WorldWideScience

Sample records for barrel electromagnetic calorimeter

  1. The barrel electromagnetic calorimeter on OPAL

    CERN Multimedia

    Patrice Loiez

    1993-01-01

    The two particle beams collide at the centre of this barrel and eject a large number of different particles. The energy of some of these particles will be measured by this electromagnetic calorimeter by absorbing all of the particle's energy. The OPAL detector was used on the LEP accelerator, which ran from 1989 to 2000.

  2. Construction, assembly and tests of the ATLAS electromagnetic barrel calorimeter

    CERN Document Server

    Aubert, B; Colas, Jacques; Delebecque, P; Di Ciaccio, L; El-Kacimi, M; Ghez, P; Girard, C; Gouanère, M; Goujdami, D; Jérémie, A; Jézéquel, S; Lafaye, R; Massol, N; Perrodo, P; Przysiezniak, H; Sauvage, G; Thion, J; Wingerter-Seez, I; Zitoun, R; Zolnierowski, Y; Alforque, R; Chen, H; Farrell, J; Gordon, H; Grandinetti, R; Hackenburg, R W; Hoffmann, A; Kierstead, J A; Köhler, J; Lanni, F; Lissauer, D; Ma, H; Makowiecki, D S; Müller, T; Norton, S; Radeka, V; Rahm, David Charles; Rehak, M; Rajagopalan, S; Rescia, S; Sexton, K; Sondericker, J; Stumer, I; Takai, H; Belymam, A; Benchekroun, D; Driouichi, C; Hoummada, A; Hakimi, M; Knee, Michael; Stroynowski, R; Wakeland, B; Datskov, V I; Drobin, V; Aleksa, Martin; Bremer, J; Carli, T; Chalifour, M; Chevalley, J L; Djama, F; Ema, L; Fabre, C; Fassnacht, P; Gianotti, F; Gonidec, A; Hansen, J B; Hervás, L; Hott, T; Lacaste, C; Marin, C P; Pailler, P; Pleskatch, A; Sauvagey, D; Vandoni, Giovanna; Vuillemin, V; Wilkens, H; Albrand, S; Belhorma, B; Collot, J; de Saintignon, P; Dzahini, D; Ferrari, A; Fulachier, J; Gallin-Martel, M L; Hostachy, J Y; Laborie, G; Ledroit-Guillon, F; Martin, P; Muraz, J F; Ohlsson-Malek, F; Saboumazrag, S; Viret, S; Othegraven, R; Zeitnitz, C; Banfi, D; Carminati, L; Cavalli, D; Citterio, M; Costa, G; Delmastro, M; Fanti, M; Mandelli, L; Mazzanti, M; Tartarelli, F; Augé, E; Baffioni, S; Bonis, J; Bonivento, W; Bourdarios, C; de La Taille, C; Fayard, L; Fournier, D; Guilhem, G; Imbert, P; Iconomidou-Fayard, L; Le Meur, G; Mencik, M; Noppe, J M; Parrour, G; Puzo, P; Rousseau, D; Schaffer, A C; Seguin-Moreau, N; Serin, L; Unal, G; Veillet, J J; Wicek, F; Zerwas, D; Astesan, F; Bertoli, W; Canton, B; Fleuret, F; Imbault, D; Lacour, D; Laforge, B; Schwemling, P; Abouelouafa, M; Ben-Mansour, A; Cherkaoui, R; El-Mouahhidi, Y; Ghazlane, H; Idrissi, A; Bazizi, K; England, D; Glebov, V; Haelen, T; Lobkowicz, F; Slattery, P F; Belorgey, J; Besson, N; Boonekamp, M; Durand, D; Ernwein, J; Mansoulié, B; Molinie, F; Meyer, J P; Perrin, P; Schwindling, J; Taguet, J P; Zaccone, Henri; Lund-Jensen, B; Rydström, S; Tayalati, Y; Botchev, B; Finocchiaro, G; Hoffman, J; McCarthy, R L; Rijssenbeek, M; Steffens, J; Zdrazil, M; Braun, H M

    2006-01-01

    The construction and assembly of the two half barrels of the ATLAS central electromagnetic calorimeter and their insertion into the barrel cryostat are described. The results of the qualification tests of the calorimeter before installation in the LHC ATLAS pit are given.

  3. The GlueX Barrel Electromagnetic Calorimeter

    Science.gov (United States)

    Papandreou, Zisis; Lolos, George; Semenov, Andrei; GlueX Collaboration

    2011-04-01

    The goal of the GLUEX experiment at Jefferson Lab is to search for exotic hybrid mesons as evidence of gluonic excitations, in an effort to understand confinement in QCD. A key subsystem of the GLUEX detector is the electromagnetic barrel calorimeter (BCAL) located inside a 2-Tesla superconducting solenoid. BCAL is a ``spaghetti calorimeter,'' consisting of layers of corrugated lead sheets, interleaved with planes of 1-mm-diameter, double-clad, Kuraray SCSF-78MJ scintillating fibres, bonded in the lead grooves using optical epoxy. The detector will consist of 48 modules and will be readout using nearly 4,000 large-area (1.26 cm2 each) silicon photomultiplier arrays. BCAL construction is well under way at the University of Regina and test results will be shown. Supported by NSERC grant SAPJ-326516, DOE grant DE-FG02-0SER41374 and Jefferson Science Associates, LLC. under U.S. DOE Contract No. DE-AC05-06OR23177.

  4. First physics pulses in the Barrel Electromagnetic Calorimeter with cosmics

    CERN Multimedia

    Laurent Serin

    2006-01-01

    The electromagnetic barrel calorimeter has been installed in its final position in October 2005. Since then, the calorimeter is being equipped with front-end electronics. Starting in April 2006, electronics calibration runs are taken a few times per week to debug the electronics and to study the performance in the pit (stability, noise). Today, 10 out of the 32 Front End crates are being read out, amounting to about 35000 channels. cool down, few little typos --> After a 6-week cool down, the barrel cryostat was filled with Liquid Argon in May. The presence of a few shorts (~1MΩ) at the edges of the modules was indicating the possibility of conducting dust having entered into the calorimeter with the flowing liquid. In order to try to improve this situation, the calorimeter was emptied and filled again, but this time by condensating the argon instead of flowing it in liquid phase. The new High Voltage tests are not showing any significant improvement but the situation is statisfactory for ATLAS runn...

  5. Performance of the ATLAS electromagnetic calorimeter barrel module 0

    CERN Document Server

    Aubert, Bernard; Alexa, C; Astesan, F; Augé, E; Aulchenko, V M; Ballansat, J; Barreiro, F; Barrillon, P; Battistoni, G; Bazan, A; Beaugiraud, B; Beck-Hansen, J; Belhorma, B; Belorgey, J; Belymam, A; Ben-Mansour, A; Benchekroun, D; Benchouk, C; Bernard, R; Bertoli, W; Boniface, J; Bonivento, W; Bourdarios, C; Bremer, J; Breton, D; Bán, J; Camard, A; Canton, B; Carminati, L; Cartiglia, N; Cavalli, D; Chalifour, M; Chekhtman, A; Chen, H; Cherkaoui, R; Chevalley, J L; Chollet, F; Citterio, M; Clark, A; Cleland, W; Clément, C; Colas, Jacques; Collot, J; Costa, G; Cros, P; Cunitz, H; de Saintignon, P; Del Peso, J; Delebecque, P; Delmastro, M; Di Ciaccio, Lucia; Dinkespiler, B; Djama, F; Dodd, J; Driouichi, C; Dumont-Dayot, N; Duval, P Y; Dzahini, D; Efthymiopoulos, I; Egdemir, J; El-Kacimi, M; El-Mouahhidi, Y; Engelmann, R; Ernwein, J; Falleau, I; Fanti, M; Farrell, J; Fassnacht, P; Ferrari, A; Fichet, S; Fournier, D; Gallin-Martel, M L; Gara, A; García, G; Gaumer, O; Ghazlane, H; Ghez, P; Gianotti, F; Girard, C; Gordon, H; Gouanère, M; Guilhem, G; Hackenburg, B; Hakimi, M; Hassani, S; Henry-Coüannier, F; Hervás, L; Hinz, L; Hoffman, A; Hoffman, J; Hostachy, J Y; Hoummada, A; Hubaut, F; Idrissi, A; Imbault, D; Jacquier, Y; Jérémie, A; Jevaud, M; Jézéquel, S; Kambara, H; Karst, P; Kazanin, V; Kierstead, J A; Kolachev, G M; Kordas, K; de La Taille, C; Labarga, L; Lacour, D; Lafaye, R; Laforge, B; Lanni, F; Le Coroller, A; Le Dortz, O; Le Maner, C; Le Van-Suu, A; Le Flour, T; Leite, M; Leltchouk, M; Lesueur, J; Lissauer, D; Lund-Jensen, B; Lundqvist, J M; Ma, H; Macé, G; Makowiecki, D S; Malychev, V; Mandelli, L; Mansoulié, B; Marin, C P; Martin, D; Martin, L; Martin, O; Martin, P; Maslennikov, A L; Massol, N; Mazzanti, M; McCarthy, R; McDonald, J; Megner, L; Merkel, B; Mirea, A; Moneta, L; Monnier, E; Moynot, M; Muraz, J F; Nagy, E; Negroni, S; Neukermans, L; Nicod, D; Nikolic-Audit, I; Noppe, J M; Ohlsson-Malek, F; Olivier, C; Orsini, F; Pailler, P; Parrour, G; Parsons, J A; Pearce, M; Perini, L; Perrodo, P; Perrot, G; Pétroff, P; Poggioli, Luc; Pospelov, G E; Pralavorio, Pascal; Prast, J; Przysiezniak, H; Puzo, P; Radeka, V; Rahm, David Charles; Rajagopalan, S; Raymond, M; Renardy, J F; Repetti, B; Rescia, S; Resconi, S; Riccadona, X; Richer, J P; Rijssenbeek, M; Rodier, S; Rossel, F; Rousseau, D; Rydström, S; Saboumazrag, S; Sauvage, D; Sauvage, G; Schilly, P; Schwemling, P; Schwindling, J; Seguin-Moreau, N; Seidl, W; Seman, M; Serin, L; Shousharo, A; Simion, S; Sippach, W; Snopkov, R; Steffens, J; Stroynowski, R; Stumer, I; Taguet, J P; Takai, H; Talyshev, A A; Tartarelli, F; Teiger, J; Thion, J; Tikhonov, Yu A; Tisserant, S; Tocut, V; Tóth, J; Veillet, J J; Vossebeld, Joost Herman; Vuillemin, V; Wielers, M; Willis, W J; Wingerter-Seez, I; Ye, J; Yip, K; Zerwas, D; Zitoun, R; Zolnierowski, Y

    2003-01-01

    The construction and performance of the barrel pre-series module 0 of the future ATLAS electromagnetic calorimeter at the LHC is described. The signal reconstruction and performance of ATLAS-like electronics has been studied. The signal to noise ratio for muons has been found to be 7.11+-0.07. An energy resolution of better than 9.5% GeV^1/2/sqrt{E} (sampling term) has been obtained with electron beams of up to 245GeV. The uniformity of the response to electrons in an area of Delta_eta x Delta_phi = 1.2 x 0.075 has been measured to be better than 0.8%.

  6. Performance of the ATLAS electromagnetic calorimeter barrel module 0

    Energy Technology Data Exchange (ETDEWEB)

    Aubert, B.; Ballansat, J.; Bazan, A.; Beaugiraud, B.; Boniface, J.; Chollet, F.; Colas, J.; Delebecque, P.; Di Ciaccio, L.; Dumont-Dayot, N.; El Kacimi, M.; Gaumer, O.; Ghez, P.; Girard, C.; Gouanere, M.; Kambara, H.; Jeremie, A.; Jezequel, S.; Lafaye, R.; Leflour, T.; Le Maner, C.; Lesueur, J.; Massol, N.; Moynot, M.; Neukermans, L.; Perrodo, P.; Perrot, G.; Poggioli, L.; Prast, J.; Przysiezniak, H.; Riccadona, X.; Sauvage, G.; Thion, J.; Wingerter-Seez, I.; Zitoun, R.; Zolnierowski, Y.; Chen, H.; Citterio, M.; Farrell, J.; Gordon, H.; Hackenburg, B.; Hoffman, A.; Kierstead, J.; Lanni, F.; Leite, M.; Lissauer, D.; Ma, H.; Makowiecki, D.; Radeka, V.; Rahm, D.; Rajagopalan, S.; Rescia, S.; Stumer, I.; Takai, H.; Yip, K.; Benchekroun, D.; Driouichi, C.; Hoummada, A.; Hakimi, M.; Stroynowski, R.; Ye, J.; Beck Hansen, J.; Belymam, A.; Bremer, J.; Chevalley, J.L.; Fassnacht, P.; Gianotti, F.; Hervas, L.; Marin, C.P.; Pailler, P.; Schilly, P.; Seidl, W.; Vossebeld, J.; Vuillemin, V.; Clark, A.; Efthymiopoulos, I.; Moneta, L.; Belhorma, B.; Collot, J.; Saintignon, P. de; Dzahini, D.; Ferrari, A.; Gallin-Martel, M.L.; Hostachy, J.Y.; Martin, P.; Muraz, J.F.; Ohlsson-Malek, F.; Saboumazrag, S.; Ban, J.; Cartiglia, N.; Cunitz, H.; Dodd, J.; Gara, A.; Leltchouk, M.; Negroni, S.; Parsons, J.A.; Seman, M.; Simion, S.; Sippach, W.; Willis, W.; Barreiro, F.; Garcia, G.; Labarga, L.; Rodier, S.; Peso, J. del; Alexa, C.; Barrillon, P.; Benchouk, C.; Chekhtman, A.; Dinkespiler, B.; Djama, F.; Duval, P.Y.; Henry-Couannier, F.; Hinz, L.; Jevaud, M.; Karst, P.; Le Van Suu, A.; Martin, L.; Martin, O.; Mirea, A.; Monnier, E.; Nagy, E.; Nicod, D.; Olivier, C.; Pralavorio, P.; Repetti, B.; Raymond, M.; Sauvage, D.; Tisserant, S.; Toth, J.; Wielers, M.; Battistoni, G.; Bonivento, W.; Carminati, L.; Cavalli, D.; Costa, G.; Delmastro, M.; Fanti, M.; Mandelli, L.; Mazzanti, M.; Perini, L.; Resconi, S.; Tartarelli, G.F.; Aulchenko, V.; Kazanin, V.; Kolachev, G.; Malyshev, V.J. [and others

    2003-03-11

    The construction and performance of the barrel pre-series module 0 of the future ATLAS electromagnetic calorimeter at the LHC is described. The signal reconstruction and performance of ATLAS-like electronics has been studied. The signal to noise ratio for muons has been found to be 7.11{+-}0.07. An energy resolution of better than 9.5% GeV{sup 1/2}/{radical}E (sampling term) has been obtained with electron beams of up to 245 GeV. The uniformity of the response to electrons in an area of {delta}{eta}x{delta}phi=1.2x0.075 has been measured to be better than 0.8%.

  7. Performance of the ATLAS electromagnetic calorimeter barrel module 0

    Science.gov (United States)

    Aubert, B.; Ballansat, J.; Bazan, A.; Beaugiraud, B.; Boniface, J.; Chollet, F.; Colas, J.; Delebecque, P.; di Ciaccio, L.; Dumont-Dayot, N.; El Kacimi, M.; Gaumer, O.; Ghez, P.; Girard, C.; Gouanère, M.; Kambara, H.; Jérémie, A.; Jézéquel, S.; Lafaye, R.; Leflour, T.; Le Maner, C.; Lesueur, J.; Massol, N.; Moynot, M.; Neukermans, L.; Perrodo, P.; Perrot, G.; Poggioli, L.; Prast, J.; Przysiezniak, H.; Riccadona, X.; Sauvage, G.; Thion, J.; Wingerter-Seez, I.; Zitoun, R.; Zolnierowski, Y.; Chen, H.; Citterio, M.; Farrell, J.; Gordon, H.; Hackenburg, B.; Hoffman, A.; Kierstead, J.; Lanni, F.; Leite, M.; Lissauer, D.; Ma, H.; Makowiecki, D.; Radeka, V.; Rahm, D.; Rajagopalan, S.; Rescia, S.; Stumer, I.; Takai, H.; Yip, K.; Benchekroun, D.; Driouichi, C.; Hoummada, A.; Hakimi, M.; Stroynowski, R.; Ye, J.; Beck Hansen, J.; Belymam, A.; Bremer, J.; Chevalley, J. L.; Fassnacht, P.; Gianotti, F.; Hervas, L.; Marin, C. P.; Pailler, P.; Schilly, P.; Seidl, W.; Vossebeld, J.; Vuillemin, V.; Clark, A.; Efthymiopoulos, I.; Moneta, L.; Belhorma, B.; Collot, J.; de Saintignon, P.; Dzahini, D.; Ferrari, A.; Gallin-Martel, M. L.; Hostachy, J. Y.; Martin, P.; Muraz, J. F.; Ohlsson-Malek, F.; Saboumazrag, S.; Ban, J.; Cartiglia, N.; Cunitz, H.; Dodd, J.; Gara, A.; Leltchouk, M.; Negroni, S.; Parsons, J. A.; Seman, M.; Simion, S.; Sippach, W.; Willis, W.; Barreiro, F.; Garcia, G.; Labarga, L.; Rodier, S.; Del Peso, J.; Alexa, C.; Barrillon, P.; Benchouk, C.; Chekhtman, A.; Dinkespiler, B.; Djama, F.; Duval, P. Y.; Henry-Couannier, F.; Hinz, L.; Jevaud, M.; Karst, P.; Le van Suu, A.; Martin, L.; Martin, O.; Mirea, A.; Monnier, E.; Nagy, E.; Nicod, D.; Olivier, C.; Pralavorio, P.; Repetti, B.; Raymond, M.; Sauvage, D.; Tisserant, S.; Toth, J.; Wielers, M.; Battistoni, G.; Bonivento, W.; Carminati, L.; Cavalli, D.; Costa, G.; Delmastro, M.; Fanti, M.; Mandelli, L.; Mazzanti, M.; Perini, L.; Resconi, S.; Tartarelli, G. F.; Aulchenko, V.; Kazanin, V.; Kolachev, G.; Malyshev, V.; Maslennikov, A.; Pospelov, G.; Snopkov, R.; Shousharo, A.; Talyshev, A.; Tikhonov, Yu.; Augé, E.; Bourdarios, C.; Breton, D.; Cros, P.; de La Taille, C.; Falleau, I.; Fournier, D.; Guilhem, G.; Hassani, S.; Jacquier, Y.; Kordas, K.; Macé, G.; Merkel, B.; Noppe, J. M.; Parrour, G.; Pétroff, P.; Puzo, P.; Richer, J. P.; Rousseau, D.; Seguin-Moreau, N.; Serin, L.; Tocut, V.; Veillet, J. J.; Zerwas, D.; Astesan, F.; Bertoli, W.; Camard, A.; Canton, B.; Fichet, S.; Hubaut, F.; Imbault, D.; Lacour, D.; Laforge, B.; Le Dortz, O.; Martin, D.; Nikolic-Audit, I.; Orsini, F.; Rossel, F.; Schwemling, P.; Cleland, W.; McDonald, J.; Abouelouafa, E. M.; Ben Mansour, A.; Cherkaoui, R.; El Mouahhidi, Y.; Ghazlane, H.; Idrissi, A.; Belorgey, J.; Bernard, R.; Chalifour, M.; Le Coroller, A.; Ernwein, J.; Mansoulié, B.; Renardy, J. F.; Schwindling, J.; Taguet, J.-P.; Teiger, J.; Clément, C.; Lund-Jensen, B.; Lundqvist, J.; Megner, L.; Pearce, M.; Rydstrom, S.; Egdemir, J.; Engelmann, R.; Hoffman, J.; McCarthy, R.; Rijssenbeek, M.; Steffens, J.; Atlas Electromagnetic Liquid Argon Calorimeter Group

    2003-03-01

    The construction and performance of the barrel pre-series module 0 of the future ATLAS electromagnetic calorimeter at the LHC is described. The signal reconstruction and performance of ATLAS-like electronics has been studied. The signal to noise ratio for muons has been found to be 7.11±0.07. An energy resolution of better than 9.5% GeV1/2/ E (sampling term) has been obtained with electron beams of up to 245 GeV. The uniformity of the response to electrons in an area of Δ η×Δ φ=1.2×0.075 has been measured to be better than 0.8%.

  8. Energy Resolution of the Barrel of the CMS Electromagnetic Calorimeter

    CERN Document Server

    Adzic, Petar; Almeida, Carlos; Almeida, Nuno; Anagnostou, Georgios; Anfreville, Marc; Anicin, Ivan; Antunovic, Zeljko; Auffray, Etiennette; Baccaro, Stefania; Baffioni, Stephanie; Baillon, Paul; Barney, David; Barone, Luciano; Barrillon, Pierre; Bartoloni, Alessandro; Beauceron, Stephanie; Beaudette, Florian; Bell, Ken W; Benetta, Robert; Bercher, Michel; Berthon, Ursula; Betev, Botjo; Beuselinck, Raymond; Bhardwaj, Ashutosh; Bialas, Wojciech; Biino, Cristina; Bimbot, Stephane; Blaha, Jan; Bloch, Philippe; Blyth, Simon; Bordalo, Paula; Bornheim, Adolf; Bourotte, Jean; Britton, David; Brown, Robert M; Brunelière, Renaud; Busson, Philippe; Camporesi, Tiziano; Cartiglia, Nicolo; Cavallari, Francesca; Cerutti, Muriel; Chamont, David; Chang, Paoti; Chang, You-Hao; Charlot, Claude; Chatterji, Sudeep; Chen, E Augustine; Chipaux, Rémi; Choudhary, Brajesh C; Cockerill, David J A; Collard, Caroline; Combaret, Christophe; Cossutti, Fabio; Da Silva, J C; Dafinei, Ioan; Daskalakis, Georgios; Davatz, Giovanna; Decotigny, David; De Min, Alberto; Deiters, Konrad; Dejardin, Marc; Del Re, Daniele; Della Negra, Rodolphe; Della Ricca, Giuseppe; Depasse, Pierre; Descamp, J; Dewhirst, Guy; Dhawan, Satish; Diemoz, Marcella; Dissertori, Günther; Dittmar, Michael; Djambazov, Lubomir; Dobrzynski, Ludwik; Drndarevic, Snezana; Dupanloup, Michel; Dzelalija, Mile; Ehlers, Jan; El-Mamouni, H; Peisert, Anna; Evangelou, Ioannis; Fabbro, Bernard; Faure, Jean-Louis; Fay, Jean; Ferri, Federico; Flower, Paul S; Franzoni, Giovanni; Funk, Wolfgang; Gaillac, Anne-Marie; Gargiulo, Corrado; Gascon-Shotkin, S; Geerebaert, Yannick; Gentit, François-Xavier; Ghezzi, Alessio; Gilly, Jean; Giolo-Nicollerat, Anne-Sylvie; Givernaud, Alain; Gninenko, Sergei; Go, Apollo; Godinovic, Nikola; Golubev, Nikolai; Golutvin, Igor; Gómez-Reino, Robert; Govoni, Pietro; Grahl, James; Gras, Philippe; Greenhalgh, Justin; Guillaud, Jean-Paul; Haguenauer, Maurice; Hamel De Montechenault, G; Hansen, Magnus; Heath, Helen F; Hill, Jack; Hobson, Peter R; Holmes, Daniel; Holzner, André; Hou, George Wei-Shu; Ille, Bernard; Ingram, Quentin; Jain, Adarsh; Jarry, Patrick; Jauffret, C; Jha, Manoj; Karar, M A; Kataria, Sushil Kumar; Katchanov, V A; Kennedy, Bruce W; Kloukinas, Kostas; Kokkas, Panagiotis; Korjik, M; Krasnikov, Nikolai; Krpic, Dragomir; Kyriakis, Aristotelis; Lebeau, Michel; Lecomte, Pierre; Lecoq, Paul; Lemaire, Marie-Claude; Lethuillier, Morgan; Lin, Willis; Lintern, A L; Lister, Alison; Litvin, V; Locci, Elizabeth; Lodge, Anthony B; Longo, Egidio; Loukas, Demetrios; Luckey, D; Lustermann, Werner; Lynch, Clare; MacKay, Catherine Kirsty; Malberti, Martina; Maletic, Dimitrije; Mandjavidze, Irakli; Manthos, Nikolaos; Markou, Athanasios; Mathez, Hervé; Mathieu, Antoine; Matveev, Viktor; Maurelli, Georges; Menichetti, Ezio; Meridiani, Paolo; Milenovic, Predrag; Milleret, Gérard; Miné, Philippe; Mur, Michel; Musienko, Yuri; Nardulli, Alessandro; Nash, Jordan; Neal, Homer; Nédélec, Patrick; Negri, Pietro; Nessi-Tedaldi, Francesca; Newman, Harvey B; Nikitenko, Alexander; Obertino, Maria Margherita; Ofierzynski, Radoslaw Adrian; Organtini, Giovanni; Paganini, Pascal; Paganoni, Marco; Papadopoulos, Ioannis; Paramatti, Riccardo; Pastrone, Nadia; Pauss, Felicitas; Puljak, Ivica; Pullia, Antonino; Puzovic, Jovan; Ragazzi, Stefano; Ramos, Sergio; Rahatlou, Shahram; Rander, John; Ranjan, Kirti; Ravat, Olivier; Raymond, M; Razis, Panos A; Redaelli, Nicola; Renker, Dieter; Reucroft, Steve; Reymond, Jean-Marc; Reynaud, Michel; Reynaud, Serge; Romanteau, Thierry; Rondeaux, Françoise; Rosowsky, André; Rovelli, Chiara; Rumerio, Paolo; Rusack, Roger; Rusakov, Sergey V; Ryan, Matthew John; Rykaczewski, Hans; Sakhelashvili, Tariel; Salerno, Roberto; Santos, Marcelino; Seez, Christopher; Semeniouk, Igor; Sharif, Omar; Sharp, Peter; Shepherd-Themistocleous, Claire; Shevchenko, Sergey; Shivpuri, Ram Krishen; Sidiropoulos, Georgios; Sillou, Daniel; Singovsky, Alexander; Sirois, Y; Sirunyan, Albert M; Smith, Brian; Smith, Vincent J; Sproston, Martin; Suter, Henry; Swain, John; Tabarelli de Fatis, Tommaso; Takahashi, Maiko; Tapper, Robert J; Tcheremoukhine, Alexandre; Teixeira, Isabel; Teixeira, Joao Paulo; Teller, Olivier; Timlin, Claire; Triantis, F A; Troshin, Sergey; Tyurin, Nikolay; Ueno, Koji; Uzunian, Andrey; Varela, Joao; Vaz-Cardoso, N; Verrecchia, Patrice; Vichoudis, Paschalis; Vigano, S; Viertel, Gert; Virdee, Tejinder; Vlassov, E; Wang, Minzu; Weinstein, Alan; Williams, Jennifer C; Yaselli, Ignacio; Zabi, Alexandre; Zamiatin, Nikolai; Zelepoukine, Serguei; Zeller, Michael E; Zhang, Lin

    2007-01-01

    The energy resolution of the barrel part of the CMS Electromagnetic Calorimeter has been studied using electrons of 20 to 250 GeV in a test beam. The incident electron's energy was reconstructed by summing the energy measured in arrays of 3x3 or 5x5 channels. There was no significant amount of correlated noise observed within these arrays. For electrons incident at the centre of the studied 3x3 arrays of crystals, the mean stochastic term was measured to be 2.8% and the mean constant term to be 0.3%. The amount of the incident electron's energy which is contained within the array depends on its position of incidence. The variation of the containment with position is corrected for using the distribution of the measured energy within the array. For uniform illumination of a crystal with 120 GeV electrons a resolution of 0.5% was achieved. The energy resolution meets the design goal for the detector.

  9. Insertion of the first half-barrel of the ATLAS electromagnetic calorimeter into its cryostat

    CERN Multimedia

    Maximilien Brice

    2003-01-01

    The first cylinder of the ATLAS electromagnetic calorimeter barrel and the presampler have been inserted in the cryostat.The ATLAS electromagnetic calorimeter is intended to detect electrons, positrons and photons by measuring the energy they deposit on being absorbed. The cylinder of the calorimeter is in two halves, that will be sunk in a liquid-argon bath cooled to 90 kelvin (-180°C). Each half-barrel is 3.2 metres long, 53 cm thick and formed by assembling 16 modules. Each module is made up of alternate lead absorbers and electrodes pressed into 64 layers folded accordion-fashion. The presampler, set up inside the cylinder, is an integral part of the calorimeter system: It measures the energy lost by a particle before it reaches the calorimeter. To ensure an ultra-clean environment, a tent (visible here) was erected round the calorimeter and entry point to the cryostat. The detector and presampler, fitted together, could then be slid gradually into the cryostat like a drawer. To do so, the insertion team...

  10. Insertion of the first half-barrel of the ATLAS electromagnetic calorimeter into its cryostat

    CERN Multimedia

    Maximilien Brice

    2003-01-01

    The first cylinder of the ATLAS electromagnetic calorimeter barrel and the presampler have been inserted in the cryostat. The ATLAS electromagnetic calorimeter is intended to detect electrons, positrons and photons by measuring the energy they deposit on being absorbed. The cylinder of the calorimeter is in two halves, that will be sunk in a liquid-argon bath cooled to 90 kelvin (-180°C). Each half-barrel is 3.2 metres long, 53 cm thick and formed by assembling 16 modules. Each module is made up of alternate lead absorbers and electrodes pressed into 64 layers folded accordion-fashion. The presampler, set up inside the cylinder, is an integral part of the calorimeter system: It measures the energy lost by a particle before it reaches the calorimeter. To ensure an ultra-clean environment, a tent was erected round the calorimeter and entry point to the cryostat. The detector and presampler, fitted together, could then be slid gradually into the cryostat like a drawer. To do so, the insertion team had to fine-t...

  11. High precision, low disturbance calibration of the High Voltage system of the CMS Barrel Electromagnetic Calorimeter

    CERN Document Server

    Fasanella, Giuseppe

    2016-01-01

    The CMS Electromagnetic Calorimeter utilizes scintillating lead tungstate crystals, with avalanche photodiodes (APD) as photo-detectors in the barrel part. 1224 HV channels bias groups of 50 APD pairs, each at a voltage of about 380 V. The APD gain dependence on the voltage is 3pct/V. A stability of better than 60 mV is needed to have negligible impact on the calorimeter energy resolution. Until 2015 manual calibrations were performed yearly. A new calibration system was deployed recently, which satisfies the requirement of low disturbance and high precision. The system is discussed in detail and first operational experience is presented.

  12. High precision, low disturbance calibration system for the CMS Barrel Electromagnetic Calorimeter High Voltage apparatus

    Science.gov (United States)

    Fasanella, G.

    2017-01-01

    The CMS Electromagnetic Calorimeter utilizes scintillation lead tungstate crystals, with avalanche photodiodes (APD) as photo-detectors in the barrel part. 1224 HV channels bias groups of 50 APD pairs, each at a voltage of about 380 V. The APD gain dependence on the voltage is 3%/V. A stability of better than 60 mV is needed to have negligible impact on the calorimeter energy resolution. Until 2015 manual calibrations were performed yearly. A new calibration system was deployed recently, which satisfies the requirement of low disturbance and high precision. The system is discussed in detail and first operational experience is presented.

  13. Design studies for the Phase II upgrade of the CMS Barrel Electromagnetic Calorimeter

    Science.gov (United States)

    Bornheim, A.

    2017-03-01

    The High Luminosity LHC (HL-LHC) aims to reach the unprecedented integrated luminosity of 3 ab‑1 with an instantaneous luminosity up to 5 × 1034 cm‑2 s‑1. This poses stringent requirements on the radiation resistance of detector components and on the latency of the trigger system. The barrel region of the CMS Electromagnetic Calorimeter will be able to retain the current lead tungstate crystals and avalanche photo diode detectors which will meet the performance requirements throughout the operational lifetime of the HL-LHC. The new front-end electronics and very front-end system required at high luminosities will be described.

  14. CMD-2 barrel calorimeter

    Energy Technology Data Exchange (ETDEWEB)

    Aulchenko, V.M. (Budker Inst. of Nuclear Physics, Novosibirsk (Russian Federation)); Baibusinov, B.O. (Budker Inst. of Nuclear Physics, Novosibirsk (Russian Federation)); Bondar, A.E. (Budker Inst. of Nuclear Physics, Novosibirsk (Russian Federation)); Kuzmin, A.S. (Budker Inst. of Nuclear Physics, Novosibirsk (Russian Federation)); Leontiev, L.A. (Budker Inst. of Nuclear Physics, Novosibirsk (Russian Federation)); Okhapkin, V.S. (Budker Inst. of Nuclear Physics, Novosibirsk (Russian Federation)); Pestsov, L.V. (Budker Inst. of Nuclear Physics, Novosibirsk (Russian Federation)); Smakhtin, V.P. (Budker Inst. of Nuclear Physics, Novosibirsk (Russian Federation)); Sukhanov, A.I. (Budker Inst. of Nuclear Physics, Novosibirsk (Russian Federation)); Shwartz, B.A. (Budker Inst. of Nuclear Physics, Novosibirsk (Russian Federation))

    1993-11-15

    The barrel calorimeter of the CMD-2 detector for the VEPP-2M collider is described. The calorimeter contains 892 CsI crystals read by PM tubes. Operation with it during the last year demonstrated good performance as well as energy and spatial resolution which are close to the corresponding project values. (orig.)

  15. Design studies for the Phase II upgrade of the CMS Barrel Electromagnetic Calorimeter

    CERN Document Server

    Orimoto, Toyoko Jennifer

    2016-01-01

    The High Luminosity LHC (HL-LHC) will provide unprecedented instantaneous and integrated luminosity. The lead tungstate crystals forming the barrel part of the Electromagnetic Calorimeter (ECAL) of the Compact Muon Solenoid (CMS) will still perform well, even after the expected integrated luminosity of 3000fb-1 at the end of HL-LHC. The avalanche photodiodes (APDs) used to detect the scintillation light will also continue to be operational, although there will be some increase in noise due to radiation-induced dark currents. This will be mitigated by reducing the barrel operating temperature during HL-LHC running.The front-end electronics of the ECAL barrel will be replaced, in order to remove existing constraints on trigger rate and latency and to provide additional capability to fully exploit the higher luminosity delivered by the HL-LHC. New developments in high-speed optical links will allow single-crystal readout at 40 MHz to upgraded off-detector processors, allowing maximum flexibility and enhanced tri...

  16. Performance of Prototypes for the Barrel Part of the ANDA Electromagnetic Calorimeter

    Science.gov (United States)

    Rosenbaum, Christoph; Diehl, S.; Dormenev, V.; Drexler, P.; Kavatsyuk, M.; Kuske, T.; Nazarenko, S.; Novotny, R.; Rosier, P.; Ryazantsev, A.; Wieczorek, P.; Wilms, A.; Zaunick, H.-G.; P¯ANDA Collaboration

    2016-08-01

    The performance of the most recent prototypes of the ANDA barrel electromagnetic calorimeter (EMC) will be compared. The first large scale prototype PROTO60 was designed to test the performance of the improved tapered lead tungstate crystals (PWO-II). The PROTO60 which consists of 6 × 10 crystals was tested at various accelerator facilities over the complete envisaged energy range fulfilling the requirements of the TDR of the ANDA EMC in terms of energy, position and time resolution. To realize the final barrel geometry and to test the final front end electronics, a second prototype PROTO120 has been constructed. It represents a larger section of a barrel slice, containing the most tapered crystals and the close to final components for the ANDA EMC. The performance of both prototypes will be compared with a focus on the analysis procedure including the signal extraction, noise rejection, calibration and the energy resolution. In addition, the influence of the non-uniformity of the crystal on the energy resolution will be discussed.

  17. Last Few Metres for the Barrel Calorimeter

    CERN Multimedia

    Nyman, T.

    On Friday 4th November, the ATLAS Barrel Calorimeter was moved from its assembly point at the side of the ATLAS cavern to the centre of the toroidal magnet system. The detector was finally aligned, to the precision of within a millimetre, on Wednesday 9th November. The ATLAS installation team, led by Tommi Nyman, after having positioned the Barrel Calorimeter in its final location in the ATLAS experimental cavern UX15. The Barrel Calorimeter which will absorb and measure the energy of photons, electrons and hadrons at the core of the ATLAS detector is 8.6 meters in diameter, 6.8 meters long, and weighs over 1600 Tonnes. It consists of two concentric cylindrical detector elements. The innermost comprises aluminium pressure vessels containing the liquid argon electromagnetic calorimeter and the solenoid magnet. The outermost is an assembly of 64 hadron tile calorimeter sectors. Assembled 18 meters away from its final position, the Barrel Calorimeter was relocated with the help of a railway, which allows ...

  18. Work on a ATLAS tile calorimeter Barrel

    CERN Multimedia

    Laurent Guiraud

    2000-01-01

    The Tile Calorimeter is designed as one barrel and two extended barrel hadron parts. The calorimeter consists of a cylindrical structure with inner and outer radius of 2280 and 4230 mm respectively. The barrel part is 5640 mm in length along the beam axis, while each of the extended barrel cylinders is 2910 mm long. Each detector cylinder is built of 64 independent wedges along the azimuthal direction. Between the barrel and the extended barrels there is a gap of about 600 mm, which is needed for the Inner Detector and the Liquid Argon cables, electronics and services. The barrel covers the region -1.0barrels cover the region 0.8<|h|<1.7.

  19. OPAL detector electromagnetic calorimeter

    CERN Multimedia

    1988-01-01

    Half of the electromagnetic calorimeter of the OPAL detector is seen in this photo. This calorimeter consists of 4720 blocks of lead glass. It was used to detect and measure the energy of photons, electrons and positrons by absorbing them.

  20. Barrel calorimeter of the CMD-3 detector

    Energy Technology Data Exchange (ETDEWEB)

    Shebalin, V. E., E-mail: V.E.Shebalin@inp.nsk.su; Anisenkov, A. V.; Aulchenko, V. M.; Bashtovoy, N. S. [Russian Academy of Sciences, Budker Institute of Nuclear Physics, Siberian Branch (Russian Federation); Epifanov, D. A. [University of Tokyo, Department of Physics (Japan); Epshteyn, L. B.; Grebenuk, A. A.; Ignatov, F. V.; Erofeev, A. L.; Kovalenko, O. A.; Kozyrev, A. N.; Kuzmin, A. S.; Logashenko, I. B.; Mikhailov, K. Yu.; Razuvaev, G. P.; Ruban, A. A.; Shwartz, B. A.; Talyshev, A. A.; Titov, V. M.; Yudin, Yu. V. [Russian Academy of Sciences, Budker Institute of Nuclear Physics, Siberian Branch (Russian Federation)

    2015-12-15

    The structure of the barrel calorimeter of the CMD-3 detector is presented in this work. The procedure of energy calibration of the calorimeter and the method of photon energy restoration are described. The distinctive feature of this barrel calorimeter is its combined structure; it is composed of two coaxial subsystems: a liquid xenon calorimeter and a crystalline CsI calorimeter. The calorimeter spatial resolution of the photon conversion point is about 2 mm, which corresponds to an angular resolution of ∼6 mrad. The energy resolution of the calorimeter is about 8% for photons with energy of 200 MeV and 4% for photons with energy of 1 GeV.

  1. The KLOE electromagnetic calorimeter

    Energy Technology Data Exchange (ETDEWEB)

    Adinolfi, M.; Ambrosino, F.; Antonelli, A.; Antonelli, M.; Anulli, F.; Barbiellini, G.; Bencivenni, G.; Bertolucci, S.; Bini, C.; Bloise, C.; Bocci, V.; Bossi, F.; Branchini, P.; Cabibbo, G.; Caloi, R.; Campana, P.; Casarsa, M.; Cataldi, G.; Ceradini, F.; Cervelli, F.; Ciambrone, P.; De Lucia, E.; De Simone, P.; De Zorzi, G.; Dell' Agnello, S.; Denig, A.; Di Domenico, A.; Di Donato, C.; Di Falco, S.; Doria, A.; Erriquez, O.; Farilla, A.; Ferrari, A.; Ferrer, M.L.; Finocchiaro, G.; Forti, C.; Franceschi, A.; Franzini, P.; Gao, M.L.; Gatti, C.; Gauzzi, P.; Giannasi, A.; Giovannella, S.; Graziani, E.; Han, H.G.; Han, S.W.; Huang, X.; Incagli, M.; Ingrosso, L.; Keeble, L.; Kim, W.; Kuo, C.; Lanfranchi, G. E-mail: gaia.lanfranchi@lnf.infn.it; Lee-Franzini, J.; Lomtadze, T.; Mao, C.S.; Martemianov, M.; Mei, W.; Messi, R.; Miscetti, S.; Moccia, S.; Moulson, M.; Mueller, S.; Murtas, F.; Pacciani, L.; Palomba, M.; Palutan, M.; Pasqualucci, E.; Passalacqua, L.; Passeri, A.; Picca, D.; Pirozzi, G.; Pontecorvo, L.; Primavera, M.; Santangelo, P.; Santovetti, E.; Saracino, G.; Schamberger, R.D.; Sciascia, B.; Scuri, F.; Sfiligoi, I.; Silano, P.; Spadaro, T.; Spiriti, E.; Tortora, L.; Valente, P.; Valeriani, B.; Venanzoni, G.; Ventura, A.; Woelfle, S.; Wu, Y.; Xie, Y.G.; Zema, P.F.; Zhang, C.D.; Zhang, J.Q.; Zhao, P.P

    2002-11-21

    The KLOE calorimeter is a fine lead-scintillating fiber sampling calorimeter. We describe in the following the calibration procedures and the calorimeter performances obtained after 3 years of data taking. We get an energy resolution for electromagnetic showers of 5.4%/{radical}E(GeV) and a time resolution of 56 ps/{radical}E(GeV). We also present a measurement of efficiency for low-energy photons.

