WorldWideScience

Sample records for base metal-palladium catalytic

  1. Novel Base Metal-Palladium Catalytic Diesel Filter Coating with NO2 Reducing Properties

    DEFF Research Database (Denmark)

    Johansen, K.; Dahl, S.; Mogensen, G.;

    2007-01-01

    price structure. The novel base metal/palladium catalytic coat has been applied on commercial silicon carbide wall flow diesel filters and tested in an engine test bench. Results from engine bench tests concerning soot combustion, HC-, CO-, NO2- removal with the novel coat will are compared to present...

  2. Structure-based identification of catalytic residues.

    Science.gov (United States)

    Yahalom, Ran; Reshef, Dan; Wiener, Ayana; Frankel, Sagiv; Kalisman, Nir; Lerner, Boaz; Keasar, Chen

    2011-06-01

    The identification of catalytic residues is an essential step in functional characterization of enzymes. We present a purely structural approach to this problem, which is motivated by the difficulty of evolution-based methods to annotate structural genomics targets that have few or no homologs in the databases. Our approach combines a state-of-the-art support vector machine (SVM) classifier with novel structural features that augment structural clues by spatial averaging and Z scoring. Special attention is paid to the class imbalance problem that stems from the overwhelming number of non-catalytic residues in enzymes compared to catalytic residues. This problem is tackled by: (1) optimizing the classifier to maximize a performance criterion that considers both Type I and Type II errors in the classification of catalytic and non-catalytic residues; (2) under-sampling non-catalytic residues before SVM training; and (3) during SVM training, penalizing errors in learning catalytic residues more than errors in learning non-catalytic residues. Tested on four enzyme datasets, one specifically designed by us to mimic the structural genomics scenario and three previously evaluated datasets, our structure-based classifier is never inferior to similar structure-based classifiers and comparable to classifiers that use both structural and evolutionary features. In addition to the evaluation of the performance of catalytic residue identification, we also present detailed case studies on three proteins. This analysis suggests that many false positive predictions may correspond to binding sites and other functional residues. A web server that implements the method, our own-designed database, and the source code of the programs are publicly available at http://www.cs.bgu.ac.il/∼meshi/functionPrediction. PMID:21491495

  3. Effects of nanosized metallic palladium loading and calcination on characteristics of composite silica

    Institute of Scientific and Technical Information of China (English)

    吴玉程; 吴侠; 李广海; 张立德

    2003-01-01

    In order to investigate the effects of nanosized metallic palladium loading and calcination on the characteristics of composite silica,the silica was prepared by sol-gel technique,leading to an amorphous solid with mesoporosity,and the pore size distribution is narrow,centered at 3-5 nm.The composite silica was formed by impregnating palladium precursor into the porous network with sequel calcination in hydrogen.The results show that the nanosized palladium as guest phase in the composite silica is subjected to the mesoporous structure and calcination,resulting in the changes of optical adsorption that red-shifted to higher wavelength with the palladium loading and the heating temperature.The tailoring of the optical properties can be ascribed to the effect of the nanosized metal particles and interactions occurred between palladium and silica.

  4. EFFECTS OF FINELY DISPERSED METALLIC PALLADIUM ON MICROSTRUCTURE AND PROPERTIES OF NANOCOMPOSITES PRODUCED BY SOL-GEL TECHNIQUE

    Institute of Scientific and Technical Information of China (English)

    Yucheng Wu; Yong Zhang; Lide Zhang

    2004-01-01

    Nanosized palladium particles were incorporated into mesoporous silica matrix to obtain nanocomposites using the sol-gel technique. Effects of the finely dispersed metallic palladium on the microstructure and properties of the nanocomposites were investigated. By means of X-ray diffraction and optical absorption, it was found that palladium particles were 5~9 nm in diameter and their uniform dispersion in the mesoporous silica depended on both the content of the palladium and the structural features of the silica matrix. The results showed that the mixing method of preparation led to wider size distribution of the nanosized particles as compared to the immersion method, but dispersed degree was reduced. Although the incorporation of nanosized palladium particles could not substantially induce significant structural changes of the matrix, the apparent red-shifted optical absorptions for the nanocomposites were observed as compared to the parent monolithic silica, particularly with increase in palladium loading and calcination temperature.

  5. Catalytic flash pyrolysis of oil-impregnated-wood and jatropha cake using sodium based catalysts

    NARCIS (Netherlands)

    Ali Imran, A.; Bramer, E.A.; Seshan, K.; Brem, G.

    2016-01-01

    Catalytic pyrolysis of wood with impregnated vegetable oil was investigated and compared with catalytic pyrolysis of jatropha cake making use of sodium based catalysts to produce a high quality bio-oil. The catalytic pyrolysis was carried out in two modes: in-situ catalytic pyrolysis and post treatm

  6. Catalytic Transformation of Ethylbenzene over Y-Zeolite-based Catalysts

    KAUST Repository

    Al-Khattaf, Sulaiman

    2008-11-19

    Catalytic transformation of ethylbenzene (EB) has been investigated over ultrastable Y (USY)-zeolite-based catalysts in a novel riser simulator at different operating conditions. The effect of reaction conditions on EB conversion is reported. The USY catalyst (FCC-Y) was modified by steaming to form a significantly lower acidity catalyst (FCC-SY). The current study shows that the FCC-SY catalyst favors EB disproportionation more than cracking. A comparison has been made between the results of EB conversion over the lowly acidic catalyst (FCC-SY) and the highly acidic catalyst (FCC-Y) under identical conditions. It was observed that increase in catalyst acidity favored cracking of EB at the expense of disproportionation. Kinetic parameters for EB disappearance during disproportionation reaction over the FCC-SY catalyst were calculated using the catalyst activity decay function based on time on stream (TOS). © 2008 American Chemical Society.

  7. MEMS-based fuel cells with integrated catalytic fuel processor and method thereof

    Science.gov (United States)

    Jankowski, Alan F.; Morse, Jeffrey D.; Upadhye, Ravindra S.; Havstad, Mark A.

    2011-08-09

    Described herein is a means to incorporate catalytic materials into the fuel flow field structures of MEMS-based fuel cells, which enable catalytic reforming of a hydrocarbon based fuel, such as methane, methanol, or butane. Methods of fabrication are also disclosed.

  8. Graphene-based materials in catalytic wet peroxide oxidation

    OpenAIRE

    Gomes, Helder; Ribeiro, Rui; Pastrana-Martínez, Luisa; Figueiredo, José; Faria, Joaquim; Silva, Adrián

    2014-01-01

    In catalytic wet peroxide oxidation (CWPO),an advanced oxidation process, hydrogen peroxide (H2O2) is decomposed catalytically giving rise to hydroxyl radicals (HO•).These radicals, exhibiting high oxidizing potential, serve as effective and non selective species for the degradation of several organic pollutants in liquid phase. Since the report of Lücking et al. [1], carbon materials have been explored as catalysts for CWPO[2]. Recent reports address process intensification issues, br...

  9. Influence of physicochemical treatments on iron-based spent catalyst for catalytic oxidation of toluene.

    Science.gov (United States)

    Kim, Sang Chai; Shim, Wang Geun

    2008-06-15

    The catalytic oxidation of toluene was studied over an iron-based spent and regenerated catalysts. Air, hydrogen, or four different acid solutions (oxalic acid (C2H2O4), citric acid (C6H8O7), acetic acid (CH3COOH), and nitric acid (HNO3)) were employed to regenerate the spent catalyst. The properties of pretreated spent catalyst were characterized by the Brunauer Emmett Teller (BET), inductively coupled plasma (ICP), temperature programmed reduction (TPR), and X-ray diffraction (XRD) analyses. The air pretreatment significantly enhanced the catalytic activity of the spent catalyst in the pretreatment temperature range of 200-400 degrees C, but its catalytic activity diminished at the pretreatment temperature of 600 degrees C. The catalytic activity sequence with respect to the air pretreatment temperatures was 400 degrees C>200 degrees C>parent>600 degrees C. The TPR results indicated that the catalytic activity was correlated with both the oxygen mobility and the amount of available oxygen on the catalyst. In contrast, the hydrogen pretreatment had a negative effect on the catalytic activity, and toluene conversion decreased with increasing pretreatment temperatures (200-600 degrees C). The XRD and TPR results confirmed the formation of metallic iron which had a negative effect on the catalytic activity with increasing pretreatment temperature. The acid pretreatment improved the catalytic activity of the spent catalyst. The catalytic activity sequence with respect to different acids pretreatment was found to be oxalic acid>citric acid>acetic acid>or=nitric acid>parent. The TPR results of acid pretreated samples showed an increased amount of available oxygen which gave a positive effect on the catalytic activity. Accordingly, air or acid pretreatments were more promising methods of regenerating the iron-based spent catalyst. In particular, the oxalic acid pretreatment was found to be most effective in the formation of FeC2O4 species which contributed highly to the

  10. Influence of physicochemical treatments on iron-based spent catalyst for catalytic oxidation of toluene

    International Nuclear Information System (INIS)

    The catalytic oxidation of toluene was studied over an iron-based spent and regenerated catalysts. Air, hydrogen, or four different acid solutions (oxalic acid (C2H2O4), citric acid (C6H8O7), acetic acid (CH3COOH), and nitric acid (HNO3)) were employed to regenerate the spent catalyst. The properties of pretreated spent catalyst were characterized by the Brunauer Emmett Teller (BET), inductively coupled plasma (ICP), temperature programmed reduction (TPR), and X-ray diffraction (XRD) analyses. The air pretreatment significantly enhanced the catalytic activity of the spent catalyst in the pretreatment temperature range of 200-400 deg. C, but its catalytic activity diminished at the pretreatment temperature of 600 deg. C. The catalytic activity sequence with respect to the air pretreatment temperatures was 400 deg. C > 200 deg. C > parent > 600 deg. C. The TPR results indicated that the catalytic activity was correlated with both the oxygen mobility and the amount of available oxygen on the catalyst. In contrast, the hydrogen pretreatment had a negative effect on the catalytic activity, and toluene conversion decreased with increasing pretreatment temperatures (200-600 deg. C). The XRD and TPR results confirmed the formation of metallic iron which had a negative effect on the catalytic activity with increasing pretreatment temperature. The acid pretreatment improved the catalytic activity of the spent catalyst. The catalytic activity sequence with respect to different acids pretreatment was found to be oxalic acid > citric acid > acetic acid ≥ nitric acid > parent. The TPR results of acid pretreated samples showed an increased amount of available oxygen which gave a positive effect on the catalytic activity. Accordingly, air or acid pretreatments were more promising methods of regenerating the iron-based spent catalyst. In particular, the oxalic acid pretreatment was found to be most effective in the formation of FeC2O4 species which contributed highly to the

  11. A new surface catalytic model for silica-based thermal protection material for hypersonic vehicles

    OpenAIRE

    Li Kai; Liu Jun; Liu Weiqiang

    2015-01-01

    Silica-based materials are widely employed in the thermal protection system for hypersonic vehicles, and the investigation of their catalytic characteristics is crucially important for accurate aerothermal heating prediction. By analyzing the disadvantages of Norman’s high and low temperature models, this paper combines the two models and proposes an eight-reaction combined surface catalytic model to describe the catalysis between oxygen and silica surface. Given proper evaluation of the para...

  12. Geopolymer based catalysts-New group of catalytic materials

    Czech Academy of Sciences Publication Activity Database

    Sazama, Petr; Bortnovsky, O.; Dědeček, Jiří; Tvarůžková, Zdenka; Sobalík, Zdeněk

    2011-01-01

    Roč. 164, č. 1 (2011), s. 92-99. ISSN 0920-5861. [Joint International Conference /1./ of the Tokyo Conference on Advanced Catalytic Science and Technology /11./ Asia Pacific Congress on Catalysis /5./. Sapporo, 18.07.2010-23.07.2010] R&D Projects: GA MPO FT-TA4/068; GA AV ČR KAN100400702 Institutional research plan: CEZ:AV0Z40400503 Keywords : geopolymers * redox catalysis * SCR -NOx Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.407, year: 2011

  13. Synthesis of Borohydride and Catalytic Dehydrogenation by Hydrogel Based Catalyst

    Science.gov (United States)

    Boynuegri, Tugba Akkas; Karabulut, Ahmet F.; Guru, Metin

    2016-08-01

    This paper deals with the synthesis of calcium borohydride (Ca(BH4)2) as hydrogen storage material. Calcium chloride salt (CaCl2), magnesium hydride (MgH2), and boron oxide (B2O3) were used as reactants in the mechanochemical synthesis of Ca(BH4)2. The mechanochemical reaction was carried out by means of Spex type ball milling without applying high pressure and temperature. Parametric studies have been established at different reaction times and for different amounts of reactants at a constant ball to powder ratio (BPR) 4:1. The best combination was determined by Fourier Transform Infrared (FT-IR) analysis. According to the FT-IR analysis, reaction time, the first reaction parameter, was found as 1600 min. After the reaction time was fixed at 1600 min, the difference of the B-H peak areas was dependent on the amount of reactant MgH2 that was investigated. The amount of the reactant (MgH2), the second reaction parameter, was measured to be 2.85 times more than the stoichiometric amount of MgH2. According to our previous studies, BPR was selected as 4:1 for all experiments. Samples were prepared in a glove box under argon atmosphere but the time that elapsed for FT-IR analysis highly affected B-H bonds. B-H peak areas clearly decreased with time because of negative effect of ambient atmosphere. A catalyst was prepared by absorbing cobalt fluoride (CoF2) in poly (acrylamide-co-acrylic acid) hydrogel matrices type and its catalytic dehydrogenation performance that has been characterized by the catalytic reaction of sodium borohydride's known hydrogen capacity in an alkaline medium. The metal amount of hydrogel catalyst was determined as 135.82 mg Co by Atomic Absorption Spectroscopy (AAS). The specific dehydrogenation capacity of the Co active compound in the catalyst thanks to catalytic dehydrogenation of commercial sodium borohydride was measured as 1.66 mL H2/mg Co.

  14. Alkali resistivity of Cu based selective catalytic reduction catalysts

    DEFF Research Database (Denmark)

    Putluru, Siva Sankar Reddy; Jensen, Anker Degn; Riisager, Anders;

    2012-01-01

    The deactivation of V2O5–WO3–TiO2, Cu–HZSM5 and Cu–HMOR plate type monolithic catalysts was investigated when exposed to KCl aerosols in a bench-scale reactor. Fresh and exposed catalysts were characterized by selective catalytic reduction (SCR) activity measurements, scanning electron microscope...... catalysts revealed that the potassium salt not only deposited on the catalyst surface, but also penetrated into the catalyst wall. Thus, the K/M ratio (M = V or Cu) was high on V2O5–WO3–TiO2 catalyst and comparatively less on Cu–HZSM5 and Cu–HMOR catalysts. NH3-TPD revealed that the KCl exposed Cu–HZSM5...

  15. Catalytic thermal treatment (catalytic thermolysis) of a rice grain-based biodigester effluent of an alcohol distillery plant.

    Science.gov (United States)

    Prajapati, Abhinesh Kumar; Chaudhari, Parmesh Kumar; Mazumdar, Bidyut; Choudhary, Rumi

    2015-01-01

    The catalytic thermolysis (CT) process is an effective and novel approach to treat rice grain-based biodigester effluent (BDE) of the distillery plant. CT treatment of rice grain-based distillery wastewater was carried out in a 0.5 dm(3) thermolytic batch reactor using different catalysts such as CuO, copper sulphate and ferrous sulphate. With the CuO catalyst, a temperature of 95°C, catalyst loading of 4 g/dm(3) and pH 5 were found to be optimal, obtaining a maximum chemical oxygen demand (COD) and colour removal of 80.4% and 72%, respectively. The initial pH (pHi) was an important parameter to remove COD and colour from BDE. At higher pHi (pH 9.5), less COD and colour reduction were observed. The settling characteristics of CT-treated sludge were also analysed at different temperatures. It was noted that the treated slurry at a temperature of 80°C gave best settling characteristics. Characteristics of residues are also analysed at different pH. PMID:25833556

  16. Catalytic Study of Copper based Catalysts for Steam Reforming of Methanol

    OpenAIRE

    Purnama, H.

    2003-01-01

    The aim of this work is to study the catalytic properties of copper based catalysts used in the steam reforming of methanol. This method is known as one of the most favourable catalytic processes for producing hydrogen on-board. The catalysts investigated in this work are CuO/ZrO2 catalysts, which were prepared using different kinds of preparation methods and a commercial CuO/ZnO/Al2O3 catalyst which was used as a reference. The results of the studies can be divided into three sections: (i) T...

  17. Cross-catalytic peptide nucleic acid (PNA) replication based on templated ligation

    DEFF Research Database (Denmark)

    Singhal, Abhishek; Nielsen, Peter E

    2014-01-01

    We report the first PNA self-replicating system based on template directed cross-catalytic ligation, a process analogous to biological replication. Using two template PNAs and four pentameric precursor PNAs, all four possible carbodiimide assisted amide ligation products were detected and...... identified by HPLC and MALDI-TOF analysis. We conclude that the two template complementary reaction products are generated via cross-catalysis, while the other two self-complementary (and in principle auto-catalytic) products are formed via intra-complex coupling between the two sets of complementary PNA...... precursors. Cross-catalytic product formation followed product inhibited kinetics, but approximately two replication rounds were observed. Analogous but less efficient replication was found for a similar tetrameric system. These results demonstrate that simpler nucleobase replication systems than natural...

  18. Development of a model-based controller for a three-way catalytic converter

    NARCIS (Netherlands)

    Bie, T. de; Balenovic, M.; Backx, T.

    2002-01-01

    The performance of a three-way catalytic converter under transient operation can be improved by controlling the level of oxygen stored on ceria at some optimal level. A model-based controller with the model estimating the level of ceria coverage by oxygen, can achieve this goal. A simple, dynamic mo

  19. Dealloying-based facile synthesis and highly catalytic properties of Au core/porous shell nanoparticles

    Science.gov (United States)

    Kim, Minho; Ko, Sung Min; Nam, Jwa-Min

    2016-06-01

    Porous nanostructures exhibit excellent catalytic properties due to high surface-to-volume ratio, good surface reactivity and various structural features, but controlling the distribution, size, shape and density of pores and structural features of these particles is highly challenging. Herein, we report a tunable dealloying-based facile synthetic strategy to form highly porous Au core/porous shell nanoparticles (CPS NPs) in high yield by selectively dissolving Ag atoms from Au/Au-Ag core/alloy shell NPs. The CPS NPs exhibit a very short induction time, high conversion rate constant, low activation energy and high turnover frequency due to their catalytically active porous shells containing networked thin ligaments, surface defects, ultra-high porosity and photothermal properties. The CPS NPs are more catalytic Au NPs than other reported Au nanostructures, and the strategy and results open avenues in porous nanostructures and nanocatalysts.Porous nanostructures exhibit excellent catalytic properties due to high surface-to-volume ratio, good surface reactivity and various structural features, but controlling the distribution, size, shape and density of pores and structural features of these particles is highly challenging. Herein, we report a tunable dealloying-based facile synthetic strategy to form highly porous Au core/porous shell nanoparticles (CPS NPs) in high yield by selectively dissolving Ag atoms from Au/Au-Ag core/alloy shell NPs. The CPS NPs exhibit a very short induction time, high conversion rate constant, low activation energy and high turnover frequency due to their catalytically active porous shells containing networked thin ligaments, surface defects, ultra-high porosity and photothermal properties. The CPS NPs are more catalytic Au NPs than other reported Au nanostructures, and the strategy and results open avenues in porous nanostructures and nanocatalysts. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr01321j

  20. A selective hydrogen peroxide sensor based on chemiresistive polyaniline nanowires modified with silver catalytic nanoparticles

    International Nuclear Information System (INIS)

    This paper presents a novel method to selectively detect hydrogen peroxide using a chemiresistive polyaniline nanowire network. The polyaniline nanowires modified with silver catalytic nanoparticles were demonstrated to give selective responses to hydrogen peroxide by changing the conductivity of the polyaniline. The proposed mechanism for the selectivity in the H2O2 sensing is based on a catalytic reaction between the silver nanoparticles and the hydrogen peroxide which generates hydroxide ions and water to influence the conductivity of polyaniline. The catalytic effect of the silver nanoparticles was confirmed by characterizing the relationship between the amount of catalysts and the current response. The results indicate that the rate of the catalytic reaction is proportional to the number of silver nanoparticles attached on the surfaces of polyaniline. By observing the conductance change, the developed chemiresistive sensor was able to selectively detect H2O2 while exhibiting minimal response to other chemical species. The objective of this paper is to address the selectivity issue of a chemiresistor by suggesting a catalyst-based selective detection of an analyte for a polyaniline-based chemiresistive sensor. This technology may have potential applications in microscale or microfluidic chemical and biological sensors requiring a selective detection of hydrogen peroxide concentrations. (paper)

  1. Influence of physicochemical treatments on spent palladium based catalyst for catalytic oxidation of VOCs

    International Nuclear Information System (INIS)

    To recycle the spent catalyst for the removal of VOCs, the benzene, toluene, and xylene (BTX) complete oxidations were studied over pretreated palladium based spent catalyst in a fixed bed flow reactor system at atmospheric pressure. Two different pretreatment methods with gas (air and hydrogen) and acid aqueous solution (HCl, H2SO4, HNO3, H3PO4 and CH3COOH) were used to investigate the catalytic activity of spent catalyst. The properties of the spent and pretreated Pd based catalyst were characterized by XRD, BET, TEM, ICP, and XPS. The results of light-off curves indicate that the catalytic activity of toluene oxidation for pretreated samples is in the order of hydrogen > air > HNO3 > CH3COOH > H2SO4 > H3PO4 > HCl. In addition, the air and the acid aqueous pretreated catalyst activities were significantly decreased compared to that of the spent (or parent) catalyst. Moreover, hydrogen pretreated (or reduced) catalysts having mainly metallic form show the best performance in removing the toluene vapours compared to other pretreated samples. The reduction temperature made a significant difference in the catalytic performance of the spent catalyst pretreated with hydrogen. XPS results clearly supported that the palladium state of the spent catalysts pretreated at 300 deg. C was shifted more toward metallic form than other reduced catalysts. Furthermore, the results of a long-term test and catalytic activity of aromatic hydrocarbons also supported that the hydrogen pretreated spent catalyst was a good candidate for removing toxic compounds

  2. Synthesis and catalytic activities of porphyrin-based PCP pincer complexes.

    OpenAIRE

    Fujimoto, Keisuke; Yoneda, Tomoki; Yorimitsu, Hideki; Osuka, Atsuhiro

    2013-01-01

    2,18-Bis(diphenylphosphino)porphyrins undergo peripheral cyclometalation with group 10 transition-metal salts to afford the corresponding porphyrin-based PCP pincer complexes. The porphyrinic plane and the PCP-pincer unit are apparently coplanar, with small strain. The catalytic activities of the porphyrin-based pincer complexes at the periphery were investigated in the allylation of benzaldehyde with allylstannane and in the 1,4-reduction of chalcone to discover the electronic interplay betw...

  3. A new surface catalytic model for silica-based thermal protection material for hypersonic vehicles

    Directory of Open Access Journals (Sweden)

    Li Kai

    2015-10-01

    Full Text Available Silica-based materials are widely employed in the thermal protection system for hypersonic vehicles, and the investigation of their catalytic characteristics is crucially important for accurate aerothermal heating prediction. By analyzing the disadvantages of Norman’s high and low temperature models, this paper combines the two models and proposes an eight-reaction combined surface catalytic model to describe the catalysis between oxygen and silica surface. Given proper evaluation of the parameters according to many references, the recombination coefficient obtained shows good agreement with experimental data. The catalytic mechanisms between oxygen and silica surface are then analyzed. Results show that with the increase of the wall temperature, the dominant reaction contributing to catalytic coefficient varies from Langmuir–Hinshelwood (LH recombination (TW  1350 K. The surface coverage of chemisorption areas varies evidently with the dominant reactions in the high temperature (HT range, while the surface coverage of physisorption areas varies within quite low temperature (LT range (TW < 250 K. Recommended evaluation of partial parameters is also given.

  4. Crystal structure of 2-nitropropane dioxygenase complexed with FMN and substrate. Identification of the catalytic base.

    Science.gov (United States)

    Ha, Jun Yong; Min, Ji Young; Lee, Su Kyung; Kim, Hyoun Sook; Kim, Do Jin; Kim, Kyoung Hoon; Lee, Hyung Ho; Kim, Hye Kyung; Yoon, Hye-Jin; Suh, Se Won

    2006-07-01

    Nitroalkane compounds are widely used in chemical industry and are also produced by microorganisms and plants. Some nitroalkanes have been demonstrated to be carcinogenic, and enzymatic oxidation of nitroalkanes is of considerable interest. 2-Nitropropane dioxygenases from Neurospora crassa and Williopsis mrakii (Hansenula mrakii), members of one family of the nitroalkane-oxidizing enzymes, contain FMN and FAD, respectively. The enzymatic oxidation of nitroalkanes by 2-nitropropane dioxygenase operates by an oxidase-style catalytic mechanism, which was recently shown to involve the formation of an anionic flavin semiquinone. This represents a unique case in which an anionic flavin semiquinone has been experimentally observed in the catalytic pathway for oxidation catalyzed by a flavin-dependent enzyme. Here we report the first crystal structure of 2-nitropropane dioxygenase from Pseudomonas aeruginosa in two forms: a binary complex with FMN and a ternary complex with both FMN and 2-nitropropane. The structure identifies His(152) as the proposed catalytic base, thus providing a structural framework for a better understanding of the catalytic mechanism. PMID:16682407

  5. Regulation of catalytic behaviour of hydrolases through interactions with functionalized carbon-based nanomaterials

    International Nuclear Information System (INIS)

    The interaction of enzymes with carbon-based nanomaterials (CBNs) is crucial for the function of biomolecules and therefore for the design and development of effective nanobiocatalytic systems. In this study, the effect of functionalized CBNs, such as graphene oxide (GO) and multi-wall carbon nanotubes (CNTs), on the catalytic behaviour of various hydrolases of biotechnological interest was monitored and the interactions between CBNs and proteins were investigated. The enzyme–nanomaterial interactions significantly affect the catalytic behaviour of enzymes, resulting in an increase up to 60 % of the catalytic efficiency of lipases and a decrease up to 30 % of the esterase. Moreover, the use of CNTs and GO derivatives, especially those that are amine-functionalized, led to increased thermal stability of most the hydrolases tested. Fluorescence and circular dichroism studies indicated that the altered catalytic behaviour of enzymes in the presence of CBNs arises from specific enzyme–nanomaterial interactions, which can lead to significant conformational changes. In the case of lipases, the conformational changes led to a more active and rigid structure, while in the case of esterases this led to destabilization and unfolding. Kinetic and spectroscopic studies indicated that the extent of the interactions between CBNs and hydrolases can be mainly controlled by the functionalization of nanomaterials than by their geometry.

  6. Pulsed plasma sources for the production of intense ion beams based on catalytic resonance ionization

    International Nuclear Information System (INIS)

    In this paper we describe a technique to produce planar and volumetric ion sources of nearly every element. This technique is based on a generalization of the LIBORS-process (Laser Ionization Based On Resonant Saturation) which because of its similarity to chemical catalytic reactions has been called CATRION (CATalytic Resonance IONization). A vapor containing the desired atomic species is doped with a suitable element processing resonance transitions that can be pumped ro saturation with a laser. By superelastic collisions with the excited atoms and by simulated bremsstrahlung absorption seed electrons are heated. It is the heated electron component which then by collisional processes ionizes the desired atomic species and are multiplied. 41 refs.; 4 figs.; 3 tabs

  7. [Molecular engineering of cellulase catalytic domain based on glycoside hydrolase family].

    Science.gov (United States)

    Zhang, Xiaomei; Li, Dandan; Wang, Lushan; Zhao, Yue; Chen, Guanjun

    2013-04-01

    Molecular engineering of cellulases can improve enzymatic activity and efficiency. Recently, the Carbohydrate-Active enZYmes Database (CAZy), including glycoside hydrolase (GH) families, has been established with the development of Omics and structural measurement technologies. Molecular engineering based on GH families can obviously decrease the probing space of target sequences and structures, and increase the odds of experimental success. Besides, the study of cellulase active-site architecture paves the way toward the explanation of catalytic mechanism. This review focuses on the main GH families and the latest progresses in molecular engineering of catalytic domain. Based on the combination of analysis of a large amount of data in the same GH family and their conservative active-site architecture information, rational design will be an important direction for molecular engineering and promote the rapid development of the conversion of biomass. PMID:23894816

  8. Geopolymers based on spent catalyst residue from a fluid catalytic cracking (FCC) process

    OpenAIRE

    RODRIGUEZ MARTINEZ, ERICH DAVID; Bernal, Susan A.; Provis, John L.; Gehman, John D.; Monzó Balbuena, José Mª; Paya Bernabeu, Jorge Juan; Borrachero Rosado, María Victoria

    2013-01-01

    This paper assesses the use of alkali activation technology in the valorization of a spent fluid catalytic cracking (FCC) catalyst, which is a residue derived from the oil-cracking process, to produce geopolymer binders. In particular, the effects of activation conditions on the structural characteristics of the spent catalyst- based geopolymers are determined. The zeolitic phases present in the spent catalyst are the main phases participating in the geopolymerization reaction, which is ...

  9. Modeling and Model-Based Control of a Three-Way Catalytic Converter

    Energy Technology Data Exchange (ETDEWEB)

    Balenovic, M.

    2002-03-25

    The subject of the research presented in this thesis was the development of new control strategies for automotive three-way catalytic converters in order to fulfill future ultra-low exhaust emission standards. The goal was to develop a model-based control strategy that can reduce the emissions under highly dynamic operation of the process, i.e.city driving. Also a possible improvement of the catalyst light-off (reduction of the temperature needed for the converter to become operational) has been studied. The main contribution of the thesis is the development of a model-based controller on the basis of information extracted from the first principle modeling of the converter. The three main parts of the research were: development of the rigorous first principle model of the catalytic converter; development of the control-oriented model of the catalytic converter and connecting it with the engine model; development and testing of the novel model-based controller by both simulations and experiments.

  10. Selective catalytic reduction of nitrogen oxides from industrial gases by hydrogen or methane

    International Nuclear Information System (INIS)

    This work deals with the selective catalytic reduction of nitrogen oxides (NOx), contained in the effluents of industrial plants, by hydrogen or methane. The aim is to replace ammonia, used as reducing agent, in the conventional process. The use of others reducing agents such as hydrogen or methane is interesting for different reasons: practical, economical and ecological. The catalyst has to convert selectively NO into N2, in presence of an excess of oxygen, steam and sulfur dioxide. The developed catalyst is constituted by a support such as perovskites, particularly LaCoO3, on which are dispersed noble metals (palladium, platinum). The interaction between the noble metal and the support, generated during the activation of the catalyst, allows to minimize the water and sulfur dioxide inhibitor phenomena on the catalytic performances, particularly in the reduction of NO by hydrogen. (O.M.)

  11. Influence of catalyst pretreatments on the catalytic oxidation of toluene over nanostructured platinum based spent catalyst.

    Science.gov (United States)

    Shim, Wang-Geun; Lee, Jae-Wook; Kim, Sang-Chai

    2007-11-01

    In this study, we regenerated a nano-structured platinum based spent catalyst by applying thermal gas and acid pretreatment and examined the influence of treatment on the catalytic oxidation of toluene. The spent catalysts were pretreated with air, hydrogen and six different acid aqueous solutions (HCl, H2SO4, HNO3, H3PO4, CH3COOH and C2H2O4). The physicochemical properties of the parent and its modified catalysts were characterized by XRD, BET, TEM, and ICP. The results of light-off curves showed that air and hydrogen treated catalysts were more active than the parent catalyst. In addition, the catalytic activities of toluene oxidation for acid aqueous treated samples were identical with the order of Pt/Al ratio. PMID:18047055

  12. Influence of physicochemical treatments on spent palladium based catalyst for catalytic oxidation of VOCs.

    Science.gov (United States)

    Kim, Sang Chai; Nahm, Seung Won; Shim, Wang Geun; Lee, Jae Wook; Moon, Hee

    2007-03-01

    To recycle the spent catalyst for the removal of VOCs, the benzene, toluene, and xylene (BTX) complete oxidations were studied over pretreated palladium based spent catalyst in a fixed bed flow reactor system at atmospheric pressure. Two different pretreatment methods with gas (air and hydrogen) and acid aqueous solution (HCl, H(2)SO(4), HNO(3), H(3)PO(4) and CH(3)COOH) were used to investigate the catalytic activity of spent catalyst. The properties of the spent and pretreated Pd based catalyst were characterized by XRD, BET, TEM, ICP, and XPS. The results of light-off curves indicate that the catalytic activity of toluene oxidation for pretreated samples is in the order of hydrogen>air>HNO(3)>CH(3)COOH>H(2)SO(4)>H(3)PO(4)>HCl. In addition, the air and the acid aqueous pretreated catalyst activities were significantly decreased compared to that of the spent (or parent) catalyst. Moreover, hydrogen pretreated (or reduced) catalysts having mainly metallic form show the best performance in removing the toluene vapours compared to other pretreated samples. The reduction temperature made a significant difference in the catalytic performance of the spent catalyst pretreated with hydrogen. XPS results clearly supported that the palladium state of the spent catalysts pretreated at 300 degrees C was shifted more toward metallic form than other reduced catalysts. Furthermore, the results of a long-term test and catalytic activity of aromatic hydrocarbons also supported that the hydrogen pretreated spent catalyst was a good candidate for removing toxic compounds. PMID:16919389

  13. Catalytic wet air oxidation of 2-chlorophenol over sewage sludge-derived carbon-based catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Tu, Yuting [Institut de recherches sur la catalyse et l’environnement de Lyon (IRCELYON), CNRS – Université Claude Bernard Lyon 1, 2 Avenue Albert Einstein, 69626 Villeurbanne Cedex (France); School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275 (China); Xiong, Ya; Tian, Shuanghong [School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275 (China); Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou 510275 (China); Kong, Lingjun [School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275 (China); Descorme, Claude, E-mail: claude.descorme@ircelyon.univ-lyon1.fr [Institut de recherches sur la catalyse et l’environnement de Lyon (IRCELYON), CNRS – Université Claude Bernard Lyon 1, 2 Avenue Albert Einstein, 69626 Villeurbanne Cedex (France)

    2014-07-15

    Highlights: • A sewage sludge derived carbon-supported iron oxide catalyst (FeSC) was prepared. • FeSC exhibited high catalytic activity in the wet air oxidation of 2-chlorophenol. • A strong correlation was observed between the 2-CP conversion, the iron leaching and the pH. • Using an acetate buffer, the iron leaching was suppressed while keeping some catalytic activity. • A simplified reaction pathway was proposed for the CWAO of 2-CP over the FeSC catalyst. - Abstract: A sewage sludge derived carbon-supported iron oxide catalyst (FeSC) was prepared and used in the Catalytic Wet Air Oxidation (CWAO) of 2-chlorophenol (2-CP). The catalysts were characterized in terms of elemental composition, surface area, pH{sub PZC}, XRD and SEM. The performances of the FeSC catalyst in the CWAO of 2-CP was assessed in a batch reactor operated at 120 °C under 0.9 MPa oxygen partial pressure. Complete decomposition of 2-CP was achieved within 5 h and 90% Total Organic Carbon (TOC) was removed after 24 h of reaction. Quite a straight correlation was observed between the 2-CP conversion, the amount of iron leached in solution and the pH of the reaction mixture at a given reaction time, indicating a strong predominance of the homogeneous catalysis contribution. The iron leaching could be efficiently prevented when the pH of the solution was maintained at values higher than 4.5, while the catalytic activity was only slightly reduced. Upon four successive batch CWAO experiments, using the same FeSC catalyst recovered by filtration after pH adjustment, only a very minor catalyst deactivation was observed. Finally, based on all the identified intermediates, a simplified reaction pathway was proposed for the CWAO of 2-CP over the FeSC catalyst.

  14. Catalytic wet air oxidation of 2-chlorophenol over sewage sludge-derived carbon-based catalysts

    International Nuclear Information System (INIS)

    Highlights: • A sewage sludge derived carbon-supported iron oxide catalyst (FeSC) was prepared. • FeSC exhibited high catalytic activity in the wet air oxidation of 2-chlorophenol. • A strong correlation was observed between the 2-CP conversion, the iron leaching and the pH. • Using an acetate buffer, the iron leaching was suppressed while keeping some catalytic activity. • A simplified reaction pathway was proposed for the CWAO of 2-CP over the FeSC catalyst. - Abstract: A sewage sludge derived carbon-supported iron oxide catalyst (FeSC) was prepared and used in the Catalytic Wet Air Oxidation (CWAO) of 2-chlorophenol (2-CP). The catalysts were characterized in terms of elemental composition, surface area, pHPZC, XRD and SEM. The performances of the FeSC catalyst in the CWAO of 2-CP was assessed in a batch reactor operated at 120 °C under 0.9 MPa oxygen partial pressure. Complete decomposition of 2-CP was achieved within 5 h and 90% Total Organic Carbon (TOC) was removed after 24 h of reaction. Quite a straight correlation was observed between the 2-CP conversion, the amount of iron leached in solution and the pH of the reaction mixture at a given reaction time, indicating a strong predominance of the homogeneous catalysis contribution. The iron leaching could be efficiently prevented when the pH of the solution was maintained at values higher than 4.5, while the catalytic activity was only slightly reduced. Upon four successive batch CWAO experiments, using the same FeSC catalyst recovered by filtration after pH adjustment, only a very minor catalyst deactivation was observed. Finally, based on all the identified intermediates, a simplified reaction pathway was proposed for the CWAO of 2-CP over the FeSC catalyst

  15. Electro-catalytic activity of Ni–Co-based catalysts for oxygen evolution reaction

    Energy Technology Data Exchange (ETDEWEB)

    Ju, Hua [School of Urban Rail Transportation, Soochow University, Suzhou 215006 (China); Li, Zhihu [College of Physics, Optoelectronics and Energy, Soochow University, Moye Rd. 688, Suzhou 215006 (China); Xu, Yanhui, E-mail: xuyanhui@suda.edu.cn [College of Physics, Optoelectronics and Energy, Soochow University, Moye Rd. 688, Suzhou 215006 (China)

    2015-04-15

    Graphical abstract: The electro-catalytic activity of different electro-catalysts with a porous electrode structure was compared considering the real electrode area that was evaluated by cyclic measurement. - Highlights: • Ni–Co-based electro-catalysts for OER have been studied and compared. • The real electrode area is calculated and used for assessing the electro-catalysts. • Exchange current and reaction rate constant are estimated. • Ni is more useful for OER reaction than Co. - Abstract: In the present work, Ni–Co-based electrocatalysts (Ni/Co = 0:6, 1:5, 2:4, 3:3, 4:2, 5:1 and 6:0) have been studied for oxygen evolution reaction. The phase structure has been analyzed by X-ray diffraction technique. Based on the XRD and SEM results, it is believed that the synthesized products are poorly crystallized. To exclude the disturbance of electrode preparation technology on the evaluation of electro-catalytic activity, the real electrode surface area is calculated based on the cyclic voltammetry data, assumed that the specific surface capacitance is 60 μF cm{sup −2} for metal oxide electrode. The real electrode area data are used to calculate the current density. The reaction rate constant of OER at different electrodes is also estimated based on basic reaction kinetic equations. It is found that the exchange current is 0.05–0.47 mA cm{sup −2} (the real surface area), and the reaction rate constant has an order of magnitude of 10{sup −7}–10{sup −6} cm s{sup −1}. The influence of the electrode potential on OER rate has been also studied by electrochemical impedance spectroscopy (EIS) technique. Our investigation has shown that the nickel element has more contribution than the cobalt; the nickel oxide has the best electro-catalytic activity toward OER.

  16. Electro-catalytic activity of Ni–Co-based catalysts for oxygen evolution reaction

    International Nuclear Information System (INIS)

    Graphical abstract: The electro-catalytic activity of different electro-catalysts with a porous electrode structure was compared considering the real electrode area that was evaluated by cyclic measurement. - Highlights: • Ni–Co-based electro-catalysts for OER have been studied and compared. • The real electrode area is calculated and used for assessing the electro-catalysts. • Exchange current and reaction rate constant are estimated. • Ni is more useful for OER reaction than Co. - Abstract: In the present work, Ni–Co-based electrocatalysts (Ni/Co = 0:6, 1:5, 2:4, 3:3, 4:2, 5:1 and 6:0) have been studied for oxygen evolution reaction. The phase structure has been analyzed by X-ray diffraction technique. Based on the XRD and SEM results, it is believed that the synthesized products are poorly crystallized. To exclude the disturbance of electrode preparation technology on the evaluation of electro-catalytic activity, the real electrode surface area is calculated based on the cyclic voltammetry data, assumed that the specific surface capacitance is 60 μF cm−2 for metal oxide electrode. The real electrode area data are used to calculate the current density. The reaction rate constant of OER at different electrodes is also estimated based on basic reaction kinetic equations. It is found that the exchange current is 0.05–0.47 mA cm−2 (the real surface area), and the reaction rate constant has an order of magnitude of 10−7–10−6 cm s−1. The influence of the electrode potential on OER rate has been also studied by electrochemical impedance spectroscopy (EIS) technique. Our investigation has shown that the nickel element has more contribution than the cobalt; the nickel oxide has the best electro-catalytic activity toward OER

  17. Direct catalytic transformation of carbohydrates into 5-ethoxymethylfurfural with acid–base bifunctional hybrid nanospheres

    International Nuclear Information System (INIS)

    Graphical abstract: Catalytic conversion of carbohydrates into HMF and EMF in ethanol/DMSO with acid–base bifunctional hybrid nanospheres prepared from self-assembly of corresponding basic amino acids and HPA. - Highlights: • Acid–base bifunctional nanospheres were efficient for production of EMF from sugars. • Synthesis of EMF in a high yield of 76.6% was realized from fructose. • Fructose based biopolymers could also be converted into EMF with good yields. • Ethyl glucopyranoside was produced in good yields from glucose in ethanol. - Abstract: A series of acid–base bifunctional hybrid nanospheres prepared from the self-assembly of basic amino acids and phosphotungstic acid (HPA) with different molar ratios were employed as efficient and recyclable catalysts for synthesis of liquid biofuel 5-ethoxymethylfurfural (EMF) from various carbohydrates. A high EMF yield of 76.6%, 58.5%, 42.4%, and 36.5% could be achieved, when fructose, inulin, sorbose, and sucrose were used as starting materials, respectively. Although, the acid–base bifunctional nanocatalysts were inert for synthesis of EMF from glucose based carbohydrates, ethyl glucopyranoside in good yields could be obtained from glucose in ethanol. Moreover, the nanocatalyst functionalized with acid and basic sites was able to be reused several times with no significant loss in catalytic activity

  18. Dioxygen Affinities and Biomimetic Catalytic Performance of Transition-metal Complexes with Crowned Bis-Schiff Bases

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The dioxygen affinities and biomimetic catalytic performance of transition-metal complexes with (15-crown-5) salophen and its substituted derivatives were examined. The oxygenation constants of Co(II) complexes with crowned bis-Schiff bases were measured and their Mn(III) complexes were employed as models to mimic monooxygenase in catalytic epoxidation of styrene. The highest conversion and selectivity were up to 57.2% and 100% respectively at ambient temperature and pressure. The effects of crown ether ring and substituents R on the dioxygen affinities and catalytic activities were also investigated through comparing with the uncrowned analogues.

  19. A simple red-ox titrimetric method for the evaluation of photo-catalytic activity of titania based catalysts

    Indian Academy of Sciences (India)

    Y S Satpute; S A Borkar; S R Dharwadkar

    2003-12-01

    A simple red-ox titrimetry method has been developed for rapid evaluation of the photo catalytic activity of TiO2 based photo-catalysts. The analytical procedure employs monitoring the kinetics of a simple one electron transfer reduction reaction of conversion of Ce4+ to Ce3+ in dilute aqueous solution in presence of sunlight. The photo-catalytic activity of TiO2 synthesized by two different routes was evaluated by the above technique. The effect of surface area, crystallite size and polymorphic contents on the photo-catalytic activity of TiO2 was also studied employing this method.

  20. Structural evidence for a programmed general base in the active site of a catalytic antibody

    OpenAIRE

    Golinelli-Pimpaneau, Béatrice; Gonçalves, Olivier; Dintinger, Thierry; Blanchard, Dominique; Knossow, Marcel; Tellier, Charles

    2000-01-01

    The crystal structure of the complex of a catalytic antibody with its cationic hapten at 1.9-Å resolution demonstrates that the hapten amidinium group is stabilized through an ionic pair interaction with the carboxylate of a combining-site residue. The location of this carboxylate allows it to act as a general base in an allylic rearrangement. When compared with structures of other antibody complexes in which the positive moiety of the hapten is stabilized mostly by cation–π interactions, thi...

  1. Automated Prediction of Catalytic Mechanism and Rate Law Using Graph-Based Reaction Path Sampling.

    Science.gov (United States)

    Habershon, Scott

    2016-04-12

    In a recent article [ J. Chem. Phys. 2015 , 143 , 094106 ], we introduced a novel graph-based sampling scheme which can be used to generate chemical reaction paths in many-atom systems in an efficient and highly automated manner. The main goal of this work is to demonstrate how this approach, when combined with direct kinetic modeling, can be used to determine the mechanism and phenomenological rate law of a complex catalytic cycle, namely cobalt-catalyzed hydroformylation of ethene. Our graph-based sampling scheme generates 31 unique chemical products and 32 unique chemical reaction pathways; these sampled structures and reaction paths enable automated construction of a kinetic network model of the catalytic system when combined with density functional theory (DFT) calculations of free energies and resultant transition-state theory rate constants. Direct simulations of this kinetic network across a range of initial reactant concentrations enables determination of both the reaction mechanism and the associated rate law in an automated fashion, without the need for either presupposing a mechanism or making steady-state approximations in kinetic analysis. Most importantly, we find that the reaction mechanism which emerges from these simulations is exactly that originally proposed by Heck and Breslow; furthermore, the simulated rate law is also consistent with previous experimental and computational studies, exhibiting a complex dependence on carbon monoxide pressure. While the inherent errors of using DFT simulations to model chemical reactivity limit the quantitative accuracy of our calculated rates, this work confirms that our automated simulation strategy enables direct analysis of catalytic mechanisms from first principles. PMID:26938837

  2. New URJC-1 Material with Remarkable Stability and Acid-Base Catalytic Properties

    Directory of Open Access Journals (Sweden)

    Pedro Leo

    2016-02-01

    Full Text Available Emerging new metal-organic structures with tunable physicochemical properties is an exciting research field for diverse applications. In this work, a novel metal-organic framework Cu(HIT(DMF0.5, named URJC-1, with a three-dimensional non-interpenetrated utp topological network, has been synthesized. This material exhibits a microporous structure with unsaturated copper centers and imidazole–tetrazole linkages that provide accessible Lewis acid/base sites. These features make URJC-1 an exceptional candidate for catalytic application in acid and base reactions of interest in fine chemistry. The URJC-1 material also displays a noteworthy thermal and chemical stability in different organic solvents of different polarity and boiling water. Its catalytic activity was evaluated in acid-catalyzed Friedel–Crafts acylation of anisole with acetyl chloride and base-catalyzed Knoevenagel condensation of benzaldehyde with malononitrile. In both cases, URJC-1 material showed very good performance, better than other metal organic frameworks and conventional catalysts. In addition, a remarkable structural stability was proven after several consecutive reaction cycles.

  3. Catalytic processes during preferential oxidation of CO in H 2-rich streams over catalysts based on copper-ceria

    Science.gov (United States)

    Gamarra, D.; Hornés, A.; Koppány, Zs.; Schay, Z.; Munuera, G.; Soria, J.; Martínez-Arias, A.

    Nanostructured catalysts based on combinations between oxidised copper and cerium entities prepared by two different methods (impregnation of ceria and coprecipitation of the two components within reverse microemulsions) have been examined with respect to their catalytic performance for preferential oxidation of CO in a H 2-rich stream (CO-PROX). Correlations between their catalytic and redox properties are established on the basis of parallel analyses of temperature programmed reduction results employing both H 2 and CO as reactants as well as by XPS. Although general catalytic trends can be directly correlated with the redox properties observed upon separate interactions with each of the two reductants (CO and H 2), the existence of interferences between both reductants must be considered to complete details for such activity/redox correlation. Differences in the nature of the active oxidised copper-cerium contacts present in each case determine the catalytic properties of these systems for the CO-PROX process.

  4. Catalytic processes towards the production of biofuels in a palm oil and oil palm biomass-based biorefinery.

    Science.gov (United States)

    Chew, Thiam Leng; Bhatia, Subhash

    2008-11-01

    In Malaysia, there has been interest in the utilization of palm oil and oil palm biomass for the production of environmental friendly biofuels. A biorefinery based on palm oil and oil palm biomass for the production of biofuels has been proposed. The catalytic technology plays major role in the different processing stages in a biorefinery for the production of liquid as well as gaseous biofuels. There are number of challenges to find suitable catalytic technology to be used in a typical biorefinery. These challenges include (1) economic barriers, (2) catalysts that facilitate highly selective conversion of substrate to desired products and (3) the issues related to design, operation and control of catalytic reactor. Therefore, the catalytic technology is one of the critical factors that control the successful operation of biorefinery. There are number of catalytic processes in a biorefinery which convert the renewable feedstocks into the desired biofuels. These include biodiesel production from palm oil, catalytic cracking of palm oil for the production of biofuels, the production of hydrogen as well as syngas from biomass gasification, Fischer-Tropsch synthesis (FTS) for the conversion of syngas into liquid fuels and upgrading of liquid/gas fuels obtained from liquefaction/pyrolysis of biomass. The selection of catalysts for these processes is essential in determining the product distribution (olefins, paraffins and oxygenated products). The integration of catalytic technology with compatible separation processes is a key challenge for biorefinery operation from the economic point of view. This paper focuses on different types of catalysts and their role in the catalytic processes for the production of biofuels in a typical palm oil and oil palm biomass-based biorefinery. PMID:18434141

  5. Electrochemical biosensor for detection of DNA hydroxymethylation based on glycosylation and alkaline phosphatase catalytic signal amplification

    International Nuclear Information System (INIS)

    Highlights: • DNA Hydroxymethylation was detected by electrochemical method. • 5-Hydroxymethylation cytosine in target DNA was chemically modified with glucose group. • Alkaline phosphatase catalytic signal amplification strategy was used. • The developed method also showed excellent reproducibility and stability. - Abstract: DNA hydroxymethylation (5-hydroxymethylcytosine, 5hmC) is a kind of new epigenetic modification, which plays key roles in nuclear reprogramming, regulates the gene activity, and initiates the DNA demethylation in mammals. For further understanding the functions of 5hmC and the correlation with tumour, it is essential to develop sensitive and selective methods for detecting and sequencing 5hmC. Herein, a kind of electrochemical biosensor was fabricated for 5hmC detection based on the glycosylation modification of 5hmC and enzymatic signal amplification. Under the catalytic effect of T4 β-glucosyltransferase, the 5hmC in target DNA was chemically modified with glucose. Then with the bridge connection of 1,4-phenyldiboronic acid, alkaline phosphatase was further captured on the electrode surface to catalyze the hydrolysis of p-nitrophenyl phosphate disodium salt to produce p-nitrophenol. Based on the relationship between the electrochemical oxidation signal of p-nitrophenol and the concentration of target DNA, the 5hmC level can be detected with high sensitivity and selectivity. The developed method also showed excellent reproducibility and stability

  6. Catalytic combustion of styrene over copper based catalyst: inhibitory effect of water vapor.

    Science.gov (United States)

    Pan, Hongyan; Xu, Mingyao; Li, Zhong; Huang, Sisi; He, Chun

    2009-07-01

    The effects of water vapor on the activity of the copper based catalysts with different supports such as CuO/gamma-Al2O3, CuO/SiO2 and CuO/TiO2 for styrene combustion were investigated. The catalytic activity of the catalysts was tested in the absence of and presence of water vapor and the catalysts were characterized. Temperature programmed desorption (TPD) experiments and diffuse reflectance infrared fourier transform spectroscopy (DRIFTS) measurements were conducted in order to estimate and explain the water effects. Results showed that the existence of water vapor had a significant negative effect on the catalytic activity of these copper based catalysts due to the competition adsorption of water molecule. DRIFTS studies showed that the catalyst CuO/gamma-Al2O3 had the strongest adsorption of water, while the catalyst CuO/TiO2 had the weakest adsorption of water. H2O-TPD studies also indicated that the order of desorption activation energies of water vapor on the catalysts or the strength of interactions of water molecules with the surfaces of the catalysts was CuO/gamma-Al2O3>CuO/SiO2>CuO/TiO2. As a consequence of that, the CuO/TiO2 exhibited the better durability to water vapor, while CuO/gamma-Al2O3 had the poorest durability to water vapor among these three catalysts. PMID:19427660

  7. Ruthenium(II) hydrazone Schiff base complexes: Synthesis, spectral study and catalytic applications

    Science.gov (United States)

    Manikandan, R.; Viswanathamurthi, P.; Muthukumar, M.

    2011-12-01

    Ruthenium(II) hydrazone Schiff base complexes of the type [RuCl(CO)(B)(L)] (were B = PPh 3, AsPh 3 or Py; L = hydrazone Schiff base ligands) were synthesized from the reactions of hydrazone Schiff base ligand (obtained from isonicotinoylhydrazide and different hydroxy aldehydes) with [RuHCl(CO)(EPh 3) 2(B)] (where E = P or As; B = PPh 3, AsPh 3 or Py) in 1:1 molar ratio. All the new complexes have been characterized by analytical and spectral (FT-IR, electronic, 1H, 13C and 31P NMR) data. They have been tentatively assigned an octahedral structure. The synthesized complexes have exhibited catalytic activity for oxidation of benzyl alcohol to benzaldehyde and cyclohexanol to cyclohexanone in the presence of N-methyl morpholine N-oxide (NMO) as co-oxidant. They were also found to catalyze the transfer hydrogenation of aliphatic and aromatic ketones to alcohols in KOH/Isopropanol.

  8. Emergence of the First Catalytic Oligonucleotides in a Formamide-Based Origin Scenario.

    Science.gov (United States)

    Šponer, Judit E; Šponer, Jiří; Nováková, Olga; Brabec, Viktor; Šedo, Ondrej; Zdráhal, Zbyněk; Costanzo, Giovanna; Pino, Samanta; Saladino, Raffaele; Di Mauro, Ernesto

    2016-03-01

    50 years after the historical Miller-Urey experiment, the formamide-based scenario is perhaps the most powerful concurrent hypothesis for the origin of life on our planet besides the traditional HCN-based concept. The information accumulated during the last 15 years in this topic is astonishingly growing and nowadays the formamide-based model represents one of the most complete and coherent pathways leading from simple prebiotic precursors up to the first catalytically active RNA molecules. In this work, we overview the major events of this long pathway that have emerged from recent experimental and theoretical studies, mainly concentrating on the mechanistic, methodological, and structural aspects of this research. PMID:26807661

  9. High performance catalytic distillation using CNTs-based holistic catalyst for production of high quality biodiesel

    Science.gov (United States)

    Zhang, Dongdong; Wei, Dali; Li, Qi; Ge, Xin; Guo, Xuefeng; Xie, Zaiku; Ding, Weiping

    2014-02-01

    For production of biodiesel from bio oils by heterogeneous catalysis, high performance catalysts of transesterification and the further utilization of glycerol have been the two points of research. The process seemed easy, however, has never been well established. Here we report a novel design of catalytic distillation using hierachically integrated CNTs-based holistic catalyst to figure out the two points in one process, which shows high performance both for the conversion of bio oils to biodiesel and, unexpectedly, for the conversion of glycerol to more valuable chemicals at the same time. The method, with integration of nano, meso to macro reactor, has overwhelming advantages over common technologies using liquid acids or bases to catalyze the reactions, which suffer from the high cost of separation and unsolved utilization of glycerol.

  10. Synthesis of novel carbon/silica composites based strong acid catalyst and its catalytic activities for acetalization

    Indian Academy of Sciences (India)

    Yueqing Lu; Xuezheng Liang; Chenze Qi

    2012-06-01

    Novel solid acid based on carbon/silica composites are synthesized through one-pot hydrothermal carbonization of hydroxyethylsulfonic acid, sucrose and tetraethyl orthosilicate (TEOS). The novel solid acid owned the acidity of 2.0 mmol/g, much higher than that of the traditional solid acids such as Nafion and Amberlyst-15 (0.8 mmol/g). The catalytic activities of the solid acid are investigated through acetalization. The results showed that the novel solid acid was very efficient for the reactions. The high acidity and catalytic activities made the novel carbon/silica composites based solid acid hold great potential for the green chemical processes.

  11. Hydrogen production by Thermo Catalytic Decomposition of Natural Gas: Ni-based catalysts

    International Nuclear Information System (INIS)

    Thermo Catalytic Decomposition of methane using Ni and Ni-Cu catalyst is studied. The conventional co-precipitation method is compared versus an easier preparation method based on the fusing of the metallic nitrates. The role of copper has also been analyzed. TCD has been carried out in a bench scale fixed bed and a semi-pilot scale fluidized bed. Catalysts prepared by both methods shown similar behaviour. Introduction of copper in the catalyst promoted NiO reduction which prevented hydrogen from CO contamination. Fluid-dynamic studies have shown that TCD can be carried out in a fluidized bed reactor without reactor clogging provided that a methane velocity of two times the minimum fluidization velocity is used. This high spatial velocity resulted in a reduction of methane conversion. So the optimum gas velocity should be chosen in terms of hydrogen production rates and fluidization quality. (authors)

  12. Preparation and photo-catalytic behavior of conjugated polymers based on paper-making wastewater.

    Science.gov (United States)

    Feng, Libang; Qiang, Xiaohu; Shi, Xueting

    2009-08-01

    Based on alkaline paper-making wastewater, a polymer catalyst (FQ) was prepared and characterized by FTIR, ESR and element analysis techniques. The results show that the catalyst has conjugated structure and the conjugate degree increases after heat treatment. The catalyst has quite high photo-catalytic activity, which was verified by the fact that the simulated dyeing wastewater containing methylene blue (MB) or acridine orange (AO) can be degraded completely in 20 minutes under natural light using FQ as the photo-catalyst. Therefore, the synthetic dyeing wastewater can be disposed of using the materials coming from paper-making wastewater. It is a very promising method to treat one kind of wastewater with the materials from another kind of wastewater. PMID:20183197

  13. Electro-catalytic oxidation of phenol with Ti-base lead dioxide electrode

    Institute of Scientific and Technical Information of China (English)

    王东田; 魏杰; 于秀娟; 杨红

    2003-01-01

    The Ti-base PbO2 electrode prepared by electrodeposition of PbO2 on the surface of titanium was used for electro-catalytic oxidation of phenol in waste water. The experimental results show that the electrodeposition of PbO2 at a higher current density for a short time, then followed by a lower current density can get a compact and combinative PbO2 layer. The properties of a Ti/PbO2 electrode with an interlayer of oxide are the best. When this kind of electrode is used to treat phenol containing waste water, the phenol-removal rate is higher and the slot voltage is lower. In addition, by using the phenol-removal rate as an index, the influences of electrolysis current density, mass transfer condition and pH were studied and the optimal condition was confirmed.

  14. Removal of ammonia from aqueous solutions by catalytic oxidation with copper-based rare earth composite metal materials: catalytic performance, characterization, and cytotoxicity evaluation

    Institute of Scientific and Technical Information of China (English)

    Chang-Mao Hung

    2011-01-01

    Ammonia (NH3) has an important use in the chemical industry and is widely found in industrial wastewater.For this investigation of copper-based rare earth composite metal materials,aqueous solutions containing 400 mg/L of ammonia were oxidized in a batch-bed reactor with a catalyst prepared by the co-precipitation of copper nitrate,lanthanum nitrate and cerium nitrate.Barely any of the dissolved ammonia was removed by wet oxidation without a catalyst,but about 88% of the ammonia was reduced during wet oxidation over the catalysts at 423 K with an oxygen partial pressure of 4.0 MPa.The catalytic redox behavior was determined by cyclic voltammetry (CV).Furthermore,the catalysts were characterized using thermogravimetric analyzer (TGA) and scanning electron microscope-energy dispersive X-ray spectroscopy (SEM-EDX),which showed that the catalytic behavior was related to the metal oxide properties of the catalyst.In addition,the copper-lanthanum-cerium composite-induced cytotoxicity in the human lung MRC-5 cell line was tested,and the percentage cell survival was determined by 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetra-zolium (MTS) analysis in vitro.No apparent cytotoxicity was observed when the human lung cells were exposed to the copper-lanthanum-cerium composite.

  15. Interpretation of Ostwald ripening of catalytic nanoparticles based on the radial breathing mode in single-walled carbon nanotubes

    Science.gov (United States)

    Song, Wooseok; Hwan Kim, Sung; Sung Jung, Dae; Kim, Yooseok; Youn Kim, Soo; An, Ki-Seok; Park, Chong-Yun

    2014-11-01

    Catalytic nanoparticle (NP) size is the crucial factor that determines carbon nanotube (CNT) diameter. Therefore, we explored the Ostwald ripening phenomenon of catalytic NPs from the radial breathing modes in resonant Raman spectra of synthesized single-walled CNTs (SWCNTs). SWCNTs were synthesized using chemically derived monodisperse Fe oxide catalytic NPs by a conventional thermal chemical vapor deposition system. The density of the NPs was manipulated by simply adjusting the spin-coating speed and cycle. The diameter distribution and tube type (SWCNTs or multi-walled CNTs) were thereby determined, which can be understood by density-dependent Ostwald ripening of the NPs. As a result, the diameter-selective growth of SWCNTs was successfully achieved, which will be useful for SWCNTs-based electronic applications.

  16. In situ spectroscopy of catalytically active surfaces: FTIR and EXAFS studies of CO oxidation on Pd and Au nanoparticles

    International Nuclear Information System (INIS)

    This thesis was aiming at a comprehensive investigation of the reaction mechanism of CO oxidation, applying in situ Fourier Transform Infrared (FTIR) Spectroscopy and X- Ray Absorption Spectroscopy (XAS) under reaction conditions to different industrial-grade noble metal catalysts. For alumina supported palladium nanoparticles (∼2 and 5 nm) variable oxidative pre-treatments were utilized to identify and characterize palladium (sub)oxide species in different oxidation states. In situ EXAFS and in situ FTIR spectroscopy clearly demonstrated that such substoichiometric palladiumoxides PdOx (x<1) were also present during the CO oxidation reaction. Although they may contribute to activity, the highest catalytic activity was assigned to metallic palladium. The relatively high activity of the substoichiometric palladiumoxides (as compared to fully oxidized palladium(II)oxide) was attributed to their reducibility under technically relevant conditions by CO. The study of CO oxidation on Pd/Al2O3 indicated a coexistence of metallic Pd and PdOx under reaction conditions, with metallic palladium being essential for the activation of CO and molecular O2. Under specific reaction conditions this resulted in oscillatory behavior. The mechanism of CO oxidation on titania supported gold nanoparticles (∼4 nm) was also investigated. In situ FTIR spectroscopy identified metallic gold as CO adsorption site, whereas the oxygen adsorption site was located on the titania support. Adsorption experiments with isotopically labelled 13C18O demonstrated the involvement of hydroxyl groups of the titania support in the catalytic reaction. This explained the increase in catalytic activity upon addition of small amounts of water: water dissociates on titania producing an increased number of terminal OH groups on the catalyst surface. The results suggest a 'phase boundary-mechanism' of CO oxidation on Au/TiO2, with the reaction taking place at the oxide/metal interface. (author)

  17. Chloride ions promoted the catalytic wet peroxide oxidation of phenol over clay-based catalysts.

    Science.gov (United States)

    Zhou, Shiwei; Zhang, Changbo; Xu, Rui; Gu, Chuantao; Song, Zhengguo; Xu, Minggang

    2016-01-01

    Catalytic wet peroxide oxidation (CWPO) of phenol over clay-based catalysts in the presence and absence of NaCl was investigated. Changes in the H2O2, Cl(-), and dissolved metal ion concentration, as well as solution pH during phenol oxidation, were also studied. Additionally, the intermediates formed during phenol oxidation were detected by liquid chromatography-mass spectroscopy and the chemical bonding information of the catalyst surfaces was analyzed by X-ray photoelectron spectroscopy (XPS). The results showed that the presence of Cl(-) increased the oxidation rate of phenol to 155%, and this phenomenon was ubiquitous during the oxidation of phenolic compounds by H2O2 over clay-based catalysts. Cl(-)-assisted oxidation of phenol was evidenced by several analytical techniques such as mass spectroscopy (MS) and XPS, and it was hypothesized that the rate-limiting step was accelerated in the presence of Cl(-). Based on the results of this study, the CWPO technology appears to be promising for applications in actual saline phenolic wastewater treatment. PMID:26942523

  18. DNA base-stacking assay utilizing catalytic hairpin assembly-induced gold nanoparticle aggregation for colorimetric protein sensing.

    Science.gov (United States)

    Chang, Chia-Chen; Chen, Chie-Pein; Chen, Chen-Yu; Lin, Chii-Wann

    2016-03-18

    A label-free and enzyme-free colorimetric sensing platform for the amplified detection of fibronectin was developed based on an ingenious combination of catalytic hairpin assembly and a base stacking hybridization-based gold nanoparticle aggregation strategy. The detection limit of 2.3 pM is at least one order of magnitude lower than that of established fibronectin biosensors. PMID:26906691

  19. The acid-base and catalytic properties of the surface of ZnSe-CdSe solid solutions

    International Nuclear Information System (INIS)

    Acid-base properties of the surface of slid solutions ZnxCd1-xSe and initial binary semiconductor compounds (ZnSe, CdSe) were studied by the method of probe molecules on acid and base centers. Nature of the acid-base centers was ascertained, their strength and quantitative content on the system samples of different composition were evaluated. Acid-base properties were compared with catalytic ones in reference to propanol-2 decomposition. Similarity and difference in acid-base and catalytic properties of the surface of binary semiconductors and solid solutions were pointed out. Specific features of the solid solutions were detected, which are largely pronounced in the course of ascertaining the property-composition dependence

  20. Catalytic Pyrolysis of Wild Reed over a Zeolite-Based Waste Catalyst

    OpenAIRE

    Myung Lang Yoo; Yong Ho Park; Young-Kwon Park; Sung Hoon Park

    2016-01-01

    Fast catalytic pyrolysis of wild reed was carried out at 500 °C. Waste fluidized catalytic cracking (FCC) catalyst disposed from a petroleum refinery process was activated through acetone-washing and calcination and used as catalyst for pyrolysis. In order to evaluate the catalytic activity of waste FCC catalyst, commercial HY zeolite catalyst with a SiO2/Al2O3 ratio of 5.1 was also used. The bio-oil produced from pyrolysis was analyzed using gas chromatography/mass spectrometry (GC/MS). When...

