different uptake rates. All three species retained >95% of the bioaccumulated cadmium during the depuration phase, indicating very slow efflux rates. Following exposure to tailings, there were significant (p < 0.05) differences in tissue arsenic, cadmium, lead and zinc concentrations among species. Cadmium and zinc concentrations were increased relative to controls for all three species but were not different between treatments (direct/indirect contact with tailings), suggesting these metals were primarily accumulated via the dissolved phase. All species bioaccumulated significantly greater arsenic and lead when in direct contact with mine tailings, demonstrating the importance of an ingestion pathway for these metals. Copper was not bioaccumulated above control concentrations for any species. The differences between the metal accumulation of the three prawns indicated

  6. Comparing trace metal bioaccumulation characteristics of three freshwater decapods of the genus Macrobrachium

    Energy Technology Data Exchange (ETDEWEB)

    Cresswell, Tom, E-mail: tom.cresswell@ansto.gov.au [Centre for Environmental Contaminants Research, CSIRO Land and Water, New Illawarra Rd, Lucas Heights, 2234, NSW (Australia); School of Applied Sciences, RMIT University, Plenty Road, Bundoora 3083, VIC (Australia); Smith, Ross E.W. [Hydrobiology, Lang Parade, Auchenflower 4066, QLD (Australia); Nugegoda, Dayanthi [School of Applied Sciences, RMIT University, Plenty Road, Bundoora 3083, VIC (Australia); Simpson, Stuart L. [Centre for Environmental Contaminants Research, CSIRO Land and Water, New Illawarra Rd, Lucas Heights, 2234, NSW (Australia)

    2014-07-01

    Highlights: • Exposed three species of prawns of same genus to solid- and dissolved-phase metals. • Cd bioaccumulated from dissolved phase was significantly different between species. • All three species retained >95% of bioaccumulated Cd during the depuration phase. • Bioaccumulation of As, Pb and Zn from solid phase was different between species. • Results highlight variability among species, even under controlled conditions. - Abstract: Potential sources and kinetics of metal bioaccumulation by the three Macrobrachium prawn species M. australiense, M. rosenbergii and M. latidactylus were assessed in laboratory experiments. The prawns were exposed to two scenarios: cadmium in water only; and exposure to metal-rich mine tailings in the same water. The cadmium accumulation from the dissolved exposure during 7 days, followed by depuration in cadmium-free water for 7 days, was compared with predictions from a biokinetic model that had previously been developed for M. australiense. M. australiense and M. latidactylus accumulated significant tissue cadmium during the exposure phase, albeit with different uptake rates. All three species retained >95% of the bioaccumulated cadmium during the depuration phase, indicating very slow efflux rates. Following exposure to tailings, there were significant (p < 0.05) differences in tissue arsenic, cadmium, lead and zinc concentrations among species. Cadmium and zinc concentrations were increased relative to controls for all three species but were not different between treatments (direct/indirect contact with tailings), suggesting these metals were primarily accumulated via the dissolved phase. All species bioaccumulated significantly greater arsenic and lead when in direct contact with mine tailings, demonstrating the importance of an ingestion pathway for these metals. Copper was not bioaccumulated above control concentrations for any species. The differences between the metal accumulation of the three prawns indicated

  7. Cone visual pigments of aquatic mammals.

    Science.gov (United States)

    Newman, Lucy A; Robinson, Phyllis R

    2005-01-01

    It has long been hypothesized that the visual systems of animals are evolutionarily adapted to their visual environment. The entrance many millions of years ago of mammals into the sea gave these new aquatic mammals completely novel visual surroundings with respect to light availability and predominant wavelengths. This study examines the cone opsins of marine mammals, hypothesizing, based on previous studies [Fasick et al. (1998) and Levenson & Dizon (2003)], that the deep-dwelling marine mammals would not have color vision because the pressure to maintain color vision in the dark monochromatic ocean environment has been relaxed. Short-wavelength-sensitive (SWS) and long-wavelength-sensitive (LWS) cone opsin genes from two orders (Cetacea and Sirenia) and an additional suborder (Pinnipedia) of aquatic mammals were amplified from genomic DNA (for SWS) and cDNA (for LWS) by PCR, cloned, and sequenced. All animals studied from the order Cetacea have SWS pseudogenes, whereas a representative from the order Sirenia has an intact SWS gene, for which the corresponding mRNA was found in the retina. One of the pinnipeds studied (harp seal) has an SWS pseudogene, while another species (harbor seal) appeared to have an intact SWS gene. However, no SWS cone opsin mRNA was found in the harbor seal retina, suggesting a promoter or splice site mutation preventing transcription of the gene. The LWS opsins from the different species were expressed in mammalian cells and reconstituted with the 11-cis-retinal chromophore in order to determine maximal absorption wavelengths (lambda(max)) for each. The deeper dwelling Cetacean species had blue shifted lambda(max) values compared to shallower-dwelling aquatic species. Taken together, these findings support the hypothesis that in the monochromatic oceanic habitat, the pressure to maintain color vision has been relaxed and mutations are retained in the SWS genes, resulting in pseudogenes. Additionally, LWS opsins are retained in the

  8. Colorado Plateau Rapid Ecoregion Assessment Conservation Elements: Aquatic Intactness (HUC5)

    Data.gov (United States)

    Bureau of Land Management, Department of the Interior — This map provides an estimate of current and near-term aquatic intactness, which is based on the results of a fuzzy logic model integrating land use, water quality,...

  9. Aquatic Species Project report, FY 1989--1990

    Energy Technology Data Exchange (ETDEWEB)

    Brown, L.M.; Sprague, S.

    1992-01-01

    This report summarizes the progress and research accomplishments of the Aquatic Species Project. The four articles included are summaries of individual research projects and are entered into the EDB as such. The goal of the Aquatic Species Project is to develop the technology base for large-scale production of oil-rich microalgae. The project is also developing methods to convert the microalgal lipids into liquid fuels needed for industry and transportation. Researchers in the Aquatics Species Project focus on the use of microalgae as a feedstock for producing renewable, high-energy liquid fuels such as diesel. It is important for the United States to develop alternative renewable oil sources because 42% of the current energy market in the United States is for liquid fuels, and 38% of these fuels are imported. In 1979, the US Department of Energy (DOE) and the National Renewable Energy Laboratory (NREL) initiated the Aquatic Species Project as part of the overall effort in biofuels. The project began to focus exclusively on fuels from microalgae in 1982. Estimates show that the technology being developed by the project can provide as much as 7% of the total current energy demand. The program`s basic premise is that microalgae, which have been called the most productive biochemical factories in the world, can produce up to 30 times more oil per unit of growth area than land plants. Selected papers were processed separately for inclusion in the Energy Science and Technology Database.

  10. Aquatic plant surface as a niche for methanotrophs

    Directory of Open Access Journals (Sweden)

    Naoko eYoshida

    2014-02-01

    Full Text Available This study investigated the potential local CH4 sink in various plant parts as a boundary environment of CH4 emission and consumption. By comparing CH4 consumption activities in cultures inoculated with parts from 39 plant species, we observed significantly higher consumption of CH4 associated with aquatic plants than other emergent plant parts such as woody plant leaves, macrophytic marine algae, and sea grass. In situ activity of CH4 consumption by methanotrophs associated with different species of aquatic plants was in the range of 3.7 – 37 μmol⋅h-1⋅g-1 dry weight, which was ca 5.7-370 fold higher than epiphytic CH4 consumption in submerged parts of emergent plants. The qPCR-estimated copy numbers of the particulate methane monooxygenase-encoding gene pmoA were variable among the aquatic plants and ranged in the order of 105 to 107 copies⋅g-1 dry weight, which correlated with the observed CH4 consumption activities. Phylogenetic identification of methanotrophs on aquatic plants based on the pmoA sequence analysis revealed a predominance of diverse gammaproteobacterial type-I methanotrophs, including a phylotype of a possible plant-associated methanotroph with the closest identity (86-89% to Methylocaldum gracile.

  11. Spatial Pattern Dynamics in Aquatic Ecosystem Modelling

    NARCIS (Netherlands)

    Hong Li

    2009-01-01

    In this thesis, several modelling approaches are explored to represent spatial pattern dynamics of aquatic populations in aquatic ecosystems by the combination of models, knowledge and data in different scales. It is shown that including spatially distributed inputs retrieved from Remote Sensing i

  12. Control of Fish and Aquatic Plants.

    Science.gov (United States)

    Hesser, R. B.; And Others

    This agriculture extension service publication from Pennsylvania State University is a handbook for the water body manager. The bulk of the contents deals with aquatic plant control. The different types of aquatic plants, their reproduction and growth, and their role in the ecology of the water body are introduced in this main section. Also, the…

  13. Estimating Aquatic Insect Populations. Introduction to Sampling.

    Science.gov (United States)

    Chihuahuan Desert Research Inst., Alpine, TX.

    This booklet introduces high school and junior high school students to the major groups of aquatic insects and to population sampling techniques. Chapter 1 consists of a short field guide which can be used to identify five separate orders of aquatic insects: odonata (dragonflies and damselflies); ephemeroptera (mayflies); diptera (true flies);…

  14. Co-occurrence of the cyanotoxins BMAA, DABA and anatoxin-a in Nebraska reservoirs, fish, and aquatic plants.

    Science.gov (United States)

    Al-Sammak, Maitham Ahmed; Hoagland, Kyle D; Cassada, David; Snow, Daniel D

    2014-02-01

    Several groups of microorganisms are capable of producing toxins in aquatic environments. Cyanobacteria are prevalent blue green algae in freshwater systems, and many species produce cyanotoxins which include a variety of chemical irritants, hepatotoxins and neurotoxins. Production and occurrence of potent neurotoxic cyanotoxins β-N-methylamino-L-alanine (BMAA), 2,4-diaminobutyric acid dihydrochloride (DABA), and anatoxin-a are especially critical with environmental implications to public and animal health. Biomagnification, though not well understood in aquatic systems, is potentially relevant to both human and animal health effects. Because little is known regarding their presence in fresh water, we investigated the occurrence and potential for bioaccumulation of cyanotoxins in several Nebraska reservoirs. Collection and analysis of 387 environmental and biological samples (water, fish, and aquatic plant) provided a snapshot of their occurrence. A sensitive detection method was developed using solid phase extraction (SPE) in combination with high pressure liquid chromatography-fluorescence detection (HPLC/FD) with confirmation by liquid chromatography-tandem mass spectrometry (LC/MS/MS). HPLC/FD detection limits ranged from 5 to 7 µg/L and LC/MS/MS detection limits were BMAA in about 18.1%, DABA in 17.1%, and anatoxin-a in 11.9%. PMID:24476710

  15. Impact of hypoxia on hemolymph contamination by uranium in an aquatic animal, the freshwater clam Corbicula fluminea

    Energy Technology Data Exchange (ETDEWEB)

    Tran, Damien [Universite Bordeaux 1, CNRS, UMR 5805 EPOC, Place du Dr Peyneau, 33120 Arcachon (France)], E-mail: d.tran@epoc.u-bordeaux1.fr; Massabuau, Jean-Charles [Universite Bordeaux 1, CNRS, UMR 5805 EPOC, Place du Dr Peyneau, 33120 Arcachon (France)], E-mail: jc.massabuau@epoc.u-bordeaux1.fr; Garnier-Laplace, Jacqueline [Laboratoire de Radioecologie et Ecotoxicologie, Institut de Radioprotection et de Surete Nucleaire, Cadarache, Bat. 186, BP3, 13115 Saint Paul-Lez-Durance, Cedex (France)], E-mail: Jacqueline.Garnier-Laplace@irsn.fr

    2008-12-15

    Multi-stress situations are a major question and low-oxygenated waters (hypoxia) are a growing problem. Importantly, hypoxia stimulates the ventilatory flow rate in aquatic animals and this increases gill exposure to contaminants. Surprisingly, in the freshwater clam Corbicula fluminea, this is associated with increased bioaccumulation of uranium in gills but not in deep tissues. We searched for an explanation by analyzing hemolymph U-transport in Corbicula exposed to 0.36 {mu}M dissolved uranium at various O{sub 2}-levels for 10 days. In hypoxia, one observed an increased U concentration in the arterial hemolymph flowing from gills to tissues but this was not associated with an increased U concentration in the venous hemolymph nor in the other tissues. We conclude that the cardiac flow rate must have decreased to explain this absence of over-accumulation. In addition to its already known deleterious effects, uranium can thus deeply impair cardiac flow rate in exposed aquatic animals during multi-stress exposures. - Uranium contamination enhanced by hypoxia can deeply impair circulatory hemolymph flow in aquatic animals.

  16. Impact of hypoxia on hemolymph contamination by uranium in an aquatic animal, the freshwater clam Corbicula fluminea

    International Nuclear Information System (INIS)

    Multi-stress situations are a major question and low-oxygenated waters (hypoxia) are a growing problem. Importantly, hypoxia stimulates the ventilatory flow rate in aquatic animals and this increases gill exposure to contaminants. Surprisingly, in the freshwater clam Corbicula fluminea, this is associated with increased bioaccumulation of uranium in gills but not in deep tissues. We searched for an explanation by analyzing hemolymph U-transport in Corbicula exposed to 0.36 μM dissolved uranium at various O2-levels for 10 days. In hypoxia, one observed an increased U concentration in the arterial hemolymph flowing from gills to tissues but this was not associated with an increased U concentration in the venous hemolymph nor in the other tissues. We conclude that the cardiac flow rate must have decreased to explain this absence of over-accumulation. In addition to its already known deleterious effects, uranium can thus deeply impair cardiac flow rate in exposed aquatic animals during multi-stress exposures. - Uranium contamination enhanced by hypoxia can deeply impair circulatory hemolymph flow in aquatic animals

  17. Evaluation of seven aquatic sampling methods for amphibians and other aquatic fauna

    Science.gov (United States)

    Gunzburger, M.S.

    2007-01-01

    To design effective and efficient research and monitoring programs researchers must have a thorough understanding of the capabilities and limitations of their sampling methods. Few direct comparative studies exist for aquatic sampling methods for amphibians. The objective of this study was to simultaneously employ seven aquatic sampling methods in 10 wetlands to compare amphibian species richness and number of individuals detected with each method. Four sampling methods allowed counts of individuals (metal dipnet, D-frame dipnet, box trap, crayfish trap), whereas the other three methods allowed detection of species (visual encounter, aural, and froglogger). Amphibian species richness was greatest with froglogger, box trap, and aural samples. For anuran species, the sampling methods by which each life stage was detected was related to relative length of larval and breeding periods and tadpole size. Detection probability of amphibians varied across sampling methods. Box trap sampling resulted in the most precise amphibian count, but the precision of all four count-based methods was low (coefficient of variation > 145 for all methods). The efficacy of the four count sampling methods at sampling fish and aquatic invertebrates was also analyzed because these predatory taxa are known to be important predictors of amphibian habitat distribution. Species richness and counts were similar for fish with the four methods, whereas invertebrate species richness and counts were greatest in box traps. An effective wetland amphibian monitoring program in the southeastern United States should include multiple sampling methods to obtain the most accurate assessment of species community composition at each site. The combined use of frogloggers, crayfish traps, and dipnets may be the most efficient and effective amphibian monitoring protocol. ?? 2007 Brill Academic Publishers.