  2. BGO* electromagnetic calorimeter

    CERN Multimedia

    CERN

    1988-01-01

    * Short for Bismuth-Germanium-Oxyde, a scintillator of high atomic number Z used in electromagnetic crystal calorimeters. BGO is characterized by fast rise time (a few nanoseconds) and short radiation length (1.11 cm).

  3. The ATLAS electromagnetic calorimeter

    CERN Multimedia

    Maximilien Brice

    2003-01-01

    Michel Mathieu, a technician for the ATLAS collaboration, is cabling the ATLAS electromagnetic calorimeter's first end-cap, before insertion into its cryostat. Millions of wires are connected to the electromagnetic calorimeter on this end-cap that must be carefully fed out from the detector so that data can be read out. Every element on the detector will be attached to one of these wires so that a full digital map of the end-cap can be recreated.

  4. The CPLEAR Electromagnetic Calorimeter

    CERN Document Server

    Adler, R; Bal, F; Behnke, O; Bloch, P; Damianoglou, D; Dechelette, Paul; Dröge, M; Eckart, B; Felder, C; Fetscher, W; Fidecaro, Maria; Garreta, D; Gerber, H J; Gumplinger, P; Guyon, D; Johner, H U; Löfstedt, B; Kern, J; Kokkas, P; Krause, H; Mall, U; Marin, C P; Nanni, F; Pagels, B; Pavlopoulos, P; Petit, P; Polivka, G; Rheme, C; Ruf, T; Santoni, C; Schaller, L A; Schopper, A; Tauscher, Ludwig; Tschopp, H; Weber, P; Wendler, H; Witzig, C; Wolter, M

    1997-01-01

    A large-acceptance lead/gas sampling electromagnetic calorimeter (ECAL) was constructed for the CPLEAR experiment to detect photons from decays of $\\pi^0$s with momentum $p_{\\pi^0} \\le 800$ MeV$/c$. The main purpose of the ECAL is to determine the decay vertex of neutral-kaon decays $\\ko \\rightarrow \\pi^0\\pi^0 \\rightarrow 4 \\gamma$ and $\\ko \\rightarrow \\pi^0\\pi^0\\pi^0 \\rightarrow 6 \\gamma$. This requires a position-sensitive photon detector with high spatial granularity in $r$-, $\\varphi$-, and $z$-coordinates. The ECAL --- a barrel without end-caps located inside a magnetic field of 0.44 T --- consists of 18 identical concentric layers. Each layer of $1/3$ radiation length (X${_0}$) contains a converter plate followed by small cross-section high-gain tubes of 2640 mm active length which are sandwiched by passive pick-up strip plates. The ECAL, with a total of $6$ X${_0}$, has an energy resolution of $\\sigma (E)/E \\approx 13\\% / \\sqrt{E(\\mathrm{GeV})}$ and a position resolution of 4.5 mm for the shower foot. ...

  5. The KLOE electromagnetic calorimeter

    Energy Technology Data Exchange (ETDEWEB)

    Adinolfi, M.; Ambrosino, F.; Antonelli, A.; Antonelli, M.; Anulli, F.; Barbiellini, G.; Bencivenni, G.; Bertolucci, S.; Bini, C. E-mail: cesare.bini@roma1.infn.it; Bloise, C.; Bocci, V.; Bossi, F.; Branchini, P.; Cabibbo, G.; Caloi, R.; Campana, P.; Casarsa, M.; Cataldi, G.; Ceradini, F.; Cervelli, F.; Ciambrone, P.; De Lucia, E.; De Simone, P.; De Zorzi, G.; Dell' Agnello, S.; Denig, A.; Di Domenico, A.; Di Donato, C.; Di Falco, S.; Doria, A.; Erriquez, O.; Farilla, A.; Ferrari, A.; Ferrer, M.L.; Finocchiaro, G.; Forti, C.; Franceschi, A.; Franzini, P.; Gao, M.L.; Gatti, C.; Gauzzi, P.; Giannasi, A.; Giovannella, S.; Graziani, E.; Han, H.G.; Han, S.W.; Huang, X.; Incagli, M.; Ingrosso, L.; Keeble, L.; Kim, W.; Kuo, C.; Lanfranchi, G.; Lee-Franzini, J.; Lomtadze, T.; Mao, C.S.; Martemianov, M.; Mei, W.; Messi, R.; Miscetti, S.; Moccia, S.; Moulson, M.; Mueller, S.; Murtas, F.; Pacciani, L.; Palomba, M.; Palutan, M.; Pasqualucci, E.; Passalacqua, L.; Passeri, A.; Picca, D.; Pirozzi, G.; Pontecorvo, L.; Primavera, M.; Santangelo, P.; Santovetti, E.; Saracino, G.; Schamberger, R.D.; Sciascia, B.; Scuri, F.; Sfiligoi, I.; Silano, P.; Spadaro, T.; Spiriti, E.; Tortora, L.; Valente, P.; Valeriani, B.; Venanzoni, G.; Ventura, A.; Woelfle, S.; Wu, Y.; Xie, Y.G.; Zema, P.F.; Zhang, C.D.; Zhang, J.Q.; Zhao, P.P

    2002-04-11

    The KLOE detector was designed primarily for the study of CP violation in neutral kaon decays at DAPHINE, the Frascati phi-factory. The detector consists of a tracker and an electromagnetic calorimeter. A lead-scintillating-fiber sampling calorimeter satisfies best the requirements of the experiment, providing adequate energy resolution and superior timing accuracy. We describe in the following the construction of the calorimeter, its calibration and how the calorimeter information is used to obtain energy, point of entry and time of the arrival of photons, electrons and charged particles. With e{sup +}e{sup -} collision data at DAPHINE for an integrated luminosity of some 2 pb{sup -1} we find for electromagnetic showers, an energy resolution of 5.7%/{radical}E(GeV) and a time resolution of 54/{radical}E(GeV) ps. We also present a measurement of efficiency for low energy photons.

  6. The KLOE electromagnetic calorimeter

    CERN Document Server

    Adinolfi, M; Antonelli, A; Antonelli, M; Anulli, F; Barbiellini, G; Bencivenni, G; Bertolucci, Sergio; Bini, C; Bloise, C; Bocci, V; Bossi, F; Branchini, P; Cabibbo, G; Caloi, R; Campana, P; Casarsa, M; Cataldi, G; Ceradini, F; Cervelli, F; Ciambrone, P; De Lucia, E; De Simone, P; De Zorzi, G; Dell'Agnello, S; Denig, A; Di Domenico, A; Di Donato, C; Di Falco, S; Doria, A; Erriquez, O; Farilla, A; Ferrari, A; Ferrer, M L; Finocchiaro, G; Forti, C; Franceschi, A; Franzini, P; Gao, M L; Gatti, C; Gauzzi, P; Giannasi, A; Giovannella, S; Graziani, E; Han, H G; Han, S W; Huang, X; Incagli, M; Ingrosso, L; Keeble, L; Kim, W; Kuo, C; Lanfranchi, G; Lee-Franzini, J; Lomtadze, T A; Mao Chen Sheng; Martemyanov, M; Mei, W; Messi, R; Miscetti, S; Moccia, S; Moulson, M; Murtas, F; Müller, S; Pacciani, L; Palomba, M; Palutan, M; Pasqualucci, E; Passalacqua, L; Passeri, A; Picca, D; Pirozzi, G; Pontecorvo, L; Primavera, M; Santangelo, P; Santovetti, E; Saracino, G; Schamberger, R D; Sciascia, B; Scuri, F; Sfiligoi, I; Silano, P; Spadaro, T; Spiriti, E; Tortora, L; Valente, P; Valeriani, B; Venanzoni, G; Ventura, A; Wu, Y; Wölfle, S; Xie, Y G; Zema, P F; Zhang, C D; Zhang, J Q; Zhao, P P

    2002-01-01

    The KLOE detector was designed primarily for the study of CP violation in neutral kaon decays at DAPHINE, the Frascati phi-factory. The detector consists of a tracker and an electromagnetic calorimeter. A lead-scintillating-fiber sampling calorimeter satisfies best the requirements of the experiment, providing adequate energy resolution and superior timing accuracy. We describe in the following the construction of the calorimeter, its calibration and how the calorimeter information is used to obtain energy, point of entry and time of the arrival of photons, electrons and charged particles. With e sup + e sup - collision data at DAPHINE for an integrated luminosity of some 2 pb sup - sup 1 we find for electromagnetic showers, an energy resolution of 5.7%/sq root E(GeV) and a time resolution of 54/sq root E(GeV) ps. We also present a measurement of efficiency for low energy photons.

  7. Design, Construction and Installation of the ATLAS Hadronic Barrel Scintillator-Tile Calorimeter

    CERN Document Server

    Abdallah, J; Alexa, C; Alves, R; Amaral, P; Ananiev, A; Anderson, K; Andresen, X; Antonaki, A; Batusov, V; Bednar, P; Bergeaas, E; Biscarat, C; Blanch, O; Blanchot, G; Bohm, C; Boldea, V; Bosi, F; Bosman, M; Bromberg, C; Budagov, Yu A; Calvet, D; Cardeira, C; Carli, T; Carvalho, J; Cascella, M; Castillo, M V; Costello, J; Cavalli-Sforza, M; Cavasinni, V; Cerqueira, A S; Clément, C; Cobal, M; Cogswell, F; Constantinescu, S; Costanzo, D; Da Silva, P; Davidek, M; David, T; Dawson, J; De, K; Del Prete, T; Di Girolamo, B; Dita, S; Dolejsi, J; Dolezal, Z; Dotti, A; Downing, R; Drake, G; Efthymiopoulos, I; Errede, D; Errede, S; Farbin, A; Fassouliotis, D; Feng, E; Fenyuk, A; Ferdi, C; Ferreira, B C; Ferrer, A; Flaminio, V; Flix, J; Francavilla, P; Fullana, E; Garde, V; Gellerstedt, K; Giakoumopoulou, V; Giangiobbe, V; Gildemeister, O; Gilewsky, V; Giokaris, N; Gollub, N; Gomes, A; González, V; Gouveia, J; Grenier, P; Gris, P; Guarino, V; Guicheney, C; Sen-Gupta, A; Hakobyan, H; Haney, M; Hellman, S; Henriques, A; Higón, E; Hill, N; Holmgren, S; Hruska, I; Hurwitz, M; Huston, J; Jen-La Plante, I; Jon-And, K; Junk, T; Karyukhin, A; Khubua, J; Klereborn, J; Kopikov, S; Korolkov, I; Krivkova, P; Kulchitsky, Y; Kurochkin, Yu; Kuzhir, P; Lapin, V; Le Compte, T; Lefèvre, R; Leitner, R; Li, J; Liablin, M; Lokajícek, M; Lomakin, Y; Lourtie, P; Lovas, L; Lupi, A; Maidantchik, C; Maio, A; Maliukov, S; Manousakis, A; Marques, C; Marroquim, F; Martin, F; Mazzoni, E; Merritt, F S; Myagkov, A; Miller, R; Minashvili, I; Miralles, L; Montarou, G; Némécek, S; Nessi, M; Nikitine, I; Nodulman, L; Norniella, O; Onofre, A; Oreglia, M; Palan, B; Pallin, D; Pantea, D; Pereira, A; Pilcher, J E; Pina, J; Pinhão, J; Pod, E; Podlyski, F; Portell, X; Poveda, J; Pribyl, L; Price, L E; Proudfoot, J; Ramalho, M; Ramstedt, M; Raposeiro, L; Reis, J; Richards, R; Roda, C; Romanov, V; Rosnet, P; Roy, P; Ruiz, A; Rumiantsau, V; Russakovich, N; Sada Costa, J; Salto, O; Salvachúa, B; Sanchis, E; Sanders, H; Santoni, C; Santos, J; Saraiva, J G; Sarri, F; Says, L P; Schlager, G; Schlereth, J L; Seixas, J M; Selldén, B; Shalanda, N; Shevtsov, P; Shochet, M; Simaitis, V; Simonyan, M; Sisakian, A; Sjölin, J; Solans, C; Solodkov, A; Solovianov, J; Silva, O; Sosebee, M; Spanó, F; Speckmeyer, P; Stanek, R; Starchenko, E; Starovoitov, P; Suk, M; Sykora, I; Tang, F; Tas, P; Teuscher, R; Tokar, S; Topilin, N; Torres, J; Underwood, D; Usai, G; Valero, A; Valkár, S; Valls, J A; Vartapetian, A; Vazeille, F; Vellidis, C; Ventura, F; Vichou, I; Vivarelli, I; Volpi, M; White, A; Zaitsev, A; Zenin, A; Zenis, T; Zenonos, Z; Zenz, S; Zilka, B

    2007-01-01

    The scintillator tile hadronic calorimeter is a sampling calorimeter using steel as the absorber structure and scintillator as the active medium. The scintillator is located in "pockets" in the steel structure and the wavelength-shifting fibers are contained in channels running radially within the absorber to photomultiplier tubes which are located in the outer support girders of the calorimeter structure. In addition, to its role as a detector for high energy particles, the tile calorimeter provides the direct support of the liquid argon electromagnetic calorimeter in the barrel region, and the liquid argon electromagnetic and hadronic calorimeters in the endcap region. Through these, it indirectly supports the inner tracking system and beam pipe. The steel absorber, and in particular the support girders, provide the flux return for the solenoidal field from the central solenoid. Finally, the end surfaces of the barrel calorimeter are used to mount services, power supplies and readout crates for the inner tr...

  8. Corrections of the energies of electrons in the barrel/endcap transition region of the ATLAS electromagnetic calorimeter using Multivariate techniques

    CERN Document Server

    Moni, Chrysanthi

    2014-01-01

    The main purpose of this study is the correction for the energy losses of the e± in the tran- sition region between the barrel and the end-caps of the Electromagnetic Calorimeter (EMCal) of ATLAS, by using Multivariate techniques. The crack region is the one with the largest amount of material upstream the EMCal and this is the reason for which e± lose a great part of their energy as they pass through it. In this project, the contribution of the Multivariate Analysis in the correction of the E/Etrue distribution as well as in the derivation of the Gaussian peak versus |η| and ET , is examined. η is the pseudorapidity used as a spatial coordinate for the description of the angle of a particle relative to the beam axis and ET= Etrue /cosh(|η|), where Etrue is the true energy of the particles. Finally, the improvement of the resolution by using MVA techniques with and without scintillator is also explored.

  9. Belle electromagnetic calorimeter

    CERN Document Server

    Miyabayashi, K

    2002-01-01

    We report the performance of the Belle electromagnetic calorimeter for the first three years operation. Good mass resolutions for pi sup 0 and eta are obtained to be 4.8 and 12.1 MeV/c sup 2 , respectively. The degradation of light output due to the radiation damage is small, about 3% for the radiation dose of 40 rad. These performances promise further study of B physics with neutral particle reconstruction.

  10. ELECTROMAGNETIC CALORIMETER (ECAL)

    CERN Multimedia

    P. Bloch

    ECAL Barrel (EB) The cabling of the ECAL Barrel services on YB0 was completed early December 2007. The team has now commissioned the complete Barrel. To run all the supermodules in parallel, it is necessary to remove the heat from the service cables on YB0. The corresponding thermal screens are being installed and, for the time being, a max¬imum of 25 supermodules has been run concurrently. EB is read out regularly with a local DAQ as well as with the central DAQ and trigger. The calorimeter trigger has also been commissioned, allowing us to trigger on cosmic muons. ECAL Endcaps (EE) The Endcaps crystal production will be completed before the end of March 2008, as planned. The gluing of the VPTs (Vacuum Photo Triodes) on the crystals and the assembly of Supercrystals (sets of 25 crystals) are proceeding at the pace of 16 Supercrystals (400 channels) per week. Two thirds of the Supercrystals needed for the complete EE have been produced. Their mounting on the Dee backplates (including the connectio...

  11. The HPS electromagnetic calorimeter

    CERN Document Server

    Balossino, Ilaria; Battaglieri, Marco; Bondi, Mariangela; Buchanan, Emma; Calvo, Daniela; Celentano, Andrea; Charles, Gabriel; Colaneri, Luca; D'Angelo, Annalisa; De Napoli, Marzio; De Vita, Raffaella; Dupre, Raphael; Ehrhart, Mathieu; Filippi, Alessandra; Garcon, Michel; Girod, Francois-Xavier; Guidal, Michel; Holtrop, Maurik; Iurasov, Volodymyr; Kubarovsky, Valery; McCarty, Kyle; McCormick, Jeremy; Osipenko, Mikhail; Paremuzyan, Rafayel; Randazzo, Nunzio; Rauly, Emmanuel; Raydo, Benjamin; Rindel, Emmanuel; Rizzo, Alessandro; Rosier, Philippe; Sipala, Valeria; Stepanyan, Stepan; Szumila-Vance, Holly; Weinstein, Lawrence

    2016-01-01

    The Heavy Photon Search experiment (HPS) is searching for a new gauge boson, the so-called "heavy photon". Through its kinetic mixing with the Standard Model photon, this particle could decay into an electron-positron pair. It would then be detectable as a narrow peak in the invariant mass spectrum of such pairs, or, depending on its lifetime, by a decay downstream of the production target. The HPS experiment is installed in Hall-B of Jefferson Lab. This article presents the design and performance of one of the two detectors of the experiment, the electromagnetic calorimeter, during the runs performed in 2015-2016. The calorimeter's main purpose is to provide a fast trigger and reduce the copious background from electromagnetic processes through matching with a tracking detector. The detector is a homogeneous calorimeter, made of 442 lead-tungsten (PbWO$_4$) scintillating crystals, each read-out by an avalanche photodiode coupled to a custom trans-impedance amplifier.

  12. ELECTROMAGNETIC CALORIMETER (ECAL)

    CERN Multimedia

    P. Bloch

    ECAL crystal calorimeter (EB + EE) The Barrel and Endcaps ECAL calorimeters have been used routinely in global runs. The CRAFT data have confirmed that ECAL performance is the same with or without magnetic field. The CRUZET and CRAFT runs have allowed experience to be gained with ECAL operation in many areas, in particular for the trigger and the calibration sequence using gap events (laser events and LED pulsing). More details can be found in the Commissioning/DPG report in this bulletin.   The last components remaining to be installed and commissioned are the specific Endcap Trigger modules (TCC-48). Most of the modules have been delivered to LLR and half of them are already at CERN. In parallel, large progress has been made on the validation of the TCC-48 firmware. Preshower (ES) The Preshower project has also made impressive progress during Autumn. All the elements required to complete the detector assembly are at hand. Ladder assembly, test and calibration with cosmic rays at the operating ...

  13. ELECTROMAGNET CALORIMETER (ECAL)

    CERN Multimedia

    R. Rusack

    Installation is under way of the last piece of the electromagnetic calorimeter. This is the preshower (ES) that sits in front of the two endcap calorimeters. The construction of the ES was completed in December and went through a detailed set of tests in December and January. The two preshower detectors have a total of 4300 silicon sensors with 137,000 strips. After final assembly and system testing in January, only two of the strips were found to be defective. Once CMS was fully opened a new support structure (‘Gazprom’) was put into place underneath the beam pipe, to support the Surkov platform, on which the preshower installation takes place. In the early hours of 26th February the first two Dees, which form the ‘ES+’ endcap,  were transported to P5 , a journey that took two and a half hours. The Dees, still inside environmental protection boxes, were then lowered  underground and moved to the ‘+’ end of CMS. Installation start...

  14. Construction and test results of the ATLAS EM barrel calorimeter and presampler

    CERN Document Server

    Hostachy, J Y

    2003-01-01

    The construction of the ATLAS liquid argon electromagnetic (EM) barrel calorimeter and presampler is well under way: modules and sectors for more than half a barrel have now been produced. Particular emphasis will be put on the qualification tests allowing this construction. The system: calorimeter module +2 presampler sectors has been exposed several times to muon, electron and photon beams at CERN. Results concerning muons and photons are shown. Energy resolution and the uniformity studies performed with electrons are presented in the same proceedings by Dr. M. Fanti.

  15. Tile Calorimete Pre-Assembly Summary and Barrel Assembly Plan

    CERN Document Server

    Proudfoot, J; Liablin, M V; Topilin, N D

    2004-01-01

    The barrel survey results from the pre-assembly in Building 185 are reviewed. From these and the models developed to calculate the cylinder geometry we propose a minimal modification to the shimming plan for the barrel calorimeter assembly in the Atlas cavern. At the precision of this calculation, we expect the tile calorimeter to be almost entirely within it design envelope. The focus of this note is the radial envelope. Based on the pre-assembly experience the tile calorimeter will fit comfortably within its envelope along the beam line.