  1. A chemiluminescence assay for L-histidine based on controlled DNAzyme catalytic reactions on magnetic microparticles

    International Nuclear Information System (INIS)

    We describe a chemiluminescence (CL) assay for L-histidine that is based on the use of DNAzyme covalently immobilized on 1.5-μm sized magnetic beads. On addition of a substrate labeled with a CL reagent, the DNAzyme and substrate form a stable duplex by allosteric synergetic stabilization of each duplex. If L-histidine is added to this system, self-cleavage of the substrate occurs through catalytic reaction and results in the formation of two fragments which dissociate from the beads. After removal of the magnetic beads, the labeled fragments can be detected by CL whose intensity is linearly related to the concentration of L-histidine in the 1.0 to 1,000 nM range. The detection limit is 0.3 nM, and the RSD is 3.4 % at a 50 nM level (n = 9). The method has been successfully applied to the determination of L-histidine in spiked human serum samples and holds promise as a widely applicable general platform for DNAzyme-based CL detection of small organic molecules and of metal ions. (author)

  2. Enhancing the Activity of Peptide-Based Artificial Hydrolase with Catalytic Ser/His/Asp Triad and Molecular Imprinting.

    Science.gov (United States)

    Wang, Mengfan; Lv, Yuqi; Liu, Xiaojing; Qi, Wei; Su, Rongxin; He, Zhimin

    2016-06-01

    In this study, an artificial hydrolase was developed by combining the catalytic Ser/His/Asp triad with N-fluorenylmethoxycarbonyl diphenylalanine (Fmoc-FF), followed by coassembly of the peptides into nanofibers (CoA-HSD). The peptide-based nanofibers provide an ideal supramolecular framework to support the functional groups. Compared with the self-assembled catalytic nanofibers (SA-H), which contain only the catalytic histidine residue, the highest activity of CoA-HSD occurs when histidine, serine, and aspartate residues are at a ratio of 40:1:1. This indicates that the well-ordered nanofiber structure and the synergistic effects of serine and aspartate residues contribute to the enhancement in activity. Additionally, for the first time, molecular imprinting was applied to further enhance the activity of the peptide-based artificial enzyme (CoA-HSD). p-NPA was used as the molecular template to arrange the catalytic Ser/His/Asp triad residues in the proper orientation. As a result, the activity of imprinted coassembled CoA-HSD nanofibers is 7.86 times greater than that of nonimprinted CoA-HSD and 13.48 times that of SA-H. PMID:27191381

  3. A flameless catalytic combustion-based thermoelectric generator for powering electronic instruments on gas pipelines

    International Nuclear Information System (INIS)

    Highlights: ► MPPT is used to improve the feature that TEG output is sensitive to load variation. ► The improved feature makes TEG suitable to power electronic device on gas pipeline. ► Test shows heat transfer uniformity plays an important role in improving TEG output. ► It can get an optimized TEG by uniformly filling a thermal insulation material. - Abstract: This paper presents a flameless catalytic combustion-based thermoelectric power generator that uses commercial thermoelectric modules. The structure of the thermoelectric generator (TEG) is introduced and the power performance is measured based on a designed circuit system. The open circuit voltage of the TEG is about 7.3 V. The maximum power output can reach up to 6.5 W when the load resistance matches the TEG internal resistance. However, the system output is sensitive to load variation. To improve this characteristic, maximum power point tracking technique is used and results in an open circuit voltage of 13.8 V. The improved characteristic makes the TEG system a good charger to keep the lead acid battery fully charged so as to meet the needs of electronic instruments on gas pipelines. In addition, the combustion features have been investigated based on the temperature measurement. Test results show that the uniformity of combustion heat transfer process and the combustion chamber structure play important roles in improving system power output. It can get an optimized TEG system (maximum power output: 8.3 W) by uniformly filling a thermal insulation material (asbestos) to avoid a non-uniform combustion heat transfer process

  4. The effect of noble metals on catalytic methanation reaction over supported Mn/Ni oxide based catalysts

    OpenAIRE

    Wan Azelee Wan Abu Bakar; Rusmidah Ali; Nurul Shafeeqa Mohammad

    2015-01-01

    Carbon dioxide (CO2) in sour natural gas can be removed using green technology via catalytic methanation reaction by converting CO2 to methane (CH4) gas. Using waste to wealth concept, production of CH4 would increase as well as creating environmental friendly approach for the purification of natural gas. In this research, a series of alumina supported manganese–nickel oxide based catalysts doped with noble metals such as ruthenium and palladium were prepared by wetness impregnation method. T...

  5. Development of novel catalytically active polymer-metal-nanocomposites based on activated foams and textile fibers

    Science.gov (United States)

    Domènech, Berta; Ziegler, Kharla K.; Carrillo, Fernando; Muñoz, Maria; Muraviev, Dimitri N.; Macanás, Jorge

    2013-05-01

    In this paper, we report the intermatrix synthesis of Ag nanoparticles in different polymeric matrices such as polyurethane foams and polyacrylonitrile or polyamide fibers. To apply this technique, the polymer must bear functional groups able to bind and retain the nanoparticle ion precursors while ions should diffuse through the matrix. Taking into account the nature of some of the chosen matrices, it was essential to try to activate the support material to obtain an acceptable value of ion exchange capacity. To evaluate the catalytic activity of the developed nanocomposites, a model catalytic reaction was carried out in batch experiments: the reduction of p-nitrophenol by sodium borohydride.

  6. Synthesis of dendritic iridium nanostructures based on the oriented attachment mechanism and their enhanced CO and ammonia catalytic activities

    Science.gov (United States)

    Wang, Chao; Xiao, Guanjun; Sui, Yongming; Yang, Xinyi; Liu, Gang; Jia, Mingjun; Han, Wei; Liu, Bingbing; Zou, Bo

    2014-11-01

    Branched iridium nanodendrites (Ir NDs) have been synthesized by a simple method based on the oriented attachment mechanism. Transmission electron microscopy images reveal the temporal growth process from small particles to NDs. Precursor concentrations and reaction temperatures have a limited effect on the morphology of Ir NDs. Metal oxide and hydroxide-supported Ir NDs exhibit enhanced activity for catalytic CO oxidation. Particularly, the Fe(OH)x-supported Ir NDs catalyst with a 4 wt% Ir loading show superior CO oxidation catalytic activity with a full conversion of CO at 120 °C. Furthermore, compared with Ir NPs and commercial Ir black, Ir NDs exhibit higher activity and stability for ammonia oxidation. The specific activity and mass activity of Ir NDs for ammonia oxidation are 1.7 and 7 times higher than that of Ir NPs. The improved catalytic activities of Ir NDs are attributed not only to their large specific surface area, but also to their considerably high index facets and rich edge and corner atoms. Hence, the obtained Ir NDs provide a promising alternative for direct ammonia fuel cells and proton-exchange membrane fuel cells.Branched iridium nanodendrites (Ir NDs) have been synthesized by a simple method based on the oriented attachment mechanism. Transmission electron microscopy images reveal the temporal growth process from small particles to NDs. Precursor concentrations and reaction temperatures have a limited effect on the morphology of Ir NDs. Metal oxide and hydroxide-supported Ir NDs exhibit enhanced activity for catalytic CO oxidation. Particularly, the Fe(OH)x-supported Ir NDs catalyst with a 4 wt% Ir loading show superior CO oxidation catalytic activity with a full conversion of CO at 120 °C. Furthermore, compared with Ir NPs and commercial Ir black, Ir NDs exhibit higher activity and stability for ammonia oxidation. The specific activity and mass activity of Ir NDs for ammonia oxidation are 1.7 and 7 times higher than that of Ir NPs. The

  7. Catalytic Pyrolysis of Wild Reed over a Zeolite-Based Waste Catalyst

    Directory of Open Access Journals (Sweden)

    Myung Lang Yoo

    2016-03-01

    Full Text Available Fast catalytic pyrolysis of wild reed was carried out at 500 °C. Waste fluidized catalytic cracking (FCC catalyst disposed from a petroleum refinery process was activated through acetone-washing and calcination and used as catalyst for pyrolysis. In order to evaluate the catalytic activity of waste FCC catalyst, commercial HY zeolite catalyst with a SiO2/Al2O3 ratio of 5.1 was also used. The bio-oil produced from pyrolysis was analyzed using gas chromatography/mass spectrometry (GC/MS. When the biomass-to-catalyst ratio was 1:1, the production of phenolics and aromatics was promoted considerably by catalysis, whereas the content of oxygenates was affected little. Significant conversion of oxygenates to furans and aromatics was observed when the biomass-to-catalyst ratio of 1:10 was used. Activated waste FCC catalyst showed comparable catalytic activity for biomass pyrolysis to HY in terms of the promotion of valuable chemicals, such as furans, phenolics and aromatics. The results of this study imply that waste FCC catalyst can be an important economical resource for producing high-value-added chemicals from biomass.

  8. Ag nanocluster-based label-free catalytic and molecular beacons for amplified biosensing.

    Science.gov (United States)

    Gong, Liang; Kuai, Hailan; Ren, Songlei; Zhao, Xu-Hua; Huan, Shuang-Yan; Zhang, Xiao-Bing; Tan, Weihong

    2015-08-01

    By employing DNAzyme as a recognition group and amplifier, and DNA-stabilized silver nanoclusters (DNA/AgNCs) as signal reporters, we reported for the first time a label-free catalytic and molecular beacon as an amplified biosensing platform for highly selective detection of cofactors such as Pb(2+) and L-histidine. PMID:26120805

  9. Catalytic production of sulfur heterocycles (dihydrobenzodithiins): a new application of ligand-based alkene reactivity.

    Science.gov (United States)

    Harrison, Daniel J; Fekl, Ulrich

    2009-12-28

    Activation of bis-o-phenylene tetrasulfide to render it a practical benzodithiete equivalent for [4+2] cycloadditions with alkenes has been achieved with catalytic amounts of Mo(tfd)(2)(bdt) (tfd = S(2)C(2)(CF(3))(2); bdt = S(2)C(6)H(4)). Substituted 2,3-dihydro-1,4-benzodithiins are produced. PMID:20024283

  10. Synthesis and catalytic activity of histidine-based NHC ruthenium complexes

    OpenAIRE

    Monney, Angèle; Venkatachalam, Galmari; Albrecht, Martin

    2011-01-01

    Main-chain C,N-protected histidine has been successfully alkylated at both side-chain nitrogens. The corresponding histidinium salt was metallated with ruthenium(II) by a transmetalation procedure, thus providing histidine-derived NHC ruthenium complexes. These bio-inspired comsxsxsplexes show appreciable activity in the catalytic transfer hydrogenation of ketones. peer-reviewed

  11. Preparation of Photo catalytic Materials Based on Bi4Ti3O12 Doped with Transition Metals

    International Nuclear Information System (INIS)

    The production of hydrogen from water using ceramic semiconductors with photo catalytic properties has gained special relevance in the last years, due to their potential use for the generation of hydrogen in a direct and clean way. Doping with transition metals has demonstrated to be an effective method to obtain new active photo catalysts in the visible range of the solar spectrum by changing the band gap of the material. In this paper we study the effect of the addition of various dopants (Fe, Ni, Cr, Mn, Co, Cu) in the structure and band gap of Bi4Ti3O12, in order to improve its photo catalytic activity and make it visible light active. Accordingly, doped BIT based materials have been obtained by solid state processing and different amounts of an additional phase with sillenite structure, Bi12TiO20, have been detected. With the dopant a shift of the absorption spectra is produced towards higher wavelengths and consequently towards lower band gap values. The band gap values obtained for many of the prepared compositions are quite promising, promoting the study of their catalytic properties.. (Author)

  12. Catalytic activities of fungal oxidases in hydrophobic ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate-based microemulsion.

    Science.gov (United States)

    Zhou, Gui-Ping; Zhang, Yun; Huang, Xi-Rong; Shi, Chuan-Hong; Liu, Wei-Feng; Li, Yue-Zhong; Qu, Yin-Bo; Gao, Pei-Ji

    2008-10-01

    For hydrophobic ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate ([BMIM][PF(6)]), an H(2)O-in-[BMIM][PF(6)] microemulsion could be formed in the presence of nonionic surfactant Triton X-100 (TX-100). In such a medium, both lignin peroxidase (LiP) and laccase could express their catalytic activity with the optimum molar ratio of H(2)O to TX-100 at 8.0 for LiP and >20 for laccase, and the optimum pH values at 3.2 for LiP and 4.2 for laccase, respectively. As compared with pure or water saturated [BMIM][PF(6)], in which the two oxidases had negligible catalytic activity due to the strong inactivating effect of [BMIM][PF(6)] on both enzymes, the use of the [BMIM][PF(6)]-based microemulsion had some advantages. Not only the catalytic activities of both fungal oxidases greatly enhanced, but also the apparent viscosity of the medium decreased. PMID:18602799

  13. Rapid in situ Crystallization and Catalytic Performance of Cu3(BTC2-based Film on Copper Mesh

    Directory of Open Access Journals (Sweden)

    HUA Cheng-Jiang, WANG Ming-Hui, LUAN Guo-You, LIU Yan, WU Hua

    2015-05-01

    Full Text Available Cu3(BTC2-based (BTC=1, 3, 5-benzenetricarboxylic acid metal-organic framework film was synthesized on the surface of copper mesh through in situ crystallization at room temperature. In this film, Keggin-type H3PMo12O40 was embedded in partial cavity of Cu3(BTC2. The film was characterized by X-Ray powder diffraction (XRD, scanning electron microscope (SEM, Fourier transform infrared spectrometer (FT-IR. The surface of copper fiber was evenly covered by the film. It can be estimated that the thickness of film is about 8 μm. In the synthesis process, the role of copper is not only a support, but also a copper source. H2O2 played an important role in synthesis process of membrane, and adding proper H2O2 could accelerate reactive speed effectively. As a heterogeneous catalyst, the catalytic property of the sample was tested through rhodamine B degradation. The film exhibited good catalytic performance in the reaction of rhodamine B degradation. After reaction for 100 min, the degradation degree of rhodamine B reached 98%. The catalyst was reused for three times, and every timeit exhibited good catalytic performances during the processes.

  14. Synthesis, spectral, characterization, catalytic and biological studies of new RuII N2O Schiff base complexes

    International Nuclear Information System (INIS)

    Complexes of the type (RuCl(CO)(B)(L)) (B = PPh3, AsPh3, py or pip; L monobasic tridentate Schiff base) have been synthesized by the reaction of equimolar amounts of (RuHCl(CO)(EPh3)2(B)) and Schiff bases in benzene. The resulting complexes have been characterized by analytical and spectral (IR, electronic, NMR) data. An octahedral structure has been assigned to all these complexes. The new complexes have been exhibit catalytic activity for the oxidation of benzyl alcohol and cyclohexanol in the presence of N-methylmorpholine-N-oxide as co-oxidant. (author)

  15. Modularly designed transition metal PNP and PCP pincer complexes based on aminophosphines: synthesis and catalytic applications.

    Science.gov (United States)

    Benito-Garagorri, David; Kirchner, Karl

    2008-02-01

    Transition metal complexes are indispensable tools for any synthetic chemist. Ideally, any metal-mediated process should be fast, clean, efficient, and selective and take place in a catalytic manner. These criteria are especially important considering that many of the transition metals employed in catalysis are rare and expensive. One of the ways of modifying and controlling the properties of transition metal complexes is the use of appropriate ligand systems, such as pincer ligands. Usually consisting of a central aromatic backbone tethered to two two-electron donor groups by different spacers, this class of tridentate ligands have found numerous applications in various areas of chemistry, including catalysis, due to their combination of stability, activity, and variability. As we focused on pincer ligands featuring phosphines as donor groups, the lack of a general method for the preparation of both neutral (PNP) and anionic (PCP) pincer ligands using similar precursor compounds as well as the difficulty of introducing chirality into the structure of pincer ligands prompted us to investigate the use of amines as spacers between the aromatic ring and the phosphines. By introduction of aminophosphine and phosphoramidite moieties into their structure, the synthesis of both PNP and PCP ligands can be achieved via condensation reactions between aromatic diamines and electrophilic chlorophosphines (or chlorophosphites). Moreover, chiral pincer complexes can be easily obtained by using building blocks obtained from the chiral pool. Thus, we have developed a modular synthetic strategy with which the steric, electronic, and stereochemical properties of the ligands can be varied systematically. With the ligands in hand, we studied their reactivity towards different transition metal precursors, such as molybdenum, ruthenium, iron, nickel, palladium, and platinum. This has resulted in the preparation of a range of new pincer complexes, including various iron complexes, as

  16. Biodiesel from waste cooking oil via base-catalytic and supercritical methanol transesterification

    Energy Technology Data Exchange (ETDEWEB)

    Demirbas, Ayhan [Sila Science, Trabzon 61040 (Turkey)

    2009-04-15

    In this study, waste cooking oil has subjected to transesterification reaction by potassium hydroxide (KOH) catalytic and supercritical methanol methods obtaining for biodiesel. In catalyzed methods, the presence of water has negative effects on the yields of methyl esters. In the catalytic transesterification free fatty acids and water always produce negative effects since the presence of free fatty acids and water causes soap formation, consumes catalyst, and reduces catalyst effectiveness. Free fatty acids in the waste cooking oil are transesterified simultaneously in supercritical methanol method. Since waste cooking oil contains water and free fatty acids, supercritical transesterification offers great advantage to eliminate the pre-treatment and operating costs. The effects of methanol/waste cooking oils ratio, potassium hydroxide concentration and temperature on the biodiesel conversion were investigated. (author)

  17. Biodiesel from waste cooking oil via base-catalytic and supercritical methanol transesterification

    International Nuclear Information System (INIS)

    In this study, waste cooking oil has subjected to transesterification reaction by potassium hydroxide (KOH) catalytic and supercritical methanol methods obtaining for biodiesel. In catalyzed methods, the presence of water has negative effects on the yields of methyl esters. In the catalytic transesterification free fatty acids and water always produce negative effects since the presence of free fatty acids and water causes soap formation, consumes catalyst, and reduces catalyst effectiveness. Free fatty acids in the waste cooking oil are transesterified simultaneously in supercritical methanol method. Since waste cooking oil contains water and free fatty acids, supercritical transesterification offers great advantage to eliminate the pre-treatment and operating costs. The effects of methanol/waste cooking oils ratio, potassium hydroxide concentration and temperature on the biodiesel conversion were investigated

  18. H2 production by catalytic methane decomposition on Cu based catalyst

    International Nuclear Information System (INIS)

    The thermo-catalytic decomposition (TCD) of methane has been investigated in a laboratory scale fixed bed reactor using a copper dispersed on γ-alumina as a catalyst. The usefulness of a fluidized bed operation instead of a fixed bed one has been assessed in terms of methane to hydrogen conversion, amount of carbon accumulated on the catalyst, possibility of the catalyst regeneration. The results highlight some promising features in using fluidized bed reactors in the TCD process. (authors)

  19. Principles of water oxidation and O2-based hydrocarbon transformation by multinuclear catalytic sites

    Energy Technology Data Exchange (ETDEWEB)

    Musaev, Djamaladdin G [Chemistry, Emory University; Hill, Craig L [Chemistry, Emory University; Morokuma, Keiji [Chemistry, Emory University

    2014-10-28

    Abstract The central thrust of this integrated experimental and computational research program was to obtain an atomistic-level understanding of the structural and dynamic factors underlying the design of catalysts for water oxidation and selective reductant-free O2-based transformations. The focus was on oxidatively robust polyoxometalate (POM) complexes in which a catalytic active site interacts with proximal metal centers in a synergistic manner. Thirty five publications in high-impact journals arose from this grant. I. Developing an oxidatively and hydrolytically stable and fast water oxidation catalyst (WOC), a central need in the production of green fuels using water as a reductant, has proven particularly challenging. During this grant period we have designed and investigated several carbon-free, molecular (homogenous), oxidatively and hydrolytically stable WOCs, including the Rb8K2[{Ru4O4(OH)2(H2O)4}(γ-SiW10O36)2]·25H2O (1) and [Co4(H2O)2(α-PW9O34)2]10- (2). Although complex 1 is fast, oxidatively and hydrolytically stable WOC, Ru is neither abundant nor inexpensive. Therefore, development of a stable and fast carbon-free homogenous WOC, based on earth-abundant elements became our highest priority. In 2010, we reported the first such catalyst, complex 2. This complex is substantially faster than 1 and stable under homogeneous conditions. Recently, we have extended our efforts and reported a V2-analog of the complex 2, i.e. [Co4(H2O)2(α-VW9O34)2]10- (3), which shows an even greater stability and reactivity. We succeeded in: (a) immobilizing catalysts 1 and 2 on the surface of various electrodes, and (b) elucidating the mechanism of O2 formation and release from complex 1, as well as the Mn4O4L6 “cubane” cluster. We have shown that the direct O-O bond formation is the most likely pathway for O2 formation during water oxidation catalyzed by 1. II. Oxo transfer catalysts that contain two proximal and synergistically interacting redox active metal

  20. Study on Carbon Nanotubes Prepared from Catalytic Decomposition of CH4 over Lanthanum Containing Ni-Base Catalysts

    Institute of Scientific and Technical Information of China (English)

    Wang Minwei; Li Fengyi

    2004-01-01

    A series of lanthanum containing Ni-base catalysts were prepared by citric acid complex method.Carbon nanotubes (CNT) were synthesized bY catalytic decomposing CH4 over these catalysts and characterized by XRD, TEM and TGA.It is found that the addition of lanthanum can not increase the yield of carbon nanotube, but can make the diameter of carbon nanotube thinner and even.The more the lanthanum addsr, the thinner the diameter of CNTs becomes.With the CNTs prepared on Ni-Mg catalyst, the CNTs prepared on Ni-La-Mg catalyst has better crystallinity and thermal stability.

  1. New Element Organic Frameworks Based on Sn, Sb, and Bi, with Permanent Porosity and High Catalytic Activity

    Directory of Open Access Journals (Sweden)

    Julia Fritsch

    2010-03-01

    Full Text Available We present new element organic frameworks based on Sn, Sb and Bi atoms connected via organic linkers by element-carbon bonds. The open frameworks are characterized by specific surface areas (BET of up to 445 m2 g-1 and a good stability under ambient conditions resulting from a highly hydrophobic inner surface. They show good performance as heterogeneous catalysts in the cyanosylilation of benzaldehyde as a test reaction. Due to their catalytic activity, this class of materials might be able to replace common homogeneous element-organic and often highly toxic catalysts especially in the food industry.

  2. System and method for controlling an engine based on ammonia storage in multiple selective catalytic reduction catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Sun, MIn; Perry, Kevin L.

    2015-11-20

    A system according to the principles of the present disclosure includes a storage estimation module and an air/fuel ratio control module. The storage estimation module estimates a first amount of ammonia stored in a first selective catalytic reduction (SCR) catalyst and estimates a second amount of ammonia stored in a second SCR catalyst. The air/fuel ratio control module controls an air/fuel ratio of an engine based on the first amount, the second amount, and a temperature of a substrate disposed in the second SCR catalyst.

  3. Low temperature selective catalytic reduction of NOx with NH3 over Mn-based catalyst: A review

    Directory of Open Access Journals (Sweden)

    TsungYu Lee

    2016-05-01

    Full Text Available The removals of NOx by catalytic technology at low temperatures (100–300 °C for industrial flue gas treatment have received increasing attention. However, the development of low temperature catalysts for selective catalytic reduction (SCR of NOx with ammonia is still a challenge especially in the presence of SO2. The current status of using Mn-based catalysts for low temperature SCR of NOx with ammonia (NH3-SCR is reviewed. Reaction mechanisms and effects of operating factors on low temperature NH3-SCR are addressed, and the SCR efficiencies of Mn-based metal oxides with and without SO2 poisoning have also been discussed with different supports and co-metals. The key factors for enhancing low temperature NH3-SCR efficiency and SO2 resistance with Mn-based catalysts are identified to be (1 high specific surface area; (2 high surface acidity; (3 oxidation states of manganese; (4 well dispersion of manganese oxide metals; (5 more surface adsorbed oxygen; (6 more absorbed NO3− on the catalyst surface; (7 easier decomposition of ammonium sulfates. Moreover, the regenerative methods such as water washing, acid and/or alkali washing and heat treatment to the poisoned catalysts could help to recover the low temperature SCR efficiency to its initial level.

  4. Synthesis and catalytic application of palladium nanoparticles supported on kaolinite-based nanohybrid materials.

    Science.gov (United States)

    Ngnie, Gaelle; Dedzo, Gustave K; Detellier, Christian

    2016-05-31

    Palladium nanoparticles (PdNPs) were deposited on the surface of the modified clay mineral, kaolinite. To improve compatibility, abundance and control of the size of the nanoparticles, kaolinite was modified by the grafting of an amino alcohol (triethanolamine (TEA)) and an ionic liquid (1-(2-hydroxyethyl)-3-methylimidazolium (ImIL)). Characterization techniques (XRD, TGA, solid state (13)C NMR and FTIR spectroscopy) confirmed the effective grafting of these compounds on the internal surface of kaolinite. After the synthesis of PdNPs onto clay particles, TEM allowed the visualization of abundant PdNPs with sizes ranging from 4 to 6 nm, uniformly distributed onto the platelets of modified kaolinite. Unmodified clay showed low abundance and random distribution of the nanoparticles. The catalysts obtained were effective for the catalytic reduction of 4-nitrophenol (4-NP), the material with TEA being the most effective. These materials have exhibited excellent performance during the Heck and particularly the Suzuki-Miyaura coupling reactions, with reaction yields up to 100%. These catalysts showed a very slight loss in activity for three consecutive catalytic cycles (less than 10% decrease of the activity compared to the first cycle). This was an evidence that the prior grafting modification of kaolinite helps in significantly improving the quality of the synthesized NPs and also promotes their strong attachment onto the clay mineral surface. PMID:27160392

  5. Heterogeneous catalytic ozonation of biologically pretreated Lurgi coal gasification wastewater using sewage sludge based activated carbon supported manganese and ferric oxides as catalysts.

    Science.gov (United States)

    Zhuang, Haifeng; Han, Hongjun; Hou, Baolin; Jia, Shengyong; Zhao, Qian

    2014-08-01

    Sewage sludge of biological wastewater treatment plant was converted into sewage sludge based activated carbon (SBAC) with ZnCl₂ as activation agent, which supported manganese and ferric oxides as catalysts (including SBAC) to improve the performance of ozonation of real biologically pretreated Lurgi coal gasification wastewater. The results indicated catalytic ozonation with the prepared catalysts significantly enhanced performance of pollutants removal and the treated wastewater was more biodegradable and less toxic than that in ozonation alone. On the basis of positive effect of higher pH and significant inhibition of radical scavengers in catalytic ozonation, it was deduced that the enhancement of catalytic activity was responsible for generating hydroxyl radicals and the possible reaction pathway was proposed. Moreover, the prepared catalysts showed superior stability and most of toxic and refractory compounds were eliminated at successive catalytic ozonation runs. Thus, the process with economical, efficient and sustainable advantages was beneficial to engineering application. PMID:24907577

  6. Colorimetric kinetic determination of potassium ions based on the use of a specific aptamer and catalytically active gold nanoparticles

    International Nuclear Information System (INIS)

    We describe a simple, highly sensitive, and selective colorimetric kinetic assay for the determination of potassium(I) by exploiting the specific recognition capability of an appropriate aptamer and catalytic signal amplification by gold nanoparticles (AuNPs). Amplification is based on the reduction of 4-nitrophenol by borohydride which is catalyzed by AuNPs. This leads to a color change of the solution from yellow to colorless, and the color change can be recognized with bare eyes or via photometry. The K(I)-selective aptamer is placed on the AuNPs and forms a tightly bound G-quadruplex with K(I) which partially masks the surface of the AuNPs and prevents 4-nitrophenol to be reduced at the catalytically active surface of the AuNPs. Hence, the rate of decoloration is retarded. The assay displays high selectivity for K(I) over other cations, has a linear response in the 0.1 nM to 10 μM concentration range, and a detection limit as low as 0.06 nM. In addition, these findings pave the way to novel analytical methods based on the use of gold nanoparticle-catalyzed chemical reactions. (author)

  7. Supported catalysts based on layered double hydroxides for catalytic oxidation and hydrogenation: general functionality and promising application prospects.

    Science.gov (United States)

    Feng, Junting; He, Yufei; Liu, Yanan; Du, Yiyun; Li, Dianqing

    2015-08-01

    Oxidation and hydrogenation catalysis plays a crucial role in the current chemical industry for the production of key chemicals and intermediates. Because of their easy separation and recyclability, supported catalysts are widely used in these two processes. Layered double hydroxides (LDHs) with the advantages of unique structure, composition diversity, high stability, ease of preparation and low cost have shown great potential in the design and synthesis of novel supported catalysts. This review summarizes the recent progress in supported catalysts by using LDHs as supports/precursors for catalytic oxidation and hydrogenation. Particularly, partial hydrogenation of acetylene, hydrogenation of dimethyl terephthalate, methanation, epoxidation of olefins, elimination of NOx and SOx emissions, and selective oxidation of biomass have been chosen as representative reactions in the petrochemical, fine chemicals, environmental protection and clean energy fields to highlight the potential application and the general functionality of LDH-based catalysts in catalytic oxidation and hydrogenation. Finally, we concisely discuss some of the scientific challenges and opportunities of supported catalysts based on LDH materials. PMID:25962432

  8. Biogas Catalytic Reforming Studies on Nickel-Based Solid Oxide Fuel Cell Anodes

    DEFF Research Database (Denmark)

    Johnson, Gregory B.; Hjalmarsson, Per; Norrman, Kion;

    2016-01-01

    experiments were performed to study catalytic activity and effect of sulfur poisoning: (i) CH4 and CO2 dissociation; (ii) biogas (60% CH4 and 40% CO2) temperature-programmed reactions (TPRxn); and (iii) steady-state biogas reforming reactions followed by postmortem catalyst characterization by temperature...... of Pd-CGO helped to mitigate sulfur deactivation effect; e.g. lowering the onset temperature (up to 190°C) for CH4 conversion during temperature-programmed reactions. Both Ni/ScYSZ and Ni/ScYSZ/Pd-CGO anode catalysts were more active for dry reforming of biogas than they were for steam reforming....... Deactivation of reforming activity by sulfur was much more severe under steam reforming conditions than dry reforming; a result of greater sulfur retention on the catalyst surface during steam reforming....

  9. Box behnken design based optimization of solar induced photo catalytic decolourization of textile dye effluent

    Science.gov (United States)

    Senthilkumar, Shanmugam; Perumalsamy, Muthiah; Prabhu, Harinarayan; AhmedBasha, Chiya; Swaminathan, G.

    2013-03-01

    Box-Behnken design was employed for the decolourization of synthetic dye bath effluent using solar induced photo catalytic degradation with mixed semi conductor catalysts. Four independent variables namely concentration of dye effluent, catalyst loading, pH and irradiation time was chosen as process variables. The optimum concentrations of dye effluent, catalyst dosage, pH, and irradiation time were found to be 60 mg L-1, 200 mg L-1, 7 and 100 min, respectively, for maximum decolourization of dye effluent (91.24%). Predicted values were found to be in good agreement with experimental values and as a result reflected the precision and the applicability of Response Surface Methodology (RSM) (R2=0.9785 and Adj R2= 0.9569).

  10. Divalent metal ion-based catalytic mechanism of the Nudix hydrolase Orf153 (YmfB) from Escherichia coli.

    Science.gov (United States)

    Hong, Myoung-Ki; Ribeiro, António J M; Kim, Jin-Kwang; Ngo, Ho-Phuong-Thuy; Kim, Jiyoung; Lee, Choong Hwan; Ahn, Yeh-Jin; Fernandes, Pedro Alexandrino; Li, Qing; Ramos, Maria Joao; Kang, Lin-Woo

    2014-05-01

    YmfB from Escherichia coli is the Nudix hydrolase involved in the metabolism of thiamine pyrophosphate, an important compound in primary metabolism and a cofactor of many enzymes. In addition, it hydrolyzes (d)NTPs to (d)NMPs and inorganic orthophosphates in a stepwise manner. The structures of YmfB alone and in complex with three sulfates and two manganese ions determined by X-ray crystallography, when compared with the structures of other Nudix hydrolases such as MutT, Ap4Aase and DR1025, provide insight into the unique hydrolysis mechanism of YmfB. Mass-spectrometric analysis confirmed that water attacks the terminal phosphates of GTP and GDP sequentially. Kinetic analysis of binding-site mutants showed that no individual residue is absolutely required for catalytic activity, suggesting that protein residues do not participate in the deprotonation of the attacking water. Thermodynamic integration calculations show that a hydroxyl ion bound to two divalent metal ions attacks the phosphate directly without the help of a nearby catalytic base. PMID:24816099

  11. Research on Integration of an Automotive Exhaust-Based Thermoelectric Generator and a Three-Way Catalytic Converter

    Science.gov (United States)

    Deng, Y. D.; Chen, Y. L.; Chen, S.; Xianyu, W. D.; Su, C. Q.

    2015-06-01

    A key research topic related to thermoelectric generators (TEGs) for automotive applications is to improve their compatibility with the original vehicle exhaust system, which determines the quality of the exhaust gas treatment and the realization of energy conservation and emission reduction. A new TEG integrated with a three-way catalytic converter (CTEG) by reshaping the converter as the heat exchanger is proposed. A heat-flux coupling simulation model of the integrated TEG is established at the light-off stage of the original three-way catalytic converter (TWC). Temperature distribution maps of the integrated heat exchanger, thermoelectric modules, and cooling-water tank are obtained to present the process of energy flow among the parts of the CTEG. Based on the simulation results, the output power of the CTEG is calculated by a mathematical model. A minimum output power of 31.93 W can be obtained by conversion when the TWC starts working at steady conditions. Theoretically, this case study demonstrates the great potential for use of CTEGs in vehicles.

  12. The Significance of Lewis Acid Sites for the Selective Catalytic Reduction of Nitric Oxide on Vanadium-Based Catalysts.

    Science.gov (United States)

    Marberger, Adrian; Ferri, Davide; Elsener, Martin; Kröcher, Oliver

    2016-09-19

    The long debated reaction mechanisms of the selective catalytic reduction (SCR) of nitric oxide with ammonia (NH3 ) on vanadium-based catalysts rely on the involvement of Brønsted or Lewis acid sites. This issue has been clearly elucidated using a combination of transient perturbations of the catalyst environment with operando time-resolved spectroscopy to obtain unique molecular level insights. Nitric oxide reacts predominantly with NH3 coordinated to Lewis sites on vanadia on tungsta-titania (V2 O5 -WO3 -TiO2 ), while Brønsted sites are not involved in the catalytic cycle. The Lewis site is a mono-oxo vanadyl group that reduces only in the presence of both nitric oxide and NH3 . We were also able to verify the formation of the nitrosamide (NH2 NO) intermediate, which forms in tandem with vanadium reduction, and thus the entire mechanism of SCR. Our experimental approach, demonstrated in the specific case of SCR, promises to progress the understanding of chemical reactions of technological relevance. PMID:27553251

  13. Structured Perovskite-Based Catalysts and Their Application as Three-Way Catalytic Converters—A Review

    Directory of Open Access Journals (Sweden)

    Sylvain Keav

    2014-07-01

    Full Text Available Automotive Three-Way Catalysts (TWC were introduced more than 40 years ago. Despite that, the development of a sustainable TWC still remains a critical research topic owing to the increasingly stringent emission regulations together with the price and scarcity of precious metals. Among other material classes, perovskite-type oxides are known to be valuable alternatives to conventionally used TWC compositions and have demonstrated to be suitable for a wide range of automotive applications, ranging from TWC to Diesel Oxidation Catalysts (DOC, from NOx Storage Reduction catalysts (NSR to soot combustion catalysts. The interest in these catalysts has been revitalized in the past ten years by the introduction of the concept of catalyst regenerability of perovskite-based TWC, which is in principle well applicable to other catalytic processes as well, and by the possibility to reduce the amounts of critical elements, such as precious metals without seriously lowering the catalytic performance. The aim of this review is to show that perovskite-type oxides have the potential to fulfil the requirements (high activity, stability, and possibility to be included into structured catalysts for implementation in TWC.

  14. Advances in catalytic production of bio-based polyester monomer 2,5-furandicarboxylic acid derived from lignocellulosic biomass.

    Science.gov (United States)

    Zhang, Junhua; Li, Junke; Tang, Yanjun; Lin, Lu; Long, Minnan

    2015-10-01

    Recently, the production and utilization of 2,5-furandicarboxylic acid (FDCA) have become a hot research topic in catalyst field and polyester industry for its special chemical structure and a wide range of raw material source. FDCA is a potential replacement for the terephthalic acid monomer used in the production of poly(ethylene terephthalate) (PET) and poly(butylene terephthalate) (PBT), which opens up a new pathway for obtaining biomass-based polyester to replace or partially replace petroleum based polyester. Here, we mainly reviewed the catalytic pathway for the synthesis of FDCA derived from lignocellulosic biomass or from the related downstream products, such as glucose, 5-hydroxymethylfurfural (HMF). Moreover, the utilization of oxidation catalysts, the reaction mechanism, the existing limitations and unsolved challenges were also elaborated in detail. Therefore, we hope this mini review provides a helpful overview and insight to readers in this exciting research area. PMID:26076643

  15. Selective catalytic reduction of nitrogen oxides from industrial gases by hydrogen or methane; Reduction catalytique selective des oxydes d'azote (NO{sub x}) provenant d'effluents gazeux industriels par l'hydrogene ou le methane

    Energy Technology Data Exchange (ETDEWEB)

    Engelmann Pirez, M

    2004-12-15

    This work deals with the selective catalytic reduction of nitrogen oxides (NO{sub x}), contained in the effluents of industrial plants, by hydrogen or methane. The aim is to replace ammonia, used as reducing agent, in the conventional process. The use of others reducing agents such as hydrogen or methane is interesting for different reasons: practical, economical and ecological. The catalyst has to convert selectively NO into N{sub 2}, in presence of an excess of oxygen, steam and sulfur dioxide. The developed catalyst is constituted by a support such as perovskites, particularly LaCoO{sub 3}, on which are dispersed noble metals (palladium, platinum). The interaction between the noble metal and the support, generated during the activation of the catalyst, allows to minimize the water and sulfur dioxide inhibitor phenomena on the catalytic performances, particularly in the reduction of NO by hydrogen. (O.M.)

  16. Ruthenium (II) complexes containing quinone based ligands: synthesis, characterization and catalytic applications

    International Nuclear Information System (INIS)

    A series of ruthenium (II) complexes containing ONS and ONO donor ligands of general formula (RuX(CO)(B)(L)) (X = H or Cl; B = PPh3, AsPh3 or Py; L = mono negative tridentate ligand) were synthesized from the reactions of tridentate ligand with (RuHX(CO)(EPh3)2(B)) (X = H or Cl; E = P or As; B = PPh3, AsPh3 or Py) in 1:1 molar ratio. All the new complexes have been characterized by analytical and spectral (FT-IR, electronic, 1H, 13C and 31PNMR) data. They have been tentatively assigned an octahedral structure. The synthesized complexes have exhibited catalytic activity for oxidation of benzyl alcohol to benzaldehyde and cyclohexanol to cyclohexanone in the presence of N-methyl morpholine N-oxide (NMO) as co-oxidant. They were also found to catalyze the transfer hydrogenation of aliphatic and aromatic ketones to alcohols in KOH/lsopropanol. (author)

  17. A quartz-based micro catalytic methane sensor by high resolution screen printing

    International Nuclear Information System (INIS)

    A micro catalytic methane sensor was proposed and fabricated on a bulk fused quartz substrate using a high resolution screen printing technique for the first time, with reduced power consumption and optimized sensitivity. The sensor was designed by the finite element method and quartz was chosen as the substrate material and alumina support with optimized dimensions. Fabrication of the sensor consisted of two MEMS processes, lift-off and high resolution screen printing, with the advantages of high yield and uniformity. When the sensor’s regional working temperature changes from 250 °C to 470 °C, its sensitivity increases, as well as the power consumption. The highest sensitivity can reach 1.52 mV/% CH4. A temperature of 300 °C was chosen as the optimized working temperature, and the sensor’s sensitivity, power consumption, nonlinearity and response time are 0.77 mV/% CH4, 415 mW, 2.6%, and 35 s, respectively. This simple, but highly uniform fabrication process and the reliable performance of this sensor may lead to wide applications for methane detection. (paper)

  18. Carbon based catalytic briquettes for the reduction of NO. Catalyst scale-up

    International Nuclear Information System (INIS)

    Exhaust gases from small and medium stationary sources contain NOx that will be regulated by new European legislation in the coming years. Among all the processes the SCR-NH3 seems to be the more promising one. However, the application of commercial catalysts to these new facilities presents some drawbacks such as the high and narrow operation temperature, its low withdraw to SO2 or its high cost production. In order to improve this technology, in previous works, carbon-supported catalytic briquettes have shown a good kinetic performance under the above commented conditions. In this study, other aspects such as thermal stability, long-term performance, spatial velocity influence and mechanical resistance were evaluated. Finally, a simple economic assessment was carried out providing a three times lower cost production than commercial catalysts. From all the data collected, there are some evidences that these catalyst briquettes will have a good performance in small and medium facilities, being an interesting alternative to commercial ones. (author)

  19. Synthesis of ceramic catalytic system based on CuO/CeO2 for preferential oxidation reaction of CO

    International Nuclear Information System (INIS)

    The aim this is work is to develop catalysts based on CuO/CeO2 by means two different types of synthesis methods: combustion synthesis and Pechini. CuO/CeO2 catalysts were synthesized with 0.5 mol of CuO for both synthesis methods used. The catalysts were characterized by XRD with the Rietveld refinement, EDX and textural analysis by the BET method. The results show that both methods of synthesis led to the formation of catalysts with segregated phases formed on the structures of the obtained materials, such segregated phases were formed by the presence of catalytic active species CuO and these phases had different characteristics depending on the type of method synthesis used. Small differences were observed in the evaluation of textural characteristics of the catalysts developed in this work according to the synthesis method employed. (author)

  20. High Selectively Catalytic Conversion of Lignin-Based Phenols into para-/m-Xylene over Pt/HZSM-5

    Directory of Open Access Journals (Sweden)

    Guozhu Liu

    2016-01-01

    Full Text Available High selectively catalytic conversion of lignin-based phenols (m-cresol, p-cresol, and guaiacol into para-/m-xylene was performed over Pt/HZSM-5 through hydrodeoxygenation and in situ methylation with methanol. It is found that the p-/m-xylene selectivity is uniformly higher than 21%, and even increase up to 33.5% for m-cresol (with phenols/methanol molar ratio of 1/8. The improved p-/m-xylene selectivity in presence of methanol is attributed to the combined reaction pathways: methylation of m-cresol into xylenols followed by HDO into p-/m-xylene, and HDO of m-cresol into toluene followed by methylation into p-/m-xylene. Comparison of the product distribution over a series of catalysts indicates that both metals and supporters have distinct effect on the p-/m-xylene selectivity.

  1. A measure of the broad substrate specificity of enzymes based on 'duplicate' catalytic residues.

    Directory of Open Access Journals (Sweden)

    Sandeep Chakraborty

    Full Text Available The ability of an enzyme to select and act upon a specific class of compounds with unerring precision and efficiency is an essential feature of life. Simultaneously, these enzymes often catalyze the reaction of a range of similar substrates of the same class, and also have promiscuous activities on unrelated substrates. Previously, we have established a methodology to quantify promiscuous activities in a wide range of proteins. In the current work, we quantitatively characterize the active site for the ability to catalyze distinct, yet related, substrates (BRASS. A protein with known structure and active site residues provides the framework for computing 'duplicate' residues, each of which results in slightly modified replicas of the active site scaffold. Such spatial congruence is supplemented by Finite difference Poisson Boltzmann analysis which filters out electrostatically unfavorable configurations. The congruent configurations are used to compute an index (BrassIndex, which reflects the broad substrate profile of the active site. We identify an acetylhydrolase and a methyltransferase as having the lowest and highest BrassIndex, respectively, from a set of non-homologous proteins extracted from the Catalytic Site Atlas. The acetylhydrolase, a regulatory enzyme, is known to be highly specific for platelet-activating factor. In the methyltransferase (PDB: 1QAM, various combinations of glycine (Gly38/40/42, asparagine (Asn101/11 and glutamic acid (Glu59/36 residues having similar spatial and electrostatic profiles with the specified scaffold (Gly38, Asn101 and Glu59 exemplifies the broad substrate profile such an active site may provide. 'Duplicate' residues identified by relaxing the spatial and/or electrostatic constraints can be the target of directed evolution methodologies, like saturation mutagenesis, for modulating the substrate specificity of proteins.

  2. Electrochemical sensing chemical oxygen demand based on the catalytic activity of cobalt oxide film

    International Nuclear Information System (INIS)

    Highlights: ► A novel electrochemical sensor was developed for COD using cobalt oxide film. ► It exhibited high sensitivity, rapid response, good simplicity and practicability. ► It was used in numerous water samples, and accuracy was tested by standard method. - Abstract: Cobalt oxide sensing film was in situ prepared on glassy carbon electrode surface via constant potential oxidation. Controlling at 0.8 V in NaOH solution, the high-valence cobalt catalytically oxidized the reduced compounds, decreasing its surface amount and current signal. The current decline was used as the response signal of chemical oxygen demand (COD) because COD represents the summation of reduced compounds in water. The surface morphology and electrocatalytic activity of cobalt oxide were readily tuned by variation of deposition potential, time, medium and Co2+ concentration. As confirmed from the atomic force microscopy measurements, the cobalt oxide film, that prepared at 1.3 V for 40 s in pH 4.6 acetate buffer containing 10 mM Co(NO3)2, possesses large surface roughness and numerous three-dimensional structures. Electrochemical tests indicated that the prepared cobalt oxide exhibited high electrocatalytic activity to the reduced compounds, accompanied with strong COD signal enhancement. As a result, a novel electrochemical sensor with high sensitivity, rapid response and operational simplicity was developed for COD. The detection limit was as low as 1.1 mg L−1. The analytical application was studied using a large number of lake water samples, and the accuracy was tested by standard method.

  3. The effect of noble metals on catalytic methanation reaction over supported Mn/Ni oxide based catalysts

    Directory of Open Access Journals (Sweden)

    Wan Azelee Wan Abu Bakar

    2015-09-01

    Full Text Available Carbon dioxide (CO2 in sour natural gas can be removed using green technology via catalytic methanation reaction by converting CO2 to methane (CH4 gas. Using waste to wealth concept, production of CH4 would increase as well as creating environmental friendly approach for the purification of natural gas. In this research, a series of alumina supported manganese–nickel oxide based catalysts doped with noble metals such as ruthenium and palladium were prepared by wetness impregnation method. The prepared catalysts were run catalytic screening process using in-house built micro reactor coupled with Fourier Transform Infra Red (FTIR spectroscopy to study the percentage CO2 conversion and CH4 formation analyzed by GC. Ru/Mn/Ni(5:35:60/Al2O3 calcined at 1000 °C was found to be the potential catalyst which gave 99.74% of CO2 conversion and 72.36% of CH4 formation at 400 °C reaction temperature. XRD diffractogram illustrated that the supported catalyst was in polycrystalline with some amorphous state at 1000 °C calcination temperature with the presence of NiO as active site. According to FESEM micrographs, both fresh and used catalysts displayed spherical shape with small particle sizes in agglomerated and aggregated mixture. Nitrogen Adsorption analysis revealed that both catalysts were in mesoporous structures with BET surface area in the range of 46–60 m2/g. All the impurities have been removed at 1000 °C calcination temperature as presented by FTIR, TGA–DTA and EDX data.

  4. Synthesis, characterizations and catalytic studies of a new two-dimensional metal−organic framework based on Co–carboxylate secondary building units

    International Nuclear Information System (INIS)

    A metal–organic framework [Co3(BDC)3(DMF)2(H2O)2] was synthesized and structurally characterized. X-ray single crystal analysis revealed that the framework contains a 2D polymeric chain through coordination of 1,4-benzenedicarboxylic acid linker ligand to cobalt centers. The polymer crystallize in monoclinic P21/n space group with a=13.989(3) Å, b=9.6728(17) Å, c=16.707(3) Å, and Z=2. The polymer features a framework based on the perfect octahedral Co–O6 secondary building units. The catalytic activities of [Co3(BDC)3(DMF)2(H2O)2]n for olefins oxidation was conducted. The heterogeneous catalyst could be facilely separated from the reaction mixture, and reused three times without significant degradation in catalytic activity. Furthermore, no contribution from homogeneous catalysis of active species leaching into reaction solution was detected. - Graphical abstract: A metal–organic framework of [Co3(BDC)3(DMF)2(H2O)2] was synthesized by hydrothermal method. This 2D-periodic framework is constructed from the infinite Co–O–C secondary building units and crystallizes in the monoclinic P21/n space group based on Co(II)–carboxylate units. The catalytic oxidation of various olefins was effectively carried out with [Co3(BDC)3(DMF)2(H2O)2]n catalyst by TBHP as oxidant. - Highlights: • A metal–organic framework of [Co3(BDC)3(DMF)2(H2O)2] is prepared by hydrothermal method. • The [Co3(BDC)3(DMF)2(H2O)2]n is constructed from Co–carboxylate secondary building units. • This coordination polymer displayed high catalytic activity for olefin oxidation reactions. • The catalytic reaction is heterogeneous and catalyst can be simply separated. • The heterogeneous catalyst can be reused several times without significant loss of catalytic activity

  5. Adsorptive removal of lead and cadmium ions using Cross -linked CMC Schiff base: Isotherm, Kinetics and Catalytic Activity

    Directory of Open Access Journals (Sweden)

    P. Moganavally

    2016-03-01

    Full Text Available Water plays a vital role to human and other living organisms. Due to the effluent coming from chemical industries, the industrial activity, contamination of ground water level is goes on increasing nowadays. Therefore, there is a need to develop technologies that can remove toxic pollutants in wastewater. Hence the cross linked Carboxymethyl chitosan(CMC/ 2,3-dimethoxy Benzaldehyde Schiff base complex has been synthesized and characterized by using FT-IR and SEM analysis. All these results revealed that cross linked Schiff base has formed with high adsorption capacity. The prepared effective adsorbent used for the removal of heavy metals like lead (II and cadmium (II ions from aqueous solution and the adsorption data follow the Freundlich model, which follows pseudo first order kinetics. Effect of various parameters like solution pH, adsorbent dose and contact time for the removal of heavy metals has been studied. The synthesized sample undergoes catalytic oxidation process significantly at 24 hrs. The results showed that cross linked Schiff base is an effective, eco-friendly, low-cost adsorbent.

  6. Characterization of catalytic supports based in mixed oxides for control reactions of NO and N2O

    International Nuclear Information System (INIS)

    The catalytic supports Al2O3, La2O3 and Al2O3-La2O3 were prepared by the Precipitation and Coprecipitation techniques. The catalytic supports Al2O3, La2O3 and Al2O3-La2O3 were characterized by several techniques to determine: texture (Bet), crystallinity (XRD), chemical composition (Sem)(Ftir) and it was evaluated their total acidity by reaction with 2-propanol. The investigation will be continued with the cobalt addition and this will be evaluated for its catalytic activity in control reactions of N O and N2O. (Author)

  7. Enumerating pathways of proton abstraction based on a spatial and electrostatic analysis of residues in the catalytic site.

    Directory of Open Access Journals (Sweden)

    Sandeep Chakraborty

    Full Text Available The pathways of proton abstraction (PA, a key aspect of most catalytic reactions, is often controversial and highly debated. Ultrahigh-resolution diffraction studies, molecular dynamics, quantum mechanics and molecular mechanic simulations are often adopted to gain insights in the PA mechanisms in enzymes. These methods require expertise and effort to setup and can be computationally intensive. We present a push button methodology--Proton abstraction Simulation (PRISM--to enumerate the possible pathways of PA in a protein with known 3D structure based on the spatial and electrostatic properties of residues in the proximity of a given nucleophilic residue. Proton movements are evaluated in the vicinity of this nucleophilic residue based on distances, potential differences, spatial channels and characteristics of the individual residues (polarity, acidic, basic, etc. Modulating these parameters eliminates their empirical nature and also might reveal pathways that originate from conformational changes. We have validated our method using serine proteases and concurred with the dichotomy in PA in Class A β-lactamases, both of which are hydrolases. The PA mechanism in a transferase has also been corroborated. The source code is made available at www.sanchak.com/prism.

  8. Direct catalytic transformation of carbohydrates into 5-ethoxymethylfurfural with acid–base bifunctional hybrid nanospheres

    DEFF Research Database (Denmark)

    Li, Hu; Khokarale, Santosh Govind; Kotni, Ramakrishna;

    2014-01-01

    A series of acid–base bifunctional hybrid nanospheres prepared from the self-assembly of basic amino acids and phosphotungstic acid (HPA) with different molar ratios were employed as efficient and recyclable catalysts for synthesis of liquid biofuel 5-ethoxymethylfurfural (EMF) from various...... carbohydrates. A high EMF yield of 76.6%, 58.5%, 42.4%, and 36.5% could be achieved, when fructose, inulin, sorbose, and sucrose were used as starting materials, respectively. Although, the acid–base bifunctional nanocatalysts were inert for synthesis of EMF from glucose based carbohydrates, ethyl...

  9. Thermo-Catalytic Methane Decomposition for Hydrogen Production: Effect of Palladium Promoter on Ni-based Catalysts

    OpenAIRE

    Irene Lock Sow Mei; S.S.M. Lock; Dai-Viet N. Vo; Bawadi Abdullah

    2016-01-01

    Hydrogen production from the direct thermo-catalytic decomposition of methane is a promising alternative for clean fuel production. However, thermal decomposition of methane can hardly be of any practical and empirical interest in the industry unless highly efficient and effective catalysts, in terms of both catalytic activity and operational lifetime have been developed. In this study, the effect of palladium (Pd) as a promoter onto Ni supported on alumina catalyst has been investigated by u...

  10. Deep catalytic oxidative desulfurization (ODS) of dibenzothiophene (DBT) with oxalate-based deep eutectic solvents (DESs).

    Science.gov (United States)

    Lü, Hongying; Li, Pengcheng; Deng, Changliang; Ren, Wanzhong; Wang, Shunan; Liu, Pan; Zhang, Han

    2015-07-01

    An oxalate-based DES with a tetrabutyl ammonium chloride and oxalate acid molar ratio of 1/2 (TBO1 : 2) exhibited high activity in oxidative desulfurization (ODS) of dibenzothiophene (DBT) under mild reaction conditions. It is potentially a promising and highly environmentally friendly approach for desulfurization of fuels. PMID:26051675

  11. A Dinuclear Cu(Ⅱ)-based Coordination Framework with Two-fold Interpenetrated 3D pcu Topology Displaying Catalytic Activity

    Institute of Scientific and Technical Information of China (English)

    MING Chun-Lun; MA Pei-Juan; LI Guang-Yue; CUI Guang-Hua

    2014-01-01

    A new Cu(Ⅱ) coordination polymer,[Cu2(mip)2(bmix)]n (bmix =1,4-bis(2-methyl-imidazole-1-ylmethyl)benzene,H2mip =5-methylisophthalic acid),has been hydrothermally synthesized and characterized by elemental analyses,IR,TGA and single-crystal X-ray diffraction.The title compound belongs to the triclinic system,space group P(i) with a =9.435(5),b =12.241(6),c =13.666(6) (A),β =94.396(8)°,V=1565.5(13) (A)3,Z=2,C34H30Cu2N4O8,Mr =749.70,Dc =1.590 g/cm3,μ =1.419 mm1 and F(000) =768.The title metal-organic coordination polymer exhibits the first two-fold interpenetrated pcu topological structure assembled by two types of dinuclear copper(Ⅱ) clusters and a flexible bis(imidazole)-based ligand.In addition,the fluorescence and catalytic performances of the complex for the degradation of Congo red azo dye in Fenton-like process were presented.

  12. Kinetic spectrophotometric determination of Bi(III based on its catalytic effect on the oxidation of phenylfluorone by hydrogen peroxide

    Directory of Open Access Journals (Sweden)

    SOFIJA M. RANČIĆ

    2009-08-01

    Full Text Available A new reaction was suggested and a new kinetic method was elaborated for determination of Bi(III in solution, based on its catalytic effect on the oxidation of phenyl-fluorone (PF by hydrogen peroxide in ammonia buffer. By application of spectrophotometric technique, a limit of quantification (LQ of 128 ng cm-3 was reached, and the limit of detection (LD of 37 ng cm-3 was obtained, where LQ was defined as the ratio signal:noise = 10:1 and LD was defined as signal 3:1 against the blank. The RSD value was found to be in the range 2.8–4.8 % for the investigated concentration range of Bi(III. The influence of some ions upon the reaction rate was tested. The method was confirmed by determining Bi(III in a stomach ulcer drug (“Bicit HP”, Hemofarm A.D.. The obtained results were compared to those obtained by AAS and good agreement of results was obtained.

  13. Copper sulfide/Lead sulfide as a Highly Catalytic Counter Electrode for Zinc Oxide Nanorod Based Quantum Dot Solar Cells

    International Nuclear Information System (INIS)

    Highlights: • Voc is increased from 0.63 V to 0.72 V with CuS/(4cycle)PbS counter electrode. • The maximum η 2.2%, is achieved in QDSSCs when cycle of PbS is 4. • The Rct is reduced with increasing cycle of PbS up to 4 and raised thereafter. • CuS/PbS counter electrode has higher redox current densities than the bare CuS. - Abstract: This work investigates the improvement in efficiency of quantum dot sensitized solar cells (QDSSCs) using CuS/PbS as counter electrode, which results in formation of highly efficient counter electrode for liquid-junction QDSSCs. The QDSSC on based CuS/PbS counter electrode exhibits power conversion efficiency (η) of 2.2%, which is higher than that of CuS counter electrode, 1.17%. The improvement in η is probably attributed to the reduction of electron back into CuS/PbS counter electrode. Electrochemical impedance spectroscopy and cyclic voltammetry results confirm that higher value of η in CuS/PbS counter electrode is because of this novel counter electrode which shows superior photo-electrochemical performance and electro-catalytic properties. Another reason for this higher η might be the reduction in the charge transfer resistance at the counter electrode/electrolyte interfaces

  14. Determining the storage, availability and reactivity of NH3 within Cu-Chabazite-based Ammonia Selective Catalytic Reduction systems.

    Science.gov (United States)

    Lezcano-Gonzalez, I; Deka, U; Arstad, B; Van Yperen-De Deyne, A; Hemelsoet, K; Waroquier, M; Van Speybroeck, V; Weckhuysen, B M; Beale, A M

    2014-01-28

    Three different types of NH3 species can be simultaneously present on Cu(2+)-exchanged CHA-type zeolites, commonly used in Ammonia Selective Catalytic Reduction (NH3-SCR) systems. These include ammonium ions (NH4(+)), formed on the Brønsted acid sites, [Cu(NH3)4](2+) complexes, resulting from NH3 coordination with the Cu(2+) Lewis sites, and NH3 adsorbed on extra-framework Al (EFAl) species, in contrast to the only two reacting NH3 species recently reported on Cu-SSZ-13 zeolite. The NH4(+) ions react very slowly in comparison to NH3 coordinated to Cu(2+) ions and are likely to contribute little to the standard NH3-SCR process, with the Brønsted groups acting primarily as NH3 storage sites. The availability/reactivity of NH4(+) ions can be however, notably improved by submitting the zeolite to repeated exchanges with Cu(2+), accompanied by a remarkable enhancement in the low temperature activity. Moreover, the presence of EFAl species could also have a positive influence on the reaction rate of the available NH4(+) ions. These results have important implications for NH3 storage and availability in Cu-Chabazite-based NH3-SCR systems. PMID:24322601

  15. Catalytic Coupling of Carbon Dioxide with Terpene Scaffolds: Access to Challenging Bio-Based Organic Carbonates.

    Science.gov (United States)

    Fiorani, Giulia; Stuck, Moritz; Martín, Carmen; Belmonte, Marta Martínez; Martin, Eddy; Escudero-Adán, Eduardo C; Kleij, Arjan W

    2016-06-01

    The challenging coupling of highly substituted terpene oxides and carbon dioxide into bio-based cyclic organic carbonates catalyzed by Al(aminotriphenolate) complexes is reported. Both acyclic as well as cyclic terpene oxides were used as coupling partners, showing distinct reactivity/selectivity behavior. Whereas cyclic terpene oxides showed excellent chemoselectivity towards the organic carbonate product, acyclic substrates exhibited poorer selectivities owing to concomitant epoxide rearrangement reactions and the formation of undesired oligo/polyether side products. Considering the challenging nature of these coupling reactions, the isolated yields of the targeted bio-carbonates are reasonable and in most cases in the range 50-60 %. The first crystal structures of tri-substituted terpene based cyclic carbonates are reported and their stereoconnectivity suggests that their formation proceeds through a double inversion pathway. PMID:27159151

  16. Development of glycerol-based carbon materials for environmental catalytic applications in advanced oxidation processes

    OpenAIRE

    Gomes, Helder; Ribeiro, Rui; Silva, Adrián; Pinho, Teresa; Figueiredo, José; Faria, Joaquim

    2013-01-01

    A glycerol-based carbon material was initially produced by partial carbonization of glycerol with sulphuric acid followed by calcination under inert atmosphere. This material, characterized by high thermal stability, low ash content, non-porous structure and basic character, was further activated in air atmosphere at different temperatures (from 150 to 350 oC), resulting in materials with less basic character, due to the incorporation of oxygenated surface groups, and to a notorious evolution...

  17. Microlith catalytic reactors for reforming iso-octane-based fuels into hydrogen

    Science.gov (United States)

    Roychoudhury, Subir; Castaldi, Marco; Lyubovsky, Maxim; LaPierre, Rene; Ahmed, Shabbir

    Recent advances in the development of short contact time (SCT) reactor design approaches allow reformers capable of overcoming current barriers of cost, size, weight, complexity and efficiency associated with conventional reactor design approaches. PCI has developed an SCT based approach using a patented substrate (trademarked Microlith ®) and proprietary coating technology [1]. The high heat and mass transport properties of the substrate have been shown to significantly reduce reactor size while improving performance. Resistance to coking, especially at low H 2O:C ratios, has also been observed with these reactors. This paper summarizes the results of auto thermal reforming (ATR) of an iso-octane-based liquid fuel. In addition Microlith-based water gas shift (WGS) and preferential CO oxidation (PROX) reactors were also examined for fuel processing applications. Surprisingly, selectivity advantages for these kinetically controlled reactions were observed [2]. Examples described here include low methanation selectivity in WGS applications and large operating windows for PROX at very high space velocities. A complete reformer system with Microlith ATR, WGS and PROX reactors has been identified. Sensitivity of system size with regard to steam:carbon ratios, and the resulting implications for reactor/heat exchanger sizes were documented and a compact system identified.

  18. Fuzzy, copper-based multi-functional composite particles serving simultaneous catalytic and signal-enhancing roles

    Science.gov (United States)

    Li, Xiangming; Hu, Yingmo; An, Qi; Luan, Xinglong; Zhang, Qian; Zhang, Yihe

    2016-04-01

    Multifunctional plasmonic particles serving simultaneously as catalysts and label-free reporting agents are highly pursued due to their great potential in enhancing reaction operational efficiencies. Copper is an abundant and economic resource, and it possesses practical applicability in industries, but no dual-functional copper-based catalytic and self-reporting particles have been reported so far. This study proposes a facile strategy to prepare high-performance dual-functional copper-based composite particles that catalyze reactions and simultaneously serve as a SERS (surface enhanced Raman spectra) active, label-free reporting agent. Polyelectrolyte-modified reduced graphene oxide particles are used as the reactive precursors in the fabrication method. Upon adding Cu(NO3)2 solutions into the precursor dispersions, composite particles comprised by copper/copper oxide core and polyelectrolyte-graphene shell were facilely obtained under sonication. The as-prepared composite particles efficiently catalyzed the conversion of 4-nitrophenol to 4-aminophenol and simultaneously acted as the SERS-active substrate to give enhanced Raman spectra of the produced 4-aminophenol. Taking advantage of the assembling capabilities of polyelectrolyte shells, the composite particles could be further assembled onto a planar substrate to catalyze organic reactions, facilitating their application in various conditions. We expect this report to promote the fabrication and application of copper-based multifunctional particles.Multifunctional plasmonic particles serving simultaneously as catalysts and label-free reporting agents are highly pursued due to their great potential in enhancing reaction operational efficiencies. Copper is an abundant and economic resource, and it possesses practical applicability in industries, but no dual-functional copper-based catalytic and self-reporting particles have been reported so far. This study proposes a facile strategy to prepare high

  19. High performance anodes with tailored catalytic properties for La5.6WO11.4-δ based proton conducting fuel cells

    DEFF Research Database (Denmark)

    Balaguer, M.; Solis, C.; Bozza, Francesco;

    2013-01-01

    A new generation of anodes for PC-SOFCs based on catalytically promoted La0.75Ce0.1Sr0.15CrO3−δ (LSCCe) is presented. LSCCe is selected as the electrode backbone structure, due to its superior total conductivity over that of LSC. The infiltration of catalytically highly active nickel nanoparticle...

  20. Unsteady catalytic processes and sorption-catalytic technologies

    International Nuclear Information System (INIS)

    Catalytic processes that occur under conditions of the targeted unsteady state of the catalyst are considered. The highest efficiency of catalytic processes was found to be ensured by a controlled combination of thermal non-stationarity and unsteady composition of the catalyst surface. The processes based on this principle are analysed, in particular, catalytic selective reduction of nitrogen oxides, deep oxidation of volatile organic impurities, production of sulfur by the Claus process and by hydrogen sulfide decomposition, oxidation of sulfur dioxide, methane steam reforming and anaerobic combustion, selective oxidation of hydrocarbons, etc.