  18. Lotus corniculatus Crop Growth of in Crude Oil Contaminated Soil. Part 2 Biomass Metals Bioaccumulation

    Directory of Open Access Journals (Sweden)

    Florica Morariu

    2016-05-01

    Full Text Available Phytoremediation involves the ability of plants to remove pollutants and is a promise on low costs and efficient processes for cleaning oil polluted soil. Studies for phytoremediation of soils polluted with petroleum products were critical and were based on monitoring strategies implemented efficiency. These strategies are based on the necessity of treating polluted soil and plant cultivation. Treatment was performed with recycled materials, sewage sludge as fertilizer and fly ash as amendment. The studies took on the characteristics of qualitative and quantitative of Lotus corniculatus crops, plants tolerant to conditions for phytoremediation strategy implemented on polluted soils by 80.5 ± 3.9 g·kg-1 D.M. The use of sewage sludge mixed with fly ash resulted in formation of a layer covering the surface with vegetable grown by 85 - 94 % in July and by 67 - 83 % in August. In Lotus corniculatus crops have not been registered bioaccumulation of toxic metals according to legislation from Romania.

  19. Transfer of radionuclides in aquatic ecosystems - Default concentration ratios for aquatic biota in the Erica Tool

    International Nuclear Information System (INIS)

    The process of assessing risk to the environment following a given release of radioactivity requires the quantification of activity concentrations in environmental media and reference organisms. The methodology adopted by the ERICA Integrated Approach involves the application of concentration ratios (CR values) and distribution coefficients (Kd values) for aquatic systems. Within this paper the methodologies applied to derive default transfer parameters, collated within the ERICA Tool databases, are described to provide transparency and traceability in the documentation process. Detailed information is provided for the CR values used for marine and freshwater systems. Of the total 372 CR values derived for the marine ecosystem, 195 were identified by literature review. For the freshwater system, the number of values based on review was less, but still constituted 129 from a total of 372 values. In both types of aquatic systems, 70-80% of the data gaps have been filled by employing 'preferable' approaches such as those based on substituting values from taxonomically similar organisms or biogeochemically similar elements

  20. Bioaccumulation and bioavailability of polybrominated diphynel ethers (PBDEs) in soil

    International Nuclear Information System (INIS)

    Earthworms were exposed to artificially contaminated soils of DE-71 and DE-79 to investigate the bioaccumulation and bioavailability of PBDEs in soil. All major congeners were bioavailable to earthworms. The uptake and elimination rate coefficients of PBDEs decreased with their logKows. The biota soil accumulation factors of PBDEs also declined with logKow. These may be due to the large molecular size and the high affinity of PBDEs to soil particles. The concentrations extracted by Tenax for 6 h correlated very well with those found in earthworms, suggesting that the bioavailability of PBDEs in soil is related to the fraction of rapid desorption from soil. This also indicates that 6 h Tenax extraction is a good proxy for the bioavailability of PBDEs to earthworms in soil. The BSAFs of PBDEs in aged soil decreased 22-84% compared to freshly spiked soil, indicating that aging may diminish the bioavailability of PBDEs in soil significantly. - PBDEs are bioavailable to earthworms in soil and the uptake and elimination rate coefficients and BSAFs declined with their logKows.

  1. PIXE analysis for bioaccumulation studies of trace elements

    International Nuclear Information System (INIS)

    Bioaccumulation by micro-alga in the ocean was simulated in nutritive seawater containing known amounts of trace metals, and the concentration factors for Fe, Zn and Cd were measured by PIXE. Trace transition metals in nearshore seawater were removed by Chelex-100. Then a culture solution was prepared by adding known amounts of trace metals and nutritive salts to the purified seawater. Marine micro-algae (Nannochloropsis sp., and Phaeodactylum sp.,) were purely cultured in the culture solution. An interested metal ion was added to the culture solution (0.01-5.0 mg/l). Alga in 10 ml of the culture solution was collected on a polycarbonate filter (pore size: 1.0 ) by suction filtration and subjected to 2.9 MeV proton bombardment. Na, Mg, Al, Si, P, S, Cl, K, Ca, Cr, Mn, Fe, Zn and Cd were simultaneously determined. PIXE multi-element analysis was possible using less than 1 mg of analytical sample. The quantity of the metal in the alga was increased in proportion to the concentration in the culture solution. The concentration factors for Zn, Fe and Cd were measured, e.g., 10200 ± 300 ml/g to Zn for Phaeodactylum. The trend of the affinity for the trace metals in the case of Nannochloropsis was Fe3+ > Zn2+ > Pb2+ > Cd2+. (author)

  2. Persistence and bioaccumulation of oxyfluorfen residues in onion.

    Science.gov (United States)

    Sondhia, Shobha

    2010-03-01

    A field study was conducted to determine persistence and bioaccumulation of oxyflorfen residues in onion crop at two growth stages. Oxyfluorfen (23.5% EC) was sprayed at 250 and 500 g ai/ha on the crop (variety, N53). Mature onion and soil samples were collected at harvest. Green onion were collected at 55 days from each treated and control plot and analyzed for oxyfluorfen residues by a validated high-performance liquid chromatography method with an accepted recovery of 78-92% at the minimum detectable concentration of 0.003 microg g(-1). Analysis showed 0.015 and 0.005 microg g(-1) residues of oxyfluorfen at 250 g a.i. ha(-1) rate in green and mature onion samples, respectively; however, at 500 g a.i.ha(-1) rates, 0.025 and 0.011 microg g(-1) of oxyfluorfen residues were detected in green and mature onion samples, respectively. Soil samples collected at harvest showed 0.003 and 0.003 microg g(-1) of oxyfluorfen residues at the doses 250 and 500 g a.i. ha(-1), respectively. From the study, a pre-harvest interval of 118 days for onion crop after the herbicide application is suggested. PMID:19238567

  3. Uptake, bioaccumulation and elimination of melamine in rainbow trout

    International Nuclear Information System (INIS)

    Melamine (2,4,6 triamino-s-triazine) is a starting material for the manufacture of polymeric resins, thermosetting plastics, and housewares. The uptake, bioaccumulation and elimination of uniform triazine-labelled [14C]-melamine was determined in fingerling rainbow trout. Uptake into tissues was monitored in a static exposure system (water conc. = 89-91 ppb) until the steady state of melamine was reached in the fish tissues. The bioconcentration factor (BCF) was determined for muscle and viscera at the steady state. Uptake of [14C] melamine was low for both muscle and viscera, achieving levels only as high as 10 ppb in either compartment. Steady state was reached in the viscera within 48 hours and in muscle after only 16 hours. The BCF for muscle (0.03 to 0.11) and viscera (0.5-0.11) was less than unity, indicating a propensity of this compound to resist partitioning into the fish or fish tissues. This may be related to high hydrophilicity or a strong solute-solute interaction of malamine. In depuration studies, the half-life of malamine was found to be relatively short +1/2 viscera = 8.06 found to be relatively short (+1/2 muscle = 8.79 hrs), consistent with the rapid achievement of steady state and low BCF

  4. Phytoremediation potential of aquatic macrophyte, Azolla.

    Science.gov (United States)

    Sood, Anjuli; Uniyal, Perm L; Prasanna, Radha; Ahluwalia, Amrik S

    2012-03-01

    Aquatic macrophytes play an important role in the structural and functional aspects of aquatic ecosystems by altering water movement regimes, providing shelter to fish and aquatic invertebrates, serving as a food source, and altering water quality by regulating oxygen balance, nutrient cycles, and accumulating heavy metals. The ability to hyperaccumulate heavy metals makes them interesting research candidates, especially for the treatment of industrial effluents and sewage waste water. The use of aquatic macrophytes, such as Azolla with hyper accumulating ability is known to be an environmentally friendly option to restore polluted aquatic resources. The present review highlights the phytoaccumulation potential of macrophytes with emphasis on utilization of Azolla as a promising candidate for phytoremediation. The impact of uptake of heavy metals on morphology and metabolic processes of Azolla has also been discussed for a better understanding and utilization of this symbiotic association in the field of phytoremediation. PMID:22396093

  5. Persistent toxic substances in Mediterranean aquatic species.

    Science.gov (United States)

    Miniero, Roberto; Abate, Vittorio; Brambilla, Gianfranco; Davoli, Enrico; De Felip, Elena; De Filippis, Stefania P; Dellatte, Elena; De Luca, Silvia; Fanelli, Roberto; Fattore, Elena; Ferri, Fabiola; Fochi, Igor; Rita Fulgenzi, Anna; Iacovella, Nicola; Iamiceli, Anna Laura; Lucchetti, Dario; Melotti, Paolo; Moret, Ivo; Piazza, Rossano; Roncarati, Alessandra; Ubaldi, Alessandro; Zambon, Stefano; di Domenico, Alessandro

    2014-10-01

    Fish and fishery products may represent one of the main sources of dietary exposure to persistent toxic substances (PTSs) such as polychlorinated dibenzodioxins, dibenzofurans, and biphenyls; polybromodiphenyl ethers; organochlorine pesticides; perfluorooctanoic acid and perfluorooctane sulfonate; and inorganic mercury and methyl mercury. In this study, PTS contamination of Mediterranean fish and crustaceans caught in Italian coastal waters was investigated in order to increase the representativeness of the occurrence database for wild species. The objectives were to verify the suitability of regulatory limits for PTSs, identify background concentrations values, if any, and examine the possible sources of variability when assessing the chemical body burdens of aquatic species. Twelve wild species of commercial interest and two farmed fish species were chosen. Excluding methyl mercury, chemical concentrations found in wild species fell generally towards the low ends of the concentration ranges found in Europe according to EFSA database and were quite lower than the tolerable maximum levels established in the European Union; farmed fish always showed contamination levels quite lower than those detected in wild species. The data obtained for wild species seemed to confirm the absence of local sources of contamination in the chosen sampling areas; however, species contamination could exceed regulatory levels even in the absence of specific local sources of contamination as a result of the position in the food web and natural variability in species' lifestyle. A species-specific approach to the management of contamination in aquatic organisms is therefore suggested as an alternative to a general approach based only on contaminant body burden. A chemical-specific analysis performed according to organism position in the food chain strengthened the need to develop this approach. PMID:25020099

  6. Deep-ocean foraging northern elephant seals bioaccumulate persistent organic pollutants.

    Science.gov (United States)

    Peterson, Sarah H; Peterson, Michael G; Debier, Cathy; Covaci, Adrian; Dirtu, Alin C; Malarvannan, Govindan; Crocker, Daniel E; Schwarz, Lisa K; Costa, Daniel P

    2015-11-15

    As top predators in the northeast Pacific Ocean, northern elephant seals (Mirounga angustirostris) are vulnerable to bioaccumulation of persistent organic pollutants (POPs). Our study examined a suite of POPs in blubber (inner and outer) and blood (serum) of free-ranging northern elephant seals. For adult females (N=24), we satellite tracked and sampled the same seals before and after their approximately seven month long foraging trip. For males, we sampled different adults and sub-adults before (N=14) and after (N=15) the same foraging trip. For females, we calculated blubber burdens for all compounds. The highest POP concentrations in males and females were found for ∑DDTs and ∑PCBs. In blubber and serum, males had significantly greater concentrations than females for almost all compounds. For males and females, ∑DDT and ∑PBDEs were highly correlated in blubber and serum. While ∑PCBs were highly correlated with ∑DDTs and ∑PBDEs in blubber and serum for males, ∑PCBs showed weaker correlations with both compounds in females. As females gained mass while foraging, concentrations of nearly all POPs in inner and outer blubber significantly decreased; however, the absolute burden in blubber significantly increased, indicating ingestion of contaminants while foraging. Additionally, we identified three clusters of seal foraging behavior, based on geography, diving behavior, and stable carbon and nitrogen isotopes, which corresponded with differences in ∑DDTs, ∑PBDEs, MeO-BDE 47, as well as the ratio of ∑DDTs to ∑PCBs, indicating the potential for behavior to heighten or mitigate contaminant exposure. The greatest concentrations of ∑DDTs and ∑PBDEs were observed in the cluster that foraged closer to the coast and had blood samples more enriched in (13)C. Bioaccumulation of POPs by elephant seals supports mesopelagic food webs as a sink for POPs and highlights elephant seals as a potential sentinel of contamination in deep ocean food webs. PMID

  7. Doses from aquatic pathways in CSA-N288.1: deterministic and stochastic predictions compared

    International Nuclear Information System (INIS)

    The conservatism and uncertainty in the Canadian Standards Association (CSA) model for calculating derived release limits (DRLs) for aquatic emissions of radionuclides from nuclear facilities was investigated. The model was run deterministically using the recommended default values for its parameters, and its predictions were compared with the distributed doses obtained by running the model stochastically. Probability density functions (PDFs) for the model parameters for the stochastic runs were constructed using data reported in the literature and results from experimental work done by AECL. The default values recommended for the CSA model for some parameters were found to be lower than the central values of the PDFs in about half of the cases. Doses (ingestion, groundshine and immersion) calculated as the median of 400 stochastic runs were higher than the deterministic doses predicted using the CSA default values of the parameters for more than half (85 out of the 163) of the cases. Thus, the CSA model is not conservative for calculating DRLs for aquatic radionuclide emissions, as it was intended to be. The output of the stochastic runs was used to determine the uncertainty in the CSA model predictions. The uncertainty in the total dose was high, with the 95% confidence interval exceeding an order of magnitude for all radionuclides. A sensitivity study revealed that total ingestion doses to adults predicted by the CSA model are sensitive primarily to water intake rates, bioaccumulation factors for fish and marine biota, dietary intakes of fish and marine biota, the fraction of consumed food arising from contaminated sources, the irrigation rate, occupancy factors and the sediment solid/liquid distribution coefficient. To improve DRL models, further research into aquatic exposure pathways should concentrate on reducing the uncertainty in these parameters. The PDFs given here can he used by other modellers to test and improve their models and to ensure that DRLs

  8. Doses from aquatic pathways in CSA-N288.1: deterministic and stochastic predictions compared

    Energy Technology Data Exchange (ETDEWEB)

    Chouhan, S.L.; Davis, P

    2002-04-01

    The conservatism and uncertainty in the Canadian Standards Association (CSA) model for calculating derived release limits (DRLs) for aquatic emissions of radionuclides from nuclear facilities was investigated. The model was run deterministically using the recommended default values for its parameters, and its predictions were compared with the distributed doses obtained by running the model stochastically. Probability density functions (PDFs) for the model parameters for the stochastic runs were constructed using data reported in the literature and results from experimental work done by AECL. The default values recommended for the CSA model for some parameters were found to be lower than the central values of the PDFs in about half of the cases. Doses (ingestion, groundshine and immersion) calculated as the median of 400 stochastic runs were higher than the deterministic doses predicted using the CSA default values of the parameters for more than half (85 out of the 163) of the cases. Thus, the CSA model is not conservative for calculating DRLs for aquatic radionuclide emissions, as it was intended to be. The output of the stochastic runs was used to determine the uncertainty in the CSA model predictions. The uncertainty in the total dose was high, with the 95% confidence interval exceeding an order of magnitude for all radionuclides. A sensitivity study revealed that total ingestion doses to adults predicted by the CSA model are sensitive primarily to water intake rates, bioaccumulation factors for fish and marine biota, dietary intakes of fish and marine biota, the fraction of consumed food arising from contaminated sources, the irrigation rate, occupancy factors and the sediment solid/liquid distribution coefficient. To improve DRL models, further research into aquatic exposure pathways should concentrate on reducing the uncertainty in these parameters. The PDFs given here can he used by other modellers to test and improve their models and to ensure that DRLs

  9. Accumulation and kinetics of 90Sr in fishes and other components of an artificial aquatic system

    International Nuclear Information System (INIS)

    Regularities are described of 90Sr transfer from water into the particular components of a simplified experimental aquatic system - the sediments, algae, invertebrates (gastropods) and fish - based on a model experiment simulating conditions of a section of the Jihlava River as influenced by the release of liquid wastes from the Dukovany nuclear power plant. Owing to their high abundance, both in nature and in the experiment, the aquatic algae and sediments are the most important accumulators of 90Sr. Nevertheless, the highest increase in the specific radionuclide concentrations and in the accumulation coefficients were found in aquatic gastropods and in fish bones. (author). 1 tab., 12 refs

  10. Identification of evolutionary hotspots based on genetic data from multiple terrestrial and aquatic taxa and gap analysis of hotspots in protected lands encompassed by the South Atlantic Landscape Conservation Cooperative.