  16. Performance and Operation of the CMS Electromagnetic Calorimeter

    CERN Document Server

    Chatrchyan, S; Sirunyan, A M; Adam, W; Arnold, B; Bergauer, H; Bergauer, T; Dragicevic, M; Eichberger, M; Erö, J; Friedl, M; Frühwirth, R; Ghete, V M; Hammer, J; Hänsel, S; Hoch, M; Hörmann, N; Hrubec, J; Jeitler, M; Kasieczka, G; Kastner, K; Krammer, M; Liko, D; Magrans de Abril, I; Mikulec, I; Mittermayr, F; Neuherz, B; Oberegger, M; Padrta, M; Pernicka, M; Rohringer, H; Schmid, S; Schöfbeck, R; Schreiner, T; Stark, R; Steininger, H; Strauss, J; Taurok, A; Teischinger, F; Themel, T; Uhl, D; Wagner, P; Waltenberger, W; Walzel, G; Widl, E; Wulz, C E; Chekhovsky, V; Dvornikov, O; Emeliantchik, I; Litomin, A; Makarenko, V; Marfin, I; Mossolov, V; Shumeiko, N; Solin, A; Stefanovitch, R; Suarez Gonzalez, J; Tikhonov, A; Fedorov, A; Karneyeu, A; Korzhik, M; Panov, V; Zuyeuski, R; Kuchinsky, P; Beaumont, W; Benucci, L; Cardaci, M; De Wolf, E A; Delmeire, E; Druzhkin, D; Hashemi, M; Janssen, X; Maes, T; Mucibello, L; Ochesanu, S; Rougny, R; Selvaggi, M; Van Haevermaet, H; Van Mechelen, P; Van Remortel, N; Adler, V; Beauceron, S; Blyweert, S; D'Hondt, J; De Weirdt, S; Devroede, O; Heyninck, J; Kalogeropoulos, A; Maes, J; Maes, M; Mozer, M U; Tavernier, S; Van Doninck, W; Van Mulders, P; Villella, I; Bouhali, O; Chabert, E C; Charaf, O; Clerbaux, B; De Lentdecker, G; Dero, V; Elgammal, S; Gay, A P R; Hammad, G H; Marage, P E; Rugovac, S; Vander Velde, C; Vanlaer, P; Wickens, J; Grunewald, M; Klein, B; Marinov, A; Ryckbosch, D; Thyssen, F; Tytgat, M; Vanelderen, L; Verwilligen, P; Basegmez, S; Bruno, G; Caudron, J; Delaere, C; Demin, P; Favart, D; Giammanco, A; Grégoire, G; Lemaitre, V; Militaru, O; Ovyn, S; Piotrzkowski, K; Quertenmont, L; Schul, N; Beliy, N; Daubie, E; Alves, G A; Pol, M E; Souza, M H G; Carvalho, W; De Jesus Damiao, D; De Oliveira Martins, C; Fonseca De Souza, S; Mundim, L; Oguri, V; Santoro, A; Silva Do Amaral, S M; Sznajder, A; Fernandez Perez Tomei, T R; Ferreira Dias, M A; Gregores, E M; Novaes, S F; Abadjiev, K; Anguelov, T; Damgov, J; Darmenov, N; Dimitrov, L; Genchev, V; Iaydjiev, P; Piperov, S; Stoykova, S; Sultanov, G; Trayanov, R; Vankov, I; Dimitrov, A; Dyulendarova, M; Kozhuharov, V; Litov, L; Marinova, E; Mateev, M; Pavlov, B; Petkov, P; Toteva, Z; Chen, G M; Chen, H S; Guan, W; Jiang, C H; Liang, D; Liu, B; Meng, X; Tao, J; Wang, J; Wang, Z; Xue, Z; Zhang, Z; Ban, Y; Cai, J; Ge, Y; Guo, S; Hu, Z; Mao, Y; Qian, S J; Teng, H; Zhu, B; Avila, C; Baquero Ruiz, M; Carrillo Montoya, C A; Gomez, A; Gomez Moreno, B; Ocampo Rios, A A; Osorio Oliveros, A F; Reyes Romero, D; Sanabria, J C; Godinovic, N; Lelas, K; Plestina, R; Polic, D; Puljak, I; Antunovic, Z; Dzelalija, M; Brigljevic, V; Duric, S; Kadija, K; Morovic, S; Fereos, R; Galanti, M; Mousa, J; Papadakis, A; Ptochos, F; Razis, P A; Tsiakkouri, D; Zinonos, Z; Hektor, A; Kadastik, M; Kannike, K; Müntel, M; Raidal, M; Rebane, L; Anttila, E; Czellar, S; Härkönen, J; Heikkinen, A; Karimäki, V; Kinnunen, R; Klem, J; Kortelainen, M J; Lampén, T; Lassila-Perini, K; Lehti, S; Lindén, T; Luukka, P; Mäenpää, T; Nysten, J; Tuominen, E; Tuominiemi, J; Ungaro, D; Wendland, L; Banzuzi, K; Korpela, A; Tuuva, T; Nedelec, P; Sillou, D; Besancon, M; Chipaux, R; Dejardin, M; Denegri, D; Descamps, J; Fabbro, B; Faure, J L; Ferri, F; Ganjour, S; Gentit, F X; Givernaud, A; Gras, P; Hamel de Monchenault, G; Jarry, P; Lemaire, M C; Locci, E; Malcles, J; Marionneau, M; Millischer, L; Rander, J; Rosowsky, A; Rousseau, D; Titov, M; Verrecchia, P; Baffioni, S; Bianchini, L; Bluj, M; Busson, P; Charlot, C; Dobrzynski, L; Granier de Cassagnac, R; Haguenauer, M; Miné, P; Paganini, P; Sirois, Y; Thiebaux, C; Zabi, A; Agram, J L; Besson, A; Bloch, D; Bodin, D; Brom, J M; Conte, E; Drouhin, F; Fontaine, J C; Gelé, D; Goerlach, U; Gross, L; Juillot, P; Le Bihan, A C; Patois, Y; Speck, J; Van Hove, P; Baty, C; Bedjidian, M; Blaha, J; Boudoul, G; Brun, H; Chanon, N; Chierici, R; Contardo, D; Depasse, P; Dupasquier, T; El Mamouni, H; Fassi, F; Fay, J; Gascon, S; Ille, B; Kurca, T; Le Grand, T; Lethuillier, M; Lumb, N; Mirabito, L; Perries, S; Vander Donckt, M; Verdier, P; Djaoshvili, N; Roinishvili, N; Roinishvili, V; Amaglobeli, N; Adolphi, R; Anagnostou, G; Brauer, R; Braunschweig, W; Edelhoff, M; Esser, H; Feld, L; Karpinski, W; Khomich, A; Klein, K; Mohr, N; Ostaptchouk, A; Pandoulas, D; Pierschel, G; Raupach, F; Schael, S; Schultz von Dratzig, A; Schwering, G; Sprenger, D; Thomas, M; Weber, M; Wittmer, B; Wlochal, M; Actis, O; Altenhöfer, G; Bender, W; Biallass, P; Erdmann, M; Fetchenhauer, G; Frangenheim, J; Hebbeker, T; Hilgers, G; Hinzmann, A; Hoepfner, K; Hof, C; Kirsch, M; Klimkovich, T; Kreuzer, P; Lanske, D; Merschmeyer, M; Meyer, A; Philipps, B; Pieta, H; Reithler, H; Schmitz, S A; Sonnenschein, L; Sowa, M; Steggemann, J; Szczesny, H; Teyssier, D; Zeidler, C; Bontenackels, M; Davids, M; Duda, M; Flügge, G; Geenen, H; Giffels, M; Haj Ahmad, W; Hermanns, T; Heydhausen, D; Kalinin, S; Kress, T; Linn, A; Nowack, A; Perchalla, L; Poettgens, M; Pooth, O; Sauerland, P; Stahl, A; Tornier, D; Zoeller, M H; Aldaya Martin, M; Behrens, U; Borras, K; Campbell, A; Castro, E; Dammann, D; Eckerlin, G; Flossdorf, A; Flucke, G; Geiser, A; Hatton, D; Hauk, J; Jung, H; Kasemann, M; Katkov, I; Kleinwort, C; Kluge, H; Knutsson, A; Kuznetsova, E; Lange, W; Lohmann, W; Mankel, R; Marienfeld, M; Meyer, A B; Miglioranzi, S; Mnich, J; Ohlerich, M; Olzem, J; Parenti, A; Rosemann, C; Schmidt, R; Schoerner-Sadenius, T; Volyanskyy, D; Wissing, C; Zeuner, W D; Autermann, C; Bechtel, F; Draeger, J; Eckstein, D; Gebbert, U; Kaschube, K; Kaussen, G; Klanner, R; Mura, B; Naumann-Emme, S; Nowak, F; Pein, U; Sander, C; Schleper, P; Schum, T; Stadie, H; Steinbrück, G; Thomsen, J; Wolf, R; Bauer, J; Blüm, P; Buege, V; Cakir, A; Chwalek, T; De Boer, W; Dierlamm, A; Dirkes, G; Feindt, M; Felzmann, U; Frey, M; Furgeri, A; Gruschke, J; Hackstein, C; Hartmann, F; Heier, S; Heinrich, M; Held, H; Hirschbuehl, D; Hoffmann, K H; Honc, S; Jung, C; Kuhr, T; Liamsuwan, T; Martschei, D; Mueller, S; Müller, Th; Neuland, M B; Niegel, M; Oberst, O; Oehler, A; Ott, J; Peiffer, T; Piparo, D; Quast, G; Rabbertz, K; Ratnikov, F; Ratnikova, N; Renz, M; Saout, C; Sartisohn, G; Scheurer, A; Schieferdecker, P; Schilling, F P; Schott, G; Simonis, H J; Stober, F M; Sturm, P; Troendle, D; Trunov, A; Wagner, W; Wagner-Kuhr, J; Zeise, M; Zhukov, V; Ziebarth, E B; Daskalakis, G; Geralis, T; Karafasoulis, K; Kyriakis, A; Loukas, D; Markou, A; Markou, C; Mavrommatis, C; Petrakou, E; Zachariadou, A; Gouskos, L; Katsas, P; Panagiotou, A; Evangelou, I; Kokkas, P; Manthos, N; Papadopoulos, I; Patras, V; Triantis, F A; Bencze, G; Boldizsar, L; Debreczeni, G; Hajdu, C; Hernath, S; Hidas, P; Horvath, D; Krajczar, K; Laszlo, A; Patay, G; Sikler, F; Toth, N; Vesztergombi, G; Beni, N; Christian, G; Imrek, J; Molnar, J; Novak, D; Palinkas, J; Szekely, G; Szillasi, Z; Tokesi, K; Veszpremi, V; Kapusi, A; Marian, G; Raics, P; Szabo, Z; Trocsanyi, Z L; Ujvari, B; Zilizi, G; Bansal, S; Bawa, H S; Beri, S B; Bhatnagar, V; Jindal, M; Kaur, M; Kaur, R; Kohli, J M; Mehta, M Z; Nishu, N; Saini, L K; Sharma, A; Singh, A; Singh, J B; Singh, S P; Ahuja, S; Arora, S; Bhattacharya, S; Chauhan, S; Choudhary, B C; Gupta, P; Jain, S; Jain, S; Jha, M; Kumar, A; Ranjan, K; Shivpuri, R K; Srivastava, A K; Choudhury, R K; Dutta, D; Kailas, S; Kataria, S K; Mohanty, A K; Pant, L M; Shukla, P; Topkar, A; Aziz, T; Guchait, M; Gurtu, A; Maity, M; Majumder, D; Majumder, G; Mazumdar, K; Nayak, A; Saha, A; Sudhakar, K; Banerjee, S; Dugad, S; Mondal, N K; Arfaei, H; Bakhshiansohi, H; Fahim, A; Jafari, A; Mohammadi Najafabadi, M; Moshaii, A; Paktinat Mehdiabadi, S; Rouhani, S; Safarzadeh, B; Zeinali, M; Felcini, M; Abbrescia, M; Barbone, L; Chiumarulo, F; Clemente, A; Colaleo, A; Creanza, D; Cuscela, G; De Filippis, N; De Palma, M; De Robertis, G; Donvito, G; Fedele, F; Fiore, L; Franco, M; Iaselli, G; Lacalamita, N; Loddo, F; Lusito, L; Maggi, G; Maggi, M; Manna, N; Marangelli, B; My, S; Natali, S; Nuzzo, S; Papagni, G; Piccolomo, S; Pierro, G A; Pinto, C; Pompili, A; Pugliese, G; Rajan, R; Ranieri, A; Romano, F; Roselli, G; Selvaggi, G; Shinde, Y; Silvestris, L; Tupputi, S; Zito, G; Abbiendi, G; Bacchi, W; Benvenuti, A C; Boldini, M; Bonacorsi, D; Braibant-Giacomelli, S; Cafaro, V D; Caiazza, S S; Capiluppi, P; Castro, A; Cavallo, F R; Codispoti, G; Cuffiani, M; D'Antone, I; Dallavalle, G M; Fabbri, F; Fanfani, A; Fasanella, D; Giacomelli, P; Giordano, V; Giunta, M; Grandi, C; Guerzoni, M; Marcellini, S; Masetti, G; Montanari, A; Navarria, F L; Odorici, F; Pellegrini, G; Perrotta, A; Rossi, A M; Rovelli, T; Siroli, G; Torromeo, G; Travaglini, R; Albergo, S; Costa, S; Potenza, R; Tricomi, A; Tuve, C; Barbagli, G; Broccolo, G; Ciulli, V; Civinini, C; D'Alessandro, R; Focardi, E; Frosali, S; Gallo, E; Genta, C; Landi, G; Lenzi, P; Meschini, M; Paoletti, S; Sguazzoni, G; Tropiano, A; Benussi, L; Bertani, M; Bianco, S; Colafranceschi, S; Colonna, D; Fabbri, F; Giardoni, M; Passamonti, L; Piccolo, D; Pierluigi, D; Ponzio, B; Russo, A; Fabbricatore, P; Musenich, R; Benaglia, A; Calloni, M; Cerati, G B; D'Angelo, P; De Guio, F; Farina, F M; Ghezzi, A; Govoni, P; Malberti, M; Malvezzi, S; Martelli, A; Menasce, D; Miccio, V; Moroni, L; Negri, P; Paganoni, M; Pedrini, D; Pullia, A; Ragazzi, S; Redaelli, N; Sala, S; Salerno, R; Tabarelli de Fatis, T; Tancini, V; Taroni, S; Buontempo, S; Cavallo, N; Cimmino, A; De Gruttola, M; Fabozzi, F; Iorio, A O M; Lista, L; Lomidze, D; Noli, P; Paolucci, P; Sciacca, C; Azzi, P; Bacchetta, N; Barcellan, L; Bellan, P; Bellato, M; Benettoni, M; Biasotto, M; Bisello, D; Borsato, E; Branca, A; Carlin, R; Castellani, L; Checchia, P; Conti, E; Dal Corso, F; De Mattia, M; Dorigo, T; Dosselli, U; Fanzago, F; Gasparini, F; Gasparini, U; Giubilato, P; Gonella, F; Gresele, A; Gulmini, M; Kaminskiy, A; Lacaprara, S; Lazzizzera, I; Margoni, M; Maron, G; Mattiazzo, S; Mazzucato, M; Meneghelli, M; Meneguzzo, A T; Michelotto, M; Montecassiano, F; Nespolo, M; Passaseo, M; Pegoraro, M; Perrozzi, L; Pozzobon, N; Ronchese, P; Simonetto, F; Toniolo, N; Torassa, E; Tosi, M; Triossi, A; Vanini, S; Ventura, S; Zotto, P; Zumerle, G; Baesso, P; Berzano, U; Bricola, S; Necchi, M M; Pagano, D; Ratti, S P; Riccardi, C; Torre, P; Vicini, A; Vitulo, P; Viviani, C; Aisa, D; Aisa, S; Babucci, E; Biasini, M; Bilei, G M; Caponeri, B; Checcucci, B; Dinu, N; Fanò, L; Farnesini, L; Lariccia, P; Lucaroni, A; Mantovani, G; Nappi, A; Piluso, A; Postolache, V; Santocchia, A; Servoli, L; Tonoiu, D; Vedaee, A; Volpe, R; Azzurri, P; Bagliesi, G; Bernardini, J; Berretta, L; Boccali, T; Bocci, A; Borrello, L; Bosi, F; Calzolari, F; Castaldi, R; Dell'Orso, R; Fiori, F; Foà, L; Gennai, S; Giassi, A; Kraan, A; Ligabue, F; Lomtadze, T; Mariani, F; Martini, L; Massa, M; Messineo, A; Moggi, A; Palla, F; Palmonari, F; Petragnani, G; Petrucciani, G; Raffaelli, F; Sarkar, S; Segneri, G; Serban, A T; Spagnolo, P; Tenchini, R; Tolaini, S; Tonelli, G; Venturi, A; Verdini, P G; Baccaro, S; Barone, L; Bartoloni, A; Cavallari, F; Dafinei, I; Del Re, D; Di Marco, E; Diemoz, M; Franci, D; Longo, E; Organtini, G; Palma, A; Pandolfi, F; Paramatti, R; Pellegrino, F; Rahatlou, S; Rovelli, C; Alampi, G; Amapane, N; Arcidiacono, R; Argiro, S; Arneodo, M; Biino, C; Borgia, M A; Botta, C; Cartiglia, N; Castello, R; Cerminara, G; Costa, M; Dattola, D; Dellacasa, G; Demaria, N; Dughera, G; Dumitrache, F; Graziano, A; Mariotti, C; Marone, M; Maselli, S; Migliore, E; Mila, G; Monaco, V; Musich, M; Nervo, M; Obertino, M M; Oggero, S; Panero, R; Pastrone, N; Pelliccioni, M; Romero, A; Ruspa, M; Sacchi, R; Solano, A; Staiano, A; Trapani, P P; Trocino, D; Vilela Pereira, A; Visca, L; Zampieri, A; Ambroglini, F; Belforte, S; Cossutti, F; Della Ricca, G; Gobbo, B; Penzo, A; Chang, S; Chung, J; Kim, D H; Kim, G N; Kong, D J; Park, H; Son, D C; Bahk, S Y; Song, S; Jung, S Y; Hong, B; Kim, H; Kim, J H; Lee, K S; Moon, D H; Park, S K; Rhee, H B; Sim, K S; Kim, J; Choi, M; Hahn, G; Park, I C; Choi, S; Choi, Y; Goh, J; Jeong, H; Kim, T J; Lee, J; Lee, S; Janulis, M; Martisiute, D; Petrov, P; Sabonis, T; Castilla Valdez, H; Sánchez Hernández, A; Carrillo Moreno, S; Morelos Pineda, A; Allfrey, P; Gray, R N C; Krofcheck, D; Bernardino Rodrigues, N; Butler, P H; Signal, T; Williams, J C; Ahmad, M; Ahmed, I; Ahmed, W; Asghar, M I; Awan, M I M; Hoorani, H R; Hussain, I; Khan, W A; Khurshid, T; Muhammad, S; Qazi, S; Shahzad, H; Cwiok, M; Dabrowski, R; Dominik, W; Doroba, K; Konecki, M; Krolikowski, J; Pozniak, K; Romaniuk, Ryszard; Zabolotny, W; Zych, P; Frueboes, T; Gokieli, R; Goscilo, L; Górski, M; Kazana, M; Nawrocki, K; Szleper, M; Wrochna, G; Zalewski, P; Almeida, N; Antunes Pedro, L; Bargassa, P; David, A; Faccioli, P; Ferreira Parracho, P G; Freitas Ferreira, M; Gallinaro, M; Guerra Jordao, M; Martins, P; Mini, G; Musella, P; Pela, J; Raposo, L; Ribeiro, P Q; Sampaio, S; Seixas, J; Silva, J; Silva, P; Soares, D; Sousa, M; Varela, J; Wöhri, H K; Altsybeev, I; Belotelov, I; Bunin, P; Ershov, Y; Filozova, I; Finger, M; Finger, M Jr; Golunov, A; Golutvin, I; Gorbounov, N; Kalagin, V; Kamenev, A; Karjavin, V; Konoplyanikov, V; Korenkov, V; Kozlov, G; Kurenkov, A; Lanev, A; Makankin, A; Mitsyn, V V; Moisenz, P; Nikonov, E; Oleynik, D; Palichik, V; Perelygin, V; Petrosyan, A; Semenov, R; Shmatov, S; Smirnov, V; Smolin, D; Tikhonenko, E; Vasil'ev, S; Vishnevskiy, A; Volodko, A; Zarubin, A; Zhiltsov, V; Bondar, N; Chtchipounov, L; Denisov, A; Gavrikov, Y; Gavrilov, G; Golovtsov, V; Ivanov, Y; Kim, V; Kozlov, V; Levchenko, P; Obrant, G; Orishchin, E; Petrunin, A; Shcheglov, Y; Shchetkovskiy, A; Sknar, V; Smirnov, I; Sulimov, V; Tarakanov, V; Uvarov, L; Vavilov, S; Velichko, G; Volkov, S; Vorobyev, A; Andreev, Yu; Anisimov, A; Antipov, P; Dermenev, A; Gninenko, S; Golubev, N; Kirsanov, M; Krasnikov, N; Matveev, V; Pashenkov, A; Postoev, V E; Solovey, A; Solovey, A; Toropin, A; Troitsky, S; Baud, A; Epshteyn, V; Gavrilov, V; Ilina, N; Kaftanov, V; Kolosov, V; Kossov, M; Krokhotin, A; Kuleshov, S; Oulianov, A; Safronov, G; Semenov, S; Shreyber, I; Stolin, V; Vlasov, E; Zhokin, A; Boos, E; Dubinin, M; Dudko, L; Ershov, A; Gribushin, A; Klyukhin, V; Kodolova, O; Lokhtin, I; Petrushanko, S; Sarycheva, L; Savrin, V; Snigirev, A; Vardanyan, I; Dremin, I; Kirakosyan, M; Konovalova, N; Rusakov, S V; Vinogradov, A; Akimenko, S; Artamonov, A; Azhgirey, I; Bitioukov, S; Burtovoy, V; Grishin, V; Kachanov, V; Konstantinov, D; Krychkine, V; Levine, A; Lobov, I; Lukanin, V; Mel'nik, Y; Petrov, V; Ryutin, R; Slabospitsky, S; Sobol, A; Sytine, A; Tourtchanovitch, L; Troshin, S; Tyurin, N; Uzunian, A; Volkov, A; Adzic, P; Djordjevic, M; Jovanovic, D; Krpic, D; Maletic, D; Puzovic, J; Smiljkovic, N; Aguilar-Benitez, M; Alberdi, J; Alcaraz Maestre, J; Arce, P; Barcala, J M; Battilana, C; Burgos Lazaro, C; Caballero Bejar, J; Calvo, E; Cardenas Montes, M; Cepeda, M; Cerrada, M; Chamizo Llatas, M; Clemente, F; Colino, N; Daniel, M; De La Cruz, B; Delgado Peris, A; Diez Pardos, C; Fernandez Bedoya, C; Fernández Ramos, J P; Ferrando, A; Flix, J; Fouz, M C; Garcia-Abia, P; Garcia-Bonilla, A C; Gonzalez Lopez, O; Goy Lopez, S; Hernandez, J M; Josa, M I; Marin, J; Merino, G; Molina, J; Molinero, A; Navarrete, J J; Oller, J C; Puerta Pelayo, J; Romero, L; Santaolalla, J; Villanueva Munoz, C; Willmott, C; Yuste, C; Albajar, C; Blanco Otano, M; de Trocóniz, J F; Garcia Raboso, A; Lopez Berengueres, J O; Cuevas, J; Fernandez Menendez, J; Gonzalez Caballero, I; Lloret Iglesias, L; Naves Sordo, H; Vizan Garcia, J M; Cabrillo, I J; Calderon, A; Chuang, S H; Diaz Merino, I; Diez Gonzalez, C; Duarte Campderros, J; Fernandez, M; Gomez, G; Gonzalez Sanchez, J; Gonzalez Suarez, R; Jorda, C; Lobelle Pardo, P; Lopez Virto, A; Marco, J; Marco, R; Martinez Rivero, C; Martinez Ruiz del Arbol, P; Matorras, F; Rodrigo, T; Ruiz Jimeno, A; Scodellaro, L; Sobron Sanudo, M; Vila, I; Vilar Cortabitarte, R; Abbaneo, D; Albert, E; Alidra, M; Ashby, S; Auffray, E; Baechler, J; Baillon, P; Ball, A H; Bally, S L; Barney, D; Beaudette, F; Bellan, R; Benedetti, D; Benelli, G; Bernet, C; Bloch, P; Bolognesi, S; Bona, M; Bos, J; Bourgeois, N; Bourrel, T; Breuker, H; Bunkowski, K; Campi, D; Camporesi, T; Cano, E; Cattai, A; Chatelain, J P; Chauvey, M; Christiansen, T; Coarasa Perez, J A; Conde Garcia, A; Covarelli, R; Curé, B; De Roeck, A; Delachenal, V; Deyrail, D; Di Vincenzo, S; Dos Santos, S; Dupont, T; Edera, L M; Elliott-Peisert, A; Eppard, M; Favre, M; Frank, N; Funk, W; Gaddi, A; Gastal, M; Gateau, M; Gerwig, H; Gigi, D; Gill, K; Giordano, D; Girod, J P; Glege, F; Gomez-Reino Garrido, R; Goudard, R; Gowdy, S; Guida, R; Guiducci, L; Gutleber, J; Hansen, M; Hartl, C; Harvey, J; Hegner, B; Hoffmann, H F; Holzner, A; Honma, A; Huhtinen, M; Innocente, V; Janot, P; Le Godec, G; Lecoq, P; Leonidopoulos, C; Loos, R; Lourenço, C; Lyonnet, A; Macpherson, A; Magini, N; Maillefaud, J D; Maire, G; Mäki, T; Malgeri, L; Mannelli, M; Masetti, L; Meijers, F; Meridiani, P; Mersi, S; Meschi, E; Meynet Cordonnier, A; Moser, R; Mulders, M; Mulon, J; Noy, M; Oh, A; Olesen, G; Onnela, A; Orimoto, T; Orsini, L; Perez, E; Perinic, G; Pernot, J F; Petagna, P; Petiot, P; Petrilli, A; Pfeiffer, A; Pierini, M; Pimiä, M; Pintus, R; Pirollet, B; Postema, H; Racz, A; Ravat, S; Rew, S B; Rodrigues Antunes, J; Rolandi, G; Rovere, M; Ryjov, V; Sakulin, H; Samyn, D; Sauce, H; Schäfer, C; Schlatter, W D; Schröder, M; Schwick, C; Sciaba, A; Segoni, I; Sharma, A; Siegrist, N; Siegrist, P; Sinanis, N; Sobrier, T; Sphicas, P; Spiga, D; Spiropulu, M; Stöckli, F; Traczyk, P; Tropea, P; Troska, J; Tsirou, A; Veillet, L; Veres, G I; Voutilainen, M; Wertelaers, P; Zanetti, M; Bertl, W; Deiters, K; Erdmann, W; Gabathuler, K; Horisberger, R; Ingram, Q; Kaestli, H C; König, S; Kotlinski, D; Langenegger, U; Meier, F; Renker, D; Rohe, T; Sibille, J; Starodumov, A; Betev, B; Caminada, L; Chen, Z; Cittolin, S; Da Silva Di Calafiori, D R; Dambach, S; Dissertori, G; Dittmar, M; Eggel, C; Eugster, J; Faber, G; Freudenreich, K; Grab, C; Hervé, A; Hintz, W; Lecomte, P; Luckey, P D; Lustermann, W; Marchica, C; Milenovic, P; Moortgat, F; Nardulli, A; Nessi-Tedaldi, F; Pape, L; Pauss, F; Punz, T; Rizzi, A; Ronga, F J; Sala, L; Sanchez, A K; Sawley, M C; Sordini, V; Stieger, B; Tauscher, L; Thea, A; Theofilatos, K; Treille, D; Trüb, P; Weber, M; Wehrli, L; Weng, J; Zelepoukine, S; Amsler, C; Chiochia, V; De Visscher, S; Regenfus, C; Robmann, P; Rommerskirchen, T; Schmidt, A; Tsirigkas, D; Wilke, L; Chang, Y H; Chen, E A; Chen, W T; Go, A; Kuo, C M; Li, S W; Lin, W; Bartalini, P; Chang, P; Chao, Y; Chen, K F; Hou, W S; Hsiung, Y; Lei, Y J; Lin, S W; Lu, R S; Schümann, J; Shiu, J G; Tzeng, Y M; Ueno, K; Velikzhanin, Y; Wang, C C; Wang, M; Adiguzel, A; Ayhan, A; Azman Gokce, A; Bakirci, M N; Cerci, S; Dumanoglu, I; Eskut, E; Girgis, S; Gurpinar, E; Hos, I; Karaman, T; Karaman, T; Kayis Topaksu, A; Kurt, P; Önengüt, G; Önengüt Gökbulut, G; Ozdemir, K; Ozturk, S; Polatöz, A; Sogut, K; Tali, B; Topakli, H; Uzun, D; Vergili, L N; Vergili, M; Akin, I V; Aliev, T; Bilmis, S; Deniz, M; Gamsizkan, H; Guler, A M; Öcalan, K; Serin, M; Sever, R; Surat, U E; Zeyrek, M; Deliomeroglu, M; Demir, D; Gülmez, E; Halu, A; Isildak, B; Kaya, M; Kaya, O; Ozkorucuklu, S; Sonmez, N; Levchuk, L; Lukyanenko, S; Soroka, D; Zub, S; Bostock, F; Brooke, J J; Cheng, T L; Cussans, D; Frazier, R; Goldstein, J; Grant, N; Hansen, M; Heath, G P; Heath, H F; Hill, C; Huckvale, B; Jackson, J; Mackay, C K; Metson, S; Newbold, D M; Nirunpong, K; Smith, V J; Velthuis, J; Walton, R; Bell, K W; Brew, C; Brown, R M; Camanzi, B; Cockerill, D J A; Coughlan, J A; Geddes, N I; Harder, K; Harper, S; Kennedy, B W; Murray, P; Shepherd-Themistocleous, C H; Tomalin, I R; Williams, J H; Womersley, W J; Worm, S D; Bainbridge, R; Ball, G; Ballin, J; Beuselinck, R; Buchmuller, O; Colling, D; Cripps, N; Davies, G; Della Negra, M; Foudas, C; Fulcher, J; Futyan, D; Hall, G; Hays, J; Iles, G; Karapostoli, G; MacEvoy, B C; Magnan, A M; Marrouche, J; Nash, J; Nikitenko, A; Papageorgiou, A; Pesaresi, M; Petridis, K; Pioppi, M; Raymond, D M; Rompotis, N; Rose, A; Ryan, M J; Seez, C; Sharp, P; Sidiropoulos, G; Stettler, M; Stoye, M; Takahashi, M; Tapper, A; Timlin, C; Tourneur, S; Vazquez Acosta, M; Virdee, T; Wakefield, S; Wardrope, D; Whyntie, T; Wingham, M; Cole, J E; Goitom, I; Hobson, P R; Khan, A; Kyberd, P; Leslie, D; Munro, C; Reid, I D; Siamitros, C; Taylor, R; Teodorescu, L; Yaselli, I; Bose, T; Carleton, M; Hazen, E; Heering, A H; Heister, A; John, J St; Lawson, P; Lazic, D; Osborne, D; Rohlf, J; Sulak, L; Wu, S; Andrea, J; Avetisyan, A; Bhattacharya, S; Chou, J P; Cutts, D; Esen, S; Kukartsev, G; Landsberg, G; Narain, M; Nguyen, D; Speer, T; Tsang, K V; Breedon, R; Calderon De La Barca Sanchez, M; Case, M; Cebra, D; Chertok, M; Conway, J; Cox, P T; Dolen, J; Erbacher, R; Friis, E; Ko, W; Kopecky, A; Lander, R; Lister, A; Liu, H; Maruyama, S; Miceli, T; Nikolic, M; Pellett, D; Robles, J; Searle, M; Smith, J; Squires, M; Stilley, J; Tripathi, M; Vasquez Sierra, R; Veelken, C; Andreev, V; Arisaka, K; Cline, D; Cousins, R; Erhan, S; Hauser, J; Ignatenko, M; Jarvis, C; Mumford, J; Plager, C; Rakness, G; Schlein, P; Tucker, J; Valuev, V; Wallny, R; Yang, X; Babb, J; Bose, M; Chandra, A; Clare, R; Ellison, J A; Gary, J W; Hanson, G; Jeng, G Y; Kao, S C; Liu, F; Liu, H; Luthra, A; Nguyen, H; Pasztor, G; Satpathy, A; Shen, B C; Stringer, R; Sturdy, J; Sytnik, V; Wilken, R; Wimpenny, S; Branson, J G; Dusinberre, E; Evans, D; Golf, F; Kelley, R; Lebourgeois, M; Letts, J; Lipeles, E; Mangano, B; Muelmenstaedt, J; Norman, M; Padhi, S; Petrucci, A; Pi, H; Pieri, M; Ranieri, R; Sani, M; Sharma, V; Simon, S; Würthwein, F; Yagil, A; Campagnari, C; D'Alfonso, M; Danielson, T; Garberson, J; Incandela, J; Justus, C; Kalavase, P; Koay, S A; Kovalskyi, D; Krutelyov, V; Lamb, J; Lowette, S; Pavlunin, V; Rebassoo, F; Ribnik, J; Richman, J; Rossin, R; Stuart, D; To, W; Vlimant, J R; Witherell, M; Apresyan, A; Bornheim, A; Bunn, J; Chiorboli, M; Gataullin, M; Kcira, D; Litvine, V; Ma, Y; Newman, H B; Rogan, C; Timciuc, V; Veverka, J; Wilkinson, R; Yang, Y; Zhang, L; Zhu, K; Zhu, R Y; Akgun, B; Carroll, R; Ferguson, T; Jang, D W; Jun, S Y; Paulini, M; Russ, J; Terentyev, N; Vogel, H; Vorobiev, I; Cumalat, J P; Dinardo, M E; Drell, B R; Ford, W T; Heyburn, B; Luiggi Lopez, E; Nauenberg, U; Stenson, K; Ulmer, K; Wagner, S R; Zang, S L; Agostino, L; Alexander, J; Blekman, F; Cassel, D; Chatterjee, A; Das, S; Gibbons, L K; Heltsley, B; Hopkins, W; Khukhunaishvili, A; Kreis, B; Kuznetsov, V; Patterson, J R; Puigh, D; Ryd, A; Shi, X; Stroiney, S; Sun, W; Teo, W D; Thom, J; Vaughan, J; Weng, Y; Wittich, P; Beetz, C P; Cirino, G; Sanzeni, C; Winn, D; Abdullin, S; Afaq, M A; Albrow, M; Ananthan, B; Apollinari, G; Atac, M; Badgett, W; Bagby, L; Bakken, J A; Baldin, B; Banerjee, S; Banicz, K; Bauerdick, L A T; Beretvas, A; Berryhill, J; Bhat, P C; Biery, K; Binkley, M; Bloch, I; Borcherding, F; Brett, A M; Burkett, K; Butler, J N; Chetluru, V; Cheung, H W K; Chlebana, F; Churin, I; Cihangir, S; Crawford, M; Dagenhart, W; Demarteau, M; Derylo, G; Dykstra, D; Eartly, D P; Elias, J E; Elvira, V D; Evans, D; Feng, L; Fischler, M; Fisk, I; Foulkes, S; Freeman, J; Gartung, P; Gottschalk, E; Grassi, T; Green, D; Guo, Y; Gutsche, O; Hahn, A; Hanlon, J; Harris, R M; Holzman, B; Howell, J; Hufnagel, D; James, E; Jensen, H; Johnson, M; Jones, C D; Joshi, U; Juska, E; Kaiser, J; Klima, B; Kossiakov, S; Kousouris, K; Kwan, S; Lei, C M; Limon, P; Lopez Perez, J A; Los, S; Lueking, L; Lukhanin, G; Lusin, S; Lykken, J; Maeshima, K; Marraffino, J M; Mason, D; McBride, P; Miao, T; Mishra, K; Moccia, S; Mommsen, R; Mrenna, S; Muhammad, A S; Newman-Holmes, C; Noeding, C; O'Dell, V; Prokofyev, O; Rivera, R; Rivetta, C H; Ronzhin, A; Rossman, P; Ryu, S; Sekhri, V; Sexton-Kennedy, E; Sfiligoi, I; Sharma, S; Shaw, T M; Shpakov, D; Skup, E; Smith, R P; Soha, A; Spalding, W J; Spiegel, L; Suzuki, I; Tan, P; Tanenbaum, W; Tkaczyk, S; Trentadue, R; Uplegger, L; Vaandering, E W; Vidal, R; Whitmore, J; Wicklund, E; Wu, W; Yarba, J; Yumiceva, F; Yun, J C; Acosta, D; Avery, P; Barashko, V; Bourilkov, D; Chen, M; Di Giovanni, G P; Dobur, D; Drozdetskiy, A; Field, R D; Fu, Y; Furic, I K; Gartner, J; Holmes, D; Kim, B; Klimenko, S; Konigsberg, J; Korytov, A; Kotov, K; Kropivnitskaya, A; Kypreos, T; Madorsky, A; Matchev, K; Mitselmakher, G; Pakhotin, Y; Piedra Gomez, J; Prescott, C; Rapsevicius, V; Remington, R; Schmitt, M; Scurlock, B; Wang, D; Yelton, J; Ceron, C; Gaultney, V; Kramer, L; Lebolo, L M; Linn, S; Markowitz, P; Martinez, G; Rodriguez, J L; Adams, T; Askew, A; Baer, H; Bertoldi, M; Chen, J; Dharmaratna, W G D; Gleyzer, S V; Haas, J; Hagopian, S; Hagopian, V; Jenkins, M; Johnson, K F; Prettner, E; Prosper, H; Sekmen, S; Baarmand, M M; Guragain, S; Hohlmann, M; Kalakhety, H; Mermerkaya, H; Ralich, R; Vodopiyanov, I; Abelev, B; Adams, M R; Anghel, I M; Apanasevich, L; Bazterra, V E; Betts, R R; Callner, J; Castro, M A; Cavanaugh, R; Dragoiu, C; Garcia-Solis, E J; Gerber, C E; Hofman, D J; Khalatian, S; Mironov, C; Shabalina, E; Smoron, A; Varelas, N; Akgun, U; Albayrak, E A; Ayan, A S; Bilki, B; Briggs, R; Cankocak, K; Chung, K; Clarida, W; Debbins, P; Duru, F; Ingram, F D; Lae, C K; McCliment, E; Merlo, J P; Mestvirishvili, A; Miller, M J; Moeller, A; Nachtman, J; Newsom, C R; Norbeck, E; Olson, J; Onel, Y; Ozok, F; Parsons, J; Schmidt, I; Sen, S; Wetzel, J; Yetkin, T; Yi, K; Barnett, B A; Blumenfeld, B; Bonato, A; Chien, C Y; Fehling, D; Giurgiu, G; Gritsan, A V; Guo, Z J; Maksimovic, P; Rappoccio, S; Swartz, M; Tran, N V; Zhang, Y; Baringer, P; Bean, A; Grachov, O; Murray, M; Radicci, V; Sanders, S; Wood, J S; Zhukova, V; Bandurin, D; Bolton, T; Kaadze, K; Liu, A; Maravin, Y; Onoprienko, D; Svintradze, I; Wan, Z; Gronberg, J; Hollar, J; Lange, D; Wright, D; Baden, D; Bard, R; Boutemeur, M; Eno, S C; Ferencek, D; Hadley, N J; Kellogg, R G; Kirn, M; Kunori, S; Rossato, K; Rumerio, P; Santanastasio, F; Skuja, A; Temple, J; Tonjes, M B; Tonwar, S C; Toole, T; Twedt, E; Alver, B; Bauer, G; Bendavid, J; Busza, W; Butz, E; Cali, I A; Chan, M; D'Enterria, D; Everaerts, P; Gomez Ceballos, G; Hahn, K A; Harris, P; Jaditz, S; Kim, Y; Klute, M; Lee, Y J; Li, W; Loizides, C; Ma, T; Miller, M; Nahn, S; Paus, C; Roland, C; Roland, G; Rudolph, M; Stephans, G; Sumorok, K; Sung, K; Vaurynovich, S; Wenger, E A; Wyslouch, B; Xie, S; Yilmaz, Y; Yoon, A S; Bailleux, D; Cooper, S I; Cushman, P; Dahmes, B; De Benedetti, A; Dolgopolov, A; Dudero, P R; Egeland, R; Franzoni, G; Haupt, J; Inyakin, A; Klapoetke, K; Kubota, Y; Mans, J; Mirman, N; Petyt, D; Rekovic, V; Rusack, R; Schroeder, M; Singovsky, A; Zhang, J; Cremaldi, L M; Godang, R; Kroeger, R; Perera, L; Rahmat, R; Sanders, D A; Sonnek, P; Summers, D; Bloom, K; Bockelman, B; Bose, S; Butt, J; Claes, D R; Dominguez, A; Eads, M; Keller, J; Kelly, T; Kravchenko, I; Lazo-Flores, J; Lundstedt, C; Malbouisson, H; Malik, S; Snow, G R; Baur, U; Iashvili, I; Kharchilava, A; Kumar, A; Smith, K; Strang, M; Alverson, G; Barberis, E; Boeriu, O; Eulisse, G; Govi, G; McCauley, T; Musienko, Y; Muzaffar, S; Osborne, I; Paul, T; Reucroft, S; Swain, J; Taylor, L; Tuura, L; Anastassov, A; Gobbi, B; Kubik, A; Ofierzynski, R A; Pozdnyakov, A; Schmitt, M; Stoynev, S; Velasco, M; Won, S; Antonelli, L; Berry, D; Hildreth, M; Jessop, C; Karmgard, D J; Kolberg, T; Lannon, K; Lynch, S; Marinelli, N; Morse, D M; Ruchti, R; Slaunwhite, J; Warchol, J; Wayne, M; Bylsma, B; Durkin, L S; Gilmore, J; Gu, J; Killewald, P; Ling, T Y; Williams, G; Adam, N; Berry, E; Elmer, P; Garmash, A; Gerbaudo, D; Halyo, V; Hunt, A; Jones, J; Laird, E; Marlow, D; Medvedeva, T; Mooney, M; Olsen, J; Piroué, P; Stickland, D; Tully, C; Werner, J S; Wildish, T; Xie, Z; Zuranski, A; Acosta, J G; Bonnett Del Alamo, M; Huang, X T; Lopez, A; Mendez, H; Oliveros, S; Ramirez Vargas, J E; Santacruz, N; Zatzerklyany, A; Alagoz, E; Antillon, E; Barnes, V E; Bolla, G; Bortoletto, D; Everett, A; Garfinkel, A F; Gecse, Z; Gutay, L; Ippolito, N; Jones, M; Koybasi, O; Laasanen, A T; Leonardo, N; Liu, C; Maroussov, V; Merkel, P; Miller, D H; Neumeister, N; Sedov, A; Shipsey, I; Yoo, H D; Zheng, Y; Jindal, P; Parashar, N; Cuplov, V; Ecklund, K M; Geurts, F J M; Liu, J H; Maronde, D; Matveev, M; Padley, B P; Redjimi, R; Roberts, J; Sabbatini, L; Tumanov, A; Betchart, B; Bodek, A; Budd, H; Chung, Y S; de Barbaro, P; Demina, R; Flacher, H; Gotra, Y; Harel, A; Korjenevski, S; Miner, D C; Orbaker, D; Petrillo, G; Vishnevskiy, D; Zielinski, M; Bhatti, A; Demortier, L; Goulianos, K; Hatakeyama, K; Lungu, G; Mesropian, C; Yan, M; Atramentov, O; Bartz, E; Gershtein, Y; Halkiadakis, E; Hits, D; Lath, A; Rose, K; Schnetzer, S; Somalwar, S; Stone, R; Thomas, S; Watts, T L; Cerizza, G; Hollingsworth, M; Spanier, S; Yang, Z C; York, A; Asaadi, J; Aurisano, A; Eusebi, R; Golyash, A; Gurrola, A; Kamon, T; Nguyen, C N; Pivarski, J; Safonov, A; Sengupta, S; Toback, D; Weinberger, M; Akchurin, N; Berntzon, L; Gumus, K; Jeong, C; Kim, H; Lee, S W; Popescu, S; Roh, Y; Sill, A; Volobouev, I; Washington, E; Wigmans, R; Yazgan, E; Engh, D; Florez, C; Johns, W; Pathak, S; Sheldon, P; Andelin, D; Arenton, M W; Balazs, M; Boutle, S; Buehler, M; Conetti, S; Cox, B; Hirosky, R; Ledovskoy, A; Neu, C; Phillips II, D; Ronquest, M; Yohay, R; Gollapinni, S; Gunthoti, K; Harr, R; Karchin, P E; Mattson, M; Sakharov, A; Anderson, M; Bachtis, M; Bellinger, J N; Carlsmith, D; Crotty, I; Dasu, S; Dutta, S; Efron, J; Feyzi, F; Flood, K; Gray, L; Grogg, K S; Grothe, M; Hall-Wilton, R; Jaworski, M; Klabbers, P; Klukas, J; Lanaro, A; Lazaridis, C; Leonard, J; Loveless, R; Magrans de Abril, M; Mohapatra, A; Ott, G; Polese, G; Reeder, D; Savin, A; Smith, W H; Sourkov, A; Swanson, J; Weinberg, M; Wenman, D; Wensveen, M; White, A

    2010-01-01

    The operation and general performance of the CMS electromagnetic calorimeter using cosmic-ray muons are described. These muons were recorded after the closure of the CMS detector in late 2008. The calorimeter is made of lead tungstate crystals and the overall status of the 75848 channels corresponding to the barrel and endcap detectors is reported. The stability of crucial operational parameters, such as high voltage, temperature and electronic noise, is summarised and the performance of the light monitoring system is presented.

  17. The AMS-02 electromagnetic calorimeter

    Energy Technology Data Exchange (ETDEWEB)

    Cadoux, F.; Cervelli, F.; Chambert-Hermel, V.; Chen, G.; Chen, H.; Coignet, G.; Di Falco, S.; Dubois, J.M.; Falchini, E.; Franzoso, A.; Fougeron, D.; Fouque, N.; Galeotti, S.; Girard, L.; Goy, C.; Hermel, R.; Incagli, M.; Kossakowski, R.; Lieunard, B.; Liu, Y.; Liu, Z.; Lomtadze, T.; Maestro, P.; Marrocchesi, P.S.; Paoletti, R.; Pilo, F. E-mail: federico.pilo@pi.infn.it; Rosier-Lees, S.; Spinella, F.; Turini, N.; Valle, G.; Venanzoni, G.; Vialle, J.P.; Yu, Z.; Zhuang, H

    2002-12-01

    The Electromagnetic Calorimeter (ECAL) of the AMS-02 experiment is a lead-scintillating fibers sampling calorimeter characterized by high granularity that allows to image the longitudinal and lateral showers development, a key issue to provide high electron/hadron discrimination. The light collection system and the FE electronics are designed to let the calorimeter operate over a wide energy range from few GeV up to 1 TeV. A full-scale prototype of the e.m. calorimeter was tested at CERN in October 2001 using electrons and pions beams with energy ranging from 3 to 100 GeV. Effective sampling thickness, linearity and energy resolution were measured.

  18. The AMS-02 electromagnetic calorimeter

    CERN Document Server

    Cadoux, F; Chambert-Hermel, V; Chen, G; Chen, H; Coignet, G; Di Falco, S; Dubois, J M; Falchini, E; Franzoso, A; Fougeron, D; Fouque, N; Galeotti, S; Girard, L; Goy, C; Hermel, R; Incagli, M; Kossakowski, R; Lieunard, B; Liu, Y; Liu, Z; Lomtadze, T A; Maestro, P; Marrocchesi, P S; Paoletti, R; Pilo, F; Rosier-Lees, S; Spinella, F; Turini, N; Valle, G D; Venanzoni, G; Vialle, J P; Yu, Z; Zhuang, H

    2002-01-01

    The Electromagnetic Calorimeter (ECAL) of the AMS-02 experiment is a lead-scintillating fibers sampling calorimeter characterized by high granularity that allows to image the longitudinal and lateral showers development, a key issue to provide high electron/hadron discrimination. The light collection system and the FE electronics are designed to let the calorimeter operate over a wide energy range from few GeV up to 1 TeV. A full-scale prototype of the e.m. calorimeter was tested at CERN in October 2001 using electrons and pions beams with energy ranging from 3 to 100 GeV. Effective sampling thickness, linearity and energy resolution were measured. (8 refs).

  19. ELECTROMAGNETIC CALORIMETER (ECAL)

    CERN Multimedia

    P. Bloch

    Crystals and Bare Supermodules The last Barrel crystal was delivered on March 9th and the last (36th) Bare Supermodule was completed by April 20th. Endcaps crystal production is ramping up at both producers and the delivery rate exceeds already 1050 crystals per month. The quality of the Endcaps crystals is similar to that of the Barrel. Electronics The production of the on-detector electronics (Barrel + Endcaps) is complete. Already 10 out of the 12 crates of the Barrel Off-detector modules have been commissioned and installed in the CMS service cavern, and the integration with the global DAQ is progressing fast. The last 2 crates will be completed in August, after reception of the last Trigger Modules TCC68. The installation of the High Voltage is also progressing well, taking into account that some HV supplies are still used in the various assembly and test centres of ECAL. A large fraction of the low voltage supplies has been delivered and tested. Electronics integration As explained in the Febru...

  20. ELECTROMAGNETIC CALORIMETER (ECAL)

    CERN Multimedia

    P. Bloch

    ECAL Barrel The integration of the last Supermodule was completed early July. The insertion of the second half Barrel (EB+) was performed in the second half of July. The Barrel ECAL (36 Supermodules comprising 61200 channels) is now complete, and its cabling campaign has just started. Each Supermodule has been tested after insertion. The number of dead or partially-dead channels amounts to only 28 (0.05% of the total), a performance showing the excellence of the quality control during the whole construction process. The Barrel Off-detector electronics is installed in the CMS Service cavern (with the exception of a few Trigger modules), ready to be connected to the Supermodules after cabling. The ECAL DAQ has been integrated with the CMS DAQ system: at the end of August one supermodule was included in a CMS global run, allowing us to record cosmic muons in both ECAL and DTs. ECAL Endcaps The Endcaps crystal production is proceeding at full speed, and the delivery rate (summing both producers) exceeds ...

  1. ELECTROMAGNETIC CALORIMETER (ECAL)

    CERN Multimedia

    Roger Rusack

    Occupancy of the trigger primitives during a global run: the observed pattern is consistent with the polar angle dependence of the transverse energy equivalent of the electronic noise in the endcaps.   Progress on ECAL since the last CMS week has been mostly on three major fronts: we have continued with the installation and commissioning of the preshower detectors; the endcap calorimeter trigger has been installed and tested; and there have been many changes to the calorimeter detector control and safety systems. Both Preshower (ES) endcaps were installed in CMS on schedule, just before Easter. There followed a campaign of "first commissioning" to ensure that all services were correctly connected (electrical, optical, cooling, etc.). Apart from some optical ribbons that had to be replaced the process went rather smoothly, finishing on 23rd April. All power supplies are installed and operational. The cooling system (two branches of the joint Tracker-Preshower system) is fully fun...

  2. Liquid krypton electromagnetic calorimeter

    Energy Technology Data Exchange (ETDEWEB)

    Aulchenko, V.M.; Bukin, A.D.; Klimenko, S.G.; Kolachev, G.M.; Leontiev, L.A.; Maslennikov, A.L.; Onuchin, A.P.; Panin, V.S.; Peleganchuk, S.V.; Pivovarov, S.G.; Rodyakin, V.A.; Tayursky, V.A.; Tikhonov, Yu.A.; Yurchenko, V.I. (Budker Inst. of Nuclear Physics, Novosibirsk (Russia)); Lanni, F.; Lo Bianco, G.; Maggi, B.; Palombo, F.; Sala, A. (Dipt. di Fisica, Univ. Milan (Italy) INFN, Milan (Italy)); Cantoni, P.; Frabetti, P.L.; Stagni, L. (Dipt. di Fisica, Univ. Bologna (Italy) INFN, Bologna (Italy)); Manfredi, P.F.; Re, V.; Speziali, V. (Dipt. di Elettronica, Univ. Pavia (Italy) INFN, Milan (Italy))

    1993-03-20

    A calorimeter using 30 tons of liquid krypton for the KEDR detector is being constructed. The main effects which determine the energy and space resolution have been studied. An energy resolution of 1.7% at 1.2 GeV was obtained with the prototype. A space resolution of 0.4 mm for relativistic particles has been reached with the prototype. (orig.).

  3. ELECTROMAGNETIC CALORIMETER (ECAL)

    CERN Multimedia

    D. Barney

    2013-01-01

    The CMS ECAL, comprising barrel (EB), endcaps (EE) and preshower (ES) detectors, operated reliably throughout the 2012 (proton-proton) and early 2013 (proton-lead) running periods. The data quality was excellent, with more than 98% of the delivered luminosity declared good for physics in 2012, and close to 100% in 2013. The number of active channels – ~99% in the EB/EE and ~97% in the ES – was stable during 2012-’13. The ECAL performance, as measured by the electron energy scale and resolution and Z→ee mass resolution in both barrel and endcaps, is excellent and very stable in time (see Figure 1 for an example, and CMS-DP-2013-007: https://cds.cern.ch/record/1528235) following a dedicated calibration using the full 2012 CMS dataset. Figure 1 (a) and (b): The mass resolution of the Z peak, reconstructed from its di-electron decay mode, as a function of time for the barrel (a) and endcaps (b). The sample is inclusive (no cut on the amount of bremsstrahlung undergone...

  4. ELECTROMAGNETIC CALORIMETER (ECAL)

    CERN Multimedia

    Philippe Bloch

    ECAL Barrel (EB) Great progress has been achieved during the last few months on Barrel commissioning. All 36 supermodules have been run concurrently during the CRUZET in early May. The EB readout has reached the expected performance and is included regularly with central DAQ.  ECAL has been used as a source of triggers during cosmic runs. ECAL Endcaps (EE) Important milestones have been recently achieved: The Endcaps crystal production was completed in mid March. The gluing of the VPTs (Vacuum Photo Triodes) on the crystals, the assembly of Supercrystals (a set of 25 crystals) and their mounting on the Dee backplates (including the connection of the laser monitoring fibers) were finished during May. The mechanical assembly of the four endcap Dees is therefore completed. The assembly of the services and electronics on the backside of the Dees’ back-plates is also proceeding at a fast speed. The laying of the high voltage cables, the inner moderator, the optical fibers for the LED stabilit...

  5. ELECTROMAGNETIC CALORIMETER (ECAL)

    CERN Multimedia

    Philippe Bloch

    ECAL Barrel (EB) As already mentioned in June, the Barrel ECAL is fully commissioned and routinely used during CRUZET runs.  Good progress has been made in the last months to ensure a stable and fully reliable operation, in particular for the Trigger path. More details can be found in the DPG report in this bulletin.     ECAL Endcaps (EE) In the June CMS bulletin, it had been announced that the Dee’s mechanical assembly had been finished end of May. However the electronics integration was still going on for the first Dee. The Summer has seen a spectacular breakthrough of the Endcap project. The electronics integration of Dee1 was completed early July, and this first Dee was transported to point 5 on July 8th. The completion of the three other Dees followed at a pace of one per week. In all cases the quality of the detector as measured in the assembly center was excellent, with all channels active and  the expected noise performance (see for example the reports pr...

  6. ELECTROMAGNETIC CALORIMETER (ECAL)

    CERN Multimedia

    P. Bloch

    ECAL Barrel (EB) The main task during this fall was the connection of services of the ECAL Barrel Supermodules installed in the vacuum-tank. This work has been completed. The team is now commissioning the Supermodules using the final services (cables and optical fibers, HV and LV power supplies, cooling plant) and final electronics in the service cavern. The pace of commissioning has been limited by the availability of the cooling plant. At the time of writing, about 2/3 of the Supermodules had been signed off. ECAL Endcaps (EE) The Endcaps crystal production is proceeding fast. At the end of October, more than 10000 crystals (two thirds of the total quantity) had beem delivered. The Endcaps crystal production will be completed at the end of March 2008, as planned. The crystals testing and the gluing of the VPTs (Vacuum Photo Triodes) on the crystals follow the plan. The assembly of Supercrystals (a set of 25 crystals) is now a routine operation. All the Supercrystals for Dee1 and two thirds of those ne...

  7. ELECTROMAGNETIC CALORIMETER (ECAL)

    CERN Multimedia

    P. Bloch

    Crystals and Bare Supermodules Thanks to an unprecedented delivery rate, in excess of 1200 crystals per month during the last three months, the last Barrel crystals will be delivered at the end of February. The penultimate bare supermodule is under assembly; the last should be assembled in April. The first batch of Endcap crystals from the mass production has been received from China as well as two pre-series of 100 crystals from Russia. Electronics The assembly and test of off-detector electronics crates (each crate containing three triplets, each triplet comprising Data Concentrator Cards (DCC), Clock & Control System card (CCS) and Trigger & Clock Controllers (TCCs) module – i.e. enough to serve three supermodules) is progressing fast. Several crates have already been installed in the USC at point 5. The production of the specific Endcap electronics is also well advanced. For example, the test of the Front-End cards was recently completed. Electronics integration In early Autu...

  8. Electromagnetic calorimeter trigger at Belle

    CERN Document Server

    Cheon, B G; Lee, S H; Won, E; Park, I C; Hur, T W; Park, C S; Kim, S K; Kim, H J; Kim, H O; Chu, T H; Usov, Y V; Aulchenko, V M; Kuzmin, A S; Bondar, A E; Shwartz, B A; Eidelman, S; Krokovnyi, P P; Hayashii, H; Sagawa, H; Fukushima, M

    2002-01-01

    The performance of CsI(Tl) electromagnetic calorimeter trigger system in the Belle experiment is described. Two kinds of trigger schemes have been taken into account, namely a total energy trigger and a cluster counting trigger which are complementary to each other. In addition, the system has provided the online/offline luminosity information using the Bhabha event trigger scheme. An upgrade of the trigger is discussed.

  9. Electromagnetic Calorimeter for HADES Experiment

    Directory of Open Access Journals (Sweden)

    Rodríguez-Ramos P.

    2014-01-01

    Full Text Available Electromagnetic calorimeter (ECAL is being developed to complement dilepton spectrometer HADES. ECAL will enable the HADES@FAIR experiment to measure data on neutral meson production in heavy ion collisions at the energy range of 2-10 AGeV on the beam of future accelerator SIS100@FAIR. We will report results of the last beam test with quasi-monoenergetic photons carried out in MAMI facility at Johannes Gutenberg Universität Mainz.