  1. Synthesis, characterization and catalytic activity of acid-base bifunctional materials through protection of amino groups

    Energy Technology Data Exchange (ETDEWEB)

    Shao, Yanqiu [College of Chemistry, Jilin University, Changchun 130023 (China); College of Chemistry, Mudanjiang Normal University, Mudanjiang 157012 (China); Liu, Heng; Yu, Xiaofang [College of Chemistry, Jilin University, Changchun 130023 (China); Guan, Jingqi, E-mail: guanjq@jlu.edu.cn [College of Chemistry, Jilin University, Changchun 130023 (China); Kan, Qiubin, E-mail: qkan@mail.jlu.edu.cn [College of Chemistry, Jilin University, Changchun 130023 (China)

    2012-03-15

    Graphical abstract: Acid-base bifunctional mesoporous material SO{sub 3}H-SBA-15-NH{sub 2} was successfully synthesized under low acidic medium through protection of amino groups. Highlights: Black-Right-Pointing-Pointer The acid-base bifunctional material SO{sub 3}H-SBA-15-NH{sub 2} was successfully synthesized through protection of amino groups. Black-Right-Pointing-Pointer The obtained bifunctional material was tested for aldol condensation. Black-Right-Pointing-Pointer The SO{sub 3}H-SBA-15-NH{sub 2} catalyst containing amine and sulfonic acid groups exhibited excellent acid-basic properties. -- Abstract: Acid-base bifunctional mesoporous material SO{sub 3}H-SBA-15-NH{sub 2} was successfully synthesized under low acidic medium through protection of amino groups. X-ray diffraction (XRD), N{sub 2} adsorption-desorption, transmission electron micrographs (TEM), back titration, {sup 13}C magic-angle spinning (MAS) NMR and {sup 29}Si magic-angle spinning (MAS) NMR were employed to characterize the synthesized materials. The obtained bifunctional material was tested for aldol condensation reaction between acetone and 4-nitrobenzaldehyde. Compared with monofunctional catalysts of SO{sub 3}H-SBA-15 and SBA-15-NH{sub 2}, the bifunctional sample of SO{sub 3}H-SBA-15-NH{sub 2} containing amine and sulfonic acid groups exhibited excellent acid-basic properties, which make it possess high activity for the aldol condensation.

  2. High Efficiency Solar-based Catalytic Structure for CO{sub 2} Reforming

    Energy Technology Data Exchange (ETDEWEB)

    Menkara, Hisham

    2013-09-30

    Throughout this project, we developed and optimized various photocatalyst structures for CO{sub 2} reforming into hydrocarbon fuels and various commodity chemical products. We also built several closed-loop and continuous fixed-bed photocatalytic reactor system prototypes for a larger-scale demonstration of CO{sub 2} reforming into hydrocarbons, mainly methane and formic acid. The results achieved have indicated that with each type of reactor and structure, high reforming yields can be obtained by refining the structural and operational conditions of the reactor, as well as by using various sacrificial agents (hole scavengers). We have also demonstrated, for the first time, that an aqueous solution containing acid whey (a common bio waste) is a highly effective hole scavenger for a solar-based photocatalytic reactor system and can help reform CO{sub 2} into several products at once. The optimization tasks performed throughout the project have resulted in efficiency increase in our conventional reactors from an initial 0.02% to about 0.25%, which is 10X higher than our original project goal. When acid whey was used as a sacrificial agent, the achieved energy efficiency for formic acid alone was ~0.4%, which is 16X that of our original project goal and higher than anything ever reported for a solar-based photocatalytic reactor. Therefore, by carefully selecting sacrificial agents, it should be possible to reach energy efficiency in the range of the photosynthetic efficiency of typical crop and biofuel plants (1-3%).

  3. Catalytic and capacity properties of nanocomposites based on cobalt oxide and nitrogen-doped carbon nanofibers

    Institute of Scientific and Technical Information of China (English)

    Olga Yu. Podyacheva; Andrei I. Stadnichenko; Svetlana A. Yashnik; Olga A. Stonkus; Elena M. Slavinskaya; Andrei I. Boronin; Andrei V. Puzynin; Zinfer R. Ismagilov

    2014-01-01

    The nanocomposites based on cobalt oxide and nitrogen-doped carbon nanofibers (N-CNFs) with cobalt oxide contents of 10-90 wt%were examined as catalysts in the CO oxidation and superca-pacity electrodes. Depending on Со3О4 content, such nanocomposites have different morphologies of cobalt oxide nanoparticles, distributions over the bulk, and ratios of Со3+/Co2+ cations. The 90%Со3О4-N-CNFs nanocomposite showed the best activity because of the increased concentration of defects in N-CNFs. The capacitance of electrodes containing 10%Со3О4-N-CNFs was 95 F/g, which is 1.7 times higher than electrodes made from N-CNFs.

  4. A general strategy for the catalytic, highly enantio- and diastereoselective synthesis of indolizidine-based alkaloids.

    Science.gov (United States)

    Abels, Falko; Lindemann, Chris; Schneider, Christoph

    2014-02-10

    Sixteen indolizidine-based alkaloids (IBAs) that were isolated as poison constituents of the skin of frogs were synthesized in a highly flexible and stereoselective manner. As a key step, a three-component, organocatalytic, highly enantio- and diastereoselective vinylogous Mukaiyama-Mannich reaction was employed furnishing optically highly enriched butyrolactams as central intermediates on a multigram scale. The attached six-membered ring was constructed through cyclization of the pendant enoate moiety onto the pyrrolidine ring. The absolute configuration of the bridgehead chiral center and the adjacent 8-position was established in the initial vinylogous Mannich reaction, whereas the 3- and 5-substituents were introduced through organometallic addition at a late stage of the synthesis with full stereochemical control from the substrate. With this strategy, simple as well as even more complex alkaloids were accessible in good overall yields as single stereoisomers. These syntheses also served to establish the absolute and relative configuration of those IBAs that had never been synthesized before. PMID:24436076

  5. Lewis base activation of Lewis acids: catalytic, enantioselective vinylogous aldol addition reactions.

    Science.gov (United States)

    Denmark, Scott E; Heemstra, John R

    2007-07-20

    The generality of Lewis base catalyzed, Lewis acid mediated, enantioselective vinylogous aldol addition reactions has been investigated. The combination of silicon tetrachloride and chiral phosphoramides is a competent catalyst for highly selective additions of a variety of alpha,beta-unsaturated ketone-, 1,3-diketone-, and alpha,beta-unsaturated amide-derived dienolates to aldehydes. These reactions provided high levels of gamma-site selectivity for a variety of substitution patterns on the dienyl unit. Both ketone- and morpholine amide-derived dienol ethers afforded high enantio- and diastereoselectivity in the addition to conjugated aldehydes. Although alpha,beta-unsaturated ketone-derived dienolate did not react with aliphatic aldehydes, alpha,beta-unsaturated amide-derived dienolates underwent addition at reasonable rates affording high yields of vinylogous aldol product. The enantioselectivities achieved with the morpholine derived-dienolate in the addition to aliphatic aldehydes was the highest afforded to date with the silicon tetrachloride-chiral phosphoramide system. Furthermore, the ability to cleanly convert the morpholine amide to a methyl ketone was demonstrated. PMID:17583959

  6. Catalytic thermal barrier coatings

    Science.gov (United States)

    Kulkarni, Anand A.; Campbell, Christian X.; Subramanian, Ramesh

    2009-06-02

    A catalyst element (30) for high temperature applications such as a gas turbine engine. The catalyst element includes a metal substrate such as a tube (32) having a layer of ceramic thermal barrier coating material (34) disposed on the substrate for thermally insulating the metal substrate from a high temperature fuel/air mixture. The ceramic thermal barrier coating material is formed of a crystal structure populated with base elements but with selected sites of the crystal structure being populated by substitute ions selected to allow the ceramic thermal barrier coating material to catalytically react the fuel-air mixture at a higher rate than would the base compound without the ionic substitutions. Precious metal crystallites may be disposed within the crystal structure to allow the ceramic thermal barrier coating material to catalytically react the fuel-air mixture at a lower light-off temperature than would the ceramic thermal barrier coating material without the precious metal crystallites.

  7. Environmental Technology Verification: Test Report of Mobile Source Selective Catalytic Reduction--Nett Technologies, Inc., BlueMAX 100 version A urea-based selective catalytic reduction technology

    Science.gov (United States)

    Nett Technologies’ BlueMAX 100 version A Urea-Based SCR System utilizes a zeolite catalyst coating on a cordierite honeycomb substrate for heavy-duty diesel nonroad engines for use with commercial ultra-low–sulfur diesel fuel. This environmental technology verification (ETV) repo...

  8. Carbon-based catalysts:Opening new scenario to develop next-generation nano-engineered catalytic materials

    Institute of Scientific and Technical Information of China (English)

    Claudio Ampelli; Siglinda Perathoner; Gabriele Centi

    2014-01-01

    This essay analyses some of the recent development in nanocarbons (carbon materials having a defined and controlled nano-scale dimension and functional properties which strongly depend on their nano-scale features and architecture), with reference to their use as advanced catalytic materials. It is remarked how their features open new possibilities for catalysis and that they represent a new class of catalytic materials. Although carbon is used from long time in catalysis as support and electrocatalytic applications, nanocarbons offer unconventional ways for their utilization and to address some of the new challenges deriving from moving to a more sustainable future. This essay comments how nanocarbons are a key element to develop next-generation catalytic materials, but remarking that this goal requires overcoming some of the actual limits in current research. Some aspects are discussed to give a glimpse on new directions and needs for R&D to progress in this direction.

  9. The effect of copper valence on catalytic combustion of styrene over the copper based catalysts in the absence and presence of water vapor☆

    Institute of Scientific and Technical Information of China (English)

    Hongyan Pan; Zhiyan He; Qian Lin; Fei Liu; Zhong Li

    2016-01-01

    Catalysts CuOx/γ-Al2O3-IH and CuOx/γ-Al2O3-IM were prepared, characterized, and tested for styrene combustion in the absence and presence of water vapor. The effect of copper valence of the catalysts on the catalytic activity for styrene combustion was discussed using the theory of hard soft acids and bases (HSAB). The results showed that the existence of water vapor in feed stream inhibited the catalytic activity for styrene combustion due to the competition adsorption of water molecule. HSAB theory confirmed that the local soft acidity of the catalyst CuOx/γ-Al2O3-IH was much stronger than that of the catalyst CuOx/γ-Al2O3-IM because of the higher content of soft acid Cu+on its surface, which increased the adsorption ability toward soft base of styrene and reduced the adsorption toward hard base of water vapor, and thus increased the catalytic activity for styrene combustion and weakened the negative influence of water vapor.

  10. Magnetic solid base catalyst CaO/CoFe2O4 for biodiesel production: Influence of basicity and wettability of the catalyst in catalytic performance

    Science.gov (United States)

    Zhang, Pingbo; Han, Qiuju; Fan, Mingming; Jiang, Pingping

    2014-10-01

    A novel magnetic solid base catalyst CaO/CoFe2O4 was successfully prepared with CoFe2O4 synthesized by hydrothermal method as the magnetic core and applied to the transesterification of soybean oil for the production of biodiesel. The magnetic solid base catalysts were characterized by a series of techniques including CO2-TPD, powder XRD, TGA, TEM and the contact angle measurement of the water droplet. It was demonstrated that CaO/CoFe2O4 has stronger magnetic strength indicating perfect utility for repeated use and better basic strength. Compared with CaO/ZnFe2O4 and CaO/MnFe2O4, solid base catalyst CaO/CoFe2O4 has better catalytic performance, weaker hydroscopicity and stronger wettability, demonstrating that catalytic performance was relative to both basicity of catalyst and the full contact between the catalyst and the reactants, but the latter was a main factor in the catalytic system.

  11. Low-temperature growth of nitrogen-doped carbon nanofibers by acetonitrile catalytic CVD using Ni-based catalysts

    Science.gov (United States)

    Iwasaki, Tomohiro; Makino, Yuri; Fukukawa, Makoto; Nakamura, Hideya; Watano, Satoru

    2016-06-01

    To synthesize nitrogen-doped carbon nanofibers (N-CNFs) at high growth rates and low temperatures less than 673 K, nickel species (metallic nickel and nickel oxide) supported on alumina particles were used as the catalysts for an acetonitrile catalytic chemical vapor deposition (CVD) process. The nickel:alumina mass ratio in the catalysts was fixed at 0.05:1. The catalyst precursors were prepared from various nickel salts (nitrate, chloride, sulfate, acetate, and lactate) and then calcined at 1073 K for 1 h in oxidative (air), reductive (hydrogen-containing argon), or inert (pure argon) atmospheres to activate the nickel-based catalysts. The effects of precursors and calcination atmosphere on the catalyst activity at low temperatures were studied. We found that the catalysts derived from nickel nitrate had relatively small crystallite sizes of nickel species and provided N-CNFs at high growth rates of 57 ± 4 g-CNF/g-Ni/h at 673 K in the CVD process using 10 vol% hydrogen-containing argon as the carrier gas of acetonitrile vapor, which were approximately 4 times larger than that of a conventional CVD process. The obtained results reveal that nitrate ions in the catalyst precursor and hydrogen in the carrier gas can contribute effectively to the activation of catalysts in low-temperature CVD. The fiber diameter and nitrogen content of N-CNFs synthesized at high growth rates were several tens of nanometers and 3.5 ± 0.3 at.%, respectively. Our catalysts and CVD process may lead to cost reductions in the production of N-CNFs.

  12. Synthesis, spectroscopic characterization and catalytic oxidation properties of ONO/ONS donor Schiff base ruthenium(III) complexes containing PPh3/AsPh3

    Indian Academy of Sciences (India)

    Priyarega; M Muthu Tamizh; R Karvembu; R Prabhakaran; K Natarajan

    2011-05-01

    Six different ruthenium(III) complexes of Schiff bases derived from 2-hydroxy-1-naphthaldehyde and -aminophenol/-aminothiophenol have been synthesized. The compounds with the general formula [RuX(EPh3)2(L)] (X = Cl or Br; E = P or As; L = bifunctional tridentate ONO/ONS donor Schiff base ligand) were characterized by infrared, electronic, electron paramagnetic resonance spectroscopy and elemental analyses. Spectroscopic investigation reveals coordination of Schiff base ligand through ONO/ONS donor atoms and octahedral geometry around ruthenium metal. Redox property of complexes has been examined by using cyclic voltammetry. The catalytic oxidation property of ruthenium(III) complexes were also investigated.

  13. Determining the storage, availability and reactivity of NH3 within Cu-Chabazite-based Ammonia Selective Catalytic Reduction systems

    NARCIS (Netherlands)

    Lezcano-Gonzalez, I; Deka, U; Arstad, B; Van Yperen-De Deyne, A; Hemelsoet, K; Waroquier, M; Van Speybroeck, V; Weckhuysen, B M; Beale, A M

    2014-01-01

    Three different types of NH3 species can be simultaneously present on Cu(2+)-exchanged CHA-type zeolites, commonly used in Ammonia Selective Catalytic Reduction (NH3-SCR) systems. These include ammonium ions (NH4(+)), formed on the Brønsted acid sites, [Cu(NH3)4](2+) complexes, resulting from NH3 co

  14. Catalytic effect of additional metallic phases on the hydrogen absorption behavior of a Zr-Based alloy

    International Nuclear Information System (INIS)

    The electrochemical hydrogen absorption of electrodes containing Zr0.9Ti0.1(Ni0.5Mn0.25Cr0.20V0.05)2 is studied in alkaline media by monitoring the activation and discharge capacity along charge-discharge cycling.The considered alloy is tested in both as melted and annealed condition in order to investigate the catalytic effect of small amounts of micro segregated secondary phases of the Zr-Ni system. Since these catalytic phases are only present in the as melted alloys, tests are also carried out using a composite material elaborated from powders of the annealed alloy with the addition of 18 wt.% of the suspected catalytic phases, melted separately.The hydrogen absorption-desorption behavior for the different cases is discussed and correlated with the metallurgical characterization of the materials.The catalytic effects are studied employing cyclic voltammetry and electrochemical impedance techniques. The results are analyzed in terms of a developed physicochemical model

  15. Local Environment and Nature of Cu Active Sites in Zeolite-Based Catalysts for the Selective Catalytic Reduction of NOx

    NARCIS (Netherlands)

    Deka, U.; Lezcano-Gonzalez, I.; Weckhuysen, B.M.; Beale, A.M.

    2013-01-01

    Cu-exchanged zeolites have demonstrated widespread use as catalyst materials in the abatement of NOx, especially from mobile sources. Recent studies focusing on Cu-exchanged zeolites with the CHA structure have demonstrated them to be excellent catalysts in the ammonia-assisted selective catalytic r

  16. Effects of sol-gel method and lanthanum addition on catalytic performances of nickel-based catalysts for methane reforming with carbon dioxide

    Institute of Scientific and Technical Information of China (English)

    LI Xiancai; HU Quanhong; YANG Yifeng; CHEN Juanrong; LAI Zhihua

    2008-01-01

    The nickel-based catalysts were prepared by the sol-gel method and used for the CH4 reforming with CO2. The effects of the sol-gel method on the specific surface area, catalytic activity, desorption, and reduction performances of catalysts were investigated with BET, TPR, and TPD. Compared with the catalyst prepared by the impregnation method, the results indicated that the catalysts prepared by the sol-gel method had larger specific surface area, showing higher catalytic activities and exhibiting perfect desorption and reduction per-formances. In addition, the modification effects of adding La were studied, and it was found that the 0.75NLBT catalyst constituted of 5wt.%Ni-0.75wt.%La was optimal.

  17. On the Structural Context and Identification of Enzyme Catalytic Residues

    OpenAIRE

    Yu-Tung Chien; Shao-Wei Huang

    2013-01-01

    Enzymes play important roles in most of the biological processes. Although only a small fraction of residues are directly involved in catalytic reactions, these catalytic residues are the most crucial parts in enzymes. The study of the fundamental and unique features of catalytic residues benefits the understanding of enzyme functions and catalytic mechanisms. In this work, we analyze the structural context of catalytic residues based on theoretical and experimental structure flexibility. The...

  18. Catalytic synthesis of 2-methylpyrazine over Cr-promoted copper based catalyst via a cyclo-dehydrogenation reaction route

    Indian Academy of Sciences (India)

    Fangli Jing; Yuanyuan Zhang; Shizhong Luo; Wei Chu; Hui Zhang; Xinyu Shi

    2010-07-01

    The cyclo-dehydrogenation of ethylene diamine and propylene glycol to 2-methylpyrazine was performed under the atmospheric conditions at 380°C. The Cr-promoted Cu-Zn/Al2O3 catalysts were prepared by impregnation method and characterized by ICP-AES, N2 adsorption/desorption, XRD, XPS, N2O chemisorption, TPR and NH3-TPD techniques. The amorphous chromium species existing in Cu-Zn-Cr/Al2O3 catalyst enhanced the dispersion of active component Cu, promoted the reduction of catalyst. Furthermore, the catalytic performance was significantly improved. The acidity of the catalyst played an important role in increasing the 2-MP selectivity. To optimize the reaction parameters, influences of different chromium content, reaction temperature, liquid hourly space velocity (LHSV), reactants molar ratio and time on stream on the product pattern were studied. The results demonstrated that addition of chromium promoter revealed satisfying catalytic activity, stability and selectivity of 2-methylpyrazine.

  19. Progressin catalytic applications of graphene-based composites%石墨烯基复合材料的催化应用进展

    Institute of Scientific and Technical Information of China (English)

    张家华; 王亚明; 伍水生; 蒋丽红

    2015-01-01

    Abstact:Grapheneis a kind of unique two‐dimensional carbon material .For its high surface area ,easily dispers‐ed ,easy functionalization and excellent chemical stability ,it has been widespread concerned in the catalytic field .Catalytic applications of graphene‐based composite materials are important research direction .Currently , the graphene‐based catalyst material not only used in photocatalysis ,electrocatalysis ,but also has made great progress in terms of Suzuki ,hydrogenation and oxidation .In this paper ,we make the relevant discussion on the synthetic route graphene‐based materials .The development ,application and catalytic properties of graphene‐based catalyst present were reviewed .%石墨烯作为一种新型碳材料,由于其高比表面积、易分散、易于功能化和化学环境稳定性高等特点,在催化体系中得到了广泛的关注。催化应用是石墨烯基复合材料应用领域中的重要研究方向,目前石墨烯基催化材料除了常应用于光催化、电催化外,其在Suzuki、加氢以及氧化等方面也有了较大发展。对石墨烯基材料相关的合成路线进行讨论,对当下石墨烯基催化剂的研制、应用及其催化性能进行评述。

  20. Sonochemically synthesized mono and bimetallic Au-Ag reduced graphene oxide based nanocomposites with enhanced catalytic activity.

    Science.gov (United States)

    Neppolian, Bernaurdshaw; Wang, Chang; Ashokkumar, Muthupandian

    2014-11-01

    Graphene oxide (GO) supported Ag and Au mono-metallic and Au-Ag bimetallic catalysts were synthesized using a sonochemical method. Bimetallic catalysts containing different weight ratios of Au and Ag were loaded onto GO utilizing a low frequency horn-type ultrasonicator. High frequency ultrasonication was used to efficiently reduce Ag(I) and Au(III) ions in the presence of polyethylene glycol and 2-propanol. Transmission electron microscopy (TEM-EDX) and X-ray photoelectron spectroscopy were used to analyze the morphology, size, shape and chemical oxidation states of the prepared metallic catalysts on GO. The catalytic efficiency of the prepared catalysts were compared using 4-nitrophenol (4-NP) reduction reaction and the subsequent formation of 4-aminophenol (4-AP) that was also monitored using UV-vis spectrophotometry. The results revealed that Au-Ag-GO bimetallic catalysts showed high activity for the conversion of 4-NP to 4-AP than their monometallic counterparts. Amongst different weight ratios (1:1, 1:2 and 2:1) between Au and Ag, the 1:2 (Au:Ag) catalyst exhibited very good catalytic performance for the conversion of 4-NP to 4-AP. A total reduction of 4-NP took place within a short period of time if Au-GO was reduced first followed by Ag reduction, whereas a lower reduction rate was observed if Ag-GO was reduced first. The same trend was observed for all the ratios of bimetallic catalysts prepared by this method. The initial unfavorable reduction potential of Ag(I) is likely to be responsible for the above order. It was found that applying dual frequency ultrasonication was a highly effective way of preparing bimetallic catalysts requiring relatively low levels of added chemicals and producing bimetallic catalysts with GO with improved catalytic efficiency. PMID:24582660

  1. Significantly Improved Catalytic Performance of Ni-Based MgO Catalyst in Steam Reforming of Phenol by Inducing Mesostructure

    OpenAIRE

    Xiaoxuan Yang; Yajing Wang; Yuhe Wang

    2015-01-01

    A Ni/meso-MgO catalyst with high surface area and small Ni nanoparticles was synthesized and investigated for hydrogen production by steam reforming of phenol for the first time. Compared to conventional Ni/MgO, the Ni/meso-MgO catalyst showed higher catalytic activity and stability. X-ray Diffraction, N2 adsorption, hydrogen temperature programmed reduction, transmission electron microscopy and thermal gravimetry results indicated that the Ni/meso-MgO catalyst had higher surface area than Ni...

  2. Converting Transaldolase into Aldolase through Swapping of the Multifunctional Acid-Base Catalyst: Common and Divergent Catalytic Principles in F6P Aldolase and Transaldolase.

    Science.gov (United States)

    Sautner, Viktor; Friedrich, Mascha Miriam; Lehwess-Litzmann, Anja; Tittmann, Kai

    2015-07-28

    Transaldolase (TAL) and fructose-6-phosphate aldolase (FSA) both belong to the class I aldolase family and share a high degree of structural similarity and sequence identity. The molecular basis of the different reaction specificities (transferase vs aldolase) has remained enigmatic. A notable difference between the active sites is the presence of either a TAL-specific Glu (Gln in FSA) or a FSA-specific Tyr (Phe in TAL). Both residues seem to have analoguous multifunctional catalytic roles but are positioned at different faces of the substrate locale. We have engineered a TAL double variant (Glu to Gln and Phe to Tyr) with an active site resembling that of FSA. This variant indeed exhibits aldolase activity as its main activity with a catalytic efficiency even larger than that of authentic FSA, while TAL activity is greatly impaired. Structural analysis of this variant in complex with the dihydroxyacetone Schiff base formed upon substrate cleavage identifies the introduced Tyr (genuine in FSA) to catalyze protonation of the central carbanion-enamine intermediate as a key determinant of the aldolase reaction. Our studies pinpoint that the Glu in TAL and the Tyr in FSA, although located at different positions at the active site, similarly act as bona fide acid-base catalysts in numerous catalytic steps, including substrate binding, dehydration of the carbinolamine, and substrate cleavage. We propose that the different spatial positions of the multifunctional Glu in TAL and of the corresponding multifunctional Tyr in FSA relative to the substrate locale are critically controlling reaction specificity through either unfavorable (TAL) or favorable (FSA) geometry of proton transfer onto the common carbanion-enamine intermediate. The presence of both potential acid-base residues, Glu and Tyr, in the active site of TAL has deleterious effects on substrate binding and cleavage, most likely resulting from a differently organized H-bonding network. Large-scale motions of the

  3. Chitosan based polymer matrix with silver nanoparticles decorated multiwalled carbon nanotubes for catalytic reduction of 4-nitrophenol.

    Science.gov (United States)

    Alshehri, Saad M; Almuqati, Turki; Almuqati, Naif; Al-Farraj, Eida; Alhokbany, Norah; Ahamad, Tansir

    2016-10-20

    A novel catalyst for the reduction of 4-nitrophenol (4-NP) was prepared using carboxyl group-functionalized multiwalled carbon nanotubes (MWCNTs), polymer matrix, and silver nanoparticles (AgNPs). The AgNPs were prepared by the reduction of silver nitrate by trisodium citrate in the MWCNTs-polymer nanocomposite; the size of the synthesized AgNPs was found to be 3nm (average diameter). The synthesized nanocomposites were characterized using several analytical techniques. Ag@MWCNTs-polymer composite in the presence of sodium borohydride (NaBH4) in aqueous solution is an effective catalyst for the reduction of 4-NP. The apparent kinetics of reduction has a pseudo-first-order kinetics, and the rate constant and catalytic activity parameter were found to be respectively 7.88×10(-3)s(-1)and 11.64s(-1)g(-1). The MWCNTs-polymer nanocomposite renders stability to AgNPs against the environment and the reaction medium, which means that the Ag@MWCNTs-polymer composite can be re-used for many catalytic cycles. PMID:27474552

  4. Catalytic activity and effect of modifiers on Ni-based catalysts for the dry reforming of methane

    Energy Technology Data Exchange (ETDEWEB)

    Barroso-Quiroga, Maria Martha; Castro-Luna, Adolfo Eduardo [Facultad de Ingenieria y Ciencias Economico-Sociales INTEQUI-CONICET-UNSL, Av. 25 de Mayo 384 (5730) Villa Mercedes (S.L.) (Argentina)

    2010-06-15

    Ni catalysts supported on different ceramic oxides (Al{sub 2}O{sub 3}, CeO{sub 2}, La{sub 2}O{sub 3}, ZrO{sub 2}) were prepared by wet impregnation. The catalytic behavior toward hydrogen production through the dry reforming of methane using a fixed-bed reactor was evaluated under certain experimental conditions, and the catalyst supported on ZrO{sub 2} showed the highest stable activity during the period of time studied. The catalyst supported on CeO{sub 2} has a relatively good activity, but shows signs of deactivation after a certain time during the reaction. This catalyst was chosen to be studied after the addition of 0.5 wt% Li and K as activity modifiers. The introduction of the alkaline metals produces a reduction of the catalytic activity but a better stability over the reactant conversion time. The reverse water-gas shift reaction influences the global system of reactions, and as the results indicate, should be considered near equilibrium. (author)

  5. Low-temperature selective catalytic reduction of NO with NH3 based on MnOx-CeOx/ACFN

    Institute of Scientific and Technical Information of China (English)

    Boxiong SHEN; Ting LIU; Zhanliang SHI; Jianwei SHI; Tingting YANG; Ning ZHAO

    2008-01-01

    MnOx-CeOx/ACFN were prepared by the impregnation method and used as catalyst for selective catalytic reduction of NO with NH3 at 80℃-150℃.The catalyst was characterized by N2-BET,scanning electron microscopy (SEM) and Fourier transform infrared spec-troscopy (FT-IR).The fraction of the mesopore and the oxygen functional groups on the surface of activated car-bon fiber (ACF) increased after the treatment with nitric acid,which was favorable to improve the catalytic activ-ities of MnOx-CeOx/ACFN.The experimental results show that the conversion of NO is nearly 100% in the range 100℃-150℃ under the optimal preparation condi-tions of MnOx-CeOx/ACFN.In addition,the effects of a series of performance parameters,including initial NH3 concentration,NO concentration and O2 concentration,on the conversion of NO were studied.

  6. Non-Catalytic and MgSO4 - Catalyst based Degradation of Glycerol in Subcritical and Supercritical Water Media

    Directory of Open Access Journals (Sweden)

    Mahfud Mahfud

    2011-02-01

    Full Text Available This research aims to study the glycerol degradation reaction in subcritical and supercritical water media. The degradation of glycerol into other products was performed both with sulphate salt catalysts and without catalyst. The reactant was made from glycerol and water with the mass ratio of 1:10. The experiments were carried out using a batch reactor at a constant pressure of 250 kgf/cm2, with the temperature range of 200-400oC, reaction time of 30 minutes, and catalyst mol ratio in glycerol of 1:10 and 1:8. The products of the non-catalytic glycerol degradation were acetaldehyde, methanol, and ethanol. The use of sulphate salt as catalyst has high selectivity to acetaldehyde and still allows the formation alcohol product in small quantities. The mechanism of ionic reaction and free radical reaction can occur at lower temperature in hydrothermal area or subcritical water. Conversion of glycerol on catalytic reaction showed a higher yield when compared with the reaction performed without catalyst

  7. Catalytic distillation water recovery subsystem

    Science.gov (United States)

    Budininkas, P.; Rasouli, F.

    1985-01-01

    An integrated engineering breadboard subsystem for the recovery of potable water from untreated urine based on the vapor phase catalytic ammonia removal was designed, fabricated and tested. Unlike other evaporative methods, this process catalytically oxidizes ammonia and volatile hydrocarbons vaporizing with water to innocuous products; therefore, no pretreatment of urine is required. Since the subsystem is fabricated from commercially available components, its volume, weight and power requirements are not optimized; however, it is suitable for zero-g operation. The testing program consists of parametric tests, one month of daily tests and a continuous test of 168 hours duration. The recovered water is clear, odorless, low in ammonia and organic carbon, and requires only an adjustment of its pH to meet potable water standards. The obtained data indicate that the vapor phase catalytic ammonia removal process, if further developed, would also be competitive with other water recovery systems in weight, volume and power requirements.

  8. Physico-chemical characterisations and catalytic performance of Ni-based catalyst systems for dry reforming of methane

    Energy Technology Data Exchange (ETDEWEB)

    Vlach, K.; Hoang, D.L.; Schneider, M.; Pohl, M.M.; Armbruster, U.; Martin, A. [Rostock Univ. (Germany). Leibniz-Institut fuer Katalyse e.V.

    2012-07-01

    In this study, ternary perovskite type oxides LaNi{sub x}Cu{sub 1-x}O{sub 3} (x = 0, 0.2, 0.5, 0.8, 1) were synthesized using NaOH and diethylenetriaminepentaacetic acid (H{sub 5}DTPA). The catalysts resulting from perovskite precursors exhibit catalytic activities for CO{sub 2} reforming of CH{sub 4} at 700 C that increase with a higher Ni content. Characterization methods showed that the activation led to formation of small metallic Ni/Cu particles. Methane and carbon dioxide conversions varied from 20 to 65% for CH{sub 4} and 3 to 58% for CO{sub 2}. Selectivities from 46 to 93% for CO and from 4 to 64% for H{sub 2} were obtained. (orig.)

  9. Preparation, characterization and testing of SiC-based catalytic sponges as structured catalysts for Fischer-Tropsch synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Baudry, A.; Schaub, G. [Karlsruhe Institute of Technology (KIT), Karlsruhe (Germany). Engler-Bunte-Inst.

    2011-07-01

    Solid sponges (open-cell foams) may be used as catalyst support, due to favorable thermal properties and low pressure drop. As an example, they may lead to improved temperature control in Fischer-Tropsch applications, if compared to fixed beds of catalyst particles. The aim of this study was to develop and test a wet method for impregnating ceramic foam materials with a CoRe/{gamma}-Al{sub 2}O{sub 3} catalyst. Defined catalyst layers were generated on 20 ppi SiC-sponges. Resulting catalytic activities are nearly identical to those of the corresponding powder catalyst material. The difference observed can be explained by either mass transfer limitation or backmixing in the fixed bed configuration used. (orig.)

  10. Catalytic Oxidation of Phenol over Zeolite Based Cu/Y-5 Catalyst: Part 1: Catalyst Preparation and Characterization

    Directory of Open Access Journals (Sweden)

    K. Maduna Valkaj

    2015-01-01

    Full Text Available The necessity to remove organic pollutants from the industrial wastewater streams has forced the development of new technologies that can produce better results in terms of pollutant removal and process efficiency in combination with low investment and operating costs. One of the new emerging processes with a potential to fulfil these demands is catalytic wet peroxide oxidation, commonly known as the CWPO process. The oxidative effect of the hydrogen peroxide is intensified by the addition of a heterogeneous catalyst that can reduce the operating conditions to atmospheric pressure and temperatures below 383 K. Zeolites, among others, are especially appealing as catalysts for selective oxidation processes due to their unique characteristics such as shape selectivity, thermal and chemical stability, and benign effect on nature and the living world. In this work, catalytic activity, selectivity and stability of Cu/Y-5 zeolite in phenol oxidation with hydrogen peroxide was examined. Catalyst samples were prepared by ion exchange method of the protonic form of commercial zeolite. The catalysts were characterized with powder X-ray diffraction (XRD, scanning electron microscopy (SEM, and AAS elemental analysis, while the adsorption techniques were used for the measurement of the specific surface area. The catalytic tests were carried out in a stainless steel Parr reactor in batch operation mode at the atmospheric pressure and in the temperature range from 323 to 353 K. The catalyst was prepared in powdered form and the mass fraction of the active metal component on the zeolite was 3.46 %. The initial concentration of phenol solution was equal to 0.01 mol dm−3 and the concentration of hydrogen peroxide ranged from 0.01 to 0.10 mol dm−3. The obtained experimental data was tested to a proposed kinetic model for phenol oxidation r = k1 cF cVP and hydrogen peroxide decomposition rHP = k2 cHP. The kinetic parameters were estimated using the Nelder

  11. The Enhanced Catalytic Activities of Asymmetric Au-Ni Nanoparticle Decorated Halloysite-Based Nanocomposite for the Degradation of Organic Dyes

    Science.gov (United States)

    Jia, Lei; Zhou, Tao; Xu, Jun; Li, Xiaohui; Dong, Kun; Huang, Jiancui; Xu, Zhouqing

    2016-02-01

    Janus particles (JPs) are unique among the nano-/microobjects because they provide asymmetry and can thus impart drastically different chemical or physical properties. In this work, we have fabricated the magnetic halloysite nanotube (HNT)-based HNTs@Fe3O4 nanocomposite (NCs) and then anchored the Janus Au-Ni or isotropic Au nanoparticles (NPs) to the surface of external wall of sulfydryl modified magnetic nanotubes. The characterization by physical methods authenticates the successful fabrication of two different magnetic HNTs@Fe3O4@Au and HNTs@Fe3O4@Au-Ni NCs. The catalytic activity and recyclability of the two NCs have been evaluated considering the degradation of Congo red (CR) and 4-nitrophenol (4-NP) using sodium borohydride as a model reaction. The results reveal that the symmetric Au NPs participated NCs display low activity in the degradation of the above organic dyes. However, a detailed kinetic study demonstrates that the employ of bimetallic Janus Au-Ni NPs in the NCs indicates enhanced catalytic activity, owing to the structurally specific nature. Furthermore, the magnetic functional NCs reported here can be used as recyclable catalyst which can be recovered simply by magnet.

  12. The Enhanced Catalytic Activities of Asymmetric Au-Ni Nanoparticle Decorated Halloysite-Based Nanocomposite for the Degradation of Organic Dyes.

    Science.gov (United States)

    Jia, Lei; Zhou, Tao; Xu, Jun; Li, Xiaohui; Dong, Kun; Huang, Jiancui; Xu, Zhouqing

    2016-12-01

    Janus particles (JPs) are unique among the nano-/microobjects because they provide asymmetry and can thus impart drastically different chemical or physical properties. In this work, we have fabricated the magnetic halloysite nanotube (HNT)-based HNTs@Fe3O4 nanocomposite (NCs) and then anchored the Janus Au-Ni or isotropic Au nanoparticles (NPs) to the surface of external wall of sulfydryl modified magnetic nanotubes. The characterization by physical methods authenticates the successful fabrication of two different magnetic HNTs@Fe3O4@Au and HNTs@Fe3O4@Au-Ni NCs. The catalytic activity and recyclability of the two NCs have been evaluated considering the degradation of Congo red (CR) and 4-nitrophenol (4-NP) using sodium borohydride as a model reaction. The results reveal that the symmetric Au NPs participated NCs display low activity in the degradation of the above organic dyes. However, a detailed kinetic study demonstrates that the employ of bimetallic Janus Au-Ni NPs in the NCs indicates enhanced catalytic activity, owing to the structurally specific nature. Furthermore, the magnetic functional NCs reported here can be used as recyclable catalyst which can be recovered simply by magnet. PMID:26852228

  13. EQCM Immunoassay for Phosphorylated Acetylcholinesterase as a Biomarker for Organophosphate Exposures Based on Selective Zirconia Adsorption and Enzyme-Catalytic Precipitation

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hua; Wang, Jun; Choi, Daiwon; Tang, Zhiwen; Wu, Hong; Lin, Yuehe

    2009-03-01

    A zirconia (ZrO2) adsorption-based immunoassay by electrochemical quartz crystal microbalance (EQCM) has been initially developed, aiming at the detection of phosphorylated acetylcholinesterase (AChE) as a potential biomarker for bio-monitoring exposures to organophosphate (OP) pesticides and chemical warfare agents. Hydroxyl-derivatized monolayer was preferably chosen to modify the crystal serving as the template for directing the electro-deposition of ZrO2 film with uniform nanostructures. The resulting ZrO2 film was utilized to selectively capture phosphorylated AChE from the sample media. Horseradish peroxidase (HRP)-labeled anti-AChE antibodies were further employed to recognize the captured phosphorylated protein. Enzyme-catalytic oxidation of the benzidine substrate resulted in the accumulation of insoluble product on the functionalized crystal. Ultrasensitive EQCM quantification by mass-amplified frequency responses as well as rapid qualification by visual color changes of product could be thus achieved. Moreover, 4-chloro-1-naphthol (CN) was comparably studied as an ideal chromogenic substrate for the enzyme-catalytic precipitation. Experimental results show that the developed EQCM technique can allow for the detection of phosphorylated AChE in human plasma. Such an EQCM immunosensing format opens a new door towards the development of simple, sensitive, and field-applicable biosensor for biologically monitoring low-level OP exposures.

  14. Iminopyridine-Based Cobalt(II and Nickel(II Complexes: Synthesis, Characterization, and Their Catalytic Behaviors for 1,3-Butadiene Polymerization

    Directory of Open Access Journals (Sweden)

    Quanquan Dai

    2016-01-01

    Full Text Available A series of iminopyridine ligated Co(II (1a–7a and Ni(II (1b–7b complexes were synthesized. The structures of complexes 3a, 4a, 5a, 7a, 5b, and 6b were determined by X-ray crystallographic analyses. Complex 3a formed a chloro-bridged dimer, whereas 4a, 5a, and 7a, having a substituent (4a, 5a: CH3; 7a: Br at the 6-position of pyridine, producing the solid structures with a single ligand coordinated to the central metal. The nickel atom in complex 5b features distorted trigonal-bipyramidal geometry with one THF molecule ligating to the metal center. All the complexes activated by ethylaluminum sesquichloride (EASC were evaluated in 1,3-butadiene polymerization. The catalytic activity and selectivity were significantly influenced by the ligand structure and central metal. Comparing with the nickel complexes, the cobalt complexes exhibited higher catalytic activity and cis-1,4-selectivity. For both the cobalt and nickel complexes, the aldimine-based complexes showed higher catalyst activity than their ketimine counterparts.

  15. Nickel-based xerogel catalysts: Synthesis via fast sol-gel method and application in catalytic hydrogenation of p-nitrophenol to p-aminophenol

    Science.gov (United States)

    Feng, Jin; Wang, Qiang; Fan, Dongliang; Ma, Lirong; Jiang, Deli; Xie, Jimin; Zhu, Jianjun

    2016-09-01

    In order to investigate the roles of three-dimensional network structure and calcium on Ni catalysts, the Ni, Ni-Al2O3, Ni-Ca-Al2O3 xerogel catalysts were successfully synthesized via the fast sol-gel process and chemical reduction method. The crystal structure of three different catalysts was observed with X-ray powder diffraction (XRD). Transmission electron microscopy (TEM), scanning electron microscopy (SEM) and nitrogen adsorption-desorption were employed to investigate the role of network structure of xerogel catalysts and the size distribution of Ni nanoparticles. The catalyst composition was determined by inductively coupled plasma-optical emission spectrometry (ICP-OES) measurement and energy-dispersive X-ray spectroscopy (EDS). Temperature-programmed reduction (TPR) experiments were carried out to investigate the reducibility of nickel species and the interaction between nickel species and alumina. The catalytic hydrogenation of p-nitrophenol to p-aminophenol was investigated over the prepared nickel-based xerogel catalysts. The conversion of p-nitrophenol was monitored by UV spectrophotometry and high performance liquid chromatography (HPLC). The results show that the catalysts are highly selective for the conversion of p-nitrophenol to p-aminophenol and the order of catalytic activities of the catalysts is Ni < Ni-Al2O3 < Ni-Ca-Al2O3. The catalysts were recycled and were used to evaluate the reutilization.

  16. Asymmetric Catalytic Reactions Catalyzed by Chiral Titanium Complexes

    Institute of Scientific and Technical Information of China (English)

    FENG; XiaoMing

    2001-01-01

    Chiral titanium complexes is very importance catalyst to asymmetric catalytic reactions. A series of catalytic systems based on titanium-chiral ligands complexes has been reported. This presentation will discuss some of our recent progress on asymmetric catalytic reactions catalyzed by chiral titanium complexes.  ……

  17. Asymmetric Catalytic Reactions Catalyzed by Chiral Titanium Complexes

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    @@ Chiral titanium complexes is very importance catalyst to asymmetric catalytic reactions. A series of catalytic systems based on titanium-chiral ligands complexes has been reported. This presentation will discuss some of our recent progress on asymmetric catalytic reactions catalyzed by chiral titanium complexes.

  18. Highly selective and sensitive paper-based colorimetric sensor using thiosulfate catalytic etching of silver nanoplates for trace determination of copper ions.

    Science.gov (United States)

    Chaiyo, Sudkate; Siangproh, Weena; Apilux, Amara; Chailapakul, Orawon

    2015-03-25

    A novel, highly selective and sensitive paper-based colorimetric sensor for trace determination of copper (Cu(2+)) ions was developed. The measurement is based on the catalytic etching of silver nanoplates (AgNPls) by thiosulfate (S2O3(2-)). Upon the addition of Cu(2+) to the ammonium buffer at pH 11, the absorption peak intensity of AuNPls/S2O3(2-) at 522 nm decreased and the pinkish violet AuNPls became clear in color as visible to the naked eye. This assay provides highly sensitive and selective detection of Cu(2+) over other metal ions (K(+), Cr(3+), Cd(2+), Zn(2+), As(3+), Mn(2+), Co(2+), Pb(2+), Al(3+), Ni(2+), Fe(3+), Mg(2+), Hg(2+) and Bi(3+)). A paper-based colorimetric sensor was then developed for the simple and rapid determination of Cu(2+) using the catalytic etching of AgNPls. Under optimized conditions, the modified AgNPls coated at the test zone of the devices immediately changes in color in the presence of Cu(2+). The limit of detection (LOD) was found to be 1.0 ng mL(-1) by visual detection. For semi-quantitative measurement with image processing, the method detected Cu(2+) in the range of 0.5-200 ng mL(-1)(R(2)=0.9974) with an LOD of 0.3 ng mL(-1). The proposed method was successfully applied to detect Cu(2+) in the wide range of real samples including water, food, and blood. The results were in good agreement according to a paired t-test with results from inductively coupled plasma-optical emission spectrometry (ICP-OES). PMID:25732695

  19. Performance of supported catalysts based on a new copper vanadate-type precursor for catalytic oxidation of toluene

    Energy Technology Data Exchange (ETDEWEB)

    Palacio, L.A. [Grupo Catalizadores y Adsorbentes, Universidad de Antioquia, A.A. 1226 - Medellin (Colombia); Silva, E.R.; Catalao, R. [IBB-Institute for Biotechnology and Bioengineering, Instituto Superior Tecnico, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); Silva, J.M. [IBB-Institute for Biotechnology and Bioengineering, Instituto Superior Tecnico, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); Instituto Superior Engenharia de Lisboa, Departamento de Engenharia Quimica. Av. Cons. Emidio Navarro, 1959-007 Lisboa (Portugal); Hoyos, D.A. [Grupo Catalizadores y Adsorbentes, Universidad de Antioquia, A.A. 1226 - Medellin (Colombia); Ribeiro, F.R. [IBB-Institute for Biotechnology and Bioengineering, Instituto Superior Tecnico, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); Ribeiro, M.F. [IBB-Institute for Biotechnology and Bioengineering, Instituto Superior Tecnico, Av. Rovisco Pais, 1049-001 Lisboa (Portugal)], E-mail: filipa.ribeiro@ist.utl.pt

    2008-05-01

    A new copper vanadate precursor with the formula NH{sub 4}[Cu{sub 2.5}V{sub 2}O{sub 7}(OH){sub 2}].H{sub 2}O was synthesized and deposited on two different supports, ZSM-5 and amorphous SiO{sub 2}, by a hydrothermal method or by mechanical mixture. The catalytic behaviour was evaluated in the total oxidation of toluene and the characterization was performed by H{sub 2}-temperature-programmed reduction (H{sub 2}-TPR), thermogravimetric analysis, elemental analysis, UV-vis diffuse reflectance spectroscopy and X-ray diffraction. It was found that the copper vanadate phase comprises two mixed oxides, one of them crystalline, the Ziesite phase, and the other one amorphous. The supported catalysts presented a content of copper vanadate phase of about 9-11 wt.%. The copper vanadate deposited on ZSM-5 by the hydrothermal method evidences the best performance in the oxidation of toluene. This behaviour can be associated with the smaller size and higher dispersion of the particles on the support, which was confirmed by their better reducibility and higher band gap energy value compared with the other series of studied catalysts.

  20. Performance of supported catalysts based on a new copper vanadate-type precursor for catalytic oxidation of toluene

    International Nuclear Information System (INIS)

    A new copper vanadate precursor with the formula NH4[Cu2.5V2O7(OH)2].H2O was synthesized and deposited on two different supports, ZSM-5 and amorphous SiO2, by a hydrothermal method or by mechanical mixture. The catalytic behaviour was evaluated in the total oxidation of toluene and the characterization was performed by H2-temperature-programmed reduction (H2-TPR), thermogravimetric analysis, elemental analysis, UV-vis diffuse reflectance spectroscopy and X-ray diffraction. It was found that the copper vanadate phase comprises two mixed oxides, one of them crystalline, the Ziesite phase, and the other one amorphous. The supported catalysts presented a content of copper vanadate phase of about 9-11 wt.%. The copper vanadate deposited on ZSM-5 by the hydrothermal method evidences the best performance in the oxidation of toluene. This behaviour can be associated with the smaller size and higher dispersion of the particles on the support, which was confirmed by their better reducibility and higher band gap energy value compared with the other series of studied catalysts

  1. Comparison and analysis of zinc and cobalt-based systems as catalytic entities for the hydration of carbon dioxide.

    Directory of Open Access Journals (Sweden)

    Edmond Y Lau

    Full Text Available In nature, the zinc metalloenzyme carbonic anhydrase II (CAII efficiently catalyzes the conversion of carbon dioxide (CO2 to bicarbonate under physiological conditions. Many research efforts have been directed towards the development of small molecule mimetics that can facilitate this process and thus have a beneficial environmental impact, but these efforts have met very limited success. Herein, we undertook quantum mechanical calculations of four mimetics, 1,5,9-triazacyclododedacane, 1,4,7,10-tetraazacyclododedacane, tris(4,5-dimethyl-2-imidazolylphosphine, and tris(2-benzimidazolylmethylamine, in their complexed form either with the Zn(2+ or the Co(2+ ion and studied their reaction coordinate for CO2 hydration. These calculations demonstrated that the ability of the complex to maintain a tetrahedral geometry and bind bicarbonate in a unidentate manner were vital for the hydration reaction to proceed favorably. Furthermore, these calculations show that the catalytic activity of the examined zinc complexes was insensitive to coordination states for zinc, while coordination states above four were found to have an unfavorable effect on product release for the cobalt counterparts.

  2. Significantly Improved Catalytic Performance of Ni-Based MgO Catalyst in Steam Reforming of Phenol by Inducing Mesostructure

    Directory of Open Access Journals (Sweden)

    Xiaoxuan Yang

    2015-10-01

    Full Text Available A Ni/meso-MgO catalyst with high surface area and small Ni nanoparticles was synthesized and investigated for hydrogen production by steam reforming of phenol for the first time. Compared to conventional Ni/MgO, the Ni/meso-MgO catalyst showed higher catalytic activity and stability. X-ray Diffraction, N2 adsorption, hydrogen temperature programmed reduction, transmission electron microscopy and thermal gravimetry results indicated that the Ni/meso-MgO catalyst had higher surface area than Ni/MgO and Ni particles of Ni/meso-MgO were narrowly distributed in the range of 5~6 nm with an average size of 5.3 nm, while Ni particles of Ni/MgO were in the range of 6~10 nm with an average size of 7.92 nm. The small and uniform Ni nanoparticles in Ni/meso-MgO were attributed to the high surface area and the confinement effect of the mesoporous structure of meso-MgO, which could effectively limit the growth of the active metal and stabilize Ni particles during the procedure of NiO reduction. The mesoporous structure of Ni/meso-MgO also played an important role in suppressing Ni nanoparticle sintering and carbon deposition during the steam reforming of phenol reaction.

  3. Enzyme catalytic amplification of miRNA-155 detection with graphene quantum dot-based electrochemical biosensor.

    Science.gov (United States)

    Hu, Tianxing; Zhang, Le; Wen, Wei; Zhang, Xiuhua; Wang, Shengfu

    2016-03-15

    A specific and sensitive method was developed for quantitative detection of miRNA by integrating horseradish peroxidase (HRP)-assisted catalytic reaction with a simple electrochemical RNA biosensor. The electrochemical biosensor was constructed by a double-stranded DNA structure. The structure was formed by the hybridization of thiol-tethered oligodeoxynucleotide probes (capture DNA), assembled on the gold electrode surface, with target DNA and aminated indicator probe (NH2-DNA). After the construction of the double-stranded DNA structure, the activated carboxyl groups of graphene quantum dots (GQDs) assembled on NH2-DNA. GQDs were used as a new platform for HRP immobilization through noncovalent assembly. HRP modified biosensor can effectively catalyze the hydrogen peroxide (H2O2)-mediated oxidation of 3,3',5,5'-tetramethylbenzidine (TMB), accompanied by a change from colorless to blue in solution color and an increased electrochemical current signal. Due to GQDs and enzyme catalysis, the proposed biosensor could sensitively detect miRNA-155 from 1 fM to 100 pM with a detection limit of 0.14 fM. High performance of the biosensor is attributed to the large surface-to-volume ratio, excellent compatibility of GQDs. For these advantages, the proposed method holds great potential for analysis of other interesting tumor makers. PMID:26453906

  4. Coordination behavior of ligand based on NNS and NNO donors with ruthenium(III) complexes and their catalytic and DNA interaction studies

    Science.gov (United States)

    Manikandan, R.; Viswnathamurthi, P.

    2012-11-01

    Reactions of 2-acetylpyridine-thiosemicarbazone HL1, 2-acetylpyridine-4-methyl-thiosemicarbazone HL2, 2-acetylpyridine-4-phenyl-thiosemicarbazone HL3 and 2-acetylpyridine-semicarbazone HL4 with ruthenium(III) precursor complexes were studied and the products were characterized by analytical and spectral (FT-IR, electronic, EPR and EI-MS) methods. The ligands coordinated with the ruthenium(III) ion via pyridine nitrogen, azomethine nitrogen and thiolate sulfur/enolate oxygen. An octahedral geometry has been proposed for all the complexes based on the studies. All the complexes are redox active and display an irreversible and quasireversible metal centered redox processes. Further, the catalytic activity of the new complexes has been investigated for the transfer hydrogenation of ketones in the presence of isopropanol/KOH and the Kumada-Corriu coupling of aryl halides with aryl Grignard reagents. The DNA cleavage efficiency of new complexes has also been tested.

  5. Near-Infrared- and Visible-Light-Enhanced Metal-Free Catalytic Degradation of Organic Pollutants over Carbon-Dot-Based Carbocatalysts Synthesized from Biomass.

    Science.gov (United States)

    Wang, Hui; Zhuang, Jianqin; Velado, David; Wei, Zengyan; Matsui, Hiroshi; Zhou, Shuiqin

    2015-12-23

    Cost-efficient nanoparticle carbocatalysts composed of fluorescent carbon dots (CDs) embedded in carbon matrix were synthesized via one-step acid-assisted hydrothermal treatment (200 °C) of glucose. These as-synthesized CD-based carbocatalysts have excellent photoluminescence (PL) properties over a broad range of wavelengths and the external visible or NIR irradiation on the carbocatalysts could produce electrons to form electron-hole (e(-)-h(+)) pairs on the surface of carbocatalysts. These restant electron-hole pairs will react with the adsorbed oxidants/reducers on the surface of the CD-based carbocatalysts to produce active radicals for reduction of 4-nitrophenol and degradation of dye molecules. Moreover, the local temperature increase over CD-based carbocatalyst under NIR irradiation can enhance the electron transfer rate between the organic molecules and CD-based carbocatalysts, thus obviously increase the catalytic activity of the CD-based carbocatalyst for the reduction of 4-nitrophenol and the degradation of dye molecules. Such a type of CD-based carbocatalysts with excellent properties and highly efficient metal-free photocatalytic activities is an ideal candidate as photocatalysts for the reduction of organic pollutants under visible light and NIR radiation. PMID:26615668

  6. Catalytic cracking process

    Science.gov (United States)

    Lokhandwala, Kaaeid A.; Baker, Richard W.

    2001-01-01

    Processes and apparatus for providing improved catalytic cracking, specifically improved recovery of olefins, LPG or hydrogen from catalytic crackers. The improvement is achieved by passing part of the wet gas stream across membranes selective in favor of light hydrocarbons over hydrogen.

  7. Catalytic distillation structure

    Science.gov (United States)

    Smith, Jr., Lawrence A.

    1984-01-01

    Catalytic distillation structure for use in reaction distillation columns, a providing reaction sites and distillation structure and consisting of a catalyst component and a resilient component intimately associated therewith. The resilient component has at least about 70 volume % open space and being present with the catalyst component in an amount such that the catalytic distillation structure consist of at least 10 volume % open space.

  8. The Synthesis and Characterization of Multifunctional Titania-based Materials for the Photo/Thermal Catalytic Reduction of CO2

    Science.gov (United States)

    Schwartzenberg, Kevin

    The work presented in this dissertation is aimed at improving our understanding of the fundamental processes required for the photocatalytic reduction of CO2. A QCM reactor system for measuring CO2 adsorption under a range of conditions was designed, constructed, and characterized. Measurements on catalyst films revealed sufficient sensitivity to detect CO2 adsorption on the order of 0.1 molecules/nm2. Adsorption experiments were repeatable across multiple measurements for the same film. However, variation across multiple films prepared using the same mass of catalyst highlights the large contribution of surface roughness to frequency response and the importance of uniform, reproducible film preparation. The design of a multifunctional photo/thermal catalyst was explored through the concept of MnOx-TiO2 composites with thermally generated oxygen vacancies as the active sites for CO2 activation. MnOx-TiO 2 were prepared by incipient wetness impregnation of titania supports with one of two Mn precursors, and were characterized and screened for catalytic activity. The results were compared with predictions from theoretical modeling studies. Through TPR, UV-vis spectroscopy, and XANES, it was observed that a Mn(NO 3)2•4H2O precursor led to bulk-like domains of MnOx whereas a Mn(CH3COO)2•4H2O precursor led to a dispersed surface oxide. This precursor effect was less pronounced on rutile than on anatase support. As predicted by theory, the MnOx-TiO 2 exhibited the reversible generation of oxygen vacancies at mild temperatures (failed to show evidence of nonvolatile CO2 reduction products. However, several carbonate, bicarbonate, and carboxylate species were observed, confirming the interaction of CO 2 with oxygen vacancies on the surface. UV illumination of the catalysts led to some desorption of these species on rutile supported composites, and very little change in adsorbed species on anatase-supported composites. For all of the materials, illumination resulted in

  9. Temperature Modulation of a Catalytic Gas Sensor

    OpenAIRE

    Eike Brauns; Eva Morsbach; Sebastian Kunz; Marcus Baeumer; Walter Lang

    2014-01-01

    The use of catalytic gas sensors usually offers low selectivity, only based on their different sensitivities for various gases due to their different heats of reaction. Furthermore, the identification of the gas present is not possible, which leads to possible misinterpretation of the sensor signals. The use of micro-machined catalytic gas sensors offers great advantages regarding the response time, which allows advanced analysis of the sensor response. By using temperature modulation, additi...

  10. A broad spectrum catalytic system for removal of toxic organics from water by deep oxidation. 1998 annual progress report

    International Nuclear Information System (INIS)

    'Toxic organics and polymers pose a serious threat to the environment, especially when they are present in aquatic systems. The objective of the research is the design of practical procedures for the removal and/or recycling of such pollutants by oxidation. This report summarizes the work performed in the first one and half years of a three year project. The authors had earlier described a catalytic system for the deep oxidation of toxic organics, such as benzene, phenol and substituted phenols, aliphatic and aromatic halogenated compounds, organophosphorus, and organosulfur compounds [1]. In this system, metallic palladium was found to catalyze the oxidation of the substrate by dioxygen in aqueous medium at 80--100 C in the presence of carbon monoxide. For all the substrates examined, deep oxidation to carbon monoxide, carbon dioxide, and water occurred in high yields, resulting in up to several hundred turnovers over a 24 h period. Because of a pressing need for new procedures for the destruction of chemical warfare agents, the authors have examined in detail the deep oxidation of appropriate model compounds containing phosphorus-carbon and sulfur-carbon bonds using the same catalytic system. The result is the first observation of the efficient catalytic oxidative cleavage of phosphorus-carbon and sulfur-carbon bonds under mild conditions, using dioxygen as the oxidant [2]. In addition to the achievements described above, they have unpublished results in several other areas. For example, they have investigated the possibility of using dihydrogen rather than carbon monoxide as a coreductant in the catalytic deep oxidation of substrates. Even more attractive from a practical standpoint is the possibility of using a mixture of carbon monoxide and dihydrogen (synthesis gas). Indeed, experiments indicated that it is possible to substitute carbon monoxide by dihydrogen or synthesis gas. Significantly, in the case of nitro compounds, the deep oxidation in fact proceeded

  11. Study on the catalytic performance of laccase in the hydrophobic ionic liquid-based bicontinuous microemulsion stabilized by polyoxyethylene-type nonionic surfactants.

    Science.gov (United States)

    Yu, Xinxin; Li, Qian; Wang, Miaomiao; Du, Na; Huang, Xirong

    2016-02-14

    To formulate a compatible green medium for the conversion of a hydrophobic substrate by a hydrophilic enzyme, we investigated the phase behavior of pseudo ternary hydrophobic ionic liquid (HIL)/buffer/polyoxyethylene-type nonionic surfactant (CnEm)/n-alcohol system and the effects of the components on the formulation of the HIL-based bicontinuous microemulsion. It is found that small head group of the surfactant, high concentration of n-alcohol (medium/long alkyl chain) and low cohesive energy density of the HIL result in low phase transition temperature. In the CnEm stabilized compatible bicontinuous microemulsion, the kinetics of laccase catalyzed oxidation of 2,6-dimethoxyphenol were also investigated. It is found that in addition to temperature, n-alcohol is the key parameter affecting the catalytic performance of laccase, and the optimum n-alcohol depends on the type of HIL as an oil phase. All the kinetic parameters, such as Km, kcat, kcat/Km, and Ea (apparent activation energy), indicate that the bicontinuous microemulsion consisting of [Omim]NTf2/buffer/CnEm/n-hexanol is a suitable medium for the laccase-catalyzed reaction. To the best of our knowledge, this is the first report on the formulation of HIL-based bicontinuous microemulsion for enzyme catalysis. PMID:26686358

  12. Base Catalytic Approach: A Promising Technique for the Activation of Biochar for Equilibrium Sorption Studies of Copper, Cu(II Ions in Single Solute System

    Directory of Open Access Journals (Sweden)

    Sharifah Bee Abdul Hamid

    2014-04-01

    Full Text Available This study examines the feasibility of catalytically pretreated biochar derived from the dried exocarp or fruit peel of mangostene with Group I alkali metal hydroxide (KOH. The pretreated char was activated in the presence of carbon dioxide gas flow at high temperature to upgrade its physiochemical properties for the removal of copper, Cu(II cations in single solute system. The effect of three independent variables, including temperature, agitation time and concentration, on sorption performance were carried out. Reaction kinetics parameters were determined by using linear regression analysis of the pseudo first, pseudo second, Elovich and intra-particle diffusion models. The regression co-efficient, R2 values were best for the pseudo second order kinetic model for all the concentration ranges under investigation. This implied that Cu(II cations were adsorbed mainly by chemical interactions with the surface active sites of the activated biochar. Langmuir, Freundlich and Temkin isotherm models were used to interpret the equilibrium data at different temperature. Thermodynamic studies revealed that the sorption process was spontaneous and endothermic. The surface area of the activated sample was 367.10 m2/g, whereas before base activation, it was only 1.22 m2/g. The results elucidated that the base pretreatment was efficient enough to yield porous carbon with an enlarged surface area, which can successfully eliminate Cu(II cations from waste water.

  13. Catalytic production of biodiesel

    Energy Technology Data Exchange (ETDEWEB)

    Theilgaard Madsen, A.

    2011-07-01

    The focus of this thesis is the catalytic production of diesel from biomass, especially emphasising catalytic conversion of waste vegetable oils and fats. In chapter 1 an introduction to biofuels and a review on different catalytic methods for diesel production from biomass is given. Two of these methods have been used industrially for a number of years already, namely the transesterification (and esterification) of oils and fats with methanol to form fatty acid methyl esters (FAME), and the hydrodeoxygenation (HDO) of fats and oils to form straight-chain alkanes. Other possible routes to diesel include upgrading and deoxygenation of pyrolysis oils or aqueous sludge wastes, condensations and reductions of sugars in aqueous phase (aqueous-phase reforming, APR) for monofunctional hydrocarbons, and gasification of any type of biomass followed by Fischer-Tropsch-synthesis for alkane biofuels. These methods have not yet been industrialised, but may be more promising due to the larger abundance of their potential feedstocks, especially waste feedstocks. Chapter 2 deals with formation of FAME from waste fats and oils. A range of acidic catalysts were tested in a model fat mixture of methanol, lauric acid and trioctanoin. Sulphonic acid-functionalised ionic liquids showed extremely fast convertion of lauric acid to methyl laurate, and trioctanoate was converted to methyl octanoate within 24 h. A catalyst based on a sulphonated carbon-matrix made by pyrolysing (or carbonising) carbohydrates, so-called sulphonated pyrolysed sucrose (SPS), was optimised further. No systematic dependency on pyrolysis and sulphonation conditions could be obtained, however, with respect to esterification activity, but high activity was obtained in the model fat mixture. SPS impregnated on opel-cell Al{sub 2}O{sub 3} and microporous SiO{sub 2} (ISPS) was much less active in the esterification than the original SPS powder due to low loading and thereby low number of strongly acidic sites on the

  14. Catalytic Synthesis Lactobionic Acid

    Directory of Open Access Journals (Sweden)

    V.G. Borodina

    2014-07-01

    Full Text Available Gold nanoparticles are obtained, characterized and deposited on the carrier. Conducted catalytic synthesis of lactobionic acid from lactose. Received lactobionic acid identify on the IR spectrum.

  15. Catalytic distillation process

    Science.gov (United States)

    Smith, Jr., Lawrence A.

    1982-01-01

    A method for conducting chemical reactions and fractionation of the reaction mixture comprising feeding reactants to a distillation column reactor into a feed zone and concurrently contacting the reactants with a fixed bed catalytic packing to concurrently carry out the reaction and fractionate the reaction mixture. For example, a method for preparing methyl tertiary butyl ether in high purity from a mixed feed stream of isobutene and normal butene comprising feeding the mixed feed stream to a distillation column reactor into a feed zone at the lower end of a distillation reaction zone, and methanol into the upper end of said distillation reaction zone, which is packed with a properly supported cationic ion exchange resin, contacting the C.sub.4 feed and methanol with the catalytic distillation packing to react methanol and isobutene, and concurrently fractionating the ether from the column below the catalytic zone and removing normal butene overhead above the catalytic zone.

  16. Catalytic Coanda combustion

    Energy Technology Data Exchange (ETDEWEB)

    Coleman, J.D.; Smith, A.G.; Kopmels, M.

    1992-09-16

    A catalytic reaction is enhanced by the use of the Coanda effect to maximise contact between reactant and catalyst. A device utilising this principle comprises a Coanda surface which directs the flow of fuel from a slot to form a primary jet which entrains the surrounding ambient air and forms a combustible mixture for reaction on a catalytic surface. The Coanda surface may have an internal or external nozzle which may be axi-symmetric or two-dimensional. (author)

  17. Study and Analysis on Naphtha Catalytic Reforming Reactor Simulation

    Institute of Scientific and Technical Information of China (English)

    Liang Ke min; Song Yongji; Pan Shiwei

    2004-01-01

    A naphtha catalytic reforming unit with four reactors connected in series is analyzed. A physical model is proposed to describe the catalytic reforming radial flow reactor. Kinetics and thermodynamics equations are selected to describe the naphtha catalytic reforming reaction characteristics based on idealizing the complex naphtha mixture to represent the paraffin, naphthene, and aromatic groups with individual compounds. The simulation results based on above models agree very well with actual operating data of process unit.

