WorldWideScience

Sample records for based aquatic bioaccumulation

  1. Bioavailability and Bioaccumulation of Metal-Based Engineered Nanomaterials in Aquatic Environments

    DEFF Research Database (Denmark)

    Luoma, Samuel; Khan, Farhan R.; Croteau, Marie-Noelle

    2014-01-01

    Bioavailability of Me-ENMs to aquatic organisms links their release into the environment to ecological implications. Close examination shows some important differences in the conceptual models that define bioavailability for metals and Me-ENMs. Metals are delivered to aquatic animals from Me......-ENMs via water, ingestion, and incidental surface exposure. Both metal released from the Me-ENM and uptake of the nanoparticle itself contribute to bioaccumulation. Some mechanisms of toxicity and some of the metrics describing exposure may differ from metals alone. Bioavailability is driven by complex...... interaction of particle attributes, environmental transformations, and biological traits. Characterization of Me-ENMs is an essential part of understanding bioavailability and requires novel methodologies. The relative importance of the array of processes that could affect Me-ENM bioavailability remains...

  2. Cyanotoxins: Bioaccumulation and Effects on Aquatic Animals

    Directory of Open Access Journals (Sweden)

    Betina Kozlowsky-Suzuki

    2011-12-01

    Full Text Available Cyanobacteria are photosynthetic prokaryotes with wide geographic distribution that can produce secondary metabolites named cyanotoxins. These toxins can be classified into three main types according to their mechanism of action in vertebrates: hepatotoxins, dermatotoxins and neurotoxins. Many studies on the effects of cyanobacteria and their toxins over a wide range of aquatic organisms, including invertebrates and vertebrates, have reported acute effects (e.g., reduction in survivorship, feeding inhibition, paralysis, chronic effects (e.g., reduction in growth and fecundity, biochemical alterations (e.g., activity of phosphatases, GST, AChE, proteases, and behavioral alterations. Research has also focused on the potential for bioaccumulation and transferring of these toxins through the food chain. Although the herbivorous zooplankton is hypothesized as the main target of cyanotoxins, there is not unquestionable evidence of the deleterious effects of cyanobacteria and their toxins on these organisms. Also, the low toxin burden in secondary consumers points towards biodilution of microcystins in the food web as the predominant process. In this broad review we discuss important issues on bioaccumulation and the effects of cyanotoxins, with emphasis on microcystins, as well as drawbacks and future needs in this field of research.

  3. Cyanotoxins: bioaccumulation and effects on aquatic animals.

    Science.gov (United States)

    Ferrão-Filho, Aloysio da S; Kozlowsky-Suzuki, Betina

    2011-12-01

    Cyanobacteria are photosynthetic prokaryotes with wide geographic distribution that can produce secondary metabolites named cyanotoxins. These toxins can be classified into three main types according to their mechanism of action in vertebrates: hepatotoxins, dermatotoxins and neurotoxins. Many studies on the effects of cyanobacteria and their toxins over a wide range of aquatic organisms, including invertebrates and vertebrates, have reported acute effects (e.g., reduction in survivorship, feeding inhibition, paralysis), chronic effects (e.g., reduction in growth and fecundity), biochemical alterations (e.g., activity of phosphatases, GST, AChE, proteases), and behavioral alterations. Research has also focused on the potential for bioaccumulation and transferring of these toxins through the food chain. Although the herbivorous zooplankton is hypothesized as the main target of cyanotoxins, there is not unquestionable evidence of the deleterious effects of cyanobacteria and their toxins on these organisms. Also, the low toxin burden in secondary consumers points towards biodilution of microcystins in the food web as the predominant process. In this broad review we discuss important issues on bioaccumulation and the effects of cyanotoxins, with emphasis on microcystins, as well as drawbacks and future needs in this field of research.

  4. Bioavailability and bioaccumulation of metal-based engineered nanomaterials in aquatic environments: concepts and processes: chapter 5

    Science.gov (United States)

    Luoma, Samuel N.; Khan, Farhan R.; Croteau, Marie-Noële

    2014-01-01

    Bioavailability of Me-ENMs to aquatic organisms links their release into the environment to ecological implications. Close examination shows some important differences in the conceptual models that define bioavailability for metals and Me-ENMs. Metals are delivered to aquatic animals from Me-ENMs via water, ingestion, and incidental surface exposure. Both metal released from the Me-ENM and uptake of the nanoparticle itself contribute to bioaccumulation. Some mechanisms of toxicity and some of the metrics describing exposure may differ from metals alone. Bioavailability is driven by complex interaction of particle attributes, environmental transformations, and biological traits. Characterization of Me-ENMs is an essential part of understanding bioavailability and requires novel methodologies. The relative importance of the array of processes that could affect Me-ENM bioavailability remains poorly known, but new approaches and models are developing rapidly. Enough is known, however, to conclude that traditional approaches to exposure assessment for metals would not be adequate to assess risks from Me-ENMs.

  5. Bioconcentration, bioaccumulation, and metabolism of pesticides in aquatic organisms.

    Science.gov (United States)

    Katagi, Toshiyuki

    2010-01-01

    The ecotoxicological assessment of pesticide effects in the aquatic environment should normally be based on a deep knowledge of not only the concentration of pesticides and metabolites found but also on the influence of key abiotic and biotic processes that effect rates of dissipation. Although the bioconcentration and bioaccumulation potentials of pesticides in aquatic organisms are conveniently estimated from their hydrophobicity (represented by log K(ow), it is still indispensable to factor in the effects of key abiotic and biotic processes on such pesticides to gain a more precise understanding of how they may have in the natural environment. Relying only on pesticide hydrophobicity may produce an erroneous environmental impact assessment. Several factors affect rates of pesticide dissipation and accumulation in the aquatic environment. Such factors include the amount and type of sediment present in the water and type of diet available to water-dwelling organisms. The particular physiological behavior profiles of aquatic organisms in water, such as capacity for uptake, metabolism, and elimination, are also compelling factors, as is the chemistry of the water. When evaluating pesticide uptake and bioconcentration processes, it is important to know the amount and nature of bottom sediments present and the propensity that the stuffed aquatic organisms have to absorb and process xenobiotics. Extremely hydrophobic pesticides such as the organochlorines and pyrethroids are susceptible to adsorb strongly to dissolved organic matter associated with bottom sediment. Such absorption reduces the bioavailable fraction of pesticide dissolved in the water column and reduces the probable ecotoxicological impact on aquatic organisms living the water. In contrast, sediment dweller may suffer from higher levels of direct exposure to a pesticide, unless it is rapidly degraded in sediment. Metabolism is important to bioconcentration and bioaccumulation processes, as is

  6. Bioaccumulation in aquatic systems: methodological approaches, monitoring and assessment

    DEFF Research Database (Denmark)

    Schäfer, Sabine; Buchmeier, Georgia; Claus, Evelyn

    2015-01-01

    , various scientific and regulatory aspects of bioaccumulation in aquatic systems and the relevant critical issues are discussed. Monitoring chemical concentrations in biota can be used for compliance checking with regulatory directives, for identification of chemical sources or event-related environmental...... temporal and geographical range. Bioaccumulation is also assessed for regulation of chemicals of environmental concern whereby mainly data from laboratory studies on fish bioaccumulation are used. Field data can, however, provide additional important information for regulators. Strategies...... for bioaccumulation assessment still need to be harmonised for different regulations and groups of chemicals. To create awareness for critical issues and to mutually benefit from technical expertise and scientific findings, communication between risk assessment and monitoring communities needs to be improved...

  7. Cyanotoxins: Bioaccumulation and Effects on Aquatic Animals

    OpenAIRE

    Ferr?o-Filho, Aloysio da S.; Kozlowsky-Suzuki, Betina

    2011-01-01

    Cyanobacteria are photosynthetic prokaryotes with wide geographic distribution that can produce secondary metabolites named cyanotoxins. These toxins can be classified into three main types according to their mechanism of action in vertebrates: hepatotoxins, dermatotoxins and neurotoxins. Many studies on the effects of cyanobacteria and their toxins over a wide range of aquatic organisms, including invertebrates and vertebrates, have reported acute effects (e.g., reduction in survivorship, fe...

  8. Modeling the role of microplastics in Bioaccumulation of organic chemicals to marine aquatic organisms. Critical Review

    NARCIS (Netherlands)

    Koelmans, A.A.

    2015-01-01

    It has been shown that ingestion of microplastics may increase bioaccumulation of organic chemicals by aquatic organisms. This paper critically reviews the literature on the effects of plastic ingestion on the bioaccumulation of organic chemicals, emphasizing quantitative approaches and mechanistic

  9. Selenium transport and bioaccumulation in aquatic ecosystems: a proposal for water quality criteria based on hydrological units.

    Science.gov (United States)

    A. Dennis Lemly

    1999-01-01

    Local water quality criteria for selenium should be based on an assessment of the degree of toxicological hazard to fish and wildlife, which is influenced by the spatial and temporal variation of the selenium cycle at the site under consideration. The physical area from which measurements are taken to evaluate selenium residues and biological effects, i.e., the...

  10. A closer look at bioaccumulation of petroleum hydrocarbon mixtures in aquatic worms.

    NARCIS (Netherlands)

    Muijs, B.; Jonker, M.T.O.

    2010-01-01

    Petroleum hydrocarbons (oils) are ubiquitous in the aquatic environment, and adequate risk assessment is thus essential. Bioaccumulation plays a key role in risk assessment, but the current knowledge on bioaccumulation of oils is limited. Therefore, this process was studied in detail, using the

  11. BIOACCUMULATION AND AQUATIC SYSTEM SIMULATOR (BASS) USER'S MANUAL BETA TEST VERSION 2.1

    Science.gov (United States)

    BASS (Bioaccumulation and Aquatic System Simulator) is a Fortran 95 simulation program that predicts the population and bioaccumulation dynamics of age-structured fish assemblages that are exposed to hydrophobic organic pollutants and class B and borderline metals that complex wi...

  12. Bioaccumulation factors in aquatic ecosystems. A critical review

    International Nuclear Information System (INIS)

    Karlsson, Sara; Meili, Markus; Bergstroem, Ulla

    2002-07-01

    The calculated concentrations of radionuclides in organisms are often obtained by means of bioaccumulation factors (BAF) that describe the internal concentration relative to an external concentration e.g. in the abiotic environments at steady-state conditions. Such factors are often used when modelling the dose to man from radio-nuclides released to the biosphere. Values of bioaccumulation factors vary widely in magnitude among elements, organisms, and environmental conditions which is not always considered. In order to relate the bioaccumulation factors for some radionuclides to environmental conditions as well as to the trophic level of the organism of concern we have compiled an extensive database with bioaccumulation factors (about 5,500 values) together with information on some environmental conditions. The data for nine radionuclides has been extracted and examined. A comparison between the bioaccumulation factors found in this study and values given in literature by IAEA and NCRP shows that the ranges presented in this study are generally somewhat higher with the exception of BAF for molybdenum in freshwater fish which is of the same order of magnitude. This is startling and calls for a thorough research. The amount of readily accessible and reliable values of BAF is limited, often because basic information such as e.g. units and part of organism examined, is not reported. This is surprising and also unfortunate for those who need such data for use in generic or specific models. A major update of recommended values appears to be necessary for many elements to account for the development of analytical methods and experiences from case studies over the past two decades

  13. Bioaccumulation factors in aquatic ecosystems. A critical review

    Energy Technology Data Exchange (ETDEWEB)

    Karlsson, Sara; Meili, Markus; Bergstroem, Ulla [Studsvik Eco and Safety AB, Nykoeping (Sweden)

    2002-07-01

    The calculated concentrations of radionuclides in organisms are often obtained by means of bioaccumulation factors (BAF) that describe the internal concentration relative to an external concentration e.g. in the abiotic environments at steady-state conditions. Such factors are often used when modelling the dose to man from radio-nuclides released to the biosphere. Values of bioaccumulation factors vary widely in magnitude among elements, organisms, and environmental conditions which is not always considered. In order to relate the bioaccumulation factors for some radionuclides to environmental conditions as well as to the trophic level of the organism of concern we have compiled an extensive database with bioaccumulation factors (about 5,500 values) together with information on some environmental conditions. The data for nine radionuclides has been extracted and examined. A comparison between the bioaccumulation factors found in this study and values given in literature by IAEA and NCRP shows that the ranges presented in this study are generally somewhat higher with the exception of BAF for molybdenum in freshwater fish which is of the same order of magnitude. This is startling and calls for a thorough research. The amount of readily accessible and reliable values of BAF is limited, often because basic information such as e.g. units and part of organism examined, is not reported. This is surprising and also unfortunate for those who need such data for use in generic or specific models. A major update of recommended values appears to be necessary for many elements to account for the development of analytical methods and experiences from case studies over the past two decades.

  14. Radionuclide data bases available for bioaccumulation factors for freshwater biota

    International Nuclear Information System (INIS)

    Blaylock, B.G.

    1982-01-01

    Aquatic models currently in use for dose assessment simulate the transfer of radionuclides in aquatic environments and the transfer to man. In these models the assimilation of a radionuclide in aquatic biota is calculated by using a simple empirical relationship known as the bioaccumulation factor (BF) to represent the transfer of the radionuclide from water to organism. The purpose of this article is to review data bases that are available for BFs for freshwater biota and to identify the uncertainties associated with them. Data bases for raidoisotopes of Co, Cs, C, H, I, Pu, Ra, Ru, Sr, and U are reviewed. With the exception of ruthenium and carbon, the review is restricted to BFs determined for natural freshwater systems. Factors influencing the variability of BFs are identified, uncertainties associated with the validation of BFs are discussed, and some guidance is given for collecting data and measuring BFs

  15. Mercury bioaccumulation in bats reflects dietary connectivity to aquatic food webs.

    Science.gov (United States)

    Becker, Daniel J; Chumchal, Matthew M; Broders, Hugh G; Korstian, Jennifer M; Clare, Elizabeth L; Rainwater, Thomas R; Platt, Steven G; Simmons, Nancy B; Fenton, M Brock

    2018-02-01

    Mercury (Hg) is a persistent and widespread heavy metal with neurotoxic effects in wildlife. While bioaccumulation of Hg has historically been studied in aquatic food webs, terrestrial consumers can become contaminated with Hg when they feed on aquatic organisms (e.g., emergent aquatic insects, fish, and amphibians). However, the extent to which dietary connectivity to aquatic ecosystems can explain patterns of Hg bioaccumulation in terrestrial consumers has not been well studied. Bats (Order: Chiroptera) can serve as a model system for illuminating the trophic transfer of Hg given their high dietary diversity and foraging links to both aquatic and terrestrial food webs. Here we quantitatively characterize the dietary correlates of long-term exposure to Hg across a diverse local assemblage of bats in Belize and more globally across bat species from around the world with a comparative analysis of hair samples. Our data demonstrate considerable interspecific variation in hair total Hg concentrations in bats that span three orders of magnitude across species, ranging from 0.04 mg/kg in frugivorous bats (Artibeus spp.) to 145.27 mg/kg in the piscivorous Noctilio leporinus. Hg concentrations showed strong phylogenetic signal and were best explained by dietary connectivity of bat species to aquatic food webs. Our results highlight that phylogeny can be predictive of Hg concentrations through similarity in diet and how interspecific variation in feeding strategies influences chronic exposure to Hg and enables movement of contaminants from aquatic to terrestrial ecosystems. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Bioaccumulation and trophic transfer of engineered nanoparticles in aquatic organisms

    DEFF Research Database (Denmark)

    Skjolding, Lars Michael

    chemicals. However, with fundamentally different chemical and physical properties of ENPs compared to soluble chemicals current TGs could be inadequate and possibly lead to wrong interpretation of results obtained. One of the key issues is the dual action of ENPs consisting both of a chemical identity...... and functionalizations with different aquatic organisms were investigated. Furthermore, multiple microscopy methods were used to assess internationalization in the aquatic organisms. Finally, different exposure routes were used to determine if it could affect localization in the aquatic organisms. The influence......O ENPs (-OH and -Octyl functionalization) it was found that large micron sized aggregates was also available for uptake in D. magna showing high uptake, possibly also associated with the carapace of the test organism. Functionalization with -Octyl increased the uptake compared to pristine ZnO ENPs while...

  17. Reviewing the serotonin reuptake inhibitors (SSRIs) footprint in the aquatic biota: Uptake, bioaccumulation and ecotoxicology

    International Nuclear Information System (INIS)

    a Comba, 3000-548 Coimbra (Portugal))" data-affiliation=" (REQUIMTE, Group of Bromatology, Pharmacognosy and Analytical Sciences, Faculty of Pharmacy, University of Coimbra, Polo III, Azinhaga de Sta Comba, 3000-548 Coimbra (Portugal))" >Silva, Liliana J.G.; a Comba, 3000-548 Coimbra (Portugal))" data-affiliation=" (REQUIMTE, Group of Bromatology, Pharmacognosy and Analytical Sciences, Faculty of Pharmacy, University of Coimbra, Polo III, Azinhaga de Sta Comba, 3000-548 Coimbra (Portugal))" >Pereira, André a Comba, 3000-548 Coimbra (Portugal))" data-affiliation=" (REQUIMTE, Group of Bromatology, Pharmacognosy and Analytical Sciences, Faculty of Pharmacy, University of Coimbra, Polo III, Azinhaga de Sta Comba, 3000-548 Coimbra (Portugal))" >M.P.T.; Meisel, Leonor M.; a Comba, 3000-548 Coimbra (Portugal))" data-affiliation=" (REQUIMTE, Group of Bromatology, Pharmacognosy and Analytical Sciences, Faculty of Pharmacy, University of Coimbra, Polo III, Azinhaga de Sta Comba, 3000-548 Coimbra (Portugal))" >Lino, Celeste M.; a Comba, 3000-548 Coimbra (Portugal))" data-affiliation=" (REQUIMTE, Group of Bromatology, Pharmacognosy and Analytical Sciences, Faculty of Pharmacy, University of Coimbra, Polo III, Azinhaga de Sta Comba, 3000-548 Coimbra (Portugal))" >Pena, Angelina

    2015-01-01

    Selective serotonin re-uptake inhibitors (SSRIs) antidepressants are amongst the most prescribed pharmaceutical active substances throughout the world. Their presence, already described in different environmental compartments such as wastewaters, surface, ground and drinking waters, and sediments, and their remarkable effects on non-target organisms justify the growing concern about these emerging environmental pollutants. A comprehensive review of the literature data with focus on their footprint in the aquatic biota, namely their uptake, bioaccumulation and both acute and chronic ecotoxicology is presented. Long-term multigenerational exposure studies, at environmental relevant concentrations and in mixtures of related compounds, such as oestrogenic endocrine disruptors, continue to be sparse and are imperative to better know their environmental impact. - Highlights: • Current knowledge of uptake and bioaccumulation of SSRIs. • Ecotoxicology and effects of SSRIs in the aquatic biota. • Identification of existing knowledge gaps. - A comprehensive review focussing SSRIs antidepressants footprint in the aquatic biota, namely their uptake, bioaccumulation, and both acute and chronic ecotoxicology is presented

  18. Mercury bioaccumulation along food webs in temperate aquatic ecosystems colonized by aquatic macrophytes in south western France.

    Science.gov (United States)

    Gentès, Sophie; Maury-Brachet, Régine; Guyoneaud, Rémy; Monperrus, Mathilde; André, Jean-Marc; Davail, Stéphane; Legeay, Alexia

    2013-05-01

    Mercury (Hg) is considered as an important pollutant for aquatic systems as its organic form, methylmercury (MeHg), is easily bioaccumulated and bioamplified along food webs. In various ecosystems, aquatic periphyton associated with macrophyte was identified as an important place for Hg storage and methylation by microorganisms. Our study concerns temperate aquatic ecosystems (South Western France) colonized by invasive macrophytes and characterized by high mercury methylation potentials. This work establishes original data concerning Hg bioaccumulation in organisms (plants, crustaceans, molluscs and fish) from five contrasting ecosystems. For low trophic level species, total Hg (THg) concentrations were low (from 27±2ngTHgg(-1)dw in asiatic clam Corbicula fluminea to 418±114ngTHgg(-1)dw in crayfish Procambarus clarkii). THg concentrations in some carnivorous fish (high trophic level) were close to or exceeded the International Marketing Level (IML) with values ranging from 1049±220ngTHgg(-1)dw in pike perch muscle (Sander lucioperca) to 3910±1307ngTHgg(-1)dw in eel muscle (Anguilla Anguilla). Trophic levels for the individuals were also evaluated through stable isotope analysis, and linked to Hg concentrations of organisms. A significant Hg biomagnification (r(2)= 0.9) was observed in the Aureilhan lake, despite the absence of top predator fish. For this site, Ludwigia sp. periphyton, as an entry point of Hg into food webs, is a serious hypothesis which remains to be confirmed. This study provides a first investigation of Hg transfer in the ecosystems of south western France and allows the assessment of the risk associated with the presence of Hg in aquatic food webs. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. Medium-chain chlorinated paraffins (MCCPs): a review of bioaccumulation potential in the aquatic environment.

    Science.gov (United States)

    Thompson, Roy; Vaughan, Martin

    2014-01-01

    Chlorinated paraffins (CPs) are high molecular weight organochlorine compounds that have been used in a variety of industrial applications for many years. Medium-chain chlorinated paraffins (MCCPs) (CAS 85535-85-9; Alkanes, C14-17 , chloro) are currently under investigation as potential persistent bioaccumulative toxic (PBT) compounds. In this article, the bioaccumulation potential of MCCPs is assessed using a tiered framework proposed after a recent Society of Environmental Toxicology and Chemistry (SETAC) Pellston Workshop in 2008. The framework proposes the use of physicochemical properties and modeling assessment, bioconcentration/bioaccumulation (BCF/BAF) assessment, biomagnification (BMF) assessment, and trophic magnification factor (TMF) assessment. It is hoped that use of this framework could harmonize and improve the efficiency and effectiveness of the chemical substance evaluation screening process for PBT properties. When applied to MCCPs, the following conclusions were made: empirical physiochemical data is available negating the use of models; laboratory BCFs range from 1000 to 15 000 (growth-corrected lipid normalized values) for 2 MCCP structures; field BAFs were an order of magnitude higher than the trigger criterion for "B status possible"; although results may not meet acceptance criteria for field studies, laboratory-derived BMFs for a number of C14-17 chlorinated alkanes were less than the trigger value of 1 (based on whole-body concentrations) whereas field-derived BMFs were less than 1 (based on lipid corrected values [generally used for field data] excluding one measure for sculpin, [Cottus cognatus]-Diporeia that was based on only one detectable sample); and finally, TMFs were less than the trigger criterion value of 1, which are considered the most convincing evidence for bioaccumulative properties of a compound and the "Gold Standard" measure of bioaccumulation. This article also discusses the uncertainties surrounding the published data

  20. Bioaccumulation factors and the steady state assumption for cesium isotopes in aquatic foodwebs near nuclear facilities.

    Science.gov (United States)

    Rowan, D J

    2013-07-01

    Steady state approaches, such as transfer coefficients or bioaccumulation factors, are commonly used to model the bioaccumulation of (137)Cs in aquatic foodwebs from routine operations and releases from nuclear generating stations and other nuclear facilities. Routine releases from nuclear generating stations and facilities, however, often consist of pulses as liquid waste is stored, analyzed to ensure regulatory compliance and then released. The effect of repeated pulse releases on the steady state assumption inherent in the bioaccumulation factor approach has not been evaluated. In this study, I examine the steady state assumption for aquatic biota by analyzing data for two cesium isotopes in the same biota, one isotope in steady state (stable (133)Cs) from geologic sources and the other released in pulses ((137)Cs) from reactor operations. I also compare (137)Cs bioaccumulation factors for similar upstream populations from the same system exposed solely to weapon test (137)Cs, and assumed to be in steady state. The steady state assumption appears to be valid for small organisms at lower trophic levels (zooplankton, rainbow smelt and 0+ yellow perch) but not for older and larger fish at higher trophic levels (walleye). Attempts to account for previous exposure and retention through a biokinetics approach had a similar effect on steady state, upstream and non-steady state, downstream populations of walleye, but were ineffective in explaining the more or less constant deviation between fish with steady state exposures and non-steady state exposures of about 2-fold for all age classes of walleye. These results suggest that for large, piscivorous fish, repeated exposure to short duration, pulse releases leads to much higher (137)Cs BAFs than expected from (133)Cs BAFs for the same fish or (137)Cs BAFs for similar populations in the same system not impacted by reactor releases. These results suggest that the steady state approach should be used with caution in any

  1. Below a Historic Mercury Mine: Non-linear Patterns of Mercury Bioaccumulation in Aquatic Organisms

    Science.gov (United States)

    Haas, J.; Ichikawa, G.; Ode, P.; Salsbery, D.; Abel, J.

    2001-12-01

    Unlike most heavy metals, mercury is capable of bioaccumulating in aquatic food-chains, primarily because it is methylated by bacteria in sediment to the more toxic methylmercury form. Mercury concentrations in a number of riparian systems in California are highly elevated as a result of historic mining activities. These activities included both the mining of cinnabar in the coastal ranges to recover elemental mercury and the use of elemental mercury in the gold fields of the Sierra Nevada Mountains. The most productive mercury mining area was the New Almaden District, now a county park, located in the Guadalupe River drainage of Santa Clara County, where cinnabar was mined and retorted for over 100 years. As a consequence, riparian systems in several subwatersheds of the Guadalupe River drainage are contaminated with total mercury concentrations that exceed state hazardous waste criteria. Mercury concentrations in fish tissue frequently exceed human health guidelines. However, the potential ecological effects of these elevated mercury concentrations have not been thoroughly evaluated. One difficulty is in extrapolating sediment concentrations to fish tissue concentrations without accounting for physical and biological processes that determine bioaccumulation patterns. Many processes, such as methylation and demethylation of mercury by bacteria, assimilation efficiency in invertebrates, and metabolic rates in fish, are nonlinear, a factor that often confounds attempts to evaluate the effects of mercury contamination on aquatic food webs. Sediment, benthic macroinvertebrate, and fish tissue samples were collected in 1998 from the Guadalupe River drainage in Santa Clara County at 13 sites upstream and downstream from the historic mining district. Sediment and macroinvertebrate samples were analyzed for total mercury and methylmercury. Fish samples were analyzed for total mercury as whole bodies, composited by species and size. While linear correlations of sediment

  2. Legacy and emerging organohalogenated contaminants in wild edible aquatic organisms: Implications for bioaccumulation and human exposure.

    Science.gov (United States)

    Sun, Runxia; Luo, Xiaojun; Li, Qing X; Wang, Tao; Zheng, Xiaobo; Peng, Pingan; Mai, Bixian

    2018-03-01

    Highly industrialized and urbanized watersheds may receive various contaminants from anthropogenic activities. In this study, legacy and emerging organohalogenated contaminants (OHCs) were measured in edible wild aquatic organisms sampled from the Pearl River and Dongjiang River in a representative industrial and urban region in China. High concentrations of target contaminants were observed. The Pearl River exhibited higher concentrations of OHCs than the Dongjiang River due to high industrialization and urbanization. Agrochemical inputs remained an important source of OHCs in industrialized and urbanized watershed in China, but vigilance is needed for recent inputs of polychlorinated biphenyls (PCBs) originated from e-waste recycling activities. Bioaccumulation of dichlorodiphenyltrichloroethane and its metabolites (DDTs), hexachlorocyclohexanes (HCHs), PCBs, polybrominated diphenyl ethers (PBDEs), and Dechlorane Plus (DP) was biological species- and compound-specific, which can be largely attributed to metabolic capability for xenobiotics. No health risk was related to the daily intake of DDTs, HCHs, and PBDEs via consumption of wild edible species investigated for local residents. However, the current exposure to PCBs through consuming fish is of potential health concern. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Studies on transfer, bioaccumulation and disappearance of glyphosate in the aquatic ecosystem by utilizing 14C tracer technique

    International Nuclear Information System (INIS)

    Zhu Guonian; Guo Jiangfeng; Sun Jinhe

    2002-01-01

    Studies on transfer, bioaccumulation and disappearance of glyphosate in the aquatic environment were conducted with methods of model tests and outdoor trials in the aquatic ecosystem. The result showed that glyphosate transferred rapidly into sediment and hormwort (Ceratopyllum demersum L.) after applied; and then, it was taken up faster and accumulated more by topmouth gudgeon (Psudorasobora parva) 5-10 days after application. The partitioning coefficient (sediment-water) and bioconcentration factors of glyphosate were 8.59, 27.96 and 45.79, respectively, in day 20. The concentration of glyphosate residue in the aquatic ecosystem followed the order of topmouth gudgeon > hormwort > sediment > water. And it was also indicated that glyphosate transferred and disappeared extremely fast in both pond and river after application

  4. Evaluating the Relationship between Equilibrium Passive Sampler Uptake and Aquatic Organism Bioaccumulation (IPSW)

    Science.gov (United States)

    This review evaluates passive sampler uptake of hydrophobic organic contaminants (HOCs) as it relates to organism bioaccumulation in the water column and interstitial water. Fifty-five studies were found where both passive samplers and organism bioaccumulation were used to measur...

  5. Bioaccumulation of 14C-Labeled Graphene in an Aquatic Food Chain through Direct Uptake or Trophic Transfer.

    Science.gov (United States)

    Dong, Shipeng; Xia, Tian; Yang, Yu; Lin, Sijie; Mao, Liang

    2018-01-16

    The growing applications of graphene materials warrant a careful evaluation of their environmental fate in aquatic food webs. Escherichia coli (Bacteria), Tetrahymena thermophila (protozoa), Daphnia magna (zooplankton), and Danio rerio (vertebrate) were used to build aquatic food chains to investigate the waterborne uptake and trophic transfer of 14 C-labeled graphene. Body burden factor (BBF) and trophic transfer factor (TTF) were analyzed for each organism and food chain to assess the bioaccumulation and biomagnification of graphene. The test organisms have high potential of accumulating graphene via direct uptake from culture medium with log-transformed BBF (log BBF) values of 3.66, 5.1, 3.9, and 1.62 for each organism, respectively. In the food chain from E. coli to T. thermophila, the calculated TTFs of 0.2 to 8.6 indicate the high trophic transfer potential in this aquatic food chain. However, the TTFs calculated for the food chain from T. thermophila to D. magna and from D. magna to D. rerio are much lower than 1, indicating that biomagnification was unlikely to occur in these food chains. Body burden measured for dietary uptake by T. thermophila, D. magna, and D. rerio are higher than that via waterborne exposure in a similar nominal concentration, respectively, indicating that trophic transfer is a nonnegligible route for the bioaccumulation of graphene in organisms.

  6. Can an aquatic macrophyte bioaccumulate glyphosate? A watershed scale study using a non-target hydrophyte Ludwigia peploides

    Science.gov (United States)

    Perez, Debora; Okada, Elena; Menone, Mirta; Aparicio, Virginia; Costa, Jose Luis

    2017-04-01

    The hydrophyte Ludwigia peploides is widely distributed in South America streams, and therefore, it can be used as a biomonitor for pesticides used in agricultural production. Glyphosate is one of the main pesticides used in Argentina. This has resulted in its occurrence in non-target wetland ecosystems. The objectives of this study were to: 1) establish and validate an extraction and quantification methodology for glyphosate in L.peploides plants, and 2) evaluated the role of this species as a glyphosate biomonitor in the agricultural watershed of the El Crespo stream. For the first objective, we collected plant material in the field. The leaves were dissected and oven dried at 60° C, grinded and sieved through a 0.5 mm mesh. Different solutions were tested for the extraction step. Labeled glyphosate was used as an internal standard to evaluate the recovery rate and the matrix effect of the different extraction methods. Glyphosate was derivatized with FMOC-Cl and then quantified by ultra-performance liquid chromatography (UPLC) coupled to a mass tandem spectrometer (MS/MS). The method based on an aqueous phase extraction step 0.01 mg/mL of activated carbon as a clean-up to decrease the matrix interference had a recovery of 117 ± 20% and the matrix effect was less than 20%. This method was used to analyze the glyphosate levels in L.peploides in the El Crespo stream. For the second objective, plants of L.peploides were collected on March 2016 in eight monitoring sites of the stream from the headwaters to the stream mouth. Surface water and sediments samples were collected at the same time to calculate the bioconcentration factors (BCFs) and biota-sediment bioaccumulation factors (BSAFs). The BCFs ranged between 28.57 - 280 L/Kg and the BSAFs ranged between 2.52- 30.66 at different sites. These results indicate that L.peploides can bioaccumulated glyphosate in its leaves and the major bioavailability is given mainly by the herbicide molecules present in surface

  7. Bioaccumulation of organic micropollutants in different aquatic organisms. Sublethal toxic effects on fish

    NARCIS (Netherlands)

    van der Oost, Ron; Heida, Henk; Opperhuizen, Antoon; Vermeulen, Nico P E

    1991-01-01

    Bioaccumulation of polychlorinated biphenyls (PCBs), organochlorine pesticides (OCPs) and polycyclic aromatic hydrocarbons (PAHs) was investigated in plankton, crustaceans, and fish from two relatively small Amsterdam lakes, with different levels of contamination. Ratios between contaminant

  8. Evaluating the Relationship between Equilibrium Passive Sampler Uptake and Aquatic Organism Bioaccumulation,

    Science.gov (United States)

    Objectives. This review evaluates passive sampler uptake of hydrophobic organic contaminants (HOCs) in water column and interstitial water exposures as a surrogate for organism bioaccumulation. Approach/Activities. Fifty-five studies were found where both passive sampler uptake...

  9. Bioaccumulation factor for I-131 in aquatic biota II fish - tilapia (Tilapia Mossambica)

    International Nuclear Information System (INIS)

    Garcia, G.F.; Casyao, J.M.; Bautista, E.Rb.

    1982-01-01

    The study was undertaken to provide local values for an essential parameter in the estimation of the dose contribution of I-131 through ingestion of fresh water fish. The result showed that the tilapia used in the experiment did not vary significantly in weight and no definite conclusion can be derived as to the effect of body size to bioaccumulation of I-131. (ELC)

  10. Trait-based modelling of bioaccumulation by freshwater benthic invertebrates.

    Science.gov (United States)

    Sidney, Livia Alvarenga; Diepens, Noël J; Guo, Xiaoying; Koelmans, Albert A

    2016-07-01

    Understanding the role of species traits in chemical exposure is crucial for bioaccumulation and toxicity assessment of chemicals. We measured and modelled bioaccumulation of polychlorinated biphenyls (PCBs) in Chironomus riparius, Hyalella azteca, Lumbriculus variegatus and Sphaerium corneum. We used a battery test procedure with multiple enclosures in one aquarium, which maximized uniformity of exposure for the different species, such that the remaining variability was due mostly to species traits. The relative importance of uptake from either pore water or sediment ingestion was manipulated by using 28 d aged standard OECD sediment with low (1%) and medium (5%) OM content and 13 months aged sediment with medium OM (5%) content. Survival was ≥76% and wet weight increased for all species. Reproduction of H. azteca and weight gain of H. azteca and S. corneum were significantly higher in the medium OM aged sediments than in other sediments, perhaps due to a more developed microbial community (i.e., increase in food resources). Biota-sediment accumulation factors (BSAF) ranged from 3 to 114, depending on species and PCB congener, with C. riparius (3-10)bioaccumulation model with species-specific bioaccumulation parameters fitted well to the experimental data and showed that bioaccumulation parameters were depended on species traits. Enclosure-based battery tests and mechanistic BSAF models are expected to improve the quality of the exposure assessment in whole sediment toxicity tests. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Cyanobacterial toxins: modes of actions, fate in aquatic and soil ecosystems, phytotoxicity and bioaccumulation in agricultural crops.

    Science.gov (United States)

    Corbel, Sylvain; Mougin, Christian; Bouaïcha, Noureddine

    2014-02-01

    The occurrence of harmful cyanobacterial blooms in surface waters is often accompanied by the production of a variety of cyanotoxins. These toxins are designed to target in humans and animals specific organs on which they act: hepatotoxins (liver), neurotoxins (nervous system), cytotoxic alkaloids, and dermatotoxins (skin), but they often have important side effects too. When introduced into the soil ecosystem by spray irrigation of crops they may affect the same molecular pathways in plants having identical or similar target organs, tissues, cells or biomolecules. There are also several indications that terrestrial plants, including food crop plants, can bioaccumulate cyanotoxins and present, therefore, potential health hazards for human and animals. The number of publications concerned with phytotoxic effects of cyanotoxins on agricultural plants has increased recently. In this review, we first examine different cyanotoxins and their modes of actions in humans and mammals and occurrence of target biomolecules in vegetable organisms. Then we present environmental concentrations of cyanotoxins in freshwaters and their fate in aquatic and soil ecosystems. Finally, we highlight bioaccumulation of cyanotoxins in plants used for feed and food and its consequences on animals and human health. Overall, our review shows that the information on the effects of cyanotoxins on non-target organisms in the terrestrial environment is particularly scarce, and that there are still serious gaps in the knowledge about the fate in the soil ecosystems and phytotoxicity of these toxins. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Use of 65 Zn as radioactive tracer in the bioaccumulation study of zinc by aquatic organisms

    International Nuclear Information System (INIS)

    Malagrino, W.

    1992-01-01

    The present work has as main objective to emphasize the importance of using radioactive tracers as well as to establish a methodology for the utilization of 65 Zn in the bioaccumulation study of zinc by Poecilia reticulata. The exposure time varied from 5 days (short term experiments) to 30 days (long term experiments). The bioaccumulation of zinc from the water as well as the elimination of the metal previously absorbed were determined by measuring the activity of 65 Zn which was added to the water in the beginning of the experiments. The technique chosen is suitable to study the behaviour of the stable zinc since the radionuclide used is an isotope of the same element and therefore presents the same chemical properties. (author)

  13. Aquatic fate of synfuel residuals: bioaccumulation of aniline and phenol by the freshwater phytoplankter Scenedesmus quadricauda

    International Nuclear Information System (INIS)

    Hardy, J.T.; Dauble, D.D.; Felice, L.J.

    1985-01-01

    Coal liquefaction compounds could, through accidental release, enter aquatic environments. Experiments were conducted to determine the kinetics, degree of bioconcentration and stability of two of these compounds at the first level of aquatic food web. The authors exposed the freshwater phytoplankter Scenedesmus quadricauda to sublethal concentrations of 14 C-labeled phenol and aniline. Both accumulation and elimination occurred within a few hours and followed hyperbolic kinetics. Results indicate that substantial quantities of accumulated compounds remain as the parent compound (22% for phenol and 52% for aniline) for up to 24 h and could be available to animals higher in the food web. Bioconcentration factors were 3.5 for phenol and 91 for aniline. 24 references, 2 figures, 1 table

  14. In situ exposures using caged organisms: a multi-compartment approach to detect aquatic toxicity and bioaccumulation

    International Nuclear Information System (INIS)

    Burton, G. Allen; Greenberg, Marc S.; Rowland, Carolyn D.; Irvine, Cameron A.; Lavoie, Daniel R.; Brooker, John A.; Moore, Laurie; Raymer, Delia F.N.; McWilliam, Ruth A.

    2005-01-01

    An in situ toxicity and bioaccumulation assessment approach is described to assess stressor exposure and effects in surface waters (low and high flow), the sediment-water interface, surficial sediments and pore waters (including groundwater upwellings). This approach can be used for exposing species, representing major functional and taxonomic groups. Pimephales promelas, Daphnia magna, Ceriodaphnia dubia, Hyalella azteca, Hyalella sp., Chironomus tentans, Lumbriculus variegatus, Hydra attenuatta, Hexagenia sp. and Baetis tibialis were successfully used to measure effects on survival, growth, feeding, and/or uptake. Stressors identified included chemical toxicants, suspended solids, photo-induced toxicity, indigenous predators, and flow. Responses varied between laboratory and in situ exposures in many cases and were attributed to differing exposure dynamics and sample-processing artifacts. These in situ exposure approaches provide unique assessment information that is complementary to traditional laboratory-based toxicity and bioaccumulation testing and reduce the uncertainties of extrapolating from the laboratory to field responses. - In situ exposures provide unique information that is complementary to traditional lab-based toxicity results

  15. Temporal changes in the distribution, methylation, and bioaccumulation of newly deposited mercury in an aquatic ecosystem

    Energy Technology Data Exchange (ETDEWEB)

    Orihel, Diane M. [Clayton H. Riddell Faculty of Environment, Earth, and Resources, University of Manitoba, Winnipeg, Manitoba, R3T 2N2 (Canada); Freshwater Institute, Fisheries and Oceans Canada, 501 University Crescent, Winnipeg, Manitoba, R3T 2N6 (Canada)], E-mail: orihel@ualberta.ca; Paterson, Michael J.; Blanchfield, Paul J.; Bodaly, R.A. [Freshwater Institute, Fisheries and Oceans Canada, 501 University Crescent, Winnipeg, Manitoba, R3T 2N6 (Canada); Gilmour, Cynthia C. [Smithsonian Environmental Research Center, 647 Contees Wharf Road, Edgewater, MD 21037 (United States); Hintelmann, Holger [Department of Chemistry, Trent University, 1600 West Bank Drive, Peterborough, Ontario, K9J 7B8 (Canada)

    2008-07-15

    Our objective was to examine how the behavior of atmospheric mercury (Hg) deposited to boreal lake mesocosms changed over time. We added inorganic Hg enriched in a different stable isotope in each of two years, which allowed us to differentiate between Hg added in the first and second year. Although inorganic Hg and methylmercury (MeHg) continued to accumulate in sediments throughout the experiment, the availability of MeHg to the food web declined within one year. This decrease was detected in periphyton, zooplankton, and water mites, but not in gomphid larvae, amphipods, or fish. We suggest that reductions in atmospheric Hg deposition should lead to decreases in MeHg concentrations in biota, but that changes will be more easily detected in short-lived pelagic species than long-lived species associated with benthic food webs. - Mercury deposited to aquatic ecosystems becomes less available for uptake by biota over time.

  16. Nuclear microscopy as a tool in TiO2 nanoparticles bioaccumulation studies in aquatic species

    Science.gov (United States)

    Pinheiro, Teresa; Moita, Liliana; Silva, Luís; Mendonça, Elsa; Picado, Ana

    2013-07-01

    Engineered Titanium nanoparticles are used for a wide range of applications from coatings, sunscreen cosmetic additives to solar cells or water treatment agents. Inevitably environmental exposure can be expected and data on the ecotoxicological evaluation of nanoparticles are still scarce. The potential effects of nanoparticles of titanium dioxide (TiO2) on two model organisms, the water flea, Daphnia magna and the duckweed Lemna minor, were examined in semichronic toxicity tests. Daphnia and Lemna were exposed to TiO2 nanoparticles (average particle size value of 28 ± 11 nm (n = 42); concentration range, 1.4-25 mg/L) by dietary route and growth in medium containing the nanoparticles of TiO2, respectively. Both morphology and microdistribution of Ti in the individuals were examined by nuclear microscopy techniques. A significant amount of TiO2 was found accumulated in Daphnia exposed to nanoparticles. Nuclear microscopy imaging revealed that Ti was localized only in the digestive tract of the Daphnia, which displayed difficulty in eliminating the nanoparticles from their body. Daphnia showed higher mortality when exposed to higher concentrations of TiO2 (>10 mg/L). The exposure to TiO2 nanoparticles above 25 mg/L caused morphological alterations in Lemna. The roots became stiff and fronds colorless. The Ti mapping of cross-sections of roots and fronds showed that Ti was mainly deposited in the epidermis of the fronds and roots, with minor internalization. In summary, exposure of aquatic organisms to TiO2 nanoparticles may alter the physiology of these organisms at individual and population levels, posing risks to aquatic ecosystems.

  17. Nuclear microscopy as a tool in TiO2 nanoparticles bioaccumulation studies in aquatic species

    International Nuclear Information System (INIS)

    Pinheiro, Teresa; Moita, Liliana; Silva, Luís; Mendonça, Elsa; Picado, Ana

    2013-01-01

    Engineered Titanium nanoparticles are used for a wide range of applications from coatings, sunscreen cosmetic additives to solar cells or water treatment agents. Inevitably environmental exposure can be expected and data on the ecotoxicological evaluation of nanoparticles are still scarce. The potential effects of nanoparticles of titanium dioxide (TiO 2 ) on two model organisms, the water flea, Daphnia magna and the duckweed Lemna minor, were examined in semichronic toxicity tests. Daphnia and Lemna were exposed to TiO 2 nanoparticles (average particle size value of 28 ± 11 nm (n = 42); concentration range, 1.4–25 mg/L) by dietary route and growth in medium containing the nanoparticles of TiO 2 , respectively. Both morphology and microdistribution of Ti in the individuals were examined by nuclear microscopy techniques. A significant amount of TiO 2 was found accumulated in Daphnia exposed to nanoparticles. Nuclear microscopy imaging revealed that Ti was localized only in the digestive tract of the Daphnia, which displayed difficulty in eliminating the nanoparticles from their body. Daphnia showed higher mortality when exposed to higher concentrations of TiO 2 (>10 mg/L). The exposure to TiO 2 nanoparticles above 25 mg/L caused morphological alterations in Lemna. The roots became stiff and fronds colorless. The Ti mapping of cross-sections of roots and fronds showed that Ti was mainly deposited in the epidermis of the fronds and roots, with minor internalization. In summary, exposure of aquatic organisms to TiO 2 nanoparticles may alter the physiology of these organisms at individual and population levels, posing risks to aquatic ecosystems

  18. Influence of lead-doped hydroponic medium on the adsorption/bioaccumulation processes of lead and phosphorus in roots and leaves of the aquatic macrophyte Eicchornia crassipes.

    Science.gov (United States)

    Espinoza-Quiñones, Fernando R; Módenes, Aparecido Nivaldo; de Oliveira, Ana Paula; Trigueros, Daniela Estelita Goes

    2013-11-30

    In this study, lead bioaccumulation by the living free-floating aquatic macrophyte Eicchornia crassipes in different hydroponic conditions with variations in phosphorus and lead concentrations was investigated. A set of growth experiments in hydroponic media doped with lead and phosphorus within a wide concentration range was performed for 32 days in a greenhouse. All experiments were carried out with periodic replacement of all nutrients and lead. The concentration of lead and nutrients in biomass was determined by synchrotron radiation-excited total reflection X-ray fluorescence. By increasing the lead concentration in the medium, a reduction in biomass growth was observed, but a higher phosphorus retention in roots and leaves was shown at lower lead concentrations. In addition, an increase in the amount of bioaccumulated lead and phosphorus in roots was observed for higher lead and phosphorus concentrations in the medium, reaching saturation values of 4 mg Pb g(-1) and 7 mg P g(-1), respectively. Four non-structural kinetic models were tested, to represent the bioaccumulation of lead and phosphorus in roots. Pseudo-second order and irreversible kinetic models described the lead bioaccumulation data well, however, an irreversible kinetic model better fitted phosphorus uptake in roots. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. CHROMIUM BIOACCUMULATION FROM COMPOSTS AND VERMICOMPOSTS BASED ON TANNERY SLUDGES

    Directory of Open Access Journals (Sweden)

    Krzysztof GONDEK

    2008-07-01

    Full Text Available Storage of waste substances is not indifferent to ecological equilibrium in the environment therefore should not be the ultimate way to limit waste arduousness. Therefore, the conducted investigations aimed to determine the effect of tannery composts and vermicomposts loaded with chromium on this element bioaccumulation in earthworm bodies and biomass of selected plants. Chromium in composts and vermicomposts based on tannery sludges occurred in small quantities and easily soluble compounds. Chromium concentrations in redworm biomass points to this metal accumulation in Eisenia fetida body tissues. This element content in redworm biomass was signifi cantly positively correlated with its content in composts. Chromium content in plants was diversifi ed and on treatments was generally smaller than on mineral treatment or farmyard manure. Chromium absorbed by plants was stored mainly in the root systems, and over the norm content of this element found in vermicomposts did not cause its excessive accumulation in plant biomass.

  20. Bioaccumulation of pharmaceutically active compounds and endocrine disrupting chemicals in aquatic macrophytes: Results of hydroponic experiments with Echinodorus horemanii and Eichhornia crassipes.

    Science.gov (United States)

    Pi, N; Ng, J Z; Kelly, B C

    2017-12-01

    Information regarding the bioaccumulation behaviour of pharmaceutically active compounds (PhACs) and endocrine disrupting chemicals (EDCs) in aquatic plants is limited. The present study involved controlled hydroponic experiments to assess uptake and elimination rate constants (k u , k e ), bioconcentration factors (BCFs) and translocation factors (TFs) of several PhACs and EDCs in two aquatic macrophyte species, including one submerged species (Echinodorus horemanii) and one free-floating species (Eichhornia crassipes). The results revealed that the studied compounds are readily taken up in these aquatic plants. While bioconcentration factors (BCFs) and translocation factors (TFs) of the test compounds varied substantially, no discernible relationship with physicochemical properties such as octanol-water distribution coefficient (D ow ), membrane-water distribution coefficient (D mw ) and organic carbon-water partition coefficient (K oc ). Diphenhydramine and triclosan exhibited the highest degree of uptake and bioaccumulation potential. For example, the whole-plant BCF of triclosan in E. horemanii was 4390L/kg, while the whole-plant BCF of diphenhydramine in E. crassipes was 6130L/kg. BCFs of 17β-estradiol (E2), 17α-ethinylestradiol (EE2), estrone (E1) and bisphenol A (BPA) were relatively low (2-150L/kg). BCFs were generally higher in free-floating aquatic macrophyte species compared to the submerged species. For the free-floating species, E. crassipes, the majority of PhACs and EDCs were more allocated in roots compared to leaves, with TFs1). The study findings may be useful for design and implementation of phytoremediation systems, as well as aid future modeling and risk assessment initiatives for these emerging organic contaminants. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Comparative investigation of toxicity and bioaccumulation of Cd-based quantum dots and Cd salt in freshwater plant Lemna minor L.

    Science.gov (United States)

    Modlitbová, Pavlína; Novotný, Karel; Pořízka, Pavel; Klus, Jakub; Lubal, Přemysl; Zlámalová-Gargošová, Helena; Kaiser, Jozef

    2018-01-01

    The purpose of this study was to determine the toxicity of two different sources of cadmium, i.e. CdCl 2 and Cd-based Quantum Dots (QDs), for freshwater model plant Lemna minor L. Cadmium telluride QDs were capped with two coating ligands: glutathione (GSH) or 3-mercaptopropionic acid (MPA). Growth rate inhibition and final biomass inhibition of L. minor after 168-h exposure were monitored as toxicity endpoints. Dose-response curves for Cd toxicity and EC50 168h values were statistically evaluated for all sources of Cd to uncover possible differences among the toxicities of tested compounds. Total Cd content and its bioaccumulation factors (BAFs) in L. minor after the exposure period were also determined to distinguish Cd bioaccumulation patterns with respect to different test compounds. Laser-Induced Breakdown Spectroscopy (LIBS) with lateral resolution of 200µm was employed in order to obtain two-dimensional maps of Cd spatial distribution in L. minor fronds. Our results show that GSH- and MPA-capped Cd-based QDs have similar toxicity for L. minor, but are significantly less toxic than CdCl 2 . However, both sources of Cd lead to similar patterns of Cd bioaccumulation and distribution in L. minor fronds. Our results are in line with previous reports that the main mediators of Cd toxicity and bioaccumulation in aquatic plants are Cd 2+ ions dissolved from Cd-based QDs. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Interactions of metal-based engineered nanoparticles with aquatic higher plants: A review of the state of current knowledge.

    Science.gov (United States)

    Thwala, Melusi; Klaine, Stephen J; Musee, Ndeke

    2016-07-01

    The rising potential for the release of engineered nanoparticles (ENPs) into aquatic environments requires evaluation of risks to protect ecological health. The present review examines knowledge pertaining to the interactions of metal-based ENPs with aquatic higher plants, identifies information gaps, and raises considerations for future research to advance knowledge on the subject. The discussion focuses on ENPs' bioaccessibility; uptake, adsorption, translocation, and bioaccumulation; and toxicity effects on aquatic higher plants. An information deficit surrounds the uptake of ENPs and associated dynamics, because the influence of ENP characteristics and water quality conditions has not been well documented. Dissolution appears to be a key mechanism driving bioaccumulation of ENPs, whereas nanoparticulates often adsorb to plant surfaces with minimal internalization. However, few reports document the internalization of ENPs by plants; thus, the role of nanoparticulates' internalization in bioaccumulation and toxicity remains unclear, requiring further investigation. The toxicities of metal-based ENPs mainly have been associated with dissolution as a predominant mechanism, although nano toxicity has also been reported. To advance knowledge in this domain, future investigations need to integrate the influence of ENP characteristics and water physicochemical parameters, as their interplay determines ENP bioaccessibility and influences their risk to health of aquatic higher plants. Furthermore, harmonization of test protocols is recommended for fast tracking the generation of comparable data. Environ Toxicol Chem 2016;35:1677-1694. © 2016 SETAC. © 2016 SETAC.

  3. Aquatic insect ecophysiological traits reveal phylogenetically based differences in dissolved cadmium susceptibility.

    Science.gov (United States)

    Buchwalter, David B; Cain, Daniel J; Martin, Caitrin A; Xie, Lingtian; Luoma, Samuel N; Garland, Theodore

    2008-06-17

    We used a phylogenetically based comparative approach to evaluate the potential for physiological studies to reveal patterns of diversity in traits related to susceptibility to an environmental stressor, the trace metal cadmium (Cd). Physiological traits related to Cd bioaccumulation, compartmentalization, and ultimately susceptibility were measured in 21 aquatic insect species representing the orders Ephemeroptera, Plecoptera, and Trichoptera. We mapped these experimentally derived physiological traits onto a phylogeny and quantified the tendency for related species to be similar (phylogenetic signal). All traits related to Cd bioaccumulation and susceptibility exhibited statistically significant phylogenetic signal, although the signal strength varied among traits. Conventional and phylogenetically based regression models were compared, revealing great variability within orders but consistent, strong differences among insect families. Uptake and elimination rate constants were positively correlated among species, but only when effects of body size and phylogeny were incorporated in the analysis. Together, uptake and elimination rates predicted dramatic Cd bioaccumulation differences among species that agreed with field-based measurements. We discovered a potential tradeoff between the ability to eliminate Cd and the ability to detoxify it across species, particularly mayflies. The best-fit regression models were driven by phylogenetic parameters (especially differences among families) rather than functional traits, suggesting that it may eventually be possible to predict a taxon's physiological performance based on its phylogenetic position, provided adequate physiological information is available for close relatives. There appears to be great potential for evolutionary physiological approaches to augment our understanding of insect responses to environmental stressors in nature.

  4. Can aquatic macrophytes be biofilters for gadolinium based contrasting agents?

    Science.gov (United States)

    Braun, Mihály; Zavanyi, Györgyi; Laczovics, Attila; Berényi, Ervin; Szabó, Sándor

    2018-05-15

    The use of gadolinium-based contrasting agents (GBCA) is increasing because of the intensive usage of these agents in magnetic resonance imaging (MRI). Waste-water treatment does not reduce anthropogenic Gd-concentration significantly. Anomalous Gd-concentration in surface waters have been reported worldwide. However, removal of GBCA-s by aquatic macrophytes has still hardly been investigated. Four aquatic plant species (Lemna gibba, Ceratophyllum demersum, Elodea nuttallii, E. canadensis) were investigated as potential biological filters for removal of commonly used but structurally different GBCA-s (Omniscan, Dotarem) from water. These plant species are known to accumulate heavy metals and are used for removing pollutants in constructed wetlands. The Gd uptake and release of the plants was examined under laboratory conditions. Concentration-dependent infiltration of Gd into the body of the macrophytes was measured, however significant bioaccumulation was not observed. The tissue concentration of Gd reached its maximum value between day one and four in L. gibba and C. demersum, respectively, and its volume was significantly higher in C. demersum than in L. gibba. In C. demersum, the open-chain ligand Omniscan causes two-times higher tissue Gd concentration than the macrocyclic ligand Dotarem. Gadolinium was released from Gd-treated duckweeds into the water as they were grown further in Gd-free nutrient solution. Tissue Gd concentration dropped by 50% in duckweed treated by Omniscan and by Dotarem within 1.9 and 2.9 days respectively. None of the macrophytes had a significant impact on the Gd concentration of water in low and medium concentration levels (1-256 μg L -1 ). Biofiltration of GBCA-s by common macrophytes could not be detected in our experiments. Therefore it seems that in constructed wetlands, aquatic plants are not able to reduce the concentration of GBCA-s in the water. Furthermore there is a low risk that these plants cause the

  5. Review of laboratory-based terrestrial bioaccumulation assessment approaches for organic chemicals: Current status and future possibilities.

    Science.gov (United States)

    Hoke, Robert; Huggett, Duane; Brasfield, Sandra; Brown, Becky; Embry, Michelle; Fairbrother, Anne; Kivi, Michelle; Paumen, Miriam Leon; Prosser, Ryan; Salvito, Dan; Scroggins, Rick

    2016-01-01

    In the last decade, interest has been renewed in approaches for the assessment of the bioaccumulation potential of chemicals, principally driven by the need to evaluate large numbers of chemicals as part of new chemical legislation, while reducing vertebrate test organism use called for in animal welfare legislation. This renewed interest has inspired research activities and advances in bioaccumulation science for neutral organic chemicals in aquatic environments. In January 2013, ILSI Health and Environmental Sciences Institute convened experts to identify the state of the science and existing shortcomings in terrestrial bioaccumulation assessment of neutral organic chemicals. Potential modifications to existing laboratory methods were identified, including areas in which new laboratory approaches or test methods could be developed to address terrestrial bioaccumulation. The utility of "non-ecotoxicity" data (e.g., mammalian laboratory data) was also discussed. The highlights of the workshop discussions are presented along with potential modifications in laboratory approaches and new test guidelines that could be used for assessing the bioaccumulation of chemicals in terrestrial organisms. © 2015 SETAC.

  6. Nuclear microscopy as a tool in TiO{sub 2} nanoparticles bioaccumulation studies in aquatic species

    Energy Technology Data Exchange (ETDEWEB)

    Pinheiro, Teresa, E-mail: murmur@itn.pt [IST/ITN, Instituto Superior Técnico, Universidade Técnica de Lisboa and Centro de Física Nuclear, Universidade de Lisboa (Portugal); Moita, Liliana; Silva, Luís; Mendonça, Elsa; Picado, Ana [LNEG, Laboratório Nacional de Energia e Geologia, I.P. Estrada do Paço do Lumiar 22, 1649-038 Lisboa (Portugal)

    2013-07-01

    Engineered Titanium nanoparticles are used for a wide range of applications from coatings, sunscreen cosmetic additives to solar cells or water treatment agents. Inevitably environmental exposure can be expected and data on the ecotoxicological evaluation of nanoparticles are still scarce. The potential effects of nanoparticles of titanium dioxide (TiO{sub 2}) on two model organisms, the water flea, Daphnia magna and the duckweed Lemna minor, were examined in semichronic toxicity tests. Daphnia and Lemna were exposed to TiO{sub 2} nanoparticles (average particle size value of 28 ± 11 nm (n = 42); concentration range, 1.4–25 mg/L) by dietary route and growth in medium containing the nanoparticles of TiO{sub 2}, respectively. Both morphology and microdistribution of Ti in the individuals were examined by nuclear microscopy techniques. A significant amount of TiO{sub 2} was found accumulated in Daphnia exposed to nanoparticles. Nuclear microscopy imaging revealed that Ti was localized only in the digestive tract of the Daphnia, which displayed difficulty in eliminating the nanoparticles from their body. Daphnia showed higher mortality when exposed to higher concentrations of TiO{sub 2} (>10 mg/L). The exposure to TiO{sub 2} nanoparticles above 25 mg/L caused morphological alterations in Lemna. The roots became stiff and fronds colorless. The Ti mapping of cross-sections of roots and fronds showed that Ti was mainly deposited in the epidermis of the fronds and roots, with minor internalization. In summary, exposure of aquatic organisms to TiO{sub 2} nanoparticles may alter the physiology of these organisms at individual and population levels, posing risks to aquatic ecosystems.

  7. A community-based framework for aquatic ecosystem models

    DEFF Research Database (Denmark)

    Trolle, Didde; Hamilton, D. P.; Hipsey, M. R.

    2012-01-01

    Here, we communicate a point of departure in the development of aquatic ecosystem models, namely a new community-based framework, which supports an enhanced and transparent union between the collective expertise that exists in the communities of traditional ecologists and model developers. Through...... a literature survey, we document the growing importance of numerical aquatic ecosystem models while also noting the difficulties, up until now, of the aquatic scientific community to make significant advances in these models during the past two decades. Through a common forum for aquatic ecosystem modellers we...... aim to (i) advance collaboration within the aquatic ecosystem modelling community, (ii) enable increased use of models for research, policy and ecosystem-based management, (iii) facilitate a collective framework using common (standardised) code to ensure that model development is incremental, (iv...

  8. A GIS-based tool for bioaccumulation risk analysis and its application to study polychlorinated biphenyls in the Great Lakes

    Directory of Open Access Journals (Sweden)

    Fernanda P. Maciel

    2018-01-01

    Full Text Available This paper presents a GIS-based tool named Arc-BEST (Bioaccumulation Evaluation Screening Tool to perform spatially distributed bioaccumulation risk analyses. Estimating bioaccumulation risk is important to help predict potentially adverse effects from contaminants on ecosystems and human health, which are key factors in the development of sound public policy. Arc-BEST is based on the BEST model in the U.S. Army Corps of Engineers BRAMS (Bioaccumulation Risk Assessment Modeling System software, released in 2012. It predicts concentration of concern contaminants in predators’ tissues from concentrations in organisms at the bottom of the food chain, and corresponding bioaccumulation factors. Additionally, it estimates carcinogenic and non-carcinogenic risks for humans that consume those species. The greatest contribution of Arc-BEST is that it enables the automated use of digital spatial data sets, which improves model creation speed, analysis and visualization of results, and comparison and cross-referencing with other geographic datasets. Furthermore, the model was improved to consider up to four trophic levels. The code is written in Python and is open-source. In this work Arc-BEST is used as part of a screening-level risk assessment process in order to identify hot spots where further studies and monitoring should be performed to ensure humans and ecosystems health. The tool is successfully applied to a case study in the Laurentian Great Lakes, where long-term effects of polychlorinated biphenyls (PCBs is performed, based on measured concentrations in zebra mussels (Dreissena polymorpha, and local bioaccumulation factors from previous studies. Zebra mussels have a great filtration capacity and high bioconcentration rates, increasing the bioavailability of contaminants for predator species. PCBs concentrations in different-level predators are predicted. Furthermore, health risks for humans that consume sport fish are estimated for various

  9. Aquatic biota as potential biological indicators of the contamination, bioaccumulation and health risks caused by organochlorine pesticides in a large, shallow Chinese lake (Lake Chaohu)

    DEFF Research Database (Denmark)

    Liu, Wen-Xiu; Wang, Yan; He, Wei

    2016-01-01

    Aquatic biota have long been recognized as bioindicators of the contamination caused by hydrophobic organic contaminants (HOCs) in aquatic environments. The primary purpose of the present study is to identify which species of aquatic biota are the most sensitive to organochlorine pesticides (OCPs...

  10. Bioaccumulation and Toxicity of Single-Walled Carbon Nanotubes to Benthic Organisms at the Base of the Marine Food Chain

    Science.gov (United States)

    As the use of single-walled carbon nanotubes (SWNTs) increases over time, so does the potential for environmental release. This research aimed to determine the toxicity, bioavailability, and bioaccumulation of SWNTs in marine benthic organisms at the base of the food chain. The t...

  11. Variation in bioaccumulation of persistent organic pollutants based on octanol-air partitioning: Influence of respiratory elimination in marine species.

    Science.gov (United States)

    Moses, Sara K; Harley, John R; Lieske, Camilla L; Muir, Derek C G; Whiting, Alex V; O'Hara, Todd M

    2015-11-15

    Risk assessments of persistent organic pollutants (POPs) are often based on octanol-water (KOW) partitioning dynamics and may not adequately reflect bioaccumulation in air-breathing organisms. It has been suggested that compounds with low KOW and high octanol-air partitioning (KOA) coefficients have the potential to bioaccumulate in air-breathing organisms, including marine mammals. Here we evaluate differences in concentrations of POPs for two trophically matched Arctic species, spotted seal (Phoca largha) and sheefish (Stenodus leucichthys). We compared concentrations of 108 POPs in matched tissues (liver and muscle) across three ranges of KOW. We found a significant positive correlation between POP concentration and log KOA in spotted seal tissues for low log KOW compounds (log KOW <5.5, p<0.05). This provides further evidence for empirical models and observed bioaccumulation patterns in air-breathing organisms, and highlights the potential for bioaccumulation of these compounds in Arctic marine mammals. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Fish bioaccumulation and biomarkers in environmental risk assessment: a review.

    Science.gov (United States)

    van der Oost, Ron; Beyer, Jonny; Vermeulen, Nico P E

    2003-02-01

    . All fish biomarkers are evaluated for their potential use in ERA programs, based upon six criteria that have been proposed in the present paper. This evaluation demonstrates that phase I enzymes (e.g. hepatic EROD and CYP1A), biotransformation products (e.g. biliary PAH metabolites), reproductive parameters (e.g. plasma VTG) and genotoxic parameters (e.g. hepatic DNA adducts) are currently the most valuable fish biomarkers for ERA. The use of biomonitoring methods in the control strategies for chemical pollution has several advantages over chemical monitoring. Many of the biological measurements form the only way of integrating effects on a large number of individual and interactive processes in aquatic organisms. Moreover, biological and biochemical effects may link the bioavailability of the compounds of interest with their concentration at target organs and intrinsic toxicity. The limitations of biomonitoring, such as confounding factors that are not related to pollution, should be carefully considered when interpreting biomarker data. Based upon this overview there is little doubt that measurements of bioaccumulation and biomarker responses in fish from contaminated sites offer great promises for providing information that can contribute to environmental monitoring programs designed for various aspects of ERA.

  13. Evidence-Based Advances in Aquatic Animal Medicine.

    Science.gov (United States)

    Vergneau-Grosset, Claire; Larrat, Sylvain

    2017-09-01

    Fish and aquatic invertebrates deserve evidence-based medicine. Pharmacologic information is available; most pharmacokinetic studies are derived from the aquaculture industry and extrapolated to ornamental fish. Conversely, advanced diagnostics and information regarding diseases affecting only ornamental fish and invertebrates require more peer-reviewed experimental studies; the examples of carp edema virus, sea star wasting disease, seahorse nutrition, and gas bubble disease of fish under human care are discussed. Antinociception is also a controversial topic of growing interest in aquatic animal medicine. This article summarizes information regarding new topics of interest in companion fish and invertebrates and highlights some future avenues for research. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. A community-based framework for aquatic ecosystem models

    NARCIS (Netherlands)

    Trolle, D.; Hamilton, D.P.; Hipsey, M.R.; Bolding, K.; Bruggeman, J.; Mooij, W.M.; Janse, J.H.; Nielsen, A.; Jeppesen, E.; Elliott, J.A.; Makler-Pick, V.; Petzoldt, T.; Rinke, K.; Flindt, M.R.; Arhonditsis, G.B.; Gal, G.; Bjerring, R.; Tominaga, K.; Hoen, 't J.; Downing, A.S.; Marques, D.M.; Fragoso, C.R.; Sondergaard, M.; Hanson, P.C.

    2012-01-01

    Here, we communicate a point of departure in the development of aquatic ecosystem models, namely a new community-based framework, which supports an enhanced and transparent union between the collective expertise that exists in the communities of traditional ecologists and model developers. Through a

  15. Methylmercury bioaccumulation in invertebrates of boreal streams in Norway: Effects of aqueous methylmercury and diet retention

    International Nuclear Information System (INIS)

    Wit, Heleen A. de; Kainz, Martin J.; Lindholm, Markus

    2012-01-01

    Transfer of aqueous methylmercury (MeHg) to primary consumers in aquatic foodwebs is poorly understood despite its importance for bioaccumulation of MeHg. We studied bioaccumulation of MeHg in simple aquatic food chains of two humic boreal streams in relation to streamwater chemistry, food web characteristics and dietary fatty acid (FA) biomarkers. Transfer of aqueous MeHg into primary consumers was similar in both streams, resulting in higher MeHg in consumers in the MeHg-rich stream. Trophic enrichment of MeHg and dietary retention of FA biomarkers was the same in both streams, suggesting that exposure to aqueous MeHg at the base of the food chain determined levels of MeHg in biota. In addition, contents of dietary biomarkers suggested that ingestion of algae reduced MeHg bioaccumulation, while ingestion of bacteria stimulated MeHg uptake. Dietary uptake of bacteria could thus be an important pathway for MeHg-transfer at the bottom of food chains in humic streams. - Highlights: ► We examined MeHg bioaccumulation in simple food chains in two boreal streams. ► Higher MeHg in invertebrates was associated with higher aqueous MeHg. ► Dietary biomarkers showed that consumers in both streams accessed similar food sources. ► We concluded at exposure to aqueous MeHg determined bioaccumulation of MeHg. ► Seasonal variation in MeHg in biota could be related to diet using dietary biomarkers. - Exposure to aqueous methylmercury at the base of the food chain in boreal streams determines mercury in aquatic biota at higher trophic levels.

  16. Effects of contaminants on reproductive success of aquatic birds nesting at Edwards Air Force Base, California

    Science.gov (United States)

    Hothem, R.L.; Crayon, J.J.; Law, M.A.

    2006-01-01

    Contamination by organochlorine pesticides (OCs), polychlorinated biphenyls, metals, and trace elements at Edwards Air Force Base (EAFB), located in the Mojave Desert, could adversely affect nesting aquatic birds, especially at the sewage lagoons that comprise Piute Ponds. Estimates of avian reproduction, in conjunction with analyses of eggs and avian foods for contaminant residues, may indicate the potential for negative effects on avian populations. From 1996 to 1999, we conducted studies at the Piute Ponds area of EAFB to evaluate the impacts of contaminants on nesting birds. Avian reproduction was evaluated in 1999. Eggs were collected for chemical analyses in 1996 and 1999, and African clawed frogs (Xenopus laevis), a likely food source, were collected for chemical analyses in 1998. Avian species occupying the higher trophic levels-black-crowned night-heron (Nycticorax nycticorax), white-faced ibis (Plegadis chihi), and American avocet (Recurvirostra americana)-generally bioaccumulated higher concentrations of contaminants in their eggs. Reproductive success and egg hatchability of night-herons and white-faced ibises in the Piute Ponds were similar to results observed at other western colonies. Deformities were observed in only one embryo in this study, but concentrations of contaminants evaluated in this ibis embryo were considered insufficient to have caused the deformities. Because clawed frogs, a primary prey item for night-herons at Piute Ponds, had no detectable levels of any OCs, it is likely that OCs found in night-heron eggs were acquired from the wintering grounds rather than from EAFB. The presence of isomers of dichlorodiphenyltrichloroethane (DDT) in ibis eggs indicated recent exposure, but invertebrates used for food by ibises were not sampled at Piute Ponds, and conclusions about the source of OCs in ibis eggs could not be made. Concentrations of contaminants in random and failed eggs of individual species were not different, and we concluded

  17. Bioaccumulation of cadmium in an experimental aquatic food chain involving phytoplankton (Chlorella vulgaris), zooplankton (Moina macrocopa), and the predatory catfish Clarias macrocephalus x C. gariepinus

    International Nuclear Information System (INIS)

    Ruangsomboon, Suneerat; Wongrat, Ladda

    2006-01-01

    The accumulation of cadmium (Cd) was studied in an experimental aquatic food chain involving the phytoplankton Chlorella vulgaris as the primary producer, the zooplankton Moina macrocopa as the primary consumer, and the catfish Clarias macrocephalus x Clarias gariepinus as the secondary consumer. C. vulgaris was first exposed to Cd solutions at 0.00, 0.35, and 3.50 mg l -1 , referred to as control group and experimental groups 1 and 2, respectively. Subsequently, each group was fed to three corresponding groups of M. macrocopa. Finally, three groups of catfish were fed these corresponding groups of M. macrocopa. After C. vulgaris was exposed to 3.50 mg l -1 Cd (experimental group 2), the residual Cd in solution was only 4.01 μg l -1 , lower than the maximum allowable limit of Cd in natural water sources (5 μg l -1 ). Cd concentrations in C. vulgaris were 0.01 ± 0.00 μg g -1 (dry wt) in the control group, 194 ± 1.80 μg g -1 (dry wt) in experimental group 1, and 1140 ± 20.06 μg g -1 (dry wt) in experimental group 2. The Cd concentrations in M. macrocopa were 0.01 ± 0.00 μg g -1 (dry wt) in the control group, 16.48 ± 2.23 μg g -1 (dry wt) in experimental group 1, and 56.6 ± 3.23 μg g -1 (dry wt) in experimental group 2. The Cd concentrations in catfish muscle increased with increasing Cd concentrations in the food. After 60 days of fish culture, the mean concentrations of Cd in fish muscle were 0.01 ± 0.00 μg g -1 (dry wt) in the control group, 0.61 ± 0.02 μg g -1 (dry wt) in experimental group 1 and 1.04 ± 0.06 μg g -1 (dry wt) in experimental group 2. Cd concentration in fish muscle of experimental group 2 was equal to the permissible limit. Cd accumulation affected fish growth: at the end of the study, the mean fresh weight (12.81 g) of catfish in the control group, was significantly higher than those experimental group 1 (10.43 g) and experimental group 2 (10.00 g). The results showed that the measurement of Cd concentration in water does not

  18. Bioaccumulation of cadmium in an experimental aquatic food chain involving phytoplankton (Chlorella vulgaris), zooplankton (Moina macrocopa), and the predatory catfish Clarias macrocephalus x C. gariepinus

    Energy Technology Data Exchange (ETDEWEB)

    Ruangsomboon, Suneerat [Faculty of Agricultural Technology, King Mongkut' s Institute of Technology Ladkrabang, Chalongkrung Road, Bangkok 10520 (Thailand)]. E-mail: krsuneer@kmitl.ac.th; Wongrat, Ladda [Faculty of Fishery, Kasetsart University, Bangkok 10900 (Thailand)

    2006-06-10

    The accumulation of cadmium (Cd) was studied in an experimental aquatic food chain involving the phytoplankton Chlorella vulgaris as the primary producer, the zooplankton Moina macrocopa as the primary consumer, and the catfish Clarias macrocephalus x Clarias gariepinus as the secondary consumer. C. vulgaris was first exposed to Cd solutions at 0.00, 0.35, and 3.50 mg l{sup -1}, referred to as control group and experimental groups 1 and 2, respectively. Subsequently, each group was fed to three corresponding groups of M. macrocopa. Finally, three groups of catfish were fed these corresponding groups of M. macrocopa. After C. vulgaris was exposed to 3.50 mg l{sup -1} Cd (experimental group 2), the residual Cd in solution was only 4.01 {mu}g l{sup -1}, lower than the maximum allowable limit of Cd in natural water sources (5 {mu}g l{sup -1}). Cd concentrations in C. vulgaris were 0.01 {+-} 0.00 {mu}g g{sup -1} (dry wt) in the control group, 194 {+-} 1.80 {mu}g g{sup -1} (dry wt) in experimental group 1, and 1140 {+-} 20.06 {mu}g g{sup -1} (dry wt) in experimental group 2. The Cd concentrations in M. macrocopa were 0.01 {+-} 0.00 {mu}g g{sup -1} (dry wt) in the control group, 16.48 {+-} 2.23 {mu}g g{sup -1} (dry wt) in experimental group 1, and 56.6 {+-} 3.23 {mu}g g{sup -1} (dry wt) in experimental group 2. The Cd concentrations in catfish muscle increased with increasing Cd concentrations in the food. After 60 days of fish culture, the mean concentrations of Cd in fish muscle were 0.01 {+-} 0.00 {mu}g g{sup -1} (dry wt) in the control group, 0.61 {+-} 0.02 {mu}g g{sup -1} (dry wt) in experimental group 1 and 1.04 {+-} 0.06 {mu}g g{sup -1} (dry wt) in experimental group 2. Cd concentration in fish muscle of experimental group 2 was equal to the permissible limit. Cd accumulation affected fish growth: at the end of the study, the mean fresh weight (12.81 g) of catfish in the control group, was significantly higher than those experimental group 1 (10.43 g) and

  19. Effects of copper-oxide nanoparticles, dissolved copper and ultraviolet radiation on copper bioaccumulation, photosynthesis and oxidative stress in the aquatic macrophyte Elodea nuttallii.