  10. The CMS Barrel Calorimeter Response to Particle Beams from 2 to 350 GeV/c

    CERN Document Server

    Abdullin, Salavat; Acharya, Bannaje Sripathi; Adam, Nadia; Adams, Mark Raymond; Adzic, Petar; Akchurin, Nural; Akgun, Ugur; Albayrak, Elif Asli; Alemany-Fernandez, Reyes; Almeida, Nuno; Anagnostou, Georgios; Andelin, Daniel; Anderson, E Walter; Anfreville, Marc; Anicin, Ivan; Antchev, Georgy; Antunovic, Zeljko; Arcidiacono, Roberta; Arenton, Michael Wayne; Auffray, Etiennette; Argiro, Stefano; Askew, Andrew; Atramentov, Oleksiy; Ayan, S; Arcidy, M; Aydin, Sezgin; Aziz, Tariq; Baarmand, Marc M; Babich, Kanstantsin; Baccaro, Stefania; Baden, Drew; Baffioni, Stephanie; Bakirci, Mustafa Numan; Balazs, Michael; Banerjee, Sunanda; Banerjee, Sudeshna; Bard, Robert; Barge, Derek; Barnes, Virgil E; Barney, David; Barone, Luciano; Bartoloni, Alessandro; Baty, Clement; Bawa, Harinder Singh; Baiatian, G; Bandurin, Dmitry; Beauceron, Stephanie; Bell, Ken W; Bencze, Gyorgy; Benetta, Robert; Bercher, Michel; Beri, Suman Bala; Bernet, Colin; Berntzon, Lisa; Berthon, Ursula; Besançon, Marc; Betev, Botjo; Beuselinck, Raymond; Bhatnagar, Vipin; Bhatti, Anwar; Biino, Cristina; Blaha, Jan; Bloch, Philippe; Blyth, Simon; Bodek, Arie; Bornheim, Adolf; Bose, Suvadeep; Bose, Tulika; Bourotte, Jean; Brett, Angela Mary; Brown, Robert M; Britton, David; Budd, Howard; Bühler, M; Burchesky, Kyle; Busson, Philippe; Camanzi, Barbara; Camporesi, Tiziano; Cankocak, Kerem; Carrell, Kenneth Wayne; Carrera, E; Cartiglia, Nicolo; Cavallari, Francesca; Cerci, Salim; Cerutti, cM; Chang, Paoti; Chang, You-Hao; Charlot, Claude; Chen, E Augustine; Chen, Wan-Ting; Chen, Zheng-Yu; Chendvankar, Sanjay; Chipaux, Rémi; Choudhary, Brajesh C; Choudhury, Rajani Kant; Chung, Yeon Sei; Clarida, Warren; Cockerill, David J A; Combaret, Christophe; Conetti, Sergio; Cossutti, Fabio; Cox, Bradley; Cremaldi, Lucien Marcus; Cushman, Priscilla; Cussans, David; Dafinei, Ioan; Damgov, Jordan; Da Silva Di Calafiori, Diogo Raphael; Daskalakis, Georgios; Davatz, Giovanna; David, A; De Barbaro, Pawel; Debbins, Paul; Deiters, Konrad; Dejardin, Marc; Djordjevic, Milos; Deliomeroglu, Mehmet; Della Negra, Rodolphe; Della Ricca, Giuseppe; Del Re, Daniele; Demianov, A; De Min, Alberto; Denegri, Daniel; Depasse, Pierre; de Visser, Theo; Descamps, Julien; Deshpande, Pandurang Vishnu; Díaz, Jonathan; Diemoz, Marcella; Di Marco, Emanuele; Dimitrov, Lubomir; Dissertori, Günther; Dittmar, Michael; Djambazov, Lubomir; Dobrzynski, Ludwik; Drndarevic, Snezana; Duboscq, Jean Etienne; Dugad, Shashikant; Dumanoglu, Isa; Duru, Firdevs; Dutta, Dipanwita; Dzelalija, Mile; Efthymiopoulos, I; Elias, John E; Peisert, A; El-Mamouni, H; Elvira, D; Emeliantchik, Igor; Eno, Sarah Catherine; Ershov, Alexander; Erturk, Sefa; Esen, Selda; Eskut, Eda; Evangelou, Ioannis; Evans, David; Fabbro, Bernard; Faure, Jean-Louis; Fay, Jean; Fenyvesi, Andras; Ferri, Federico; Fisher, Wade Cameron; Flower, Paul S; Franci, Daniele; Franzoni, Giovanni; Freeman, Jim; Freudenreich, Klaus; Funk, Wolfgang; Ganjour, Serguei; Gargiulo, Corrado; Gascon, Susan; Gataullin, Marat; Gaultney, Vanessa; Gamsizkan, Halil; Gavrilov, Vladimir; Geerebaert, Yannick; Genchev, Vladimir; Gentit, François-Xavier; Gerbaudo, Davide; Gershtein, Yuri; Ghezzi, Alessio; Ghodgaonkar, Manohar; Gilly, Jean; Givernaud, Alain; Gleyzer, Sergei V; Gninenko, Sergei; Go, Apollo; Gobbo, Benigno; Godinovic, Nikola; Golubev, Nikolai; Golutvin, Igor; Goncharov, Petr; Gong, Datao; Govoni, Pietro; Grant, Nicholas; Gras, Philippe; Grassi, Tullio; Green, Dan; Greenhalgh, R J S; Gribushin, Andrey; Grinev, B; Guevara Riveros, Luz; Guillaud, Jean-Paul; Gurtu, Atul; Murat Guler, A; Gülmez, Erhan; Gümüs, K; Haelen, T; Hagopian, Sharon; Hagopian, Vasken; Haguenauer, Maurice; Halyo, Valerie; Hamel de Monchenault, Gautier; Hansen, Sten; Hashemi, Majid; Hauptman, John M; Hazen, Eric; Heath, Helen F; Heering, Arjan Hendrix; Heister, Arno; Heltsley, Brian; Hill, Jack; Hintz, Wieland; Hirosky, Robert; Hobson, Peter R; Honma, Alan; Hou, George Wei-Shu; Hsiung, Yee; Hunt, Adam; Husejko, Michal; Ille, Bernard; Ilyina, N; Imlay, Richard; Ingram, D; Ingram, Quentin; Isiksal, Engin; Jarry, Patrick; Jarvis, Chad; Jeong, Chiyoung; Jessop, Colin; Johnson, Kurtis F; Jones, John; Jovanovic, Dragoslav; Kaadze, Ketino; Kachanov, Vassili; Kaftanova, V; Kailas, Swaminathan; Kalagin, Vladimir; Kalinin, Alexey; Kalmani, Suresh Devendrappa; Karmgard, Daniel John; Kataria, Sushil Kumar; Kaur, Manjit; Kaya, Mithat; Kaya, Ozlem; Kayis-Topaksu, A; Kellogg, Richard G; Kennedy, Bruce W; Khmelnikov, Alexander; Kim, Heejong; Kisselevich, I; Kloukinas, Kostas; Kodolova, Olga; Kohli, Jatinder Mohan; Kokkas, Panagiotis; Kolberg, Ted; Kolossov, V; Korablev, Andrey; Korneev, Yury; Kosarev, Ivan; Kramer, Laird; Krasnikov, Nikolai; Krinitsyn, Alexander; Krokhotin, Andrey; Krpic, Dragomir; Kryshkin, V; Kubota, Yuichi; Kubrik, A; Kuleshov, Sergey; Kumar, Arun; Kumar, P; Kunori, Shuichi; Kuo, Chen-Cheng; Kurt, Pelin; Kyberd, Paul; Kyriakis, Aristotelis; Laasanen, Alvin T; Ladygin, Vladimir; Laird, Edward; Landsberg, Greg; Laszlo, Andras; Lawlor, C; Lazic, Dragoslav; Lebeau, Michel; Lecomte, Pierre; Lecoq, Paul; Ledovskoy, Alexander; Lee, Sang Joon; Leshev, Georgi; Lethuillier, Morgan; Levchuk, Leonid; Lin, Sheng-Wen; Lin, Willis; Linn, Stephan; Lintern, A L; Litvine, Vladimir; Litvintsev, Dmitri; Litov, Leander; Lobolo, L; Locci, Elizabeth; Lodge, Anthony B; Longo, Egidio; Loukas, Demetrios; Los, Serguei; Lubinsky, V; Luckey, Paul David; Lukanin, Vladimir; Lustermann, Werner; Lynch, Clare; Ma, Yousi; Machado, Emanuel; Mahlke-Krüger, H; Maity, Manas; Majumder, Gobinda; Malberti, Martina; Malclès, Julie; Maletic, Dimitrije; Mandjavidze, Irakli; Mans, Jeremy; Manthos, Nikolaos; Maravin, Yurii; Marchica, Carmelo; Marinelli, Nancy; Markou, Athanasios; Markou, Christos; Marlow, Daniel; Markowitz, Pete; Marone, Matteo; Martínez, German; Mathez, Hervé; Matveev, Viktor; Mavrommatis, Charalampos; Maurelli, Georges; Mazumdar, Kajari; Meridiani, Paolo; Merlo, Jean-Pierre; Mermerkaya, Hamit; Mescheryakov, G; Mestvirishvili, Alexi; Mikhailin, V; Milenovic, Predrag; Miller, Michael; Milleret, Gérard; Miné, Philippe; Möller, A; Mohammadi-Najafabadi, M; Mohanty, Ajit Kumar; Moissenz, P; Mondal, Naba Kumar; Moortgat, Filip; Mossolov, Vladimir; Mur, Michel; Musella, Pasquale; Musienko, Yuri; Nagaraj, P; Nardulli, Alessandro; Nash, Jordan; Nédélec, Patrick; Negri, Pietro; Newman, Harvey B; Nikitenko, Alexander; Norbeck, Edwin; Nessi-Tedaldi, Francesca; Obertino, Maria Margherita; Olson, Jonathan; Onel, Yasar; Onengüt, G; Organtini, Giovanni; Orimoto, Toyoko; Ozkan, Cigdem; Ozkurt, Halil; Ozkorucuklu, Suat; Ozok, Ferhat; Paganoni, Marco; Paganini, Pascal; Paktinat, S; Pal, Andras; Palma, Alessandro; Panev, Bozhidar; Pant, Lalit Mohan; Papadakis, Antonakis; Papadakis, Ioannis; Papadopoulos, Ioannis; Paramatti, Riccardo; Parracho, P; Pastrone, Nadia; Patil, Mandakini Ravindra; Patterson, Juliet Ritchie; Pauss, Felicitas; Penzo, Aldo; Petrakou, Eleni; Petrushanko, Sergey; Petrosian, A; Phillips II, David; Pikalov, Vladimir; Piperov, Stefan; Piroué, Pierre; Podrasky, V; Polatoz, A; Pompos, Arnold; Popescu, Sorina; Posch, C; Pozdnyakov, Andrey; Ptochos, Fotios; Puljak, Ivica; Pullia, Antonino; Punz, Thomas; Puzovic, Jovan; Qian, Weiming; Ragazzi, Stefano; Rahatlou, Shahram; Ralich, Robert; Rande, J; Razis, Panos A; Redaelli, Nicola; Reddy, L; Reidy, Jim; Renker, Dieter; Reucroft, Steve; Reymond, Jean-Marc; Ribeiro, Pedro Quinaz; Röser, Ulf; Rogalev, Evgueni; Rogan, Christopher; Roh, Youn; Rohlf, James; Romanteau, Thierry; Rondeaux, Françoise; Ronquest, Michael; Ronzhin, Anatoly; Rosowsky, André; Rovelli, Chiara; Ruchti, Randy; Rumerio, Paolo; Rusack, Roger; Rusakov, Sergey V; Ryan, Matthew John; Ryazanov, Anton; Safronov, Grigory; Sala, Leonardo; Salerno, Roberto; Sanders, David A; Santanastasio, Francesco; Sanzeni, Christopher; Sarycheva, Ludmila; Satyanarayana, B; Schinzel, Dietrich; Schmidt, Ianos; Seez, Christopher; Sekmen, Sezen; Semenov, Sergey; Senchishin, V; Sergeyev, S; Serin, Meltem; Sever, Ramazan; Sharp, Peter; Shepherd-Themistocleous, Claire; Siamitros, Christos; Sillou, Daniel; Singh, Jas Bir; Singovsky, Alexander; Sirois, Yves; Sirunyan, Albert M; Silva, J; Silva, Pedro; Skuja, Andris; Sharma, Seema; Sherwood, Brian; Shiu, Jing-Ge; Shivpuri, Ram Krishen; Shukla, Prashant; Shumeiko, Nikolai; Smirnov, Vitaly; Smith, Brian; Smith, Vincent J; Sogut, Kenan; Sonmez, Nasuf; Sorokin, Pavel; Spezziga, Mario; Sproston, Martin; Stefanovich, R; Stockli, F; Stolin, Viatcheslav; Sudhakar, Katta; Sulak, Lawrence; Suter, Henry; Suzuki, Ichiro; Swain, John; Tabarellide Fatis, T; Talov, Vladimir; Takahashi, Maiko; Tcheremoukhine, Alexandre; Teller, Olivier; Teplov, Konstantin; Theofilatos, Konstantinos; Thiebaux, Christophe; Thomas, Ray; Timciuc, Vladlen; Timlin, Claire; Titov, Maksym; Tobias, A; Tonwar, Suresh C; Topakli, Huseyin; Topkar, Anita; Triantis, Frixos A; Troshin, Sergey; Tully, Christopher; Turchanovich, L; Tyurin, Nikolay; Ueno, Koji; Ulyanov, A; Uzunian, Andrey; Vanini, A; Vankov, Ivan; Vardanyan, Irina; Varela, F; Varela, Joao; Vasil ev, A; Velasco, Mayda; Vergili, Mehmet; Verma, Piyush; Verrecchia, Patrice; Vesztergombi, Gyorgy; Veverka, Jan; Vichoudis, Paschalis; Vidal, Richard; Virdee, Tejinder; Vishnevskiy, Alexander; Vlassov, E; Vodopiyanov, Igor; Volobouev, Igor; Volkov, Alexey; Volodko, Anton; Von Gunten, Hans Peter; Wang, Lei; Wang, Minzu; Wardrope, David; Weber, Markus; Weng, Joanna; Werner, Jeremy Scott; Wetstein, Matthew; Winn, Dave; Wigmans, Richard; Williams, Jennifer C; Whitmore, Juliana; Won, Steven; Wu, Shouxiang; Yang, Yong; Yaselli, Ignacio; Yazgan, Efe; Yetkin, Taylan; Yohay, Rachel; Zabi, Alexandre; Zálán, Peter; Zamiatin, Nikolai; Zarubin, Anatoli; Zelepoukine, Serguei; Zeyrek, Mehmet; Zhang, Jia-Wen; Zhang, Lin; Zhu, Kejun; Zhu, Ren-Yuan

    2008-01-01

    The response of the CMS barrel calorimeter (electromagnetic plus hadronic) to hadrons, electrons and muons over a wide momentum range from 2 to 350 GeV/c has been measured. To our knowledge, this is the widest range of momenta in which any calorimeter system has been studied. These tests, carried out at the H2 beam-line at CERN, provide a wealth of information, especially at low energies. The analysis of the differences in calorimeter response to charged pions, kaons, protons and antiprotons and a detailed discussion of the underlying phenomena are presented. We also show techniques that apply corrections to the signals from the considerably different electromagnetic (EB) and hadronic (HB) barrel calorimeters in reconstructing the energies of hadrons. Above 5 GeV/c, these corrections improve the energy resolution of the combined system where the stochastic term equals 84.7$\\pm$1.6$\\%$ and the constant term is 7.4$\\pm$0.8$\\%$. The corrected mean response remains constant within 1.3$\\%$ rms.

  11. The CMS barrel calorimeter response to particle beams from 2 to 350 GeV/c

    Energy Technology Data Exchange (ETDEWEB)

    Abdullin, S.; Gavrilov, V.; Ilyina, N.; Kaftanov, V.; Kisselevich, I.; Kolossov, V.; Krokhotin, A.; Kuleshov, S.; Litvintsev, D.; Nikitenko, A.; Pozdnyakov, A.; Safronov, G.; Semenov, S.; Stolin, V.; Ulyanov, A. [ITEP, Moscow (Russian Federation); Abramov, V.; Goncharov, P.; Kachanov, V.; Kalinin, A.; Khmelnikov, A.; Korablev, A.; Korneev, Y.; Krinitsyn, A.; Kryshkin, V.; Lukanin, V.; Pikalov, V.; Ryazanov, A.; Talov, V.; Troshin, S.; Turchanovich, L.; Tyurin, N.; Uzunian, A.; Volkov, A.; Zelepoukine, S. [IHEP, Protvino (Russian Federation); Acharya, B.; Aziz, T.; Banerjee, Sud.; Banerjee, Sun.; Bose, S.; Chendvankar, S.; Deshpande, P.V.; Dugad, S.; Gurtu, A.; Kalmani, S.; Maity, M.; Majumder, G.; Mazumdar, K.; Mondal, N.; Nagaraj, P.; Patil, M.; Reddy, L.; Satyanarayana, B.; Sharma, S.; Sudhakar, K.; Tonwar, S.; Verma, P. [Tata Institute of Fundamental Research, Mumbai (India); Adam, N.; Fisher, W.; Gerbaudo, D.; Halyo, V.; Hunt, A.; Jones, J.; Laird, E.; Mans, J.; Marlow, D.; Piroue, P.; Tully, C.; Werner, J. [Princeton University, Princeton, NJ (United States); Adams, M.; Bard, R.; Burchesky, K.; Qian, W. [University of Illinois at Chicago, Chicago, IL (United States); Adzic, P.; Djordjevic, M.; Maletic, D.; Milenovic, P. [Vinca Inst. of Nuclear Sciences, Belgrade (RS); Akchurin, N.; Berntzon, L.; Carrell, K.; Guemues, K.; Jeong, C.; Kim, H.; Lee, S.W.; Popescu, S.; Roh, Y.; Spezziga, M.; Thomas, R.; Volobouev, I.; Wigmans, R.; Yazgan, E. [Texas Tech Univ., Lubbock, TX (United States); Akgun, U.; Albayrak, E.; Ayan, S.; Clarida, W.; Debbins, P.; Duru, F.; Ingram, D.; Merlo, J.P.; Mestvirishvili, A.; Miller, M.; Moeller, A.; Norbeck, E.; Olson, J.; Onel, Y.; Ozok, F.; Schmidt, I.; Yetkin, T. [Univ. of Iowa, Iowa City, IA (United States); Alemany-Fernandez, R.; Almeida, N.; David, A.; Husejko, M.; Musella, P.; Parracho, P.; Ribeiro, P.; Silva, J.; Silva, P. [Lab. de Instrumentacao e Fisica Experimental de Particulas, Lisboa (Portugal)] [and others

    2009-04-15

    The response of the CMS barrel calorimeter (electromagnetic plus hadronic) to hadrons, electrons and muons over a wide momentum range from 2 to 350 GeV/c has been measured. To our knowledge, this is the widest range of momenta in which any calorimeter system has been studied. These tests, carried out at the H2 beam-line at CERN, provide a wealth of information, especially at low energies. The analysis of the differences in calorimeter response to charged pions, kaons, protons and antiprotons and a detailed discussion of the underlying phenomena are presented. We also show techniques that apply corrections to the signals from the considerably different electromagnetic (EB) and hadronic (HB) barrel calorimeters in reconstructing the energies of hadrons. Above 5 GeV/c, these corrections improve the energy resolution of the combined system where the stochastic term equals 84.7{+-}1.6% and the constant term is 7.4{+-}0.8%. The corrected mean response remains constant within 1.3% rms. (orig.)

  12. Design, Performance, and Calibration of CMS Hadron-Barrel Calorimeter Wedges

    CERN Document Server

    Baiatian, G; Emeliantchik, Igor; Massolov, V; Shumeiko, Nikolai; Stefanovich, R; Damgov, Jordan; Dimitrov, Lubomir; Genchev, Vladimir; Piperov, Stefan; Vankov, Ivan; Litov, Leander; Bencze, Gyorgy; Vesztergombi, Gyorgy; Zálán, Peter; Bawa, Harinder Singh; Beri, Suman Bala; Bhatnagar, Vipin; Kaur, Manjit; Kohli, Jatinder Mohan; Kumar, Arun; Singh, Jas Bir; Acharya, Bannaje Sripathi; Banerjee, Sunanda; Banerjee, Sudeshna; Chendvankar, Sanjay; Dugad, Shashikant; Kalmani, Suresh Devendrappa; Katta, S; Mazumdar, Kajari; Mondal, Naba Kumar; Nagaraj, P; Patil, Mandakini Ravindra; Reddy, L; Satyanarayana, B; Sudhakar, Katta; Verma, Piyush; Paktinat, S; Golutvin, Igor; Kalagin, Vladimir; Kosarev, Ivan; Mescheryakov, G; Sergeyev, S; Smirnov, Vitaly; Volodko, Anton; Zarubin, Anatoli; Gavrilov, Vladimir; Gershtein, Yuri; Kaftanov, Vitali; Kisselevich, I; Kolossov, V; Krokhotin, Andrey; Kuleshov, Sergey; Litvintsev, Dmitri; Stolin, Viatcheslav; Ulyanov, A; Demianov, A; Gribushin, Andrey; Kodolova, Olga; Petrushanko, Sergey; Sarycheva, Ludmila; Vardanyan, Irina; Yershov, A; Abramov, Victor; Goncharov, Petr; Khmelnikov, Alexander; Korablev, Andrey; Korneev, Yury; Krinitsyn, Alexander; Kryshkin, V; Lukanin, Vladimir; Pikalov, Vladimir; Ryazanov, Anton; Talov, Vladimir; Turchanovich, L; Volkov, Alexey; Camporesi, Tiziano; De Visser, Theo; Vlassov, E; Aydin, Sezgin; Dumanoglu, Isa; Eskut, Eda; Kayis-Topaksu, A; Kuzucu-Polatoz, A; Onengüt, G; Ozdes-Koca, N; Cankocak, Kerem; Ozok, Ferhat; Serin-Zeyrek, M; Sever, Ramazan; Zeyrek, Mehmet; Gülmez, Erhan; Isiksal, Engin; Kaya, Mithat; Ozkorucuklu, Suat; Levchuk, Leonid; Sorokin, Pavel; Grinev, B; Lubinsky, V; Senchishin, V; Anderson, E Walter; Hauptman, John M; Elias, John E; Elvira, D; Freeman, Jim; Green, Dan; Lazic, Dragoslav; Los, Serguei; O'Dell, Vivian; Ronzhin, Anatoly; Suzuki, Ichiro; Vidal, Richard; Whitmore, Juliana; Antchev, Georgy; Hazen, Eric; Lawlor, C; Machado, Emanuel; Posch, C; Rohlf, James; Wu, Shouxiang; Adams, Mark Raymond; Burchesky, Kyle; Qiang, W; Abdullin, Salavat; Baden, Drew; Bard, Robert; Eno, Sarah Catherine; Grassi, Tullio; Jarvis, Chad; Kellogg, Richard G; Kunori, Shuichi; Skuja, Andris; Podrasky, V; Sanzeni, Christopher; Winn, Dave; Akgun, Ugur; Ayan, S; Duru, Firdevs; Merlo, Jean-Pierre; Mestvirishvili, Alexi; Miller, Michael; Norbeck, Edwin; Olson, Jonathan; Onel, Yasar; Schmidt, Ianos; Akchurin, Nural; Carrell, Kenneth Wayne; Gumu, K; Thomas, Ray; Baarmand, Marc M; Ralich, Robert; Vodopiyanov, Igor; Cushman, Priscilla; Heering, Arjan Hendrix; Sherwood, Brian; Cremaldi, Lucien Marcus; Reidy, Jim; Sanders, David A; Karmgard, Daniel John; Ruchti, Randy; Fisher, Wade Cameron; Mans, Jeremy; Tully, Christopher; De Barbaro, Pawel; Bodek, Arie; Budd, Howard; Chung, Yeon Sei; Haelen, T; Imboden, Matthias; Hagopian, Sharon; Hagopian, Vasken; Johnson, Kurtis F; Barnes, Virgil E; Laasanen, Alvin T; Pompos, Arnold

    2007-01-01

    Extensive measurements have been made with pions, electrons and muons on four production wedges of the Compact Muon Solenoid (CMS) hadron barrel (HB) calorimeter in the H2 beam line at CERN with particle momenta varying from 20 to 300 GeV/c. Data were taken both with and without a prototype electromagnetic lead tungstate crystal calorimeter (EB) in front of the hadron calorimeter. The time structure of the events was measured with the full chain of preproduction front-end electronics running at 34 MHz. Moving-wire radioactive source data were also collected for all scintillator layers in the HB. These measurements set the absolute calibration of the HB prior to first pp collisions to approximately 4%.

  13. Response of a close to final prototype for the barrel of the PANDA electromagnetic calorimeter to photons at energies below 1 GeV

    Energy Technology Data Exchange (ETDEWEB)

    Rosenbaum, Christoph; Diehl, Stefan; Dormenev, Valery; Drexler, Peter; Kuske, Till; Nazarenko, Svetlana; Novotny, Rainer W.; Zaunick, Hans-Georg [II. Physikalisches Institut, Giessen Univ. (Germany); Kavatsyuk, Myroslav [KVI Groningen (Netherlands); Rosier, Philippe [IPN Orsay (France); Ryantzev, Andrej [IHEP Protvino (Russian Federation); Wieczorek, Peter; Wilms, Andrea [GSI Helmholtzzentrum fuer Schwerionenforschung, Darmstadt (Germany)

    2015-07-01

    The EMC of the PANDA detector is one of the central components to achieve the proposed physical goals. The barrel part of the EMC will consist of more than 11,000 lead tungstate (PWO-II) crystals operated at -25 C to achieve the required performance over the complete energy range. The most recent prototype PROTO120 represents a larger section of a barrel slice, containing the most tapered crystals. The readout is performed with two rectangular large area APDs per crystal, which are read out separately via the specially developed APFEL-ASIC, providing a large dynamic range, low power consumption and optimized shaping. The present contribution will show the response of the PROTO120 to photons in the energy range below 800 MeV. It focuses on the performance of the ASIC under real conditions and describe the analysis procedure including the signal extraction and obtained energy resolution using the information from both APDs.

  14. Computer Simulation of the Cool Down of the ATLAS Liquid Argon Barrel Calorimeter

    CERN Document Server

    Korperud, N; Fabre, C; Owren, G; Passardi, Giorgio

    2002-01-01

    The ATLAS electromagnetic barrel calorimeter consists of a liquid argon detector with a total mass of 120 tonnes. This highly complicated structure, fabricated from copper, lead, stainless steel and glass-fiber reinforced epoxy will be placed in an aluminum cryostat. The cool down process of the detector will be limited by the maximum temperature differences accepted by the composite structure so as to avoid critical mechanical stresses. A computer program simulating the cool down of the detector by calculating the local heat transfer throughout a simplified model has been developed. The program evaluates the cool down time as a function of different contact gasses filling the spaces within the detector.

  15. Radiation damage of LHCb electromagnetic calorimeter

    CERN Document Server

    Barsuk, S; Kirichenko, V; Korolko, I; Malyshev, S; Rusinov, V Yu; Tarkovski, E

    2000-01-01

    Addressed is an extensive irradiation test program carried on to establish proper design and materials to build electromagnetic calorimeter that matches radiation conditions of the LHCb experiment at CERN. The results obtained are compared with measurements by other groups.

  16. Geant4 for the atlas electromagnetic calorimeter

    Energy Technology Data Exchange (ETDEWEB)

    Kordas, K.; Parrour, G. [Laboratoire de l' Accelerateur Lineaire, 91 - Orsay (France); Simion, St. [Columbia Univ., New York, NY (United States). Nevis Labs

    2001-04-01

    We have recently employed the Geant4 tool-kit for the simulation of the barrel part of the ATLAS electromagnetic calorimeter. The two approaches used for the description of this geometry are presented and compared. Subsequently, we test the new simulation tool against the predictions of Geant3, the previous generation of the Geant simulation. We do so for muons. With the caveat of some differences in the detector geometry implementations in Geant4 and Geant3, we also show some extremely preliminary results for electrons. A comparison between the two geometry models has shown that there are very small differences, which are under study, but in general the tailored geometry approach is proven sound. We also investigated a way to reduce significantly the memory usage of the straight-forward 'static' geometry description. Comparing Geant4 against Geant3, we find that the mean energy depositions for 50 and 100 GeV muons are in agreement between the two simulations, but the two yield significantly different distributions. Preliminary results on electrons are encouraging and we plan to study these particles next, including comparisons with test beam data. (authors)

  17. Charged Pion Energy Reconstruction in the ATLAS Barrel Calorimeter

    CERN Document Server

    Bosman, M; Nessi, Marzio

    2000-01-01

    The intrinsic performance of the ATLAS barrel and extended barrelcalorimeters for the measurement of charged pions is presented. Pion energyscans (E = 20, 50, 200, 400 and 1000 GeV) at two pseudo-rapidity points ($\\eta$= 0.3 and 1.3) and pseudorapidity scans ($-0.2 < \\eta < 1.8$) with pions ofconstant transverse energy ($E_T = 20$ and 50 GeV) are analysed. A simpleapproach, that accounts in first order for non-compensation and dead materialeffects, is used for the pion energy reconstruction. The intrinsic performancesof the calorimeter are studied: resolution, linearity, effect of dead material,tails in the energy distribution. The effect of electronic noise, cell energycuts and restricted cone size are investigated.

  18. The CMS barrel calorimeter response to particle beams from 2-GeV/c to 350-GeV/c

    Energy Technology Data Exchange (ETDEWEB)

    Abdullin, S.; /Moscow, ITEP; Abramov, V.; /Serpukhov, IHEP; Acharya, B.; /Tata Inst.; Adam, N.; /Princeton U.; Adams, M.; /Illinois U., Chicago; Adzic, P.; /Belgrade U.; Akchurin, N.; /Texas Tech.; Akgun, U.; Albayrak, E.; /Iowa U.; Alemany-Fernandez, R.; Almeida, N.; /Lisbon, LIFEP /Democritos Nucl. Res. Ctr. /Virginia U. /Iowa State U.

    2009-01-01

    The response of the CMS barrel calorimeter (electromagnetic plus hadronic) to hadrons, electrons and muons over a wide momentum range from 2 to 350 GeV/c has been measured. To our knowledge, this is the widest range of momenta in which any calorimeter system has been studied. These tests, carried out at the H2 beam-line at CERN, provide a wealth of information, especially at low energies. The analysis of the differences in calorimeter response to charged pions, kaons, protons and antiprotons and a detailed discussion of the underlying phenomena are presented. We also show techniques that apply corrections to the signals from the considerably different electromagnetic (EB) and hadronic (HB) barrel calorimeters in reconstructing the energies of hadrons. Above 5 GeV/c, these corrections improve the energy resolution of the combined system where the stochastic term equals 84.7 {+-} 1.6% and the constant term is 7.4 {+-} 0.8%. The corrected mean response remains constant within 1.3% rms.

  19. The BTeV electromagnetic calorimeter

    Energy Technology Data Exchange (ETDEWEB)

    Brennan, T.; Butler, J.; Cheung, H.; Frolov, V.; Khroustalev, K.; Kubota, Y.; Mountain, R.; Stone, S.; Yarba, J.; Alexeev, S.N.; Batarin, V.A.; Goncharenko, Y.M.; Grishin, V.N.; Datsko, V.S.; Derevschikov, A.A.; Fomin, Yu.V.; Kachanov, V.A.; Khodyrev, V.Y.; Konstantinov, A.S.; Kormilitsin, V.A.; Kravtsov, V.I.; Leontiev, V.M.; Lukanin, V.S.; Maisheev, V.A.; Matulenko, Ya.A.; Meschanin, A.P.; Melnick, Y.M.; Minaev, N.G.; Mikhalin, N.E.; Mochalov, V.V.; Morozov, D.A.; Nogach, L.V.; Pikalov, V.I.; Semenov, P.A. E-mail: semenov@mx.ihep.su; Shestermanov, K.E.; Soloviev, L.F.; Solovyanov, V.L.; Ukhanov, M.N.; Uzunian, A.V.; Vasiliev, A.N.; Yakutin, A.E

    2002-11-21

    The electromagnetic calorimeter for a new Fermilab collider program named BTeV is based on lead tungstate scintillating crystals (PbWO{sub 4}). Various properties of crystals manufactured by Russian and Chinese companies were measured at the U70 accelerator in Protvino. A dedicated beam momentum tagging system was used to measure the energy and spatial resolution.

  20. The electromagnetic calorimeter of the CMS experiment

    CERN Document Server

    Diemoz, M

    2003-01-01

    The electromagnetic calorimeter of the CMS experiment is made of about 80000 lead tungstate scintillating crystals. This project aims to achieve an extreme precision in photons and electrons energy measurement. General motivations, main technical challenges and key points in energy resolution will be discussed in the following.

  1. The Electromagnetic Calorimeter of the CMS Experiment

    CERN Document Server

    Longo, Egidio

    2006-01-01

    The Electromagnetic Calorimeter of the CMS experiment has been designed to achieve an extreme precision in photon and electron energy measurements at LHC. The status of the project will be discussed, together with recent results on performances of final components in beam tests.

  2. Analysis of the uniformity of the modules forming the barrel of the electromagnetic calorimeter of Atlas. Search for supplementary neutral gauge bosons; Analyse de l'uniformite des modules de serie du calorimetre electromagnetique tonneau d'ATLAS. Recherche de bosons de jauge supplementaires neutres

    Energy Technology Data Exchange (ETDEWEB)

    Gaumer, O

    2004-12-15

    Grand unification theories are a possible extension of the standard model. These theories imply the existence of an extra gauge boson: Z'. The study of the parameters of this boson in its electronic decays, especially its width, needs a good uniformity and a good resolution of the electromagnetic calorimeter. The first part of this thesis is dedicated to the study of the response of the barrel of the electromagnetic calorimeter to a 245 GeV electron beam. The major part of this work was the measurement of the uniformity. To perform this analysis the search of problematic channel has been made and corrections have been developed to take into account effect from the detector and to use all the recorded events. In the second part, I have studied the potential of Atlas in the study of the Z' decaying into lepton pairs (mainly in electron pairs). A study of the kinematic and of the background has been performed. This analysis deals with the possibility to distinguish different grand unification models, and with the possibility to discover the Z' boson, for masses from 1 TeV up to 4 TeV. (author)

  3. The ATLAS Electromagnetic Calorimeter Calibration Workshop

    CERN Multimedia

    Hong Ma; Isabelle Wingerter

    The ATLAS Electromagnetic Calorimeter Calibration Workshop took place at LAPP-Annecy from the 1st to the 3rd of October; 45 people attended the workshop. A detailed program was setup before the workshop. The agenda was organised around very focused presentations where questions were raised to allow arguments to be exchanged and answers to be proposed. The main topics were: Electronics calibration Handling of problematic channels Cluster level corrections for electrons and photons Absolute energy scale Streams for calibration samples Calibration constants processing Learning from commissioning Forty-five people attended the workshop. The workshop was on the whole lively and fruitful. Based on years of experience with test beam analysis and Monte Carlo simulation, and the recent operation of the detector in the commissioning, the methods to calibrate the electromagnetic calorimeter are well known. Some of the procedures are being exercised in the commisssioning, which have demonstrated the c...

  4. The backward end-cap for the PANDA electromagnetic calorimeter

    Science.gov (United States)

    Capozza, L.; Maas, F. E.; Noll, O.; Rodriguez Pineiro, D.; Valente, R.

    2015-02-01

    The PANDA experiment at the new FAIR facility will cover a broad experimental programme in hadron structure and spectroscopy. As a multipurpose detector, the PANDA spectrometer needs to ensure almost 4π coverage of the scattering solid angle, full and accurate multiple-particle event reconstruction and very good particle identification capabilities. The electromagnetic calorimeter (EMC) will be a key item for many of these aspects. Particle energies ranging from some MeVs to several GeVs have to be measured with a relative resolution of 1% ⊕ 2%/√E/GeV . It will be a homogeneous calorimeter made of PbWO4 crystals and will be operated at -25°C, in order to improve the scintillation light yield. With the exception of the very forward section, the light will be detected by large area avalanche photodiodes (APDs). The current pulses from the APDs will be integrated, amplified and shaped by ASIC chips which were developed for this purpose. The whole calorimeter has been designed in three sections: a forward end-cap, a central barrel and a backward end-cap (BWEC). In this contribution, a status report on the development of the BWEC is presented.

  5. Calibration strategy of CMS electromagnetic calorimeter

    CERN Document Server

    Paramatti, R

    2004-01-01

    Calibration is one of the main factors that set limits on the ultimate performance of the CMS electromagnetic calorimeter at LHC. Crystals raw intercalibration from lab measurements during assembly and CERN-SPS test beam of Supermodules will represent the precalibration at the start-up. In situ calibration with physics events will be the main tool to reduce the constant term to the design goal of 0.5%. The calibration strategy will be described in detail.

  6. ATLAS Tile Calorimeter central barrel assembly and installation.

    CERN Multimedia

    nikolai topilin

    2009-01-01

    These photos belong to the self-published book by Nikolai Topilin "ATLAS Hadron Calorimeter Assembly". The book is a collection of souvenirs from the years of assembly and installation of the Tile Hadron Calorimeter, which extended from November 2002 until May 2006.

  7. Results from a combined test of an electromagnetic liquid argon calorimeter with a hadronic scintillating-tile calorimeter

    CERN Document Server

    Ajaltouni, Ziad J; Alifanov, A; Amaral, P; Ambrosini, G; Amorim, A; Anderson, K J; Astvatsaturov, A R; Aubert, Bernard; Augé, E; Autiero, D; Azuelos, Georges; Badaud, F; Baisin, L; Battistoni, G; Bazan, A; Bee, C P; Bellettini, Giorgio; Berglund, S R; Berset, J C; Blaj, C; Blanchot, G; Blucher, E; Bogush, A A; Bohm, C; Boldea, V; Borisov, O N; Bosman, M; Bouhemaid, N; Brette, P; Bromberg, C; Brossard, M; Budagov, Yu A; Buono, S; Calôba, L P; Camin, D V; Canton, B; Casado, M P; Cavalli, D; Cavalli-Sforza, M; Cavasinni, V; Chadelas, R; Chase, Robert L; Chekhtman, A; Chevaleyre, J C; Chevalley, J L; Chirikov-Zorin, I E; Chlachidze, G; Chollet, J C; Cobal, M; Cogswell, F; Colas, Jacques; Collot, J; Cologna, S; Constantinescu, S; Costa, G; Costanzo, D; Cozzi, L; Crouau, M; Dargent, P; Daudon, F; David, M; Davidek, T; Dawson, J; De, K; de La Taille, C; Del Prete, T; Depommier, P; de Saintignon, P; De Santo, A; Dinkespiler, B; Di Girolamo, B; Dita, S; Dolejsi, J; Dolezal, Z; Downing, R; Dugne, J J; Duval, P Y; Dzahini, D; Efthymiopoulos, I; Errede, D; Errede, S; Etienne, F; Evans, H; Fassnacht, P; Fedyakin, N N; Ferrari, A; Ferreira, P; Ferrer, A; Flaminio, Vincenzo; Fouchez, D; Fournier, D; Fumagalli, G; Gallas, E J; Gaspar, M; Gianotti, F; Gildemeister, O; Gingrich, D M; Glagolev, V V; Golubev, V B; Gómez, A; González, J; Gordon, H A; Grabskii, V; Hakopian, H H; Haney, M; Hellman, S; Henriques, A; Holmgren, S O; Honoré, P F; Hostachy, J Y; Huston, J; Ivanyushenkov, Yu M; Jézéquel, S; Johansson, E K; Jon-And, K; Jones, R; Juste, A; Kakurin, S; Karapetian, G V; Karyukhin, A N; Khokhlov, Yu A; Klioukhine, V I; Kolomoets, V; Kopikov, S V; Kostrikov, M E; Kovtun, V E; Kukhtin, V V; Kulagin, M; Kulchitskii, Yu A; Laborie, G; Lami, S; Lapin, V; Lebedev, A; Lefebvre, M; Le Flour, T; Leitner, R; León-Florián, E; Leroy, C; Le Van-Suu, A; Li, J; Liba, I; Linossier, O; Lokajícek, M; Lomakin, Yu F; Lomakina, O V; Lund-Jensen, B; Mahout, G; Maio, A; Malyukov, S N; Mandelli, L; Mansoulié, B; Mapelli, Livio P; Marin, C P; Marroquin, F; Martin, L; Mazzanti, M; Mazzoni, E; Merritt, F S; Michel, B; Miller, R; Minashvili, I A; Miotto, A; Miralles, L; Mnatzakanian, E A; Monnier, E; Montarou, G; Mornacchi, Giuseppe; Muanza, G S; Nagy, E; Némécek, S; Nessi, Marzio; Nicoleau, S; Noppe, J M; Olivetto, C; Orteu, S; Padilla, C; Pallin, D; Pantea, D; Parrour, G; Pereira, A; Perini, L; Perlas, J A; Pétroff, P; Pilcher, J E; Pinfold, James L; Poggioli, Luc; Poirot, S; Polesello, G; Price, L; Protopopov, Yu; Proudfoot, J; Pukhov, O; Radeka, V; Rahm, David Charles; Reinmuth, G; Renardy, J F; Renzoni, G; Resconi, S; Richards, R; Riu, I; Romanov, V; Ronceux, B; Rumyantsev, V; Rusakovitch, N A; Sala, P R; Sanders, H; Sauvage, G; Savard, P; Savoy-Navarro, Aurore; Sawyer, L; Says, L P; Schaffer, A C; Scheel, C V; Schwemling, P; Schindling, J; Seguin-Moreau, N; Seixas, J M; Selldén, B; Seman, M; Semenov, A A; Senchyshyn, V G; Serin, L; Shchelchkov, A S; Shevtsov, V P; Shochet, M J; Sidorov, V; Simaitis, V J; Simion, S; Sissakian, A N; Solodkov, A A; Sonderegger, P; Soustruznik, K; Stanek, R; Starchenko, E A; Stephani, D; Stephens, R; Studenov, S; Suk, M; Surkov, A; Tang, F; Tardell, S; Tas, P; Teiger, J; Teubert, F; Thaler, J J; Tisserant, S; Tokár, S; Topilin, N D; Trka, Z; Turcot, A S; Turcotte, M; Valkár, S; Vartapetian, A H; Vazeille, F; Vichou, I; Vinogradov, V; Vorozhtsov, S B; Vuillemin, V; Wagner, D; White, Alan R; Wingerter-Seez, I; Yamdagni, N; Yarygin, G; Yosef, C; Zaitsev, A; Zdrazil, M; Zitoun, R; Zolnierowski, Y

    1996-01-01

    The first combined test of an electromagnetic liquid argon accordion calorimeter and a hadronic scintillating-tile calorimeter was carried out at the CERN SPS. These devices are prototypes of the barrel calorimeter of the future ATLAS experiment at the LHC. The energy resolution of pions in the energy range from 20 to 300~GeV at an incident angle $\\theta$ of about 11$^\\circ$ is well-described by the expression $\\sigma/E = ((46.5 \\pm 6.0)\\%/\\sqrt{E} +(1.2 \\pm 0.3)\\%) \\oplus (3.2 \\pm 0.4)~\\mbox{GeV}/E$. Shower profiles, shower leakage, and the angular resolution of hadronic showers were also studied.