  18. Catalytic Conversion of Biomass Pyrolysis Vapours over Sodium-Based Catalyst; A Study on teh State of Sodium on the Catalyst

    NARCIS (Netherlands)

    Nguyen, Tang Son; Lefferts, Leon; Gupta, K.B. Sai Sankar; Seshan, Kulathuiyer

    2015-01-01

    In situ upgrading of biomass pyrolysis vapours over Na2CO3/γ-Al2O3 catalysts was studied in a laboratory-scale fixed-bed reactor at 500 °C. Catalytic oil exhibits a significant improvement over its non-catalytic counterpart, such as lower oxygen content (12.3 wt % compared to 42.1 wt %), higher ener

  19. One-Pot Catalysis Using a Chiral Iridium Complex/Brønsted Base: Catalytic Asymmetric Synthesis of Catalponol.

    Science.gov (United States)

    Suzuki, Takeyuki; Ismiyarto; Ishizaka, Yuka; Zhou, Da-Yang; Asano, Kaori; Sasai, Hiroaki

    2015-11-01

    Tandem asymmetric hydrogen transfer oxidation/aldol condensation under relay catalysis of a chiral iridium complex/achiral Brønsted base binary system is described for the synthesis of α-benzylidene-γ-hydroxytetralones with high ee's. A two-step synthesis of catalponol was achieved using this sequential methodology together with regio- and stereoselective hydroboration. PMID:26496409

  20. Catalytic ignition of light hydrocarbons

    Institute of Scientific and Technical Information of China (English)

    K. L. Hohn; C.-C. Huang; C. Cao

    2009-01-01

    Catalytic ignition refers to phenomenon where sufficient energy is released from a catalytic reaction to maintain further reaction without additional extemai heating. This phenomenon is important in the development of catalytic combustion and catalytic partial oxidation processes, both of which have received extensive attention in recent years. In addition, catalytic ignition studies provide experimental data which can be used to test theoretical hydrocarbon oxidation models. For these reasons, catalytic ignition has been frequently studied. This review summarizes the experimental methods used to study catalytic ignition of light hydrocarbons and describes the experimental and theoretical results obtained related to catalytic ignition. The role of catalyst metal, fuel and fuel concentration, and catalyst state in catalytic ignition are examined, and some conclusions are drawn on the mechanism of catalytic ignition.

  1. Distributive Processing by the Iron(II)/α-Ketoglutarate-Dependent Catalytic Domains of the TET Enzymes Is Consistent with Epigenetic Roles for Oxidized 5-Methylcytosine Bases.

    Science.gov (United States)

    Tamanaha, Esta; Guan, Shengxi; Marks, Katherine; Saleh, Lana

    2016-08-01

    The ten-eleven translocation (TET) proteins catalyze oxidation of 5-methylcytosine ((5m)C) residues in nucleic acids to 5-hydroxymethylcytosine ((5hm)C), 5-formylcytosine ((5f)C), and 5-carboxycytosine ((5ca)C). These nucleotide bases have been implicated as intermediates on the path to active demethylation, but recent reports have suggested that they might have specific regulatory roles in their own right. In this study, we present kinetic evidence showing that the catalytic domains (CDs) of TET2 and TET1 from mouse and their homologue from Naegleria gruberi, the full-length protein NgTET1, are distributive in both chemical and physical senses, as they carry out successive oxidations of a single (5m)C and multiple (5m)C residues along a polymethylated DNA substrate. We present data showing that the enzyme neither retains (5hm)C/(5f)C intermediates of preceding oxidations nor slides along a DNA substrate (without releasing it) to process an adjacent (5m)C residue. These findings contradict a recent report by Crawford et al. ( J. Am. Chem. Soc. 2016 , 138 , 730 ) claiming that oxidation of (5m)C by CD of mouse TET2 is chemically processive (iterative). We further elaborate that this distributive mechanism is maintained for TETs in two evolutionarily distant homologues and posit that this mode of function allows the introduction of (5m)C forms as epigenetic markers along the DNA. PMID:27362828

  2. Colorimetric determination of copper ions based on the catalytic leaching of silver from the shell of silver-coated gold nanorods

    International Nuclear Information System (INIS)

    We have developed a method for the colorimetric determination of copper ions (Cu2+) that is based on the use of silver-coated gold nanorods (Au–Ag NRs). Its outstanding selectivity and sensitivity result from the catalytic leaching process that occurs between Cu2+, thiosulfate (S2O32−), and the surface of the Au–Ag NRs. The intrinsic color of the Au–Ag NRs changes from bright red to bluish green with decreasing thickness of the silver coating. The addition of Cu2+ accelerates the leaching of silver from the shell caused in the presence of S2O32−. This result in a decrease in the thickness of the silver shell which is accompanied a change in color and absorption spectra of the colloidal solution. The shifts in the absorption maxima are linearly related to the concentrations of Cu2+ over the 3–1,000 nM concentration range (R = 0.996). The method is cost effective and was applied to the determination of Cu2+ in real water samples. (author)

  3. Visual discrimination of phenolic group β₂-agonists and the ultrasensitive identification of their oxidation products by use of a tyrosinase-based catalytic reaction.

    Science.gov (United States)

    Xiong, Huayu; Guo, Chunhui; Liu, Ping; Xu, Wei; Zhang, Xiuhua; Wang, Shengfu

    2014-05-20

    The fast, visual discrimination of β2-agonist drugs is needed for the on-site screening of various types of β2-agonists in blood and urine samples. We developed a simple, rapid, one-step colorimetric method to detect phenolic β2-agonists by use of a tyrosinase catalytic reaction, which involved the oxidation of the phenol group on the benzene rings of β2-agonists. The enzymatic oxidation products of β2-agonists with phenolic groups exhibited different color transitions based on the different substituent groups on the aromatic ring, whereas β2-agonists with the aniline group or the resorcinol group remained colorless. This visual color discrepancy has been used to intuitively and conveniently differentiate the phenolic group β2-agonists, such as ractopamine, isoxsuprine, ritodrine, and fenoterol. The oxidation products of these compounds have been identified using mass spectrometry, and the possible reaction mechanisms between β2-agonists and tyrosinase have been deduced. The parameters that govern the analytical performance of the reaction product, including the pH of the buffer solution, the concentration of tyrosinase, and the incubation time, have been studied and optimized using ultraviolet-visible (UV-vis) spectroscopy and electrochemical methods. Under the optimal experimental conditions, the absorbance intensity and electrochemical signal were found to increase proportionally to the concentrations of the phenolic group β2-agonists, which gave a quantitative description of the β2-agonists in solution. PMID:24785981

  4. Radiolytic Synthesis of Pt-Ru Catalysts Based on Functional Polymer-Grafted MWNT and Their Catalytic Efficiency for CO and MeOH

    Directory of Open Access Journals (Sweden)

    Dae-Soo Yang

    2011-01-01

    Full Text Available Pt-Ru catalysts based on functional polymer-grafted MWNT (Pt-Ru@FP-MWNT were prepared by radiolytic deposition of Pt-Ru nanoparticles on functional polymer-grafted multiwalled carbon nanotube (FP-MWNT. Three different types of functional polymers, poly(acrylic acid (PAAc, poly(methacrylic acid (PMAc, and poly(vinylphenyl boronic acid (PVPBAc, were grafted on the MWNT surface by radiation-induced graft polymerization (RIGP. Then, Pt-Ru nanoparticles were deposited onto the FP-MWNT supports by the reduction of metal ions using γ-irradiation to obtain Pt-Ru@FP-MWNT catalysts. The Pt-Ru@FP-MWNT catalysts were then characterized by XRD, XPS, TEM ,and elemental analysis. The catalytic efficiency of Pt-Ru@FP-MWNT catalyst was examined for CO stripping and MeOH oxidation for use in a direct methanol fuel cell (DMFC. The Pt-Ru@PVPBAc-MWNT catalyst shows enhanced activity for electro-oxidation of CO and MeOH oxidation over that of the commercial E-TEK catalyst.

  5. EPR spectroscopy of catalytic systems based on nickel complexes of 1,4-diaza-1,3-butadiene (alpha-diimine) ligands in hydrogenation and polymerization reactions

    International Nuclear Information System (INIS)

    The catalytic systems based on .-diimine complexes of Ni(0) and Ni(II) of the general formulas NiBr2(DAD-R) (R = -C3H7 or -CH3) and Ni(DAD-CH3)2 (DAD(-C3H7) = 1,4-bis(2,6-diiso-propylphenyl)-2,3-(dimethyl-1,4-diazabuta-1,3-diene, DAD(-CH3) = 1,4-bis 2,6-dimethylphenyl)-2,3-dimethyl-1,4-diazabuta-1,3-diene), with Lewis acids (AlEt3, AlEt2Cl, AlEtCl2, B(F5C6)3, BF3 centre dot OEt2) in hydrogenation and polymerization reactions were investigated by the EPR spectroscopy method. The Ni(I) complexes of a (DAD-R)NiX2AlXy(C2H5)3-y composition (instead of the aluminum atom may be a boron atom) were identified where R = -CH3 or -C3H7, X = Br, X = Cl or -C2H5. The .-diimines radical-anions are included in the derivatives of aluminum or boron. It is found that there occur oxidation reactions between Ni(DAD-CH3)2 and aluminum organic compounds or boron derivatives, resulting in the formation of paramagnetic complexes. It is shown that there is no direct relationship between activity in polymerization or hydrogenation reactions and concentration of paramagnetic particles.

  6. Adsorptive removal of lead and cadmium ions using Cross -linked CMC Schiff base: Isotherm, Kinetics and Catalytic Activity

    OpenAIRE

    P.Moganavally; Deepa, M; P.N. SUDHA; Suresh, R.

    2016-01-01

    Water plays a vital role to human and other living organisms. Due to the effluent coming from chemical industries, the industrial activity, contamination of ground water level is goes on increasing nowadays. Therefore, there is a need to develop technologies that can remove toxic pollutants in wastewater. Hence the cross linked Carboxymethyl chitosan(CMC)/ 2,3-dimethoxy Benzaldehyde Schiff base complex has been synthesized and characterized by using FT-IR and SEM analysis. All these results...

  7. Catalytic depolymerisation of starch-based industrial waste:use of non-conventional activation methods and novel reaction media

    OpenAIRE

    Hernoux-Villière, A. (Audrey)

    2013-01-01

    Abstract The rapid increase of energy demand for transportation generates a rise of environmental pollution, stimulating the development of alternative sources of energy. Biomass is considered as the main organic carbon source of energy to substitute petroleum permitting sustainable production of chemicals and transportation fuels. Biowastes, residues and non-edible feedstock possess high potential resources avoiding food competition. This research aims to convert starch-based industria...

  8. Mesoporous Silica Based Gold Catalysts: Novel Synthesis and Application in Catalytic Oxidation of CO and Volatile Organic Compounds (VOCs

    Directory of Open Access Journals (Sweden)

    Leonarda F. Liotta

    2013-10-01

    Full Text Available Gold nanoparticles, particularly with the particle size of 2–5 nm, have attracted increasing research attention during the past decades due to their surprisingly high activity in CO and volatile organic compounds (VOCs oxidation at low temperatures. In particular, CO oxidation below room temperature has been extensively studied on gold nanoparticles supported on several oxides (TiO2, Fe2O3, CeO2, etc.. Recently, mesoporous silica materials (such as SBA-15, MCM-41, MCM-48 and HMS possessing ordered channel structures and suitable pore diameters, large internal surface areas, thermal stabilities and excellent mechanical properties, have been investigated as suitable hosts for gold nanoparticles. In this review we highlight the development of novel mesoporous silica based gold catalysts based on examples, mostly from recently reported results. Several synthesis methods are described herein. In detail we report: the modification of silica with organic functional groups; the one-pot synthesis with the incorporation of both gold and coupling agent containing functionality for the synthesis of mesoporous silica; the use of cationic gold complexes; the synthesis of silica in the presence of gold colloids or the dispersion of gold colloids protected by ligands or polymers onto silica; the modification of silica by other metal oxides; other conventional preparation methods to form mesoporous silica based gold catalysts. The gold based catalysts prepared as such demonstrate good potential for use in oxidation of CO and VOCs at low temperatures. From the wide family of VOCs, the oxidation of methanol and dimethyldisulfide has been addressed in the present review.

  9. Catalytic activity of acid and base with different concentration on sol-gel kinetics of silica by ultrasonic method.

    Science.gov (United States)

    Das, R K; Das, M

    2015-09-01

    The effects of both acid (acetic acid) and base (ammonia) catalysts in varying on the sol-gel synthesis of SiO2 nanoparticles using tetra ethyl ortho silicate (TEOS) as a precursor was determined by ultrasonic method. The ultrasonic velocity was received by pulsar receiver. The ultrasonic velocity in the sol and the parameter ΔT (time difference between the original pulse and first back wall echo of the sol) was varied with time of gelation. The graphs of ln[ln1/ΔT] vs ln(t), indicate two region - nonlinear region and a linear region. The time corresponds to the point at which the non-linear region change to linear region is considered as gel time for the respective solutions. Gelation time is found to be dependent on the concentration and types of catalyst and is found from the graphs based on Avrami equation. The rate of condensation is found to be faster for base catalyst. The gelation process was also characterized by viscosity measurement. Normal sol-gel process was also carried out along with the ultrasonic one to compare the effectiveness of ultrasonic. The silica gel was calcined and the powdered sample was characterized with scanning electron microscopy, energy dispersive spectra, X-ray diffractogram, and FTIR spectroscopy. PMID:25600993

  10. Synthesis, characterization, and tyrosinase biomimetic catalytic activity of copper(II) complexes with schiff base ligands derived from α-diketones with 2-methyl-3-amino-(3 H)-quinazolin-4-one

    Science.gov (United States)

    Ramadan, Abd El-Motaleb M.; Ibrahim, Mohamed M.; Shaban, Shaban Y.

    2011-12-01

    A template condensation of α-diketones (biacetyl, benzile and 2,3-pentanedione) with 2-methyl-3-amino-(3 H)-quinazolin-4-one (AMQ) in the presence of CuX 2 (X = Cl -, Br -, NO3- or ClO4-) resulted in the formation of tetradentate Schiff base copper(II) complexes of the type [CuLX]X and [CuL]X 2. Structural characterization of the complex species was achieved by several physicochemical methods, namely elemental analysis, electronic spectra, IR, ESR, molar conductivity, thermal analysis (TAG & DTG), and magnetic moment measurements. The stereochemistry, the nature of the metal chelates, and the catalytic reactivity are markedly dependent upon the type of counter anions and the ligand substituent within the carbonyl moiety. A square planar monomeric structure is proposed for the perchlorate, nitrate, and bromide complexes, in which the counter anions are loosely bonded to copper(II) ion. For the chloride complexes, the molar conductivities and the spectral data indicated that they have square-pyramidal environments around copper(II) center. The reported copper(II) complexes exhibit promising tyrosinase catalytic activity towards the hydroxylation of phenol followed by the aerobic oxidation of the resulting catechol. A linear correlation almost exists between the catalytic reactivity and the Lewis-acidity of the central copper(II) ion created by the donating properties of the parent ligand. The steric considerations could be accounted to clarify the difference in the catalytic activity of these functional models.

  11. An automated flow for directed evolution based on detection of promiscuous scaffolds using spatial and electrostatic properties of catalytic residues.

    Directory of Open Access Journals (Sweden)

    Sandeep Chakraborty

    Full Text Available The aspiration to mimic and accelerate natural evolution has fueled interest in directed evolution experiments, which endow or enhance functionality in enzymes. Barring a few de novo approaches, most methods take a template protein having the desired activity, known active site residues and structure, and proceed to select a target protein which has a pre-existing scaffold congruent to the template motif. Previously, we have established a computational method (CLASP based on spatial and electrostatic properties to detect active sites, and a method to quantify promiscuity in proteins. We exploit the prospect of promiscuous active sites to serve as the starting point for directed evolution and present a method to select a target protein which possesses a significant partial match with the template scaffold (DECAAF. A library of partial motifs, constructed from the active site residues of the template protein, is used to rank a set of target proteins based on maximal significant matches with the partial motifs, and cull out the best candidate from the reduced set as the target protein. Considering the scenario where this 'incubator' protein lacks activity, we identify mutations in the target protein that will mirror the template motif by superimposing the target and template protein based on the partial match. Using this superimposition technique, we analyzed the less than expected gain of activity achieved by an attempt to induce β-lactamase activity in a penicillin binding protein (PBP (PBP-A from T. elongatus, and attributed this to steric hindrance from neighboring residues. We also propose mutations in PBP-5 from E. coli, which does not have similar steric constraints. The flow details have been worked out in an example which aims to select a substitute protein for human neutrophil elastase, preferably related to grapevines, in a chimeric anti-microbial enzyme which bolsters the innate immune defense system of grapevines.

  12. The forming of coke by catalytic cracking of black mineral oil by catalysts on the base of activated aluminium alloys

    International Nuclear Information System (INIS)

    The paper deals with an investigation in coke formation under black mineral oil reactions on oxide catalysts which care based on activated aluminium alloys containing 2-20% of active components of In and Ga. The coke yield is of extreme nature and depends on the content of active components in the catalyst composition. The application of thermogravimetric method shows that the oxidation of coke depositions after black mineral oil cracking proceeds in the same temperature range while after the steam-water treatment of coked catalysts the oxidation of coke deposition proceeds at higher temperatures with different temperature maximums which points to the inhomogeneity of coke depositions. It is shown that the catalyst phase composition changes significantly during the reaction under the effect of reaction mixture. 4 refs., 3 figs

  13. Highly catalytic carbon nanotube counter electrode on plastic for dye solar cells utilizing cobalt-based redox mediator

    International Nuclear Information System (INIS)

    A flexible, slightly transparent and metal-free random network of single-walled carbon nanotubes (SWCNTs) on plain polyethylene terephthalate (PET) plastic substrate outperformed platinum on conductive glass and on plastic as the counter electrode (CE) of a dye solar cell employing a Co(II/III)tris(2,2′-bipyridyl) complex redox mediator in 3-methoxypropionitrile solvent. The CE charge-transfer resistance of the SWCNT film was 0.60 Ω cm2, 4.0 Ω cm2 for sputtered platinum on indium tin oxide-PET substrate and 1.7 Ω cm2 for thermally deposited Pt on fluorine-doped tin oxide glass, respectively. The solar cell efficiencies were in the same range, thus proving that an entirely carbon-based SWCNT film on plastic is as good CE candidate for the Co electrolyte

  14. Efficient Access to Multifunctional Trifluoromethyl Alcohols through Base-Free Catalytic Asymmetric C-C Bond Formation with Terminal Ynamides.

    Science.gov (United States)

    Cook, Andrea M; Wolf, Christian

    2016-02-01

    The asymmetric addition of terminal ynamides to trifluoromethyl ketones with a readily available chiral zinc catalyst gives CF3 -substituted tertiary propargylic alcohols in up to 99 % yield and 96 % ee. The exclusion of organozinc additives and base as well as the general synthetic utility of the products are key features of this reaction. The value of the β-hydroxy-β-trifluoromethyl ynamides is exemplified by selective transformations to chiral Z- and E-enamides, an amide, and N,O-ketene acetals. The highly regioselective hydration, stereoselective reduction, and hydroacyloxylation reactions proceed with high yields and without erosion of the ee value of the parent β-hydroxy ynamides. PMID:26806871

  15. Catalytic coherence transformations

    Science.gov (United States)

    Bu, Kaifeng; Singh, Uttam; Wu, Junde

    2016-04-01

    Catalytic coherence transformations allow the otherwise impossible state transformations using only incoherent operations with the aid of an auxiliary system with finite coherence that is not being consumed in any way. Here we find the necessary and sufficient conditions for the deterministic and stochastic catalytic coherence transformations between a pair of pure quantum states. In particular, we show that the simultaneous decrease of a family of Rényi entropies of the diagonal parts of the states under consideration is a necessary and sufficient condition for the deterministic catalytic coherence transformations. Similarly, for stochastic catalytic coherence transformations we find the necessary and sufficient conditions for achieving a higher optimal probability of conversion. We thus completely characterize the coherence transformations among pure quantum states under incoherent operations. We give numerous examples to elaborate our results. We also explore the possibility of the same system acting as a catalyst for itself and find that indeed self-catalysis is possible. Further, for the cases where no catalytic coherence transformation is possible we provide entanglement-assisted coherence transformations and find the necessary and sufficient conditions for such transformations.

  16. Catalytic Upgrading of 5-Hydroxymethylfurfural to Drop-in Biofuels by Solid Base and Bifunctional Metal-Acid Catalysts.

    Science.gov (United States)

    Bohre, Ashish; Saha, Basudeb; Abu-Omar, Mahdi M

    2015-12-01

    Design and synthesis of effective heterogeneous catalysts for the conversion of biomass intermediates into long chain hydrocarbon precursors and their subsequent deoxygenation to hydrocarbons is a viable strategy for upgrading lignocellulose into distillate range drop-in biofuels. Herein, we report a two-step process for upgrading 5-hydroxymethylfurfural (HMF) to C9 and C11 fuels with high yield and selectivity. The first step involves aldol condensation of HMF and acetone with a water tolerant solid base catalyst, zirconium carbonate (Zr(CO3 )x ), which gave 92 % C9 -aldol product with high selectivity at nearly 100 % HMF conversion. The as-synthesised Zr(CO3 )x was analysed by several analytical methods for elucidating its structural properties. Recyclability studies of Zr(CO3 )x revealed a negligible loss of its activity after five consecutive cycles over 120 h of operation. Isolated aldol product from the first step was hydrodeoxygenated with a bifunctional Pd/Zeolite-β catalyst in ethanol, which showed quantitative conversion of the aldol product to n-nonane and 1-ethoxynonane with 40 and 56 % selectivity, respectively. 1-Ethoxynonane, a low oxygenate diesel range fuel, which we report for the first time in this paper, is believed to form through etherification of the hydroxymethyl group of the aldol product with ethanol followed by opening of the furan ring and hydrodeoxygenation of the ether intermediate. PMID:26549016

  17. Syntheses, structures, molecular and cationic recognitions and catalytic properties of two lanthanide coordination polymers based on a flexible tricarboxylate

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Yu; Wang, Yan-Mei; Xu, Ji; Liu, Pan; Weththasinha, H.A.B.M.D.; Wu, Yun-Long; Lu, Xiao-Qing; Xie, Ji-Min, E-mail: xiejm391@sohu.com

    2014-11-15

    Two lanthanide coordination polymers, namely, ([La(TTTA)(H{sub 2}O){sub 2}]·2H{sub 2}O){sub n} (La-TTTA) and [Nd(TTTA)(H{sub 2}O){sub 2}]·2H{sub 2}O){sub n} (Nd-TTTA) have been hydrothermally synthesized through the reaction of lanthanide ions (La{sup 3+} and Nd{sup 3+}) with the flexible tripodal ligand 2,2′,2″-[1,3,5-triazine-2,4,6-triyltris(thio)]tris-acetic acid (H{sub 3}TTTA). La-TTTA and Nd-TTTA are isostructural and both show three dimensional structures. La-TTTA and Nd-TTTA show good recognition of amine molecules via quenching the luminescent intensities in amines emulsions. They can also recognize Fe{sup 3+}, Cu{sup 2+}, Mg{sup 2+}, Cr{sup 3+} and Co{sup 2+} ions with the quenching the peak around 361 nm when the compounds immersed in ionic solutions. The two compounds act as efficient Lewis acid catalysts for the cyanosilylation of benzaldehyde and derivatives in high yields shortly due to the strong Lewis acidity and the possible open sites of the lanthanide ions. - Graphical abstract: We have synthesized two isostructural 3D compounds based on H{sub 3}TTTA. They are chemical sensor of amine solvents and cations. They have higher yields and TOFs to catalyze cyanosilylation reactions. - Highlights: • The compounds show recognition of amine molecules via quenching luminescent intensities. • The compounds recognize Fe{sup 3+}, Cu{sup 2+}, Mg{sup 2+}, Cr{sup 3+} and Co{sup 2+} ions via quenching the peak around 361 nm. • They act as efficient Lewis acid catalysts for the cyanosilylation reactions in high yields.

  18. Syntheses, structures, molecular and cationic recognitions and catalytic properties of two lanthanide coordination polymers based on a flexible tricarboxylate

    International Nuclear Information System (INIS)

    Two lanthanide coordination polymers, namely, ([La(TTTA)(H2O)2]·2H2O)n (La-TTTA) and [Nd(TTTA)(H2O)2]·2H2O)n (Nd-TTTA) have been hydrothermally synthesized through the reaction of lanthanide ions (La3+ and Nd3+) with the flexible tripodal ligand 2,2′,2″-[1,3,5-triazine-2,4,6-triyltris(thio)]tris-acetic acid (H3TTTA). La-TTTA and Nd-TTTA are isostructural and both show three dimensional structures. La-TTTA and Nd-TTTA show good recognition of amine molecules via quenching the luminescent intensities in amines emulsions. They can also recognize Fe3+, Cu2+, Mg2+, Cr3+ and Co2+ ions with the quenching the peak around 361 nm when the compounds immersed in ionic solutions. The two compounds act as efficient Lewis acid catalysts for the cyanosilylation of benzaldehyde and derivatives in high yields shortly due to the strong Lewis acidity and the possible open sites of the lanthanide ions. - Graphical abstract: We have synthesized two isostructural 3D compounds based on H3TTTA. They are chemical sensor of amine solvents and cations. They have higher yields and TOFs to catalyze cyanosilylation reactions. - Highlights: • The compounds show recognition of amine molecules via quenching luminescent intensities. • The compounds recognize Fe3+, Cu2+, Mg2+, Cr3+ and Co2+ ions via quenching the peak around 361 nm. • They act as efficient Lewis acid catalysts for the cyanosilylation reactions in high yields

  19. An assessment of the pozzolanic activity of a spent catalyst from catalytic cracking using methods based on the measurement of the electrical conductivity and pH of suspensions with calcium hydroxide

    OpenAIRE

    Sergio Velázquez; JOSÉ M. MONZÓ; María V. Borrachero; Jordi Payá

    2014-01-01

    The pozzolanic activity of the spent catalyst produced by fluid catalytic cracking (FCC) has been studied by various methods in recent years. However, no quick and easy method has been reported for this activity based on the associated studies. In this work, the pozzolanic activity of a spent catalyst was investigated by measuring its electrical conductivity in aqueous suspensions of pozzolan/calcium hydroxide. The behavior of the FCC catalyst residue was compared to that of reactive and iner...

  20. Molybdenum(VI) network polymers based on anion-π interaction and hydrogen bonding: Synthesis, crystal structures and oxidation catalytic application

    Science.gov (United States)

    Li, Jia; Wang, Ge; Shi, Zhan; Yang, Mu; Luck, Rudy L.

    2009-11-01

    A crystallographic investigation of anion-π interactions and hydrogen bonds on the preferred structural motifs of molybdenum(VI) complexes has been carried out. Two molybdenum(VI) network polymers MoO 2F 4·(Hinca) 2 ( 1) and MoO 2F 3(H 2O)·(Hinpa) ( 2), where inca = isonicotinamide and inpa = isonipecotamide, have been synthesized, crystallographically characterized and successfully applied to alcohol oxidation reaction. Complex 1 crystallizes in the monoclinic space C2/ c: a = 16.832(3) Å, b = 8.8189(15) Å, c = 12.568(2) Å, β = 118.929(3)°, V = 1560.1(5) Å 3, Z = 4. Complex 2 crystallizes in the triclinic space P-1: a = 5.459(2) Å, b = 9.189(4) Å, c = 12.204(5) Å, α = 71.341(6)°, β = 81.712(7)°, γ = 77.705(7)°, V = 564.8(4) Å 3, Z = 2. Complex 1 consists of hydrogen bonding and anion-π interactions, both of which are considered as important factors for controlling the geometric features and packing characteristics of the crystal structure. The geometry of the sandwich complex of [MoO 2F 4] 2- with two pyridine rings indicates that the anion-π interaction is an additive and provides a base for the design and synthesis of new complexes. For complex 2, the anions and the protonated inpa ligands form a 2D supramolecular network by four different types of hydrogen contacts (N-H⋯F, N-H⋯O, O-H⋯F and O-H⋯O). The catalytic ability of complexes 1 and 2 has also been evaluated by applying them to the oxidation of benzyl alcohol with TBHP as oxidant.

  1. Synthesis and photo-catalytic H2 evolution of three novel biomimetic photocatalysts based on [FeFe]-Hases model compound

    Science.gov (United States)

    Zheng, Hui-Qin; Rao, Heng; Wang, Jun; Fan, Yao-Ting; Hou, Hong-Wei

    2015-01-01

    Three new biomimetic photocatalyts based on [2Fe2S]-Hases model compound, namely {(μ-pdte) [Fe(CO)3][Fe(CO)2L], μ-pdte = μ2-S(CH2)2CH[(CH2)3COOCH3]S-μ2, L = CO(1), L = PPh3(2)}, (μ-pdte) [Fe(CO)3] [Fe(CO) (phen)] (3), have been synthesized and characterized by elemental analysis, spectroscopy and particularly X-ray crystallography crystal structure analysis for 1. Visible-light-driven H2 evolution catalyzed by 1-3 in the presence of EY2- as PS, and TEA as electron donor, the maximum H2 yield of 136.2 μmol(17 TON vs. catalyst 2) is detected at pH 11 with 2 of 4 × 10-4 M, EY2- of 4 × 10-4 M, TEA of 10% (v:v) in CH3CN/H2O (v:v,1:1) after 4.5 h irradiation. After that, the effect of the substituent species of catalyst on H2 evolution, the stability of photo-catalytic system and the probable H2 evolution mechanism are also carefully discussed by CV, fluorescence quenching, fluorescence lifetime et al. The result illustrates 2 has been found to be a potential catalyst for conversion of solar energy to clean hydrogen energy under visible light-driven despite that the H2 evolution activity is not high enough in this stage.

  2. Synthesis, Characterization, and Catalytic Activity of Sulfonated Carbon-Based Catalysts Derived From Rubber Tree Leaves and Pulp and Paper Mill Waste

    Science.gov (United States)

    Janaun, J.; Sinin, E.; Hiew, S. F.; Kong, A. M. T.; Lahin, F. A.

    2016-06-01

    Sulfonated carbon-based catalysts derived from rubber tree leaves, and pulp and paper mill waste were synthesized and characterized. Three types of catalyst synthesized were sulfonated rubber tree leaves (S-RTL), pyrolysed sludge char (P-SC) and sulfonated sludge char (S-SC). Sulfonated rubber tree leaves (S-RTL) and sulfonated sludge char (S-SC) were prepared through pyrolysis followed by functionalization via sulfonation process whereas, P- SC was only pyrolyzed without sulfonation. The characterization results indicated sulfonic acids, hydroxyl, and carboxyl moieties were detected in S-RTL and S-SC, but no sulfonic acid was detected in P-SC. Total acidity test showed S-RTL had the highest value followed by S-SC and P-SC. The thermal stability of S-RTL and S-SC were up to 230oC as the loss was associated with the decomposition of sulfonic acid group, whereas, P-SC showed higher stability than the S-RTL and S-SC. Morphology analysis showed that S-RTL consisted of an amorphous carbon structure, and a crystalline structure for P-SC and S-SC. Furthermore, traces of metal components were also detected on all of the catalysts. The catalyst catalytic activity was tested through esterification of oleic acid with methanol. The results showed that the reaction using S-RTL catalyst produced the highest conversion (99.9%) followed by P-SC (88.4%) and lastly S-SC (82.7%). The synthesized catalysts showed high potential to be used in biodiesel production.

  3. Catalytic methanol dissociation

    International Nuclear Information System (INIS)

    Results of the methanol dissociation study on copper/potassium catalyst with alumina support at various temperatures are presented. The following gaseous and liquid products at. The catalytic methanol dissociation is obtained: hydrogen, carbon monoxide, carbon dioxide, methane, and dimethyl ether. Formation rates of these products are discussed. Activation energies of corresponding reactions are calculated

  4. Catalytic Phosphination and Arsination

    Institute of Scientific and Technical Information of China (English)

    Kwong Fuk Yee; Chan Kin Shing

    2004-01-01

    The catalytic, user-friendly phosphination and arsination of aryl halides and triflates by triphenylphosphine and triphenylarsine using palladium catalysts have provided a facile synthesis of functionalized aryl phosphines and arsines in neutral media. Modification of the cynaoarisne yielded optically active N, As ligands which will be screened in various asymmetric catalysis.

  5. Monolithic catalytic igniters

    Science.gov (United States)

    La Ferla, R.; Tuffias, R. H.; Jang, Q.

    1993-01-01

    Catalytic igniters offer the potential for excellent reliability and simplicity for use with the diergolic bipropellant oxygen/hydrogen as well as with the monopropellant hydrazine. State-of-the-art catalyst beds - noble metal/granular pellet carriers - currently used in hydrazine engines are limited by carrier stability, which limits the hot-fire temperature, and by poor thermal response due to the large thermal mass. Moreover, questions remain with regard to longevity and reliability of these catalysts. In this work, Ultramet investigated the feasibility of fabricating monolithic catalyst beds that overcome the limitations of current catalytic igniters via a combination of chemical vapor deposition (CVD) iridium coatings and chemical vapor infiltration (CVI) refractory ceramic foams. It was found that under all flow conditions and O2:H2 mass ratios tested, a high surface area monolithic bed outperformed a Shell 405 bed. Additionally, it was found that monolithic catalytic igniters, specifically porous ceramic foams fabricated by CVD/CVI processing, can be fabricated whose catalytic performance is better than Shell 405 and with significantly lower flow restriction, from materials that can operate at 2000 C or higher.

  6. Glu311 and Arg337 Stabilize a Closed Active-site Conformation and Provide a Critical Catalytic Base and Countercation for Green Bioluminescence in Beetle Luciferases.

    Science.gov (United States)

    Viviani, V R; Simões, A; Bevilaqua, V R; Gabriel, G V M; Arnoldi, F G C; Hirano, T

    2016-08-30

    Beetle luciferases elicit the emission of different bioluminescence colors from green to red. Whereas firefly luciferases emit yellow-green light and are pH-sensitive, undergoing a typical red-shift at acidic pH and higher temperatures and in the presence of divalent heavy metals, click beetle and railroadworm luciferases emit a wider range of colors from green to red but are pH-independent. Despite many decades of study, the structural determinants and mechanisms of bioluminescence colors and pH sensitivity remain enigmatic. Here, through modeling studies, site-directed mutagenesis, and spectral and kinetic studies using recombinant luciferases from the three main families of bioluminescent beetles that emit different colors of light (Macrolampis sp2 firefly, Phrixotrix hirtus railroadworm, and Pyrearinus termitilluminans click beetle), we investigated the role of E311 and R337 in bioluminescence color determination. All mutations of these residues in firefly luciferase produced red mutants, indicating that the preservation of opposite charges and the lengths of the side chains of E311 and R337 are essential for keeping a salt bridge that stabilizes a closed hydrophobic conformation favorable for green light emission. Kinetic studies indicate that residue R337 is important for binding luciferin and creating a positively charged environment around excited oxyluciferin phenolate. In Pyrearinus green-emitting luciferase, the R334A mutation causes a 27 nm red-shift, whereas in Phrixotrix red-emitting luciferase, the L334R mutation causes a blue-shift that is no longer affected by guanidine. These results provide compelling evidence that the presence of arginine at position 334 is essential for blue-shifting the emission spectra of most beetle luciferases. Therefore, residues E311 and R337 play both structural and catalytic roles in bioluminescence color determination, by stabilizing a closed hydrophobic conformation favorable for green light emission, and also

  7. p-Tolylimido rhenium(v) complexes with phenolate-based ligands: synthesis, X-ray studies and catalytic activity in oxidation with tert-butylhydroperoxide.

    Science.gov (United States)

    Gryca, Izabela; Machura, Barbara; Małecki, Jan Grzegorz; Kusz, Joachim; Shul'pina, Lidia S; Ikonnikov, Nikolay S; Shul'pin, Georgiy B

    2016-01-01

    The reactions of mer-[Re(p-NTol)X3(PPh3)2] (X = Cl, Br) with chelating phenolate-based ligands (2-(2-hydroxy-5-methylphenyl)benzotriazole (HL(1)), 2-(2-hydroxyphenyl)benzothiazole (HL(2)) or 2-(2-hydroxyphenyl)benzoxazole (HL(3))) afforded a series of p-tolylimido rhenium(v) complexes cis- or trans-(X,X)-[Re(p-NTol)X2(L)(PPh3)]·yMeCN (where X = Cl, Br; L = L(1), L(2), L(3) and y = 0-2) and [Re(p-NTol)X(L)(PPh3)2]Z·pPPh3 (where X = Cl, Br; Z = ReO4, PF6; L = L(1), L(2), L(3) and p = 0 or 1). The reported compounds were characterized by elemental analysis, FT-IR, NMR ((1)H, (13)C and (31)P) and X-ray crystallography. Interestingly, the halide ions of [Re(p-NTol)Cl2(L(1))(PPh3)]·MeCN (1) and [Re(p-NTol)Cl2(L(2))(PPh3)]·2MeCN (3) are in cis relative dispositions, whereas the complexes [Re(p-NTol)Br2(L)(PPh3)] (L(1) for 2, L(2) for 4 and L(3) for 6) and [Re(p-NTol)Cl2(L(3))(PPh3)] (5) were found to be trans-(X,X) isomers. The compounds [Re(p-NTol)X(L)(PPh3)2](PF6) (X = Cl, Br; L = L(1) and L(2)) and [Re(p-NTol)X(L(3))(PPh3)2](PF6)·PPh3 (X = Cl, Br) have been tested in oxidative catalysis. A few compounds exhibited very good catalytic properties in oxidation of alcohols with tert-BuOOH (TBHP) in acetonitrile solution at moderate temperatures. Complex [Re(p-NTol)Cl(L(2))(PPh3)2]PF6 (13) is the catalyst of choice for oxidation of 1-phenylethanol to acetophenone (in 80% yield; turnover number attained 290 after 30 h) and cyclooctanol to cyclooctanone (in 88% yield). Notably lower activity has been found in the oxidation of alkanes with TBHP. Product distribution in the oxidation of methylcyclohexane indicates some steric hindrance around the reaction center. PMID:26618894

  8. Hybrid membrane with TiO2 based bio-catalytic nanoparticle suspension system for the degradation of bisphenol-A.

    Science.gov (United States)

    Hou, Jingwei; Dong, Guangxi; Luu, Belinda; Sengpiel, Robert G; Ye, Yun; Wessling, Matthias; Chen, Vicki

    2014-10-01

    The removal of micropollutant in wastewater treatment has become a key environmental challenge for many industrialized countries. One approach is to use enzymes such as laccase for the degradation of micropollutants such as bisphenol-A. In this work, laccase was covalently immobilized on APTES modified TiO2 nanoparticles, and the effects of particle modification on the bio-catalytic performance were examined and optimized. These bio-catalytic particles were then suspended in a hybrid membrane reactor for BPA removal with good BPA degradation efficiency observed. Substantial improvement in laccase stability was achieved in the hybrid system compared with free laccase under simulated harsh industrial wastewater treatment conditions (such as a wide range of pH and presence of inhibitors). Kinetic study provided insight of the effect of immobilization on the bio-degradation reaction. PMID:25084046

  9. Catalytic Converters Maintain Air Quality in Mines

    Science.gov (United States)

    2014-01-01

    At Langley Research Center, engineers developed a tin-oxide based washcoat to prevent oxygen buildup in carbon dioxide lasers used to detect wind shears. Airflow Catalyst Systems Inc. of Rochester, New York, licensed the technology and then adapted the washcoat for use as a catalytic converter to treat the exhaust from diesel mining equipment.

  10. Automobile air pollution: control equipment--catalytic converters. Volume 2. 1977-January, 1980 (citations from the Engineering Index Data Base). Report for 1977-Jan 80

    Energy Technology Data Exchange (ETDEWEB)

    Cavagnaro, D.M.

    1980-02-01

    The citations of worldwide engineering literature cover automotive catalytic converters. Included are such topics as converter design and materials, performance tests, effectiveness in pollutant reduction, catalyst poisoning, catalyst selection, chemistry involved in the emission control, and the overall feasibility of using these converters under normal driving conditions. Control of sulfuric acid and sulfate emissions is also discussed. (This updated bibliography contains 142 abstracts, 37 of which are new entries to the previous edition.)

  11. Session 6: Novel catalytic converter with low light off temperature based on LaNiO{sub 3} perovskite synthesized from Raney Ni

    Energy Technology Data Exchange (ETDEWEB)

    Hamedmonfared, A.A.; Khodadadi, A.A.; Mortazavi, Y. [Tehran, Univ., Catalysis and Reaction Eng. Lab., Chemical Eng. Dept.(Iran, Islamic Republic of); Tousi, F. [Tehran, Univ., Dept. of chemistry, Faculty of Science (Iran, Islamic Republic of)

    2004-07-01

    In the present investigation we use Raney nickel catalyst to prepare LaNiO{sub 3} perovskite with and without the use of citric acid. The performance of these catalysts was compared with other types of LaNiO{sub 3} made by conventional preparation methods, in which nitrate solutions of nickel and lanthanum are used. The catalytic activities of the catalysts were studied by using a simulated exhaust gas, containing carbon monoxide and ethane. (authors)

  12. A new oxidovanadium(IV) Schiff base complex containing asymmetric tetradentate ONN′O′ Schiff base ligand: synthesis, characterization, crystal structure determination, thermal study and catalytic activity

    Czech Academy of Sciences Publication Activity Database

    Grivani, G.; Ghavami, A.; Eigner, Václav; Dušek, Michal; Khalaji, A.D.

    2015-01-01

    Roč. 26, č. 6 (2015), s. 779-784. ISSN 1001-8417 R&D Projects: GA ČR(CZ) GA14-03276S Institutional support: RVO:68378271 Keywords : oxidovanadium(IV) * Schiff base * crystal structure * nanoparticle * epoxidation Subject RIV: CC - Organic Chemistry Impact factor: 1.587, year: 2014

  13. Synthesis, characterization, crystal structure, catalytic activity in oxidative bromination, and thermal study of a new oxidovanadium Schiff base complex containing O, N-bidentate Schiff base ligand

    Czech Academy of Sciences Publication Activity Database

    Grivani, G.; Tahmasebi, V.; Khalaji, A.D.; Eigner, Václav; Dušek, Michal

    2014-01-01

    Roč. 67, č. 22 (2014), s. 3664-3677. ISSN 0095-8972 Institutional support: RVO:68378271 Keywords : oxidovanadium(IV) * Schiff base * single crystal * oxidative bromination Subject RIV: CA - Inorganic Chemistry Impact factor: 2.012, year: 2014

  14. The application of Cu/SiO2 catalytic system in chemical mechanical planarization based on the stability of SiO2 sol

    International Nuclear Information System (INIS)

    There is a lot of hydroxyl on the surface of nano SiO2 sol used as an abrasive in the chemical mechanical planarization (CMP) process, and the chemical reaction activity of the hydroxyl is very strong due to the nano effect. In addition to providing a mechanical polishing effect, SiO2 sol is also directly involved in the chemical reaction. The stability of SiO2 sol was characterized through particle size distribution, zeta potential, viscosity, surface charge and other parameters in order to ensure that the chemical reaction rate in the CMP process, and the surface state of the copper film after CMP was not affected by the SiO2 sol. Polarization curves and corrosion potential of different concentrations of SiO2 sol showed that trace SiO2 sol can effectively weaken the passivation film thickness. In other words, SiO2 sol accelerated the decomposition rate of passive film. It was confirmed that the SiO2 sol as reactant had been involved in the CMP process of copper film as reactant by the effect of trace SiO2 sol on the removal rate of copper film in the CMP process under different conditions. In the CMP process, a small amount of SiO2 sol can drastically alter the chemical reaction rate of the copper film, therefore, the possibility that Cu/SiO2 as a catalytic system catalytically accelerated the chemical reaction in the CMP process was proposed. According to the van't Hoff isotherm formula and the characteristics of a catalyst which only changes the chemical reaction rate with out changing the total reaction standard Gibbs free energy, factors affecting the Cu/SiO2 catalytic reaction were derived from the decomposition rate of Cu (OH)2 and the pH value of the system, and then it was concluded that the CuSiO3 as intermediates of Cu/SiO2 catalytic reaction accelerated the chemical reaction rate in the CMP process. It was confirmed that the Cu/SiO2 catalytic system generated the intermediate of the catalytic reaction (CuSiO3) in the CMP process through the

  15. Catalytic reforming process

    Energy Technology Data Exchange (ETDEWEB)

    Absil, R.P.; Huss, A. Jr.; McHale, W.D.; Partridge, R.D.

    1989-06-13

    This patent describes a catalytic reforming process which comprises contacting a naphtha range feed with a low acidity extrudate comprising an intermediate and/or a large pore acidic zeolite bound with a low acidity refractory oxide under reforming conditions to provide a reaction product of increased aromatic content, the extrudate having been prepared with at least an extrusion-facilitating amount of a low acidity refractory oxide in colloidal form and containing at least one metal species selected from the platinum group metals.

  16. Photoresponse of indium oxide particulate-based thin films fabricated using milled nanorods grown by the self-catalytic vapor–liquid–solid process

    International Nuclear Information System (INIS)

    Indium oxide (In2O3) nanorods were grown on silica substrates by using the self-catalytic vapor–liquid–solid growth process. The photoresponse of the nanorods was compared to that of the thin film, tin-doped indium oxide (ITO). The nanorods demonstrated a wavelength-dependent photoresponse with high responsivity of 1.82 A W−1 at 405 nm. In contrast, the conductive ITO thin film did not show a photoresponse to light. Analysis results showed that different surface states of materials as well as doping in ITO contributed to the significant difference in the photoresponse of samples. (paper)

  17. Catalytic hydrogenation of carbon monoxide

    International Nuclear Information System (INIS)

    Focus of this project is on developing new approaches for hydrogenation of carbon monoxide to produce organic oxygenates at mild conditions. The strategies to accomplish CO reduction are based on favorable thermodynamics manifested by rhodium macrocycles for producing a series of intermediates implicated in the catalytic hydrogenation of CO. Metalloformyl complexes from reactions of H2 and CO, and CO reductive coupling to form metallo α-diketone species provide alternate routes to organic oxygenates that utilize these species as intermediates. Thermodynamic and kinetic-mechanistic studies are used in guiding the design of new metallospecies to improve the thermodynamic and kinetic factors for individual steps in the overall process. Electronic and steric effects associated with the ligand arrays along with the influences of the reaction medium provide the chemical tools for tuning these factors. Non-macrocyclic ligand complexes that emulate the favorable thermodynamic features associated with rhodium macrocycles, but that also manifest improved reaction kinetics are promising candidates for future development

  18. Deactivation Mechanisms of Base Metal/Zeolite Urea Selective Catalytic Reduction Materials, and Development of Zeolite-Based Hydrocarbon Adsorber Materials

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Feng; Kwak, Ja Hun; Lee, Jong H.; Tran, Diana N.; Peden, Charles HF; Howden, Ken; Cheng, Yisun; Lupescu, Jason; Cavattaio, Giovanni; Lambert, Christine; McCabe, Robert W.

    2012-12-31

    In this collaborative program, scientists and engineers in the Institute for Integrated Catalysis at Pacific Northwest National Laboratory and at Ford Motor Company have investigated laboratory- and engine-aged SCR catalysts, containing mainly base metal zeolites. These studies are leading to a better understanding of various aging factors that impact the long-term performance of SCR catalysts and improve the correlation between laboratory and engine aging, saving experimental time and cost. We have also studied materials effective for the temporary storage of HC species during the cold-start period. In particular, we have examined the adsorption and desorption of various HC species produced during the combustion with different fuels (e.g., gasoline, E85, diesel) over potential HC adsorber materials, and measured the kinetic parameters to update Ford’s HC adsorption model. Since this CRADA has now been completed, in this annual report we will provide very brief summaries of most of the work carried out on this CRADA over the last several years.

  19. Novel Catalytic Membrane Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Stuart Nemser, PhD

    2010-10-01

    There are many industrial catalytic organic reversible reactions with amines or alcohols that have water as one of the products. Many of these reactions are homogeneously catalyzed. In all cases removal of water facilitates the reaction and produces more of the desired chemical product. By shifting the reaction to right we produce more chemical product with little or no additional capital investment. Many of these reactions can also relate to bioprocesses. Given the large number of water-organic compound separations achievable and the ability of the Compact Membrane Systems, Inc. (CMS) perfluoro membranes to withstand these harsh operating conditions, this is an ideal demonstration system for the water-of-reaction removal using a membrane reactor. Enhanced reaction synthesis is consistent with the DOE objective to lower the energy intensity of U.S. industry 25% by 2017 in accord with the Energy Policy Act of 2005 and to improve the United States manufacturing competitiveness. The objective of this program is to develop the platform technology for enhancing homogeneous catalytic chemical syntheses.

  20. Preparation, Characterization, and Enhanced Photo catalytic Hydrogen Evolution Activity of Y2Cu2O5-Based Compounds under Simulated Sunlight Irradiation

    International Nuclear Information System (INIS)

    Y2Cu2O5 photo catalyst was successfully prepared via solid state reaction and further combined with TiO2 by a sol-gel method and a solid phase method, respectively. For comparison, Pt Y2Cu2O5particles were loaded to prepare Pt- via a hydrogen reduction method. All the samples were characterized by thermogravimetry and differential thermal analysis (TG/DTA), X-ray diffraction (XRD), UV-vis diffuse reflectance spectroscopy (UV-vis DRS), and scanning electron microscopy (SEM) techniques. Photo catalytic H2 evolution activities of the as-obtained samples were evaluated from aqueous oxalic acid solution under simulated sunlight irradiation. The effects of photo catalyst concentration, TiO2 content, and composite method on the H2 evolution activities of the as-obtained photo catalysts were investigated. The results show that, when the concentration of photo catalyst is 0.8 gL-1, the TiO2 Y2Cu2O5 composite photo catalyst prepared by a sol-gel method exhibits the optimized photo catalytic activity, and the H2 production rate is 4.35 m mol with 30 wt.% content of TiO2

  1. Analysis of hapten binding and catalytic determinants in a family of catalytic antibodies.

    Science.gov (United States)

    Ulrich, H D; Schultz, P G

    1998-01-01

    We report here the cloning and kinetic analysis of a family of catalytic antibodies raised against a common transition state (TS) analog hapten, which accelerate a unimolecular oxy-Cope rearrangement. Sequence analysis revealed close homologies among the heavy chains of the catalytically active members of this set of antibodies, which derive mainly from a single germline gene, whereas the light chains can be traced back to several different, but related germline genes. The requirements for hapten binding and catalytic activity were determined by the construction of hybrid antibodies. Characterization of the latter antibodies again indicates a strong conservation of binding site structure among the catalytically active clones. The heavy chain was found to be the determining factor for catalytic efficiency, while the light chain exerted a smaller modulating effect that depended on light chain gene usage and somatic mutations. Within the heavy chain, the catalytic activity of a clone, but not hapten binding affinity, depended on the sequence of the third complementarity determining region (CDR). No correlation between high affinity for the hapten and high rate enhancement was found in the oxy-Cope system, a result that stands in contrast to the expectations from transition state theory. A mechanistic explanation for this observation is provided based on the three-dimensional crystal structure of the most active antibody, AZ-28, in complex with the hapten. This study demonstrates the utility of catalytic antibodies in examining the relationship between binding energy and catalysis in the evolution of biological catalysis, as well as expanding our understanding of the molecular basis of an immune response. PMID:9451442

  2. Catalytic oxidation of industrial organic solvent vapors.

    Science.gov (United States)

    Tzortzatou, Katerina; Grigoropoulou, Eleni

    2010-01-01

    In the present study the catalytic oxidation of an industrial organic solvent consisting predominantly of C-9 to C-10 paraffins and napthtenics and derived from low aromatic white spirit on CuO and Pt catalysts was investigated at ambient pressure and temperatures between 330 and 770 K. Catalysts were prepared in the laboratory and compared to commercial ones. Characterization was based on x-ray diffraction (XRD) analysis, x-ray fluorescence (XRF) analysis, scanning electron microscope (SEM) analysis and nitrogen adsorption data. The commercial platinum catalyst was proved highly efficient in the oxidation of the commercial solvent, necessitating lower temperatures for total oxidation. Catalyst loading in active component is clearly not of primordial importance, since its dispersion and crystallinity as well as the presence of other metallic compounds influence also the catalytic activity. In the case of copper catalysts studied, the different support (alumina) characteristics also would contribute to the difference in catalytic activity. Finally, the power law kinetics may successfully be used in order to explain the catalytic oxidation data of the organic solvent, where its constituents are modeled as a single carbon-containing compound. PMID:20390900

  3. Preparation of acid–base bifunctional core–shell structured Fe{sub 3}O{sub 4}@SiO{sub 2} nanoparticles and their cooperative catalytic activity

    Energy Technology Data Exchange (ETDEWEB)

    Long, Yu; Xie, Miao; Niu, Jianrui; Wang, Peng; Ma, Jiantai, E-mail: majiantai@lzu.edu.cn

    2013-07-15

    An acid–base bifunctionalized magnetic nanoparticles catalyst Fe{sub 3}O{sub 4}@SiO{sub 2}-A/B was successfully synthesized by immobilization of both organic base and acid groups together over silica-coated magnetite nanoparticles. The catalyst has been characterized by transmission electron microscopy (TEM), vibrating sample magnetometer (VSM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectra (XPS) measurements. The bifunctionalized magnetic nanoparticles act as an easily recovered, highly efficient catalyst for the Henry reaction of 4-nitrobenzaldehyde with nitromethane at mild reaction conditions, even exceeding any monofunctionalized catalyst or physical mixture of two monofunctionalized nanoparticles in the catalytic behavior. In addition, a probable mechanism has been proposed to explain the cooperative interactions from the presence of the immobilized base and acid groups in close proximity. Importantly, the catalyst can be simply recoverable from the reaction mixture by magnetic decantation and recycled without significant degradation in reactivity.

  4. Evolution of random catalytic networks

    Energy Technology Data Exchange (ETDEWEB)

    Fraser, S.M. [Santa Fe Inst., NM (United States); Reidys, C.M. [Santa Fe Inst., NM (United States)]|[Los Alamos National Lab., NM (United States)

    1997-06-01

    In this paper the authors investigate the evolution of populations of sequences on a random catalytic network. Sequences are mapped into structures, between which are catalytic interactions that determine their instantaneous fitness. The catalytic network is constructed as a random directed graph. They prove that at certain parameter values, the probability of some relevant subgraphs of this graph, for example cycles without outgoing edges, is maximized. Populations evolving under point mutations realize a comparatively small induced subgraph of the complete catalytic network. They present results which show that populations reliably discover and persist on directed cycles in the catalytic graph, though these may be lost because of stochastic effects, and study the effect of population size on this behavior.

  5. Bifunctional catalytic electrode

    Science.gov (United States)

    Cisar, Alan (Inventor); Murphy, Oliver J. (Inventor); Clarke, Eric (Inventor)

    2005-01-01

    The present invention relates to an oxygen electrode for a unitized regenerative hydrogen-oxygen fuel cell and the unitized regenerative fuel cell having the oxygen electrode. The oxygen electrode contains components electrocatalytically active for the evolution of oxygen from water and the reduction of oxygen to water, and has a structure that supports the flow of both water and gases between the catalytically active surface and a flow field or electrode chamber for bulk flow of the fluids. The electrode has an electrocatalyst layer and a diffusion backing layer interspersed with hydrophilic and hydrophobic regions. The diffusion backing layer consists of a metal core having gas diffusion structures bonded to the metal core.

  6. Catalytic Combustion of Gasified Waste

    Energy Technology Data Exchange (ETDEWEB)

    Kusar, Henrik

    2003-09-01

    This thesis concerns catalytic combustion for gas turbine application using a low heating-value (LHV) gas, derived from gasified waste. The main research in catalytic combustion focuses on methane as fuel, but an increasing interest is directed towards catalytic combustion of LHV fuels. This thesis shows that it is possible to catalytically combust a LHV gas and to oxidize fuel-bound nitrogen (NH{sub 3}) directly into N{sub 2} without forming NO{sub x} The first part of the thesis gives a background to the system. It defines waste, shortly describes gasification and more thoroughly catalytic combustion. The second part of the present thesis, paper I, concerns the development and testing of potential catalysts for catalytic combustion of LHV gases. The objective of this work was to investigate the possibility to use a stable metal oxide instead of noble metals as ignition catalyst and at the same time reduce the formation of NO{sub x} In paper II pilot-scale tests were carried out to prove the potential of catalytic combustion using real gasified waste and to compare with the results obtained in laboratory scale using a synthetic gas simulating gasified waste. In paper III, selective catalytic oxidation for decreasing the NO{sub x} formation from fuel-bound nitrogen was examined using two different approaches: fuel-lean and fuel-rich conditions. Finally, the last part of the thesis deals with deactivation of catalysts. The various deactivation processes which may affect high-temperature catalytic combustion are reviewed in paper IV. In paper V the poisoning effect of low amounts of sulfur was studied; various metal oxides as well as supported palladium and platinum catalysts were used as catalysts for combustion of a synthetic gas. In conclusion, with the results obtained in this thesis it would be possible to compose a working catalytic system for gas turbine application using a LHV gas.

  7. Paper-based colorimetric immunosensor for visual detection of carcinoembryonic antigen based on the high peroxidase-like catalytic performance of ZnFe2O4-multiwalled carbon nanotubes.

    Science.gov (United States)

    Liu, Weiyan; Yang, Hongmei; Ding, Yanan; Ge, Shenguang; Yu, Jinghua; Yan, Mei; Song, Xianrang

    2014-01-01

    A new paper-based colorimetric immunosensor for the detection of carcinoembryonic antigen (CEA) was developed based on the intrinsic peroxidase activity of ZnFe2O4-multiwalled carbon nanotubes (ZnFe2O4@MWNTs). The immunosensor platform was prepared by depositing chitosan and porous gold onto filter paper and entrapping the primary antibodies (Ab1) onto the layers. Secondary antibodies (Ab2) were assembled on the surface of the functionalized ZnFe2O4@MWNTs. The immunosensor response was quantified as a color change resulting from ZnFe2O4@MWNTs catalyzing the oxidation of 3,3',5,5'-tetramethylbenzidine in the presence of H2O2. The catalytic performance of ZnFe2O4@MWNTs was higher than ZnFe2O4 due to the high electrical conductance of MWNTs, moreover, the electron communications between ZnFe2O4@MWNTs and substrates are electrically "wired". Detection was achieved by measuring the color change when the concentrations of CEA were different. The color change can be quantified with the naked eye but a digitalized picture can also be used to provide more sensitive comparison to a calibrated color scheme. This method was simple for CEA detection with a linear range from 0.005 to 30 ng mL(-1) and a detection limit of 2.6 pg mL(-1). Such an equipment-free immunoassay has great potential in resource-limited environments. PMID:24205509

  8. Inlfuence of the Alkali Treatment of HZSM-5 Zeolite on Catalytic Performance of PtSn-Based Catalyst for Propane Dehydrogenation

    Institute of Scientific and Technical Information of China (English)

    Huang Li; Zhou Shijian; Zhou Yuming; Zhang Yiwei; Xu Jun; Wang Li

    2013-01-01

    The porous material ATZ with micro-mesopore hierarchical porosity was prepared by alkali treatment of parent HZSM-5 zeolite and applied for propane dehydrogenation. The zeolite samples were characterized by XRD, N2-physisorption, and NH3-TPD analysis. The results showed that the alkali treatment can modify the physicochemical prop-erties of HZSM-5 zeolite. In this case, the porous material ATZ showed larger external surface area with less acid sites as compared to the HZSM-5 zeolite. It was found out that the alkali treatment of HZSM-5 zeolite could promote the catalytic performance of PtSn/ATZ catalyst. The possible reason was ascribed to the low acidity of ATZ. Furthermore, the presence of mesopores could reduce the carbon deposits on the metallic surface, which was also favorable for the dehydrogenation reaction.

  9. Halogen Chemistry on Catalytic Surfaces.

    Science.gov (United States)

    Moser, Maximilian; Pérez-Ramírez, Javier

    2016-01-01

    Halogens are key building blocks for the manufacture of high-value products such as chemicals, plastics, and pharmaceuticals. The catalytic oxidation of HCl and HBr is an attractive route to recover chlorine and bromine in order to ensure the sustainability of the production processes. Very few materials withstand the high corrosiveness and the strong exothermicity of the reactions and among them RuO2 and CeO2-based catalysts have been successfully applied in HCl oxidation. The search for efficient systems for HBr oxidation was initiated by extrapolating the results of HCl oxidation based on the chemical similarity of these reactions. Interestingly, despite its inactivity in HCl oxidation, TiO2 was found to be an outstanding HBr oxidation catalyst, which highlighted that the latter reaction is more complex than previously assumed. Herein, we discuss the results of recent comparative studies of HCl and HBr oxidation on both rutile-type (RuO2, IrO2, and TiO2) and ceria-based catalysts using a combination of advanced experimental and theoretical methods to provide deeper molecular-level understanding of the reactions. This knowledge aids the design of the next-generation catalysts for halogen recycling. PMID:27131113

  10. Molecular Recognition of the Catalytic Zinc(II Ion in MMP-13: Structure-Based Evolution of an Allosteric Inhibitor to Dual Binding Mode Inhibitors with Improved Lipophilic Ligand Efficiencies

    Directory of Open Access Journals (Sweden)

    Thomas Fischer

    2016-03-01

    Full Text Available Matrix metalloproteinases (MMPs are a class of zinc dependent endopeptidases which play a crucial role in a multitude of severe diseases such as cancer and osteoarthritis. We employed MMP-13 as the target enzyme for the structure-based design and synthesis of inhibitors able to recognize the catalytic zinc ion in addition to an allosteric binding site in order to increase the affinity of the ligand. Guided by molecular modeling, we optimized an initial allosteric inhibitor by addition of linker fragments and weak zinc binders for recognition of the catalytic center. Furthermore we improved the lipophilic ligand efficiency (LLE of the initial inhibitor by adding appropriate zinc binding fragments to lower the clogP values of the inhibitors, while maintaining their potency. All synthesized inhibitors showed elevated affinity compared to the initial hit, also most of the novel inhibitors displayed better LLE. Derivatives with carboxylic acids as the zinc binding fragments turned out to be the most potent inhibitors (compound 3 (ZHAWOC5077: IC50 = 134 nM whereas acyl sulfonamides showed the best lipophilic ligand efficiencies (compound 18 (ZHAWOC5135: LLE = 2.91.

  11. Molecular Recognition of the Catalytic Zinc(II) Ion in MMP-13: Structure-Based Evolution of an Allosteric Inhibitor to Dual Binding Mode Inhibitors with Improved Lipophilic Ligand Efficiencies.

    Science.gov (United States)

    Fischer, Thomas; Riedl, Rainer

    2016-01-01

    Matrix metalloproteinases (MMPs) are a class of zinc dependent endopeptidases which play a crucial role in a multitude of severe diseases such as cancer and osteoarthritis. We employed MMP-13 as the target enzyme for the structure-based design and synthesis of inhibitors able to recognize the catalytic zinc ion in addition to an allosteric binding site in order to increase the affinity of the ligand. Guided by molecular modeling, we optimized an initial allosteric inhibitor by addition of linker fragments and weak zinc binders for recognition of the catalytic center. Furthermore we improved the lipophilic ligand efficiency (LLE) of the initial inhibitor by adding appropriate zinc binding fragments to lower the clogP values of the inhibitors, while maintaining their potency. All synthesized inhibitors showed elevated affinity compared to the initial hit, also most of the novel inhibitors displayed better LLE. Derivatives with carboxylic acids as the zinc binding fragments turned out to be the most potent inhibitors (compound 3 (ZHAWOC5077): IC50 = 134 nM) whereas acyl sulfonamides showed the best lipophilic ligand efficiencies (compound 18 (ZHAWOC5135): LLE = 2.91). PMID:26938528

  12. Numerical Study of Passive Catalytic Recombiner for Hydrogen Mitigation

    Directory of Open Access Journals (Sweden)

    Pavan K Sharma

    2010-10-01

    Full Text Available A significant amount of hydrogen is expected to be released within the containment of a water cooled power reactor after a severe accident. To reduce the risk of deflagration/detonation various means for hydrogen control have been adopted all over the world. Passive catalytic recombiner with vertical flat catalytic plate is one of such hydrogen mitigating device. Passive catalytic recombiners are designed for the removal of hydrogen generated in order to limit the impact of possible hydrogen combustion. Inside a passive catalytic recombiner, numerous thin steel sheets coated with catalyst material are vertically arranged at the bottom opening of a sheet metal housing forming parallel flow channels for the surrounding gas atmosphere. Already below conventional flammability limits, hydrogen and oxygen react exothermally on the catalytic surfaces forming harmless steam. Detailed numerical simulations and experiments are required for an in-depth knowledge of such plate type catalytic recombiners. Specific finite volume based in-house CFD code has been developed to model and analyse the working of these recombiner. The code has been used to simulate the recombiner device used in the Gx-test series of Battelle-Model Containment (B-MC experiments. The present paper briefly describes the working principle of such passive catalytic recombiner and salient feature of the CFD model developed at Bhabha Atomic Research Centre (BARC. Finally results of the calculations and comparison with existing data are discussed.

  13. Northwestern University Facility for Clean Catalytic Process Research

    Energy Technology Data Exchange (ETDEWEB)

    Marks, Tobin Jay [Northwestern University

    2013-05-08

    Northwestern University with DOE support created a Facility for Clean Catalytic Process Research. This facility is designed to further strengthen our already strong catalysis research capabilities and thus to address these National challenges. Thus, state-of-the art instrumentation and experimentation facility was commissioned to add far greater breadth, depth, and throughput to our ability to invent, test, and understand catalysts and catalytic processes, hence to improve them via knowledge-based design and evaluation approaches.

  14. Development of Catalytic Cooking Plates

    Energy Technology Data Exchange (ETDEWEB)

    Hjelm, Anna-Karin; Silversand, Fredrik [CATATOR AB, Lund (Sweden); Tena, Emmanuel; Berger, Marc [Gaz de France (France)

    2004-04-01

    Gas catalytic combustion for gas stoves or cooking plates (closed catalytic burner system with ceramic plates) is a very promising technique in terms of ease of cleaning, power modulation and emissions. Previous investigations show that wire mesh catalysts, prepared and supplied by Catator AB (CAT), seem to be very well suited for such applications. Beside significantly reducing the NOx-emissions, these catalysts offer important advantages such as good design flexibility, low pressure drop and high heat transfer capacity, where the latter leads to a quick thermal response. Prior to this project, Gaz de France (GdF) made a series of measurements with CAT's wire mesh catalysts in their gas cooking plates and compared the measured performance with similar results obtained with theirs cordierite monolith catalysts. Compared to the monolith catalyst, the wire mesh catalyst was found to enable very promising results with respect to both emission levels (<10 mg NO{sub x} /kWh, <5 mg CO/kWh) and life-time (>8000 h vs. 700 h at 200 kW/m{sup 2}). It was however established that the radiation and hence, the thermal efficiency of the cooking plate, was significantly less than is usually measured in combination with the monolith (15 % vs. 32 %). It was believed that the latter could be improved by developing new burner designs based on CAT's wire mesh concept. As a consequence, a collaboration project between GdF, CAT and the Swedish Gas Technology AB was created. This study reports on the design, the construction and the evaluation of new catalytic burners, based on CAT's wire mesh catalysts, used for the combustion of natural gas in gas cooking stoves. The evaluation of the burners was performed with respect to key factors such as thermal efficiency, emission quality and pressure drop, etc, by the use of theoretical simulations and experimental tests. Impacts of parameters such as the the wire mesh number, the wire mesh structure (planar or folded), the

  15. Colorimetric detection of the flux of hydrogen peroxide released from living cells based on the high peroxidase-like catalytic performance of porous PtPd nanorods.