    Science.gov (United States)

    Regier, Nicole; Cosio, Claudia; von Moos, Nadia; Slaveykova, Vera I

    2015-06-01

    In this study, the uptake and sub-toxic effects of CuO nanoparticles (CuO-NPs), dissolved Cu(II) alone or in combination with UV radiation on the aquatic macrophyte Elodea nuttallii were studied. Emphasis was on Cu accumulation, growth, photosynthesis and the oxidative stress related enzymes peroxidase (POD) and superoxide dismutase (SOD). The results showed stronger Cu accumulation in plants exposed to 10 mg L(-1) CuO-NPs, corresponding to 1.4-2 mg L(-1) dissolved Cu(II), than to 256 μg L(-1) Cu(II). However, the ratio between the accumulated Cu and dissolved Cu in CuO treatments was lower than in Cu(II) treatments. Additional UV exposure increased accumulation in both treatments, with the effect being stronger for Cu accumulation from CuO-NPs than for dissolved Cu(II). Photosynthetic capacity was strongly reduced by UV treatment, whereas remained unaffected by Cu(II) or CuO-NP treatments. Similarly, the increase of SOD activity was more pronounced in the UV treatments. On the other hand, POD activity enhancement was strongest in the plants exposed to CuO-NPs for 24 h. Expression of the copper transporter COPT1 as revealed by RT-qPCR was inhibited by Cu(II) and CuO-NP treatment, limiting the uptake of excess Cu into the cells. Overall, the combined exposure of E. nuttallii to UV radiation with CuO-NPs or Cu(II) has a higher impact than exposure to CuO-NPs or Cu(II) alone. The results imply that heavy pollution of natural water with CuO-NPs or dissolved Cu might have stronger effects in combination with natural UV irradiation on organisms in situ. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Aquatic exercises versus land based exercises for elderly patients after a total hip replacement

    OpenAIRE

    Miroljub Jakovljevič; Renata Vauhnik

    2011-01-01

    Background: Aquatic therapy allows secure, active exercise with pain reduction using a combination of the water’s buoyancy, hydrostatic pressure, resistance and warmth. By aquatic therapy, elderly patients after total hip replacement can achieve more positive effects than by land-based exercise. The aim of the study was to investigate the use of aquatic-based exercises in the rehabilitation programme after a hip fracture surgery in elderly adults. Results: Both groups, regardless of the ty...

  1. Regionalizing Aquatic Ecosystems Based on the River Subbasin Taxonomy Concept and Spatial Clustering Techniques

    Directory of Open Access Journals (Sweden)

    Jiahu Zhao

    2011-11-01

    Full Text Available Aquatic ecoregions were increasingly used as spatial units for aquatic ecosystem management at the watershed scale. In this paper, the principle of including land area, comprehensiveness and dominance, conjugation and hierarchy were selected as regionalizing principles. Elevation and drainage density were selected as the regionalizing indicators for the delineation of level I aquatic ecoregions, and percent of construction land area, percent of cultivated land area, soil type and slope for the level II. Under the support of GIS technology, the spatial distribution maps of the two indicators for level I and the four indicators for level II aquatic ecoregion delineation were generated from the raster data based on the 1,107 subwatersheds. River subbasin taxonomy concept, two-step spatial clustering analysis approach and manual-assisted method were used to regionalize aquatic ecosystems in the Taihu Lake watershed. Then the Taihu Lake watershed was divided into two level I aquatic ecoregions, including Ecoregion I1 and Ecoregion I2, and five level II aquatic subecoregions, including Subecoregion II11, Subecoregion II12, Subecoregion II21, Subecoregion II22 and Subecoregion II23. Moreover, the characteristics of the two level I aquatic ecoregions and five level II aquatic subecoregions in the Taihu Lake watershed were summarized, showing that there were significant differences in topography, socio-economic development, water quality and aquatic ecology, etc. The results of quantitative comparison of aquatic life also indicated that the dominant species of fish, benthic density, biomass, dominant species, Shannon-Wiener diversity index, Margalef species richness index, Pielou evenness index and ecological dominance showed great spatial variability between the two level I aquatic ecoregions and five level II aquatic subecoregions. It reflected the spatial heterogeneities and the uneven natures of aquatic ecosystems in the Taihu Lake watershed.

  2. Design and Promotion Strategy of Marketing Platform of Aquatic Auction based on Internet

    Science.gov (United States)

    Peng, Jianliang

    For the online trade and promotion of aquatic products and related materials through the network between supply and demand, the design content and effective promotional strategies of aquatic auctions online marketing platform is proposed in this paper. Design elements involve the location of customer service, the basic function of the platform including the purchase of general orders, online auctions, information dissemination, and recommendation of fine products, human services, and payment preferences. Based on network and mobile e-commerce transaction support, the auction platform makes the transaction of aquatic products well in advance. The results are important practical value for the design and application of online marketing platform of aquatic auction.

  3. Lead Bioaccumulation Factor of Cockle Shell (Anadara granosa) Base on Biokinetic Study that Used Radiotracer 210Pb

    International Nuclear Information System (INIS)

    Heru Umbara; Heny Suseno

    2007-01-01

    Lead is kind of hazardous heavy metal to human health and the concentration in the coastal environment should be monitored continuously because lead could be accumulated by marine biota. One of the monitoring techniques is bio indicator. Anadara granosa is a marine biota which spread in almost all Indonesian coastal, life in the bottom and mud sandy environment in the depth of until 4 meter and relatively still. Base on the book of environmental equilibrium balance DKI Jakarta, Anadara granosa is a macrozobenthos in Jakarta bay which have second highest density after Donax or with density of 14 individual per meter square. Base on the environmental equilibrium balance from 26 locations, 22 locations can be found Anadara granosa so this mollusk could be used for bio indicator. The objective of research for bioaccumulation that use 210 Pb as a tracer is to find bio indicator base on biokinetic process which include concentration factor, uptake and depuration processes and biology half life. The result shows that Anadara granosa could be use as a lead bio indicator in Jakarta bay. (author)

  4. Toxicity-based toxicokinetic/toxicodynamic assessment of bioaccumulation and nanotoxicity of zerovalent iron nanoparticles in Caenorhabditis elegans

    Directory of Open Access Journals (Sweden)

    Yang YF

    2017-06-01

    Full Text Available Ying-Fei Yang, Yi-Jun Lin, Chung-Min Liao Department of Bioenvironmental Systems Engineering, College of Bioresources and Agriculture, National Taiwan University, Taipei, Taiwan Abstract: Elucidating the relationships between the toxicity-based-toxicokinetic (TBTK/toxicodynamic (TD properties of engineered nanomaterials and their nanotoxicity is crucial for human health-risk analysis. Zerovalent iron (Fe0 nanoparticles (NPs are one of the most prominent NPs applied in remediating contaminated soils and groundwater. However, there are concerns that Fe0NP application contributes to long-term environmental and human health impacts. The nematode Caenorhabditis elegans is a surrogate in vivo model that has been successfully applied to assess the potential nanotoxicity of these nanomaterials. Here we present a TBTK/TD approach to appraise bioaccumulation and nanotoxicity of Fe0NPs in C. elegans. Built on a present C. elegans bioassay with estimated TBTK/TD parameters, we found that average bioconcentration factors in C. elegans exposed to waterborne and food-borne Fe0NPs were ~50 and ~5×10–3, respectively, whereas 10% inhibition concentrations for fertility, locomotion, and development, were 1.26 (95% CI 0.19–5.2, 3.84 (0.38–42, and 6.78 (2.58–21 µg·g–1, respectively, implicating that fertility is the most sensitive endpoint in C. elegans. Our results also showed that biomagnification effects were not observed in waterborne or food-borne Fe0NP-exposed worms. We suggest that the TBTK/TD assessment for predicting NP-induced toxicity at different concentrations and conditions in C. elegans could enable rapid selection of nanomaterials that are more likely to be nontoxic in larger animals. We conclude that the use of the TBTK/TD scheme manipulating C. elegans could be used for rapid evaluation of in vivo toxicity of NPs or for drug screening in the field of nanomedicine. Keywords: zerovalent iron nanoparticles, Caenorhabditis elegans

  5. Great Lakes water quality initiative technical support document for the procedure to determine bioaccumulation factors. Draft report

    International Nuclear Information System (INIS)

    1993-03-01

    The purpose of the document is to provide the technical information and rationale in support of the proposed procedures to determine bioaccumulation factors. Bioaccumulation factors, together with the quantity of aquatic organisms eaten, determine the extent to which people and wildlife are exposed to chemicals through the consumption of aquatic organisms. The more bioaccumulative a pollutant is, the more important the consumption of aquatic organisms becomes as a potential source of contaminants to humans and wildlife. Bioaccumulation factors are needed to determine both human health and wildlife tier I water quality criteria and tier II values. Also, they are used to define Bioaccumulative Chemicals of Concern among the Great Lakes Initiative universe of pollutants. Bioaccumulation factors range from less than one to several million

  6. Evaluating MERIS-Based Aquatic Vegetation Mapping in Lake Victoria

    NARCIS (Netherlands)

    Cheruiyot, E.K.; Mito, C.; Menenti, M.; Gorte, B.G.H.; Koenders, R.; Akdim, N.

    2014-01-01

    Delineation of aquatic plants and estimation of its surface extent are crucial to the efficient control of its proliferation, and this information can be derived accurately with fine resolution remote sensing products. However, small swath and low observation frequency associated with them may be

  7. Evidence based practice and techniques in aquatic therapy for ...

    African Journals Online (AJOL)

    Aquatic therapy (AT) is a holistic method of treatment that involves activity or passive activity to produce healthcare outcomes. The push for holistic treatment in rehabilitation is emphasized by the World Health Organization (WHO) (2009). The WHO suggested that healthcare organizations should turn their attention from ...

  8. Sunlight-induced Transformations of Graphene-based Nanomaterials in Aquatic Environments

    Science.gov (United States)

    Graphene-based nanomaterials and other related carbon nanomaterials (CNMs) can be released from products during their life cycles. Upon entry into aquatic environments, they are potentially transformed by photochemical reactions, oxidation reactions and biological processes, all ...

  9. A Field-Based Aquatic Life Benchmark for Conductivity in Central Appalachian Streams (Final Report)

    Science.gov (United States)

    EPA announced the availability of the final report, A Field-Based Aquatic Life Benchmark for Conductivity in Central Appalachian Streams. This report describes a method to characterize the relationship between the extirpation (the effective extinction) of invertebrate g...

  10. Bioaccumulation Studies Associated with the Kingston Fly Ash Spill, Spring 2009 - Fall 2010

    Energy Technology Data Exchange (ETDEWEB)

    Adams, Marshall [ORNL; Brandt, Craig C [ORNL; Fortner, Allison M [ORNL

    2012-05-01

    In December 2008, an ash dike at the Tennessee Valley Authority (TVA) Kingston Fossil Plant ruptured, releasing over one billion gallons of coal fly ash into the Emory and Clinch Rivers. Coal fly ash may contain several contaminants of concern, but of these selenium (Se) and arsenic (As) have been highlighted because of their toxicity and tendency to bioaccumulate in aquatic food chains. To assess the potential impact of the spilled fly ash on humans and the environment, a comprehensive biological and environmental monitoring program was established, for which resident aquatic organisms (among other sample media) are collected to determine contaminant exposure and evaluate the risk to humans and wildlife. Studies on bioaccumulation and fish health are major components of the TVA Biological Monitoring Program for the Kingston fly ash project. These studies were initiated in early Spring 2009 for the purposes of: (1) documenting the levels of fly ash-associated metals in various tissues of representative sentinel fish species in the area of the fly ash spill, (2) determining if exposure to fly ash-associated metals causes short, intermediate, or long-term health effects on these sentinel fish species, (3) assessing if there are causal relationships between exposure (to metals) and effects on fish, (4) evaluating, along with information regarding other ecological and physicochemical studies, the nature and route of contaminant transfer though food chains into higher level consumers, (5) providing important information for the Ecological Risk Assessment (ERA) for the Kingston fly ash project, and (6) serving as an important technology transfer or model study focused on how to best evaluate the environmental effects of fly ash, not only at the Kingston site, but also at sites on other aquatic systems where coal-fired generating stations are located. This report summarizes the bioaccumulation results from the first two years of study after the fly ash spill, including

  11. Trophic transfer of metal-based nanoparticles in aquatic environments

    DEFF Research Database (Denmark)

    Tangaa, Stine Rosendal; Selck, Henriette; Winther-Nielsen, Margrethe

    2016-01-01

    Metal-containing engineered nanoparticles (Me-ENPs) are used in a wide range of products including inks, plastics, personal care products, clothing and electronic devices. The release of Me-ENPs has been demonstrated from some products, and thus, particles are likely to enter the aquatic environm......Metal-containing engineered nanoparticles (Me-ENPs) are used in a wide range of products including inks, plastics, personal care products, clothing and electronic devices. The release of Me-ENPs has been demonstrated from some products, and thus, particles are likely to enter the aquatic...... environment where they have been shown to be taken up by a variety of species. Therefore, there is a possibility that Me-ENPs will enter and pass through aquatic food webs, but research on this topic is limited. In this tutorial review, we discuss the factors contributing to trophic transfer of Me......-ENPs, and where this information is scarce, we utilize the existing literature on aqueous metal trophic transfer as a potential starting point for greater mechanistic insight and for setting directions for future studies. We identify four key factors affecting trophic transfer of Me-ENPs: (1) environmental...

  12. Habitat type-based bioaccumulation and risk assessment of metal and As contamination in earthworms, beetles and woodlice

    International Nuclear Information System (INIS)

    Vermeulen, Frouke; Van den Brink, Nico W.; D'Have, Helga; Mubiana, Valentine K.; Blust, Ronny; Bervoets, Lieven; De Coen, Wim

    2009-01-01

    The present study investigated the contribution of environmental factors to the accumulation of As, Cd, Cu, Pb and Zn in earthworms, beetles and woodlice, and framed within an exposure assessment of the European hedgehog. Soil and invertebrate samples were collected in three distinct habitat types. Results showed habitat-specific differences in soil and invertebrate metal concentrations and bioaccumulation factors when normalized to soil metal concentration. Further multiple regression analysis showed residual variability (habitat differences) in bioaccumulation that could not be fully explained by differences in soil metal contamination, pH or organic carbon (OC). Therefore, the study demonstrated that in bioaccumulation studies involving terrestrial invertebrates or in risk assessment of metals, it is not sufficient to differentiate habitat types on general soil characteristics such as pH and/or OC alone. Furthermore, simple generic soil risk assessments for Cd and Cu showed that risk characterization was more accurate when performed in a habitat-specific way. - Our study provided essential insights into habitat-specific accumulation patterns with respect to factors influencing metal bioaccumulation, BAFs, and site-specific risk assessment.

  13. Habitat type-based bioaccumulation and risk assessment of metal and As contamination in earthworms, beetles and woodlice

    Energy Technology Data Exchange (ETDEWEB)

    Vermeulen, Frouke, E-mail: frouke.vermeulen@ua.ac.b [Ecophysiology, Biochemistry and Toxicology Group (U7), University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp (Belgium); Van den Brink, Nico W., E-mail: nico.vandenbrink@wur.n [Alterra, Wageningen UR, Box 47, NL6700AA Wageningen (Netherlands); D' Have, Helga [Ecophysiology, Biochemistry and Toxicology Group (U7), University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp (Belgium); Mubiana, Valentine K., E-mail: kayawe.mubiana@ua.ac.b [Ecophysiology, Biochemistry and Toxicology Group (U7), University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp (Belgium); Blust, Ronny, E-mail: ronny.blust@ua.ac.b [Ecophysiology, Biochemistry and Toxicology Group (U7), University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp (Belgium); Bervoets, Lieven, E-mail: lieven.bervoets@ua.ac.b [Ecophysiology, Biochemistry and Toxicology Group (U7), University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp (Belgium); De Coen, Wim, E-mail: wim.decoen@ua.ac.b [Ecophysiology, Biochemistry and Toxicology Group (U7), University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp (Belgium)

    2009-11-15

    The present study investigated the contribution of environmental factors to the accumulation of As, Cd, Cu, Pb and Zn in earthworms, beetles and woodlice, and framed within an exposure assessment of the European hedgehog. Soil and invertebrate samples were collected in three distinct habitat types. Results showed habitat-specific differences in soil and invertebrate metal concentrations and bioaccumulation factors when normalized to soil metal concentration. Further multiple regression analysis showed residual variability (habitat differences) in bioaccumulation that could not be fully explained by differences in soil metal contamination, pH or organic carbon (OC). Therefore, the study demonstrated that in bioaccumulation studies involving terrestrial invertebrates or in risk assessment of metals, it is not sufficient to differentiate habitat types on general soil characteristics such as pH and/or OC alone. Furthermore, simple generic soil risk assessments for Cd and Cu showed that risk characterization was more accurate when performed in a habitat-specific way. - Our study provided essential insights into habitat-specific accumulation patterns with respect to factors influencing metal bioaccumulation, BAFs, and site-specific risk assessment.

  14. Bioaccumulation of 14C-hexachlorobenzene in eggs and fry of Japanese medaka (Oryzias latipes)

    International Nuclear Information System (INIS)

    Huang, Y.; Biddinger, G.R.; Gloss, S.P.

    1986-01-01

    Hexachlorobenzene (HCB) is a widespread pollutant that is persistent once it enters the ecosphere. It bioaccumulates in both terrestrial and aquatic animals and is not readily metabolized. Although HCB bioaccumulation in fresh water fish has been reported, few data are available on bioaccumulation of this or other chemicals during early developmental stages of fish. The authors used the Japanese medaka (Oryzias latipes) to examine the rates of HCB bioaccumulation during early life stages subjected to both short term (24 h) and long term (14 day) aqueous exposure. The relatively rapid development and ease of laboratory maintenance made the medaka an ideal organism for this purpose

  15. Understanding differences in the body burden-age relationships of bioaccumulating contaminants based on population cross sections versus individuals.

    Science.gov (United States)

    Quinn, Cristina L; Wania, Frank

    2012-04-01

    Body burdens of persistent bioaccumulative contaminants estimated from the cross-sectional biomonitoring of human populations are often plotted against age. Such relationships have previously been assumed to reflect the role of age in bioaccumulation. We used a mechanistic modeling approach to reproduce concentration-versus-age relationships and investigate factors that influence them. CoZMoMAN is an environmental fate and human food chain bioaccumulation model that estimates time trends in human body burdens in response to time-variant environmental emissions. Trends of polychlorinated biphenyl (PCB) congener 153 concentrations versus age for population cross sections were estimated using simulated longitudinal data for individual women born at different times. The model was also used to probe the influence of partitioning and degradation properties, length of emissions, and model assumptions regarding lipid content and liver metabolism on concentration-age trends of bioaccumulative and persistent contaminants. Body burden-age relationships for population cross sections and individuals over time are not equivalent. The time lapse between the peak in emissions and sample collection for biomonitoring is the most influential factor controlling the shape of concentration-age trends for chemicals with human metabolic half-lives longer than 1 year. Differences in observed concentration-age trends for PCBs and polybrominated diphenyl ethers are consistent with differences in emission time trends and human metabolic half-lives. Bioaccumulation does not monotonically increase with age. Our model suggests that the main predictors of cross-sectional body burden trends with age are the amount of time elapsed after peak emissions and the human metabolic and environmental degradation rates.

  16. Toxicity-based toxicokinetic/toxicodynamic assessment of bioaccumulation and nanotoxicity of zerovalent iron nanoparticles in Caenorhabditis elegans.

    Science.gov (United States)

    Yang, Ying-Fei; Lin, Yi-Jun; Liao, Chung-Min

    2017-01-01

    Elucidating the relationships between the toxicity-based-toxicokinetic (TBTK)/toxicodynamic (TD) properties of engineered nanomaterials and their nanotoxicity is crucial for human health-risk analysis. Zerovalent iron (Fe 0 ) nanoparticles (NPs) are one of the most prominent NPs applied in remediating contaminated soils and groundwater. However, there are concerns that Fe 0 NP application contributes to long-term environmental and human health impacts. The nematode Caenorhabditis elegans is a surrogate in vivo model that has been successfully applied to assess the potential nanotoxicity of these nanomaterials. Here we present a TBTK/TD approach to appraise bioaccumulation and nanotoxicity of Fe 0 NPs in C. elegans . Built on a present C. elegans bioassay with estimated TBTK/TD parameters, we found that average bioconcentration factors in C. elegans exposed to waterborne and food-borne Fe 0 NPs were ~50 and ~5×10 -3 , respectively, whereas 10% inhibition concentrations for fertility, locomotion, and development, were 1.26 (95% CI 0.19-5.2), 3.84 (0.38-42), and 6.78 (2.58-21) μg·g -1 , respectively, implicating that fertility is the most sensitive endpoint in C. elegans . Our results also showed that biomagnification effects were not observed in waterborne or food-borne Fe 0 NP-exposed worms. We suggest that the TBTK/TD assessment for predicting NP-induced toxicity at different concentrations and conditions in C. elegans could enable rapid selection of nanomaterials that are more likely to be nontoxic in larger animals. We conclude that the use of the TBTK/TD scheme manipulating C. elegans could be used for rapid evaluation of in vivo toxicity of NPs or for drug screening in the field of nanomedicine.

  17. Bioaccumulation and toxic effects of some heavy metals in ...

    African Journals Online (AJOL)

    The contamination of the aquatic systems with heavy metals from natural anthropogenic sources has become a global problem which poses threats to ecosystems and natural communities. Hence this study reviews the effects of heavy metals in freshwater fishes. Fishes bioaccumulate heavy metals (including cadmium, zinc ...

  18. Model description of trophodynamic behavior of methylmercury in a marine aquatic system

    International Nuclear Information System (INIS)

    Tong Yindong; Zhang Wei; Hu Xindi; Ou Langbo; Hu Dan; Yang Tianjun; Wei Wen; Wang Xuejun

    2012-01-01

    A marine food web in Bohai Bay, China, was selected to study methylmercury (MeHg) bioaccumulation, and an aquivalence-based mass balance model was established to explore the possibility of predicting the MeHg concentrations and quantifying MeHg bioaccumulation in the food web. Results showed that both total mercury (THg) and MeHg were biomagnified in the food web. The calculated MeHg concentrations in the selected species agreed well with the measured values, which shows the model could be a useful tool in MeHg concentration prediction in food web. Model outputs also showed that metabolism and growth dilution could be the dominant mechanisms for the reduction of MeHg levels in aquatic organisms. With the increase of trophic level, the contribution of food as a MeHg source for organism is increasing, and MeHg from prey was the dominant source. - Highlights: ► We model the bioaccumulation of methylmercury in a marine aquatic food web. ► Aquivalence-based mass balance model could quantify MeHg trophic transfer. ► Metabolism and growth dilution are dominant mechanisms of MeHg reduction in organisms. ► With increase of trophic levels, contribution of food as MeHg source is increasing. - Aquivalence-based mass balance model was established to study methylmercury bioaccumulation in a marine food web.

  19. A randomized controlled trial of aquatic and land-based exercise in patients with knee osteoarthritis

    DEFF Research Database (Denmark)

    Lund, H.; Weile, U.; Christensen, R.

    2008-01-01

    patients reported adverse events (i.e. discomfort) in land-based exercise, while only 3 reported adverse events in the aquatic exercise. Conclusion: Only land-based exercise showed some improvement in pain and muscle strength compared with the control group, while no clinical benefits were detectable after......Objective: To compare the efficacy of aquatic exercise and a land-based exercise programme vs control in patients with knee osteoarthritis. Methods: Primary outcome was change in pain, and in addition Knee Injury and Osteoarthritis Outcome Score questionnaire (KOOS). Standing balance and strength...... was also measured after and at 3-month follow-up. Seventy-nine patients (62 women), with a mean age of 68 years (age range 40-89 years) were randomized to aquatic exercise (n = 27), land-based exercise (n = 25) or control (n = 27). Results: No effect was observed immediately after exercise cessation (8...

  20. Removal of pharmaceuticals and personal care products in aquatic plant-based systems: A review

    International Nuclear Information System (INIS)

    Zhang, Dongqing; Gersberg, Richard M.; Ng, Wun Jern; Tan, Soon Keat

    2014-01-01

    Pharmaceuticals and personal care products (PPCPs) in the aquatic environment are regarded as emerging contaminants and have attracted increasing concern. The use of aquatic plant-based systems such as constructed wetlands (CWs) for treatment of conventional pollutants has been well documented. However, available research studies on aquatic plant-based systems for PPCP removal are still limited. The removal of PPCPs in CWs often involves a diverse and complex set of physical, chemical and biological processes, which can be affected by the design and operational parameters selected for treatment. This review summarizes the PPCP removal performance in different aquatic plant-based systems. We also review the recent progress made towards a better understanding of the various mechanisms and pathways of PPCP attenuation during such phytoremediation. Additionally, the effect of key CW design characteristics and their interaction with the physico-chemical parameters that may influence the removal of PPCPs in functioning aquatic plant-based systems is discussed. -- Highlights: • Investigation of the removal performance of PPCPs in CW systems. • Investigation of the mechanisms and pathways contributing to PPCP removal in CWs. • Investigation of the effect of CW design parameters on PPCP removal. • Investigation of the correlation between physico-chemical parameters and PPCP removal. -- This review gives an overview of the present state of research on the removal of pharmaceutical and personal care products by means of constructed wetlands

  1. Toxicity of Engineered Nanoparticles to Aquatic Invertebrates

    DEFF Research Database (Denmark)

    Cupi, Denisa; Sørensen, Sara Nørgaard; Skjolding, Lars Michael

    2016-01-01

    This chapter provides a targeted description of some of the most important processes that influence toxicity and uptake of nanoparticles in aquatic invertebrates. It discusses silver nanoparticles (Ag NPs), on how aspects of dissolution and chemical species obtained from this process can influence...... ecotoxicity of aquatic invertebrates. The chapter focuses on how fullerenes affect the toxicity of other pollutants, but also reflect on the fate and behavior of C60 in the aquatic environment, as well as ecotoxicity to aquatic invertebrates. It presents the case of titanium dioxide nanoparticles (TiO2 NPs...... on bioaccumulation focusing on the effect of nanoparticle coating, uptake, and depuration in aquatic invertebrates....

  2. Trace Elements Concentrations in Water and Aquatic Biota from Ase ...

    African Journals Online (AJOL)

    Trace Elements Concentrations in Water and Aquatic Biota from Ase Creek in Niger ... arsenic, chromium, lead, molybdenum, bismuth and cadmium using atomic ... metal pollution, metal variation, environmental monitoring, bioaccumulation.

  3. Community-Based Progressive Aquatic Exercise for the Management of Knee Osteoarthritis

    Directory of Open Access Journals (Sweden)

    Dayle Maryanna Masslon

    2016-10-01

    Full Text Available Background We examined the feasibility and effectiveness of a community-based progressive aquatic exercise program for community dwelling older adults, with moderate to severe knee osteoarthritis (OA. Objectives The purposes of this study were to 1, assess the effects of a progressive aquatic exercise program on the walking ability, stair climbing ability, quadriceps muscle strength, as well as self-reported symptoms, function, and quality of life in community dwelling adults with moderate to severe knee OA and; 2, assess the feasibility of a community-based aquatic program for community dwelling adults with knee OA. Methods Seventeen volunteers (12 women (x = 61.1 years and 5 men (x = 69.0 years participated in a progressive 8 - 10 week aquatic exercise program, consisting of 20 - 24, 1-hour sessions. Outcome measures, acquired twice before beginning the exercise protocol as well as after 4 and 8 weeks of exercise, included the Knee Injury and Osteoarthritis outcome score (KOOS instrument, a 2 minute walk test (2MWT, a 10 step stair climb for time, and an isometric knee extension strength assessment. Results Significant improvements were detected in 2 MWT, 10 step stair climb, right quadriceps isometric force development, and the KOOS symptoms and stiffness subscale. Significant improvement was found on KOOS function subscales between baseline testing sessions and maintained at follow-up. Non-significant improvements were identified in left quadriceps isometric force development, KOOS pain, and KOOS quality of life. Conclusions These data suggest that a community-based, progressive aquatic exercise program is feasible and results in measurable improvements in function without worsening symptoms. Further study is warranted to investigate the impact of a longer program and the role of aquatic exercise in the long-term management of patients with knee OA.

  4. Aquatic food production modules in bioregenerative life support systems based on higher plants

    Science.gov (United States)

    Bluem, V.; Paris, F.

    Most bioregenerative life support systems (BLSS) are based on gravitropic higher plants which exhibit growth and seed generation disturbances in microgravity. Even when used for a lunar or martian base the reduced gravity may induce a decreased productivity in comparison to Earth. Therefore, the implementation of aquatic biomass production modules in higher plant and/or hybrid BLSS may compensate for this and offer, in addition, the possibility to produce animal protein for human nutrition. It was shown on the SLS-89 and SLS-90 space shuttle missions with the C.E.B.A.S.-MINI MODULE that the edible non gravitropic rootless higher aquatic plant Ceratophyllum demeresum exhibits an undisturbed high biomass production rate in space and that the teleost fish species, Xiphophorus helleri, adapts rapidly to space conditions without loss of its normal reproductive functions. Based on these findings a series of ground-based aquatic food production systems were developed which are disposed for utilization in space. These are plant production bioreactors for the species mentioned above and another suitable candidate, the lemnacean (duckweed) species, Wolffia arrhiza. Moreover, combined intensive aquaculture systems with a closed food loop between herbivorous fishes and aquatic and land plants are being developed which may be suitable for integration into a BLSS of higher complexity.

  5. EFFECTIVENESS OF LAND BASED ENDURANCE TRAINING VERSUS AQUATIC BASED ENDURANCE TRAINING ON IMPROVING ENDURANCE IN NORMAL INDIVIDUALS

    Directory of Open Access Journals (Sweden)

    Sabitha Eunice Regima

    2015-06-01

    Full Text Available Background: Recently the exercises and fitness professionals have adopted water as an alternative medium for delivering programs to improve fitness and health. When exercise on dry land our skeletal muscular, cardiovascular, respiratory and other body systems are greatly affected by the forces of gravity. When exercise in water, the effects created by the gravitational pull on the body are attenuated. Therefore the aim of this study was to determine the effectiveness of land based endurance training and aquatic based endurance training for enhancing endurance in normal individuals. Methods: An experimental study design with 30 subjects healthy individuals between 20-30 years of both sexes currently were divided equally into 2 groups. Group A underwent land based exercises while Group B underwent aquatic based exercises. The outcome measures consist of RPP (rate pressure product, REC HR (recovery heart rate, RHR (resting heart rate and 6MWD (6 minute walking distance was measured before (pre-training and after four weeks of endurance training. Results: In this study, the mean improvement between the 2 groups of land and aquatic based endurance exercises were tested for significance using a dependent t test. The calculated t value were 43.550, 4.583, 16, 5.870 for RPP, REC HR, RHR, 6MWD for group A respectively. For group B 25.922, 12.762, 27.495,19.236 for RPP, REC HR, RHR, 6MWD for group A respectively with p<0.05. This clearly indicated that both land based exercises and aquatic based exercises will improve cardiovascular endurance significantly and there is no significant difference between land based exercises and aquatic based exercises for enhancing endurance in normal individuals. Conclusion: It is concluded that both land based and aquatic based endurance exercises methods produce equivalent, if not same effect on the enhancement of aerobic endurance. There was no significant difference between these two exercising mediums. Nonetheless

  6. Selenium bioaccumulation in fish exposed to coal ash at the Tennessee Valley Authority Kingston spill site.

    Science.gov (United States)

    Mathews, Teresa J; Fortner, Allison M; Jett, R Trent; Morris, Jesse; Gable, Jennifer; Peterson, Mark J; Carriker, Neil

    2014-10-01

    In December 2008, 4.1 million cubic meters of coal ash were released into the Emory and Clinch Rivers by the Tennessee Valley Authority Kingston Fossil Plant. Coal ash contains several contaminants, including the bioaccumulative metalloid selenium (Se). Because Se is predominantly accumulated in aquatic organisms through dietary rather than aqueous exposure, tissue-based toxicity thresholds for Se are currently being considered. The proposed threshold concentrations range between 4 μg/g and 9 μg/g Se (dry wt.) in whole body fish, with a proposed fillet threshold of 11.8 μg/g. In the present study, the authors examined the spatial and temporal trends in Se bioaccumulation and examined the relationship between the Se content in fillets and in whole bodies of fish collected around the Kingston spill site to determine whether Se bioaccumulation was a significant concern at the ash spill site. Whereas Se concentrations in fish (whole bodies and fillets) were elevated at sampling locations affected by the Kingston ash spill relative to reference locations, concentrations do not appear to be above risk thresholds and have not been increasing over the 5-yr period since the spill. These findings are not only relevant to guiding the human health and ecological risk assessments at the Kingston ash spill site, but because of current national discussions on appropriate guidelines for Se in fish as well for the disposal of coal combustion wastes, the results are also relevant to the general understanding of Se bioaccumulation in contaminated water bodies. © 2014 SETAC.

  7. Selection of bioaccumulation criteria for environmental emergency (E2) planning

    International Nuclear Information System (INIS)

    Ketcheson, K.; Hradecky, K.; Gagne, M.; St-Amant-Verret, M.

    2006-01-01

    Environment Canada's Environmental Emergency regulations require the evaluation of a substance by a Risk Evaluation Framework (REF). Bioaccumulation criteria are used within the environmental hazard ratings section of the REF to determine the risk of a substance to organisms and are obtained from 3 types of measurements depending on data reliability: (1) bioaccumulation factors (BAF); (2) bioconcentration factors (BCF); and (3) an octanol-water partition coefficient (log K ow ). This paper presented details of a study of international and regional bioaccumulation criteria conducted to aid in determining appropriate criteria for E2 regulations and plans, with specific reference to substances toxic to aquatic organisms. An E2 plan is required if a substance has a bioconcentration factor of more than 500 in conjunction with aquatic toxicity. Bioaccumulation criteria from several sources for 745 substances were obtained to aid in choosing the most important parameters. Various international and regional criteria were examined and corresponding sources were summarized, and different source criteria was compared with empirical chemical data. The criteria chosen included both log K ow values and BCF values, although it was suggested that BCF and BAF are more realistic measures of bioaccumulation than log K ow , as they are derived from animal studies. The chosen values agreed with the virtual elimination criteria set out by the Canadian Environmental Protection Act (CEPA) 1999 as well as United States Environmental Protection Agency (EPA) criteria. It was concluded that the bioaccumulation criteria for E2 planning will help Environment Canada ensure the protection of the environment from hazardous substances. 11 refs., 3 tabs., 5 figs

  8. Bioaccumulation of decamethylcyclopentasiloxane in perch in Swedish lakes.

    Science.gov (United States)

    Kierkegaard, Amelie; Bignert, Anders; McLachlan, Michael S

    2013-10-01

    Decamethylcyclopentasiloxane (D5), a high production volume chemical used in personal care products, enters the environment both via air and sewage treatment plant (STP) recipients. It has been found in fish, and there is concern that it may be a bioaccumulative substance. In this work D5 was analyzed in perch from six Swedish lakes that did not receive STP effluent, and in perch and sediment from six lakes that received STP effluent. In the lakes receiving the STP effluent, the D5 concentrations in sediment varied over three orders of magnitude and were correlated with the number of persons connected to the STP normalized to the surface area of the receiving body. In the lakes not receiving effluent, the D5 levels in perch were all below the LOQ, while D5 was above the LOQ in almost all perch from lakes that received effluent. The D5 concentrations in perch and sediment from the lakes receiving STP effluent were correlated. This shows that STP effluent is a much more important source of D5 to aquatic ecosystems than atmospheric deposition, and that the risk of adverse effects of D5 on aquatic life will be greatest in small recipients receiving large amounts of STP effluent. The bioaccumulation of D5 was compared to that of PCB 180 on the basis of multimedia bioaccumulation factors (mmBAFs), which describe the fraction of the contaminant present in the whole aquatic environment (i.e. water and surface sediment) that is transferred to the fish. In four of the six lakes the mmBAF of D5 was >0.3 of the mmBAF of PCB 180. Given that PCB 180 is a known highly bioaccumulative chemical, this indicates that the bioaccumulation of D5 in perch is considerable. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Evaluation of Freshwater Aquatic Resources and Stormwater Management at U.S. Naval Submarine Base, Bangor, Washington

    National Research Council Canada - National Science Library

    May, Christopher

    1997-01-01

    Surface and storm water conditions on the Naval Submarine Base (NSB), Bangor, Washington, are evaluated, and recommendations are made to improve water quality and enhance the ecological integrity of aquatic resources located on the base...

  10. Effect of 8-Week Aquatic, Land- based and Combined (Aquatic-Land Training Programs On Walking Capacity in Women with Multiple Sclerosis (MS: A Burdenko Approach

    Directory of Open Access Journals (Sweden)

    Raheleh Ghaffari

    2017-10-01

    Full Text Available Multiple sclerosis (MS is a chronic disease affecting all aspects of life in patients with this disease and causes a wide range of functional problems, including reduced walking capacity. The aim of this study was to compare the effects of 8 weeks aquatic, land-based and combined (aquatic-land (exercise programs according to Burdenko method on the walking capacity measured by 6-Minute Walk Test (6MWT. This was a pre- post design study. Thirty one women diagnosed with MS, age range 30-50 years, EDSS0.05. According to the results of this study, the combined and land-based exercises can be suggested for people with MS in order to improve their walking capacity. These methods can be suggested as appropriate non-pharmacologic complementary therapies in the rehabilitation centers.

  11. Aquatic Chemistry

    International Nuclear Information System (INIS)

    Kim, Dong Yeun; Kim, Oh Sik; Kim, Chang Guk; Park, Cheong Gil; Lee, Gwi Hyeon; Lee, Cheol Hui

    1987-07-01

    This book deals aquatic chemistry, which treats water and environment, chemical kinetics, chemical balance like dynamical characteristic, and thermodynamics, acid-base chemistry such as summary, definition, kinetics, and PH design for mixture of acid-base chemistry, complex chemistry with definition, and kinetics, precipitation and dissolution on summary, kinetics of precipitation and dissolution, and balance design oxidation and resolution with summary, balance of oxidation and resolution.

  12. Increased Mercury Bioaccumulation Follows Water Quality Improvement

    Energy Technology Data Exchange (ETDEWEB)

    Bogle, M.A.; Peterson, M.J.; Smith, J.G.; Southworth, G.R.

    1999-09-15

    Changes in physical and chemical characteristics of aquatic habitats made to reduce or eliminate ecological risks can sometimes have unforeseen consequences. Environmental management activities on the U.S. Dept. of Energy reservation in Oak Ridge, Tennessee,have succeeded in improving water quality in streams impacted by discharges fi-om industrial facilities and waste disposal sites. The diversity and abundance of pollution-sensitive components of the benthic macroinvertebrate communities of three streams improved after new waste treatment systems or remedial actions reduced inputs of various toxic chemicals. Two of the streams were known to be mercury-contaminated from historical spills and waste disposal practices. Waterborne mercury concentrations in the third were typical of uncontaminated systems. In each case, concentrations of mercury in fish, or the apparent biological availability of mercury increased over the period during which ecological metrics indicated improved water quality. In the system where waterborne mercury concentrations were at background levels, increased mercury bioaccumulation was probably a result of reduced aqueous selenium concentrations; however, the mechanisms for increased mercury accumulation in the other two streams remain under investigation. In each of the three systems, reduced inputs of metals and inorganic anions was followed by improvements in the health of aquatic invertebrate communities. However, this reduction in risk to aquatic invertebrates was accompanied by increased risk to humans and piscivorous wildlife related to increased mercury concentrations in fish.

  13. Increased Mercury Bioaccumulation Follows Water Quality Improvement

    International Nuclear Information System (INIS)

    Bogle, M.A.; Peterson, M.J.; Smith, J.G.; Southworth, G.R.

    1999-01-01

    Changes in physical and chemical characteristics of aquatic habitats made to reduce or eliminate ecological risks can sometimes have unforeseen consequences. Environmental management activities on the U.S. Dept. of Energy reservation in Oak Ridge, Tennessee,have succeeded in improving water quality in streams impacted by discharges fi-om industrial facilities and waste disposal sites. The diversity and abundance of pollution-sensitive components of the benthic macroinvertebrate communities of three streams improved after new waste treatment systems or remedial actions reduced inputs of various toxic chemicals. Two of the streams were known to be mercury-contaminated from historical spills and waste disposal practices. Waterborne mercury concentrations in the third were typical of uncontaminated systems. In each case, concentrations of mercury in fish, or the apparent biological availability of mercury increased over the period during which ecological metrics indicated improved water quality. In the system where waterborne mercury concentrations were at background levels, increased mercury bioaccumulation was probably a result of reduced aqueous selenium concentrations; however, the mechanisms for increased mercury accumulation in the other two streams remain under investigation. In each of the three systems, reduced inputs of metals and inorganic anions was followed by improvements in the health of aquatic invertebrate communities. However, this reduction in risk to aquatic invertebrates was accompanied by increased risk to humans and piscivorous wildlife related to increased mercury concentrations in fish

  14. Bioaccumulation of silver nanoparticles in rainbow trout (Oncorhynchus mykiss): Influence of concentration and salinity

    International Nuclear Information System (INIS)

    Salari Joo, Hamid; Kalbassi, Mohammad Reza; Yu, Il Je; Lee, Ji Hyun; Johari, Seyed Ali

    2013-01-01

    Highlights: •We studied influence of concentration and salinity on bioaccumulation of silver nanoparticles in rainbow trout (Oncorhynchus mykiss). •The Ag-NPs were characterized using standard methods. •The organisms were exposed to Ag-NPs in three different salinity concentrations, for 14 days in static renewal systems. •The bioaccumulation of Ag in the studied tissues was concentration-dependent in all the salinities and its order were liver > kidneys ≈ gills > white muscles respectively. -- Abstract: With the increasing use of silver nanoparticles (Ag-NPs), their entrance into aquatic ecosystems is inevitable. Thus, the present study simulated the potential fate, toxicity, and bioaccumulation of Ag-NPs released into aquatic systems with different salinities. The Ag-NPs were characterized using inductively coupled plasma-atomic emission spectroscopy (ICP-AES), dynamic light scattering (DLS), transmission electron microscopy (TEM), energy-dispersive X-ray analysis (EDX), and UV–vis spectroscopy. Juvenile rainbow trout were exposed to Ag-NPs in three different salinity concentrations, including low (0.4 ppt), moderate (6 ± 0.3 ppt), and high (12 ± 0.2 ppt) salinity, for 14 days in static renewal systems. The nominal Ag-NP concentrations in the low salinity were 0.032, 0.1, 0.32, and 1 ppm, while the Ag-NP concentrations in the moderate and high salinity were 3.2, 10, 32, and 100 ppm. UV–vis spectroscopy was used during 48 h (re-dosing time) to evaluate the stability and possible changes in size of the Ag-NPs in the water. The results revealed that the λ max of the Ag-NPs remained stable (415–420 nm) at all concentrations in the low salinity with a reduction of absorbance between 380 and 550 nm. In contrast, the λ max quickly shifted to a longer wavelength and reduced absorbance in the moderate and higher salinity. The bioaccumulation of Ag in the studied tissues was concentration-dependent in all the salinities based on the following order

  15. Bioaccumulation of silver nanoparticles in rainbow trout (Oncorhynchus mykiss): Influence of concentration and salinity

    Energy Technology Data Exchange (ETDEWEB)

    Salari Joo, Hamid, E-mail: h.salary1365@gmail.com [Department of Aquaculture, Marine Science Faculty, Tarbiat Modares University, Mazandaran, Noor (Iran, Islamic Republic of); Kalbassi, Mohammad Reza, E-mail: kalbassi_m@modares.ac.ir [Department of Aquaculture, Marine Science Faculty, Tarbiat Modares University, Mazandaran, Noor (Iran, Islamic Republic of); Yu, Il Je, E-mail: u1670916@chol.com [Institute of Nano-product Safety Research, Hoseo University, 165 Sechul-ri, Baebang-myun, Asan 336-795 (Korea, Republic of); Lee, Ji Hyun, E-mail: toxin@dreamwiz.com [Institute of Nano-product Safety Research, Hoseo University, Asan (Korea, Republic of); Johari, Seyed Ali, E-mail: a.johari@uok.ac.ir [Aquaculture Department, Natural Resources Faculty, University of Kurdistan, Kurdistan, Sanandaj (Iran, Islamic Republic of)

    2013-09-15

    Highlights: •We studied influence of concentration and salinity on bioaccumulation of silver nanoparticles in rainbow trout (Oncorhynchus mykiss). •The Ag-NPs were characterized using standard methods. •The organisms were exposed to Ag-NPs in three different salinity concentrations, for 14 days in static renewal systems. •The bioaccumulation of Ag in the studied tissues was concentration-dependent in all the salinities and its order were liver > kidneys ≈ gills > white muscles respectively. -- Abstract: With the increasing use of silver nanoparticles (Ag-NPs), their entrance into aquatic ecosystems is inevitable. Thus, the present study simulated the potential fate, toxicity, and bioaccumulation of Ag-NPs released into aquatic systems with different salinities. The Ag-NPs were characterized using inductively coupled plasma-atomic emission spectroscopy (ICP-AES), dynamic light scattering (DLS), transmission electron microscopy (TEM), energy-dispersive X-ray analysis (EDX), and UV–vis spectroscopy. Juvenile rainbow trout were exposed to Ag-NPs in three different salinity concentrations, including low (0.4 ppt), moderate (6 ± 0.3 ppt), and high (12 ± 0.2 ppt) salinity, for 14 days in static renewal systems. The nominal Ag-NP concentrations in the low salinity were 0.032, 0.1, 0.32, and 1 ppm, while the Ag-NP concentrations in the moderate and high salinity were 3.2, 10, 32, and 100 ppm. UV–vis spectroscopy was used during 48 h (re-dosing time) to evaluate the stability and possible changes in size of the Ag-NPs in the water. The results revealed that the λ{sub max} of the Ag-NPs remained stable (415–420 nm) at all concentrations in the low salinity with a reduction of absorbance between 380 and 550 nm. In contrast, the λ{sub max} quickly shifted to a longer wavelength and reduced absorbance in the moderate and higher salinity. The bioaccumulation of Ag in the studied tissues was concentration-dependent in all the salinities based on the following

  16. Bioaccumulation of short chain chlorinated paraffins in a typical freshwater food web contaminated by e-waste in south china: Bioaccumulation factors, tissue distribution, and trophic transfer.

    Science.gov (United States)

    Sun, Runxia; Luo, Xiaojun; Tang, Bin; Chen, Laiguo; Liu, Yu; Mai, Bixian

    2017-03-01

    Short chain chlorinated paraffins (SCCPs) are under review for inclusion into the Stockholm Convention on Persistent Organic Pollutants. However, limited information is available on their bioaccumulation and biomagnification in ecosystems, which is hindering evaluation of their ecological and health risks. In the present study, wild aquatic organisms (fish and invertebrates), water, and sediment collected from an enclosed freshwater pond contaminated by electronic waste (e-waste) were analyzed to investigate the bioaccumulation, distribution, and trophic transfer of SCCPs in the aquatic ecosystem. SCCPs were detected in all of the investigated aquatic species at concentrations of 1700-95,000 ng/g lipid weight. The calculated bioaccumulation factors (BAFs) varied from 2.46 to 3.49. The relationship between log BAF and the octanol/water partition coefficient (log K OW ) for benthopelagic omnivorous fish species followed the empirical model of bioconcentration, indicating that bioconcentration plays an important role in accumulation of SCCPs. In contrast, the relationship for the benthic carnivorous fish and invertebrates was not consistent with the empirical model of bioconcentration, implying that the bioaccumulation of SCCPs in these species could be more influenced by other complex factors (e.g., habitat and feeding habit). Preferential distribution in the liver rather than in other tissues (e.g., muscle, gills, skin, and kidneys) was noted for the SCCP congeners with higher log K OW , and bioaccumulation pathway (i.e. water or sediment) can affect the tissue distribution of SCCP congeners. SCCPs underwent trophic dilution in the aquatic food web, and the trophic magnification factor (TMF) values of SCCP congener groups significantly correlated with their corresponding log K OW values (p < 0.0001). The present study results improved our understanding on the environmental behavior and fate of SCCPs in aquatic ecosystem. Copyright © 2016 Elsevier Ltd. All rights

  17. Mapping Aquatic Vegetation in a Large, Shallow Eutrophic Lake: A Frequency-Based Approach Using Multiple Years of MODIS Data

    Directory of Open Access Journals (Sweden)

    Xiaohan Liu

    2015-08-01

    Full Text Available Aquatic vegetation serves many important ecological and socioeconomic functions in lake ecosystems. The presence of floating algae poses difficulties for accurately estimating the distribution of aquatic vegetation in eutrophic lakes. We present an approach to map the distribution of aquatic vegetation in Lake Taihu (a large, shallow eutrophic lake in China and reduce the influence of floating algae on aquatic vegetation mapping. Our approach involved a frequency analysis over a 2003–2013 time series of the floating algal index (FAI based on moderate-resolution imaging spectroradiometer (MODIS data. Three phenological periods were defined based on the vegetation presence frequency (VPF and the growth of algae and aquatic vegetation: December and January composed the period of wintering aquatic vegetation; February and March composed the period of prolonged coexistence of algal blooms and wintering aquatic vegetation; and June to October was the peak period of the coexistence of algal blooms and aquatic vegetation. By comparing and analyzing the satellite-derived aquatic vegetation distribution and 244 in situ measurements made in 2013, we established a FAI threshold of −0.025 and VPF thresholds of 0.55, 0.45 and 0.85 for the three phenological periods. We validated the accuracy of our approach by comparing the results between the satellite-derived maps and the in situ results obtained from 2008–2012. The overall classification accuracy was 87%, 81%, 77%, 88% and 73% in the five years from 2008–2012, respectively. We then applied the approach to the MODIS images from 2003–2013 and obtained the total area of the aquatic vegetation, which varied from 265.94 km2 in 2007 to 503.38 km2 in 2008, with an average area of 359.62 ± 69.20 km2 over the 11 years. Our findings suggest that (1 the proposed approach can be used to map the distribution of aquatic vegetation in eutrophic algae-rich waters and (2 dramatic changes occurred in the

  18. A biodynamic model predicting waterborne lead bioaccumulation in Gammarus pulex: Influence of water chemistry and in situ validation

    International Nuclear Information System (INIS)

    Urien, N.; Uher, E.; Billoir, E.; Geffard, O.; Fechner, L.C.; Lebrun, J.D.

    2015-01-01

    Metals bioaccumulated in aquatic organisms are considered to be a good indicator of bioavailable metal contamination levels in freshwaters. However, bioaccumulation depends on the metal, the species, and the water chemistry that influences metal bioavailability. In the laboratory, a kinetic model was used to describe waterborne Pb bioaccumulated in Gammarus pulex. Uptake and elimination rate constants were successfully determined and the effect of Ca 2+ on Pb uptake was integrated into the model. Thereafter, accumulated Pb concentrations in organisms were predicted with the model and compared with those measured in native populations from the Seine watershed (France). The predictions had a good agreement with the bioaccumulation levels observed in native gammarids and particularly when the effect of calcium was considered. To conclude, kinetic parameters experimentally derived for Pb in G. pulex are applicable in environmental conditions. Moreover, the consideration of the water's chemistry is crucial for a reliable interpretation of bioaccumulation. - Highlights: • Kinetic model was used to describe waterborne Pb bioaccumulation in G. pulex. • Ca 2+ inhibits Pb uptake by G. pulex in the laboratory. • Model predictions were compared to bioaccumulated Pb in native G. pulex. • Model accurately predicts waterborne bioaccumulated Pb in gammarids. • Considering the influence of Ca 2+ improves the model predictions in the field. - An experimentally-derived kinetic model considering the effect of calcium was relevant to predict the waterborne Pb bioaccumulation in native Gammarus pulex

  19. Spatial Patterns of Mercury Bioaccumulation in the Upper Clark Fork River Basin, MT

    Science.gov (United States)

    Staats, M. F.; Langner, H.; Moore, J. N.

    2010-12-01

    The Upper Clark Fork River Basin (UCFRB) in Montana has a legacy of historic gold/silver mine waste that contributes large quantities of mercury into the watershed. Mercury bioaccumulation at higher levels of the aquatic food chain, such as the mercury concentration in the blood of pre-fledge osprey, exhibit an irregular spatial signature based on the location of the nests throughout the river basin. Here we identify regions with a high concentration of bioavailable mercury and the major factors that allow the mercury to bioaccumulate within trophic levels. This identification is based on the abundance of mercury sources and the potential for mercury methylation. To address the source term, we did a survey of total mercury in fine sediments along selected UCFRB reaches, along with the assessment of environmental river conditions (percentage of backwaters/wetlands, water temperature and pH, etc). In addition, we analyzed the mercury levels of a representative number of macroinvertebrates and fish from key locations. The concentration of total mercury in sediment, which varies from reach to reach (tributaries of the Clark Fork River, 5mg/kg) affects the concentration of mercury found at various trophic levels. However, reaches with a low supply of mine waste-derived mercury can also yield substantial concentrations of mercury in the biota, due to highly favorable conditions for mercury methylation. We identify that the major environmental factor that affects the methylation potential in the UCFRB is the proximity and connectivity of wetland areas to the river.

  20. BIOACCUMULATION AND BIOTRANSFORMATION OF CHIRAL TRIAZOLE FUNGICIDES IN RAINBOW TROUT (ONCORHYNCHUS MYKISS)

    Science.gov (United States)

    There are very little data on the bioaccumulation and biotransformation of current-use pesticides (CUPs) despite the fact that such data are critical in assessing their fate and potential toxic effects in aquatic organisms. To help address this issue, juvenile rainbow trout (Onco...

  1. Urgent and Compelling Need for Coastal and Inland Aquatic Ecosystem Research Using Space-Based Sensors

    Science.gov (United States)

    Otis, D. B.; Muller-Karger, F. E.; Hestir, E.; Turpie, K. R.; Roberts, D. A.; Frouin, R.; Goodman, J.; Schaeffer, B. A.; Franz, B. A.; Humm, D. C.

    2016-12-01

    Coastal and inland waters and associated aquatic habitats, including wetlands, mangroves, submerged grasses, and coral reefs, are some of the most productive and diverse ecosystems on the planet. They provide services critical to human health, safety, and prosperity. Yet, they are highly vulnerable to changes in climate and other anthropogenic pressures. With a global population of over seven billion people and climbing, and a warming atmosphere driven by carbon dioxide now in excess of 400 ppb, these services are at risk of rapidly diminishing globally. We know little about how these ecosystems function. We need to characterize short-term changes in the functional biodiversity and biogeochemical cycles of these coastal and wetland ecosystems, from canopy to benthos, and trace these changes to their underlying environmental influences. This requires an observation-based approach that covers coastal and inland aquatic ecosystems in a repeated, synoptic manner. Space-borne sensing systems can provide this capability, supported by coordinated in situ calibration and product validation activities. The design requires high temporal resolution (weekly or better), medium spatial resolution (30 m pixels at nadir to complement Landsat-class sensors), and highly sensitive, ocean-color radiometric quality, high resolution spectroscopy with Visible and Short-Wave IR bands (order of 10 nm or better) to assess both atmospheric correction parameters and land vegetation composition. The strategy needs to include sunglint avoidance schemes, and methods to maximize signal to noise ratios and temporal coverage of aquatic areas. We describe such a system, and urge the U.S. to implement such an observing strategy in the short-term and sustain it for the benefit of humankind.

  2. Micro-Doppler Based Classification of Human Aquatic Activities via Transfer Learning of Convolutional Neural Networks

    Directory of Open Access Journals (Sweden)

    Jinhee Park

    2016-11-01

    Full Text Available Accurate classification of human aquatic activities using radar has a variety of potential applications such as rescue operations and border patrols. Nevertheless, the classification of activities on water using radar has not been extensively studied, unlike the case on dry ground, due to its unique challenge. Namely, not only is the radar cross section of a human on water small, but the micro-Doppler signatures are much noisier due to water drops and waves. In this paper, we first investigate whether discriminative signatures could be obtained for activities on water through a simulation study. Then, we show how we can effectively achieve high classification accuracy by applying deep convolutional neural networks (DCNN directly to the spectrogram of real measurement data. From the five-fold cross-validation on our dataset, which consists of five aquatic activities, we report that the conventional feature-based scheme only achieves an accuracy of 45.1%. In contrast, the DCNN trained using only the collected data attains 66.7%, and the transfer learned DCNN, which takes a DCNN pre-trained on a RGB image dataset and fine-tunes the parameters using the collected data, achieves a much higher 80.3%, which is a significant performance boost.

  3. Theoretical training bases for young athletes in aquatic sports on the natural environment: Bodyboard.

    Directory of Open Access Journals (Sweden)

    Marcos Mecías Calvo

    2015-09-01

    Full Text Available The bodyboard is a surfing discipline whose growth has been considerably since the 60s, so it is considered one of the fastest growing aquatic sport in the world. Despite this, scientific research of this discipline has been reflected poorly compared to other sports. As in any other sport, the bodyboarder requires of specific physical and physiological conditions to help it to practice the sport effectively as it does not follow a specific training or develop conditioning programs. Therefore, this article comes up with the idea of providing a basis for determining the most appropriate training based on study objectives and bodyboard actions to improve physical, technical and psychological condition of the bodyboarders based on the particularities of their own sport and the athlete, taking into account scientific studies in the field at hand: the Bodyboard.

  4. Exercise for people with hip or knee osteoarthritis: a comparison of land-based and aquatic interventions

    Directory of Open Access Journals (Sweden)

    Ann E Rahmann

    2010-07-01

    Full Text Available Ann E RahmannDivision of Physiotherapy, School of Health and Rehabilitation Sciences, The University of Queensland, St Lucia, Queensland, AustraliaAbstract: Expert opinion considers the referral of people with osteoarthritis (OA for physiotherapy to be a core component of managing the functional disability and pain of the disease. Clinical guidelines for the physiotherapy management of people with OA focus on three main areas: exercise, pain relief, and specific manual therapy techniques. Land-based group and individual physiotherapy exercise programs, as well as manual therapy, have demonstrated a distinct benefit in favor of physiotherapy intervention. Similarly, both general and specific aquatic physiotherapy exercise programs have shown positive outcomes for people with OA. This review will focus primarily on therapeutic exercise to improve strength and fitness and reduce pain in people with hip or knee OA. An overview of the principles of hydrodynamics relevant to aquatic exercise is also included to facilitate an understanding of effective aquatic exercise programs. The issue of compliance with exercise programs will also be discussed. Clinicians will, therefore, gain an understanding of the benefits of land-based and aquatic exercise for people with OA.Keywords: exercise, physical therapy, aquatic therapy, hip and knee osteoarthritis, strength, pain, aerobic exercise

  5. Bioaccumulation of Aluminium in Hydromacrophytes in Polish Coastal Lakes

    Directory of Open Access Journals (Sweden)

    Senze Magdalena

    2015-03-01

    Full Text Available The research on aluminium content was conducted in water and on aquatic flora of Polish lakes in the central part of the coast. The study included the lakes Sarbsko, Choczewskie, Bia.e, K.odno, D.brze and Salino investigated in the summer of 2013. The examined lakes belong mainly to the direct basin of the Baltic Sea. Samples of aquatic plants and lake waters were collected. In the water samples pH and electrolytic conductivity were measured. The aluminium content was determined both in water and aquatic plants. Submerged hydromacrophyte studies included Myriophyllum alterniflorum L., Potamogeton perfoliatus L. and Ceratophyllum demersum L. Emergent hydromacrophyte studies included Phragmites australis (Cav. Trin. ex Steud., Juncus bulbosus L., Iris pseudacorus L., Eleocharis palustris (L. Roem. % Schult., Phalaris arundinacea L., Carex riparia Curt., Mentha aquatic L., Stratiotes aloides L., Alisma plantago-aquatica L., Glyceria maxima (Hartman Holmb., Sagittaria sagittifolia L., Scirpus lacustris L. and Typha angustifolia L. The purpose of this investigation was the determination of the aluminium content in submerged and emergent hydromacrophytes and also the definition of their bioaccumulative abilities. The average concentration of aluminium in water was 2.68 fęg Al dm.3. The average content of aluminium in plants was 2.8015 mg Al kg.1. The bioaccumulation factor ranged from BCF=19.74 to BCF=16619. On the basis of the analysis of the aluminium content in water and aquatic plants results show that both water and plants were characterized by a moderate level of aluminium. The recorded concentrations indicate a mid-range value and are much lower than those which are quoted for a variety of surface waters in various parts of the world.

  6. Trace Metals Bioaccumulation Potentials of Three Indigenous ...

    African Journals Online (AJOL)

    User

    grasses as bioaccumulators of trace metals from polluted soils. Seeds of ... transfer factor (TF) showed that Zn was the most bioaccumulated trace metals by all the grasses followed by. Pb, Mn ... was used to de-contaminate copper (Cu) and.

  7. A community-based aquatic exercise program to improve endurance and mobility in adults with mild to moderate intellectual disability

    Science.gov (United States)

    Hakim, Renée M.; Ross, Michael D.; Runco, Wendy; Kane, Michael T.

    2017-01-01

    The purpose of this study was to investigate the impact of a community-based aquatic exercise program on physical performance among adults with mild to moderate intellectual disability (ID). Twenty-two community-dwelling adults with mild to moderate ID volunteered to participate in this study. Participants completed an 8-week aquatic exercise program (2 days/wk, 1 hr/session). Measures of physical performance, which were assessed prior to and following the completion of the aquatic exercise program, included the timed-up-and-go test, 6-min walk test, 30-sec chair stand test, 10-m timed walk test, hand grip strength, and the static plank test. When comparing participants’ measures of physical performance prior to and following the 8-week aquatic exercise program, improvements were seen in all measures, but the change in scores for the 6-min walk test, 30-sec chair stand test, and the static plank test achieved statistical significance (P<0.05). An 8-week group aquatic exercise program for adults with ID may promote improvements in endurance and balance/mobility. PMID:28349039

  8. Determination of multi-walled carbon nanotube bioaccumulation in earthworms measured by a microwave-based detection technique

    Science.gov (United States)

    Reliable quantification techniques for carbon nanotubes (CNTs) are limited. In this study, a new procedure was developed for quantifying multi-walled carbon nanotubes (MWNTs) in earthworms (Eisenia fetida) based on freeze drying and microwave-induced heating. Specifically, earthw...

  9. Assessment of Mercury Bioaccumulation in Zebra Cichlid (Cichlasoma Nigrofasciatum Exposed to Sublethal Concentrations of Permethrin

    Directory of Open Access Journals (Sweden)

    Mahdi Banaee

    2014-12-01

    Full Text Available Background: Aquatic ecosystems are frequently subjected to contamination by toxic heavy metals and pesticides, yet very little is known about the influence of pesticides on bioaccumulation of heavy metals in aquatic organisms. Mercury is a toxic metal with no known biological benefit to organisms. Bioavailability of mercury in aquatic environments depends on biological and non-biological parameters including other pollutants. Therefore, the objectives of this research were to determine the effects of permethrin on bioaccumulation of mercury in zebra cichlid. Methods: Acute toxicity (LC50 of permethrin and mercury chloride was evaluated by estimating mortality in Probit Model in SPSS (version 19.0 IBM. In sub-lethal toxicity, zebra cichlid (Cichlasoma nigrofasciatum was exposed to various concentrations of permethrin (0.0, 0.40, 0.80, 1.20 and 1.60 µg.L-1 combined with 20 µg.L-1 mercury chloride for 15 days. At the end of the experiment, mercury concentrations were measured using ICP-OES-Perkin elmer (optima 7300-DV. Results: 96 h LC50 values of permethrin and mercury for C. nigrofasciatum were calculated to be 17.55 µg.L-1 and 140.38 µg.L-1, respectively. Our results clearly showed that the bioaccumulation of mercury in the specimens increased with increasing concentrations of permethrin to 1.20 and 1.60 µg.L-1. Conclusion: Increasing the concentration of permethrin had synergistic effects on the bioaccumulation of mercury in fish.

  10. Assessment of integrated watershed health based on the natural environment, hydrology, water quality, and aquatic ecology

    Directory of Open Access Journals (Sweden)

    S. R. Ahn

    2017-11-01

    Full Text Available Watershed health, including the natural environment, hydrology, water quality, and aquatic ecology, is assessed for the Han River basin (34 148 km2 in South Korea by using the Soil and Water Assessment Tool (SWAT. The evaluation procedures follow those of the Healthy Watersheds Assessment by the U.S. Environmental Protection Agency (EPA. Six components of the watershed landscape are examined to evaluate the watershed health (basin natural capacity: stream geomorphology, hydrology, water quality, aquatic habitat condition, and biological condition. In particular, the SWAT is applied to the study basin for the hydrology and water-quality components, including 237 sub-watersheds (within a standard watershed on the Korea Hydrologic Unit Map along with three multipurpose dams, one hydroelectric dam, and three multifunction weirs. The SWAT is calibrated (2005–2009 and validated (2010–2014 by using each dam and weir operation, the flux-tower evapotranspiration, the time-domain reflectometry (TDR soil moisture, and groundwater-level data for the hydrology assessment, and by using sediment, total phosphorus, and total nitrogen data for the water-quality assessment. The water balance, which considers the surface–groundwater interactions and variations in the stream-water quality, is quantified according to the sub-watershed-scale relationship between the watershed hydrologic cycle and stream-water quality. We assess the integrated watershed health according to the U.S. EPA evaluation process based on the vulnerability levels of the natural environment, water resources, water quality, and ecosystem components. The results indicate that the watershed's health declined during the most recent 10-year period of 2005–2014, as indicated by the worse results for the surface process metric and soil water dynamics compared to those of the 1995–2004 period. The integrated watershed health tended to decrease farther downstream within the watershed.

  11. Satellite-Based Assessment of the spatial extent of Aquatic Vegetation in Lake Victoria

    Science.gov (United States)

    Clark, W.; Aligeti, N.; Jeyaprakash, T.; Martins, M.; Stodghill, J.; Winstanley, H.

    2011-12-01

    Lake Victoria in Africa is the second largest freshwater lake in the world and is known for its abundance of aquatic wildlife. In particular over 200 different fish species are caught and sold by local fisherman. The lake is a major contributor to the local economy as a corridor of transportation, source of drinking water, and source of hydropower. However, the invasion of aquatic vegetation such as water hyacinth in the lake has disrupted each of these markets. Aquatic vegetation now covers a substantial area of the coastline blocking waterways, disrupting hydropower, hindering the collection of drinking water and decreasing the profitability of fishing. The vegetation serves as a habitat for disease carrying mosquitoes as well as snakes and snails that spread the parasitic disease bilharzia. The current control measures of invasive aquatic vegetation rely on biological, chemical and mechanical control. The objective of this study was to utilize remote sensing to map aquatic vegetation within Lake Victoria from 2000 to 2011. MODIS, Landsat 4-5TM, and Landsat 7-ETM imagery was employed to perform change detections in vegetation and identify the extent of aquatic vegetation throughout the years. The efficiency of containment efforts were evaluated and ideal time for application of such efforts were suggested. A methodology for aquatic vegetation surveillance was created. The results of this project were presented as a workshop to the Lake Victoria Fisheries Organization, SERVIR, and other partner organizations. The workshop provided instruction into the use of NASA and other satellite derived products. Time series animations of the spatial extent of aquatic vegetation within the lake were created. By identifying seasons of decreased aquatic vegetation, ideal times to employ control efforts were identified. SERVIR will subsequently utilize the methodologies and mapping results of this study to develop operational aquatic vegetation surveillance for Lake Victoria.

  12. Evaluating Aquatic invertebrate vulnerability to insecticides based on intrinsic sensitivuty, biological traits, and toxic mode of action

    NARCIS (Netherlands)

    Rico, A.; Brink, van den P.J.

    2015-01-01

    In the present study, the authors evaluated the vulnerability of aquatic invertebrates to insecticides based on their intrinsic sensitivity and their population-level recovery potential. The relative sensitivity of invertebrates to 5 different classes of insecticides was calculated at the genus,

  13. [Aquatic Ecological Index based on freshwater (ICE(RN-MAE)) for the Rio Negro watershed, Colombia].

    Science.gov (United States)

    Forero, Laura Cristina; Longo, Magnolia; John Jairo, Ramirez; Guillermo, Chalar

    2014-04-01

    Aquatic Ecological Index based on freshwater (ICE(RN-MAE)) for the Rio Negro watershed, Colombia. Available indices to assess the ecological status of rivers in Colombia are mostly based on subjective hypotheses about macroinvertebrate tolerance to pollution, which have important limitations. Here we present the application of a method to establish an index of ecological quality for lotic systems in Colombia. The index, based on macroinvertebrate abundance and physicochemical variables, was developed as an alternative to the BMWP-Col index. The method consists on determining an environmental gradient from correlations between physicochemical variables and abundance. The scores obtained in each sampling point are used in a standardized correlation for a model of weighted averages (WA). In the WA model abundances are also weighted to estimate the optimum and tolerance values of each taxon; using this information we estimated the index of ecological quality based also on macroinvertebrate (ICE(RN-MAE)) abundance in each sampling site. Subsequently, we classified all sites using the index and concentrations of total phosphorus (TP) in a cluster analysis. Using TP and ICE(RN-MAE), mean, maximum, minimum and standard deviation, we defined threshold values corresponding to three categories of ecological status: good, fair and critical.

  14. Curative and health enhancement effects of aquatic exercise: evidence based on interventional studies

    Directory of Open Access Journals (Sweden)

    Honda T

    2012-03-01

    Full Text Available Takuya Honda1, Hiroharu Kamioka21Research Fellow of the Japanese Society for the Promotion of Science, 2Laboratory of Physical and Health Education, Faculty of Regional Environment Science, Tokyo University of Agriculture, Tokyo, JapanBackground: The purpose of this study was to report on the health benefits and curative effects of aquatic exercise.Methods: We adopted the results of high-grade study designs (ie, randomized controlled trials and nonrandomized controlled trials, for which there were many studies on aquatic exercise. Aquatic exercise, in this study, means walking in all directions, stretching, and various exercises and conditioning performed with the feet grounded on the floor of a swimming pool. We excluded swimming. We decided to treat aquatic exercise, underwater exercise, hydrotherapy, and pool exercise as all having the same meaning.Results: Aquatic exercise had significant effects on pain relief and related outcome measurements for locomotor diseases.Conclusion: Patients may become more active, and improve their quality of life, as a result of aquatic exercise.Keywords: aquatic exercise, health enhancement, evidence

  15. Novel aquatic modules for bioregenerative life-support systems based on the closed equilibrated biological aquatic system (c.e.b.a.s.)

    Science.gov (United States)

    Bluem, Volker; Paris, Frank

    2002-06-01

    The closed equilibrated biological aquatic system (C.E.B.A.S) is a man-made aquatic ecosystem which consists of four subcomponents: an aquatic animal habitat, an aquatic plant bioreactor, an ammonia oxidizing bacteria filter and a data acquisition/control unit. It is a precursor for different types of fish and aquatic plant production sites which are disposed for the integration into bioregenerative life-support systems. The results of two successful spaceflights of a miniaturized C.E.B.A.S version (the C.E.B.A.S. MINI MODULE) allow the optimization of aquatic food production systems which are already developed in the ground laboratory and open new aspects for their utilization as aquatic modules in space bioregenerative life support systems. The total disposition offers different stages of complexity of such aquatic modules starting with simple but efficient aquatic plant cultivators which can be implemented into water recycling systems and ending up in combined plant/fish aquaculture in connection with reproduction modules and hydroponics applications for higher land plants. In principle, aquaculture of fishes and/or other aquatic animals edible for humans offers optimal animal protein production under lowered gravity conditions without the tremendous waste management problems connected with tetrapod breeding and maintenance. The paper presents details of conducted experimental work and of future dispositions which demonstrate clearly that aquaculture is an additional possibility to combine efficient and simple food production in space with water recycling utilizing safe and performable biotechnologies. Moreover, it explains how these systems may contribute to more variable diets to fulfill the needs of multicultural crews.

  16. Dose estimation and prediction of radiation effects on aquatic biota resulting from radioactive releases from the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Blaylock, B.G.; Witherspoon, J.P.

    1975-01-01

    Aquatic organisms are exposed to radionuclides released to the environment during various steps of the nuclear fuel cycle. Routine releases from these processes are limited in compliance with technical specifications and requirements of federal regulations. These regulations reflect I.C.R.P. recommendations which are designed to provide an environment considered safe for man. It is generally accepted that aquatic organisms will not receive damaging external radiation doses in such environments; however, because of possible bioaccumulation of radionuclides there is concern that aquatic organisms might be adversely affected by internal doses. The objectives of this paper are: to estimate the radiation dose received by aquatic biota from the different processes and determine the major dose-contributing radionuclides, and to assess the impact of estimated doses on aquatic biota. Dose estimates are made by using radionuclide concentration measured in the liquid effluents of representative facilities. This evaluation indicates the potential for the greatest radiation dose to aquatic biota from the nuclear fuel supply facilities (i.e., uranium mining and milling). The effects of chronic low-level radiation on aquatic organisms are discussed from somatic and genetic viewpoints. Based on the body of radiobiological evidence accumulated up to the present time, no significant deleterious effects are predicted for populations of aquatic organisms exposed to the estimated dose rates resulting from routine releases from conversion, enrichment, fabrication, reactors and reprocessing facilities. At the doses estimated for milling and mining operations it would be difficult to detect radiation effects on aquatic populations; however, the significance of such radiation exposures to aquatic populations cannot be fully evaluated without further research on effects of chronic low-level radiation. (U.S.)

  17. Modelling PCB bioaccumulation in a Baltic food web

    International Nuclear Information System (INIS)

    Nfon, Erick; Cousins, Ian T.

    2007-01-01

    A steady state model is developed to describe the bioaccumulation of organic contaminants by 14 species in a Baltic food web including pelagic and benthic aquatic organisms. The model is used to study the bioaccumulation of five PCB congeners of different chlorination levels. The model predictions are evaluated against monitoring data for five of the species in the food web. Predicted concentrations are on average within a factor of two of measured concentrations. The model shows that all PCB congeners were biomagnified in the food web, which is consistent with observations. Sensitivity analysis reveals that the single most sensitive parameter is log K OW . The most sensitive environmental parameter is the annual average temperature. Although not identified amongst the most sensitive input parameters, the dissolved concentration in water is believed to be important because of the uncertainty in its determination. The most sensitive organism-specific input parameters are the fractional respiration of species from the water column and sediment pore water, which are also difficult to determine. Parameters such as feeding rate, growth rate and lipid content of organism are only important at higher trophic levels. - The bioaccumulation behaviour of PCB congeners in a Baltic food web is studied using a novel mechanistic model

  18. Presence, fate and effects of the intense sweetener sucralose in the aquatic environment

    Energy Technology Data Exchange (ETDEWEB)

    Tollefsen, Knut Erik, E-mail: ket@niva.no [Norwegian Institute for Water Research (NIVA), Gaustadalleen 21, N-0349 Oslo (Norway); Nizzetto, Luca [Norwegian Institute for Water Research (NIVA), Gaustadalleen 21, N-0349 Oslo (Norway); Huggett, Duane B. [Department of Biological Sciences, University of North Texas, P.O. Box 310559, Denton, TX 76203 (United States)

    2012-11-01

    Sucralose (1,6-dichloro-1,6-dideoxy-b-D-fructo-furanosyl 4-chloro-4-deoxy-a-D-galactopyranoside), sold under the trade name Splenda Registered-Sign , has been detected in municipal effluents and surface waters in the United States and Europe. The environmental presence of sucralose has led to interest in the possibility of toxic effects in non-target species. This review presents an environmental risk assessment of sucralose based on available data concerning its presence, fate and effects in the environment. Sucralose, which is made by selective chlorination of sucrose, is a highly stable compound, which undergoes negligible metabolism in mammals, including humans, and displays a low biodegradation potential in the environment. This intense sweetener is highly soluble in water, displays a low bioaccumulation potential and a low sorption potential to soil and organic matter, and thus is predominantly present in the water column. The predicted environmental concentration (PEC) for sucralose, based on measured data in surface waters, was determined to be 10 {mu}g/L. Aquatic toxicity studies using standardized, validated protocols used in regulatory decision making indicate that sucralose does not alter survival, growth and reproduction of aquatic organisms (such as plants, algae, crustaceans and fish) at concentrations > 9000 times higher than those detected in the environment. Some studies, using non-standardized protocols, have reported behavioral and other non-traditional responses in aquatic organisms, but the relevance of these findings for assessing adverse effects on individuals and populations will require further investigation. In terms of traditional risk assessment, the proposed predicted no effect concentration for aquatic organisms (PNEC) was determined to be 0.93 mg/L, based on the lowest no effect concentration (NOEC) from a validated chronic study with mysid shrimp and an application factor of 100. The resultant PEC/PNEC quotient was determined to be

  19. Presence, fate and effects of the intense sweetener sucralose in the aquatic environment

    International Nuclear Information System (INIS)

    Tollefsen, Knut Erik; Nizzetto, Luca; Huggett, Duane B.