  8. Results from a new combined test of an electromagnetic liquid argon calorimeter with a hadronic scintillating-tile calorimeter

    CERN Document Server

    Akhmadaliev, S Z; Amaral, P; Ambrosini, G; Amorim, A; Anderson, K; Andrieux, M L; Aubert, Bernard; Augé, E; Badaud, F; Baisin, L; Barreiro, F; Battistoni, G; Bazan, A; Bazizi, K; Bee, C P; Belorgey, J; Belymam, A; Benchekroun, D; Berglund, S R; Berset, J C; Blanchot, G; Bogush, A A; Bohm, C; Boldea, V; Bonivento, W; Borgeaud, P; Borisov, O N; Bosman, M; Bouhemaid, N; Breton, D; Brette, P; Bromberg, C; Budagov, Yu A; Burdin, S V; Calôba, L P; Camarena, F; Camin, D V; Canton, B; Caprini, M; Carvalho, J; Casado, M P; Cases, R; Castillo, M V; Cavalli, D; Cavalli-Sforza, M; Cavasinni, V; Chadelas, R; Chalifour, M; Chekhtman, A; Chevalley, J L; Chirikov-Zorin, I E; Chlachidze, G; Chollet, J C; Citterio, M; Cleland, W E; Clément, C; Cobal, M; Cogswell, F; Colas, Jacques; Collot, J; Cologna, S; Constantinescu, S; Costa, G; Costanzo, D; Coulon, J P; Crouau, M; Dargent, P; Daudon, F; David, M; Davidek, T; Dawson, J; De, K; Delagnes, E; de La Taille, C; Del Peso, J; Del Prete, T; de Saintignon, P; Di Girolamo, B; Dinkespiler, B; Dita, S; Djama, F; Dodd, J; Dolejsi, J; Dolezal, Z; Downing, R; Dugne, J J; Duval, P Y; Dzahini, D; Efthymiopoulos, I; Errede, D; Errede, S; Etienne, F; Evans, H; Eynard, G; Farida, F; Fassnacht, P; Fedyakin, N N; Fernández de Troconiz, J; Ferrari, A; Ferrer, A; Flaminio, Vincenzo; Fournier, D; Fumagalli, G; Gallas, E J; García, G; Gaspar, M; Gianotti, F; Gildemeister, O; Glagolev, V; Glebov, V Yu; Gómez, A; González, V; González de la Hoz, S; Gordeev, A; Gordon, H A; Grabskii, V; Graugès-Pous, E; Grenier, P; Hakopian, H H; Haney, M; Hébrard, C; Henriques, A; Henry-Coüannier, F; Hervás, L; Higón, E; Holmgren, S O; Hostachy, J Y; Hoummada, A; Huet, M; Huston, J; Imbault, D; Ivanyushenkov, Yu M; Jacquier, Y; Jézéquel, S; Johansson, E K; Jon-And, K; Jones, R; Juste, A; Kakurin, S; Karst, P; Karyukhin, A N; Khokhlov, Yu A; Khubua, J I; Klioukhine, V I; Kolachev, G M; Kolomoets, V; Kopikov, S V; Kostrikov, M E; Kovtun, V E; Kozlov, V; Krivkova, P; Kukhtin, V V; Kulagin, M; Kulchitskii, Yu A; Kuzmin, M V; Labarga, L; Laborie, G; Lacour, D; Lami, S; Lapin, V; Le Dortz, O; Lefebvre, M; Le Flour, T; Leitner, R; Leltchouk, M; Le Van-Suu, A; Li, J; Liapis, C; Linossier, O; Lissauer, D; Lobkowicz, F; Lokajícek, M; Lomakin, Yu F; Lomakina, O V; López-Amengual, J M; Lottin, J P; Lund-Jensen, B; Lundqvist, J M; Maio, A; Makowiecki, D S; Malyukov, S N; Mandelli, L; Mansoulié, B; Mapelli, Livio P; Marin, C P; Marrocchesi, P S; Marroquin, F; Martin, L; Martin, O; Martin, P; Maslennikov, A M; Massol, N; Mazzanti, M; Mazzoni, E; Merritt, F S; Michel, B; Miller, R; Minashvili, I A; Miralles, L; Mirea, A; Mnatzakanian, E A; Monnier, E; Montarou, G; Mornacchi, Giuseppe; Mosidze, M D; Moynot, M; Muanza, G S; Nagy, E; Nayman, P; Némécek, S; Nessi, Marzio; Nicod, D; Nicoleau, S; Niculescu, M; Noppe, J M; Onofre, A; Pallin, D; Pantea, D; Paoletti, R; Park, I C; Parrour, G; Parsons, J; Pascual, J I; Pereira, A; Perini, L; Perlas, J A; Perrodo, P; Petroff, P; Pilcher, J E; Pinhão, J; Plothow-Besch, Hartmute; Poggioli, Luc; Poirot, S; Price, L; Protopopov, Yu; Proudfoot, J; Pukhov, O; Puzo, P; Radeka, V; Rahm, David Charles; Reinmuth, G; Renardy, J F; Renzoni, G; Rescia, S; Resconi, S; Richards, R; Richer, J P; Riu, I; Roda, C; Roldán, J; Romance, J B; Romanov, V; Romero, P; Rusakovitch, N A; Sala, P R; Sanchis, E; Sanders, H; Santoni, C; Santos, J; Sauvage, D; Sauvage, G; Savoy-Navarro, Aurore; Sawyer, L; Says, L P; Schaffer, A C; Schwemling, P; Schwindling, J; Seguin-Moreau, N; Seidl, W; Seixas, J M; Selldén, B; Seman, M; Semenov, A A; Senchyshyn, V G; Serin, L; Shaldaev, E; Shchelchkov, A S; Shochet, M J; Sidorov, V; Silva, J; Simaitis, V J; Simion, S; Sissakian, A N; Soloviev, I V; Snopkov, R; Söderqvist, J; Solodkov, A A; Sonderegger, P; Soustruznik, K; Spanó, F; Spiwoks, R; Stanek, R; Starchenko, E A; Stavina, P; Stephens, R; Studenov, S; Suk, M; Surkov, A; Sykora, I; Taguet, J P; Takai, H; Tang, F; Tardell, S; Tas, P; Teiger, J; Teubert, F; Thaler, J J; Thion, J; Tikhonov, Yu A; Tisserand, V; Tisserant, S; Tokar, S; Topilin, N D; Trka, Z; Turcotte, M; Valkár, S; Varanda, M J; Vartapetian, A H; Vazeille, F; Vichou, I; Vincent, P; Vinogradov, V; Vorozhtsov, S B; Vuillemin, V; Walter, C; White, A; Wielers, M; Wingerter-Seez, I; Wolters, H; Yamdagni, N; Yarygin, G; Yosef, C; Zaitsev, A; Zitoun, R; Zolnierowski, Y

    2000-01-01

    A new combined test of an electromagnetic liquid argon accordion calorimeter and a hadronic scintillating-tile calorimeter was carried out at the CERN SPS. These devices are prototypes of the barrel calorimeter of the future ATLAS experiment at the LHC. The energy resolution of pions in the energy range from 10 to 300 GeV at an incident angle theta of about 12 degrees is well described by the expression sigma /E=((41.9+or-1.6)%/ square root E+(1.8+or-0.1)%)(+) (1.8+or-0.1)/E, where E is in GeV. The response to electrons and muons was evaluated. Shower profiles, shower leakage and the angular resolution of hadronic showers were also studied. Results are compared with those from the previous beam test. (22 refs).

  9. Drift Time Measurement in the ATLAS Liquid Argon Electromagnetic Calorimeter using Cosmic Muons

    CERN Document Server

    Aad, G; Abdallah, J; Abdelalim, A A; Abdesselam, A; Abdinov, O; Abi, B; Abolins, M; Abramowicz, H; Abreu, H; Acharya, B S; Adams, D L; Addy, T N; Adelman, J; Adorisio, C; Adragna, P; Adye, T; Aefsky, S; Aguilar-Saavedra, J A; Aharrouche, M; Ahlen, S P; Ahles, F; Ahmad, A; Ahmed, H; Ahsan, M; Aielli, G; Akdogan, T; Åkesson, T P A; Akimoto, G; Akimov, A V; Aktas, A; Alam, M S; Alam, M A; Albert, J; Albrand, S; Aleksa, M; Aleksandrov, I N; Alessandria, F; Alexa, C; Alexander, G; Alexandre, G; Alexopoulos, T; Alhroob, M; Aliev, M; Alimonti, G; Alison, J; Aliyev, M; Allport, P P; Allwood-Spiers, S E; Almond, J; Aloisio, A; Alon, R; Alonso, A; Alviggi, M G; Amako, K; Amelung, C; Ammosov, V V; Amorim, A; Amorós, G; Amram, N; Anastopoulos, C; Andeen, T; Anders, C F; Anderson, K J; Andreazza, A; Andrei, V; Anduaga, X S; Angerami, A; Anghinolfi, F; Anjos, N; Antonaki, A; Antonelli, M; Antonelli, S; Antos, J; Antunovic, B; Anulli, F; Aoun, S; Arabidze, G; Aracena, I; Arai, Y; Arce, A T H; Archambault, J P; Arfaoui, S; Arguin, J F; Argyropoulos, T; Arik, E; Arik, M; Armbruster, A J; Arnaez, O; Arnault, C; Artamonov, A; Arutinov, D; Asai, M; Asai, S; Asfandiyarov, R; Ask, S; Åsman, B; Asner, D; Asquith, L; Assamagan, K; Astbury, A; Astvatsatourov, A; Atoian, G; Auerbach, B; Auge, E; Augsten, K; Aurousseau, M; Austin, N; Avolio, G; Avramidou, R; Axen, D; Ay, C; Azuelos, G; Azuma, Y; Baak, M A; Bacci, C; Bach, A; Bachacou, H; Bachas, K; Backes, M; Badescu, E; Bagnaia, P; Bai, Y; Bailey, D C; Bain, T; Baines, J T; Baker, O K; Baker, M D; Baker, S; Baltasar Dos Santos Pedrosa, F; Banas, E; Banerjee, P; Banerjee, S; Banfi, D; Bangert, A; Bansal, V; Baranov, S P; Baranov, S; Barashkou, A; Barber, T; Barberio, E L; Barberis, D; Barbero, M; Bardin, D Y; Barillari, T; Barisonzi, M; Barklow, T; Barlow, N; Barnett, B M; Barnett, R M; Baron, S; Baroncelli, A; Barr, A J; Barreiro, F; Barreiro Guimarães da Costa, J; Barrillon, P; Barros, N; Bartoldus, R; Bartsch, D; Bastos, J; Bates, R L; Batkova, L; Batley, J R; Battaglia, A; Battistin, M; Bauer, F; Bawa, H S; Bazalova, M; Beare, B; Beau, T; Beauchemin, P H; Beccherle, R; Becerici, N; Bechtle, P; Beck, G A; Beck, H P; Beckingham, M; Becks, K H; Bedajanek, I; Beddall, A J; Beddall, A; Bednár, P; Bednyakov, V A; Bee, C; Begel, M; Behar Harpaz, S; Behera, P K; Beimforde, M; Belanger-Champagne, C; Bell, P J; Bell, W H; Bella, G; Bellagamba, L; Bellina, F; Bellomo, M; Belloni, A; Belotskiy, K; Beltramello, O; Ben Ami, S; Benary, O; Benchekroun, D; Bendel, M; Benedict, B H; Benekos, N; Benhammou, Y; Benincasa, G P; Benjamin, D P; Benoit, M; Bensinger, J R; Benslama, K; Bentvelsen, S; Beretta, M; Berge, D; Bergeaas Kuutmann, E; Berger, N; Berghaus, F; Berglund, E; Beringer, J; Bernardet, K; Bernat, P; Bernhard, R; Bernius, C; Berry, T; Bertin, A; Besana, M I; Besson, N; Bethke, S; Bianchi, R M; Bianco, M; Biebel, O; Biesiada, J; Biglietti, M; Bilokon, H; Bindi, M; Binet, S; Bingul, A; Bini, C; Biscarat, C; Bitenc, U; Black, K M; Blair, R E; Blanchard, J B; Blanchot, G; Blocker, C; Blocki, J; Blondel, A; Blum, W; Blumenschein, U; Bobbink, G J; Bocci, A; Boehler, M; Boek, J; Boelaert, N; Böser, S; Bogaerts, J A; Bogouch, A; Bohm, C; Bohm, J; Boisvert, V; Bold, T; Boldea, V; Boldyrev, A; Bondarenko, V G; Bondioli, M; Boonekamp, M; Bordoni, S; Borer, C; Borisov, A; Borissov, G; Borjanovic, I; Borroni, S; Bos, K; Boscherini, D; Bosman, M; Bosteels, M; Boterenbrood, H; Bouchami, J; Boudreau, J; Bouhova-Thacker, E V; Boulahouache, C; Bourdarios, C; Boyd, J; Boyko, I R; Bozovic-Jelisavcic, I; Bracinik, J; Braem, A; Branchini, P; Brandenburg, G W; Brandt, A; Brandt, G; Brandt, O; Bratzler, U; Brau, B; Brau, J E; Braun, H M; Brelier, B; Bremer, J; Brenner, R; Bressler, S; Breton, D; Britton, D; Brochu, F M; Brock, I; Brock, R; Brodbeck, T J; Brodet, E; Broggi, F; Bromberg, C; Brooijmans, G; Brooks, W K; Brown, G; Brubaker, E; Bruckman de Renstrom, P A; Bruncko, D; Bruneliere, R; Brunet, S; Bruni, A; Bruni, G; Bruschi, M; Buanes, T; Bucci, F; Buchanan, J; Buchholz, P; Buckley, A G; Budagov, I A; Budick, B; Büscher, V; Bugge, L; Bulekov, O; Bunse, M; Buran, T; Burckhart, H; Burdin, S; Burgess, T; Burke, S; Busato, E; Bussey, P; Buszello, C P; Butin, F; Butler, B; Butler, J M; Buttar, C M; Butterworth, J M; Byatt, T; Caballero, J; Cabrera Urbán, S; Caforio, D; Cakir, O; Calafiura, P; Calderini, G; Calfayan, P; Calkins, R; Caloba, L P; Caloi, R; Calvet, D; Camarri, P; Cambiaghi, M; Cameron, D; Campabadal Segura, F; Campana, S; Campanelli, M; Canale, V; Canelli, F; Canepa, A; Cantero, J; Capasso, L; Capeans Garrido, M D M; Caprini, I; Caprini, M; Capua, M; Caputo, R; Caracinha, D; Caramarcu, C; Cardarelli, R; Carli, T; Carlino, G; Carminati, L; Caron, B; Caron, S; Carrillo Montoya, G D; Carron Montero, S; Carter, A A; Carter, J R; Carvalho, J; Casadei, D; Casado, M P; Cascella, M; Caso, C; Castaneda Hernadez, A M; Castaneda-Miranda, E; Castillo Gimenez, V; Castro, N; Cataldi, G; Catinaccio, A; Catmore, J R; Cattai, A; Cattani, G; Caughron, S; Cauz, D; Cavalleri, P; Cavalli, D; Cavalli-Sforza, M; Cavasinni, V; Ceradini, F; Cerqueira, A S; Cerri, A; Cerrito, L; Cerutti, F; Cetin, S A; Cevenini, F; Chafaq, A; Chakraborty, D; Chan, K; Chapman, J D; Chapman, J W; Chareyre, E; Charlton, D G; Chavda, V; Cheatham, S; Chekanov, S; Chekulaev, S V; Chelkov, G A; Chen, H; Chen, S; Chen, T; Chen, X; Cheng, S; Cheplakov, A; Chepurnov, V F; Cherkaoui El Moursli, R; Tcherniatine, V; Chesneanu, D; Cheu, E; Cheung, S L; Chevalier, L; Chevallier, F; Chiarella, V; Chiefari, G; Chikovani, L; Childers, J T; Chilingarov, A; Chiodini, G; Chizhov, M; Choudalakis, G; Chouridou, S; Christidi, I A; Christov, A; Chromek-Burckhart, D; Chu, M L; Chudoba, J; Ciapetti, G; Ciftci, A K; Ciftci, R; Cinca, D; Cindro, V; Ciobotaru, M D; Ciocca, C; Ciocio, A; Cirilli, M; Citterio, M; Clark, A; Cleland, W; Clemens, J C; Clement, B; Clement, C; Coadou, Y; Cobal, M; Coccaro, A; Cochran, J; Coelli, S; Coggeshall, J; Cogneras, E; Cojocaru, C D; Colas, J; Cole, B; Colijn, A P; Collard, C; Collins, N J; Collins-Tooth, C; Collot, J; Colon, G; Conde Muiño, P; Coniavitis, E; Consonni, M; Constantinescu, S; Conta, C; Conventi, F; Cook, J; Cooke, M; Cooper, B D; Cooper-Sarkar, A M; Cooper-Smith, N J; Copic, K; Cornelissen, T; Corradi, M; Corriveau, F; Corso-Radu, A; Cortes-Gonzalez, A; Cortiana, G; Costa, G; Costa, M J; Costanzo, D; Costin, T; Côté, D; Coura Torres, R; Courneyea, L; Cowan, G; Cowden, C; Cox, B E; Cranmer, K; Cranshaw, J; Cristinziani, M; Crosetti, G; Crupi, R; Crépé-Renaudin, S; Cuenca Almenar, C; Cuhadar Donszelmann, T; Curatolo, M; Curtis, C J; Cwetanski, P; Czyczula, Z; D'Auria, S; D'Onofrio, M; D'Orazio, A; Da Silva, P V M; Da Via, C; Dabrowski, W; Dai, T; Dallapiccola, C; Dallison, S J; Daly, C H; Dam, M; Danielsson, H O; Dannheim, D; Dao, V; Darbo, G; Darlea, G L; Davey, W; Davidek, T; Davidson, N; Davidson, R; Davies, M; Davison, A R; Dawson, I; Dawson, J W; Daya, R K; De, K; de Asmundis, R; De Castro, S; De Castro Faria Salgado, P E; De Cecco, S; de Graat, J; De Groot, N; de Jong, P; De La Cruz-Burelo, E; De La Taille, C; De Mora, L; De Oliveira Branco, M; De Pedis, D; De Salvo, A; De Sanctis, U; De Santo, A; De Vivie De Regie, J B; De Zorzi, G; Dean, S; Deberg, H; Dedes, G; Dedovich, D V; Defay, P O; Degenhardt, J; Dehchar, M; Del Papa, C; Del Peso, J; Del Prete, T; Dell'Acqua, A; Dell'Asta, L; Della Pietra, M; della Volpe, D; Delmastro, M; Delruelle, N; Delsart, P A; Deluca, C; Demers, S; Demichev, M; Demirkoz, B; Deng, J; Deng, W; Denisov, S P; Dennis, C; Derkaoui, J E; Derue, F; Dervan, P; Desch, K; Deviveiros, P O; Dewhurst, A; DeWilde, B; Dhaliwal, S; Dhullipudi, R; Di Ciaccio, A; Di Ciaccio, L; Di Domenico, A; Di Girolamo, A; Di Girolamo, B; Di Luise, S; Di Mattia, A; Di Nardo, R; Di Simone, A; Di Sipio, R; Diaz, M A; Diblen, F; Diehl, E B; Dietrich, J; Dietzsch, T A; Diglio, S; Dindar Yagci, K; Dingfelder, D J; Dionisi, C; Dita, P; Dita, S; Dittus, F; Djama, F; Djilkibaev, R; Djobava, T; do Vale, M A B; Do Valle Wemans, A; Doan, T K O; Dobbs, M; Dobos, D; Dobson, E; Dobson, M; Dodd, J; Doherty, T; Doi, Y; Dolejsi, J; Dolenc, I; Dolezal, Z; Dolgoshein, B A; Dohmae, T; Donega, M; Donini, J; Dopke, J; Doria, A; Dos Anjos, A; Dotti, A; Dova, M T; Doxiadis, A; Doyle, A T; Drasal, Z; Driouichi, C; Dris, M; Dubbert, J; Duchovni, E; Duckeck, G; Dudarev, A; Dudziak, F; Dührssen , M; Duflot, L; Dufour, M A; Dunford, M; Duperrin, A; Duran Yildiz, H; Dushkin, A; Duxfield, R; Dwuznik, M; Düren, M; Ebenstein, W L; Ebke, J; Eckert, S; Eckweiler, S; Edmonds, K; Edwards, C A; Eerola, P; Egorov, K; Ehrenfeld, W; Ehrich, T; Eifert, T; Eigen, G; Einsweiler, K; Eisenhandler, E; Ekelof, T; El Kacimi, M; Ellert, M; Elles, S; Ellinghaus, F; Ellis, K; Ellis, N; Elmsheuser, J; Elsing, M; Ely, R; Emeliyanov, D; Engelmann, R; Engl, A; Epp, B; Eppig, A; Epshteyn, V S; Ereditato, A; Eriksson, D; Ermoline, I; Ernst, J; Ernst, M; Ernwein, J; Errede, D; Errede, S; Ertel, E; Escalier, M; Escobar, C; Espinal Curull, X; Esposito, B; Etienne, F; Etienvre, A I; Etzion, E; Evans, H; Fabbri, L; Fabre, C; Facius, K; Fakhrutdinov, R M; Falciano, S; Falou, A C; Fang, Y; Fanti, M; Farbin, A; Farilla, A; Farley, J; Farooque, T; Farrington, S M; Farthouat, P; Fassi, F; Fassnacht, P; Fassouliotis, D; Fatholahzadeh, B; Fayard, L; Fayette, F; Febbraro, R; Federic, P; Fedin, O L; Fedorko, I; Fedorko, W; Feligioni, L; Felzmann, C U; Feng, C; Feng, E J; Fenyuk, A B; Ferencei, J; Ferland, J; Fernandes, B; Fernando, W; Ferrag, S; Ferrando, J; Ferrari, A; Ferrari, P; Ferrari, R; Ferrer, A; Ferrer, M L; Ferrere, D; Ferretti, C; Fiascaris, M; Fiedler, F; Filipcic, A; Filippas, A; Filthaut, F; Fincke-Keeler, M; Fiolhais, M C N; Fiorini, L; Firan, A; Fischer, G; Fisher, M J; Flechl, M; Fleck, I; Fleckner, J; Fleischmann, P; Fleischmann, S; Flick, T; Flores Castillo, L R; Flowerdew, M J; Föhlisch, F; Fokitis, M; Fonseca Martin, T; Forbush, D A; Formica, A; Forti, A; Fortin, D; Foster, J M; Fournier, D; Foussat, A; Fowler, A J; Fowler, K; Fox, H; Francavilla, P; Franchino, S; Francis, D; Franklin, M; Franz, S; Fraternali, M; Fratina, S; Freestone, J; French, S T; Froeschl, R; Froidevaux, D; Frost, J A; Fukunaga, C; Fullana Torregrosa, E; Fuster, J; Gabaldon, C; Gabizon, O; Gadfort, T; Gadomski, S; Gagliardi, G; Gagnon, P; Galea, C; Gallas, E J; Gallas, M V; Gallo, V; Gallop, B J; Gallus, P; Galyaev, E; Gan, K K; Gao, Y S; Gaponenko, A; Garcia-Sciveres, M; García, C; García Navarro, J E; Gardner, R W; Garelli, N; Garitaonandia, H; Garonne, V; Gatti, C; Gaudio, G; Gaumer, O; Gauzzi, P; Gavrilenko, I L; Gay, C; Gaycken, G; Gayde, J C; Gazis, E N; Ge, P; Gee, C N P; Geich-Gimbel, Ch; Gellerstedt, K; Gemme, C; Genest, M H; Gentile, S; Georgatos, F; George, S; Gerlach, P; Gershon, A; Geweniger, C; Ghazlane, H; Ghez, P; Ghodbane, N; Giacobbe, B; Giagu, S; Giakoumopoulou, V; Giangiobbe, V; Gianotti, F; Gibbard, B; Gibson, A; Gibson, S M; Gilbert, L M; Gilchriese, M; Gilewsky, V; Gillman, A R; Gingrich, D M; Ginzburg, J; Giokaris, N; Giordani, M P; Giordano, R; Giovannini, P; Giraud, P F; Girtler, P; Giugni, D; Giusti, P; Gjelsten, B K; Gladilin, L K; Glasman, C; Glazov, A; Glitza, K W; Glonti, G L; Godfrey, J; Godlewski, J; Goebel, M; Göpfert, T; Goeringer, C; Gössling, C; Göttfert, T; Goggi, V; Goldfarb, S; Goldin, D; Golling, T; Gollub, N P; Gomes, A; Gomez Fajardo, L S; Gonçalo, R; Gonella, L; Gong, C; González de la Hoz, S; Gonzalez Silva, M L; Gonzalez-Sevilla, S; Goodson, J J; Goossens, L; Gorbounov, P A; Gordon, H A; Gorelov, I; Gorfine, G; Gorini, B; Gorini, E; Gorisek, A; Gornicki, E; Goryachev, V N; Gosdzik, B; Gosselink, M; Gostkin, M I; Gough Eschrich, I; Gouighri, M; Goujdami, D; Goulette, M P; Goussiou, A G; Goy, C; Grabowska-Bold, I; Grafström, P; Grahn, K J; Granado Cardoso, L; Grancagnolo, F; Grancagnolo, S; Grassi, V; Gratchev, V; Grau, N; Gray, H M; Gray, J A; Graziani, E; Green, B; Greenshaw, T; Greenwood, Z D; Gregor, I M; Grenier, P; Griesmayer, E; Griffiths, J; Grigalashvili, N; Grillo, A A; Grimm, K; Grinstein, S; Grishkevich, Y V; Groer, L S; Grognuz, J; Groh, M; Groll, M; Gross, E; Grosse-Knetter, J; Groth-Jensen, J; Grybel, K; Guarino, V J; Guicheney, C; Guida, A; Guillemin, T; Guler, H; Gunther, J; Guo, B; Gupta, A; Gusakov, Y; Gutierrez, A; Gutierrez, P; Guttman, N; Gutzwiller, O; Guyot, C; Gwenlan, C; Gwilliam, C B; Haas, A; Haas, S; Haber, C; Hackenburg, R; Hadavand, H K; Hadley, D R; Haefner, P; Härtel, R; Hajduk, Z; Hakobyan, H; Haller, J; Hamacher, K; Hamilton, A; Hamilton, S; Han, H; Han, L; Hanagaki, K; Hance, M; Handel, C; Hanke, P; Hansen, J R; Hansen, J B; Hansen, J D; Hansen, P H; Hansl-Kozanecka, T; Hansson, P; Hara, K; Hare, G A; Harenberg, T; Harrington, R D; Harris, O M; Harrison, K; Hartert, J; Hartjes, F; Haruyama, T; Harvey, A; Hasegawa, S; Hasegawa, Y; Hashemi, K; Hassani, S; Hatch, M; Haug, F; Haug, S; Hauschild, M; Hauser, R; Havranek, M; Hawkes, C M; Hawkings, R J; Hawkins, D; Hayakawa, T; Hayward, H S; Haywood, S J; He, M; Head, S J; Hedberg, V; Heelan, L; Heim, S; Heinemann, B; Heisterkamp, S; Helary, L; Heller, M; Hellman, S; Helsens, C; Hemperek, T; Henderson, R C W; Henke, M; Henrichs, A; Henriques Correia, A M; Henrot-Versille, S; Hensel, C; Henss, T; Hernández Jiménez, Y; Hershenhorn, A D; Herten, G; Hertenberger, R; Hervas, L; Hessey, N P; Hidvegi, A; Higón-Rodriguez, E; Hill, D; Hill, J C; Hiller, K H; Hillert, S; Hillier, S J; Hinchliffe, I; Hines, E; Hirose, M; Hirsch, F; Hirschbuehl, D; Hobbs, J; Hod, N; Hodgkinson, M C; Hodgson, P; Hoecker, A; Hoeferkamp, M R; Hoffman, J; Hoffmann, D; Hohlfeld, M; Holmgren, S O; Holy, T; Holzbauer, J L; Homma, Y; Homola, P; Horazdovsky, T; Hori, T; Horn, C; Horner, S; Horvat, S; Hostachy, J Y; Hou, S; Houlden, M A; Hoummada, A; Howe, T; Hrivnac, J; Hryn'ova, T; Hsu, P J; Hsu, S C; Huang, G S; Hubacek, Z; Hubaut, F; Huegging, F; Hughes, E W; Hughes, G; Hughes-Jones, R E; Hurst, P; Hurwitz, M; Husemann, U; Huseynov, N; Huston, J; Huth, J; Iacobucci, G; Iakovidis, G; Ibragimov, I; Iconomidou-Fayard, L; Idarraga, J; Iengo, P; Igonkina, O; Ikegami, Y; Ikeno, M; Ilchenko, Y; Iliadis, D; Ilyushenka, Y; Imori, M; Ince, T; Ioannou, P; Iodice, M; Irles Quiles, A; Ishikawa, A; Ishino, M; Ishmukhametov, R; Isobe, T; Issakov, V; Issever, C; Istin, S; Itoh, Y; Ivashin, A V; Iwasaki, H; Izen, J M; Izzo, V; Jackson, B; Jackson, J N; Jackson, P; Jaekel, M; Jahoda, M; Jain, V; Jakobs, K; Jakobsen, S; Jakubek, J; Jana, D; Jansen, E; Jantsch, A; Janus, M; Jared, R C; Jarlskog, G; Jarron, P; Jeanty, L; Jen-La Plante, I; Jenni, P; Jez, P; Jézéquel, S; Ji, W; Jia, J; Jiang, Y; Jimenez-Belenguer, M; Jin, G; Jin, S; Jinnouchi, O; Joffe, D; Johansen, M; Johansson, K E; Johansson, P; Johnert, S; Johns, K A; Jon-And, K; Jones, G; Jones, R W L; Jones, T W; Jones, T J; Jonsson, O; Joos, D; Joram, C; Jorge, P M; Juranek, V; Jussel, P; Kabachenko, V V; Kabana, S; Kaci, M; Kaczmarska, A; Kado, M; Kagan, H; Kagan, M; Kaiser, S; Kajomovitz, E; Kalinin, S; Kalinovskaya, L V; Kalinowski, A; Kama, S; Kanaya, N; Kaneda, M; Kantserov, V A; Kanzaki, J; Kaplan, B; Kapliy, A; Kaplon, J; Karagounis, M; Karagoz Unel, M; Kartvelishvili, V; Karyukhin, A N; Kashif, L; Kasmi, A; Kass, R D; Kastanas, A; Kastoryano, M; Kataoka, M; Kataoka, Y; Katsoufis, E; Katzy, J; Kaushik, V; Kawagoe, K; Kawamoto, T; Kawamura, G; Kayl, M S; Kayumov, F; Kazanin, V A; Kazarinov, M Y; Kazi, S I; Keates, J R; Keeler, R; Keener, P T; Kehoe, R; Keil, M; Kekelidze, G D; Kelly, M; Kennedy, J; Kenyon, M; Kepka, O; Kerschen, N; Kersevan, B P; Kersten, S; Kessoku, K; Khakzad, M; Khalil-zada, F; Khandanyan, H; Khanov, A; Kharchenko, D; Khodinov, A; Kholodenko, A G; Khomich, A; Khoriauli, G; Khovanskiy, N; Khovanskiy, V; Khramov, E; Khubua, J; Kilvington, G; Kim, H; Kim, M S; Kim, P C; Kim, S H; Kind, O; Kind, P; King, B T; Kirk, J; Kirsch, G P; Kirsch, L E; Kiryunin, A E; Kisielewska, D; Kittelmann, T; Kiyamura, H; Kladiva, E; Klein, M; Klein, U; Kleinknecht, K; Klemetti, M; Klier, A; Klimentov, A; Klingenberg, R; Klinkby, E B; Klioutchnikova, T; Klok, P F; Klous, S; Kluge, E E; Kluge, T; Kluit, P; Klute, M; Kluth, S; Knecht, N S; Kneringer, E; Ko, B R; Kobayashi, T; Kobel, M; Koblitz, B; Kocian, M; Kocnar, A; Kodys, P; Köneke, K; König, A C; Köpke, L; Koetsveld, F; Koevesarki, P; Koffas, T; Koffeman, E; Kohn, F; Kohout, Z; Kohriki, T; Kokott, T; Kolanoski, H; Kolesnikov, V; Koletsou, I; Koll, J; Kollar, D; Kolos, S; Kolya, S D; Komar, A A; Komaragiri, J R; Kondo, T; Kono, T; Kononov, A I; Konoplich, R; Konovalov, S P; Konstantinidis, N; Koperny, S; Korcyl, K; Kordas, K; Koreshev, V; Korn, A; Korolkov, I; Korolkova, E V; Korotkov, V A; Kortner, O; Kostka, P; Kostyukhin, V V; Kotamäki, M J; Kotov, S; Kotov, V M; Kotov, K Y; Koupilova, Z; Kourkoumelis, C; Koutsman, A; Kowalewski, R; Kowalski, H; Kowalski, T Z; Kozanecki, W; Kozhin, A S; Kral, V; Kramarenko, V A; Kramberger, G; Krasny, M W; Krasznahorkay, A; Kreisel, A; Krejci, F; Krepouri, A; Kretzschmar, J; Krieger, P; Krobath, G; Kroeninger, K; Kroha, H; Kroll, J; Kroseberg, J; Krstic, J; Kruchonak, U; Krüger, H; Krumshteyn, Z V; Kubota, T; Kuehn, S; Kugel, A; Kuhl, T; Kuhn, D; Kukhtin, V; Kulchitsky, Y; Kuleshov, S; Kummer, C; Kuna, M; Kunkle, J; Kupco, A; Kurashige, H; Kurata, M; Kurchaninov, L L; Kurochkin, Y A; Kus, V; Kuznetsova, E; Kvasnicka, O; Kwee, R; La Rotonda, L; Labarga, L; Labbe, J; Lacasta, C; Lacava, F; Lacker, H; Lacour, D; Lacuesta, V R; Ladygin, E; Lafaye, R; Laforge, B; Lagouri, T; Lai, S; Lamanna, M; Lampen, C L; Lampl, W; Lancon, E; Landgraf, U; Landon, M P J; Lane, J L; Lankford, A J; Lanni, F; Lantzsch, K; Lanza, A; Laplace, S; Lapoire, C; Laporte, J F; Lari, T; Larionov, A V; Larner, A; Lasseur, C; Lassnig, M; Laurelli, P; Lavrijsen, W; Laycock, P; Lazarev, A B; Lazzaro, A; Le Dortz, O; Le Guirriec, E; Le Maner, C; Le Menedeu, E; Le Vine, M; Leahu, M; Lebedev, A; Lebel, C; LeCompte, T; Ledroit-Guillon, F; Lee, H; Lee, J S H; Lee, S C; Lefebvre, M; Legendre, M; LeGeyt, B C; Legger, F; Leggett, C; Lehmacher, M; Lehmann Miotto, G; Lei, X; Leitner, R; Lelas, D; Lellouch, D; Lellouch, J; Leltchouk, M; Lendermann, V; Leney, K J C; Lenz, T; Lenzen, G; Lenzi, B; Leonhardt, K; Leroy, C; Lessard, J R; Lester, C G; Leung Fook Cheong, A; Levêque, J; Levin, D; Levinson, L J; Levitski, M S; Levonian, S; Lewandowska, M; Leyton, M; Li, H; Li, J; Li, S; Li, X; Liang, Z; Liang, Z; Liberti, B; Lichard, P; Lichtnecker, M; Lie, K; Liebig, W; Liko, D; Lilley, J N; Lim, H; Limosani, A; Limper, M; Lin, S C; Lindsay, S W; Linhart, V; Linnemann, J T; Liolios, A; Lipeles, E; Lipinsky, L; Lipniacka, A; Liss, T M; Lissauer, D; Lister, A; Litke, A M; Liu, C; Liu, D; Liu, H; Liu, J B; Liu, M; Liu, S; Liu, T; Liu, Y; Livan, M; Lleres, A; Lloyd, S L; Lobodzinska, E; Loch, P; Lockman, W S; Lockwitz, S; Loddenkoetter, T; Loebinger, F K; Loginov, A; Loh, C W; Lohse, T; Lohwasser, K; Lokajicek, M; Loken, J; Lopes, L; Lopez Mateos, D; Losada, M; Loscutoff, P; Losty, M J; Lou, X; Lounis, A; Loureiro, K F; Lovas, L; Love, J; Love, P; Lowe, A J; Lu, F; Lu, J; Lubatti, H J; Luci, C; Lucotte, A; Ludwig, A; Ludwig, D; Ludwig, I; Ludwig, J; Luehring, F; Luisa, L; Lumb, D; Luminari, L; Lund, E; Lund-Jensen, B; Lundberg, B; Lundberg, J; Lundquist, J; Lutz, G; Lynn, D; Lys, J; Lytken, E; Ma, H; Ma, L L; Macana Goia, J A; Maccarrone, G; Macchiolo, A; Macek, B; Machado Miguens, J; Mackeprang, R; Madaras, R J; Mader, W F; Maenner, R; Maeno, T; Mättig, P; Mättig, S; Magalhaes Martins, P J; Magradze, E; Magrath, C A; Mahalalel, Y; Mahboubi, K; Mahmood, A; Mahout, G; Maiani, C; Maidantchik, C; Maio, A; Majewski, S; Makida, Y; Makouski, M; Makovec, N; Malecki, Pa; Malecki, P; Maleev, V P; Malek, F; Mallik, U; Malon, D; Maltezos, S; Malyshev, V; Malyukov, S; Mambelli, M; Mameghani, R; Mamuzic, J; Manabe, A; Mandelli, L; Mandic, I; Mandrysch, R; Maneira, J; Mangeard, P S; Manjavidze, I D; Manning, P M; Manousakis-Katsikakis, A; Mansoulie, B; Mapelli, A; Mapelli, L; March, L; Marchand, J F; Marchese, F; Marchiori, G; Marcisovsky, M; Marino, C P; Marques, C N; Marroquim, F; Marshall, R; Marshall, Z; Martens, F K; Marti i Garcia, S; Martin, A J; Martin, A J; Martin, B; Martin, B; Martin, F F; Martin, J P; Martin, T A; Martin dit Latour, B; Martinez, M; Martinez Outschoorn, V; Martini, A; Martyniuk, A C; Maruyama, T; Marzano, F; Marzin, A; Masetti, L; Mashimo, T; Mashinistov, R; Masik, J; Maslennikov, A L; Massaro, G; Massol, N; Mastroberardino, A; Masubuchi, T; Mathes, M; Matricon, P; Matsunaga, H; Matsushita, T; Mattravers, C; Maxfield, S J; May, E N; Mayne, A; Mazini, R; Mazur, M; Mazzanti, M; Mazzanti, P; Mc Donald, J; Mc Kee, S P; McCarn, A; McCarthy, R L; McCubbin, N A; McFarlane, K W; McGlone, H; Mchedlidze, G; McLaren, R A; McMahon, S J; McMahon, T R; McPherson, R A; Meade, A; Mechnich, J; Mechtel, M; Medinnis, M; Meera-Lebbai, R; Meguro, T M; Mehdiyev, R; Mehlhase, S; Mehta, A; Meier, K; Meirose, B; Melachrinos, C; Melamed-Katz, A; Mellado Garcia, B R; Meng, Z; Menke, S; Meoni, E; Merkl, D; Mermod, P; Merola, L; Meroni, C; Merritt, F S; Messina, A M; Messmer, I; Metcalfe, J; Mete, A S; Meyer, J P; Meyer, J; Meyer, J; Meyer, T C; Meyer, W T; Miao, J; Michal, S; Micu, L; Middleton, R P; Migas, S; Mijovic, L; Mikenberg, G; Mikuz, M; Miller, D W; Mills, W J; Mills, C M; Milov, A; Milstead, D A; Minaenko, A A; Miñano, M; Minashvili, I A; Mincer, A I; Mindur, B; Mineev, M; Ming, Y; Mir, L M; Mirabelli, G; Misawa, S; Miscetti, S; Misiejuk, A; Mitrevski, J; Mitsou, V A; Miyagawa, P S; Mjörnmark, J U; Mladenov, D; Moa, T; Moed, S; Moeller, V; Mönig, K; Möser, N; Mohn, B; Mohr, W; Mohrdieck-Möck, S; Moles-Valls, R; Molina-Perez, J; Moloney, G; Monk, J; Monnier, E; Montesano, S; Monticelli, F; Moore, R W; Mora Herrera, C; Moraes, A; Morais, A; Morel, J; Morello, G; Moreno, D; Moreno Llácer, M; Morettini, P; Morii, M; Morley, A K; Mornacchi, G; Morozov, S V; Morris, J D; Moser, H G; Mosidze, M; Moss, J; Mount, R; Mountricha, E; Mouraviev, S V; Moyse, E J W; Mudrinic, M; Mueller, F; Mueller, J; Mueller, K; Müller, T A; Muenstermann, D; Muir, A; Munwes, Y; Murillo Garcia, R; Murray, W J; Mussche, I; Musto, E; Myagkov, A G; Myska, M; Nadal, J; Nagai, K; Nagano, K; Nagasaka, Y; Nairz, A M; Nakamura, K; Nakano, I; Nakatsuka, H; Nanava, G; Napier, A; Nash, M; Nation, N R; Nattermann, T; Naumann, T; Navarro, G; Nderitu, S K; Neal, H A; Nebot, E; Nechaeva, P; Negri, A; Negri, G; Nelson, A; Nelson, T K; Nemecek, S; Nemethy, P; Nepomuceno, A A; Nessi, M; Neubauer, M S; Neusiedl, A; Neves, R N; Nevski, P; Newcomer, F M; Nickerson, R B; Nicolaidou, R; Nicolas, L; Nicoletti, G; Niedercorn, F; Nielsen, J; Nikiforov, A; Nikolaev, K; Nikolic-Audit, I; Nikolopoulos, K; Nilsen, H; Nilsson, P; Nisati, A; Nishiyama, T; Nisius, R; Nodulman, L; Nomachi, M; Nomidis, I; Nordberg, M; Nordkvist, B; Notz, D; Novakova, J; Nozaki, M; Nozicka, M; Nugent, I M; Nuncio-Quiroz, A -E; Nunes Hanninger, G; Nunnemann, T; Nurse, E; O'Neil, D C; O'Shea, V; Oakham, F G; Oberlack, H; Ochi, A; Oda, S; Odaka, S; Odier, J; Odino, G A; Ogren, H; Oh, A; Oh, S H; Ohm, C C; Ohshima, T; Ohshita, H; Ohsugi, T; Okada, S; Okawa, H; Okumura, Y; Olcese, M; Olchevski, A G; Oliveira, M; Oliveira Damazio, D; Oliver, J; Oliver Garcia, E; Olivito, D; Olszewski, A; Olszowska, J; Omachi, C; Onofre, A; Onyisi, P U E; Oram, C J; Ordonez, G; Oreglia, M J; Oren, Y; Orestano, D; Orlov, I; Oropeza Barrera, C; Orr, R S; Ortega, E O; Osculati, B; Ospanov, R; Osuna, C; Otec, R; Ottersbach, J P; Ould-Saada, F; Ouraou, A; Ouyang, Q; Owen, M; Owen, S; Oyarzun, A; Ozcan, V E; Ozone, K; Ozturk, N; Pacheco Pages, A; Padhi, S; Padilla Aranda, C; Paganis, E; Pahl, C; Paige, F; Pajchel, K; Palestini, S; Pallin, D; Palma, A; Palmer, J D; Pan, Y B; Panagiotopoulou, E; Panes, B; Panikashvili, N; Panitkin, S; Pantea, D; Panuskova, M; Paolone, V; Papadopoulou, Th D; Park, S J; Park, W; Parker, M A; Parker, S I; Parodi, F; Parsons, J A; Parzefall, U; Pasqualucci, E; Passardi, G; Passeri, A; Pastore, F; Pastore, Fr; Pásztor, G; Pataraia, S; Pater, J R; Patricelli, S; Patwa, A; Pauly, T; Peak, L S; Pecsy, M; Pedraza Morales, M I; Peleganchuk, S V; Peng, H; Penson, A; Penwell, J; Perantoni, M; Perez, K; Perez Codina, E; Pérez García-Estañ, M T; Perez Reale, V; Perini, L; Pernegger, H; Perrino, R; Perrodo, P; Persembe, S; Perus, P; Peshekhonov, V D; Petersen, B A; Petersen, J; Petersen, T C; Petit, E; Petridou, C; Petrolo, E; Petrucci, F; Petschull, D; Petteni, M; Pezoa, R; Pfeifer, B; Phan, A; Phillips, A W; Piacquadio, G; Piccinini, M; Piegaia, R; Pilcher, J E; Pilkington, A D; Pina, J; Pinamonti, M; Pinfold, J L; Ping, J; Pinto, B; Pizio, C; Placakyte, R; Plamondon, M; Plano, W G; Pleier, M A; Poblaguev, A; Poddar, S; Podlyski, F; Poffenberger, P; Poggioli, L; Pohl, M; Polci, F; Polesello, G; Policicchio, A; Polini, A; Poll, J; Polychronakos, V; Pomarede, D M; Pomeroy, D; Pommès, K; Pontecorvo, L; Pope, B G; Popovic, D S; Poppleton, A; Popule, J; Portell Bueso, X; Porter, R; Pospelov, G E; Pospichal, P; Pospisil, S; Potekhin, M; Potrap, I N; Potter, C J; Potter, C T; Potter, K P; Poulard, G; Poveda, J; Prabhu, R; Pralavorio, P; Prasad, S; Pravahan, R; Preda, T; Pretzl, K; Pribyl, L; Price, D; Price, L E; Prichard, P M; Prieur, D; Primavera, M; Prokofiev, K; Prokoshin, F; Protopopescu, S; Proudfoot, J; Prudent, X; Przysiezniak, H; Psoroulas, S; Ptacek, E; Puigdengoles, C; Purdham, J; Purohit, M; Puzo, P; Pylypchenko, Y; Qi, M; Qian, J; Qian, W; Qian, Z; Qin, Z; Qing, D; Quadt, A; Quarrie, D R; Quayle, W B; Quinonez, F; Raas, M; Radeka, V; Radescu, V; Radics, B; Rador, T; Ragusa, F; Rahal, G; Rahimi, A M; Rahm, D; Rajagopalan, S; Rammes, M; Ratoff, P N; Rauscher, F; Rauter, E; Raymond, M; Read, A L; Rebuzzi, D M; Redelbach, A; Redlinger, G; Reece, R; Reeves, K; Reinherz-Aronis, E; Reinsch, A; Reisinger, I; Reljic, D; Rembser, C; Ren, Z L; Renkel, P; Rescia, S; Rescigno, M; Resconi, S; Resende, B; Reznicek, P; Rezvani, R; Richards, A; Richards, R A; Richter, R; Richter-Was, E; Ridel, M; Rieke, S; Rijpstra, M; Rijssenbeek, M; Rimoldi, A; Rinaldi, L; Rios, R R; Riu, I; Rivoltella, G; Rizatdinova, F; Rizvi, E R; Roa Romero, D A; Robertson, S H; Robichaud-Veronneau, A; Robinson, D; Robinson, J; Robinson, M; Robson, A; Rocha de Lima, J G; Roda, C; Roda Dos Santos, D; Rodriguez, D; Rodriguez Garcia, Y; Roe, S; Røhne, O; Rojo, V; Rolli, S; Romaniouk, A; Romanov, V M; Romeo, G; Romero Maltrana, D; Roos, L; Ros, E; Rosati, S; Rosenbaum, G A; Rosenberg, E I; Rosselet, L; Rossetti, V; Rossi, L P; Rotaru, M; Rothberg, J; Rottländer, I; Rousseau, D; Royon, C R; Rozanov, A; Rozen, Y; Ruan, X; Ruckert, B; Ruckstuhl, N; Rud, V I; Rudolph, G; Rühr, F; Ruggieri, F; Ruiz-Martinez, A; Rumyantsev, L; Rusakovich, N A; Rutherfoord, J P; Ruwiedel, C; Ruzicka, P; Ryabov, Y F; Ryadovikov, V; Ryan, P; Rybkin, G; Rzaeva, S; Saavedra, A F; Sadrozinski, H F W; Sadykov, R; Sakamoto, H; Salamanna, G; Salamon, A; Saleem, M; Salihagic, D; Salnikov, A; Salt, J; Salvachua Ferrando, B M; Salvatore, D; Salvatore, F; Salvucci, A; Salzburger, A; Sampsonidis, D; Samset, B H; Sanchis Lozano, M A; Sandaker, H; Sander, H G; Sanders, M P; Sandhoff, M; Sandstroem, R; Sandvoss, S; Sankey, D P C; Sanny, B; Sansoni, A; Santamarina Rios, C; Santi, L; Santoni, C; Santonico, R; Santos, J; Saraiva, J G; Sarangi, T; Sarkisyan-Grinbaum, E; Sarri, F; Sasaki, O; Sasaki, T; Sasao, N; Satsounkevitch, I; Sauvage, G; Savard, P; Savine, A Y; Savinov, V; Sawyer, L; Saxon, D H; Says, L P; Sbarra, C; Sbrizzi, A; Scannicchio, D A; Schaarschmidt, J; Schacht, P; Schäfer, U; Schaetzel, S; Schaffer, A C; Schaile, D; Schamberger, R D; Schamov, A G; Schegelsky, V A; Scheirich, D; Schernau, M; Scherzer, M I; Schiavi, C; Schieck, J; Schioppa, M; Schlenker, S; Schlereth, J L; Schmid, P; Schmieden, K; Schmitt, C; Schmitz, M; Schott, M; Schouten, D; Schovancova, J; Schram, M; Schreiner, A; Schroeder, C; Schroer, N; Schroers, M; Schuler, G; Schultes, J; Schultz-Coulon, H C; Schumacher, J W; Schumacher, M; Schumm, B A; Schune, Ph; Schwanenberger, C; Schwartzman, A; Schwemling, Ph; Schwienhorst, R; Schwierz, R; Schwindling, J; Scott, W G; Searcy, J; Sedykh, E; Segura, E; Seidel, S C; Seiden, A; Seifert, F; Seixas, J M; Sekhniaidze, G; Seliverstov, D M; Sellden, B; Seman, M; Semprini-Cesari, N; Serfon, C; Serin, L; Seuster, R; Severini, H; Sevior, M E; Sfyrla, A; Shabalina, E; Shamim, M; Shan, L Y; Shank, J T; Shao, Q T; Shapiro, M; Shatalov, P B; Shaver, L; Shaw, K; Sherman, D; Sherwood, P; Shibata, A; Shimojima, M; Shin, T; Shmeleva, A; Shochet, M J; Shupe, M A; Sicho, P; Sidoti, A; Siebel, A; Siegert, F; Siegrist, J; Sijacki, Dj; Silbert, O; Silva, J; Silver, Y; Silverstein, D; Silverstein, S B; Simak, V; Simic, Lj; Simion, S; Simmons, B; Simonyan, M; Sinervo, P; Sinev, N B; Sipica, V; Siragusa, G; Sisakyan, A N; Sivoklokov, S Yu; Sjoelin, J; Sjursen, T B; Skubic, P; Skvorodnev, N; Slater, M; Slavicek, T; Sliwa, K; Sloper, J; Sluka, T; Smakhtin, V; Smirnov, S Yu; Smirnov, Y; Smirnova, L N; Smirnova, O; Smith, B C; Smith, D; Smith, K M; Smizanska, M; Smolek, K; Snesarev, A A; Snow, S W; Snow, J; Snuverink, J; Snyder, S; Soares, M; Sobie, R; Sodomka, J; Soffer, A; Solans, C A; Solar, M; Solc, J; Solfaroli Camillocci, E; Solodkov, A A; Solovyanov, O V; Soluk, R; Sondericker, J; Sopko, V; Sopko, B; Sosebee, M; Sosnovtsev, V V; Sospedra Suay, L; Soukharev, A; Spagnolo, S; Spanó, F; Speckmayer, P; Spencer, E; Spighi, R; Spigo, G; Spila, F; Spiwoks, R; Spousta, M; Spreitzer, T; Spurlock, B; St Denis, R D; Stahl, T; Stahlman, J; Stamen, R; Stancu, S N; Stanecka, E; Stanek, R W; Stanescu, C; Stapnes, S; Starchenko, E A; Stark, J; Staroba, P; Starovoitov, P; Stastny, J; Staude, A; Stavina, P; Stavropoulos, G; Steele, G; Steinbach, P; Steinberg, P; Stekl, I; Stelzer, B; Stelzer, H J; Stelzer-Chilton, O; Stenzel, H; Stevenson, K; Stewart, G; Stockton, M C; Stoerig, K; Stoicea, G; Stonjek, S; Strachota, P; Stradling, A; Straessner, A; Strandberg, J; Strandberg, S; Strandlie, A; Strauss, M; Strizenec, P; Ströhmer, R; Strom, D M; Strong, J A; Stroynowski, R; Strube, J; Stugu, B; Stumer, I; Soh, D A; Su, D; Suchkov, S I; Sugaya, Y; Sugimoto, T; Suhr, C; Suk, M; Sulin, V V; Sultansoy, S; Sumida, T; Sun, X; Sundermann, J E; Suruliz, K; Sushkov, S; Susinno, G; Sutton, M R; Suzuki, T; Suzuki, Y; Sviridov, Yu M; Sykora, I; Sykora, T; Szymocha, T; Sánchez, J; Ta, D; Tackmann, K; Taffard, A; Tafirout, R; Taga, A; Takahashi, Y; Takai, H; Takashima, R; Takeda, H; Takeshita, T; Talby, M; Talyshev, A; Tamsett, M C; Tanaka, J; Tanaka, R; Tanaka, S; Tanaka, S; Tappern, G P; Tapprogge, S; Tardif, D; Tarem, S; Tarrade, F; Tartarelli, G F; Tas, P; Tasevsky, M; Tassi, E; Tatarkhanov, M; Taylor, C; Taylor, F E; Taylor, G N; Taylor, R P; Taylor, W; Teixeira-Dias, P; Ten Kate, H; Teng, P K; Tennenbaum-Katan, Y D; Terada, S; Terashi, K; Terron, J; Terwort, M; Testa, M; Teuscher, R J; Tevlin, C M; Thadome, J; Thananuwong, R; Thioye, M; Thoma, S; Thomas, J P; Thomas, T L; Thompson, E N; Thompson, P D; Thompson, P D; Thompson, R J; Thompson, A S; Thomson, E; Thun, R P; Tic, T; Tikhomirov, V O; Tikhonov, Y A; Timmermans, C J W P; Tipton, P; Tique Aires Viegas, F J; Tisserant, S; Tobias, J; Toczek, B; Todorov, T; Todorova-Nova, S; Toggerson, B; Tojo, J; Tokár, S; Tokushuku, K; Tollefson, K; Tomasek, L; Tomasek, M; Tomasz, F; Tomoto, M; Tompkins, D; Tompkins, L; Toms, K; Tong, G; Tonoyan, A; Topfel, C; Topilin, N D; Torrence, E; Torró Pastor, E; Toth, J; Touchard, F; Tovey, D R; Tovey, S N; Trefzger, T; Tremblet, L; Tricoli, A; Trigger, I M; Trincaz-Duvoid, S; Trinh, T N; Tripiana, M F; Triplett, N; Trischuk, W; Trivedi, A; Trocmé, B; Troncon, C; Trzupek, A; Tsarouchas, C; Tseng, J C L; Tsiafis, I; Tsiakiris, M; Tsiareshka, P V; Tsionou, D; Tsipolitis, G; Tsiskaridze, V; Tskhadadze, E G; Tsukerman, I I; Tsulaia, V; Tsung, J W; Tsuno, S; Tsybychev, D; Turala, M; Turecek, D; Turk Cakir, I; Turlay, E; Tuts, P M; Twomey, M S; Tylmad, M; Tyndel, M; Tzanakos, G; Uchida, K; Ueda, I; Ugland, M; Uhlenbrock, M; Uhrmacher, M; Ukegawa, F; Unal, G; Underwood, D G; Undrus, A; Unel, G; Unno, Y; Urbaniec, D; Urkovsky, E; Urquijo, P; Urrejola, P; Usai, G; Uslenghi, M; Vacavant, L; Vacek, V; Vachon, B; Vahsen, S; Valenta, J; Valente, P; Valentinetti, S; Valkar, S; Valladolid Gallego, E; Vallecorsa, S; Valls Ferrer, J A; Van Berg, R; van der Graaf, H; van der Kraaij, E; van der Poel, E; Van Der Ster, D; van Eldik, N; van Gemmeren, P; van Kesteren, Z; van Vulpen, I; Vandelli, W; Vandoni, G; Vaniachine, A; Vankov, P; Vannucci, F; Varela Rodriguez, F; Vari, R; Varnes, E W; Varouchas, D; Vartapetian, A; Varvell, K E; Vasilyeva, L; Vassilakopoulos, V I; Vazeille, F; Vegni, G; Veillet, J J; Vellidis, C; Veloso, F; Veness, R; Veneziano, S; Ventura, A; Ventura, D; Venturi, M; Venturi, N; Vercesi, V; Verducci, M; Verkerke, W; Vermeulen, J C; Vetterli, M C; Vichou, I; Vickey, T; Viehhauser, G H A; Villa, M; Villani, E G; Villaplana Perez, M; Villate, J; Vilucchi, E; Vincter, M G; Vinek, E; Vinogradov, V B; Viret, S; Virzi, J; Vitale, A; Vitells, O V; Vivarelli, I; Vives Vaques, F; Vlachos, S; Vlasak, M; Vlasov, N; Vogel, A; Vokac, P; Volpi, M; Volpini, G; von der Schmitt, H; von Loeben, J; von Radziewski, H; von Toerne, E; Vorobel, V; Vorobiev, A P; Vorwerk, V; Vos, M; Voss, R; Voss, T T; Vossebeld, J H; Vranjes, N; Vranjes Milosavljevic, M; Vrba, V; Vreeswijk, M; Vu Anh, T; Vudragovic, D; Vuillermet, R; Vukotic, I; Wagner, P; Wahlen, H; Walbersloh, J; Walder, J; Walker, R; Walkowiak, W; Wall, R; Wang, C; Wang, H; Wang, J; Wang, J C; Wang, S M; Ward, C P; Warsinsky, M; Wastie, R; Watkins, P M; Watson, A T; Watson, M F; Watts, G; Watts, S; Waugh, A T; Waugh, B M; Webel, M; Weber, J; Weber, M D; Weber, M; Weber, M S; Weber, P; Weidberg, A R; Weingarten, J; Weiser, C; Wellenstein, H; Wells, P S; Wen, M; Wenaus, T; Wendler, S; Wengler, T; Wenig, S; Wermes, N; Werner, M; Werner, P; Werth, M; Werthenbach, U; Wessels, M; Whalen, K; Wheeler-Ellis, S J; Whitaker, S P; White, A; White, M J; White, S; Whiteson, D; Whittington, D; Wicek, F; Wicke, D; Wickens, F J; Wiedenmann, W; Wielers, M; Wienemann, P; Wiglesworth, C; Wiik, L A M; Wildauer, A; Wildt, M A; Wilhelm, I; Wilkens, H G; Williams, E; Williams, H H; Willis, W; Willocq, S; Wilson, J A; Wilson, M G; Wilson, A; Wingerter-Seez, I; Winklmeier, F; Wittgen, M; Wolter, M W; Wolters, H; Wosiek, B K; Wotschack, J; Woudstra, M J; Wraight, K; Wright, C; Wright, D; Wrona, B; Wu, S L; Wu, X; Wulf, E; Xella, S; Xie, S; Xie, Y; Xu, D; Xu, N; Yamada, M; Yamamoto, A; Yamamoto, S; Yamamura, T; Yamanaka, K; Yamaoka, J; Yamazaki, T; Yamazaki, Y; Yan, Z; Yang, H; Yang, U K; Yang, Y; Yang, Z; Yao, W M; Yao, Y; Yasu, Y; Ye, J; Ye, S; Yilmaz, M; Yoosoofmiya, R; Yorita, K; Yoshida, R; Young, C; Youssef, S P; Yu, D; Yu, J; Yu, M; Yu, X; Yuan, J; Yuan, L; Yurkewicz, A; Zaidan, R; Zaitsev, A M; Zajacova, Z; Zambrano, V; Zanello, L; Zarzhitsky, P; Zaytsev, A; Zeitnitz, C; Zeller, M; Zema, P F; Zemla, A; Zendler, C; Zenin, O; Zenis, T; Zenonos, Z; Zenz, S; Zerwas, D; Zevi della Porta, G; Zhan, Z; Zhang, H; Zhang, J; Zhang, Q; Zhang, X; Zhao, L; Zhao, T; Zhao, Z; Zhemchugov, A; Zheng, S; Zhong, J; Zhou, B; Zhou, N; Zhou, Y; Zhu, C G; Zhu, H; Zhu, Y; Zhuang, X; Zhuravlov, V; Zimmermann, R; Zimmermann, S; Zimmermann, S; Ziolkowski, M; Zitoun, R; Zivkovic, L; Zmouchko, V V; Zobernig, G; Zoccoli, A; zur Nedden, M; Zutshi, V