    Science.gov (United States)

    Ge, Shenguang; Liu, Weiyan; Liu, Haiyun; Liu, Fang; Yu, Jinghua; Yan, Mei; Huang, Jiadong

    2015-09-15

    One-dimensional PtPd porous nanorods (PtPd PNRs) were successfully synthesized through a bromide-induced galvanic replacement reaction between Pd nanowires and K2PtCl6. The PtPd PNRs were porous and alloy-structured with Pt/Pd atomic ratio up to 1:1 which were demonstrated by spectroscopic methods. We had also proved that the nanorods could function as peroxidase mimetic for the detection of H2O2, with the detection limit of 8.6 nM and the linear range from 20 nM to 50 mM. The result demonstrated that PtPd PNRs exhibited much higher affinity to H2O2 over other peroxidase mimetics due to synergistically integrating highly catalytic activity of two metals. On the basis of the peroxidase-like activity, the PtPd PNRs were used as a signal transducer to develop a novel and simple colorimetric method for the study of the flux of H2O2 released from living cell. By using 3,3,5,5-tetramethylbenzidine as substrate, the H2O2 concentration could be distinguished by naked-eye observation without any instrumentation or complicated design. The method developed a new platform for a reliable collection of information on cellular reactive oxygen species release. And the nanomaterial could be used as a power tool for a wide range of potential applications in biotechnology and medicine. PMID:25982545

  16. Immigration process in catalytic medium

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The longtime behavior of the immigration process associated with a catalytic super-Brownian motion is studied. A large number law is proved in dimension d≤3 and a central limit theorem is proved for dimension d=3.

  17. Catalytic DNA with phosphatase activity

    OpenAIRE

    Chandrasekar, Jagadeeswaran; Silverman, Scott K.

    2013-01-01

    Catalytic DNA sequences (deoxyribozymes, DNA enzymes, or DNAzymes) have been identified by in vitro selection for various catalytic activities. Expanding the limits of DNA catalysis is an important fundamental objective and may facilitate practical utility of catalysts that can be obtained from entirely unbiased (random) sequence populations. In this study, we show that DNA can catalyze Zn2+-dependent phosphomonoester hydrolysis of tyrosine and serine side chains (i.e., exhibit phosphatase ac...

  18. Post-treatment of biologically treated wastewater containing organic contaminants using a sequence of H2O2 based advanced oxidation processes: photolysis and catalytic wet oxidation.

    Science.gov (United States)

    Rueda-Márquez, J J; Sillanpää, M; Pocostales, P; Acevedo, A; Manzano, M A

    2015-03-15

    In this paper the feasibility of a multi-barrier treatment (MBT) for the regeneration of synthetic industrial wastewater (SIWW) was evaluated. Industrial pollutants (orange II, phenol, 4-chlorophenol and phenanthrene) were added to the effluent of municipal wastewater treatment plant. The proposed MBT begins with a microfiltration membrane pretreatment (MF), followed by hydrogen peroxide photolysis (H2O2/UVC) and finishing, as a polishing step, with catalytic wet peroxide oxidation (CWPO) using granular activated carbon (GAC) at ambient conditions. During the microfiltration step (0.7 μm) the decrease of suspended solids concentration, turbidity and Escherichia coli in treated water were 88, 94 and 99%, respectively. Also, the effluent's transmittance (254 nm) was increased by 14.7%. Removal of more than 99.9% of all added pollutants, mineralization of 63% of organic compounds and complete disinfection of total coliforms were reached during the H2O2/UVC treatment step (H2O2:TOC w/w ratio = 5 and an UVC average dose accumulated by wastewater 8.80 WUVC s cm(-2)). The power and efficiency of the lamp, the water transmittance and photoreactor geometry are taken into account and a new equation to estimate the accumulated dose in water is suggested. Remaining organic pollutants with a higher oxidation state of carbon atoms (+0.47) and toxic concentration of residual H2O2 were present in the effluent of the H2O2/UVC process. After 2.3 min of contact time with GAC at CWPO step, 90 and 100% of total organic carbon and residual H2O2 were removed, respectively. Also, the wastewater toxicity was studied using Vibrio fischeri and Sparus aurata larvae. The MBT operational and maintenance costs (O&M) was estimated to be 0.59 € m(-3). PMID:25600300

  19. Constructing a Catalytic Cycle for C-F to C-X (X = O, S, N) Bond Transformation Based on Gold-Mediated Ligand Nucleophilic Attack.

    Science.gov (United States)

    Hu, Ji-Yun; Zhang, Jing; Wang, Gao-Xiang; Sun, Hao-Ling; Zhang, Jun-Long

    2016-03-01

    A tricoordinated gold(I) chloride complex, tBuXantphosAuCl, supported by a sterically bulky 9,9-dimethyl-4,5-bis(di-tert-butylphosphino)xanthene ligand (tBuXantphos) was synthesized. This complex features a remarkably longer Au-Cl bond length [2.632(1) Å] than bicoordinated linear gold complexes (2.27-2.30 Å) and tricoordinated XantphosAuCl [2.462(1) Å]. Single-crystal X-ray diffraction analysis of a cocrystal of tBuXantphosAuCl and pentafluoronitrobenzene (PFNB) and UV-vis spectroscopic titration experiments revealed the existence of an anion-π interaction between the Cl anion ligand and PFNB. Stoichiometric reaction between PFNB and tBuXantphosAuOtBu, after replacement of Cl by a more nucleophilic tBuO anion ligand, showed higher reactivity and para selectivity in the transformation of C-F to C-OtBu bond, distinctively different from that when only KOtBu was used (ortho selectivity) under the identical condition. Mechanistic studies including density functional theory calculations suggested a gold-mediated nucleophilic ligand attack of the C-F bond pathway via an SNAr process. On the basis of these results, using trimethylsilyl derivatives TMS-X (X = OMe, SEt, NEt2) as the nucleophilic ligand source and the fluorine acceptor, catalytic transformation of the C-F bond of aromatic substrates to the C-X (X = O, S, N) bond was achieved with tBuXantphosAuCl as the catalyst (up to 20 turnover numbers). PMID:26872251

  20. Non-thermal plasmas for non-catalytic and catalytic VOC abatement

    International Nuclear Information System (INIS)

    Highlights: → We review the current status of catalytic and non-catalytic VOC abatement based on a vast number of research papers. → The underlying mechanisms of plasma-catalysis for VOC abatement are discussed. → Critical process parameters that determine the influent are discussed and compared. - Abstract: This paper reviews recent achievements and the current status of non-thermal plasma (NTP) technology for the abatement of volatile organic compounds (VOCs). Many reactor configurations have been developed to generate a NTP at atmospheric pressure. Therefore in this review article, the principles of generating NTPs are outlined. Further on, this paper is divided in two equally important parts: plasma-alone and plasma-catalytic systems. Combination of NTP with heterogeneous catalysis has attracted increased attention in order to overcome the weaknesses of plasma-alone systems. An overview is given of the present understanding of the mechanisms involved in plasma-catalytic processes. In both parts (plasma-alone systems and plasma-catalysis), literature on the abatement of VOCs is reviewed in close detail. Special attention is given to the influence of critical process parameters on the removal process.

  1. Probing catalytic rate enhancement during intramembrane proteolysis.

    Science.gov (United States)

    Arutyunova, Elena; Smithers, Cameron C; Corradi, Valentina; Espiritu, Adam C; Young, Howard S; Tieleman, D Peter; Lemieux, M Joanne

    2016-09-01

    Rhomboids are ubiquitous intramembrane serine proteases involved in various signaling pathways. While the high-resolution structures of the Escherichia coli rhomboid GlpG with various inhibitors revealed an active site comprised of a serine-histidine dyad and an extensive oxyanion hole, the molecular details of rhomboid catalysis were unclear because substrates are unknown for most of the family members. Here we used the only known physiological pair of AarA rhomboid with its psTatA substrate to decipher the contribution of catalytically important residues to the reaction rate enhancement. An MD-refined homology model of AarA was used to identify residues important for catalysis. We demonstrated that the AarA active site geometry is strict and intolerant to alterations. We probed the roles of H83 and N87 oxyanion hole residues and determined that substitution of H83 either abolished AarA activity or reduced the transition state stabilization energy (ΔΔG‡) by 3.1 kcal/mol; substitution of N87 decreased ΔΔG‡ by 1.6-3.9 kcal/mol. Substitution M154, a residue conserved in most rhomboids that stabilizes the catalytic general base, to tyrosine, provided insight into the mechanism of nucleophile generation for the catalytic dyad. This study provides a quantitative evaluation of the role of several residues important for hydrolytic efficiency and oxyanion stabilization during intramembrane proteolysis. PMID:27071148

  2. Catalytic applications of bio-inspired nanomaterials

    Science.gov (United States)

    Pacardo, Dennis Kien Balaong

    The biomimetic synthesis of Pd nanoparticles was presented using the Pd4 peptide, TSNAVHPTLRHL, isolated from combinatorial phage display library. Using this approach, nearly monodisperse and spherical Pd nanoparticles were generated with an average diameter of 1.9 +/- 0.4 nm. The peptide-based nanocatalyst were employed in the Stille coupling reaction under energy-efficient and environmentally friendly reaction conditions of aqueous solvent, room temperature and very low catalyst loading. To this end, the Pd nanocatalyst generated high turnover frequency (TOF) value and quantitative yields using ≥ 0.005 mol% Pd as well as catalytic activities with different aryl halides containing electron-withdrawing and electron-donating groups. The Pd4-capped Pd nanoparticles followed the atom-leaching mechanism and were found to be selective with respect to substrate identity. On the other hand, the naturally-occurring R5 peptide (SSKKSGSYSGSKGSKRRIL) was employed in the synthesis of biotemplated Pd nanomaterials which showed morphological changes as a function of Pd:peptide ratio. TOF analysis for hydrogenation of olefinic alcohols showed similar catalytic activity regardless of nanomorphology. Determination of catalytic properties of these bio-inspired nanomaterials are important as they serve as model system for alternative green catalyst with applications in industrially important transformations.

  3. Catalytic hydrogen recombination for nuclear containments

    International Nuclear Information System (INIS)

    Catalytic recombiners appear to be a credible option for hydrogen mitigation in nuclear containments. The passive operation, versatility and ease of back fitting are appealing for existing stations and new designs. Recently, a generation of wet-proofed catalyst materials have been developed at AECL which are highly specific to H2-O2, are active at ambient temperatures and are being evaluated for containment applications. Two types of catalytic recombiners were evaluated for hydrogen removal in containments based on the AECL catalyst. The first is a catalytic combustor for application in existing air streams such as provided by fans or ventilation systems. The second is an autocatalytic recombiner which uses the enthalpy of reaction to produce natural convective flow over the catalyst elements. Intermediate-scale results obtained in 6 m3 and 10 m3 spherical and cylindrical vessels are given to demonstrate self-starting limits, operating limits, removal capacity, scaling parameters, flow resistance, mixing behaviour in the vicinity of an operating recombiner and sensitivity to poisoning, fouling and radiation. (author). 13 refs., 10 figs

  4. IFP solutions for revamping catalytic reforming units

    Energy Technology Data Exchange (ETDEWEB)

    Gendler, J.L. [HRI, Inc., Princeton, NJ (United States); Domergue, B.; Mank, L. [Inst. Francais du Petrole, Rueil Malmaison (France)

    1996-12-01

    The decision-making process for the refiner considering a revamp of a catalytic reforming unit comprises many factors. These may be grouped in two broad areas: technical and economic. This paper presents the results of a study performed by IFP that illustrates catalytic reforming unit revamp options. Three IFP processes are described and operating conditions, expected yields, and economic data are presented. The following options are discussed: base case Conventional, fixed-bed, semi-regenerative catalytic reformer; Case 1--revamp using IFP Dualforming technology; Case 2--revamp using IFP Dualforming Plus technology; and Case 3--revamp to IFP Octanizing technology. The study illustrates various options for the refiner to balance unit performance improvements with equipment, site, and economic constraints. The study was performed assuming design feedrate of 98.2 tons/hour (20,000 BPSD) in all cases. Because of the increased need for octane in many refineries, the study assumed that operating severity was set at a design value of 100 research octane number clear (RON). In all of the cases in this study, it was assumed that the existing recycle compressor was reused. Operating pressure differences between the cases is discussed separately. Also, in all cases, a booster compressor was included in order to return export hydrogen pressure to that of the conventional unit.

  5. Synthesis, characterization and catalytic performance of supported solid base catalyst of KOH/SBA-15%KOH/SBA-15负载型固体碱催化剂的合成、表征及催化性能

    Institute of Scientific and Technical Information of China (English)

    朱明明; 万庆宇; 宋芊慧; 蔡天凤; 李会鹏; 赵华

    2013-01-01

    采用后合成法制备出固体碱催化剂KOH/SBA-15,利用X射线衍射法(XRD)、N2吸附-脱附(BET)、透射电镜(TEM)、化学吸附剂表面碱性测定(CO2-TPD)等对其进行表征.考察了其在大豆油酯交换反应制备生物柴油中的催化性能.结果表明,在相同反应条件下,与CaO/SBA-15和MgO/SBA-15相比,KOH/SBA-15在催化活性和孔扩散上都具有较大的优越性,催化制备生物柴油产率最高(83.56%).%SBA-15 was modified by introducing an active component by post-synthetic method for preparing a solid base catalyst KOH/SBA-15. Characterization was carried out by XRD,BET,TEM and CO2-TDP to understand the nature. KOH/SBA-15 catalytic performance on transesterification to produce biodiesel from soybean oil was studied. In the same reaction conditions, compared to CaO/SBA-15 and MgO/SBA-15,(15%)KOH/SBA-15 showed the highest yield of biodiesel,due to its favorable superiority on catalytic activity and pore diffusion.

  6. Catalytic activity of Au nanoparticles

    DEFF Research Database (Denmark)

    Larsen, Britt Hvolbæk; Janssens, Ton V.W.; Clausen, Bjerne;

    2007-01-01

    Au is usually viewed as an inert metal, but surprisingly it has been found that Au nanoparticles less than 3–5 nm in diameter are catalytically active for several chemical reactions. We discuss the origin of this effect, focusing on the way in which the chemical activity of Au may change with par......Au is usually viewed as an inert metal, but surprisingly it has been found that Au nanoparticles less than 3–5 nm in diameter are catalytically active for several chemical reactions. We discuss the origin of this effect, focusing on the way in which the chemical activity of Au may change...... with particle size. We find that the fraction of low-coordinated Au atoms scales approximately with the catalytic activity, suggesting that atoms on the corners and edges of Au nanoparticles are the active sites. This effect is explained using density functional calculations....

  7. Engineering reactors for catalytic reactions

    Indian Academy of Sciences (India)

    Vivek V Ranade

    2014-03-01

    Catalytic reactions are ubiquitous in chemical and allied industries. A homogeneous or heterogeneous catalyst which provides an alternative route of reaction with lower activation energy and better control on selectivity can make substantial impact on process viability and economics. Extensive studies have been conducted to establish sound basis for design and engineering of reactors for practising such catalytic reactions and for realizing improvements in reactor performance. In this article, application of recent (and not so recent) developments in engineering reactors for catalytic reactions is discussed. Some examples where performance enhancement was realized by catalyst design, appropriate choice of reactor, better injection and dispersion strategies and recent advances in process intensification/ multifunctional reactors are discussed to illustrate the approach.

  8. Heavy Naphtha Fractions 85-155 °С Recycling in the Catalytic Reforming Industrial Unit

    OpenAIRE

    Chernyakova, Ekaterina Sergeevna; Koksharov, Anton; Ivanchina, Emilia Dmitrievna; Yakupova, Inna

    2015-01-01

    Catalytic naphtha reforming is a vital process for refineries due to the production of high-octane components, which is intensely demanded in our modern life. In these paper, the mathematical modelling method application for catalytic reforming installation of Komsomolsk oil-refinery is proposed. The mathematical model-based system "Catalyst Control" was used for catalytic reforming installation monitoring. The quality of the product from the unit was studied, with hydrocracking gasoline used...

  9. Ruthenium catalyst on carbon nanofiber support layers for use in silicon-based structured microreactors, Part II: Catalytic reduction of bromate contaminants in aqueous phase

    NARCIS (Netherlands)

    Thakur, D.B.; Tiggelaar, R.M.; Weber, Y.; Gardeniers, J.G.E.; Lefferts, L.; Seshan, K.

    2011-01-01

    Catalyst layers were synthesized inside a structured channel of silicon based microreactor and used to remove bromate contaminants in water. It is demonstrated that Ru/CNF based catalyst is active for bromate reduction, resulting in turn over frequencies (TOFs) higher than conventional powdered cata

  10. Asymmetric catalytic aziridination of cyclic enones.

    Science.gov (United States)

    De Vincentiis, Francesco; Bencivenni, Giorgio; Pesciaioli, Fabio; Mazzanti, Andrea; Bartoli, Giuseppe; Galzerano, Patrizia; Melchiorre, Paolo

    2010-07-01

    The first catalytic method for the asymmetric aziridination of cyclic enones is described. The presented organocatalytic strategy is based on the use of an easily available organocatalyst that is able to convert a wide range of cyclic enones into the desired aziridines with very high enantiomeric purity and good chemical yield. Such a method may very well open up new opportunities to stereoselectively prepare complex chiral molecules that possess an indane moiety, a framework that is found in a large number of bioactive and pharmaceutically important molecules. PMID:20512797

  11. Biofuel production from catalytic cracking of woody oils.

    Science.gov (United States)

    Xu, Junming; Jiang, Jianchun; Chen, Jie; Sun, Yunjuan

    2010-07-01

    The catalytic cracking reactions of several kinds of woody oils have been studied. The products were analyzed by GC-MS and FTIR and show the formation of olefins, paraffins and carboxylic acids. Several kinds of catalysts were compared. It was found that the fraction distribution of product was modified by using base catalysts such as CaO. The products from woody oils showed good cold flow properties compared with diesel used in China. The results presented in this work have shown that the catalytic cracking of woody oils generates fuels that have physical and chemical properties comparable to those specified for petroleum based fuels. PMID:20206508

  12. Local deposition and patterning of catalytic thin films in microsystems

    International Nuclear Information System (INIS)

    The local deposition of catalysts is desired in a wide range of catalytic microsystems (microreactors and sensors). In this study, we investigate technologies enabling deposition and patterning of catalyst thin films in a manner compatible with standard micromachining processes. We evaluate and compare deposition techniques based on a combination of a self-assembly, soft-lithography and conventional micromachining. Platinum (Pt) and palladium (Pd) were used as model catalysts, both as a sputtered thin film and as nanoparticles supported on γ-alumina. The thin films were characterized and tested in terms of their catalytic activity based on CO chemisorption measurements, stability and reproducibility. (paper)

  13. Catalytic Stereoinversion of L-Alanine to Deuterated D-Alanine.

    Science.gov (United States)

    Moozeh, Kimia; So, Soon Mog; Chin, Jik

    2015-08-01

    A combination of an achiral pyridoxal analogue and a chiral base has been developed for catalytic deuteration of L-alanine with inversion of stereochemistry to give deuterated D-alanine under mild conditions (neutral pD and 25 °C) without the use of any protecting groups. This system can also be used for catalytic deuteration of D-alanine with retention of stereochemistry to give deuterated D-alanine. Thus a racemic mixture of alanine can be catalytically deuterated to give an enantiomeric excess of deuterated D-alanine. While catalytic deracemization of alanine is forbidden by the second law of thermodynamics, this system can be used for catalytic deracemization of alanine with deuteration. Such green and biomimetic approach to catalytic stereocontrol provides insights into efficient amino acid transformations. PMID:26119066

  14. Catalytic properties of niobium compounds

    International Nuclear Information System (INIS)

    The catalytic activity and selectivity of niobium compounds including oxides, salts, organometallic compounds and others are outlined. The application of these compounds as catalysts to diversified reactions is reported. The nature and action of niobium catalysts are characteristic and sometimes anomalous, suggesting the necessity of basic research and the potential use as catalysts for important processes in the chemical industry. (Author)

  15. Carbonates-based noble metal-free lean NOx trap catalysts MOx-K2CO3/K2Ti8O17 (M = Ce, Fe, Cu, Co) with superior catalytic performance

    Science.gov (United States)

    Zhang, Yuxia; You, Rui; Liu, Dongsheng; Liu, Cheng; Li, Xingang; Tian, Ye; Jiang, Zheng; Zhang, Shuo; Huang, Yuying; Zha, Yuqing; Meng, Ming

    2015-12-01

    A series of base metal-based lean NOx trap (LNT) catalysts MOx-K2CO3/K2Ti8O17 (M = Ce, Fe, Cu, Co) were synthesized by successive impregnations and employed for the storage and reduction of NOx in the emissions of lean-burn engines at 350 °C. The XRD and XANES/EXAFS results reveal that the active phases in the corresponding catalysts exist as CeO2, Fe2O3, CuO and Co3O4, respectively. Among all the catalysts, CoOx-K2CO3/K2Ti8O17 exhibits the best performance, which cannot only trap the NOx quickly and completely at lean condition, giving the highest storage capacity (3.32 mmol/g) reported so far, but also reduce the NOx at rich condition, showing a NOx reduction percentage as high as 99.0%. Meanwhile, this catalyst displays an ultralow NOx to N2O selectivity (0.3%) during NOx reduction. The excellent performance of CoOx-K2CO3/K2Ti8O17 results from its largest amount of surface active oxygen species as revealed by XPS, O2-TPD and NO-TPD. HRTEM, FT-IR and CO2-TPD results illustrate that several kinds of K species such as sbnd OK groups, K2O, surface carbonates and bulk or bulk-like carbonates coexist in the catalysts. Based upon the in situ DRIFTS results, the participation of K2CO3 in NOx storage is confirmed, and the predominant NOx storage species is revealed as bidentate nitrites formed via multiple kinetic pathways. The low cost and high catalytic performance of the CoOx-based LNT catalyst make it most promising for the substitution of noble metal-based LNT catalysts.

  16. Catalytic Conversion of Carbohydrates

    DEFF Research Database (Denmark)

    Osmundsen, Christian Mårup

    a renewable route to aromatics. The conversion of biomass by high temperature processes is a desirable prospect due to the high volumetric production rates which can be achieved, and the ability of these types of processes to convert a wide range of substrates. Current processes however typically...... process could prove to be an efficient initial conversion step in the utilization of biomass for chemicals production. The shift from an oil based chemical industry to one based on renewable resources is bound to happen sooner or later, however the environmental problems associated with the burning of...... production of commodity chemicals from the most abundantly available renewable source of carbon, carbohydrates. The production of alkyl lactates by the Lewis acid catalyzed conversion of hexoses is an interesting alternative to current fermentation based processes. A range of stannosilicates were...

  17. Design of Catalytically Amplified Sensors for Small Molecules

    Directory of Open Access Journals (Sweden)

    Olga V. Makhlynets

    2014-04-01

    Full Text Available Catalytically amplified sensors link an allosteric analyte binding site with a reactive site to catalytically convert substrate into colored or fluorescent product that can be easily measured. Such an arrangement greatly improves a sensor’s detection limit as illustrated by successful application of ELISA-based approaches. The ability to engineer synthetic catalytic sites into non-enzymatic proteins expands the repertoire of analytes as well as readout reactions. Here we review recent examples of small molecule sensors based on allosterically controlled enzymes and organometallic catalysts. The focus of this paper is on biocompatible, switchable enzymes regulated by small molecules to track analytes both in vivo and in the environment.

  18. Structure-Based Engineering of Methionine Residues in the Catalytic Cores of Alkaline Amylase from Alkalimonas amylolytica for Improved Oxidative Stability

    OpenAIRE

    Yang, Haiquan; Liu, Long; Wang, Mingxing; Li, Jianghua; Wang, Nam Sun; Du, Guocheng; Chen, Jian

    2012-01-01

    This work aims to improve the oxidative stability of alkaline amylase from Alkalimonas amylolytica through structure-based site-directed mutagenesis. Based on an analysis of the tertiary structure, five methionines (Met 145, Met 214, Met 229, Met 247, and Met 317) were selected as the mutation sites and individually replaced with leucine. In the presence of 500 mM H2O2 at 35°C for 5 h, the wild-type enzyme and the M145L, M214L, M229L, M247L, and M317L mutants retained 10%, 28%, 46%, 28%, 72%,...

  19. The Enhanced Catalytic Activities of Asymmetric Au-Ni Nanoparticle Decorated Halloysite-Based Nanocomposite for the Degradation of Organic Dyes

    OpenAIRE

    Jia, Lei; Zhou, Tao; Xu, Jun; Li, Xiaohui; Dong, Kun; Huang, Jiancui; Xu, Zhouqing

    2016-01-01

    Janus particles (JPs) are unique among the nano-/microobjects because they provide asymmetry and can thus impart drastically different chemical or physical properties. In this work, we have fabricated the magnetic halloysite nanotube (HNT)-based HNTs@Fe3O4 nanocomposite (NCs) and then anchored the Janus Au-Ni or isotropic Au nanoparticles (NPs) to the surface of external wall of sulfydryl modified magnetic nanotubes. The characterization by physical methods authenticates the successful fabric...

  20. Synthesis of a series of new platinum organometallic complexes derived from bidentate Schiff-base ligands and their catalytic activity in the hydrosilylation and dehydrosilylation of styrene.

    Science.gov (United States)

    Lachachi, M Belhadj; Benabdallah, Tayeb; Aguiar, Pedro M; Youcef, M Hadj; Whitwood, Adrian C; Lynam, Jason M

    2015-07-14

    The synthesis and properties of a novel class of platinum complexes containing Schiff bases as O,N-bidentate ligands is described as are the solution and solid state properties of the uncomplexed ligands. The platinum complexes were prepared from [PtBr2(COD)] (COD = 1,5-cyclooctadiene) and N-(2-hydroxy-1-naphthalidene)aniline derivatives in the presence of base (NaOBu(t)). Instead of a substitution reaction to afford cationic species, the addition of the Schiff base ligands results in both the formal loss of two equivalents of bromide and addition of hydroxide to the COD ligand of the complexes. It is proposed that this reaction proceeds through a cationic platinum complex [Pt(N-O)(COD)]Br which then undergoes addition of water and loss of HBr. An example of a dinuclear platinum complex in which two cyclo-octene ligands are bridged by an ether linkage is also reported. The platinum complexes were evaluated as catalysts for the hydrogenative and dehydrogenative silylation of styrene, the resulting behaviour is substituent, time and temperature dependent. PMID:26061657

  1. Effect of biomass ash in catalytic fast pyrolysis of pine wood

    NARCIS (Netherlands)

    Yildiz, G.; Ronsse, F.; Venderbosch, R.H.; Duren, van R.; Kersten, S.R.A.; Prins, W.

    2015-01-01

    Fast pyrolysis experiments of pine wood have been performed in a continuously operated mechanically stirred bed reactor at 500 °C. The effects of the pine wood ash were studied by comparing non-catalytic and catalytic experiments (using a ZSM-5 based catalyst) with their ash-added counterparts. To s

  2. EFFECTS OF SOLVENT, BASE, AND TEMPERATURE IN THE OPTIMISATION OF A NEW CATALYTIC SYSTEM FOR SONOGASHIRA CROSS-COUPLING USING NCP PINCER PALLADACYCLE

    Directory of Open Access Journals (Sweden)

    Diego S. Rosa

    2015-05-01

    Full Text Available The optimisation of a new catalyst system using NCP pincer palladacycle 1 was investigated using the experimental design technique. NCP pincer palladacycle 1 was previously investigated in Suzuki-Miyaura and Heck-Mizoroki cross-couplings and found to be a highly efficient catalyst precursor. In this study, the effects of the type of base (K3PO4 or DABCO, solvent (DMF or dioxane and reaction temperature (130 or 150 ºC in the second step on the reactional yield in Sonogashira cross-coupling were assessed using the two-factor design. The results showed that temperature is statistically significant in relation to the reaction yield.

  3. Preparation of Pt-Ru hydrophobic catalysts and catalytic activities for liquid phase catalytic exchange reaction

    International Nuclear Information System (INIS)

    Pt/C and Pt-Ru/C catalysts with different ratios of Pt to Ru were synthesized, using ethylene glycol as both the dispersant and reducing agent at 1-2 MPa by microwave-assisted method. The catalysts were characterized by XRD, TEM and XPS. The mean particle sizes of the Pt/C and Pt-Ru/C catalysts were 1.9-2.0 nm. Pt and Ru existed as Pt(0), Pt(II), Pt(IV), Ru(0) and Ru(IV) for Pt-Ru/C catalysts, respectively. The face-centered cubic structure of the active mental particles would be changed upon the addition of Ru gradually. Then polytetrafluoroethylene and carbon-supported Pt and Pt-Ru catalysts were supported on foamed nickel to obtain hydrophobic catalysts. The catalytic activity was increased for liquid phase catalytic exchange (LPCE) when uniform Pt based hydrophobic catalysts was mixed into appropriate Ru. Hydrogen isotope exchange reaction occurs between hydration layer(H2O)nH+(ads)(n≥2) and D atoms due to intact water molecules being on Pt surface for LPCE. Water molecules have a tendency to dissociate to OH(ads) and H(ads) on metal Ru surface, and there is the other reaction path for Pt-Ru binary catalysts, which is probably the main reason of the increase of the catalytic activity of the hydrophobic Pt-Ru catalyst. (authors)

  4. Recent Advances on Electro-Oxidation of Ethanol on Pt- and Pd-Based Catalysts: From Reaction Mechanisms to Catalytic Materials

    Directory of Open Access Journals (Sweden)

    Ye Wang

    2015-09-01

    Full Text Available The ethanol oxidation reaction (EOR has drawn increasing interest in electrocatalysis and fuel cells by considering that ethanol as a biomass fuel has advantages of low toxicity, renewability, and a high theoretical energy density compared to methanol. Since EOR is a complex multiple-electron process involving various intermediates and products, the mechanistic investigation as well as the rational design of electrocatalysts are challenging yet essential for the desired complete oxidation to CO2. This mini review is aimed at presenting an overview of the advances in the study of reaction mechanisms and electrocatalytic materials for EOR over the past two decades with a focus on Pt- and Pd-based catalysts. We start with discussion on the mechanistic understanding of EOR on Pt and Pd surfaces using selected publications as examples. Consensuses from the mechanistic studies are that sufficient active surface sites to facilitate the cleavage of the C–C bond and the adsorption of water or its residue are critical for obtaining a higher electro-oxidation activity. We then show how this understanding has been applied to achieve improved performance on various Pt- and Pd-based catalysts through optimizing electronic and bifunctional effects, as well as by tuning their surface composition and structure. Finally we point out the remaining key problems in the development of anode electrocatalysts for EOR.

  5. Amperometric glucose sensor based on enhanced catalytic reduction of oxygen using glucose oxidase adsorbed onto core-shell Fe3O4-silica-Au magnetic nanoparticles

    International Nuclear Information System (INIS)

    Monodisperse Fe3O4 magnetic nanoparticles (NPs) were prepared under facile solvothermal conditions and successively functionalized with silica and Au to form core/shell Fe3O4-silica-Au NPs. Furthermore, the samples were used as matrix to construct a glucose sensor based on glucose oxidase (GOD). The immobilized GOD retained its bioactivity with high protein load of 3.92 × 10−9 mol·cm−2, and exhibited a surface-controlled quasi-reversible redox reaction, with a fast heterogeneous electron transfer rate of 7.98 ± 0.6 s−1. The glucose biosensor showed a broad linear range up to 3.97 mM with high sensitivity of 62.45 μA·mM−1 cm−2 and fast response (less than 5 s). - Graphical abstract: Core-shell structured Fe3O4-silica-Au nanoparticles were prepared and used as matrix to construct an amperometric glucose sensor based on glucose oxidase, which showed broad linear range, high sensitivity, and fast response. Highlights: ► Synthesis of monodispersed Fe3O4 nanoparticles. ► Fabrication of core/shell Fe3O4-silica-Au nanoparticles. ► Construction of a novel glucose sensor with wide linear range, high sensitivity and fast response.

  6. Catalytic Conversion of Biofuels

    DEFF Research Database (Denmark)

    Jørgensen, Betina

    catalysts, and two different experimental methods, namely, a batch system and a continuous flow system. In the batch reaction the process was carried out in the liquid phase using a gold catalyst and atmospheric air as the oxidant. Experiments were conducted at moderate pressures and temperatures (90-200 °C...... investigated and a simple kinetic model proposed, which could be fitted nicely to the experimental data. By changing the concentration of ethanol, it was possible to shift the selectivity towards ethyl acetate instead of acetic acid. However a concentration above 60 wt% was required for the ester to become...... oxidation of ethanol to form acetyl compounds. The steam reforming has been covered by a literature study of the research work done so far giving an introduction to the use of ethanol as a feedstock. The partial oxidation of ethanol has been studied experimentally using gold and vanadium based heterogeneous...

  7. Catalytic Fast Pyrolysis: A Review

    Directory of Open Access Journals (Sweden)

    Theodore Dickerson

    2013-01-01

    Full Text Available Catalytic pyrolysis is a promising thermochemical conversion route for lignocellulosic biomass that produces chemicals and fuels compatible with current, petrochemical infrastructure. Catalytic modifications to pyrolysis bio-oils are geared towards the elimination and substitution of oxygen and oxygen-containing functionalities in addition to increasing the hydrogen to carbon ratio of the final products. Recent progress has focused on both hydrodeoxygenation and hydrogenation of bio-oil using a variety of metal catalysts and the production of aromatics from bio-oil using cracking zeolites. Research is currently focused on developing multi-functional catalysts used in situ that benefit from the advantages of both hydrodeoxygenation and zeolite cracking. Development of robust, highly selective catalysts will help achieve the goal of producing drop-in fuels and petrochemical commodities from wood and other lignocellulosic biomass streams. The current paper will examine these developments by means of a review of existing literature.

  8. Catalytic performance for CO{sub 2} conversion to methanol of gallium-promoted copper-based catalysts. Influence of metallic precursors

    Energy Technology Data Exchange (ETDEWEB)

    Toyir, Jamil; Ramirez de la Piscina, Pilar; Homs, Narcis [Departament de Quimica Inorganica, Facultat de Quimica, Universitat de Barcelona, Marti i Franques 1-11, 08028 Barcelona (Spain); Fierro, Jose Luis G. [Instituto de Catalisis y Petroleoquimica, C.S.I.C., Cantoblanco, 28049 Madrid (Spain)

    2001-11-28

    This study reports new gallium-promoted copper-based catalysts prepared by co-impregnation of methoxide-acetylacetonate (acac) precursors from methanolic solutions onto silica and zinc oxide supports. Catalyst performance in the CO{sub 2} hydrogenation to methanol was investigated at 2MPa and temperatures between 523 and 543K. A high activity and selectivity for ZnO-supported catalysts was found, which also showed a high stability in terms of both activity and selectivity. The maximum value for the activity was 378gMeOH/kgcath at 543K, with a selectivity of 88% towards methanol production. The high performance of these materials in the CO{sub 2} hydrogenation is related to the presence of Ga{sub 2}O{sub 3} promoter and highly dispersed Cu{sup +} species on the surface, determined by XPS and Auger on used catalysts.

  9. Chemically-Modified Cellulose Paper as a Microstructured Catalytic Reactor

    Directory of Open Access Journals (Sweden)

    Hirotaka Koga

    2015-01-01

    Full Text Available We discuss the successful use of chemically-modified cellulose paper as a microstructured catalytic reactor for the production of useful chemicals. The chemical modification of cellulose paper was achieved using a silane-coupling technique. Amine-modified paper was directly used as a base catalyst for the Knoevenagel condensation reaction. Methacrylate-modified paper was used for the immobilization of lipase and then in nonaqueous transesterification processes. These catalytic paper materials offer high reaction efficiencies and have excellent practical properties. We suggest that the paper-specific interconnected microstructure with pulp fiber networks provides fast mixing of the reactants and efficient transport of the reactants to the catalytically-active sites. This concept is expected to be a promising route to green and sustainable chemistry.

  10. Bipyridine- and phenanthroline-based metal-organic frameworks for highly efficient and tandem catalytic organic transformations via directed C-H activation

    Energy Technology Data Exchange (ETDEWEB)

    Manna, Kuntal [Univ. of Chicago, Chicago, IL (United States); Zhang, Teng [Univ. of Chicago, Chicago, IL (United States); Greene, Francis X. [Univ. of Chicago, Chicago, IL (United States); Lin, Wenbin [Univ. of Chicago, Chicago, IL (United States)

    2015-02-16

    We report here the synthesis of a series of robust and porous bipyridyl- and phenanthryl-based metal–organic frameworks (MOFs) of UiO topology (BPV-MOF, mBPV-MOF, and mPT-MOF) and their postsynthetic metalation to afford highly active single-site solid catalysts. While BPV-MOF was constructed from only bipyridyl-functionalized dicarboxylate linker, both mBPV- and mPT-MOF were built with a mixture of bipyridyl- or phenanthryl-functionalized and unfunctionalized dicarboxylate linkers. The postsynthetic metalation of these MOFs with [Ir(COD)(OMe)]2 provided Ir-functionalized MOFs (BPV-MOF-Ir, mBPV-MOF-Ir, and mPT-MOF-Ir), which are highly active catalysts for tandem hydrosilylation of aryl ketones and aldehydes followed by dehydrogenative ortho-silylation of benzylicsilyl ethers as well as C–H borylation of arenes using B₂pin₂. Both mBPV-MOF-Ir and mPT-MOF-Ir catalysts displayed superior activities compared to BPV-MOF-Ir due to the presence of larger open channels in the mixed-linker MOFs. Impressively, mBPV-MOF-Ir exhibited high TONs of up to 17000 for C–H borylation reactions and was recycled more than 15 times. The mPT-MOF-Ir system is also active in catalyzing tandem dehydrosilylation/dehydrogenative cyclization of N-methylbenzyl amines to azasilolanes in the absence of a hydrogen acceptor. Importantly, MOF-Ir catalysts are significantly more active (up to 95 times) and stable than their homogeneous counterparts for all three reactions, strongly supporting the beneficial effects of active site isolation within MOFs. This work illustrates the ability to increase MOF open channel sizes by using the mixed linker approach and shows the enormous potential of developing highly active and robust single-site solid catalysts based on MOFs containing nitrogen-donor ligands for important organic transformations.

  11. Combined catalytic converter and afterburner

    Energy Technology Data Exchange (ETDEWEB)

    Ma, T.T.-H.

    1994-11-30

    This patent describes the combined use of a catalytic converter and afterburner. An afterburner chamber and a catalyst matrix are disposed in series within a casing. A combustible premixed charge is ignited in the afterburner chamber before it enters the catalyst matrix. This invention overcomes the problem encountered in previous designs of some of the premixed charge passing unreacted through the device unless a very long afterburner chamber is used. (UK)

  12. Investigations for designing catalytic recombiners

    International Nuclear Information System (INIS)

    In case of a severe accident in pressurised water reactors (PWR) a high amount of hydrogen up to about 20,000 m3 might be generated and released into the containments. The mixture consisting of hydrogen and oxygen may either burn or detonate, if ignited. In case of detonation the generated shock wave may endanger the components of the plant or the plant itself. Consequently, effective removal of hydrogen is required. The fact that hydrogen and oxygen react exo-thermally on catalytically acting surfaces already at low temperatures generating steam and heat is made use of in catalytic recombiners. They consist of substrates coated with catalyst (mainly platinum or palladium) which are arranged inside a casing. Being passively acting measures, recombiners do not need any additional energy supply. Experimental investigations on catalytic hydrogen recombination are conducted at FZJ (Forschungszentrum Juelich) using three test facilities. The results yield insight in the development potential of contemporary recombiner systems as well as of innovative systems. Detailed investigations on a recombiner section show strong temperature gradients over the surface of a catalytically coated sample. Dependent on the flow velocity, ignition temperature may be reached at the leading edge already at an inlet hydrogen concentration of about 5 vol.-%. The thermal strain of the substrate leads to considerable detachment of catalyst particles probably causing unintended ignition of the flammable mixture. Temperature peaks can be prevented effectively by leaving the first part of the plate uncoated. In order to avoid overheating of the catalyst elements of a recombiner even at high hydrogen concentrations a modular system of porous substrates is proposed. The metallic substrates are coated with platinum at low catalyst densities thus limiting the activity of the single specimen. A modular arrangement of these elements provides high recombination rates over a large hydrogen concentration

  13. Biodiesel by catalytic reactive distillation powered by metal oxides

    NARCIS (Netherlands)

    A.A. Kiss; A.C. Dimian; G. Rothenberg

    2008-01-01

    The properties and use of biodiesel as a renewable fuel as well as the problems associated with its current production processes are outlined. A novel sustainable esterification process based on catalytic reactive distillation is proposed. The pros and cons of manufacturing biodiesel via fatty acid

  14. Label-free and ratiometric detection of nuclei acids based on graphene quantum dots utilizing cascade amplification by nicking endonuclease and catalytic G-quadruplex DNAzyme.

    Science.gov (United States)

    Wang, Guang-Li; Fang, Xin; Wu, Xiu-Ming; Hu, Xue-Lian; Li, Zai-Jun

    2016-07-15

    Herein, we report a ratiometric fluorescence assay based on graphene quantum dots (GQDs) for the ultrasensitive DNA detection by coupling the nicking endonuclease assisted target recycling and the G-quadruplex/hemin DNAzyme biocatalysis for cascade signal amplifications. With o-phenylenediamine acted as the substrate of G-quadruplex/hemin DNAzyme, whose oxidization product (that is, 2,3-diaminophenazine, DAP) quenched the fluorescence intensity of GQDs (at 460nm) obviously, accompanied with the emergence of a new emission of DAP (at 564nm). The ratiometric signal variations at the emission wavelengths of 564 and 460nm (I564/I460) were utilized for label-free, sensitive, and selective detection of target DNA. Utilizing the nicking endonuclease assisted target recycling and the G-quadruplex/hemin DNAzyme biocatalysis for amplified cascade generation of DAP, the proposed bioassay exhibited high sensitivity toward target DNA with a detection limit of 30fM. The method also had additional advantages such as facile preparation and easy operation. PMID:26950646

  15. Catalytic converter for next generation turbine engines

    Energy Technology Data Exchange (ETDEWEB)

    Saruhan, B.; Schulz, U.; Leyens, C. [German Aerospace Center (DLR), Inst. of Materials Research, Cologne (Germany)

    2004-07-01

    EB-PVD thermal barrier coatings (TBCs) are used on advanced turbine blades to increase the engine efficiency and improve the blade performance. partially yttria stabilized zirconia (PYSZ) is the standard material for current TBC applications. Lower thermal stability of the PYSZ-based TBCs, however, seriously affects the performance at demanding service temperatures. For the new generation turbines where higher operating gas temperatures (> 1200 C) are to expect, the performance of turbine blades can be improved by replacing the state-art-of-material PYSZ with superior thermal barrier coatings which belong to different crystal structures such as magnetoplumbite. Magnetoplumbite structure through its interlocking grain morphology and unique crystal structure provides essentially a sintering resistant, low thermal conductive layer, but also imparts a catalytic layer to reduce the environmentally harmful substances produced during propulsion and increase the catalytic performance. The complex structures of these compounds make it difficult to realize by conventional methods and requires careful adjustment of process parameters. The morphology and crystallographic aspects of these coatings as well as the mechanisms controlling the improvement are highlighted. (orig.)

  16. Catalytic converter for next generation turbine engines

    International Nuclear Information System (INIS)

    EB-PVD thermal barrier coatings (TBCs) are used on advanced turbine blades to increase the engine efficiency and improve the blade performance. partially yttria stabilized zirconia (PYSZ) is the standard material for current TBC applications. Lower thermal stability of the PYSZ-based TBCs, however, seriously affects the performance at demanding service temperatures. For the new generation turbines where higher operating gas temperatures (> 1200 C) are to expect, the performance of turbine blades can be improved by replacing the state-art-of-material PYSZ with superior thermal barrier coatings which belong to different crystal structures such as magnetoplumbite. Magnetoplumbite structure through its interlocking grain morphology and unique crystal structure provides essentially a sintering resistant, low thermal conductive layer, but also imparts a catalytic layer to reduce the environmentally harmful substances produced during propulsion and increase the catalytic performance. The complex structures of these compounds make it difficult to realize by conventional methods and requires careful adjustment of process parameters. The morphology and crystallographic aspects of these coatings as well as the mechanisms controlling the improvement are highlighted. (orig.)

  17. Numerical and experimental investigations on catalytic recombiners

    International Nuclear Information System (INIS)

    Numerous containments of European light water reactors (LWR) are equipped with passive auto-catalytic recombiners (PAR). These devices are designed for the removal of hydrogen generated during a severe accident in order to avoid serious damage caused by a detonation. PARs make use of the fact that hydrogen and oxygen react exothermally on catalytic surfaces generating steam and heat even below conventional ignition concentrations and temperatures. Activities at ISR aim at overcoming existing limitations of today's systems. These are e.g. limited conversion capacity or unintended ignition of the gaseous mixture due to overheating of the catalyst elements caused by strong reaction heat generation. Experiments at the REKO facilities are conducted in order to achieve a profound understanding of the processes inside a recombiner, such as reaction kinetics or heat and mass transfer. Innovative PAR designs which may overcome existing limitations can be developed based on the knowledge obtained from these experiments. For the analysis of the processes inside a PAR the numerical code REKO-DIREKT is being developed. The code calculates the local catalyst temperatures and the concentration regression along the catalyst plates. For the validation of the model numerous experiments have been performed with different types of coating and different plate arrangements. The first calculations fit well with the experimental results indicating a proper understanding of the fundamental processes. The paper describes the experiments as well as the numerical model and presents model calculations in comparison with experimental results. (authors)

  18. Bio-hydrogen production based on catalytic reforming of volatiles generated by cellulose pyrolysis: An integrated process for ZnO reduction and zinc nanostructures fabrication

    International Nuclear Information System (INIS)

    The paper presents a process of cellulose thermal degradation with bio-hydrogen generation and zinc nanostructures synthesis. Production of zinc nanowires and zinc nanoflowers was performed by a novel processes based on cellulose pyrolysis, volatiles reforming and direct reduction of ZnO. The bio-hydrogen generated in situ promoted the ZnO reduction with Zn nanostructures formation by vapor-solid (VS) route. The cellulose and cellulose/ZnO samples were characterized by thermal analyses (TG/DTG/DTA) and the gases evolved were analyzed by FTIR spectroscopy (TG/FTIR). The hydrogen was detected by TPR (Temperature Programmed Reaction) tests. The results showed that in the presence of ZnO the cellulose thermal degradation produced larger amounts of H2 when compared to pure cellulose. The process was also carried out in a tubular furnace with N2 atmosphere, at temperatures up to 900 oC, and different heating rates. The nanostructures growth was catalyst-free, without pressure reduction, at temperatures lower than those required in the carbothermal reduction of ZnO with fossil carbon. The nanostructures were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS) and transmission electron microscopy (TEM). The optical properties were investigated by photoluminescence (PL). One mechanism was presented in an attempt to explain the synthesis of zinc nanostructures that are crystalline, were obtained without significant re-oxidation and whose morphologies are dependent on the heating rates of the process. This route presents a potential use as an industrial process taking into account the simple operational conditions, the low costs of cellulose and the importance of bio-hydrogen and nanostructured zinc.

  19. Hydrophobic catalysts for liquid phase catalytic exchange: a review of preparation methods and influencing factors of catalytic activities

    International Nuclear Information System (INIS)

    Liquid phase catalytic exchange (LPCE) between liquid water and gaseous hydro- gen has been developed for various applications, such as tritium recovery, water upgrade and heavy-water production. Good wetproofing properties of the hydrophobic catalysts can make the reaction to proceed smoothly. In this article, the preparation methods of the hydrophobic catalysts and the factors affecting the catalytic activities are reviewed. In particular, progress on the hydrophobic Pt/C/inert carrier catalysts is introduced, including the selection of inert carrier and active metal carrier, and the preparation methods of carbon- supported Pt based catalysts. Basic research activities on controllable fabrication of hydro- phobic catalysts are discussed, including the LPCE reaction mechanism, and the relation between the microstructure of active metal and the catalytic activity, etc. Finally, questions remaining to be answered and future directions in the field of hydrophobic catalysts are discussed. (authors)

  20. Carbon nanofibers: a versatile catalytic support

    Directory of Open Access Journals (Sweden)

    Nelize Maria de Almeida Coelho

    2008-09-01

    Full Text Available The aim of this article is present an overview of the promising results obtained while using carbon nanofibers based composites as catalyst support for different practical applications: hydrazine decomposition, styrene synthesis, direct oxidation of H2S into elementary sulfur and as fuel-cell electrodes. We have also discussed some prospects of the use of these new materials in total combustion of methane and in ammonia decomposition. The macroscopic carbon nanofibers based composites were prepared by the CVD method (Carbon Vapor Deposition employing a gaseous mixture of hydrogen and ethane. The results showed a high catalytic activity and selectivity in comparison to the traditional catalysts employed in these reactions. The fact was attributed, mainly, to the morphology and the high external surface of the catalyst support.

  1. Characterization of catalytic supports based in mixed oxides for control reactions of NO and N{sub 2}O; Caracterizacion de soportes cataliticos basados en oxidos mixtos para reacciones de control de NO y N{sub 2}O

    Energy Technology Data Exchange (ETDEWEB)

    Garcia C, M.A.; Perez H, R.; Gomez C, A.; Diaz, G. [Instituto Nacional de Investigaciones Nucleares, A.P. 18-1027, 11801 Mexico D.F. (Mexico)

    1999-07-01

    The catalytic supports Al{sub 2}O{sub 3}, La{sub 2}O{sub 3} and Al{sub 2}O{sub 3}-La{sub 2}O{sub 3} were prepared by the Precipitation and Coprecipitation techniques. The catalytic supports Al{sub 2}O{sub 3}, La{sub 2}O{sub 3} and Al{sub 2}O{sub 3}-La{sub 2}O{sub 3} were characterized by several techniques to determine: texture (Bet), crystallinity (XRD), chemical composition (Sem)(Ftir) and it was evaluated their total acidity by reaction with 2-propanol. The investigation will be continued with the cobalt addition and this will be evaluated for its catalytic activity in control reactions of N O and N{sub 2}O. (Author)

  2. Multifunctional catalytic platform for peroxidase mimicking, enzyme immobilization and biosensing.

    Science.gov (United States)

    Maroneze, Camila Marchetti; Dos Santos, Glauco P; de Moraes, Vitoria B; da Costa, Luiz P; Kubota, Lauro Tatsuo

    2016-03-15

    A hybrid platform based on ionic liquid-based alkoxysilane functionalized mesoporous silica was applied for the synthesis of supported Pt nanoparticles with peroxidase-like catalytic activity. The positively charged groups (imidazolium) chemically bonded to the surface provide dual-functionality as ion-exchangers to the hybrid material, firstly used for the in situ synthesis of the highly dispersed Pt nanostructures and, secondly, for the immobilization of biological species aiming biosensing purposes. The peroxidase-like catalytic activity of the SiO2/Imi/Pt material was evaluated towards the H2O2-mediated oxidation of a chromogenic peroxidase substrate (TMB), allowing the colorimetric detection of H2O2. Finally, to further explore the practical application of this nanomaterial-based artificial system, glucose oxidase (GOx) was immobilized on the catalytic porous platform and a bioassay for the colorimetric determination of glucose was successfully conducted as a model system. The enzyme-like catalytic properties of the SiO2/Imi/Pt as well as its ability to immobilize and keep active biological entities on the porous structure indicate that this hybrid porous platform is potentially useful for the development of biosensing devices. PMID:26499871

  3. Roles of catalytic oxidation in control of vehicle exhaust emissions

    International Nuclear Information System (INIS)

    Catalytic oxidation was initially associated with the early development of catalysis and it subsequently became a part of many industrial processes, so it is not surprising it was used to remove hydrocarbons and CO when it became necessary to control these emissions from cars. Later NOx was reduced in a process involving reduction over a Pt/Rh catalyst followed by air injection in front of a Pt-based oxidation catalyst. If over-reduction of NO to NH3 took place, or if H2S was produced, it was important these undesirable species were converted to NOx and SOx in the catalytic oxidation stage. When exhaust gas composition could be kept stoichiometric hydrocarbons, CO and NOx were simultaneously converted over a single Pt/Rh three-way catalyst (TWC). With modern TWCs car tailpipe emissions can be exceptionally low. NO is not catalytically dissociated to O2 and N2 in the presence of O2, it can only be reduced to N2. Its control from lean-burn gasoline engines involves catalytic oxidation to NO2 and thence nitrate that is stored and periodically reduced to N2 by exhaust gas enrichment. This method is being modified for diesel engines. These engines produce soot, and filtration is being introduced to remove it. The exhaust temperature of heavy-duty diesels is sufficient (250-400oC) for NO to be catalytically oxidised to NO2 over an upstream platinum catalyst that smoothly oxidises soot in the filter. The exhaust gas temperature of passenger car diesels is too low for this to take place all of the time, so trapped soot is periodically burnt in O2 above 550oC. Catalytic oxidation of higher than normal amounts of hydrocarbon and CO over an upstream catalyst is used to give sufficient temperature for soot combustion with O2 to take place. (author)

  4. A bait and switch hapten strategy generates catalytic antibodies for phosphodiester hydrolysis

    OpenAIRE

    Wentworth, Paul; Liu, Yunqi; Wentworth, Anita D.; Fan, Ping; Foley, Matthew J.; Janda, Kim D.

    1998-01-01

    General base catalysis supplied by the histidine-12 (H-12) residue of ribonuclease (RNase) A has long been appreciated as a major component of the catalytic power of the enzyme. In an attempt to harness the catalytic power of a general base into antibody catalysis of phosphodiester bond hydrolysis, the quaternary ammonium phosphate 1 was used as a bait and switch hapten. Based on precedence, it was rationalized that this positively charged hapten could induce a counter-charged residue in the ...

  5. Structured materials for catalytic and sensing applications

    Science.gov (United States)

    Hokenek, Selma

    been synthesized and characterized to establish the effects of nanoparticle size on catalytic activity in methanol decomposition. The physicochemical properties of the synthesized palladium-nickel nanoparticles will be discussed, as a function of the synthesis parameters. The optical characteristics of the Ag and Pd nanoparticles will be determined, with a view toward tuning the response of the nanoparticles for incorporation in sensors. Analysis of the monometallic palladium particles revealed a dependence of syngas production on nanoparticle size. The peak and steady state TOFs increased roughly linearly with the average nanoparticle diameter. The amount of coke deposited on the particle surfaces was found to be independent on the size of the nanoparticles. Shape control of the nickel-palladium nanoparticles with a high selectivity for (100) and (110) facets (≤ 80%) has been demonstrated. The resulting alloy nanoparticles were found to have homogeneous composition throughout their volume and maintain FCC crystal structure. Substitution of Ni atoms in the Pd lattice at a 1:3 molar ratio was found to induce lattice strains of ~1%. The Ag nanocubes synthesized exhibited behavior very similar to literature values, when taken on their own, exhibiting a pair of distinct absorbance peaks at 350 nm and 455 nm. In physical mixtures with the Pd nanoparticles synthesized, their behavior showed that the peak position of the Ag nanocubes' absorbance in UV-Vis could be tuned based on the relative proportions of the Ag and Pd nanoparticles present in the suspension analysed. The Ag polyhedra synthesized for comparison showed a broad doublet peak throughout the majority of the visible range before testing as a component in a physical mixture with the Pd nanoparticles. The addition of Pd nanoparticles to form a physical mixture resulted in some damping of the doublet peak observed as well as a corresponding shift in the baseline absorbance proportional to the amount of Pd added to

  6. Electrodeposition of catalytic ternary cobalt based coatings

    OpenAIRE

    Ved, M. V.; Sakhnenko, N. D.; Glushkova, M. A.; Hapon, Yu. K.; Kozyar, M. A.

    2015-01-01

    Consistent patterns for electrodeposition of Co-Mo-W and Co-Mo-Zr coatings from polyligand citrate-pyrophosphate bath were investigated. The effect of both current density amplitude and pulse on/off time on the quality, composition and surface topography of the galvanic alloys were determined. It was established the coating Co-Mo-Zr enrichment by alloying components with current density increasing as well as the rising of pulse time promotes the content of zirconium, and pause – molybdenum be...

  7. Kinetics of heterogeneous catalytic reactions

    CERN Document Server

    Boudart, Michel

    2014-01-01

    This book is a critical account of the principles of the kinetics of heterogeneous catalytic reactions in the light of recent developments in surface science and catalysis science. Originally published in 1984. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These paperback editions preserve the original texts of these important books while presenting them in durable paperback editions. The goal of the Princeton Legacy Library is to vastly increase acc

  8. Molecular catalytic coal liquid conversion

    Energy Technology Data Exchange (ETDEWEB)

    Stock, L.M.; Yang, Shiyong [Univ. of Chicago, IL (United States)

    1995-12-31

    This research, which is relevant to the development of new catalytic systems for the improvement of the quality of coal liquids by the addition of dihydrogen, is divided into two tasks. Task 1 centers on the activation of dihydrogen by molecular basic reagents such as hydroxide ion to convert it into a reactive adduct (OH{center_dot}H{sub 2}){sup {minus}} that can reduce organic molecules. Such species should be robust withstanding severe conditions and chemical poisons. Task 2 is focused on an entirely different approach that exploits molecular catalysts, derived from organometallic compounds that are capable of reducing monocyclic aromatic compounds under very mild conditions. Accomplishments and conclusions are discussed.

  9. Studies of Catalytic Model Systems

    DEFF Research Database (Denmark)

    Holse, Christian

    the Cu/ZnO nanoparticles is highly relevant to industrial methanol synthesis for which the direct interaction of Cu and ZnO nanocrystals synergistically boost the catalytic activity. The dynamical behavior of the nanoparticles under reducing and oxidizing environments were studied by means of ex situ...... observed by XPS as the nanoparticles are reduced. The Cu/ZnO nanoparticles are tested on a  µ-reactor platform and prove to be active towards methanol synthesis, making it an excellent model system for further investigations into activity depended morphology changes....

  10. Catalytic Spectrophotometric Determination of Chromium

    OpenAIRE

    STOYANOVA, Angelina Miltcheva

    2005-01-01

    The catalytic effect of chromium(III) and chromium(VI) on the oxidation of sulfanilic acid by hydrogen peroxide was studied. The reaction was followed spectrophotometrically by measuring the absorbance of the reaction product at 360 nm. Under the optimum conditions 2 calibration graphs (for chromium(III) up to 100 ng mL-1, and for chromium(VI) up to 200 ng mL-1) were obtained, using the ``fixed time'' method with detection limits of 4.9 ng mL-1 and 3.8 ng mL-1, respectively...

  11. Catalytic Combustion of Ethyl Acetate

    OpenAIRE

    ÖZÇELİK, Tuğba GÜRMEN; ATALAY, Süheyda; ALPAY, Erden

    2007-01-01

    The catalytic combustion of ethyl acetate over prepared metal oxide catalysts was investigated. CeO, Co2O3, Mn2O3, Cr2O3, and CeO-Co2O3 catalysts were prepared on monolith supports and they were tested. Before conducting the catalyst experiments, we searched for the homogeneous gas phase combustion reaction of ethyl acetate. According to the homogeneous phase experimental results, 45% of ethyl acetate was converted at the maximum reactor temperature tested (350 °C). All the prepare...

  12. Estimating the temperature of a catalytic converter

    Energy Technology Data Exchange (ETDEWEB)

    Ma, T.T.-H.

    1994-11-02

    A method is described for estimating the temperature in a catalytic converter used in the exhaust system of an internal combustion engine. Pressure sensors monitor the flow resistance across the catalytic converter to provide an indication of the temperature inside. This feedback system allows heating devices to be switched off and thus avoid overheating, while maintaining the catalytic converter's efficiency by assuring that it does not operate below its light off temperature. (UK)

  13. Estimating the temperature of a catalytic converter

    Energy Technology Data Exchange (ETDEWEB)

    Ma, T.T.-H.

    1994-11-02

    A method of estimating the temperature of a catalytic converter used in the exhaust system of an internal combustion engine is described. Heated exhaust gas oxygen (HEGO) sensors are placed upstream and downstream of the catalytic converter. The temperature of the catalytic converter shortly after start-up is measured by monitoring the resistance of the HEGO sensor's heating element. The downstream sensor is used for mixture control and to double check results of the upstream sensor. (UK)

  14. La/Ce掺杂钛基二氧化铅电极的制备及电催化性能研究%Preparation and Electro-catalytic Characterization on La/Ce Doped Ti-base Lead Dioxide Electrodes

    Institute of Scientific and Technical Information of China (English)

    郑辉; 戴启洲; 王家德; 陈建孟

    2012-01-01

    采用电沉积法制备了稀土La、Ce改性的钛基二氧化铅(Ti/PbO2)电极.利用SEM和XRD分析了电极的表面形貌和晶体结构,结果表明,稀土La、Ce掺杂后改变了电极表面的微观结构和晶面取向,使电极表面变得更加致密、均匀;用LS和CV测试了电极的电化学性能,分析表明,稀土La、Ce的掺杂提高了电极的析氧过电位和峰电流密度,改善了电极的催化性能.用所制备的不同掺杂量下的改性电极降解亚甲基蓝模拟染料废水(methylene blue,MB),结果表明,当La、Ce掺杂量分别为8.0g.L-1和5.0 g.L-1时,电极对MB及其COD的去除率达到最佳,分别为83.85%、79.95%和79.18%、76.21%,显示了良好的去除效果和催化性能,并在此基础上进一步分析了MB可能的降解路径和机制.%Ti-base lead dioxide electrodes(Ti/PbO2) doped with rare earth La,Ce were prepared by the electrode position.The surface morphology and crystal structure of the electrodes was analyzed by scanning electron microscopy(SEM) and X-ray diffraction(XRD),the results showed that,microstructure and crystal orientation of electrode surface changed after doping rare earth La,Ce,which made the electrode surface more dense and uniform.The electrochemical properties of the electrodes were tested by linear sweeping(LS) and cyclic voltammogram(CV),the experimental results show that,La,Ce doping improved the electrode overpotential of oxygen evolution and the peak current density,promoted the catalytic performance of the electrode.Different doping amount of modified electrodes were used to degrade methylene blue simulative dyeing wastewater,the results showed that,electrodes doped La and Ce respectively 8.0 g·L-1 and 5.0 g·L-1 have the best degradation efficiency and catalytic activity,for example,the removal of MB and its COD respectively researches 83.85%,79.95% and 79.18%,76.21%.The possible degradation pathways and mechanisms were also discussed.

  15. Catalytic Conia-ene and related reactions.

    Science.gov (United States)

    Hack, Daniel; Blümel, Marcus; Chauhan, Pankaj; Philipps, Arne R; Enders, Dieter

    2015-10-01

    Since its initial inception, the Conia-ene reaction, known as the intramolecular addition of enols to alkynes or alkenes, has experienced a tremendous development and appealing catalytic protocols have emerged. This review fathoms the underlying mechanistic principles rationalizing how substrate design, substrate activation, and the nature of the catalyst work hand in hand for the efficient synthesis of carbocycles and heterocycles at mild reaction conditions. Nowadays, Conia-ene reactions can be found as part of tandem reactions, and the road for asymmetric versions has already been paved. Based on their broad applicability, Conia-ene reactions have turned into a highly appreciated synthetic tool with impressive examples in natural product synthesis reported in recent years. PMID:26031492

  16. Soluble organic nanotubes for catalytic systems

    Science.gov (United States)

    Xiong, Linfeng; Yang, Kunran; Zhang, Hui; Liao, Xiaojuan; Huang, Kun

    2016-03-01

    In this paper, we report a novel method for constructing a soluble organic nanotube supported catalyst system based on single-molecule templating of core-shell bottlebrush copolymers. Various organic or metal catalysts, such as sodium prop-2-yne-1-sulfonate (SPS), 1-(2-(prop-2-yn-1-yloxy)ethyl)-1H-imidazole (PEI) and Pd(OAc)2 were anchored onto the tube walls to functionalize the organic nanotubes via copper-catalyzed azide-alkyne cycloaddition (CuAAC) reaction. Depending on the ‘confined effect’ and the accessible cavity microenvironments of tubular structures, the organic nanotube catalysts showed high catalytic efficiency and site-isolation features. We believe that the soluble organic nanotubes will be very useful for the development of high performance catalyst systems due to their high stability of support, facile functionalization and attractive textural properties.

  17. Nanostructured Catalytic Reactors for Air Purification Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR Phase II project proposes the development of lightweight compact nanostructured catalytic reactors for air purification from toxic gaseous organic...

  18. Nanostructured Catalytic Reactors for Air Purification Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR Phase I project proposes the development of lightweight compact nanostructured catalytic reactors for air purification from toxic gaseous organic...

  19. Development and test of a new catalytic converter for natural gas fuelled engine

    Indian Academy of Sciences (India)

    M A Kalam; H H Masjuki; M Redzuan; T M I Mahlia; M A Fuad; M Mohibah; K H Halim; A Ishak; M Khair; A Shahrir; A Yusoff

    2009-06-01

    This paper presents characteristics of a new catalytic converter (catco) to be used for natural gas fuelled engine. The catco were developed based on catalyst materials consisting of metal oxides such as titanium dioxide (TiO2) and cobalt oxide (CoO) with wire mesh substrate. Both of the catalyst materials (such as TiO2 and CoO) are inexpensive in comparison with conventional catalysts (noble metals) such as palladium or platinum. In addition, the noble metals such as platinum group metals are now identified as human health risk due to their rapid emissions in the environment from various resources like conventional catalytic converter, jewelers and other medical usages. It can be mentioned that the TiO2/CoO based catalytic converter and a new natural gas engine such as compressed natural gas (CNG) direct injection (DI) engine were developed under a research collaboration program. The original engine manufacture catalytic conveter (OEM catco) was tested for comparison purposes. The OEM catco was based on noble metal catalyst with honeycomb ceramic substrate. It is experimentally found that the conversion efficiencies of TiO2/CoO based catalytic converter are 93%, 89% and 82% for NOx, CO and HC emissions respectively. It is calculated that the TiO2/CoO based catalytic converter reduces 24%, 41% and 40% higher NOx, CO and HC emissions in comparison to OEM catco respectively. The objective of this paper is to develop a low-cost three way catalytic converter to be used with the newly developed CNG-DI engine. Detailed review on catalytic converter, low-cost catalytic converter development characteristics and CNGDI engine test results have been presented with discussions.