    2012-01-01

    Sucralose (1,6-dichloro-1,6-dideoxy-b-D-fructo-furanosyl 4-chloro-4-deoxy-a-D-galactopyranoside), sold under the trade name Splenda®, has been detected in municipal effluents and surface waters in the United States and Europe. The environmental presence of sucralose has led to interest in the possibility of toxic effects in non-target species. This review presents an environmental risk assessment of sucralose based on available data concerning its presence, fate and effects in the environment. Sucralose, which is made by selective chlorination of sucrose, is a highly stable compound, which undergoes negligible metabolism in mammals, including humans, and displays a low biodegradation potential in the environment. This intense sweetener is highly soluble in water, displays a low bioaccumulation potential and a low sorption potential to soil and organic matter, and thus is predominantly present in the water column. The predicted environmental concentration (PEC) for sucralose, based on measured data in surface waters, was determined to be 10 μg/L. Aquatic toxicity studies using standardized, validated protocols used in regulatory decision making indicate that sucralose does not alter survival, growth and reproduction of aquatic organisms (such as plants, algae, crustaceans and fish) at concentrations > 9000 times higher than those detected in the environment. Some studies, using non-standardized protocols, have reported behavioral and other non-traditional responses in aquatic organisms, but the relevance of these findings for assessing adverse effects on individuals and populations will require further investigation. In terms of traditional risk assessment, the proposed predicted no effect concentration for aquatic organisms (PNEC) was determined to be 0.93 mg/L, based on the lowest no effect concentration (NOEC) from a validated chronic study with mysid shrimp and an application factor of 100. The resultant PEC/PNEC quotient was determined to be well below 1 (PEC

  20. Effectiveness of aquatic exercise and balneotherapy: a summary of systematic reviews based on randomized controlled trials of water immersion therapies.

    Science.gov (United States)

    Kamioka, Hiroharu; Tsutani, Kiichiro; Okuizumi, Hiroyasu; Mutoh, Yoshiteru; Ohta, Miho; Handa, Shuichi; Okada, Shinpei; Kitayuguchi, Jun; Kamada, Masamitsu; Shiozawa, Nobuyoshi; Honda, Takuya

    2010-01-01

    The objective of this review was to summarize findings on aquatic exercise and balneotherapy and to assess the quality of systematic reviews based on randomized controlled trials. Studies were eligible if they were systematic reviews based on randomized clinical trials (with or without a meta-analysis) that included at least 1 treatment group that received aquatic exercise or balneotherapy. We searched the following databases: Cochrane Database Systematic Review, MEDLINE, CINAHL, Web of Science, JDream II, and Ichushi-Web for articles published from the year 1990 to August 17, 2008. We found evidence that aquatic exercise had small but statistically significant effects on pain relief and related outcome measures of locomotor diseases (eg, arthritis, rheumatoid diseases, and low back pain). However, long-term effectiveness was unclear. Because evidence was lacking due to the poor methodological quality of balneotherapy studies, we were unable to make any conclusions on the effects of intervention. There were frequent flaws regarding the description of excluded RCTs and the assessment of publication bias in several trials. Two of the present authors independently assessed the quality of articles using the AMSTAR checklist. Aquatic exercise had a small but statistically significant short-term effect on locomotor diseases. However, the effectiveness of balneotherapy in curing disease or improving health remains unclear.

  1. INTER-SPECIES MODELS FOR ACUTE AQUATIC TOXICITY BASED ON MECHANISM OF ACTION

    Science.gov (United States)

    This presentation will provide interspecies QSARs for acute toxicity to 17 aquatic species, such as fish, snail, tadpole, hydrozoan, crustacean, insect larvae, and bacteria developed using 5,000 toxic effect results for approximately 2400 chemicals.

  2. Multiple functions of the crustacean gill: osmotic/ionic regulation, acid-base balance, ammonia excretion, and bioaccumulation of toxic metals

    Science.gov (United States)

    Henry, Raymond P.; Lucu, Čedomil; Onken, Horst; Weihrauch, Dirk

    2012-01-01

    The crustacean gill is a multi-functional organ, and it is the site of a number of physiological processes, including ion transport, which is the basis for hemolymph osmoregulation; acid-base balance; and ammonia excretion. The gill is also the site by which many toxic metals are taken up by aquatic crustaceans, and thus it plays an important role in the toxicology of these species. This review provides a comprehensive overview of the ecology, physiology, biochemistry, and molecular biology of the mechanisms of osmotic and ionic regulation performed by the gill. The current concepts of the mechanisms of ion transport, the structural, biochemical, and molecular bases of systemic physiology, and the history of their development are discussed. The relationship between branchial ion transport and hemolymph acid-base regulation is also treated. In addition, the mechanisms of ammonia transport and excretion across the gill are discussed. And finally, the toxicology of heavy metal accumulation via the gill is reviewed in detail. PMID:23162474

  3. Toxicological impact of cadmium-based quantum dots towards aquatic biota: Effect of natural sunlight exposure

    Energy Technology Data Exchange (ETDEWEB)

    Silva, B.F. [Department of Biology, Faculty of Science, University of Porto, Rua do Campo Alegre, 4169-007 Porto (Portugal); CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, Rua dos Bragas, 289, 4050-123 Porto (Portugal); Andreani, T. [Centro de Investigação em Química da Universidade do Porto, Rua do Campo Alegre, 687, 4169-007 Porto (Portugal); Department of Chemistry and Biochemistry, Faculty of Science, University of Porto, Rua do Campo Alegre, 4169-007 Porto (Portugal); CITAB − Centre for Research and Technology of Agro-Environmental and Biological Sciences, University of Trás-os-Montes e Alto Douro, UTAD, Vila Real (Portugal); Gavina, A., E-mail: anacsgavina@gmail.com [Department of Biology, Faculty of Science, University of Porto, Rua do Campo Alegre, 4169-007 Porto (Portugal); CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, Rua dos Bragas, 289, 4050-123 Porto (Portugal); Vieira, M.N. [Department of Biology, Faculty of Science, University of Porto, Rua do Campo Alegre, 4169-007 Porto (Portugal); CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, Rua dos Bragas, 289, 4050-123 Porto (Portugal); Pereira, C.M. [Centro de Investigação em Química da Universidade do Porto, Rua do Campo Alegre, 687, 4169-007 Porto (Portugal); Department of Chemistry and Biochemistry, Faculty of Science, University of Porto, Rua do Campo Alegre, 4169-007 Porto (Portugal); Rocha-Santos, T. [Department of Chemistry and Centre for Environmental and Marine Studies (CESAM), University of Aveiro, Campus de Santiago, 3810-193 Aveiro (Portugal); and others

    2016-07-15

    Highlights: • Under sunlight exposure, all QDs form particle aggregates in the different media. • CdSeS/ZnS QDs showed lower toxic effects to V. fischeri before sunlight exposure. • Sunlight exposure decreased the toxicity of CdS 480 in all organisms. • Sunlight exposure increased the toxicity of CdS 380 QDs for D. magna. • Shell of QDs seemed to make them less harmful to aquatic organisms. - Abstract: Cadmium-based quantum dots (QDs) are increasingly applied in existent and emerging technologies, especially in biological applications due to their exceptional photophysical and functionalization properties. However, they are very toxic compounds due to the high reactive and toxic cadmium core. The present study aimed to determine the toxicity of three different QDs (CdS 380, CdS 480 and CdSeS/ZnS) before and after the exposure of suspensions to sunlight, in order to assess the effect of environmentally relevant irradiation levels in their toxicity, which will act after their release to the environment. Therefore, a battery of ecotoxicological tests was performed with organisms that cover different functional and trophic levels, such as Vibrio fischeri, Raphidocelis subcapitata, Chlorella vulgaris and Daphnia magna. The results showed that core-shell type QDs showed lower toxic effects to V. fischeri in comparison to core type QDs before sunlight exposure. However, after sunlight exposure, there was a decrease of CdS 380 and CdS 480 QD toxicity to bacterium. Also, after sunlight exposure, an effective decrease of CdSeS/ZnS and CdS 480 toxicity for D. magna and R. subcapitata, and an evident increase in CdS 380 QD toxicity, at least for D. magna, were observed. The results of this study suggest that sunlight exposure has an effect in the aggregation and precipitation reactions of larger QDs, causing the degradation of functional groups and formation of larger bulks which may be less prone to photo-oxidation due to their diminished surface area. The same

  4. Bioaccumulation of sediment-bound Cr-51, Ni-63 and C-14 by benthic invertebrates

    International Nuclear Information System (INIS)

    Kumblad, L.; Bradshaw, C.; Giled, M.

    2004-01-01

    Sediments in many areas of the Baltic Sea are highly contaminated with particle-reactive trace metals and/or radionuclides. These may be re-mobilised into aquatic food chains by bioaccumulation into benthic organisms. In this study, we examined and compared assimilation efficiencies and bioaccumulation kinetics (rates of uptake and elimination) of sediment-associated Cr-51, Ni-63 and organic-associated C- 14 in three common benthic invertebrates from the Baltic Sea (the bivalve Macoma balthica, the amphipod Monoporeia affinis and the priapulid worm Halicryptus spinulosus). There were differences between animals and radionuclides in both the rate of uptake and elimination and the maximum amount accumulated. Understanding how and to what degree different deposit-feeding benthic invertebrates are exposed to and bio-accumulate sediment-associated metals are important for both ecological risk assessment and management decisions in coastal ecosystems. (author)

  5. Aquatic Life Benchmarks

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Aquatic Life Benchmarks is an EPA-developed set of criteria for freshwater species. These benchmarks are based on toxicity values reviewed by EPA and used in the...

  6. Aquatic plants

    DEFF Research Database (Denmark)

    Madsen, T. V.; Sand-Jensen, K.

    2006-01-01

    Aquatic fl owering plants form a relatively young plant group on an evolutionary timescale. The group has developed over the past 80 million years from terrestrial fl owering plants that re-colonised the aquatic environment after 60-100 million years on land. The exchange of species between terre...... terrestrial and aquatic environments continues today and is very intensive along stream banks. In this chapter we describe the physical and chemical barriers to the exchange of plants between land and water.......Aquatic fl owering plants form a relatively young plant group on an evolutionary timescale. The group has developed over the past 80 million years from terrestrial fl owering plants that re-colonised the aquatic environment after 60-100 million years on land. The exchange of species between...

  7. Bioaccumulation Behavior of Pharmaceuticals and Personal Care Products in Adult Zebrafish (Danio rerio): Influence of Physical-Chemical Properties and Biotransformation.

    Science.gov (United States)

    Chen, Fangfang; Gong, Zhiyuan; Kelly, Barry C

    2017-10-03

    The factors influencing bioaccumulation of pharmaceuticals and personal care products (PPCPs) in aquatic organisms are not well understood. The present study involved a comprehensive laboratory investigation to assess the bioaccumulation behavior of several PPCPs in adult zebrafish (Danio rerio). The studied PPCPs included several ionogenic organic compounds (IOCs) such as weak acids and weak bases. Experiments involved two exposure groups (high and low) and a control group, with a 6 day aqueous exposure, followed by a 7 day depuration phase under flow-through conditions. Uptake rate constants (k u ) ranged between 0.19 and 8610 L·kg -1 ·d -1 , while depuration rate constants (k d ) ranged between 0.14 and 5.14 d -1 in different fish tissues. Steady-state bioconcentration factor (BCF ss ) values varied widely among the studied PPCPs, ranging from 0.09 to 6,460. In many cases, BCF ss values of individual PPCPs differed substantially among different fish tissues. Positive linear relationships were observed between log BCF ss values and physical-chemical properties such as octanol-water distribution coefficients (log D ow ), membrane-water distribution coefficients (log D mw ), albumin-water distribution coefficients (log D BSAw ), and muscle protein-water distribution coefficients (log D mpw ), indicating the importance of lipid-, phospholipid-, and protein-water partitioning. The results also showed that for many PPCPs, the estimated whole-body metabolism rate constant (k m ) values were comparable to the observed depuration rate (k d ), indicating that metabolism plays a major role in the overall elimination of these compounds in zebrafish. An exception was sertraline, which exhibited a k d value (0.4-0.5 d -1 ) that was much higher than the estimated whole-body k m (0.03 d -1 ). Overall, the results help to better understand the influence of physical-chemical properties and biotransformation on bioaccumulation behavior of these contaminants of concern in aquatic

  8. Facilitated Bioaccumulation of Perfluorooctanesulfonate in Common Carp (Cyprinus carpio) by Graphene Oxide and Remission Mechanism of Fulvic Acid.

    Science.gov (United States)

    Qiang, Liwen; Chen, Meng; Zhu, Lingyan; Wu, Wei; Wang, Qiang

    2016-11-01

    As one of the most popular carbon-based nanomaterials, graphene oxide (GO) has the potential to be released in aquatic environment and interact with some coexistent organic pollutants, such as perfluorooctanesulfonate (PFOS), which is an emerging persistent organic pollutant. In this study, the adsorption of PFOS on GO in the presence of fulvic acid (FA), the impacts of GO and FA on PFOS toxicokinetics in carp (Cyprinus carpio), and in vitro digestion behaviors were examined. The results indicated that PFOS could be strongly adsorbed on GO with a Freundlich affinity coefficient K F of 580 ± 205 (mg/g)/(mg/L) n , while the adsorption was suppressed by FA due to competitive adsorption. GO significantly enhanced the bioaccumulation of PFOS in blood, kidney, liver, gill, intestine, and muscle of carp, and the corresponding bioaccumulation factor (BAF) was in the range of 2026-53513 L/kg. The enhancement was greatest for liver and intestine, which was 10.3 and 9.33 times of that without GO, respectively. In vivo toxicokinetic and in vitro digestion-absorption experiments indicated that GO could carry PFOS to penetrate the intestine cells. There herein, PFOS absorption, especially via intestine, and the uptake rate coefficient (k u ) were greatly enhanced, leading to distinctly promoted bioaccumulation of PFOS in fish. However, FA could facilitate the flocculation of GO in the intestine and also accelerate excretion of GO-PFOS complex. Thus, in the presence of FA, PFOS absorption was reduced and the promotion effect of GO on PFOS accumulation was remitted.

  9. A comparative study of the effects of trunk exercise program in aquatic and land-based therapy on gait in hemiplegic stroke patients.

    Science.gov (United States)

    Park, Byoung-Sun; Noh, Ji-Woong; Kim, Mee-Young; Lee, Lim-Kyu; Yang, Seung-Min; Lee, Won-Deok; Shin, Yong-Sub; Kim, Ju-Hyun; Lee, Jeong-Uk; Kwak, Taek-Yong; Lee, Tae-Hyun; Park, Jaehong; Kim, Junghwan

    2016-06-01

    [Purpose] The purpose of this study was to compare the effects of aquatic and land-based trunk exercise program on gait in stroke patients. [Subjects and Methods] The subjects were 28 hemiplegic stroke patients (20 males, 8 females). The subjects performed a trunk exercise program for a total of four weeks. [Results] Walking speed and cycle, stance phase and stride length of the affected side, and the symmetry index of the stance phase significantly improved after the aquatic and land-based trunk exercise program. [Conclusion] These results suggest that the aquatic and land-based trunk exercise program may help improve gait performance ability after stroke.

  10. Cyclic volatile methylsiloxane bioaccumulation in flounder and ragworm in the Humber Estuary.

    Science.gov (United States)

    Kierkegaard, Amelie; van Egmond, Roger; McLachlan, Michael S

    2011-07-15

    Cyclic volatile methylsiloxanes are being subjected to regulatory scrutiny as possible PBT chemicals. The investigation of bioaccumulation has yielded apparently contradictory results, with high laboratory fish bioconcentration factors on the one hand and low field trophic magnification factors on the other. In this study, octamethylcyclotetrasiloxane (D4), decamethylcyclopentasiloxane (D5), and dodecamethylcyclohexasiloxane (D6) were studied along with polychlorinated biphenyls (PCBs) in sediments, ragworm, and flounder from six sites in the Humber Estuary. Bioaccumulation was evaluated using multimedia bioaccumulation factors (mmBAFs) which quantified the fraction of the contaminant present in the aquatic environment that is transferred to the biota. PCB 180, a known strongly bioaccumulative chemical, was used as a benchmark. The mean mmBAF of D5 was about twice that of PCB 180 in both polycheates and flounder, while for D4 it was 6 and 14 times higher, respectively. The mmBAF of D6 was a factor 5-10 lower than that of PCB180. The comparatively strong multimedia bioaccumulation of D4 and D5, even in the absence of biomagnification, was explained by both compounds having a >100 times stronger tendency to partition into lipid rather than into organic carbon, while PCB 180 partitions to a similar extent into both matrices.

  11. Uptake of Mn and Cd by Wild Water Spinach and Their Bioaccumulation and Translocation Factors

    OpenAIRE

    Billy Teck Huat Guan; Ferdaus Mohamat-Yusuff; Normala Halimoon; Christina Seok Yien Yong

    2017-01-01

    Polluted ponds and lakes close to agricultural activities become the exposure route of manganese (Mn) and cadmium (Cd) to aquatic plants in near vicinity. Therefore, a study of the uptake, bioaccumulation, and translocation of Mn and Cd by the water spinach (Ipomoea aquatica) is presented in this paper. Different concentrations of Mn and Cd were added to the hydroponic nutrient solution that was used to grow the plants for the heavy metal uptake experiment under greenhouse conditions. The pla...

  12. Potential applications of SIMS technique for environmental monitoring based on exposure of aquatic organisms

    International Nuclear Information System (INIS)

    Noller, B.N.

    2000-01-01

    Full text: The kinds of environmental monitoring applications for which SIMS may be applicable, particularly with aquatic organisms, fall into 2 main categories: a) Undertaking controlled dose experiments with aquatic organisms where the nature of exposure is known together with water concentration, soft tissue and shell concentrations; and b) Using aquatic organisms from historically or currently impacted sites where other data or information may or may not be available to give some insight into the exposure pattern, generally from existing water monitoring data, sediment concentrations and other data such as water release or flow data. The advantage of experiments undertaken under controlled conditions is that they enable modelling to be developed and be applied. Usually the controlled studies with aquatic organisms are undertaken following cases of historical exposure. The usefulness of historical studies is therefore questionable unless a clear link with the organism exposure can be established. Some examples will be given to show how historical data could be used to bridge the information gap

  13. AquaEnv: an aquatic acid–base modelling environment in R

    NARCIS (Netherlands)

    Hofmann, A.F.; Soetaert, K.E.R.; Middelburg, J.J.; Meysman, F.J.R.

    2010-01-01

    AquaEnv is an integrated software package for aquatic chemical model generation focused on ocean acidification and antropogenic CO2 uptake. However, the package is not restricted to the carbon cycle or the oceans: it calculates, converts, and visualizes information necessary to describe pH, related

  14. Predicting, Measuring, and Monitoring Aquatic Invertebrate Biodiversity on Dryland Military Bases

    Science.gov (United States)

    2016-12-15

    Fausch et al ., 2002 ). The environmental phenomena that drive any particular DDR can be decomposed into local and...features may include the dendritic structure of stream networks ( Fausch et al ., 2002 ; Benda et al ., 2004), the spatial arrangement of suitable habitat...flow connectivity ( Fausch et al ., 2002 ; Hughes, 2007; Schick & Lindley, 2007). In contrast, aquatic organisms that can disperse overland, such

  15. Genotoxicity of metal based engineered nanoparticles in aquatic organisms: A review

    CSIR Research Space (South Africa)

    Mahaye, Ntombikayise

    2017-07-01

    Full Text Available Engineered nanoparticles (ENPs) are an emerging class of environmental contaminants, but are generally found in very low concentrations and are therefore likely to exert sub-lethal effects on aquatic organisms. In this review, we: (i) highlight key...

  16. Bioaccumulation factors for radionuclides in freshwater biota

    International Nuclear Information System (INIS)

    Vanderploeg, H.A.; Parzyck, D.C.; Wilcox, W.H.; Kercher, J.R.; Kaye, S.V.

    1975-11-01

    This report analyzes over 200 carefully selected papers to provide concise data sets and methodology for estimation of bioaccumulation factors for tritium and isotopes of strontium, cesium, iodine, manganese, and cobalt in major biotic components of freshwater environments. Bioaccumulation factors of different tissues are distinguished where significant differences occur. Since conditions in the laboratory are often unnatural in terms of chemical and ecological relationships, this review was restricted as far as possible to bioaccumulation factors determined for natural systems. Because bioaccumulation factors were not available for some shorter-lived radionuclides, a methodology for converting bioaccumulation factors of stable isotopes to those of shorter-lived radionuclides was derived and utilized. The bioaccumulation factor for a radionuclide in a given organism or tissue may exhibit wide variations among bodies of water that are related to differences in ambient concentrations of stable-element and carrier-element analogues. To account for these variations, simple models are presented that relate bioaccumulation factors to stable-element and carrier-element concentrations in water. The effects of physicochemical form and other factors in causing deviations from these models are discussed. Bioaccumulation factor data are examined in the context of these models, and bioaccumulation factor relations for the selected radionuclides are presented

  17. Bioaccumulation, stress, and swimming impairment in Daphnia magna exposed to multiwalled carbon nanotubes, graphene, and graphene oxide.

    Science.gov (United States)

    Cano, Amanda M; Maul, Jonathan D; Saed, Mohammad; Shah, Smit A; Green, Micah J; Cañas-Carrell, Jaclyn E

    2017-08-01

    The use of carbon-based nanomaterials (CNMs) such as multiwalled carbon nanotubes (MWCNTs), graphene, and graphene oxide (GO) is increasing across many applications because of their unique and versatile properties. These CNMs may enter the aquatic environment through many pathways, creating the potential for organism exposure. The present study addresses the bioaccumulation and toxicity seen in Daphnia magna exposed to CNMs dispersed in sodium dodecyl benzene sulfonate (SDBS). In study I, D. magna were exposed to varying outer diameters of MWCNTs for 24 h in moderately hard or hard freshwater. Bioaccumulation of MWCNT was found in all treatments, with the highest concentrations (0.53 ± 0.27 μg/g) in D. magna exposed in hard freshwater (p < 0.005). The median lethal concentration (LC50) was determined for D. magna exposed to CNMs in moderately hard and hard freshwater. In study II, D. magna were exposed to CNMs for 72 h in moderately hard freshwater to assess swimming velocity and generation of reactive oxygen species (ROS) detected by dichlorofluorescein fluorescence. An overall decrease was seen in D. magna swimming velocity after exposure to CNMs. The generation of ROS was significantly higher (1.54 ± 0.38 dichlorofluorescein mM/mg dry wt) in D. magna exposed to MWCNTs of smaller outer diameters than in controls after 72 h (p < 0.05). These results suggest that further investigation of CNM toxicity and behavior in the aquatic environment is needed. Environ Toxicol Chem 2017;36:2199-2204. © 2017 SETAC. © 2017 SETAC.

  18. Cellscope Aquatic: a Lab Quality, Portable Cellphone-Based Microscope for On-Site Collection of Algae Images

    Science.gov (United States)

    Steinberg, S. J.; Howard, M. D.

    2016-02-01

    Collecting algae samples from the field presents issues of specimen damage or degradation caused by preservation methods, handling and transport to laboratory facilities for identification. Traditionally, in-field collection of high quality microscopic images has not been possible due to the size, weight and fragility of high quality instruments and training of field staff in species identification. Scientists at the Southern California Coastal Water Research Project (SCCWRP) in collaboration with the Fletcher Lab, University of California Berkeley, Department of Bioengineering, tested and translated Fletcher's original medical CellScope for use in environmental monitoring applications. Field tests conducted by SCCWRP in 2014 led to modifications of the clinical CellScope to one better suited to in-field microscopic imaging for aquatic organisms. SCCWRP subsequently developed a custom cell-phone application to acquire microscopic imagery using the "CellScope Aquatic "in combination with other cell-phone derived field data (e.g. GPS location, date, time and other field observations). Data and imagery collected in-field may be transmitted in real-time to a web-based data system for tele-taxonomy evaluation and assessment by experts in the office. These hardware and software tools was tested in field in a variety of conditions and settings by multiple algae experts during the spring and summer of 2015 to further test and refine the CellScope Aquatic platform. The CellScope Aquatic provides an easy-to-use, affordable, lightweight, professional quality, data collection platform for environmental monitoring. Our ongoing efforts will focus on development of real-time expert systems for data analysis and image processing, to provide onsite feedback to field scientists.

  19. The Environmentally Sound Aquaculture Strategies Based on Bioaccumulation of Heavy Metal of Lead (Pb) on Seaweed of Gracilaria verrucosa on Aquaculture Areas of MuararejaVillage, Tegal City

    Science.gov (United States)

    Nurjanah; Ambariyanto; Supriharyono; Yulianto, Bambang

    2018-02-01

    Community activities such as industry, trade, animal husbandry and agriculture and ssettlements resulting in heavy metals of lead (Pb) can be accumulated in water, sediment and seaweed Gracillaria verrucosa. It can contaminate ponds and affect aquaculture activities in Tegal. Seaweed Gracilaria verrucosa is afisheries commodity that has economical value and cultivated in the area of aquaculture MuararejaTegal. It can serve as fitoremedian that will help reduce the impact of heavy metal pollution due to its ability to accumulate pollutants. The objective of this study was to analyze bioaccumulation of heavy metals of lead (Pb) and its relationship with water quality management in order to develop seaweed cultivation of Gracillaria verrucosa in ponds in the area of aquaculture MuararejaTegal. The method used in this study is a survey, analysis of heavy metals of lead (Pb) in pond water, sediment and seaweed using Atomic Absorption Spectrophotometer (AAS) and the data were analyzed by descriptive quantitative. Bioconcentration of lead (Pb) during the dry season in pond water, sediment and seaweed Gracillaria verrucosa was measured from 0.003 to 0.025 ppm,5.543 to 23.699 ppm and 0.209 to 0.326 ppm respectively. While in the rainy season bioconcentration of lead (Pb) are from 0.003 to 0.015 ppm, sediment from 6.377 to 9.858 ppm and 0.209 to 0.326 ppm respectively. Bioconcentration of Pb in dry season was higher than in the rainy season and the biggest bioconcentration was found in the sediment pond waters. Pb bioaccumulation low and still below the quality standards of the Ministry of Environment decision 51 of 2004 so that the product is safe for consumption.

  20. The influence of copper-based fungicide use in soils and aquatic sediments. Case study: Aetoliko lagoon, Western Greece

    Science.gov (United States)

    Avramidis, Pavlos; Barouchas, Pantelis; Dünwald, Thomas; Unkel, Ingmar

    2017-04-01

    In the study area, in order farmers to keep their olive trees healthy, the first measure is to keep their olive trees well-fed that is the best initial defense against diseases. Copper-based fungicides are the most common fungicides to protect olive plantations against diseases such as the olive leaf spot. Pathogens are controlled by farmers with strategically timed disease control programs rely on copper sprays to protect the foliage and fruit from infection Successful disease control depends on even distribution and good retention of the copper over all of the plant surfaces before the disease develops. Artificially added copper has the ability to accumulate in soils and aquatic sediments and can cause adverse effects on flora and fauna in its environment. For the present study soil and aquatic sediments field campaign was carried out in the Aetoliko Lagoon ecosystem which is exclusively dominated by olive orchards. It is for the first time in Greece that soil as well as aquatic sediments samples of one coherent protected aquatic ecosystem were taken and compared. To determine the influence that the usage of copper-based fungicides have on the lagoon and surrounding areas, ten (10) sediment samples from the bottom of the lagoon and twenty five (25) soil samples at the different olive orchards that are bordering the water body were taken. The samples were analyzed for total copper content (total digestion) and extractable copper (DTPA and NH4NO3). Furthermore, soil / sedimentological and geochemical analyses such as pH, grain size, total organic carbon, total nitrogen and calcium carbonate content were carried out. The results show in over 80 % of the orchard soils a critical accumulation of the total amount of copper. In some of the examined soils the value of 140 mg/kg(as set by the European Union as a limit for total copper in farmland) is exceeded by the factors of 2 to 4.5. Copper content in the aquatic sediments is generally lower and varies between 43.85 mg

  1. DNA-based identification of aquatic invertebrates useful in the South African context?

    Directory of Open Access Journals (Sweden)

    Hermoine J. Venter

    2016-05-01

    Full Text Available The concept of using specific regions of DNA to identify organisms processes such as DNA barcoding is not new to South African biologists. The African Centre for DNA Barcoding reports that 12 548 plant species and 1493 animal species had been barcoded in South Africa by July 2013, while the Barcode of Life Database (BOLD contains 62 926 records for South Africa, 11 392 of which had species names (representing 4541 species. In light of this, it is surprising that aquatic macroinvertebrates of South Africa have not received much attention as potential barcoding projects thus fa barcoding of aquatic species has tended to focus on invasive species and fishes. Perusal of the BOLD records for South Africa indicates a noticeable absence of aquatic macroinvertebrates, including families used for biomonitoring strategies such as the South African Scoring System. Meanwhile, the approach of collecting specimens and isolating their DNA individually in order to identify them (as in the case of DNA barcoding, has been shifting towards making use of the DNA which organisms naturally shed into their environments (eDNA. Coupling environmental and bulk sample DNA with high-throughput sequencing technology has given rise to metabarcoding, which has the potential to characterise the whole community of organisms present in an environment. Harnessing barcoding and metabarcoding approaches with environmental DNA (eDNA potentially offers a non-invasive means of measuring the biodiversity in an environment and has great potential for biomonitoring. Aquatic ecosystems are well suited to these approaches but could they be useful in a South African context?

  2. Precipitation and temperature drive seasonal variation in bioaccumulation of polycyclic aromatic hydrocarbons in the planktonic food webs of a subtropical shallow eutrophic lake in China.

    Science.gov (United States)

    Tao, Yuqiang; Yu, Jing; Xue, Bin; Yao, Shuchun; Wang, Sumin

    2017-04-01

    Hydrophobic organic contaminants (HOCs) are toxic and ubiquitous in aquatic environments and pose great risks to aquatic organisms. Bioaccumulation by plankton is the first step for HOCs to enter aquatic food webs. Trophic status is considered to dominate variations in bioaccumulation of HOCs in plankton in temperate and frigid deep oligotrophic waters. However, long-term driving factors for bioaccumulation of HOCs in planktonic food webs of subtropical shallow eutrophic waters have not been well investigated. China has the largest subtropical lake density in the Northern Hemisphere. Due to limited field data, long-term variations in the bioaccumulation of HOCs in these lakes are almost unknown. Here we take Lake Xuanwu as an example to investigate long-term variations in the bioaccumulation, and biomagnification of polycyclic aromatic hydrocarbon (PAHs) in planktonic food webs of subtropical shallow eutrophic lakes in China, and elucidate the driving factors. Our results indicate that temperature rather than nutrients dominates long-term dynamics of planktonic biomass in this lake. Precipitation significantly enhances the concentrations of the PAHs, and total suspended particles, and consequently affects the distribution of the PAHs in the water column. Biomass dilution induced by temperature dominates bioaccumulation of the PAHs by both phytoplankton and zooplankton (copepods and cladocerans). Biomagnification of the PAHs from phytoplankton to zooplankton is positively correlated with temperature. Our study suggests that temperature and precipitation drive long-term variations in the bioaccumulation of the PAHs in the planktonic food webs of this subtropical shallow eutrophic lake. Lake Xuanwu has a similar mean annual temperature, annual precipitation, sunshine duration, and nutrient levels as other subtropical shallow eutrophic lakes in China. This study may also help to understand the bioaccumulation of HOCs in planktonic food webs of other subtropical shallow

  3. Elemental bioaccumulators in air pollution studies

    International Nuclear Information System (INIS)

    Freitas, M.C.

    1995-01-01

    K 0 -Based instrumental neutron activation analysis (k 0 INAA) was used to determine the concentrations of Cr, Fe, Co, Zn, Se, Sb and Hg in the vascular plants Cistus salvifolius and Inula viscosa and in the lichen Parmelia sulcata. The samples were collected in the neighbourhood of industrial complexes. The elemental accumulation in the vascular plants and the lichen are compared to optimize the choice of the bioaccumulator. It is concluded that P.sulcata seems to be the best accumulator of the three species for the element studied; Cistus salvifolius is sensitive to the contents of Zn, Fe, Cr and Sb in the air; Inula viscosa seems to accumulate Fe, Sb, Co, Cr and Zn. Nevertheless, it is concluded that lichen is a good air pollution indicator, while the vascular plants are not due to the large seasonal variations found in the elemental concentrations. (author) 11 refs.; 7 figs.; 2 tabs

  4. Mercury bioaccumulation in the Mediterranean

    Directory of Open Access Journals (Sweden)

    Cinnirella S.

    2013-04-01

    Full Text Available This study details mercury pollution within the food chain of the Mediterranean by analysing the most comprehensive mercury dataset available for biota and water measurements. In this study we computed a bioaccumulation factor (BAF for datasets in the existing mercury-related scientific literature, in on-going programs, and in past measurement campaigns. Preliminary results indicate a major lack of information, making the outcome of any assessment very uncertain. Importantly, not all marine eco-regions are (or have ever been covered by measurement campaigns. Most lacking is information associated with the South-Eastern part of the Mediterranean, and in several eco-regions it is still impossible to reconstruct a trophic net, as the required species were not accounted for when mercury measurements were taken. The datasets also have additional temporal sampling problems, as species were often not sampled systematically (but only sporadically during any given sampling period. Moreover, datasets composed of mercury concentrations in water also suffer from similar geographic limitations, as they are concentrated in the North-Western Mediterranean. Despite these concerns, we found a very clear bioaccumulation trend in 1999, the only year where comprehensive information on both methylmercury concentrations in water and biota was available.

  5. Bioaccumulation of animal adenoviruses in the pink shrimp

    Directory of Open Access Journals (Sweden)

    Roger B. Luz

    2015-09-01

    Full Text Available Adenoviruses are among the most promising viral markers of fecal contamination. They are frequently found in the water, sediment and soil of regions impacted by human activity. Studies of the bioaccumulation of enteric viruses in shrimp are scarce. The cities located in the northern coast of the lake systems in Southern Brazil have high urbanization and intensive farming rates, and poor sewage collection and treatment. One hundred (n = 100 Farfantepenaeus paulensis pink-shrimp specimens and 48 water samples were collected from coastal lagoons between June 2012 and May 2013. Water samples were concentrated and the shrimp, mashed. After DNA extraction, samples were analyzed by real time polymerase chain reaction (qPCR in order to detect and quantify viral genomes. Thirty-five percent of shrimp samples were positive for contamination, predominantly by avian adenoviruses. A total of 91.7% of water samples contained adenoviruses DNA, with the human form being the most frequent. Our results provided evidence of significant bioaccumulation of adenoviruses in shrimp, showing the extent of the impact of fecal pollution on aquatic ecosystems.

  6. Physiological bases for detecting and predicting photoinhibition of aquatic photosynthesis by PAR and UV radiation

    International Nuclear Information System (INIS)

    Neale, P.J.; Cullen, J.J.; Lesser, M.P.; Melis, A.

    1993-01-01

    Phytoplankton photosynthesis is the basis of almost all aquatic primary production in the world's oceans, estuaries and lakes. Oceanic primary production is a major portion of the global carbon budget (see other contributions this volume). Currently, we are unable to account for all the CO 2 that is leaving the atmosphere and debate continues whether the ''missing carbon'' is going into either terrestrial and oceanic sinks (7). In this context, it is important to improve our knowledge of how phytoplankton photosynthesis responds to the aquatic environment. The aquatic light environment is primary among several factors governing aquatic photosynthesis. To understand phytoplankton response to aquatic irradiance, we must consider how light propagates underwater, variations in light spectral quality as well as intensity. Also important is how these optical characteristics relate to processes of light absorption and utilization by phytoplankton cells. Considerable progress has been made on answering many of these questions (e.g. 27). One topic, phytoplankton responses to irradiance stress induced by photosynthetically available radiation (PAR2) and UJV, has become increasingly important. The primary consequence in both cases is a time-dependent loss of photosynthetic activity (photo inhibition). Concern over the effects of solar UV irradiance has recently intensified with the advent of stratospheric ozone depletion, which allows for an increase of the mid-ultraviolet (UVB 280-320 nm)irradiance, especially in the Antarctic. The sensitivity of phytoplankton photosynthesis to irradiance stress can be readily demonstrated (36), however,showing whether this stress actually occurs in the aquatic environment remains difficult. The essential problem is that phytoplankton are in suspension. Their irradiance exposure will be determined by mixing processes that transport cells over a vertical gradient in light availability. The response to irradiance

  7. Aquatic conditions

    Science.gov (United States)

    Warren E. Heilman

    1999-01-01

    This publication provides citizens, private and public organizations, scientists, and others with information about the aquatic conditions in or near national forests in the Ozark-Ouachita Highlands: the Mark Twain in Missouri, the Ouachita in Arkansas and Oklahoma, and the Ozark-St. Francis National Forests in Arkansas. This report includes water quality analyses...

  8. Comparing quantitative analysis on revealed comparative advantages of aquatic products trade of china and ASEAN based on 21st century maritime silk road

    Science.gov (United States)

    Luo, X. F.; Han, Y. H.; Li, Z. W.

    2017-11-01

    As the world’s leading aquaculture, aquatic production and trading country, China’s development of aquatic products trade with ASEAN is facing a historic opportunity in the favourable circumstances of construction of the 21st century Maritime Silk Road. In order to make guidance of the product selection and transformation for corresponding export enterprises, this article makes a quantitative analysis the Revealed Comparative Advantage of aquatic products trade from China and ASEAN respectively based on the HS classification and thoroughly compares the RCA indices. The comparison results show that the international competitiveness of aquatic products structures of China and ASEAN are quite different with few overlaps of strong competitive products, and there is a great gap between the two areas in many kinds of products.

  9. Aquatic concentrations of chemical analytes compared to ecotoxicity estimates

    Science.gov (United States)

    Kostich, Mitchell S.; Flick, Robert W.; Angela L. Batt,; Mash, Heath E.; Boone, J. Scott; Furlong, Edward T.; Kolpin, Dana W.; Glassmeyer, Susan T.

    2017-01-01

    We describe screening level estimates of potential aquatic toxicity posed by 227 chemical analytes that were measured in 25 ambient water samples collected as part of a joint USGS/USEPA drinking water plant study. Measured concentrations were compared to biological effect concentration (EC) estimates, including USEPA aquatic life criteria, effective plasma concentrations of pharmaceuticals, published toxicity data summarized in the USEPA ECOTOX database, and chemical structure-based predictions. Potential dietary exposures were estimated using a generic 3-tiered food web accumulation scenario. For many analytes, few or no measured effect data were found, and for some analytes, reporting limits exceeded EC estimates, limiting the scope of conclusions. Results suggest occasional occurrence above ECs for copper, aluminum, strontium, lead, uranium, and nitrate. Sparse effect data for manganese, antimony, and vanadium suggest that these analytes may occur above ECs, but additional effect data would be desirable to corroborate EC estimates. These conclusions were not affected by bioaccumulation estimates. No organic analyte concentrations were found to exceed EC estimates, but ten analytes had concentrations in excess of 1/10th of their respective EC: triclocarban, norverapamil, progesterone, atrazine, metolachlor, triclosan, para-nonylphenol, ibuprofen, venlafaxine, and amitriptyline, suggesting more detailed characterization of these analytes.

  10. A label free aptamer-based LPG sensor for detection of mercury in aquatic solutions

    Science.gov (United States)

    Nikbakht, Hamed; Latifi, Hamid; Ziaee, Farzaneh

    2015-09-01

    We demonstrate a label free fiber optic sensor for detection of mercury ions in aquatic solutions. This sensor utilizes aptamers as bio-recognition element which traps mercury ions and cause a refractive index change in the vicinity of the sensor. Refractive index variations lead to a change in the transmission spectrum that can be used to calculate the concentration of mercury ions in that solution. The concentration of 1 nM mercury ions was detected which is below the specific amount determined by the US environmental protection agency as the maximum authorized contaminant level of Hg2+ ions in drinking water.

  11. Analysis of malachite green in aquatic products by carbon nanotube-based molecularly imprinted - matrix solid phase dispersion.

    Science.gov (United States)

    Wang, Yu; Chen, Ligang

    2015-10-01

    A simple method based on matrix solid phase dispersion (MSPD) using molecularly imprinted polymers (MIPs) as sorbents for selective extraction of malachite green (MG) from aquatic products was developed. The MIPs were prepared by using carbon nanotube as support, MG as template, methacrylic acid as functional monomer, ethyleneglycol dimethacrylate as crosslinker and methylene chloride as solvent. The MIPs were characterized by Fourier transform infrared spectrometry and transmission electron microscopy. The isothermal adsorption, kinetics absorption and selective adsorption experiments were carried out. We optimized the extraction conditions as follows: the ratio of MIPs to sample was 2:3, the dispersion time was 15min, washing solvent was 4mL 50% aqueous methanol and elution solvent was 3mL methanol-acetic acid (98: 2, v/v). Once the MSPD process was completed, the MG extracted from aquatic products was determined by high performance liquid chromatography. The detection limit of MG was 0.7μgkg(-1). The relative standard deviations of intra-day and inter-day were obtained in the range of 0.9%-4.7% and 3.4%-9.8%, respectively. In order to evaluate the applicability and reliability of the proposed method, it was applied to determine MG in different aquatic products samples including fish, shrimp, squid and crabs. The satisfied recoveries were in the range of 89.2%-104.6%. The results showed that this method is faster, simpler and makes extraction and purification in the same system. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Different modes of TiO2 uptake by Ceriodaphnia dubia: relevance to toxicity and bioaccumulation.

    Science.gov (United States)

    Dalai, Swayamprava; Iswarya, V; Bhuvaneshwari, M; Pakrashi, Sunandan; Chandrasekaran, N; Mukherjee, Amitava

    2014-07-01

    The extensive environmental exposure of engineered metal oxide nanoparticles (NPs) may result in their bioaccumulation in aquatic organisms leading to their biotransfer in a food chain through various routes in a freshwater ecosystem. The present study focuses on the possible modes of TiO2 NP trophic transfer to Ceriodaphnia dubia, in presence and/absence of its diet, Scenedesmus obliquus (primary producer). The acute exposure studies (48h) were designed to have daphnids exposed to (i) the free NPs, (ii) both the free and the algae-borne NPs; and (iii) only the algae-borne NPs in separate tests to understand the possible routes of NP transfer. The dietary uptake of TiO2 NPs (algae-borne) was found to be the primary route for NP biotransfer with ∼70% of total NP uptake. Interestingly, in a separate study it was noticed that the NPs coated with algal exudates were easily taken up by daphnids as compared to pristine NPs of same concentrations, leading to their higher bioaccumulation. A chronic toxicity study, where daphnids were exposed to both free and algae-borne NPs for 21 days was undertaken to comprehend the TiO2 NP effect on daphnia growth and reproduction upon chronic exposure and also the bioaccumulation potential. Both acute and chronic exposure studies suggested higher bioaccumulation of TiO2 in daphnids when the particles were less toxic to the diet (algae). Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Bioaccumulation of radiocesium by fish: the influence of physicochemical factors and trophic structure

    International Nuclear Information System (INIS)

    Rowan, D.J.; Rasmussen, J.B.

    1994-01-01

    Although many measurements have been made on radiocesium levels in water and aquatic biota, no agreement has been reached regarding the factors affecting bioaccumulation of these radionuclides. With monitoring data from countries that operate nuclear facilities and data from the primary literature, we explored the chemical and ecological factors that determine the bioaccumulation of radiocesium. Using log-linear regression we found that the bioaccumulation of 137 CS by fish was a negative function of both dissolved potassium and suspended sediment concentration, and a positive function of temperature. Important ecological factors were the trophic level of the fish (piscivores bioaccumulate more than planktivores and benthivores), and the length of the food chain as reflected by the ratio of piscivore yield relative to net primary production. Fish from softwater drainages, which make up a large portion of northern Europe and Canada, are more vulnerable to radiocesium contamination than fish from hardwater sedimentary drainages, because these waters are extremely low in potassium and suspended sediment, and their watersheds are less efficient in retaining radiocesium. High dissolved potassium, short food chains, and the much greater volume and mixing potential of the ocean make marine fish less vulnerable to releases of radiocesium. (author)

  14. The impact of sediment bioturbation by secondary organisms on metal bioavailability, bioaccumulation and toxicity to target organisms in benthic bioassays: Implications for sediment quality assessment

    International Nuclear Information System (INIS)

    Remaili, Timothy M.; Simpson, Stuart L.; Amato, Elvio D.; Spadaro, David A.; Jarolimek, Chad V.; Jolley, Dianne F.

    2016-01-01

    Bioturbation alters the properties of sediments and modifies contaminant bioavailability to benthic organisms. These naturally occurring disturbances are seldom considered during the assessment of sediment quality. We investigated how the presence (High bioturbation) and absence (Low bioturbation) of a strongly bioturbating amphipod within three different sediments influenced metal bioavailability, survival and bioaccumulation of metals to the bivalve Tellina deltoidalis. The concentrations of dissolved copper decreased and manganese increased with increased bioturbation. For copper a strong correlation was observed between increased bivalve survival (53–100%) and dissolved concentrations in the overlying water. Increased bioturbation intensity resulted in greater tissue concentrations for chromium and zinc in some test sediments. Overall, the results highlight the strong influence that the natural bioturbation activities from one organism may have on the risk contaminants pose to other organisms within the local environment. The characterisation of field-based exposure conditions concerning the biotic or abiotic resuspension of sediments and the rate of attenuation of released contaminants through dilution or readsorption may enable laboratory-based bioassay designs to be adapted to better match those of the assessed environment. - Highlights: • Bioturbation intensity modifies metal exposure and outcomes of sediment bioassays. • Sediment fluxes of Cu decrease and Mn and Zn increase with increased bioturbation. • Strong correlations between bioaccumulated and dissolved Cd, Cr, Pb, Zn, Cu and Ni. • Weak correlations between bioaccumulated and particulate metals. - This study investigated the impact of sediment bioturbation intensity on metal bioavailability and toxicity to aquatic organisms, and the implications of this to toxicity test design.

  15. Aquatic modules for bioregenerative life support systems based on the C.E.B.A.S. biotechnology

    Science.gov (United States)

    Bluem, Volker; Paris, Frank

    2001-03-01

    Most concepts for bioregenerative life support systems are based on edible higher land plants which create some problems with growth and seed generation under space conditions. Animal protein production is mostly neglected because of the tremendous waste management problems with tetrapods under reduced weightlessness. Therefore, the "Closed Equilibrated Biological Aquatic System" (C.E.B.A.S.) was developed which represents an artificial aquatic ecosystem containing aquatic organisms which are adpated at all to "near weightlessness conditions" (fishes Xiphophorus helleri, water snails Biomphalaria glabrata, ammonia oxidizing bacteria and the rootless non-gravitropic edible water plant Ceratophyllum demersum). Basically the C.E.B.A.S. consists of 4 subsystems: a ZOOLOGICASL COMPONENT (animal aquarium), a BOTANICAL COMPONENT (aquatic plant bioreactor), a MICROBIAL COMPONENT (bacteria filter) and an ELECTRONICAL COMPONENT (data acquisition and control unit). Superficially, the function principle appears simple: the plants convert light energy into chemical energy via photosynthesis thus producing biomass and oxygen. The animals and microorganisms use the oxygen for respiration and produce the carbon dioxide which is essential for plant photosynthesis. The ammonia ions excreted by the animals are converted by the bacteria to nitrite and then to nitrate ions which serve as a nitrogen source for the plants. Other essential ions derive from biological degradation of animal waste products and dead organic matter. The C.E.B.A.S. exists in 2 basic versions: the original C.E.B.A.S. with a volume of 150 liters and a self-sustaining standing time of more than 13 month and the so-called C.E.B.A.S. MINI MODULE with a volume of about 8.5 liters. In the latter there is no closed food loop by reasons of available space so that animal food has to be provided via an automated feeder. This device was flown already successfully on the STS-89 and STS-90 spaceshuttle missions and the

  16. Bioaccumulation of human waterborne protozoa by zebra mussel (Dreissena polymorpha): interest for water biomonitoring.

    Science.gov (United States)

    Palos Ladeiro, M; Aubert, D; Villena, I; Geffard, A; Bigot, A

    2014-01-01

    Cryptosporidium parvum, Giardia duodenalis and Toxoplasma gondii are ubiquitous pathogens, which waterborne transmission has been largely demonstrated. Since they can be found in various watercourses, interactions with aquatic organisms are possible. Protozoan detection for watercourses biomonitoring is currently based on large water filtration. The zebra mussel, Dreissena polymorpha, is a choice biological model in ecotoxicological studies which are already in use to detect chemical contaminations in watercourses. In the present study, the zebra mussel was tested as a new tool for detecting water contamination by protozoa. In vivo exposures were conducted in laboratory experiments. Zebra mussel was exposed to various protozoan concentrations for one week. Detection of protozoa was realized by Taqman real time qPCR. Our experiments evidenced C. parvum, G. duodenalis and T. gondii oocyst bioaccumulation by mussels proportionally to ambient contamination, and significant T. gondii prevalence was observed in muscle tissue. To our knowledge, this is the first study that demonstrates T. gondii oocyst accumulation by zebra mussel. The results from this study highlight the capacity of zebra mussels to reveal ambient biological contamination, and thus to be used as a new effective tool in sanitary biomonitoring of water bodies. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Rapid screening of aquatic toxicity of several metal-based nanoparticles using the MetPLATE™ bioassay

    International Nuclear Information System (INIS)

    Pokhrel, Lok R.; Silva, Thilini; Dubey, Brajesh; El Badawy, Amro M.; Tolaymat, Thabet M.; Scheuerman, Phillip R.

    2012-01-01

    Current understanding of potential toxicity of engineered nanomaterials to aquatic microorganisms is limited for risk assessment and management. Here we evaluate if the MetPLATE™ test can be used as an effective and rapid screening tool to test for potential aquatic toxicity of various metal-based nanoparticles (NPs). The MetPLATE bioassay is a heavy metal sensitive test based on β-galactosidase activity in Escherichia coli. Five different types of metal-based NPs were screened for toxicity: (1) citrate coated nAg (Citrate-nanosilver), (2) polyvinylpyrrolidone coated nAg (PVP-nAg), (3) uncoated nZnO, (4) uncoated nTiO 2 and (5) 1-Octadecylamine coated CdSe Quantum Dots (CdSe QDs); and compared with their corresponding ionic salt toxicity. Citrate-nAg was further fractionated into clean Citrate-nAg, unclean Citrate-nAg and permeate using a tangential flow filtration (TFF) system to eliminate residual ions and impurities from the stock Citrate-nAg suspension and also to differentiate between ionic- versus nano-specific toxicity. Our results showed that nAg, nZnO and CdSe QDs were less toxic than their corresponding ionic salts tested, while nano- or ionic form of TiO 2 was not toxic as high as 2.5 g L −1 to the MetPLATE™ bacteria. Although coating-dependent toxicity was noticeable between two types of Ag NPs evaluated, particle size and surface charge were not adequate to explain the observed toxicity; hence, the toxicity appeared to be material-specific. Overall, the toxicity followed the trend: CdCl 2 > AgNO 3 > PVP-nAg > unclean Citrate-nAg > clean Citrate-nAg > ZnSO 4 > nZnO > CdSe QDs > nTiO 2 /TiO 2 . These results indicate that an evaluation of β-galactosidase inhibition in MetPLATE™ E. coli can be an important consideration for rapid screening of metal-based NP toxicity, and should facilitate ecological risk assessment of these emerging contaminants. - Highlights: ► MetPLATE bioassay was evaluated as a rapid screening tool for nanotoxicity.

  18. Uranium in Aquatic Sediments; Where are the Guidelines?

    Energy Technology Data Exchange (ETDEWEB)

    Iles, M., E-mail: michelle.iles@ewlsciences.com.au [Earth, Water and Life Sciences Pty Ltd, Darwin (Australia)

    2014-05-15

    Sediment data has been collected on and around the Ranger uranium mine for over 20 years. This included studies such as annual routine monitoring of metal concentrations, adsorption-desorption conditions, phase associations, transport mechanism, release potential, bioaccumulation and bioconcentration etc. Building on this, performance-based monitoring of the sediments from on-site water bodies was undertaken to ascertain the spatial and temporal distribution of contaminants as a basis to determine ecological risks associated with the sediments which in turn underpins closure planning. Highlights of these studies are interpreted using an ecological risk assessment approach. Ideally interpretation of aquatic sediment contamination in Australia is guided by the national guidelines for water quality and a weighted multiple lines of evidence approach whereby the chemistry of sediments is compared with reference and guideline values and predictions of bio-availability, and biological effects data allows cause and effect relationships to be derived. However, where uranium in aquatic sediments is concerned there is a lack of national (Australian) and international guidelines that are applicable to tropical sediments and the biological effects data available are limited or confounded by other variables. In the absence of clear uranium guidelines for sediments an internationally reported “Predicted No Effect Concentration” (PNEC) for uranium in temperate sediments was used as a “pseudo-guideline” value to identify sites with concentrations that might present an environmental risk and that should be further investigated. The applicability of the PNEC to the tropical Ranger site was understandably questioned by stakeholders and peers. The issues raised highlighted the need for international guidelines for uranium in aquatic sediments for tropical and temperate climates and an internationally accepted approach for deriving same. (author)

  19. A comparative study of the effects of trunk exercise program in aquatic and land-based therapy on gait in hemiplegic stroke patients

    OpenAIRE

    Park, Byoung-Sun; Noh, Ji-Woong; Kim, Mee-Young; Lee, Lim-Kyu; Yang, Seung-Min; Lee, Won-Deok; Shin, Yong-Sub; Kim, Ju-Hyun; Lee, Jeong-Uk; Kwak, Taek-Yong; Lee, Tae-Hyun; Park, Jaehong; Kim, Junghwan

    2016-01-01

    [Purpose] The purpose of this study was to compare the effects of aquatic and land-based trunk exercise program on gait in stroke patients. [Subjects and Methods] The subjects were 28 hemiplegic stroke patients (20 males, 8 females). The subjects performed a trunk exercise program for a total of four weeks. [Results] Walking speed and cycle, stance phase and stride length of the affected side, and the symmetry index of the stance phase significantly improved after the aquatic and land-based t...

  20. Polyvinylpyrrolidone and arsenic-induced changes in biological responses of model aquatic organisms exposed to iron-based nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Llaneza, Verónica [University of Florida, Engineering School of Sustainable Infrastructure and Environment, Department of Environmental Engineering Sciences (United States); Rodea-Palomares, Ismael [Univ. Autonoma de Madrid, Dept. de Biologia, Facultad de Ciencias (Spain); Zhou, Zuo [University of Florida, Engineering School of Sustainable Infrastructure and Environment, Department of Environmental Engineering Sciences (United States); Rosal, Roberto [Univ. de Alcalá, Dept. de Ingeniería Química (Spain); Fernández-Pina, Francisca [Univ. Autonoma de Madrid, Dept. de Biologia, Facultad de Ciencias (Spain); Bonzongo, Jean-Claude J., E-mail: bonzongo@ufl.edu [University of Florida, Engineering School of Sustainable Infrastructure and Environment, Department of Environmental Engineering Sciences (United States)

    2016-08-15

    The efficiency of zero-valent iron particles used in the remediation of contaminated groundwater has, with the emergence of nanotechnology, stimulated interest on the use of nano-size particles to take advantage of high-specific surface area and reactivity characteristics of nanoparticles (NPs). Accordingly, engineered iron-NPs are among the most widely used nanomaterials for in situ remediation. However, while several ecotoxicity studies have been conducted to investigate the adverse impacts of these NPs on aquatic organisms, research on the implications of spent iron-based NPs is lacking. In this study, a comparative approach is used, in which the biological effects of three iron-based NPs (Fe{sub 3}O{sub 4} and γ-Fe{sub 2}O{sub 3} NPs with particle sizes ranging from 20 to 50 nm, and Fe{sup 0}-NPs with an average particle size of 40 nm) on Raphidocelis subcapitata (formely known as Pseudokirchneriella subcapitata) and Daphnia magna were investigated using both as-prepared and pollutant-doped Fe-based NPs. For the latter, arsenic (As) was used as example sorbed pollutant. The results show that improved degree of NP dispersion by use of polyvinylpyrrolidone overlapped with both increased arsenic adsorption capacity and toxicity to the tested organisms. For R. subcapitata, Fe-oxide NPs were more toxic than Fe{sup 0}-NPs, due primarily to differences in the degree of NPs aggregation and ability to produce reactive oxygen species. For the invertebrate D. magna, a similar trend of biological responses was observed, except that sorption of As to Fe{sup 0}-NPs significantly increased the toxic response when compared to R. subcapitata. Overall, these findings point to the need for research on downstream implications of NP-pollutant complexes generated during water treatment by injection of NPs into aquatic systems.

  1. Polyvinylpyrrolidone and arsenic-induced changes in biological responses of model aquatic organisms exposed to iron-based nanoparticles

    International Nuclear Information System (INIS)

    Llaneza, Verónica; Rodea-Palomares, Ismael; Zhou, Zuo; Rosal, Roberto; Fernández-Pina, Francisca; Bonzongo, Jean-Claude J.

    2016-01-01

    The efficiency of zero-valent iron particles used in the remediation of contaminated groundwater has, with the emergence of nanotechnology, stimulated interest on the use of nano-size particles to take advantage of high-specific surface area and reactivity characteristics of nanoparticles (NPs). Accordingly, engineered iron-NPs are among the most widely used nanomaterials for in situ remediation. However, while several ecotoxicity studies have been conducted to investigate the adverse impacts of these NPs on aquatic organisms, research on the implications of spent iron-based NPs is lacking. In this study, a comparative approach is used, in which the biological effects of three iron-based NPs (Fe_3O_4 and γ-Fe_2O_3 NPs with particle sizes ranging from 20 to 50 nm, and Fe"0-NPs with an average particle size of 40 nm) on Raphidocelis subcapitata (formely known as Pseudokirchneriella subcapitata) and Daphnia magna were investigated using both as-prepared and pollutant-doped Fe-based NPs. For the latter, arsenic (As) was used as example sorbed pollutant. The results show that improved degree of NP dispersion by use of polyvinylpyrrolidone overlapped with both increased arsenic adsorption capacity and toxicity to the tested organisms. For R. subcapitata, Fe-oxide NPs were more toxic than Fe"0-NPs, due primarily to differences in the degree of NPs aggregation and ability to produce reactive oxygen species. For the invertebrate D. magna, a similar trend of biological responses was observed, except that sorption of As to Fe"0-NPs significantly increased the toxic response when compared to R. subcapitata. Overall, these findings point to the need for research on downstream implications of NP-pollutant complexes generated during water treatment by injection of NPs into aquatic systems.

  2. Polyvinylpyrrolidone and arsenic-induced changes in biological responses of model aquatic organisms exposed to iron-based nanoparticles

    Science.gov (United States)

    Llaneza, Verónica; Rodea-Palomares, Ismael; Zhou, Zuo; Rosal, Roberto; Fernández-Pina, Francisca; Bonzongo, Jean-Claude J.

    2016-08-01

    The efficiency of zero-valent iron particles used in the remediation of contaminated groundwater has, with the emergence of nanotechnology, stimulated interest on the use of nano-size particles to take advantage of high-specific surface area and reactivity characteristics of nanoparticles (NPs). Accordingly, engineered iron-NPs are among the most widely used nanomaterials for in situ remediation. However, while several ecotoxicity studies have been conducted to investigate the adverse impacts of these NPs on aquatic organisms, research on the implications of spent iron-based NPs is lacking. In this study, a comparative approach is used, in which the biological effects of three iron-based NPs (Fe3O4 and γ-Fe2O3 NPs with particle sizes ranging from 20 to 50 nm, and Fe0-NPs with an average particle size of 40 nm) on Raphidocelis subcapitata (formely known as Pseudokirchneriella subcapitata) and Daphnia magna were investigated using both as-prepared and pollutant-doped Fe-based NPs. For the latter, arsenic (As) was used as example sorbed pollutant. The results show that improved degree of NP dispersion by use of polyvinylpyrrolidone overlapped with both increased arsenic adsorption capacity and toxicity to the tested organisms. For R. subcapitata, Fe-oxide NPs were more toxic than Fe0-NPs, due primarily to differences in the degree of NPs aggregation and ability to produce reactive oxygen species. For the invertebrate D. magna, a similar trend of biological responses was observed, except that sorption of As to Fe0-NPs significantly increased the toxic response when compared to R. subcapitata. Overall, these findings point to the need for research on downstream implications of NP-pollutant complexes generated during water treatment by injection of NPs into aquatic systems.

  3. Comparing humic substance and protein compound effects on the bioaccumulation of perfluoroalkyl substances by Daphnia magna in water.

    Science.gov (United States)

    Xia, Xinghui; Dai, Zhineng; Rabearisoa, Andry Harinaina; Zhao, Pujun; Jiang, Xiaoman

    2015-01-01

    The influence of humic substances and protein compounds on the bioaccumulation of six types of perfluoroalkyl substances (PFASs) in Daphnia magna was compared. The humic substances included humic acid (HA) and fulvic acid (FA), the protein compounds included chicken egg albumin (albumin) and peptone, and the PFASs included perfluorooctane sulfonate (PFOS), perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), perfluorodecanoic acid, perfluoroundecanoic acid, and perfluorododecanoic acid. Four concentrations (0, 1, 10, and 20 mg L(-1)) of the four dissolved organic matter (DOM) types were investigated. At the 1 mg L(-1) level, HA and albumin enhanced all tested PFAS bioaccumulation, whereas FA and peptone only enhanced the bioaccumulation of shorter-chain PFASs (PFOS, PFOA, and PFNA). However, all four DOM types decreased all tested PFAS bioaccumulation at the 20 mg L(-1) level, and the decreasing ratios of bioaccumulation factors caused by FA, HA, albumin, and peptone were 1-49%, 23-77%, 17-58%, and 8-56%, respectively compared with those without DOM. This is because DOM not only reduced the bioavailable concentrations and uptake rates of PFASs but also lowered the elimination rates of PFASs in D. magna, and these opposite effects would change with different DOM types and concentrations. Although the partition coefficients (L kg(-1)) of PFASs between HA and water (10(4.21)-10(4.98)) were much lower than those between albumin and water (10(4.92)-10(5.86)), their effects on PFAS bioaccumulation were comparable. This study suggests that although PFASs are a type of proteinophilic compounds, humic substances also have important effects on their bioavailability and bioaccumulation in aquatic organisms. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Determination of malachite green in aquatic products based on magnetic molecularly imprinted polymers.

    Science.gov (United States)

    Lin, Zheng-zhong; Zhang, Hong-yuan; Peng, Ai-hong; Lin, Yi-dong; Li, Lu; Huang, Zhi-yong

    2016-06-01

    Magnetic molecularly imprinted polymers (MMIPs) were synthesized through precipitation polymerization using malachite green (MG) as template, methacrylic acid as monomer, ethylene dimethacrylate as crosslinker, and Fe3O4 magnetite as magnetic component. MMIPs were characterized by scanning electron microscopy, Fourier transform infrared spectrometry, and vibrating sample magnetometry. Under the optimum condition, the MMIPs obtained exhibited quick binding kinetics and high affinity to MG in the solution. Scatchard plot analysis revealed that the MMIPs contained only one type of binding site with dissociation constant of 24.0 μg mL(-1). The selectivity experiment confirmed that the MMIPs exhibited higher selective binding capacity for MG than its structurally related compound (e.g., crystal violet). As a sorbent for the extraction of MG in sample preparation, MMIPs together with the absorbed analytes could easily be separated from the sample matrix with an external magnet. After elution with methanol/acetic acid (9:1, v/v), MG in the eluent was determined by high-performance liquid chromatography coupled with UV detector with recoveries of 94.0-115%. Results indicated that the as-prepared MMIPs are promising materials for MG analysis in aquatic products. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Ranking REACH registered neutral, ionizable and ionic organic chemicals based on their aquatic persistency and mobility.

    Science.gov (United States)

    Arp, H P H; Brown, T N; Berger, U; Hale, S E

    2017-07-19

    The contaminants that have the greatest chances of appearing in drinking water are those that are mobile enough in the aquatic environment to enter drinking water sources and persistent enough to survive treatment processes. Herein a screening procedure to rank neutral, ionizable and ionic organic compounds for being persistent and mobile organic compounds (PMOCs) is presented and applied to the list of industrial substances registered under the EU REACH legislation as of December 2014. This comprised 5155 identifiable, unique organic structures. The minimum cut-off criteria considered for PMOC classification herein are a freshwater half-life >40 days, which is consistent with the REACH definition of freshwater persistency, and a log D oc water distribution coefficient). Experimental data were given the highest priority, followed by data from an array of available quantitative structure-activity relationships (QSARs), and as a third resort, an original Iterative Fragment Selection (IFS) QSAR. In total, 52% of the unique REACH structures made the minimum criteria to be considered a PMOC, and 21% achieved the highest PMOC ranking (half-life > 40 days, log D oc freshwater persistency, which was also the parameter that QSARs performed the most poorly at predicting. Several prioritized drinking water contaminants in the EU and USA, and other contaminants of concern, were identified as PMOCs. This identification and ranking procedure for PMOCs can be part of a strategy to better identify contaminants that pose a threat to drinking water sources.

  6. Probabilistic determination of the ecological risk from OTNE in aquatic and terrestrial compartments based on US-wide monitoring data.

    Science.gov (United States)

    McDonough, Kathleen; Casteel, Kenneth; Zoller, Ann; Wehmeyer, Kenneth; Hulzebos, Etje; Rila, Jean-Paul; Salvito, Daniel; Federle, Thomas

    2017-01-01

    OTNE [1-(1,2,3,4,5,6,7,8-octahydro-2,3,8,8-tetramethyl-2-naphthyl)ethan-1-one; trade name Iso E Super] is a fragrance ingredient commonly used in consumer products which are disposed down the drain. This research measured effluent and sludge concentrations of OTNE at 44 US wastewater treatment plants (WWTP). The mean effluent and sludge concentrations were 0.69 ± 0.65 μg/L and 20.6 ± 33.8 mg/kg dw respectively. Distribution of OTNE effluent concentrations and dilution factors were used to predict surface water and sediment concentrations and distributions of OTNE sludge concentrations and loading rates were used to predict terrestrial concentrations. The 90th percentile concentration of OTNE in US WWTP mixing zones was predicted to be 0.04 and 0.85 μg/L under mean and 7Q10 low flow (lowest river flow occurring over a 7 day period every 10 years) conditions respectively. The 90th percentile sediment concentrations under mean and 7Q10 low flow conditions were predicted to be 0.081 and 1.6 mg/kg dw respectively. Based on current US sludge application practices, the 90th percentile OTNE terrestrial concentration was 1.38 mg/kg dw. The probability of OTNE concentrations being below the predicted no effect concentration (PNEC) for the aquatic and sediment compartments was greater than 99%. For the terrestrial compartment, the probability of OTNE concentrations being lower than the PNEC was 97% for current US sludge application practices. Based on the results of this study, OTNE concentrations in US WWTP effluent and sludge do not pose an ecological risk to aquatic, sediment and terrestrial organisms. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Benthic algae stimulate leaf litter decomposition in detritus-based headwater streams: a case of aquatic priming effect?

    Science.gov (United States)

    Danger, Michael; Cornut, Julien; Chauvet, Eric; Chavez, Paola; Elger, Arnaud; Lecerf, Antoine

    2013-07-01

    In detritus-based ecosystems, autochthonous primary production contributes very little to the detritus pool. Yet primary producers may still influence the functioning of these ecosystems through complex interactions with decomposers and detritivores. Recent studies have suggested that, in aquatic systems, small amounts of labile carbon (C) (e.g., producer exudates), could increase the mineralization of more recalcitrant organic-matter pools (e.g., leaf litter). This process, called priming effect, should be exacerbated under low-nutrient conditions and may alter the nature of interactions among microbial groups, from competition under low-nutrient conditions to indirect mutualism under high-nutrient conditions. Theoretical models further predict that primary producers may be competitively excluded when allochthonous C sources enter an ecosystem. In this study, the effects of a benthic diatom on aquatic hyphomycetes, bacteria, and leaf litter decomposition were investigated under two nutrient levels in a factorial microcosm experiment simulating detritus-based, headwater stream ecosystems. Contrary to theoretical expectations, diatoms and decomposers were able to coexist under both nutrient conditions. Under low-nutrient conditions, diatoms increased leaf litter decomposition rate by 20% compared to treatments where they were absent. No effect was observed under high-nutrient conditions. The increase in leaf litter mineralization rate induced a positive feedback on diatom densities. We attribute these results to the priming effect of labile C exudates from primary producers. The presence of diatoms in combination with fungal decomposers also promoted decomposer diversity and, under low-nutrient conditions, led to a significant decrease in leaf litter C:P ratio that could improve secondary production. Results from our microcosm experiment suggest new mechanisms by which primary producers may influence organic matter dynamics even in ecosystems where autochthonous

  8. Are restored side channels sustainable aquatic habitat features? Predicting the potential persistence of side channels as aquatic habitats based on their fine sedimentation dynamics

    Science.gov (United States)

    Riquier, Jérémie; Piégay, Hervé; Lamouroux, Nicolas; Vaudor, Lise

    2017-10-01

    The restoration of side channels (also referred to as abandoned channels, former channels, floodplain channels, or side arms) is increasingly implemented to improve the ecological integrity of river-floodplain systems. However, the design of side channel restoration projects remains poorly informed by theory or empirical observations despite the increasing number of projects. Moreover, feedback regarding the hydromorphological adjustment of restored channels is rarely documented, making it difficult to predict channel persistence as aquatic habitats. In this study, we analyze the spatial and temporal patterns of fine sediment deposition (River, France, restored in 1999-2006 by a combination of dredging and/or partial to full reconnection of their extremities and as a by-product of an increase in minimum flow through the bypassed main channels. We develop prediction tools to assess the persistence of restored channels as aquatic habitats, using between five and seven monitoring surveys per channel (spanning 7-15 years after restoration). Observed channel-averaged sedimentation rates ranged from 0 to 40.3 cm·y- 1 and reached 90.3 cm·y- 1 locally. Some channels exhibited a significant decline of sedimentation rates through time, whereas others maintained rather constant rates. Scouring processes (i.e., self-rejuvenation capacity) were occasionally documented in 15 channels. Six of the 16 studied channels appeared to be self-sustaining. The 10 others accumulated more and more fine sediment deposits after restoration. Parametric modeling of sedimentation rates suggested that among these 10 channels, four have long life-durations (i.e., more than a century), three have intermediate life-durations (i.e., likely between three and nine decades), and three others have short life-durations (i.e., likely between two and five decades). Observed channel-averaged sedimentation rates can be predicted from the frequency and magnitude (i.e., maximum shear stress) of upstream

  9. Study in situ of the natural uranium, 60 Co and 137 Cs bioaccumulation factor in fish (Cyprinus carpio)

    International Nuclear Information System (INIS)

    Todoran, A.; Toma, A.; Dulama, C.; Horhoianu, V.; Hirica, O.; Patriche, N.; Tenciu, M.; Talpes, M.; Cristea, V.

    2006-01-01

    The paper presents the results of the 'in situ' research, aiming to determine the bioaccumulation factor of natural uranium, 60 Co and 137 Cs in fish (Cyprinus carpio) - the find link in aquatic ecosystems. The work performed is a part of a radioecological study achieved in the experimental pool of S.C.N. Pitesti. The objective of the research was to evaluate the release of the radioactive materials in the environment as well as to establish the transfer mechanisms of the radionuclides in the trophic chains from the aquatic ecosystem. (authors)

  10. Study in situ of the natural uranium, 60 Co and 137 Cs bioaccumulation factor in fish (Cyprinus carpio)

    Energy Technology Data Exchange (ETDEWEB)

    Todoran, A.; Toma, A.; Dulama, C.; Horhoianu, V.; Hirica, O. [Institute for Nuclear Research, Pitesti (Romania); Patriche, N.; Tenciu, M.; Talpes, M. [CPPPPIP, Galati (Romania); Cristea, V. [Galati Univ. (Romania)

    2006-07-01

    The paper presents the results of the 'in situ' research, aiming to determine the bioaccumulation factor of natural uranium, {sup 60}Co and {sup 137}Cs in fish (Cyprinus carpio) - the find link in aquatic ecosystems. The work performed is a part of a radioecological study achieved in the experimental pool of S.C.N. Pitesti. The objective of the research was to evaluate the release of the radioactive materials in the environment as well as to establish the transfer mechanisms of the radionuclides in the trophic chains from the aquatic ecosystem. (authors)

  11. Sub-aquatic response of a scintillator, fibre optic and silicon photomultiplier based radiation sensor

    Energy Technology Data Exchange (ETDEWEB)

    Jackson, Sarah F., E-mail: s.f.jackson@lancaster.ac.uk [Engineering Department, Lancaster University, Lancaster (United Kingdom); Monk, Stephen D., E-mail: s.monk@lancaster.ac.uk [Engineering Department, Lancaster University, Lancaster (United Kingdom); Stanley, Steven J., E-mail: steven.j.stanley@nnl.co.uk [National Nuclear Laboratory, A709 Springfields, Preston (United Kingdom); Lennox, Kathryn, E-mail: kathryn.lennox@nnl.co.uk [National Nuclear Laboratory, A709 Springfields, Preston (United Kingdom)

    2014-07-01

    We describe an attempt at the utilisation of two low level light sensors to improve on the design of a dose monitoring system, specifically for underwater applications with consideration for the effects of water attenuation. The gamma radiation ‘RadLine{sup ®}’ detector consists of an inorganic scintillating crystal coupled to a fibre optic cable which transports scintillation photons, up to hundreds of metres, to an optical sensor. Analysed here are two contemporary technologies; SensL's MiniSL a silicon photomultiplier (SiPM) and a Sens-Tech photon counting photomultiplier tube (PMT). A clinical radiotherapy linear accelerator (linac) is implemented as test beam, subjecting the RadLine{sup ®} to a highly controlled dose rate (ranging from 0 Sv h{sup −1} to 320 Sv h{sup −1}), averaging at 2 MeV in energy. The RadLine's underwater dose monitoring capabilities are tested with the aid of epoxy resin ‘solid water’ phantom blocks, used as a substitute for water. Our results show that the MiniSL SiPM is unsuitable for this application due to extremely high background noise levels, however the Sens-Tech PMT performs satisfactorily and the detected dose rate due to the effects of water attenuation compares strongly with MCNP simulation data and NIST database values. We conclude that the PMT shows promise for its ultimate use in the First Generation Magnox Storage Pond (FGMSP) on the Sellafield site. - Highlights: • RadLine{sup ®} consists of a scintillating crystal coupled to a fibre optic cable and photon detector. • Here the dose monitoring system is trialled with SiPM and PMT type photon detectors. • A clinical linear accelerator (linac) is used as a test beam. • Sub-aquatic response is compared to Monte Carlo simulations and the NIST database.

  12. Heavy metals and metallothionein in vespertilionid bats foraging over aquatic habitats in the Czech Republic

    Czech Academy of Sciences Publication Activity Database

    Pikula, J.; Zukal, Jan; Adam, V.; Banďouchová, H.; Beklová, M.; Hájková, P.; Horáková, J.; Kizek, R.; Valentíková, L.

    2010-01-01

    Roč. 29, č. 3 (2010), s. 501-506 ISSN 0730-7268. [International Workshop on Aquatic Toxicology and Biomonitoring /1./. Vodňany, 27.08.2008-29.08.2008] Institutional research plan: CEZ:AV0Z60930519 Keywords : Microchiroptera * insect foraging * metallic elements * bioaccumulation Subject RIV: EG - Zoology Impact factor: 3.026, year: 2010

  13. Environmental enrichment for aquatic animals.

    Science.gov (United States)

    Corcoran, Mike

    2015-05-01

    Aquatic animals are the most popular pets in the United States based on the number of owned pets. They are popular display animals and are increasingly used in research settings. Enrichment of captive animals is an important element of zoo and laboratory medicine. The importance of enrichment for aquatic animals has been slower in implementation. For a long time, there was debate over whether or not fish were able to experience pain or form long-term memories. As that debate has reduced and the consciousness of more aquatic animals is accepted, the need to discuss enrichment for these animals has increased. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Comparison of Manual Mapping and Automated Object-Based Image Analysis of Non-Submerged Aquatic Vegetation from Very-High-Resolution UAS Images

    Directory of Open Access Journals (Sweden)

    Eva Husson

    2016-09-01

    Full Text Available Aquatic vegetation has important ecological and regulatory functions and should be monitored in order to detect ecosystem changes. Field data collection is often costly and time-consuming; remote sensing with unmanned aircraft systems (UASs provides aerial images with sub-decimetre resolution and offers a potential data source for vegetation mapping. In a manual mapping approach, UAS true-colour images with 5-cm-resolution pixels allowed for the identification of non-submerged aquatic vegetation at the species level. However, manual mapping is labour-intensive, and while automated classification methods are available, they have rarely been evaluated for aquatic vegetation, particularly at the scale of individual vegetation stands. We evaluated classification accuracy and time-efficiency for mapping non-submerged aquatic vegetation at three levels of detail at five test sites (100 m × 100 m differing in vegetation complexity. We used object-based image analysis and tested two classification methods (threshold classification and Random Forest using eCognition®. The automated classification results were compared to results from manual mapping. Using threshold classification, overall accuracy at the five test sites ranged from 93% to 99% for the water-versus-vegetation level and from 62% to 90% for the growth-form level. Using Random Forest classification, overall accuracy ranged from 56% to 94% for the growth-form level and from 52% to 75% for the dominant-taxon level. Overall classification accuracy decreased with increasing vegetation complexity. In test sites with more complex vegetation, automated classification was more time-efficient than manual mapping. This study demonstrated that automated classification of non-submerged aquatic vegetation from true-colour UAS images was feasible, indicating good potential for operative mapping of aquatic vegetation. When choosing the preferred mapping method (manual versus automated the desired level of

  15. Effect-based tools for monitoring and predicting the ecotoxicological effects of chemicals in the aquatic environment.