    2010-01-01

    The ionization signals in the liquid argon of the ATLAS electromagnetic calorimeter are studied in detail using cosmic muons. In particular, the drift time of the ionization electrons is measured and used to assess the intrinsic uniformity of the calorimeter gaps and estimate its impact on the constant term of the energy resolution. The drift times of electrons in the cells of the second layer of the calorimeter are uniform at the level of 1.3% in the barrel and 2.7% in the endcaps. This leads to an estimated contribution to the constant term of 0.29% in the barrel and 0.53% in the endcaps. The same data are used to measure the drift velocity of ionization electrons in liquid argon, which is found to be 4.61 +- 0.07 mm/microsecond at 88.5 K and 1 kV/mm.

  10. Drift Time Measurement in the ATLAS Liquid Argon Electromagnetic Calorimeter using Cosmic Muons

    Science.gov (United States)

    Aad, G.; Abbott, B.; Abdallah, J.; Abdelalim, A. A.; Abdesselam, A.; Abdinov, O.; Abi, B.; Abolins, M.; Abramowicz, H.; Abreu, H.; Acharya, B. S.; Adams, D. L.; Addy, T. N.; Adelman, J.; Adorisio, C.; Adragna, P.; Adye, T.; Aefsky, S.; Aguilar-Saavedra, J. A.; Aharrouche, M.; Ahlen, S. P.; Ahles, F.; Ahmad, A.; Ahmed, H.; Ahsan, M.; Aielli, G.; Akdogan, T.; Åkesson, T. P. A.; Akimoto, G.; Akimov, A. V.; Aktas, A.; Alam, M. S.; Alam, M. A.; Albert, J.; Albrand, S.; Aleksa, M.; Aleksandrov, I. N.; Alessandria, F.; Alexa, C.; Alexander, G.; Alexandre, G.; Alexopoulos, T.; Alhroob, M.; Aliev, M.; Alimonti, G.; Alison, J.; Aliyev, M.; Allport, P. P.; Allwood-Spiers, S. E.; Almond, J.; Aloisio, A.; Alon, R.; Alonso, A.; Alviggi, M. G.; Amako, K.; Amelung, C.; Ammosov, V. V.; Amorim, A.; Amorós, G.; Amram, N.; Anastopoulos, C.; Andeen, T.; Anders, C. F.; Anderson, K. J.; Andreazza, A.; Andrei, V.; Anduaga, X. S.; Angerami, A.; Anghinolfi, F.; Anjos, N.; Antonaki, A.; Antonelli, M.; Antonelli, S.; Antos, J.; Antunovic, B.; Anulli, F.; Aoun, S.; Arabidze, G.; Aracena, I.; Arai, Y.; Arce, A. T. H.; Archambault, J. P.; Arfaoui, S.; Arguin, J.-F.; Argyropoulos, T.; Arik, E.; Arik, M.; Armbruster, A. J.; Arnaez, O.; Arnault, C.; Artamonov, A.; Arutinov, D.; Asai, M.; Asai, S.; Asfandiyarov, R.; Ask, S.; Åsman, B.; Asner, D.; Asquith, L.; Assamagan, K.; Astbury, A.; Astvatsatourov, A.; Atoian, G.; Auerbach, B.; Auge, E.; Augsten, K.; Aurousseau, M.; Austin, N.; Avolio, G.; Avramidou, R.; Axen, D.; Ay, C.; Azuelos, G.; Azuma, Y.; Baak, M. A.; Bacci, C.; Bach, A.; Bachacou, H.; Bachas, K.; Backes, M.; Badescu, E.; Bagnaia, P.; Bai, Y.; Bailey, D. C.; Bain, T.; Baines, J. T.; Baker, O. K.; Baker, M. D.; Baker, S.; Baltasar Dos Santos Pedrosa, F.; Banas, E.; Banerjee, P.; Banerjee, S.; Banfi, D.; Bangert, A.; Bansal, V.; Baranov, S. P.; Baranov, S.; Barashkou, A.; Barber, T.; Barberio, E. L.; Barberis, D.; Barbero, M.; Bardin, D. Y.; Barillari, T.; Barisonzi, M.; Barklow, T.; Barlow, N.; Barnett, B. M.; Barnett, R. M.; Baron, S.; Baroncelli, A.; Barr, A. J.; Barreiro, F.; Barreiro Guimarães da Costa, J.; Barrillon, P.; Barros, N.; Bartoldus, R.; Bartsch, D.; Bastos, J.; Bates, R. L.; Batkova, L.; Batley, J. R.; Battaglia, A.; Battistin, M.; Bauer, F.; Bawa, H. S.; Bazalova, M.; Beare, B.; Beau, T.; Beauchemin, P. H.; Beccherle, R.; Becerici, N.; Bechtle, P.; Beck, G. A.; Beck, H. P.; Beckingham, M.; Becks, K. H.; Bedajanek, I.; Beddall, A. J.; Beddall, A.; Bednár, P.; Bednyakov, V. A.; Bee, C.; Begel, M.; Behar Harpaz, S.; Behera, P. K.; Beimforde, M.; Belanger-Champagne, C.; Bell, P. J.; Bell, W. H.; Bella, G.; Bellagamba, L.; Bellina, F.; Bellomo, M.; Belloni, A.; Belotskiy, K.; Beltramello, O.; Ami, S. Ben; Benary, O.; Benchekroun, D.; Bendel, M.; Benedict, B. H.; Benekos, N.; Benhammou, Y.; Benincasa, G. P.; Benjamin, D. P.; Benoit, M.; Bensinger, J. R.; Benslama, K.; Bentvelsen, S.; Beretta, M.; Berge, D.; Bergeaas Kuutmann, E.; Berger, N.; Berghaus, F.; Berglund, E.; Beringer, J.; Bernardet, K.; Bernat, P.; Bernhard, R.; Bernius, C.; Berry, T.; Bertin, A.; Besana, M. I.; Besson, N.; Bethke, S.; Bianchi, R. M.; Bianco, M.; Biebel, O.; Biesiada, J.; Biglietti, M.; Bilokon, H.; Bindi, M.; Binet, S.; Bingul, A.; Bini, C.; Biscarat, C.; Bitenc, U.; Black, K. M.; Blair, R. E.; Blanchard, J.-B.; Blanchot, G.; Blocker, C.; Blocki, J.; Blondel, A.; Blum, W.; Blumenschein, U.; Bobbink, G. J.; Bocci, A.; Boehler, M.; Boek, J.; Boelaert, N.; Böser, S.; Bogaerts, J. A.; Bogouch, A.; Bohm, C.; Bohm, J.; Boisvert, V.; Bold, T.; Boldea, V.; Boldyrev, A.; Bondarenko, V. G.; Bondioli, M.; Boonekamp, M.; Bordoni, S.; Borer, C.; Borisov, A.; Borissov, G.; Borjanovic, I.; Borroni, S.; Bos, K.; Boscherini, D.; Bosman, M.; Bosteels, M.; Boterenbrood, H.; Bouchami, J.; Boudreau, J.; Bouhova-Thacker, E. V.; Boulahouache, C.; Bourdarios, C.; Boyd, J.; Boyko, I. R.; Bozovic-Jelisavcic, I.; Bracinik, J.; Braem, A.; Branchini, P.; Brandenburg, G. W.; Brandt, A.; Brandt, G.; Brandt, O.; Bratzler, U.; Brau, B.; Brau, J. E.; Braun, H. M.; Brelier, B.; Bremer, J.; Brenner, R.; Bressler, S.; Breton, D.; Britton, D.; Brochu, F. M.; Brock, I.; Brock, R.; Brodbeck, T. J.; Brodet, E.; Broggi, F.; Bromberg, C.; Brooijmans, G.; Brooks, W. K.; Brown, G.; Brubaker, E.; Bruckman de Renstrom, P. A.; Bruncko, D.; Bruneliere, R.; Brunet, S.; Bruni, A.; Bruni, G.; Bruschi, M.; Buanes, T.; Bucci, F.; Buchanan, J.; Buchholz, P.; Buckley, A. G.; Budagov, I. A.; Budick, B.; Büscher, V.; Bugge, L.; Bulekov, O.; Bunse, M.; Buran, T.; Burckhart, H.; Burdin, S.; Burgess, T.; Burke, S.; Busato, E.; Bussey, P.; Buszello, C. P.; Butin, F.; Butler, B.; Butler, J. M.; Buttar, C. M.; Butterworth, J. M.; Byatt, T.; Caballero, J.; Cabrera Urbán, S.; Caforio, D.; Cakir, O.; Calafiura, P.; Calderini, G.; Calfayan, P.; Calkins, R.; Caloba, L. P.; Caloi, R.; Calvet, D.; Camarri, P.; Cambiaghi, M.; Cameron, D.; Campabadal Segura, F.; Campana, S.; Campanelli, M.; Canale, V.; Canelli, F.; Canepa, A.; Cantero, J.; Capasso, L.; Capeans Garrido, M. D. M.; Caprini, I.; Caprini, M.; Capua, M.; Caputo, R.; Caracinha, D.; Caramarcu, C.; Cardarelli, R.; Carli, T.; Carlino, G.; Carminati, L.; Caron, B.; Caron, S.; Carrillo Montoya, G. D.; Carron Montero, S.; Carter, A. A.; Carter, J. R.; Carvalho, J.; Casadei, D.; Casado, M. P.; Cascella, M.; Caso, C.; Castaneda Hernadez, A. M.; Castaneda-Miranda, E.; Castillo Gimenez, V.; Castro, N.; Cataldi, G.; Catinaccio, A.; Catmore, J. R.; Cattai, A.; Cattani, G.; Caughron, S.; Cauz, D.; Cavalleri, P.; Cavalli, D.; Cavalli-Sforza, M.; Cavasinni, V.; Ceradini, F.; Cerqueira, A. S.; Cerri, A.; Cerrito, L.; Cerutti, F.; Cetin, S. A.; Cevenini, F.; Chafaq, A.; Chakraborty, D.; Chan, K.; Chapman, J. D.; Chapman, J. W.; Chareyre, E.; Charlton, D. G.; Chavda, V.; Cheatham, S.; Chekanov, S.; Chekulaev, S. V.; Chelkov, G. A.; Chen, H.; Chen, S.; Chen, T.; Chen, X.; Cheng, S.; Cheplakov, A.; Chepurnov, V. F.; Cherkaoui El Moursli, R.; Tcherniatine, V.; Chesneanu, D.; Cheu, E.; Cheung, S. L.; Chevalier, L.; Chevallier, F.; Chiarella, V.; Chiefari, G.; Chikovani, L.; Childers, J. T.; Chilingarov, A.; Chiodini, G.; Chizhov, M.; Choudalakis, G.; Chouridou, S.; Christidi, I. A.; Christov, A.; Chromek-Burckhart, D.; Chu, M. L.; Chudoba, J.; Ciapetti, G.; Ciftci, A. K.; Ciftci, R.; Cinca, D.; Cindro, V.; Ciobotaru, M. D.; Ciocca, C.; Ciocio, A.; Cirilli, M.; Citterio, M.; Clark, A.; Cleland, W.; Clemens, J. C.; Clement, B.; Clement, C.; Coadou, Y.; Cobal, M.; Coccaro, A.; Cochran, J.; Coelli, S.; Coggeshall, J.; Cogneras, E.; Cojocaru, C. D.; Colas, J.; Cole, B.; Colijn, A. P.; Collard, C.; Collins, N. J.; Collins-Tooth, C.; Collot, J.; Colon, G.; Conde Muiño, P.; Coniavitis, E.; Consonni, M.; Constantinescu, S.; Conta, C.; Conventi, F.; Cook, J.; Cooke, M.; Cooper, B. D.; Cooper-Sarkar, A. M.; Cooper-Smith, N. J.; Copic, K.; Cornelissen, T.; Corradi, M.; Corriveau, F.; Corso-Radu, A.; Cortes-Gonzalez, A.; Cortiana, G.; Costa, G.; Costa, M. J.; Costanzo, D.; Costin, T.; Côté, D.; Coura Torres, R.; Courneyea, L.; Cowan, G.; Cowden, C.; Cox, B. E.; Cranmer, K.; Cranshaw, J.; Cristinziani, M.; Crosetti, G.; Crupi, R.; Crépé-Renaudin, S.; Cuenca Almenar, C.; Cuhadar Donszelmann, T.; Curatolo, M.; Curtis, C. J.; Cwetanski, P.; Czyczula, Z.; D'Auria, S.; D'Onofrio, M.; D'Orazio, A.; da Silva, P. V. M.; da Via, C.; Dabrowski, W.; Dai, T.; Dallapiccola, C.; Dallison, S. J.; Daly, C. H.; Dam, M.; Danielsson, H. O.; Dannheim, D.; Dao, V.; Darbo, G.; Darlea, G. L.; Davey, W.; Davidek, T.; Davidson, N.; Davidson, R.; Davies, M.; Davison, A. R.; Dawson, I.; Dawson, J. W.; Daya, R. K.; de, K.; de Asmundis, R.; de Castro, S.; de Castro Faria Salgado, P. E.; de Cecco, S.; de Graat, J.; de Groot, N.; de Jong, P.; de La Cruz-Burelo, E.; de La Taille, C.; de Mora, L.; de Oliveira Branco, M.; de Pedis, D.; de Salvo, A.; de Sanctis, U.; de Santo, A.; de Vivie de Regie, J. B.; de Zorzi, G.; Dean, S.; Deberg, H.; Dedes, G.; Dedovich, D. V.; Defay, P. O.; Degenhardt, J.; Dehchar, M.; Del Papa, C.; Del Peso, J.; Del Prete, T.; Dell'Acqua, A.; Dell'Asta, L.; Della Pietra, M.; Della Volpe, D.; Delmastro, M.; Delruelle, N.; Delsart, P. A.; Deluca, C.; Demers, S.; Demichev, M.; Demirkoz, B.; Deng, J.; Deng, W.; Denisov, S. P.; Dennis, C.; Derkaoui, J. E.; Derue, F.; Dervan, P.; Desch, K.; Deviveiros, P. O.; Dewhurst, A.; Dewilde, B.; Dhaliwal, S.; Dhullipudi, R.; di Ciaccio, A.; di Ciaccio, L.; di Domenico, A.; di Girolamo, A.; di Girolamo, B.; di Luise, S.; di Mattia, A.; di Nardo, R.; di Simone, A.; di Sipio, R.; Diaz, M. A.; Diblen, F.; Diehl, E. B.; Dietrich, J.; Dietzsch, T. A.; Diglio, S.; Dindar Yagci, K.; Dingfelder, D. J.; Dionisi, C.; Dita, P.; Dita, S.; Dittus, F.; Djama, F.; Djilkibaev, R.; Djobava, T.; Do Vale, M. A. B.; Do Valle Wemans, A.; Doan, T. K. O.; Dobbs, M.; Dobos, D.; Dobson, E.; Dobson, M.; Dodd, J.; Doherty, T.; Doi, Y.; Dolejsi, J.; Dolenc, I.; Dolezal, Z.; Dolgoshein, B. A.; Dohmae, T.; Donega, M.; Donini, J.; Dopke, J.; Doria, A.; Dos Anjos, A.; Dotti, A.; Dova, M. T.; Doxiadis, A.; Doyle, A. T.; Drasal, Z.; Driouichi, C.; Dris, M.; Dubbert, J.; Duchovni, E.; Duckeck, G.; Dudarev, A.; Dudziak, F.; Dührssen, M.; Duflot, L.; Dufour, M.-A.; Dunford, M.; Duperrin, A.; Yildiz, H. Duran; Dushkin, A.; Duxfield, R.; Dwuznik, M.; Düren, M.; Ebenstein, W. L.; Ebke, J.; Eckert, S.; Eckweiler, S.; Edmonds, K.; Edwards, C. A.; Eerola, P.; Egorov, K.; Ehrenfeld, W.; Ehrich, T.; Eifert, T.; Eigen, G.; Einsweiler, K.; Eisenhandler, E.; Ekelof, T.; El Kacimi, M.; Ellert, M.; Elles, S.; Ellinghaus, F.; Ellis, K.; Ellis, N.; Elmsheuser, J.; Elsing, M.; Ely, R.; Emeliyanov, D.; Engelmann, R.; Engl, A.; Epp, B.; Eppig, A.; Epshteyn, V. S.; Ereditato, A.; Eriksson, D.; Ermoline, I.; Ernst, J.; Ernst, M.; Ernwein, J.; Errede, D.; Errede, S.; Ertel, E.; Escalier, M.; Escobar, C.; Espinal Curull, X.; Esposito, B.; Etienne, F.; Etienvre, A. I.; Etzion, E.; Evans, H.; Fabbri, L.; Fabre, C.; Facius, K.; Fakhrutdinov, R. M.; Falciano, S.; Falou, A. C.; Fang, Y.; Fanti, M.; Farbin, A.; Farilla, A.; Farley, J.; Farooque, T.; Farrington, S. M.; Farthouat, P.; Fassi, F.; Fassnacht, P.; Fassouliotis, D.; Fatholahzadeh, B.; Fayard, L.; Fayette, F.; Febbraro, R.; Federic, P.; Fedin, O. L.; Fedorko, I.; Fedorko, W.; Feligioni, L.; Felzmann, C. U.; Feng, C.; Feng, E. J.; Fenyuk, A. B.; Ferencei, J.; Ferland, J.; Fernandes, B.; Fernando, W.; Ferrag, S.; Ferrando, J.; Ferrari, A.; Ferrari, P.; Ferrari, R.; Ferrer, A.; Ferrer, M. L.; Ferrere, D.; Ferretti, C.; Fiascaris, M.; Fiedler, F.; Filipčič, A.; Filippas, A.; Filthaut, F.; Fincke-Keeler, M.; Fiolhais, M. C. N.; Fiorini, L.; Firan, A.; Fischer, G.; Fisher, M. J.; Flechl, M.; Fleck, I.; Fleckner, J.; Fleischmann, P.; Fleischmann, S.; Flick, T.; Flores Castillo, L. R.; Flowerdew, M. J.; Föhlisch, F.; Fokitis, M.; Fonseca Martin, T.; Forbush, D. A.; Formica, A.; Forti, A.; Fortin, D.; Foster, J. M.; Fournier, D.; Foussat, A.; Fowler, A. J.; Fowler, K.; Fox, H.; Francavilla, P.; Franchino, S.; Francis, D.; Franklin, M.; Franz, S.; Fraternali, M.; Fratina, S.; Freestone, J.; French, S. T.; Froeschl, R.; Froidevaux, D.; Frost, J. A.; Fukunaga, C.; Fullana Torregrosa, E.; Fuster, J.; Gabaldon, C.; Gabizon, O.; Gadfort, T.; Gadomski, S.; Gagliardi, G.; Gagnon, P.; Galea, C.; Gallas, E. J.; Gallas, M. V.; Gallo, V.; Gallop, B. J.; Gallus, P.; Galyaev, E.; Gan, K. K.; Gao, Y. S.; Gaponenko, A.; Garcia-Sciveres, M.; García, C.; García Navarro, J. E.; Gardner, R. W.; Garelli, N.; Garitaonandia, H.; Garonne, V.; Gatti, C.; Gaudio, G.; Gaumer, O.; Gauzzi, P.; Gavrilenko, I. L.; Gay, C.; Gaycken, G.; Gayde, J.-C.; Gazis, E. N.; Ge, P.; Gee, C. N. P.; Geich-Gimbel, Ch.; Gellerstedt, K.; Gemme, C.; Genest, M. H.; Gentile, S.; Georgatos, F.; George, S.; Gerlach, P.; Gershon, A.; Geweniger, C.; Ghazlane, H.; Ghez, P.; Ghodbane, N.; Giacobbe, B.; Giagu, S.; Giakoumopoulou, V.; Giangiobbe, V.; Gianotti, F.; Gibbard, B.; Gibson, A.; Gibson, S. M.; Gilbert, L. M.; Gilchriese, M.; Gilewsky, V.; Gillman, A. R.; Gingrich, D. M.; Ginzburg, J.; Giokaris, N.; Giordani, M. P.; Giordano, R.; Giovannini, P.; Giraud, P. F.; Girtler, P.; Giugni, D.; Giusti, P.; Gjelsten, B. K.; Gladilin, L. K.; Glasman, C.; Glazov, A.; Glitza, K. W.; Glonti, G. L.; Godfrey, J.; Godlewski, J.; Goebel, M.; Göpfert, T.; Goeringer, C.; Gössling, C.; Göttfert, T.; Goggi, V.; Goldfarb, S.; Goldin, D.; Golling, T.; Gollub, N. P.; Gomes, A.; Gomez Fajardo, L. S.; Gonçalo, R.; Gonella, L.; Gong, C.; González de La Hoz, S.; Gonzalez Silva, M. L.; Gonzalez-Sevilla, S.; Goodson, J. J.; Goossens, L.; Gorbounov, P. A.; Gordon, H. A.; Gorelov, I.; Gorfine, G.; Gorini, B.; Gorini, E.; Gorišek, A.; Gornicki, E.; Goryachev, V. N.; Gosdzik, B.; Gosselink, M.; Gostkin, M. I.; Gough Eschrich, I.; Gouighri, M.; Goujdami, D.; Goulette, M. P.; Goussiou, A. G.; Goy, C.; Grabowska-Bold, I.; Grafström, P.; Grahn, K.-J.; Granado Cardoso, L.; Grancagnolo, F.; Grancagnolo, S.; Grassi, V.; Gratchev, V.; Grau, N.; Gray, H. M.; Gray, J. A.; Graziani, E.; Green, B.; Greenshaw, T.; Greenwood, Z. D.; Gregor, I. M.; Grenier, P.; Griesmayer, E.; Griffiths, J.; Grigalashvili, N.; Grillo, A. A.; Grimm, K.; Grinstein, S.; Grishkevich, Y. V.; Groer, L. S.; Grognuz, J.; Groh, M.; Groll, M.; Gross, E.; Grosse-Knetter, J.; Groth-Jensen, J.; Grybel, K.; Guarino, V. J.; Guicheney, C.; Guida, A.; Guillemin, T.; Guler, H.; Gunther, J.; Guo, B.; Gupta, A.; Gusakov, Y.; Gutierrez, A.; Gutierrez, P.; Guttman, N.; Gutzwiller, O.; Guyot, C.; Gwenlan, C.; Gwilliam, C. B.; Haas, A.; Haas, S.; Haber, C.; Hackenburg, R.; Hadavand, H. K.; Hadley, D. R.; Haefner, P.; Härtel, R.; Hajduk, Z.; Hakobyan, H.; Haller, J.; Hamacher, K.; Hamilton, A.; Hamilton, S.; Han, H.; Han, L.; Hanagaki, K.; Hance, M.; Handel, C.; Hanke, P.; Hansen, J. R.; Hansen, J. B.; Hansen, J. D.; Hansen, P. H.; Hansl-Kozanecka, T.; Hansson, P.; Hara, K.; Hare, G. A.; Harenberg, T.; Harrington, R. D.; Harris, O. M.; Harrison, K.; Hartert, J.; Hartjes, F.; Haruyama, T.; Harvey, A.; Hasegawa, S.; Hasegawa, Y.; Hashemi, K.; Hassani, S.; Hatch, M.; Haug, F.; Haug, S.; Hauschild, M.; Hauser, R.; Havranek, M.; Hawkes, C. M.; Hawkings, R. J.; Hawkins, D.; Hayakawa, T.; Hayward, H. S.; Haywood, S. J.; He, M.; Head, S. J.; Hedberg, V.; Heelan, L.; Heim, S.; Heinemann, B.; Heisterkamp, S.; Helary, L.; Heller, M.; Hellman, S.; Helsens, C.; Hemperek, T.; Henderson, R. C. W.; Henke, M.; Henrichs, A.; Henriques Correia, A. M.; Henrot-Versille, S.; Hensel, C.; Henß, T.; Hernández Jiménez, Y.; Hershenhorn, A. D.; Herten, G.; Hertenberger, R.; Hervas, L.; Hessey, N. P.; Hidvegi, A.; Higón-Rodriguez, E.; Hill, D.; Hill, J. C.; Hiller, K. H.; Hillert, S.; Hillier, S. J.; Hinchliffe, I.; Hines, E.; Hirose, M.; Hirsch, F.; Hirschbuehl, D.; Hobbs, J.; Hod, N.; Hodgkinson, M. C.; Hodgson, P.; Hoecker, A.; Hoeferkamp, M. R.; Hoffman, J.; Hoffmann, D.; Hohlfeld, M.; Holmgren, S. O.; Holy, T.; Holzbauer, J. L.; Homma, Y.; Homola, P.; Horazdovsky, T.; Hori, T.; Horn, C.; Horner, S.; Horvat, S.; Hostachy, J.-Y.; Hou, S.; Houlden, M. A.; Hoummada, A.; Howe, T.; Hrivnac, J.; Hryn'ova, T.; Hsu, P. J.; Hsu, S.-C.; Huang, G. S.; Hubacek, Z.; Hubaut, F.; Huegging, F.; Hughes, E. W.; Hughes, G.; Hughes-Jones, R. E.; Hurst, P.; Hurwitz, M.; Husemann, U.; Huseynov, N.; Huston, J.; Huth, J.; Iacobucci, G.; Iakovidis, G.; Ibragimov, I.; Iconomidou-Fayard, L.; Idarraga, J.; Iengo, P.; Igonkina, O.; Ikegami, Y.; Ikeno, M.; Ilchenko, Y.; Iliadis, D.; Ilyushenka, Y.; Imori, M.; Ince, T.; Ioannou, P.; Iodice, M.; Irles Quiles, A.; Ishikawa, A.; Ishino, M.; Ishmukhametov, R.; Isobe, T.; Issakov, V.; Issever, C.; Istin, S.; Itoh, Y.; Ivashin, A. V.; Iwasaki, H.; Izen, J. M.; Izzo, V.; Jackson, B.; Jackson, J. N.; Jackson, P.; Jaekel, M.; Jahoda, M.; Jain, V.; Jakobs, K.; Jakobsen, S.; Jakubek, J.; Jana, D.; Jansen, E.; Jantsch, A.; Janus, M.; Jared, R. C.; Jarlskog, G.; Jarron, P.; Jeanty, L.; Jen-La Plante, I.; Jenni, P.; Jez, P.; Jézéquel, S.; Ji, W.; Jia, J.; Jiang, Y.; Jimenez Belenguer, M.; Jin, G.; Jin, S.; Jinnouchi, O.; Joffe, D.; Johansen, M.; Johansson, K. E.; Johansson, P.; Johnert, S.; Johns, K. A.; Jon-And, K.; Jones, G.; Jones, R. W. L.; Jones, T. W.; Jones, T. J.; Jonsson, O.; Joos, D.; Joram, C.; Jorge, P. M.; Juranek, V.; Jussel, P.; Kabachenko, V. V.; Kabana, S.; Kaci, M.; Kaczmarska, A.; Kado, M.; Kagan, H.; Kagan, M.; Kaiser, S.; Kajomovitz, E.; Kalinin, S.; Kalinovskaya, L. V.; Kalinowski, A.; Kama, S.; Kanaya, N.; Kaneda, M.; Kantserov, V. A.; Kanzaki, J.; Kaplan, B.; Kapliy, A.; Kaplon, J.; Karagounis, M.; Karagoz Unel, M.; Kartvelishvili, V.; Karyukhin, A. N.; Kashif, L.; Kasmi, A.; Kass, R. D.; Kastanas, A.; Kastoryano, M.; Kataoka, M.; Kataoka, Y.; Katsoufis, E.; Katzy, J.; Kaushik, V.; Kawagoe, K.; Kawamoto, T.; Kawamura, G.; Kayl, M. S.; Kayumov, F.; Kazanin, V. A.; Kazarinov, M. Y.; Kazi, S. I.; Keates, J. R.; Keeler, R.; Keener, P. T.; Kehoe, R.; Keil, M.; Kekelidze, G. D.; Kelly, M.; Kennedy, J.; Kenyon, M.; Kepka, O.; Kerschen, N.; Kerševan, B. P.; Kersten, S.; Kessoku, K.; Khakzad, M.; Khalil-Zada, F.; Khandanyan, H.; Khanov, A.; Kharchenko, D.; Khodinov, A.; Kholodenko, A. G.; Khomich, A.; Khoriauli, G.; Khovanskiy, N.; Khovanskiy, V.; Khramov, E.; Khubua, J.; Kilvington, G.; Kim, H.; Kim, M. S.; Kim, P. C.; Kim, S. H.; Kind, O.; Kind, P.; King, B. T.; Kirk, J.; Kirsch, G. P.; Kirsch, L. E.; Kiryunin, A. E.; Kisielewska, D.; Kittelmann, T.; Kiyamura, H.; Kladiva, E.; Klein, M.; Klein, U.; Kleinknecht, K.; Klemetti, M.; Klier, A.; Klimentov, A.; Klingenberg, R.; Klinkby, E. B.; Klioutchnikova, T.; Klok, P. F.; Klous, S.; Kluge, E.-E.; Kluge, T.; Kluit, P.; Klute, M.; Kluth, S.; Knecht, N. S.; Kneringer, E.; Ko, B. R.; Kobayashi, T.; Kobel, M.; Koblitz, B.; Kocian, M.; Kocnar, A.; Kodys, P.; Köneke, K.; König, A. C.; Köpke, L.; Koetsveld, F.; Koevesarki, P.; Koffas, T.; Koffeman, E.; Kohn, F.; Kohout, Z.; Kohriki, T.; Kokott, T.; Kolanoski, H.; Kolesnikov, V.; Koletsou, I.; Koll, J.; Kollar, D.; Kolos, S.; Kolya, S. D.; Komar, A. A.; Komaragiri, J. R.; Kondo, T.; Kono, T.; Kononov, A. I.; Konoplich, R.; Konovalov, S. P.; Konstantinidis, N.; Koperny, S.; Korcyl, K.; Kordas, K.; Koreshev, V.; Korn, A.; Korolkov, I.; Korolkova, E. V.; Korotkov, V. A.; Kortner, O.; Kostka, P.; Kostyukhin, V. V.; Kotamäki, M. J.; Kotov, S.; Kotov, V. M.; Kotov, K. Y.; Koupilova, Z.; Kourkoumelis, C.; Koutsman, A.; Kowalewski, R.; Kowalski, H.; Kowalski, T. Z.; Kozanecki, W.; Kozhin, A. S.; Kral, V.; Kramarenko, V. A.; Kramberger, G.; Krasny, M. W.; Krasznahorkay, A.; Kreisel, A.; Krejci, F.; Krepouri, A.; Kretzschmar, J.; Krieger, P.; Krobath, G.; Kroeninger, K.; Kroha, H.; Kroll, J.; Kroseberg, J.; Krstic, J.; Kruchonak, U.; Krüger, H.; Krumshteyn, Z. V.; Kubota, T.; Kuehn, S.; Kugel, A.; Kuhl, T.; Kuhn, D.; Kukhtin, V.; Kulchitsky, Y.; Kuleshov, S.; Kummer, C.; Kuna, M.; Kunkle, J.; Kupco, A.; Kurashige, H.; Kurata, M.; Kurchaninov, L. L.; Kurochkin, Y. A.; Kus, V.; Kuznetsova, E.; Kvasnicka, O.; Kwee, R.; La Rotonda, L.; Labarga, L.; Labbe, J.; Lacasta, C.; Lacava, F.; Lacker, H.; Lacour, D.; Lacuesta, V. R.; Ladygin, E.; Lafaye, R.; Laforge, B.; Lagouri, T.; Lai, S.; Lamanna, M.; Lampen, C. L.; Lampl, W.; Lancon, E.; Landgraf, U.; Landon, M. P. J.; Lane, J. L.; Lankford, A. J.; Lanni, F.; Lantzsch, K.; Lanza, A.; Laplace, S.; Lapoire, C.; Laporte, J. F.; Lari, T.; Larionov, A. V.; Larner, A.; Lasseur, C.; Lassnig, M.; Laurelli, P.; Lavrijsen, W.; Laycock, P.; Lazarev, A. B.; Lazzaro, A.; Le Dortz, O.; Le Guirriec, E.; Le Maner, C.; Le Menedeu, E.; Le Vine, M.; Leahu, M.; Lebedev, A.; Lebel, C.; Lecompte, T.; Ledroit-Guillon, F.; Lee, H.; Lee, J. S. H.; Lee, S. C.; Lefebvre, M.; Legendre, M.; Legeyt, B. C.; Legger, F.; Leggett, C.; Lehmacher, M.; Lehmann Miotto, G.; Lei, X.; Leitner, R.; Lelas, D.; Lellouch, D.; Lellouch, J.; Leltchouk, M.; Lendermann, V.; Leney, K. J. C.; Lenz, T.; Lenzen, G.; Lenzi, B.; Leonhardt, K.; Leroy, C.; Lessard, J.