    Science.gov (United States)

    Robinson, J.; Snider, M.; Duke, J.; Moyer, G.R.

    2014-01-01

     The southeastern United States is a recognized hotspot of biodiversity for a variety of aquatic taxa, including fish, amphibians, and mollusks. Unfortunately, the great diversity of the area is accompanied by a large proportion of species at risk of extinction . Gap analysis was employed to assess the representation of evolutionary hotspots in protected lands w h ere an evolutionary hotspot was defined as an area with high evolutionary potential and measured by atypical patterns of genetic divergence, genetic diversity, and to a lesser extent genetic similarity across multiple terrestrial or aquatic taxa. A survey of the primary literature produced 16 terrestrial and 14 aquatic genetic datasets for estimation of genetic divergence and diversity. Relative genetic diversity and divergence values for each terrestrial and aquatic dataset were used for interpolation of multispecies genetic surfaces and subsequent visualization using ArcGIS. The multispecies surfaces interpolated from relative divergences and diversity data identified numerous evolutionary hotspots for both terrestrial and aquatic taxa , many of which were afforded some current protection. For instance, 14% of the cells identified as hotspots of aquatic diversity were encompassed by currently protected areas. Additionally, 25% of the highest 1% of terrestrial diversity cells were afforded some level of protection. In contrast, areas of high and low divergence among species, and areas of high variance in diversity were poorly represented in the protected lands. Of particular interest were two areas that were consistently identified by several different measures as important from a conservation perspective. These included an area encompassing the panhandle of Florida and southern Georgia near the Apalachicola National Forest (displaying varying levels of genetic divergence and greater than average levels of genetic diversity) and a large portion of the coastal regions of North and South Carolina

  11. Bioaccumulation factor of 137Cs in some marine biotas from West Bangka Indonesia

    International Nuclear Information System (INIS)

    Radionuclides may be released from nuclear facilities to the marine environment. Concentrations of radionuclides within marine biotic systems can be influenced by a number of factors, including the type of biota, its source, the radionuclide, and specific characteristics of the sampled specimens and the marine environment (salinity, etc.). The bioconcentration factor for a marine organism is the ratio of the concentration of a radionuclide in that organism to the concentration found in its marine water environment - under conditions of equilibrium. Information on the bioaccumulation of Cs-137 in marine organisms is required to risk assessment evaluates the potential risks to human health. Bioaccumulation of Cs was investigated in marine biota from west Bangka such as Marine cat fish (Arius thalassinus), Baramundi (Lates calcarifer), Mackerel (Scomberomorus commerson), Striped eel catfish (Plotosus lineatus), eel tailed fish (Euristhmus microceps), Yellowtail fusilier (Caesio erythrogaster), Coastal crab (Scylla sp), White shrimp (Penaeus merguiensis) and marine bivalve mollusk (Anadara granosa). Muscle of these marine biota, sediments and water were assayed for Cs-137 by HPGe gamma spectrometer. The bioaccumulation factor for fishes were calculated by ratio of concentration Cs-137 in muscle biota to the its concentration in water. The bioaccumulation factor for mollusks were calculates by ratio of concentration Cs-137 in muscle biota to the its concentration in sediments. The bioaccumulation factor were range 4.99 to 136.34

  12. Bioaccumulation of 137Cs by culture collection strains of bacteria and fungi

    International Nuclear Information System (INIS)

    Soil decontamination of soil contaminated by low-level activities of radionuclides, mainly by caesium-137, which come from accidental releases by maintenance of nuclear devices and by liquid wastes reprocessing, is long-term and expensive technology. Knowledge of the causations, which control the processes of bioaccumulation of radionuclides, is a necessary condition for critical assessment and successful utilization of processes of bioremediation in situ in practise. The authors present the experimentally gained quantitative values of bioaccumulation of caesium-137 from water solutions by micro organism cultures of Rhodotorula aurantiaca CCY 20-9-1, Sacharomyces cerevisiae, Rhodococcus rhodochrous ATCC 15906, Streptomyces sp. DX-IX, Coriolus versicolor CCWDF-14 and Rhizopus sp. R-18. Intensively growing cultures reach the highest values of bioaccumulation; the cultures in non-growing phase reach several orders lower values. From researched micro organisms the highest values of bioaccumulation of Cs+ 5.1 pmol/g (wet weight) at initial concentration of Cs+ in solution co = 1 nmol/l (without carrier) and 29.2 μmol/g (wet weight) at co = 6 mmol/l Cs+ (adding of carrier CsCl) were found out at growing culture S. cerevisiae as model of eukaryotic cell after an achievement of maximal stationary grow phase. Acquired information refer to the possible role of soil micro organisms at bioaccumulation of 137Cs in contaminated soils and their potential utilization in lowering of radioactive contamination of environment (authors)

  13. Spatial and temporal variation in mercury bioaccumulation by zooplankton in Lake Champlain (North America)

    International Nuclear Information System (INIS)

    Trophic transfer of Hg across lakes within a region has been related to multiple environmental factors, but the nature of these relationships across distinct basins within individual large lakes is unknown. We investigated Hg bioaccumulation in zooplankton in basins of differing trophic status in Lake Champlain (Vermont, USA) to determine the strongest predictors of Hg bioaccumulation. Zooplankton were sampled in Malletts Bay (oligotrophic) and Missisquoi Bay (eutrophic) in 2005–2008. Zooplankton in the eutrophic basin had lower concentrations of total Hg and MeHg than those in the oligotrophic basin in all years but 2007, when no bloom occurred in Missisquoi. In addition, Hg concentrations in seston and small zooplankton, sampled during 2009 at 12 sites spanning the lake, decreased with increasing phytoplankton and zooplankton biomass. Thus, Hg bioaccumulation in zooplankton across basins in Lake Champlain is related to trophic status, as observed previously in multiple lake studies. - Highlights: ► Lake Champlain zooplankton Hg was lower in the eutrophic than the oligotrophic basin. ► Algal blooms in years present biodiluted Hg in plankton. ► Lake-wide spatial patterns of Hg in plankton decreased with increasing biomass. ► Lake-wide Hg bioaccumulation patterns are consistent with multiple lake studies. - Large spatiotemporal variations in MeHg bioaccumulation in zooplankton within a single large lake were linked to spatial variation in trophic status across basins and to inter-annual variation in algal density.

  14. Organochlorine pollution in tropical rivers (Guadeloupe): Role of ecological factors in food web bioaccumulation

    Energy Technology Data Exchange (ETDEWEB)

    Coat, Sophie, E-mail: coatsophie@gmail.com [EA 926 DYNECAR, Laboratoire de Biologie Marine, UFR Sciences, Universite des Antilles et de la Guyane, BP592, 97159 Pointe-a-Pitre Cedex (France); Monti, Dominique, E-mail: dominique.monti@univ-ag.fr [EA 926 DYNECAR, Laboratoire de Biologie Marine, UFR Sciences, Universite des Antilles et de la Guyane, BP592, 97159 Pointe-a-Pitre Cedex (France); Legendre, Pierre, E-mail: pierre.legendre@umontreal.ca [Departement de Sciences Biologique, Universite de Montreal, C.P. 6128, succursale A, Montreal, Quebec H3C 3J7 (Canada); Bouchon, Claude, E-mail: claude.bouchon@univ-ag.fr [EA 926 DYNECAR, Laboratoire de Biologie Marine, UFR Sciences, Universite des Antilles et de la Guyane, BP592, 97159 Pointe-a-Pitre Cedex (France); Massat, Felix, E-mail: fmassat@ladrome.fr [LDA26, laboratoire Departemental d' Analyses de la Drome, 27 avenue Lautagne, 26000 Valence (France); Lepoint, Gilles, E-mail: g.lepoint@ulg.ac.be [MARE Centre, Laboratoire d' Oceanologie, Universite de Liege, Bat. B6, 4000 Sart Tilman, Belgique (Belgium)

    2011-06-15

    Concentrations of organochlorine pesticides and stable isotope ratios of nitrogen and carbon were measured in a tropical freshwater ecosystem to evaluate the contamination level of biota and examine the bioaccumulation patterns of pollutants through the food web. Chemical analyses showed a general and heavy contamination of the entire food web. They revealed the strong accumulation of pollutants by juveniles of diadromous fishes and shrimps, as they re-enter the river. The role of ecological factors in the bioaccumulation of pesticides was evaluated. Whereas the most persistent pollutants (chlordecone and monohydro-chlordecone) were related to the organisms diet and habitat, bioaccumulation of {beta}-HCH was only influenced by animal lipid content. The biomagnification potential of chlordecone through the food chain has been demonstrated. It highlighted the importance of trophic transfer in this compound bioaccumulation process. In contrast, bioconcentration by passive diffusion from water seemed to be the main exposure route of biota to {beta}-HCH. - Highlights: > We measured OC pesticides and stable isotope ratios in a tropical stream. > Results showed a strong and ubiquitous contamination of the entire food web. > Diadromous juveniles strongly accumulated pollutants when they re-enter the river. > The most persistent pollutant (chlordecone) was related to species diet and habitat. > {beta}-HCH was only influenced by animal lipid content. - This paper determines the bioaccumulation and transfer processes of organochlorine pesticides within the stream food web in Guadeloupe (Caribbean).

  15. Bioaccumulation versus adsorption of reactive dye by immobilized growing Aspergillus fumigatus beads

    International Nuclear Information System (INIS)

    The removal of reactive brilliant blue KN-R using growing Aspergillus fumigatus (abbr. A. fumigatus) immobilized on carboxymethylcellulose (CMC) beads with respect to initial dye concentration was investigated. Bioaccumulation was the dominant mechanism of the dye removal. According to the UV-vis spectra and the results of three sets of experiments, it could be concluded that the bioaccumulation using immobilized growing A. fumigatus beads was achieved by metabolism-dependent accumulation and metabolism-independent adsorption (15-23% proportion of overall dye removal), which included biosorption by mycelia entrapped in them and adsorption on immobilization matrix. The transmission electron microscope (TEM) images showed the intracellular structures of mycelia and the toxicity of dye. It was found that the fungus had a considerable tolerance to reactive brilliant blue KN-R at initial dye concentrations of <114.7 mg/l. Though at high initial dye concentrations the growth of mycelia was inhibited significantly by the dye molecules in the growth medium, the bioaccumulation capacity was not markedly affected and the maximum bioaccumulation capacity was 190.5 ± 2.0 mg/g at an initial dye concentration of 374.4 mg/l. The bioaccumulation rates were not constant over the contact time

  16. Organochlorine pollution in tropical rivers (Guadeloupe): Role of ecological factors in food web bioaccumulation

    International Nuclear Information System (INIS)

    Concentrations of organochlorine pesticides and stable isotope ratios of nitrogen and carbon were measured in a tropical freshwater ecosystem to evaluate the contamination level of biota and examine the bioaccumulation patterns of pollutants through the food web. Chemical analyses showed a general and heavy contamination of the entire food web. They revealed the strong accumulation of pollutants by juveniles of diadromous fishes and shrimps, as they re-enter the river. The role of ecological factors in the bioaccumulation of pesticides was evaluated. Whereas the most persistent pollutants (chlordecone and monohydro-chlordecone) were related to the organisms diet and habitat, bioaccumulation of β-HCH was only influenced by animal lipid content. The biomagnification potential of chlordecone through the food chain has been demonstrated. It highlighted the importance of trophic transfer in this compound bioaccumulation process. In contrast, bioconcentration by passive diffusion from water seemed to be the main exposure route of biota to β-HCH. - Highlights: → We measured OC pesticides and stable isotope ratios in a tropical stream. → Results showed a strong and ubiquitous contamination of the entire food web. → Diadromous juveniles strongly accumulated pollutants when they re-enter the river. → The most persistent pollutant (chlordecone) was related to species diet and habitat. → β-HCH was only influenced by animal lipid content. - This paper determines the bioaccumulation and transfer processes of organochlorine pesticides within the stream food web in Guadeloupe (Caribbean).

  17. Bioaccumulation factor of {sup 137}Cs in some marine biotas from West Bangka Indonesia

    Energy Technology Data Exchange (ETDEWEB)

    Suseno, Heny, E-mail: henis@batan.go.id [Radioactive Waste Technology Center - The Indonesia Nuclear Energy Agency (BATAN) (Indonesia)

    2014-03-24

    Radionuclides may be released from nuclear facilities to the marine environment. Concentrations of radionuclides within marine biotic systems can be influenced by a number of factors, including the type of biota, its source, the radionuclide, and specific characteristics of the sampled specimens and the marine environment (salinity, etc.). The bioconcentration factor for a marine organism is the ratio of the concentration of a radionuclide in that organism to the concentration found in its marine water environment - under conditions of equilibrium. Information on the bioaccumulation of Cs-137 in marine organisms is required to risk assessment evaluates the potential risks to human health. Bioaccumulation of Cs was investigated in marine biota from west Bangka such as Marine cat fish (Arius thalassinus), Baramundi (Lates calcarifer), Mackerel (Scomberomorus commerson), Striped eel catfish (Plotosus lineatus), eel tailed fish (Euristhmus microceps), Yellowtail fusilier (Caesio erythrogaster), Coastal crab (Scylla sp), White shrimp (Penaeus merguiensis) and marine bivalve mollusk (Anadara granosa). Muscle of these marine biota, sediments and water were assayed for Cs-137 by HPGe gamma spectrometer. The bioaccumulation factor for fishes were calculated by ratio of concentration Cs-137 in muscle biota to the its concentration in water. The bioaccumulation factor for mollusks were calculates by ratio of concentration Cs-137 in muscle biota to the its concentration in sediments. The bioaccumulation factor were range 4.99 to 136.34.