    Science.gov (United States)

    Connon, Richard E; Geist, Juergen; Werner, Inge

    2012-01-01

    Ecotoxicology faces the challenge of assessing and predicting the effects of an increasing number of chemical stressors on aquatic species and ecosystems. Herein we review currently applied tools in ecological risk assessment, combining information on exposure with expected biological effects or environmental water quality standards; currently applied effect-based tools are presented based on whether exposure occurs in a controlled laboratory environment or in the field. With increasing ecological relevance the reproducibility, specificity and thus suitability for standardisation of methods tends to diminish. We discuss the use of biomarkers in ecotoxicology including ecotoxicogenomics-based endpoints, which are becoming increasingly important for the detection of sublethal effects. Carefully selected sets of biomarkers allow an assessment of exposure to and effects of toxic chemicals, as well as the health status of organisms and, when combined with chemical analysis, identification of toxicant(s). The promising concept of "adverse outcome pathways (AOP)" links mechanistic responses on the cellular level with whole organism, population, community and potentially ecosystem effects and services. For most toxic mechanisms, however, practical application of AOPs will require more information and the identification of key links between responses, as well as key indicators, at different levels of biological organization, ecosystem functioning and ecosystem services.

  16. Effect-Based Tools for Monitoring and Predicting the Ecotoxicological Effects of Chemicals in the Aquatic Environment

    Directory of Open Access Journals (Sweden)

    Richard E. Connon

    2012-09-01

    Full Text Available Ecotoxicology faces the challenge of assessing and predicting the effects of an increasing number of chemical stressors on aquatic species and ecosystems. Herein we review currently applied tools in ecological risk assessment, combining information on exposure with expected biological effects or environmental water quality standards; currently applied effect-based tools are presented based on whether exposure occurs in a controlled laboratory environment or in the field. With increasing ecological relevance the reproducibility, specificity and thus suitability for standardisation of methods tends to diminish. We discuss the use of biomarkers in ecotoxicology including ecotoxicogenomics-based endpoints, which are becoming increasingly important for the detection of sublethal effects. Carefully selected sets of biomarkers allow an assessment of exposure to and effects of toxic chemicals, as well as the health status of organisms and, when combined with chemical analysis, identification of toxicant(s. The promising concept of “adverse outcome pathways (AOP” links mechanistic responses on the cellular level with whole organism, population, community and potentially ecosystem effects and services. For most toxic mechanisms, however, practical application of AOPs will require more information and the identification of key links between responses, as well as key indicators, at different levels of biological organization, ecosystem functioning and ecosystem services.

  17. Microplastics in the aquatic and terrestrial environment: sources (with a specific focus on personal care products), fate and effects.

    Science.gov (United States)

    Duis, Karen; Coors, Anja

    2016-01-01

    Due to the widespread use and durability of synthetic polymers, plastic debris occurs in the environment worldwide. In the present work, information on sources and fate of microplastic particles in the aquatic and terrestrial environment, and on their uptake and effects, mainly in aquatic organisms, is reviewed. Microplastics in the environment originate from a variety of sources. Quantitative information on the relevance of these sources is generally lacking, but first estimates indicate that abrasion and fragmentation of larger plastic items and materials containing synthetic polymers are likely to be most relevant. Microplastics are ingested and, mostly, excreted rapidly by numerous aquatic organisms. So far, there is no clear evidence of bioaccumulation or biomagnification. In laboratory studies, the ingestion of large amounts of microplastics mainly led to a lower food uptake and, consequently, reduced energy reserves and effects on other physiological functions. Based on the evaluated data, the lowest microplastic concentrations affecting marine organisms exposed via water are much higher than levels measured in marine water. In lugworms exposed via sediment, effects were observed at microplastic levels that were higher than those in subtidal sediments but in the same range as maximum levels in beach sediments. Hydrophobic contaminants are enriched on microplastics, but the available experimental results and modelling approaches indicate that the transfer of sorbed pollutants by microplastics is not likely to contribute significantly to bioaccumulation of these pollutants. Prior to being able to comprehensively assess possible environmental risks caused by microplastics a number of knowledge gaps need to be filled. However, in view of the persistence of microplastics in the environment, the high concentrations measured at some environmental sites and the prospective of strongly increasing concentrations, the release of plastics into the environment should be

  18. Selenium speciation influences bioaccumulation in Limnodynastes peronii tadpoles

    Energy Technology Data Exchange (ETDEWEB)

    Lanctôt, C.M., E-mail: c.lanctot@griffith.edu.au [Central Queensland University, School of Medical and Applied Sciences, Gladstone, QLD 4680 (Australia); Australian Rivers Institute, School of Environment, Griffith University, Southport, QLD 4215 (Australia); Melvin, S.D., E-mail: s.melvin@griffith.edu.au [Australian Rivers Institute, School of Environment, Griffith University, Southport, QLD 4215 (Australia); Cresswell, T., E-mail: tom.cresswell@ansto.gov.au [Australian Nuclear Science and Technology Organisation (ANSTO), Locked Bag 2001, Kirrawee DC, NSW 2232 (Australia)

    2017-06-15

    Highlights: • Differences in SeIV and SeVI bioaccumulation and biodistribution were assessed. • Limnodynastes peronii tadpoles accumulated more selenite than selenate. • Selenium depuration kinetics was similar for both forms. • Tadpoles accumulated Se predominantly in the digestive and excretory organs. - Abstract: Despite being essential for animal health and fitness, Se has a relatively narrow range between deficiency and toxicity, and excess Se can cause a variety of adverse effects in aquatic organisms. Amphibians are particularly vulnerable to contaminants during larval aquatic life stage, because they can accumulate toxic ions through various routes including skin, gills, lungs and digestive tract. Few attempts have been made to understand the tissue-specific accumulation of trace elements, including the impacts of chemical speciation in developing amphibian larvae. We used radiolabelled {sup 75}Se to explore the biokinetics and tissue distributions of the two dominant forms occurring in surface waters, selenite (SeIV) and selenate (SeVI). Tadpoles of the native Australian frog Limnodynastes peronii were exposed to Se in both forms, and live-animal gamma spectroscopy was used to track accumulation and retention over time. Tissue biodistributions were also quantified at the end of the uptake and depuration phases. Results showed the bioconcentration of SeIV to be 3 times greater compared to SeVI, but rates of elimination were similar for both forms. This suggests a change of Se speciation within the organism prior to excretion. Depuration kinetics were best described by a one-phase exponential decay model, and tadpoles retained approximately 19% of the accumulated Se after 12 days of depuration in clean water. Selenium bioaccumulation was greatest in digestive and excretory organs, as well as the eye, which may directly relate to previously reported Se-induced impairments. Results demonstrate how the use of radiotracing techniques can significantly

  19. The bioaccumulation factor for phosphorus-32 in edible fish tissue. Final report 1 Aug 77-15 Oct 79

    International Nuclear Information System (INIS)

    Kaho, B.; Turgeon, K.

    1980-03-01

    Information used to derive the bioaccumulation factor for P-32 in edible portions of fish from water was reviewed to evaluate the currently recommended values of 100,000 in fresh water and 29,000 in sea water that are applied in generic calculations of radiation doses to persons from nuclear power reactor effluents. A phosphorus bioaccumulation factor of 70,000 was calculated for larger rivers and estuarine waters on the basis of geometric mean phosphorus concentrations of 2 mg/g wet weight in fish muscle and 0.03 mg/1 dissolved in water. A bioaccumulation factor for P-32 of 3,000 was computed by multiplying the phosphorus bioaccumulation factor by the ratio of the biological to the effective turnover rate in fish muscle. A biological turnover rate in muscle of 0.2 percent per day was estimated from phosphorus balances as a long-term average for large fish, although more rapid turnovers have been observed for brief periods. Large deviations from these selected generic bioaccumulation factors occur because of differences in phosphorus concentrations and turnover rates. Bioaccumulation of this magnitude is due to P-32 concentration at lowest trophic levels in the food web, not by concentration in fish, hence the availability of concentrating organisms determines whether this bioaccumulation factor is reached. Several other conditions that affect the P-32 bioaccumulation factor have not been quantified but are suggested for study. Measurement programs are recommended to determine site-specific P-32 bioaccumulation factors and enlarge the data base for the generic values

  20. A spatially and temporally explicit, individual-based, life-history and productivity modeling approach for aquatic species

    Science.gov (United States)

    Realized life history expression and productivity in aquatic species, and salmonid fishes in particular, is the result of multiple interacting factors including genetics, habitat, growth potential and condition, and the thermal regime individuals experience, both at critical stag...

  1. Exposure assessment of metal-based nanoparticles in aquatic environments: interactive influence of water chemistry and nanopaticle characteristics

    CSIR Research Space (South Africa)

    Thwala, Melusi

    2014-09-01

    Full Text Available Transformation and bioavailability information of engineered nanoparticles (ENPs) in environmental systems impedes assessment of their potential risks to aquatic environments. In aqueous environments ENPs undergo numerous transformation processes...

  2. Aquatic studies

    International Nuclear Information System (INIS)

    Anon.

    1980-01-01

    Thermal stress to microorganisms was measured by the production of dissolved organic matter by algal communities and the mineralization of glucose by heterotrophic populations. Mutagenic activity as measured by the Ames/Salmonella/microsome assay indicate that such activity does not occur in Par Pond, although limited mutagenic activity does occur in a nearby canal system due to chlorination of cooling water. Sodium hypochlorite, used as an algicide in the reactor fuel storage basins, caused increased pitting corrosion to reactor fuel targets. Five other compounds selected for testing proved to be superior to sodium hypochlorite. Legionella pneumophila, the pathogen which causes Legionnaire's disease, was found to be a natural part of aquatic ecosystems. It occurs over a wide range of environments and is able to utilize nutrients provided by primary producers. Phytoplankton size classes of less than 3 μm (less than 5% of the total phytoplankton biomass) accounted for 15 to 40% of the total primary productivity in Par Pond, Pond C, and Clark Hill Reservoir. Three major biological data sets were compiled and are available in the SRL computer system for analysis: the SRP deer herd data; 20 years of Par Pond data; and 25 years of biological data on the Savannah River. Results of marine studies indicated that nearly all plutonium in the Savannah River and its estuary resulted from nuclear weapons fallout. The plutonium concentration in the Savannah River is about one fourth the concentration in the Newport River which has no nuclear operations associated with it

  3. Integrated assessment of river health based on the conditions of water quality,aquatic life and physical habitat

    Institute of Scientific and Technical Information of China (English)

    MENG Wei; ZHANG Nan; ZHANG Yuan; ZHENG Binghui

    2009-01-01

    The health conditions of Liao River were assessed using 25 sampling sites in April 2005, with water quality index, biotic index and physical habitat quality index.Based on the method of cluster analysis (CA) for water quality indices, it reveals that heavily polluted sites of Liao River are located at estuary and mainstream.The aquatic species surveyed were attached algae and benthic invertebrates.The result shows that the diversity and biomass of attached algae and benthic index of biotic integrity (B-IBI) are degrading as the chemical and physical quality of water bodies deteriorating.Physiochemical parameters, BOD5, CODCr, TN, TP, NH3-N, DO, petroleum hydrocarbon and conductivity, were statistically analyzed with principal component analysis and correlation analysis.The statistical results were incorporated into the integrated assessing water quality index, combining fecal coliform count, attached algae diversity, B-IBI and physical habitat quality score, a comprehensive integrated assessing system of river ecological health was established.Based on the systimetic assesment, the assessed sites are categorized into 9 "healthy" and "sub-healthy" sites and 8 "sub-sick" and "sick" sites.

  4. Animal protein production modules in biological life support systems: Novel combined aquaculture techniques based on the closed equilibrated biological aquatic system (C.E.B.A.S.)

    Science.gov (United States)

    Blüm, V.; Andriske, M.; Kreuzberg, K.; Schreibman, M. P.

    Based on the experiences made with the Closed Equilibrated Biological Aquatic System (C.E.B.A.S.) which was primarily deveoloped for long-term and multi-generation experiments with aquatic animals and plants in a space station highly effective fresh water recycling modules were elaborated utilizing a combination of ammonia oxidizing bacteria filters and higher plants. These exhibit a high effectivity to eliminate phosphate and anorganic nitrogen compounds and arc. in addidition. able to contribute to the oxygen supply of the aquatic animals. The C.E.B.A.S. filter system is able to keep a closed artificial aquatic ecosystem containing teleost fishes and water snails biologically stable for several month and to eliminate waste products deriving from degraded dead fishes without a decrease of the oxygen concentration down to less than 3.5 mg/l at 25 °C. More advanced C.E.B.A.S. filter systems, the BIOCURE filters, were also developed for utilization in semiintensive and intensive aquaculture systems for fishes. In fact such combined animal-plant aquaculture systems represent highly effective productions sites for human food if proper plant and fish species are selected The present papers elucidates ways to novel aquaculture systems in which herbivorous fishes are raised by feeding them with plant biomass produced in the BIOCURE filters and presents the scheme of a modification which utilizes a plant species suitable also for human nutrition. Special attention is paid to the benefits of closed aquaculture system modules which may be integrated into bioregenerative life support systems of a higher complexity for, e. g.. lunar or planetary bases including some psychologiccal aspects of the introduction of animal protein production into plant-based life support systems. Moreover, the basic reproductive biological problems of aquatic animal breeding under reduced gravity are explained leading to a disposition of essential research programs in this context.

  5. In vitro to in vivo extrapolation of biotransformation rates for assessing bioaccumulation of hydrophobic organic chemicals in mammals.

    Science.gov (United States)

    Lee, Yung-Shan; Lo, Justin C; Otton, S Victoria; Moore, Margo M; Kennedy, Chris J; Gobas, Frank A P C

    2017-07-01

    Incorporating biotransformation in bioaccumulation assessments of hydrophobic chemicals in both aquatic and terrestrial organisms in a simple, rapid, and cost-effective manner is urgently needed to improve bioaccumulation assessments of potentially bioaccumulative substances. One approach to estimate whole-animal biotransformation rate constants is to combine in vitro measurements of hepatic biotransformation kinetics with in vitro to in vivo extrapolation (IVIVE) and bioaccumulation modeling. An established IVIVE modeling approach exists for pharmaceuticals (referred to in the present study as IVIVE-Ph) and has recently been adapted for chemical bioaccumulation assessments in fish. The present study proposes and tests an alternative IVIVE-B technique to support bioaccumulation assessment of hydrophobic chemicals with a log octanol-water partition coefficient (K OW ) ≥ 4 in mammals. The IVIVE-B approach requires fewer physiological and physiochemical parameters than the IVIVE-Ph approach and does not involve interconversions between clearance and rate constants in the extrapolation. Using in vitro depletion rates, the results show that the IVIVE-B and IVIVE-Ph models yield similar estimates of rat whole-organism biotransformation rate constants for hypothetical chemicals with log K OW  ≥ 4. The IVIVE-B approach generated in vivo biotransformation rate constants and biomagnification factors (BMFs) for benzo[a]pyrene that are within the range of empirical observations. The proposed IVIVE-B technique may be a useful tool for assessing BMFs of hydrophobic organic chemicals in mammals. Environ Toxicol Chem 2017;36:1934-1946. © 2016 SETAC. © 2016 SETAC.

  6. Effect of copper on growth of an aquatic macrophyte, Elodea canadensis

    Energy Technology Data Exchange (ETDEWEB)

    Mal, T.K.; Adorjan, Peter; Corbett, A.L

    2002-12-01

    Elodea canadensis may be a good biomonitor for copper, but not a good bioaccumulator. - Elodea canadensis has been proposed as a potential biomonitor due to its wide distribution and apparent ability to accumulate pollutants in aquatic ecosystems. We investigated the effects of copper sulfate on growth in E. canadensis to determine its effectiveness as a biomonitor of copper pollution in aquatic systems and whether growth is a suitable index of sub-lethal stress. Copper sulfate significantly slowed or stopped growth at all concentrations (low: 1 ppm, medium: 5 ppm, high: 10 ppm of copper sulfate) used. Final plant drymass was significantly lower in medium and high copper treatments compared with controls. E. canadensis appears to be very sensitive to copper levels, and may be useful as a biomonitor of copper levels in aquatic systems. However, its utility as a bioaccumulator may be limited, because we observed senescence of most leaves in all copper-treated plants following 4 weeks of treatment.

  7. Effect of copper on growth of an aquatic macrophyte, Elodea canadensis

    International Nuclear Information System (INIS)

    Mal, T.K.; Adorjan, Peter; Corbett, A.L.

    2002-01-01

    Elodea canadensis may be a good biomonitor for copper, but not a good bioaccumulator. - Elodea canadensis has been proposed as a potential biomonitor due to its wide distribution and apparent ability to accumulate pollutants in aquatic ecosystems. We investigated the effects of copper sulfate on growth in E. canadensis to determine its effectiveness as a biomonitor of copper pollution in aquatic systems and whether growth is a suitable index of sub-lethal stress. Copper sulfate significantly slowed or stopped growth at all concentrations (low: 1 ppm, medium: 5 ppm, high: 10 ppm of copper sulfate) used. Final plant drymass was significantly lower in medium and high copper treatments compared with controls. E. canadensis appears to be very sensitive to copper levels, and may be useful as a biomonitor of copper levels in aquatic systems. However, its utility as a bioaccumulator may be limited, because we observed senescence of most leaves in all copper-treated plants following 4 weeks of treatment

  8. Assessing Toxicity of Obscurant Grade Pan-Based Carbon Fiber Aquatic Species Chronic Tests

    National Research Council Canada - National Science Library

    Chester, N. A; Haley, M. V; Kumas, C. W; Checkai, R. T

    2004-01-01

    ...). Use of polyacrylonitrile (PAN)-based carbon fiber in the module will provide user-capability for delivering large area obscurant screens in the millimeter wave-range of the electromagnetic spectrum while maintaining...

  9. MODEL-BASED CLUSTERING FOR CLASSIFICATION OF AQUATIC SYSTEMS AND DIAGNOSIS OF ECOLOGICAL STRESS

    Science.gov (United States)

    Clustering approaches were developed using the classification likelihood, the mixture likelihood, and also using a randomization approach with a model index. Using a clustering approach based on the mixture and classification likelihoods, we have developed an algorithm that...

  10. Evaluation of Colloidal Stability and Ecotoxicity of Metal-based Nanoparticles in the Aquatic and Terrestrial Systems

    Science.gov (United States)

    Pokhrel, Lok Raj

    NPs, ZnONPs, or their ions. Overall, various metal-based nanoparticles revealed lower toxicity than their ions against multiple organisms. This study showed that particle size, surface properties, and ion release kinetics of AgNPs modify following release into aquatic environment, suggesting potential implications to ecosystem health and functions, and that caution be applied when extending one species toxicity results to another because obvious differences in organism biology---supporting species sensitivity paradigm---can significantly alter nanoparticle or ionic toxicity.

  11. Heavy metal bioaccumulation in Callinectes amnicola and ...

    African Journals Online (AJOL)

    The bioaccumulation of heavy metals in organisms is as a result of pollutants discharge generated by anthropogenic and natural activities which has become a tremendous concern in developing nations. The levels of cadmium, copper, chromium, lead, zinc and nickel in the tissue of Callinectes amnicola and ...

  12. Bioaccumulation and distribution of organochlorine residues across ...

    African Journals Online (AJOL)

    Eighteen organochlorine pesticide (OCP) residues were measured in the water, sediment, plankton, benthic invertebrates and fish in various sections of the Lagos Lagoon in 2014 to investigate their bioaccumulation and distribution in the food web. The analysis was done using gas chromatography with an electron capture ...

  13. Tissue-specific bioaccumulation of human and veterinary antibiotics in bile, plasma, liver and muscle tissues of wild fish from a highly urbanized region

    International Nuclear Information System (INIS)

    Zhao, Jian-Liang; Liu, You-Sheng; Liu, Wang-Rong; Jiang, Yu-Xia; Su, Hao-Chang; Zhang, Qian-Qian; Chen, Xiao-Wen; Yang, Yuan-Yuan; Chen, Jun; Liu, Shuang-Shuang; Pan, Chang-Gui; Huang, Guo-Yong; Ying, Guang-Guo

    2015-01-01

    We investigated the bioaccumulation of antibiotics in bile, plasma, liver and muscle tissues of wild fish from four rivers in the Pearl River Delta region. In total, 12 antibiotics were present in at least one type of fish tissues from nine wild fish species in the four rivers. The mean values of log bioaccumulation factors (log BAFs) for the detected antibiotics in fish bile, plasma, liver, and muscle tissues were at the range of 2.06–4.08, 1.85–3.47, 1.41–3.51, and 0.48–2.70, respectively. As the digestion tissues, fish bile, plasma, and liver showed strong bioaccumulation ability for some antibiotics, indicating a different bioaccumulation pattern from hydrophobic organic contaminants. Human health risk assessment based on potential fish consumption indicates that these antibiotics do not appear to pose an appreciable risk to human health. To the best of our knowledge, this is first report of bioaccumulation patterns of antibiotics in wild fish bile and plasma. - Highlights: • We investigated the bioaccumulation of antibiotics in wild fish from the Pearl River Delta region. • Twelve antibiotics were found in fish bile, plasma, liver and muscle tissues. • High log bioaccumulation factors suggested strong bioaccumulation ability for some antibiotics in wild fish tissues. • The presence of antibiotics in fish bile and plasma tissues indicates a novel bioaccumulation pattern. • Potential adverse effects are possibly caused by the high internal antibiotic concentrations in tissues. - Fish bile and plasma displayed strong bioaccumulation ability for some antibiotics, indicating a novel bioaccumulation pattern for antibiotics in the contaminated environment

  14. Cell-Based Sensor System Using L6 Cells for Broad Band Continuous Pollutant Monitoring in Aquatic Environments

    Directory of Open Access Journals (Sweden)

    Evamaria Stütz

    2012-03-01

    Full Text Available Pollution of drinking water sources represents a continuously emerging problem in global environmental protection. Novel techniques for real-time monitoring of water quality, capable of the detection of unanticipated toxic and bioactive substances, are urgently needed. In this study, the applicability of a cell-based sensor system using selected eukaryotic cell lines for the detection of aquatic pollutants is shown. Readout parameters of the cells were the acidification (metabolism, oxygen consumption (respiration and impedance (morphology of the cells. A variety of potential cytotoxic classes of substances (heavy metals, pharmaceuticals, neurotoxins, waste water was tested with monolayers of L6 cells (rat myoblasts. The cytotoxicity or cellular effects induced by inorganic ions (Ni2+ and Cu2+ can be detected with the metabolic parameters acidification and respiration down to 0.5 mg/L, whereas the detection limit for other substances like nicotine and acetaminophen are rather high, in the range of 0.1 mg/L and 100 mg/L. In a close to application model a real waste water sample shows detectable signals, indicating the existence of cytotoxic substances. The results support the paradigm change from single substance detection to the monitoring of overall toxicity.

  15. Palaeotemperature estimation in the Holsteinian Interglacial (MIS 11) based on oxygen isotopes of aquatic gastropods from eastern Poland

    Science.gov (United States)

    Szymanek, Marcin

    2017-12-01

    For quantitative estimation of past water temperature of four Holsteinian (MIS 11) palaeolakes from eastern Poland, the oxygen isotope palaeothermometer was applied to shells of the aquatic gastropods Viviparus diluvianus and Valvata piscinalis. The δ18O composition of their shells demonstrated the average growth-season water temperatures during the mesocratic stage of the interglacial (Ortel Królewski Lake), during its climatic optimum - the Carpinus-Abies Zone (Ossówka-Hrud, Roskosz and Szymanowo Lakes), and in the post-optimum (Szymanowo Lake). The calculation was based on δ18OShell values and the δ18OWater assumed for the Holsteinian from the modern oxygen isotope composition of precipitation and the expected amount of evaporative enrichment. The mean oxygen isotope palaeotemperatures of Ortel Królewski lake waters were in the range of 18.1-21.9°C and were uniform for the Taxus and Pinus-Larix zones. Ossówka-Hrud and Roskosz Lakes had mean temperatures of 17.4-21.0°C during the climatic optimum, whereas the temperature of Szymanowo lake waters was estimated at 20.6-21.7°C at that time. These values are concordant with the pollen-inferred July air temperatures noted during the Holsteinian in eastern Poland. Relatively high values of 25°C in the post-optimum noted at Szymanowo were connected with the presence of a shallow and warm isolated bay indicated by pollen and mollusc records.

  16. UV filters bioaccumulation in fish from Iberian river basins

    Energy Technology Data Exchange (ETDEWEB)

    Gago-Ferrero, Pablo [Dept. of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA), Spanish Council for Scientific Research (CSIC), Jordi Girona 18-26, E-08034 Barcelona (Spain); Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, 15771 Athens (Greece); Díaz-Cruz, M. Silvia, E-mail: sdcqam@cid.csic.es [Dept. of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA), Spanish Council for Scientific Research (CSIC), Jordi Girona 18-26, E-08034 Barcelona (Spain); Barceló, Damià [Dept. of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA), Spanish Council for Scientific Research (CSIC), Jordi Girona 18-26, E-08034 Barcelona (Spain); Catalan Institute for Water Research (ICRA), Parc Científic i Tecnològic de la Universitat de Girona, C/ Emili Grahit, 101 Edifici H2O, E-17003 Girona (Spain)

    2015-06-15

    The occurrence of eight organic UV filters (UV-Fs) was assessed in fish from four Iberian river basins. This group of compounds is extensively used in cosmetic products and other industrial goods to avoid the damaging effects of UV radiation, and has been found to be ubiquitous contaminants in the aquatic ecosystem. In particular, fish are considered by the scientific community to be the most feasible organism for contamination monitoring in aquatic ecosystems. Despite that, studies on the bioaccumulation of UV-F are scarce. In this study fish samples from four Iberian river basins under high anthropogenic pressure were analysed by liquid chromatography–tandem mass spectrometry (HPLC–MS/MS). Benzophenone-3 (BP3), ethylhexyl methoxycinnamate (EHMC), 4-methylbenzylidene camphor (4MBC) and octocrylene (OC) were the predominant pollutants in the fish samples, with concentrations in the range of ng/g dry weight (d.w.). The results indicated that most polluted area corresponded to Guadalquivir River basin, where maximum concentrations were found for EHMC (241.7 ng/g d.w.). Sediments from this river basin were also analysed. Lower values were observed in relation to fish for OC and EHMC, ranging from below the limits of detection to 23 ng/g d.w. Accumulation levels of UV-F in the fish were used to calculate biota-sediment accumulation factors (BSAFs). These values were always below 1, in the range of 0.04–0.3, indicating that the target UV-Fs are excreted by fish only to some extent. The fact that the highest concentrations were determined in predators suggests that biomagnification of UV-F may take place along the freshwater food web. - Highlights: • First evidence of UV filters in fish from Iberian rivers • Biota-sediment accumulation factors (BSAFs) were always below 1. • Predator species presented higher UV-F concentrations suggesting trophic magnification.

  17. UV filters bioaccumulation in fish from Iberian river basins

    International Nuclear Information System (INIS)

    Gago-Ferrero, Pablo; Díaz-Cruz, M. Silvia; Barceló, Damià

    2015-01-01

    The occurrence of eight organic UV filters (UV-Fs) was assessed in fish from four Iberian river basins. This group of compounds is extensively used in cosmetic products and other industrial goods to avoid the damaging effects of UV radiation, and has been found to be ubiquitous contaminants in the aquatic ecosystem. In particular, fish are considered by the scientific community to be the most feasible organism for contamination monitoring in aquatic ecosystems. Despite that, studies on the bioaccumulation of UV-F are scarce. In this study fish samples from four Iberian river basins under high anthropogenic pressure were analysed by liquid chromatography–tandem mass spectrometry (HPLC–MS/MS). Benzophenone-3 (BP3), ethylhexyl methoxycinnamate (EHMC), 4-methylbenzylidene camphor (4MBC) and octocrylene (OC) were the predominant pollutants in the fish samples, with concentrations in the range of ng/g dry weight (d.w.). The results indicated that most polluted area corresponded to Guadalquivir River basin, where maximum concentrations were found for EHMC (241.7 ng/g d.w.). Sediments from this river basin were also analysed. Lower values were observed in relation to fish for OC and EHMC, ranging from below the limits of detection to 23 ng/g d.w. Accumulation levels of UV-F in the fish were used to calculate biota-sediment accumulation factors (BSAFs). These values were always below 1, in the range of 0.04–0.3, indicating that the target UV-Fs are excreted by fish only to some extent. The fact that the highest concentrations were determined in predators suggests that biomagnification of UV-F may take place along the freshwater food web. - Highlights: • First evidence of UV filters in fish from Iberian rivers • Biota-sediment accumulation factors (BSAFs) were always below 1. • Predator species presented higher UV-F concentrations suggesting trophic magnification

  18. UV filters bioaccumulation in fish from Iberian river basins.

    Science.gov (United States)

    Gago-Ferrero, Pablo; Díaz-Cruz, M Silvia; Barceló, Damià

    2015-06-15

    The occurrence of eight organic UV filters (UV-Fs) was assessed in fish from four Iberian river basins. This group of compounds is extensively used in cosmetic products and other industrial goods to avoid the damaging effects of UV radiation, and has been found to be ubiquitous contaminants in the aquatic ecosystem. In particular, fish are considered by the scientific community to be the most feasible organism for contamination monitoring in aquatic ecosystems. Despite that, studies on the bioaccumulation of UV-F are scarce. In this study fish samples from four Iberian river basins under high anthropogenic pressure were analysed by liquid chromatography-tandem mass spectrometry (HPLC-MS/MS). Benzophenone-3 (BP3), ethylhexyl methoxycinnamate (EHMC), 4-methylbenzylidene camphor (4MBC) and octocrylene (OC) were the predominant pollutants in the fish samples, with concentrations in the range of ng/g dry weight (d.w.). The results indicated that most polluted area corresponded to Guadalquivir River basin, where maximum concentrations were found for EHMC (241.7 ng/gd.w.). Sediments from this river basin were also analysed. Lower values were observed in relation to fish for OC and EHMC, ranging from below the limits of detection to 23 ng/gd.w. Accumulation levels of UV-F in the fish were used to calculate biota-sediment accumulation factors (BSAFs). These values were always below 1, in the range of 0.04-0.3, indicating that the target UV-Fs are excreted by fish only to some extent. The fact that the highest concentrations were determined in predators suggests that biomagnification of UV-F may take place along the freshwater food web. Copyright © 2015. Published by Elsevier B.V.

  19. Metals in the Scheldt estuary: From environmental concentrations to bioaccumulation.

    Science.gov (United States)

    Van Ael, Evy; Blust, Ronny; Bervoets, Lieven

    2017-09-01

    To investigate the relationship between metal concentrations in abiotic compartments and in aquatic species, sediment, suspended matter and several aquatic species (Polychaeta, Oligochaeta, four crustacean species, three mollusc species and eight fish species) were collected during three seasons at six locations along the Scheldt estuary (the Netherlands-Belgium) and analysed on their metal content (Ag, Cd, Co, Cr, Cu, Ni, Pb, Zn and the metalloid As). Sediment and biota tissue concentrations were significantly influenced by sampling location, but not by season. Measurements of Acid Volatile Sulphides (AVS) concentrations in relation to Simultaneously Extracted Metals (SEM) in the sediment suggested that not all metals in the sediment will be bound to sulphides and some metals might be bioavailable. For all metals but zinc, highest concentrations were measured in invertebrate species; Ag and Ni in periwinkle, Cr, Co and Pb in Oligochaete worms and As, Cd and Cu in crabs and shrimp. Highest concentrations of Zn were measured in the kidney of European smelt. In fish, for most of the metals, the concentrations were highest in liver or kidney and lowest in muscle. For Zn however, highest concentrations were measured in the kidney of European smelt. For less than half of the metals significant correlations between sediment metal concentrations and bioaccumulated concentrations were found (liver/hepatopancreas or whole organism). To calculate the possible human health risk by consumption, average and maximum metal concentrations in the muscle tissues were compared to the minimum risk levels (MRLs). Concentrations of As led to the highest risk potential for all consumable species. Cadmium and Cu posed only a risk when consuming the highest contaminated shrimp and shore crabs. Consuming blue mussel could result in a risk for the metals As, Cd and Cr. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Detection of pollutants in aquatic media using a cell-based sensor

    OpenAIRE

    Guijarro Řezníček, Christian

    2016-01-01

    Water is a precious good which in good quality we need essentially to survive. In this work a novel method for the detection of bioactive pollutants in aqueous media will be presented. It is based on a sensor system, which uses mammalian cells, RLC-18 (rat liver cells) or MCF-7 (breast cancer cell line) as the detection layer for harmful substances. With these mammalian cells as the sensing layer a metabolically active sensor interface will become available reflecting the physiology of living...

  1. Optimal choice of pH for toxicity and bioaccumulation studies of ionizing organic chemicals

    DEFF Research Database (Denmark)

    Rendal, Cecilie; Kusk, Kresten Ole; Trapp, Stefan

    2011-01-01

    a dynamic flux model based on the Fick-Nernst-Planck diffusion equation known as the cell model. The cell model predicts that bases with delocalized charges may in some cases show declining bioaccumulation with increasing pH. Little information is available for amphoteric and zwitterionic compounds; however...

  2. Enantiomerization and stereoselectivity in bioaccumulation of furalaxyl in Tenebrio molitor larvae.

    Science.gov (United States)

    Yin, Jing; Gao, Yongxin; Zhu, Feilong; Hao, Weiyu; Xu, Qi; Wang, Huili; Guo, Baoyuan

    2017-11-01

    Furalaxyl is a chiral pesticide and widely used in modern agriculture as racemate mixture. The enantiomerization and enantioselecive bioaccumulation by a single dose of furalaxyl to Tenebrio molitor larvae under laboratory conditions were studied using a high-performance liquid chromatography tandem mass spectroscopy method based on a ChiralPAK IC column. Our results showed that a significant enantiomerization (interconversion between R-enantiomer and S-enantiomer) was observed in Tenebrio molitor larvae under R- or S-furalaxyl exposure. Though the two furalaxyl enantiomers exhibited low-capacity of bioaccumulation in Tenebrio molitor larvae, bioaccumulation of rac-furalaxyl was enantioselective with a preferential accumulation of S-furalaxyl at 10mg/kg dosage exposure. In addition, enantiomerization and enantioselective degradation of the two enantiomers was not observed in wheat bran. These results showed that enantioselectivtiy of furalaxyl enantiomers was an important process combined with degradation, metabolism and enatiomerization in organisms. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Bioaccumulation and effects of perfluorinated compounds (PFCs) in zebra mussels (Dreissena polymorpha).

    Science.gov (United States)

    Fernández-Sanjuan, María; Faria, Melissa; Lacorte, Silvia; Barata, Carlos

    2013-04-01

    Perfluorinated chemicals (PFCs) have been used for many years in numerous industrial products and are known to accumulate in organisms. A recent survey showed that tissue levels of PFCs in aquatic organisms varied among compounds and species being undetected in freshwater zebra mussels Dreissena polymorpha. Here we studied the bioaccumulation kinetics and effects of two major PFCs, perfluorooctane sulfonic acid compound (PFOS) and perfluorooctanoic acid (PFOA), in multixenobiotic transporter activity (MXR) and filtration and oxygen consumption rates in zebra mussel exposed to a range of concentrations of a PCF mixture (1-1,000 μg/L) during 10 days. Results indicate a low potential of the studied PFCs to bioaccumulate in zebra mussel tissues. PFCs altered mussel MXR transporter activity being inhibited at day 1 but not at day 10. Bioaccumulation kinetics of PFCs were inversely related with MXR transporter activity above 9 ng/g wet weight and unrelated at tissue concentration lower than 2 ng/g wet weight suggesting that at high tissue concentrations, these type of compounds may be effluxed out by MXR transporters and as a result have a low potential to be bioaccumulated in zebra mussels. Oxygen consumption rates but not filtering rates were increased in all exposure levels and periods indicating that at environmental relevant concentrations of 1 μg/L, the studied PFCs enhanced oxidative metabolism of mussels. Overall, the results obtained in this study confirm previous findings in the field indicating that an important fraction of PFC accumulated in mussel tissues is eliminated actively by MXR transporters or other processes that are metabolically costly.

  4. Uranium bioaccumulation and biological disorders induced in zebrafish (Danio rerio) after a depleted uranium waterborne exposure

    International Nuclear Information System (INIS)

    Barillet, Sabrina; Adam-Guillermin, Christelle; Palluel, Olivier; Porcher, Jean-Marc; Devaux, Alain

    2011-01-01

    Because of its toxicity and its ubiquity within aquatic compartments, uranium (U) represents a significant hazard to aquatic species such as fish. In a previous study, we investigated some biological responses in zebrafish either exposed to depleted or to enriched U (i.e., to different radiological activities). However, results required further experiments to better understand biological responses. Moreover, we failed to clearly demonstrate a significant relationship between biological effects and U radiological activity. We therefore chose to herein examine U bioaccumulation and induced effects in zebrafish according to a chemical dose-response approach. Results showed that U is highly bioconcentrated in fish, according to a time- and concentration-dependent model. Additionally, hepatic antioxidant defenses, red blood cells DNA integrity and brain acetylcholinesterase activity were found to be significantly altered. Generally, the higher the U concentration, the sooner and/or the greater the effect, suggesting a close relationship between accumulation and effect. - Research highlights: → Depleted U bioconcentration factor is of about 1000 in zebrafish exposed to 20 μg/L. → Hepatic antioxidant disorders are noticed as soon as the first hours of exposure. → DNA damage is induced in red blood cells after 20 d of exposure to 500 μg DU/L. → The brain cholinergic system (AChE activity) is impacted. - This study demonstrates that U is highly bioaccumulated in fish, resulting in biological disorders such as hepatic oxidative stress as well as genotoxic and neurotoxic events.

  5. Uranium bioaccumulation and biological disorders induced in zebrafish (Danio rerio) after a depleted uranium waterborne exposure

    Energy Technology Data Exchange (ETDEWEB)

    Barillet, Sabrina, E-mail: sabrina.barillet@free.f [Laboratory of Radioecology and Ecotoxicology, IRSN (Institute for Radiological protection and Nuclear Safety), DEI/SECRE/LRE, Cadarache, Bat 186, BP 3, 13115 St-Paul-Lez-Durance cedex (France); Adam-Guillermin, Christelle, E-mail: christelle.adam-guillermin@irsn.f [Laboratory of Radioecology and Ecotoxicology, IRSN (Institute for Radiological protection and Nuclear Safety), DEI/SECRE/LRE, Cadarache, Bat 186, BP 3, 13115 St-Paul-Lez-Durance cedex (France); Palluel, Olivier, E-mail: olivier.palluel@ineris.f [Ecotoxicological Risk Assessment Unit, INERIS (National Institute for Industrial Environment and Risks), Parc technologique ALATA, 60 550 Verneuil-en-Halatte (France); Porcher, Jean-Marc, E-mail: jean-marc.porcher@ineris.f [Ecotoxicological Risk Assessment Unit, INERIS (National Institute for Industrial Environment and Risks), Parc technologique ALATA, 60 550 Verneuil-en-Halatte (France); Devaux, Alain, E-mail: alain.devaux@entpe.f [Universite de Lyon, INRA, EFPA-SA, Environmental Science Laboratory (LSE), ENTPE, 69518 Vaulx en Velin cedex (France)

    2011-02-15

    Because of its toxicity and its ubiquity within aquatic compartments, uranium (U) represents a significant hazard to aquatic species such as fish. In a previous study, we investigated some biological responses in zebrafish either exposed to depleted or to enriched U (i.e., to different radiological activities). However, results required further experiments to better understand biological responses. Moreover, we failed to clearly demonstrate a significant relationship between biological effects and U radiological activity. We therefore chose to herein examine U bioaccumulation and induced effects in zebrafish according to a chemical dose-response approach. Results showed that U is highly bioconcentrated in fish, according to a time- and concentration-dependent model. Additionally, hepatic antioxidant defenses, red blood cells DNA integrity and brain acetylcholinesterase activity were found to be significantly altered. Generally, the higher the U concentration, the sooner and/or the greater the effect, suggesting a close relationship between accumulation and effect. - Research highlights: Depleted U bioconcentration factor is of about 1000 in zebrafish exposed to 20 {mu}g/L. Hepatic antioxidant disorders are noticed as soon as the first hours of exposure. DNA damage is induced in red blood cells after 20 d of exposure to 500 {mu}g DU/L. The brain cholinergic system (AChE activity) is impacted. - This study demonstrates that U is highly bioaccumulated in fish, resulting in biological disorders such as hepatic oxidative stress as well as genotoxic and neurotoxic events.

  6. Habitat-specific bioaccumulation of methylmercury in invertebrates of small mid-latitude lakes in North America

    Energy Technology Data Exchange (ETDEWEB)

    Chetelat, John, E-mail: john.chetelat@ec.gc.c [Groupe de recherche interuniversitaire en limnologie, Departement de sciences biologiques, Universite de Montreal, Montreal, Quebec H3C 3J7 (Canada); Amyot, Marc; Garcia, Edenise [Groupe de recherche interuniversitaire en limnologie, Departement de sciences biologiques, Universite de Montreal, Montreal, Quebec H3C 3J7 (Canada)

    2011-01-15

    We examined habitat-specific bioaccumulation of methylmercury (MeHg) in aquatic food webs by comparing concentrations in pelagic zooplankton to those in littoral macroinvertebrates from 52 mid-latitude lakes in North America. Invertebrate MeHg concentrations were primarily correlated with water pH, and after controlling for this influence, pelagic zooplankton had significantly higher MeHg concentrations than littoral primary consumers but lower MeHg than littoral secondary consumers. Littoral primary consumers and pelagic zooplankton are two dominant prey for fish, and greater MeHg in zooplankton is likely sufficient to increase bioaccumulation in pelagic feeders. Intensive sampling of 8 lakes indicated that habitat-specific bioaccumulation in invertebrates (of similar trophic level) may result from spatial variation in aqueous MeHg concentration or from more efficient uptake of aqueous MeHg into the pelagic food web. Our findings demonstrate that littoral-pelagic differences in MeHg bioaccumulation are widespread in small mid-latitude lakes. - Methylmercury levels in dominant invertebrate prey for fish differ between littoral and pelagic habitats within a lake.

  7. Habitat-specific bioaccumulation of methylmercury in invertebrates of small mid-latitude lakes in North America

    International Nuclear Information System (INIS)

    Chetelat, John; Amyot, Marc; Garcia, Edenise

    2011-01-01

    We examined habitat-specific bioaccumulation of methylmercury (MeHg) in aquatic food webs by comparing concentrations in pelagic zooplankton to those in littoral macroinvertebrates from 52 mid-latitude lakes in North America. Invertebrate MeHg concentrations were primarily correlated with water pH, and after controlling for this influence, pelagic zooplankton had significantly higher MeHg concentrations than littoral primary consumers but lower MeHg than littoral secondary consumers. Littoral primary consumers and pelagic zooplankton are two dominant prey for fish, and greater MeHg in zooplankton is likely sufficient to increase bioaccumulation in pelagic feeders. Intensive sampling of 8 lakes indicated that habitat-specific bioaccumulation in invertebrates (of similar trophic level) may result from spatial variation in aqueous MeHg concentration or from more efficient uptake of aqueous MeHg into the pelagic food web. Our findings demonstrate that littoral-pelagic differences in MeHg bioaccumulation are widespread in small mid-latitude lakes. - Methylmercury levels in dominant invertebrate prey for fish differ between littoral and pelagic habitats within a lake.

  8. POP bioaccumulation in macroinvertebrates of alpine freshwater systems

    International Nuclear Information System (INIS)

    Bizzotto, E.C.; Villa, S.; Vighi, M.

    2009-01-01

    This study serves to investigate the uptake of POPs in the different trophic levels (scrapers, collectors, predators, shredders) of macroinvertebrate communities sampled from a glacial and a non-glacial stream in the Italian Alps. The presented results show that the contaminant concentrations in glacial communities are generally higher compared to those from non-glacial catchments, highlighting the importance of glaciers as temporary sinks of atmospherically transported pollutants. Moreover, the data also suggests that in mountain systems snow plays an important role in influencing macroinvertebrate contamination. The main chemical uptake process to the macroinvertebrates is considered to be bioconcentration from water, as similar contaminant profiles were observed between the different trophic levels. The role of biomagnification/bioaccumulation is thought to be absent or negligible. The enrichment of chemicals observed in the predators is likely to be related to their greater lipid content compared to that of other feeding groups. - Influence of POP release in glacial-fed streams, enhanced by global warming, on pristine aquatic ecosystems.

  9. Triclosan: Current Status, Occurrence, Environmental Risks and Bioaccumulation Potential

    Directory of Open Access Journals (Sweden)

    Gurpreet Singh Dhillon

    2015-05-01

    Full Text Available Triclosan (TCS is a multi-purpose antimicrobial agent used as a common ingredient in everyday household personal care and consumer products. The expanded use of TCS provides a number of pathways for the compound to enter the environment and it has been detected in sewage treatment plant effluents; surface; ground and drinking water. The physico-chemical properties indicate the bioaccumulation and persistence potential of TCS in the environment. Hence, there is an increasing concern about the presence of TCS in the environment and its potential negative effects on human and animal health. Nevertheless, scarce monitoring data could be one reason for not prioritizing TCS as emerging contaminant. Conventional water and wastewater treatment processes are unable to completely remove the TCS and even form toxic intermediates. Considering the worldwide application of personal care products containing TCS and inefficient removal and its toxic effects on aquatic organisms, the compound should be considered on the priority list of emerging contaminants and its utilization in all products should be regulated.

  10. Influence of temperature on fluoride toxicity and bioaccumulation in the nonindigenous freshwater mollusk Dreissena polymorpha Pallas, 1769.

    Science.gov (United States)

    Del Piero, Stefania; Masiero, Luciano; Casellato, Sandra

    2012-11-01

    Fluoride toxicity and bioaccumulation tests (short- and long-term) were performed on the nonindigenous freshwater mollusk Dreissena polymorpha at two different temperatures: 17 ± 0.5°C and 22 ± 0.5°C. Concentrations that did not result in toxicity in short-term experiments (96 h) induced effects over a longer period (17 weeks), especially at the warmest temperature, highlighting the role of this parameter. Fluoride bioaccumulation increased linearly with increasing concentration and temperature, reaching 4,202 µg F(-)/g dry weight in soft tissues only after 48 h of exposure at 22°C at a concentration of 640 mg F(-)/L. Comparing tolerance to fluoride and bioaccumulation values of this species with those of other freshwater invertebrates, D. polymorpha was much more resistant and revealed its capacity to accumulate a great quantity of this xenobiotic substance. The results of the present study demonstrated that fluoride accumulation in the soft tissue of this animal was much higher (up to 1,409.6 µg F(-)/g dry wt) than that in its shell (up to 706.4 µg F(-)/g dry wt). If we consider this datum and the fact that D. polymorpha is widespread in many aquatic ecosystems around the world, representing a food source for many birds and other vertebrates, we must acknowledge the possibility that it can represent a serious danger in view of fluoride biomagnification in the aquatic environment. Copyright © 2012 SETAC.

  11. The effects of experimental reservoir creation on the bioaccumulation of methylmercury and reproductive success of tree swallows (Tachycineta bicolor).

    Science.gov (United States)

    Gerrard, P M; St Louis, V L

    2001-04-01

    Reservoir creation results in decomposition of flooded organic matter and increased rates of mercury methylation. Methylmercury (MeHg), the most toxic form of mercury, bioaccumulates through aquatic food webs. Our objective was to quantify the transfer of MeHg from aquatic food webs into terrestrial organisms. We examined rates of MeHg bioaccumulation in an insectivorous songbird, the tree swallow, breeding near an experimentally created reservoir. We also determined the impact of flooding and MeHg bioaccumulation on the reproductive success of these birds. Mean MeHg burdens in nestling swallows from near the experimental reservoir increased from 1,210 +/- 150 ng before flooding to 2,200 +/- 102 ng after flooding. Postflood MeHg concentrations in both the body and feathers of the birds were significantly greater than preflood MeHg concentrations. Although MeHg burdens in swallows were elevated in postflood years, we found no overt toxicological affects. An increase in dipteran productivity (the primary food source of tree swallows) after reservoir creation resulted in earlier nest initiation, larger eggs, and faster growth rates of wing and bill length in nestlings raised during postflood years.

  12. An outline of a model-based expert system to identify optimal remedial strategies for restoring contaminated aquatic ecosystems: the project MOIRA

    International Nuclear Information System (INIS)

    Appelgren, A.; Bergstrom, U.; Brittain, J.; Monte, L.

    1996-10-01

    The present report describes the fundamental principles of the research programme MOIRA (a model based computerized system for management support to Identify optimal remedial strategies for Restoring radionuclide contaminated Aquatic ecosystems and drainage areas) financed by the EC (European Community) (Contract N F14P-CT96-0036). The interventions to restore radionuclides contaminated aquatic systems may result in detrimental ecological, social and economical effects. Decision makers must carefully evaluate these impacts. The main aim of the MOIRA project is the development of an expert system based on validated models predicting the evolution of the radioactive contamination of fresh water systems following countermeasure applications and their relevant ecological, social and economical impacts. The expert system will help decision makers, that are not necessarily gifted with experience in environmental modeling, to identify optimal remedial strategies for restoring contaminated fresh water systems

  13. Fatty acid composition at the base of aquatic food webs is influenced by habitat type and watershed land use

    Science.gov (United States)

    Larson, James H.; Richardson, William B.; Knights, Brent C.; Bartsch, Lynn; Bartsch, Michelle; Nelson, J. C.; Veldboom, Jason A.; Vallazza, Jonathan M.

    2013-01-01

    Spatial variation in food resources strongly influences many aspects of aquatic consumer ecology. Although large-scale controls over spatial variation in many aspects of food resources are well known, others have received little study. Here we investigated variation in the fatty acid (FA) composition of seston and primary consumers within (i.e., among habitats) and among tributary systems of Lake Michigan, USA. FA composition of food is important because all metazoans require certain FAs for proper growth and development that cannot be produced de novo, including many polyunsaturated fatty acids (PUFAs). Here we sampled three habitat types (river, rivermouth and nearshore zone) in 11 tributaries of Lake Michigan to assess the amount of FA in seston and primary consumers of seston. We hypothesize that among-system and among-habitat variation in FAs at the base of food webs would be related to algal production, which in turn is influenced by three land cover characteristics: 1) combined agriculture and urban lands (an indication of anthropogenic nutrient inputs that fuel algal production), 2) the proportion of surface waters (an indication of water residence times that allow algal producers to accumulate) and 3) the extent of riparian forested buffers (an indication of stream shading that reduces algal production). Of these three land cover characteristics, only intense land use appeared to strongly related to seston and consumer FA and this effect was only strong in rivermouth and nearshore lake sites. River seston and consumer FA composition was highly variable, but that variation does not appear to be driven by the watershed land cover characteristics investigated here. Whether the spatial variation in FA content at the base of these food webs significantly influences the production of economically important species higher in the food web should be a focus of future research.

  14. Mercury bioaccumulation in the food web of Three Gorges Reservoir (China): Tempo-spatial patterns and effect of reservoir management

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jun [College of Fisheries, Huazhong Agricultural University, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan 430070 (China); Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070 (China); Zhou, Qiong, E-mail: hainan@mail.hzau.edu.cn [College of Fisheries, Huazhong Agricultural University, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan 430070 (China); Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070 (China); Yuan, Gailing; He, Xugang [College of Fisheries, Huazhong Agricultural University, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan 430070 (China); Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070 (China); Xie, Ping [College of Fisheries, Huazhong Agricultural University, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan 430070 (China); Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology of China, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072 (China)

    2015-09-15

    Tempo-spatial patterns of mercury bioaccumulation and tropho-dynamics, and the potential for a reservoir effect were evaluated in the Three Gorges Reservoir (TGR, China) from 2011 to 2012, using total mercury concentrations (THg) and stable isotopes (δ{sup 13}C and δ{sup 15}N) of food web components (seston, aquatic invertebrates and fish). Hg concentrations in aquatic invertebrates and fish indicated a significant temporal trend associated with regular seasonal water-level manipulation. This includes water level lowering to allow for storage of water during the wet season (summer); a decrease of water levels from September to June providing a setting for flood storage. Hg concentrations in organisms were the highest after flooding. Higher Hg concentrations in fish were observed at the location farthest from the dam. Hg concentrations in water and sediment were correlated. Compared with the reservoirs of United States and Canada, TGR had lower trophic magnification factors (0.046–0.066), that are explained primarily by organic carbon concentrations in sediment, and the effect of “growth dilution”. Based on comparison before and after the impoundment of TGR, THg concentration in biota did not display an obvious long-term reservoir effect due to (i) short time since inundation, (ii) regular water discharge associated with water-level regulation, and/or (iii) low organic matter content in the sediment. - Highlights: • Hg concentrations were measured in biota of the main stem of 3 Gorges Reservoir. • Fish Hg concentration post-flood period > pre-flood period > flood period. • Fish Hg concentrations were the highest farthest from the dam. • THg in fish 2 years after inundation were the same as before impoundment. • Low biomagnification was ascribed to low DOC content in the sediment.

  15. Enantioselective bioaccumulation of diniconazole in Tenebrio molitor larvae.

    Science.gov (United States)

    Liu, Chen; LV, Xiao Tian; Zhu, Wen Xue; QU, Hao Yang; Gao, Yong Xin; Guo, Bao Yuan; Wang, Hui Li

    2013-12-01

    The enantioselective bioaccumulation of diniconazole in Tenebrio molitor Linne larva was investigated with liquid chromatography tandem mass spectrometry based on the ChiralcelOD-3R[cellulose tri-(3,5-dimethylphenyl carbamate)] column. In this study we documented the effects of dietary supplementation with wheat bran contaminated by racemic diniconazole at two dose levels of 20 mg kg(-1) and 2 mg kg(-1) (dry weight) in Tenebrio molitor. The results showed that both doses of diniconazole were taken up by Tenebrio molitor rapidly in the first few days, the concentrations of R-enantiomer and S-enantiomer at high doses reached the highest level of 0.55 mg kg(-1) and 0.48 mg kg(-1) , respectively, on the 1(st) d, and the concentrations of them obtained a maxima of 0.129 mg kg(-1) and 0.128 mg kg(-1) at low dose, respectively, on the 3(rd) d, which means that the concentration of diniconazole was proportional to the time of achieving the highest accumulated level. It afterwards attained equilibrium after a sharp decline at both 20 mg kg(-1) and 2 mg kg(-1) of diniconazole. The determination results from the feces of Tenebrio molitor demonstrated that the extraction recovery (ER) values of the high dose group were higher than that of the low dose group and the values were all above 1; therefore, it could be inferred that enantiomerization existed in Tenebrio molitor. Additionally, the biota accumulation factor was used to evaluate the bioaccumulation of diniconazole enantiomers, showing that the bioaccumulation of diniconazole in Tenebrio molitor was enantioselective with preferential accumulation of S-enantiomer. © 2013 Wiley Periodicals, Inc.

  16. Experimental dosing of wetlands with coagulants removes mercury from surface water and decreases mercury bioaccumulation in fish

    Science.gov (United States)

    Ackerman, Joshua T.; Kraus, Tamara E.C.; Fleck, Jacob A.; Krabbenhoft, David P.; Horwarth, William R.; Bachand, Sandra M.; Herzog, Mark; Hartman, Christopher; Bachand, Philip A.M.

    2015-01-01

    Mercury pollution is widespread globally, and strategies for managing mercury contamination in aquatic environments are necessary. We tested whether coagulation with metal-based salts could remove mercury from wetland surface waters and decrease mercury bioaccumulation in fish. In a complete randomized block design, we constructed nine experimental wetlands in California’s Sacramento–San Joaquin Delta, stocked them with mosquitofish (Gambusia affinis), and then continuously applied agricultural drainage water that was either untreated (control), or treated with polyaluminum chloride or ferric sulfate coagulants. Total mercury and methylmercury concentrations in surface waters were decreased by 62% and 63% in polyaluminum chloride treated wetlands and 50% and 76% in ferric sulfate treated wetlands compared to control wetlands. Specifically, following coagulation, mercury was transferred from the filtered fraction of water into the particulate fraction of water which then settled within the wetland. Mosquitofish mercury concentrations were decreased by 35% in ferric sulfate treated wetlands compared to control wetlands. There was no reduction in mosquitofish mercury concentrations within the polyaluminum chloride treated wetlands, which may have been caused by production of bioavailable methylmercury within those wetlands. Coagulation may be an effective management strategy for reducing mercury contamination within wetlands, but further studies should explore potential effects on wetland ecosystems.

  17. Experimental dosing of wetlands with coagulants removes mercury from surface water and decreases mercury bioaccumulation in fish.

    Science.gov (United States)

    Ackerman, Joshua T; Kraus, Tamara E C; Fleck, Jacob A; Krabbenhoft, David P; Horwath, William R; Bachand, Sandra M; Herzog, Mark P; Hartman, C Alex; Bachand, Philip A M

    2015-05-19

    Mercury pollution is widespread globally, and strategies for managing mercury contamination in aquatic environments are necessary. We tested whether coagulation with metal-based salts could remove mercury from wetland surface waters and decrease mercury bioaccumulation in fish. In a complete randomized block design, we constructed nine experimental wetlands in California's Sacramento-San Joaquin Delta, stocked them with mosquitofish (Gambusia affinis), and then continuously applied agricultural drainage water that was either untreated (control), or treated with polyaluminum chloride or ferric sulfate coagulants. Total mercury and methylmercury concentrations in surface waters were decreased by 62% and 63% in polyaluminum chloride treated wetlands and 50% and 76% in ferric sulfate treated wetlands compared to control wetlands. Specifically, following coagulation, mercury was transferred from the filtered fraction of water into the particulate fraction of water which then settled within the wetland. Mosquitofish mercury concentrations were decreased by 35% in ferric sulfate treated wetlands compared to control wetlands. There was no reduction in mosquitofish mercury concentrations within the polyaluminum chloride treated wetlands, which may have been caused by production of bioavailable methylmercury within those wetlands. Coagulation may be an effective management strategy for reducing mercury contamination within wetlands, but further studies should explore potential effects on wetland ecosystems.

  18. Prioritization of pharmaceuticals based on risks to aquatic environments in Kazakhstan.

    Science.gov (United States)

    Aubakirova, Bakhyt; Beisenova, Raikhan; Boxall, Alistair Ba

    2017-09-01

    Over the last 20 years, there has been increasing interest in the occurrence, fate, effects, and risk of pharmaceuticals in the natural environment. However, we still have only limited or no data on ecotoxicological risks of many of the active pharmaceutical ingredients (APIs) currently in use. This is partly due to the fact that the environmental assessment of an API is an expensive, time-consuming, and complicated process. Prioritization methodologies, which aim to identify APIs of most concern in a particular situation, could therefore be invaluable in focusing experimental work on APIs that really matter. The majority of approaches for prioritizing APIs require annual pharmaceutical usage data. These methods cannot therefore be applied to countries, such as Kazakhstan, that have very limited data on API usage. The present paper therefore offers an approach for prioritizing APIs in surface waters in information-poor regions such as Kazakhstan. Initially data were collected on the number of products and active ingredients for different therapeutic classes in use in Kazakhstan and on the typical doses. These data were then used alongside simple exposure modeling approaches to estimate exposure indices for active ingredients (about 240 APIs) in surface waters in the country. Ecotoxicological effects data were obtained from the literature or predicted. Risk quotients were then calculated for each pharmaceutical based on the exposure and the substances were ranked in order of risk quotient. Highest exposure indices were obtained for benzylpenicillin, metronidazole, sulbactam, ceftriaxone, and sulfamethoxazole. The highest risk was estimated for amoxicillin, clarithromycin, azithromycin, ketoconazole, and benzylpenicillin. In the future, the approach could be employed in other regions where usage information is limited. Integr Environ Assess Manag 2017;13:832-839. © 2017 SETAC. © 2017 SETAC.

  19. An Ai Chi-based aquatic group improves balance and reduces falls in community-dwelling adults: A pilot observational cohort study.

    Science.gov (United States)

    Skinner, Elizabeth H; Dinh, Tammy; Hewitt, Melissa; Piper, Ross; Thwaites, Claire

    2016-11-01

    Falls are associated with morbidity, loss of independence, and mortality. While land-based group exercise and Tai Chi programs reduce the risk of falls, aquatic therapy may allow patients to complete balance exercises with less pain and fear of falling; however, limited data exist. The objective of the study was to pilot the implementation of an aquatic group based on Ai Chi principles (Aquabalance) and to evaluate the safety, intervention acceptability, and intervention effect sizes. Pilot observational cohort study. Forty-two outpatients underwent a single 45-minute weekly group aquatic Ai Chi-based session for eight weeks (Aquabalance). Safety was monitored using organizational reporting systems. Patient attendance, satisfaction, and self-reported falls were also recorded. Balance measures included the Timed Up and Go (TUG) test, the Four Square Step Test (FSST), and the unilateral Step Tests. Forty-two patients completed the program. It was feasible to deliver Aquabalance, as evidenced by the median (IQR) attendance rate of 8.0 (7.8, 8.0) out of 8. No adverse events occurred and participants reported high satisfaction levels. Improvements were noted on the TUG, 10-meter walk test, the Functional Reach Test, the FSST, and the unilateral step tests (p falls risk reduced from 38% to 21%. The study was limited by its small sample size, single-center nature, and the absence of a control group. Aquabalance was safe, well-attended, and acceptable to participants. A randomized controlled assessor-blinded trial is required.

  20. Application of fundamental aquatic chemistry to the safety case and the role of thermodynamic reference data bases

    International Nuclear Information System (INIS)

    Altmaier, Marcus; Gaona, Xavier; Fellhauer, David; Geckeis, Horst

    2015-01-01

    All national and international programs developing a Nuclear Waste Disposal Safety Case have recognized the essential requirement of assessing aqueous (radionuclide) chemistry and establishing reliable thermodynamic databases. Long-term disposal of nuclear waste in deep underground repositories is the safest option to separate highly hazardous radionuclides from the environment. In order to predict the long-term performance of a repository for different evolution scenarios, the potentially relevant specific (geo)chemical systems are analyzed. This requires a detailed understanding of solubility, speciation and thermodynamics for all relevant components including radionuclides, and the availability of reliable thermodynamic data and databases as fundamental input for integral geochemical model calculations and hence PA. Radionuclide solubility and speciation strongly depend on chemical conditions (pH, E h , matrix electrolyte system and ionic strength) with additional factors like the presence of complexing ligands or temperature further impacting solution chemistry. As the fundamental chemical key processes are known and convincingly described by general laws of nature (→ solution thermodynamics), the long-term behavior of a repository system can be analyzed over geological timescales using geochemical tools. A key application of fundamental aquatic chemistry in the Safety Case is the determination of solubility limits (radionuclide source terms). Based upon fundamental chemical information (on solid phases, complexation reactions, activity coefficients, etc.), the maximum amount of radionuclides potentially dissolved in a given volume of solution and transported away from the repository, are quantified. A detailed understanding of radionuclide chemistry is also crucial for neighboring fields. For example, advanced mechanistic understanding and modeling of sorption processes at the solid liquid interphase, waste dissolution processes, secondary phase and solid

  1. Application of fundamental aquatic chemistry to the safety case and the role of thermodynamic reference data bases

    Energy Technology Data Exchange (ETDEWEB)

    Altmaier, Marcus; Gaona, Xavier; Fellhauer, David; Geckeis, Horst [Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen (Germany). Inst. for Nuclear Waste Disposal

    2015-07-01

    All national and international programs developing a Nuclear Waste Disposal Safety Case have recognized the essential requirement of assessing aqueous (radionuclide) chemistry and establishing reliable thermodynamic databases. Long-term disposal of nuclear waste in deep underground repositories is the safest option to separate highly hazardous radionuclides from the environment. In order to predict the long-term performance of a repository for different evolution scenarios, the potentially relevant specific (geo)chemical systems are analyzed. This requires a detailed understanding of solubility, speciation and thermodynamics for all relevant components including radionuclides, and the availability of reliable thermodynamic data and databases as fundamental input for integral geochemical model calculations and hence PA. Radionuclide solubility and speciation strongly depend on chemical conditions (pH, E{sub h}, matrix electrolyte system and ionic strength) with additional factors like the presence of complexing ligands or temperature further impacting solution chemistry. As the fundamental chemical key processes are known and convincingly described by general laws of nature (→ solution thermodynamics), the long-term behavior of a repository system can be analyzed over geological timescales using geochemical tools. A key application of fundamental aquatic chemistry in the Safety Case is the determination of solubility limits (radionuclide source terms). Based upon fundamental chemical information (on solid phases, complexation reactions, activity coefficients, etc.), the maximum amount of radionuclides potentially dissolved in a given volume of solution and transported away from the repository, are quantified. A detailed understanding of radionuclide chemistry is also crucial for neighboring fields. For example, advanced mechanistic understanding and modeling of sorption processes at the solid liquid interphase, waste dissolution processes, secondary phase and

  2. Metals in the Scheldt estuary: From environmental concentrations to bioaccumulation

    International Nuclear Information System (INIS)

    Van Ael, Evy; Blust, Ronny; Bervoets, Lieven

    2017-01-01

    To investigate the relationship between metal concentrations in abiotic compartments and in aquatic species, sediment, suspended matter and several aquatic species (Polychaeta, Oligochaeta, four crustacean species, three mollusc species and eight fish species) were collected during three seasons at six locations along the Scheldt estuary (the Netherlands-Belgium) and analysed on their metal content (Ag, Cd, Co, Cr, Cu, Ni, Pb, Zn and the metalloid As). Sediment and biota tissue concentrations were significantly influenced by sampling location, but not by season. Measurements of Acid Volatile Sulphides (AVS) concentrations in relation to Simultaneously Extracted Metals (SEM) in the sediment suggested that not all metals in the sediment will be bound to sulphides and some metals might be bioavailable. For all metals but zinc, highest concentrations were measured in invertebrate species; Ag and Ni in periwinkle, Cr, Co and Pb in Oligochaete worms and As, Cd and Cu in crabs and shrimp. Highest concentrations of Zn were measured in the kidney of European smelt. In fish, for most of the metals, the concentrations were highest in liver or kidney and lowest in muscle. For Zn however, highest concentrations were measured in the kidney of European smelt. For less than half of the metals significant correlations between sediment metal concentrations and bioaccumulated concentrations were found (liver/hepatopancreas or whole organism). To calculate the possible human health risk by consumption, average and maximum metal concentrations in the muscle tissues were compared to the minimum risk levels (MRLs). Concentrations of As led to the highest risk potential for all consumable species. Cadmium and Cu posed only a risk when consuming the highest contaminated shrimp and shore crabs. Consuming blue mussel could result in a risk for the metals As, Cd and Cr. - Highlights: • This is the first study investigating metal distribution along the aquatic ecosystem of the Scheldt

  3. Positioning of aquatic animals based on time-of-arrival and random walk models using YAPS (Yet Another Positioning Solver)

    DEFF Research Database (Denmark)

    Baktoft, Henrik; Gjelland, Karl Øystein; Økland, Finn

    2017-01-01

    Aquatic positional telemetry offers vast opportunities to study in vivo behaviour of wild animals, but there is room for improvement in the data quality provided by current procedures for estimating positions. Here we present a novel positioning method called YAPS (Yet Another Positioning Solver...

  4. A method for improving predictive modeling by taking into account lag time: Example of selenium bioaccumulation in a flowing system

    Energy Technology Data Exchange (ETDEWEB)

    Beckon, William N., E-mail: William_Beckon@fws.gov

    2016-07-15

    Highlights: • A method for estimating response time in cause-effect relationships is demonstrated. • Predictive modeling is appreciably improved by taking into account this lag time. • Bioaccumulation lag is greater for organisms at higher trophic levels. • This methodology may be widely applicable in disparate disciplines. - Abstract: For bioaccumulative substances, efforts to predict concentrations in organisms at upper trophic levels, based on measurements of environmental exposure, have been confounded by the appreciable but hitherto unknown amount of time it may take for bioaccumulation to occur through various pathways and across several trophic transfers. The study summarized here demonstrates an objective method of estimating this lag time by testing a large array of potential lag times for selenium bioaccumulation, selecting the lag that provides the best regression between environmental exposure (concentration in ambient water) and concentration in the tissue of the target organism. Bioaccumulation lag is generally greater for organisms at higher trophic levels, reaching times of more than a year in piscivorous fish. Predictive modeling of bioaccumulation is improved appreciably by taking into account this lag. More generally, the method demonstrated here may improve the accuracy of predictive modeling in a wide variety of other cause-effect relationships in which lag time is substantial but inadequately known, in disciplines as diverse as climatology (e.g., the effect of greenhouse gases on sea levels) and economics (e.g., the effects of fiscal stimulus on employment).

  5. A method for improving predictive modeling by taking into account lag time: Example of selenium bioaccumulation in a flowing system

    International Nuclear Information System (INIS)

    Beckon, William N.

    2016-01-01

    Highlights: • A method for estimating response time in cause-effect relationships is demonstrated. • Predictive modeling is appreciably improved by taking into account this lag time. • Bioaccumulation lag is greater for organisms at higher trophic levels. • This methodology may be widely applicable in disparate disciplines. - Abstract: For bioaccumulative substances, efforts to predict concentrations in organisms at upper trophic levels, based on measurements of environmental exposure, have been confounded by the appreciable but hitherto unknown amount of time it may take for bioaccumulation to occur through various pathways and across several trophic transfers. The study summarized here demonstrates an objective method of estimating this lag time by testing a large array of potential lag times for selenium bioaccumulation, selecting the lag that provides the best regression between environmental exposure (concentration in ambient water) and concentration in the tissue of the target organism. Bioaccumulation lag is generally greater for organisms at higher trophic levels, reaching times of more than a year in piscivorous fish. Predictive modeling of bioaccumulation is improved appreciably by taking into account this lag. More generally, the method demonstrated here may improve the accuracy of predictive modeling in a wide variety of other cause-effect relationships in which lag time is substantial but inadequately known, in disciplines as diverse as climatology (e.g., the effect of greenhouse gases on sea levels) and economics (e.g., the effects of fiscal stimulus on employment).

  6. Journal of Aquatic Sciences

    African Journals Online (AJOL)

    The Journal of Aquatic Sciences publishes articles on problems and issues in Aquatic Sciences from all ... The journal accepts for publication manuscripts of very high international standard containing reports of original scientific research.

  7. Effectiveness of Aquatic Therapy vs Land-based Therapy for Balance and Pain in Women with Fibromyalgia: a study protocol for a randomised controlled trial.

    Science.gov (United States)

    Rivas Neira, Sabela; Pasqual Marques, Amélia; Pegito Pérez, Irene; Fernández Cervantes, Ramón; Vivas Costa, Jamile

    2017-01-19

    Fibromyalgia is a disease with an increasing incidence. It impairs the quality of life of patients and decreases their functional capacity. Aquatic therapy has already been used for managing the symptoms of this syndrome. However, aquatic therapy has only recently been introduced as a treatment modality for improving proprioception in fibromyalgia. The main objective of this study is to determine the effectiveness of two physiotherapy protocols, one in and one out of water, for improving balance and decreasing pain in women with fibromyalgia. The study protocol will be a single-blind randomised controlled trial. Forty women diagnosed with fibromyalgia will be randomly assigned into 2 groups: Aquatic Therapy (n = 20) or Land-based Therapy (n = 20). Both interventions include 60-min therapy sessions, structured into 4 sections: Warm-up, Proprioceptive Exercises, Stretching and Relaxation. These sessions will be carried out 3 times a week for 3 months. Primary outcomes are balance (static and dynamic) and pain (intensity and threshold). Secondary outcomes include functional balance, quality of life, quality of sleep, fatigue, self-confidence in balance and physical ability. Outcome measures will be evaluated at baseline, at the end of the 3-month intervention period, and 6-weeks post-treatment. Statistical analysis will be carried out using the SPSS 21.0 program for Windows and a significance level of p ≤ 0.05 will be used for all tests. This study protocol details two physiotherapy interventions in women with fibromyalgia to improve balance and decrease pain: aquatic therapy and land-based therapy. In current literature there is a lack of methodological rigour and a limited number of studies that describe physiotherapy protocols to manage fibromyalgia symptoms. High-quality scientific works are required to highlight physiotherapy as one of the most recommended treatment options for this syndrome. Date of publication in ClinicalTrials.gov: 18

  8. An investigation into ciguatoxin bioaccumulation in sharks.

    Science.gov (United States)

    Meyer, Lauren; Capper, Angela; Carter, Steve; Simpfendorfer, Colin

    2016-09-01

    Ciguatoxins (CTXs) produced by benthic Gambierdiscus dinoflagellates, readily biotransform and bioaccumulate in food chains ultimately bioconcentrating in high-order, carnivorous marine species. Certain shark species, often feeding at, or near the top of the food-chain have the ability to bioaccumulate a suite of toxins, from both anthropogenic and algal sources. As such, these apex predators are likely sinks for CTXs. This assumption, in conjunction with anecdotal knowledge of poisoning incidents, several non-specific feeding trials whereby various terrestrial animals were fed suspect fish flesh, and a single incident in Madagascar in 1994, have resulted in the widespread acceptance that sharks may accumulate CTXs. This prompted a study to investigate original claims within the literature, as well as investigate CTX bioaccumulation in the muscle and liver of 22 individual sharks from nine species, across four locations along the east coast of Australia. Utilizing an updated ciguatoxin extraction method with HPLC-MS/MS, we were unable to detect P-CTX-1, P-CTX-2 or P-CTX-3, the three primary CTX congeners, in muscle or liver samples. We propose four theories to address this finding: (1) to date, methods have been optimized for teleost species and may not be appropriate for elasmobranchs, or the CTXs may be below the limit of detection; (2) CTX may be biotransformed into elasmobranch-specific congeners as a result of unique metabolic properties; (3) 22 individuals may be an inadequate sample size given the rare occurrence of high-order ciguatoxic organisms and potential for CTX depuration; and (4) the ephemeral nature and inconsistent toxin profiles of Gambierdiscus blooms may have undermined our classifications of certain areas as CTX hotspots. These results, in combination with the lack of clarity within the literature, suggest that ciguatoxin bioaccumulation in sharks remains elusive, and warrants further investigation to determine the dynamics of toxin production

  9. Bioaccumulation of gasoline in brackish green algae and popular clams

    Directory of Open Access Journals (Sweden)

    Gihan A. El-Shoubaky

    2016-03-01

    Full Text Available The green algae (Ulva lactuca and Enteromorpha clathrata and the clams (Tapes decussates and Venerupis aurea grow together in Timsah Lake, Suez Canal, Egypt. Our ultimate goal is to validate the bioaccumulation of gasoline in the marine organisms and their behavior after exposure to the pollutant, experimentally. These species were treated with a serial treatment of gasoline (1000, 4000, 16,000 and 64,000 μl in aquaria with brackish sea-water for 72 h. The tested green algae and clams were taken for an analysis of total hydrocarbon accumulation daily. The statistical analysis showed significant differences between the four species and also between the duration of exposure. The accumulation of gasoline in U. lactuca and E. clathrata reached their maximum after 48 h at 1000 and 4000 μl. The highest absorption was registered after 24 h only at 16,000 and at 64,000 μl. U. lactuca recorded complete mortality in 64,000 μl at 72 h whereas E. clathrata registered death at 48 h and 72 h in the same treatment. V. aurea was more sensitive than T. decussates. The accumulation of gasoline reached its maximum in V. aurea after only 24 h in the first treatment while it retarded to 48 h in T. decussates with a lesser accumulation. However, both clam species accumulated the highest amount of petroleum hydrocarbons during the first hour of exposure at the first treatment. In the third and fourth treatments, clams did not accumulate gasoline but began to dispose it from their tissues till it became less than that in the control. Mortality gradually increased with time in each treatment except the last one (64,000 μl in which 100% death of the specimens was observed. In general, the bioaccumulation of gasoline level was in a descending order as follows: U. lactuca > E. clathrata > V. aurea > T. decussates. Their behavior changed from accumulation to detoxification with time and with the increase in pollutant concentration. Generally, these

  10. Mercury in western North America: A synthesis of environmental contamination, fluxes, bioaccumulation, and risk to fish and wildlife

    Science.gov (United States)

    Eagles-Smith, Collin A.; Wiener, James G.; Eckley, Chris S.; Willacker, James J.; Evers, David C.; Marvin-DiPasquale, Mark C.; Obrist, Daniel; Fleck, Jacob; Aiken, George R.; Lepak, Jesse M.; Jackson, Allyson K.; Webster, Jackson; Stewart, Robin; Davis, Jay; Alpers, Charles N.; Ackerman, Joshua T.