-R.; Lester, C. G.; Leung Fook Cheong, A.; Levêque, J.; Levin, D.; Levinson, L. J.; Levitski, M. S.; Levonian, S.; Lewandowska, M.; Leyton, M.; Li, H.; Li, J.; Li, S.; Li, X.; Liang, Z.; Liang, Z.; Liberti, B.; Lichard, P.; Lichtnecker, M.; Lie, K.; Liebig, W.; Liko, D.; Lilley, J. N.; Lim, H.; Limosani, A.; Limper, M.; Lin, S. C.; Lindsay, S. W.; Linhart, V.; Linnemann, J. T.; Liolios, A.; Lipeles, E.; Lipinsky, L.; Lipniacka, A.; Liss, T. M.; Lissauer, D.; Lister, A.; Litke, A. M.; Liu, C.; Liu, D.; Liu, H.; Liu, J. B.; Liu, M.; Liu, S.; Liu, T.; Liu, Y.; Livan, M.; Lleres, A.; Lloyd, S. L.; Lobodzinska, E.; Loch, P.; Lockman, W. S.; Lockwitz, S.; Loddenkoetter, T.; Loebinger, F. K.; Loginov, A.; Loh, C. W.; Lohse, T.; Lohwasser, K.; Lokajicek, M.; Loken, J.; Lopes, L.; Lopez Mateos, D.; Losada, M.; Loscutoff, P.; Losty, M. J.; Lou, X.; Lounis, A.; Loureiro, K. F.; Lovas, L.; Love, J.; Love, P.; Lowe, A. J.; Lu, F.; Lu, J.; Lubatti, H. J.; Luci, C.; Lucotte, A.; Ludwig, A.; Ludwig, D.; Ludwig, I.; Ludwig, J.; Luehring, F.; Luisa, L.; Lumb, D.; Luminari, L.; Lund, E.; Lund-Jensen, B.; Lundberg, B.; Lundberg, J.; Lundquist, J.; Lutz, G.; Lynn, D.; Lys, J.; Lytken, E.; Ma, H.; Ma, L. L.; Macana Goia, J. A.; Maccarrone, G.; Macchiolo, A.; Maček, B.; Machado Miguens, J.; Mackeprang, R.; Madaras, R. J.; Mader, W. F.; Maenner, R.; Maeno, T.; Mättig, P.; Mättig, S.; Magalhaes Martins, P. J.; Magradze, E.; Magrath, C. A.; Mahalalel, Y.; Mahboubi, K.; Mahmood, A.; Mahout, G.; Maiani, C.; Maidantchik, C.; Maio, A.; Majewski, S.; Makida, Y.; Makouski, M.; Makovec, N.; Malecki, Pa.; Malecki, P.; Maleev, V. P.; Malek, F.; Mallik, U.; Malon, D.; Maltezos, S.; Malyshev, V.; Malyukov, S.; Mambelli, M.; Mameghani, R.; Mamuzic, J.; Manabe, A.; Mandelli, L.; Mandić, I.; Mandrysch, R.; Maneira, J.; Mangeard, P. S.; Manjavidze, I. D.; Manning, P. M.; Manousakis-Katsikakis, A.; Mansoulie, B.; Mapelli, A.; Mapelli, L.; March, L.; Marchand, J. F.; Marchese, F.; Marchiori, G.; Marcisovsky, M.; Marino, C. P.; Marques, C. N.; Marroquim, F.; Marshall, R.; Marshall, Z.; Martens, F. K.; Marti I Garcia, S.; Martin, A. J.; Martin, A. J.; Martin, B.; Martin, B.; Martin, F. F.; Martin, J. P.; Martin, T. A.; Martin Dit Latour, B.; Martinez, M.; Martinez Outschoorn, V.; Martini, A.; Martyniuk, A. C.; Maruyama, T.; Marzano, F.; Marzin, A.; Masetti, L.; Mashimo, T.; Mashinistov, R.; Masik, J.; Maslennikov, A. L.; Massaro, G.; Massol, N.; Mastroberardino, A.; Masubuchi, T.; Mathes, M.; Matricon, P.; Matsunaga, H.; Matsushita, T.; Mattravers, C.; Maxfield, S. J.; May, E. N.; Mayne, A.; Mazini, R.; Mazur, M.; Mazzanti, M.; Mazzanti, P.; Mc Donald, J.; Mc Kee, S. P.; McCarn, A.; McCarthy, R. L.; McCubbin, N. A.; McFarlane, K. W.; McGlone, H.; McHedlidze, G.; McLaren, R. A.; McMahon, S. J.; McMahon, T. R.; McPherson, R. A.; Meade, A.; Mechnich, J.; Mechtel, M.; Medinnis, M.; Meera-Lebbai, R.; Meguro, T. M.; Mehdiyev, R.; Mehlhase, S.; Mehta, A.; Meier, K.; Meirose, B.; Melachrinos, C.; Melamed-Katz, A.; Mellado Garcia, B. R.; Meng, Z.; Menke, S.; Meoni, E.; Merkl, D.; Mermod, P.; Merola, L.; Meroni, C.; Merritt, F. S.; Messina, A. M.; Messmer, I.; Metcalfe, J.; Mete, A. S.; Meyer, J.-P.; Meyer, J.; Meyer, J.; Meyer, T. C.; Meyer, W. T.; Miao, J.; Michal, S.; Micu, L.; Middleton, R. P.; Migas, S.; Mijović, L.; Mikenberg, G.; Mikuž, M.; Miller, D. W.; Mills, W. J.; Mills, C. M.; Milov, A.; Milstead, D. A.; Minaenko, A. A.; Miñano, M.; Minashvili, I. A.; Mincer, A. I.; Mindur, B.; Mineev, M.; Ming, Y.; Mir, L. M.; Mirabelli, G.; Misawa, S.; Miscetti, S.; Misiejuk, A.; Mitrevski, J.; Mitsou, V. A.; Miyagawa, P. S.; Mjörnmark, J. U.; Mladenov, D.; Moa, T.; Moed, S.; Moeller, V.; Mönig, K.; Möser, N.; Mohn, B.; Mohr, W.; Mohrdieck-Möck, S.; Moles-Valls, R.; Molina-Perez, J.; Moloney, G.; Monk, J.; Monnier, E.; Montesano, S.; Monticelli, F.; Moore, R. W.; Mora Herrera, C.; Moraes, A.; Morais, A.; Morel, J.; Morello, G.; Moreno, D.; Llácer, M. Moreno; Morettini, P.; Morii, M.; Morley, A. K.; Mornacchi, G.; Morozov, S. V.; Morris, J. D.; Moser, H. G.; Mosidze, M.; Moss, J.; Mount, R.; Mountricha, E.; Mouraviev, S. V.; Moyse, E. J. W.; Mudrinic, M.; Mueller, F.; Mueller, J.; Mueller, K.; Müller, T. A.; Muenstermann, D.; Muir, A.; Munwes, Y.; Murillo Garcia, R.; Murray, W. J.; Mussche, I.; Musto, E.; Myagkov, A. G.; Myska, M.; Nadal, J.; Nagai, K.; Nagano, K.; Nagasaka, Y.; Nairz, A. M.; Nakamura, K.; Nakano, I.; Nakatsuka, H.; Nanava, G.; Napier, A.; Nash, M.; Nation, N. R.; Nattermann, T.; Naumann, T.; Navarro, G.; Nderitu, S. K.; Neal, H. A.; Nebot, E.; Nechaeva, P.; Negri, A.; Negri, G.; Nelson, A.; Nelson, T. K.; Nemecek, S.; Nemethy, P.; Nepomuceno, A. A.; Nessi, M.; Neubauer, M. S.; Neusiedl, A.; Neves, R. N.; Nevski, P.; Newcomer, F. M.; Nickerson, R. B.; Nicolaidou, R.; Nicolas, L.; Nicoletti, G.; Niedercorn, F.; Nielsen, J.; Nikiforov, A.; Nikolaev, K.; Nikolic-Audit, I.; Nikolopoulos, K.; Nilsen, H.; Nilsson, P.; Nisati, A.; Nishiyama, T.; Nisius, R.; Nodulman, L.; Nomachi, M.; Nomidis, I.; Nordberg, M.; Nordkvist, B.; Notz, D.; Novakova, J.; Nozaki, M.; Nožička, M.; Nugent, I. M.; Nuncio-Quiroz, A.-E.; Nunes Hanninger, G.; Nunnemann, T.; Nurse, E.; O'Neil, D. C.; O'Shea, V.; Oakham, F. G.; Oberlack, H.; Ochi, A.; Oda, S.; Odaka, S.; Odier, J.; Odino, G. A.; Ogren, H.; Oh, A.; Oh, S. H.; Ohm, C. C.; Ohshima, T.; Ohshita, H.; Ohsugi, T.; Okada, S.; Okawa, H.; Okumura, Y.; Olcese, M.; Olchevski, A. G.; Oliveira, M.; Oliveira Damazio, D.; Oliver, J.; Oliver Garcia, E.; Olivito, D.; Olszewski, A.; Olszowska, J.; Omachi, C.; Onofre, A.; Onyisi, P. U. E.; Oram, C. J.; Ordonez, G.; Oreglia, M. J.; Oren, Y.; Orestano, D.; Orlov, I.; Oropeza Barrera, C.; Orr, R. S.; Ortega, E. O.; Osculati, B.; Ospanov, R.; Osuna, C.; Otec, R.; P Ottersbach, J.; Ould-Saada, F.; Ouraou, A.; Ouyang, Q.; Owen, M.; Owen, S.; Oyarzun, A.; Ozcan, V. E.; Ozone, K.; Ozturk, N.; Pacheco Pages, A.; Padhi, S.; Padilla Aranda, C.; Paganis, E.; Pahl, C.; Paige, F.; Pajchel, K.; Palestini, S.; Pallin, D.; Palma, A.; Palmer, J. D.; Pan, Y. B.; Panagiotopoulou, E.; Panes, B.; Panikashvili, N.; Panitkin, S.; Pantea, D.; Panuskova, M.; Paolone, V.; Papadopoulou, Th. D.; Park, S. J.; Park, W.; Parker, M. A.; Parker, S. I.; Parodi, F.; Parsons, J. A.; Parzefall, U.; Pasqualucci, E.; Passardi, G.; Passeri, A.; Pastore, F.; Pastore, Fr.; Pásztor, G.; Pataraia, S.; Pater, J. R.; Patricelli, S.; Patwa, A.; Pauly, T.; Peak, L. S.; Pecsy, M.; Pedraza Morales, M. I.; Peleganchuk, S. V.; Peng, H.; Penson, A.; Penwell, J.; Perantoni, M.; Perez, K.; Perez Codina, E.; Pérez García-Estañ, M. T.; Perez Reale, V.; Perini, L.; Pernegger, H.; Perrino, R.; Perrodo, P.; Persembe, S.; Perus, P.; Peshekhonov, V. D.; Petersen, B. A.; Petersen, J.; Petersen, T. C.; Petit, E.; Petridou, C.; Petrolo, E.; Petrucci, F.; Petschull, D.; Petteni, M.; Pezoa, R.; Pfeifer, B.; Phan, A.; Phillips, A. W.; Piacquadio, G.; Piccinini, M.; Piegaia, R.; Pilcher, J. E.; Pilkington, A. D.; Pina, J.; Pinamonti, M.; Pinfold, J. L.; Ping, J.; Pinto, B.; Pizio, C.; Placakyte, R.; Plamondon, M.; Plano, W. G.; Pleier, M.-A.; Poblaguev, A.; Poddar, S.; Podlyski, F.; Poffenberger, P.; Poggioli, L.; Pohl, M.; Polci, F.; Polesello, G.; Policicchio, A.; Polini, A.; Poll, J.; Polychronakos, V.; Pomarede, D. M.; Pomeroy, D.; Pommès, K.; Pontecorvo, L.; Pope, B. G.; Popovic, D. S.; Poppleton, A.; Popule, J.; Portell Bueso, X.; Porter, R.; Pospelov, G. E.; Pospichal, P.; Pospisil, S.; Potekhin, M.; Potrap, I. N.; Potter, C. J.; Potter, C. T.; Potter, K. P.; Poulard, G.; Poveda, J.; Prabhu, R.; Pralavorio, P.; Prasad, S.; Pravahan, R.; Preda, T.; Pretzl, K.; Pribyl, L.; Price, D.; Price, L. E.; Prichard, P. M.; Prieur, D.; Primavera, M.; Prokofiev, K.; Prokoshin, F.; Protopopescu, S.; Proudfoot, J.; Prudent, X.; Przysiezniak, H.; Psoroulas, S.; Ptacek, E.; Puigdengoles, C.; Purdham, J.; Purohit, M.; Puzo, P.; Pylypchenko, Y.; Qi, M.; Qian, J.; Qian, W.; Qian, Z.; Qin, Z.; Qing, D.; Quadt, A.; Quarrie, D. R.; Quayle, W. B.; Quinonez, F.; Raas, M.; Radeka, V.; Radescu, V.; Radics, B.; Rador, T.; Ragusa, F.; Rahal, G.; Rahimi, A. M.; Rahm, D.; Rajagopalan, S.; Rammes, M.; Ratoff, P. N.; Rauscher, F.; Rauter, E.; Raymond, M.; Read, A. L.; Rebuzzi, D. M.; Redelbach, A.; Redlinger, G.; Reece, R.; Reeves, K.; Reinherz-Aronis, E.; Reinsch, A.; Reisinger, I.; Reljic, D.; Rembser, C.; Ren, Z. L.; Renkel, P.; Rescia, S.; Rescigno, M.; Resconi, S.; Resende, B.; Reznicek, P.; Rezvani, R.; Richards, A.; Richards, R. A.; Richter, R.; Richter-Was, E.; Ridel, M.; Rieke, S.; Rijpstra, M.; Rijssenbeek, M.; Rimoldi, A.; Rinaldi, L.; Rios, R. R.; Riu, I.; Rivoltella, G.; Rizatdinova, F.; Rizvi, E. R.; Roa Romero, D. A.; Robertson, S. H.; Robichaud-Veronneau, A.; Robinson, D.; Robinson, J.; Robinson, M.; Robson, A.; Rocha de Lima, J. G.; Roda, C.; Roda Dos Santos, D.; Rodriguez, D.; Rodriguez Garcia, Y.; Roe, S.; Røhne, O.; Rojo, V.; Rolli, S.; Romaniouk, A.; Romanov, V. M.; Romeo, G.; Romero Maltrana, D.; Roos, L.; Ros, E.; Rosati, S.; Rosenbaum, G. A.; Rosenberg, E. I.; Rosselet, L.; Rossetti, V.; Rossi, L. P.; Rotaru, M.; Rothberg, J.; Rottländer, I.; Rousseau, D.; Royon, C. R.; Rozanov, A.; Rozen, Y.; Ruan, X.; Ruckert, B.; Ruckstuhl, N.; Rud, V. I.; Rudolph, G.; Rühr, F.; Ruggieri, F.; Ruiz-Martinez, A.; Rumyantsev, L.; Rusakovich, N. A.; Rutherfoord, J. P.; Ruwiedel, C.; Ruzicka, P.; Ryabov, Y. F.; Ryadovikov, V.; Ryan, P.; Rybkin, G.; Rzaeva, S.; Saavedra, A. F.; Sadrozinski, H. F.-W.; Sadykov, R.; Sakamoto, H.; Salamanna, G.; Salamon, A.; Saleem, M.; Salihagic, D.; Salnikov, A.; Salt, J.; Salvachua Ferrando, B. M.; Salvatore, D.; Salvatore, F.; Salvucci, A.; Salzburger, A.; Sampsonidis, D.; Samset, B. H.; Sanchis Lozano, M. A.; Sandaker, H.; Sander, H. G.; Sanders, M. P.; Sandhoff, M.; Sandstroem, R.; Sandvoss, S.; Sankey, D. P. C.; Sanny, B.; Sansoni, A.; Santamarina Rios, C.; Santi, L.; Santoni, C.; Santonico, R.; Santos, J.; Saraiva, J. G.; Sarangi, T.; Sarkisyan-Grinbaum, E.; Sarri, F.; Sasaki, O.; Sasaki, T.; Sasao, N.; Satsounkevitch, I.; Sauvage, G.; Savard, P.; Savine, A. Y.; Savinov, V.; Sawyer, L.; Saxon, D. H.; Says, L. P.; Sbarra, C.; Sbrizzi, A.; Scannicchio, D. A.; Schaarschmidt, J.; Schacht, P.; Schäfer, U.; Schaetzel, S.; Schaffer, A. C.; Schaile, D.; Schamberger, R. D.; Schamov, A. G.; Schegelsky, V. A.; Scheirich, D.; Schernau, M.; Scherzer, M. I.; Schiavi, C.; Schieck, J.; Schioppa, M.; Schlenker, S.; Schlereth, J. L.; Schmid, P.; Schmieden, K.; Schmitt, C.; Schmitz, M.; Schott, M.; Schouten, D.; Schovancova, J.; Schram, M.; Schreiner, A.; Schroeder, C.; Schroer, N.; Schroers, M.; Schuler, G.; Schultes, J.; Schultz-Coulon, H.-C.; Schumacher, J. W.; Schumacher, M.; Schumm, B. A.; Schune, Ph.; Schwanenberger, C.; Schwartzman, A.; Schwemling, Ph.; Schwienhorst, R.; Schwierz, R.; Schwindling, J.; Scott, W. G.; Searcy, J.; Sedykh, E.; Segura, E.; Seidel, S. C.; Seiden, A.; Seifert, F.; Seixas, J. M.; Sekhniaidze, G.; Seliverstov, D. M.; Sellden, B.; Seman, M.; Semprini-Cesari, N.; Serfon, C.; Serin, L.; Seuster, R.; Severini, H.; Sevior, M. E.; Sfyrla, A.; Shabalina, E.; Shamim, M.; Shan, L. Y.; Shank, J. T.; Shao, Q. T.; Shapiro, M.; Shatalov, P. B.; Shaver, L.; Shaw, K.; Sherman, D.; Sherwood, P.; Shibata, A.; Shimojima, M.; Shin, T.; Shmeleva, A.; Shochet, M. J.; Shupe, M. A.; Sicho, P.; Sidoti, A.; Siebel, A.; Siegert, F.; Siegrist, J.; Sijacki, Dj.; Silbert, O.; Silva, J.; Silver, Y.; Silverstein, D.; Silverstein, S. B.; Simak, V.; Simic, Lj.; Simion, S.; Simmons, B.; Simonyan, M.; Sinervo, P.; Sinev, N. B.; Sipica, V.; Siragusa, G.; Sisakyan, A. N.; Sivoklokov, S. Yu.; Sjoelin, J.; Sjursen, T. B.; Skubic, P.; Skvorodnev, N.; Slater, M.; Slavicek, T.; Sliwa, K.; Sloper, J.; Sluka, T.; Smakhtin, V.; Smirnov, S. Yu.; Smirnov, Y.; Smirnova, L. N.; Smirnova, O.; Smith, B. C.; Smith, D.; Smith, K. M.; Smizanska, M.; Smolek, K.; Snesarev, A. A.; Snow, S. W.; Snow, J.; Snuverink, J.; Snyder, S.; Soares, M.; Sobie, R.; Sodomka, J.; Soffer, A.; Solans, C. A.; Solar, M.; Solc, J.; Solfaroli Camillocci, E.; Solodkov, A. A.; Solovyanov, O. V.; Soluk, R.; Sondericker, J.; Sopko, V.; Sopko, B.; Sosebee, M.; Sosnovtsev, V. V.; Sospedra Suay, L.; Soukharev, A.; Spagnolo, S.; Spanò, F.; Speckmayer, P.; Spencer, E.; Spighi, R.; Spigo, G.; Spila, F.; Spiwoks, R.; Spousta, M.; Spreitzer, T.; Spurlock, B.; Denis, R. D. St.; Stahl, T.; Stahlman, J.; Stamen, R.; Stancu, S. N.; Stanecka, E.; Stanek, R. W.; Stanescu, C.; Stapnes, S.; Starchenko, E. A.; Stark, J.; Staroba, P.; Starovoitov, P.; Stastny, J.; Staude, A.; Stavina, P.; Stavropoulos, G.; Steele, G.; Steinbach, P.; Steinberg, P.; Stekl, I.; Stelzer, B.; Stelzer, H. J.; Stelzer-Chilton, O.; Stenzel, H.; Stevenson, K.; Stewart, G.; Stockton, M. C.; Stoerig, K.; Stoicea, G.; Stonjek, S.; Strachota, P.; Stradling, A.; Straessner, A.; Strandberg, J.; Strandberg, S.; Strandlie, A.; Strauss, M.; Strizenec, P.; Ströhmer, R.; Strom, D. M.; Strong, J. A.; Stroynowski, R.; Strube, J.; Stugu, B.; Stumer, I.; Soh, D. A.; Su, D.; Suchkov, S. I.; Sugaya, Y.; Sugimoto, T.; Suhr, C.; Suk, M.; Sulin, V. V.; Sultansoy, S.; Sumida, T.; Sun, X.; Sundermann, J. E.; Suruliz, K.; Sushkov, S.; Susinno, G.; Sutton, M. R.; Suzuki, T.; Suzuki, Y.; Sviridov, Yu. M.; Sykora, I.; Sykora, T.; Szymocha, T.; Sánchez, J.; Ta, D.; Tackmann, K.; Taffard, A.; Tafirout, R.; Taga, A.; Takahashi, Y.; Takai, H.; Takashima, R.; Takeda, H.; Takeshita, T.; Talby, M.; Talyshev, A.; Tamsett, M. C.; Tanaka, J.; Tanaka, R.; Tanaka, S.; Tanaka, S.; Tappern, G. P.; Tapprogge, S.; Tardif, D.; Tarem, S.; Tarrade, F.; Tartarelli, G. F.; Tas, P.; Tasevsky, M.; Tassi, E.; Tatarkhanov, M.; Taylor, C.; Taylor, F. E.; Taylor, G. N.; Taylor, R. P.; Taylor, W.; Teixeira-Dias, P.; Ten Kate, H.; Teng, P. K.; Tennenbaum-Katan, Y. D.; Terada, S.; Terashi, K.; Terron, J.; Terwort, M.; Testa, M.; Teuscher, R. J.; Tevlin, C. M.; Thadome, J.; Thananuwong, R.; Thioye, M.; Thoma, S.; Thomas, J. P.; Thomas, T. L.; Thompson, E. N.; Thompson, P. D.; Thompson, P. D.; Thompson, R. J.; Thompson, A. S.; Thomson, E.; Thun, R. P.; Tic, T.; Tikhomirov, V. O.; Tikhonov, Y. A.; Timmermans, C. J. W. P.; Tipton, P.; Tique Aires Viegas, F. J.; Tisserant, S.; Tobias, J.; Toczek, B.; Todorov, T.; Todorova-Nova, S.; Toggerson, B.; Tojo, J.; Tokár, S.; Tokushuku, K.; Tollefson, K.; Tomasek, L.; Tomasek, M.; Tomasz, F.; Tomoto, M.; Tompkins, D.; Tompkins, L.; Toms, K.; Tong, G.; Tonoyan, A.; Topfel, C.; Topilin, N. D.; Torrence, E.; Torró Pastor, E.; Toth, J.; Touchard, F.; Tovey, D. R.; Tovey, S. N.; Trefzger, T.; Tremblet, L.; Tricoli, A.; Trigger, I. M.; Trincaz-Duvoid, S.; Trinh, T. N.; Tripiana, M. F.; Triplett, N.; Trischuk, W.; Trivedi, A.; Trocmé, B.; Troncon, C.; Trzupek, A.; Tsarouchas, C.; Tseng, J. C.-L.; Tsiafis, I.; Tsiakiris, M.; Tsiareshka, P. V.; Tsionou, D.; Tsipolitis, G.; Tsiskaridze, V.; Tskhadadze, E. G.; Tsukerman, I. I.; Tsulaia, V.; Tsung, J.-W.; Tsuno, S.; Tsybychev, D.; Turala, M.; Turecek, D.; Turk Cakir, I.; Turlay, E.; Tuts, P. M.; Twomey, M. S.; Tylmad, M.; Tyndel, M.; Tzanakos, G.; Uchida, K.; Ueda, I.; Ugland, M.; Uhlenbrock, M.; Uhrmacher, M.; Ukegawa, F.; Unal, G.; Underwood, D. G.; Undrus, A.; Unel, G.; Unno, Y.; Urbaniec, D.; Urkovsky, E.; Urquijo, P.; Urrejola, P.; Usai, G.; Uslenghi, M.; Vacavant, L.; Vacek, V.; Vachon, B.; Vahsen, S.; Valenta, J.; Valente, P.; Valentinetti, S.; Valkar, S.; Valladolid Gallego, E.; Vallecorsa, S.; Valls Ferrer, J. A.; van Berg, R.; van der Graaf, H.; van der Kraaij, E.; van der Poel, E.; van der Ster, D.; van Eldik, N.; van Gemmeren, P.; van Kesteren, Z.; van Vulpen, I.; Vandelli, W.; Vandoni, G.; Vaniachine, A.; Vankov, P.; Vannucci, F.; Varela Rodriguez, F.; Vari, R.; Varnes, E. W.; Varouchas, D.; Vartapetian, A.; Varvell, K. E.; Vasilyeva, L.; Vassilakopoulos, V. I.; Vazeille, F.; Vegni, G.; Veillet, J. J.; Vellidis, C.; Veloso, F.; Veness, R.; Veneziano, S.; Ventura, A.; Ventura, D.; Venturi, M.; Venturi, N.; Vercesi, V.; Verducci, M.; Verkerke, W.; Vermeulen, J. C.; Vetterli, M. C.; Vichou, I.; Vickey, T.; Viehhauser, G. H. A.; Villa, M.; Villani, E. G.; Villaplana Perez, M.; Villate, J.; Vilucchi, E.; Vincter, M. G.; Vinek, E.; Vinogradov, V. B.; Viret, S.; Virzi, J.; Vitale, A.; Vitells, O. V.; Vivarelli, I.; Vives Vaques, F.; Vlachos, S.; Vlasak, M.; Vlasov, N.; Vogel, A.; Vokac, P.; Volpi, M.; Volpini, G.; von der Schmitt, H.; von Loeben, J.; von Radziewski, H.; von Toerne, E.; Vorobel, V.; Vorobiev, A. P.; Vorwerk, V.; Vos, M.; Voss, R.; Voss, T. T.; Vossebeld, J. H.; Vranjes, N.; Vranjes Milosavljevic, M.; Vrba, V.; Vreeswijk, M.; Vu Anh, T.; Vudragovic, D.; Vuillermet, R.; Vukotic, I.; Wagner, P.; Wahlen, H.; Walbersloh, J.; Walder, J.; Walker, R.; Walkowiak, W.; Wall, R.; Wang, C.; Wang, H.; Wang, J.; Wang, J. C.; Wang, S. M.; Ward, C. P.; Warsinsky, M.; Wastie, R.; Watkins, P. M.; Watson, A. T.; Watson, M. F.; Watts, G.; Watts, S.; Waugh, A. T.; Waugh, B. M.; Webel, M.; Weber, J.; Weber, M. D.; Weber, M.; Weber, M. S.; Weber, P.; Weidberg, A. R.; Weingarten, J.; Weiser, C.; Wellenstein, H.; Wells, P. S.; Wen, M.; Wenaus, T.; Wendler, S.; Wengler, T.; Wenig, S.; Wermes, N.; Werner, M.; Werner, P.; Werth, M.; Werthenbach, U.; Wessels, M.; Whalen, K.; Wheeler-Ellis, S. J.; Whitaker, S. P.; White, A.; White, M. J.; White, S.; Whiteson, D.; Whittington, D.; Wicek, F.; Wicke, D.; Wickens, F. J.; Wiedenmann, W.; Wielers, M.; Wienemann, P.; Wiglesworth, C.; Wiik, L. A. M.; Wildauer, A.; Wildt, M. A.; Wilhelm, I.; Wilkens, H. G.; Williams, E.; Williams, H. H.; Willis, W.; Willocq, S.; Wilson, J. A.; Wilson, M. G.; Wilson, A.; Wingerter-Seez, I.; Winklmeier, F.; Wittgen, M.; Wolter, M. W.; Wolters, H.; Wosiek, B. K.; Wotschack, J.; Woudstra, M. J.; Wraight, K.; Wright, C.; Wright, D.; Wrona, B.; Wu, S. L.; Wu, X.; Wulf, E.; Xella, S.; Xie, S.; Xie, Y.; Xu, D.; Xu, N.; Yamada, M.; Yamamoto, A.; Yamamoto, S.; Yamamura, T.; Yamanaka, K.; Yamaoka, J.; Yamazaki, T.; Yamazaki, Y.; Yan, Z.; Yang, H.; Yang, U. K.; Yang, Y.; Yang, Z.; Yao, W.-M.; Yao, Y.; Yasu, Y.; Ye, J.; Ye, S.; Yilmaz, M.; Yoosoofmiya, R.; Yorita, K.; Yoshida, R.; Young, C.; Youssef, S. P.; Yu, D.; Yu, J.; Yu, M.; Yu, X.; Yuan, J.; Yuan, L.; Yurkewicz, A.; Zaidan, R.; Zaitsev, A. M.; Zajacova, Z.; Zambrano, V.; Zanello, L.; Zarzhitsky, P.; Zaytsev, A.; Zeitnitz, C.; Zeller, M.; Zema, P. F.; Zemla, A.; Zendler, C.; Zenin, O.; Zenis, T.; Zenonos, Z.; Zenz, S.; Zerwas, D.; Zevi Della Porta, G.; Zhan, Z.; Zhang, H.; Zhang, J.; Zhang, Q.; Zhang, X.; Zhao, L.; Zhao, T.; Zhao, Z.; Zhemchugov, A.; Zheng, S.; Zhong, J.; Zhou, B.; Zhou, N.; Zhou, Y.; Zhu, C. G.; Zhu, H.; Zhu, Y.; Zhuang, X.; Zhuravlov, V.; Zimmermann, R.; Zimmermann, S.; Zimmermann, S.; Ziolkowski, M.; Zitoun, R.; Živković, L.; Zmouchko, V. V.; Zobernig, G.; Zoccoli, A.; Zur Nedden, M.; Zutshi, V.