  18. Cyanobacteria and prawn farming in northern New South Wales, Australia--a case study on cyanobacteria diversity and hepatotoxin bioaccumulation

    International Nuclear Information System (INIS)

    Harmful cyanobacteria pose a hazard to aquatic ecosystems due to toxins (hepatotoxic microcystins, nodularins, and cylindrospermopsin) they produce. The microcystins and nodularins are potent toxins, which are also tumor promoters. The microcystins and nodularins may accumulate into aquatic organisms and be transferred to higher trophic levels, and eventually affect vector animals and consumers. Prawn farming is a rapidly growing industry in Australia. Because information regarding effects of cyanobacteria at prawn farms was lacking, we examined diversity of cyanobacteria and toxin production plus bioaccumulation into black tiger prawns (Penaeus monodon) under both field (northern New South Wales, Australia, December 2001-April 2002) and laboratory conditions. Samples were analyzed for hepatotoxins using enzyme-linked immunosorbent assay (ELISA) and high-performance liquid chromatography (HPLC). The maximum density of cyanobacteria (1 x 106 to 4 x 106 cells/l) was reached in April. Cyanobacteria encountered were Oscillatoria sp. (up to 4 x 106 cells/l), Pseudanabaena sp. (up to 1.8 x 106 cells/l), Microcystis sp. (up to 3.5 x 104 cells/l), and Aphanocapsa sp. (up to 2 x 104 cells/l). An uncommon cyanobacterium, Romeria sp. (up to 2.2 x 106 cells/l), was also observed. Contrasting earlier indications, toxic Nodularia spumigena was absent. Despite that both Oscillatoria sp. and Microcystis sp. are potentially hepatotoxic, hepatotoxin levels in phytoplankton samples remained low (up to 0.5-1.2 mg/kg dw; ELISA) in 2001-2002. ELISA was found suitable not only for phytoplankton but prawn tissues as well. Enzymatic pretreatment improved extractability of hepatotoxin from cyanobacteria (nodularin from N. spumigena as an example), but did not generally increase toxin recovery from prawn hepatopancreas. There were slightly increasing hepatotoxin concentrations in prawn hepatopancreas (from 6-20 to 20-80 μg/kg dw; ELISA) during the study. Hepatotoxin concentrations in

  19. Bioaccumulation of thallium by the wild plants grown in soils of mining area.

    Science.gov (United States)

    Sasmaz, Merve; Akgul, Bunyamin; Yıldırım, Derya; Sasmaz, Ahmet

    2016-11-01

    Gümüsköy Ag (As, Pb, and Tl) deposits are one of the largest silver deposits in the country and located about 25 km west of Kütahya, Turkey. This study investigated the accumulation and transport of thallium into 11 wild plants in soil of the mining area. Plant samples and their associated soils were collected from the field and Tl contents were measured with inductively coupled plasma mass spectroscopy (ICP-MS). The mean concentrations in the soil, roots, and shoots of the studied plants were, respectively, 170, 318, and 315 mg kg(-1) for Tl. The plants analyzed and collected from the studied area were separated into different groups based on enrichment coefficients of roots and shoots (ECR and ECS). The results showed that because of their higher ECR and ECS, the following could be good bioaccumulators: CY, IS, SL, and VR for Tl. Therefore, these plants can be useful for remediation or phytoremediation of soils polluted by Tl. PMID:27196508

  20. Bioaccumulation of heavy metals in fish and Ardeid at Pearl River Estuary, China.

    Science.gov (United States)

    Kwok, C K; Liang, Y; Wang, H; Dong, Y H; Leung, S Y; Wong, M H

    2014-08-01

    Sediment, fish (tilapia, Oreochromis mossambicus and snakehead, Channa asiatica), eggs and eggshells of Little Egrets (Egretta garzetta) and Chinese Pond Herons (Ardeola bacchus) were collected from Mai Po Ramsar site of Hong Kong, as well as from wetlands in the Gu Cheng County, Shang Hu County and Dafeng Milu National Nature Reserve of Jiangsu Province, China between 2004 and 2007 (n=3-9). Concentrations of six heavy metals were analyzed, based on inductively coupled plasma optical emission spectrometry (ICP-OES). Significant bioaccumulations of Cd (BAF: 165-1271 percent) were observed in the muscle and viscera of large tilapia and snakehead, suggesting potential health risks to the two bird species, as the fishes are the main preys of waterbirds. Significant (pheavy metal concentrations in the Ardeid eggs of Mai Po. Extrapolated concentrations are consistent with data in the available literature, and advocate the potential use of these models as a non-invasive sampling method for predicting heavy metal contamination in Ardeid eggs. PMID:24836879

  1. PIXE application for measurement of bioaccumulation of lead by marine micro-algae

    International Nuclear Information System (INIS)

    Marine micro-algae (Nannochloropsis sp., and Phaeodactylum sp.,) were obtained from the Pacific Ocean of Iwate Pref., Japan and purely cultured in nutritive seawater as a culture solution. The culture size for algae was 10-250 ml and every apparatus was small and of low cost. Marine micro-algae were given in different culture solutions including Pb2+ from 0.01 to 1.0 mg/l. The algae in 5 ml of the culture solution were collected on a polycarbonate filter (pore size: 1.0 μm) by suction filtration. The algae on the filter were subjected to PIXE analysis. Concentrations of Na, Mg, Si, P, S, Cl, K, Ca, Cr, Mn, Fe, Cu, Zn, Sr and Pb were simultaneously determined. PIXE can do multi-element analysis for a sample of below 1 mg. The quantity of lead in marine micro-algae increases in proportion to the Pb2+ concentration in the culture solution. The concentration factor (wet weight base) for lead is given as 200±20 ml/g for Nannochloropsis sp. and 1900±400 ml/g for Phaeodactylum sp.. It is shown that PIXE is a powerful tool for the measurement of the bioaccumulation of trace elements. (author)

  2. The use of the aquatic moss Fontinalis antipyretica L. ex Hedw. as a bioindicator for heavy metals

    International Nuclear Information System (INIS)

    We studied heavy metal stress responses of two Fontinalis species, F. antipyretica and F. dalecarlica, collected from two habitats in Germany and Canada. The capacities of the two species for extracellular adsorption (biosorption) and intracellular uptake (bioaccumulation) of Cadmium (Cd2+) were investigated in the laboratory. Time-dependent Cd2+ adsorption by cell wall and intracellular uptake differed significantly between the two species. These differences were related to the number of Cd2+ binding sites, resulting from differences in leaflet surface and cell wall composition. Glutathione (GSH) levels in response to Cd2+ exposure were monitored over a 10-day period. GSH synthesis differed significantly between the two species. Both Fontinalis species appear to be suitable for heavy metal biomonitoring in aquatic habitats

  3. The bioaccumulation and effects of selenium in the oligochaete Lumbriculus variegatus via dissolved and dietary exposure routes.

    Science.gov (United States)

    Xie, Lingtian; Wu, Xing; Chen, Hongxing; Luo, Yongju; Guo, Zhongbao; Mu, Jingli; Blankson, Emmanuel R; Dong, Wu; Klerks, Paul L

    2016-09-01

    Aquatic organisms take up selenium from solution and from their diets. Many questions remain regarding the relative importance of selenium accumulation from these sources and resulting effects in benthic invertebrates. The present study addressed the toxicity and accumulation of Se via dissolved and dietary exposures to three different Se species, in the freshwater oligochaete Lumbriculus variegatus. Worms were exposed to 20μg/g dry weight of selenite (Se(IV)), selenate (Se(VI)), or seleno-l-methionine (Se-Met) in their diet (sediment) or to 15μg/L dissolved Se in water-only exposures. While the dissolved and sediment Se levels differed greatly, such levels may co-occur at a Se-contaminated site. Se accumulation, worm population growth, lipid peroxidation (as TBARS), and Na(+)/K(+)-ATPase activity were quantified at the end of the 2-week exposure. The sediment Se-Met exposure caused 100% mortality, while worm densities were reduced by the other exposures except the Se(VI) one. Se bioaccumulation was generally higher for the sediment-Se exposure than the dissolved-Se ones, and was higher for Se(IV) than Se(VI) in the dissolved-Se exposure but not the sediment-Se one. The Se accumulation was highest for Se-Met. The oligochaetes that accumulated Se had higher levels of lipid peroxidation and reduced Na(+)/K(+)-ATPase activity. The present study's findings of differences in Se accumulation and toxicity for the three Se species, with effects generally but not exclusively a function of Se body burdens, underscore the need for research on these issues in invertebrates. Moreover, the results imply that the dietary uptake route is the predominant one for Se accumulation in L. variegatus. PMID:27450235

  4. Screening level dose assessment of aquatic biota downstream of the Marcoule nuclear complex in southern France

    International Nuclear Information System (INIS)

    Aquatic biota in the Rhone River downstream of the Marcoule nuclear complex in France are exposed to natural sources of radiation and to radioactivity released from the Marcoule complex. A simple conservative screening level model was used to estimate the range of concentrations in aquatic media of both artificial and natural radionuclides and the consequent absorbed dose rates for aquatic organisms. Five categories of aquatic organisms were studied, namely, submerged aquatic plants (phanerogam), non-bottom-feeding fish, bottom-feeding fish, mollusca, and fish-eating birds. The analysis was based on the radionuclide concentrations reported in four consecutive annual radioecological monitoring reports published by French agencies with nuclear regulatory responsibilities. The results of this assessment were used to determine, qualitatively, the magnitude of any potential health impacts on each of the five categories of aquatic organisms studied. The range of dose rate estimates ranged over three orders of magnitude, with maximum dose rates estimated to be in the order of 1 to 10 microGy h-1. These maximum dose rates are a factor 40 or more below the international guideline intended to ensure the protection of aquatic populations, and a factor ten or more below the level which may trigger the need for a more detailed evaluation of potential ecological consequences to the exposed populations

  5. Assessment of heavy metals in clarins buthopogon (fish) parts and nymphaea lotus (aquatic plant) in river niger, delta state of nigeria

    International Nuclear Information System (INIS)

    River Niger, the largest river in Nigeria flows southwards across Asaba and Onitsha to the Delta areas. The clarins buthopogon (fish) and Nymphaea lotus (aquatic plant) from the River Niger at Asaba were sampled for analysis using Atomic Absorption Spectrometer (AAS). The concentration of the heavy metals from the three parts of the fish (head, muscle and tail) had the following ranges: Cr, 8.90-9.70, Cu, 2.90-3.90, Fe, 6.00-113.20; Mg, 138.00-3398; Ni, 5.48-14.68, Pb, 0.20-1.60; Hg, 0.38-2.00 and Cd, 1.41-1.78 mg kg/sup -1/ on dry weight basis. These values were higher than those obtained in Kaduna River and Mediterranean coaster waters. The concentrations in Nymphaea Lotus (aquatic plant) were extremely high (Cr, 20.30; Cu, 10.70; Fe, 569.20; Mg, 6798.00; Ni, 72.08; Pb, 6.00; Hg, 51.30 and Cd, 31.10 mg kg/sup -1/ dry weight) and were also higher than those of fish part. The bioaccumulation of heavy metals in fish parts and aquatic plant indicated pollution, as per WHO and FEPA standards for aquatic life. (author)

  6. Simplified Method for Dissolved DNA Determination in Aquatic Environments

    OpenAIRE

    DeFlaun, Mary F.; Paul, John H.; Davis, Dean

    1986-01-01

    A method was developed for the determination of dissolved DNA in aquatic environments. The method is based upon the concentration of dissolved DNA by ethanol precipitation of 0.2-μm-pore-size filtered water. The DNA in concentrated extracts was quantified by the fluorescence of Hoechst 33258-DNA complexes. Fluorescence not attributable to DNA was corrected for by DNase I digestion of the extracts and averaged 25% of the total fluorescence for all samples. The effectiveness of the procedure fo...

  7. Toxic Metals in Aquatic Ecosystems: A Microbiological Perspective

    OpenAIRE

    Ryan, David P; Ford, Timothy

    1995-01-01

    Microbe-metal interactions in aquatic environments and their exact role in transport and transformations of toxic metals are poorly understood. This paper will briefly review our understanding of these interactions. Ongoing research in Lake Chapala, Mexico, the major water source for the City of Guadalajara, provides an opportunity to study the microbiological aspects of metal-cycling in the water column. Constant resuspension of sediments provides a microbiologically rich aggregate-based sys...

  8. Use-Exposure Relationships of Pesticides for Aquatic Risk Assessment

    OpenAIRE

    Luo, Yuzhou; Spurlock, Frank; Deng, Xin; Gill, Sheryl; Goh, Kean

    2011-01-01

    Field-scale environmental models have been widely used in aquatic exposure assessments of pesticides. Those models usually require a large set of input parameters and separate simulations for each pesticide in evaluation. In this study, a simple use-exposure relationship is developed based on regression analysis of stochastic simulation results generated from the Pesticide Root-Zone Model (PRZM). The developed mathematical relationship estimates edge-of-field peak concentrations of pesticides...