    2016-01-01

    Western North America is a region defined by extreme gradients in geomorphology and climate, which support a diverse array of ecological communities and natural resources. The region also has extreme gradients in mercury (Hg) contamination due to a broad distribution of inorganic Hg sources. These diverse Hg sources and a varied landscape create a unique and complex mosaic of ecological risk from Hg impairment associated with differential methylmercury (MeHg) production and bioaccumulation. Understanding the landscape-scale variation in the magnitude and relative importance of processes associated with Hg transport, methylation, and MeHg bioaccumulation requires a multidisciplinary synthesis that transcends small-scale variability. The Western North America Mercury Synthesis compiled, analyzed, and interpreted spatial and temporal patterns and drivers of Hg and MeHg in air, soil, vegetation, sediments, fish, and wildlife across western North America. This collaboration evaluated the potential risk from Hg to fish, and wildlife health, human exposure, and examined resource management activities that influenced the risk of Hg contamination. This paper integrates the key information presented across the individual papers that comprise the synthesis. The compiled information indicates that Hg contamination is widespread, but heterogeneous, across western North America. The storage and transport of inorganic Hg across landscape gradients are largely regulated by climate and land-cover factors such as plant productivity and precipitation. Importantly, there was a striking lack of concordance between pools and sources of inorganic Hg, and MeHg in aquatic food webs. Additionally, water management had a widespread influence on MeHg bioaccumulation in aquatic ecosystems, whereas mining impacts where relatively localized. These results highlight the decoupling of inorganic Hg sources with MeHg production and bioaccumulation. Together the findings indicate that developing

  11. Enantiomerization and enantioselective bioaccumulation of metalaxyl in Tenebrio molitor larvae.

    Science.gov (United States)

    Gao, Yongxin; Wang, Huili; Qin, Fang; Xu, Peng; Lv, Xiaotian; Li, Jianzhong; Guo, Baoyuan

    2014-02-01

    The enantiomerization and enantioselective bioaccumulation of metalaxyl by a single dose of exposure to Tenebrio molitor larvae under laboratory condition were studied by high-performance liquid chromatography tandem mass spectroscopy (HPLC-MS/MS) based on a ChiralcelOD-3R [cellulosetris-tris-(3, 5-dichlorophenyl-carbamate)] column. Exposure of enantiopure R-metalaxyl and S-metalaxyl in Tenebrio molitor larvae exhibited significant enantiomerization, with formation of the R enantiomers from the S enantiomers, and vice versa, which might be attributed to the chiral pesticide catalyzed by a certain enzyme in Tenebrio molitor larvae. Enantiomerization was not observed in wheat bran during the period of 21 d. In addition, bioaccumulation of rac-metalaxyl in Tenebrio molitor larvae was enantioselective with a preferential accumulation of S-metalaxyl. These results showed that enantioselectivity was caused not only by actual degradation and metabolism but also by enantiomerization, which was an important process in the environmental fate and behavior of metalaxyl enantiomers. Copyright © 2013 Wiley Periodicals, Inc.

  12. Influences on Mercury Bioaccumulation Factors for the Savannah River

    International Nuclear Information System (INIS)

    Paller, M.H.

    2003-01-01

    Mercury TMDLs (Total Maximum Daily Loads) are a regulatory instrument designed to reduce the amount of mercury entering a water body and ultimately to control the bioaccumulation of mercury in fish. TMDLs are based on a BAF (bioaccumulation factor), which is the ratio of methyl mercury in fish to dissolved methyl mercury in water. Analysis of fish tissue and aqueous methyl mercury samples collected at a number of locations and over several seasons in a 118 km reach of the Savannah River demonstrated that species specific BAFs varied by factors of three to eight. Factors contributing to BAF variability were location, habitat and season related differences in fish muscle tissue mercury levels and seasonal differences in dissolved methyl mercury levels. Overall (all locations, habitats, and seasons) average BAFs were 3.7 x 106 for largemouth bass, 1.4 x 106 for sunfishes, and 2.5 x 106 for white catfish. Inaccurate and imprecise BAFs can result in unnecessary economic impact or insufficient protection of human health. Determination of representative and precise BAFs for mercury in fish FR-om large rivers necessitates collecting large and approximately equal numbers of fish and aqueous methyl mercury samples over a seasonal cycle FR-om the entire area and all habitats to be represented by the TMDL

  13. Bioaccumulation of selected heavy metals by the water fern, Azolla filiculoides Lam. in a wetland ecosystem affected by sewage, mine and industrial pollution

    Energy Technology Data Exchange (ETDEWEB)

    Wet, L.P.D. de; Schoonbee, H.J.; Pretorius, J.; Bezuidenhout, L.M. (Rand Afrikaans University, Johannesburg (South Africa). Depts. of Zoology and Botany, Research Unit for Aquatic and Terrestrial Ecosystems)

    1990-10-01

    The bio-accumulation of the heavy metals, Fe, Cu, Ni, Pb, Zn, Mn and Cr by the water fern, Azolla filiculoides Lam. in a wetland ecosystem polluted by effluents from sewage works, mines and industries was investigated. Results showed that the different metals can be accumulated by the water fern at concentration levels not necessarily related to their actual concentrations in the aquatic environment, as measured in this case, in the bottom sediments. 45 refs., 1 fig., 3 tabs.

  14. Explaining differences between Bioaccumulation Measurements in laboratory and field data through use of probabilistic modeling approach

    NARCIS (Netherlands)

    Selck, H.; Drouillard, K.; Eisenreich, K.; Koelmans, A.A.; Palmqvist, A.; Ruus, A.; Salvito, D.; Schultz, I.; Stewart, R.; Weisbrod, A.; Brink, van den N.W.; Heuvel-Greve, van den M.J.

    2012-01-01

    In the regulatory context, bioaccumulation assessment is often hampered by substantial data uncertainty as well as by the poorly understood differences often observed between results from laboratory and field bioaccumulation studies. Bioaccumulation is a complex, multifaceted process, which calls

  15. Aquatic exercise training for fibromyalgia.

    Science.gov (United States)

    Bidonde, Julia; Busch, Angela J; Webber, Sandra C; Schachter, Candice L; Danyliw, Adrienne; Overend, Tom J; Richards, Rachel S; Rader, Tamara

    2014-10-28

    Exercise training is commonly recommended for individuals with fibromyalgia. This review examined the effects of supervised group aquatic training programs (led by an instructor). We defined aquatic training as exercising in a pool while standing at waist, chest, or shoulder depth. This review is part of the update of the 'Exercise for treating fibromyalgia syndrome' review first published in 2002, and previously updated in 2007. The objective of this systematic review was to evaluate the benefits and harms of aquatic exercise training in adults with fibromyalgia. We searched The Cochrane Library 2013, Issue 2 (Cochrane Database of Systematic Reviews, Database of Abstracts of Reviews of Effects, Cochrane Central Register of Controlled Trials, Health Technology Assessment Database, NHS Economic Evaluation Database), MEDLINE, EMBASE, CINAHL, PEDro, Dissertation Abstracts, WHO international Clinical Trials Registry Platform, and AMED, as well as other sources (i.e., reference lists from key journals, identified articles, meta-analyses, and reviews of all types of treatment for fibromyalgia) from inception to October 2013. Using Cochrane methods, we screened citations, abstracts, and full-text articles. Subsequently, we identified aquatic exercise training studies. Selection criteria were: a) full-text publication of a randomized controlled trial (RCT) in adults diagnosed with fibromyalgia based on published criteria, and b) between-group data for an aquatic intervention and a control or other intervention. We excluded studies if exercise in water was less than 50% of the full intervention. We independently assessed risk of bias and extracted data (24 outcomes), of which we designated seven as major outcomes: multidimensional function, self reported physical function, pain, stiffness, muscle strength, submaximal cardiorespiratory function, withdrawal rates and adverse effects. We resolved discordance through discussion. We evaluated interventions using mean differences

  16. Aquatic sports and safety

    Directory of Open Access Journals (Sweden)

    Володимир Миколайович Зюзь

    2016-11-01

    Full Text Available Aquatic sports or boating, has become a mass sport and recreation. It is as delightful a holiday as one might wish for, gaining strength around the world and especially in Ukraine. More and more people are eager to see the beauty of the underwater world, enjoy exciting sailing races, long journeys along beautiful rivers and unexplored areas, as well as smooth sailing at the height of the season. The article analyzes the modern aquatic (water tourism hazards that can lie in wait for a person in the water during camping trips and various boating competitions. This kind of sports is dangerous in principle, as aqueous medium is always perilous whether water is rough or calm. Accidents are always possible and tourists may find themselves in water, hypothermia, impossibility to breathe, impactions against different objects in the water resulting. Ships, food and equipment may also be damaged or lost, that is the consequences may be extremely negative. This article includes description of boating types, extreme forms of boating, the design features of the swimming facilities used in boating, practical skills and the ability to apply the facilities; characteristics of waves and currents; types of rivers; forms and methods of transportation and rescue of the drowning people; rendering assistance and first aid to the victims; promotion of safety rules on the water during the boating. The main goals and objectives in preparing aquatic tourism professionals whose main duty is safety, training topics, theoretical and practical materials for training the basics of safety that makes it possible to get acquainted with all the requirements have been discussed. The first attempt to develop general educational standards in training professionals in water sports and safety basing on the new priorities and the principles of modern vocational education has been made in the articles

  17. Water-sensitivity assessment of regional spatial plan based on the relation between watershed imperviousness and aquatic ecosystem health

    Science.gov (United States)

    Sutjiningsih, D.; Soeryantono, H.; Anggraheni, E.

    2018-04-01

    Upper Ciliwung watershed in the JABODETABEKPUNJUR area experiencing rapid population growth, which in turn promotes the pace of infrastructure development especially increasing impervious land cover. This will trigger various stressors to the abiotic and biotic elements in the aquatic ecosystem. This study aims to examine whether the relationship between imperviousness in the subwatersheds in Upper Ciliwung and abiotic/biotic elements of its aquatic ecosystems can be used to assess the degree of water-sensitivity of the related regional spatial plan. Two scenarios of impervious cover changes have been assessed, scenario 1 using constant growth of 7.56% per annum, while scenario 2 refers to regional spatial plan of Bogor Regency. Although there are inconsistencies in four (out of 13) subwatersheds, the tests proved that the procedure is succesful to be applied in Upper Ciliwung.

  18. Jumping into the deep-end: results from a pilot impact evaluation of a community-based aquatic exercise program.

    Science.gov (United States)

    Barker, Anna L; Talevski, Jason; Morello, Renata T; Nolan, Genevieve A; De Silva, Renee D; Briggs, Andrew M

    2016-06-01

    This multi-center quasi-experimental pilot study aimed to evaluate changes in pain, joint stiffness, physical function, and quality of life over 12 weeks in adults with musculoskeletal conditions attending 'Waves' aquatic exercise classes. A total of 109 adults (mean age, 65.2 years; range, 24-93 years) with musculoskeletal conditions were recruited across 18 Australian community aquatic centers. The intervention is a peer-led, 45 min, weekly aquatic exercise class including aerobic, strength, flexibility, and balance exercises (n = 67). The study also included a control group of people not participating in Waves or other formal exercise (n = 42). Outcomes were measured using the Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) and EuroQoL five dimensions survey (EQ-5D) at baseline and 12 weeks. Satisfaction with Waves classes was also measured at 12 weeks. Eighty two participants (43 Waves and 39 control) completed the study protocol and were included in the analysis. High levels of satisfaction with classes were reported by Waves participants. Over 90 % of participants reported Waves classes were enjoyable and would recommend classes to others. Waves participants demonstrated improvements in WOMAC and EQ-5D scores however between-group differences did not reach statistical significance. Peer-led aquatic exercise classes appear to improve pain, joint stiffness, physical function and quality of life for people with musculoskeletal conditions. The diverse study sample is likely to have limited the power to detect significant changes in outcomes. Larger studies with an adequate follow-up period are needed to confirm effects.

  19. Purification of Water by Aquatic Plants

    OpenAIRE

    Morimitsu, Katsuhito; Kawahigashi, Tatsuo

    2013-01-01

    [Abstract] Water quality purification of many water systems including those occurring in rivers depends to a great degree on water quality purification activities of aquatic plants and microbes. This paper presents a discussion of results, based on laboratory experiments, of purification by aquatic plants.

  20. Chapter 6: Selenium Toxicity to Aquatic Organisms

    Science.gov (United States)

    This chapter addresses the characteristics and nature of organic selenium (Se) toxicity to aquatic organisms, based on the most current state of scientific knowledge. As such, the information contained in this chapter relates to the 'toxicity assessment' phase of aquatic ecologi...

  1. Risk screening of pharmaceutical compounds in Romanian aquatic environment.

    Science.gov (United States)

    Gheorghe, Stefania; Petre, Jana; Lucaciu, Irina; Stoica, Catalina; Nita-Lazar, Mihai

    2016-06-01

    The aquatic environment is under increased pressure by pharmaceutically active compounds (PhACs) due to anthropogenic activities. In spite of being found at very low concentrations (ng/L to μg/L) in the environment, PhACs represent a real danger to aquatic ecosystems due to their bioaccumulation and long-term effects. In this study, the presence in the aquatic environment of six non-steroidal anti-inflammatory drugs (ibuprofen, diclofenac, acetaminophen, naproxen, indomethacin, and ketoprofen), caffeine, and carbamazepine were monitored. Moreover, their aquatic risk and ecotoxicity by three biological models were evaluated. The monitoring studies performed in Romania showed that all studied PhACs were naturally present at concentrations >0.01 μg/L, pointing out the necessity to perform further toxicity tests for environmental risk assessment. The toxicity studies were carried out on aquatic organisms or bacteria and they indicated, for most of the tested PhACs, an insignificant or low toxicity effects: lethal concentrations (LC50) on fish Cyprinus carpio ranged from 42.60 mg/L to more than 100 mg/L; effective concentrations (EC50) on planktonic crustacean Daphnia magna ranged from 11.02 mg/L to more than 100 mg/L; inhibitory concentrations (IC50)/microbial toxic concentrations (MTC) on Vibrio fischeri and other bacterial strains ranged from 7.02 mg/L to more than 100 mg/L. The PhAC aquatic risk was assessed by using the ratio between measured environmental concentration (MEC) and predicted no effect concentration (PNEC) calculated for each type of organism. The average of quotient risks (RQs) revealed that the presence of these compounds in Romania's aquatic environment induced a lower or moderate aquatic risk.

  2. E-waste disposal effects on the aquatic environment: Accra, Ghana.

    Science.gov (United States)

    Huang, Jingyu; Nkrumah, Philip Nti; Anim, Desmond Ofosu; Mensah, Ebenezer

    2014-01-01

    , the need for actions to be taken to reduce entry of e-waste pollutants into Ghana's aquatic environment is real and is immediate.Heavy metals (e.g., lead, cadmium, copper and zinc) and organic pollutants (e.g.,PCDD/Fs and PBDEs) have been detected in the sediments of local water bodies in quantities that greatly exceed background levels. This fact alone suggests that aquatic organisms that live in the affected water bodies are highly exposed to these toxic, bio-accumulative, and persistent contaminants. These contaminants have been confirmed to result from the primitive methods used to recycle and process e-waste within the local environment.Only limited local data exist on the threats posed by these e-waste-related contaminants on nearby natural resources, especially aquatic organisms. In this review,we have addressed the potential toxicity of selected heavy metals and organic pollutants on aquatic organisms. Since there are no data on concentrations of contaminants in the water column, we have based our predictions of effects on pollutant release rates from sediments. Pollutants that are attached to sediments are routinely released into the water column from diffusion and advection, the rate of which depends on pH and Eh of the sediments. E-waste contaminants have the potential to produce deleterious effects on the behavior, physiology, metabolism, reproduction,development and growth of many aquatic organisms. Because it is confirmed that both heavy metal and organic contaminants are reaching the biota of Ghana's local waterways, we presume that they are producing adverse effects. Because local data on the aquatic toxicity of these contaminants are as yet unavailable, we strongly recommend that future research be undertaken to examine, on a large scale and long-term basis, both contamination levels in biota, and adverse effects on biota of the nearby water bodies.

  3. Toxicity and bioaccumulation of chlorophenols in earthworms, in relation to bioavailability in soil

    Energy Technology Data Exchange (ETDEWEB)

    van Gestel, C.A.; Ma, W.C.

    1988-06-01

    The acute toxicity of five chlorophenols for two earthworm species was determined in two sandy soils differing in organic matter content and the results were compared with adsorption data. Adsorption increased with increasing organic matter content of the soils, but for tetra- and pentachlorophenol was also influenced by soil pH. Earthworm toxicity was significantly higher in the soil with a low level of organic matter. This difference disappeared when LC50 values were recalculated to concentrations in soil solution using adsorption data. Eisenia fetida andrei showed LC50 values lower than those of Lumbricus rubellus although bioaccumulation was generally higher in the latter species. Toxicity and bioaccumulation based on soil solution concentrations increased with increasing lipophilicity of the chlorophenols. The present results indicate that the toxicity and bioaccumulation and therefore the bioavailability of chlorophenols in soil to earthworms are dependent on the concentration in soil solution and can be predicted on the basis of adsorption data. Both the toxicity of and bioaccumulation data on chlorophenols in earthworms demonstrated surprisingly good agreement with those on chlorophenols in fish.

  4. Bioaccumulation study of acrylate monomers in algae (Chlorella Kessleri) by PY-GC and PY-GC/MS

    International Nuclear Information System (INIS)

    Halas, L.; Orinak, A.; Adamova, M.; Ladomersky, J.

    2004-01-01

    Acrylate monomers methylmethacrylate (MMA) and cyclohexylmethacrylate (CHMA) bioaccumulation has been determined in aquatic organism, algae (Chlorella kessleri). Algae were collected in amount of 0.4 mg and directly injected to the paralytic cell. In algae bodies accumulated monomers were analysed by pyrolysis gas chromatography (Py-GC) and pyrolysis gas chromatography coupled with mass spectrometry (Py-GC/MS). Traces of the accumulated monomers in algae body can be determined after 1-, 2 -, 3-weeks of incubation. Maximum content of MMA was determined after 3-week of experiment, contrariwise in the case of CHMA after 2-week exposition. Relationship with pyrolysis temperature has also been studied. (authors)

  5. Fish bioaccumulation and biomarkers in environmental risk assessment : a review

    NARCIS (Netherlands)

    van der Oost, Ron; Beyer, Jonny; Vermeulen, Nico P E

    In this review, a wide array of bioaccumulation markers and biomarkers, used to demonstrate exposure to and effects of environmental contaminants, has been discussed in relation to their feasibility in environmental risk assessment (ERA). Fish bioaccumulation markers may be applied in order to

  6. Phytotoxicity and bioavailablity of nickel: chemical speciation and bioaccumulation

    NARCIS (Netherlands)

    Weng, L.P.; Lexmond, T.M.; Wolthoorn, A.; Temminghoff, E.J.M.; Riemsdijk, van W.H.

    2003-01-01

    The effect of pH on the bioaccumulation of nickel (Ni) by plants is opposite when using a nutrient solution or a soil as a growing medium. This paradox can be understood if the pH effect on the bioaccumulation, on the chemical speciation in the soil solution, and on the binding to the soil of Ni are

  7. Fluvial geomorphology and aquatic-to-terrestrial Hg export are weakly coupled in small urban streams of Columbus, Ohio

    Science.gov (United States)

    Sullivan, S. Mažeika P.; Boaz, Lindsey E.; Hossler, Katie

    2016-04-01

    Although mercury (Hg) contamination is common in stream ecosystems, mechanisms governing bioavailability and bioaccumulation in fluvial systems remain poorly resolved as compared to lentic systems. In particular, streams in urbanized catchments are subject to fluvial geomorphic alterations that may contribute to Hg distribution, bioaccumulation, and export across the aquatic-to-terrestrial boundary. In 12 streams of urban Columbus, Ohio, we investigated the influence of fluvial geomorphic characteristics related to channel geometry, streamflow, and sediment size and distribution on (1) Hg concentrations in sediment and body burdens in benthic larval and adult emergent aquatic insects and (2) aquatic-to-terrestrial contaminant transfer to common riparian spiders of the families Pisauridae and Tetragnathidae via changes in aquatic insect Hg body burdens as well as in aquatic insect density and community composition. Hydrogeomorphic characteristics were weakly related to Hg body burdens in emergent insects (channel geometry) and tetragnathid spiders (streamflow), but not to Hg concentrations in sediment or benthic insects. Streamflow characteristics were also related to emergent insect density, while wider channels were associated with benthic insect community shifts toward smaller-bodied and more tolerant taxa (e.g., Chironomidae). Thus, our results provide initial evidence that fluvial geomorphology may influence aquatic-to-terrestrial contaminant Hg transfer through the collective effects on emergent insect body burdens as well as on aquatic insect community composition and abundance.

  8. Lake Bathymetric Aquatic Vegetation

    Data.gov (United States)

    Minnesota Department of Natural Resources — Aquatic vegetation represented as polygon features, coded with vegetation type (emergent, submergent, etc.) and field survey date. Polygons were digitized from...

  9. Uptake of Mn and Cd by Wild Water Spinach and Their Bioaccumulation and Translocation Factors

    Directory of Open Access Journals (Sweden)

    Billy Teck Huat Guan

    2017-01-01

    Full Text Available Polluted ponds and lakes close to agricultural activities become the exposure route of manganese (Mn and cadmium (Cd to aquatic plants in near vicinity. Therefore, a study of the uptake, bioaccumulation, and translocation of Mn and Cd by the water spinach (Ipomoea aquatica is presented in this paper. Different concentrations of Mn and Cd were added to the hydroponic nutrient solution that was used to grow the plants for the heavy metal uptake experiment under greenhouse conditions. The plant samples exposed to heavy metals were collected to determine the metal concentrations using atomic absorption spectroscopy (AAS and the metal concentrations were found for Mn was between 1.589 to 9.696 µg/g and Cd from 5.309 to 10.947 µg/g. The correlation and regression results showed that the water-to-shoot bioaccumulation factor (BAF decreased for Mn, while root-to-shoot translocation factor (TF values increased in the order Cd > Mn to the increasing levels of metals in the water. Furthermore, it was revealed from the two-way analysis of variance (ANOVA that the different metal types influenced the BAF and TF values at different metal concentration treatments.

  10. Bioaccumulation of polybrominated diphenyl ethers (PBDEs) in sediment aged for 2 years to carps (Cyprinus carpio)

    Science.gov (United States)

    Tian, S. Y.; Li, J. Y.; Jia, X. M.

    2017-08-01

    In order to understand the risk of polybrominated diphenyl ethers (PBDEs) existing in sediment for years, the accumulation of PBDEs in sediment aged for 2 years to fish was investigated. Simulated aquatic system microcosms were conducted with PBDE contaminated sediment aged for 2 years and carps were cultured in the microcosms for 20 days. PBDE concentrations in carp tissues were analyzed to estimate the bioavailability of aged PBDEs in carps. The main spiked PBDE congeners were detected in sediment even though the contaminated sediment was aged for 2 years. Similarly, the five PBDE (BDE-28, 47, 100, 153 and 154) congeners which probably were bioaccumulated by carp were detected in fish tissues, indicating that PBDEs could be bioaccumulated after aging for 2 years. The PBDEs distribution revealed that the concentrations of polybrominated diphenyl ethers in tissues of Cyprinus carpio is in this order of magnitude: gut > liver > gill > fillet. The PBDEs concentrations in fillet were as high as 67.9 ng/g dry wt, in which BDE-47 contributed almost 50% in profile.

  11. The Relative Influence of Aquatic and Terrestrial Processes on Methylmercury Transport in River Basins

    Science.gov (United States)

    Burns, D. A.; Bradley, P. M.; Marvin-DiPasquale, M. C.; Aiken, G.; Brigham, M. E.

    2012-12-01

    Conceptual understanding of the mercury (Hg) cycle in river basins is important for the development of improved Hg models that can inform Hg emissions policies, and, therefore, decrease the health risk that stems from widespread high Hg levels found in fresh water fish throughout the US and globally. Distinguishing the relative roles of aquatic and terrestrial ecosystems in Hg transport and transformation is fundamental to improved Hg risk management. The principal zones where Hg is transformed to its methyl form (MeHg), the transport of that MeHg to aquatic ecosystems, and subsequent bioaccumulation in aquatic food webs have been the focus of our investigations for more than 10 years in several small river basins across the US. Our data indicate that most MeHg in these rivers originates at the interface of the terrestrial and aquatic ecosystem in wetlands and riparian areas where anaerobic conditions and abundant organic matter favor methylation. Key factors in addition to methylation potential are those that influence the hydrologic transport of MeHg to adjacent streams and rivers such as hydraulic conductivity in the shallow subsurface and the depth of the water table in riparian areas. The presence and quality of organic matter in wetland soils and in water that moves through wetland areas also plays a pivotal role in MeHg source and transport. We discuss how these factors affect aquatic MeHg concentrations in light of a recently completed investigation of the Hg cycle in river basins in the Adirondack Mountains of New York and Coastal Plain of South Carolina. At each site, MeHg originates primarily in riparian wetland areas and is transported to the streams via shallow groundwater flow. The presence of open water bodies in these basins favors losses of MeHg by any of several processes, though smaller open water bodies may act as net MeHg sources. Ongoing work is building on this conceptualization of the Hg cycle through development of a model based on the

  12. Aquatic modules for bioregenerative life support systems: Developmental aspects based on the space flight results of the C.E.B.A.S. mini-module

    Science.gov (United States)

    Blüm, V.

    animals. Although C.E.B.A.S.-based aquaculture modules are designed to be closed food loop systems (edible herbivorous fish species and edible water plants) which are already verified on Earth this will not be possible in space without devices in which the animals are fed from a food storage. This has to be done at least once daily which would waste too much crew time when done by astronauts. So, the development of a reliable automated food dispenser has highest priority. Also in this case basic technical solutions are already elaborated. The paper gives a comprehensive overview of the poposed fiuther C.E.B.A.S.-based development of longer-term duration aquatic food production modules.

  13. Aquatic modules for bioregenerative life support systems: Developmental aspects based on the space flight results of the C.E.B.A. Mini Module

    Science.gov (United States)

    Bluem, S. V.

    the feeding of the animals. Although C.E.B.A.S.-based aquaculture modules are disposed to be closed food loop systems (edible herbivorous fish species and edible water plants) which are already verified on Earth this will not be possible in space without previous devices in which the animals are fed from a food storage. This has to be done at least once daily which would waste too much crew time when done by astronauts. So, the development of a reliable aut omated food dis penser has highest priority. Also in this case basic technical solutions are already elaborated. So, the paper will give a comprehensive overview about the disposed further C.E.B.A.S. -based developments of aquatic food production modules.

  14. Pharmaceuticals and personal care products (PPCPs in the freshwater aquatic environment

    Directory of Open Access Journals (Sweden)

    Anekwe Jennifer Ebele

    2017-03-01

    Full Text Available Pharmaceuticals and personal care products (PPCPs are a unique group of emerging environmental contaminants, due to their inherent ability to induce physiological effects in human at low doses. An increasing number of studies has confirmed the presence of various PPCPs in different environmental compartments, which raises concerns about the potential adverse effects to humans and wildlife. Therefore, this article reviews the current state-of-knowledge on PPCPs in the freshwater aquatic environment. The environmental risk posed by these contaminants is evaluated in light of the persistence, bioaccumulation and toxicity criteria. Available literature on the sources, transport and degradation of PPCPs in the aquatic environment are evaluated, followed by a comprehensive review of the reported concentrations of different PPCP groups in the freshwater aquatic environment (water, sediment and biota of the five continents. Finally, future perspectives for research on PPCPs in the freshwater aquatic environment are discussed in light of the identified research gaps in current knowledge.

  15. Reactivity and transfer of tributyl-tin and mercury in aquatic environments; Etude de la reactivite et du transfert du tributyletain et du mercure dans les environnements aquatiques

    Energy Technology Data Exchange (ETDEWEB)

    Tessier, E

    2004-12-15

    Aquatic ecosystems are particularly affected by tributyl-tin (TBT) and mercury (Hg) chronic contamination. These micro-pollutants are ubiquitous and persistent and occurred at trace level, likely to drastically impair aquatic environments. TBT and Hg biogeochemical cycles are driven by transformation and transfer mechanisms between the different environmental compartments. These natural processes have been studied in details by using novel analytical methods and environmental design to improve the risk assessment. The first part of this work focus on the mechanistic study of TBT and Hg reactivity and transfer in reconstituted aquatic ecosystems. These experiments involve both state-of-the-art analytical speciation techniques, partly based on quantification by isotopic dilution and experimental tools simulating the environmental conditions. Kinetics of TBT and Hg distribution (adsorption, bioaccumulation, biodegradation, clearance) have been simultaneously characterized in all compartments of the microcosms presenting a simple biological organization. In a second step, volatilization kinetics of TBT at real interfaces have been studied to assess the potential remobilization and elimination pathways of butyl-tin compounds. Finally, in a third part, stable isotopic tracers of Hg have been employed to discriminate and quantify the coupled methylation and demethylation kinetics in estuarine sediments, by forcing different environmental factors (oxygenation, microbial activity). (author)

  16. Toxic effects and bioaccumulation of nano-, micron- and ionic-Ag in the polychaete, Nereis diversicolor

    DEFF Research Database (Denmark)

    cong, Yi; Banta, Gary Thomas; Selck, Henriette

    There is increasing concern about the toxicities and potential risks, both still poorly understood, of silver nanoparticles for the aquatic environment after their eventual release. In this study, the toxicities of nano (AgNO3)-Ag on the sediment......-dwelling polychaete, Nereis diversicolor, were compared after 10 d of sediment exposure, using growth, DNA damage (comet assay) and bioaccumulation as endpoints. The nominal concentrations used in all exposure scenarios were 0, 1, 5, 10, 25, 50 µg Ag/g dry weight (dw) sediment. Our results show that Ag is able...... to cause DNA damage in Nereis coelomocytes and that this effect is both concentration- and Ag form-related. There were significantly greater genotoxity (higher tail moment and tail DNA intensities) at 25 and 50 µg/g dw in nano- and micron-Ag treated groups and at 50 µg/g dw in ionic-Ag treated group...

  17. Toxic effects and bioaccumulation of nano-, micron-, and ionic-Ag on the polychaete, Nereis diversicolor

    DEFF Research Database (Denmark)

    Cong, Yi; Banta, Gary Thomas; Selck, Henriette

    2011-01-01

    There is increasing concern about the toxicities and potential risks, both still poorly understood, of silver nanoparticles for the aquatic environment after their eventual release via wastewater discharges. In this study, the toxicities of sediment associated nano (...)- and ionic (AgNO3)- Ag on the sediment-dwelling polychaete, Nereis diversicolor, were compared after 10 days of sediment exposure, using survival, DNA damage (comet assay) and bioaccumulation as endpoints. The nominal concentrations used in all exposure scenarios were 0, 1, 5, 10, 25, and 50 g Ag/g dry...... weight (dw) sediment. Our results showed that Ag was able to cause DNA damage in Nereis coelomocytes, and that this effect was both concentration- and Ag form-related. There was significantly greater genotoxicity (higher tail moment and tail DNA intensities) at 25 and 50 g/g dw in nano- and micron-Ag...

  18. Clam bioaccumulation of Alkylphenols and Polyciclic aromatic hydrocarbons in the Venice lagoon under different pressures.

    Science.gov (United States)

    Ademollo, N; Patrolecco, L; Matozzo, V; Marin, M G; Valsecchi, S; Polesello, S

    2017-11-15

    Biota-Sediment Accumulation Factors (BSAFs) of nonylphenols (NPs) and polycyclic aromatic hydrocarbons (PAHs) in Ruditapes philippinarum from the Venice Lagoon (Italy) were determined with the aim to verify whether the routine biomonitoring studies are reliable in contaminated sites. Clams and sediments were collected in field campaigns (October 2003 to June 2004) in three sites of the Venice Lagoon. Results showed that Marghera and Campalto sediments were more contaminated by NPs and PAHs than Poveglia. Different trends were observed in the contamination of clams with the highest BSAFs found at Poveglia. BSAF trend appeared to be inversely related to the contaminant pressure on the sites. These results suggest that clam bioaccumulation is not always representative of the chemical pressure on aquatic biota. The direct correlation between sediment and biota concentrations in contaminated sites can be lost as a function of the site-specific conditions such as sediment toxicity and food availability. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Nanomaterials in the aquatic environment

    DEFF Research Database (Denmark)

    Selck, Henriette; Handy, Richard D; Fernandes, Teresa F.

    2016-01-01

    when assessing NM hazards (e.g., uptake routes, bioaccumulation, toxicity, test protocols, and model organisms). The authors' recommendation is to place particular importance on studying the ecological effects of aged/weathered NMs, as-manufactured NMs, and NMs released from consumer products...... in addressing the following overarching research topics: 1) NM characterization and quantification in environmental and biological matrices; 2) NM transformation in the environment and consequences for bioavailability and toxicity; 3) alternative methods to assess exposure; 4) influence of exposure scenarios......The European Union–United States Communities of Research were established in 2012 to provide a platform for scientists to develop a “shared repertoire of protocols and methods to overcome nanotechnology environmental health and safety (nanoEHS) research gaps and barriers” (www.us-eu.org/). Based...

  20. Bioaccumulation and toxicity of CuO nanoparticles by a freshwater invertebrate after waterborne and dietborne exposures

    Science.gov (United States)

    Croteau, Marie-Noele; Misra, Superb K.; Luoma, Samuel N.; Valsami-Jones, Eugenia

    2014-01-01

    The incidental ingestion of engineered nanoparticles (NPs) can be an important route of uptake for aquatic organisms. Yet, knowledge of dietary bioavailability and toxicity of NPs is scarce. Here we used isotopically modified copper oxide (65CuO) NPs to characterize the processes governing their bioaccumulation in a freshwater snail after waterborne and dietborne exposures. Lymnaea stagnalis efficiently accumulated 65Cu after aqueous and dietary exposures to 65CuO NPs. Cu assimilation efficiency and feeding rates averaged 83% and 0.61 g g–1 d–1 at low exposure concentrations (–1), and declined by nearly 50% above this concentration. We estimated that 80–90% of the bioaccumulated 65Cu concentration in L. stagnalis originated from the 65CuO NPs, suggesting that dissolution had a negligible influence on Cu uptake from the NPs under our experimental conditions. The physiological loss of 65Cu incorporated into tissues after exposures to 65CuO NPs was rapid over the first days of depuration and not detectable thereafter. As a result, large Cu body concentrations are expected in L. stagnalis after exposure to CuO NPs. To the degree that there is a link between bioaccumulation and toxicity, dietborne exposures to CuO NPs are likely to elicit adverse effects more readily than waterborne exposures.

  1. Antibiotics in typical marine aquaculture farms surrounding Hailing Island, South China: Occurrence, bioaccumulation and human dietary exposure

    International Nuclear Information System (INIS)

    Chen, Hui; Liu, Shan; Xu, Xiang-Rong; Liu, Shuang-Shuang; Zhou, Guang-Jie; Sun, Kai-Feng; Zhao, Jian-Liang; Ying, Guang-Guo

    2015-01-01

    Highlights: • Thirty-seven antibiotics were systematically investigated in typical marine aquaculture farms. • Enrofloxacin was widely detected in the feed samples (16.6–31.8 ng/g). • ETM-H 2 O in the adult shrimp samples may pose a potential risk to human safety. • TMP was bioaccumulative in fish muscles. • Antibiotics were weakly bioaccumulated in mollusks. - Abstract: The occurrence, bioaccumulation, and human dietary exposure via seafood consumption of 37 antibiotics in six typical marine aquaculture farms surrounding Hailing Island, South China were investigated in this study. Sulfamethoxazole, salinomycin and trimethoprim were widely detected in the water samples (0.4–36.9 ng/L), while oxytetracycline was the predominant antibiotic in the water samples of shrimp larvae pond. Enrofloxacin was widely detected in the feed samples (16.6–31.8 ng/g) and erythromycin–H 2 O was the most frequently detected antibiotic in the sediment samples (0.8–4.8 ng/g). Erythromycin–H 2 O was the dominant antibiotic in the adult Fenneropenaeus penicillatus with concentrations ranging from 2498 to 15,090 ng/g. In addition, trimethoprim was found to be bioaccumulative in young Lutjanus russelli with a median bioaccumulation factor of 6488 L/kg. Based on daily intake estimation, the erythromycin–H 2 O in adult F. penicillatus presented a potential risk to human safety

  2. Bioaccumulation and effects of novel chlorinated polyfluorinated ether sulfonate in freshwater alga Scenedesmus obliquus.

    Science.gov (United States)

    Liu, Wei; Li, Jingwen; Gao, Lichen; Zhang, Zhou; Zhao, Jing; He, Xin; Zhang, Xin

    2018-02-01

    Chlorinated polyfluorinated ether sulfonate (Cl-PFESA) is a novel alternative compound for perfluorooctane sulfonate (PFOS), with its environmental risk not well known. The bioaccumulation and toxic effects of Cl-PFESA in the freshwater alga is crucial for the understanding of its potential hazards to the aquatic environment. Scenedesmus obliquus was exposed to Cl-PFESA at ng L -1 to mg L -1 , with the exposure regime beginning at the environmentally relevant level. The total log BAF of Cl-PFESA in S. obliquus was 4.66, higher than the reported log BAF of PFOS in the freshwater plankton (2.2-3.2). Cl-PFESA adsorbed to the cell surface accounted for 33.5-68.3% of the total concentrations. The IC50 of Cl-PFESA to algal growth was estimated to be 40.3 mg L -1 . Significant changes in algal growth rate and chlorophyll a/b contents were observed at 11.6 mg L -1 and 13.4 mg L -1 of Cl-PFESA, respectively. The sample cell membrane permeability, measured by the fluorescein diacetate hydrolyzation, was increased by Cl-PFESA at 5.42 mg L -1 . The mitochondrial membrane potential, measured by Rh123 staining, was also increased, indicating the hyperpolarization induced by Cl-PFESA. The increasing ROS and MDA contents, along with the enhanced SOD, CAT activity, and GSH contents, suggested that Cl-PFESA caused oxidative damage in the algal cells. It is less possible that current Cl-PFESA pollution in surface water posed obvious toxic effects on the green algae. However, the bioaccumulation of Cl-PFESA in algae would contribute to its biomagnification in the aquatic food chain and its effects on membrane property could potentially increase the accessibility and toxicity of other coexisting pollutants. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Aquatic biology studies

    International Nuclear Information System (INIS)

    Anon.

    1976-01-01

    Aquatic biology studies focused on studying the hydrothermal effects of Par Pond reservoir on periphyton, plankton, zooplankton, macrophytes, human pathogens, and microbial activity; the variability between the artificial streams of the Flowing Streams Laboratory and Upper Three Runs Creek; and the bacterial production of methane in Savannah River Plant aquatic systems

  4. Aquatic species and habitats

    Science.gov (United States)

    Danny C. Lee; James R. Sedell; Bruce E. Rieman; Russell F. Thurow; Jack E. Williams

    1998-01-01

    Continuing human activities threaten the highly prized aquatic resources of the interior Columbia basin. Precipitous declines in native species, particularly Pacific salmon, and a large influx of introduced species have radically altered the composition and distribution of native fishes. Fortunately, areas of relatively high aquatic integrity remain, much of it on...

  5. Expanding Aquatic Observations through Recreation

    Directory of Open Access Journals (Sweden)

    Robert J. W. Brewin

    2017-11-01

    Full Text Available Accurate observations of the Earth system are required to understand how our planet is changing and to help manage its resources. The aquatic environment—including lakes, rivers, wetlands, estuaries, coastal and open oceans—is a fundamental component of the Earth system controlling key physical, biological, and chemical processes that allow life to flourish. Yet, this environment is critically undersampled in both time and space. New and cost-effective sampling solutions are urgently needed. Here, we highlight the potential to improve aquatic sampling by tapping into recreation. We draw attention to the vast number of participants that engage in aquatic recreational activities and argue, based on current technological developments and recent research, that the time is right to employ recreational citizens to improve large-scale aquatic sampling efforts. We discuss the challenges that need to be addressed for this strategy to be successful (e.g., sensor integration, data quality, and citizen motivation, the steps needed to realize its potential, and additional societal benefits that arise when engaging citizens in scientific sampling.

  6. Use of regression‐based models to map sensitivity of aquatic resources to atmospheric deposition in Yosemite National Park, USA

    Science.gov (United States)

    Clow, David W.; Nanus, Leora; Huggett, Brian

    2010-01-01

    An abundance of exposed bedrock, sparse soil and vegetation, and fast hydrologic flushing rates make aquatic ecosystems in Yosemite National Park susceptible to nutrient enrichment and episodic acidification due to atmospheric deposition of nitrogen (N) and sulfur (S). In this study, multiple linear regression (MLR) models were created to estimate fall‐season nitrate and acid neutralizing capacity (ANC) in surface water in Yosemite wilderness. Input data included estimated winter N deposition, fall‐season surface‐water chemistry measurements at 52 sites, and basin characteristics derived from geographic information system layers of topography, geology, and vegetation. The MLR models accounted for 84% and 70% of the variance in surface‐water nitrate and ANC, respectively. Explanatory variables (and the sign of their coefficients) for nitrate included elevation (positive) and the abundance of neoglacial and talus deposits (positive), unvegetated terrain (positive), alluvium (negative), and riparian (negative) areas in the basins. Explanatory variables for ANC included basin area (positive) and the abundance of metamorphic rocks (positive), unvegetated terrain (negative), water (negative), and winter N deposition (negative) in the basins. The MLR equations were applied to 1407 stream reaches delineated in the National Hydrography Data Set for Yosemite, and maps of predicted surface‐water nitrate and ANC concentrations were created. Predicted surface‐water nitrate concentrations were highest in small, high‐elevation cirques, and concentrations declined downstream. Predicted ANC concentrations showed the opposite pattern, except in high‐elevation areas underlain by metamorphic rocks along the Sierran Crest, which had relatively high predicted ANC (>200 μeq L−1). Maps were created to show where basin characteristics predispose aquatic resources to nutrient enrichment and acidification effects from N and S deposition. The maps can be used to help guide

  7. Use of regression-based models to map sensitivity of aquatic resources to atmospheric deposition in Yosemite National Park, USA

    Science.gov (United States)

    Clow, D. W.; Nanus, L.; Huggett, B. W.

    2010-12-01

    An abundance of exposed bedrock, sparse soil and vegetation, and fast hydrologic flushing rates make aquatic ecosystems in Yosemite National Park susceptible to nutrient enrichment and episodic acidification due to atmospheric deposition of nitrogen (N) and sulfur (S). In this study, multiple-linear regression (MLR) models were created to estimate fall-season nitrate and acid neutralizing capacity (ANC) in surface water in Yosemite wilderness. Input data included estimated winter N deposition, fall-season surface-water chemistry measurements at 52 sites, and basin characteristics derived from geographic information system layers of topography, geology, and vegetation. The MLR models accounted for 84% and 70% of the variance in surface-water nitrate and ANC, respectively. Explanatory variables (and the sign of their coefficients) for nitrate included elevation (positive) and the abundance of neoglacial and talus deposits (positive), unvegetated terrain (positive), alluvium (negative), and riparian (negative) areas in the basins. Explanatory variables for ANC included basin area (positive) and the abundance of metamorphic rocks (positive), unvegetated terrain (negative), water (negative), and winter N deposition (negative) in the basins. The MLR equations were applied to 1407 stream reaches delineated in the National Hydrography Dataset for Yosemite, and maps of predicted surface-water nitrate and ANC concentrations were created. Predicted surface-water nitrate concentrations were highest in small, high-elevation cirques, and concentrations declined downstream. Predicted ANC concentrations showed the opposite pattern, except in high-elevation areas underlain by metamorphic rocks along the Sierran Crest, which had relatively high predicted ANC (>200 µeq L-1). Maps were created to show where basin characteristics predispose aquatic resources to nutrient enrichment and acidification effects from N and S deposition. The maps can be used to help guide development of

  8. Deer Island Aquatic Ecosystem Restoration Project

    Science.gov (United States)

    2015-07-01

    across the U.S. Army Corps of Engineers (USACE) requires that a broad base of EWN understanding and support be built . The Deer Island Aquatic...USACE) requires that a broad base of EWN understanding and support be built . The Deer Island Aquatic Ecosystem Restoration Project (Deer Island AERP...Mississippi Wetlands Restoration Projects). The project received additional funding through several public laws in response to hurricane damages

  9. Ethoprophos fate on soil-water interface and effects on non-target terrestrial and aquatic biota under Mediterranean crop-based scenarios.

    Science.gov (United States)

    Leitão, Sara; Moreira-Santos, Matilde; Van den Brink, Paul J; Ribeiro, Rui; José Cerejeira, M; Sousa, José Paulo

    2014-05-01

    The present study aimed to assess the environmental fate of the insecticide and nematicide ethoprophos in the soil-water interface following the pesticide application in simulated maize and potato crops under Mediterranean agricultural conditions, particularly of irrigation. Focus was given to the soil-water transfer pathways (leaching and runoff), to the pesticide transport in soil between pesticide application (crop row) and non-application areas (between crop rows), as well as to toxic effects of the various matrices on terrestrial and aquatic biota. A semi-field methodology mimicking a "worst-case" ethoprophos application (twice the recommended dosage for maize and potato crops: 100% concentration v/v) in agricultural field situations was used, in order to mimic a possible misuse by the farmer under realistic conditions. A rainfall was simulated under a slope of 20° for both crop-based scenarios. Soil and water samples were collected for the analysis of pesticide residues. Ecotoxicity of soil and aquatic samples was assessed by performing lethal and sublethal bioassays with organisms from different trophic levels: the collembolan Folsomia candida, the earthworm Eisenia andrei and the cladoceran Daphnia magna. Although the majority of ethoprophos sorbed to the soil application area, pesticide concentrations were detected in all water matrices illustrating pesticide transfer pathways of water contamination between environmental compartments. Leaching to groundwater proved to be an important transfer pathway of ethoprophos under both crop-based scenarios, as it resulted in high pesticide concentration in leachates from Maize (130µgL(-1)) and Potato (630µgL(-1)) crop scenarios, respectively. Ethoprophos application at the Potato crop scenario caused more toxic effects on terrestrial and aquatic biota than at the Maize scenario at the recommended dosage and lower concentrations. In both crop-based scenarios, ethoprophos moved with the irrigation water flow to the

  10. Bioaccumulation and ecotoxicity of carbon nanotubes

    DEFF Research Database (Denmark)

    Jackson, Petra; Jacobsen, Nicklas Raun; Baun, Anders

    2013-01-01

    Carbon nanotubes (CNT) have numerous industrial applications and may be released to the environment. In the aquatic environment, pristine or functionalized CNT have different dispersion behavior, potentially leading to different risks of exposure along the water column. Data included in this review...

  11. Influence of relative trophic position and carbon source on selenium bioaccumulation in turtles from a coal fly-ash spill site

    International Nuclear Information System (INIS)

    Van Dyke, James U.; Hopkins, William A.; Jackson, Brian P.

    2013-01-01

    Selenium (Se) is a bioaccumulative constituent of coal fly-ash that can disrupt reproduction of oviparous wildlife. In food webs, the greatest enrichment of Se occurs at the lowest trophic levels, making it readily bioavailable to higher consumers. However, subsequent enrichment at higher trophic levels is less pronounced, leading to mixed tendencies for Se to biomagnify. We used stable isotopes ( 15 N and 13 C) in claws to infer relative trophic positions and relative carbon sources, respectively, of seven turtle species near the site of a recently-remediated coal fly-ash spill. We then tested whether Se concentrations differed with relative trophic position or relative carbon source. We did not observe a strong relationship between δ 15 N and Se concentration. Instead, selenium concentrations decreased with increasing δ 13 C among species. Therefore, in an assemblage of closely-related aquatic vertebrates, relative carbon source was a better predictor of Se bioaccumulation than was relative trophic position. -- Highlights: •Stable isotope results showed trophic separation among turtle species. •Selenium concentrations did not biomagnify with relative trophic position. •Selenium concentrations decreased with increasing δ 13 C among species. •Carbon source influenced Se bioaccumulation in an assemblage of related vertebrates. -- Stable isotope differences indicate that claw selenium concentrations differ among relative carbon sources, and not among relative trophic positions, in an assemblage of aquatic turtles

  12. Monitoring of the aquatic environment by species accumulator of pollutants: a review

    Directory of Open Access Journals (Sweden)

    Oscar RAVERA

    2001-09-01

    Full Text Available This paper is a short review on the biomonitoring of aquatic environments by animal and plant species accumulators of toxic pollutants ("scavengers". This monitoring is based on the relationship between the pollutant concentration in the organism and that in its environment, and not on alterations produced by pollution on the biota. The latter is the basis of other types of biomonitoring, such as those based on the biotic and diversity indices and saprobic scale. The various aspects of monitoring by pollutant accumulators are illustrated; for example, the uptake and loss of pollutants, the "critical organs" and "tissues", the detoxification mechanisms and the most common factors (C.F., BAF, BSAF for establishing a connection between the pollutant concentration in the organism and that in its environment. Several examples of this monitoring on heavy metals, radioisotopes and organic micropollutants are reported. The advantages of this monitoring, the characteristics of the species to be used as bioaccumulators and some practical suggestions are listed. A close collaboration between the scientific teams working on the biomonitoring based on accumulator organisms and on the chemical monitoring is recommended from the scientific and economic point of view.

  13. Bioaccumulation dynamics of polychlorinated biphenyls (PCBs) and organochlorine pesticides

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Bioaccumulation dynamics of polychlorinated biphenyls (PCBs) and organochlorine pesticides was examined in young-of-the-year bluefish from seven sub-estuaries of New...

  14. Multiresidue determination and potential risks of emerging pesticides in aquatic products from Northeast China by LC-MS/MS.

    Science.gov (United States)

    Fu, Lei; Lu, Xianbo; Tan, Jun; Wang, Longxing; Chen, Jiping

    2018-01-01

    A simple method for determining 33 pesticides with a wide polarity range (logK ow 0.6-4.5) in aquatic products was developed based on LC-MS/MS. The target analytes included three types of widely used pesticides: insecticides, fungicides and herbicides. Based on the optimization of ultrasonic assisted extraction and GPC clean-up procedures, the matrix effect, extraction recoveries and LOD were improved distinctively. LOQ of this method was below 0.5ng/g for all pesticides, which is superior to values in the literature, and the matrix effect was reduced effectively (-14.7% to 7.5%). The method was successfully applied to investigate the pesticide residue levels of twenty-five samples including seven common kinds of fishes from Northeast China. The results showed that all targeted pesticides were present in the fish samples; however, their levels were low, except for atrazine, linuron, ethoprophos, tetrachlorvinphos, acetochlor and fenthion. Atrazine and linuron caught our attention because the concentrations of atrazine in fish samples from Liaoning province were in the range of 0.5-8ng/g (w/w) with mean concentration of 2.3ng/g, which were far above those of other pesticides. The levels of linuron were in the range of 0.6-6ng/g (mean concentration 2.8ng/g), which were the highest among all targeted pesticides in the Inner Mongolia. This is the first systematic investigation on the characteristics and levels of these pesticides in aquatic products from northeast China. Considering their toxicity and bioaccumulation, the potential risk of atrazine and linuron from consuming aquatic products should be paid more attention. Copyright © 2017. Published by Elsevier B.V.

  15. Flow cytometry of nucleated red blood cells used as monitoring technique for aquatic risk assessment. A review.

    Directory of Open Access Journals (Sweden)

    Bratosin D.

    2016-05-01

    Full Text Available During the last decades anthropogenic factors led to a significant enhancement of pollutants in aquatic environment and for several years, chemicals analysis has been commonly employed. These techniques cannot detect and quantify many environmental phenomena such as bioavailability, bioaccumulation and synergistic effects. For these reasons, many investigations for evaluating the effects of xenobiotic on organisms use in vitro or in vivo bioassays. The bioassays give a global response for all chemicals present in the environment and these represent one of the best ways to estimate the risk assessment of pollutants in environment for monitoring. For assessing cytotoxicity or ecotoxicity of pollutants (heavy metals, nanoparticles, etc. and to assess aquatic pollution degree and biomonitoring of Danube River and Danube Delta, we developed a new experimental cell system based on the apoptosis of nucleated erythrocytes from fishes and batrachians which are directly exposed to pollutants absorbed by different ways. Despite their structural simplicity, the erythrocytes of lower vertebrates preserve nucleus and mitochondria, both the sensors of the programmed cell death (PCD machinery to develop an apoptosis phenomenon. Our proposed bioassays which are based on the apoptosis phenomenon as induced biomarker by pollutants on fish or amphibians erythrocytes, evidenced by flow cytometry (apoptosis/necrosis discriminated by FITC-annexin-V labeling/PI and cellular viability measured with calcein-AM method could be rapid and very sensitive tests for in laboratory aquatic risk assessment and biomonitoring. Standardization and application of these tests will surely provide the opportunity of their use easily in ecotoxicological laboratories, biomonitoring of large river basins such as the Danube River Basin and will be also able deliver information on fish as a food product.

  16. An Assessment of Cs-137, R-226 and Pa-239, 240 doses for aquatic and terrestrial reference organisms in Poland

    International Nuclear Information System (INIS)

    Krajewski, P.; Suplinska, M.; Rosiak, I.

    2004-01-01

    The doses assessment for aquatic and terrestrial reference organisms was performed, based on the methodology elaborated by U.S. Department of Energy. Four organism types and their corresponding dose limits were used, and the principal exposure pathways were considered for aquatic animal, riparian animal, terrestrial plant, and terrestrial animal organism types respectively. Terrestrial rodent (apodemus flavicollis), Baltic Sea fish (cod, sprat, herring, plaice) and crustaceans (Sanduria entomon and Mytilus edulis) were taken in to special consideration. In the first screening approach the annual doses from 137Cs and 239Pu (bomb-tests-fallout and Czarnobyl origin) and 226Ra (natural radionuclide) to biota were calculated at average, minimum and maximum concentrations of these radionuclides observed in soil, water, and sediment using the default bioaccumulation factors as well as lumped parameters values recommended by DOE Standard. The concentrations of 137Cs measured in the most contaminated region in Poland (Stare Olesno 380 Bqxkg-1 d.w.) and the concentrations of 226Ra for Southern regions of Poland with elevated levels of 226Ra in soil (100 B kg-1 d.w.) were taken in the dose assessment for terrestrial animals. The concentrations of 137Cs and 239Pu and 226Ra determined in see water and bottom sediments from two sub-areas (Gdansk Basin and Bornholm Basin) were used in the dose assessment for aquatic biota. In the second ''site specific'' approach the average empirically measured concentrations of radionuclides in animal tissues were used. At the first approach the total maximal annual doses for terrestrial plants were less then one percent of the recommended dose limits ( 3600 mGyxy-1 ) and items for seawater organisms did not exceed a 40% of this limit whereas the total maximal annual doses for terrestrial animal were close to the recommended dose limit (360 mGyxy-1). It prompted to start supplementary site-specific biota dose assessment through site

  17. Bioaccumulation of zinc in foodstuffs by nuclear and related techniques

    International Nuclear Information System (INIS)

    Diaz Rizo, O.; Olivares Reumont, S.; Lima Cazorla, L.; Gelen Rudnikas, A.; D'Alessandro Rodriguez, K.; Arado Lopez, J. O.; Denis Alpizar, O.; Diaz Arado, O.; Viguri Fuente, J.

    2011-01-01

    The bioaccumulation of zinc in regular consumption foodstuff (sugar, rice, some vegetables, roots and shellfishes) in Cuba is reported. Zinc content in food samples and its corresponding soils or sediments are determined by Instrumental Neutron Activation analysis (INAA), X-Ray Fluorescence analysis (XRF), inductively coupled plasma emission spectrometry (ICP-AES) and Atomic Absorption spectrometry (AES). The obtained results show rice as the major Zn bioaccumulator of the studied products and the main Zn source in Cuban human diet. (Author)

  18. Bioaccumulation of 137Cs and 57Co by five marine phytoplankton species

    International Nuclear Information System (INIS)

    Heldal, H.E.; Stupakoff, I.; Fisher, N.S.

    2001-01-01

    Under controlled laboratory conditions, we have examined the bioaccumulation of 137 Cs and 57 Co in three prymnesiophytes, the coccolithophorid Emiliania huxleyi and the non-calcareous species Isochrysis galbana and Phaeocystis globosa, and two diatoms Skeletonema costatum and Thalassiosira pseudonana. We measured the uptake in growing and non-growing cells and determined concentration factors on both volume and dry weight bases. For uptake of 57 Co in non-growing cells, volume concentration factors (VCF) at equilibrium ranged from 0.2x10 3 for E. huxleyi to 4x10 3 for T. pseudonana. For uptake of 137 Cs in non-growing cells, the VCFs were low for all species and the uptake pattern seemed unsystematic. The results suggest that, in contrast to Co, the cycling and bioaccumulation of Cs in marine animals are unlikely to be affected by Cs accumulation in primary producers

  19. Methylmercury cycling, bioaccumulation, and export from agricultural and non-agricultural wetlands in the Yolo Bypass

    Science.gov (United States)

    Windham-Myers, Lisamarie; Marvin-DiPasquale, Mark; Fleck, Jacob; Alpers, Charles N.; Ackerman, Joshua T.; Eagles-Smith, Collin A.; Stricker, Craig; Stephenson, Mark; Feliz, David; Gill, Gary; Bachand, Philip; Brice, Ann; Kulakow, Robin

    2010-01-01

    This 18-month field study addresses the seasonal and spatial patterns and processes controlling methylmercury (MeHg) production, bioaccumulation, and export from natural and agricultural wetlands of the Yolo Bypass Wildlife Area (YBWA). The data were collected in conjuntion with a Proposition 40 grant from the State Water Resources Control Board in support of the development of Best Management Practices (BMP's) for reducing MeHg loading from agricultural lands in the wetland-dominated Yolo Bypass to the Sacramento-San Joaquin River Delta. The four managemenr-based questions addressed in this study were: 1. Is there a different among agricultural and managfed wetland types in terms of Me Hg dynamic (production, degradation, bioaccumulation, or export)?

  20. Respiration in Aquatic Insects.

    Science.gov (United States)

    MacFarland, John

    1985-01-01

    This article: (1) explains the respiratory patterns of several freshwater insects; (2) describes the differences and mechanisms of spiracular cutaneous, and gill respiration; and (3) discusses behavioral aspects of selected aquatic insects. (ML)

  1. Aquatic Life Criterion - Selenium

    Science.gov (United States)

    Documents pertaining to the 2016 Acute and Chronic Ambient Aquatic Life Water Quality Criteria for Selenium (Freshwater). These documents include what the safe levels of Selenium are in water for the majority of species.

  2. Aquatic Life Criteria - Ammonia

    Science.gov (United States)

    Documents related to EPA's final 2013 Aquatic Life Ambient Water Quality Criteria for Ammonia (Freshwater). These documents pertain to the safe levels of Ammonia in water that should protect to the majority of species.

  3. Aquatic Life Criteria - Copper

    Science.gov (United States)

    Documents pertain to Aquatic Life Ambient Water Quality criteria for Copper (2007 Freshwater, 2016 Estuarine/marine). These documents contain the safe levels of Copper in water that should protect to the majority of species.

  4. Aquatic Research Laboratory (ARL)

    Data.gov (United States)

    Federal Laboratory Consortium — Columbia River and groundwater well water sources are delivered to the Aquatic Research Laboratory (ARL), where these resources are used to conduct research on fish...

  5. Mercury methylation, export and bioaccumulation in rice agriculture - model results from comparative and experimental studies in 3 regions of the California Delta, USA

    Science.gov (United States)

    Windham-Myers, L.; Fleck, J.; Eagles-Smith, C.; Ackerman, J.

    2013-12-01

    Seasonally flooded wetland ecosystems are often poised for mercury (Hg) methylation, thus becoming sources of methylmercury (MeHg) to in situ and downstream biota. The seasonal flooding associated with cultivation of rice (Oryza sativa) also generates MeHg, which may be stored in sediment or plants, bioaccumulated into fauna, degraded or exported, depending on hydrologic and seasonal conditions. While many U.S. waters are regulated for total Hg concentrations based on fish targets, California's Sacramento-San Joaquin Delta (Delta) will soon implement the first MeHg total maximum daily load (TMDL) control program. Since 2007, a conceptual model (DRERIP-MCM) and several ecosystem-level studies have been advanced to better understand the mechanisms behind Hg methylation, export and bioaccumulation within Delta wetlands, including rice agriculture. Three Delta rice-growing regions (Yolo Bypass, Cosumnes River, Central Delta) of varied soil characteristics, mining influences and hydrology, were monitored over full crop years to evaluate annual MeHg dynamics. In addition to fish tissue Hg accumulation, a broad suite of biogeochemical and hydrologic indices were assessed and compared between wetland types, seasons, and regions. In general, Delta rice fields were found to export MeHg during the post-harvest winter season, and promote MeHg uptake in fish and rice grain during the summer growing season. As described in a companion presentation (Eagles-Smith et al., this session), the experimental Cosumnes River study suggests that rice-derived dissolved organic carbon (DOC) fuels MeHg production and uptake into aquatic foodwebs. Explicit DRERIP-MCM linkages for the role of rice-DOC in MeHg production, export and bioaccumulation were verified across two summers (2011, 2012): rice biomass and root productivity influenced porewater DOC availability and microbial processes, which drove sediment MeHg production and flux to surface water, promoting MeHg bioaccumulation in fish

  6. Toxicological effects of pyrethroids on non-target aquatic insects.

    Science.gov (United States)

    Antwi, Frank B; Reddy, Gadi V P

    2015-11-01

    The toxicological effects of pyrethroids on non-target aquatic insects are mediated by several modes of entry of pyrethroids into aquatic ecosystems, as well as the toxicological characteristics of particular pyrethroids under field conditions. Toxicokinetics, movement across the integument of aquatic insects, and the toxicodynamics of pyrethroids are discussed, and their physiological, symptomatic and ecological effects evaluated. The relationship between pyrethroid toxicity and insecticide uptake is not fully defined. Based on laboratory and field data, it is likely that the susceptibility of aquatic insects (vector and non-vector) is related to biochemical and physiological constraints associated with life in aquatic ecosystems. Understanding factors that influence aquatic insects susceptibility to pyrethroids is critical for the effective and safe use of these compounds in areas adjacent to aquatic environments. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  7. Molecular ecology of aquatic microbes

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-31

    Abstracts of reports are presented from a meeting on Molecular Ecology of Aquatic Microbes. Topics included: opportunities offered to aquatic ecology by molecular biology; the role of aquatic microbes in biogeochemical cycles; characterization of the microbial community; the effect of the environment on aquatic microbes; and the targeting of specific biological processes.

  8. In situ treatment with activated carbon reduces bioaccumulation in aquatic food chains.

    Science.gov (United States)

    Kupryianchyk, D; Rakowska, M I; Roessink, I; Reichman, E P; Grotenhuis, J T C; Koelmans, A A

    2013-05-07

    In situ activated carbon (AC) amendment is a new direction in contaminated sediment management, yet its effectiveness and safety have never been tested on the level of entire food chains including fish. Here we tested the effects of three different AC treatments on hydrophobic organic chemical (HOC) concentrations in pore water, benthic invertebrates, zooplankton, and fish (Leuciscus idus melanotus). AC treatments were mixing with powdered AC (PAC), mixing with granular AC (GAC), and addition-removal of GAC (sediment stripping). The AC treatments resulted in a significant decrease in HOC concentrations in pore water, benthic invertebrates, zooplankton, macrophytes, and fish. In 6 months, PAC treatment caused a reduction of accumulation of polychlorobiphenyls (PCB) in fish by a factor of 20, bringing pollutant levels below toxic thresholds. All AC treatments supported growth of fish, but growth was inhibited in the PAC treatment, which was likely explained by reduced nutrient concentrations, resulting in lower zooplankton (i.e., food) densities for the fish. PAC treatment may be advised for sites where immediate ecosystem protection is required. GAC treatment may be equally effective in the longer term and may be adequate for vulnerable ecosystems where longer-term protection suffices.

  9. Bioaccumulation and chemical forms of cadmium, copper and lead in aquatic plants

    Directory of Open Access Journals (Sweden)

    JinZhao Hu

    2010-02-01

    Full Text Available The cadmium(Cd, copper(Cu and lead(Pb accumulation, as well as their relative content of different chemical forms in Sagittaria sagittifolia L. and Potamogeton crispus L. were determined. The results showed that both the plants had the ability to accumulate large amounts of Cd, Cu and Pb, and they absorbed metals in dose-dependent manners. The roots of S. sagittifolia appeared more sensitive to Cd and Pb than the leaves of P. crispus. The potential of Cu uptake by these two plant tissues was similar. Under the same concentration, the uptake of Cu for both the plants was higher than Pb and Cd, while that of Pb was lowest. The Cd, Cu and Pb existed with various forms in the plants. Cd and Pb were mainly in the NaCl extractable form in S. sagittifolia and P. crispus. The HAc and ethanol extractable Cu were the main forms in the root, whereas the ethanol extractable form was the dominant chemical form in the caulis and bulb of the S. sagittifolia L.

  10. Assessment of Contaminant Bioaccumulation in Aquatic Biota on and Adjacent to the Oak Ridge Reservation - 2015

    Energy Technology Data Exchange (ETDEWEB)

    Smith, John G. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Peterson, Mark J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Mathews, Teresa J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Jones, Michael W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Jones, Nikki J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-08-01

    This report provides information on contaminant concentrations in multiple wildlife prey species inhabiting or associated with water bodies on and downstream from the Oak Ridge Reservation (ORR), including regional reference sites.

  11. Bioaccumulation and excretion of enantiomers of myclobutanil in Tenebrio molitor larvae through dietary exposure.

    Science.gov (United States)

    Lv, Xiaotian; Liu, Chen; Li, Yaobin; Gao, Yongxin; Guo, Baoyuan; Wang, Huili; Li, Jianzhong

    2013-12-01

    The bioaccumulation and excretion of enantiomers of myclobutanil in Tenebrio molitor larvae through dietary exposure under laboratory conditions were investigated using high-performance liquid chromatography tandem mass spectrometry (HPLC-MS/MS) based on a ChiralcelOD-3R [cellulosetris-tris-(3, 5-dichlorophenyl-carbamate)] column. The wheat bran fed to Tenebrio molitor larvae was spiked with racemic myclobutanil at two dose levels of 20 mg/kg and 2 mg/kg (dry weight). The results showed that there was a significant trend of enantioselective bioaccumulation in the larvae with a preferential accumulation of (-)-myclobutanil in 20 mg/kg dose exposure, but it was not obviously observed in the 2 mg/kg dose group. A kinetic model considering enantiomerization between the two enantiomers based on first-order reactions was built and the rate constants were estimated to discuss the kinetic reason for the different concentrations of individual enantiomers in the larvae. The approximations implied an inversion between the two enantiomers with a relatively higher rate of the inversion from (-)-myclobutanil to (+)-myclobutanil. Meanwhile, analysis of data of excretion samples suggested the active excretion is probably an important pathway for the insect to eliminate myclobutanil rapidly with nonenantioselectivity as a passive transport process, which was consistent with the low accumulation efficiency of myclobutanil measured by BAF (bioaccumulation factor). © 2013 Wiley Periodicals, Inc.

  12. Zinc bioaccumulation by microbial consortium isolated from nickel smelter sludge disposal site

    Directory of Open Access Journals (Sweden)

    Kvasnová Simona

    2017-06-01

    Full Text Available Heavy metal pollution is one of the most important environmental issues of today. Bioremediation by microorganisms is one of technologies extensively used for pollution treatment. In this study, we investigated the heavy metal resistance and zinc bioaccumulation by microbial consortium isolated from nickel sludge disposal site near Sereď (Slovakia. The composition of consortium was analyzed based on MALDI-TOF MS of cultivable bacteria and we have shown that the consortium was dominated by bacteria of genus Arthrobacter. While consortium showed very good growth in the zinc presence, it was able to remove only 15 % of zinc from liquid media. Selected members of consortia have shown lower growth rates in the zinc presence but selected isolates have shown much higher bioaccumulation abilities compared to whole consortium (up to 90 % of zinc removal for NH1 strain. Bioremediation is frequently accelerated through injection of native microbiota into a contaminated area. Based on data obtained in this study, we can conclude that careful selection of native microbiota could lead to the identification of bacteria with increased bioaccumulation abilities.

  13. Modelling the bioaccumulation of persistent organic pollutants in agricultural food chains for regulatory exposure assessment.

    Science.gov (United States)

    Takaki, Koki; Wade, Andrew J; Collins, Chris D

    2017-02-01

    New models for estimating bioaccumulation of persistent organic pollutants in the agricultural food chain were developed using recent improvements to plant uptake and cattle transfer models. One model named AgriSim was based on K OW regressions of bioaccumulation in plants and cattle, while the other was a steady-state mechanistic model, AgriCom. The two developed models and European Union System for the Evaluation of Substances (EUSES), as a benchmark, were applied to four reported food chain (soil/air-grass-cow-milk) scenarios to evaluate the performance of each model simulation against the observed data. The four scenarios considered were as follows: (1) polluted soil and air, (2) polluted soil, (3) highly polluted soil surface and polluted subsurface and (4) polluted soil and air at different mountain elevations. AgriCom reproduced observed milk bioaccumulation well for all four scenarios, as did AgriSim for scenarios 1 and 2, but EUSES only did this for scenario 1. The main causes of the deviation for EUSES and AgriSim were the lack of the soil-air-plant pathway and the ambient air-plant pathway, respectively. Based on the results, it is recommended that soil-air-plant and ambient air-plant pathway should be calculated separately and the K OW regression of transfer factor to milk used in EUSES be avoided. AgriCom satisfied the recommendations that led to the low residual errors between the simulated and the observed bioaccumulation in agricultural food chain for the four scenarios considered. It is therefore recommended that this model should be incorporated into regulatory exposure assessment tools. The model uncertainty of the three models should be noted since the simulated concentration in milk from 5th to 95th percentile of the uncertainty analysis often varied over two orders of magnitude. Using a measured value of soil organic carbon content was effective to reduce this uncertainty by one order of magnitude.

  14. Heavy metal bioaccumulation in the soft tissues of the green mussels, Perna viridis (L.) Bivalve: Mytilacea

    International Nuclear Information System (INIS)

    Borbon, V.X.L.

    1991-01-01

    Untreated agro-industrial and domestic waste continuously being damped along the shores of its surrounding provinces and cities pollute the Manila Bay coastal waters. Presumably, its oyster and mussel culture farms are contaminated with toxic heavy metals. Yet, this alarming signs remain barely investigated. Pollution enhanced, the bioavailability and toxicity of heavy metals threaten the flora and fauna of the aquatic ecosystem. Trace concentrations of toxic elements in the marine food chain can trigger deleterious biochemical, physiological and ecological impact. Known to be bio-accumulated by aquatic organisms, the mean concentrations of Hg, Cd, Pb, Cu, and Zn in the edible tissues of Perna viridis were determined. Water and sediments sampled from the mussel culture farms were also analyzed. Results revealed that despite the apparent pollution, except for Cu and Zn, which registered slightly higher values, Hg, Cd and Pb concentrations were much lower than the maximum permissible limits. Even water and sediments samples tested showed that mean concentrations of these elements were still below sublethal limits. (auth.). 79 refs.; 8 figs.; 13 tabs.; 16 plates

  15. Preservation of natural aquatic ecosystems by application of bottom coal ash based bioreactor for in situ treatment of anthropogenic effluents

    Science.gov (United States)

    Anker, Y.; Nisnevitch, M.; Tal, M.; Cahan, R.; Michael, E.

    2012-12-01

    One consequence of global climate change is recharge decrease at sub tropical and Mediterranean regions to both the surface and the ground fresh water resources. As a general rule, when water source quantity is reduced, the level of salination, as well as chemical and biological pollutants, tends to increase. The situation is more severe whenever the drainage basin is (a) heavily populated from urban, industrial and agricultural areas, (b) has wide areas of thin or non soil cover and (c) has a karstic structure and morphology. These latter conditions are typical to many regions around the Middle East; whereas pollution hazard to Mid Eastern streams is greater than to those in more humid regions owing to their relative small size and poor dilution capacity. The consequence of this ongoing and increasing anthropogenic pollution is endangerment of natural aquatic habitats and due to decrease in fresh water supply availability also to human sustainability. The ecological impact may involve transition of ephemeral (Wadi) streams into intermittent ones with the accompanied biodiversity change or extinction once the pollution is extreme. The impact on indigenous human communities might be as severe owing to drinking water quality decrease and the consequent decrease id quantity as well as damage to dryland farming. In setting of operations applied to the Yarkon Taninim watershed (central Israel) management, a pilot biofilter facility for sustainable preservation and rehabilitation of natural fluvial ecosystems was tested. This biofilter is planned to operate through low impact concept assimilating natural treatment processes occurring during runoff recharge through a porous flow media. The facility is constructed out of several grain sizes of bottom coal ash aggregate, which was found to be a better microbial mats growing stratum, compared to common natural aggregates such as tuff and lime pebbles (and also has an EPA directive for wastewater treatment). The biofilter is

  16. [A process of aquatic ecological function regionalization: The dual tree framework and conceptual model].

    Science.gov (United States)

    Guo, Shu Hai; Wu, Bo

    2017-12-01

    Aquatic ecological regionalization and aquatic ecological function regionalization are the basis of water environmental management of a river basin and rational utilization of an aquatic ecosystem, and have been studied in China for more than ten years. Regarding the common problems in this field, the relationship between aquatic ecological regionalization and aquatic ecological function regionalization was discussed in this study by systematic analysis of the aquatic ecological zoning and the types of aquatic ecological function. Based on the dual tree structure, we put forward the RFCH process and the diamond conceptual model. Taking Liaohe River basin as an example and referring to the results of existing regionalization studies, we classified the aquatic ecological function regions based on three-class aquatic ecological regionalization. This study provided a process framework for aquatic ecological function regionalization of a river basin.

  17. Assessment of mechanisms of metal-induced reproductive toxicity in aquatic species as a biomarker of exposure

    International Nuclear Information System (INIS)

    Anderson, M.; George, W.; Sikka, S.; Kamath, B.; Preslan, J.; Agrawal, K.; Rege, A.