  20. A simplified thermal model for the three way catalytic converter

    OpenAIRE

    Pandey, Varun; JEANNERET, Bruno; GILLET, Sylvain; KEROMNES, Alan; Le Moyne, Luis

    2016-01-01

    A semi empirical model based on thermodynamic behaviour of a three way catalytic converter has been proposed to predict temperature evolution of the converter during the cold start. The model is based on energy and mass balance in the TWC considered as control volume. Parameters of the heat equations are identified separately using a step by step approach. Thermocouples have been inserted along the monolith canals to measure the axial evolution of temperature. Experiments on the engine test b...

  1. Catalytic conversion of light alkanes

    Energy Technology Data Exchange (ETDEWEB)

    Lyons, J.E.

    1992-06-30

    The second Quarterly Report of 1992 on the Catalytic Conversion of Light Alkanes reviews the work done between April 1, 1992 and June 31, 1992 on the Cooperative Agreement. The mission of this work is to devise a new catalyst which can be used in a simple economic process to convert the light alkanes in natural gas to oxygenate products that can either be used as clean-burning, high octane liquid fuels, as fuel components or as precursors to liquid hydrocarbon uwspomdon fuel. During the past quarter we have continued to design, prepare, characterize and test novel catalysts for the mild selective reaction of light hydrocarbons with air or oxygen to produce alcohols directly. These catalysts are designed to form active metal oxo (MO) species and to be uniquely active for the homolytic cleavage of the carbon-hydrogen bonds in light alkanes producing intermediates which can form alcohols. We continue to investigate three molecular environments for the active catalytic species that we are trying to generate: electron-deficient macrocycles (PHASE I), polyoxometallates (PHASE II), and regular oxidic lattices including zeolites and related structures as well as other molecular surface structures having metal oxo groups (PHASE I).

  2. Catalytic converters in the fireplace

    International Nuclear Information System (INIS)

    In addition to selecting the appropriate means of heating and using dry fuel, the amount of harmful emissions contained by flue gases produced by fireplaces can be reduced by technical means. One such option is to use an oxidising catalytic converter. Tests at TTS Institute's Heating Studies Experimental Station have focused on two such converters (dense and coarse) mounted in light-weight iron heating stoves. The ability of the dense catalytic converter to oxidise carbon monoxide gases proved to be good. The concentration of carbon monoxide in the flue gases was reduced by as much as 90 %. Measurements conducted by VTT (Technical Research Centre of Finland) showed that the conversion of other gases, e.g. of methane, was good. The exhaust resistance caused by the dense converter was so great as to necessitate the mounting of a fluegas evacuation fan in the chimney for the purpose of creating sufficient draught. When relying on natural draught, the dense converter requires a chimney of at least 7 metres and a by-pass connection while the fire is being lit. In addition, the converter will have to be constructed to be less dense and this will mean that it's capability to oxidise non-combusted gases will be reduced. The coarse converter did not impair the draught but it's oxidising property was insufficient. With the tests over, the converter was not observed to have become blocked up by impurities

  3. Catalytic reforming feed characterisation technique

    Energy Technology Data Exchange (ETDEWEB)

    Larraz Mora, R.; Arvelo Alvarez, R. [Univ. of La Laguna, Chemical Engineering Dept., La Laguna (Spain)

    2002-09-01

    The catalytic reforming of naphtha is one of the major refinery processes, designed to increase the octane number of naphtha or to produce aromatics. The naphtha used as catalytic reformer feedstock usually contains a mixture of paraffins, naphthenes, and aromatics in the carbon number range C{sub 6} to C{sub 10}. The detailed chemical composition of the feed is necessary to predict the aromatics and hydrogen production as well as the operation severity. The analysis of feed naphtha is usually reported in terms of its ASTM distillation curve and API or specific gravity. Since reforming reactions are described in terms of lumped chemical species (paraffins, naphthenes and aromatics), a feed characterisation technique should be useful in order to predict reforming operating conditions and detect feed quality changes. Unfortunately online analyzer applications as cromatography or recently introduced naphtha NMR [1] are scarce in most of refineries. This work proposes an algorithmic characterisation method focusing on its main steps description. The method could help on the subjects previously described, finally a calculation example is shown. (orig.)

  4. Non-Catalytic Ignition System for High Performance Advanced Monopropellant Thrusters Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Systima Technologies, Inc. is developing a non-catalytic ignition technology for advanced green ionic salt monopropellants such as HAN-based monopropellant...

  5. CATALYTIC HYDROGENATION OF ACRYLATE ASMMETRIC Dd(Ⅱ)—CHELATING RESINS CONTAINING AMINO ACID LIGANDS

    Institute of Scientific and Technical Information of China (English)

    Wangying; WangHongzuo; 等

    1995-01-01

    The catalytic hydrogenation of palladium chelating resins containing chiral amino acid ligands based on lower crosslinked poly(chloroethyl acrylate) and some effects on the rate of hydrogenation were studied.

  6. Catalytic destruction of tar in biomass derived producer gas

    International Nuclear Information System (INIS)

    The purpose of this study is to investigate catalytic destruction of tar formed during gasification of biomass, with the goal of improving the quality of the producer gas. This work focuses on nickel based catalysts treated with alkali in an effort to promote steam gasification of the coke that deposits on catalyst surfaces. A tar conversion system consisting of a guard bed and catalytic reactor was designed to treat the producer gas from an air blown, fluidized bed biomass gasifier. The guard bed used dolomite to crack the heavy tars. The catalytic reactor was used to evaluate three commercial steam reforming catalysts. These were the ICI46-1 catalyst from Imperial Chemical Industry and Z409 and RZ409 catalysts from Qilu Petrochemical Corp. in China. A 0.5-3 l/min slipstream from a 5 tpd biomass gasifier was used to test the tar conversion system. Gas and tar were sampled before and after the tar conversion system to evaluate the effectiveness of the system. Changes in gas composition as functions of catalytic bed temperature, space velocity and steam/TOC (total organic carbon) ratio are presented. Structural changes in the catalysts during the tests are also described

  7. Building new catalytic sensors with plasma nanostructuring of metals

    International Nuclear Information System (INIS)

    Today, plasma nanostructuring of materials plays important role in improvement of different sensors including catalytic, by expanding the limits of operation in various directions. Herein a review of catalytic sensors based on metal-oxide layer for measuring the concentration of atom radicals of parent molecules is presented. Catalytic sensors are small pieces of suitable materials allowing for in-situ determination of the atom concentration. Oxygen atoms are detected using materials that form oxide films with moderate or high binding energy such as nickel and niobium oxides. Best sensitivity for oxygen atoms is obtained using catalytic sensors with nanostructured surface, more precisely metal-oxide nanowire surfaces. In any case, the sensing capacity depends on the probability for heterogeneous surface recombination of atoms to stable molecules. The sensors measure the atom densities in a broad range from roughly 1013 to 1016 cm-3, i.e. the ranges commonly found in material processing. Whereas new nanostructured surfaces expand the measurement detection range as well as add very interesting features to sensors, such as capacity to overcome radical overloads and temperature stresses. Several examples of application are presented and discussed. (author)

  8. Pair interaction of catalytically active colloids: from assembly to escape

    Science.gov (United States)

    Sharifi-Mood, Nima; Mozaffari, Ali; Córdova-Figueroa, Ubaldo M.

    2016-07-01

    The dynamics and pair trajectory of two self-propelled colloids are reported. The autonomous motions of the colloids are due to a catalytic chemical reaction taking place asymmetrically on their surfaces that generates a concentration gradient of interactive solutes around the particles and actuate particle propulsion. We consider two spherical particles with symmetric catalytic caps extending over the local polar angles $\\theta^1_{cap}$ and $\\theta^2_{cap}$ from the centers of active sectors in an otherwise quiescent fluid. A combined analytical-numerical technique was developed to solve the coupled mass transfer equation and the hydrodynamics in the Stokes flow regime. The ensuing pair trajectory of the colloids is controlled by the reacting coverages $\\theta^j_{cap}$ and their initial relative orientation with respect to each other. Our analysis indicates two possible scenarios for pair trajectories of catalytic self-propelled particles: either the particles approach, come into contact and assemble or they interact and move away from each other (escape). For arbitrary motions of the colloids, it is found that the direction of particle rotations is the key factor in determining the escape or assembly scenario. Based on the analysis, a phase diagram is sketched for the pair trajectory of the catalytically active particles as a function of active coverages and their initial relative orientations. We believe this study has important implications in elucidation of collective behaviors of auotophoretically self-propelled colloids.

  9. Gold-Copper Nanoparticles: Nanostructural Evolution and Bifunctional Catalytic Sites

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Jun; Shan, Shiyao; Yang, Lefu; Mott, Derrick; Malis, Oana; Petkov, Valeri; Cai, Fan; Ng, Mei; Luo, Jin; Chen, Bing H.; Engelhard, Mark H.; Zhong, Chuan-Jian

    2012-12-12

    Understanding of the atomic-scale structure is essential for exploiting the unique catalytic properties of any nanoalloy catalyst. This report describes novel findings of an investigation of the nanoscale alloying of gold-copper (AuCu) nanoparticles and its impact on the surface catalytic functions. Two pathways have been explored for the formation of AuCu nanoparticles of different compositons, including wet chemical synthesis from mixed Au- and Cu-precursor molecules, and nanoscale alloying via an evolution of mixed Au- and Cu-precursor nanoparticles near the nanoscale melting temperatures. For the evolution of mixed precursor nanoparticles, synchrotron x-ray based in-situ real time XRD was used to monitor the structural changes, revealing nanoscale alloying and reshaping towards an fcc-type nanoalloy (particle or cube) via a partial melting–resolidification mechanism. The nanoalloys supported on carbon or silica were characterized by in-situ high-energy XRD/PDFs, revealing an intriguing lattice "expanding-shrinking" phenomenon depending on whether the catalyst is thermochemically processed under oxidative or reductive atmosphere. This type of controllable structural changes is found to play an important role in determining the catalytic activity of the catalysts for carbon monoxide oxidation reaction. The tunable catalytic activities of the nanoalloys under thermochemically oxidative and reductive atmospheres are also discussed in terms of the bifunctional sites and the surface oxygenated metal species for carbon monoxide and oxygen activation.

  10. Acoustics of automotive catalytic converter assemblies

    Science.gov (United States)

    Dickey, Nolan S.; Selamet, Ahmet; Parks, Steve J.; Tallio, Kevin V.; Miazgowicz, Keith D.; Radavich, Paul M.

    2003-10-01

    In an automotive exhaust system, the purpose of the catalytic converter is to reduce pollutant emissions. However, catalytic converters also affect the engine and exhaust system breathing characteristics; they increase backpressure, affect exhaust system acoustic characteristics, and contribute to exhaust manifold tuning. Thus, radiated sound models should include catalytic converters since they can affect both the source characteristics and the exhaust system acoustic behavior. A typical catalytic converter assembly employs a ceramic substrate to carry the catalytically active noble metals. The substrate has numerous parallel tubes and is mounted in a housing with swelling mat or wire mesh around its periphery. Seals at the ends of the substrate can be used to help force flow through the substrate and/or protect the mat material. Typically, catalytic converter studies only consider sound propagation in the small capillary tubes of the substrate. Investigations of the acoustic characteristics of entire catalytic converter assemblies (housing, substrate, seals, and mat) do not appear to be available. This work experimentally investigates the acoustic behavior of catalytic converter assemblies and the contributions of the separate components to sound attenuation. Experimental findings are interpreted with respect to available techniques for modeling sound propagation in ceramic substrates.

  11. Understanding catalytic biomass conversion through data mining

    NARCIS (Netherlands)

    E.J. Ras; B. McKay; G. Rothenberg

    2010-01-01

    Catalytic conversion of biomass is a key challenge that we chemists face in the twenty-first century. Worldwide, research is conducted into obtaining bulk chemicals, polymers and fuels. Our project centres on glucose valorisation via furfural derivatives using catalytic hydrogenation. We present her

  12. Experimental catalytic isotopic exchange column control

    International Nuclear Information System (INIS)

    Full text: In this paper we present a method for monitoring and control of the experimental catalytic isotopic exchange column which is part of ETRF (experimental tritium removal facility) of the ICIT Rm. Valcea. The initial data acquisition system based on analogue instruments is now upgraded to a fully digital system. Therefore we chose to use Compact Field Point which is a programmable automation controller (PAC) and LabVIEW software. To operate the catalytic isotopic exchange column there are some control loops that need to be operated simultaneously, namely: the heavy water column feed temperature and flow rate; the hydrogen gas column feed temperature; the flow rate and pressure at the top of the column; the water vapor flow rate; the hydrogen gas temperature at the condenser output. The human machine interface (HMI) realized with LabVIEW software is very friendly. The use of the PAC graphics interface makes isotopic exchange process operation easier for operators and researchers. The HMI has the functions to provide visualization of process parameters, to enable interaction with the process and also to provide alarms and event notification to operators about any abnormal situation in the plant. To interact with the process, detailed displays which contain specific control functions to operate the column, can be used. Usually, the faceplate display shows the controlled process variable and the output of the control loop. Furthermore, the set point and the operating mode of the control loop can be changed. Additionally, detailed information is available related to the parameters of PID controller and the different alarms that can be authorized in this control loop with its corresponding values of activation. (authors)

  13. Preparation of Photo catalytic Materials Based on Bi{sub 4}Ti{sub 3}O{sub 1}2 Doped with Transition Metals; Preparacion de Materiales Fotocatalizadores Basados en Bi{sub 4}Ti{sub 3}O{sub 1}2 Dopados con Metales de Transicion

    Energy Technology Data Exchange (ETDEWEB)

    Calatalyud, D. G.; Rodriguez, M.; Gallego, B.; Fernandez-Hevia, D.; Jardiel, T.

    2012-07-01

    The production of hydrogen from water using ceramic semiconductors with photo catalytic properties has gained special relevance in the last years, due to their potential use for the generation of hydrogen in a direct and clean way. Doping with transition metals has demonstrated to be an effective method to obtain new active photo catalysts in the visible range of the solar spectrum by changing the band gap of the material. In this paper we study the effect of the addition of various dopants (Fe, Ni, Cr, Mn, Co, Cu) in the structure and band gap of Bi{sub 4}Ti{sub 3}O{sub 1}2, in order to improve its photo catalytic activity and make it visible light active. Accordingly, doped BIT based materials have been obtained by solid state processing and different amounts of an additional phase with sillenite structure, Bi{sub 1}2TiO{sub 2}0, have been detected. With the dopant a shift of the absorption spectra is produced towards higher wavelengths and consequently towards lower band gap values. The band gap values obtained for many of the prepared compositions are quite promising, promoting the study of their catalytic properties.. (Author)

  14. A double signal electrochemical human immunoglobulin G immunosensor based on gold nanoparticles-polydopamine functionalized reduced graphene oxide as a sensor platform and AgNPs/carbon nanocomposite as signal probe and catalytic substrate.

    Science.gov (United States)

    Zhang, Si; Huang, Na; Lu, Qiujun; Liu, Meiling; Li, Haitao; Zhang, Youyu; Yao, Shouzhuo

    2016-03-15

    In this paper, a double signal electrochemical Human immunoglobulin G (HIgG) immunosensor based on AgNPs/carbon nanocomposite (Ag/C NC) as the signal probe and catalytic substrate was developed for fast and sensitive detection of HIgG. The as-prepared AuNPs-PDA-rGO nanocomposite and Ag/C NC were confirmed by UV-vis, Fourier transform infrared spectroscopy, scanning electron microscopy and transmission electron microscopy. Electrochemical impedance spectroscopy, cyclic voltammetry and differential pulse voltammetry were used to investigate the electrochemical properties of the proposed immunosensor. The AuNPs-PDA-rGO nanocomposite can improve the electron transfer rate and capture more Ab1. In the sandwich-type immunoassay process, the Ag/C NC functionalized bioconjugates were captured on HIgG/Ab1/AuNPs-PDA-rGO surface and the electrochemical double-signal strategy was employed. These double electrochemical detection signals were directly monitored the oxidation current originated from Ag/C NC and indirectly detected the reduction current of benzoquinone which was produced from the reaction of H2O2 and HQ by catalysis of Ag/C NC in electrochemical detection of HIgG. Under the optimized conditions, the current responses were changed with the concentrations of HIgG for the proposed immunosensor with wide linear ranges of 0.1 to 100 ngmL(-1) and 0.01-100 ngmL(-1) with the lowest detection concentration of 0.001 ng mL(-1) in the absence and presence of H2O2 and HQ. The double-signal strategy is used for detection of HIgG, and the results came from the two signals were well consistent with each other. The proposed immunosensor was successfully applied in analysis of human IgG in real samples and this strategy may provide a relative simple and effective method for construction of other immunsensors in detection of other biomarkers in clinical medicine. PMID:26556185

  15. Silver nanocluster catalytic microreactors for water purification

    Science.gov (United States)

    Da Silva, B.; Habibi, M.; Ognier, S.; Schelcher, G.; Mostafavi-Amjad, J.; Khalesifard, H. R. M.; Tatoulian, M.; Bonn, D.

    2016-07-01

    A new method for the elaboration of a novel type of catalytic microsystem with a high specific area catalyst is developed. A silver nanocluster catalytic microreactor was elaborated by doping a soda-lime glass with a silver salt. By applying a high power laser beam to the glass, silver nanoclusters are obtained at one of the surfaces which were characterized by BET measurements and AFM. A microfluidic chip was obtained by sealing the silver coated glass with a NOA 81 microchannel. The catalytic activity of the silver nanoclusters was then tested for the efficiency of water purification by using catalytic ozonation to oxidize an organic pollutant. The silver nanoclusters were found to be very stable in the microreactor and efficiently oxidized the pollutant, in spite of the very short residence times in the microchannel. This opens the way to study catalytic reactions in microchannels without the need of introducing the catalyst as a powder or manufacturing complex packed bed microreactors.

  16. Selective catalytic oxidation of ammonia

    Energy Technology Data Exchange (ETDEWEB)

    Leppaelahti, J.; Koljonen, T. [VTT Energy, Espoo (Finland)

    1996-12-31

    In the combustion of fossil fuels, the principal source of nitrogen oxides is nitrogen bound in the fuel structure. In gasification, a large part of fuel nitrogen forms NH{sub 3}, which may form nitrogen oxides during gas combustion. If NH{sub 3} and other nitrogen species could be removed from hot gas, the NO emission could be considerably reduced. However, relatively little attention has been paid to finding new means of removing nitrogen compounds from the hot gasification gas. The possibility of selectively oxidizing NH{sub 3} to N{sub 2} in the hot gasification has been studied at VTT Energy. The largest NH{sub 3} reductions have been achieved by catalytic oxidation on aluminium oxides. (author) (4 refs.)

  17. Catalytic Graphitization of Phenolic Resin

    Institute of Scientific and Technical Information of China (English)

    Mu Zhao; Huaihe Song

    2011-01-01

    The catalytic graphitization of thermal plastic phenolic-formaldehyde resin with the aid of ferric nitrate (FN) was studied in detail. The morphologies and structural features of the products including onion-like carbon nanoparticles and bamboo-shaped carbon nanotubes were investigated by transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), X-ray diffraction and Raman spectroscopy measurements. It was found that with the changes of loading content of FN and residence time at 1000℃, the products exhibited various morphologies. The TEM images showed that bamboo-shaped carbon nanotube consisted of tens of bamboo sticks and onion-like carbon nanoparticle was made up of quasi-spherically concentrically closed carbon nanocages.

  18. Reducing catalytic converter pressure loss

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-06-01

    This article examines why approximately 30--40% of total exhaust-system pressure loss occurs in the catalytic converter and what can be done to reduce pressure loss. High exhaust-system backpressure is of concern in the design of power trains for passenger cars and trucks because it penalizes fuel economy and limits peak power. Pressure losses occur due to fluid shear and turning during turbulent flow in the converter headers and in entry separation and developing laminar-flow boundary layers within the substrate flow passages. Some of the loss mechanisms are coupled. For example, losses in the inlet header are influenced by the presence of the flow resistance of a downstream substrate. Conversely, the flow maldistribution and pressure loss of the substrate(s) depend on the design of the inlet header.

  19. Non-catalytic recuperative reformer

    Energy Technology Data Exchange (ETDEWEB)

    Khinkis, Mark J.; Kozlov, Aleksandr P.; Kurek, Harry

    2015-12-22

    A non-catalytic recuperative reformer has a flue gas flow path for conducting hot flue gas from a thermal process and a reforming mixture flow path for conducting a reforming mixture. At least a portion of the reforming mixture flow path is embedded in the flue gas flow path to permit heat transfer from the hot flue gas to the reforming mixture. The reforming mixture flow path contains substantially no material commonly used as a catalyst for reforming hydrocarbon fuel (e.g., nickel oxide, platinum group elements or rhenium), but instead the reforming mixture is reformed into a higher calorific fuel via reactions due to the heat transfer and residence time. In a preferred embodiment, extended surfaces of metal material such as stainless steel or metal alloy that are high in nickel content are included within at least a portion of the reforming mixture flow path.

  20. Fluctuations in catalytic surface reactions

    CERN Document Server

    Imbihl, R

    2003-01-01

    The internal reaction-induced fluctuations which occur in catalytic CO oxidation on a Pt field emitter tip have been studied using field electron microscopy (FEM) as a spatially resolving method. The structurally heterogeneous Pt tip consists of facets of different orientations with nanoscale dimensions. The FEM resolution of roughly 2 nm corresponds to a few hundred reacting adsorbed particles whose variations in the density are imaged as brightness fluctuations. In the bistable range of the reaction one finds fluctuation-induced transitions between the two stable branches of the reaction kinetics. The fluctuations exhibit a behaviour similar to that of an equilibrium phase transition, i.e. the amplitude diverges upon approaching the bifurcation point terminating the bistable range of the reaction. Simulations with a hybrid Monte Carlo/mean-field model reproduce the experimental observations. Fluctuations on different facets are typically uncorrelated but within a single facet a high degree of spatial cohere...

  1. Catalytic, enantioselective, vinylogous aldol reactions.

    Science.gov (United States)

    Denmark, Scott E; Heemstra, John R; Beutner, Gregory L

    2005-07-25

    In 1935, R. C. Fuson formulated the principle of vinylogy to explain how the influence of a functional group may be felt at a distant point in the molecule when this position is connected by conjugated double-bond linkages to the group. In polar reactions, this concept allows the extension of the electrophilic or nucleophilic character of a functional group through the pi system of a carbon-carbon double bond. This vinylogous extension has been applied to the aldol reaction by employing "extended" dienol ethers derived from gamma-enolizable alpha,beta-unsaturated carbonyl compounds. Since 1994, several methods for the catalytic, enantioselective, vinylogous aldol reaction have appeared, with which varying degrees of regio- (site), enantio-, and diastereoselectivity can be attained. In this Review, the current scope and limitations of this transformation, as well as its application in natural product synthesis, are discussed. PMID:15940727

  2. Electrochemical promotion of catalytic reactions

    Science.gov (United States)

    Imbihl, R.

    2010-05-01

    The electrochemical promotion of heterogeneously catalyzed reactions (EPOC) became feasible through the use of porous metal electrodes interfaced to a solid electrolyte. With the O 2- conducting yttrium stabilized zirconia (YSZ), the Na + conducting β″-Al 2O 3 (β-alumina), and several other types of solid electrolytes the EPOC effect has been demonstrated for about 100 reaction systems in studies conducted mainly in the mbar range. Surface science investigations showed that the physical basis for the EPOC effect lies in the electrochemically induced spillover of oxygen and alkali metal, respectively, onto the surface of the metal electrodes. For the catalytic promotion effect general concepts and mechanistic schemes were proposed but these concepts and schemes are largely speculative. Applying surface analytical tools to EPOC systems the proposed mechanistic schemes can be verified or invalidated. This report summarizes the progress which has been achieved in the mechanistic understanding of the EPOC effect.

  3. Catalytic converter with thermoelectric generator

    Energy Technology Data Exchange (ETDEWEB)

    Parise, R.J.

    1998-07-01

    The unique design of an electrically heated catalyst (EHC) and the inclusion of an ECO valve in the exhaust of an internal combustion engine will meet the strict new emission requirements, especially at vehicle cold start, adopted by several states in this country as well as in Europe and Japan. The catalytic converter (CC) has been a most useful tool in pollution abatement for the automobile. But the emission requirements are becoming more stringent and, along with other improvements, the CC must be improved to meet these new standards. Coupled with the ECO valve, the EHC can meet these new emission limits. In an internal combustion engine vehicle (ICEV), approximately 80% of the energy consumed leaves the vehicle as waste heat: out the tail pipe, through the radiator, or convected/radiated off the engine. Included with the waste heat out the tail pipe are the products of combustion which must meet strict emission requirements. The design of a new CC is presented here. This is an automobile CC that has the capability of producing electrical power and reducing the quantity of emissions at vehicle cold start, the Thermoelectric Catalytic Power Generator. The CC utilizes the energy of the exothermic reactions that take place in the catalysis substrate to produce electrical energy with a thermoelectric generator. On vehicle cold start, the thermoelectric generator is used as a heat pump to heat the catalyst substrate to reduce the time to catalyst light-off. Thus an electrically heated catalyst (EHC) will be used to augment the abatement of tail pipe emissions. Included with the EHC in the exhaust stream of the automobile is the ECO valve. This valve restricts the flow of pollutants out the tail pipe of the vehicle for a specified amount of time until the EHC comes up to operating temperature. Then the ECO valve opens and allows the full exhaust, now treated by the EHC, to leave the vehicle.

  4. The evolution of catalytic function

    Science.gov (United States)

    Maurel, Marie-Christine; Ricard, Jacques

    2006-03-01

    It is very likely that the main driving force of enzyme evolution is the requirement to improve catalytic and regulatory efficiency which results from the intrinsic performance as well as from the spatial and functional organization of enzymes in living cells. Kinetic co-operativity may occur in simple monomeric proteins if they display “slow” conformational transitions, at the cost of catalytic efficiency. Oligomeric enzymes on the other hand can be both efficient and co-operative. We speculate that the main reason for the emergence of co-operative oligomeric enzymes is the need for catalysts that are both cooperative and efficient. As it is not useful for an enzyme to respond to a change of substrate concentration in a complex kinetic way, the emergence of symmetry has its probable origin in a requirement for “functional simplicity”. In a living cell, enzyme are associated with other macromolecules and membranes. The fine tuning of their activity may also be reached through mutations of the microenvironment. Our hypothesis is that these mutations are related to the vectorial transport of molecules, to achieve the hysteresis loops of enzyme reactions generated by the coupling of reaction and diffusion, through the co-operativity brought about by electric interactions between a charged substrate and a membrane, and last but not least, through oscillations. As the physical origins of these effects are very simple and do not require complex molecular devices, it is very likely that the functional advantage generated by the spatial and functional organization of enzyme molecules within the cell have appeared in prebiotic catalysis or very early during the primeval stages of biological evolution. We shall began this paper by presenting the nature of the probable earliest catalysts in the RNA world.

  5. Catalytic hot gas cleaning of gasification gas

    Energy Technology Data Exchange (ETDEWEB)

    Simell, P. [VTT Energy, Espoo (Finland). Energy Production Technologies

    1997-12-31

    The aim of this work was to study the catalytic cleaning of gasification gas from tars and ammonia. In addition, factors influencing catalytic activity in industrial applications were studied, as well as the effects of different operation conditions and limits. Also the catalytic reactions of tar and ammonia with gasification gas components were studied. The activities of different catalyst materials were measured with laboratory-scale reactors fed by slip streams taken from updraft and fluid bed gasifiers. Carbonate rocks and nickel catalysts proved to be active tar decomposing catalysts. Ammonia decomposition was in turn facilitated by nickel catalysts and iron materials like iron sinter and iron dolomite. Temperatures over 850 deg C were required at 2000{sup -1} space velocity at ambient pressure to achieve almost complete conversions. During catalytic reactions H{sub 2} and CO were formed and H{sub 2}O was consumed in addition to decomposing hydrocarbons and ammonia. Equilibrium gas composition was almost achieved with nickel catalysts at 900 deg C. No deactivation by H{sub 2}S or carbon took place in these conditions. Catalyst blocking by particulates was avoided by using a monolith type of catalyst. The apparent first order kinetic parameters were determined for the most active materials. The activities of dolomite, nickel catalyst and reference materials were measured in different gas atmospheres using laboratory apparatus. This consisted of nitrogen carrier, toluene as tar model compound, ammonia and one of the components H{sub 2}, H{sub 2}O, CO, CO{sub 2}, CO{sub 2}+H{sub 2}O or CO+CO{sub 2}. Also synthetic gasification gas was used. With the dolomite and nickel catalyst the highest toluene decomposition rates were measured with CO{sub 2} and H{sub 2}O. In gasification gas, however, the rate was retarded due to inhibition by reaction products (CO, H{sub 2}, CO{sub 2}). Tar decomposition over dolomite was modelled by benzene reactions with CO{sub 2}, H

  6. Comment on 'Artificial neural network based modeling of heated catalytic converter performance' by M. Ali Akcayol and Can Cinar [Applied Thermal Engineering 25 (2005) 2341

    Energy Technology Data Exchange (ETDEWEB)

    Sha, W. [Metals Research Group, School of Planning, Architecture and Civil Engineering, The Queen' s University of Belfast, Belfast BT7 1NN (United Kingdom)

    2007-02-15

    A paper has been published in Applied Thermal Engineering, using feed-forward artificial neural network (ANN) in the modeling of heated catalytic converter performance. The present paper attempts to discuss and comment on the paper. The amount of data used in the paper are not enough to determine the number of fitting parameters in the network. Therefore, the model is not mathematically sound or justified. The conclusion is that ANN modeling should be used with care and enough data. (author)

  7. Alkali activated materials based on fluid catalytic cracking catalyst residue (FCC): Influence ofSiO2/Na2O and H2O/FCC ratio on mechanical strength and microstructure

    OpenAIRE

    Mitsuuchi Tashima, Mauro; AKASAKI, JORGE LUIS; Melges, J.L.P.; Soriano Martinez, Lourdes; Monzó Balbuena, José Mª; Paya Bernabeu, Jorge Juan; Borrachero Rosado, María Victoria

    2013-01-01

    Reuse of industrial and agricultural wastes as supplementary cementitious materials (SCMs) in concrete and mortar productions contribute to sustainable development. In this context, fluid catalytic cracking catalyst residue (spent FCC), a byproduct from the petroleum industry and petrol refineries, have been studied as SCM in blended Portland cement in the last years. Nevertheless, another environmental friendly alternative has been conducted in order to produce alternative binders with low C...

  8. Bacterial Cellulose Supported Gold Nanoparticles with Excellent Catalytic Properties.

    Science.gov (United States)

    Chen, Meiyan; Kang, Hongliang; Gong, Yumei; Guo, Jing; Zhang, Hong; Liu, Ruigang

    2015-10-01

    Amidoxime surface functionalized bacterial cellulose (AOBC) has been successfully prepared by a simple two-step method without obviously changing the morphology of bacterial cellulose. AOBC has been used as the reducing agent and carrier for the synthesis of gold nanoparticles (AuNPs) that distributed homogeneously on bacterial cellulose surface. Higher content in amidoxime groups in AOBC is beneficial for the synthesis of AuNPs with smaller and more uniform size. The AuNPs/AOBC nanohybrids have excellent catalytic activity for reduction of 4-nitrophenol (4-NP) by using NaBH4. It was found that catalytic activity of AuNPs/AOBC first increases with increasing NaBH4 concentration and temperature, and then leveled off at NaBH4 concentration above 238 mM and temperature above 50 °C. Moreover, AuNPs with smaller size have higher catalytic activity. The highest apparent turnover frequency of AuNPs/AOBC is 1190 h(-1). The high catalytic activity is due to the high affinity of 4-NP with AuNPs/AOBC and the reduced product 4-aminophenol has good solubility in water in the presence of AuNPs/AOBC. The catalytic stability of the AuNPs/AOBC was estimated by filling a fluid column contained AuNPs/AOBC and used for continuously catalysis of the reduction of 4-NP by using NaBH4. The column works well without detection of 4-NP in the eluent after running for more than two months, and it is still running. This work provides an excellent catalyst based on bacterial cellulose stabilized AuNPs and has promising applications in industry. PMID:26357993

  9. Revolutionary systems for catalytic combustion and diesel catalytic particulate traps.

    Energy Technology Data Exchange (ETDEWEB)

    Stuecker, John Nicholas; Witze, Peter O.; Ferrizz, Robert Matthew; Cesarano, Joseph, III; Miller, James Edward

    2004-12-01

    This report is a summary of an LDRD project completed for the development of materials and structures conducive to advancing the state of the art for catalyst supports and diesel particulate traps. An ancillary development for bio-medical bone scaffolding was also realized. Traditionally, a low-pressure drop catalyst support, such as a ceramic honeycomb monolith, is used for catalytic reactions that require high flow rates of gases at high-temperatures. A drawback to the traditional honeycomb monoliths under these operating conditions is poor mass transfer to the catalyst surface in the straight-through channels. ''Robocasting'' is a unique process developed at Sandia National Laboratories that can be used to manufacture ceramic monoliths with alternative 3-dimensional geometries, providing tortuous pathways to increase mass transfer while maintaining low-pressure drops. These alternative 3-dimensional geometries may also provide a foundation for the development of self-regenerating supports capable of trapping and combusting soot particles from a diesel engine exhaust stream. This report describes the structures developed and characterizes the improved catalytic performance that can result. The results show that, relative to honeycomb monolith supports, considerable improvement in mass transfer efficiency is observed for robocast samples synthesized using an FCC-like geometry of alternating rods. Also, there is clearly a trade-off between enhanced mass transfer and increased pressure drop, which can be optimized depending on the particular demands of a given application. Practical applications include the combustion of natural gas for power generation, production of syngas, and hydrogen reforming reactions. The robocast lattice structures also show practicality for diesel particulate trapping. Preliminary results for trapping efficiency are reported as well as the development of electrically resistive lattices that can regenerate the structure

  10. Catalytic Conversion of Bio-oil to Fuel for Transportation

    OpenAIRE

    Mortensen, Peter Mølgaard; Jensen, Anker Degn; Grunwaldt, Jan-Dierk; Jensen, Peter Arendt

    2013-01-01

    The incitement for decreasing the modern society's dependency on fossil based fuel and energy is both environmentally and politically driven. Development of biofuels could be part of the future solution. The combination of ash pyrolysis and catalytic upgrading of the produced bio-oil has been identied as a prospective route to bio-fuels. The upgrading is most favorably done by hydrodeoxygenation (HDO), producing bio-fuels at a quality equivalent to conventional fossil fuels. The topic of this...

  11. Stereodivergent catalytic doubly diastereoselective nitroaldol reactions using heterobimetallic complexes.

    Science.gov (United States)

    Sohtome, Yoshihiro; Kato, Yuko; Handa, Shinya; Aoyama, Naohiro; Nagawa, Keita; Matsunaga, Shigeki; Shibasaki, Masakatsu

    2008-06-01

    Stereodivergent construction of three contiguous stereocenters in catalytic doubly diastereoselective nitroaldol reactions of alpha-chiral aldehydes with nitroacetaldehyde dimethyl acetal using two types of heterobimetallic catalysts is described. A La-Li-BINOL (LLB) catalyst afforded anti,syn-nitroaldol products in >20:1-14:1 selectivity, and a Pd/La/Schiff base catalyst afforded complimentary syn,syn-nitroaldol products in 10:1-5:1 selectivity. PMID:18465868

  12. Catalytic denitrification control process and system for combustion flue gases

    International Nuclear Information System (INIS)

    This patent describes a process for controlling the catalytic dentrification of flue gases by ammonia addition to the flue gas. It comprises withdrawing from a combustion process a flue gas stream containing at least about 20 volume parts NOx per million of flue gas, and controllably adding ammonia gas to the flue gas stream; passing the flue gas and ammonia mixture through a catalytic dentrification unit containing a dentrification catalyst material and reducing the NOx concentration in the flue gas; obtaining a control signal based on process parameter signals including the volume flow rate of the flue gas, and determining the quantity of ammonia initially added to the flue gas so that it is less than the amount theoretically required to reduce all of the NOx in the flue gas; obtaining a trim signal based on comparing the NOx concentration measured in the flue gas downstream of the catalytic dentrification unit and a desired NOx concentration; and providing additional ammonia injection based on the trim signal by adjusting the ammonia addition flow rate as needed to provide the desired reduced NOx concentration being emitted to the atmosphere and to avoid excess ammonia injection and system oscillation

  13. High Selective Determination of Anionic Surfactant Using Its Parallel Catalytic Hydrogen Wave

    Institute of Scientific and Technical Information of China (English)

    过玮; 何盈盈; 宋俊峰

    2003-01-01

    A faradaic response of anionic surfactants (AS), such as linear aikylbenzene sulfonate (LAS), dodecyl benzene sulfonate and dodecyl sulfate, was observed in weak acidic medium. The faradaic response of AS includes (1) a catalytic hydrogen wave of AS in HAc/NaAc buffer that was attributed to the reduction of proton associated with the sulfo-group of AS, and (2) a parallel catalytic hydrogen wave of AS in the presence of hydrogen peroxide, which was due to the catalysis of the catalytic hydrogen wave of AS by hydroxyl radical OH electrogenerated in the reduction of hydrogen peroxide. The parallel catalytic hydrogen wave is about 50 times as sensitive as the catalytic hydrogen wave. Based on the parallel catalytic hydrogen wave, a high selective method for the determination of AS was developed. In 0.1mol/L HAc/NaAc (pH=6.2±0.1)/1.0×10-3mol/L H2O2 supporting electrolyte, the second-order derivative peak current of the parallel catalytic hydrogen wave located at-1.33 V (vs. SCE) was rectilinear to AS concentration in the range of 3.0×10-6-2.5×10-4mol/L, without the interference of other surfactants. The proposed method was evaluated by quantitative analysis of AS in environmental wastewater.

  14. Catalytic reaction in confined flow channel

    Energy Technology Data Exchange (ETDEWEB)

    Van Hassel, Bart A.

    2016-03-29

    A chemical reactor comprises a flow channel, a source, and a destination. The flow channel is configured to house at least one catalytic reaction converting at least a portion of a first nanofluid entering the channel into a second nanofluid exiting the channel. The flow channel includes at least one turbulating flow channel element disposed axially along at least a portion of the flow channel. A plurality of catalytic nanoparticles is dispersed in the first nanofluid and configured to catalytically react the at least one first chemical reactant into the at least one second chemical reaction product in the flow channel.

  15. A new oxovanadium(IV) complex containing an O,N-bidentate Schiff base ligand: Synthesis at ambient temperature, characterization, crystal structure and catalytic performance in selective oxidation of sulfides to sulfones using H2O2 under solvent-free conditions

    Science.gov (United States)

    Menati, Saeid; Rudbari, Hadi Amiri; Khorshidifard, Mahsa; Jalilian, Fariba

    2016-01-01

    A new bidentate ON Schiff base ligand, HL, was synthesized by simple condensation reaction of isopropylamine and salicylaldehyde. Then by reaction of HL and VO(acac)2 in the ratio of 2:1 at ambient temperature, a new oxovanadium(IV) Schiff base complex, VOL2, was synthesized. The Schiff base ligand and its oxovanadium(IV) complex were characterized by elemental analyses, FT-IR, 1H NMR, 13C NMR and UV-visible spectroscopies. The crystal structure of oxovanadium(IV) complex, VOL2, was also determined by single crystal X-ray analysis. The vanadium center in this structure is coordinated to two bidentate Schiff base ligands with the two nitrogen and two phenolate oxygen atoms in equatorial positions and one oxo oxygen in the axial position to complete the distorted trigonal bipyramidal N2O3 coordination sphere. Catalytic performance of the VOL2 complex was studied in the selective oxidation of thioanisole with the green oxidant 35% aqueous H2O2 under solvent-free conditions and under organic solvents (EtOH, CHCl3, CH2Cl2, DMF, CH3CN, EtOAc) as a model. Due to better catalytic performance of the VOL2 complex under solvent-free conditions, this complex used for the oxidation of the different sulfides to the corresponding sulfones under solvent-free conditions. The use of hydrogen peroxide as oxidant and the absence of solvent makes these reactions interesting from environmental and economic points of view.

  16. Developing soft X-ray spectroscopy for in situ characterization of nanocatalysts in catalytic reactions

    International Nuclear Information System (INIS)

    Understanding the mechanisms of catalytic and reactions calls for in situ/operando spectroscopic characterization. Here we report the developments of in situ reaction cells at the Advanced Light Source for soft X-ray spectroscopic studies of nanoparticle catalysts during the catalytic reactions. The operation of these various cells and their capabilities are illustrated with examples from the studies of Co-based nanocatalysts

  17. Catalytic applications of magnetic nanoparticles functionalized using iridium N-heterocyclic carbene complexes

    OpenAIRE

    Iglesias Bernardo, Diego; Sabater López, Sara; Azua Barrios, Arturo; Mata Martínez, José Antonio

    2015-01-01

    synthetic modular methodology allows the preparation of catalytic materials based on magnetic nanoparticles with iridium N-heterocyclic carbene (NHC) complexes. Imidazolium salts containing a ketone/aldehyde as a pendant functional group are the key species prepared. The condensation reaction of the Cp*IrNHC–CHO compound with magnetic nanoparticles containing amine groups on the surface yields the covalent anchoring of the iridium complex to the surface of the magnetite. The catalytic propert...

  18. A general catalytic reaction sequence to access alkaloid-inspired indole polycycles.

    Science.gov (United States)

    Danda, Adithi; Kumar, Kamal; Waldmann, Herbert

    2015-05-01

    A catalytic two-step reaction sequence was developed to access a range of complex heterocyclic frameworks based on biorelevant indole/oxindole scaffolds. The reaction sequence includes catalytic Pictet-Spengler cyclization followed by Au(I) catalyzed intramolecular hydroamination of acetylenes. A related cascade polycyclization of a designed β-carboline embodying a 1,5-enyne group yields the analogues of the alkaloid harmicine. PMID:25846800

  19. Modelling of Surface Catalytic Reaction Systems using the Concept of Extents

    OpenAIRE

    Chhabra, Vibhuti

    2014-01-01

    Gas-solid catalytic reaction systems depend on a combination of several dynamic eects, such as mass transfer, chemisorption and surface reactions taking place simultaneously. In this master thesis, the extension of the method of extent-based model identication is proposed for catalytic reaction systems which involves the transformation of the number of moles in the gas and solid phases into decoupled state variables called (vessel) extents. This transformation computes extents of inlet, outle...

  20. Catalytic Preparation of Pyrrolidones from Renewable Resources

    Energy Technology Data Exchange (ETDEWEB)

    Frye, John G.; Zacher, Alan H.; Werpy, Todd A.; Wang, Yong

    2005-12-01

    Use of renewable resources for production of valuable chemical commodities is becoming a topic of great national interest and importance. This objective fits well with the USDOE’s objective of promoting the industrial bio-refinery concept in which a wide array of valuable chemical, fuel, food, nutraceuticals and animal feed products all result from the integrated processing of grains, oil seeds and other bio-mass materials. The bio-refinery thus serves to enhance the overall utility and profitability of the agriculture industry as well as helping to reduce the dependence on petroleum. Pyrrolidones fit well with the bio-refinery concept since they may be produced in a scheme beginning with the fermentation of a portion of the bio-refinery’s sugar product into succinate. Pyrrolidones are a class of industrially important chemicals with a variety of uses including as polymer intermediates, cleaners, and “green solvents” which can replace hazardous chlorinated compounds. Battelle has developed an efficient process for the thermo – catalytic conversion of succinate into pyrrolidones, especially n-methylpyrrolidone. The process uses both novel Rh based catalysts and novel aqueous process conditions and results in high selectivities and yields of pyrrolidone compounds. The process also includes novel methodology for enhancing yields by recycling and converting non-useful side products of the catalysis into additional pyrrolidone. The process has been demonstrated in both batch and continuous reactors. Additionally, stability of the unique Rh-based catalyst has been demonstrated.

  1. Microchannel Reactor System for Catalytic Hydrogenation

    Energy Technology Data Exchange (ETDEWEB)

    Adeniyi Lawal; Woo Lee; Ron Besser; Donald Kientzler; Luke Achenie

    2010-12-22

    We successfully demonstrated a novel process intensification concept enabled by the development of microchannel reactors, for energy efficient catalytic hydrogenation reactions at moderate temperature, and pressure, and low solvent levels. We designed, fabricated, evaluated, and optimized a laboratory-scale microchannel reactor system for hydrogenation of onitroanisole and a proprietary BMS molecule. In the second phase of the program, as a prelude to full-scale commercialization, we designed and developed a fully-automated skid-mounted multichannel microreactor pilot plant system for multiphase reactions. The system is capable of processing 1 – 10 kg/h of liquid substrate, and an industrially relevant immiscible liquid-liquid was successfully demonstrated on the system. Our microreactor-based pilot plant is one-of-akind. We anticipate that this process intensification concept, if successfully demonstrated, will provide a paradigm-changing basis for replacing existing energy inefficient, cost ineffective, environmentally detrimental slurry semi-batch reactor-based manufacturing practiced in the pharmaceutical and fine chemicals industries.

  2. Catalytic Chemistry on Oxide Nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Asthagiri, Aravind; Dixon, David A.; Dohnalek, Zdenek; Kay, Bruce D.; Rodriquez, Jose A.; Rousseau, Roger J.; Stacchiola, Dario; Weaver, Jason F.

    2016-05-29

    Metal oxides represent one of the most important and widely employed materials in catalysis. Extreme variability of their chemistry provides a unique opportunity to tune their properties and to utilize them for the design of highly active and selective catalysts. For bulk oxides, this can be achieved by varying their stoichiometry, phase, exposed surface facets, defect, dopant densities and numerous other ways. Further, distinct properties from those of bulk oxides can be attained by restricting the oxide dimensionality and preparing them in the form of ultrathin films and nanoclusters as discussed throughout this book. In this chapter we focus on demonstrating such unique catalytic properties brought by the oxide nanoscaling. In the highlighted studies planar models are carefully designed to achieve minimal dispersion of structural motifs and to attain detailed mechanistic understanding of targeted chemical transformations. Detailed level of morphological and structural characterization necessary to achieve this goal is accomplished by employing both high-resolution imaging via scanning probe methods and ensemble-averaged surface sensitive spectroscopic methods. Three prototypical examples illustrating different properties of nanoscaled oxides in different classes of reactions are selected.

  3. Vacuum-insulated catalytic converter

    Energy Technology Data Exchange (ETDEWEB)

    Benson, David K. (Golden, CO)

    2001-01-01

    A catalytic converter has an inner canister that contains catalyst-coated substrates and an outer canister that encloses an annular, variable vacuum insulation chamber surrounding the inner canister. An annular tank containing phase-change material for heat storage and release is positioned in the variable vacuum insulation chamber a distance spaced part from the inner canister. A reversible hydrogen getter in the variable vacuum insulation chamber, preferably on a surface of the heat storage tank, releases hydrogen into the variable vacuum insulation chamber to conduct heat when the phase-change material is hot and absorbs the hydrogen to limit heat transfer to radiation when the phase-change material is cool. A porous zeolite trap in the inner canister absorbs and retains hydrocarbons from the exhaust gases when the catalyst-coated substrates and zeolite trap are cold and releases the hydrocarbons for reaction on the catalyst-coated substrate when the zeolite trap and catalyst-coated substrate get hot.

  4. Research progress of fuel cell cold startup based on hydrogen catalytic combustion%基于氢气低温催化燃烧的燃料电池低温启动研究进展

    Institute of Scientific and Technical Information of China (English)

    袁庆; 郑俊生; 马建新

    2013-01-01

      相比于传统动力系统,基于燃料电池的动力系统具有很多优点,但在实际运用中仍有许多亟需解决的问题,其中包括燃料电池系统的低温启动问题。本文对比了各种燃料电池低温启动方案的工作机理及其优缺点,归纳并分析了氢气催化燃烧所用催化剂和催化燃烧反应过程以及燃料电池低温启动过程等方面的相关研究成果,研究了影响催化燃烧的主要因素,得出以下结论:基于氢气低温催化燃烧的燃料电池低温启动策略具有较高的可行性;在不同反应模型的情况下,氢气都可以在微尺度管道内实现稳定的燃烧;表面催化反应对空间气相反应有抑制作用;空间气相与表面催化的耦合反应能得到最高的温度;氢气/空气预混合气体入口流速、导热壁及导热壁材料、管径和当量比均对催化燃烧有着重要的影响。%When contrasting with traditional power system,fuel cell has a lot of advantages. But it still has many practical problems,such as low-temperature cold startup. Different strategies of fuel cell cold startup were discussed. Some related researches on hydrogen catalytic combustion and fuel cell cold startup were summarized and analyzed and the factors affecting the catalytic combustion were investigated. Hydrogen low-temperature catalytic combustion provided one way to achieve effective and reliable startup of fuel cell. Hydrogen could achieve stable combustion in a micro-tube for different reaction models. Surface catalytic combustion restrained gas phase combustion. The highest temperature could be obtained when surface catalytic combustion and gas phase combustion occurred at the same time. Inlet velocity,conductive wall and its material,tube diameter as well as equivalent ratio of hydrogen/air mixture had significant influence on catalytic combustion of hydrogen.

  5. Iron porphyrin-based cathode catalysts for polymer electrolyte membrane fuel cells: Effect of NH{sub 3} and Ar mixtures as pyrolysis gases on catalytic activity and stability

    Energy Technology Data Exchange (ETDEWEB)

    Meng Hui; Larouche, Nicholas; Lefevre, Michel; Jaouen, Frederic; Stansfield, Barry [INRS-Energie, Materiaux et Telecommunications, 1650 boulevard Lionel Boulet, Varennes, Quebec, J3X 1S2 (Canada); Dodelet, Jean-Pol, E-mail: dodelet@emt.inrs.c [INRS-Energie, Materiaux et Telecommunications, 1650 boulevard Lionel Boulet, Varennes, Quebec, J3X 1S2 (Canada)

    2010-09-01

    Ten different catalysts were prepared by loading 66 wt% ClFeTMPP on N330, a furnace grade carbon black, and pyrolyzing this catalyst precursor for 10 min at 950 {sup o}C in a NH{sub 3}/Ar gas mixture with various NH{sub 3} volume fractions (from 0% to 100%). The activity and stability of these catalysts were measured in a fuel cell and compared. The only stable catalyst, although the least active, among these was the one pyrolyzed in pure Ar. A notable leap in catalytic activity, but drop in stability, was observed for all catalysts pyrolyzed in gas mixtures containing NH{sub 3}, even with a mere volume fraction of 1.3% NH{sub 3} in the pyrolysis gas mixture. Catalytic activities increased, while stability decreased with increasing volume fraction of NH{sub 3}. The physicochemical properties of these catalysts were correlated with their electrochemical behaviour observed in fuel cell tests. It was found that a volume fraction of only 1.3% NH{sub 3} was enough to double the micropore surface area, the surface nitrogen and iron concentrations in the resulting catalyst. Since the active sites are believed to be of the Fe/N/C type, the sharp increase in catalytic activity with as little as 1.3% NH{sub 3} is attributed to the concurrent increase in microporous surface area, N and Fe surface contents in these catalysts. The only property that apparently correlates with stability is the degree of graphitization of the catalyst, which was estimated either from either X-ray diffraction and Raman spectroscopy measurements. Lastly, it was found that the catalysts' peroxide yield, resulting from the partial reduction of O{sub 2}, does not correlate with their degree of stability.

  6. Direct catalytic cross-coupling of organolithium compounds

    Science.gov (United States)

    Giannerini, Massimo; Fañanás-Mastral, Martín; Feringa, Ben L.

    2013-08-01

    Catalytic carbon-carbon bond formation based on cross-coupling reactions plays a central role in the production of natural products, pharmaceuticals, agrochemicals and organic materials. Coupling reactions of a variety of organometallic reagents and organic halides have changed the face of modern synthetic chemistry. However, the high reactivity and poor selectivity of common organolithium reagents have largely prohibited their use as a viable partner in direct catalytic cross-coupling. Here we report that in the presence of a Pd-phosphine catalyst, a wide range of alkyl-, aryl- and heteroaryl-lithium reagents undergo selective cross-coupling with aryl- and alkenyl-bromides. The process proceeds quickly under mild conditions (room temperature) and avoids the notorious lithium halogen exchange and homocoupling. The preparation of key alkyl-, aryl- and heterobiaryl intermediates reported here highlights the potential of these cross-coupling reactions for medicinal chemistry and material science.

  7. Catalytic behaviour and surface properties of supported lanthana

    Energy Technology Data Exchange (ETDEWEB)

    Castiglioni, J.; Kieffer, R. (Lab. de Chimie Organique Appliquee, EHICS, 67 - Strasbourg (France)); Botana, F.J.; Calvino, J.J.; Rodriguez-Izquierdo, J.M.; Vidal, H. (Dept. de Quimica Inorganica, Univ. de Cadiz, Puerto Real (Spain))

    1992-03-25

    This paper deals with the role of dispersed lanthana as an active phase in several catalytic reactions: CO hydrogenation, CO oxidation, and oxidative dimerization of methane. Characterization of the prepared catalysts indicates that lanthana can be effectively dispersed on silica and on ceria. While in the case of silica-supported catalysts lanthana appears at the surface, leading to an almost full coverage for loadings higher than 40%, in the case of ceria-based systems, lanthana forms a solid solution with the support. In all the reactions studied, the presence of lanthana can be related to significant changes in the catalytic properties of the bare supports. Thus, the selectivity towards the total oxidation products observed on pure ceria is decreased, and the low activity shown by silica is enhanced. For the CO + H{sub 2} reaction, the addition of lanthana also generates upgraded products. (orig.).

  8. Catalytic synthesis of long-chained alcohols from syngas

    DEFF Research Database (Denmark)

    Christensen, Jakob Munkholt

    This work has been an investigation of the catalytic conversion of syngas into mixed alcohols with Mo-based catalysts. The primary focus has been on the use of alkali promoted cobalt-molybdenum sulfide as a catalyst for the alcohol synthesis. The alcohol synthesis is a possibility for the...... production of gasoline additives/replacements from biomass via a gasification process. It is observed that the sulfide catalyst is able to operate both with and without a sulfur source in the syngas feed, but the presence of a sulfur source like H2S can exert a significant influence on the catalytic...... crystalline Co9S8, which is considered to be inactive, can be observed in the spent catalyst. It is hypothesized that the loss of sulfur from the catalyst in the reducing atmosphere is driving the conversion of cobalt from its active form (possibly a mixed cobalt-molybdenum sulfide) into larger, more sulfur...

  9. Voltammetric determination of ruthenium and rhodium from catalytic hydrogen currents

    International Nuclear Information System (INIS)

    Electroreduction of Ru(3) and Rh(3) complexes with diethyldithiocarbaminate (DEDTC), ethylxanthate (EX) and diethyldithiophosphate (DEDTP) on mercury dropping electrode was studied to choose ligand in catalytically active complex, providing small value of the low limit of determined contents. Reduction was conducted in DMFA mixture with universal buffer solution (1:1). The value of catalytical current of hydrogen, evolved on the electrode, decreased in DEDTC>EX>DEDTP series. DEDTC application enables to determine Rh and Ru during simultaneous presence in 1:10 ratio without separation of base elements (Pt, Pd, Ir, Au) with low limit of determination 2 X 10-8 MRh and 8 X 10-8MRu in copper-nickel sulfide ores. Preliminary extraction of Ru and Rh diethyldithiocarbamates into dichloroethane was used for decreasing the detection limit; this provides 20-fold concentration of elements

  10. Photo catalytic activity of titanium dioxide on phenol degradation

    International Nuclear Information System (INIS)

    Full text: The photo catalytic degradation performance of the TiO2 based heterogeneous photo catalyst was evaluated on the degradation of phenol contaminant found in the wastewater from resins industries. UV spectrophotometry analysis has shown that the wastewater consisted of both phenol and formaldehyde at 274 nm and 251 nm, respectively. However, phenol was selected as the targeted contaminant to study on the photo catalyst activity and degradability. TiO2 powder was coated onto ion exchange resin as support by using a thermal attachment procedure. The results showed that the efficiency of photodegradation activity increased for greater photo catalyst loading. However, above 6 g of catalyst, the degradation was then adversely affected. The photo catalytic kinetics of phenol degradation has followed first order reaction kinetic. The regeneration of the immobilized TiO2 has remained appreciable up to 3 cycles. (author)

  11. First crystal structure and catalytic mechanism of a bacterial glucuronosyltransferase

    International Nuclear Information System (INIS)

    Xanthomonas campestris GumK (β-1,2-glucuronosyltransferase) is a membrane associated protein involved in the biosynthesis of xanthan, an exo polysaccharide crucial for this bacterium's phyto pathogenicity. Xanthan is also used in many important industrial applications. The x-ray crystal structure of apo-GumK was solved at 1.9 A resolution. The enzyme has two well defined Rossmann domains with a catalytic cleft between them. Recently, the crystal structure of GumK complexed with the donor substrate was also solved. We identified a number of catalytically important residues, including Asp157, which serves as the general base in the transfer reaction. The biological and structural data reported here shed light on the molecular basis for donor and acceptor selectivity in glucuronosyltransferases. (author)

  12. Catalytic models developed through social work

    DEFF Research Database (Denmark)

    Jensen, Mogens

    2015-01-01

    The article develops the concept of catalytic processes in relation to social work with adolescents in an attempt to both reach a more nuanced understanding of social work and at the same time to develop the concept of catalytic processes in psychology. The social work is pedagogical treatment of...... adolescents placed in out-of-home care and is characterised using three situated cases as empirical data. Afterwards the concept of catalytic processes is briefly presented and then applied in an analysis of pedagogical treatment in the three cases. The result is a different conceptualisation of the social...... work with new possibilities of development of the work, but also suggestions for development of the concept of catalytic processes....

  13. Catalytic converters as a source of platinum

    Directory of Open Access Journals (Sweden)

    A. Fornalczyk

    2011-10-01

    Full Text Available The increase of Platinum Group Metals demand in automotive industry is connected with growing amount of cars equipped with the catalytic converters. The paper presents the review of available technologies during recycling process. The possibility of removing platinum from the used catalytic converters applying pyrometallurgical and hyrdometallurgical methods were also investigated. Metals such as Cu, Pb, Ca, Mg, Cd were used in the pyrometallurgical research (catalytic converter was melted with Cu, Pb and Ca or Mg and Cd vapours were blown through the whole carrier. In hydrometallurgical research catalytic converters was dissolved in aqua regia. Analysis of Pt contents in the carrier before and after the process was performed by means of atomic absorption spectroscopy. Obtained result were discussed.

  14. Loss of allosteric control but retention of the bifunctional catalytic competence of a fusion protein formed by excision of 260 base pairs from the 3' terminus of pheA from Erwinia herbicola.

    OpenAIRE

    Xia, T.; Zhao, G.; Jensen, R A

    1992-01-01

    A bifunctional protein denoted as the P protein and encoded by pheA is widely present in purple gram-negative bacteria. This P protein carries catalytic domains that specify chorismate mutase (CM-P) and prephenate dehydratase. The instability of a recombinant plasmid carrying a pheA insert cloned from Erwinia herbicola resulted in a loss of 260 bp plus the TAA stop codon from the 3' terminus of pheA. The plasmid carrying the truncated pheA gene (denoted pheA*) was able to complement an Escher...

  15. Kinetic catalytic studies of scorpion's hemocyanin

    International Nuclear Information System (INIS)

    Hemocyanins are copper proteins which function as oxygen carriers in the haemolymph of Molluscs and Arthropods. They possess enzymatic properties: peroxidatic and catalatic activities, although they have neither iron nor porphyrin ring at the active site. The kinetics of the catalytic reaction is described. The reaction of superoxide anion with hemocyanin has been studied using pulse radiolysis at pH 9. The catalytic rate constant is 3.5 X 107 mol-1.l.s-1

  16. Characterization of Aqueous Peroxomolybdates with Catalytic Applicability

    OpenAIRE

    Taube, Fabian

    2003-01-01

    Abstract This thesis is a summary of five papers, containing equilibrium and structure studies of aqueous molybdate and peroxomolybdate species. Some of the peroxomolybdate species have also been studied in terms of their dynamic and catalytic properties. The primary objective was to characterize species with potential catalytic activity, with emphasis on thebleach process of kraft pulp. For this, potentiometry, EXAFS and 17O, 31P, 1H and 95 Mo NMR have been used. The molybdate speciation in ...

  17. MOBILE COMPLEX FOR CATALYTIC THERMAL WASTE TREATMENT

    OpenAIRE

    Vedi V.E.; Rovenskii A.I.

    2012-01-01

    The design and purpose of the basic units of the mobile waste processing complex “MPK” are described. Experimental data of catalytic purification of exhaust gases are presented. Experimental data on catalytic clearing of final gases of a designed mobile incinerator plant are shown. It is defined, that concentrating of parasitic bridging in waste gases of the complex are considerably smaller, rather than allowed by normative documents.

  18. MOBILE COMPLEX FOR CATALYTIC THERMAL WASTE TREATMENT

    Directory of Open Access Journals (Sweden)

    Vedi V.E.

    2012-12-01

    Full Text Available The design and purpose of the basic units of the mobile waste processing complex “MPK” are described. Experimental data of catalytic purification of exhaust gases are presented. Experimental data on catalytic clearing of final gases of a designed mobile incinerator plant are shown. It is defined, that concentrating of parasitic bridging in waste gases of the complex are considerably smaller, rather than allowed by normative documents.

  19. Catalytic ammonia oxidation to nitrogen (I) oxide

    OpenAIRE

    MASALITINA NATALIYA YUREVNA; SAVENKOV ANATOLIY SERGEEVICH

    2015-01-01

    The process of synthesis of nitrous oxide by low-temperature catalytical oxidation of NH has been investigated for organic synthesis. The investigation has been carried out by the stage separation approach with NH oxidation occurring in several reaction zones, which characterized by different catalytic conditions. The selectivity for N₂O was 92–92,5 % at the ammonia conversion of 98–99.5 % in the optimal temperature range.

  20. Preparation and Catalytic Oxidation Activity on 2-mercaptoethanol of a Novel Catalytic Cellulose Fibres

    Institute of Scientific and Technical Information of China (English)

    YAO Yu-yuan; LI Ying-jie; CHEN Wen-xing; Lü Wang-yang; Lü Su-fang; XU Min-hong; LIU Fan

    2007-01-01

    Cobalt tetra(N-carbonylacylic) aminophthalocyanine was supported on cellulose fibres by graft reaction to obtain a novel polymer catalyst, catalytic cellulose fibres (CCF),and the optimal supporting conditions were pH = 6, 80℃,t = 120 min. The catalytic oxidation activity of CCF towards oxidation of 2-mereaptoethanol (MEA) in aqueous solution was investigated. The experimental results demonstrated that CCF had good catalytic oxidation activity on MEA at room temperature, causing no secondary pollution and remaining efficient for the repetitive tests with no obvious decrease of catalytic activity.

  1. Low efficiency deasphalting and catalytic cracking

    International Nuclear Information System (INIS)

    This patent describes a process for converting an asphaltene and metals containing heavy hydrocarbon feed to lighter, more valuable products the metals comprising Ni and V. It comprises: demetallizing the feed by deasphalting the feed in a solvent deasphalting means operating at solvent deasphalting conditions including a solvent: feed volume ratio of about 1:1 to 4:1, using a solvent selected from the group of C4 to 400 degrees F. hydrocarbons and mixtures thereof; recovering from the solvent rich fraction a demetallized oil intermediate product, having a boiling range and containing at least 10 wt.% of the asphaltenes, and 5 to 30% of the Ni and V, and at least 10 wt.% of the solvent present in the solvent rich phase produced in the deasphalting means; catalytically cracking the demetallized oil intermediate product in a catalytic cracking means operating at catalytic cracking conditions to produce a catalytically cracked product vapor fraction having a lower boiling range than the boiling range of the demetallized oil intermediate product; and fractionating the catalytically cracked product in a fractionation means to produce catalytically cracked product fractions

  2. Structural basis for catalytically restrictive dynamics of a high-energy enzyme state

    Science.gov (United States)

    Kovermann, Michael; Ådén, Jörgen; Grundström, Christin; Elisabeth Sauer-Eriksson, A.; Sauer, Uwe H.; Wolf-Watz, Magnus

    2015-07-01

    An emerging paradigm in enzymology is that transient high-energy structural states play crucial roles in enzymatic reaction cycles. Generally, these high-energy or `invisible' states cannot be studied directly at atomic resolution using existing structural and spectroscopic techniques owing to their low populations or short residence times. Here we report the direct NMR-based detection of the molecular topology and conformational dynamics of a catalytically indispensable high-energy state of an adenylate kinase variant. On the basis of matching energy barriers for conformational dynamics and catalytic turnover, it was found that the enzyme's catalytic activity is governed by its dynamic interconversion between the high-energy state and a ground state structure that was determined by X-ray crystallography. Our results show that it is possible to rationally tune enzymes' conformational dynamics and hence their catalytic power--a key aspect in rational design of enzymes catalysing novel reactions.