  9. Bioaccumulation of P-32 in bluegill and catfish

    International Nuclear Information System (INIS)

    Bluegill and catfish were fed P-32 at a constant feeding rate per body weight to determine the bioaccummulation factor (BF/sub r/) for P-32 in muscle relative to water. The fish were maintained in flow-through tanks at two feeding levels. The bluegill accumulated P-32 for 51 days, followed by depuration for 28 days. The catfish study had to be teminated after 11 days. Fish were analyzed in triplicte for P-32 and phosphorus at intervals of 1 to 8 days. Additional aquaria experiments were performed to determine the effects of water temperature, feeding rate, and type of food (worms vs. pellets) on P-32 uptake, and to observe P-32 uptake from water by unfed fish (including fish with blocked esophagus). A simple calculational model was used to determine the phosphorus turnover constant from the specific activity in tissue relative to food. This ratio at steady state approaches the BF/sub r/BF ratio (where BF is the phosphorus bioaccumulation factor) if P-32 transfers rapidly from water to food. The bluegill showed a weight gain of 0.2 %/d, a phosphorous turnover constant in muscle of 0.43 %/d, and a BF/sub r//BF ratio of 0.081 at the higher feeding rate, and 0.05 %/d, 0.34 %/d, and 0.064 at the lower feeding rate. Hence, respective P-32 BF/sub r/ values are 6000 and 4000 at a phosphorus BF of 70,000. The BF/sub r/ values for catfish were approximately twice as high. The aquarium experiments suggest that the higher factors are due to a much higher phosphorus intake, higher water temperature, higher retention from pellets than from worms, and possible higher retention by catfish than bluegill under the same conditions. 36 references, 15 figures, 22 tables

  10. Bioaccumulation of gamma emitting radionuclides in Polysiphonia fucoides

    International Nuclear Information System (INIS)

    The article presents the results of a study on the bioaccumulation abilities of Polysiphonia fucoides, a red algae specific to the southern Baltic Sea, towards (of) gamma emitting isotopes. A laboratory experiment was carried out to determine changes in the activities of some isotopes - 54Mn, 57Co, 65Zn, 110mAg, 113Sn, 134Cs, 137Cs and 241Am - occurring in P. fucoides exposed to a seawater medium containing these isotopes over the course of 1 month. All analyzed isotopes showed the greatest increase of radioactive activity in plant tissue in the first 24 h of exposure. The temporary concentration factors of cesium isotopes were increasing linearly during the experiment from 114 to 274 in the case of 137Cs, and from 144 to 351 in the case of 134Cs. The level of the initial concentration factor of cesium isotopes in the plant proved to be independent of the initial concentration of the isotope in seawater and it took the lowest (125 dm3 kg-1) level among the studied isotopes. In the case of a mixture of gamma emitting isotopes, a linear relation between the individual isotope activity in P. fucoides and its initial concentration in seawater was established after the first day of exposure; the isotopes initial concentration factors ranged from 767 to 874 dm3 kg-1. Having reached the maximal concentration level, a statistically significant decline in radioactivity concentrations of the five isotopes in the plant tissue was observed. A half-life of biological removal of the isotopes from the plant tissue was established at: 3.8 days in the case of 54Mn, 4 days-57Co, 4 days-60Co, 4.2 days-137Cs and 241Am-3.5 days. (author)

  11. Mercury bioaccumulation and biomagnification in a small Arctic polynya ecosystem

    Energy Technology Data Exchange (ETDEWEB)

    Clayden, Meredith G., E-mail: meredith.clayden@gmail.com [Canadian Rivers Institute and Biology Department, University of New Brunswick, Saint John, NB E2L 4L5 (Canada); Arsenault, Lilianne M. [Canadian Rivers Institute and Biology Department, University of New Brunswick, Saint John, NB E2L 4L5 (Canada); Department of Earth and Environmental Science, Acadia University, Wolfville, NS B4P 2R6 (Canada); Department of Biology, Acadia University, Wolfville, NS B4P 2R6 (Canada); Kidd, Karen A. [Canadian Rivers Institute and Biology Department, University of New Brunswick, Saint John, NB E2L 4L5 (Canada); O' Driscoll, Nelson J. [Department of Earth and Environmental Science, Acadia University, Wolfville, NS B4P 2R6 (Canada); Mallory, Mark L. [Department of Biology, Acadia University, Wolfville, NS B4P 2R6 (Canada)

    2015-03-15

    Recurring polynyas are important areas of biological productivity and feeding grounds for seabirds and mammals in the Arctic marine environment. In this study, we examined food web structure (using carbon and nitrogen isotopes, δ{sup 13}C and δ{sup 15}N) and mercury (Hg) bioaccumulation and biomagnification in a small recurring polynya ecosystem near Nasaruvaalik Island (Nunavut, Canada). Methyl Hg (MeHg) concentrations increased by more than 50-fold from copepods (Calanus hyperboreus) to Arctic terns (Sterna paradisaea), the abundant predators at this site. The biomagnification of MeHg through members of the food web – using the slope of log MeHg versus δ{sup 15}N – was 0.157 from copepods (C. hyperboreus) to fish. This slope was higher (0.267) when seabird chicks were included in the analyses. Collectively, our results indicate that MeHg biomagnification is occurring in this small polynya and that its trophic transfer is at the lower end of the range of estimates from other Arctic marine ecosystems. In addition, we measured Hg concentrations in some poorly studied members of Arctic marine food webs [e.g. Arctic alligatorfish (Ulcina olrikii) and jellyfish, Medusozoa], and found that MeHg concentrations in jellyfish were lower than expected given their trophic position. Overall, these findings provide fundamental information about food web structure and mercury contamination in a small Arctic polynya, which will inform future research in such ecosystems and provide a baseline against which to assess changes over time resulting from environmental disturbance. - Highlights: • Polynyas are recurring sites of open water in polar marine areas • Mercury (Hg) biomagnification was studied in a small polynya near Nasaruvaalik Island, NU, Canada • Hg biomagnification estimates for invertebrates to fish were low compared to other Arctic systems • Factors underlying this result are unknown but may relate to primary productivity in small polynyas.

  12. Mercury bioaccumulation and biomagnification in a small Arctic polynya ecosystem

    International Nuclear Information System (INIS)

    Recurring polynyas are important areas of biological productivity and feeding grounds for seabirds and mammals in the Arctic marine environment. In this study, we examined food web structure (using carbon and nitrogen isotopes, δ13C and δ15N) and mercury (Hg) bioaccumulation and biomagnification in a small recurring polynya ecosystem near Nasaruvaalik Island (Nunavut, Canada). Methyl Hg (MeHg) concentrations increased by more than 50-fold from copepods (Calanus hyperboreus) to Arctic terns (Sterna paradisaea), the abundant predators at this site. The biomagnification of MeHg through members of the food web – using the slope of log MeHg versus δ15N – was 0.157 from copepods (C. hyperboreus) to fish. This slope was higher (0.267) when seabird chicks were included in the analyses. Collectively, our results indicate that MeHg biomagnification is occurring in this small polynya and that its trophic transfer is at the lower end of the range of estimates from other Arctic marine ecosystems. In addition, we measured Hg concentrations in some poorly studied members of Arctic marine food webs [e.g. Arctic alligatorfish (Ulcina olrikii) and jellyfish, Medusozoa], and found that MeHg concentrations in jellyfish were lower than expected given their trophic position. Overall, these findings provide fundamental information about food web structure and mercury contamination in a small Arctic polynya, which will inform future research in such ecosystems and provide a baseline against which to assess changes over time resulting from environmental disturbance. - Highlights: • Polynyas are recurring sites of open water in polar marine areas • Mercury (Hg) biomagnification was studied in a small polynya near Nasaruvaalik Island, NU, Canada • Hg biomagnification estimates for invertebrates to fish were low compared to other Arctic systems • Factors underlying this result are unknown but may relate to primary productivity in small polynyas

  13. Human Exploitation of Aquatic Landscapes. Editorial

    Directory of Open Access Journals (Sweden)

    Ricardo Fernandes

    2014-11-01

    Full Text Available Aquatic landscapes such as rivers, lakes, and seas played an important role in past human behaviour, affecting modes of subsistence, patterns of mobility, access to material resources, and technological choices and their developments. The interaction with aquatic landscapes was also influential in the establishment of economic and social structures and in the formation of communal identities. The aim of this special themed issue of Internet Archaeology is to contribute to a better understanding of different forms of human interaction with aquatic landscapes.

  14. Aquatic invasive species: Lessons from cancer research

    Science.gov (United States)

    Sepulveda, Adam; Ray, Andrew; Al-Chokhachy, Robert K.; Muhlfeld, Clint C.; Gresswell, Robert E.; Gross, Jackson A.; Kershner, Jeffrey L.

    2014-01-01

    Aquatic invasive species are disrupting ecosystems with increasing frequency. Successful control of these invasions has been rare: Biologists and managers have few tools for fighting aquatic invaders. In contrast, the medical community has long worked to develop tools for preventing and fighting cancer. Its successes are marked by a coordinated research approach with multiple steps: prevention, early detection, diagnosis, treatment options and rehabilitation. The authors discuss how these steps can be applied to aquatic invasive species, such as the American bullfrog (Lithobates catesbeianus), in the Northern Rocky Mountain region of the United States, to expedite tool development and implementation along with achievement of biodiversity conservation goals.

  15. A Mixed Picture of AQUATIC PRODUCTS

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    @@ Aquatic products constitute an important part of China's international trade in agricultural products with the strongest competitiveness for export.The aquatic products industry of apparent competitive edge has maintained a considerable trade surplus despite the general trend of trade deficit among agricultural products in recent years.Nevertheless,the great changes taking place in the global economic and trade pattern in late years have given rise to the increasing uncertainties of the supply and demand as well as the price in the international aquatic products market.

  16. The occurrence and ecological risk assessment of phthalate esters (PAEs) in urban aquatic environments of China.

    Science.gov (United States)

    Zhang, Lulu; Liu, Jingling; Liu, Huayong; Wan, Guisheng; Zhang, Shaowei

    2015-07-01

    Phthalate esters (PAEs) are widely used in the manufacturing of plastics, and the demand for PAEs has grown rapidly, especially in China. This trend will lead to much more environmental PAE contamination. PAEs are listed as priority substances in the European Union and are therefore subject to ecological risk assessments. This paper reviews the literature concerning the pollution status of PAEs and their ecological risk to aquatic environments. Risk quotients (RQs) based on the predicted no effect concentration and PAE concentrations in aquatic environments demonstrated significant (10 ≤ RQ effects for algae, Daphnia, and fish in aquatic environments near PAE-based industrial and urban areas. Thus, the ecological risk of PAEs in Chinese aquatic environments should be considered, especially in areas where commercial plastics are produced. PMID:25847103

  17. Bioaccumulation and food chain transfer of corrosion products from radioactive stainless steel

    International Nuclear Information System (INIS)

    Two sets of experiments were conducted to determine if corrosion products from radioactive Type 347 stainless steel could be biologically transferred from sediment through a marine food chain, and whether corrosion products dissolved in seawater could be bioaccumulated and then eliminated. Corrosion products containing 60Co and 63Ni from the radioactive stainless steel were introduced into marine sediments. Infaunal polychaete worms exposed to these sediments bioaccumulated the radionuclides. The feeding of these worms to shrimp and fish resulted in a trophic transfer of the radioactive products across a one-step food chain. The magnitude of the transfers are described in terms of transfer factors. Dissolved corrosion products as measured by the radionuclides were also bioaccumulated by shrimp and fish concentrating more than fish. Concentration factors were calculated

  18. Effect of incorporation of uncertainty in PCB bioaccumulation factors on modeled receptor doses

    Energy Technology Data Exchange (ETDEWEB)

    Welsh, C.; Duncan, J.; Purucker, S. [Oak Ridge National Lab., TN (United States). Center for Risk Management; Richardson, N. [ABB Environmental Services, Inc., Wakefield, MA (United States); Redfearn, A. [Automated Sciences Group, Inc., Oak Ridge, TN (United States)

    1995-12-31

    Bioaccumulation factors (BAFs) are regularly employed in ecological risk assessments to model contaminant transfer through ecological food chains. The authors compiled data on bioaccumulation of PCBs in plants, invertebrates, birds, and mammals from published literature and used these data to develop regression equations relating soil or food concentrations to bioaccumulation. They then used Latin Hypercube simulation techniques and simple food chain models to incorporate uncertainty in the BAF regressions into the derivation of exposure dose estimates for selected wildlife receptors. The authors present their preliminary results in this paper. Dose estimates ranged over several orders of magnitude for herbivorous, insectivorous, and carnivorous receptors. These results suggest incorporating the uncertainty in BAF values into food chain exposure models could provide risk assessors and risk managers with information on the probability of a given outcome that can be used in interpreting the potential risks at hazardous waste sites.

  19. Bioaccumulation and food chain transfer of corrosion products from radioactive stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Young, J.S.

    1986-07-01

    Two sets of experiments were conducted to determine if corrosion products from radioactive Type 347 stainless steel could be biologically transferred from sediment through a marine food chain, and whether corrosion products dissolved in seawater could be bioaccumulated and then eliminated. Corrosion products containing /sup 60/Co and /sup 63/Ni from the radioactive stainless steel were introduced into marine sediments. Infaunal polychaete worms exposed to these sediments bioaccumulated the radionuclides. The feeding of these worms to shrimp and fish resulted in a trophic transfer of the radioactive products across a one-step food chain. The magnitude of the transfers are described in terms of transfer factors. Dissolved corrosion products as measured by the radionuclides were also bioaccumulated by shrimp and fish concentrating more than fish. Concentration factors were calculated.

  20. Structural changes in response to bioaccumulation of iron and mercury in Chromolaena odorata (L.) King & Robins.

    Science.gov (United States)

    Swapna, K S; Salim, Nabeesa; Chandra, Ratheesh; Puthur, Jos T

    2015-09-01

    A comparative study was designed to elucidate the effect of iron and mercury on the morphological and anatomical changes as well as bioaccumulation potential in Chromolaena odorata. Plants were grown in half-strength Hoagland nutrient medium artificially contaminated with known quantities of HgCl2 (15 μM) and FeCl3 (1000 μM). Bioaccumulation of Hg and Fe was maximum in the root, and comparatively reduced bioaccumulation was recorded in the stem and leaves. Microscopic studies on morphology and anatomy revealed development of trichomes and lenticels on the stem and modified trichomes on leaves. Localized deposits of stained masses in various internal parts of the root, stem and leaf also were observed. Differential adaptation/strategy of C. odorata to attain tolerance towards Hg and Fe and phytoremediation potential of the plant is discussed. PMID:26239568

  1. MOIRA models and methodologies for assessing the effectiveness of countermeasures in complex aquatic systems contaminated by radionuclides

    International Nuclear Information System (INIS)

    The present report is composed of a set of articles written by the partners of the MOIRA project (a model-based computerized system for management support to identify optimal remedial strategies for restoring radionuclide contaminated aquatic ecosystems and drainage areas). The report describes models for predicting the behaviour of radionuclides in complex aquatic systems and the effects of countermeasures for their restoration

  2. Bioaccumulation of microcystins in two freshwater gastropods from a cyanobacteria-bloom plateau lake, Lake Dianchi

    International Nuclear Information System (INIS)

    To investigate the bioaccumulation patterns of microcystins (MCs) in organs of two gastropods, samples were collected in Lake Dianchi monthly from May to October, 2008, when cyanobacteria typically bloom. The average MCs concentrations for Radix swinhoei (pulmonate) and Margarya melanioides (prosobranch) tended to be similar for the different organs: the highest values in the hepatopancreas (9.33 by 3.74 μg/g DW), followed by digestive tracts (1.66 by 3.03 μg/g DW), gonads (0.45 by 1.34 μg/g DW) and muscles (0.22 by 0.40 μg/g DW). Pulmonate had higher value than prosobranch because of the stronger bioaccumulation ability in hepatopancreas. The levels in organs of R. swinhoei were correlated with environmentally dissolved MCs, but influenced by intracellular MCs for M. melanioides. The estimated MCs concentrations in edible parts of M. melanioides were beyond the WHO’s provisional tolerable daily intake (0.04 μg/kg), suggesting the risk of consumption of M. melanioides from the lake. Highlights: ► We probe bioaccumulated patterns of microcystins in organs of pulmonate and prosobranch. ► The highest microcystins in hepatopancreas for both snails. ► The higher microcystins for pulmonate results from the stronger bioaccumulation ability in hepatopancreas. ► Environmentally dissolved microcystins are the main sources for pulmonate, but intracellular for prosobranch. ► Suggesting the risk of consumption snails in the studying regions. - Higher bioaccumulation MCs level for pulmonate mainly contributed to the stronger bioaccumulation ability in its hepatopancreas.