    1993-01-01

    This project is designed to identify heavy metals and organic contaminants of concern which could impact on the biota in the Louisiana wetlands by assessment of uptake and bioaccumulation of contaminants and their effects on reproductive processes as biomarkers of exposure. Heavy metals (lead, cadmium, cobalt, and mercury) have been demonstrated to have toxic effects on reproduction in mammals and several aquatic species. Hexachlorobenzene (HCB) is an persistent environmental contaminant which has been measured in human serum, fat, semen, and follicular fluid. HCB has been shown to be a reproductive toxin in rats and primates. Polychlorinated biphenyls (PCBs) are prevalent chlorinated hydrocarbons currently contaminating our environment. PCBs resist degradation and are insoluble in water; however, they bioaccumulate in aquatic species. Disturbances of the reproductive systems are not only sensitive indicators of toxicity but threatens the propagation of a species

  18. Co-occurrence of the cyanotoxins BMAA, DABA and anatoxin-a in Nebraska reservoirs, fish, and aquatic plants.

    Science.gov (United States)

    Al-Sammak, Maitham Ahmed; Hoagland, Kyle D; Cassada, David; Snow, Daniel D

    2014-01-28

    Several groups of microorganisms are capable of producing toxins in aquatic environments. Cyanobacteria are prevalent blue green algae in freshwater systems, and many species produce cyanotoxins which include a variety of chemical irritants, hepatotoxins and neurotoxins. Production and occurrence of potent neurotoxic cyanotoxins β-N-methylamino-L-alanine (BMAA), 2,4-diaminobutyric acid dihydrochloride (DABA), and anatoxin-a are especially critical with environmental implications to public and animal health. Biomagnification, though not well understood in aquatic systems, is potentially relevant to both human and animal health effects. Because little is known regarding their presence in fresh water, we investigated the occurrence and potential for bioaccumulation of cyanotoxins in several Nebraska reservoirs. Collection and analysis of 387 environmental and biological samples (water, fish, and aquatic plant) provided a snapshot of their occurrence. A sensitive detection method was developed using solid phase extraction (SPE) in combination with high pressure liquid chromatography-fluorescence detection (HPLC/FD) with confirmation by liquid chromatography-tandem mass spectrometry (LC/MS/MS). HPLC/FD detection limits ranged from 5 to 7 µg/L and LC/MS/MS detection limits were <0.5 µg/L, while detection limits for biological samples were in the range of 0.8-3.2 ng/g depending on the matrix. Based on these methods, measurable levels of these neurotoxic compounds were detected in approximately 25% of the samples, with detections of BMAA in about 18.1%, DABA in 17.1%, and anatoxin-a in 11.9%.

  19. Enhanced phytoextraction of chromium by the aquatic macrophyte Potamogeton pusillus in presence of copper

    International Nuclear Information System (INIS)

    Monferrán, Magdalena V.; Pignata, María L.; Wunderlin, Daniel A.

    2012-01-01

    The aquatic macrophyte, Potamogeton pusillus was evaluated for the removal of Cu 2+ and Cr +6 from aqueous solutions during 15 days phytoextraction experiments. Results show that P. pusillus is capable of accumulating substantial amount of Cu and Cr from individual solutions (either Cu 2+ or Cr +6 ). Significant correlations between metal removal and bioaccumulation were obtained. Roots and leaves accumulated the highest amount of Cu and Cr followed by stems. The bioaccumulation of Cr was significantly enhanced in the presence of Cu, showing a synergic effect on Cr +6 removal, presenting a good alternative for the removal of these metals from polluted aquifers. To the extent of our knowledge, this is the first report on both enhanced phytoextraction of Cr +6 in presence of Cu +2 and bioaccumulation of these heavy metals by P. pusillus. - Highlights: ► First report on enhanced phytoextraction of Cr +6 in the presence of Cu +2 by P. pusillus. ► P. pusillus can be a good candidate for phytoremediation of contaminated water bodies. ► Roots and leaves presented higher accumulation, suggesting that they are in charge of metal uptake. - We report enhanced effect of Cu +2 upon phytoextraction of Cr +6 by Potamogeton pusillus from water. Metals accumulation occurs mainly in roots and leaves of this aquatic plant.

  20. Bioaccumulation of trace elements by Avicennia marina

    Directory of Open Access Journals (Sweden)

    Kandasamy Kathiresan

    2014-11-01

    Full Text Available Objective: To analyze the concentrations of 12 micro-nutrients (Al, B, Cd, Co, Cr, Cu, Fe, Mg, Mn, Ni, Pb, and Zn in different plant parts of Avicennia marina and its rhizosphere soil of the south east coast of India. Methods: The samples were acid digested, then analyzed by using inductively coupled plasma system (ICP-Optical Emission Spectrophotometer. Results: Levels of metals were found in the decreasing order: Cd>Co>Ni>Pb>B >Cr>Zn>Mg>Mn>Cu>Fe>Al. The soil held more levels of metals than plant parts, but within the permissible limits of concentration. Bark and root accumulated higher levels of trace elements in a magnitude of 10-80 folds than other plant parts. The overall bioaccumulation factor in the sampling sites of Vellar, Pichavaram and Cuddalore was 2.88, 1.42 0.47 respectively. Essential elements accumulate high in mature mangroves forest while non-essential elements accumulate high in the industrially polluted mangroves. Conclusions: The ratio between essential and non-essential elements was found higher in young mangrove forest than that in mature mangrove forest and polluted mangrove areas. Thus, the ratio of accumulation can be used as an index of the growth and pollution status of mangroves.

  1. Effect of copper on growth of an aquatic macrophyte, Elodea canadensis.

    Science.gov (United States)

    Mal, Tarun K; Adorjan, Peter; Corbett, Andrea L

    2002-01-01

    Elodea canadensis has been proposed as a potential biomonitor due to its wide distribution and apparent ability to accumulate pollutants in aquatic ecosystems. We investigated the effects of copper sulfate on growth in E. canadensis to determine its effectiveness as a biomonitor of copper pollution in aquatic systems and whether growth is a suitable index of sub-lethal stress. Copper sulfate significantly slowed or stopped growth at all concentrations (low: 1 ppm, medium: 5 ppm, high: 10 ppm of copper sulfate) used. Final plant drymass was significantly lower in medium and high copper treatments compared with controls. E. canadensis appears to be very sensitive to copper levels, and may be useful as a biomonitor of copper levels in aquatic systems. However, its utility as a bioaccumulator may be limited, because we observed senescence of most leaves in all copper-treated plants following 4 weeks of treatment.

  2. Biomagnification of persistent organic pollutants along a high-altitude aquatic food chain in the Tibetan Plateau: Processes and mechanisms.

    Science.gov (United States)

    Ren, Jiao; Wang, Xiaoping; Wang, Chuanfei; Gong, Ping; Wang, Xiruo; Yao, Tandong

    2017-01-01

    Biomagnification of some persistent organic pollutants (POPs) has been found in marine and freshwater food chains; however, due to the relatively short food chains in high-altitude alpine lakes, whether trophic transfer would result in the biomagnification of POPs is not clear. The transfer of various POPs, including organochlorine pesticides and polychlorinated biphenyls (PCBs), along the aquatic food chain in Nam Co Lake (4700 m), in the central Tibetan Plateau, was studied. The POPs levels in the water, sediment and biota [plankton, invertebrates and fish (Gymnocypris namensis)] of Nam Co were generally low, with concentrations comparable to those reported for the remote Arctic. The composition profiles of POPs in the fish were different from that in the water, but similar to their food. DDEs, DDDs, PCB 138, 153 and 180 displayed significant positive correlations with trophic levels, with trophic magnification factors (TMFs) ranged between 1.5 and 4.2, implying these chemicals can undergo final biomagnification along food chain. A fugacity-based dynamic bioaccumulation model was applied to the fish with localized parameters, by which the simulated concentrations were comparable to the measured data. Modeling results showed that most compounds underwent net gill loss and net gut uptake; only when the net result of the combined gut and gill fluxes would be positive, bioaccumulation could eventually occur. The net accumulation flux increased with fish age, which was caused by the continuous increase of gut uptake by aged fish. Due to the oligotrophic condition, efficient food absorption is likely the key factor that influences the gut POPs uptake. Long residence times with half-lives up to two decades were found for the higher chlorinated PCBs in Gymnocypris namensis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Aquatic arsenic: phytoremediation using floating macrophytes.

    Science.gov (United States)

    Rahman, M Azizur; Hasegawa, H

    2011-04-01

    Phytoremediation, a plant based green technology, has received increasing attention after the discovery of hyperaccumulating plants which are able to accumulate, translocate, and concentrate high amount of certain toxic elements in their above-ground/harvestable parts. Phytoremediation includes several processes namely, phytoextraction, phytodegradation, rhizofiltration, phytostabilization and phytovolatilization. Both terrestrial and aquatic plants have been tested to remediate contaminated soils and waters, respectively. A number of aquatic plant species have been investigated for the remediation of toxic contaminants such as As, Zn, Cd, Cu, Pb, Cr, Hg, etc. Arsenic, one of the deadly toxic elements, is widely distributed in the aquatic systems as a result of mineral dissolution from volcanic or sedimentary rocks as well as from the dilution of geothermal waters. In addition, the agricultural and industrial effluent discharges are also considered for arsenic contamination in natural waters. Some aquatic plants have been reported to accumulate high level of arsenic from contaminated water. Water hyacinth (Eichhornia crassipes), duckweeds (Lemna gibba, Lemna minor, Spirodela polyrhiza), water spinach (Ipomoea aquatica), water ferns (Azolla caroliniana, Azolla filiculoides, and Azolla pinnata), water cabbage (Pistia stratiotes), hydrilla (Hydrilla verticillata) and watercress (Lepidium sativum) have been studied to investigate their arsenic uptake ability and mechanisms, and to evaluate their potential in phytoremediation technology. It has been suggested that the aquatic macrophytes would be potential for arsenic phytoremediation, and this paper reviews up to date knowledge on arsenic phytoremediation by common aquatic macrophytes. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. Aquatic and Terrestrial Environment 2004

    DEFF Research Database (Denmark)

    Andersen, J. M.; Boutrup, S.; Bijl, L. van der

    This report presents the 2004 results of the Danish National Monitoring and Assess-ment Programme for the Aquatic and Terrestrial Environments (NOVANA). 2004 was the first year in which terrestrial nature was included in the monitoring pro-gramme. The report reviews the state of the groundwater......, watercourses, lakes and marine waters and the pressures upon them and reviews the monitoring of terrestrial natural habitats and selected plants and animals. The report is based on the annual reports prepared for each subprogramme by the Topic Centres. The latter reports are mainly based on data collected...

  5. Rapid screening of aquatic toxicity of several metal-based nanoparticles using the MetPLATE Trade-Mark-Sign bioassay

    Energy Technology Data Exchange (ETDEWEB)

    Pokhrel, Lok R.; Silva, Thilini [Department of Environmental Health, College of Public Health, East Tennessee State University, Johnson City, TN 37614 (United States); Dubey, Brajesh, E-mail: bdubey@uoguelph.ca [Environmental Engineering, School of Engineering, University of Guelph, 50 Stone Road East, Guelph, Ontario (Canada); El Badawy, Amro M. [Department of Civil and Environmental Engineering, University of Cincinnati, Cincinnati, OH (United States); Tolaymat, Thabet M. [USEPA, Office of Research and Development, National Risk Management Laboratory, 26 West Martin Luther King Drive, Cincinnati, OH 45224 (United States); Scheuerman, Phillip R. [Department of Environmental Health, College of Public Health, East Tennessee State University, Johnson City, TN 37614 (United States)

    2012-06-01

    Current understanding of potential toxicity of engineered nanomaterials to aquatic microorganisms is limited for risk assessment and management. Here we evaluate if the MetPLATE Trade-Mark-Sign test can be used as an effective and rapid screening tool to test for potential aquatic toxicity of various metal-based nanoparticles (NPs). The MetPLATE bioassay is a heavy metal sensitive test based on {beta}-galactosidase activity in Escherichia coli. Five different types of metal-based NPs were screened for toxicity: (1) citrate coated nAg (Citrate-nanosilver), (2) polyvinylpyrrolidone coated nAg (PVP-nAg), (3) uncoated nZnO, (4) uncoated nTiO{sub 2} and (5) 1-Octadecylamine coated CdSe Quantum Dots (CdSe QDs); and compared with their corresponding ionic salt toxicity. Citrate-nAg was further fractionated into clean Citrate-nAg, unclean Citrate-nAg and permeate using a tangential flow filtration (TFF) system to eliminate residual ions and impurities from the stock Citrate-nAg suspension and also to differentiate between ionic- versus nano-specific toxicity. Our results showed that nAg, nZnO and CdSe QDs were less toxic than their corresponding ionic salts tested, while nano- or ionic form of TiO{sub 2} was not toxic as high as 2.5 g L{sup -1} to the MetPLATE Trade-Mark-Sign bacteria. Although coating-dependent toxicity was noticeable between two types of Ag NPs evaluated, particle size and surface charge were not adequate to explain the observed toxicity; hence, the toxicity appeared to be material-specific. Overall, the toxicity followed the trend: CdCl{sub 2} > AgNO{sub 3} > PVP-nAg > unclean Citrate-nAg > clean Citrate-nAg > ZnSO{sub 4} > nZnO > CdSe QDs > nTiO{sub 2}/TiO{sub 2}. These results indicate that an evaluation of {beta}-galactosidase inhibition in MetPLATE Trade-Mark-Sign E. coli can be an important consideration for rapid screening of metal-based NP toxicity, and should facilitate ecological risk assessment of these emerging contaminants. - Highlights

  6. Cascade-pond System Health Assessment Based on Macroinvertebrate Indices and Its Relationship with Impervious Cover and Aquatic Buffer Zone in Urbanized Catchments

    Directory of Open Access Journals (Sweden)

    Zulkarnain Faris

    2017-01-01

    Full Text Available A cascade-pond system consists of six ponds located at Universitas Indonesia Campus, Depok. Its catchment area is dominated by high density urban area with moderate to high imperviousness. Some of riparian buffers surrounds six ponds are also occupied by high imperviousness that may lead some ecohydrological problems i.e. water quality degradation, declining freshwater biodiversity and food web changes. The aim of this study is assessing the current state of cascade-pond system health. The assessment of macroinvertebrate indices is based on SingScore that have been developed by Public Utilities Board of Singapore for macroinvertebrate biotic index. Impervious cover data is obtained from high-resolution imageries and processed using ArcGIS 10.5. Qualitative statistics methods, Chi-squared test describes the relationship of macroinvertebrate indices with catchment area imperviousness and aquatic buffer zone. The health assessment based on macroinvertebrates indices shows that the lower ponds are relatively healthier than the upper one. There is also any significant relationship between macroinvertebrate indices with impervious cover based on chi square test and cross tabulation analysis.

  7. Land-based versus aquatic resistance therapeutic exercises for older women with sarcopenic obesity: study protocol for a randomised controlled trial.

    Science.gov (United States)

    de Souza Vasconcelos, Karina Simone; Dias, João Marcos Domingues; de Araújo, Marília Caixeta; Pinheiro, Ana Cisalpino; Maia, Marcela Machado; Dias, Rosângela Corrêa

    2013-09-16

    Sarcopenic obesity is a health condition that combines excess adipose tissue and loss of muscle mass and strength. Sarcopenic obesity predisposes to more functional disabilities than obesity or sarcopenia alone. Progressive resistance exercises are recommended for older people as a potential treatment for sarcopenia and also for obesity. However, there is a lack of evidence indicating which programmes are best applied to older people, and no studies have investigated their effects on sarcopenic obese people. The aims of this protocol study are to investigate and compare the efficacy of land-based and aquatic resistance exercise programmes on improving muscle performance, functional capacity and quality of life of older women with sarcopenic obesity. This is a protocol study for a parallel randomised controlled clinical trial. Eligible participants are older women (≥65 years) with a body mass index ≥30 kg/m 2 and hand grip strength ≤21 kg force. A total sample of 36 participants will be randomly allocated to one of the intervention groups in blocks of three: land-based, aquatic or control. Each intervention group will undergo 2-week sessions of a 10-week therapeutic exercise programme for strength, power and endurance training of the lower-limb muscles. Participants in the control group will not participate in any strengthening activity for lower limbs and will receive telephone calls once a week. Baseline and final evaluation of outcomes will encompass muscle performance of the lower limbs assessed by an isokinetic dynamometer; functional tests of usual walking speed, maximal walking speed (shuttle walking test), stair speed and the Short Physical Performance Battery; and health-related quality of life (Medical Outcomes Study Short Form Questionnaire - SF-36). Data collectors will be blinded to randomisation and will not be in touch with participants during the interventions. This study is the first randomised controlled trial designed to evaluate resistance

  8. Evaluation of Freshwater Aquatic Resources and Stormwater Management at U.S. Naval Submarine Base, Bangor, Washington

    National Research Council Canada - National Science Library

    May, Christopher

    1997-01-01

    .... Based on a thorough assessment of physical, chemical, and biological conditions in streams, wetlands, and lakes within the base, an integrated surface and storm water management (SSWM) plan is developed...

  9. Uranium bioaccumulation in a freshwater ecosystem: Impact of feeding ecology

    Energy Technology Data Exchange (ETDEWEB)

    Kraemer, Lisa D., E-mail: lisakraemer@trentu.ca [Trent University, 1600 West Bank Drive, Peterborough, ON, K9J 7B8 (Canada); Evans, Douglas [Trent University, 1600 West Bank Drive, Peterborough, ON, K9J 7B8 (Canada)

    2012-11-15

    Uranium bioaccumulation in a lake that had been historically affected by a U mine and (2) to use a combined approach of gut content examination and stable nitrogen and carbon isotope analysis to determine if U bioaccumulation in fish was linked to foodweb ecology. We collected three species of fish: smallmouth bass (Micropterus dolomieu), yellow perch (Perca flavescens) and bluegill (Lepomis macrochirus), in addition to several invertebrate species including freshwater bivalves (family: Sphaeriidae), dragonfly nymphs (order: Odonata), snails (class: Gastropoda) and zooplankton (family: Daphniidae). Results showed significant U bioaccumulation in the lake impacted by historical mining activities. Uranium accumulation was 2-3 orders of magnitude higher in invertebrates than in the fish species. Within fish, U was measured in operculum (bone), liver and muscle tissue and accumulation followed the order: operculum > liver > muscle. There was a negative relationship between stable nitrogen ratios ({sup 15}N/{sup 14}N) and U bioaccumulation, suggesting U biodilution in the foodweb. Uranium bioaccumulation in all three tissues (bone, liver, muscle) varied among fish species in a consistent manner and followed the order: bluegill > yellow perch > smallmouth bass. Collectively, gut content and stable isotope analysis suggests that invertebrate-consuming fish species (i.e. bluegill) have the highest U levels, while fish species that were mainly piscivores (i.e. smallmouth bass) have the lowest U levels. Our study highlights the importance of understanding the feeding ecology of fish when trying to predict U accumulation.

  10. Inter- and intraspecific variation in mercury bioaccumulation by snakes inhabiting a contaminated river floodplain.

    Science.gov (United States)

    Drewett, David V V; Willson, John D; Cristol, Daniel A; Chin, Stephanie Y; Hopkins, William A

    2013-04-01

    Although mercury (Hg) is a well-studied contaminant, knowledge about Hg accumulation in snakes is limited. The authors evaluated Hg bioaccumulation within and among four snake species (northern watersnakes, Nerodia sipedon; queen snakes, Regina septemvittata; common garter snakes, Thamnophis sirtalis; and rat snakes, Elaphe obsoleta [Pantherophis alleghaniensis]) from a contaminated site on the South River (Waynesboro, VA, USA) and two nearby reference sites. Total Hg (THg) concentrations in northern watersnake tail tissue at the contaminated site ranged from 2.25 to 13.84 mg/kg dry weight (mean: 4.85 ± 0.29), or 11 to 19 times higher than reference sites. Blood THg concentrations (0.03-7.04 mg/kg wet wt; mean: 2.24 ± 0.42) were strongly correlated with tail concentrations and were the highest yet reported in a snake species. Within watersnakes, nitrogen stable isotope values indicated ontogenetic trophic shifts that correlated with THg bioaccumulation, suggesting that diet plays a substantial role in Hg exposure. Female watersnakes had higher mean THg concentrations (5.67 ± 0.46 mg/kg) than males (4.93 ± 0.49 mg/kg), but no significant differences between sexes were observed after correcting for body size. Interspecific comparisons identified differences in THg concentrations among snake species, with more aquatic species (watersnakes and queen snakes) accumulating higher mean concentrations (5.60 ± 0.40 and 4.59 ± 0.38 mg/kg in tail tissue, respectively) than the more terrestrial species, garter snakes and rat snakes (1.28 ± 0.32 and 0.26 ± 0.09 mg/kg, respectively). The results of the present study warrant further investigation of potential adverse effects and will aid in prioritizing conservation efforts. Copyright © 2013 SETAC.

  11. Transport of oxidized multi-walled carbon nanotubes through silica based porous media: influences of aquatic chemistry, surface chemistry, and natural organic matter.

    Science.gov (United States)

    Yang, Jin; Bitter, Julie L; Smith, Billy A; Fairbrother, D Howard; Ball, William P

    2013-12-17

    This paper provides results from studies of the transport of oxidized multi-walled carbon nanotubes (O-MWCNTs) of varying surface oxygen concentrations under a range of aquatic conditions and through uniform silica glass bead media. In the presence of Na(+), the required ionic strength (IS) for maximum particle attachment efficiency (i.e., the critical deposition concentration, or CDC) increased as the surface oxygen concentration of the O-MWCNTs or pH increased, following qualitative tenets of theories based on electrostatic interactions. In the presence of Ca(2+), CDC values were lower than those with Na(+) present, but were no longer sensitive to surface oxygen content, suggesting that Ca(2+) impacts the interactions between O-MWCNTs and glass beads by mechanisms other than electrostatic alone. The presence of Suwannee River natural organic matter (SRNOM) decreased the attachment efficiency of O-MWCNTs in the presence of either Na(+) or Ca(2+), but with more pronounced effects when Na(+) was present. Nevertheless, low concentrations of SRNOM (organic carbon) were sufficient to mobilize all O-MWCNTs studied at CaCl2 concentrations as high as 10 mM. Overall, this study reveals that NOM content, pH, and cation type show more importance than surface chemistry in affecting O-MWCNTs deposition during transport through silica-based porous media.

  12. The mismatch between bioaccumulation in field and laboratory environments: Interpreting the differences for metals in benthic bivalves

    International Nuclear Information System (INIS)

    Belzunce-Segarra, Maria J.; Simpson, Stuart L.; Amato, Elvio D.; Spadaro, David A.; Hamilton, Ian L.; Jarolimek, Chad V.; Jolley, Dianne F.

    2015-01-01

    Laboratory-based bioaccumulation and toxicity bioassays are frequently used to predict the ecological risk of contaminated sediments in the field. This study investigates the bioassay conditions most relevant to achieving environmentally relevant field exposures. An identical series of metal-contaminated marine sediments were deployed in the field and laboratory over 31 days. Changes in metal concentrations and partitioning in both sediments and waters were used to interpret differences in metal exposure and bioaccumulation to the benthic bivalve Tellina deltoidalis. Loss of resuspended sediments and deposition of suspended particulate matter from the overlying water resulted in the concentrations of Cu, Pb and Zn (major contaminants) becoming lower in the 1-cm surface layer of field-deployed sediments. Lower exchange rates of overlying waters in the laboratory resulted in higher dissolved metal exposures. The prediction of metal bioaccumulation by the bivalves in field and laboratory was improved by considering the metal partitioning within the surface sediments. - Highlights: • Particulate metals are the dominant metal exposure route in laboratory and field tests (87). • There is an over-representation of the dissolved metal exposure in the laboratory (81). • Laboratory bioassays result in higher bioaccumulation of major metals, Cu, Pb, Zn (82). • Differences in exposure must be considered for a proper sediment quality evaluation (83). • Traditional measurements are not sufficient to explain bioaccumulation results (79). - To improve the value of field- and laboratory-based sediment bioassays in ecological risk assessments, it is necessary to create exposure conditions that resemble those in the field

  13. Technical issues affecting the implementation of US environmental protection agency's proposed fish tissue-based aquatic criterion for selenium

    Science.gov (United States)

    A. Dennis Lemly; Joseph P. Skorupa

    2007-01-01

    The US Environmental Protection Agency is developing a national water quality criterion for selenium that is based on concentrations of the element in fish tissue. Although this approach offers advantages over the current water-based regulations, it also presents new challenges with respect to implementation. A comprehensive protocol that answers the ‘‘what, where, and...

  14. African Journal of Aquatic Science

    African Journals Online (AJOL)

    AFRICAN JOURNALS ONLINE (AJOL) · Journals · Advanced Search · USING ... The African Journal of Aquatic Science is an international journal devoted to the ... papers and short articles in all the aquatic science fields including limnology, ...

  15. Aquatic Microbiology Laboratory Manual.

    Science.gov (United States)

    Cooper, Robert C.; And Others

    This laboratory manual presents information and techniques dealing with aquatic microbiology as it relates to environmental health science, sanitary engineering, and environmental microbiology. The contents are divided into three categories: (1) ecological and physiological considerations; (2) public health aspects; and (3)microbiology of water…

  16. Antimony in aquatic systems

    OpenAIRE

    Filella, Montserrat; Belzile, Nelson; Chen, Yuwei; Elleouet, C.; May, P. M.; Mavrocordatos, D.; Nirel, P.; Porquet, A.; Quentel, F.; Silver, S.

    2003-01-01

    Antimony is ubiquitous in the environment. In spite of its proven toxicity, it has received scant attention so far. This communication presents an overview of current knowledge as well as the early results of a concerted, multidisciplinary effort to unveil antimony behaviour and fate in natural aquatic systems.

  17. Energy from aquatic biomass

    International Nuclear Information System (INIS)

    Aresta, M.; Dibenedetto, A.

    2009-01-01

    Aquatic biomass is considered as a second (or third) generation option for the production of bio fuels. The best utilization for energy purposes is not its direct combustion. Several technologies are available for the extraction of compounds that may find application for the production of gaseous fuels (biogas, dihydrogen) or liquid fuels (ethanol, bio oil, biodiesel). [it

  18. ZOONOSIS OF AQUATICAL ORGANISMS

    Directory of Open Access Journals (Sweden)

    Božidar Kurtović

    2001-12-01

    Full Text Available Aquatic organisms play a very important role in human nutrition. They also pose a real threat for human health by causing various diseases. Parasites, bacteria and viruses may either directly or indirectly be carried from aquatic organisms to humans. Disease outbreaks are influenced by many factors among which decreased immune response and feeding habits and higyene are most important. More frequent occuence of foodborne diseases has a number of reasons, including international travel and trade, microbial adaptation and changes in the food production system. Parasitic diseases occur most frequently as a result of human role in parasites life cycles. The prevalence is further increased by consuming raw fish and shellfish. The main feature of bacterial infections is facultative pathogenicity of most ethiological agents. In most cases disease occures as a result of decreased immunoreactivity. Several bacteria are, however, hightly pathogenic and capable of causing high morbidity and mortality in human. To date it has not been reported the case of human infection with viruses specific for aquatic organisms. Human infections are caused with human viruses and aquatic organisms play role only as vechicles. The greatest risk in that respect present shellfish. Fish and particularly shellfish are likely to cause food poisoning in humans. In most cases the cause are toxins of phithoplancton origins accumulating in shellfish and fish.

  19. Aquatic Environment 2000

    DEFF Research Database (Denmark)

    Svendsen, L. M.; Bijl, L. van der; Boutrup, S.

    The report summarizes the results of the Danish Aquatic Monitoring and Assessment Programme 1998-2003. Danish Environmental Protection Agency 2000: NOVA-2003. Programbeskrivelse for det nationale program for overvågning af vandmiljøet 1998-2003. 397 pp. - Redegørelse fra Miljøstyrelsen nr. 1 (in...

  20. Bioaccumulation and uptake routes of perfluoroalkyl acids in Daphnia magna.

    Science.gov (United States)

    Dai, Zhineng; Xia, Xinghui; Guo, Jia; Jiang, Xiaoman

    2013-02-01

    Perfluoroalkyl acids (PFAs), one kind of emerging contaminants, have attracted great attentions in recent years. However, the study about their bioaccumulation mechanism remains scarce. In this research, the bioaccumulation of six kinds of PFAs in water flea Daphnia magna was studied. The uptake rates of PFAs in D. magna ranged from 178 to 1338 L kg(-1) d(-1), and they increased with increasing perfluoroalkyl chain length; the elimination rates ranged from 0.98 to 2.82 d(-1). The bioaccumulation factors (BAFs) of PFAs ranged from 91 to 380 L kg(-1) in wet weight after 25 d exposure; they increased with increasing perfluoroalkyl chain length and had a significant positive correlation with the n-octanol/water partition coefficients (logK(ow)) of PFAs (pPFAs plays an important role in their bioaccumulation. The BAFs almost kept constant when the PFA concentrations in aqueous phase increased from 1 to 10 μg L(-1). Scenedesmus subspicatus, as the food of D. magna, did not significantly affect the bioaccumulation of PFAs by D. magna. Furthermore, the body burden of PFAs in the dead D. magna was 1.08-2.52 times higher than that in the living ones, inferring that the body surface sorption is a main uptake route of PFAs in D. magna. This study suggested that the bioaccumulation of PFAs in D. magna is mainly controlled by their partition between organisms and water; further research should be conducted to study the intrinsic mechanisms, especially the roles of protein and lipid in organisms. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Uptake and bioaccumulation of Cry toxins by an aphidophagous predator

    International Nuclear Information System (INIS)

    Paula, Débora P.; Andow, David A.

    2016-01-01

    Uptake of Cry toxins by insect natural enemies has rarely been considered and bioaccumulation has not yet been demonstrated. Uptake can be demonstrated by the continued presence of Cry toxin after exposure has stopped and gut contents eliminated. Bioaccumulation can be demonstrated by showing uptake and that the concentration of Cry toxin in the natural enemy exceeds that in its food. We exposed larvae of the aphidophagous predator, Harmonia axyridis, to Cry1Ac and Cry1F through uniform and constant tritrophic exposure via an aphid, Myzus persicae, and looked for toxin presence in the pupae. We repeated the experiment using only Cry1F and tested newly emerged adults. Both Cry toxins were detected in pupae, and Cry1F was detected in recently emerged, unfed adults. Cry1Ac was present 2.05 times and Cry1F 3.09 times higher in predator pupae than in the aphid prey. Uptake and bioaccumulation in the third trophic level might increase the persistence of Cry toxins in the food web and mediate new exposure routes to natural enemies. - Highlights: • Uptake and bioaccumulation of two Cry toxins by a larval coccinellid was tested. • Uptake was demonstrated by presence of the toxins in pupae and adults. • Bioaccumulation was shown by higher toxin concentration in pupae than prey. • Cry1Ac was present 2.05× and Cry1F 3.09× higher in predator pupae than prey. • This might increase persistence of Cry toxins in food webs with new exposure routes. - Immatures of the predaceous coccinellid Harmonia axyridis can uptake and bioaccumulate Cry toxins delivered via their aphid prey.

  2. Optimization of methodology by X-ray fluorescence for the metals determination in aquatic plants of the high course of the Lerma river

    International Nuclear Information System (INIS)

    Albino P, E.

    2015-01-01

    The high course of the Lerma river has a pollution problem in its hydrological system due to discharges of urban wastewater and industrial areas; the pollutants that affect the hydrological system are metals, which are absorbed by living organisms and probably incorporated into the food chain. For this reason in this work the technique of X-ray fluorescence total reflection was applied in six species of aquatic plants that grow in the high course of the Lerma river: Arroyo Mezapa (Eichhornia crassipes, Juncus efusus, Hydrocotyle, Schoenoplectus validus) Ameyalco river (Lemna gibba) and Atarasquillo river (Berula erecta) in order to evaluate the metals concentration (Cr, Mn, Fe, Ni, Cu, Zn and Pb) as well as the translocation factor and bioaccumulation factor for each aquatic species. According to the results, was observed that the highest concentration of metals is located in the deeper parts; metals which present a significant concentration are Mn and Fe in the six species of aquatic plants. According to the translocation factor the species having a higher translocation of metals are: Juncus efusus in Mn (1.19 mg/L) and Zn (1.31 mg/L), Hydrocotyle (1.14 mg/L), the species Eichhornia crassipes not show translocation. For bioaccumulation factor, was observed that the most bioaccumulation of metals is found in the soluble fraction of the six species of aquatic plants, especially Fe followed of Cu and Zn. Also was considered that the Berula erecta plant had a higher bioaccumulation of metals such as Cr, Mn, Fe, Cu and Zn so it can be considered as a hyper-accumulating species of these elements. With the results can be considered that the technique of X-ray fluorescence total reflection is 95% reliable to determine the concentration of metals within the structures of the aquatic plants used for this study. (Author)

  3. Assessment of the consequences of the radioactive contamination of aquatic media and biota for the Chernobyl NPP cooling pond: model testing using Chernobyl data

    International Nuclear Information System (INIS)

    Kryshev, I.I.; Sazykina, T.G.; Hoffman, F.O.; Thiessen, K.M.; Blaylock, B.G.; Feng, Y.; Galeriu, D.; Heling, R.; Kryshev, A.I.; Kononovich, A.L.; Watkins, B.

    1998-01-01

    The 'Cooling Pond' scenario was designed to test models for radioactive contamination of aquatic ecosystems, based on data from the Chernobyl Nuclear Power Plant cooling pond, which was heavily contaminated in 1986 as a result of the reactor accident. The calculation tasks include (a) reconstruction of the dynamics of radionuclide transfer and bioaccumulation in aquatic media and biota following the accident; (b) assessment of doses to aquatic biota; and (c) assessment of potential doses and radiation risks to humans from consumption of contaminated fish. Calculations for the Scenario were performed by 19 participants using 6 different models: LAKECO-B (Netherlands); LAKEPOND (Romania); POSOD (USA); WATER, GIDRO and ECOMOD-W (Russia). For all endpoints, model predictions were compared with the test data, which were derived from the results of direct measurements and independent dose estimates based on measurements. Most of the models gave satisfactory agreement for some portions of the test data, although very few participants obtained good agreement with all criteria for model testing. The greatest level of difficulty was with the prediction of non-equilibrium radioecological processes in the first year after the accident (1986). The calculations 5 for this scenario gave modellers a unique opportunity to test their models using an independent data base and to analyse the advantages and weaknesses of different model approaches. The use of post-Chernobyl data in such a scenario is also recommended for use in training students in the field of radioecology and environmental protection. (Copyright (c) 1998 Elsevier Science B.V., Amsterdam. All rights reserved.)

  4. Using biodynamic models to reconcile differences between laboratory toxicity tests and field biomonitoring with aquatic insects

    Science.gov (United States)

    Buchwalter, D.B.; Cain, D.J.; Clements, W.H.; Luoma, S.N.

    2007-01-01

    Aquatic insects often dominate lotic ecosystems, yet these organisms are under-represented in trace metal toxicity databases. Furthermore, toxicity data for aquatic insects do not appear to reflect their actual sensitivities to metals in nature, because the concentrations required to elicit toxicity in the laboratory are considerably higher than those found to impact insect communities in the field. New approaches are therefore needed to better understand how and why insects are differentially susceptible to metal exposures. Biodynamic modeling is a powerful tool for understanding interspecific differences in trace metal bioaccumulation. Because bioaccumulation alone does not necessarily correlate with toxicity, we combined biokinetic parameters associated with dissolved cadmium exposures with studies of the subcellular compartmentalization of accumulated Cd. This combination of physiological traits allowed us to make predictions of susceptibility differences to dissolved Cd in three aquatic insect taxa: Ephemerella excrucians, Rhithrogena morrisoni, and Rhyacophila sp. We compared these predictions with long-term field monitoring data and toxicity tests with closely related taxa: Ephemerella infrequens, Rhithrogena hageni, and Rhyacophila brunea. Kinetic parameters allowed us to estimate steady-state concentrations, the time required to reach steady state, and the concentrations of Cd projected to be in potentially toxic compartments for different species. Species-specific physiological traits identified using biodynamic models provided a means for better understanding why toxicity assays with insects have failed to provide meaningful estimates for metal concentrations that would be expected to be protective in nature. ?? 2007 American Chemical Society.

  5. A New Bis(aquated) High Relaxivity Mn(II) Complex as an Alternative to Gd(III)-Based MRI Contrast Agent.

    Science.gov (United States)

    Phukan, Bedika; Mukherjee, Chandan; Goswami, Upashi; Sarmah, Amrit; Mukherjee, Subhajit; Sahoo, Suban K; Moi, Sankar Ch

    2018-03-05

    Disclosed here are a piperazine, a pyridine, and two carboxylate groups containing pentadentate ligand H 2 pmpa and its corresponding water-soluble Mn(II) complex (1). DFT-based structural optimization implied that the complex had pentagonal bipyramidal geometry where the axial positions were occupied by two water molecules, and the equatorial plane was constituted by the ligand ON 3 O donor set. Thus, a bis(aquated) disc-like Mn(II) complex has been synthesized. The complex showed higher stability compared with Mn(II)-EDTA complex [log K MnL = 14.29(3)] and showed a very high r 1 relaxivity value of 5.88 mM -1 s -1 at 1.41 T, 25 °C, and pH = 7.4. The relaxivity value remained almost unaffected by the pH of the medium in the range of 6-10. Although the presence of 200 equiv of fluoride and bicarbonate anions did not affect the relaxivity value appreciably, an increase in the value was noticed in the presence of phosphate anion due to slow tumbling of the complex. Cell viability measurements, as well as phantom MR images using clinical MRI imager, consolidated the possible candidature of complex 1 as a positive contrast agent.

  6. Methyl mercury bioaccumulation in long-finned eels, Anguilla dieffenbachii, from three rivers in Otago, New Zealand.

    Science.gov (United States)

    Redmayne, A C; Kim, J P; Closs, G P; Hunter, K A

    2000-10-30

    This research focuses on mercury (Hg) bioaccumulation in New Zealand long-tinned eels (Anguilla dieffenbachii) from the aquatic environment. Total Hg (HgT) and methyl mercury (MeHg) concentrations were determined in muscle tissue from eels living in three South Island rivers dominated respectively by urban, native bush and agricultural land-uses. Most of the Hg in eels was MeHg (> 84%) and the MeHg concentrations increased linearly with both length and eel age for a given river habitat. The annual growth rates for eels from the urban and agricultural streams were greater than for eels from the native bush stream. The average MeHg accumulation rate was significantly higher for the eels in the agricultural stream compared with either the urban or native bush catchments. These results are probably due to a combination of factors and further investigations in the lower food web are necessary to elucidate the exact mechanisms of MeHg bioaccumulation in these creatures.

  7. Effects of Cr III and Pb on the bioaccumulation and toxicity of Cd in tropical periphyton communities: Implications of pulsed metal exposures

    International Nuclear Information System (INIS)

    Bere, Taurai; Chia, Mathias Ahii; Tundisi, José Galizia

    2012-01-01

    Metal exposure pattern, timing, frequency, duration, recovery period, metal type and interactions, has obscured effects on periphyton communities in lotic systems. The objective of this study was to investigate the effects of intermittent exposures of Cr III and Pb on Cd toxicity and bioaccumulation in tropical periphyton communities. Natural periphyton communities were transferred to artificial stream chambers and exposed to metal mixtures at different pulse timing, duration, frequency and recovery periods. Chlorophyll a, dry mass and metal accumulation kinetics were recorded. Cr and Pb decrease the toxic effects of Cd on periphyton communities. Periphyton has high Cd, Cr and Pb accumulation capacity. Cr and Pb reduced the levels of Cd sequestrated by periphyton communities. The closer the frequency and duration of the pulse is to a continuous exposure, the greater the effects of the contaminant on periphyton growth and metal bioaccumulation. Light increased toxic and accumulative effects of metals on the periphyton community. - Highlights: ► We investigated toxicity effects of pulsed metal exposures on bioaccumulation and toxicity in periphyton. ► High frequency of short duration pulses has effects equal to long duration exposures. ► Important role of light in modulating metal toxicity on periphyton demonstrated. ► Factors other than magnitude and duration must be considered in water quality criteria. ► Accurate prediction of metal effects on biofilms requires data on effluent variability. - The study highlights the importance of pulse timing, frequency, duration, recovery period and chemical type on aquatic life.

  8. Behavioural and physical effects of arsenic exposure in fish are aggravated by aquatic algae.

    Science.gov (United States)

    Magellan, Kit; Barral-Fraga, Laura; Rovira, Marona; Srean, Pao; Urrea, Gemma; García-Berthou, Emili; Guasch, Helena

    2014-11-01

    Arsenic contamination has global impacts and freshwaters are major arsenic repositories. Arsenic toxicity depends on numerous interacting factors which makes effects difficult to estimate. The use of aquatic algae is often advocated for bioremediation of arsenic contaminated waters as they absorb arsenate and transform it into arsenite and methylated chemical species. Fish are another key constituent of aquatic ecosystems. Contamination in natural systems is often too low to cause mortality but sufficient to interfere with normal functioning. Alteration of complex, naturally occurring fish behaviours such as foraging and aggression are ecologically relevant indicators of toxicity and ideal for assessing sublethal impacts. We examined the effects of arsenic exposure in the invasive mosquitofish, Gambusia holbrooki, in a laboratory experiment incorporating some of the complexity of natural systems by including the interacting effects of aquatic algae. Our aims were to quantify the effects of arsenic on some complex behaviours and physical parameters in mosquitofish, and to assess whether the detoxifying mechanisms of algae would ameliorate any effects of arsenic exposure. Aggression increased significantly with arsenic whereas operculum movement decreased non-significantly and neither food capture efficiency nor consumption were notably affected. Bioaccumulation increased with arsenic and unexpectedly so did fish biomass. Possibly increased aggression facilitated food resource defence allowing fish to gain weight. The presence of algae aggravated the effects of arsenic exposure. For increase in fish biomass, algae acted antagonistically with arsenic, resulting in a disadvantageous reduction in weight gained. For bioaccumulation the effects were even more severe, as algae operated additively with arsenic to increase arsenic uptake and/or assimilation. Aggression was also highest in the presence of both algae and arsenic. Bioremediation of arsenic contaminated waters

  9. Data Basin Aquatic Center: expanding access to aquatic conservation data, analysis tools, people and practical answers

    Science.gov (United States)

    Osborne-Gowey, J.; Strittholt, J.; Bergquist, J.; Ward, B. C.; Sheehan, T.; Comendant, T.; Bachelet, D. M.

    2009-12-01

    The world’s aquatic resources are experiencing anthropogenic pressures on an unprecedented scale and aquatic organisms are experiencing widespread population changes and ecosystem-scale habitat alterations. Climate change is likely to exacerbate these threats, in some cases reducing the range of native North American fishes by 20-100% (depending on the location of the population and the model assumptions). Scientists around the globe are generating large volumes of data that vary in quality, format, supporting documentation, and accessibility. Moreover, diverse models are being run at various temporal and spatial scales as scientists attempt to understand previous (and project future) human impacts to aquatic species and their habitats. Conservation scientists often struggle to synthesize this wealth of information for developing practical on-the-ground management strategies. As a result, the best available science is often not utilized in the decision-making and adaptive management processes. As aquatic conservation problems around the globe become more serious and the demand to solve them grows more urgent, scientists and land-use managers need a new way to bring strategic, science-based, and action-oriented approaches to aquatic conservation. The Conservation Biology Institute (CBI), with partners such as ESRI, is developing an Aquatic Center as part of a dynamic, web-based resource (Data Basin; http: databasin.org) that centralizes usable aquatic datasets and provides analytical tools to visualize, analyze, and communicate findings for practical applications. To illustrate its utility, we present example datasets of varying spatial scales and synthesize multiple studies to arrive at novel solutions to aquatic threats.

  10. Evaluation of Aquatic Environments Using a Sensorial System Based on Conducting Polymers and its Potential Application in Electrochemical Sensors

    Directory of Open Access Journals (Sweden)

    Nelson Consolin Filho

    2008-06-01

    Full Text Available A sensor array consisted of interdigitated gold electrodes modified with nanostructured ultra-thin films of conducting polymers was used to evaluate different water samples from three distinct reservoirs, located in the São Paulo State, Brazil, according to their eutrophic level, i.e. oligotrophic, eutrophic and hypereutrophic. These reservoirs samples presented different eutrophic levels. The sensor array data were processed and analyzed by using PCA (principal component analysis. In the near future, this will be a reliable and straightforward method to analyze water samples based on the concept of global selectivity and electrochemical impedance.

  11. Aquatic subsidies transport anthropogenic nitrogen to riparian spiders

    Energy Technology Data Exchange (ETDEWEB)

    Akamatsu, Fumikazu, E-mail: f-akamt55@pwri.go.jp [Department of Environmental Sciences, Shinshu University, 3-1-1 Asahi, Matsumoto, Nagano 390-8621 (Japan); Toda, Hideshige [Department of Environmental Sciences, Shinshu University, 3-1-1 Asahi, Matsumoto, Nagano 390-8621 (Japan)

    2011-05-15

    Stable nitrogen isotopic composition ({delta}{sup 15}N) of aquatic biota increases with anthropogenic N inputs such as sewage and livestock waste downstream. Increase in {delta}{sup 15}N of riparian spiders downstream may reflect the anthropogenic pollution exposure through predation on aquatic insects. A two-source mixing model based on stable carbon isotopic composition showed the greatest dependence on aquatic insects (84%) by horizontal web-building spiders, followed by intermediate (48%) and low (31%) dependence by cursorial and vertical web-building spiders, respectively. The spider body size was negatively correlated with the dietary proportion of aquatic insects and spider {delta}{sup 15}N. The aquatic subsidies transported anthropogenic N to smaller riparian spiders downstream. This transport of anthropogenic N was regulated by spider's guild designation and body size. - Highlights: > {delta}{sup 15}N of aquatic insects increases downstream with anthropogenic nitrogen inputs. > {delta}{sup 15}N of riparian spiders increases with a high dietary proportion of aquatic insects and smaller spider body size. > The aquatic subsidies transport anthropogenic nitrogen to smaller riparian spiders downstream. - Smaller spiders assimilate anthropogenic nitrogen through the predation on aquatic subsides.

  12. Aquatic subsidies transport anthropogenic nitrogen to riparian spiders

    International Nuclear Information System (INIS)

    Akamatsu, Fumikazu; Toda, Hideshige

    2011-01-01

    Stable nitrogen isotopic composition (δ 15 N) of aquatic biota increases with anthropogenic N inputs such as sewage and livestock waste downstream. Increase in δ 15 N of riparian spiders downstream may reflect the anthropogenic pollution exposure through predation on aquatic insects. A two-source mixing model based on stable carbon isotopic composition showed the greatest dependence on aquatic insects (84%) by horizontal web-building spiders, followed by intermediate (48%) and low (31%) dependence by cursorial and vertical web-building spiders, respectively. The spider body size was negatively correlated with the dietary proportion of aquatic insects and spider δ 15 N. The aquatic subsidies transported anthropogenic N to smaller riparian spiders downstream. This transport of anthropogenic N was regulated by spider's guild designation and body size. - Highlights: → δ 15 N of aquatic insects increases downstream with anthropogenic nitrogen inputs. → δ 15 N of riparian spiders increases with a high dietary proportion of aquatic insects and smaller spider body size. → The aquatic subsidies transport anthropogenic nitrogen to smaller riparian spiders downstream. - Smaller spiders assimilate anthropogenic nitrogen through the predation on aquatic subsides.

  13. The development of a classification system for inland aquatic ...

    African Journals Online (AJOL)

    A classification system is described that was developed for inland aquatic ecosystems in South Africa, including wetlands. The six-tiered classification system is based on a top-down, hierarchical classification of aquatic ecosystems, following the functionally-oriented hydrogeomorphic (HGM) approach to classification but ...

  14. A GIS-based vulnerability assessment of brine contamination to aquatic resources from oil and gas development in eastern Sheridan County, Montana.

    Science.gov (United States)

    Preston, Todd M; Chesley-Preston, Tara L; Thamke, Joanna N

    2014-02-15

    Water (brine) co-produced with oil in the Williston Basin is some of the most saline in the nation. The Prairie Pothole Region (PPR), characterized by glacial sediments and numerous wetlands, covers the northern and eastern portion of the Williston Basin. Sheridan County, Montana, lies within the PPR and has a documented history of brine contamination. Surface water and shallow groundwater in the PPR are saline and sulfate dominated while the deeper brines are much more saline and chloride dominated. A Contamination Index (CI), defined as the ratio of chloride concentration to specific conductance in a water sample, was developed by the Montana Bureau of Mines and Geology to delineate the magnitude of brine contamination in Sheridan County. Values >0.035 indicate contamination. Recently, the U.S. Geological Survey completed a county level geographic information system (GIS)-based vulnerability assessment of brine contamination to aquatic resources in the PPR of the Williston Basin based on the age and density of oil wells, number of wetlands, and stream length per county. To validate and better define this assessment, a similar approach was applied in eastern Sheridan County at a greater level of detail (the 2.59 km(2) Public Land Survey System section grid) and included surficial geology. Vulnerability assessment scores were calculated for the 780 modeled sections and these scores were divided into ten equal interval bins representing similar probabilities of contamination. Two surface water and two groundwater samples were collected from the section with the greatest acreage of Federal land in each bin. Nineteen of the forty water samples, and at least one water sample from seven of the ten selected sections, had CI values indicating contamination. Additionally, CI values generally increased with increasing vulnerability assessment score, with a stronger correlation for groundwater samples (R(2)=0.78) than surface water samples (R(2)=0.53). Copyright © 2013

  15. Optofluidics-based DNA structure-competitive aptasensor for rapid on-site detection of lead(II) in an aquatic environment.

    Science.gov (United States)

    Long, Feng; Zhu, Anna; Wang, Hongchen

    2014-11-07

    Lead ions (Pb(2+)), ubiquitous and one of the most toxic metallic pollutants, have attracted increasing attentions because of their various neurotoxic effects. Pb(2+) has been proven to induce a conformational change in G-quadruplex (G4) aptamers to form a stabilizing G4/Pb(2+) complex. Based on this principle, an innovative optofluidics-based DNA structure-competitive aptasensor was developed for Pb(2+) detection in an actual aquatic environment. The proposed sensing system has good characteristics, such as high sensitivity and selectivity, reusability, easy operation, rapidity, robustness, portability, use of a small sample volume, and cost effectiveness. A fluorescence-labeled G4 aptamer was utilized as a molecular probe. A DNA probe, a complementary strand of G4 aptamer, was immobilized onto the sensor surface. When the mixture of Pb(2+) solution and G4 aptamer was introduced into the optofluidic cell, Pb(2+) and the DNA probe bound competitively with the G4 aptamer. A high Pb(2+) concentration reduced the binding of the aptamer and the DNA probe; thus, a low-fluorescence signal was detected. A sensitive sensing response to Pb(2+) in the range of 1.0-300.0 nM with a low detection limit of 0.22 nM was exhibited under optimal conditions. The potential interference of the environmental sample matrix was assessed with spiked samples, and the recovery of Pb(2+) ranged from 80 to 105% with a relative standard deviation value of monitoring of other trace analytes. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Aquatic Ecology Section

    International Nuclear Information System (INIS)

    Brocksen, R.W.

    1978-01-01

    Population studies were concerned with predicting long-term consequences of mortality imposed on animal populations by man's activities. These studies consisted of development of a generalized life cycle model and an empirical impingement model for use in impact analysis. Chemical effects studies were conducted on chlorine minimization; fouling by the Asiatic clam; identification of halogenated organics in cooling water; and effects of halogenated organics in cooling systems on aquatic organisms. Ecological transport studies were conducted on availability of sediment-bound 137 Cs and 60 Co to fish; 137 Cs and 60 Co in White Oak Lake fish; and chromium levels in fish from a lake chronically contaminated with chromates from cooling towers. Progress is also reported on the following: effects of irradiation on thermal tolerance of mosquito fish; toxicity of nickel to the developing eggs and larvae of carp; accumulation of selected heavy metals associated with fly ash; and environmental monitoring of aquatic ecosystems

  17. Aquatic Nuisance Species Locator

    Science.gov (United States)

    Data in this map has been collected by the United States Geological Survey's Nonindigenous Aquatic Species program located in Gainesville, Florida (http://nas.er.usgs.gov/default.aspx). This dataset may have some inaccuracies and is only current to June 15, 2012. The species identified in this dataset are not inclusive of all aquatic nuisance species, but rather a subset identified to be at risk for transport by recreational activities such as boating and angling. Additionally, the locations where organisims have been identified are also not inclusive and should be treated as a guide. Organisms are limited to the following: American bullfrog, Asian clam, Asian shore crab, Asian tunicate, Australian spotted jellyfish, Chinese mitten crab, New Zealand mudsnail, Colonial sea squirt, Alewife, Bighead carp, Black carp, Flathead catfish, Grass carp, Green crab, Lionfish, Northern snakehead, Quagga mussel, Round Goby, Ruffe, Rusty crayfish, Sea lamprey, Silver carp, Spiny water flea, Veined rapa whelk, Zebra mussel

  18. Aquatic pathway 2

    International Nuclear Information System (INIS)

    1977-01-01

    This third part of the investigation discusses the preliminary results of sub-investigations concerning problems of the release of radioactive substances into the environment via the water pathway. On the basis of papers on the emission into the draining ditch and the exchange processes there, investigations of a possible incorporation via different exposure pathways are reported. Special regard is paid to drinking water supply aquatic foodstuffs, the river sediment, the utilisation of the agricultural surfaces and the draining ditch including its pre-pollution. The dynamics of contamination processes is reported on with regard to the problem of accidents. The colloquium will give an outline of the progress made so far and admit participants' suggestions for further work on the sub-investigations. The following colloquia will report further findings, in particular effects on aquatic ecosystems. (orig.) [de

  19. Toxicity, Bioaccumulation and Biotransformation of Silver Nanoparticles in Marine Organisms

    Science.gov (United States)

    The toxicity, bioaccumulation and biotransformation of citrate and polyvinylpyrrolidone (PVP) capped silver nanoparticles (NPs) (AgNP-citrate and AgNP-PVP) and titanium dioxide (TiO2) NPs in marine organisms via marine sediment exposure were investigated. Results from 7-d sedimen...

  20. Bioaccumulation of Heavy Metals by Moringa Oleifera in Automobile ...

    African Journals Online (AJOL)

    Plants accumulate minerals essential for their growth from the environment alongside with heavy metals from contaminated areas.This study investigated bioaccumulation of heavy metals by Moringa oleifera in automobile workshops in three selected local government areas in Ibadan. This was done with a view to ...

  1. Bioaccumulation and chemical modification of Tc by soil bacteria

    International Nuclear Information System (INIS)

    Henrot, J.

    1989-01-01

    Bioaccumulation and chemical modification of pertechnetate (TcO 4 -) by aerobically and anaerobically grown soil bacteria and by pure cultures of sulfate-reducing bacteria (Desulfovibrio sp.) were studied to gain insight on the possible mechanisms by which bacteria can affect the solubility of Tc in soil. Aerobically grown bacteria had no apparent effect on TcO 4 -; they did not accumulate Tc nor modify its chemical form. Anaerobically grown bacteria exhibited high bioaccumulation and reduced TcO 4 -, enabling its association with organics of the growth medium. Reduction was a metabolic process and not merely the result of reducing conditions in the growth medium. Association of Tc with bacterial polysaccharides was observed only in cultures of anaerobic bacteria. Sulfate-reducing bacteria efficiently removed Tc from solution and promoted its association with organics. Up to 70% of the total Tc in the growth medium was bioaccumulated and/or precipitated. The remaining Tc in soluble form was entirely associated with organics. Pertechnetate was not reduced by the same mechanism as dissimilatory sulfate reduction, but rather by some reducing agent released in the growth medium. A calculation of the amount of Tc that could be associated with the bacterial biomass present in soil demonstrates that high concentration ratios in cultures do not necessarily imply that bioaccumulation is an important mechanism for long-term retention of Tc in soil

  2. Improving plant bioaccumulation science through consistent reporting of experimental data.

    Science.gov (United States)

    Fantke, Peter; Arnot, Jon A; Doucette, William J

    2016-10-01

    Experimental data and models for plant bioaccumulation of organic contaminants play a crucial role for assessing the potential human and ecological risks associated with chemical use. Plants are receptor organisms and direct or indirect vectors for chemical exposures to all other organisms. As new experimental data are generated they are used to improve our understanding of plant-chemical interactions that in turn allows for the development of better scientific knowledge and conceptual and predictive models. The interrelationship between experimental data and model development is an ongoing, never-ending process needed to advance our ability to provide reliable quality information that can be used in various contexts including regulatory risk assessment. However, relatively few standard experimental protocols for generating plant bioaccumulation data are currently available and because of inconsistent data collection and reporting requirements, the information generated is often less useful than it could be for direct applications in chemical assessments and for model development and refinement. We review existing testing guidelines, common data reporting practices, and provide recommendations for revising testing guidelines and reporting requirements to improve bioaccumulation knowledge and models. This analysis provides a list of experimental parameters that will help to develop high quality datasets and support modeling tools for assessing bioaccumulation of organic chemicals in plants and ultimately addressing uncertainty in ecological and human health risk assessments. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Study of heavy metals bioaccumulation in the process of ...

    African Journals Online (AJOL)

    Jane

    2011-07-18

    Jul 18, 2011 ... The bioaccumulation of heavy metals (Cd, Zn, Ni, Pb and Cr) and the relationship between them was investigated on ... this elements in 14 days) exposure, the metal accumulation was measured using atomic absorption spectroscopy. ... sed to the point that it endangers human life in some areas, and the ...

  4. The bioaccumulation and toxicity induced by gold nanoparticles in ...

    African Journals Online (AJOL)

    It is essential to characterize the bioaccumulation and toxicity of gold nanoparticles (GNPs) in blood prior to using them in drug delivery, diagnostics, and treatment. The aim of the present study was to evaluate the blood absorbance spectra after intraperitoneal administration of 50 μl of 10, 20, and 50 nm GNPs in rat for ...

  5. Bioaccumulation of heavy metals by Dyera costulata cultivated in ...

    African Journals Online (AJOL)

    High concentrations of heavy metals are harmful to plants, animals and humans and their potential accumulation in human tissues and bio-magnification through the food chain cause serious health hazards. An experiment was conducted in the glasshouse to evaluate the potential of Dyera costulata as a bioaccumulator to ...

  6. Metal Bioaccumulation by Estuarine Food Webs in New England, USA

    Directory of Open Access Journals (Sweden)

    Celia Y. Chen

    2016-06-01

    Full Text Available Evaluating the degree of metal exposure and bioaccumulation in estuarine organisms is important for understanding the fate of metals in estuarine food webs. We investigated the bioaccumulation of Hg, methylmercury (MeHg, Cd, Se, Pb, and As in common intertidal organisms across a watershed urbanization gradient of coastal marsh sites in New England to relate metal exposure and bioaccumulation in fauna to both chemical and ecological factors. In sediments, we measured metal and metalloid concentrations, total organic carbon (TOC and SEM-AVS (Simultaneously extracted metal-acid volatile sulfides. In five different functional feeding groups of biota, we measured metal concentrations and delta 15N and delta 13C signatures. Concentrations of Hg and Se in biota for all sites were always greater than sediment concentrations whereas Pb in biota was always lower. There were positive relationships between biota Hg concentrations and sediment concentrations, and between biota MeHg concentrations and both pelagic feeding mode and trophic level. Bioavailability of all metals measured as SEM-AVS or Benthic-Sediment Accumulation Factor was lower in more contaminated sites, likely due to biogeochemical factors related to higher levels of sulfides and organic carbon in the sediments. Our study demonstrates that for most metals and metalloids, bioaccumulation is metal specific and not directly related to sediment concentrations or measures of bioavailability such as AVS-SEM.

  7. Mercury bioaccumulation and elimination by Xenomelanires brasiliensis - radioactive tracers technique

    International Nuclear Information System (INIS)

    Malagrino, Waldir; Mesquita, Carlos Henrique de; Sousa, Eduinetty Ceci P.M. de

    2002-01-01

    The present work has as main objective to emphasized the importance of using radioactive tracers as well as to establish a methodology for the utilization of 203 Hg in the bioaccumulation study of mercury by X enomelanires brasiliensis. The exposure time was 168 hours. The bioaccumulation of mercury from the water as well as the elimination of the metal previously absorbed were determined by measuring the activity of 203 Hg, which was added to the water in the beginning of the experiments. The technique chosen is suitable to study the behavior of the stable mercury since the radioisotope used is an isotope of the same element and therefore presents the same chemical properties. The results obtained show that the absorption and elimination of mercury by Xenomelanires brasiliensis is slow, 168 hours being necessary for the elimination of 38 % of the previously absorbed mercury. The results are of main concern if it is considered that the literature about bioaccumulation of mercury by the Brazilian ichthyofauna is scarce. Furthermore the species Xenomelanires brasiliensis is part of the food chain and the results can be used in the evaluation of the potential risk of the mercury bioaccumulation by fishes of higher trophic levels and by men who are the final link of the food chain. (author)

  8. Elucidating differences in metal absorption efficiencies between terrestrial soft-bodied and aquatic species

    DEFF Research Database (Denmark)

    Owsianiak, Mikolaj; Veltman, Karin; Hauschild, Michael Zwicky

    2014-01-01

    species, with the covalent index being the best predictor. It is hypothesized that metal absorption by soft-bodied species in soil systems is influenced by the rate of metal supply to the membrane, while in aquatic systems accumulation is solely determined by metal affinity to membrane bound transport...... proteins. Our results imply that developing predictive terrestrial bioaccumulation and toxicity models for metals must consider metal interactions with soil solids. This may include desorption of a cation bound to soil solids through ion exchange, or metal release from soil surfaces involving breaking...

  9. Marcellus and mercury: Assessing potential impacts of unconventional natural gas extraction on aquatic ecosystems in northwestern Pennsylvania.

    Science.gov (United States)

    Grant, Christopher J; Weimer, Alexander B; Marks, Nicole K; Perow, Elliott S; Oster, Jacob M; Brubaker, Kristen M; Trexler, Ryan V; Solomon, Caroline M; Lamendella, Regina

    2015-01-01

    Mercury (Hg) is a persistent element in the environment that has the ability to bioaccumulate and biomagnify up the food chain with potentially harmful effects on ecosystems and human health. Twenty-four streams remotely located in forested watersheds in northwestern PA containing naturally reproducing Salvelinus fontinalis (brook trout), were targeted to gain a better understanding of how Marcellus shale natural gas exploration may be impacting water quality, aquatic biodiversity, and Hg bioaccumulation in aquatic ecosystems. During the summer of 2012, stream water, stream bed sediments, aquatic mosses, macroinvertebrates, crayfish, brook trout, and microbial samples were collected. All streams either had experienced hydraulic fracturing (fracked, n = 14) or not yet experienced hydraulic fracturing (non-fracked, n = 10) within their watersheds at the time of sampling. Analysis of watershed characteristics (GIS) for fracked vs non-fracked sites showed no significant differences (P > 0.05), justifying comparisons between groups. Results showed significantly higher dissolved total mercury (FTHg) in stream water (P = 0.007), lower pH (P = 0.033), and higher dissolved organic matter (P = 0.001) at fracked sites. Total mercury (THg) concentrations in crayfish (P = 0.01), macroinvertebrates (P = 0.089), and predatory macroinvertebrates (P = 0.039) were observed to be higher for fracked sites. A number of positive correlations between amount of well pads within a watershed and THg in crayfish (r = 0.76, P shale natural gas exploration is having an effect on aquatic ecosystems.

  10. Aquatic exercise & balneotherapy in musculoskeletal conditions.

    Science.gov (United States)

    Verhagen, Arianne P; Cardoso, Jefferson R; Bierma-Zeinstra, Sita M A

    2012-06-01

    This is a best-evidence synthesis providing an evidence-based summary on the effectiveness of aquatic exercises and balneotherapy in the treatment of musculoskeletal conditions. The most prevalent musculoskeletal conditions addressed in this review include: low back pain, osteoarthritis, fibromyalgia and rheumatoid arthritis. Over 30 years of research demonstrates that exercises in general, and specifically aquatic exercises, are beneficial for reducing pain and disability in many musculoskeletal conditions demonstrating small to moderate effect sizes ranging between 0.19 and 0.32. Balneotherapy might be beneficial, but the evidence is yet insufficient to make a definitive statement about its use. High-quality trials are needed on balneotherapy and aquatic exercises research especially in specific patient categories that might benefit most. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. A genetics-based approach confirms immune associations with life history across multiple populations of an aquatic vertebrate (Gasterosteus aculeatus).

    Science.gov (United States)

    Whiting, James R; Magalhaes, Isabel S; Singkam, Abdul R; Robertson, Shaun; D'Agostino, Daniele; Bradley, Janette E; MacColl, Andrew D C

    2018-06-20

    Understanding how wild immune variation covaries with other traits can reveal how costs and trade-offs shape immune evolution in the wild. Divergent life history strategies may increase or alleviate immune costs, helping shape immune variation in a consistent, testable way. Contrasting hypotheses suggest that shorter life histories may alleviate costs by offsetting them against increased mortality; or increase the effect of costs if immune responses are traded off against development or reproduction. We investigated the evolutionary relationship between life history and immune responses within an island radiation of three-spined stickleback, with discrete populations of varying life histories and parasitism. We sampled two short-lived, two long-lived and an anadromous population using qPCR to quantify current immune profile and RAD-seq data to study the distribution of immune variants within our assay genes and across the genome. Short-lived populations exhibited significantly increased expression of all assay genes, which was accompanied by a strong association with population-level variation in local alleles and divergence in a gene that may be involved in complement pathways. In addition, divergence around the eda gene in anadromous fish is likely associated with increased inflammation. A wider analysis of 15 populations across the island revealed that immune genes across the genome show evidence of having diverged alongside life history strategies. Parasitism and reproductive investment were also important sources of variation for expression, highlighting the caution required when assaying immune responses in the wild. These results provide strong, gene-based support for current hypotheses linking life history and immune variation across multiple populations of a vertebrate model. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  12. Modeling bioaccumulation in humans using poly-parameter linear free energy relationships (PPLFERS)

    Energy Technology Data Exchange (ETDEWEB)

    Undeman, Emma, E-mail: emma.undeman@itm.su.se; Czub, Gertje; McLachlan, Michael S.

    2011-04-01

    Chemical partition coefficients between environmental media and biological tissues are a key component of bioaccumulation models. The single-parameter linear free energy relationships (spLFERs) commonly used for predicting partitioning are often derived using apolar chemicals and may not accurately capture polar chemicals. In this study, a poly-parameter LFER (ppLFER) based model of organic chemical bioaccumulation in humans is presented. Chemical partitioning was described by an air-body partition coefficient that was a volume weighted average of ppLFER based partition coefficients for the major organs and tissues constituting the human body. This model was compared to a spLFER model treating the body as a mixture of lipid ({approx} octanol) and water. Although model agreement was good for hydrophobic chemicals (average difference 15% for log K{sub OW} > 4 and log K{sub OA} > 8), the ppLFER model predicted {approx} 90% lower body burdens for hydrophilic chemicals (log K{sub OW} < 0). This was mainly due to lower predictions of muscle and adipose tissue sorption capacity for these chemicals. A comparison of the predicted muscle and adipose tissue sorption capacities of hydrophilic chemicals with measurements indicated that the ppLFER and spLFER models' uncertainties were similar. Consequently, little benefit from the implementation of ppLFERs in this model was identified. - Research Highlights: {yields}Implementation of ppLFERs resulted in on average 90% lower predicted body burdens. {yields}Uncertainties in spLFER and ppLFER predictions were similar. {yields}The benefit from implementation of ppLFERs in bioaccumulation models was limited.

  13. Dietary taurine supplementation ameliorates the lethal effect of phenanthrene but not the bioaccumulation in a marine teleost, red sea bream, Pagrus major.

    Science.gov (United States)

    Hano, Takeshi; Ito, Mana; Ito, Katsutoshi; Kono, Kumiko; Ohkubo, Nobuyuki

    2017-03-01

    The present study was performed to evaluate the effect of dietary taurine on the hepatic metabolic profiles of red sea bream (Pagrus major) and on phenanthrene (a polyaromatic hydrocarbon) toxicity and bioaccumulation. The fish were fed a diet supplemented with 0% (TAU0%), 0.5% (TAU0.5%), or 5% (TAU5%) taurine for 40-55d and subjected to phenanthrene acute toxicity and bioaccumulation tests. Taurine deficiency in feed severely affected the hepatic metabolic profiles of fish, which indicated a complementary physiological response to taurine deficiency. For the acute toxicity test, fish were fed the test diets for 55d and were then exposed to 0-893µg/L phenanthrene for 96h. Tolerance to phenanthrene was significantly improved by 0.5% of taurine inclusion in feed relative to TAU0%, but not by 5.0% inclusion. Reduced glutathione in the liver, which acts as an oxygen-free radical scavenger, was associated with a reduction in the toxicity of phenanthrene. For the bioaccumulation test, fish were fed the test diets for 40d and were thereafter chronically exposed to 20µg/L phenanthrene for 13d followed by depuration for 3d. The activity of hepatic biomarker, ethoxyresorufin-O-deethylase, was increased by phenanthrene exposure in the taurine inclusion groups. However, phenanthrene concentrations in the liver and muscle of fish fed TAU5.0% tended to be higher than those of fish fed TAU0% and TAU0.5% during the exposure period. These results indicate that 0.5% of taurine inclusion in feed plays an important role in the alleviation of phenanthrene toxicity but not bioaccumulation. Furthermore, larger amount of taurine inclusion (TAU5%) did not show marked beneficial effects against phenanthrene exposure. This study provides insight about a major concern of environmental contaminants into aquatic environment and can be effectively used for improvement of aquaculture. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Invertebrates in stormwater wet detention ponds — Sediment accumulation and bioaccumulation of heavy metals have no effect on biodiversity and community structure

    International Nuclear Information System (INIS)

    Stephansen, Diana Agnete; Nielsen, Asbjørn Haaning; Hvitved-Jacobsen, Thorkild; Pedersen, Morten Lauge; Vollertsen, Jes

    2016-01-01

    The invertebrate diversity in nine stormwater wet detention ponds (SWDP) was compared with the diversity in eleven small shallow lakes in the western part of Denmark. The SWDPs and lakes were chosen to reflect as large a gradient of pollutant loads and urbanization as possible. The invertebrates as well as the bottom sediments of the ponds and shallow lakes were analyzed for copper, iron, zinc, cadmium, chromium, lead, aluminum, nickel, arsenic and the potentially limiting nutrient, phosphorus. The Principal Component Analysis showed that invertebrates in SWDPs and lakes differed with respect to bioaccumulation of these elements, as did the sediments, albeit to a lesser degree. However, the Detrended Correspondence Analysis and the TWINSPAN showed that the invertebrate populations of the ponds and lakes could not be distinguished, with the possible exception of highway ponds presenting a distinct sub-group of wet detention ponds. The SWDPs and shallow lakes studied seemed to constitute aquatic ecosystems of similar taxon richness and composition as did the 11 small and shallow lakes. This indicates that SWDPs, originally constructed for treatment and flood protection purposes, become aquatic environments which play a local role for biodiversity similar to that of natural small and shallow lakes. - Highlights: • Biota of stormwater ponds had higher levels of metals compared to natural lakes. • Bioaccumulation of metals did not affect the biodiversity of the water bodies. • Biota composition in stormwater ponds and natural lakes was indistinguishable. • Stormwater ponds can play a role for biodiversity similar to natural lakes.

  15. Invertebrates in stormwater wet detention ponds — Sediment accumulation and bioaccumulation of heavy metals have no effect on biodiversity and community structure

    Energy Technology Data Exchange (ETDEWEB)

    Stephansen, Diana Agnete, E-mail: das@civil.aau.dk [Department of Civil Engineering, Aalborg University, Thomas Manns Vej 23, 9220 Aalborg East (Denmark); Nielsen, Asbjørn Haaning [Department of Civil Engineering, Aalborg University, Thomas Manns Vej 23, 9220 Aalborg East (Denmark); Hvitved-Jacobsen, Thorkild [Department of Environmental Engineering, Aalborg University, Fredrik Bajers Vej 7H, 9200 Aalborg East (Denmark); Pedersen, Morten Lauge; Vollertsen, Jes [Department of Civil Engineering, Aalborg University, Thomas Manns Vej 23, 9220 Aalborg East (Denmark)

    2016-10-01

    The invertebrate diversity in nine stormwater wet detention ponds (SWDP) was compared with the diversity in eleven small shallow lakes in the western part of Denmark. The SWDPs and lakes were chosen to reflect as large a gradient of pollutant loads and urbanization as possible. The invertebrates as well as the bottom sediments of the ponds and shallow lakes were analyzed for copper, iron, zinc, cadmium, chromium, lead, aluminum, nickel, arsenic and the potentially limiting nutrient, phosphorus. The Principal Component Analysis showed that invertebrates in SWDPs and lakes differed with respect to bioaccumulation of these elements, as did the sediments, albeit to a lesser degree. However, the Detrended Correspondence Analysis and the TWINSPAN showed that the invertebrate populations of the ponds and lakes could not be distinguished, with the possible exception of highway ponds presenting a distinct sub-group of wet detention ponds. The SWDPs and shallow lakes studied seemed to constitute aquatic ecosystems of similar taxon richness and composition as did the 11 small and shallow lakes. This indicates that SWDPs, originally constructed for treatment and flood protection purposes, become aquatic environments which play a local role for biodiversity similar to that of natural small and shallow lakes. - Highlights: • Biota of stormwater ponds had higher levels of metals compared to natural lakes. • Bioaccumulation of metals did not affect the biodiversity of the water bodies. • Biota composition in stormwater ponds and natural lakes was indistinguishable. • Stormwater ponds can play a role for biodiversity similar to natural lakes.

  16. Corrigendum | Schramm | African Journal of Aquatic Science

    African Journals Online (AJOL)

    It is editorial policy of the African Journal of Aquatic Science to follow the revised Acacia nomenclature, based on the retypification of the genus ratified by the XVIII International Botanical Congress in Melbourne in 2011 and subsequently published in Appendix III of the International Code of Nomenclature for algae, fungi ...

  17. Aquatic arsenic: Phytoremediation using floating macrophytes

    OpenAIRE

    Azizur Rahman, Mohammad; Hasegawa, Hiroshi

    2011-01-01

    Phytoremediation, a plant based green technology, has received increasing attention after the discovery of hyperaccumulating plants which are able to accumulate, translocate, and concentrate high amount of certain toxic elements in their above-ground/harvestable parts. Phytoremediation includes several processes namely, phytoextraction, phytodegradation, rhizofiltration, phytostabilization and phytovolatilization. Both terrestrial and aquatic plants have been tested to remediate contaminated ...

  18. Biologically-transformed zinc and its availability for bioaccumulation by marine organisms

    International Nuclear Information System (INIS)

    Fowler, S.W.; Heyraud, M.

    1980-01-01

    Zinc which occurs in sea water as a trace element exists in several different stable or meta-stable forms in the aquatic environment. One of them is ''complexed'' form which is relatively stable. Radiotracer studies were carried out to investigate the mode of formation of the complexed zinc fraction and to find whether this fraction once formed by biological means is available for accumulation by marine biota. Sea water solutions used in the experiments were filtered through double 0.45 μm Millipore filters. Chelex-100 resin which quantitatively removes zinc from sea water was used to measure the relative degree of binding of different species of 65 Zn formed by association with marine organisms. 65 Zn in exometabolites from living animals represented in this case by shrimp (Lymata seticaudata), influence of organic detritus represented in this case by dead shrimp on the conversion of different forms of zinc and bioavailability of biologically processed 65 Zn were studied. It was observed that: (1) living and dead marine animals can produce a soluble species of complexed, possibly organically bound, zinc, (2) uptake of this species is reduced relative to that of the ionic form indicating that zinc which has passed through biological cycles may be less available for bioaccumulation than zinc which has been directly introduced into the marine environment in inorganic forms. (M.G.B.)

  19. Sustaining America's Aquatic Biodiversity. Aquatic Insect Biodiversity and Conservation

    OpenAIRE

    Voshell, J. Reese

    2005-01-01

    Provides a description of the structure and appearance of aquatic insects, how they live and reproduce, the habitats they live in, how to collect them, why they are of importance, and threats to their survival; document also includes a brief illustrated summary of the eight major groups of aquatic insects and web links to more information. Part of a 12 part series on sustaining aquatic biodiversity in America.

  20. Occurrence of antibiotics in water, sediments, aquatic plants, and animals from Baiyangdian Lake in North China.

    Science.gov (United States)

    Li, Wenhui; Shi, Yali; Gao, Lihong; Liu, Jiemin; Cai, Yaqi

    2012-11-01

    This study investigated the presence and distribution of 22 antibiotics, including eight quinolones, nine sulfonamides and five macrolides, in the water, sediments, and biota samples from Baiyangdian Lake, China. A total of 132 samples were collected in 2008 and 2010, and laboratory analyses revealed that antibiotics were widely distributed in the lake. Sulfonamides were the dominant antibiotics in the water (0.86-1563 ng L(-1)), while quinolones were prominent in sediments (65.5-1166 μg kg(-1)) and aquatic plants (8.37-6532 μg kg(-1)). Quinolones (17.8-167 μg kg(-1)) and macrolides [from below detection limit (BDL) to 182 μg kg(-1)] were often found in aquatic animals and birds. Salvinia natans exhibited the highest bioaccumulation capability for quinolones among three species of aquatic plants. Geographical differences of antibiotic concentrations were greatly due to anthropogenic activities. Sewage discharged from Baoding City was likely the main source of antibiotics in the lake. Risk assessment of antibiotics on aquatic organisms suggested that algae and aquatic plants might be at risk in surface water, while animals were likely not at risk. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. The use of aquatic macrophytes in monitoring and in assessment of biological integrity

    Science.gov (United States)

    Stewart, P.M.; Scribailo, R.W.; Simon, T.P.; Gerhardt, A.