  3. Single-chain folding of polymers for catalytic systems in water.

    Science.gov (United States)

    Terashima, Takaya; Mes, Tristan; De Greef, Tom F A; Gillissen, Martijn A J; Besenius, Pol; Palmans, Anja R A; Meijer, E W

    2011-04-01

    Enzymes are a source of inspiration for chemists attempting to create versatile synthetic catalysts. In order to arrive at a polymeric chain carrying catalytic units separated spatially, it is a prerequisite to fold these polymers in water into well-defined compartmentalized architectures thus creating a catalytic core. Herein, we report the synthesis, physical properties, and catalytic activity of a water-soluble segmented terpolymer in which a helical structure in the apolar core is created around a ruthenium-based catalyst. The supramolecular chirality of this catalytic system is the result of the self-assembly of benzene-1,3,5-tricarboxamide side chains, while the catalyst arises from the sequential ruthenium-catalyzed living radical polymerization of the different monomers followed by ligand exchange. The polymers exhibit a two-state folding process and show transfer hydrogenation in water. PMID:21405022

  4. Structural models of vanadate-dependent haloperoxidases, their reactivity, immobilization on polymer support and catalytic activities

    Indian Academy of Sciences (India)

    Mannar R Maurya

    2011-03-01

    The design of structural and functional models of enzymes vanadate-dependent haloperoxidases (VHPO) and the isolation and/or generation of species having {VO(H2O)}, {VO2}, {VO(OH)} and {VO(O2)} cores, proposed as intermediate(s) during catalytic action, in solution have been studied. Catalytic potential of these complexes have been tested for oxo-transfer as well as oxidative bromination and sulfide oxidation reactions. Some of the oxidovanadium(IV) and dioxidovanadium(V) complexes have been immobilized on polymer support in order to improve their recycle ability during catalytic activities and turn over number. The formulations of the polymer-anchored complexes are based on the respective neat complexes and conclusions drawn from the various characterization studies. These catalysts have successfully been used for all catalytic reactions mentioned above. These catalysts are stable and recyclable.

  5. Selective Catalytic Synthesis Using the Combination of Carbon Dioxide and Hydrogen: Catalytic Chess at the Interface of Energy and Chemistry.

    Science.gov (United States)

    Klankermayer, Jürgen; Wesselbaum, Sebastian; Beydoun, Kassem; Leitner, Walter

    2016-06-20

    The present Review highlights the challenges and opportunities when using the combination CO2 /H2 as a C1 synthon in catalytic reactions and processes. The transformations are classified according to the reduction level and the bond-forming processes, covering the value chain from high volume basic chemicals to complex molecules, including biologically active substances. Whereas some of these concepts can facilitate the transition of the energy system by harvesting renewable energy into chemical products, others provide options to reduce the environmental impact of chemical production already in today's petrochemical-based industry. Interdisciplinary fundamental research from chemists and chemical engineers can make important contributions to sustainable development at the interface of the energetic and chemical value chain. The present Review invites the reader to enjoy this exciting area of "catalytic chess" and maybe even to start playing some games in her or his laboratory. PMID:27237963

  6. Crystal structure and catalytic mechanism of pyridoxal kinase from Pseudomonas aeruginosa.

    Science.gov (United States)

    Kim, Meong Il; Hong, Minsun

    2016-09-01

    Pyridoxal kinase is a ubiquitous enzyme essential for pyridoxal 5'-phosphate (PLP) homeostasis since PLP is required for the catalytic activity of a variety of PLP-dependent enzymes involved in amino acid, lipid, and sugar metabolism as well as neurotransmitter biosynthesis. Previously, two catalytic mechanisms were proposed with regard to Pdx kinases, in which either the aspartate or the cysteine residue is involved as a catalytic residue. Because the Pdx kinase of Pseudomonas aeruginosa (PaPdxK) contains both residues, the catalytic mechanism of PaPdxK remains elusive. To elucidate the substrate-recognition and catalytic mechanisms of PaPdxK, the crystal structure of PaPdxK was determined at a 2.0 Å resolution. The PaPdxK structure possesses a channel that can accommodate substrates and a metallic cofactor. Our structure-based biochemical and mutational analyses in combination with modeling studies suggest that PaPdxK catalysis is mediated by an acid-base mechanism through the catalytic acid Asp225 and a helical dipole moment. PMID:27425248

  7. Catalytic and surface oxidation processes on transition metal surfaces

    OpenAIRE

    Jaatinen, Sampsa

    2007-01-01

    Transition metals are technologically important catalytic materials. The transition metal catalysts are used for example in petroleum and fertilizer industry. In the car industry the catalytic materials are used in the catalytic converters. Because of the industrial importance the catalytic metals have been widely studied throughout the past decades. Nonetheless, the oxidation mechanisms of small molecules and the effect of alloying to catalytic properties of metals are not fully understood. ...

  8. Nanotemplated High-Temperature Materials for Catalytic Combustion

    Energy Technology Data Exchange (ETDEWEB)

    Elm Svensson, Erik

    2008-06-15

    Catalytic combustion is a promising technology for heat and power applications, especially gas turbines. By using catalytic combustion ultra low emissions of nitrogen oxides (NO{sub x}), carbon monoxide (CO) and unburned hydrocarbons (UHC) can be reached simultaneously, which is very difficult with conventional combustion technologies. Besides achieving low emission levels, catalytic combustion can stabilize the combustion and thereby be used to obtain stable combustion with low heating-value gases. This thesis is focused on the high-temperature part of the catalytic combustor. The level of performance demanded on this part has proven hard to achieve. In order to make the catalytic combustor an alternative to the conventional flame combustor, more stable catalysts with higher activity have to be developed. The objective of this work was to develop catalysts with higher activity and stability, suitable for the high-temperature part of a catalytic combustor fueled by natural gas. Two template-based preparation methods were developed for this purpose. One method was based on soft templates (microemulsion) and the other on hard templates (carbon). Supports known for their stability, magnesia and hexaaluminate, were prepared using the developed methods. Catalytically active materials, perovskite (LaMnO{sub 3}) and ceria (CeO{sub 2}), were added to the supports in order to obtain catalysts with high activities and stabilities. The supports were impregnated with active materials by using a conventional technique as well as by using the microemulsion technique. It was shown that the microemulsion method can be used to prepare catalysts with higher activity compared to the conventional methods. Furthermore, by using a microemulsion to apply active materials onto the support a significantly higher activity was obtained than when using the conventional impregnation technique. Since the catalysts will operate in the catalytic combustor for extended periods of time under harsh

  9. Catalytic Polymer Multilayer Shell Motors for Separation of Organics.

    Science.gov (United States)

    Lin, Zhihua; Wu, Zhiguang; Lin, Xiankun; He, Qiang

    2016-01-26

    A catalytic polymer multilayer shell motor has been developed, which effects fast motion-based separation of charged organics in water. The shell motors are fabricated by sputtering platinum onto the exposed surface of silica templates embedded in Parafilm, followed by layer-by-layer assembly of polyelectrolyte multilayers to the templates. The catalytic shell motors display high bubble propulsion with speeds of up to 260 μm s(-1) (13 body lengths per second). Moreover, the polyelectrolyte multilayers assembled at high pH (pH>9.0) adsorb approximately 89% of dye molecules from water, owing to the electrostatic interaction between the positively charged polymers and the anionic dye molecules, and subsequently release them at neutral pH in a microfluidic device. The efficient propulsion coupled with the effective adsorption behavior of the catalytic shell motors in a microfluidic device results in accelerated separation of organics in water and thus holds considerable promise for water analysis. PMID:26632275

  10. Catalytic behavior of Cu, Ag and Au nanoparticles. A comparison

    OpenAIRE

    Lippits, Meindert Jan

    2010-01-01

    Clearly gold deposited as nanoparticles on a support is a very active catalyst in contrast to bulk gold which does not show any catalytic activity. The question arises if this particle size effect is exclusively valid for gold catalysis or can a similar effect be found in other metals? In the research described in this thesis we investigated copper and silver based catalysts for similar particle size effects as for gold based catalysts. In contrast to gold bulk silver and copper are known to ...

  11. Catalytic hydrogenation of uranyl nitrate - engineering scale studies

    International Nuclear Information System (INIS)

    Uranous nitrate is employed as partitioning agent for the separation of plutonium from uranium in PUREX process, the conventional process for the reprocessing of spent nuclear fuel. It is currently produced from uranyl nitrate solution by the electrochemical route. Since the conversion is only 50%, an innovative method based on catalytic hydrogenation has been developed. Parametric studies have been carried out on 5 L scale using natural uranyl nitrate solution as fed. Based on these studies, number of runs were carried out on engineering scale using contaminated uranyl nitrate solution. More than 100 kg of uranous nitrate has been made. Performance of the reduction process is described in detail. (author)

  12. Catalytic and non-catalytic wet air oxidation of sodium dodecylbenzene sulfonate: kinetics and biodegradability enhancement.

    Science.gov (United States)

    Suárez-Ojeda, María Eugenia; Kim, Jungkwon; Carrera, Julián; Metcalfe, Ian S; Font, Josep

    2007-06-18

    Wet air oxidation (WAO) and catalytic wet air oxidation (CWAO) were investigated as suitable precursors for the biological treatment of industrial wastewater containing sodium dodecylbenzene sulfonate (DBS). Two hours WAO semi-batch experiments were conducted at 15 bar of oxygen partial pressure (P(O2)) and at 180, 200 and 220 degrees C. It was found that the highest temperature provides appreciable total organic carbon (TOC) and chemical oxygen demand (COD) abatement of about 42 and 47%, correspondingly. Based on the main identified intermediates (acetic acid and sulfobenzoic acid) a reaction pathway for DBS and a kinetic model in WAO were proposed. In the case of CWAO experiments, seventy-two hours tests were done in a fixed bed reactor in continuous trickle flow regime, using a commercial activated carbon (AC) as catalyst. The temperature and P(O2) were 140-160 degrees C and 2-9 bar, respectively. The influence of the operating conditions on the DBS oxidation, the occurrence of oxidative coupling reactions over the AC, and the catalytic activity (in terms of substrate removal) were established. The results show that the AC without any supported active metal behaves bi-functional as adsorbent and catalyst, giving TOC conversions up to 52% at 160 degrees C and 2 bar of P(O2), which were comparable to those obtained in WAO experiments. Respirometric tests were completed before and after CWAO and to the main intermediates identified through the WAO and CWAO oxidation route. Then, the readily biodegradable COD (COD(RB)) of the CWAO and WAO effluents were found. Taking into account these results it was possible to compare whether or not the CWAO or WAO effluents were suitable for a conventional activated sludge plant inoculated with non adapted culture. PMID:17363148

  13. Catalytic and non-catalytic wet air oxidation of sodium dodecylbenzene sulfonate: Kinetics and biodegradability enhancement

    International Nuclear Information System (INIS)

    Wet air oxidation (WAO) and catalytic wet air oxidation (CWAO) were investigated as suitable precursors for the biological treatment of industrial wastewater containing sodium dodecylbenzene sulfonate (DBS). Two hours WAO semi-batch experiments were conducted at 15bar of oxygen partial pressure (PO2) and at 180, 200 and 220deg. C. It was found that the highest temperature provides appreciable total organic carbon (TOC) and chemical oxygen demand (COD) abatement of about 42 and 47%, correspondingly. Based on the main identified intermediates (acetic acid and sulfobenzoic acid) a reaction pathway for DBS and a kinetic model in WAO were proposed. In the case of CWAO experiments, seventy-two hours tests were done in a fixed bed reactor in continuous trickle flow regime, using a commercial activated carbon (AC) as catalyst. The temperature and PO2 were 140-160deg. C and 2-9bar, respectively. The influence of the operating conditions on the DBS oxidation, the occurrence of oxidative coupling reactions over the AC, and the catalytic activity (in terms of substrate removal) were established. The results show that the AC without any supported active metal behaves bi-functional as adsorbent and catalyst, giving TOC conversions up to 52% at 160deg. C and 2 bar of PO2, which were comparable to those obtained in WAO experiments. Respirometric tests were completed before and after CWAO and to the main intermediates identified through the WAO and CWAO oxidation route. Then, the readily biodegradable COD (CODRB) of the CWAO and WAO effluents were found. Taking into account these results it was possible to compare whether or not the CWAO or WAO effluents were suitable for a conventional activated sludge plant inoculated with non adapted culture

  14. Catalytic and non-catalytic wet air oxidation of sodium dodecylbenzene sulfonate: Kinetics and biodegradability enhancement

    Energy Technology Data Exchange (ETDEWEB)

    Suarez-Ojeda, Maria Eugenia [Departament d' Enginyeria Quimica, Escola Tecnica Superior d' Enginyeria Quimica, Universitat Rovira i Virgili, Av. Paisos Catalans 26, 43007 Tarragona, Catalonia (Spain); Departament d' Enginyeria Quimica, Edifici Q-ETSE, Universitat Autonoma de Barcelona, 08193 Bellaterra, Barcelona, Catalonia (Spain); Kim, Jungkwon [Chemical Engineering and Analytical Sciences Department, University of Manchester, Manchester (United Kingdom); Carrera, Julian [Departament d' Enginyeria Quimica, Edifici Q-ETSE, Universitat Autonoma de Barcelona, 08193 Bellaterra, Barcelona, Catalonia (Spain); Metcalfe, Ian S. [Chemical Engineering and Advanced Materials Department, University of Newcastle upon Tyne, Newcastle upon Tyne (United Kingdom); Font, Josep [Departament d' Enginyeria Quimica, Escola Tecnica Superior d' Enginyeria Quimica, Universitat Rovira i Virgili, Av. Paisos Catalans 26, 43007 Tarragona, Catalonia (Spain)]. E-mail: jose.font@urv.cat

    2007-06-18

    Wet air oxidation (WAO) and catalytic wet air oxidation (CWAO) were investigated as suitable precursors for the biological treatment of industrial wastewater containing sodium dodecylbenzene sulfonate (DBS). Two hours WAO semi-batch experiments were conducted at 15bar of oxygen partial pressure (P{sub O{sub 2}}) and at 180, 200 and 220deg. C. It was found that the highest temperature provides appreciable total organic carbon (TOC) and chemical oxygen demand (COD) abatement of about 42 and 47%, correspondingly. Based on the main identified intermediates (acetic acid and sulfobenzoic acid) a reaction pathway for DBS and a kinetic model in WAO were proposed. In the case of CWAO experiments, seventy-two hours tests were done in a fixed bed reactor in continuous trickle flow regime, using a commercial activated carbon (AC) as catalyst. The temperature and P{sub O{sub 2}} were 140-160deg. C and 2-9bar, respectively. The influence of the operating conditions on the DBS oxidation, the occurrence of oxidative coupling reactions over the AC, and the catalytic activity (in terms of substrate removal) were established. The results show that the AC without any supported active metal behaves bi-functional as adsorbent and catalyst, giving TOC conversions up to 52% at 160deg. C and 2 bar of P{sub O{sub 2}}, which were comparable to those obtained in WAO experiments. Respirometric tests were completed before and after CWAO and to the main intermediates identified through the WAO and CWAO oxidation route. Then, the readily biodegradable COD (COD{sub RB}) of the CWAO and WAO effluents were found. Taking into account these results it was possible to compare whether or not the CWAO or WAO effluents were suitable for a conventional activated sludge plant inoculated with non adapted culture.

  15. Catalytic combustion of toluene over Pd-based monolithic catalysts with a novel washcoat Ce_(0.8)Zr_(0.15)La_(0.05)O_δ

    Institute of Scientific and Technical Information of China (English)

    YUE Lei; ZHAO Leihong; ZHANG Qingbao; ZHANG Tian; LUO Mengfei

    2009-01-01

    Two novel washcoats Ce_(0.8)Zr_(0.15)La_(0.05)O_δ and Ce_(0.5)Zr_(0.2)O_2 was prepared by an impregnation method, which acted as a host for the active Pd component to prepare Pd/Ce_(0.8)Zr_(0.15)La_(0.05)O_δ/substrate and Pd/Ce_(0.5)Zr_(0.2)O_2/substrate monolithic catalysts for toluene combustion.The washcoats was characterized by X-ray diffraction (XRD), Raman spectroscopy, Brunauner-Emmett-Teller (BET), and H_2-temperature-programmed reduction (H2-TPR). The result indicated that both the washcoats had strong vibration-shock resistance accord-hag to ultrasonic test. Doping La3+ into CeO_2-ZrO_2 solid solution could generate more oxygen vacancies, and could inhibit the sinter of CeO_2-ZrO_2 solid solution when calcined at high temperatures (800, 900 and 1000 ℃). The washcoat Ce_(0.8)Zr_(0.15)La_(0.05)O_δ had much better re-dox properties. The reductive temperature of Ce~(4+) species shifted to low temperature by 60℃ when the washcoats calcined at high tempera-tures (800, 900 and 1000 ℃). The Pd/Ce_(0.8)Zr_(0.15)La_(0.05)O_δ/substrate monolithic catalyst calcination at 500℃ had the best catalytic activity and the 95% toluene conversion at a temperature as low as 190℃. When calcined at low temperature (500 and 700 ℃), the catalytic activity has little improvement, however, when calcined at high temperature, the catalytic activity of Pd/Ce_(0.8)Zr_(0.15)La_(0.05)O_δ/substrate monolithic catalysts had significant improvement. As catalyst washcoat, the Ce_(0.5)Zr_(0.15)La_(0.05)O_δ had better thermal stability than the washcoat Ce_(0.8)Zr_(0.2)O_2 the de-veloped Pd/Ce_(0.8)Zr_(0.15)La_(0.05)O_δ/substrate monolithic catalyst in this work was promising for eliminating Volatile organic compounds.

  16. Discussion of risks of platinum resources based on a function orientated criticality assessment. Shown by cytostatic drugs and automotive catalytic converters; Diskussion der Risiken der Ressource Platin auf Basis eines um funktionale Faktoren erweiterten Kritikalitaetsassessments. Dargestellt am Beispiel platinhaltiger Zytostatika und Autoabgaskatalysatoren

    Energy Technology Data Exchange (ETDEWEB)

    Thorenz, Andrea; Reller, Armin [University of Augsburg, Chair of Resource Strategy, Environment Science Center, Augsburg (Germany)

    2011-12-15

    The purpose of the study is the enhancement of criticality assessments for resources in order to address function specific factors like dissipation, recycling, bio-activity and toxicity. The developed methodology is applied to platinum-containing cytostatic drugs and automotive catalytic converters. Methods: The study is methodically based on an analysis of resource specific factors like exploration rates, reserves-to-production ratio and regional distribution of exploration areas as well as on the investigation of product/functional depending factors like recycling rates, dissipation rates, bio-diversity and toxicity. Taking into account that economic and ecological risks may occur at any stage of the supply, consumption and dissipation processes, the whole life cycles of the two analyzed products (cytostatic drugs and automotive catalytic converters) are considered. As an approach to reduce potential economic and ecological risks the study is especially focused on recycling strategies. In order to get a better understanding of platinum as an essential resource for the development of our society the history and the cultural impact of the term ''resource'' are introduced. The availability of platinum is crucial for several products of our modern society. Areas of application are e.g. jewellery, automotive catalytic converters, investments (coins, bars), computers, mobile devices, fertilizers and cytostatic drugs. Economic risks are caused by limited sources and dynamic demand of new application areas like fuel cells and drugs. Platinum-containing drugs are used for the treatment of several kinds of cancer such as testicular, breast, colon and prostate. Currently the pharmaceutical industry requires 6,9 tons per year (3 percent of the total demand of platinum). Due to the improvement of medical standards and the ageing society, especially in developing countries, the demand of platinum-containing drugs will rise significantly. The dissipation of

  17. Catalytic Preparation of Pyrrolidones from Renewable Resources

    Energy Technology Data Exchange (ETDEWEB)

    Frye, John G.; Zacher, Alan H.; Werpy, Todd A.; Wang, Yong

    2005-06-01

    Abstract Use of renewable resources for production of valuable chemical commodities is becoming a topic of great national interest and importance. This objective fits well with the U.S. DOE’s objective of promoting the industrial bio-refinery concept in which a wide array of valuable chemical, fuel, food, nutraceuticals, and animal feed products all result from the integrated processing of grains, oil seeds, and other bio-mass materials. The bio-refinery thus serves to enhance the overall utility and profitability of the agriculture industry as well as helping to reduce the USA’s dependence on petroleum. Pyrrolidones fit well into the bio-refinery concept since they may be produced in a scheme beginning with the fermentation of a portion of the bio-refinery’s sugar product into succinate. Pyrrolidones are a class of industrially important chemicals with a variety of uses including polymer intermediates, cleaners, and “green solvents” which can replace hazardous chlorinated compounds. Battelle has developed an efficient process for the thermo-catalytic conversion of succinate into pyrrolidones, especially n-methyl-2-pyrrolidone. The process uses both novel Rh based catalysts and novel aqueous process conditions and results in high selectivities and yields of pyrrolidone compounds. The process also includes novel methodology for enhancing yields by recycling and converting non-useful side products of the catalysis into additional pyrrolidone. The process has been demonstrated in both batch and continuous reactors. Additionally, stability of the unique Rh-based catalyst has been demonstrated.

  18. The electrochemical recovery of metallic palladium from spent electroless plating solution

    Science.gov (United States)

    Warner, Nathan; Free, Michael L.

    2009-10-01

    Semiconductor bond pads are sometimes coated with palladium for good electrical properties and wire adhesion. The palladium is deposited by immersing the wafers in an electroless plating solution. When the plating solution is depleted and no longer achieves the desired results it is treated as waste. This work investigates the recovery of the remaining palladium in the waste solution by means of electrochemical deposition onto a high surface area cathode. Experiments show that the remaining palladium can be recovered economically and efficiently. This makes the process environmentally friendly and cost effective.

  19. A novel liquid system of catalytic hydrogenation

    Institute of Scientific and Technical Information of China (English)

    LI; XiaoNian; XIANG; YiZhi

    2007-01-01

    On the basis that endothermic aqueous-phase reforming of oxygenated hydrocarbons for H2 production and exothermic liquid phase hydrogenation of organic compounds are carried out under extremely close conditions of temperature and pressure over the same type of catalyst, a novel liquid system of catalytic hydrogenation has been proposed, in which hydrogen produced from aqueous-phase reforming of oxygenated hydrocarbons is in situ used for liquid phase hydrogenation of organic compounds. The usage of active hydrogen generated from aqueous-phase reforming of oxygenated hydrocarbons for liquid catalytic hydrogenation of organic compounds could lead to increasing the selectivity to H2 in the aqueous-phase reforming due to the prompt removal of hydrogen on the active centers of the catalyst. Meanwhile, this novel liquid system of catalytic hydrogenation might be a potential method to improve the selectivity to the desired product in liquid phase catalytic hydrogenation of organic compounds. On the other hand, for this novel liquid system of catalytic hydrogenation, some special facilities for H2 generation, storage and transportation in traditional liquid phase hydrogenation industry process are yet not needed. Thus, it would simplify the working process of liquid phase hydrogenation and increase the energy usage and hydrogen productivity.

  20. Catalytic Oxidation of Methane into Methanol over Copper-Exchanged Zeolites with Oxygen at Low Temperature.

    Science.gov (United States)

    Narsimhan, Karthik; Iyoki, Kenta; Dinh, Kimberly; Román-Leshkov, Yuriy

    2016-06-22

    The direct catalytic conversion of methane to liquid oxygenated compounds, such as methanol or dimethyl ether, at low temperature using molecular oxygen is a grand challenge in C-H activation that has never been met with synthetic, heterogeneous catalysts. We report the first demonstration of direct, catalytic oxidation of methane into methanol with molecular oxygen over copper-exchanged zeolites at low reaction temperatures (483-498 K). Reaction kinetics studies show sustained catalytic activity and high selectivity for a variety of commercially available zeolite topologies under mild conditions (e.g., 483 K and atmospheric pressure). Transient and steady state measurements with isotopically labeled molecules confirm catalytic turnover. The catalytic rates and apparent activation energies are affected by the zeolite topology, with caged-based zeolites (e.g., Cu-SSZ-13) showing the highest rates. Although the reaction rates are low, the discovery of catalytic sites in copper-exchanged zeolites will accelerate the development of strategies to directly oxidize methane into methanol under mild conditions. PMID:27413787

  1. PINGU: PredIction of eNzyme catalytic residues usinG seqUence information.

    Directory of Open Access Journals (Sweden)

    Priyadarshini P Pai

    Full Text Available Identification of catalytic residues can help unveil interesting attributes of enzyme function for various therapeutic and industrial applications. Based on their biochemical roles, the number of catalytic residues and sequence lengths of enzymes vary. This article describes a prediction approach (PINGU for such a scenario. It uses models trained using physicochemical properties and evolutionary information of 650 non-redundant enzymes (2136 catalytic residues in a support vector machines architecture. Independent testing on 200 non-redundant enzymes (683 catalytic residues in predefined prediction settings, i.e., with non-catalytic per catalytic residue ranging from 1 to 30, suggested that the prediction approach was highly sensitive and specific, i.e., 80% or above, over the incremental challenges. To learn more about the discriminatory power of PINGU in real scenarios, where the prediction challenge is variable and susceptible to high false positives, the best model from independent testing was used on 60 diverse enzymes. Results suggested that PINGU was able to identify most catalytic residues and non-catalytic residues properly with 80% or above accuracy, sensitivity and specificity. The effect of false positives on precision was addressed in this study by application of predicted ligand-binding residue information as a post-processing filter. An overall improvement of 20% in F-measure and 0.138 in Correlation Coefficient with 16% enhanced precision could be achieved. On account of its encouraging performance, PINGU is hoped to have eventual applications in boosting enzyme engineering and novel drug discovery.

  2. Catalytic partial oxidation of pyrolysis oils

    Science.gov (United States)

    Rennard, David Carl

    2009-12-01

    This thesis explores the catalytic partial oxidation (CPO) of pyrolysis oils to syngas and chemicals. First, an exploration of model compounds and their chemistries under CPO conditions is considered. Then CPO experiments of raw pyrolysis oils are detailed. Finally, plans for future development in this field are discussed. In Chapter 2, organic acids such as propionic acid and lactic acid are oxidized to syngas over Pt catalysts. Equilibrium production of syngas can be achieved over Rh-Ce catalysts; alternatively mechanistic evidence is derived using Pt catalysts in a fuel rich mixture. These experiments show that organic acids, present in pyrolysis oils up to 25%, can undergo CPO to syngas or for the production of chemicals. As the fossil fuels industry also provides organic chemicals such as monomers for plastics, the possibility of deriving such species from pyrolysis oils allows for a greater application of the CPO of biomass. However, chemical production is highly dependent on the originating molecular species. As bio oil comprises up to 400 chemicals, it is essential to understand how difficult it would be to develop a pure product stream. Chapter 3 continues the experimentation from Chapter 2, exploring the CPO of another organic functionality: the ester group. These experiments demonstrate that equilibrium syngas production is possible for esters as well as acids in autothermal operation with contact times as low as tau = 10 ms over Rh-based catalysts. Conversion for these experiments and those with organic acids is >98%, demonstrating the high reactivity of oxygenated compounds on noble metal catalysts. Under CPO conditions, esters decompose in a predictable manner: over Pt and with high fuel to oxygen, non-equilibrium products show a similarity to those from related acids. A mechanism is proposed in which ethyl esters thermally decompose to ethylene and an acid, which decarbonylates homogeneously, driven by heat produced at the catalyst surface. Chapter 4

  3. Highly Dense Isolated Metal Atom Catalytic Sites

    DEFF Research Database (Denmark)

    Chen, Yaxin; Kasama, Takeshi; Huang, Zhiwei; Hu, Pingping; Chen, Jianmin; Liu, Xi; Tang, Xingfu

    2015-01-01

    Atomically dispersed noble-metal catalysts with highly dense active sites are promising materials with which to maximise metal efficiency and to enhance catalytic performance; however, their fabrication remains challenging because metal atoms are prone to sintering, especially at a high metal...... loading. A dynamic process of formation of isolated metal atom catalytic sites on the surface of the support, which was achieved starting from silver nanoparticles by using a thermal surface-mediated diffusion method, was observed directly by using in situ electron microscopy and in situ synchrotron X......-ray diffraction. A combination of electron microscopy images with X-ray absorption spectra demonstrated that the silver atoms were anchored on five-fold oxygen-terminated cavities on the surface of the support to form highly dense isolated metal active sites, leading to excellent reactivity in catalytic oxidation...

  4. ADAR proteins: structure and catalytic mechanism.

    Science.gov (United States)

    Goodman, Rena A; Macbeth, Mark R; Beal, Peter A

    2012-01-01

    Since the discovery of the adenosine deaminase (ADA) acting on RNA (ADAR) family of proteins in 1988 (Bass and Weintraub, Cell 55:1089-1098, 1988) (Wagner et al. Proc Natl Acad Sci U S A 86:2647-2651, 1989), we have learned much about their structure and catalytic mechanism. However, much about these enzymes is still unknown, particularly regarding the selective recognition and processing of specific adenosines within substrate RNAs. While a crystal structure of the catalytic domain of human ADAR2 has been solved, we still lack structural data for an ADAR catalytic domain bound to RNA, and we lack any structural data for other ADARs. However, by analyzing the structural data that is available along with similarities to other deaminases, mutagenesis and other biochemical experiments, we have been able to advance the understanding of how these fascinating enzymes function. PMID:21769729

  5. Catalytic microreactors for portable power generation

    Energy Technology Data Exchange (ETDEWEB)

    Karagiannidis, Symeon [Paul Scherer Institute, Villigen (Switzerland)

    2011-07-01

    ''Catalytic Microreactors for Portable Power Generation'' addresses a problem of high relevance and increased complexity in energy technology. This thesis outlines an investigation into catalytic and gas-phase combustion characteristics in channel-flow, platinum-coated microreactors. The emphasis of the study is on microreactor/microturbine concepts for portable power generation and the fuels of interest are methane and propane. The author carefully describes numerical and experimental techniques, providing a new insight into the complex interactions between chemical kinetics and molecular transport processes, as well as giving the first detailed report of hetero-/homogeneous chemical reaction mechanisms for catalytic propane combustion. The outcome of this work will be widely applied to the industrial design of micro- and mesoscale combustors. (orig.)

  6. Catalytic nanoarchitectonics for environmentally compatible energy generation

    Directory of Open Access Journals (Sweden)

    Hideki Abe

    2016-01-01

    Full Text Available Environmentally compatible energy management is one of the biggest challenges of the 21st century. Low-temperature conversion of chemical to electrical energy is of particular importance to minimize the impact to the environment while sustaining the consumptive economy. In this review, we shed light on one of the most versatile energy-conversion technologies: heterogeneous catalysts. We establish the integrity of structural tailoring in heterogeneous catalysts at different scales in the context of an emerging paradigm in materials science: catalytic nanoarchitectonics. Fundamental backgrounds of energy-conversion catalysis are first provided together with a perspective through state-of-the-art energy-conversion catalysis including catalytic exhaust remediation, fuel-cell electrocatalysis and photosynthesis of solar fuels. Finally, the future evolution of catalytic nanoarchitectonics is overviewed: possible combinations of heterogeneous catalysts, organic molecules and even enzymes to realize reaction-selective, highly efficient and long-life energy conversion technologies which will meet the challenge we face.

  7. Use catalytic combustion for LHV gases

    Energy Technology Data Exchange (ETDEWEB)

    Tucci, E.R.

    1982-03-01

    This paper shows how low heating value (LHV) waste gases can be combusted to recover energy even when the gases won't burn in a normal manner. Significant energy and economic savings can result by adopting this process. Catalytic combustion is a heterogeneous surface-catalyzed air oxidation of fuel, gaseous or liquid, to generate thermal energy in a flameless mode. The catalytic combustion process is quite complex since it involves numerous catalytic surface and gas-phase chemical reactions. During low temperature surface-catalyzed combustion, as in start-up, the combustion stage is under kinetically controlled conditions. The discussion covers the following topics - combustor substrates; combustor washcoating and catalyzing; combustor operational modes (turbine or tabular modes); applications in coal gasification and in-situ gasification; waste process gases. 16 refs.

  8. Xylan-Degrading Catalytic Flagellar Nanorods.

    Science.gov (United States)

    Klein, Ágnes; Szabó, Veronika; Kovács, Mátyás; Patkó, Dániel; Tóth, Balázs; Vonderviszt, Ferenc

    2015-09-01

    Flagellin, the main component of flagellar filaments, is a protein possessing polymerization ability. In this work, a novel fusion construct of xylanase A from B. subtilis and Salmonella flagellin was created which is applicable to build xylan-degrading catalytic nanorods of high stability. The FliC-XynA chimera when overexpressed in a flagellin deficient Salmonella host strain was secreted into the culture medium by the flagellum-specific export machinery allowing easy purification. Filamentous assemblies displaying high surface density of catalytic sites were produced by ammonium sulfate-induced polymerization. FliC-XynA nanorods were resistant to proteolytic degradation and preserved their enzymatic activity for a long period of time. Furnishing enzymes with self-assembling ability to build catalytic nanorods offers a promising alternative approach to enzyme immobilization onto nanostructured synthetic scaffolds. PMID:25966869

  9. Flow parameters of IC engine catalytic converters

    Energy Technology Data Exchange (ETDEWEB)

    Zmudka, Z.; Postrzednik, S. [Silesian Univ. of Tech., Gliwice (Poland)

    2007-07-01

    Conversion rate of harmful substances is the principal parameter of catalyst work in respect of ecology. However, resistance of exhaust gas flow through the catalytic converter is also essential problem, apart from its chemical efficiency because fitting the catalyst in exhaust system alters flow characteristic of this system significantly. Catalytic converter can be treated as local or linear resistance element of exhaust system. The first model, in which flow resistance generated by a catalyst is treated as local resistance, is more simplified. Resistance number of the converter was calculated using Darcy model. In the second case, exhaust gas flow resistance through catalyst is treated as linear resistance with energy dissipation (linear frictional resistance) distributed linearly along way of exhaust gas flow. Friction number for the tested converter was calculated and analysed. The problem has been illustrated by results of experimental researches of three-way catalytic converter installed in exhaust system of spark ignition engine and its basic analysis. (orig.)

  10. Electro Catalytic Oxidation (ECO) Operation

    Energy Technology Data Exchange (ETDEWEB)

    Morgan Jones

    2011-03-31

    The power industry in the United States is faced with meeting many new regulations to reduce a number of air pollutants including sulfur dioxide, nitrogen oxides, fine particulate matter, and mercury. With over 1,000 power plants in the US, this is a daunting task. In some cases, traditional pollution control technologies such as wet scrubbers and SCRs are not feasible. Powerspan's Electro-Catalytic Oxidation, or ECO{reg_sign} process combines four pollution control devices into a single integrated system that can be installed after a power plant's particulate control device. Besides achieving major reductions in emissions of sulfur dioxide (SO{sub 2}), nitrogen oxides (NOx), fine particulate matter (PM2.5) and mercury (Hg), ECO produces a highly marketable fertilizer, which can help offset the operating costs of the process system. Powerspan has been operating a 50-MW ECO commercial demonstration unit (CDU) at FirstEnergy Corp.'s R.E. Burger Plant near Shadyside, Ohio, since February 2004. In addition to the CDU, a test loop has been constructed beside the CDU to demonstrate higher NOx removal rates and test various scrubber packing types and wet ESP configurations. Furthermore, Powerspan has developed the ECO{reg_sign}{sub 2} technology, a regenerative process that uses a proprietary solvent to capture CO{sub 2} from flue gas. The CO{sub 2} capture takes place after the capture of NOx, SO{sub 2}, mercury, and fine particulate matter. Once the CO{sub 2} is captured, the proprietary solution is regenerated to release CO{sub 2} in a form that is ready for geological storage or beneficial use. Pilot scale testing of ECO{sub 2} began in early 2009 at FirstEnergy's Burger Plant. The ECO{sub 2} pilot unit is designed to process a 1-MW flue gas stream and produce 20 tons of CO{sub 2} per day, achieving a 90% CO{sub 2} capture rate. The ECO{sub 2} pilot program provided the opportunity to confirm process design and cost estimates, and prepare for large

  11. High catalytic efficiency of palladium nanoparticles immobilized in a polymer membrane containing poly(ionic liquid) in Suzuki–Miyaura cross-coupling reaction

    OpenAIRE

    Gu, Yingying; Favier, Isabelle; Pradel, Christian; Gin, Douglas L.; Lahitte, Jean-Francois; Noble, Richard D.; Gómez, Montserrat; Remigy, Jean-Christophe

    2015-01-01

    The elaboration of a polymeric catalytic membrane containing palladium nanoparticles is presented. The membrane was prepared using a photo-grafting process with imidazolium-based ionic liquid monomers as modifying agent and microPES® as support membrane. Ionic liquid serves as a stabilizer and immobilizer for the catalytic species, i.e. palladium nanoparticles. The Suzuki–Miyaura cross-coupling reaction was carried out on the catalytic membrane in flow-through configuration. Complete conversi...

  12. A catalytic surface for amyloid fibril formation

    Energy Technology Data Exchange (ETDEWEB)

    Hammarstroem, P; Ali, M M; Mishra, R; Tengvall, P; Lundstroem, I [Department of Physics, Biology and Chemistry, Linkoeping University, SE-581 83 Linkoeping (Sweden); Svensson, S [Astra Zeneca R and D, SE-151 85 Soedertaelje (Sweden)], E-mail: ingemar@ifm.liu.se

    2008-03-15

    A hydrophobic surface incubated in a solution of protein molecules (insulin monomers) was made into a catalytic surface for amyloid fibril formation by repeatedly incubate, rinse and dry the surface. The present contribution describes how this unexpected transformation occurred and its relation to rapid fibrillation of insulin solutions in contact with the surface. A tentative model of the properties of the catalytic surface is given, corroborated by ellipsometric measurements of the thickness of the organic layer on the surface and by atomic force microscopy. The surfaces used were spontaneously oxidized silicon made hydrophobic through treatment in dichlorodimethylsilane.

  13. Thermal and catalytic pyrolysis of plastic waste

    Directory of Open Access Journals (Sweden)

    Débora Almeida

    2016-02-01

    Full Text Available Abstract The amount of plastic waste is growing every year and with that comes an environmental concern regarding this problem. Pyrolysis as a tertiary recycling process is presented as a solution. Pyrolysis can be thermal or catalytical and can be performed under different experimental conditions. These conditions affect the type and amount of product obtained. With the pyrolysis process, products can be obtained with high added value, such as fuel oils and feedstock for new products. Zeolites can be used as catalysts in catalytic pyrolysis and influence the final products obtained.

  14. Catalytic Enantioselective Functionalization of Unactivated Terminal Alkenes.

    Science.gov (United States)

    Coombs, John R; Morken, James P

    2016-02-01

    Terminal alkenes are readily available functional groups which appear in α-olefins produced by the chemical industry, and they appear in the products of many contemporary synthetic reactions. While the organic transformations that apply to alkenes are amongst the most studied reactions in all of chemical synthesis, the number of reactions that apply to nonactivated terminal alkenes in a catalytic enantioselective fashion is small in number. This Minireview highlights the cases where stereocontrol in catalytic reactions of 1-alkenes is high enough to be useful for asymmetric synthesis. PMID:26764019

  15. Catalytic gasification of oil-shales

    Energy Technology Data Exchange (ETDEWEB)

    Lapidus, A.; Avakyan, T. [I.M. Gubkin Russian State Univ. of Oil and Gas, Moscow (Russian Federation); Strizhakova, Yu. [Samara State Univ. (Russian Federation)

    2012-07-01

    Nowadays, the problem of complex usage of solid fossil fuels as raw materials for obtaining of motor fuels and chemical products is becoming increasingly important. A one of possible solutions of the problem is their gasification with further processing of gaseous and liquid products. In this work we have investigated the process of thermal and catalytic gasification of Baltic and Kashpir oil-shales. We have shown that, as compared with non-catalytic process, using of nickel catalyst in the reaction increases the yield of gas, as well as hydrogen content in it, and decreases the amount of liquid products. (orig.)

  16. Heterogeneous Catalytic Ozonization of Sulfosalicylic Acid

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    This paper describes the potential of heterogeneous catalytic ozonization of sulfo-salicylic acid (SSal). It was found that catalytic ozonization in the presence of Mn-Zr-O (a modified manganese dioxide supported on silica gel) had significantly enhanced the removal rate (72%) of total organic carbon (TOC) compared with that of ozonization alone (19%). The efficient removal rate of TOC was probably due to increasing the adsorption ability of catalyst and accelerating decomposition of ozone to produce more powerful oxidants than ozone.

  17. Catalytic microwave pyrolysis of biomass for renewable phenols and fuels

    Science.gov (United States)

    Bu, Quan

    Bio-oil is an unstable intermediate and needs to be upgraded before its use. This study focused on improving the selectivity of bio-oilby catalytic pyrolysis of biomass using activated carbon (AC) catalysts. Firstly, the effects of process conditions on product quality and product yield were investigated by catalytic microwave pyrolysis of biomass using AC as a catalyst. The optimized reaction condition for bio-oil and volatile was determined. Chemical composition analysis by GC/MS showed that phenols rich bio-oils were obtained. Furthermore, the effects of different carbon sources based AC catalysts on products yield and chemical composition selectivity of obtained bio-oils were investigated during microwave pyrolysis of Douglas fir pellet. The catalysts recycling test of the selected catalysts indicated that the AC catalysts can be used for 3-4 times with high concentration of phenolic compounds. The individual surface polar/acidic oxygen functional groups analysis suggested the changes of functional groups in ACs explained the reaction mechanism of this process. In addition, the potential for production of renewable phenols and fuels by catalytic pyrolysis of biomass using lignin as a model compound was explored. The main chemical compounds of the obtained bio-oils were phenols, guaiacols, hydrocarbons and esters. The thermal decomposition behaviors of lignin and kinetics study were investigated by TGA. The change of functional groups of AC catalyst indicated the bio-oil reduction was related to the reaction mechanism of this process. Finally, the effects of Fe-modified AC catalyst on bio-oil upgrading and kintic study of biomass pyrolysis were investigated. The catalytic pyrolysis of biomass using the Fe-modified AC catalyst may promote the occurrence of the fragmentation of cellulose, rather than repolymerization as in the non-catalytic pyrolysis which leads to partial of guaiacols derived from furans. Results showed that the main chemical compounds of bio

  18. Aconitase: its source of catalytic protons

    International Nuclear Information System (INIS)

    An ordinary isotope partition experiment was performed to determine the rate of dissociation of the proton from the donor site for the hydration of cis-aconitate. Aconitase in [3H] water was efficiently diluted into well-mixed solutions of cis-aconitate. Citrate and isocitrate that were formed within 2 s were more heavily labeled than could be explained by consideration of an isotope effect in the processing of one proton per enzyme equivalent. Control experiments indicate that mixing was much more rapid than catalytic turnover, ruling out incompletely diluted [3H] water as a significant isotope source. Therefore, it appears that significantly more than one enzyme-bound tritium atom (protons) must have been used in the course of the multiple turnover of the enzyme after the dilution was complete. Isotope incorporation reached values in excess of four proton equivalent as a limit with simple Michaelis dependence on cis-aconitate. From the half-saturation concentration value for trapping, 0.15 mM, the t/sub 1/2/ for exchange of each of these protons with solvent appears to be ∼0.1 s at 00C. The large number of protons trapped seems to suggest the existence of a structurally stabilized pool of protons, or water, that communicates between the active site base and the medium in the hydration of cis-aconitate. The proton abstracted in the dehydration of [3H] citrate is transferred directly to undissociated cis-aconitate to form isocitrate without dilution, or cis-aconitate having dissociated, the tritium passes to the medium, presumably through the pool of bound protons indicated above. All of the citrate-derived protons can be found in isocitrate if cis-aconitate is added in sufficient concentration. Therefore, the abstracted proton dissociates slowly, if at all, from the enzyme in all intermediates except those from which cis-aconitate has dissociated

  19. A review of liquid-phase catalytic hydrodechlorination

    Directory of Open Access Journals (Sweden)

    Alba Nelly Ardila Arias

    2010-04-01

    Full Text Available This survey was aimed at introducing the effect of light organochlorinated compound emissions on the envi-ronment, particularly on water, air, soil, biota and human beings. The characteristics and advantages of liquid phase catalytic hydrodechlorination as a technology for degrading these chlorinated compounds is also outlined and the main catalysts used in the hydrodechlorination process are described. Special emphasis is placed on palladium catalysts, their activity, the nature of active species and deactivation. The effect of several parameters is introduced, such as HCl, solvent, base addition and type of reducing agent used. The main results of kinetic studies, reactors used and the most important survey conclusions are presented.

  20. On the catalytic mechanisms of lytic polysaccharide monooxygenases.

    Science.gov (United States)

    Walton, Paul H; Davies, Gideon J

    2016-04-01

    Lytic polysaccharide monooxygenases (LPMOs) are recently discovered copper-containing oxygenases. LPMOs oxidise recalcitrant polysaccharides such as chitin and cellulose, thereby making these substrates more tractable to canonical chitinase or cellulase action. As such, LPMOs are attracting much attention not only for their capacity to greatly increase the efficiency of production of cellulosic-based biofuels, but also for the new questions they pose about the mechanisms of biological oxidation of recalcitrant substrates. This review draws together the current thinking on the catalytic mechanisms of LPMOs and other copper catalysed oxygenations and provides a blueprint for further investigation into the mechanisms of action of these intriguing enzymes. PMID:27094791

  1. Catalytic Conversion of Bio-oil to Fuel for Transportation

    DEFF Research Database (Denmark)

    Mortensen, Peter Mølgaard

    The incitement for decreasing the modern society's dependency on fossil based fuel and energy is both environmentally and politically driven. Development of biofuels could be part of the future solution. The combination of ash pyrolysis and catalytic upgrading of the produced bio-oil has been...... identied as a prospective route to bio-fuels. The upgrading is most favorably done by hydrodeoxygenation (HDO), producing bio-fuels at a quality equivalent to conventional fossil fuels. The topic of this Ph.D. thesis has been the development of active and stable catalysts for this reaction. In the search...

  2. Assessing the reliability of calculated catalytic ammonia synthesis rates

    DEFF Research Database (Denmark)

    Medford, Andrew James; Wellendorff, Jess; Vojvodic, Aleksandra; Studt, Felix; Abild-Pedersen, Frank; Jacobsen, Karsten Wedel; Bligaard, Thomas; Nørskov, Jens K.

    2014-01-01

    We introduce a general method for estimating the uncertainty in calculated materials properties based on density functional theory calculations. We illustrate the approach for a calculation of the catalytic rate of ammonia synthesis over a range of transition-metal catalysts. The correlation...... between errors in density functional theory calculations is shown to play an important role in reducing the predicted error on calculated rates. Uncertainties depend strongly on reaction conditions and catalyst material, and the relative rates between different catalysts are considerably better described...

  3. Investigations for the implementation of catalytic recombiners in large dry containments in Germany

    International Nuclear Information System (INIS)

    During the past few years, several concepts of mitigation have been developed and tested to limit the hydrogen concentrations in the containment atmosphere during the course of a severe accident. Extensive efforts have been given, especially in Germany and Canada, to investigate the use of catalytic recombiners. Based on the outcome of these research efforts in Germany it was recommended by the Reactor Safety Commission (RSK) in June 1994 to implement a hydrogen mitigation system, based on catalytic recombiners in large dry containments of PWR plants. Investigations are carried out at GRS, sponsored by the German Ministry of Environment, Nature Conservation and Nuclear Safety (BMU), to develop basic requirements for the implementation of a catalytic recombiner system in large dry containments. Severe accidents scenarios were calculated with the system code MELCOR to determine the mass- and energy release rates from the primary system into the containment, necessary to prepare the input data for the containment code calculations. A detailed nodalisation of the containment system of a German PWR plant (Konvoi-type) was developed for the code RA-LOC MOD4 to investigate the effectiveness of a catalytic recombiner system which consists of 53 of such devices, being distributed in the complex room arrangement. The effectiveness of such a system is demonstrated by comparing a representative severe accident sequence without and with the catalytic recombination of hydrogen. The results showed, that only in some limited areas in the containment combustible gas mixtures were formed for a limited time span and that at the end of the first day after the onset of the accident the catalytic reaction is limited due to oxygen depletion. The work is still in progress while additional severe accident sequences have to be analyzed to develop some generic guidelines for the implementation of a catalytic recombiner system in large dry containments. (author)

  4. Computer-aided modeling framework – a generic modeling template for catalytic membrane fixed bed reactors

    DEFF Research Database (Denmark)

    Fedorova, Marina; Sin, Gürkan; Gani, Rafiqul

    2013-01-01

    This work focuses on development of computer-aided modeling framework. The framework is a knowledge-based system that is built on a generic modeling language and structured based on workflows for different general modeling tasks. The overall objective of this work is to support the model develope...... catalytic membrane fixed bed models is developed. The application of the modeling template is highlighted with a case study related to the modeling of a catalytic membrane reactor coupling dehydrogenation of ethylbenzene with hydrogenation of nitrobenzene....

  5. Toward a catalytic site in DNA

    DEFF Research Database (Denmark)

    Jakobsen, Ulla; Rohr, Katja; Vogel, Stefan

    2007-01-01

    A number of functionalized polyaza crown ether building blocks have been incorporated into DNA-conjugates as catalytic Cu(2+) binding sites. The effect of the DNA-conjugate catalyst on the stereochemical outcome of a Cu(2+)-catalyzed Diels-Alder reaction will be presented....

  6. SELECTIVE CATALYTIC REDUCTION MERCURY FIELD SAMPLING PROJECT

    Science.gov (United States)

    A lack of data still exists as to the effect of selective catalytic reduction (SCR), selective noncatalytic reduction (SNCR), and flue gas conditioning on the speciation and removal of mercury (Hg) at power plants. This project investigates the impact that SCR, SNCR, and flue gas...

  7. Toward Facilitative Mentoring and Catalytic Interventions

    Science.gov (United States)

    Smith, Melissa K.; Lewis, Marilyn

    2015-01-01

    In TESOL teacher mentoring, giving advice can be conceptualized as a continuum, ranging from directive to facilitative feedback. The goal, over time, is to lead toward the facilitative end of the continuum and specifically to catalytic interventions that encourage self-reflection and autonomous learning. This study begins by examining research on…

  8. Catalytic reaction dynamics in inhomogeneous networks.

    Science.gov (United States)

    Watanabe, Akitomo; Yakubo, Kousuke

    2014-05-01

    Biochemical reactions in a cell can be modeled by a catalytic reaction network (CRN). It has been reported that catalytic chain reactions occur intermittently in the CRN with a homogeneous random-graph topology and its avalanche-size distribution obeys a power law with the exponent 4/3 [A. Awazu and K. Kaneko, Phys. Rev. E 80, 010902(R) (2009)]. This fact indicates that the catalytic reaction dynamics in homogeneous CRNs exhibits self-organized criticality (SOC). Structures of actual CRNs are, however, known to be highly inhomogeneous. We study the influence of various types of inhomogeneities found in real-world metabolic networks on the universality class of SOC. Our numerical results clarify that SOC keeps its universality class even for networks possessing structural inhomogeneities such as the scale-free property, community structures, and degree correlations. In contrast, if the CRN has inhomogeneous catalytic functionality, the universality class of SOC depends on how widely distributed the number of reaction paths catalyzed by a single chemical species is. PMID:25353843

  9. Novel Metal Nanomaterials and Their Catalytic Applications.

    Science.gov (United States)

    Wang, Jiaqing; Gu, Hongwei

    2015-01-01

    In the rapidly developing areas of nanotechnology, nano-scale materials as heterogeneous catalysts in the synthesis of organic molecules have gotten more and more attention. In this review, we will summarize the synthesis of several new types of noble metal nanostructures (FePt@Cu nanowires, Pt@Fe₂O₃ nanowires and bimetallic Pt@Ir nanocomplexes; Pt-Au heterostructures, Au-Pt bimetallic nanocomplexes and Pt/Pd bimetallic nanodendrites; Au nanowires, CuO@Ag nanowires and a series of Pd nanocatalysts) and their new catalytic applications in our group, to establish heterogeneous catalytic system in "green" environments. Further study shows that these materials have a higher catalytic activity and selectivity than previously reported nanocrystal catalysts in organic reactions, or show a superior electro-catalytic activity for the oxidation of methanol. The whole process might have a great impact to resolve the energy crisis and the environmental crisis that were caused by traditional chemical engineering. Furthermore, we hope that this article will provide a reference point for the noble metal nanomaterials' development that leads to new opportunities in nanocatalysis. PMID:26393550

  10. Catalytic dehydrogenations of ethylbenzene to styrene

    NARCIS (Netherlands)

    Nederlof, C.

    2012-01-01

    This research work on the catalytic dehydrogenation of ethylbenzene (EB) to styrene (ST) had a primary goal of developing improved catalysts for dehydrogenation processes both in CO2 as well as with O2 that can compete with the conventional dehydrogenation process in steam. In order to achieve this

  11. Electrochemical Promotion of Catalytic Reactions Using

    DEFF Research Database (Denmark)

    Petrushina, Irina; Bjerrum, Niels; Cleemann, Lars Nilausen;

    2007-01-01

    This paper presents the results of a study on electrochemical promotion (EP) of catalytic reactions using Pt/C/polybenzimidazole(H3PO4)/Pt/C fuel cell performed by the Energy and Materials Science Group (Technical University of Denmark) during the last 6 years[1-4]. The development of our...

  12. Shungite carbon catalytic effect on coal treatment

    Energy Technology Data Exchange (ETDEWEB)

    Grigorieva, E.N.; Rozhkova, N.N. [Russian Academy of Sciences, Moscow (Russian Federation). Institute for High Temperature

    1999-07-01

    The catalytic ability of shungite carbon in reactions of coal organic matter models appeared to be due to its fullerene structure only. Transition metal sulphides present in shungite carbon are not active in the conditions of coal treatment. Shungite carbon was shown to exhibit an acceleration of thermolysis of coal and organic matter models, mainly dehydrogenation. 5 refs., 1 tabs.

  13. Novel Metal Nanomaterials and Their Catalytic Applications

    Directory of Open Access Journals (Sweden)

    Jiaqing Wang

    2015-09-01

    Full Text Available In the rapidly developing areas of nanotechnology, nano-scale materials as heterogeneous catalysts in the synthesis of organic molecules have gotten more and more attention. In this review, we will summarize the synthesis of several new types of noble metal nanostructures (FePt@Cu nanowires, Pt@Fe2O3 nanowires and bimetallic Pt@Ir nanocomplexes; Pt-Au heterostructures, Au-Pt bimetallic nanocomplexes and Pt/Pd bimetallic nanodendrites; Au nanowires, CuO@Ag nanowires and a series of Pd nanocatalysts and their new catalytic applications in our group, to establish heterogeneous catalytic system in “green” environments. Further study shows that these materials have a higher catalytic activity and selectivity than previously reported nanocrystal catalysts in organic reactions, or show a superior electro-catalytic activity for the oxidation of methanol. The whole process might have a great impact to resolve the energy crisis and the environmental crisis that were caused by traditional chemical engineering. Furthermore, we hope that this article will provide a reference point for the noble metal nanomaterials’ development that leads to new opportunities in nanocatalysis.

  14. Performance characterization of a hydrogen catalytic heater.

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Terry Alan; Kanouff, Michael P.

    2010-04-01

    This report describes the performance of a high efficiency, compact heater that uses the catalytic oxidation of hydrogen to provide heat to the GM Hydrogen Storage Demonstration System. The heater was designed to transfer up to 30 kW of heat from the catalytic reaction to a circulating heat transfer fluid. The fluid then transfers the heat to one or more of the four hydrogen storage modules that make up the Demonstration System to drive off the chemically bound hydrogen. The heater consists of three main parts: (1) the reactor, (2) the gas heat recuperator, and (3) oil and gas flow distribution manifolds. The reactor and recuperator are integrated, compact, finned-plate heat exchangers to maximize heat transfer efficiency and minimize mass and volume. Detailed, three-dimensional, multi-physics computational models were used to design and optimize the system. At full power the heater was able to catalytically combust a 10% hydrogen/air mixture flowing at over 80 cubic feet per minute and transfer 30 kW of heat to a 30 gallon per minute flow of oil over a temperature range from 100 C to 220 C. The total efficiency of the catalytic heater, defined as the heat transferred to the oil divided by the inlet hydrogen chemical energy, was characterized and methods for improvement were investigated.

  15. Exact Results for Kinetics of Catalytic Reactions

    OpenAIRE

    Frachebourg, L.; Krapivsky, P. L.

    1995-01-01

    The kinetics of an irreversible catalytic reaction on substrate of arbitrary dimension is examined. In the limit of infinitesimal reaction rate (reaction-controlled limit), we solve the dimer-dimer surface reaction model (or voter model) exactly in arbitrary dimension $D$. The density of reactive interfaces is found to exhibit a power law decay for $D

  16. Catalytic asymmetric synthesis of mycocerosic acid

    NARCIS (Netherlands)

    ter Horst, B.; Feringa, B.L.; J. Minnaard, A.

    2007-01-01

    The first catalytic asymmetric total synthesis of mycocerosic acid was achieved via the application of iterative enantioselective 1,4-addition reactions and allows for the efficient construction of 1,3-polymethyl arrays with full stereocontrol; further exemplified by the synthesis of tetramethyl-dec

  17. Electrochemical promotion of sulfur dioxide catalytic oxidation

    DEFF Research Database (Denmark)

    Petrushina, Irina; Bandur, Viktor; Cappeln, Frederik Vilhelm;

    2000-01-01

    The effect of electrochemical polarization on the catalytic SO2 oxidation in the molten V2O5-K2S2O7 system has been studied using a gold working electrode in the temperature range 400-460 degrees C. A similar experiment has been performed with the industrial catalyst VK-58. The aim of the present...

  18. Catalytic site interactions in yeast OMP synthase

    DEFF Research Database (Denmark)

    Hansen, Michael Riis; Barr, Eric W.; Jensen, Kaj Frank; Willemoës, Martin; Grubmeyer, Charles; Winther, Jakob R.

    2014-01-01

    45 (2006) 5330-5342]. This behavior was investigated in the yeast enzyme by mutations in the conserved catalytic loop and 5-phosphoribosyl-1-diphosphate (PRPP) binding motif. Although the reaction is mechanistically sequential, the wild-type (WT) enzyme shows parallel lines in double reciprocal...

  19. Catalytic treatment of diesel engines, NOx emissions

    International Nuclear Information System (INIS)

    Some aspects of the operation of diesel engines are revised together with the pollutant emissions they produce, as well as the available catalytic technologies for the treatment of diesel emissions. Furthermore the performance of a catalyst developed in the environmental catalysis group for NOx reduction using synthetic gas mixtures simulating the emissions from diesel engines is presented

  20. Catalytic Oxidized Reaction of Paraffin Wax Based on BP Neural Network%基于BP神经网络的石蜡催化氧化反应的研究

    Institute of Scientific and Technical Information of China (English)

    黄玮; 丛玉凤; 郭大鹏

    2012-01-01

    The oxidized wax was prepared by catalytic oxidized reaction of paraffin wax which used BP neural network to build mathematical model of acid value and saponification value influenced by the amount of reactive catalyst and accessory ingredient, airflow rate, reaction temperature and time, and utilized the model of neutral network to calculate the technology condition of preparing oxidized wax through catalyzing and oxidizing paraffin wax. Consequently, optimum technology conditions were gained in order to achieve the objective of reducing experimental number of times.%在石蜡催化氧化反应制备氧化蜡的研究中,利用BP神经网络建立反应催化剂用量、助剂用量、空气流量、反应温度和反应时间对酸值和皂化值影响的数学模型,并利用该神经网络模型对石蜡催化氧化制备氧化蜡的工艺条件进行预测,从而获得最优工艺条件,达到缩短实验次数的目的.

  1. Greatly Enhancing Catalytic Activity of Graphene by Doping the Underlying Metal Substrate.

    Science.gov (United States)

    Guo, Na; Xi, Yongjie; Liu, Shuanglong; Zhang, Chun

    2015-01-01

    Graphene-based solid-state catalysis represents a new direction in applications of graphene and has attracted a lot of interests recently. However, the difficulty in fine control and large-scale production of previously proposed graphene catalysts greatly limits their industrial applications. Here we present a novel way to enhance the catalytic activity of graphene, which is highly efficient yet easy to fabricate and control. By first-principles calculations, we show that when the underlying metal substrate is doped with impurities, the catalytic activity of the supported graphene can be drastically enhanced. Graphene supported on a Fe/Ni(111) surface is chosen as a model catalyst, and the chemical reaction of CO oxidation is used to probe the catalytic activity of graphene. When the underlying Fe/Ni(111) substrate is impurity free, the graphene is catalytically inactive. When a Zn atom is doped into the substrate, the catalytic activity of the supported graphene is greatly enhanced, and the reaction barrier of the catalyzed CO oxidation is reduced to less than 0.5 eV. Intriguing reaction mechanism of catalyzed CO oxidation is revealed. These studies suggest a new class of graphene-based catalysts and pave the way for future applications of graphene in solid-state catalysis. PMID:26156332

  2. Synthesis of ceramic catalytic system based on CuO/CeO{sub 2} for preferential oxidation reaction of CO; Sintese de sistemas cataliticos ceramicos de CuO/CeO{sub 2} destinados a reacao de oxidacao preferencial do CO

    Energy Technology Data Exchange (ETDEWEB)

    Neiva, L.S.; Ribeiro, M.A.; Bispo, A.; Gama, L., E-mail: lsoutoneiva@yahoo.com.b [Universidade Federal de Campina Grande (UFCG), PB (Brazil). Unidade Academica de Engenharia de Materiais

    2010-07-01

    The aim this is work is to develop catalysts based on CuO/CeO{sub 2} by means two different types of synthesis methods: combustion synthesis and Pechini. CuO/CeO{sub 2} catalysts were synthesized with 0.5 mol of CuO for both synthesis methods used. The catalysts were characterized by XRD with the Rietveld refinement, EDX and textural analysis by the BET method. The results show that both methods of synthesis led to the formation of catalysts with segregated phases formed on the structures of the obtained materials, such segregated phases were formed by the presence of catalytic active species CuO and these phases had different characteristics depending on the type of method synthesis used. Small differences were observed in the evaluation of textural characteristics of the catalysts developed in this work according to the synthesis method employed. (author)

  3. Effects of a catalytic converter on PCDD/F, chlorophenol and PAH emissions in residential wood combustion.

    Science.gov (United States)

    Kaivosoja, T; Virén, A; Tissari, J; Ruuskanen, J; Tarhanen, J; Sippula, O; Jokiniemi, J

    2012-07-01

    Catalytic converters can be used to decrease carbon monoxide, organic compounds and soot from small-scale wood-fired appliances. The reduction is based on the oxidation of gaseous and particulate pollutants promoted by catalytic transition metal surfaces. However, many transition metals have also strong catalytic effect on PCDD/F formation. In this study birch logs were burned in a wood-fired stove (18 kW) with and without a catalytic converter with palladium and platinum as catalysts. PCDD/F, chlorophenol and PAH concentrations were analyzed from three phases of combustion (ignition, pyrolysis and burnout) and from the whole combustion cycle. PCDD/F emissions without the catalytic converter were at a level previously measured for wood combustion (0.15-0.74 ng N m(-3)). PAH emissions without the catalytic converter were high (47-85 mg N m(-3)) which is typical for batch combustion of wood logs. Total PAH concentrations were lower (on average 0.8-fold), and chlorophenol and PCDD/F levels were substantially higher (4.3-fold and 8.7-fold, respectively) when the catalytic converter was used. Increase in the chlorophenol and PCDD/F concentrations was most likely due to the catalytic effect of the platinum and palladium. Platinum and palladium may catalyze chlorination of PCDD/Fs via the Deacon reaction or an oxidation process. The influence of emissions from wood combustion to human health and the environment is a sum of effects caused by different compounds formed in the combustion. Therefore, the usage of platinum and palladium based catalytic converters to reduce emissions from residential wood combustion should be critically evaluated before wide-range utilization of the technology. PMID:22397840

  4. Nanocatalysis: size- and shape-dependent chemisorption and catalytic reactivity

    Science.gov (United States)

    Roldan Cuenya, Beatriz; Behafarid, Farzad

    2015-06-01

    In recent years, the field of catalysis has experienced an astonishing transformation, driven in part by more demanding environmental standards and critical societal and industrial needs such as the search for alternative energy sources. Thanks to the advent of nanotechnology, major steps have been made towards the rational design of novel catalysts. Striking new catalytic properties, including greatly enhanced reactivities and selectivities, have been reported for nanoparticle (NP) catalysts as compared to their bulk counterparts. However, in order to harness the power of these nanocatalysts, a detailed understanding of the origin of their enhanced performance is needed. The present review focuses on the role of the NP size and shape on chemisorption and catalytic performance. Since homogeneity in NP size and shape is a prerequisite for the understanding of structure-reactivity correlations, we first review different synthesis methods that result in narrow NP size distributions and shape controlled NPs. Next, size-dependent phenomena which influence the chemical reactivity of NPs, including quantum size-effects and the presence of under-coordinated surface atoms are examined. The effect of the NP shape on catalytic performance is discussed and explained based on the existence of different atomic structures on the NP surface with distinct chemisorption properties. The influence of additional factors, such as the oxidation state of the NPs and NP-support interactions, is also considered in the frame of the size- and shape-dependency that these phenomena present. Ultimately, our review highlights the importance of achieving a systematic understanding of the factors that control the activity and selectivity of a catalyst in order to avoid trial and error methods in the rational design of the new generation of nanocatalysts with properties tunable at the atomic level.

  5. Solid State, Surface and Catalytic Studies of Oxides

    Energy Technology Data Exchange (ETDEWEB)

    Kung, H. H.

    2004-11-23

    This project investigates the catalytic properties of oxides for the selective oxidative dehydrogenation of light alkanes and for hydrocarbon reduction of NO{sub x}. Various vanadium oxide based catalysts were investigated to elucidate the relationship between the chemical and structural properties of the catalysts and their selectivity for the formation of alkenes. It was found that vanadium oxide units that are less reducible give higher selectivities. For hydrocarbon reduction of NO{sub x}, it was found that alumina-based catalysts can be effective at higher temperatures than the corresponding zeolite-based catalysts. On some catalysts, such as SnO{sub 2}/Al{sub 2}O{sub 3}. Ag/Al{sub 2}O{sub 3}, the alumina participates directly in the reaction, making the catalyst bifunctional. These results are useful in research to improve the performance of this stress of catalysts.

  6. Reforming of methane in tubes with a catalytic active wall

    International Nuclear Information System (INIS)

    The heterogeneous steam reforming process in tubes with catalytic active inner surface is studied. The purpose of this ivestigation is to find a method of predicting the reaction rate of the catalytic conversion of methane by steam. The dependency of the reaction rate upon the temperature, pressure, gas composition, Reynolds number, geometrical sizes of tubes and catalytic behaviour of the catalytic active inner wall of these tubes has been examined. It was found that the reaction rate mainly depends on the temperature. The reaction rate is limited by the catalytic behaviour and the heat resisting properties of the materials used. (author)

  7. Challenging a Paradigm: Theoretical Calculations of the Protonation State of the Cys25-His159 Catalytic Diad in Free Papain

    OpenAIRE

    Shokhen, Michael; Khazanov, Netaly; Albeck, Amnon

    2009-01-01

    A central mechanistic paradigm of cysteine proteases is that the His – Cys catalytic diad forms an ion-pair NH(+)/S(−) already in the catalytically active free enzyme. Most molecular modeling studies of cysteine proteases refer to this paradigm as their starting point. Nevertheless, several recent kinetics and X-ray crystallography studies of viral and bacterial cysteine proteases depart from the ion-pair mechanism, suggesting general base catalysis. We challenge the postulate of the ion-pair...