  3. Effects of Eichhornia crassipes Growth on Aquatic Plants in Dianchi Lake

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    [Objective] The aim was to study the effects of Eichhornia crassipes as an invasive plant on aquatic plants in Dianchi Lake. [Method] Based on the determination of chlorophyll content of phytoplankton and submerged plant (Potamogeton pectinatus) in Dianchi Lake in different months, the effects of E. crassipes on aquatic plants in Dianchi Lake were studied, and the allelopathy effect of root culture solution of E. crassipes on Microcystis aquaticum was discussed. [Result] The growth of E. crassipes in Dianch...

  4. A systematic review of nonrandomized controlled trials on the curative effects of aquatic exercise

    OpenAIRE

    Kamioka, Hiroharu; Tsutani, Kiichiro; Mutoh, Yoshiteru; Okuizum, Hiroyasu; Ohta, Miho; Handa, Shuichi; Okada, Shinpei; Kitayuguchi, Jun; Kamada, Masamitsu; Shiozawa, Nobuyoshi; Park, Sang-Jun; Honda, Takuya; Moriyama, Shoko

    2011-01-01

    Background: The objectives of this review were to integrate the evidence of curative effects through aquatic exercise and assess the quality of studies based on a review of nonrandomized controlled trials (nRCTs). Methods: Study design was a systematic review of nonrandomized controlled trials. Trials were eligible if they were nonrandomized clinical trials. Studies included one treatment group in which aquatic exercise was applied. We searched the following databases from 2000 up to July 20,...

  5. Bioaccumulation of Cr(III ions by Blue Green-alga Spirulina sp. Part II. Mathematical Modeling

    Directory of Open Access Journals (Sweden)

    Katarzyna Chojnacka

    2007-01-01

    Full Text Available In the present paper bioaccumulation of Cr(III ions by blue-green algae Spirulina sp. is discussed. We found that the process consisted of two stages: passive in which Cr(III ions are bound to the surface of cells, identical with biosorption and active, metabolism-dependent, in which Cr(III ions are transported into the cellular interior. The passive stage occurs in both living and non-living cells and the active only in living biomass. Two distinctive mathematical models of the process were proposed. The first was physical model basing on the identified mechanism of the process. In the second model, artificial neural networks were proposed.

  6. Assessment of trace metal bioaccumulation by Avicennia marina (Forsk.) in the last remaining mangrove stands in Manila Bay, the Philippines.

    Science.gov (United States)

    Gabriel, Ana Veronica S; Salmo, Severino G

    2014-12-01

    Concentrations of lead (Pb), copper (Cu), zinc (Zn), and cadmium (Cd) were evaluated in the sediments, roots and leaves of a mangrove species (Avicennia marina) in Las Piñas-Parañaque Critical Habitat and Ecotourism Area (LPPCHEA), Manila Bay. The concentrations showed a general pattern of Zn > Pb > Cu > Cd in sediments, Cu > Pb > Zn > Cd in roots and Cu > Zn > Pb > Cd in leaves. The trace metal concentrations in both sediments and plant tissues were below contamination threshold levels. Based on computed bioaccumulation indices, A. marina could be used for the phytostabilization and phytoextraction of Cu and Cd. The LPPCHEA mangrove ecosystem is an ecologically important ecosystem that will limit the spread of trace metals to the surrounding environment. PMID:25365960

  7. Application of silicone rubber passive samplers to investigate the bioaccumulation of PAHs by Nereis virens from marine sediments.

    Science.gov (United States)

    Yates, Kyari; Pollard, Pat; Davies, Ian M; Webster, Lynda; Moffat, Colin F

    2011-12-01

    The availability of polycyclic aromatic hydrocarbons (PAHs) from marine sediments to the ragworm (Nereis virens) was studied. Concentrations of PAHs in pore waters were determined using silicone rubber passive samplers. Calculated bioconcentration factors confirmed that partitioning of PAHs between the lipid phase of the polychaetes and pore water is a passive process. Low biota-sediment accumulation factors (BSAF) calculated using total sediment concentration suggested a fraction of the total PAH burden in the sediment may be strongly sorbed to organic carbon and not available to the polychaete. Organic carbon normalised concentrations of the potentially exchangeable fractions of contaminants and freely dissolved concentrations (measured using silicone rubber samplers) provide a better description of the observed bioaccumulation by the ragworms. These data indicate that the concept of availability should be included in environmental risk assessments based upon equilibrium partitioning models, and that silicone rubber samplers can provide the necessary information for these models. PMID:21906858

  8. Assessing element-specific patterns of bioaccumulation across New England lakes

    International Nuclear Information System (INIS)

    Little is known about differences among trace elements in patterns of bioaccumulation in freshwater food webs. Our goal was to identify patterns in bioaccumulation of different elements that are large and consistent enough to discern despite variation across lakes. We measured methylmercury (MeHg) and trace element (As, Cd, Hg, Pb, and Zn) concentrations in food web components of seven New England lakes on 3–5 dates per lake, and contrasted patterns of bioaccumulation across lakes, metals and seasons. In each lake, trace element concentrations were compared across trophic levels, including three size fractions of zooplankton, planktivorous fish, and piscivorous fish. The trophic position of each food web component was estimated from N isotope analysis. Trace element concentrations varied widely among taxa, lakes and sampling dates. Yet, we identified four consistent patterns of bioaccumulation that were consistent across lakes: (1) MeHg concentration increased (i.e., was biomagnified) and Pb concentration decreased (i.e., was biodiminished) with increased trophic position. (2) Zinc concentration (as with MeHg) was higher in fish than in zooplankton, but overall variation in Zn concentration (unlike MeHg) was low. (3) Arsenic and Cd concentrations (as with Pb) were lower in fish than in zooplankton, but (unlike Pb) were not significantly correlated with trophic position within zooplankton or fish groups. (4) Average summer concentrations of As, Pb, Hg, and MeHg in zooplankton significantly predicted their concentrations in either planktivorous or piscivorous fish. Our secondary goal was to review sampling approaches in forty-five published studies to determine the extent to which current sampling programs facilitate cross-lake and cross-study comparisons of bioaccumulation. We found that studies include different components of the food web and sample too infrequently to enable strong cross-lake and cross-study comparisons. We discuss sampling strategies that would

  9. Assessing element-specific patterns of bioaccumulation across New England lakes

    Energy Technology Data Exchange (ETDEWEB)

    Ward, Darren M.; Mayes, Brandon; Sturup, Stefan; Folt, Carol L.; Chen, Celia Y., E-mail: celia.chen@dartmouth.edu

    2012-04-01

    Little is known about differences among trace elements in patterns of bioaccumulation in freshwater food webs. Our goal was to identify patterns in bioaccumulation of different elements that are large and consistent enough to discern despite variation across lakes. We measured methylmercury (MeHg) and trace element (As, Cd, Hg, Pb, and Zn) concentrations in food web components of seven New England lakes on 3-5 dates per lake, and contrasted patterns of bioaccumulation across lakes, metals and seasons. In each lake, trace element concentrations were compared across trophic levels, including three size fractions of zooplankton, planktivorous fish, and piscivorous fish. The trophic position of each food web component was estimated from N isotope analysis. Trace element concentrations varied widely among taxa, lakes and sampling dates. Yet, we identified four consistent patterns of bioaccumulation that were consistent across lakes: (1) MeHg concentration increased (i.e., was biomagnified) and Pb concentration decreased (i.e., was biodiminished) with increased trophic position. (2) Zinc concentration (as with MeHg) was higher in fish than in zooplankton, but overall variation in Zn concentration (unlike MeHg) was low. (3) Arsenic and Cd concentrations (as with Pb) were lower in fish than in zooplankton, but (unlike Pb) were not significantly correlated with trophic position within zooplankton or fish groups. (4) Average summer concentrations of As, Pb, Hg, and MeHg in zooplankton significantly predicted their concentrations in either planktivorous or piscivorous fish. Our secondary goal was to review sampling approaches in forty-five published studies to determine the extent to which current sampling programs facilitate cross-lake and cross-study comparisons of bioaccumulation. We found that studies include different components of the food web and sample too infrequently to enable strong cross-lake and cross-study comparisons. We discuss sampling strategies that would

  10. Bioaccumulation of heavy metals in fauna from wet detention ponds for stormwater runoff

    DEFF Research Database (Denmark)

    Stephansen, Diana; Nielsen, Asbjørn Haaning; Hvitved-Jacobsen, Thorkild;

    2012-01-01

    Stormwater detention ponds remove pollutants e.g. heavy metals and nutrients from stormwater runoff. These pollutants accumulate in the pond sediment and thereby become available for bioaccumulation in fauna living in the ponds. In this study the bioaccumulation was investigated by fauna samples...... from 5 wet detention ponds for analyses of heavy metal contents. Five rural shallow lakes were included in the study to survey the natural occurrence of heavy metals in water-dwelling fauna. Heavy metal concentrations in water-dwelling fauna were generally found higher in wet detention ponds compared...

  11. Freshwater aquatic plant biomass production in Florida

    Energy Technology Data Exchange (ETDEWEB)

    Reddy, K.R.; Sutton, D.L.; Bowes, G.

    1983-01-01

    About 8% (1.2 million ha) of the total surface area of Florida is occupied by freshwater. Many of these water bodies are eutrophic. Nutrients present in these water bodies can be potentially used to culture aquatic plants as a possible feedstock for methane production. This paper summarizes the results of known research findings on biomass production potential of freshwater aquatic plants in Florida and identifies key research needs to improve the quality and quantity of biomass yields. Among floating aquatic plants, biomass yield potential was in the order of water-hyacinth > water lettuce > pennywort > salvinia > duckweed > azolla. Pennywort, duckweed, and azolla appear to perform well during the cooler months compared to other aquatic plants. Among emergent plants, biomass yield potential was in the order of southern wild rice > cattails > soft rush > bulrush. Cultural techniques, nutrient management, and environmental factors influencing the biomass yields were discussed. 68 references.

  12. Nitrous oxide emission by aquatic macrofauna

    Science.gov (United States)

    Stief, Peter; Poulsen, Morten; Nielsen, Lars Peter; Brix, Hans; Schramm, Andreas

    2009-01-01

    A large variety of aquatic animals was found to emit the potent greenhouse gas nitrous oxide when nitrate was present in the environment. The emission was ascribed to denitrification by ingested bacteria in the anoxic animal gut, and the exceptionally high N2O-to-N2 production ratio suggested delayed induction of the last step of denitrification. Filter- and deposit-feeding animal species showed the highest rates of nitrous oxide emission and predators the lowest, probably reflecting the different amounts of denitrifying bacteria in the diet. We estimate that nitrous oxide emission by aquatic animals is quantitatively important in nitrate-rich aquatic environments like freshwater, coastal marine, and deep-sea ecosystems. The contribution of this source to overall nitrous oxide emission from aquatic environments might further increase because of the projected increase of nitrate availability in tropical regions and the numeric dominance of filter- and deposit-feeders in eutrophic ecosystems. PMID:19255427

  13. Submerged Aquatic Vegetation (SAV) - Volusia County Seagrass

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — Aquatic vegetation in Volusia County. DEP SEA_GRASSES This polygon GIS data set represents a compilation of statewide seagrass data from various source agencies and...

  14. Nonindigenous Aquatic Species Database Marine Fishes

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The Nonindigenous Aquatic Species Database (NAS) information resource is an established central repository for spatially referenced biogeographic accounts of...

  15. Development and validation of an in-house quantitative analysis method for cylindrospermopsin using hydrophilic interaction liquid chromatography-tandem mass spectrometry: Quantification demonstrated in 4 aquatic organisms.

    Science.gov (United States)

    Esterhuizen-Londt, Maranda; Kühn, Sandra; Pflugmacher, Stephan

    2015-12-01

    The cyanobacterial toxin cylindrospermopsin (CYN) is of great concern in aquatic environments because of its incidence, multiple toxicity endpoints, and, therefore, the severity of health implications. It may bioaccumulate in aquatic food webs, resulting in high exposure concentrations to higher-order trophic levels, particularly humans. Because of accumulation at primary levels resulting from exposure to trace amounts of toxin, a sensitive analytical technique with proven aquatic applications is required. In the present study, a hydrophilic interaction liquid chromatographic-tandem mass spectrometric method with a lower limit of detection of 200 fg on column (signal-to-noise ratio = 3, n = 9) and a lower limit of quantification of 1 pg on column (signal-to-noise ratio = 11, n = 9) with demonstrated application in 4 aquatic organisms is described. The analytical method was optimized and validated with a linear range (r(2) = 0.999) from 0.1 ng mL(-1) to 100 ng mL(-1) CYN. Mean recovery of the extraction method was 98 ± 2%. Application of the method was demonstrated by quantifying CYN uptake in Scenedesmus subspicatus (green algae), Egeria densa (Brazilian waterweed), Daphnia magna (water flea), and Lumbriculus variegatus (blackworm) after 24 h of static exposure to 50 μg L(-1) CYN. Uptake ranged from 0.05% to 0.11% of the nominal CYN exposure amount. This constitutes a sensitive and reproducible method for extraction and quantification of unconjugated CYN with demonstrated application in 4 aquatic organisms, which can be used in further aquatic toxicological investigations. PMID:26126753

  16. Improved analytical techniques for the evaluation of the environmental factors influencing the dynamics of mercury in aquatic systems with particular emphasis on tropical areas

    International Nuclear Information System (INIS)

    Environmental mercury contamination is an issue of deep concern in tropical and other regions. In particular, a number of countries in the tropical belt of South America, Africa and Southeast Asia have experienced tremendous increase in uncontrolled small-scale gold mining using mercury amalgamation since early 1980s, which is likely to amplify adverse effects on the contaminated ecosystems and cause health hazards. Ecologically, the most critical but complex part of the mercury pollution problem is that concerned with the transformation of inorganic mercury into more toxic mono-methylmercury(MeHg) that is more biologically available for aquatic organisms. Although increasing literature dealing with mercury contamination levels in human populations and in aquatic ecosystems exists, we are still unable to make predictions of the behavior of mercury in the aquatic systems, particularly under the tropical conditions. Thus, it is imperative to obtain basic data concerning the overall dynamics of MeHg production, as well as the environmental factors influencing mercury methylation and the partitioning of mercury in the aquatic systems in order to understand and predict the cycling and bio-accumulation of mercury. To facilitate studies on the dynamics of mercury in the aquatic systems, we have developed highly sensitive and systematic methods for the analysis of total mercury(T-Hg) and MeHg in a wide range of biological and environmental materials containing mercury down to background levels. With these methods, it is now possible to make quantitative measurements of the equilibrium distribution or partitioning of MeHg produced in sediments in a model of aquatic systems under various environmental conditions similar to those found in the fields. Such an approach should undoubtedly help elucidate the mechanisms of mercury pollution in the tropical ecosystems and promote efforts in mercury pollution prevention. (author)

  17. Effect of Aquatic Immersion on Static Balance

    OpenAIRE

    Louder, Talin J.