    1999-01-01

    Aquatic plant species, populations, and communities should be used as indicators of the aquatic environment, allowing detection of ecosystem response to different stressors. Plant tissues bioaccumulate and concentrate toxin levels higher than what is present in the sediments; and this appears to be related to organic matter content, acidification, and buffering capacity. The majority of toxicity studies, most of these with heavy metals, have been done with several Lemna species and Vallisneria americana. Organic chemicals reviewed include pesticides and herbicides, polycyclic aromatic hydrocarbons, polychlorinated biphenyls, and other industrial contaminants. The use of aquatic plant communities as bioindicators of environmental quality was evaluated for specific characteristics and indices that may assess biological integrity. Indices such as the floristic quality index (FQI) and coefficient of conservatism (C) are pioneering efforts to describe the quality of natural areas and protect native biodiversity. Our case study in the Grand Calumet Lagoons found that 'least-impacted' sites had the greatest aquatic plant species richness, highest FQI and C values, and highest relative abundance. Lastly, we introduce the concepts necessary for the development of a plant index of biotic integrity. Development of reference conditions is essential to understanding aquatic plant community structure, function, individual health, condition, and abundance. Information on guild development and tolerance definition are also integral to the development of a multi-metric index.

  2. Predicting the bioaccumulation of polyaromatic hydrocarbons and polychlorinated biphenyls in benthic animals in sediments

    Energy Technology Data Exchange (ETDEWEB)

    Tuikka, A.I., E-mail: anitat@student.uef.fi [University of Eastern Finland, Department of Environmental and Biological Sciences, P.O. Box 111, FI-80101 Joensuu (Finland); Leppänen, M.T., E-mail: Matti.T.Leppanen@ymparisto.fi [Finnish Environment Institute, Laboratories/Research and Innovation Laboratory, P.O. Box 35, University of Jyväskylä, FI-40014 Jyväskylä (Finland); Akkanen, J., E-mail: jarkko.akkanen@uef.fi [University of Eastern Finland, Department of Environmental and Biological Sciences, P.O. Box 111, FI-80101 Joensuu (Finland); Sormunen, A.J., E-mail: Arto.Sormunen@mamk.fi [University of Eastern Finland, Department of Environmental and Biological Sciences, P.O. Box 111, FI-80101 Joensuu (Finland); Leonards, P.E.G., E-mail: pim.leonards@vu.nl [Institute for Environmental Studies, Vrije Universiteit Amsterdam, De Boelelaan 1087, 1081 HV Amsterdam (Netherlands); Hattum, B. van, E-mail: bert.vanhattum@deltares.nl [Institute for Environmental Studies, Vrije Universiteit Amsterdam, De Boelelaan 1087, 1081 HV Amsterdam (Netherlands); Vliet, L.A. van, E-mail: lavanvliet@hotmail.com [Ministry of Transport, Public Works and Water Management, National Institute for Coastal and Marine Management/RIKZ, P.O. Box 207, 9750 AE Haren (Netherlands); Brack, W., E-mail: werner.brack@ufz.de [Helmholtz Centre for Environmental Research - UFZ, Department of Effect-Directed Analysis, Permoserstraße 15, 04318 Leipzig (Germany); Smedes, F., E-mail: smedes@recetox.muni.cz [Ministry of Transport, Public Works and Water Management, National Institute for Coastal and Marine Management/RIKZ, P.O. Box 207, 9750 AE Haren (Netherlands); and others

    2016-09-01

    There were two main objectives in this study. The first was to compare the accuracy of different prediction methods for the chemical concentrations of polyaromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) in the organism, based on the measured chemical concentrations existing in sediment dry matter or pore water. The predicted tissue concentrations were compared to the measured ones after 28-day laboratory test using oligochaeta worms (Lumbriculus variegatus). The second objective was to compare the bioaccumulation of PAHs and PCBs in the laboratory test with the in situ bioaccumulation of these compounds. Using the traditional organic carbon-water partitioning model, tissue concentrations were greatly overestimated, based on the concentrations in the sediment dry matter. Use of an additional correction factor for black carbon with a two-carbon model, significantly improved the bioaccumulation predictions, thus confirming that black carbon was important in binding the chemicals and reducing their accumulation. The predicted PAH tissue concentrations were, however, high compared to the observed values. The chemical concentrations were most accurately predicted from their freely dissolved pore water concentrations, determined using equilibrium passive sampling. The patterns of PCB and PAH accumulation in sediments for laboratory-exposed L. variegatus were similar to those in field-collected Lumbriculidae worms. Field-collected benthic invertebrates and L. variegatus accumulated less PAHs than PCBs with similar lipophilicity. The biota to sediment accumulation factors of PAHs tended to decrease with increasing sediment organic carbon normalized concentrations. The presented data yields bioconcentration factors (BCF) describing the chemical water-lipid partition, which were found to be higher than the octanol-water partition coefficients, but on a similar level with BCFs drawn from relevant literature. In conclusion, using the two-carbon model method

  3. Mercury cycling in stream ecosystems. 3. Trophic dynamics and methylmercury bioaccumulation

    Science.gov (United States)

    Chasar, L.C.; Scudder, B.C.; Stewart, A.R.; Bell, A.H.; Aiken, G.R.

    2009-01-01

    Trophic dynamics (community composition and feeding relationships) have been identified as important drivers of methylmercury (MeHg) bioaccumulation in lakes, reservoirs, and marine ecosystems. The relative importance of trophic dynamics and geochemical controls on MeHg bioaccumulation in streams, however, remains poorly characterized. MeHg bioaccumulation was evaluated in eight stream ecosystems across the United States (Oregon, Wisconsin, and Florida) spanning large ranges in climate, landscape characteristics, atmospheric Hg deposition, and stream chemistry. Across all geographic regions and all streams, concentrations of total Hg (THg) in top predator fish and forage fish, and MeHg in invertebrates, were strongly positively correlated to concentrations of filtered THg (FTHg), filtered MeHg (FMeHg), and dissolved organic carbon (DOC); to DOC complexity (as measured by specific ultraviolet absorbance); and to percent wetland in the stream basins. Correlations were strongest for nonurban streams. Although regressions of log[Hg] versus ??15N indicate that Hg in biota increased significantly with increasing trophic position within seven of eight individual streams, Hg concentrations in top predator fish (including cutthroat, rainbow, and brown trout; green sunfish; and largemouth bass) were not strongly influenced by differences in relative trophic position. Slopes of log[Hg] versus ??15N, an indicator of the efficiency of trophic enrichment, ranged from 0.14 to 0.27 for all streams. These data suggest that, across the large ranges in FTHg (0.14-14.2 ng L-1), FMeHg (0.023-1.03 ng L-1), and DOC (0.50-61.0 mg L-1) found in this study, Hg contamination in top predator fish in streams likely is dominated by the amount of MeHg available for uptake at the base of the food web rather than by differences in the trophic position of top predator fish. ?? 2009 American Chemical Society.

  4. Interactions between zooplankton and crude oil: toxic effects and bioaccumulation of polycyclic aromatic hydrocarbons.

    Directory of Open Access Journals (Sweden)

    Rodrigo Almeda

    Full Text Available We conducted ship-, shore- and laboratory-based crude oil exposure experiments to investigate (1 the effects of crude oil (Louisiana light sweet oil on survival and bioaccumulation of polycyclic aromatic hydrocarbons (PAHs in mesozooplankton communities, (2 the lethal effects of dispersant (Corexit 9500A and dispersant-treated oil on mesozooplankton, (3 the influence of UVB radiation/sunlight exposure on the toxicity of dispersed crude oil to mesozooplankton, and (4 the role of marine protozoans on the sublethal effects of crude oil and in the bioaccumulation of PAHs in the copepod Acartia tonsa. Mortality of mesozooplankton increased with increasing oil concentration following a sigmoid model with a median lethal concentration of 32.4 µl L(-1 in 16 h. At the ratio of dispersant to oil commonly used in the treatment of oil spills (i.e. 1∶20, dispersant (0.25 µl L(-1 and dispersant-treated oil were 2.3 and 3.4 times more toxic, respectively, than crude oil alone (5 µl L(-1 to mesozooplankton. UVB radiation increased the lethal effects of dispersed crude oil in mesozooplankton communities by 35%. We observed selective bioaccumulation of five PAHs, fluoranthene, phenanthrene, pyrene, chrysene and benzo[b]fluoranthene in both mesozooplankton communities and in the copepod A. tonsa. The presence of the protozoan Oxyrrhis marina reduced sublethal effects of oil on A. tonsa and was related to lower accumulations of PAHs in tissues and fecal pellets, suggesting that protozoa may be important in mitigating the harmful effects of crude oil exposure in copepods and the transfer of PAHs to higher trophic levels. Overall, our results indicate that the negative impact of oil spills on mesozooplankton may be increased by the use of chemical dispersant and UV radiation, but attenuated by crude oil-microbial food webs interactions, and that both mesozooplankton and protozoans may play an important role in fate of PAHs in marine environments.

  5. Interactions between Zooplankton and Crude Oil: Toxic Effects and Bioaccumulation of Polycyclic Aromatic Hydrocarbons

    Science.gov (United States)

    Almeda, Rodrigo; Wambaugh, Zoe; Wang, Zucheng; Hyatt, Cammie; Liu, Zhanfei; Buskey, Edward J.

    2013-01-01

    We conducted ship-, shore- and laboratory-based crude oil exposure experiments to investigate (1) the effects of crude oil (Louisiana light sweet oil) on survival and bioaccumulation of polycyclic aromatic hydrocarbons (PAHs) in mesozooplankton communities, (2) the lethal effects of dispersant (Corexit 9500A) and dispersant-treated oil on mesozooplankton, (3) the influence of UVB radiation/sunlight exposure on the toxicity of dispersed crude oil to mesozooplankton, and (4) the role of marine protozoans on the sublethal effects of crude oil and in the bioaccumulation of PAHs in the copepod Acartia tonsa. Mortality of mesozooplankton increased with increasing oil concentration following a sigmoid model with a median lethal concentration of 32.4 µl L−1 in 16 h. At the ratio of dispersant to oil commonly used in the treatment of oil spills (i.e. 1∶20), dispersant (0.25 µl L−1) and dispersant- treated oil were 2.3 and 3.4 times more toxic, respectively, than crude oil alone (5 µl L−1) to mesozooplankton. UVB radiation increased the lethal effects of dispersed crude oil in mesozooplankton communities by 35%. We observed selective bioaccumulation of five PAHs, fluoranthene, phenanthrene, pyrene, chrysene and benzo[b]fluoranthene in both mesozooplankton communities and in the copepod A. tonsa. The presence of the protozoan Oxyrrhis marina reduced sublethal effects of oil on A. tonsa and was related to lower accumulations of PAHs in tissues and fecal pellets, suggesting that protozoa may be important in mitigating the harmful effects of crude oil exposure in copepods and the transfer of PAHs to higher trophic levels. Overall, our results indicate that the negative impact of oil spills on mesozooplankton may be increased by the use of chemical dispersant and UV radiation, but attenuated by crude oil-microbial food webs interactions, and that both mesozooplankton and protozoans may play an important role in fate of PAHs in marine environments. PMID:23840628

  6. A dynamic and mechanistic model of PCB bioaccumulation in the European hake ( Merluccius merluccius)

    Science.gov (United States)

    Bodiguel, Xavier; Maury, Olivier; Mellon-Duval, Capucine; Roupsard, François; Le Guellec, Anne-Marie; Loizeau, Véronique

    2009-08-01

    Bioaccumulation is difficult to document because responses differ among chemical compounds, with environmental conditions, and physiological processes characteristic of each species. We use a mechanistic model, based on the Dynamic Energy Budget (DEB) theory, to take into account this complexity and study factors impacting accumulation of organic pollutants in fish through ontogeny. The bioaccumulation model proposed is a comprehensive approach that relates evolution of hake PCB contamination to physiological information about the fish, such as diet, metabolism, reserve and reproduction status. The species studied is the European hake ( Merluccius merluccius, L. 1758). The model is applied to study the total concentration and the lipid normalised concentration of 4 PCB congeners in male and female hakes from the Gulf of Lions (NW Mediterranean sea) and the Bay of Biscay (NE Atlantic ocean). Outputs of the model compare consistently to measurements over the life span of fish. Simulation results clearly demonstrate the relative effects of food contamination, growth and reproduction on the PCB bioaccumulation in hake. The same species living in different habitats and exposed to different PCB prey concentrations exhibit marked difference in the body accumulation of PCBs. At the adult stage, female hakes have a lower PCB concentration compared to males for a given length. We successfully simulated these sex-specific PCB concentrations by considering two mechanisms: a higher energy allocation to growth for females and a transfer of PCBs from the female to its eggs when allocating lipids from reserve to eggs. Finally, by its mechanistic description of physiological processes, the model is relevant for other species and sets the stage for a mechanistic understanding of toxicity and ecological effects of organic contaminants in marine organisms.

  7. Bioaccumulation of perfluoroalkyl acids by earthworms (Eisenia fetida) exposed to contaminated soils.

    Science.gov (United States)

    Rich, Courtney D; Blaine, Andrea C; Hundal, Lakhwinder; Higgins, Christopher P

    2015-01-20

    The presence of perfluoroalkyl acids (PFAAs) in biosolids-amended and aqueous film-forming foam (AFFF)-impacted soils results in two potential pathways for movement of these environmental contaminants into terrestrial foodwebs. Uptake of PFAAs by earthworms (Eisenia fetida) exposed to unspiked soils with varying levels of PFAAs (a control soil, an industrially impacted biosolids-amended soil, a municipal biosolids-amended soil, and two AFFF-impacted soils) was measured. Standard 28 day exposure experiments were conducted in each soil, and measurements taken at additional time points in the municipal soil were used to model the kinetics of uptake. Uptake and elimination rates and modeling suggested that steady state bioaccumulation was reached within 28 days of exposure for all PFAAs. The highest concentrations in the earthworms were for perfluorooctane sulfonate (PFOS) in the AFFF-impacted Soil A (2160 ng/g) and perfluorododecanoate (PFDoA) in the industrially impacted soil (737 ng/g). Wet-weight (ww) and organic carbon (OC)-based biota soil accumulation factors (BSAFs) for the earthworms were calculated after 28 days of exposure for all five soils. The highest BSAF in the industrially impacted soil was for PFDoA (0.42 goc/gww,worm). Bioaccumulation factors (BAFs, dry-weight-basis, dw) were also calculated at 28 days for each of the soils. With the exception of the control soil and perfluorodecanoate (PFDA) in the industrially impacted soil, all BAF values were above unity, with the highest being for perfluorohexanesulfonate (PFHxS) in the AFFF-impacted Soil A (139 gdw,soil/gdw,worm). BSAFs and BAFs increased with increasing chain length for the perfluorocarboxylates (PFCAs) and decreased with increasing chain length for the perfluoroalkyl sulfonates (PFSAs). The results indicate that PFAA bioaccumulation into earthworms depends on soil concentrations, soil characteristics, analyte, and duration of exposure, and that accumulation into earthworms may be a potential

  8. Biocide by-products in aquatic environments. Annual report, October 1, 1977--September 30, 1978

    International Nuclear Information System (INIS)

    Anderson, D.R.; Bean, R.M.; Gibson, C.I.

    1979-01-01

    The Biocide By-Products in Aquatic Environments Program is composed of analytical chemistry and biological phases with freshwater and marine biological subdivisions. The objectives of the analytical studies are: to identify those chloroorganic chemical compounds that result from the addition of chlorine to fresh or saltwater; to develop methods for detecting chlorinated organics in the effluents discharged to receiving water bodies from nuclear stations; and to verify laboratory findings through analysis for chlorination by-products in water and biota samples from cooling water bodies of nuclear power stations. The objectives of the biological studies are: to investigate the immediate toxicity of specific chlorination by-products (chloroform in freshwater and bromoform in marine waters); to evaluate the chronic toxicity of chlorination by-products; to follow their pathways of action; and to analyze for bioaccumulation or biomagnification of halogenated hydrocarbons on selected aquatic or marine biota

  9. PIXE analysis of chromium phytoaccumulation by the aquatic macrophytes Eicchornia crassipes

    International Nuclear Information System (INIS)

    Espinoza-Quinones, F.R.; Rizzutto, M.A.; Added, N.; Tabacniks, M.H.; Modenes, A.N.; Palacio, S.M.; Silva, E.A.; Rossi, F.L.; Martin, N.; Szymanski, N.

    2009-01-01

    The uptake of hexavalent chromium in free living floating aquatic macrophytes Eicchornia crassipes cultivated in non-toxic chromium-doped hydroponic solutions is presented. A Cr-uptake bioaccumulation experiment was carried out using healthy macrophytes grown in a temperature controlled greenhouse. Six samples of nutrient media and plants were collected during the 23 day experiment. Roots and leaves were acid digested with the addition of an internal Gallium standard, for thin film sample preparation and quantitative Cr analysis by PIXE method. The Cr 6+ mass uptake by the macrophytes reached up to 70% of the initial concentration, comparable to former results and literature data. The Cr-uptake data were described using a non-structural first order kinetic model. Due to low cost and high removal efficiency, living aquatic macrophytes E. crassipes are a viable biosorbent in an artificial wetland of a water effluent treatment plant.

  10. PIXE analysis of chromium phytoaccumulation by the aquatic macrophytes Eicchornia crassipes

    Energy Technology Data Exchange (ETDEWEB)

    Espinoza-Quinones, F.R. [Department of Chemical Engineering - Postgraduate Program - NBQ, West Parana State University, Rua da Faculdade, 645, Jardim Santa Maria, 85903-000 Toledo, Parana (Brazil)], E-mail: f.espinoza@terra.com.br; Rizzutto, M.A.; Added, N.; Tabacniks, M.H. [Physics Institute, University of Sao Paulo, Rua do Matao s/n, Travessa R 187, 05508-900 Sao Paulo, SP (Brazil); Modenes, A.N.; Palacio, S.M.; Silva, E.A.; Rossi, F.L.; Martin, N.; Szymanski, N. [Department of Chemical Engineering - Postgraduate Program - NBQ, West Parana State University, Rua da Faculdade, 645, Jardim Santa Maria, 85903-000 Toledo, Parana (Brazil)

    2009-04-15

    The uptake of hexavalent chromium in free living floating aquatic macrophytes Eicchornia crassipes cultivated in non-toxic chromium-doped hydroponic solutions is presented. A Cr-uptake bioaccumulation experiment was carried out using healthy macrophytes grown in a temperature controlled greenhouse. Six samples of nutrient media and plants were collected during the 23 day experiment. Roots and leaves were acid digested with the addition of an internal Gallium standard, for thin film sample preparation and quantitative Cr analysis by PIXE method. The Cr{sup 6+} mass uptake by the macrophytes reached up to 70% of the initial concentration, comparable to former results and literature data. The Cr-uptake data were described using a non-structural first order kinetic model. Due to low cost and high removal efficiency, living aquatic macrophytes E. crassipes are a viable biosorbent in an artificial wetland of a water effluent treatment plant.

  11. Radioecology of the aquatic environment

    International Nuclear Information System (INIS)

    Amiard-Triquet, C.; Amiard, J.C.

    1980-01-01

    This book is divided into nine parts as follows: origin of radionuclides in the aquatic environment; assessment of radioactive contamination of the aquatic environment; evolution of radionuclides in waters; behaviour of radionuclides in sediments; quantitative data on accumulation, distribution and biological release of radioactive pollutants; mechanisms of the biological accumulation; influence of ecological factors on radioactive contamination of ecosystems; effects of irradiation on aquatic organisms. The last part is devoted to general conclusions on sanitary and ecological consequences of radioactive pollution of the aquatic environment [fr

  12. Modeling {sup 137}Cs bioaccumulation in the salmon–resident killer whale food web of the Northeastern Pacific following the Fukushima Nuclear Accident

    Energy Technology Data Exchange (ETDEWEB)

    Alava, Juan José, E-mail: jalavasa@sfu.ca; Gobas, Frank A.P.C.

    2016-02-15

    To track the long term bioaccumulation of {sup 137}Cs in marine organisms off the Pacific Northwest coast of Canada, we developed a time dependent bioaccumulation model for {sup 137}Cs in a marine mammalian food web that included fish-eating resident killer whales. The model outcomes show that {sup 137}Cs can be expected to gradually bioaccumulate in the food web over time as demonstrated by the increase of the apparent trophic magnification factor of {sup 137}Cs, ranging from 0.76 after 1 month of exposure to 2.0 following 30 years of exposure. {sup 137}Cs bioaccumulation is driven by relatively rapid dietary uptake rates, moderate depuration rates in lower trophic level organisms and slow elimination rates in high trophic level organisms. Model estimates of the {sup 137}Cs activity in species of the food web, based on current measurements and forecasts of {sup 137}Cs activities in oceanic waters and sediments off the Canadian Pacific Northwest, indicate that the long term {sup 137}Cs activities in fish species including Pacific herring, wild Pacific salmon, sablefish and halibut will remain well below the current {sup 137}Cs-Canada Action Level for consumption (1000 Bq/kg) following a nuclear emergency. Killer whales and Pacific salmon are expected to exhibit the largest long term {sup 137}Cs activities and may be good sentinels for monitoring {sup 137}Cs in the region. Assessment of the long term consequences of {sup 137}Cs releases from the Fukushima aftermath should consider the extent of ecological magnification in addition to ocean dilution. - Highlights: • A food web bioaccumulation model to assess the biomagnification of {sup 137}Cs is developed. • Cesium 137 exhibits bioaccumulation over time as simulated by the model. • Predicted activities in marine biota are below {sup 137}Cs-food consumption benchmarks. • Long-term monitoring of {sup 137}Cs in the ocean will improve the model predictions.

  13. Modeling 137Cs bioaccumulation in the salmon–resident killer whale food web of the Northeastern Pacific following the Fukushima Nuclear Accident

    International Nuclear Information System (INIS)

    Alava, Juan José; Gobas, Frank A.P.C.

    2016-01-01

    To track the long term bioaccumulation of 137 Cs in marine organisms off the Pacific Northwest coast of Canada, we developed a time dependent bioaccumulation model for 137 Cs in a marine mammalian food web that included fish-eating resident killer whales. The model outcomes show that 137 Cs can be expected to gradually bioaccumulate in the food web over time as demonstrated by the increase of the apparent trophic magnification factor of 137 Cs, ranging from 0.76 after 1 month of exposure to 2.0 following 30 years of exposure. 137 Cs bioaccumulation is driven by relatively rapid dietary uptake rates, moderate depuration rates in lower trophic level organisms and slow elimination rates in high trophic level organisms. Model estimates of the 137 Cs activity in species of the food web, based on current measurements and forecasts of 137 Cs activities in oceanic waters and sediments off the Canadian Pacific Northwest, indicate that the long term 137 Cs activities in fish species including Pacific herring, wild Pacific salmon, sablefish and halibut will remain well below the current 137 Cs-Canada Action Level for consumption (1000 Bq/kg) following a nuclear emergency. Killer whales and Pacific salmon are expected to exhibit the largest long term 137 Cs activities and may be good sentinels for monitoring 137 Cs in the region. Assessment of the long term consequences of 137 Cs releases from the Fukushima aftermath should consider the extent of ecological magnification in addition to ocean dilution. - Highlights: • A food web bioaccumulation model to assess the biomagnification of 137 Cs is developed. • Cesium 137 exhibits bioaccumulation over time as simulated by the model. • Predicted activities in marine biota are below 137 Cs-food consumption benchmarks. • Long-term monitoring of 137 Cs in the ocean will improve the model predictions.

  14. Accumulation and fluxes of mercury in terrestrial and aquatic food chains with special reference to Finland

    Directory of Open Access Journals (Sweden)

    Martin Lodenius

    2013-03-01

    Full Text Available Mercury is known for its biomagnification especially in aquatic food chains and for its toxic effects on different organisms including man. In Finland mercury has formerly been used in industry and agriculture and in addition many anthropogenic activities may increase the mercury levels in ecosystems. Phenyl mercury was widely used as slimicide in the pulp and paper industry in the 1950s and 1960s. In the chlor-alkali industry metallic mercury was used as catalyst at three plants. The most toxic form of mercury, methyl mercury, may be formed in soils, water, sediments and organisms. Many factors, including microbial activity, temperature, oxygen status etc., affect the methylation rate. In the lake ecosystem bioaccumulation of methyl mercury is very strong. In early 1980s there was a restriction of fishing concerning approximately 4000 km2 of lakes and sea areas because of mercury pollution. In aquatic systems we still find elevated concentrations near former emission sources. Long-range atmospheric transport and mechanical operations like ditching and water regulation may cause increased levels of mercury in the aquatic ecosystems. In the Finnish agriculture organic mercury compounds were used for seed dressing until 1992. Although the amounts used were substantial the concentrations in agricultural soils have remained rather low. In terrestrial food chains bioaccumulation is normally weak with low or moderate concentration at all ecosystem levels. Due to a weak uptake through roots terrestrial, vascular plants normally contain only small amounts of mercury. There is a bidirectional exchange of mercury between vegetation and atmosphere. Contrary to vascular plants, there is a very wide range of concentrations in fungi. Mercury may pose a threat to human health especially when accumulated in aquatic food chains.

  15. Improving plant bioaccumulation science through consistent reporting of experimental data

    DEFF Research Database (Denmark)

    Fantke, Peter; Arnot, Jon A.; Doucette, William J.

    2016-01-01

    Experimental data and models for plant bioaccumulation of organic contaminants play a crucial role for assessing the potential human and ecological risks associated with chemical use. Plants are receptor organisms and direct or indirect vectors for chemical exposures to all other organisms. As new...... experimental data are generated they are used to improve our understanding of plant-chemical interactions that in turn allows for the development of better scientific knowledge and conceptual and predictive models. The interrelationship between experimental data and model development is an ongoing, never......-ending process needed to advance our ability to provide reliable quality information that can be used in various contexts including regulatory risk assessment. However, relatively few standard experimental protocols for generating plant bioaccumulation data are currently available and because of inconsistent...

  16. Bioaccumulation of Cs-137 and Co-57 by marine phytoplankton

    International Nuclear Information System (INIS)

    Heldal, H.E.; Stupakoff, I.; Fisher, N.S.

    1999-01-01

    Under controlled laboratory conditions we have examined the bioaccumulation of Cs-137 and Co-57 in three prymnesiophytes, the coccolithophorid Emiliania huxleyi and the non-calcareous species Isochrysis galbana and Phaeocystis globosa, and two diatoms Skeletonema costatum and Thalassiosira pseudonana. We measured uptake in growing and non-growing cells, and determined concentration factors on both volume and dry weight basis. For Co-57 uptake in non-growing cells, volume concentration factors (VCF) at equilibrium ranged from 0.2 * 10 3 for Emiliana huxleyi to 4 * 10 3 for the diatom Thalassiosira pseudonana. For Cs-137 uptake in non-growing cells the VCFs were close to zero. The results suggest that, in contrast to Co, the cycling and bioaccumulation in animals of Cs in marine systems is unlikely to be affected by primary producers. (au)

  17. Bioaccumulation of heavy metals in two wet retention ponds

    DEFF Research Database (Denmark)

    Søberg, Laila C.; Vollertsen, Jes; Blecken, Godecke-Tobias

    2016-01-01

    Metal accumulation in stormwater ponds may contaminate the inhabiting fauna, thus jeopardizing their ecosystem servicing function. We evaluated bioaccumulation of metals in natural fauna and caged mussel indicator organisms in two wet retention ponds. Mussel cages were distributed throughout...... the ponds to detect bioaccumulation gradients and obtain a time-integrated measure of metal bioavailability. We further investigated if sediment metal concentrations correlate with those in the fauna and mussels. Metal concentrations in the fauna tended to be higher in the ponds than in a reference lake......, but statistical significance was only shown for Cu. Positive correlations were found for some metals in fauna and sediment. Sediment metal concentrations in one pond decreased from inlet to outlet while no gradients were observed in the mussels in either pond. These findings indicate that metal accumulation...

  18. Optimization of methodology for the assessing of bioaccumulation factors of periphyton metals applying the X-ray fluorescence technique

    International Nuclear Information System (INIS)

    Merced Ch, D.

    2015-01-01

    The Lerma River is one of the most polluted at Mexico, has a high pollutant load and low biodiversity, this aquatic plants and species zoo perifiton presented adaptations to environmental conditions that exist due to dumping of wastewater are developed. In this paper bioaccumulation factors (BAF) of Cr, Mn, Fe, Ni, Cu, Zn and Pb metal on Hydrocotyle ranunculoides zoo perifiton associated with the upper reaches of the Lerma River applying the technique of fluorescence X-rays were evaluated in the form of Total Reflection. The BAF were higher compared to the soluble fraction to the total fraction this because the metal in the soluble phase are in solution and are therefore more available to join aquatic organisms, moreover respect to the BAF sediment were ≤ 1.5 indicate that these organisms have little affinity for incorporating metals from the sediment. Considering the sum of the FBA of all metals in each agency notes that the leech was the biggest bio accumulated metals (42468) followed by the worm to (27958), the arthropod with (10757) and finally the snail with (8421). Overall for this study agencies according to the BAF reported to bio accumulate metals are the following behavior Fe > Zn > Cu > Cr > Ni > Mn > Pb. (Author)

  19. Bioaccumulation of methyl parathion and its toxicology in several species of the freshwater community in Ignacio Ramirez dam in Mexico.

    Science.gov (United States)

    De La Vega Salazar, M Y; Tabche, L M; García, C M

    1997-10-01

    Environmental contamination by pesticides, including the presence of chemical residues in aquatic wildlife, is a widespread ecological problem. Methyl parathion (MP), a widely used organophosphorate insecticide, is a potent neurotoxic in both vertebrates and invertebrates. The effect of a subchronic exposure to MP in aquatic organisms was evaluated in a natural ecosystem measuring acetyl cholinesterase (AChE) and gamma glutamil transpeptidase (GGT) activity. Two samples were conducted. Physicochemical characterization was done at each sampling time and organisms were collected. MP and metabolite 4-nitrophenol (4-NP) concentrations were measured in water sediment and organisms. The major differences in physical features between season were an increase of turbidity and salinity and depletion of dissolved oxygen in the rainy season. MP and 4-NP are bioconcentrated in organisms in response to environmental stress. MP concentration was measured in different size/age and reproductive stages separately. A significant concentration in reproductive tissues (plants)/unborn progeny (animals) was always found, and this can affect egg viability. The metabolite 4-NP is bioaccumulated and is toxic because it causes an increase of AChE activity. GGT activity was higher than that in controls. The increase in enzymatic activity provides a detoxification mechanism from chronic sublethal exposure, when hepatic glutation depletion occurs, and may be an indicator of liver damage.

  20. Methylmercury bioaccumulation in an urban estuary: Delaware River USA.

    Science.gov (United States)

    Buckman, Kate; Taylor, Vivien; Broadley, Hannah; Hocking, Daniel; Balcom, Prentiss; Mason, Rob; Nislow, Keith; Chen, Celia

    2017-09-01

    Spatial variation in mercury (Hg) and methylmercury (MeHg) bioaccumulation in urban coastal watersheds reflects complex interactions between Hg sources, land use, and environmental gradients. We examined MeHg concentrations in fauna from the Delaware River estuary, and related these measurements to environmental parameters and human impacts on the waterway. The sampling sites followed a north to south gradient of increasing salinity, decreasing urban influence, and increasing marsh cover. Although mean total Hg in surface sediments (top 4cm) peaked in the urban estuarine turbidity maximum and generally decreased downstream, surface sediment MeHg concentrations showed no spatial patterns consistent with the examined environmental gradients, indicating urban influence on Hg loading to the sediment but not subsequent methylation. Surface water particulate MeHg concentration showed a positive correlation with marsh cover whereas dissolved MeHg concentrations were slightly elevated in the estuarine turbidity maximum region. Spatial patterns of MeHg bioaccumulation in resident fauna varied across taxa. Small fish showed increased MeHg concentrations in the more urban/industrial sites upstream, with concentrations generally decreasing farther downstream. Invertebrates either showed no clear spatial patterns in MeHg concentrations (blue crabs, fiddler crabs) or increasing concentrations further downstream (grass shrimp). Best-supported linear mixed models relating tissue concentration to environmental variables reflected these complex patterns, with species specific model results dominated by random site effects with a combination of particulate MeHg and landscape variables influencing bioaccumulation in some species. The data strengthen accumulating evidence that bioaccumulation in estuaries can be decoupled from sediment MeHg concentration, and that drivers of MeHg production and fate may vary within a small region.

  1. Bioaccumulation of 137Cs and 60Co by Helianthus annuus

    International Nuclear Information System (INIS)

    Hornik, M.; Pipiska, M.; Vrtoch, L.; Augustin, J.; Lesny, J.

    2005-01-01

    The 60 Co and 137 Cs bioaccumulation by Helianthus annuus L. was measured during 9 day cultivation at 20 ± 2 o C in hydroponic Hoagland medium. Previous starvation for K + and for NH 4 + 2.2 and 2.7 times, respectively, enhanced 137 Cs uptake rate. Previous cultivation in surplus of K + ions 50 mmol·l -1 has no effect on 137 Cs bioaccumulation rate. Both 137 Cs and 60 Co bioaccumulation significantly increase with dilution of basic Hoagland medium up to 1:7 for caesium and up to 1:3 for cobalt followed by mild decrease at higher dilutions. Root to shoot specific 137 Cs radioactivity ratio (Bq.g -1 /Bq·g -1 , fresh wt.) increased with dilution from 1.46 to 9.6-9.8. The values root to shoot specific radioactivity ratio for 60 Co were less dependent on the nutrient concentrations and were within the range 5.7 to 8.5. 137 Cs was localized mainly in young leaves (30%) and roots (39%) and 60 Co mainly in roots (67%) and leaves (20%). Obtained data showed less sensitivity of 60 Co uptake by sunflower on nutrient concentration in hydroponic media. (author)

  2. [Ecological risk assessment of hydropower dam construction on aquatic species in middle reaches of Lancang River, Southwest China based on ESHIPPO model].

    Science.gov (United States)

    Li, Xiao-Yan; Peng, Ming-Chun; Dong, Shi-Kui; Liu, Shi-Liang; Li, Jin-Peng; Yang, Zhi-Feng

    2013-02-01

    An investigation was conducted on the phytoplankton, zooplankton, and fish at 8 sampling sections in the Manwan Reservoir before and after the construction of Xiaowan Hydropower Dam. The modified ESHIPPO model was applied to study the changes of the featured aquatic species, including endangered species, endemic specie, peis resource species, and native fish, aimed to make an ecological risk assessment of the dam construction on the aquatic species. The dam construction had definite ecological risk on the aquatic species, especially the endemic fish, in Langcang River, due to the changes of hydrological conditions. The endemic species including Bangia atropurpurea, Lemanea sinica, Prasiola sp., Attheyella yunnanensis, and Neutrodiaptomus mariadvigae were at high ecological risk, and thus, besides monitoring, protection measures were needed to be taken to lower the possibility of the species extinction. The widely distributed species of phytoplankton and zooplankton were at medium ecological risk, and protection measures besides monitoring should be prepared. Twelve kinds of native fish, including Barbodes huangchuchieni, Sinilabeo laticeps, Racoma lantsangensis, Racoma lissolabiatus, Paracobitis anguillioides, Schistura latifasciata, Botia nigrolineata, Vanmanenia striata, Homaloptera yunnanensis, Platytropius longianlis, Glyptothorax zanaensis, and Pseudecheneis immaculate, were at high ecological risk, and protection measures needed to be developed to prevent the possibility of the species loss and extinction.

  3. Accumulation of selenium in aquatic systems downstream of a uranium mining operation in northern Saskatchewan, Canada

    International Nuclear Information System (INIS)

    Muscatello, J.R.; Belknap, A.M.; Janz, D.M.

    2008-01-01

    The objective of this study was to investigate the accumulation of selenium in lakes downstream of a uranium mine operation in northern Saskatchewan, Canada. Selenium concentrations in sediment and biota were elevated in exposure areas even though water concentrations were low (<5 μg/L). The pattern (from smallest to largest) of selenium accumulation was: periphyton < plankton and filterer invertebrates < detritivore and predator invertebrates < small bodied (forage) fish and predatory fish. Biomagnification of selenium resulted in an approximately 1.5-6 fold increase in the selenium content between plankton, invertebrates and forage fish. However, no biomagnification was observed between forage fish and predatory fish. Selenium content in organisms from exposure areas exceeded the proposed 3-11 μg/g (dry weight) dietary toxicity threshold for fish, suggesting that the selenium released into these aquatic systems has the potential to bioaccumulate and reach levels that could impair fish reproduction. - Selenium bioaccumulation patterns in a north temperate, cold water aquatic ecosystem were similar to those reported from warm water systems

  4. Toxicokinetic modeling challenges for aquatic nanotoxicology

    Directory of Open Access Journals (Sweden)

    Wei-Yu eChen

    2016-01-01

    Full Text Available Nanotoxicity has become of increasing concern since the rapid development of metal nanoparticles (NPs. Aquatic nanotoxicity depends on crucial qualitative and quantitative properties of nanomaterials that induce adverse effects on subcellular, tissue, and organ level. The dose-response effects of size-dependent metal NPs, however, are not well investigated in aquatic organisms. In order to determine the uptake and elimination rate constants for metal NPs in the metabolically active/ detoxified pool of tissues, a one-compartmental toxicokinetic model can be applied when subcellular partitioning of metal NPs data would be available. The present review is an attempt to describe the nano-characteristics of toxicokinetics and subcellular partitioning on aquatic organisms with the help of the mechanistic modeling for NP size-dependent physiochemical properties and parameters. Physiologically-based pharmacokinetic (PBPK models can provide an effective tool to estimate the time course of NP accumulation in target organs and is useful in quantitative risk assessments. NP accumulation in fish should take into account different effects of different NP sizes to better understand tissue accumulative capacities and dynamics. The size-dependent NP partition coefficient is a crucial parameter that influences tissue accumulation levels in PBPK modeling. Further research is needed to construct the effective systems-level oriented toxicokinetic model that can provide a useful tool to develop quantitatively the robustly approximate relations that convey a better insight into the impacts of environmental metal NPs on subcellular and tissue/organ responses in aquatic organisms.

  5. Bioaccumulation of potentially toxic trace elements in benthic organisms of Admiralty Bay (King George Island, Antarctica)

    International Nuclear Information System (INIS)

    Majer, Alessandra Pereira; Petti, Mônica Angélica Varella; Corbisier, Thais Navajas; Ribeiro, Andreza Portella; Theophilo, Carolina Yume Sawamura; Ferreira, Paulo Alves de Lima; Figueira, Rubens Cesar Lopes

    2014-01-01

    Highlights: • Toxic metals were released in the 2012 fire in the Brazilian base at Admiralty Bay. • Potentially toxic metals were measured in eight Antarctic benthos species. • The bioaccumulation of As, Cd and Pb was verified in the studied species. • The biomagnification of Cd is suggested for the studied Antarctic food web. - Abstract: Data about the concentration, accumulation and transfer of potentially toxic elements in Antarctic marine food webs are essential for understanding the impacts of these elements, and for monitoring the pollution contribution of scientific stations, mainly in Admiralty Bay due to the 2012 fire in the Brazilian scientific station. Accordingly, the concentration of As, Cd, Cu, Ni, Pb and Zn was measured in eight benthic species collected in the 2005/2006 austral summer and the relationship between concentration and trophic position (indicated by δ 15 N values) was tested. A wide variation in metal content was observed depending on the species and the element. In the studied trophic positions, it was observed bioaccumulation for As, Cd and Pb, which are toxic elements with no biological function. In addition, Cd showed a positive relationship between concentration and trophic level suggesting the possible biomagnification of this element

  6. Stereoselective bioaccumulation of chiral PCB 91 in earthworm and its metabolomic and lipidomic responses.

    Science.gov (United States)

    He, Zeying; Wang, Yuehua; Zhang, Yanwei; Cheng, Haiyan; Liu, Xiaowei

    2018-07-01

    Stereoselective bioaccumulation, elimination, metabolomic and lipidomic responses of earthworm Eisenia fetida exposed to chiral polychlorinated biphenyl (PCB) 91 in an earthworm-soil system were investigated. Preferential bioaccumulation of (-)-PCB 91 and elimination of (+)-PCB 91 were observed following 50 and 500 μg/kg dwt exposures. Enantiomer fraction (EF) values decreased over time during the uptake and elimination periods. Metabolomics and lipidomics techniques based on ultra-performance liquid chromatography/quadrupole time-of-flight mass spectrometry (UPLC-QTOF-MS) revealed significant changes in 108 metabolites after earthworms exposure to (+)-, (-)-, and (±)-PCB 91, compared to control groups. Forty two of these metabolites were identified as amino acids, nucleosides, fatty acids, dicarboxylic acids, vitamins or others. Lysophospholipids including six lysophosphatidylcholines (LPC), six lysophosphatidylethanolamine (LPE), eight lysophosphatidylinositol (LPI) and five lysophosphatidylserine (LPS) were also differentially expressed between exposure and control groups. Alterations in the levels of metabolites and lipids indicated stereoselective effects of chiral PCB 91 on earthworm amino acid, energy, and nucleotide metabolism, neurodevelopment and gene expression. Overall, the effects of (+)-PCB 91 were more pronounced than that of (-)- and (±)-PCB 91. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Colloids as a sink for certain pharmaceuticals in the aquatic environment.

    Science.gov (United States)

    Maskaoui, Khalid; Zhou, John L

    2010-05-01

    The occurrence and fate of pharmaceuticals in the aquatic environment is recognized as one of the emerging issues in environmental chemistry and as a matter of public concern. Existing data tend to focus on the concentrations of pharmaceuticals in the aqueous phase, with limited studies on their concentrations in particulate phase such as sediments. Furthermore, current water quality monitoring does not differentiate between soluble and colloidal phases in water samples, hindering our understanding of the bioavailability and bioaccumulation of pharmaceuticals in aquatic organisms. In this study, an investigation was conducted into the concentrations and phase association (soluble, colloidal, suspended particulate matter or SPM) of selected pharmaceuticals (propranolol, sulfamethoxazole, meberverine, thioridazine, carbamazepine, tamoxifen, indomethacine, diclofenac, and meclofenamic acid) in river water, effluents from sewage treatment works (STW), and groundwater in the UK. The occurrence and phase association of selected pharmaceuticals propranolol, sulfamethoxazole, meberverine, thioridazine, carbamazepine, tamoxifen, indomethacine, diclofenac, and meclofenamic acid in contrasting aquatic environments (river, sewage effluent, and groundwater) were studied. Colloids were isolated by cross-flow ultrafiltration (CFUF). Water samples were extracted by solid-phase extraction (SPE), while SPM was extracted by microwave. All sample extracts were analyzed by liquid chromatography-tandem mass spectrometry (LC-MS/MS) in the multiple reaction monitoring. Five compounds propranolol, sulfamethoxazole, carbamazepine, indomethacine, and diclofenac were detected in all samples, with carbamazepine showing the highest concentrations in all phases. The highest concentrations of these compounds were detected in STW effluents, confirming STW as a key source of these compounds in the aquatic environments. The calculation of partition coefficients of pharmaceuticals between SPM and

  8. Early Pleistocene aquatic resource use in the Turkana Basin.

    Science.gov (United States)

    Archer, Will; Braun, David R; Harris, Jack W K; McCoy, Jack T; Richmond, Brian G

    2014-12-01

    Evidence for the acquisition of nutritionally dense food resources by early Pleistocene hominins has implications for both hominin biology and behavior. Aquatic fauna may have comprised a source of highly nutritious resources to hominins in the Turkana Basin at ∼1.95 Ma. Here we employ multiple datasets to examine the issue of aquatic resource use in the early Pleistocene. This study focuses on four components of aquatic faunal assemblages (1) taxonomic diversity, (2) skeletal element proportion, (3) bone fragmentation and (4) bone surface modification. These components are used to identify associations between early Pleistocene aquatic remains and hominin behavior at the site of FwJj20 in the Koobi Fora Fm. (Kenya). We focus on two dominant aquatic species: catfish and turtles. Further we suggest that data on aquatic resource availability as well as ethnographic examples of aquatic resource use complement our observations on the archaeological remains from FwJj20. Aquatic food items provided hominins with a valuable nutritional alternative to an exclusively terrestrial resource base. We argue that specific advantages afforded by an aquatic alternative to terrestrial resources include (1) a probable reduction in required investment of energy relative to economic return in the form of nutritionally dense food items, (2) a decrease in the technological costs of resource acquisition, and (3) a reduced level of inter-specific competition associated with carcass access and an associated reduction of predation risk relative to terrestrial sources of food. The combined evidence from FwJj20 suggests that aquatic resources may have played a substantial role in early Pleistocene diets and these resources may have been overlooked in previous interpretations of hominin behavior. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Exposures from aquatic pathways

    International Nuclear Information System (INIS)

    Berkovski, V.; Voitsekhovitch, O.; Nasvit, O.; Zhelezniak, M.; Sansone, U.

    1996-01-01

    Methods for estimation aquatic pathways contribution to the total population exposure are discussed. Aquatic pathways are the major factor for radionuclides spreading from the Chernobyl Exclusion zone. An annual outflow of 90 Sr and 137 Cs comprised 10-20 TBq and 2-4 TBq respectively and the population exposed by this effluence constitutes almost 30 million people. The dynamic of doses from 90 Sr and ' C s, which Dnieper water have to delivered, is calculated. The special software has been developed to simulate the process of dose formation in the of diverse Dnieper regions. Regional peculiarities of municipal tap, fishing and irrigation are considered. Seventy-year prediction of dose structure and function of dose forming is performed. The exposure is estimated for 12 regions of the Dnieper basin and the Crimea. The maximal individual annual committed effective doses due to the use of water by ordinary members of the population in Kiev region from 90 Sr and 137 Cs in 1986 are 1.7*10 -5 Sv and 2.7*10 -5 Sv respectively. A commercial fisherman on Kiev reservoir in 1986 received 4.7*10 -4 Sv and 5*10 -3 Sv from 90 Sr and 137 Cs, respectively. The contributions to the collective cumulative (over 70 years) committed effective dose (CCCED 70 ) of irrigation, municipal tap water and fish consumption for members of the population respectively are 18%, 43%, 39% in Kiev region, 8%, 25%, 67% in Poltava region, and 50%, 50%, 0% (consumption of Dnieper fish is absent) in the Crimea. The predicted contribution of the Strontium-90 to CCCED 70 resulting from the use of water is 80%. The CCCED 70 to the population of the Dnieper regions (32.5 million people) is 3000 person-Sv due to the use the Dnieper water

  10. INSAR OF AQUATIC BODIES

    Directory of Open Access Journals (Sweden)

    P. Tarikhi

    2012-07-01

    Full Text Available Radar remote sensing is a new earth observation technology with promising results and future. InSAR is a sophisticated radar remote sensing technique for combining synthetic aperture radar (SAR single look complex images to form interferogram and utilizing its phase contribution to land topography, surface movement and target velocity. In recent years considerable applications of Interferometric SAR technique have been developed. It is an established technique for precise assessment of land surface movements, and generating high quality digital elevation models (DEM from space-borne and airborne data. InSAR is able to produce DEMs with the precision of a couple of ten meters whereas its movement map results have sub-centimeter precision. The technique has many applications in the context of earth sciences such as topographic mapping, environmental modelling, rainfall-runoff studies, landslide hazard zonation, and seismic source modelling. Nevertheless new developments are taking place in the application of InSAR for aquatic bodies. We have observed that using SAR Interferometry technique for aquatic bodies with the maximum temporal baseline of 16 seconds for image pairs shows considerable results enabling us to determine the direction of sea surface motion in a large area, estimate the sea surface fluctuations in the direction of sensor line-of-the-sight, detect wave pattern and the sea surface disturbance and whether the water motion is bulk and smooth or otherwise. This paper presents our experience and achievements on this new topic through discussing the facts and conditions for the use of InSAR technique. The method has been examined for Haiti, Dominican Republic, Western Chile and Western Turkey coast areas and inland lakes however ground truth data is needed for final verification. This technique scheduled to be applied in some other sites for which the proper data is available.

  11. Assessment of the safety of aquatic animal commodities for international trade: the OIE Aquatic Animal Health code.

    Science.gov (United States)

    Oidtmann, B; Johnston, C; Klotins, K; Mylrea, G; Van, P T; Cabot, S; Martin, P Rosado; Ababouch, L; Berthe, F

    2013-02-01

    Trading of aquatic animals and aquatic animal products has become increasingly globalized during the last couple of decades. This commodity trade has increased the risk for the spread of aquatic animal pathogens. The World Organisation for Animal Health (OIE) is recognized as the international standard-setting organization for measures relating to international trade in animals and animal products. In this role, OIE has developed the Aquatic Animal Health Code, which provides health measures to be used by competent authorities of importing and exporting countries to avoid the transfer of agents pathogenic for animals or humans, whilst avoiding unjustified sanitary barriers. An OIE ad hoc group developed criteria for assessing the safety of aquatic animals or aquatic animal products for any purpose from a country, zone or compartment not declared free from a given disease 'X'. The criteria were based on the absence of the pathogenic agent in the traded commodity or inactivation of the pathogenic agent by the commercial processing used to produce the commodity. The group also developed criteria to assess the safety of aquatic animals or aquatic animal products for retail trade for human consumption from potentially infected areas. Such commodities were assessed considering the form and presentation of the product, the expected volume of waste tissues generated by the consumer and the likely presence of viable pathogenic agent in the waste. The ad hoc group applied the criteria to commodities listed in the individual disease chapters of the Aquatic Animal Health Code (2008 edition). Revised lists of commodities for which no additional measures should be required by the importing countries regardless of the status for disease X of the exporting country were developed and adopted by the OIE World Assembly of Delegates in May 2011. The rationale of the criteria and their application will be explained and demonstrated using examples. © 2012 Crown Copyright. Reproduced

  12. Bioaccumulation of Zn and Ag Nanoparticles in the Earthworms (Eisenia fetida)

    Science.gov (United States)

    Ha, Lee Seung; Sung-Dae, Kim; Yi, Yang Song; Byeong-Gweon, Lee

    2014-05-01

    Many studies are carried out to evaluate environmental effects of engineered nanoparticles (ENPs). Most of the previous studies primarily focused on the effects of nanoparticles into the aquatic environment and human. Model studies predict that ENPs released into environment would transferred primarily to the soil of the terrestrial environment. Despite this prediction, biogeochemical behavior of ENPs in soil environment as well as bioavailability of ENPs to soil-dwelling organisms such as earthworm, springtail, isopod and nematodes are poorly understood. The main goal of this study was to compare the bioaccumulation factor (BAFs) and subcellular partitioning of nanoparticles in the soil-dwelling earthworm (Eisenia fetida) from ENP (ZnO and Ag nanoparticles) or ionic metal (Zn2+, Ag+) contaminated soil. And the sequential extraction was also used to determine the mobility of metals in soil which could be used as to predict bioavailability and compare that with bioaccumulation factor. The radiotracer method was employed to trace the transfer of ENPs and ionic metal among different environmental media and animals. Radiolabeled 65ZnO, 110mAgNPs coated with PVP or citrate were synthesized in the laboratory and their chemical and biological behavior was compared to ionic 65Zn and 110mAg. The BAFs of Zn and Ag in the earthworms were determined after animals exposed to the contaminated soils. After the 7 days of elimination phase, subcellular partitioning of metals were also obtained. BAF for ZnO(0.06) was 31 times lower than that for Zn ion (1.86), suggesting that ZnO was less bioavailable than its ionic form from contaminated soil. On the other hands, BAFs for AgNPs coated with PVP (0.12) or with citrate (0.11) were comparable to those for Ag ion (0.17), indicating that Ag from contaminated soil was bioavailable in a similar rate regardless of chemical forms. The subcellular partitioning results showed that bioaccumulated Zn from Zn ion and ZnO contaminated soil were

  13. Development of aquatic life criteria for nitrobenzene in China

    International Nuclear Information System (INIS)

    Yan Zhenguang; Zhang Zhisheng; Wang Hong; Liang Feng; Li Ji; Liu Hongling; Sun Cheng; Liang Lijun; Liu Zhengtao

    2012-01-01

    Nitrobenzene is a toxic pollutant and was the main compound involved in the Songhuajiang accident in 2007, one of the largest water pollution accidents in China in the last decade. No aquatic life criteria for nitrobenzene have previously been proposed. In this study, published toxicity data of nitrobenzene to Chinese aquatic species were gathered, and six resident Chinese aquatic organisms were used in toxicity tests to supplement the existing toxicity data for nitrobenzene. Seventeen genuses mean acute values, three genuses mean chronic values to freshwater aquatic animals, and six genus toxicity values to aquatic plants were collected in total. A criterion maximum concentration of 0.018 mg/L and a criterion continuous concentration of 0.001 mg/L were developed based on these data, according to the U.S. Environmental Protection Agency guidelines. These criteria may be useful in the determination of water quality standard of nitrobenzene. - Highlights: ► China is embarking on development of national water quality criteria system. ► Nitrobenzene is a valuable case in development of water quality criteria in China. ► Several Chinese resident aquatic organisms were chosen to be tested. ► The aquatic life criteria for nitrobenzene were developed. - An acute criterion of 0.018 mg/L and a chronic criterion of 0.001 mg/L for nitrobenzene in China were developed according to the U.S. Environmental Protection Agency (USEPA) guidelines.

  14. AMEG: the new SETAC advisory group on aquatic macrophyte ecotoxicology.

    Science.gov (United States)

    Arts, Gertie; Davies, Jo; Dobbs, Michael; Ebke, Peter; Hanson, Mark; Hommen, Udo; Knauer, Katja; Loutseti, Stefania; Maltby, Lorraine; Mohr, Silvia; Poovey, Angela; Poulsen, Véronique

    2010-05-01

    Primary producers play critical structural and functional roles in aquatic ecosystems; therefore, it is imperative that the potential risks of toxicants to aquatic plants are adequately assessed in the risk assessment of chemicals. The standard required macrophyte test species is the floating (non-sediment-rooted) duckweed Lemna spp. This macrophyte species might not be representative of all floating, rooted, emergent, and submerged macrophyte species because of differences in the duration and mode of exposure; sensitivity to the specific toxic mode of action of the chemical; and species-specific traits (e.g., duckweed's very short generation time). These topics were addressed during the workshop entitled "Aquatic Macrophyte Risk Assessment for Pesticides" (AMRAP) where a risk assessment scheme for aquatic macrophytes was proposed. Four working groups evolved from this workshop and were charged with the task of developing Tier 1 and higher-tier aquatic macrophyte risk assessment procedures. Subsequently, a SETAC Advisory Group, the Macrophyte Ecotoxicology Group (AMEG) was formed as an umbrella organization for various macrophyte working groups. The purpose of AMEG is to provide scientifically based guidance in all aspects of aquatic macrophyte testing in the laboratory and field, including prospective as well as retrospective risk assessments for chemicals. As AMEG expands, it will begin to address new topics including bioremediation and sustainable management of aquatic macrophytes in the context of ecosystem services.

  15. Biogeochemical analysis of ancient Pacific Cod bone suggests Hg bioaccumulation was linked to paleo sea level rise and climate change

    Directory of Open Access Journals (Sweden)

    Maribeth S. Murray

    2015-02-01

    Full Text Available Deglaciation at the end of the Pleistocene initiated major changes in ocean circulation and distribution. Within a brief geological time, large areas of land were inundated by sea-level rise and today global sea level is 120 m above its minimum stand during the last glacial maximum. This was the era of modern sea shelf formation; climate change caused coastal plain flooding and created broad continental shelves with innumerable consequences to marine and terrestrial ecosystems and human populations. In Alaska, the Bering Sea nearly doubled in size and stretches of coastline to the south were flooded, with regional variability in the timing and extent of submergence. Here we suggest how past climate change and coastal flooding are linked to mercury bioaccumulation that could have had profound impacts on past human populations and that, under conditions of continued climate warming, may have future impacts. Biogeochemical analysis of total mercury (tHg and 13C/15N ratios in the bone collagen of archaeologically recovered Pacific Cod (Gadus macrocephalus bone shows high levels of tHg during early/mid-Holocene. This pattern cannot be linked to anthropogenic activity or to food web trophic changes, but may result from natural phenomena such as increases in productivity, carbon supply and coastal flooding driven by glacial melting and sea-level rise. The coastal flooding could have led to increased methylation of Hg in newly submerged terrestrial land and vegetation. Methylmercury is bioaccumulated through aquatic food webs with attendant consequences for the health of fish and their consumers, including people. This is the first study of tHg levels in a marine species from the Gulf of Alaska to provide a time series spanning nearly the entire Holocene and we propose that past coastal flooding resulting from climate change had the potential to input significant quantities of Hg into marine food webs and subsequently to human consumers.

  16. Data for developing metamodels to assess the fate, transport, and bioaccumulation of organic chemicals in rivers. Chemicals have log Kow ranging from 3 to 14, and rivers have mean annual discharges ranging from 1.09 to 3240 m3/s.

    Data.gov (United States)

    U.S. Environmental Protection Agency — This dataset was developed to demonstrate how metamodels of high resolution, process-based models that simulate the fate, transport, and bioaccumulation of organic...

  17. The aquatic environment

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1975-10-15

    The rapid increase in technological development and the broad societal benefit it has brought has been accompanied by a corresponding increase in environmental and societal problems. This has established a need to asses the impacts of new technologies, including nuclear industries. We are now entering an age which will see a rapid proliferation of nuclear power plants all over the world. As long as man continues to utilize nuclear energy, some releases of radioactive materials to the environment seem to be inescapable consequences. The problem therefore is to limit and control such releases, so that adverse effects on man and his environment can be reduced to acceptable levels. We can now draw on three decades of experience of the environmental impact of radioactive materials. To review this experience and to survey recent results of studies related to the safety of releases of nuclear facilities into fresh water, estuaries and sea water, the International Symposium on 'Radiological Impacts of Releases from Nuclear Facilities into Aquatic Environments' was held at Otaniemi, near Helsinki, Finland. (author)

  18. Measuring ecological change of aquatic macrophytes in Mediterranean rivers

    OpenAIRE

    Dodkins, Ian; Aguiar, Francisca; Rivaes, Rui; Albuquerque, António; Rodriguez-Gonzalez, Patricia; Ferreira, Maria Teresa

    2012-01-01

    A metric was developed for assessing anthropogenic impacts on aquatic macrophyte ecology by scoring macrophyte species along the main gradient of community change. A measure of ecological quality was then calculated by Weighted Averaging (WA) of these species scores at a monitoring site, and comparison to a reference condition score. This metric was used to illustrate the difficulties of developing aquatic macrophyte indices based on indicator species in Mediterranean rivers. The ...

  19. Arsenic bioaccumulation in a marine juvenile fish Terapon jarbua

    International Nuclear Information System (INIS)

    Zhang Wei; Huang Liangmin; Wang Wenxiong

    2011-01-01

    Highlights: Radiotracer technique was used to quantify the biokinetics of As(V) in a marine fish. As(V) had a low bioavailability to Terapon jarbua. Dietary assimilation of As was only 3.1–7.4% for fish fed with different preys. Dietary uptake could be the primary route for As bioaccumulation in fish. - Abstract: Arsenic (As) is a ubiquitous toxic metalloid that is causing widespread public concern. Recent measurements have indicated that some marine fish in China might be seriously contaminated with As. Yet the biokinetics and bioaccumulation pathway of As in fish remain little understood. In this study, we employed a radiotracer technique to quantify the dissolved uptake, dietary assimilation and subsequent efflux of As(V) in a marine predatory fish, Terapon jarbua. The dissolved uptake of As showed a linear pattern over a range of dissolved concentrations from 0.5 to 50 μg L −1 , with a corresponding uptake rate constant of 0.0015 L g −1 d −1 . The assimilation efficiencies (AEs) of dietary As were only 3.1–7.4% for fish fed with copepods, clams, prey fish, or artificial diets, and were much lower than the As that entered the trophically available metal fraction in the prey. The dietary AEs were independent of the As(V) concentrations in the artificial diets. The efflux rate constant of As in fish following the dietary exposure was 0.03 d −1 . Modeling calculations showed that dietary uptake could be the primary route for As bioaccumulation in fish, and the corresponding contributions of waterborne and dietary uptakes were related to the bioconcentration factor (BCF) of the prey and the ingestion rate of fish. This study demonstrates that As(V) has a low bioavailability to T. jarbua.

  20. Aquatic Plant Control Research Program

    National Research Council Canada - National Science Library

    Cofrancesco, Alfred

    1998-01-01

    .... This search for natural plant enemies (insects and fungal pathogens) has led researchers to the native ranges of noxious aquatic plants, located throughout the continents of Africa, Asia, Europe, and Australia...

  1. African Journals Online: Aquatic Sciences

    African Journals Online (AJOL)

    Items 1 - 10 of 10 ... The African Journal of Aquatic Science is an international journal devoted to the ... relevant social science and governance, or new techniques, are all ... ideas and findings on techniques, methodology and research findings ...

  2. Tunison Laboratory of Aquatic Science

    Data.gov (United States)

    Federal Laboratory Consortium — Tunison Laboratory of Aquatic Science (TLAS), located in Cortland, New York, is a field station of the USGS Great Lakes Science Center (GLSC). TLAS was established...

  3. Aquatic Life Criteria - Tributyltin (TBT)

    Science.gov (United States)

    Documents pertaining to 2004 Final Acute and Chronic Ambient Aquatic Life Water Quality Criteria for Tributyltin (TBT) for freshwater and saltwater. These documents include the safe levels of TBT that should protect the majority of species.

  4. Aquatic Plant Control Research Program

    National Research Council Canada - National Science Library

    Cofrancesco, Alfred

    1998-01-01

    ... (Mydophyllum spice turn) and hydrilla (Hyddlla verticfflata). These species, which account for more that two thirds of all noxious aquatic weed acreage in the United States, have similar characteristics...

  5. Production in aquatic macrophyte communities

    DEFF Research Database (Denmark)

    Binzer, Thomas; Sand-Jensen, Kaj

    2002-01-01

    -dimensional structure because of the strong drag and shear forces of moving water. This difference in canopy structure has been suggested to account for the three- to fivefold higher gross production rates in terrestrial than aquatic communities. To evaluate the effect of community structure in aquatic habitats, we......Many terrestrial plant canopies regulate spatial patterns in leaf density and leaf inclination to distribute light evenly between the photosynthetic tissue and to optimize light utilization efficiency. Sessile aquatic macrophytes, however, cannot maintain the same well-defined three...... was markedly enhanced by a vertical orientation of thalli when absorptance and community density were both high. This result implies that aquatic macrophytes of high thallus absorptance and community density exposed to high light are limited in attaining high gross production rates because of their inability...

  6. Aquatic Remediation of Communication Disorders.

    Science.gov (United States)

    Smith, Virginia M.

    1985-01-01

    A 10-day aquatics program for learning disabled children with hand-eye coordination problems and low self-esteem is described. Activities for each session (including relaxation exercises) are listed. (CL)

  7. National Aquatic Resource Survey data

    Data.gov (United States)

    U.S. Environmental Protection Agency — Surface water monitoring data from national aquatic surveys (lakes, streams, rivers). This dataset is associated with the following publication: Stoddard , J., J....

  8. Mercury Bioaccumulation in the Brazilian Amazonian Tucunares (Cichla sp., Cichlidae, Perciformes

    Directory of Open Access Journals (Sweden)

    Maria Josefina Reyna Kurtz

    2008-08-01

    Full Text Available There are emissions of mercury to the atmosphere, soil and rivers of the Brazilian Amazon stem from many sources. Once in the atmosphere, the metal is oxidized and immediately deposited. In the water, the transformation to methylmercury takes place mostly by the action of microorganisms. The formation of methylmercury increases the dispersion and bioavailability of the element in the aquatic environment. Methylmercury can be assimilated by plankton and enters the food chain. The concentration of mercury increases further up in the trophic levels of the chain and reaches the highest values in carnivorous fishes like tucunare. Therefore, mercury emissions cause the contamination of natural resources and increase risks to the health of regular fish consumers. The objective of this work was to study the bioaccumulation of mercury in tucunares (Cichla sp., top predators of the food chain. The fishes were collected at two locations representative of the Amazonian fluvial ecosystem, in the state of Pará, Brazil, in 1992 and 2001. One location is near a former informal gold mining area. The other is far from the mining area and is considered pristine. Average values of total mercury concentration and accumulation rates for four different collection groups were compared and discussed. Tucunares collected in 2001 presented higher mercury contents and accumulated mercury faster than tucunares collected in 1992 notwithstanding the decline of mining activities in this period. The aggravation of the mercury contamination with time not only in an area where informal gold mining was practiced but also far from this area is confirmed.

  9. Bioaccumulation of organohalogenated compounds in sharks and rays from the southeastern USA.

    Science.gov (United States)

    Weijs, Liesbeth; Briels, Nathalie; Adams, Douglas H; Lepoint, Gilles; Das, Krishna; Blust, Ronny; Covaci, Adrian

    2015-02-01

    Organohalogenated compounds are widespread in the marine environment and can be a serious threat to organisms in all levels of aquatic food webs, including elasmobranch species. Information about the concentrations of POPs (persistent organic pollutants) and of MeO-PBDEs (methoxylated polybrominated diphenyl ethers) in elasmobranchs is scarce and potential toxic effects are poorly understood. The aims of the present study were therefore to investigate the occurrence of multiple POP classes (PCBs, PBDEs, DDXs, HCB, CHLs) and of MeO-PBDEs in various elasmobranch species from different trophic levels in estuarine and marine waters of the southeastern United States. Overall, levels and patterns of PCBs, PBDEs, DDXs, HCB, CHLs and of MeO-PBDEs varied according to the species, maturity stage, gender and habitat type. The lowest levels of POPs were found in Atlantic stingrays and the highest levels were found in bull sharks. As both species are respectively near the bottom and at top of the trophic web, with juvenile bull sharks frequently feeding on Atlantic stingrays, these findings further suggest a bioaccumulation and biomagnification process with trophic position. MeO-PBDEs were not detected in Atlantic stingrays, but were found in all shark species. HCB was not found in Atlantic stingrays, bonnetheads or lemon sharks, but was detected in the majority of bull sharks examined. Comparison with previous studies suggests that Atlantic stingrays may be experiencing toxic effects of PCBs and DDXs on their immune system. However, the effect of these compounds on the health of shark species remains unclear. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Bioaccumulation of microplastics in the terrestrial food chain: an example from home gardens in SE Mexico

    Science.gov (United States)

    Huerta, Esperanza; Mendoza Vega, Jorge; Quej, Victor Ku; Chi, Jesus de los Angeles; Sanchez del Cid, Lucero; Quijano, Cesar; Escalona-Segura, Griselda; Gertsen, Henny; Salánki, Tamás; van der Ploeg, Martine; Koelmans, Albert A.; Geissen, Violette

    2017-04-01

    Plastic in the aquatic environment has been studied since many years and is a well known problem. Plastic in the terrestrial environment is a neglected issue of high importance in regions with waste mismanagement. Therefore, we studied the bioaccumulation of plastics in the terrestrial food chain in home gardens of SE Mexico, a typical example for many countries in development. Plastic waste is not regularly collected and people burn it and burry the residues or the plastic waste directly into the soil of their home gardens, causing the risk of plastic fragmentation, formation of microplastics (MP) in the soil and accumulation in the food chain. To assess the risk, we sampled soil, earthworm cast and chicken feces as well as chicken gizzard and crop in 10 home gardens of Campeche, SE Mexico in September 2016. We analyzed their (micro)plastic content. (Micro)plastics were present in soil with 0.87±1.9 particles g-1, in earthworms casts with 14.8±28.8 particles g-1 casts and in chicken feces with 129.8±82.3 particles g-1 chicken feces), showing a magnification factor of 17±14.6 between the soil and the earthworms casts, and of 149±41.8 between the soil and the chicken feces. Macroplastics were also found in chicken gizzard (57±41.1 particles per chicken) and in the crop (32.4±15.1 particles per chicken). Chicken gizzard is a specialty in the Mexican kitchen and the intake of the present plastics form a strong risk for human health.

  11. Removal of some radionuclides from water by bioaccumulation

    International Nuclear Information System (INIS)

    Miskovic, D.; Conkic, L.; Dalmacija, B.; Gantar, M.

    1992-01-01

    First objective of this study was to investigate the application of biologically activated carbon (BAC) as well as its comparison to adsorption, with the aim of removing some radionuclides from water. The isotopes Cs 134 and Cs 137 were bioaccumulated by BAC up to 50%, while the I 131 isotope was only physicochemically adsorbed (about 40%). Also, the process of radionuclides (Cs 137 , Ce 139 , Co 57 , Co 60 ) fixation on blue-green algae (Nostoc sp.) was investigated. The kinetics of the removal of these radionuclides from water was recorded. It was found that after a contact period of about half an hour 40-70% of the activity was removed. (Author)

  12. Bioaccumulation factor of tritium in oyster and tilapia

    International Nuclear Information System (INIS)

    Garcia, T.Y.; Juan, N.B.

    1984-01-01

    This paper reports on the bioaccumulation factor as well as the residence time of tritium in marine organisms such as tilapia fish (Tilapia mossambica) and oyster (Crassostrea iredalei) reared under laboratory conditions. The organisms were submerged in aquarium water containing tritium with specific activity of 1.0 nCi/ml. The samples were analyzed for tissue-free water tritium (TFWT) by freeze drying and for tissue-bound tritium (TBT) by combustion methods. Tritiated water collected was assayed using the liquid scintillation counting technique. (author)

  13. Bioaccumulation and toxicity of selenium during a life-cycle exposure with desert pupfish (Cyprinodon macularius)

    Science.gov (United States)

    Besser, John M.; Brumbaugh, William G.; Papoulias, Diana M.; Ivey, Chris D.; Kunz, James L.; Annis, Mandy; Ingersoll, Christopher G.

    2012-01-01

    Populations of desert pupfish (Cyprinodon macularius; pupfish), a federally-listed endangered species, inhabit irrigation drains in the Imperial Valley agricultural area of southern California. These drains have varying degrees of selenium (Se) contamination of water, sediment, and aquatic biota. Published Se toxicity studies suggest that these levels of Se contamination may pose risk of chronic toxicity to Se-sensitive fish, but until recently there have been no studies of the chronic toxicity of Se to desert pupfish.A life-cycle Se exposure with pupfish was conducted to estimate dietary and tissue thresholds for toxic effects of Se on all life stages. The dietary exposure was based on live oligochaete worms (Lumbriculus variegatus) dosed with Se by a laboratory food chain based on selenized yeast. Oligochaetes readily accumulated Se from mixtures of selenized and control yeasts. The protocol for dosing oligochaetes for pupfish feeding studies included long-term (at least 28 days) feeding of a low-ration of yeast mixtures to large batches of oligochaetes. Oligochaetes were dosed at five Se levels in a 50-percent dilution series. Pupfish were simultaneously fed Se-dosed oligochaetes and exposed to a series of Se concentrations in water (consisting of 85 percent selenate and 15 percent selenite) to produce exposures that were consistent with Se concentrations and speciation in pupfish habitats. The nutritional characteristics of oligochaete diets were consistent across the range of oligochaete Se concentrations tested.The life-cycle exposure started with laboratory-cultured juvenile pupfish that were exposed to Se through sexual maturation and reproduction (150 days; F0 exposure). The Se exposure continued with eggs, larvae, and juveniles produced by Se-exposed parents (79 days; F1 exposure). Selenium exposure (water and diets), Se bioaccumulation (whole-body and eggs), and toxicity endpoints (juvenile and adult survival and growth; egg production and hatching

  14. Cerebral Blood Flow Responses to Aquatic Treadmill Exercise.

    Science.gov (United States)

    Parfitt, Rhodri; Hensman, Marianne Y; Lucas, Samuel J E

    2017-07-01

    Aquatic treadmills are used as a rehabilitation method for conditions such as spinal cord injury, osteoarthritis, and stroke, and can facilitate an earlier return to exercise training for athletes. However, their effect on cerebral blood flow (CBF) responses has not been examined. We tested the hypothesis that aquatic treadmill exercise would augment CBF and lower HR compared with land-based treadmill exercise. Eleven participants completed incremental exercise (crossover design) starting from walking pace (4 km·h, immersed to iliac crest [aquatic], 6 km·h [land]) and increasing 1 km·h every 2 min up to 10 km·h for aquatic (maximum belt speed) or 12 km·h for land. After this, participants completed two 2-min bouts of exercise immersed to midthigh and midchest at constant submaximal speed (aquatic), or were ramped to exhaustion (land; increased gradient 2° every min). Middle cerebral artery blood flow velocity (MCAv) and HR were measured throughout, and the initial 10 min of each protocol and responses at each immersion level were compared. Compared with land-based treadmill, MCAvmean increased more from baseline for aquatic exercise (21% vs 12%, P aquatic walking compared with land-based moderate intensity running (~10 cm·s, P = 0.56). Greater water immersion lowered HR (139 vs 178 bpm for midchest vs midthigh), whereas MCAvmean remained constant (P = 0.37). Findings illustrate the potential for aquatic treadmill exercise to enhance exercise-induced elevations in CBF and thus optimize shear stress-mediated adaptation of the cerebrovasculature.

  15. Heavy metal distribution and bioaccumulation in Chihuahuan Desert Rough Harvester ant (Pogonomyrmex rugosus) populations

    International Nuclear Information System (INIS)

    Del Toro, I.; Floyd, K.; Gardea-Torresdey, J.; Borrok, D.

    2010-01-01

    Heavy metal contamination can negatively impact arid ecosystems; however a thorough examination of bioaccumulation patterns has not been completed. We analyzed the distribution of As, Cd, Cu, Pb and Zn in soils, seeds and ant (Pogonomyrmex rugosus) populations of the Chihuahuan Desert near El Paso, TX, USA. Concentrations of As, Cd, Cu, and Pb in soils, seeds and ants declined as a function of distance from a now inactive Cu and Pb smelter and all five metals bioaccumulated in the granivorous ants. The average bioaccumulation factors for the metals from seeds to ants ranged from 1.04x (As) to 8.12x (Cd). The findings show bioaccumulation trends in linked trophic levels in an arid ecosystem and further investigation should focus on the impacts of heavy metal contamination at the community level. - Heavy metals bioaccumulate in desert ants.

  16. Two new Cambodian semi-aquatic earthworms in the genus Glyphidrilus Horst, 1889 (Oligochaeta, Almidae), based on morphological and molecular data.

    Science.gov (United States)

    Jirapatrasilp, Parin; Prasankok, Pongpun; Sutcharit, Chirasak; Chanabun, Ratmanee; Panha, Somsak

    2016-11-10

    Combining morphological and molecular data is a powerful approach to support the discovery of new species. Here, two new species of the semi-aquatic earthworm genus Glyphidrilus, G. jamiesoni sp. n. and G. kralanhensis sp. n., are described from the Mekong Basin in Cambodia. They are morphologically distinguished by the respective locations of wings and spermathecae; furthermore, G. kralanhensis sp. n. has three pairs of ovaries, probably an autapomorphic trait. In addition, two mitochondrial gene fragments (COI and 16s rRNA) were sequenced of types of the new species and of five further Glyphidrilus species described recently from the Mekong basin in Thailand and Laos. They revealed a high level of genetic divergence of the new species compared to the other earthworm taxa. The evolutionary relationships among the Mekong Glyphidrilus members is discussed with reference to the recent paleogeography of the Mekong River drainage.

  17. Deep-ocean foraging northern elephant seals bioaccumulate persistent organic pollutants

    International Nuclear Information System (INIS)

    Peterson, Sarah H.; Peterson, Michael G.; Debier, Cathy; Covaci, Adrian; Dirtu, Alin C.; Malarvannan, Govindan; Crocker, Daniel E.; Schwarz, Lisa K.; Costa, Daniel P.