  8. Analysis of heterogeneous oxygen exchange and fuel oxidation on the catalytic surface of perovskite membranes

    KAUST Repository

    Hong, Jongsup

    2013-10-01

    The catalytic kinetics of oxygen surface exchange and fuel oxidation for a perovskite membrane is investigated in terms of the thermodynamic state in the immediate vicinity of or on the membrane surface. Perovskite membranes have been shown to exhibit both oxygen perm-selectivity and catalytic activity for hydrocarbon conversion. A fundamental description of their catalytic surface reactions is needed. In this study, we infer the kinetic parameters for heterogeneous oxygen surface exchange and catalytic fuel conversion reactions, based on permeation rate measurements and a spatially resolved physical model that incorporates detailed chemical kinetics and transport in the gas-phase. The conservation equations for surface and bulk species are coupled with those of the gas-phase species through the species production rates from surface reactions. It is shown that oxygen surface exchange is limited by dissociative/associative adsorption/desorption of oxygen molecules onto/from the membrane surface. On the sweep side, while the catalytic conversion of methane to methyl radical governs the overall surface reactions at high temperature, carbon monoxide oxidation on the membrane surface is dominant at low temperature. Given the sweep side conditions considered in ITM reactor experiments, gas-phase reactions also play an important role, indicating the significance of investigating both homogeneous and heterogeneous chemistry and their coupling when examining the results. We show that the local thermodynamic state at the membrane surface should be considered when constructing and examining models of oxygen permeation and heterogeneous chemistry. © 2013 Elsevier B.V.

  9. CO catalytic oxidation on iron-embedded monolayer MoS2

    International Nuclear Information System (INIS)

    Highlights: • CO catalytic oxidation on the Fe-embedded monolayer MoS2 has been studied. • Fe atom can be strongly constrained at the S vacancy of monolayer MoS2. • Fe-embedded monolayer MoS2 shows high catalytic activity toward CO oxidation. - Abstract: Based on first-principles calculations, the CO catalytic oxidation on the Fe-embedded monolayer MoS2 (Fe-MoS2) was investigated. It is found that Fe atom can be strongly constrained at the S vacancy of monolayer MoS2 with a high diffusion barrier. The CO oxidation reaction proceeds via a two-step mechanism with the highest energy barrier of 0.51 eV, which is started by the Langmuir–Hinshelwood reaction and ended by the Eley–Rideal reaction. The high catalytic activity of the Fe-MoS2 system may be attributed to the charge transfer and the orbital hybridization between the adsorbates and the Fe atom. This study proposes that embedding transition-metals is a promising way for making the basal plane of monolayer MoS2 catalytically active

  10. CO catalytic oxidation on iron-embedded monolayer MoS{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Dongwei, E-mail: dwmachina@126.com [School of Physics, Anyang Normal University, Anyang, Henan 455000 (China); Tang, Yanan [Department of Physics and Electronic Science, Zhengzhou Normal University, Zhengzhou, Henan 450044 (China); Yang, Gui; Zeng, Jun [School of Physics, Anyang Normal University, Anyang, Henan 455000 (China); He, Chaozheng [Physics and Electronic Engineering College, Nanyang Normal University, Nanyang 473061 (China); Lu, Zhansheng [College of Physics and Electronic Engineering, Henan Normal University, Xinxiang, Henan 453007 (China)

    2015-02-15

    Highlights: • CO catalytic oxidation on the Fe-embedded monolayer MoS{sub 2} has been studied. • Fe atom can be strongly constrained at the S vacancy of monolayer MoS{sub 2}. • Fe-embedded monolayer MoS{sub 2} shows high catalytic activity toward CO oxidation. - Abstract: Based on first-principles calculations, the CO catalytic oxidation on the Fe-embedded monolayer MoS{sub 2} (Fe-MoS{sub 2}) was investigated. It is found that Fe atom can be strongly constrained at the S vacancy of monolayer MoS{sub 2} with a high diffusion barrier. The CO oxidation reaction proceeds via a two-step mechanism with the highest energy barrier of 0.51 eV, which is started by the Langmuir–Hinshelwood reaction and ended by the Eley–Rideal reaction. The high catalytic activity of the Fe-MoS{sub 2} system may be attributed to the charge transfer and the orbital hybridization between the adsorbates and the Fe atom. This study proposes that embedding transition-metals is a promising way for making the basal plane of monolayer MoS{sub 2} catalytically active.

  11. The Effect of Anions on Structure and Catalytic Properties of the Fe-based High Temperature Shift Catalyst%阴离子环境对铁基高温变换催化剂结构与性能的影响

    Institute of Scientific and Technical Information of China (English)

    姜浩强; 何润霞; 武芳; 智科端; 周晨亮; 张万华; 刘全生

    2013-01-01

    The Fe -based high temperature shift catalysts were prepared by the wet co -precipitation method, which were characterized by XRD , SBET and TG-DTA and tested for water-gas shift reaction.The results showed that anions types had significant effects on the structure and performance of precursor which generated during the process of preparation , finally caused product catalyst performance vary widely .The catalytic activity of sample in the SO 2-4 environment was better , which was 24 .52% at 350℃ after heat resistance(500℃,180min);the catalytic activity of sample in the Cl -environment was lower, which was 6. 94%at 350℃after heating resistance(500℃,180min).%采用湿法共沉淀工艺制备了不同阴离子环境下的铁基高温变换催化剂,利用XRD、BET、TG-DTA、TEM和活性测试等对催化剂样品的结构和性能进行比较研究。结果表明,阴离子环境对催化剂制备过程中所生成前驱体的结构影响较大,最终导致成品催化剂性能相差很大。 SO2-4环境下制备的催化剂活性较好,500℃耐热180min后350℃的活性可达24.52%,而Cl -环境下制备的催化剂活性较差,500℃耐热后350℃的活性为6.94%。

  12. Synthesis, characterization and catalytic properties of CuO nanocrystals with various shapes

    International Nuclear Information System (INIS)

    CuO nanocrystals with different shapes, i.e. irregular nanoparticles, nanobelts and nanoplatelets, have been synthesized by controlling a few critical synthesis parameters to explore their catalytic properties. It was found that the rate of CO oxidation on the nanoplatelets is over six times higher than that on the nanoparticles and about three times higher than that on the nanobelts at 110 deg. C. Based on combined characterizations, such as BET, XRD, TEM, HRTEM and CO temperature-programmed reduction, the relationship between the catalytic reactivity and the shape as well as the predominantly exposed crystal planes of the CuO nanocrystals has been discussed

  13. Advanced catalytic plasma exhaust clean-up process for ITER-EDA

    Energy Technology Data Exchange (ETDEWEB)

    Glugla, M. [Kernforschungszentrum Karlsruhe, Inst. fuer Radiochemie (Germany); Penzhorn, R.D. [Kernforschungszentrum Karlsruhe, Inst. fuer Radiochemie (Germany); Hermann, P. [Kernforschungszentrum Karlsruhe, Inst. fuer Radiochemie (Germany); Ache, H.J. [Kernforschungszentrum Karlsruhe, Inst. fuer Radiochemie (Germany)

    1995-12-31

    A new catalyst reactor (PERMCAT) has been developed to further improve the catalytic conversion / permeation based plasma exhaust clean-up process realized in the facility CAPRICE at the Tritium Laboratory Karlsruhe (TLK). The reactor directly combines a nickel catalyst with permeation tubes and removes residual amounts of tritium from tritiated species by isotopic swamping with hydrogen. Succesful integration of such a unit into the CAPRICE catalytic clean-up approach could lead to a fully continuous process and bring about a considerable reduction in non-recoverable tritium. (orig.).

  14. Advanced catalytic plasma exhaust clean-up process for ITER-EDA

    International Nuclear Information System (INIS)

    A new catalyst reactor (PERMCAT) has been developed to further improve the catalytic conversion / permeation based plasma exhaust clean-up process realized in the facility CAPRICE at the Tritium Laboratory Karlsruhe (TLK). The reactor directly combines a nickel catalyst with permeation tubes and removes residual amounts of tritium from tritiated species by isotopic swamping with hydrogen. Succesful integration of such a unit into the CAPRICE catalytic clean-up approach could lead to a fully continuous process and bring about a considerable reduction in non-recoverable tritium. (orig.)

  15. Catalytic spectrophotometric determination of trace selenium in microemulsion after separation and enrichment by SDG

    Institute of Scientific and Technical Information of China (English)

    LI Huizhi; ZHAI Diantang; FAN Yingju

    2006-01-01

    A new catalytic spectrophotometric method was developed for the determination of trace amount of Se(Ⅳ) in microemulsion medium. The method is based on the catalytic effect of traces of Se(Ⅳ) on the oxidation of2',4'-dichlorophenylfluorone (p-CPF) by potassium bromate with HNO3 as an activator in the presence of nonionic microemulsion medium. Under optimum conditions, the calibration graph is linear in the range of 0.4-15 μg. L-1 of Se(Ⅳ) atseparated and enriched by sulphydryl dextrane gel (SDG). The method has been applied for determination of trace selenium with satisfactory results.

  16. Janus droplet as a catalytic micromotor

    CERN Document Server

    Shklyaev, Sergey

    2015-01-01

    Self-propulsion of a Janus droplet in a solution of surfactant, which reacts on a half of a drop surface, is studied theoretically. The droplet acts as a catalytic motor creating a concentration gradient, which generates its surface-tension-driven motion; the self-propulsion speed is rather high, $60\\; {\\rm \\mu m/s}$ and more. This catalytic motor has several advantages over other micromotors: simple manufacturing, easily attained neutral buoyancy. In contrast to a single-fluid droplet, which demonstrates a self-propulsion as a result of symmetry breaking instability, for Janus one no stability threshold exists; hence, the droplet radius can be scaled down to micrometers. The paper was finalized and submitted by Denis S. Goldobin after Sergey Sklyaev had sadly passed away on June 2, 2014.

  17. From Catalytic Reaction Networks to Protocells

    Science.gov (United States)

    Kaneko, Kunihiko

    2013-12-01

    In spite of recent advances, there still remains a large gape between a set of chemical reactions and a biological cell. Here we discuss several theoretical efforts to fill in the gap. The topics cover (i) slow relaxation to equilibrium due to glassy behavior in catalytic reaction networks (ii) consistency between molecule replication and cell growth, as well as energy metabolism (iii) control of a system by minority molecules in mutually catalytic system, which work as a carrier of genetic information, and leading to evolvability (iv) generation of a compartmentalized structure as a cluster of molecules centered around the minority molecule, and division of the cluster accompanied by the replication of minority molecule (v) sequential, logical process over several states from concurrent reaction dynamics, by taking advantage of discreteness in molecule number.

  18. Selective Production of Aromatic Aldehydes from Heavy Fraction of Bio-oil via Catalytic Oxidation

    International Nuclear Information System (INIS)

    High value-added aromatic aldehydes (e. g. vanillin and syringaldehyde) were produced from heavy fraction of bio-oil (HFBO) via catalytic oxidation. The concept is based on the use of metalloporphyin as catalyst and hydrogen peroxide (H2O2) as oxidant under alkaline condition. The biomimetic catalyst cobalt(II)-sulfonated tetraphenylporphyrin (Co(TPPS4)) was prepared and characterized. It exhibited relative high activity in the catalytic oxidation of HFBO. 4.57 wt % vanillin and 1.58 wt % syringaldehyde were obtained from catalytic oxidation of HFBO, compared to 2.6 wt % vanillin and 0.86 wt % syringaldehyde without Co(TPPS4). Moreover, a possible mechanism of HFBO oxidation using Co(TPPS4)/H2O2 was proposed by the research of model compounds. The results showed that this is a promising and environmentally friendly method for production of aromatic aldehydes from HFBO under Co(TPPS4)/H2O2 system

  19. A pH-responsive DNA nanomachine-controlled catalytic assembly of gold nanoparticles.

    Science.gov (United States)

    Yao, Dongbao; Li, Hui; Guo, Yijun; Zhou, Xiang; Xiao, Shiyan; Liang, Haojun

    2016-06-18

    The toehold-mediated DNA-strand-displacement reaction has unique programmable properties for driving the catalytic assembly of gold nanoparticles (AuNPs). Herein, we introduced a pH-responsive triplex structure into the DNA-strand-displacement-based catalytic assembly system of DNA-AuNPs to add an additional controlling factor, namely the pH. In this catalytic system, the aggregation rate of AuNPs could be regulated by both internal factors (concentrations of substrate, target, etc.) and an external control (pH gradient). This strategy can be used to construct pH-induced DNA logic gates and sophisticated DNA networks as well as to image instantaneous pH changes in living cells. PMID:27225943

  20. Catalytic extraction processing of contaminated scrap metal

    International Nuclear Information System (INIS)

    Molten Metal Technology was awarded a contract to demonstrate the applicability of the Catalytic Extraction Process, a proprietary process that could be applied to US DOE's inventory of low level mixed waste. This paper is a description of that technology, and included within this document are discussions of: (1) Program objectives, (2) Overall technology review, (3) Organic feed conversion to synthetic gas, (4) Metal, halogen, and transuranic recovery, (5) Demonstrations, (6) Design of the prototype facility, and (7) Results

  1. Thermal and catalytic pyrolysis of plastic waste

    OpenAIRE

    Débora Almeida; Maria de Fátima Marques

    2016-01-01

    Abstract The amount of plastic waste is growing every year and with that comes an environmental concern regarding this problem. Pyrolysis as a tertiary recycling process is presented as a solution. Pyrolysis can be thermal or catalytical and can be performed under different experimental conditions. These conditions affect the type and amount of product obtained. With the pyrolysis process, products can be obtained with high added value, such as fuel oils and feedstock for new products. Zeolit...

  2. Materials for High-Temperature Catalytic Combustion

    Energy Technology Data Exchange (ETDEWEB)

    Ersson, Anders

    2003-04-01

    Catalytic combustion is an environmentally friendly technique to combust fuels in e.g. gas turbines. Introducing a catalyst into the combustion chamber of a gas turbine allows combustion outside the normal flammability limits. Hence, the adiabatic flame temperature may be lowered below the threshold temperature for thermal NO{sub X} formation while maintaining a stable combustion. However, several challenges are connected to the application of catalytic combustion in gas turbines. The first part of this thesis reviews the use of catalytic combustion in gas turbines. The influence of the fuel has been studied and compared over different catalyst materials. The material section is divided into two parts. The first concerns bimetallic palladium catalysts. These catalysts showed a more stable activity compared to their pure palladium counterparts for methane combustion. This was verified both by using an annular reactor at ambient pressure and a pilot-scale reactor at elevated pressures and flows closely resembling the ones found in a gas turbine combustor. The second part concerns high-temperature materials, which may be used either as active or washcoat materials. A novel group of materials for catalysis, i.e. garnets, has been synthesised and tested in combustion of methane, a low-heating value gas and diesel fuel. The garnets showed some interesting abilities especially for combustion of low-heating value, LHV, gas. Two other materials were also studied, i.e. spinels and hexa aluminates, both showed very promising thermal stability and the substituted hexa aluminates also showed a good catalytic activity. Finally, deactivation of the catalyst materials was studied. In this part the sulphur poisoning of palladium, platinum and the above-mentioned complex metal oxides has been studied for combustion of a LHV gas. Platinum and surprisingly the garnet were least deactivated. Palladium was severely affected for methane combustion while the other washcoat materials were

  3. Materials for High-Temperature Catalytic Combustion

    OpenAIRE

    Ersson, Anders

    2003-01-01

    Catalytic combustion is an environmentally friendlytechnique to combust fuels in e.g. gas turbines. Introducing acatalyst into the combustion chamber of a gas turbine allowscombustion outside the normal flammability limits. Hence, theadiabatic flame temperature may be lowered below the thresholdtemperature for thermal NOXformation while maintaining a stable combustion.However, several challenges are connected to the application ofcatalytic combustion in gas turbines. The first part of thisthe...

  4. Catalytic fast pyrolysis of lignocellulosic biomass

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Changjun; Wang, Huamin; Karim, Ayman M.; Sun, Junming; Wang, Yong

    2014-11-21

    Increasing energy demand, especially in the transportation sector, and soaring CO2 emissions necessitate the exploitation of renewable sources of energy. Despite the large variety of new energy Q3 carriers, liquid hydrocarbon still appears to be the most attractive and feasible form of transportation fuel taking into account the energy density, stability and existing infrastructure. Biomass is an abundant, renewable source of energy; however, utilizing it in a cost-effective way is still a substantial challenge. Lignocellulose is composed of three major biopolymers, namely cellulose, hemicellulose and lignin. Fast pyrolysis of biomass is recognized as an efficient and feasible process to selectively convert lignocellulose into a liquid fuel—bio-oil. However bio-oil from fast pyrolysis contains a large amount of oxygen, distributed in hundreds of oxygenates. These oxygenates are the cause of many negative properties, such as low heating values, high corrosiveness, high viscosity, and instability; they also greatly Q4 limit the application of bio-oil particularly as transportation fuel. Hydrocarbons derived from biomass are most attractive because of their high energy density and compatibility with the existing infrastructure. Thus, converting lignocellulose into transportation fuels via catalytic fast pyrolysis has attracted much attention. Many studies related to catalytic fast pyrolysis of biomass have been published. The main challenge of this process is the development of active and stable catalysts that can deal with a large variety of decomposition intermediates from lignocellulose. This review starts with the current understanding of the chemistry in fast pyrolysis of lignocellulose and focuses on the development of catalysts in catalytic fast pyrolysis. Recent progress in the experimental studies on catalytic fast pyrolysis of biomass is also summarized with the emphasis on bio-oil yields and quality.

  5. Computer Aided Enzyme Design and Catalytic Concepts

    OpenAIRE

    Frushicheva, Maria P.; Mills, Matthew J. L.; Schopf, Patrick; Singh, Manoj K.; Warshel, Arieh

    2014-01-01

    Gaining a deeper understanding of enzyme catalysis is of great practical and fundamental importance. Over the years it has become clear that despite advances made in experimental mutational studies, a quantitative understanding of enzyme catalysis will not be possible without the use of computer modeling approaches. While we believe that electrostatic preorganization is by far the most important catalytic factor, convincing the wider scientific community of this may require the demonstration ...

  6. Ubiquitous "glassy" relaxation in catalytic reaction networks

    OpenAIRE

    Awazu, Akinori; Kaneko, Kunihiko

    2009-01-01

    Study of reversible catalytic reaction networks is important not only as an issue for chemical thermodynamics but also for protocells. From extensive numerical simulations and theoretical analysis, slow relaxation dynamics to sustain nonequlibrium states are commonly observed. These dynamics show two types of salient behaviors that are reminiscent of glassy behavior: slow relaxation along with the logarithmic time dependence of the correlation function and the emergence of plateaus in the rel...

  7. Catalytic pyrolysis of olive mill wastewater sludge

    Science.gov (United States)

    Abdellaoui, Hamza

    From 2008 to 2013, an average of 2,821.4 kilotons/year of olive oil were produced around the world. The waste product of the olive mill industry consists of solid residue (pomace) and wastewater (OMW). Annually, around 30 million m3 of OMW are produced in the Mediterranean area, 700,000 m3 year?1 in Tunisia alone. OMW is an aqueous effluent characterized by an offensive smell and high organic matter content, including high molecular weight phenolic compounds and long-chain fatty acids. These compounds are highly toxic to micro-organisms and plants, which makes the OMW a serious threat to the environment if not managed properly. The OMW is disposed of in open air evaporation ponds. After evaporation of most of the water, OMWS is left in the bottom of the ponds. In this thesis, the effort has been made to evaluate the catalytic pyrolysis process as a technology to valorize the OMWS. The first section of this research showed that 41.12 wt. % of the OMWS is mostly lipids, which are a good source of energy. The second section proved that catalytic pyrolysis of the OMWS over red mud and HZSM-5 can produce green diesel, and 450 °C is the optimal reaction temperature to maximize the organic yields. The last section revealed that the HSF was behind the good fuel-like properties of the OMWS catalytic oils, whereas the SR hindered the bio-oil yields and quality.

  8. Modeling the Complete Catalytic Cycle of Aspartoacylase.

    Science.gov (United States)

    Kots, Ekaterina D; Khrenova, Maria G; Lushchekina, Sofya V; Varfolomeev, Sergei D; Grigorenko, Bella L; Nemukhin, Alexander V

    2016-05-12

    The complete catalytic cycle of aspartoacylase (ASPA), a zinc-dependent enzyme responsible for cleavage of N-acetyl-l-aspartate, is characterized by the methods of molecular modeling. The reaction energy profile connecting the enzyme-substrate (ES) and the enzyme-product (EP) complexes is constructed by the quantum mechanics/molecular mechanics (QM/MM) method assisted by the molecular dynamics (MD) simulations with the QM/MM potentials. Starting from the crystal structure of ASPA complexed with the intermediate analogue, the minimum-energy geometry configurations and the corresponding transition states are located. The stages of substrate binding to the enzyme active site and release of the products are modeled by MD calculations with the replica-exchange umbrella sampling technique. It is shown that the first reaction steps, nucleophilic attack of a zinc-bound nucleophilic water molecule at the carbonyl carbon and the amide bond cleavage, are consistent with the glutamate-assisted mechanism hypothesized for the zinc-dependent hydrolases. The stages of formation of the products, acetate and l-aspartate, and regeneration of the enzyme are characterized for the first time. The constructed free energy diagram from the reactants to the products suggests that the enzyme regeneration, but not the nucleophilic attack of the catalytic water molecule, corresponds to the rate-determining stage of the full catalytic cycle of ASPA. PMID:27089954

  9. Electrochemical catalytic treatment of phenol wastewater

    International Nuclear Information System (INIS)

    The slurry bed catalytic treatment of contaminated water appears to be a promising alternative for the oxidation of aqueous organic pollutants. In this paper, the electrochemical oxidation of phenol in synthetic wastewater catalyzed by ferric sulfate and potassium permanganate adsorbed onto active bentonite in slurry bed electrolytic reactor with graphite electrode has been investigated. In order to determine the optimum operating condition, the orthogonal experiments were devised and the results revealed that the system of ferric sulfate, potassium permanganate and active bentonite showed a high catalytic efficiency on the process of electrochemical oxidation phenol in initial pH 5. When the initial concentration of phenol was 0.52 g/L (the initial COD 1214 mg/L), up to 99% chemical oxygen demand (COD) removal was obtained in 40 min. According to the experimental results, a possible mechanism of catalytic degradation of phenol was proposed. Environmental estimation was also done and the results showed that the treated wastewater have little impact on plant growth and could totally be applied to irrigation.

  10. ENVIRONMENTAL ASSESSMENT OF A RECIPROCATING ENGINE RETROFITTED WITH SELECTIVE CATALYTIC REDUCTION. VOLUME 2. DATA SUPPLEMENT

    Science.gov (United States)

    The report gives results of comprehensive emission measurements and 15-day continuous emission monitoring for a 1,500 kW (2000 hp) gas-fired, four-stroke turbocharged reciprocating engine equipped with an ammonia-based selective catalytic reduction system for NOx control.

  11. ENVIRONMENTAL ASSESSMENT OF A RECIPROCATING ENGINE RETROFITTED WITH SELECTIVE CATALYTIC REDUCTION. VOLUME 1. TECHNICAL RESULTS

    Science.gov (United States)

    The report gives results of comprehensive emission measurements and 15-day continuous emission monitoring for a 1,500 kW (2000 hp) gas-fired, four-stroke turbocharged reciprocating engine equipped with an ammonia-based selective catalytic reduction system for NOx control.

  12. Transition-metal nitro-nitrosyl redox couple: catalytic oxidation of olefins to ketones

    International Nuclear Information System (INIS)

    A new nitroso-nitrosyl redox couple based on the readily prepared complex bis(acetonitrile)chloronitropalladium(II) is reported which catalytically air oxidizes olefines to ketones. Results of 18O labelling mechanistic studies are included, and spectroscopic evidence for an intermediate involved in oxygen-atom transfer by a nitro group is presented. The effects of olefin substituents were also investigated

  13. Electro-catalytic properties of bi-(Fe and Co) shungite composites

    OpenAIRE

    Bazarbay Serikbayev; Duisek Kamisbaev; Z. Tilepbergen; O. Ahmet; Zhalgas Uteuliyev

    2012-01-01

    The paper presents the results of electrochemical studies obtained on carbon paste electrodes (СPE) from Koksu shungite (Ш). The electrochemical and electro-catalytic properties of electrode are compared based on a natural shungite and its modified form with iron and cobalt.

  14. Electro-catalytic properties of bi-(Fe and Co shungite composites

    Directory of Open Access Journals (Sweden)

    Bazarbay Serikbayev

    2012-03-01

    Full Text Available The paper presents the results of electrochemical studies obtained on carbon paste electrodes (СPE from Koksu shungite (Ш. The electrochemical and electro-catalytic properties of electrode are compared based on a natural shungite and its modified form with iron and cobalt.

  15. Advances and perspectives in catalytic oxidation of hydrocarbons in liquid phase

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    This review article summarizes recent advances in catalytic oxidation of hydrocarbons, especially presents two strategies for activation of C-H bonds or molecular oxygen. Based on our own research results, the applications of the two methods in the oxidation of cyclohexane, toluene and ethyl benzene, etc. are introduced, and the perspectives of the two methods are also discussed.

  16. Catalytic Conversion of Alcohols into Olefins: Spectroscopy, Kinetics and Catalyst Deactivation

    NARCIS (Netherlands)

    Qian, Q.

    2014-01-01

    The alcohols-to-olefins (ATO) catalytic process, a technology based on oil-alternative feedstocks, has gained increasing attention due to the current high price of crude oil as well as the growing environmental concerns. Intensive academic and industrial research, mainly performed under ex-situ cond

  17. Advances in solid-catalytic and non-catalytic technologies for biodiesel production

    International Nuclear Information System (INIS)

    Highlights: • The recent technologies for promoting biodiesel synthesis were elucidated. • The design of catalyst consideration of biodiesel production was proposed. • The recent advances and remaining difficulties in biodiesel synthesis were outlined. • The future research trend in biodiesel synthesis was highlighted. - Abstract: The insecure supply of fossil fuel coerces the scientific society to keep a vision to boost investments in the renewable energy sector. Among the many renewable fuels currently available around the world, biodiesel offers an immediate impact in our energy. In fact, a huge interest in related research indicates a promising future for the biodiesel technology. Heterogeneous catalyzed production of biodiesel has emerged as a preferred route as it is environmentally benign needs no water washing and product separation is much easier. The number of well-defined catalyst complexes that are able to catalyze transesterification reactions efficiently has been significantly expanded in recent years. The activity of catalysts, specifically in application to solid acid/base catalyst in transesterification reaction depends on their structure, strength of basicity/acidity, surface area as well as the stability of catalyst. There are various process intensification technologies based on the use of alternate energy sources such as ultrasound and microwave. The latest advances in research and development related to biodiesel production is represented by non-catalytic supercritical method and focussed exclusively on these processes as forthcoming transesterification processes. The latest developments in this field featuring highly active catalyst complexes are outlined in this review. The knowledge of more extensive research on advances in biofuels will allow a deeper insight into the mechanism of these technologies toward meeting the critical energy challenges in future

  18. Diesel NO{sub x} catalytic converter development: A review

    Energy Technology Data Exchange (ETDEWEB)

    Heimrich, M.J. [Southwest Research Inst., San Antonio, TX (United States)

    1996-07-01

    This paper summarizes the findings of several technical articles on diesel NO{sub x} catalytic converter technology. Simplified theoretical reactions for NO{sub x} removal are discussed. Currently, development of catalytic NO{sub x} control technology for diesel engines is focused on systems that incorporate fuel hydrocarbons as the chemical reducing agent. Copper- and zeolite-based catalysts have been the predominant systems studied to date, but now catalysts containing precious metals are being investigated. Observed NO{sub x} reduction efficiencies typically ranged from 10 to 30 percent on actual engine exhaust systems when exhaust hydrocarbon enrichment strategies were used. Effects of carbon monoxide, sulfur dioxide, and water on NO{sub x} reduction efficiencies are reviewed. Recommendations for future research include attempts to broaden the temperature range of efficient NO{sub x} reduction, improving hydrocarbon selectivity toward the NO{sub x} reduction reaction, and the development of a supplementary reductant delivery system suitable for transient diesel engine operation.

  19. Catalytically active single-atom niobium in graphitic layers.

    Science.gov (United States)

    Zhang, Xuefeng; Guo, Junjie; Guan, Pengfei; Liu, Chunjing; Huang, Hao; Xue, Fanghong; Dong, Xinglong; Pennycook, Stephen J; Chisholm, Matthew F

    2013-01-01

    Carbides of groups IV through VI (Ti, V and Cr groups) have long been proposed as substitutes for noble metal-based electrocatalysts in polymer electrolyte fuel cells. However, their catalytic activity has been extremely limited because of the low density and stability of catalytically active sites. Here we report the excellent performance of a niobium-carbon structure for catalysing the cathodic oxygen reduction reaction. A large number of single niobium atoms and ultra small clusters trapped in graphitic layers are directly identified using state-of-the-art aberration-corrected scanning transmission electron microscopy. This structure not only enhances the overall conductivity for accelerating the exchange of ions and electrons, but it suppresses the chemical/thermal coarsening of the active particles. Experimental results coupled with theory calculations reveal that the single niobium atoms incorporated within the graphitic layers produce a redistribution of d-band electrons and become surprisingly active for O2 adsorption and dissociation, and also exhibit high stability. PMID:23715283

  20. Copper on activated carbon for catalytic wet air oxidation

    Directory of Open Access Journals (Sweden)

    Nora Dolores Martínez

    2009-03-01

    Full Text Available Textile industry is an important source of water contamination. Some of the organic contaminants cannot be eliminated by nature in a reasonable period. Heterogeneous catalytic wet air oxidation is one of the most effective methods to purify wastewater with organic contaminants. In this work, catalysts based on copper supported on activated carbon were synthesized. The activated carbons were obtained from industrial wastes (apricot core and grape stalk of San Juan, Argentina. These were impregnated with a copper salt and thermically treated in an inert atmosphere. Analysis of specific surface, pore volume, p zc, acidity, basicity and XRD patterns were made in order to characterize the catalysts. The catalytic activity was tested in the oxidation of methylene blue (MB and polyvinyl alcohol (PVA in aqueous phase with pure oxygen. Reaction tests were carried out in a Parr batch reactor at different temperatures, with a 0.2 MPa partial pressure of oxygen. The amount of unconverted organics was measured by spectrophotometry. Higher temperatures were necessary for the degradation of PVA compared to those for methylene blue.

  1. Catalytic synthesis of alcoholic fuels for transportation from syngas

    DEFF Research Database (Denmark)

    Wu, Qiongxiao

    This work has investigated the catalytic conversion of syngas into methanol and higher alcohols. Based on input from computational catalyst screening, an experimental investigation of promising catalyst candidates for methanol synthesis from syngas has been carried out. Cu-Ni alloys of different...... composition have been identified as potential candidates for methanol synthesis. These Cu-Ni alloy catalysts have been synthesized and tested in a fixed-bed continuous-flow reactor for CO hydrogenation. The metal area based activity for a Cu-Ni/SiO2 catalyst is at the same level as a Cu/ZnO/Al2O3 model...... catalyst. The high activity and selectivity of silica supported Cu-Ni alloy catalysts agrees with the fact that the DFT calculations identified Cu-Ni alloys as highly active and selective catalysts for the hydrogenation of CO to form methanol. This work has also provided a systematic study of Cu...

  2. The photo-catalytic activities of MP (M = Ba, Ca, Cu, Sr, Ag; P = PO43-, HPO42-) microparticles

    Science.gov (United States)

    Zhang, Fan; Shi, Yuanji; Zhao, Zongshan; Song, Weijie; Cheng, Yang

    2014-02-01

    For the good performance of apatite-based materials in the removal of dyes and their environment-friendly advantage, five kinds of apatite microparticles of MP (M = Ba, Ca, Cu, Sr, Ag; P = PO43-, HPO42-) were synthesized by a simple precipitation method and their photo-catalytic properties were invested. Better performance in the decolorization of methyl orange (MO) under the assistance of H2O2 than that of TiO2 were obtained for all the MPs. The photo-catalytic activity was mainly affected by surface area, energy band, impurity, crystallinity and crystal structure. The DFT calculation results demonstrated that the 2p of O and 3p of P in PO43- played the main role in the photo-catalytic process. This work would be helpful to design and synthesize low cost apatite materials with good photo-catalytic performance.

  3. Oxidative catalytic evolution of redox- and spin-states of a Fe-phthalocyanine studied by EPR

    Science.gov (United States)

    Bletsa, Eleni; Solakidou, Maria; Louloudi, Maria; Deligiannakis, Yiannis

    2016-04-01

    The catalytic-oxidative evolution of the redox/spin states of a Fe-phthalocyanine (Fe-Pc) catalyst was studied by electron paramagnetic resonance spectroscopy. Under oxidative catalytic conditions, Fe-Pc may evolve via multiple redox/spin conformations. Axial ligation of imidazole, O2 or t-Bu-OOH as oxidant, results in a complex multipath redox/spin landscape that was determined in detail herein. The high-spin conformations of Fe-Pc/imidazole evolve more slowly than the low-spin conformations. Catalytically active vs. inactive conformations were distinguished. A unified physicochemical catalytic reaction mechanism is discussed herein based on the distinct role of the various structural, spin and redox forms.

  4. Biogasoline Production from Palm Oil Via Catalytic Hydrocracking over Gamma-Alumina Catalyst

    Directory of Open Access Journals (Sweden)

    Anondho Wijanarko

    2006-11-01

    Full Text Available Bio gasoline conversion from palm oil is an alternative energy resources method which can be substituted fossil fuel base energy utilization. Previous research resulted that palm oil can be converted into hydrocarbon by catalytic cracking reaction with γ-alumina catalyst. In this research, catalytic cracking reaction of palm oil by γ-alumina catalyst is done in a stirrer batch reactor with the oil/catalyst weight ratio variation of 100:1, 75:1, and 50:1; at suhue variation of 260 to 340oC and reaction time variation of 1 to 2 hour. Post cracking reaction, bio gasoline yield could be obtained after 2 steps batch distillation. Physical property test result such as density and viscosity of this cracking reaction product and commercial gasoline tended a closed similarity. According to result of the cracking product's density, viscosity and FTIR, it can conclude that optimum yield of the palm oil catalytic cracking reaction could be occurred when oil/catalyst weight ratio 100:1 at 340 oC in 1.5 hour and base on this bio gasoline's FTIR, GC and GC-MS identification results, its hydrocarbons content was resembled to the commercial gasoline. This palm oil catalytic cracking reaction shown 11.8% (v/v in yield and 28.0% (v/v in conversion concern to feed palm oil base and produced a 61.0 octane number's bio gasoline.

  5. Catalytic effect of copper on the hexacyanoferrate(III)-cyanide redox reaction-II catalytic determination of copper.

    Science.gov (United States)

    López-Cueto, G; Casado-Riobó, J A

    1979-02-01

    A catalytic method for the determination of copper, based on the catalysis of the hexacyano-ferrate(III)-cyanide redox reaction, is proposed. Experimental conditions to achieve the lowest detection limit are selected from the kinetics of both the catalysed and the uncatalysed reactions. The experimental measurements can be made at room temperature without close control. The rate-constant method is the most sensitive and precise, whereas the fixed-concentration and fixed-time methods appear to be the most rapid for routine analysis. A detection limit of 1.3 ng/ml and a coefficient of variation of about 3% for the determination of 63 ng/ml can be achieved. The catalytic effect of copper seems to be highly specific. Lead(II), bismuth (III), antimony (III), iron (II), iron(III), chromium(III), lanthanum(III), cerium(III), titanium(IV), zirconium(IV) and uranium(VI) interfere by precipitation. Species such as tin(II), cobalt(II), manganese(II), sulphite and thiosulphite cause serious interference because they react with hexacyanoferrate(III). Chromate interferes by its colour. Suitable methods to avoid the interferences from antimony(III), iron(III), chromium(III), titanium(IV), zirconium(IV), uranium(VI) and chromate are proposed. PMID:18962400

  6. Theoretical study of catalytic efficiency of a Diels-Alderase catalytic antibody: an indirect effect produced during the maturation process.

    Science.gov (United States)

    Martí, Sergio; Andrés, Juan; Moliner, Vicent; Silla, Estanislao; Tuñón, Iñaki; Bertrán, Juan

    2008-01-01

    The Diels-Alder reaction is one of the most important and versatile transformations available to organic chemists for the construction of complex natural products, therapeutics agents, and synthetic materials. Given the lack of efficient enzymes capable of catalyzing this kind of reaction, it is of interest to ask whether a biological catalyst could be designed from an antibody-combining site. In the present work, a theoretical study of the different behavior of a germline catalytic antibody (CA) and its matured form, 39 A-11, that catalyze a Diels-Alder reaction has been carried out. A free-energy perturbation technique based on a hybrid quantum-mechanics/molecular-mechanics scheme, together with internal energy minimizations, has allowed free-energy profiles to be obtained for both CAs. The profiles show a smaller barrier for the matured form, which is in agreement with the experimental observation. Free-energy profiles were obtained with this methodology, thereby avoiding the much more demanding two-dimensional calculations of the energy surfaces that are normally required to study this kind of reaction. Structural analysis and energy evaluations of substrate-protein interactions have been performed from averaged structures, which allows understanding of how the single mutations carried out during the maturation process can be responsible for the observed fourfold enhancement of the catalytic rate constant. The conclusion is that the mutation effect in this studied germline CA produces a complex indirect effect through coupled movements of the backbone of the protein and the substrate. PMID:17960540

  7. Heterogeneous catalytic materials solid state chemistry, surface chemistry and catalytic behaviour

    CERN Document Server

    Busca, Guido

    2014-01-01

    Heterogeneous Catalytic Materials discusses experimental methods and the latest developments in three areas of research: heterogeneous catalysis; surface chemistry; and the chemistry of catalysts. Catalytic materials are those solids that allow the chemical reaction to occur efficiently and cost-effectively. This book provides you with all necessary information to synthesize, characterize, and relate the properties of a catalyst to its behavior, enabling you to select the appropriate catalyst for the process and reactor system. Oxides (used both as catalysts and as supports for cata

  8. Engineering Metallic Nanoparticles for Enhancing and Probing Catalytic Reactions.

    Science.gov (United States)

    Collins, Gillian; Holmes, Justin D

    2016-07-01

    Recent developments in tailoring the structural and chemical properties of colloidal metal nanoparticles (NPs) have led to significant enhancements in catalyst performance. Controllable colloidal synthesis has also allowed tailor-made NPs to serve as mechanistic probes for catalytic processes. The innovative use of colloidal NPs to gain fundamental insights into catalytic function will be highlighted across a variety of catalytic and electrocatalytic applications. The engineering of future heterogenous catalysts is also moving beyond size, shape and composition considerations. Advancements in understanding structure-property relationships have enabled incorporation of complex features such as tuning surface strain to influence the behavior of catalytic NPs. Exploiting plasmonic properties and altering colloidal surface chemistry through functionalization are also emerging as important areas for rational design of catalytic NPs. This news article will highlight the key developments and challenges to the future design of catalytic NPs. PMID:26823380

  9. Catalytic bioscavengers in nerve agent poisoning: A promising approach?

    Science.gov (United States)

    Worek, Franz; Thiermann, Horst; Wille, Timo

    2016-02-26

    The repeated use of the nerve agent sarin against civilians in Syria in 2013 emphasizes the continuing threat by chemical warfare agents. Multiple studies demonstrated a limited efficacy of standard atropine-oxime treatment in nerve agent poisoning and called for the development of alternative and more effective treatment strategies. A novel approach is the use of stoichiometric or catalytic bioscavengers for detoxification of nerve agents in the systemic circulation prior to distribution into target tissues. Recent progress in the design of enzyme mutants with reversed stereo selectivity resulting in improved catalytic activity and their use in in vivo studies supports the concept of catalytic bioscavengers. Yet, further research is necessary to improve the catalytic activity, substrate spectrum and in vivo biological stability of enzyme mutants. The pros and cons of catalytic bioscavengers will be discussed in detail and future requirements for the development of catalytic bioscavengers will be proposed. PMID:26200600

  10. Fluid catalytic cracking of biomass pyrolysis vapors

    Energy Technology Data Exchange (ETDEWEB)

    Mante, Ofei Daku [Virginia Polytechnic Institute and State University, Biological Systems Engineering, Blacksburg, VA (United States); Agblevor, Foster A. [Utah State University, Biological Engineering, Logan, UT (United States); McClung, Ron [BASF Inc, Florham, NJ (United States)

    2011-12-15

    Catalytic cracking of pyrolysis oils/vapors offers the opportunity of producing bio-oils which can potentially be coprocessed with petroleum feedstocks in today's oil refinery to produce transportation fuel and chemicals. Catalyst properties and process conditions are critical in producing and maximizing desired product. In our studies, catalyst matrix (kaolin) and two commercial fluid catalytic cracking (FCC) catalysts, FCC-H and FCC-L, with different Y-zeolite contents were investigated. The catalytic cracking of hybrid poplar wood was conducted in a 50-mm bench-scale bubbling fluidized-bed pyrolysis reactor at 465 C with a weight hourly space velocity of 1.5 h{sup -1}. The results showed that the yields and quality of the bio-oils was a function of the Y-zeolite content of the catalyst. The char/coke yield was highest for the higher Y-zeolite catalyst. The organic liquid yields decreased inversely with increase in zeolite content of the catalyst whereas the water and gas yields increased. Analysis of the oils by both Fourier-transform infrared and {sup 13}C-nuclear magnetic resonance indicated that the catalyst with higher zeolite content (FCC-H) was efficient in the removal of compounds like levoglucosan, carboxylic acids and the conversion of methoxylated phenols to substituted phenols and benzenediols. The cracking of pyrolysis products by kaolin suggests that the activity of the FCC catalyst on biomass pyrolysis vapors can be attributed to both Y-zeolite and matrix. The FCC-H catalyst produced much more improved oil. The oil was low in oxygen (22.67 wt.%), high in energy (29.79 MJ/kg) and relatively stable over a 12-month storage period. (orig.)

  11. Catalytic Mechanism of Human Alpha-galactosidase

    Energy Technology Data Exchange (ETDEWEB)

    Guce, A.; Clark, N; Salgado, E; Ivanen, D; Kulinskaya, A; Brumer, H; Garman, S

    2010-01-01

    The enzyme {alpha}-galactosidase ({alpha}-GAL, also known as {alpha}-GAL A; E.C. 3.2.1.22) is responsible for the breakdown of {alpha}-galactosides in the lysosome. Defects in human {alpha}-GAL lead to the development of Fabry disease, a lysosomal storage disorder characterized by the buildup of {alpha}-galactosylated substrates in the tissues. {alpha}-GAL is an active target of clinical research: there are currently two treatment options for Fabry disease, recombinant enzyme replacement therapy (approved in the United States in 2003) and pharmacological chaperone therapy (currently in clinical trials). Previously, we have reported the structure of human {alpha}-GAL, which revealed the overall structure of the enzyme and established the locations of hundreds of mutations that lead to the development of Fabry disease. Here, we describe the catalytic mechanism of the enzyme derived from x-ray crystal structures of each of the four stages of the double displacement reaction mechanism. Use of a difluoro-{alpha}-galactopyranoside allowed trapping of a covalent intermediate. The ensemble of structures reveals distortion of the ligand into a {sup 1}S{sub 3} skew (or twist) boat conformation in the middle of the reaction cycle. The high resolution structures of each step in the catalytic cycle will allow for improved drug design efforts on {alpha}-GAL and other glycoside hydrolase family 27 enzymes by developing ligands that specifically target different states of the catalytic cycle. Additionally, the structures revealed a second ligand-binding site suitable for targeting by novel pharmacological chaperones.

  12. De novo design of catalytic proteins

    OpenAIRE

    Kaplan, J; DeGrado, W. F.

    2004-01-01

    The de novo design of catalytic proteins provides a stringent test of our understanding of enzyme function, while simultaneously laying the groundwork for the design of novel catalysts. Here we describe the design of an O2-dependent phenol oxidase whose structure, sequence, and activity are designed from first principles. The protein catalyzes the two-electron oxidation of 4-aminophenol (kcat/KM = 1,500 M·1·min·1) to the corresponding quinone monoimine by using a diiron cofactor. The catalyti...

  13. Transport in a Microfluidic Catalytic Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Park, H G; Chung, J; Grigoropoulos, C P; Greif, R; Havstad, M; Morse, J D

    2003-04-30

    A study of the heat and mass transfer, flow, and thermodynamics of the reacting flow in a catalytic microreactor is presented. Methanol reforming is utilized in the fuel processing system driving a micro-scale proton exchange membrane fuel cell. Understanding the flow and thermal transport phenomena as well as the reaction mechanisms is essential for improving the efficiency of the reforming process as well as the quality of the processed fuel. Numerical studies have been carried out to characterize the transport in a silicon microfabricated reactor system. On the basis of these results, optimized conditions for fuel processing are determined.

  14. Catalytic Pyrolysis of Olive Mill Wastewater Sludge

    OpenAIRE

    Abdellaoui, Hamza

    2015-01-01

    Olive mill wastewater sludge (OMWS) is the solid residue that remains in the evaporation ponds after evaporation of the majority of water in the olive mill wastewater (OMW). OMWS is a major environmental pollutant in the olive oil producing regions. Approximately 41.16 wt. % of the OMWS was soluble in hexanes (HSF). The fatty acids in this fraction consist mainly of oleic and palmitic acid. Catalytic pyrolysis of the OMWS over red mud and HZSM-5 has been demonstrated to be an effective techno...

  15. Electrospun Catalytic Support Prepared by Electrospinning Technique

    Czech Academy of Sciences Publication Activity Database

    Soukup, Karel; Topka, Pavel; Petráš, D.; Klusoň, Petr; Šolcová, Olga

    Praha : Orgit, 2012, C4.1. ISBN 978-80-905035-1-9. [International Congress of Chemical and Process Engineering CHISA 2012 and 15th Conference PRES 2012 /20./. Prague (CZ), 25.08.2012-29.08.2012] R&D Projects: GA ČR GPP106/11/P459; GA ČR(CZ) GAP204/11/1206 Institutional support: RVO:67985858 Keywords : catalytic tests * electrospun * gas transport properties Subject RIV: CI - Industrial Chemistry, Chemical Engineering www.chisa.cz/2012

  16. Tritium stripping by a catalytic exchange stripper

    International Nuclear Information System (INIS)

    A catalytic exchange process for stripping elemental tritium from gas streams has been demonstrated. The process uses a catalyzed isotopic exchange reaction between tritium in the gas phase and protium or deuterium in the solid phase on alumina. The reaction is catalyzed by platinum deposited on the alumina. The process has been tested with both tritium and deuterium. Decontamination factors (ration of inlet and outlet tritium concentrations) as high as 1000 have been achieved, depending on inlet concentration. The test results and some demonstrated applications are presented

  17. Catalytic Synthesis Methods for Triazolopyrimidine Derivatives

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    A new method for catalyzed synthesis of triazolopyrimidine derivatives is reported. Aikylamine reaction with dialkyl cyanodithioiminocarbonate was catalyzed by quaternary ammonium salts at room temperature to yield 3-alkylamine-5-amino-1,2,4-triazole in good quality and high yields. After imidization and reaction with an α,β-unsaturated acid derivative, the reaction intermediate was hydrolyzed in the presence of a Lewis acid to obtain the target product. This novel catalytic method for triazolopyrimidine derivatives can be carried out under inexpen-sive and mild conditions, and is safe and environmentally friendly. IH NMR results for all intermediates are re-ported.

  18. Thin film porous membranes for catalytic sensors

    Energy Technology Data Exchange (ETDEWEB)

    Hughes, R.C.; Boyle, T.J.; Gardner, T.J. [and others

    1997-06-01

    This paper reports on new and surprising experimental data for catalytic film gas sensing resistors coated with nanoporous sol-gel films to impart selectivity and durability to the sensor structure. This work is the result of attempts to build selectivity and reactivity to the surface of a sensor by modifying it with a series of sol-gel layers. The initial sol-gel SiO{sub 2} layer applied to the sensor surprisingly showed enhanced O{sub 2} interaction with H{sub 2} and reduced susceptibility to poisons such as H{sub 2}S.

  19. Temperature control of a catalytic converter

    Energy Technology Data Exchange (ETDEWEB)

    Ma, T.T.-H.

    1994-06-08

    In an ic engine having a catalytic convertor, the catalyst heater is controlled in dependence upon an estimate of the temperature of the catalyst so that there is no need for a sensor in the hostile environment of the exhaust. A valve indicative of the catalyst temperature is stored and modified in accordance with a model of the catalyst temperature. The model can be a mathematical mood carried out by a signal processor or an electrical model with the catalyst temperature being represented by the charge stored on a capacitor. (Author)

  20. Catalytic asymmetric formal synthesis of beraprost

    Science.gov (United States)

    Kobayashi, Yusuke; Kuramoto, Ryuta

    2015-01-01

    Summary The first catalytic asymmetric synthesis of the key intermediate for beraprost has been achieved through an enantioselective intramolecular oxa-Michael reaction of an α,β-unsaturated amide mediated by a newly developed benzothiadiazine catalyst. The Weinreb amide moiety and bromo substituent of the Michael adduct were utilized for the C–C bond formations to construct the scaffold. All four contiguous stereocenters of the tricyclic core were controlled via Rh-catalyzed stereoselective C–H insertion and the subsequent reduction from the convex face. PMID:26734111

  1. Catalytic deallylation of allyl- and diallylmalonates.

    Science.gov (United States)

    Necas, David; Turský, Matyás; Kotora, Martin

    2004-08-25

    Substituted allylmalonates undergo the selective C-C bond cleavage in the presence of triethylaluminum and a catalytic amount of nickel and ruthenium phosphine complexes, resulting in the loss of the allyl moiety and formation of monosubstituted malonates. Comparison of reactivity of the nickel and ruthenium complexes showed that the use of the former is general with respect to the structure of the substituted allylmalonates, and the activity of the latter depended on the substitution pattern of the double bond of the allylic moiety. The smooth deallylation may encourage the use of the allyl group as a protective group for the acidic hydrogen in malonates. PMID:15315416

  2. Catalytic multi-stage liquefaction (CMSL)

    Energy Technology Data Exchange (ETDEWEB)

    Comolli, A.G.; Ganguli, P.; Karolkiewicz, W.F.; Lee, T.L.K.; Pradhan, V.R.; Popper, G.A.; Smith, T.; Stalzer, R.

    1996-11-01

    Under contract with the U.S. Department of Energy, Hydrocarbon Technologies, Inc. has conducted a series of eleven catalytic, multi-stage, liquefaction (CMSL) bench scale runs between February, 1991, and September, 1995. The purpose of these runs was to investigate novel approaches to liquefaction relating to feedstocks, hydrogen source, improved catalysts as well as processing variables, all of which are designed to lower the cost of producing coal-derived liquid products. This report summarizes the technical assessment of these runs, and in particular the evaluation of the economic impact of the results.

  3. Biomimetic, Catalytic Oxidation in Organic Synthesis

    Institute of Scientific and Technical Information of China (English)

    Shun-lchi Murahashi

    2005-01-01

    @@ 1Introduction Oxidation is one of the most fundamental reactions in organic synthesis. Owing to the current need to develop forward-looking technology that is environmentally acceptable with respect many aspects. The most attractive approaches are biomimetic oxidation reactions that are closely related to the metabolism of living things. The metabolisms are governed by a variety of enzymes such as cytochrome P-450 and flavoenzyme.Simulation of the function of these enzymes with simple transition metal complex catalyst or organic catalysts led to the discovery of biomimetic, catalytic oxidations with peroxides[1]. We extended such biomimetic methods to the oxidation with molecular oxygen under mild conditions.

  4. Heterogeneous Photooxidation of Phenol by Catalytic Membranes

    Institute of Scientific and Technical Information of China (English)

    Enrica Fontananova; Enrico Drioli; Laura Donato; Marcella Bonchio; Mauro Carraro; Gianfranco Scorrano

    2006-01-01

    In this work the heterogenization in polymeric membranes of decatungstate, a photocatalyst for oxidation reactions,was reported. Solid state characterization techniques confirmed that the catalyst structure was preserved within the polymeric membranes. The catalytic membranes were successfully applied in the aerobic photo-oxidation of phenol, one of the main organic pollutants in wastewater, providing stable and recyclable photocatalytic systems. The dependence of the phenol degradation rate by the catalyst loading and transmembrane pressure was shown. By comparison with homogeneous reaction,the catalyst heterogenized in membrane appears to be more efficient concerning the rate of phenol photodegradation and mineralization.

  5. Submicron Polyethylene Particles from Catalytic Emulsion Polymerization

    OpenAIRE

    Bauers, Florian Martin; Thomann, Ralf; Mecking, Stefan

    2003-01-01

    Particles of linear polyethylene (Mn = (2-3)X 10000 g mol-1; Mw/Mn = 2-4) obtained by catalytic emulsion polymerization of ethylene possess a nonspherical, lentil-like shape with an average aspect ratio of ca. 10 and diameters from 30 to > 300 nm, as determined by TEM and AFM. The particle structure results from a stacking of the lamellae along the one shorter axis of the lentils (i.e., their height, by contrast to the diameter). In addition to these multilamellae particles, remarkably, a con...

  6. Catalytic conversion of sulfur dioxide and trioxide

    Energy Technology Data Exchange (ETDEWEB)

    Solov' eva, E.L.; Shenfel' d, B.E.; Kuznetsova, S.M.; Khludenev, A.G.

    1987-11-10

    The reclamation and utilization of sulfur-containing wastes from the flue gas of fossil-fuel power plants and the subsequent reduction in sulfur emission is addressed in this paper. The authors approach this problem from the standpoint of the catalytic oxidation of sulfur dioxide on solid poison-resistant catalysts with subsequent sorption of the sulfur trioxide and its incorporation into the manufacture of sulfuric acid. The catalyst they propose is a polymetallic dust-like waste from the copper-smelting industry comprised mainly of iron and copper oxides. Experiments with this catalyst were carried out using multifactorial experiment planning.

  7. The catalytic residues of Tn3 resolvase

    OpenAIRE

    Olorunniji, F.J.; Stark, W M

    2009-01-01

    To characterize the residues that participate in the catalysis of DNA cleavage and rejoining by the site-specific recombinase Tn3 resolvase, we mutated conserved polar or charged residues in the catalytic domain of an activated resolvase variant. We analysed the effects of mutations at 14 residues on proficiency in binding to the recombination site ('site I'), formation of a synaptic complex between two site Is, DNA cleavage and recombination. Mutations of Y6, R8, S10, D36, R68 and R71 result...

  8. Including lateral interactions into microkinetic models of catalytic reactions

    DEFF Research Database (Denmark)

    Hellman, Anders; Honkala, Johanna Karoliina

    2007-01-01

    In many catalytic reactions lateral interactions between adsorbates are believed to have a strong influence on the reaction rates. We apply a microkinetic model to explore the effect of lateral interactions and how to efficiently take them into account in a simple catalytic reaction. Three differ...... different approximations are investigated: site, mean-field, and quasichemical approximations. The obtained results are compared to accurate Monte Carlo numbers. In the end, we apply the approximations to a real catalytic reaction, namely, ammonia synthesis....

  9. Azomethine Ylides from Nitrones: Using Catalytic nBuLi for the Totally Stereoselective Synthesis of trans-2-Alkyl-3-oxazolines.

    Science.gov (United States)

    Juste-Navarro, Veronica; Delso, Ignacio; Tejero, Tomás; Merino, Pedro

    2016-08-01

    The cycloaddition of azomethine ylide N-oxides (nitrone ylides) with aldehydes provides 3-oxazolines in a completely stereoselective manner in the presence of a catalytic amount of n-butyllithium. The process involves an initial nucleophilic attack on the aldehyde, followed by intramolecular oxygen addition to the nitrone moiety and lithium-assisted elimination of water, regenerating the catalytic species. Various Li-based catalytic systems are possible and the in situ generated water is required for continuing the catalytic cycle. The best results are observed with 20 mol % of n-butyllithium, whereas the use of stoichiometric amounts inhibit the rate of catalysis. Experimental, spectroscopic, and computational mechanistic studies have provided evidence of lithium-ion catalysis and rationalized several competing catalytic pathways. PMID:27258625

  10. Alloying effects on hydrogen permeability of V without catalytic Pd overlayer

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, Y.; Yukawa, H.; Suzuki, A. [Department of Materials Science and Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603 (Japan); Nambu, T. [Department of Materials Science and Engineering, Suzuka National College of Technology, Shiroko-cho, Suzuka, Mie 510-0294 (Japan); Matsumoto, Y. [Department of Mechanical Engineering, Oita National College of Technology, Maki, Oita 870-0152 (Japan); Murata, Y. [Department of Materials Science and Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603 (Japan)

    2015-10-05

    Highlights: • Air–treated V–based alloy membranes without catalytic Pd overlayer are found to possess excellent hydrogen permeability. • They also exhibit good durability at high temperature. • Alloying effects are discussed in view of the new description of hydrogen permeation based on hydrogen chemical potential. - Abstract: Hydrogen permeability of air–treated V–based alloy membranes without Pd coating have been investigated. The diffusion–limiting hydrogen permeation reaction takes place even without catalytic Pd overlayer on the surface. It is shown that pure V and its alloy membranes without Pd overlayer possess excellent hydrogen permeability and good durability at high temperature. The new description of hydrogen permeation based on hydrogen chemical potential has been applied and the hydrogen flux is analyzed in terms of the mobility of hydrogen atom and the PCT factor, f{sub PCT}.

  11. Support nanostructure boosts oxygen transfer to catalytically active platinum nanoparticles

    Science.gov (United States)

    Vayssilov, Georgi N.; Lykhach, Yaroslava; Migani, Annapaola; Staudt, Thorsten; Petrova, Galina P.; Tsud, Nataliya; Skála, Tomáš; Bruix, Albert; Illas, Francesc; Prince, Kevin C.; MatolíN, VladimíR.; Neyman, Konstantin M.; Libuda, Jörg

    2011-04-01

    Interactions of metal particles with oxide supports can radically enhance the performance of supported catalysts. At the microscopic level, the details of such metal-oxide interactions usually remain obscure. This study identifies two types of oxidative metal-oxide interaction on well-defined models of technologically important Pt-ceria catalysts: (1) electron transfer from the Pt nanoparticle to the support, and (2) oxygen transfer from ceria to Pt. The electron transfer is favourable on ceria supports, irrespective of their morphology. Remarkably, the oxygen transfer is shown to require the presence of nanostructured ceria in close contact with Pt and, thus, is inherently a nanoscale effect. Our findings enable us to detail the formation mechanism of the catalytically indispensable Pt-O species on ceria and to elucidate the extraordinary structure-activity dependence of ceria-based catalysts in general.

  12. Coordinated DNA dynamics during the human telomerase catalytic cycle

    Science.gov (United States)

    Parks, Joseph W.; Stone, Michael D.

    2014-06-01

    The human telomerase reverse transcriptase (hTERT) utilizes a template within the integral RNA subunit (hTR) to direct extension of telomeres. Telomerase exhibits repeat addition processivity (RAP) and must therefore translocate the nascent DNA product into a new RNA:DNA hybrid register to prime each round of telomere repeat synthesis. Here, we use single-molecule FRET and nuclease protection assays to monitor telomere DNA structure and dynamics during the telomerase catalytic cycle. DNA translocation during RAP proceeds through a previously uncharacterized kinetic substep during which the 3‧-end of the DNA substrate base pairs downstream within the hTR template. The rate constant for DNA primer realignment reveals this step is not rate limiting for RAP, suggesting a second slow conformational change repositions the RNA:DNA hybrid into the telomerase active site and drives the extrusion of the 5‧-end of the DNA primer out of the enzyme complex.

  13. Cobalamin Catalytic Centers for Stable Fuels Generation from Carbon Dioxide

    Science.gov (United States)

    Robertson, Wesley D.; Jawdat, Benmaan I.; Ennist, Nathan M.; Warncke, Kurt

    2010-03-01

    Our aim is to design and construct protein-based artificial photosynthetic systems that reduce carbon dioxide (CO2) to stable fuel forms within the robust and adaptable (βα)8 TIM-barrel protein structure. The EutB subunit of the adenosylcobalamin-dependent enzyme, ethanolamine ammonia-lyase, from Salmonella typhimurium, was selected as the protein template. This system was selected because the Co^I forms of the native cobalamin (Cbl) cofactor, and the related cobinamide (Cbi), possess redox properties that are commensurate with reduction of CO2. The kinetics of photo- (excited 5'-deazariboflavin electron donor) and chemical [Ti(III)] reduction, and subsequent reaction, of the Cbl and Cbi with CO2 are measured by time-resolved UV/visible absorption spectroscopy. Products are quantified by NMR spectroscopy. The results address the efficacy of the organocobalt catalytic centers for CO2 reduction to stable fuels, towards protein device integration.

  14. Catalytic hydrotreating of waste cooking oil for renewable diesel production

    Energy Technology Data Exchange (ETDEWEB)

    Bezergianni, Stella; Dimitriadis, Athanasios [Centre for Research and Technology Hellas (CERTH), Thessaloniki (Greece)

    2013-06-01

    A new technology based on catalytic hydrotreating of Waste Cooking Oil (WCO) for biodiesel production has been developed in the Centre for Research and Technology Hellas (CERTH). The main premise of this process is the conversion of the WCO fatty acids into normal- and iso-paraffins. The technology was evaluated in hydroprocessing pilot plants of CERTH where feedstock origin as well as optimal catalysts and operating parameters where identified. The fractionated diesel product, called ''white'' diesel exhibits excellent fuel properties including higher heating value (over 49 MJ/kg), negligible acidity, higher oxidation stability and higher cetane number ({proportional_to}77) than conventional biodiesel. The overall product yield is {proportional_to}92% v/v. This new suggested technology is extremely appealing as it employs existing refinery infrastructure and expertise, offers feedstock flexibility, leaves no by-product and above all is economically attractive. (orig.)

  15. Kinetically controlled E-selective catalytic olefin metathesis.

    Science.gov (United States)

    Nguyen, Thach T; Koh, Ming Joo; Shen, Xiao; Romiti, Filippo; Schrock, Richard R; Hoveyda, Amir H

    2016-04-29

    A major shortcoming in olefin metathesis, a chemical process that is central to research in several branches of chemistry, is the lack of efficient methods that kinetically favor E isomers in the product distribution. Here we show that kinetically E-selective cross-metathesis reactions may be designed to generate thermodynamically disfavored alkenyl chlorides and fluorides in high yield and with exceptional stereoselectivity. With 1.0 to 5.0 mole % of a molybdenum-based catalyst, which may be delivered in the form of air- and moisture-stable paraffin pellets, reactions typically proceed to completion within 4 hours at ambient temperature. Many isomerically pure E-alkenyl chlorides, applicable to catalytic cross-coupling transformations and found in biologically active entities, thus become easily and directly accessible. Similarly, E-alkenyl fluorides can be synthesized from simpler compounds or more complex molecules. PMID:27126041

  16. [Determination of trace manganese in coal gangue by catalytic spectrophotometry].

    Science.gov (United States)

    Xia, C; He, X

    2001-02-01

    In HAc-NaAc solution trace Mn(II) catalyzes strongly decolorization reaction of bright green SF(BGSF) by oxidizing with potassium periodate and its catalytic extent is linear with the contents of Mn(II) in the certain range. Based on this study, a catalysis spectrophotometric method for determining trace Mn(II) was developed. The results show that the maximum absorption of the complex is at 651 nm and the detection limits of the method is 0.060 microgram.L-1 for Mn(II) and Beer's law is obeyed for Mn(II) in the range of 0.03-0.3 microgram.50 mL-1. The method has been applied to the determination of trace Mn in coal gangue with satisfactory results. PMID:12953587

  17. Catalytic activity of nuclease P1: Experiment and theory

    International Nuclear Information System (INIS)

    Nuclease P1 from Penicillium citrinum is a zinc dependent glyco-enzyme that recognizes single stranded DNA and RNA as substrates and hydrolyzes the phosphate ester bond. Nuclease Pl seems to recognize particular conformations of the phosphodiester backbone and shows significant variation in the rate of hydrolytic activity depending upon which nucleosides are coupled by the phosphodiester bond. The efficiency of nuclease Pl in hydrolyzing the phosphodiester bonds of a substrate can be altered by modifications to one of the substrate bases induced by ionizing radiation or oxidative stress. Measurements have been made of the effect of several radiation induced lesions on the catalytic rate of nuclease Pl. A model of the structure of the enzyme has been constructed in order to better understand the binding and activity of this enzyme on various ssDNA substrates

  18. Catalytically favorable surface patterns in Pt-Au nanoclusters

    KAUST Repository

    Mokkath, Junais Habeeb

    2013-01-01

    Motivated by recent experimental demonstrations of novel PtAu nanoparticles with highly enhanced catalytic properties, we present a systematic theoretical study that explores principal catalytic indicators as a function of the particle size and composition. We find that Pt electronic states in the vicinity of the Fermi level combined with a modified electron distribution in the nanoparticle due to Pt-to-Au charge transfer are the origin of the outstanding catalytic properties. From our model we deduce the catalytically favorable surface patterns that induce ensemble and ligand effects. © The Royal Society of Chemistry 2013.

  19. MODIFICATION OF PALLADIUM METALLIC CATALYST WITH POLYMER-ANCHORED THIOETHER LIGANDS

    Institute of Scientific and Technical Information of China (English)

    LIU Hanfan; MAO Guoping

    1993-01-01

    A well-dispersed metallic palladium catalyst modified by polymer-anchored thioether ligands was used for the hydrogenation of cyclopentadiene to cyclopentene with high activity and selectivity in ambient condition. The evidences to show the modification of catalytic properties by polymer anchored ligands were given.

  20. Facile Synthesis of Au Nanoparticles Embedded in an Ultrathin Hollow Graphene Nanoshell with Robust Catalytic Performance.

    Science.gov (United States)

    Liu, Hongyang; Wang, Jia; Feng, Zhenbao; Lin, Yangming; Zhang, Liyun; Su, Dangsheng

    2015-10-01

    Au nanoparticles (NPs) uniformly embedded into an ultrathin hollow graphene nanoshell (Au@HGN) are synthesized using a facile template-based procedure. The obtained Au@HGN catalyst exhibits robust and stable catalytic performance in the reduction of 4-nitrophenol to 4-aminophenol, compared with that of traditional Au/TiO2 and previously reported Au- and Ag-based catalysts. PMID:26280245