    2013-01-01

    Objective To quantitatively assess measures of static balance and limits of stability (LOS) in an aquatic environment compared to on land. Methods Fifteen healthy, young adults (23 + or - 2 years) performed 90 s static balance trials on land and aquatic immersion at two different depths (greater trochanter, xiphoid process). Measures of 95% ellipse area and center of pressure (CoP) mean velocity were computed from the force data. Additionally, participants completed a visual analog scale (VAS...

  18. Human Exploitation of Aquatic Landscapes. Editorial

    OpenAIRE

    Ricardo Fernandes; John Meadows

    2014-01-01

    Aquatic landscapes such as rivers, lakes, and seas played an important role in past human behaviour, affecting modes of subsistence, patterns of mobility, access to material resources, and technological choices and their developments. The interaction with aquatic landscapes was also influential in the establishment of economic and social structures and in the formation of communal identities. The aim of this special themed issue of Internet Archaeology is to contribute to a better understandi...

  19. Ohio Aquatic Gap Analysis-An Assessment of the Biodiversity and Conservation Status of Native Aquatic Animal Species

    Science.gov (United States)

    Covert, S. Alex; Kula, Stephanie P.; Simonson, Laura A.

    2007-01-01

    homogeneity and labeling these areas using categories defined by the classification system. The variables were linked to the 1:100,000-scale streams of the National Hydrography Dataset of the USGS. Through discussions with Ohio aquatic experts, OH-GAP identified eight separate enduring physical features which, when combined, form the physical habitat type: * Shreve link (a measure of stream size) * Downstream Shreve link (a measure of stream connectivity and size) * Sinuosity * Gradient * Bedrock * Stream temperature * Character of glacial drift * Glacial-drift thickness Potential distribution models were developed for 130 fish, 70 bivalve, and 17 native crayfish species. These models are based on 5,686 fish, 4,469 crayfish, and 2,899 freshwater bivalve (mussels and clams) sampling locations, the variables describing the physical habitat types, and variables indicating the major drainage basins and Omernik's Level III ecoregion. All potential species distributions are displayed and analyzed at the 14-digit hydrologic unit (14-HUs), or subwatershed, level. Mainland Ohio contains 1,749 14-HUs. All statistics and conclusions, as well as spatial data, are discussed and presented in terms of these units. The Ohio Aquatic Gap Analysis Project compiled a map of public and private conservation lands and OH-GAP classified the lands into four status categories (status 1 through status 4) by the degree of protection offered based on management practices. A status of 1 denotes the highest, most permanent level of maintenance, and status 4 represents the lowest level of biodiversity management, or unknown status. The results of this mapping show that only about 3.7 percent of the state's land (4.3 percent if lakes and reservoirs are also included) is protected for conservation, either publicly or privately. Of this total, state agencies control about 52 percent, and Federal agencies control about 29 percent. Conservation areas that presently protect

  20. Integration of aquatic ecology and biological oceanographic knowledge for development of area-based eutrophication assessment criteria leading to water resource remediation and utilization management: a case study in Tha Chin, the most eutrophic river of Thailand.

    Science.gov (United States)

    Meksumpun, Charumas; Meksumpun, Shettapong

    2008-01-01

    This research was carried out in Tha Chin Watershed in the central part of Thailand with attempts to apply multidisciplinary knowledge for understanding ecosystem structure and response to anthropogenic pollution and natural impacts leading to a proposal for an appropriate zonation management approach for sustainable utilization of the area. Water quality status of the Tha Chin River and Estuary had been determined by analyzing ecological, hydrological, and coastal oceanographic information from recent field surveys (during March 2006 to November 2007) together with secondary data on irrigation, land utilization, and socio-economic status.Results indicated that the Tha Chin River and Estuary was eutrophic all year round. Almost 100% of the brackish to marine areas reflected strongly hypertrophic water condition during both dry and high-loading periods. High NH(4)(+) and PO(4)(3-) loads from surrounding agricultural land use, agro-industry, and community continuously flew into the aquatic environment. Deteriorated ecosystem was clearly observed by dramatically low DO levels (ca 1 mg/l) in riverine to coastal areas and Noctiluca and Ceratium red tide outbreaks occurred around tidal front closed to the estuary. Accordingly, fishery resources were significantly decreased. Some riverine benthic habitats became dominated by deposit-feeding worms e.g. Lumbriculus, Branchiura, and Tubifex, while estuarine benthic habitats reflected succession of polychaetes and small bivalves. Results on analysis on integrated ecosystem responses indicated that changing functions were significantly influenced by particulates and nutrients dynamics in the system.Based on the overall results, the Tha Chin River and Estuary should be divided into 4 zones (I: Upper freshwater zone; II: Middle freshwater zone; III Lower freshwater zone; and IV: Lowest brackish to marine zone) for further management schemes on water remediation. In this study, the importance of habitat morphology and water flow

  1. Heavy metal contamination in sediments and mangroves from the coast of Red Sea: Avicennia marina as potential metal bioaccumulator.

    Science.gov (United States)

    Usman, Adel R A; Alkredaa, Raed S; Al-Wabel, M I

    2013-11-01

    The aim of this study was to investigate the concentrations and pollution status of heavy metals (Cu, Cd, Ni, Pb, Zn and Cr) in the mangrove surface sediments from the Farasan Island, Coast of Red Sea, Saudi Arabia. The ability of mangroves (Avicennia marina) to accumulate and translocate heavy metal within their different compartments was also investigated. Five sampling sites were chosen for collection of sediments and different compartments (leaf, branch and root) of A. marina. The results showed that the maximum and average concentrations of Cd, Cu and Pb in the studied area exceeded their world average concentration of shale. Additionally, only the maximum concentration of Zn exceeded its world average shale concentration. Based on the quality guidelines of sediment (SQGs), the collected sediment samples were in moderate to heavy rate for Cu, non-polluted to heavy rate for Pb and Zn, and non-polluted to moderate rate for Cr and Ni. The average metal concentrations of A. marina in the studied area were observed in the order Cu (256.0-356.6mgkg(-1))>Zn (29.5-36.8mgkg(-1))>Cr (8.15-14.9mgkg(-1))>Ni (1.37-4.02mgkg(-1))>Cd (not detectable-1.04mgkg(-1))>Pb (not detectable). Based on bio-concentration factors (BCF), their most obtained values were considered too high (>1), suggesting that A. marina can be considered as a high-efficient plant for bioaccumulation of heavy metals. Among all metals, Cu and Cr were highly bio-accumulated in different parts of A. marina. In terms of heavy metal contamination control via phyto-extraction, our findings suggest also that A. marina may be classified as potential accumulator for Cu in aboveground parts, as indicated by higher metal accumulation in the leaves combined with bio-concentration factor (BCF) and translocation factor (TF) values >1. PMID:24011858

  2. Energetic extremes in aquatic locomotion by coral reef fishes.

    Directory of Open Access Journals (Sweden)

    Christopher J Fulton

    Full Text Available Underwater locomotion is challenging due to the high friction and resistance imposed on a body moving through water and energy lost in the wake during undulatory propulsion. While aquatic organisms have evolved streamlined shapes to overcome such resistance, underwater locomotion has long been considered a costly exercise. Recent evidence for a range of swimming vertebrates, however, has suggested that flapping paired appendages around a rigid body may be an extremely efficient means of aquatic locomotion. Using intermittent flow-through respirometry, we found exceptional energetic performance in the Bluelined wrasse Stethojulis bandanensis, which maintains tuna-like optimum cruising speeds (up to 1 metre s(-1 while using 40% less energy than expected for their body size. Displaying an exceptional aerobic scope (22-fold above resting, streamlined rigid-body posture, and wing-like fins that generate lift-based thrust, S. bandanensis literally flies underwater to efficiently maintain high optimum swimming speeds. Extreme energetic performance may be key to the colonization of highly variable environments, such as the wave-swept habitats where S. bandanensis and other wing-finned species tend to occur. Challenging preconceived notions of how best to power aquatic locomotion, biomimicry of such lift-based fin movements could yield dramatic reductions in the power needed to propel underwater vehicles at high speed.

  3. Energetic extremes in aquatic locomotion by coral reef fishes.

    Science.gov (United States)

    Fulton, Christopher J; Johansen, Jacob L; Steffensen, John F

    2013-01-01

    Underwater locomotion is challenging due to the high friction and resistance imposed on a body moving through water and energy lost in the wake during undulatory propulsion. While aquatic organisms have evolved streamlined shapes to overcome such resistance, underwater locomotion has long been considered a costly exercise. Recent evidence for a range of swimming vertebrates, however, has suggested that flapping paired appendages around a rigid body may be an extremely efficient means of aquatic locomotion. Using intermittent flow-through respirometry, we found exceptional energetic performance in the Bluelined wrasse Stethojulis bandanensis, which maintains tuna-like optimum cruising speeds (up to 1 metre s(-1)) while using 40% less energy than expected for their body size. Displaying an exceptional aerobic scope (22-fold above resting), streamlined rigid-body posture, and wing-like fins that generate lift-based thrust, S. bandanensis literally flies underwater to efficiently maintain high optimum swimming speeds. Extreme energetic performance may be key to the colonization of highly variable environments, such as the wave-swept habitats where S. bandanensis and other wing-finned species tend to occur. Challenging preconceived notions of how best to power aquatic locomotion, biomimicry of such lift-based fin movements could yield dramatic reductions in the power needed to propel underwater vehicles at high speed. PMID:23326566

  4. PHYSIOLOGICAL ASSESSMENT OF HEAD-OUT AQUATIC EXERCISES IN HEALTHY SUBJECTS: A QUALITATIVE REVIEW

    Directory of Open Access Journals (Sweden)

    Tiago M Barbosa

    2009-06-01

    Full Text Available In the last decades head-out aquatic exercises became one of the most important physical activities within the health system. Massive research has been produced throughout these decades in order to better understand the role of head-out aquatic exercises in populations' health. Such studies aimed to obtain comprehensive knowledge about the acute and chronic response of subjects performing head-out aquatic exercises. For that, it is assumed that chronic adaptations represent the accumulation of acute responses during each aquatic session. The purpose of this study was to describe the "state of the art" about physiological assessment of head-out aquatic exercises based on acute and chronic adaptations in healthy subjects based on a qualitative review. The main findings about acute response of head-out aquatic exercise according to water temperature, water depth, type of exercise, additional equipment used, body segments exercising and music cadence will be described. In what concerns chronic adaptations, the main results related to cardiovascular and metabolic adaptations, muscular strength, flexibility and body composition improvements will be reported

  5. FY 1987 Aquatic Species Program: Annual report

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, D.A.; Sprague, S.

    1987-09-01

    The goal of the Department of Energy/Solar Energy Research Institute Aquatic Species Program is to develop the technology base to produce liquid fuels from microalagae at prices competitive with conventional alternatives. Microalgae are unusual plants that can accumulate large quantities of oil and can thrive in high-salinity water, which currently has no competing uses. The algal oils, in turn, are readily converted into gasoline and diesel fuels. The best site for successful microalgae production was determined to be the US desert Southwest, with potential applications to other warm areas. Aggressive research is needed, but the improvements required are attainable. The four prime research areas in the development of this technology are growth and production, engineering design, harvesting, and conversion. Algae are selected for three criteria: tolerance to environmental fluctuations, high growth rates, and high lipid production. From 1982 to 1986, the program collected more than 3000 strains of microalgae that are more than twice as tolerant to temperature and salinity fluctuation than the initial strains. Productivity has been increased by a factor of two in outdoor culture systems since 1982, and lipid content has also been increased from 20% of body weight in 1982 to greater than 66% of body weight in 1987. Research programs are ongoing in lipid biochemistry and genetic engineering so that ultimately strains can be modified and improved to combine their best characteristics. An outdoor test facility is being built in Roswell, New Mexico.

  6. Equilibrium sampling of polychlorinated biphenyls in River Elbe sediments--Linking bioaccumulation in fish to sediment contamination.

    Science.gov (United States)

    Schäfer, Sabine; Antoni, Catherine; Möhlenkamp, Christel; Claus, Evelyn; Reifferscheid, Georg; Heininger, Peter; Mayer, Philipp

    2015-11-01

    Equilibrium sampling can be applied to measure freely dissolved concentrations (cfree) of hydrophobic organic chemicals (HOCs) that are considered effective concentrations for diffusive uptake and partitioning. It can also yield concentrations in lipids at thermodynamic equilibrium with the sediment (clip⇌sed) by multiplying concentrations in the equilibrium sampling polymer with lipid to polymer partition coefficients. We have applied silicone coated glass jars for equilibrium sampling of seven 'indicator' polychlorinated biphenyls (PCBs) in sediment samples from ten locations along the River Elbe to measure cfree of PCBs and their clip⇌sed. For three sites, we then related clip⇌sed to lipid-normalized PCB concentrations (cbio,lip) that were determined independently by the German Environmental Specimen Bank in common bream, a fish species living in close contact with the sediment: (1) In all cases, cbio,lip were below clip⇌sed, (2) there was proportionality between the two parameters with high R(2) values (0.92-1.00) and (3) the slopes of the linear regressions were very similar between the three stations (0.297; 0.327; 0.390). These results confirm the close link between PCB bioaccumulation and the thermodynamic potential of sediment-associated HOCs for partitioning into lipids. This novel approach gives clearer and more consistent results compared to conventional approaches that are based on total concentrations in sediment and biota-sediment accumulation factors. We propose to apply equilibrium sampling for determining bioavailability and bioaccumulation potential of HOCs, since this technique can provide a thermodynamic basis for the risk assessment and management of contaminated sediments. PMID:26313858

  7. Toxicity and bioaccumulation of sediment-associated silvernanoparticles in the estuarine polychaete, Nereis (Hediste) diversicolor

    DEFF Research Database (Denmark)

    Cong, Yi; Banta, Gary Thomas; Selck, Henriette;

    2014-01-01

    damage (comet assay tail moment and tail DNA intensity %) of Nereis coelomocytes increased in a concentration-dependent manner in all three Ag treatments. Ag NP treatments were more toxic than aqueous Ag for all toxicity endpoints, even though bioaccumulation did not differ significantly among Ag forms...