    2015-01-01

    As top predators in the northeast Pacific Ocean, northern elephant seals (Mirounga angustirostris) are vulnerable to bioaccumulation of persistent organic pollutants (POPs). Our study examined a suite of POPs in blubber (inner and outer) and blood (serum) of free-ranging northern elephant seals. For adult females (N = 24), we satellite tracked and sampled the same seals before and after their approximately seven month long foraging trip. For males, we sampled different adults and sub-adults before (N = 14) and after (N = 15) the same foraging trip. For females, we calculated blubber burdens for all compounds. The highest POP concentrations in males and females were found for ∑ DDTs and ∑ PCBs. In blubber and serum, males had significantly greater concentrations than females for almost all compounds. For males and females, ∑ DDT and ∑ PBDEs were highly correlated in blubber and serum. While ∑ PCBs were highly correlated with ∑ DDTs and ∑ PBDEs in blubber and serum for males, ∑ PCBs showed weaker correlations with both compounds in females. As females gained mass while foraging, concentrations of nearly all POPs in inner and outer blubber significantly decreased; however, the absolute burden in blubber significantly increased, indicating ingestion of contaminants while foraging. Additionally, we identified three clusters of seal foraging behavior, based on geography, diving behavior, and stable carbon and nitrogen isotopes, which corresponded with differences in ∑ DDTs, ∑ PBDEs, MeO-BDE 47, as well as the ratio of ∑ DDTs to ∑ PCBs, indicating the potential for behavior to heighten or mitigate contaminant exposure. The greatest concentrations of ∑ DDTs and ∑ PBDEs were observed in the cluster that foraged closer to the coast and had blood samples more enriched in 13 C. Bioaccumulation of POPs by elephant seals supports mesopelagic food webs as a sink for POPs and highlights elephant seals as a potential sentinel of contamination in deep

  18. Deep-ocean foraging northern elephant seals bioaccumulate persistent organic pollutants

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, Sarah H., E-mail: sarahpeterson23@gmail.com [Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, 100 Shaffer Road, Santa Cruz, CA 95060 (United States); Peterson, Michael G. [Department of Environmental Science, Policy and Management, University of California, Berkeley, 130 Mulford Hall, Berkeley, CA 94720 (United States); Debier, Cathy [Institut des Sciences de la Vie, Université catholique de Louvain, Croix du Sud 2/L7.05.08, 1348 Louvain-la-Neuve (Belgium); Covaci, Adrian [Toxicological Center, Campus Drie Eiken, Universiteit Antwerpen, Universiteitsplein 1, 2610 Wilrijk (Belgium); Dirtu, Alin C. [Toxicological Center, Campus Drie Eiken, Universiteit Antwerpen, Universiteitsplein 1, 2610 Wilrijk (Belgium); Department of Chemistry, “Al. I. Cuza” University of Iasi, 700506 Iasi (Romania); Malarvannan, Govindan [Toxicological Center, Campus Drie Eiken, Universiteit Antwerpen, Universiteitsplein 1, 2610 Wilrijk (Belgium); Crocker, Daniel E. [Department of Biology, Sonoma State University, 1801 East Cotati Ave, Rohnert Park, CA 94928 (United States); Schwarz, Lisa K. [Institute of Marine Sciences, University of California, Santa Cruz, 100 Shaffer Road, Santa Cruz, CA 95060 (United States); Costa, Daniel P. [Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, 100 Shaffer Road, Santa Cruz, CA 95060 (United States)

    2015-11-15

    As top predators in the northeast Pacific Ocean, northern elephant seals (Mirounga angustirostris) are vulnerable to bioaccumulation of persistent organic pollutants (POPs). Our study examined a suite of POPs in blubber (inner and outer) and blood (serum) of free-ranging northern elephant seals. For adult females (N = 24), we satellite tracked and sampled the same seals before and after their approximately seven month long foraging trip. For males, we sampled different adults and sub-adults before (N = 14) and after (N = 15) the same foraging trip. For females, we calculated blubber burdens for all compounds. The highest POP concentrations in males and females were found for ∑ DDTs and ∑ PCBs. In blubber and serum, males had significantly greater concentrations than females for almost all compounds. For males and females, ∑ DDT and ∑ PBDEs were highly correlated in blubber and serum. While ∑ PCBs were highly correlated with ∑ DDTs and ∑ PBDEs in blubber and serum for males, ∑ PCBs showed weaker correlations with both compounds in females. As females gained mass while foraging, concentrations of nearly all POPs in inner and outer blubber significantly decreased; however, the absolute burden in blubber significantly increased, indicating ingestion of contaminants while foraging. Additionally, we identified three clusters of seal foraging behavior, based on geography, diving behavior, and stable carbon and nitrogen isotopes, which corresponded with differences in ∑ DDTs, ∑ PBDEs, MeO-BDE 47, as well as the ratio of ∑ DDTs to ∑ PCBs, indicating the potential for behavior to heighten or mitigate contaminant exposure. The greatest concentrations of ∑ DDTs and ∑ PBDEs were observed in the cluster that foraged closer to the coast and had blood samples more enriched in {sup 13}C. Bioaccumulation of POPs by elephant seals supports mesopelagic food webs as a sink for POPs and highlights elephant seals as a potential sentinel of contamination in

  19. Suitability of a Saccharomyces cerevisiae-based assay to assess the toxicity of pyrimethanil sprayed soils via surface runoff: comparison with standard aquatic and soil toxicity assays.

    Science.gov (United States)

    Gil, Fátima N; Moreira-Santos, Matilde; Chelinho, Sónia; Pereira, Carla; Feliciano, Joana R; Leitão, Jorge H; Sousa, José P; Ribeiro, Rui; Viegas, Cristina A

    2015-02-01

    The present study is aimed at evaluating whether a gene expression assay with the microbial eukaryotic model Saccharomyces cerevisiae could be used as a suitable warning tool for the rapid preliminary screening of potential toxic effects on organisms due to scenarios of soil and water contamination with pyrimethanil. The assay consisted of measuring changes in the expression of the selected pyrimethanil-responsive genes ARG3 and ARG5,6 in a standardized yeast population. Evaluation was held by assessing the toxicity of surface runoff, a major route of pesticide exposure in aquatic systems due to non-point-source pollution, which was simulated with a pyrimethanil formulation at a semifield scale mimicking worst-case scenarios of soil contamination (e.g. accident or improper disposal). Yeast cells 2-h exposure to the runoff samples led to a significant 2-fold increase in the expression of both indicator genes. These results were compared with those from assays with organisms relevant for the aquatic and soil compartments, namely the nematode Caenorhabditis elegans (reproduction), the freshwater cladoceran Daphnia magna (survival and reproduction), the benthic midge Chironomus riparius (growth), and the soil invertebrates Folsomia candida and Enchytraeus crypticus (survival and reproduction). Under the experimental conditions used to simulate accidental discharges into soil, runoff waters were highly toxic to the standard test organisms, except for C. elegans. Overall, results point out the usefulness of the yeast assay to provide a rapid preview of the toxicity level in preliminary screenings of environmental samples in situations of inadvertent high pesticide contamination. Advantages and limitations of this novel method are discussed. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Platinum bioaccumulation by mustard plants (Sinapis alba L.)

    International Nuclear Information System (INIS)

    Hawienczyk, M.; Bystrzejewska-Piotrowska, G.; Kowalska, J.; Asztemborska, M.

    2005-01-01

    The ability of hydroponically cultivated Indian mustard plants (Sinapis alba L.) to accumulate platinum was investigated. The Pt-bioaccumulation in leaves, stem and shoots of plants growing for 2 and 4 weeks at Pt-concentration of 50 and 500 μg/L was compared. The relation between dry and fresh weight was also estimated. Adsorptive stripping voltammetry (AdSV) and mass spectrometry with inductively coupled plasma (ICP-MS) were applied for determination of Pt. Increasing Pt-concentration from 50 to 500 μg/L in the medium causes: (1) reduction of the root tissue hydration level at unchanged modification in aboveground parts of the plants and (2) decrease of the Pt transfer factor (TF) for roots and increase for leaves and stem. Duration of the culture influenced on Pt-accumulation in roots and in aboveground organs of mustard plants. Transfer factor for Pt between 560 and 1600 makes Indian mustard plants one at Pt-hyperaccumulators. Distribution of Pt-bioaccumulation in the plant organs may be useful for biomonitoring of platinum in the environment. (author)

  1. Bioaccumulation Pattern of Mercury in Bacopa monnieri (L. Pennell

    Directory of Open Access Journals (Sweden)

    Hussain K

    2012-05-01

    Full Text Available Bioaccumulation pattern of mercury was studied in Bacopa monnieri plants cultivated in Hoagland nutrient medium artificially contaminated with 5 and 10μM HgCl2. Mercury content of roots, stem and leaves were analysed using Atomic Absorption Spectrophotometry (AAS. During a period 12 days of growth, more accumulation was noticed in roots followed by stem and leaves. Repeated addition of HgCl2 and enhanced growth period up to 50 days showed only negligible increase in accumulation maintaining a threshold level of mercury in the root. When a comparison was done between the quantities of HgCl2 added to the growth medium and the sum of total accumulation of the plant and content present in the residual medium, a significant quantity of mercury is found to be lost presumably through the process of phytovolatilization from the plant. Studies on the effect of pH on bioaccumulation of mercury showed that acidic pH enhanced accumulation rate and hence for phytoremediation technology ‘chlorination’ is recommended whereas for medicinal purpose, Bacopa monnieri plants can be harvested after ‘liming’ to increase the pH and thereby reducing accumulation rate of mercury.

  2. Distribution and bioaccumulation of endocrine disrupting chemicals in water, sediment and fishes in a shallow Chinese freshwater lake: Implications for ecological and human health risks.

    Science.gov (United States)

    Dan Liu; Wu, Shengmin; Xu, Huaizhou; Zhang, Qin; Zhang, Shenghu; Shi, Lili; Yao, Cheng; Liu, Yanhua; Cheng, Jie

    2017-06-01

    The occurrence, distribution and bioaccumulation of six endocrine disrupting compounds (EDCs) were investigated in water, sediment and biota samples from Luoma Lake, a shallow Chinese freshwater lake. Total concentrations of ∑phenolic EDCs were much higher than ∑estrogens EDCs in both waters and sediments. There were not obvious differences on the concentrations of target compounds [except nonylphenol (NP)] in upstream, lake and downstream locations, these may be suggested that they were mainly affected by non-point discharges in this area. However, the high concentration of NP in water may be associated with the discharge of rural domestic wastewater without thorough treatment. Furthermore, concentrations of NP were about 2-3 order magnitude higher than those of OP in both water and sediment compartments. Relatively higher bioaccumulation factors (BAF) were obtained for DES and EE2. Ecological risk assessment revealed greater risk of NP in surface water, which may pose a serious threat to aquatic ecosystems. The estrogen equivalent concentration (EEQ) of male were higher than those in female, and occurred in the order of city >rural-urban>countryside. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Aquatic chemistry of acid deposition

    Energy Technology Data Exchange (ETDEWEB)

    Stumm, W; Sigg, L; Schnoor, J L

    1987-01-01

    The occurrence of acid precipitation in many regions of the Northern hemisphere is a consequnece of human interference in the cycles that unite land, water and atmosphere. The oxidation of carbon, sulfur and nitrogen, resulting mostly from fossil fuel burning, rivals oxidation processes induced by photosynthesis and respiration and disturbs redox conditions in the atmosphere. The paper discusses oxidation-reduction reactions, particularly those involving atmospheric pollutants that are important in the formation of acid precipitation. Topics covered are: a stoichiometric model of acid rain formation; sulfur dioxide and ammonia adsorption; acid neutralizing capacity. The paper concludes that explanations of simple chemical equilibria between gases and water aid our understanding of how acidifying gases become dissolved in cloud water, in droplets of falling rain, or in fog. Rigorous definitions of base- or acid-neutralizing capacities are prerequisites to measuring and interpreting residual acidity in dry and wet deposition and for assessing the disturbance caused by the transfer of acid to terrestrial and aquatic ecosystems. 20 references.

  4. Elemental analysis of lichen bioaccumulators before exposure as transplants in air pollution monitoring

    International Nuclear Information System (INIS)

    Pantelica, A.; Cercasov, V.

    2003-01-01

    Lichen transplants from relatively unpolluted sites are successfully used as heavy metal bioaccumulators for long-term air pollution monitoring. Significant element accumulations are generally revealed after 6 to 12 months of exposure. The main objective of this interdisciplinary research is to get a low-price survey of the air pollution level in some critical areas of Romania by nuclear and atomic analytical methods, based on the element accumulating property of transplanted lichens. The lichen species Evernia prunastri and Pseudevernia furfuracea collected from the Prealps, northeast Italy, have been selected for this study. Experimental setup for standardized lichen exposure needs special plastic frames ('little traps': 15 · 15 · 1.5 cm, with 1cm 2 mesh) which are fixed horizontally on stainless steel posts at about 1.5 m above the ground. Prior to exposure, the lichen material is cleansed of some vegetal impurities and then shortly washed using de-ionised water. The initial (zero-level) contents of lichens were determined by Instrumental Neutron Activation Analysis (INAA) and Energy Dispersive X-Ray Fluorescence Analysis (EDXRFA) methods. INAA was carried out at the Institute of Physics and Nuclear Engineering in Bucharest (IFIN) and while EDXRFA at the University of Hohenheim in Stuttgart. The investigated elements were: As, Br, Ca, Cd, Co, Cr, Cu, Fe, K, Mn, Ni, Pb, S, Sb, Se, V and Zn. From among them, Cd, Co and Sb can be determined only by INAA and ICP-MS, Pb only by EDXRFA and PIXE, and S only by EDXRFA. A statistical intercomparison of the results allowed a good quality control of the used analytical methods for these specific matrices. This work was supported in part by European Commission Center of Excellence Project ICA1-CT-2000-70023: IDRANAP (Inter-Disciplinary Research and Applications based on Nuclear and Atomic Physics), Work Package 2 (Air pollution monitoring by sampling airborne particulate matter combined with lichen bioaccumulator exposure

  5. Phylogenetic consistencies among chondrichthyan and teleost fishes in their bioaccumulation of multiple trace elements from seawater

    Energy Technology Data Exchange (ETDEWEB)

    Jeffree, Ross A., E-mail: R.Jeffree@iaea.org [IAEA Marine Environment Laboratories, 4, Quai Antoine 1er, MC 98000 (Monaco); Oberhansli, Francois; Teyssie, Jean-Louis [IAEA Marine Environment Laboratories, 4, Quai Antoine 1er, MC 98000 (Monaco)

    2010-07-15

    Multi-tracer experiments determined the accumulation from seawater of selected radioactive trace elements (Mn-54, Co-60, Zn-65, Cs-134, Am-241, Cd-109, Ag-110m, Se-75 and Cr-51) by three teleost and three chondrichthyan fish species to test the hypothesis that these phylogenetic groups have different bioaccumulation characteristics, based on previously established contrasts between the carcharhiniform chondrichthyan Scyliorhinus canicula (dogfish) and the pleuronectiform teleost Psetta maxima (turbot). Discriminant function analysis on whole body: water concentration factors (CFs) separated dogfish and turbot in two independent experiments. Classification functions grouped the perciform teleosts, seabream (Sparus aurata) and seabass (Dicentrarchus labrax), with turbot and grouped the chondrichthyans, undulate ray (Raja undulata; Rajiformes) and spotted torpedo (Torpedo marmorata; Torpediniformes), with dogfish, thus supporting our hypothesis. Hierarchical classificatory, multi-dimensional scaling and similarity analyses based on the CFs for the nine radiotracers, also separated all three teleosts (that aggregated lower in the hierarchy) from the three chondrichthyan species. The three chondrichthyans were also more diverse amongst themselves compared to the three teleosts. Particular trace elements that were more important in separating teleosts and chondrichthyans were Cs-134 that was elevated in teleosts and Zn-65 that was elevated in chondrichthyans, these differences being due to their differential rates of uptake rather than loss. Chondrichthyans were also higher in Cr-51, Co-60, Ag-110m and Am-241, whereas teleosts were higher only in Mn-54. These contrasts in bioaccumulation patterns between teleosts and chondrichthyans are interpreted in the context of both proximate causes of underlying differences in physiology and anatomy, as well as the ultimate cause of their evolutionary divergence over more than 500 million years before present (MyBP). Our results

  6. Phylogenetic consistencies among chondrichthyan and teleost fishes in their bioaccumulation of multiple trace elements from seawater

    International Nuclear Information System (INIS)

    Jeffree, Ross A.; Oberhansli, Francois; Teyssie, Jean-Louis

    2010-01-01

    Multi-tracer experiments determined the accumulation from seawater of selected radioactive trace elements (Mn-54, Co-60, Zn-65, Cs-134, Am-241, Cd-109, Ag-110m, Se-75 and Cr-51) by three teleost and three chondrichthyan fish species to test the hypothesis that these phylogenetic groups have different bioaccumulation characteristics, based on previously established contrasts between the carcharhiniform chondrichthyan Scyliorhinus canicula (dogfish) and the pleuronectiform teleost Psetta maxima (turbot). Discriminant function analysis on whole body: water concentration factors (CFs) separated dogfish and turbot in two independent experiments. Classification functions grouped the perciform teleosts, seabream (Sparus aurata) and seabass (Dicentrarchus labrax), with turbot and grouped the chondrichthyans, undulate ray (Raja undulata; Rajiformes) and spotted torpedo (Torpedo marmorata; Torpediniformes), with dogfish, thus supporting our hypothesis. Hierarchical classificatory, multi-dimensional scaling and similarity analyses based on the CFs for the nine radiotracers, also separated all three teleosts (that aggregated lower in the hierarchy) from the three chondrichthyan species. The three chondrichthyans were also more diverse amongst themselves compared to the three teleosts. Particular trace elements that were more important in separating teleosts and chondrichthyans were Cs-134 that was elevated in teleosts and Zn-65 that was elevated in chondrichthyans, these differences being due to their differential rates of uptake rather than loss. Chondrichthyans were also higher in Cr-51, Co-60, Ag-110m and Am-241, whereas teleosts were higher only in Mn-54. These contrasts in bioaccumulation patterns between teleosts and chondrichthyans are interpreted in the context of both proximate causes of underlying differences in physiology and anatomy, as well as the ultimate cause of their evolutionary divergence over more than 500 million years before present (MyBP). Our results

  7. Bioaccumulation of heavy metals and parasitic fauna in Synodontis clarias (Linnaeus, 1758 and Chrysichthys nigrodigitatus (Lacepede, 1803 from Lekki Lagoon, Lagos, Nigeria

    Directory of Open Access Journals (Sweden)

    Bamidele Akinsanya

    2016-08-01

    Full Text Available Objective: To study the bioaccumulation of heavy metals from Synodontis clarias (S. clarias and Chrysichthys nigrodigitatus (C. nigrodigitatus with their parasitic fauna. Methods: A total of 50 specimens of each fish species (n = 100 were examined. The fishes were subjected to parasitological investigation while 3 g of intestinal tissue of S. clarias and C. nigrodigitatus samples were digested with nitric acid (10 mL. The tissues were then heated until brown fumes disappeared. The samples were allowed to cool and distilled water was added to make up to 50 mL in a standard flask. The filtrate was examined using the atomic absorption spectrometer. The fish hosts were weighed and measured with the aid of digital weighing balance and measuring board, respectively. Results: The Chi-square distribution was significant at 0.01 level (χ2 = 2.16, P Zn > Mn > Fe > Cd (not detected and Mn > Zn > Fe > Pb > Cd (not detected, respectively, while in the nematode, Procamallanus spp. and trematode, Siphodera spp. were Pb > Mn > Fe > Zn > Cd and Mn > Fe > Zn > Pb > Cd, respectively. In the water and sediment, the distribution of heavy metals were Fe > Mn > Zn > Pb > Cd and Fe > Mn > Pb > Zn > Cd, respectively. Conclusions: The findings of the concentrations of the trace elements in the aquatic habitat as well as the sediment were below the permissible limit of Federal Ministry of Environment. These findings confirmed that the aquatic habitat was adequate for fishing activity and that the consumption of fish species therein are safe. However, it should be noted that there was bioaccumulation of trace elements in the fish tissues which should not pose any danger to man. Therefore, a regular monitoring of the levels of trace elements in the water body as well as in the fauna should be regularly undertaken.

  8. LC-MS/MS method development for quantitative analysis of acetaminophen uptake by the aquatic fungus Mucor hiemalis.

    Science.gov (United States)

    Esterhuizen-Londt, Maranda; Schwartz, Katrin; Balsano, Evelyn; Kühn, Sandra; Pflugmacher, Stephan

    2016-06-01

    Acetaminophen is a pharmaceutical, frequently found in surface water as a contaminant. Bioremediation, in particular, mycoremediation of acetaminophen is a method to remove this compound from waters. Owing to the lack of quantitative analytical method for acetaminophen in aquatic organisms, the present study aimed to develop a method for the determination of acetaminophen using LC-MS/MS in the aquatic fungus Mucor hiemalis. The method was then applied to evaluate the uptake of acetaminophen by M. hiemalis, cultured in pellet morphology. The method was robust, sensitive and reproducible with a lower limit of quantification of 5 pg acetaminophen on column. It was found that M. hiemalis internalize the pharmaceutical, and bioaccumulate it with time. Therefore, M. hiemalis was deemed a suitable candidate for further studies to elucidate its pharmaceutical tolerance and the longevity in mycoremediation applications. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Tritium in the aquatic environment

    International Nuclear Information System (INIS)

    Blaylock, B.G.; Hoffman, F.O.; Frank, M.L.

    1986-02-01

    Tritium is of environmental importance because it is released from nuclear facilities in relatively large quantities and because it has a half life of 12.26 y. Most of the tritium released into the atmosphere eventually reaches the aqueous environment, where it is rapidly taken up by aquatic organisms. This paper reviews the current literature on tritium in the aquatic environment. Conclusions from the review, which covered studies of algae, aquatic macrophytes, invertebrates, fish, and the food chain, were that aquatic organisms incorporate tritium into their tissue-free water very rapidly and reach concentrations near those of the external medium. The rate at which tritium from tritiated water is incorporated into the organic matter of cells is slower than the rate of its incorporation into the tissue-free water. If organisms consume tritiated food, incorporation of tritium into the organic matter is faster, and a higher tritium concentration is reached than when the organisms are exposed to only tritiated water alone. Incorporation of tritium bound to molecules into the organic matter depends on the chemical form of the ''carrier'' molecule. No evidence was found that biomagnification of tritium occurs at higher trophic levels. Radiation doses from tritium releases to large populations of humans will most likely come from the consumption of contaminated water rather than contaminated aquatic food products

  10. Public Lakes, Private Lakeshore: Modeling Protection of Native Aquatic Plants

    Science.gov (United States)

    Schroeder, Susan A.; Fulton, David C.

    2013-07-01

    Protection of native aquatic plants is an important proenvironmental behavior, because plant loss coupled with nutrient loading can produce changes in lake ecosystems. Removal of aquatic plants by lakeshore property owners is a diffuse behavior that may lead to cumulative impacts on lake ecosystems. This class of behavior is challenging to manage because collective impacts are not obvious to the actors. This paper distinguishes positive and negative beliefs about aquatic plants, in models derived from norm activation theory (Schwartz, Adv Exp Soc Psychol 10:221-279, 1977) and the theory of reasoned action (Fishbein and Ajzen, Belief, attitude, intention, and behavior: an introduction to theory and research, Addison-Wesley, Boston 1975), to examine protection of native aquatic plants by Minnesota lakeshore property owners. We clarify how positive and negative evaluations of native aquatic plants affect protection or removal of these plants. Results are based on a mail survey ( n = 3,115). Results suggest that positive evaluations of aquatic plants (i.e., as valuable to lake ecology) may not connect with the global attitudes and behavioral intentions that direct plant protection or removal. Lakeshore property owners' behavior related to aquatic plants may be driven more by tangible personal benefits derived from accessible, carefully managed lakeshore than intentional action taken to sustain lake ecosystems. The limited connection of positive evaluations of aquatic plants to global attitudes and behavioral intentions may reflect either lack of knowledge of what actions are needed to protect lake health and/or unwillingness to lose perceived benefits derived from lakeshore property.

  11. Public lakes, private lakeshore: Modeling protection of native aquatic plants

    Science.gov (United States)

    Schroeder, Susan A.; Fulton, David C.

    2013-01-01

    Protection of native aquatic plants is an important proenvironmental behavior, because plant loss coupled with nutrient loading can produce changes in lake ecosystems. Removal of aquatic plants by lakeshore property owners is a diffuse behavior that may lead to cumulative impacts on lake ecosystems. This class of behavior is challenging to manage because collective impacts are not obvious to the actors. This paper distinguishes positive and negative beliefs about aquatic plants, in models derived from norm activation theory (Schwartz, Adv Exp Soc Psychol 10:221–279, 1977) and the theory of reasoned action (Fishbein and Ajzen, Belief, attitude, intention, and behavior: an introduction to theory and research, Addison-Wesley, Boston 1975), to examine protection of native aquatic plants by Minnesota lakeshore property owners. We clarify how positive and negative evaluations of native aquatic plants affect protection or removal of these plants. Results are based on a mail survey (n = 3,115). Results suggest that positive evaluations of aquatic plants (i.e., as valuable to lake ecology) may not connect with the global attitudes and behavioral intentions that direct plant protection or removal. Lakeshore property owners’ behavior related to aquatic plants may be driven more by tangible personal benefits derived from accessible, carefully managed lakeshore than intentional action taken to sustain lake ecosystems. The limited connection of positive evaluations of aquatic plants to global attitudes and behavioral intentions may reflect either lack of knowledge of what actions are needed to protect lake health and/or unwillingness to lose perceived benefits derived from lakeshore property.

  12. Molecular effects and bioaccumulation of levonorgestrel in the non-target organism Dreissena polymorpha

    International Nuclear Information System (INIS)

    Contardo-Jara, Valeska; Lorenz, Claudia; Pflugmacher, Stephan; Nuetzmann, Gunnar; Kloas, Werner; Wiegand, Claudia

    2011-01-01

    Bioaccumulation and effects of the contraceptive hormone levonorgestrel were examined in the non-target organism Dreissena polymorpha. Molecular biomarkers of biotransformation, elimination, antioxidant defence and protein damage were analyzed after exposure to increasing concentrations of levonorgestrel in a flow-through system. The lowest concentration (0.312 μg L -1 ) was 100-fold bioconcentrated within four days. A decrease of the bioconcentration factor was observed within one week for the highest test concentrations (3.12 and 6.24 μg L -1 ) suggesting enhanced excretory processes. The immediate mRNA up-regulation of pi class glutathione S-transferase proved that phase II biotransformation processes were induced. Disturbance of fundamental cell functions was assumed since the aryl hydrocarbon receptor has been permanently down-regulated. mRNA up-regulation of P-glycoprotein, superoxide dismutase and metallothioneine suggested enhanced elimination processes and ongoing oxidative stress. mRNA up-regulation of heat shock protein 70 in mussels exposed to the two highest concentrations clearly indicated impacts on protein damage. - Fundamental cell processes as biotransformation, elimination and prevention from oxidative stress are influenced by exposure of the contraceptive levonorgestrel in non-target organisms. - Research highlights: → Bioaccumulation of levonorgestrel in mussels is higher than expected based on its lipophilicity. → Exposure to levonorgestrel causes oxidative stress and enhanced elimination processes. → Glutathione S-transferase (pi class) mRNA induction after one day hint on phase II biotransformation. → mRNA induction of heat shock protein 70 after one week prove protein damage.

  13. Bioaccumulation and Depuration of Copper in the Kidney and Liver of a Freshwater Fish, Capoeta fusca

    Directory of Open Access Journals (Sweden)

    Borhan Mansouri

    2016-07-01

    Full Text Available Background: This study aims to investigate the patterns of bioaccumulation and depuration of copper in the selected kidney and liver of Capoeta fusca. Methods: The fish were collected between September and November 2010 from a qanat in Birjand. They were exposed to two types treatments with copper (0.25 and 0.75 mg/L for a period of 41 days. The fish under study were exposed to the above-mentioned sub-lethal concentrations separately for 14 and 21 days (accumulation period. At the end of this period, the remaining fish were kept in tap water (elimination period for 31 and 41 days. Results: The findings showed that the accumulation of copper in lower and higher sub-lethal concentrations was higher in kidney as the mean accumulation of copper on day 21 was 1.9±0.1 μg/g and 2.93±0.47 μg/g respectively, in 0.25 μg/g and 0.75 μg/g concentrations. On the other hand, the results also showed that the depuration level of copper in the given concentrations was higher in liver than kidney. The bioaccumulation and depuration of copper significantly increased in the kidney and liver of C. fusca (P<0.01. Conclusion: Based on the present work, it is concluded that C. fusca has a potential for the rapid accumulation and depuration of copper in freshwater. Also, the results indicate that the fish C. fusca, as representative fish species in the East of Iran, can be a useful bioindicator organism of water contamination with copper.

  14. Role of metal mixtures (Ca, Cu and Pb) on Cd bioaccumulation and phytochelatin production by Chlamydomonas reinhardtii

    International Nuclear Information System (INIS)

    Abboud, Pauline; Wilkinson, Kevin J.

    2013-01-01

    The goal of the study was to determine whether metal uptake and biological effects could be predicted by free ion concentrations when organisms were exposed to Cd and a second metal. Bioaccumulation and algal phytochelatin (PC) concentrations were determined for Chlamydomonas reinhardtii following a 6-h exposure. Bioaccumulation results, after six hours of exposure, showed that Cd uptake decreased in the presence of relatively high concentrations of Ca, Cu and Pb, however, Cd bioaccumulation increased in the presence of ca. equimolar concentrations of Cu. A good correlation was observed between the production of PCs and the amount of metals bioaccumulated for the binary mixtures of Cd–Pb and Cd–Cu, but not the Cd–Ca mixture. Overall, the results suggested that, in the case of mixtures, bioaccumulated metal rather than free ion concentrations would be a better predictor of biological effect. -- Highlights: •Cd bioaccumulation and phytochelatin production were evaluated for metal mixtures. •Bioaccumulated metal rather than free ion was a better predictor of biological effect. •Calcium additions decreased Cd bioaccumulation but increased phytochelatin production. •Copper additions increased Cd bioaccumulation and phytochelatin production. •Lead additions had little effect on either Cd bioaccumulation or phytochelatin production. -- In metal mixtures containing Cd and Ca, Pb or Cu, bioaccumulated metal rather than free ion was a better predictor of biological effect

  15. Long-Term Effects of Dredging Operations Program: Assessing Bioaccumulation in Aquatic Organisms Exposed to Contaminated Sediments

    Science.gov (United States)

    1991-07-01

    Wrd0 est t Or f mn1of ey O0 0 *WWI ttoth colme n fo, matlo, innl vd. q c e m s for redun tdn. tor• de I. to Wa.<fqgon NodQu~arten $e•vKVL a i. e...lower the affinity of a chemical for a compartment, the greater will be its tendency to escape from that compartment. Fugacity (from the Latin fuga ...fraction TOC content (Karickhoff, Brown, and Scott 21 1979). Such normalization can give a better idea of the’aount of chemical in a sediment that is

  16. Does equilibrium passive sampling reflect actual in situ bioaccumulation of PAHs and petroleum hydrocarbon mixtures in aquatic worms?

    NARCIS (Netherlands)

    Muijs, B.|info:eu-repo/dai/nl/194995526; Jonker, M.T.O.|info:eu-repo/dai/nl/175518793

    2012-01-01

    Over the past couple of years, several analytical methods have been developed for assessing the bioavailability of environmental contaminants in sediments and soils. Comparison studies suggest that equilibrium passive sampling methods generally provide the better estimates of internal concentrations

  17. Saponins in the aquatic environment

    DEFF Research Database (Denmark)

    Jiang, Xiaogang

    -like structure, saponins have a lot of applications, e.g. as foaming agents in consumer products, as adjuvants in the vaccine, as biosurfactants in soil washing and as biopesticides in crop protection. Hence, they may leach into the aquatic environment due to their low octanol/water partition coefficient......This PhD thesis consists of three parts to illustrate the goal of getting a better understanding of the fate and toxicity of saponins in the aquatic environment. It includes an introduction to the general aspects of saponins, their chemistry and the ecotoxicology concepts, and a second part...... and poor binding to organic matter. They may therefore also pose a risk to the aquatic organisms. Since saponins are efficient against pests, they are most likely also toxic to the non-target organisms. However, their fate and toxicity in the environment are not fully understood. There are two main...

  18. Spatial distribution of aquatic insects

    DEFF Research Database (Denmark)

    Iversen, Lars Lønsmann

    (time since glacial disturbance and habitat stability) and question the generality of these processes for the understanding of species richness gradients in European rivers. Using regional distributions of European mayflies, stoneflies, and caddisflies this chapter demonstrates that differences...... and shape the habitat requirements and distribution of one of the most affected groups of freshwater species: aquatic insects. It comprises four chapters each addressing different spatial factors in relation to the occurrence of aquatic insects in Europe. Chapter I examine two spatial ecological processes...... niche is derived from local distribution patterns, without incorporating landscape history it can lead to an erroneous niche definition. Chapter III provides some of the first evidence for differences in dispersal phenology related to flight potential in aquatic insects. The chapter highlights...

  19. Guidelines for biomonitoring persistent organic pollutants (POPs), using lichens and aquatic mosses – A review

    International Nuclear Information System (INIS)

    Augusto, Sofia; Máguas, Cristina; Branquinho, Cristina

    2013-01-01

    During the last decades, awareness regarding persistent organic pollutants (POPs), such dioxins and furans (PCDD/Fs) and polycyclic aromatic hydrocarbons (PAHs), has become a cutting-edge topic, due to their toxicity, bioaccumulation and persistency in the environment. Monitoring of PCDD/Fs and PAHs in air and water has proven to be insufficient to capture deposition and effects of these compounds in the biota. To overcome this limitation, environmental biomonitoring using lichens and aquatic mosses, have aroused as promising tools. The main aim of this work is to provide a review of: i) factors that influence the interception and accumulation of POPs by lichens; ii) how lichens and aquatic bryophytes can be used to track different pollution sources and; iii) how can these biomonitors contribute to environmental health studies. This review will allow designing a set of guidelines to be followed when using biomonitors to assess environmental POP pollution. -- Highlights: •We've reviewed the use of lichens and mosses as POP biomonitors. •We've discussed the factors that influence accumulation of POPs in lichens. •We've shown how biomonitors have been used to track pollution sources. •We've designed guidelines for the use of biomonitors to assess POP pollution. -- This review fulfils the lack of knowledge regarding the use of lichens and aquatic mosses as biomonitors of POPs, providing a set of guidelines to be followed

  20. Marine and Other Aquatic Dermatoses.

    Science.gov (United States)

    Sridhar, Surg Capt Jandhyala; Deo, Surg Cdr Rajeev

    2017-01-01

    Occupational and recreational aquatic activity predisposes our population to a wide variety of dermatoses. Sunburn, urticaria, jellyfish stings, and contact dermatitis to rubber equipment are common allergies that are encountered in the aquatic environment. Among the infections, tinea versicolor, intertrigo, and verruca vulgaris are widespread. Swimmer's itch may occur due to skin penetration by schistosome cercariae, while free-floating nematocysts of marine coelenterates may precipitate seabather's eruption. "Suit squeeze" due to cutaneous barotrauma and lymphoedematous peau d'orange due to decompression are rare, described entities. This review serves as a ready reckoner for Indian dermatologists and medical practitioners to identify and manage these conditions.

  1. Marine and other aquatic dermatoses

    Directory of Open Access Journals (Sweden)

    Jandhyala Sridhar

    2017-01-01

    Full Text Available Occupational and recreational aquatic activity predisposes our population to a wide variety of dermatoses. Sunburn, urticaria, jellyfish stings, and contact dermatitis to rubber equipment are common allergies that are encountered in the aquatic environment. Among the infections, tinea versicolor, intertrigo, and verruca vulgaris are widespread. Swimmer's itch may occur due to skin penetration by schistosome cercariae, while free-floating nematocysts of marine coelenterates may precipitate seabather's eruption. “Suit squeeze” due to cutaneous barotrauma and lymphoedematous peau d'orange due to decompression are rare, described entities. This review serves as a ready reckoner for Indian dermatologists and medical practitioners to identify and manage these conditions.

  2. SSR-Based DNA Fingerprinting and Diversity Assessment Among Indian Germplasm of Euryale ferox: an Aquatic Underutilized and Neglected Food Crop.

    Science.gov (United States)

    Kumar, Nitish; Shikha, Divya; Kumari, Swati; Choudhary, Binod Kumar; Kumar, Lokendra; Singh, Indu Shekhar

    2017-10-30

    Euryale ferox is native to Southeast Asia and China, and it is one of the important aquatic food crops propagated mostly in eastern part of India. The aim of the present study was to characterize and evaluate the genetic diversity of ex situ collections of E. ferox germplasm from different geographical states of India using microsatellite (simple sequence repeats (SSRs)) markers. Ten SSR markers were analyzed to assess DNA fingerprinting and genetic diversity of 16 cultivated germplasm of E. ferox. Total 37 polymorphic alleles were recorded with an average of 3.7 allele frequency per primer. The polymorphic information content value varied from 0.204 to 0.735 with mean of 0.448. A high range of heterozygosity (Ho 0.228; He 0.512) was detected in the present study. The neighbor-joining (N-J) tree and the principle coordinate analysis showed that the germplasm divided in to three main clusters. The results of the present investigation comply that SSR markers are effective for computing genetic assessment of genetic diversity and similarity with classifying cultivated varieties of E. ferox. Evaluation of genetic diversity among Indian E. ferox germplasm could provide useful information for genetic improvement.

  3. Mercury in mercury(II)-spiked soils is highly susceptible to plant bioaccumulation.

    Science.gov (United States)

    Hlodák, Michal; Urík, Martin; Matúš, Peter; Kořenková, Lucia

    2016-01-01

    Heavy metal phytotoxicity assessments usually use soluble metal compounds in spiked soils to evaluate metal bioaccumulation, growth inhibition and adverse effects on physiological parameters. However, exampling mercury phytotoxicity for barley (Hordeum vulgare) this paper highlights unsuitability of this experimental approach. Mercury(II) in spiked soils is extremely bioavailable, and there experimentally determined bioaccumulation is significantly higher compared to reported mercury bioaccumulation efficiency from soils collected from mercury-polluted areas. Our results indicate this is not affected by soil sorption capacity, thus soil ageing and formation of more stable mercuric complexes with soil fractions is necessary for reasonable metal phytotoxicity assessments.

  4. Integrated testing strategy (ITS) for bioaccumulation assessment under REACH

    DEFF Research Database (Denmark)

    Lombardo, Anna; Roncaglioni, Alessandra; Benfentati, Emilio

    2014-01-01

    in a dossier. REACH promotes the use of alternative methods to replace, refine and reduce the use of animal (eco)toxicity testing. Within the EU OSIRIS project, integrated testing strategies (ITSs) have been developed for the rational use of non-animal testing approaches in chemical hazard assessment. Here we......REACH (registration, evaluation, authorisation and restriction of chemicals) regulation requires that all the chemicals produced or imported in Europe above 1 tonne/year are registered. To register a chemical, physicochemical, toxicological and ecotoxicological information needs to be reported...... present an ITS for evaluating the bioaccumulation potential of organic chemicals. The scheme includes the use of all available data (also the non-optimal ones), waiving schemes, analysis of physicochemical properties related to the end point and alternative methods (both in silico and in vitro). In vivo...

  5. Removal of some radionuclides from water by bioaccumulation

    Energy Technology Data Exchange (ETDEWEB)

    Miskovic, D.; Conkic, L.; Dalmacija, B.; Gantar, M. (Trg D. Obradvica 3, Novi Sad (Yugoslavia). Faculty of Sciences)

    1992-01-01

    First objective of this study was to investigate the application of biologically activated carbon (BAC) as well as its comparison to adsorption, with the aim of removing some radionuclides from water. The isotopes Cs[sup 134] and Cs[sup 137] were bioaccumulated by BAC up to 50%, while the I[sup 131] isotope was only physicochemically adsorbed (about 40%). Also, the process of radionuclides (Cs[sup 137], Ce[sup 139], Co[sup 57], Co[sup 60]) fixation on blue-green algae (Nostoc sp.) was investigated. The kinetics of the removal of these radionuclides from water was recorded. It was found that after a contact period of about half an hour 40-70% of the activity was removed. (Author).

  6. Metal bioaccumulation by the freshwater alga Scenedesmus quadricauda

    International Nuclear Information System (INIS)

    Fargasova, A.

    1997-01-01

    Bioaccumulation of six metals (Cu 2+ , Cu + , Mo 6+ , Mn 2+ , V 5+ , Ni 2+ ) and their combinations by alga Scenedesmus quadricauda was determined by using radio nuclide X-ray fluorescence (RXFA). The metals were added into the cultivation medium in concentrations corresponding with EC 50 value for each metal. The obtained results indicate that Ni 2+ , Cu 2+ and Cu + were accumulated in high amounts (20%, 17.5% and 15.9%) the Mo 6+ ion ( 2+ , Ni, Mn, V; V→Ni, Mn; Mn→Ni, Cu 2+ , Cu + ; Cu + →Ni; Cu 2+ →Ni; Ni→Mn, V), enhancement (V→Cu + ; Cu 2+ →Mn; Cu + →V, Mn; Mn→V; Ni→Cu 2+ , Cu + ) and neutral effect (V→Mo; Cu 2+ →Mo; Cu + →Mo; Mn→Mo; Ni→Mo). (author)

  7. Diatom. A potential bio-accumulator of gold

    International Nuclear Information System (INIS)

    Chakraborty, N.; Pal, R.; Ramaswami, A.; Nayak, D.; Lahiri, S.

    2006-01-01

    The bioaccumulation of gold in trace concentration by Nitzschia obtusa and Navicula minima, two members of bacillariophyceae, has been studied. It has been observed that Nitzschia obtusa showed better accumulation of gold in acidic pH in comparison to neutral and basic pH. Maximum accumulation was observed with 1 mg x kg -1 or less gold concentration. However, the accumulation by the living cells was reduced when the matrix concentration was higher. Navicula minima, on the other hand, found to be a better accumulator of gold in wide ranges of pH and substrate concentration of the media. It was also inferred that the gold accumulation by diatom was mainly due to adsorption by biosilica (siliceous frustules of dead diatom cells). Accumulated gold was recovered with conc. HNO 3 . (author)

  8. Identifying new persistent and bioaccumulative organics among chemicals in commerce.

    Science.gov (United States)

    Howard, Philip H; Muir, Derek C G

    2010-04-01

    The goal of this study was to identify commercial chemicals that might be persistent and bioaccumulative (P&B) and that were not being considered in current Great Lakes, North American, and Arctic contaminant measurement programs. We combined the Canadian Domestic Substance List (DSL), a list of 3059 substances of "unknown or variable composition complex reaction products and biological materials" (UVCBs), and the U.S. Environmental Protection Agency (U.S. EPA) Toxic Substances Control Act (TSCA) Inventory Update Rule (IUR) database for years 1986, 1990, 1994, 1998, 2002, and 2006 yielding a database of 22263 commercial chemicals. From that list, 610 chemicals were identified by estimates from U.S EPA EPISuite software and using expert judgment. This study has yielded some interesting and probable P&B chemicals that should be considered for further study. Recent studies, following up our initial reports and presentations on this work, have confirmed the presence of many of these chemicals in the environment.

  9. Bioaccumulation of metals and metalloids in medicinal plant Ipomoea pes-caprae from areas impacted by tsunami.

    Science.gov (United States)

    Kozak, Lidia; Kokociński, Mikołaj; Niedzielski, Przemysław; Lorenc, Stanisław

    2015-02-01

    Tsunami events may have an enormous impact on the functioning of aquatic and terrestrial ecosystems by altering various relationships with biotic components. Concentrations of acid-leachable fractions of heavy metals and metalloids in soils and plant samples from areas affected by the December 2004 tsunami in Thailand were determined. Ipomoea pes-caprae, a common plant species growing along the seashore of this region, and frequently used in folk medicine, was selected to assess the presence of selected elements. Elevated amounts of Cd, Pb, Zn, and As in soil samples, and Pb, Zn, As, Se, Cr, and Ni in plant samples were determined from the tsunami-impacted regions for comparison with reference locations. The flowers of Ipomoea pes-caprae contained the highest amounts of these metals, followed by its leaves, and stems. In addition, its bioaccumulation factor (BAF) supports this capability of high metal uptake by Ipomoea pes-caprae from the areas affected by the tsunami in comparison with a reference site. This uptake was followed by the translocation of these elements to the various plant components. The presence of these toxic metals in Ipomoea pes-caprae growing in contaminated soils should be a concern of those who use this plant for medicinal purposes. Further studies on the content of heavy metals and metalloids in this plant in relation to human health concerns are recommended. © 2014 SETAC.

  10. Bioaccumulation of hexachlorobutadiene in pumpkin seedlings after waterborne exposure.

    Science.gov (United States)

    Hou, Xingwang; Zhang, Haiyan; Li, Yanlin; Yu, Miao; Liu, Jiyan; Jiang, Guibin

    2017-10-18

    Hexachlorobutadiene (HCBD) has been listed as a persistent organic pollutant (POP) in the Stockholm Convention, and is now drawing more and more research interest. However, the understanding of its bioaccumulation, especially in plants, is still very limited. In this work, the behavior of HCBD in aqueous solution and pumpkin seedlings was studied through in-lab hydroponic exposure experiments. It was found that 69% of HCBD volatilized from water to the atmosphere after one day of exposure, and only 1% remained in the solution after four days. This high volatility might be the main cause of the low HCBD levels in aqueous environments. Although a great amount of HCBD volatilized into the atmosphere, only a small proportion of airborne HCBD was captured by the leaves and stems of the blank pumpkin seedling controls. The translocation of HCBD from the leaves to the bottom roots, as well as its release from the roots into the water, was detected. For the exposure groups, the pumpkin seedlings absorbed HCBD from both the hydroponic solution and the air via the roots and leaves, respectively. The concentration of HCBD in the exposed pumpkin roots linearly increased with the continuous addition of HCBD into the exposure system. Upward translocation from the roots to the leaves and downward translocation from the leaves to the roots existed simultaneously in the exposed pumpkin seedlings. However, the concentrations of HCBD in the leaves, stems and roots in the exposure group were much higher than those of the blank plant controls, suggesting little contribution from the airborne HCBD in the hydroponically exposed pumpkin seedlings. The lipid content did not show obvious effects on the bioaccumulation and biodistribution of HCBD in the pumpkin seedlings, indicating that the translocation of HCBD within the pumpkin seedlings might be an active process. This study provided new findings on the environmental behavior of HCBD, which will be helpful for understanding the exposure

  11. Influence of ortho-substitution homolog group on polychlorobiphenyl bioaccumulation factors and fugacity ratios in plankton and zebra mussels (Dreissena polymorpha)

    Energy Technology Data Exchange (ETDEWEB)

    Willman, E.J.; Manchester-Neesvig, J.B.; Agrell, C.; Armstrong, D.E.

    1999-07-01

    The accumulation of a set of non- and mono-ortho (coplanar) PCB congeners in aquatic ecosystems is of interest due to their dioxin-like toxicities. Chemical properties (octanol-water partition coefficients) suggest that the coplanar congeners may accumulate in organisms to a greater extent than homologs with greater ortho substitution. The authors analyzed a set of 65 PCB congeners with zero to four ortho-chlorines from seven homolog groups in water, suspended particulate matter, and zebra mussels from Green Bay, Wisconsin, USA, on four dates throughout the ice-free season. The suspended particulate matter was separated by size and characterized as phytoplankton or zooplankton using diagnostic carotenoid pigments and light microscopy. Median bioconcentration factors (BCFs) for accumulation from water by phytoplankton and bioaccumulation factors (BAFs) for accumulation from water plus food by zooplankton and zebra mussels ranged from 1 x 10{sup 4} to 1 x 10{sup 6} and were generally the greatest for the tetra- to heptachlorobiphenyls. The average coplanar congener BCFs and BAFs for accumulation from water by phytoplankton, zooplankton, and zebra mussels for the tri-, tetra-, and pentachlorobiphenyls were 54% larger than corresponding values for their homologs. Biomagnification factors (BMFs) of the tetra-, penta-, and hexachlorobiphenyls between zooplankton and zebra mussels and their food source, phytoplankton, typically ranged between 1 and 10, but the average coplanar congener BMFs were 25% less than values for their corresponding homologs. The tendency for coplanar congeners to accumulate to a lesser extent between trophic levels was not as large as their tendency to accumulate from water to a greater extent. Based on accumulation factors, the authors conclude that the dioxin-like tetra- and pentachlorobiphenyls generally accumulate in the phytoplankton, zooplankton, and zebra mussels of the Green Bay ecosystem to a greater extent than other congeners. Fugacity

  12. Chironomidae bloodworms larvae as aquatic amphibian food.

    Science.gov (United States)

    Fard, Mojdeh Sharifian; Pasmans, Frank; Adriaensen, Connie; Laing, Gijs Du; Janssens, Geert Paul Jules; Martel, An

    2014-01-01

    Different species of chironomids larvae (Diptera: Chironomidae) so-called bloodworms are widely distributed in the sediments of all types of freshwater habitats and considered as an important food source for amphibians. In our study, three species of Chironomidae (Baeotendipes noctivagus, Benthalia dissidens, and Chironomus riparius) were identified in 23 samples of larvae from Belgium, Poland, Russia, and Ukraine provided by a distributor in Belgium. We evaluated the suitability of these samples as amphibian food based on four different aspects: the likelihood of amphibian pathogens spreading, risk of heavy metal accumulation in amphibians, nutritive value, and risk of spreading of zoonotic bacteria (Salmonella, Campylobacter, and ESBL producing Enterobacteriaceae). We found neither zoonotic bacteria nor the amphibian pathogens Ranavirus and Batrachochytrium dendrobatidis in these samples. Our data showed that among the five heavy metals tested (Hg, Cu, Cd, Pb, and Zn), the excess level of Pb in two samples and low content of Zn in four samples implicated potential risk of Pb accumulation and Zn inadequacy. Proximate nutritional analysis revealed that, chironomidae larvae are consistently high in protein but more variable in lipid content. Accordingly, variations in the lipid: protein ratio can affect the amount and pathway of energy supply to the amphibians. Our study indicated although environmentally-collected chironomids larvae may not be vectors of specific pathogens, they can be associated with nutritional imbalances and may also result in Pb bioaccumulation and Zn inadequacy in amphibians. Chironomidae larvae may thus not be recommended as single diet item for amphibians. © 2014 Wiley Periodicals, Inc.

  13. Journal of Aquatic Plant Management. Volume 36

    National Research Council Canada - National Science Library

    1998-01-01

    The U.S. Army Corps of Engineers (CE) Aquatic Plant Control Research Program (APCRP) is the Nation's only federally authorized research program directed to develop technology for the management of non-indigenous aquatic plant species...

  14. Aquatic wood -- an insect perspective

    Science.gov (United States)

    Peter S. Cranston; Brendan McKie

    2006-01-01

    Immersed wood provides refugia and substrate for a diverse array of macroinvertebrates, and food for a more restricted genuinely xylophagous fauna. Worldwide, xylophages are found across aquatic insect orders, including Coleoptera, Diptera, Trichoptera and Plecoptera. Xylophages often are specialised, feeding on the wood surface or mining deep within. Many feed...

  15. Macrophytes: Ecology of aquatic plants

    NARCIS (Netherlands)

    Bornette, G.; Puijalon, S.

    2009-01-01

    Aquatic plants contribute to maintaining key functions and related biodiversity in freshwater ecosystems, and to provide the needs of human societies. The way the ecological niches of macrophytes are determined by abiotic filters and biotic ones is considered. A simple, broadly applicable model of

  16. Checklist of the Aquatic Macrophytes

    African Journals Online (AJOL)

    Professor, Department of Plant Science, Obafemi Awolowo University, Ile Ife, Osun State. 3. Professor, Department of Botany, Obafemi Awolowo University, Ile Ife, Osun State. (Received: October, 2010; Accepted: May, 2011). The occurrence and diversity of aquatic macrophytes on Jebba Lake were documented during the ...

  17. Biomimetic aquatic hair sensors design

    NARCIS (Netherlands)

    Izadi, N.; Krijnen, Gijsbertus J.M.; Wiegerink, Remco J.

    2008-01-01

    “Touch in distance��? is a term that has been used to describe function of lateral line of the fish as well as other aquatic animals that use mechanoreceptor hairs to discern spatial information about their immediate environment. In this work we address the requirements for fabrication technology of

  18. Treatment of wastewater and restoration of aquatic systems through an eco-technology based constructed treatment wetlands - a successful experience in Central India.

    Science.gov (United States)

    Billore, S K; Sharma, J K; Singh, N; Ram, H

    2013-01-01

    In the last couple of decades constructed wetlands (CWs) have drawn considerable interest in Central India. CWs offer an effective means of integrating wastewater treatment and resource enhancement, often at competitive cost in comparison to conventional wastewater treatments, with additional benefits of Green Urban Landscaping and wildlife habitat. This paper describes treatment performances and the design of some Sub Surface Flow CWs (SSFCW) and Artificial Floating Islands (AFIs) in Central India. Central Indian CWs show significant pollution reduction load for total suspended solids (TSS) (62-82%), biochemical oxygen demand (BOD) (40-75%), NH(4)-N (67-78%) and total Kjeldahl nitrogen (TKN) (59-78%). Field scale SSFCWs installed so far in Central India are rectangular, earthen, single/multiple celled having similar depths of 0.60-0.90 m, hydraulic retention capacity 18-221 m(3) with effective size 41.8-1,050 m(2). The major components of CWs incorporate puddled bottom/side walls, sealed with impermeable low-density polyethylene, a bed of locally available river gravel planted with Phragmites karka, and an inlet distribution and outlet collection system. A new variant on CWs are AFIs working under hydroponics. The field scale experimental AFIs installed in-situ in a slowly flowing local river were composed of hollow bamboo, a bed of coconut coir, floating arrangements and Phragmites karka as nutrient stripping plant species. The AFIs polish the aquatic system by reducing 46.6% of TSS, 45-55% of NH(4)-N, 33-45% of NO(3)-N, 45-50% of TKN and 40-50% of BOD. The study established that there is a need for further research and sufficient data to assist the development of CWs by instilling confidence in policymakers, planners and in the public.

  19. A comparison of POPs bioaccumulation in Eisenia fetida in natural and artificial soils and the effects of aging

    International Nuclear Information System (INIS)

    Vlčková, Klára; Hofman, Jakub

    2012-01-01

    The close relationship between soil organic matter and the bioavailability of POPs in soils suggests the possibility of using it for the extrapolation between different soils. The aim of this study was to prove that TOC content is not a single factor affecting the bioavailability of POPs and that TOC based extrapolation might be incorrect, especially when comparing natural and artificial soils. Three natural soils with increasing TOC and three artificial soils with TOC comparable to these natural soils were spiked with phenanthrene, pyrene, lindane, p,p′-DDT, and PCB 153 and studied after 0, 14, 28, and 56 days. At each sampling point, total soil concentration and bioaccumulation in earthworms Eisenia fetida were measured. The results showed different behavior and bioavailability of POPs in natural and artificial soils and apparent effects of aging on these differences. Hence, direct TOC based extrapolation between various soils seems to be limited. - Highlights: ► Artificial and natural soils with the same TOC content were used in this study. ► BAF and total concentration of five POPs were measured during 56 days after spiking. ► Bioaccumulation was significantly lower in NS than in AS with the same TOC. ► Direct extrapolation according to TOC was possible for soils with levels >10%. ► Microbial degradation probably influences PAHs bioavailability. - Organic matter is an important factor in the bioavailability of POPs in soils, but direct extrapolation based on TOC content might lead to incorrect results in risk assessment.

  20. Monitoring aquatic environments with autonomous systems

    DEFF Research Database (Denmark)

    Christensen, Jesper Philip Aagaard

    High frequency measurements from autonomous sensors have become a widely used tool among aquatic scientists. This report focus primarily on the use of ecosystem metabolism based on high frequency oxygen measurements and relates the calculations to spatial variation, biomass of the primary producers...... and in shallow systems the macrophytes can completely dominate primary production. This was despite the fact that the plants in the studied system were light-saturated most of the light hours and occasionally carbon limited. It was also shown that the GPP and the total phytoplankton biomass in a nutrient...

  1. Optimization of methodology by X-ray fluorescence for the metals determination in aquatic plants of the high course of the Lerma river; Optimizacion de la metodologia por fluorescencia de rayos X para la determinacion de metales en plantas acuaticas del curso alto del Rio Lerma

    Energy Technology Data Exchange (ETDEWEB)

    Albino P, E.

    2015-07-01

    The high course of the Lerma river has a pollution problem in its hydrological system due to discharges of urban wastewater and industrial areas; the pollutants that affect the hydrological system are metals, which are absorbed by living organisms and probably incorporated into the food chain. For this reason in this work the technique of X-ray fluorescence total reflection was applied in six species of aquatic plants that grow in the high course of the Lerma river: Arroyo Mezapa (Eichhornia crassipes, Juncus efusus, Hydrocotyle, Schoenoplectus validus) Ameyalco river (Lemna gibba) and Atarasquillo river (Berula erecta) in order to evaluate the metals concentration (Cr, Mn, Fe, Ni, Cu, Zn and Pb) as well as the translocation factor and bioaccumulation factor for each aquatic species. According to the results, was observed that the highest concentration of metals is located in the deeper parts; metals which present a significant concentration are Mn and Fe in the six species of aquatic plants. According to the translocation factor the species having a higher translocation of metals are: Juncus efusus in Mn (1.19 mg/L) and Zn (1.31 mg/L), Hydrocotyle (1.14 mg/L), the species Eichhornia crassipes not show translocation. For bioaccumulation factor, was observed that the most bioaccumulation of metals is found in the soluble fraction of the six species of aquatic plants, especially Fe followed of Cu and Zn. Also was considered that the Berula erecta plant had a higher bioaccumulation of metals such as Cr, Mn, Fe, Cu and Zn so it can be considered as a hyper-accumulating species of these elements. With the results can be considered that the technique of X-ray fluorescence total reflection is 95% reliable to determine the concentration of metals within the structures of the aquatic plants used for this study. (Author)

  2. Evaluation of PCB bioaccumulation by Lumbriculus variegatus in field-collected sediments

    Science.gov (United States)

    Sediment bioaccumulation tests with Lumbriculus variegatus were performed on polychlorinated biphenyl (PCBs) contaminated sediment samples from the Hudson, Grasse, and Fox Rivers Superfund sites with concurrent measurement of PCB concentrations in sediment interstitial water. Th...

  3. Late Cretaceous Aquatic Plant World in Patagonia, Argentina

    Science.gov (United States)

    Cúneo, N. Rubén; Gandolfo, María A.; Zamaloa, María C.; Hermsen, Elizabeth

    2014-01-01

    In this contribution, we describe latest Cretaceous aquatic plant communities from the La Colonia Formation, Patagonia, Argentina, based on their taxonomic components and paleoecological attributes. The La Colonia Formation is a geological unit deposited during a Maastrichtian-Danian transgressive episode of the South Atlantic Ocean. This event resulted in the deposition of a series of fine-grained sediments associated with lagoon systems occurring along irregular coastal plains in northern Patagonia. These deposits preserved a diverse biota, including aquatic and terrestrial plants and animals. The aquatic macrophytes can be broadly divided into two groups: free-floating and rooted, the latter with emergent or floating leaves. Free-floating macrophytes include ferns in Salviniaceae (Azolla and Paleoazolla) and a monocot (Araceae). Floating microphytes include green algae (Botryoccocus, Pediastrum and Zygnemataceae). Among the rooted components, marsileaceous water ferns (including Regnellidium and an extinct form) and the eudicot angiosperm Nelumbo (Nelumbonaceae) are the dominant groups. Terrestrial plants occurring in the vegetation surrounding the lagoons include monocots (palms and Typhaceae), ferns with affinities to Dicksoniaceae, conifers, and dicots. A reconstruction of the aquatic plant paleocommuniy is provided based on the distribution of the fossils along a freshwater horizon within the La Colonia Formation. This contribution constitutes the first reconstruction of a Cretaceous aquatic habitat for southern South America. PMID:25148081

  4. Late cretaceous aquatic plant world in Patagonia, Argentina.

    Directory of Open Access Journals (Sweden)

    N Rubén Cúneo

    Full Text Available In this contribution, we describe latest Cretaceous aquatic plant communities from the La Colonia Formation, Patagonia, Argentina, based on their taxonomic components and paleoecological attributes. The La Colonia Formation is a geological unit deposited during a Maastrichtian-Danian transgressive episode of the South Atlantic Ocean. This event resulted in the deposition of a series of fine-grained sediments associated with lagoon systems occurring along irregular coastal plains in northern Patagonia. These deposits preserved a diverse biota, including aquatic and terrestrial plants and animals. The aquatic macrophytes can be broadly divided into two groups: free-floating and rooted, the latter with emergent or floating leaves. Free-floating macrophytes include ferns in Salviniaceae (Azolla and Paleoazolla and a monocot (Araceae. Floating microphytes include green algae (Botryoccocus, Pediastrum and Zygnemataceae. Among the rooted components, marsileaceous water ferns (including Regnellidium and an extinct form and the eudicot angiosperm Nelumbo (Nelumbonaceae are the dominant groups. Terrestrial plants occurring in the vegetation surrounding the lagoons include monocots (palms and Typhaceae, ferns with affinities to Dicksoniaceae, conifers, and dicots. A reconstruction of the aquatic plant paleocommuniy is provided based on the distribution of the fossils along a freshwater horizon within the La Colonia Formation. This contribution constitutes the first reconstruction of a Cretaceous aquatic habitat for southern South America.

  5. Visualizing aquatic bacteria by light and transmission electron microscopy.

    Science.gov (United States)

    Silva, Thiago P; Noyma, Natália P; Duque, Thabata L A; Gamalier, Juliana P; Vidal, Luciana O; Lobão, Lúcia M; Chiarini-Garcia, Hélio; Roland, Fábio; Melo, Rossana C N

    2014-01-01

    The understanding of the functional role of aquatic bacteria in microbial food webs is largely dependent on methods applied to the direct visualization and enumeration of these organisms. While the ultrastructure of aquatic bacteria is still poorly known, routine observation of aquatic bacteria by light microscopy requires staining with fluorochromes, followed by filtration and direct counting on filter surfaces. Here, we used a new strategy to visualize and enumerate aquatic bacteria by light microscopy. By spinning water samples from varied tropical ecosystems in a cytocentrifuge, we found that bacteria firmly adhere to regular slides, can be stained by fluorochoromes with no background formation and fast enumerated. Significant correlations were found between the cytocentrifugation and filter-based methods. Moreover, preparations through cytocentrifugation were more adequate for bacterial viability evaluation than filter-based preparations. Transmission electron microscopic analyses revealed a morphological diversity of bacteria with different internal and external structures, such as large variation in the cell envelope and capsule thickness, and presence or not of thylakoid membranes. Our results demonstrate that aquatic bacteria represent an ultrastructurally diverse population and open avenues for easy handling/quantification and better visualization of bacteria by light microscopy without the need of filter membranes.

  6. BIOACCUMULATION AND DEPURATION STUDIES OF LEAD NITRATE ON ECONOMICALLY IMPORTANT SHRIMP PENAEOUS MONODON

    OpenAIRE

    S.Palani Kumar; A.S.Sharadhamma

    2013-01-01

    Current study of Bioaccumulation and Depuration of Lead nitrate on marine shrimp Penaeous monodon shows Lead nitrate accumulation more in hepatopancreas compared to muscle and the depuration level of heavy metal Lead nitrate was more through hepatopancreas comparing to muscle tissues, when comparing to the control animals.This shows the major role of Hepatopacreas in Bioaccumulation and depuration in this study on muscle tissues and hepatopancreas tissues

  7. The Dessau workshop on bioaccumulation: state of the art, challenges and regulatory implications.

    Science.gov (United States)

    Treu, Gabriele; Drost, Wiebke; Jöhncke, Ulrich; Rauert, Caren; Schlechtriem, Christian

    2015-01-01

    Bioaccumulation plays a vital role in understanding the fate of a substance in the environment and is key to the regulation of chemicals in several jurisdictions. The current assessment approaches commonly use the octanol-water partition coefficient (log K OW ) as an indicator for bioaccumulation and the bioconcentration factor (BCF) as a standard criterion to identify bioaccumulative substances show limitations. The log K OW does not take into account active transport phenomena or special structural properties (e.g., amphiphilic substances or dissociating substances) and therefore additional screening criteria are required. Regulatory BCF studies are so far restricted to fish and uptake through the gills. Studies on (terrestrial) air-breathing organisms are missing. Though there are alternative tests such as the dietary exposure bioaccumulation fish test described in the recently revised OECD test guideline 305, it still remains unclear how to deal with results of alternative tests in regulatory decision-making processes. A substantial number of bioaccumulation fish tests are required in regulation. The development of improved test systems following the 3R principles, namely to replace, reduce and refine animal testing, is thus required. All these aspects stress the importance to further develop the assessment of bioaccumulation. The Dessau Workshop on Bioaccumulation which was held from June 26th to 27th 2014, in Dessau, Germany, provided a comprehensive overview of the state of the art of bioaccumulation assessment, provided insights into the problems and challenges addressed by the regulatory authorities and described new research concepts and their regulatory implications. The event was organised by UBA (Dessau, Germany) and Fraunhofer IME (Schmallenberg, Germany). About 50 participants from industry, regulatory bodies and academia listened to 14 lectures on selected topics and joined the plenary discussions.

  8. Predicting Hydrologic Function With Aquatic Gene Fragments

    Science.gov (United States)

    Good, S. P.; URycki, D. R.; Crump, B. C.

    2018-03-01

    Recent advances in microbiology techniques, such as genetic sequencing, allow for rapid and cost-effective collection of large quantities of genetic information carried within water samples. Here we posit that the unique composition of aquatic DNA material within a water sample contains relevant information about hydrologic function at multiple temporal scales. In this study, machine learning was used to develop discharge prediction models trained on the relative abundance of bacterial taxa classified into operational taxonomic units (OTUs) based on 16S rRNA gene sequences from six large arctic rivers. We term this approach "genohydrology," and show that OTU relative abundances can be used to predict river discharge at monthly and longer timescales. Based on a single DNA sample from each river, the average Nash-Sutcliffe efficiency (NSE) for predicted mean monthly discharge values throughout the year was 0.84, while the NSE for predicted discharge values across different return intervals was 0.67. These are considerable improvements over predictions based only on the area-scaled mean specific discharge of five similar rivers, which had average NSE values of 0.64 and -0.32 for seasonal and recurrence interval discharge values, respectively. The genohydrology approach demonstrates that genetic diversity within the aquatic microbiome is a large and underutilized data resource with benefits for prediction of hydrologic function.

  9. Aquatic Plant Control Research Program. Allelopathic Aquatic Plants for Aquatic Plant Management: A Feasibility Study

    Science.gov (United States)

    1989-10-01

    1978. " Ecotoxicology of aquatic plant communi- ties," Principles of Ecotoxicology , SCOPE Report 12, Chapter 11, pp 239-255. [Heavy metals, Pollutants...Phragmites communis and Equisetum limosum were cultivated . They found plant-plant influences depend on soil type. Typha latifolia, S. A2 lacustris, and

  10. Apparent bioaccumulation of cylindrospermopsin and paralytic shellfish toxins by finfish in Lake Catemaco (Veracruz, Mexico).

    Science.gov (United States)

    Berry, J P; Jaja-Chimedza, A; Dávalos-Lind, L; Lind, O

    2012-01-01

    Compared to the well-characterized health threats associated with contamination of fish and shellfish by algal toxins in marine fisheries, the toxicological relevance of the bioaccumulation of toxins from cyanobacteria (blue-green algae), as the primary toxigenic algae in freshwater systems, remains relatively unknown. Lake Catemaco (Veracruz, Mexico) is a small, tropical lake system specifically characterized by a year-round dominance of the known toxigenic cyanobacterial genus, Cylindrospermopsis, and by low, but detectable, levels of both a cyanobacterial hepatotoxin, cylindrospermopsin (CYN), and paralytic shellfish toxins (PSTs). In the present study, we evaluated, using enzyme-linked immunoassay (ELISA), levels of both toxins in several species of finfish caught and consumed locally in the region to investigate the bioaccumulation of, and possible health threats associated with, these toxins as potential foodborne contaminants. ELISA detected levels of both CYN and PSTs in fish tissues from the lake. Levels were generally low (≤ 1 ng g(-1) tissue); however, calculated bioaccumulation factors (BAFs) indicate that toxin levels exceed the rather low levels in the water column and, consequently, indicated bioaccumulation (BAF >1). A reasonable correlation was observed between measured bioaccumulation of CYN and PSTs, possibly indicating a mutual source of both toxins, and most likely cells of Cylindrospermopsis, the dominant cyanobacteria in the lake, and a known producer of both metabolites. The potential roles of trophic transport in the system, as well as possible implications for human health with regards to bioaccumulation, are discussed.

  11. Invertebrates in stormwater wet detention ponds - Sediment accumulation and bioaccumulation of heavy metals have no effect on biodiversity and community structure.

    Science.gov (United States)

    Stephansen, Diana Agnete; Nielsen, Asbjørn Haaning; Hvitved-Jacobsen, Thorkild; Pedersen, Morten Lauge; Vollertsen, Jes

    2016-10-01

    The invertebrate diversity in nine stormwater wet detention ponds (SWDP) was compared with the diversity in eleven small shallow lakes in the western part of Denmark. The SWDPs and lakes were chosen to reflect as large a gradient of pollutant loads and urbanization as possible. The invertebrates as well as the bottom sediments of the ponds and shallow lakes were analyzed for copper, iron, zinc, cadmium, chromium, lead, aluminum, nickel, arsenic and the potentially limiting nutrient, phosphorus. The Principal Component Analysis showed that invertebrates in SWDPs and lakes differed with respect to bioaccumulation of these elements, as did the sediments, albeit to a lesser degree. However, the Detrended Correspondence Analysis and the TWINSPAN showed that the invertebrate populations of the ponds and lakes could not be distinguished, with the possible exception of highway ponds presenting a distinct sub-group of wet detention ponds. The SWDPs and shallow lakes studied seemed to constitute aquatic ecosystems of similar taxon richness and composition as did the 11 small and shallow lakes. This indicates that SWDPs, originally constructed for treatment and flood protection purposes, become aquatic environments which play a local role for biodiversity similar to that of natural small and shallow lakes. Copyright © 2016. Published by Elsevier B.V.

  12. Impact of natural organic matter and increased water hardness on DGT prediction of copper bioaccumulation by yellow lampmussel (Lampsilis cariosa) and fathead minnow (Pimephales promelas).

    Science.gov (United States)

    Philipps, Rebecca R; Xu, Xiaoyu; Mills, Gary L; Bringolf, Robert B

    2018-06-01

    We conducted an exposure experiment with Diffusive Gradients in Thin- Films (DGT), fathead minnow (Pimephales promelas), and yellow lampmussel (Lampsilis cariosa) to estimate bioavailability and bioaccumulation of Cu. We hypothesized that Cu concentrations measured by DGT can be used to predict Cu accumulation in aquatic animals and alterations of water chemistry can affect DGT's predict ability. Three water chemistries (control soft water, hard water, and addition of natural organic matter (NOM)) and three Cu concentrations (0, 30, and 60 μg/L) were selected, so nine Cu-water chemistry combinations were used. NOM addition treatments resulted in decreased concentrations of DGT-measured Cu and free Cu ion predicted by Biotic Ligand Model (BLM). Both hard water and NOM addition treatments had reduced concentrations of Cu ion and Cu-dissolved organic matter complexes compared to other treatments. DGT-measured Cu concentrations were linearly correlated to fish accumulated Cu, but not to mussel accumulated Cu. Concentrations of bioavailable Cu predicted by BLM, the species complexed with biotic ligands of aquatic organisms and, was highly correlated to DGT-measured Cu. In general, DGT-measured Cu fit Cu accumulations in fish, and this passive sampling technique is acceptable at predicting Cu concentrations in fish in waters with low NOM concentrations. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Uptake and elimination kinetics of perfluoroalkyl substances in submerged and free-floating aquatic macrophytes: Results of mesocosm experiments with Echinodorus horemanii and Eichhornia crassipes.

    Science.gov (United States)

    Pi, N; Ng, J Z; Kelly, B C

    2017-06-15

    Studies investigating the bioaccumulation behavior of perfluoroalkyl substances (PFASs) in aquatic macrophytes are limited. The present study involved controlled mesocosm experiments to assess uptake and elimination rate constants (k u, k e ), bioconcentration factors (BCFs) and translocation factors (TFs) of several perfluoroalkyl carboxylic acids (PFCAs) and perfluoroalkane sulfonic acids (PFSAs) in two aquatic plant species, including one submerged species (Echinodorus horemanii) and one free-floating species (Eichhornia crassipes). The results indicated all PFASs were readily accumulated in these aquatic macrophytes. k u and BCFs increased with increasing perfluoroalkyl chain length. For PFCAs and PFSAs with identical perfluoroalkyl chain length, the corresponding PFSA exhibited higher bioaccumulation potential. On a whole-plant basis, the bioaccumulation potential of PFASs in submerged and free-floating macrophytes were comparable, indicating sorption to plant biomass is similar in the different species. Conversely, when considering accumulation in foliage, BCFs in the free-floating macrophyte were substantially lower compared to submerged species, especially for longer-chain PFASs. Compounds with shorter perfluoroalkyl chain length (PFBS, PFPeA and PFHxA) exhibited preferential translocation to leaf tissue (TFs >1). BCFs exhibited a sigmoidal relationship with pefluoroalkyl chain length, membrane-water distribution coefficients (D mw ), protein-water distribution coefficients (D pw ) and organic-water partition coefficients (K oc ). For these trends, maximum BCF values were exhibited by long-chain PFCAs, with a log D mw , log D pw and log K oc of 6.47, 5.72 and 5.04, respectively. These findings are useful for future design and implementation of phytoremediation systems, as well for future develop of mechanistic models for predicting the environmental fate and distribution of these contaminants of concern. Copyright © 2017. Published by Elsevier Ltd.

  14. Faunistic Study of the Aquatic Arthropods in a Tourism Area in Northern Iran.

    Science.gov (United States)

    Shaeghi, Mansoureh; Dehghan, Hossein; Pakdad, Kamran; Nikpour, Fatemeh; Absavaran, Azad; Sofizadeh, Aioub; Akhavan, Amir Ahmad; Vatandoost, Hassan; Aghai-Afshar, Abbass

    2017-06-01

    Aquatic insects are very abundant and divers groups of insects that are associated with an aquatic or semiaquatic environment in one or more of their life stages. These insects have been, in some cases, well studied because they are vectors of several diseases. This is the first comprehensive faunistic study of aquatic insects from Babol County. The results may provide basic data for further taxonomic and ecological studies of aquatic insects as biological control agent or classification of water quality for the country. The specimens were collected using different methods including: D-frame net collector, standard mosquito dipper (350ml), Sweep-Netting and plastic pipette. Sampling carried out in different part of breading places in several times. During this study a total of 196 aquatic specimens were collected from different habitats and were morphologically identified including 18 families classified in 6 orders: Diptera, Trichoptera, Ephemeroptera, Plecoptera, Hemiptera and Odonata. Babol and Amol district in Mazandaran Province are located in humid climate regions with suitable ecological factors of humidity, moderate temperature and the variety of plant species. There are different species of aquatic insects in different habitats. The results will provide information for biodeveristy, species richness, their role for biological control as well as calcification of rivers based on abundance of aquatic insects. Therefore the understanding of ecological specifications of aquatic insects could provide a clue for further Arthropod-borne disease control. Additionally aquatic insect could be used for classification of water bodies.

  15. Development of a Methodology for the Derivation of Aquatic Plant Water Quality Criteria

    Science.gov (United States)

    Aquatic plants form the base of most aquatic food chains, comprise biodiversity-building habitats and are functionally important in carbon assimilation and oxygen evolution. The USEPA, as stated in the Clean Water Act, establishes criterion values for various pollutants found in ...

  16. Characterization factors for thermal pollution in freshwater aquatic environments.

    Science.gov (United States)

    Verones, Francesca; Hanafiah, Marlia Mohd; Pfister, Stephan; Huijbregts, Mark A J; Pelletier, Gregory J; Koehler, Annette

    2010-12-15

    To date the impact of thermal emissions has not been addressed in life cycle assessment despite the narrow thermal tolerance of most aquatic species. A method to derive characterization factors for the impact of cooling water discharges on aquatic ecosystems was developed which uses space and time explicit integration of fate and effects of water temperature changes. The fate factor is calculated with a 1-dimensional steady-state model and reflects the residence time of heat emissions in the river. The effect factor specifies the loss of species diversity per unit of temperature increase and is based on a species sensitivity distribution of temperature tolerance intervals for various aquatic species. As an example, time explicit characterization factors were calculated for the cooling water discharge of a nuclear power plant in Switzerland, quantifying the impact on aquatic ecosystems of the rivers Aare and Rhine. The relative importance of the impact of these cooling water discharges was compared with other impacts in life cycle assessment. We found that thermal emissions are relevant for aquatic ecosystems compared to other stressors, such as chemicals and nutrients. For the case of nuclear electricity investigated, thermal emissions contribute between 3% and over 90% to Ecosystem Quality damage.

  17. Ra-226 bioaccumulation and growth indices in fish.