  8. Forecasting fish biomasses, densities, productions, and bioaccumulation potentials of Mid-Atlantic wadeable streams

    Science.gov (United States)

    Regional fishery conditions of Mid-Atlantic wadeable streams in the eastern United States are estimated using the BASS bioaccumulation and fish community model and data collected by the U.S. Environmental Protection Agency's Environmental Monitoring and Assessment Program (EMAP)....

  9. Equilibrium sampling to determine the thermodynamic potential for bioaccumulation of persistent organic pollutants from sediment.

    Science.gov (United States)

    Jahnke, Annika; MacLeod, Matthew; Wickström, Håkan; Mayer, Philipp

    2014-10-01

    Equilibrium partitioning (EqP) theory is currently the most widely used approach for linking sediment pollution by persistent hydrophobic organic chemicals to bioaccumulation. Most applications of the EqP approach assume (I) a generic relationship between organic carbon-normalized chemical concentrations in sediments and lipid-normalized concentrations in biota and (II) that bioaccumulation does not induce levels exceeding those expected from equilibrium partitioning. Here, we demonstrate that assumption I can be obviated by equilibrating a silicone sampler with chemicals in sediment, measuring chemical concentrations in the silicone, and applying lipid/silicone partition ratios to yield concentrations in lipid at thermodynamic equilibrium with the sediment (CLip⇌Sed). Furthermore, we evaluated the validity of assumption II by comparing CLip⇌Sed of selected persistent, bioaccumulative and toxic pollutants (polychlorinated biphenyls (PCBs) and hexachlorobenzene (HCB)) to lipid-normalized concentrations for a range of biota from a Swedish background lake. PCBs in duck mussels, roach, eel, pikeperch, perch and pike were mostly below the equilibrium partitioning level relative to the sediment, i.e., lipid-normalized concentrations were ≤CLip⇌Sed, whereas HCB was near equilibrium between biota and sediment. Equilibrium sampling allows straightforward, sensitive and precise measurement of CLip⇌Sed. We propose CLip⇌Sed as a metric of the thermodynamic potential for bioaccumulation of persistent organic chemicals from sediment useful to prioritize management actions to remediate contaminated sites. PMID:25184484

  10. Optimal choice of pH for toxicity and bioaccumulation studies of ionizing organic chemicals

    DEFF Research Database (Denmark)

    Rendal, Cecilie; Kusk, Kresten Ole; Trapp, Stefan

    2011-01-01

    processes were identified to explain the behavior of ionizing compounds with changing pH: the change in lipophilicity when a neutral compound becomes ionized, electrical attraction, and the ion trap. The literature was screened for bioaccumulation and toxicity tests of ionizing organic compounds performed...

  11. Organophosphorus and Organochlorine Pesticides Bioaccumulation by Eichhornia crassipes in Irrigation Canals in an Urban Agricultural System.

    Science.gov (United States)

    Mercado-Borrayo, B M; Heydrich, Silke Cram; Pérez, Irma Rosas; Quiroz, Manuel Hernández; Hill, Claudia Ponce De León

    2015-01-01

    A natural wetland in Mexico City Metropolitan Area is one of the main suppliers of crops and flowers, and in consequence its canals hold a high concentration of organochlorine (OC) and organophosphorus (OP) pesticides. There is also an extensive population of water hyacinth (Eichhornia crassipes), which is considered a plague; but literature suggests water hyacinth may be used as a phytoremediator. This study demonstrates bioaccumulation difference for the OC in vivo suggesting their bioaccumulation is ruled by their log K(ow), while all the OP showed bioaccumulation regardless of their log K(ow). The higher bioaccumulation factors (BAF) of the accumulated OC pesticides cannot be explained by their log K(ow), suggesting that the OC pesticides may also be transported passively into the plant. Translocation ratios showed that water hyacinth is an accumulating plant with phytoremediation potential for all organophosphorus pesticides studied and some organochlorine pesticides. An equation for free water surface wetlands with floating macrophytes, commonly used for the construction of water-cleaning wetlands, showed removal of the pesticides by the wetland with room for improvement with appropriate management. PMID:25976884

  12. Coupling marine monitoring and risk assessment by integrating exposure, bioaccumulation and effect studies

    DEFF Research Database (Denmark)

    Strand, J.

    This Ph.D. thesis focuses on the highly toxic organotin compounds, mainly tri-n-butyltin (TBT) but also triphenyltin (TPhT), which have been widely used as antifouling agents in ship paints, and covers several aspects investigated by field studies of spatial distributions, bioaccumulation and eco...

  13. Total mercury bioaccumulation tracking in a fresh water food chain, (Sanandaj Gheshlagh Dam Reservoir, Iran

    Directory of Open Access Journals (Sweden)

    Shahnaz Zare

    2014-05-01

    Conclusion: Due to the high bioaccumulation, biomagnifications factors and mercury concentration recorded in edible parts of SGR fish, local consumers should not eat more than 1182 gram of this fish weekly without accounting for other potential sources of total mercury in their food basket.

  14. Sediment contamination and associates laboratory-measured bioaccumulation in New York/New Jersey waterways

    Energy Technology Data Exchange (ETDEWEB)

    Rosman, L.B. [Army Corps of Engineers, New York, NY (United States); Barrows, E.S. [Battelle/Marine Sciences Lab., Sequim, WA (United States)

    1995-12-31

    Sediments from 10 New York/New Jersey waterways within the Hudson-Raritan Estuary and Long Island Sound were collected to depths representative of dredging activity. Composited core sediments representing each waterway were analyzed for metals, PAHs, PCBs, and pesticides. To assess bioaccumulation, sand worms (Nereis virens) and blunt-nose clams (Macoma nasuta) were exposed for 28 days to sediment composites and to New York Bight sediment. Tissues were analyzed for the same constituents as the sediment samples. The results highlight the range and magnitude of sediment contamination in NY/NJ waterways. Concentrations of some metals in sediments, compared with NY Bight sediment, were at least 10 times higher. Total PAHs reached 30,000 {micro}g/kg (dry weight). The sum of DDT, DDD, and DDE, the dominant pesticides, exceeded 3,000{micro}g/kg (dry weight). Total PCBs approached 3,000 {micro}g/kg (dry weight). Tissues exposed to sediments from several waterways bioaccumulated organic compounds at concentrations 10 times greater than those exposed to New York Bight sediments. Metals were bioaccumulated to a lesser degree. The presence and extent of bioaccumulated contaminants, along with sediment chemistry and benthic toxicity, create a profile characterizing each waterway.

  15. Quantifying the effects of ultraviolet radiation on aquatic photosynthesis

    International Nuclear Information System (INIS)

    Stratospheric ozone depletion is occurring world-wide, most severely in the Antarctic ''ozone hole'' (58). Accordingly, phytoplankton communities are receiving higher exposures to UVB2 (280-320 nm) as a proportion of total irradiance (37, 55, 57). Because phytoplankton form the base of most aquatic food webs and because UVB is harmful to many biological processes (5, 14, 28,61), a great deal of interest and concern has been expressed about the impact of increased UVB on phytoplankton in particular and marine ecosystems in general(19). Ecosystem function is complex, and it is likely that more than one direct effect of UVB will influence the species composition and productivity of aquatic systems (17, 19, 55, 64). Nonetheless, it is important to characterize the direct effect of UV on phytoplankton photosynthesis in order to estimate its importance to ecosystem response. With this in mind, we describe an approach to quantifying the acute effects of UV on aquatic photosynthesis

  16. Aquatic exercise for the treatment of knee and hip osteoarthritis

    DEFF Research Database (Denmark)

    Bartels, E M; Lund, H; Hagen, K B;

    2007-01-01

    BACKGROUND: Clinical experience indicates that aquatic exercise may have advantages for osteoarthritis patients. OBJECTIVES: To compare the effectiveness and safety of aquatic-exercise interventions in the treatment of knee and hip osteoarthritis. SEARCH STRATEGY: We searched MEDLINE from 1949...... treatment for combined knee and hip osteoarthritis, there was a small-to-moderate effect on function (SMD 0.26, 95% confidence interval (CI) 0.11 to 0.42) and a small-to-moderate effect on quality of life (SMD 0.32, 95% CI 0.03 to 0.61). A minor effect of a 3% absolute reduction (0.6 fewer points on a 0 to...... osteoarthritis alone. Only one trial was identified including knee osteoarthritis alone, comparing aquatic exercise with land-based exercise. Immediately after treatment, there was a large effect on pain (SMD 0.86, 95%CI 0.25 to 1.47; 22% relative percent improvement), but no evidence of effect on stiffness or...

  17. Pesticide runoff from energy crops: A threat to aquatic invertebrates?

    Science.gov (United States)

    Bunzel, Katja; Schäfer, Ralf B; Thrän, Daniela; Kattwinkel, Mira

    2015-12-15

    The European Union aims to reach a 10% share of biofuels in the transport sector by 2020. The major burden is most likely to fall on already established annual energy crops such as rapeseed and cereals for the production of biodiesel and bioethanol, respectively. Annual energy crops are typically cultivated in intensive agricultural production systems, which require the application of pesticides. Agricultural pesticides can have adverse effects on aquatic invertebrates in adjacent streams. We assessed the relative ecological risk to aquatic invertebrates associated with the chemical pest management from six energy crops (maize, potato, sugar beet, winter barley, winter rapeseed, and winter wheat) as well as from mixed cultivation scenarios. The pesticide exposure related to energy crops and cultivation scenarios was estimated as surface runoff for 253 small stream sites in Central Germany using a GIS-based runoff potential model. The ecological risk for aquatic invertebrates, an important organism group for the functioning of stream ecosystems, was assessed using acute toxicity data (48-h LC50 values) of the crustacean Daphnia magna. We calculated the Ecological Risk from potential Pesticide Runoff (ERPR) for all three main groups of pesticides (herbicides, fungicides, and insecticides). Our findings suggest that the crops potato, sugar beet, and rapeseed pose a higher ecological risk to aquatic invertebrates than maize, barley, and wheat. As maize had by far the lowest ERPR values, from the perspective of pesticide pollution, its cultivation as substrate for the production of the gaseous biofuel biomethane may be preferable compared to the production of, for example, biodiesel from rapeseed. PMID:26282752

  18. Uptake and bioaccumulation of platinum group metals (Pd, Pt, Rh) from automobile catalytic converter materials by the zebra mussel (Dreissena polymorpha).

    Science.gov (United States)

    Zimmermann, Sonja; Messerschmidt, Jürgen; von Bohlen, Alex; Sures, Bernd

    2005-06-01

    The uptake and bioaccumulation of the platinum group metals (PGM) platinum (Pt), palladium (Pd), and rhodium (Rh) by the zebra mussel (Dreissena polymorpha) were investigated in exposure studies using ground material from unused automobile catalytic converters as metal source. The mussels were exposed to the metals in tap water or humic water. In the soft tissue samples of exposed mussels mean Pt levels ranged in dependence on the type of tank water and the exposure period (6, 9, or 18 weeks) between 780 and 4300 ng/g, the Pd levels ranged between 720 and 6300 ng/g, and the Rh levels ranged between 270 and 1900 ng/g. In contrast, the control mussels had metal concentrations of <20 ng/g (Pt), <50 ng/g (Pd), and <40 ng/g (Rh). Considerably higher PGM levels were found in the exposed mussels of the humic water group than in those of the tap water group. Although there is a cumulative increase of the PGM concentrations in the environment since the introduction of the automobile catalyst more than 20 years ago, only little information about the PGM contamination in the biosphere, especially the fauna, is available. Due to the high capacity of D. polymorpha to accumulate PGM, this bivalve could be used as a potential sentinel for monitoring the noble metals in aquatic ecosystems. PMID:15820726

  19. Geochemistry and bioavailability of mudflats and mangrove sediments and their effect on bioaccumulation in selected organisms within a tropical (Zuari) estuary, Goa, India.

    Science.gov (United States)

    Dias, Heidy Q; Nayak, G N

    2016-04-15

    Metals are non-degradable in the aquatic environment and play a vital role in estuarine biogeochemistry but could also be detrimental to associated biota. A comparative evaluation of the trace metal concentrations (Fe, Mn, Zn, Cu, Ni, and Co) was carried out in the Zuari estuary, Goa during the post-monsoon season of 2013 at six locations, each representing three mangrove and three mudflat regions. In addition, fractionation of trace metals in sediments was performed to provide information on the mobility, distribution, bioavailability and toxicity. Special attention was paid to the marine mollusks viz. bivalves and gastropods that are extensively used as bio-indicators in coastal pollution. Considering the percentage of metals in the sequentially extracted fractions, the order of mobility from most to least bioavailable forms was Mn > Zn > Cu > Ni > Co > Fe. Mn maintained high bioavailability (average around 60%) in Fe-Mn oxide and carbonate bound forms indicating that Mn is readily available for biota uptake. The bioavailability of Fe was on an average of around 6% whereas other metals like Cu, Zn, Ni and Co were around 19% to 34%. When the bioavailable values were compared with standard Screening Quick Reference Table (SQUIRT), Zn showed higher toxicity level and bioavailability in the lower estuary. On the basis of calculated Bio Sediment Accumulation Factors (BSAF's), overall trend in bioaccumulation was in the order of Cu > Zn > Mn > Ni > Co > Fe. Metal Pollution Index (MPI) computed was higher for gastropods than bivalves. PMID:26920425

  20. Bioaccumulation of Pb and Cd on Broiler Chicken Fed in Difference Diets

    Directory of Open Access Journals (Sweden)

    Bambang Dwiloka

    2012-10-01

    Full Text Available The study was aimed to compute Pb and Cd bioaccumulation in different organs of broiler. Carcass, heart, liver, gizzard, intestine, and excreta. The data were obtained from broiler reared in the litter cage. Four treatments of feed were given to the broiler chicken, i.e.  T1 = X brand of commercial feed, T2 = Y brand of commercial feed, T3 = self-prepared feed without fish meal addition and T4 = self prepared feed without fish meal but contaminated with cadmium chloride (Cd.Cl2.4H2O. For each treatment, five broiler chicken were grouped each week (from week I up to week VI. Results of the first stage of this study was analyzed descriptively. A polinomial regression equation was used as an empirical model to describe the heavy metal bioaccumulation phenomenon in broiler carcasses. The quadratic equation  turned out to be the most suitable model for describing the bioaccumulation of heavy metal in broiler carcasses. From the simulation, it was found that  quadratic model fit to 61.31% and 54.17%  bioaccumulation data of Pb and Cd respectively. According to the model, initially metal concentrations declined since the first week and started to rebound at the fifth week, both in terms of chronological and physiological age. The patterns of Pb and Cd bioaccumulation in this study can be used as a reference to determine the proper slaughter period. It can be concluded that for reducing the risk of metal contamination the proper slaughter time of the broiler is before the fifth week.