    2010-12-01

    The ionization signals in the liquid argon of the ATLAS electromagnetic calorimeter are studied in detail using cosmic muons. In particular, the drift time of the ionization electrons is measured and used to assess the intrinsic uniformity of the calorimeter gaps and estimate its impact on the constant term of the energy resolution. The drift times of electrons in the cells of the second layer of the calorimeter are uniform at the level of 1.3% in the barrel and 2.8% in the endcaps. This leads to an estimated contribution to the constant term of (0.29^{+0.05}_{-0.04})% in the barrel and (0.54^{+0.06}_{-0.04})% in the endcaps. The same data are used to measure the drift velocity of ionization electrons in liquid argon, which is found to be 4.61±0.07 mm/μs at 88.5 K and 1 kV/mm.

  11. CALICE silicon-tungsten electromagnetic calorimeter

    Indian Academy of Sciences (India)

    G Mavromanolakis

    2007-12-01

    A highly granular electromagnetic calorimeter prototype based on tungsten absorber and sampling units equipped with silicon pads as sensitive devices for signal collection is under construction. The full prototype will have in total 30 layers and be read out by about 10000 Si cells of 1 × 1 cm2. A first module consisting of 14 layers and depth of 7.2 0 at normal incidence, having in total 3024 channels of 1 cm2, was tested recently with - beam. We describe the prototype and discuss some preliminary testbeam results on its performance with respect to position resolution, response inhomogeneity and transverse containment.

  12. The Calibration Stategy of CMS Electromagnetic Calorimeter

    CERN Document Server

    Meridiani, P

    2004-01-01

    Calibration is one of the main factors that set limits on the ultimate performance of the CMS electromagnetic calorimeter (ECAL) at LHC. Crystals raw intercalibration from laboratory measurements during assembly will be available for all the crystals and has been demonstrated to be a good precalibration value at the start-up; some crystals will be also intercalibrated using an electron beam. In situ calibration with physics events will be the main tool to reduce the constant term of the emergy resolution to the design goal of 0.5%. In the following the calibration strategy will be described in detail.

  13. Calibration of the electromagnetic barrel calorimeter. Identification of the tau leptons and search for a Higgs boson in the channel qqH {yields} qq {tau}{tau} in the Atlas experiment at LHC; Etalonnage du calorimetre electromagnetique tonneau. Identification des leptons taus et recherche d'un boson de Higgs dans le canal qqH {yields} qq {tau}{tau} dans l'experience ATLAS au LHC

    Energy Technology Data Exchange (ETDEWEB)

    Tarrade, F

    2006-09-15

    The Standard Model is the theory which describes the fundamental interactions most accurately. However, the Higgs mechanism and its associated boson have not yet been discovered. The ATLAS electromagnetic calorimeter will play an important role in its discovery if it exists. In the first part of this work, a final mapping of all barrel electromagnetic calorimeter cells, and in particular the problematic ones, was made. Then, the code for the calorimeter calibration was migrated into the ATLAS software environment (ATHENA), where it was tested and validated with the 2004 test beam data. In this code, the optimal filtering coefficients, which enable to reconstruct the energy deposited in the calorimeter while minimizing the electronic and pile-up noises, are calculated. For this, a model was developed to predict the physics signal waveform from the calibration waveform. In a third part, two algorithms for reconstructing and identifying {tau} leptons in their hadronic decay mode were studied and compared. Finally in a fourth part, one amongst the most important Standard Model Higgs production and decay channels was investigated, namely the weak boson fusion production followed by the Higgs decay into a tau lepton pair, for a low mass Higgs (115 < m{sub Higgs} < 145 GeV/c{sup 2}). This study was performed for 30 fb{sup -1} of integrated luminosity using fast and fully simulated data. A study of the dominant background Z + n jets (n {<=} 5) was also performed. (author)

  14. Status of the KLOE Electromagnetic Calorimeter: final optimization, progress in construction and first calibration

    Energy Technology Data Exchange (ETDEWEB)

    Antonelli, M.; Anulli, F.; Barbiellini, G.; Bertolucci, S.; Bini, C.; Bloise, C.; Caloi, R.; Cabibbo, G.; Campana, P.; Cervelli, F.; De Zorzi, G.; Di Cosimo, G.; Di Domenico, A.; Erriquez, O.; Di Falco, S.; Farilla, A.; Ferrari, A.; Franzini, P.; Gauzzi, P.; Giovannella, S.; Graziani, E.; Han, S.W.; Incagli, M.; Kim, W.; Lanfranchi, G.; Lee-Franzini, J.; Lomtadze, T.; Miscetti, S.; Murtas, F.; Scuri, F.; Spiriti, E.; Tortora, L.; Venanzoni, G.; Woelfle, S.; Zhang, J.Q. [Bari Univ. (Italy). Dipt. di Fisica]|[INFN, Bari (Italy)]|[Institute of High Energy Physics of Academica Sinica, Beijing (China)]|[Laboratori Nazionali di Frascati dell`INFN, Frascati (Italy)]|[Physics Department, Columbia University, New York (United States)]|[Dipartimento di Fisica dell`Universita e Sezione INFN, Pisa (Italy)]|[Dipartimento di Fisica dell`Universita e Sezione INFN, Roma I (Italy)]|[Dipartimento di Fisica dell`Universita e Sezione INFN, Roma II (Italy)]|[Istituto Superiore di Sanita and Sezione INFN, ISS, Roma (Italy)]|[Physics Department, State University of New York at Stony Brook, Stony Brook, NY (United States)]|[Dipartimento di Fisica dell`Universita e Sezione INFN, Trieste/Udine (Italy)

    1997-03-01

    The design and the status of construction of the KLOE electromagnetic calorimeter are described in this report. 18 out of 24 barrel modules have been fully assembled and more than 50% of the end-cap modules are built. All experimental specifications are fulfilled as shown by the test beam results of the final size prototype. Since the quality of fibers and photomultipliers have gone through improvements, the final calorimeter performances will exceed our expectations. The main parameters of each calorimeter module (light yield, attenuation length and time resolution) are fully surveyed using cosmic rays. Extrapolating the results to electromagnetic showers, a time resolution of 55 ps/{radical}(E(GeV)) and a resolution of 0.9 cm/{radical}(E(GeV)) on the coordinate along the fibers are obtained. An energy resolution of 4.7%/{radical}(E(GeV)) can also be quoted. (orig.).

  15. Electron-based longitudinal weights for the ATLAS EM Barrel Calorimeter and shower isolation studies with an application to the $H \\ra ZZ^{(*)} \\ra 4e$ analysis

    CERN Document Server

    Mellado, B; Quayle, W; Wu, S

    2004-01-01

    In this note a full electron-based calibration of the Electromagnetic Barrel Calorimeter is performed. The improvement in resolution and linearity for electrons of energies ranging from 10 GeV up to the TeV scale is demostrated. A new general method is proposed which can be applied in multi-lepton final states where detector level information is exploited to discriminate between signal and background. The method is applied to the H->ZZ(*)->4e channel.

  16. Construction and tests of the Atlas barrel pre sampler and study of the photon/pion rejection in the electromagnetic calorimeter; Realisation du pre-echantillonneur central d'ATLAS et etude de la separation {gamma}/{pi}{sup 0} dans le calorimetre electromagnetique

    Energy Technology Data Exchange (ETDEWEB)

    Saboumazrag, S

    2004-02-01

    ATLAS is one of the detectors which will equip the future proton-proton collider LHC at CERN. The main motivation for the ATLAS experiment is the quest for the Higgs boson. The observation of this particle would be an important step in the understanding of particle physics in the context of the standard model, with or without supersymmetry. This thesis aims to present the construction of the barrel pre-sampler which will equip the front face of the ATLAS electromagnetic calorimeter. The construction and tests of sectors were achieved at the Laboratory of Subatomic Physics and Cosmology of Grenoble. Two of these sectors were mounted on one module of the electromagnetic calorimeter and tested with electron, photon and muon beams at CERN. I participated in these tests and analysed the data. The results were compared to a Monte-Carlo simulation GEANT3. One of the difficulties lies in the necessity to discard photons coming from {pi}{sup 0} {yields} {gamma}{gamma} events because they can be mistaken for photons released in gamma channels of Higgs boson decay. In the mass range spreading from 95 MeV to 150 MeV, H{sup 0} {yields} {gamma}{gamma} is the most adequate process to detect the Higgs boson. A study of the discard parameter {gamma}/{pi}{sup 0} has been performed. For a photon detection efficiency of 90%, the average discard parameter has been assessed to be 2.5 which is slightly lower than the value given by the simulation.

  17. Electromagnetic Calorimeter Calibration with $\\pi^{0}$

    CERN Multimedia

    Puig Navarro, A

    2009-01-01

    Several methods can be used in order to achieve precise calibration of the LHCb Electromagnetic Calorimeter (ECAL) once reasonable cell equalization has been reached. At low transverse energy, the standard calibration procedure is an iterative method based on the fit of the $\\gamma\\gamma$ invariant mass distribution for each cell of the decay $\\pi^{0}\\to\\gamma\\gamma$ with resolved photons. A new technique for generating the combinatorial background of such decays directly from data has been developed. Knowledge of the background could allow an alternative calibration method based on a event by event fit of the same $\\gamma\\gamma$ invariant mass distribution where contributions from groups of cells are considered in a single fit. The background generation procedure and this possible new calibration method are presented in this poster, in addition to an overview of the LHCb Calorimetry system and ECAL calibration techniques.

  18. Periodic position dependence of the energy measured in the CMS electromagnetic calorimeter

    CERN Document Server

    Descamps, Julien

    2006-01-01

    A uniform energy measurement response of the CMS electromagnetic calorimeter ECAL is essential for precision physics at the LHC. The ECAL barrel calorimeter consists of 61200 lead tungstate crystals arranged in a quasi-projective geometry. The energy of photons reaching the ECAL will be reconstructed by summing the channels corresponding to matrices of 3x3 or 5x5 crystals centred on the crystal with the largest energy deposit. The energy measured using such matrices of fixed size has been studied using electron test beam data taken in 2004. The variation of the energy containment with the incident electron impact position on the central crystal leads to a degradation of the energy resolution. A method using only the calorimeter information is presented to correct for the position dependent response. After correction, the energy resolution performance for uniform impact distributions of the electrons on the front face of a crystal approaches that obtained for maximal containment with a central impact. The univ...

  19. Performance analysis for the CALIFA Barrel calorimeter of the R{sup 3}B experiment

    Energy Technology Data Exchange (ETDEWEB)

    Alvarez-Pol, H., E-mail: hector.alvarez@usc.es [Dpt. de Física de Partículas, Universidade de Santiago de Compostela, E-15782, Santiago de Compostela (Spain); Ashwood, N. [School of Physics and Astronomy, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom); Aumann, T. [Institut für Kernphysik, Technische Universität Darmstadt, D-64289 Darmstadt (Germany); GSI Helmholtzzentrum für Schwerionenforschung GmbH, D-64291 Darmstadt (Germany); Bertini, D. [GSI Helmholtzzentrum für Schwerionenforschung GmbH, D-64291 Darmstadt (Germany); Cabanelas, P. [Dpt. de Física de Partículas, Universidade de Santiago de Compostela, E-15782, Santiago de Compostela (Spain); Casarejos, E. [Universidade de Vigo, E-36310 Vigo (Spain); Cederkall, J. [Department of Physics, Lund University, SE 221 00 Lund (Sweden); Cortina-Gil, D.; Díaz Fernández, P.; Duran, I. [Dpt. de Física de Partículas, Universidade de Santiago de Compostela, E-15782, Santiago de Compostela (Spain); Fiori, E. [ExtreMe Matter Institute EMMI and Research Division, GSI Helmholtzzentrum für Schwerionenforschung GmbH, D-64291 Darmstadt (Germany); Frankfurt Institute for Advanced Studies, D-60438 Frankfurt am Main (Germany); Galaviz, D. [Centro de Fsica Nuclear da Universidade de Lisboa, 1649-003 Lisbon (Portugal); Labiche, M. [STFC Daresbury Laboratory, Warrington WA4 4AD (United Kingdom); Nacher, E. [Instituto de Estructura de la Materia CSIC, Madrid (Spain); Pietras, B. [Dpt. de Física de Partículas, Universidade de Santiago de Compostela, E-15782, Santiago de Compostela (Spain); and others

    2014-12-11

    The CALIFA calorimeter is an advanced detector for gamma rays and light charged particles, accordingly optimized for the demanding requirements of the physics programme proposed for the R{sup 3}B facility at FAIR. The multipurpose character of CALIFA is required to fulfil challenging demands in energy resolution (5–6% at 1 MeV for gamma rays) and efficiency. Charged particles, e.g. protons of energies up to 320 MeV in the Barrel section, should also be identified with an energy resolution better to 1%. CALIFA is divided into two well-separated sections: a “Forward EndCap” and a cylindrical “Barrel” covering an angular range from 43.2° to 140.3°. The Barrel section, based on long CsI(Tl) pyramidal frustum crystals coupled to large area avalanche photodiodes (LAAPDs), attains the requested high efficiency for calorimetric purposes. The construction of the CALIFA Demonstrator, comprising 20% of the total detector, has already been initiated, and commissioning experiments are expected for 2014. The assessment of the capabilities and expected performance of the detector elements is a crucial step in their design, along with the prototypes evaluation. For this purpose, the Barrel geometry has been carefully implemented in the simulation package R3BRoot, including easily variable thicknesses of crystal wrapping and carbon fibre supports. A complete characterization of the calorimeter response (including efficiency, resolution, evaluation of energy and reconstruction losses) under different working conditions, with several physics cases selected to probe the detector performance over a wide range of applications, has been undertaken. Prototypes of different sections of the CALIFA Barrel have been modeled and their responses have been evaluated and compared with the experimental results. The present paper summarizes the outcome of the simulation campaign for the entire Barrel section and for the corresponding prototypes tested at different European installations.

  20. An electromagnetic shashlik calorimeter with longitudinal segmentation

    CERN Document Server

    Benvenuti, Alberto C; Camporesi, T; Checchia, P; Fenyuk, A; Hedberg, V; Lishin, V A; Margoni, M; Mazzucato, M; Obraztsov, V F; Paganoni, M; Polyakov, V A; Simonetto, F; Terranova, F; Vlasov, E

    1999-01-01

    A novel technique for longitudinal segmentation of shashlik calorimeters has been tested in the CERN West Area beam facility. A 25 tower e.m. calorimeter has been built with vacuum photodiodes inserted in the first 8 radiation lengths to sample the initial development of the shower. Results concerning energy resolution, impact point reconstruction and $e/\\pi$ separation are reported.

  1. Design, performance, and calibration of CMS hadron-barrel calorimeter wedges

    Energy Technology Data Exchange (ETDEWEB)

    Abdullin, S. [Fermi National Accelerator Lab., Batavia, IL (United States)]|[Univ. of Maryland, College Park, MD (United States); Abramov, V.; Goncharov, P.; Khmelnikov, A.; Korablev, A.; Korneev, Y.; Krinitsyn, A.; Kryshkin, V.; Lukanin, V.; Pikalov, V.; Ryazanov, A.; Talov, V.; Turchanovich, L.; Volkov, A. [IHEP, Protvino (Russian Federation); Acharya, B.; Banerjee, S.; Banerjee, S.; Chendvankar, S.; Dugad, S.; Kalmani, S.; Katta, S.; Mazumdar, K.; Mondal, N.; Nagaraj, P.; Patil, M.; Reddy, L.; Satyanarayana, B.; Sudhakar, K.; Verma, P. [Tata Inst. of Fundamental Research, Mumbai (India); Adams, M.; Burchesky, K.; Qian, W. [Univ. of Illinois at Chicago, Chicago, IL (United States); Akchurin, N.; Carrell, K.; Guemues, K.; Thomas, R. [Texas Tech Univ., Dept. of Physics, Lubbock, TX (United States); Akgun, U.; Ayan, S.; Duru, F.; Merlo, J.P.; Mestvirishvili, A.; Miller, M.; Norbeck, E.; Olson, J.; Onel, Y.; Schmidt, I. [Univ. of Iowa, Iowa City, IA (United States); Anderson, E.W.; Hauptman, J. [Iowa State Univ., Ames, IA (United States); Antchev, G.; Hazen, E.; Lawlor, C.; Machado, E.; Posch, C.; Rohlf, J.; Wu, S.X. [Boston Univ., Boston, MA (United States); Aydin, S.; Dumanoglu, I.; Eskut, E.; Kayis-Topaksu, A.; Polatoz, A.; Onengut, G.; Ozdes-Koca, N. [Cukurova Univ., Adana (Turkey); Baarmand, M.; Ralich, R.; Vodopiyanov, I. [Florida Inst. of Technology, Melbourne, FL (United States); Baden, D.; Bard, R.; Eno, S.; Grassi, T.; Jarvis, C.; Kellogg, R.; Kunori, S.; Skuja, A. [Univ. of Maryland, College Park, MD (United States); Barnes, V.; Laasanen, A.; Pompos, A. [Purdue Univ., West Lafayette, IN (United States); Bawa, H.; Beri, S.; Bhatnagar, V.; Kaur, M.; Kohli, J.; Kumar, A.; Singh, J. [Panjab Univ., Chandigarh (India); Baiatian, G.; Sirunyan, A. [Yerevan Physics Inst., Yerevan (Armenia); Bencze, G.; Vesztergombi, G.; Zalan, P. [KFKI-RMKI, Research Inst. for Particle and Nuclear Physics, Budapest (Hungary)] [and others

    2008-05-15

    Extensive measurements have been made with pions, electrons and muons on four production wedges of the compact muon solenoid (CMS) hadron barrel (HB) calorimeter in the H2 beam line at CERN with particle momenta varying from 20 to 300 GeV/c. The time structure of the events was measured with the full chain of preproduction front-end electronics running at 34 MHz. Moving-wire radioactive source data were also collected for all scintillator layers in the HB. The energy dependent time slewing effect was measured and tuned for optimal performance. (orig.)

  2. The installation teams for the LHCb electromagnetic calorimeter and the LHCb hadron calorimeter

    CERN Multimedia

    Maximilien Brice

    2005-01-01

    Photo 01 : The installation team for the electromagnetic calorimeter. Top, from left to right, Serge Deckert, Robert Kristic, Bernard Chadaj, and below, Salvatore Lampis, Tengiz Kvaratskheliya, Alexandre Aref'Ev, Bruno Lieunard, Jerôme Dech, Christophe Mazeau, Cedric Fournier Photo 03 : The assembly team for the hadron calorimeter: from top to bottom, Rustem Dzhelyadin, Robert Kristic, Patrick Vallet, then left to right Vitaly Polyakov, Evgeny Chernov and Kirill Kachnov, and lastly Frank Lamour.

  3. Electromagnetic response of a highly granular hadronic calorimeter

    Energy Technology Data Exchange (ETDEWEB)

    Adloff, C.; Blaha, J.; Blaising, J.J. [Savoie Univ., CNRS/IN2P3, Annecy-le-Vieux (FR). Lab. d' Annecy-le-Vieux de Physique des Particules] (and others)

    2010-12-15

    The CALICE collaboration is studying the design of high performance electromagnetic and hadronic calorimeters for future International Linear Collider detectors. For the hadronic calorimeter, one option is a highly granular sampling calorimeter with steel as absorber and scintillator layers as active material. High granularity is obtained by segmenting the scintillator into small tiles individually read out via silicon photo-multipliers (SiPM). A prototype has been built, consisting of thirty-eight sensitive layers, segmented into about eight thousand channels. In 2007 the prototype was exposed to positrons and hadrons using the CERN SPS beam, covering a wide range of beam energies and incidence angles. The challenge of cell equalization and calibration of such a large number of channels is best validated using electromagnetic processes. The response of the prototype steel-scintillator calorimeter, including linearity and uniformity, to electrons is investigated and described. (orig.)

  4. The AMS-02 lead-scintillating fibres Electromagnetic Calorimeter

    Energy Technology Data Exchange (ETDEWEB)

    Adloff, C.; Basara, L. [LAPP, Université de Savoie, CNRS/IN2P3, Annecy-le-Vieux (France); Bigongiari, G. [Universita' degli Studi di Siena, 53100 Siena (Italy); Bosi, F. [Istituto Nazionale di Fisica Nucleare, Sezione di Pisa, 57023 Pisa (Italy); Brun, P.; Cadoux, F. [LAPP, Université de Savoie, CNRS/IN2P3, Annecy-le-Vieux (France); Cervelli, F. [Istituto Nazionale di Fisica Nucleare, Sezione di Pisa, 57023 Pisa (Italy); Chambert, V. [LAPP, Université de Savoie, CNRS/IN2P3, Annecy-le-Vieux (France); Chen, G.; Chen, G.M.; Chen, H.S. [Institute of High Energy Physics, CAS, Beijing 100049 (China); Coignet, G.; Cougoulat, G. [LAPP, Université de Savoie, CNRS/IN2P3, Annecy-le-Vieux (France); Di Falco, S. [Istituto Nazionale di Fisica Nucleare, Sezione di Pisa, 57023 Pisa (Italy); Dubois, J.M.; Elles, S. [LAPP, Université de Savoie, CNRS/IN2P3, Annecy-le-Vieux (France); Falchini, E. [Istituto Nazionale di Fisica Nucleare, Sezione di Pisa, 57023 Pisa (Italy); Fiasson, A.; Fougeron, D.; Fouque, N. [LAPP, Université de Savoie, CNRS/IN2P3, Annecy-le-Vieux (France); and others

    2013-06-21

    The Electromagnetic Calorimeter (ECAL) of the AMS-02 experiment is a fine grained lead-scintillating fibres sampling calorimeter that allows for a precise three-dimensional imaging of the longitudinal and lateral shower development. It provides a high (≥10{sup 6}) electron/hadron discrimination with the other AMS-02 detectors [1] and good energy resolution. The calorimeter also provides a standalone photon trigger capability to AMS-02. The mechanical assembly was realized to ensure minimum weight, still supporting the intrinsically heavy calorimeter during launch. ECAL light collection system and electronics are designed to measure electromagnetic particles over a wide energy range, from GeV up to TeV. A full-scale flight-like model was tested using electrons and proton beams with energies ranging from 6 to 250 GeV.

  5. The AMS-02 lead-scintillating fibres Electromagnetic Calorimeter

    Science.gov (United States)

    Adloff, C.; Basara, L.; Bigongiari, G.; Bosi, F.; Brun, P.; Cadoux, F.; Cervelli, F.; Chambert, V.; Chen, G.; Chen, G. M.; Chen, H. S.; Coignet, G.; Cougoulat, G.; Di Falco, S.; Dubois, J. M.; Elles, S.; Falchini, E.; Fiasson, A.; Fougeron, D.; Fouque, N.; Galeotti, S.; Gallucci, G.; Gherarducci, F.; Girard, L.; Giuseppe, F.; Goy, C.; Hermel, R.; Incagli, M.; Jacquemier, J.; Journet, L.; Kossakowski, R.; Lepareur, V.; Li, Z. H.; Lieunard, B.; Lomtadze, T.; Lu, Y. S.; Maestro, P.; Magazzù, C.; Maire, M.; Orsini, A.; Paniccia, M.; Pedreschi, E.; Peltier, F.; Piendibene, M.; Pilo, F.; Pochon, J.; Rambure, T.; Rosier-Lees, S.; Spinella, F.; Tang, X. W.; Tassan-Viol, J.; Tazzioli, A.; Vannini, C.; Vialle, J. P.; Zhuang, H. L.

    2013-06-01

    The Electromagnetic Calorimeter (ECAL) of the AMS-02 experiment is a fine grained lead-scintillating fibres sampling calorimeter that allows for a precise three-dimensional imaging of the longitudinal and lateral shower development. It provides a high (≥106) electron/hadron discrimination with the other AMS-02 detectors [1] and good energy resolution. The calorimeter also provides a standalone photon trigger capability to AMS-02. The mechanical assembly was realized to ensure minimum weight, still supporting the intrinsically heavy calorimeter during launch. ECAL light collection system and electronics are designed to measure electromagnetic particles over a wide energy range, from GeV up to TeV. A full-scale flight-like model was tested using electrons and proton beams with energies ranging from 6 to 250 GeV.

  6. Current Status and Performance of the BESIII Electromagnetic Calorimeter

    Science.gov (United States)

    Feldbauer, Florian; BESIII Collaboration

    2015-02-01

    The BESIII experiment is located at the Beijing Electron Positron Collider (BEPCII) in China. Its electromagnetic calorimeter (EMC) consists of 6240 CsI(TI) crystals, each read out by two Photodiodes (PD) at the end of the crystal. Changes in the response of the calorimeter due to radiation damage in the crystals or changes in the photo detector output are monitored with a light pulser system.

  7. Performances of the AMS-02 electromagnetic calorimeter

    CERN Document Server

    Cervelli, F; Lomtadze, T A; Venanzoni, G; Falchini, E; Maestro, P; Marrocchesi, P S; Paoletti, R; Pilo, F; Turini, N; Valle, G D; Coignet, G; Girard, L; Goy, C; Kossakowski, R; Lees-Rosier, S; Vialle, J P; Chen, G; Chen, H; Liu, Z; Lu, Y; Yu, Z; Zhuang, H L

    2002-01-01

    A full-scale prototype of the e.m. calorimeter for the AMS-02 experiment was tested at CERN in October 2001 using 100 GeV pion and electron beams with energy ranging from 3 to 100 GeV. The detector, a lead-scintillating fiber sampling calorimeter about 17 radiation lengths deep, is read out by an array of multianode photomultipliers. The calorimeter's high granularity allows to image the longitudinal and lateral showers development, a key issue to provide high electron /hadron discrimination. From the test beam data, linearity and energy resolution were measured as well as the effective sampling thickness. The latter was extracted from the data by fitting the longitudinal e.m. shower profiles at different energies. (9 refs).

  8. Feature-extraction algorithms for the PANDA electromagnetic calorimeter

    NARCIS (Netherlands)

    Kavatsyuk, M.; Guliyev, E.; Lemmens, P. J. J.; Loehner, H.; Poelman, T. P.; Tambave, G.; Yu, B

    2009-01-01

    The feature-extraction algorithms are discussed which have been developed for the digital front-end electronics of the electromagnetic calorimeter of the PANDA detector at the future FAIR facility. Performance parameters have been derived in test measurements with cosmic rays, particle and photon be

  9. Tests of optical glues for the PANDA electromagnetic calorimeter

    NARCIS (Netherlands)

    Dbeyssi, A.; Tomasi-Gustafsson, E.; Hennino, T.; Imre, M.; Kunne, R.; Le Galliard, C.; Marchand, D.; Maroni, A.; Ramstein, B.; Rosier, P.; Bremer, D.; Dormenev, V.; Eissner, T.; Kuske, T.; Novotny, R.; Moeini, H.; Bondarenko, O.; Kavatsyuk, M.; Loehner, H.; Messchendorp, G.; Tambave, G.

    2013-01-01

    This paper reports on the results of tests for low temperature applications of two commercial optical glues in the electromagnetic calorimeter of PANDA at FAIR. Mechanical, thermal and optical properties are presented, as well as radiation hardness to photon and proton radiation. (C) 2013 Elsevier B

  10. Tests of optical glues for the PANDA electromagnetic calorimeter

    Energy Technology Data Exchange (ETDEWEB)

    Dbeyssi, A. [Univ Paris-Sud, CNRS/IN2P3, Institut de Physique Nucléaire, UMR 8608, 91405 Orsay (France); Tomasi-Gustafsson, E., E-mail: egle.tomasi@cea.fr [Univ Paris-Sud, CNRS/IN2P3, Institut de Physique Nucléaire, UMR 8608, 91405 Orsay (France); Hennino, T.; Imre, M.; Kunne, R.; Le Galliard, C.; Marchand, D.; Maroni, A.; Ramstein, B.; Rosier, P. [Univ Paris-Sud, CNRS/IN2P3, Institut de Physique Nucléaire, UMR 8608, 91405 Orsay (France); Bremer, D.; Dormenev, V.; Eissner, T.; Kuske, T.; Novotny, R. [Physikalishes Institut II, Universität Giessen (Germany); Moeini, H.; Bondarenko, O.; Kavatsyuk, M.; Loehner, H.; Messchendorp, J.G. [Kernfysisch Versneller Institute (KVI), University of Groningen, Groningen (Netherlands); and others

    2013-09-11

    This paper reports on the results of tests for low temperature applications of two commercial optical glues in the electromagnetic calorimeter of PANDA at FAIR. Mechanical, thermal and optical properties are presented, as well as radiation hardness to photon and proton radiation.

  11. Development of shashlik electromagnetic calorimeter prototype for SoLID

    Science.gov (United States)

    Shen, C.; Wang, Y.; Xiao, D.; Han, D.; Zou, Z.; Li, Y.; Zheng, X.; Chen, J.

    2017-03-01

    A shashlik electromagnetic calorimeter will be produced in Hall A of Jefferson Laboratory for Solenoidal large Intensity Device (SoLID) to measure the energy deposition of electrons and hadrons, and to provide particle identification after the energy of the accelerator was upgraded to 12 GeV. Tsinghua University is the member of Hall A collaboration in charge of development and production of the large shashlik electromagnetic calorimeter of SoLID. One module of that calorimeter is composed by 194 layers. Each layer consists of a 1.5 mm thick plastic scintillator put on top of a 0.5 mm thick lead plate. Scintillation light is read out by wave-length shifter fibers penetrating through the calorimeter modules longitudinally along the direction of flight of the impact particle. This paper describes the design and construction of that module, as well as a few optimization studies meant to improve its performance. A detailed Geant4 simulation also shows that an energy resolution of 5%/√ E (GeV) and a good containment for electromagnetic showers can be achieved, as well as some basic electron identification. A prototype of that module will be tested soon with an electron beam at JLab.

  12. Performance of the D0 end calorimeter electromagnetic module

    Energy Technology Data Exchange (ETDEWEB)

    Aihara, Hiroaki.

    1990-10-01

    We have constructed a uranium liquid argon calorimeter which serves as the end calorimeter electromagnetic module for the DO experiment at Fermilab. We present details of the construction and the results of the tests made using electron beams ranging from 10 GeV to 150 GeV. We find the energy resolution is 15.5%/{radical}E(GeV) with a small constant term of {approximately}0.5% and the response is linear to better than {plus minus}0.5%. 5 refs., 7 figs.

  13. Calibration of the CMS Electromagnetic Calorimeter at the LHC

    CERN Document Server

    Leslie, Dawn Elizabeth

    2012-01-01

    The CMS electromagnetic calorimeter comprises 75848 lead tungstate scintillating crystals. The calibration of each channel is crucial to ensure excellent energy resolution. During data-taking in 2010 and 2011 a number of physics channels were used to compute the inter-calibration and absolute energy scale of the calorimeter. These included low mass di-photon resonances, electrons from Z and W decays and the azimuthal symmetry of low energy deposits from minimum bias events. The acquisition of the required data samples is described and results are presented for the precision of each method, together with the combined precision of the inter-calibration and absolute energy scale.

  14. The electromagnetic calorimeter of the AMS-02 experiment

    Science.gov (United States)

    Vecchi, M.; Basara, L.; Bigongiari, G.; Cervelli, F.; Chen, G.; Chen, G. M.; Chen, H. S.; Coignet, G.; Di Falco, S.; Elles, S.; Fiasson, A.; Fougeron, D.; Gallucci, G.; Goy, C.; Incagli, M.; Kossakowski, R.; Lepareur, V.; Li, Z. H.; Maire, M.; Paniccia, M.; Pilo, F.; Rosier-Lees, S.; Tang, X. W.; Vannini, C.; Vialle, J. P.; Zhuang, H. L.

    2012-12-01

    The electromagnetic calorimeter (ECAL) of the AMS-02 experiment is a 3-dimensional sampling calorimeter, made of lead and scintillating fibers. The detector allows for a high granularity, with 18 samplings in the longitudinal direction, and 72 sampling in the lateral direction. The ECAL primary goal is to measure the energy of cosmic rays up to few TeV, however, thanks to the fine grained structure, it can also provide the separation of positrons from protons, in the GeV to TeV region. A direct measurement of high energy photons with accurate energy and direction determination can also be provided.

  15. The lead-glass electromagnetic calorimeter for the SELEX experiment

    Energy Technology Data Exchange (ETDEWEB)

    M. Y. Balatz et al.

    2004-07-19

    A large-acceptance, highly segmented electromagnetic lead glass calorimeter for Experiment E781 (SELEX) at Fermi National Acceleration Laboratory was designed and built. This detector has been used to reconstruct photons and electrons with energies ranging from few GeV up to 500 GeV in the collisions of the 650 GeV {Sigma}{sup -} hyperons and {pi}{sup -} mesons with the target nucleons. The design, calibration and performance of the calorimeter are described. Energy resolution and position resolution are assessed using both calibration electron beams and {pi}{sup 0} mesons reconstructed in 650 GeV hadron-hadron interactions. The performance of the calorimeter in selecting resonant states that involve photons is demonstrated.

  16. Beam Tests of the BAYAN Electromagnetic Calorimeter

    CERN Document Server

    Kryshkin, V I; CERN. Geneva; Lishin, V A; Polyakov, V A; Prokoshkin, Yu D; Singovsky, A V; Shagin, P M; Shtannikov, A V; Proskuryakov, A L

    1993-01-01

    A new version of fine sampling lead-scintillator calorimeter (BAYAN) has been studied as a promising EM-detector in collider experiments, as well as in fixed-target experiments at high energy / intensity accelerators. Two prototypes have been tested in a 9 GeV electron beam at the IHEP 70 GeV proton synchrotron. The light yield for a minium ionizing particle amounts 30 photons per 1mm of track length in a scintillator. The number of photoelectrons in a S20 photocathode PM produced by EM-shower is measured to be 2500 phe/GeV and may be increased two times or more. BAYAN response is uniform within 1.2% when electron beam moves across its surface.

  17. Electromagnetic Shower Properties in a Lead-Scintillator Sampling Calorimeter

    CERN Document Server

    Kotwal, Ashutosh V

    2013-01-01

    The Collider Detector at Fermilab (CDF) is a general-purpose experimental apparatus with an inner tracking detector for measuring charged particles, surrounded by a calorimeter for measurements of electromagnetic and hadronic showers. We describe a {\\sc geant4} simulation and parameterization of the response of the CDF central electromagnetic calorimeter (CEM) to incident electrons and photons. The detector model consists of a detailed description of the CEM geometry and material in the direction of the incident particle's trajectory, and of the passive material between the tracker and the CEM. We use {\\sc geant4} to calculate the distributions of: the energy that leaks from the back of the CEM, the energy fraction sampled by the scintillators, and the energy dependence of the response. We parameterize these distributions to accurately model electron and photon response and resolution in a custom simulation for the measurement of the $W$ boson mass.

  18. Some studies of data using the STAR endcap electromagnetic calorimeter.

    Energy Technology Data Exchange (ETDEWEB)

    Krueger, K.; Spinka, H. M.; Underwood, D. G.; High Energy Physics

    2009-02-24

    A series of studies was performed using data from the STAR detector at the Brookhaven National Laboratory's RHIC accelerator from collisions of protons at {radical}s = 200 GeV. Many of these involved the shower maximum detector (SMD) of the STAR endcap electromagnetic calorimeter (EEMC). Detailed studies of photon candidates from {eta} {yields} {gamma}{gamma} decay, and of {gamma} + Jet inclusive data and simulated events were performed.

  19. Time Reconstruction and Performance of the CMS Electromagnetic Calorimeter

    CERN Document Server

    Chatrchyan, S; Sirunyan, A M; Adam, W; Arnold, B; Bergauer, H; Bergauer, T; Dragicevic, M; Eichberger, M; Erö, J; Friedl, M; Frühwirth, R; Ghete, V M; Hammer, J; Hänsel, S; Hoch, M; Hörmann, N; Hrubec, J; Jeitler, M; Kasieczka, G; Kastner, K; Krammer, M; Liko, D; Magrans de Abril, I; Mikulec, I; Mittermayr, F; Neuherz, B; Oberegger, M; Padrta, M; Pernicka, M; Rohringer, H; Schmid, S; Schöfbeck, R; Schreiner, T; Stark, R; Steininger, H; Strauss, J; Taurok, A; Teischinger, F; Themel, T; Uhl, D; Wagner, P; Waltenberger, W; Walzel, G; Widl, E; Wulz, C E; Chekhovsky, V; Dvornikov, O; Emeliantchik, I; Litomin, A; Makarenko, V; Marfin, I; Mossolov, V; Shumeiko, N; Solin, A; Stefanovitch, R; Suarez Gonzalez, J; Tikhonov, A; Fedorov, A; Karneyeu, A; Korzhik, M; Panov, V; Zuyeuski, R; Kuchinsky, P; Beaumont, W; Benucci, L; Cardaci, M; De Wolf, E A; Delmeire, E; Druzhkin, D; Hashemi, M; Janssen, X; Maes, T; Mucibello, L; Ochesanu, S; Rougny, R; Selvaggi, M; Van Haevermaet, H; Van Mechelen, P; Van Remortel, N; Adler, V; Beauceron, S; Blyweert, S; D'Hondt, J; De Weirdt, S; Devroede, O; Heyninck, J; Kalogeropoulos, A; Maes, J; Maes, M; Mozer, M U; Tavernier, S; Van Doninck, W; Van Mulders, P; Villella, I; Bouhali, O; Chabert, E C; Charaf, O; Clerbaux, B; De Lentdecker, G; Dero, V; Elgammal, S; Gay, A P R; Hammad, G H; Marage, P E; Rugovac, S; Vander Velde, C; Vanlaer, P; Wickens, J; Grunewald, M; Klein, B; Marinov, A; Ryckbosch, D; Thyssen, F; Tytgat, M; Vanelderen, L; Verwilligen, P; Basegmez, S; Bruno, G; Caudron, J; Delaere, C; Demin, P; Favart, D; Giammanco, A; Grégoire, G; Lemaitre, V; Militaru, O; Ovyn, S; Piotrzkowski, K; Quertenmont, L; Schul, N; Beliy, N; Daubie, E; Alves, G A; Pol, M E; Souza, M H G; Carvalho, W; De Jesus Damiao, D; De Oliveira Martins, C; Fonseca De Souza, S; Mundim, L; Oguri, V; Santoro, A; Silva Do Amaral, S M; Sznajder, A; Fernandez Perez Tomei, T R; Ferreira Dias, M A; Gregores, E M; Novaes, S F; Abadjiev, K; Anguelov, T; Damgov, J; Darmenov, N; Dimitrov, L; Genchev, V; Iaydjiev, P; Piperov, S; Stoykova, S; Sultanov, G; Trayanov, R; Vankov, I; Dimitrov, A; Dyulendarova, M; Kozhuharov, V; Litov, L; Marinova, E; Mateev, M; Pavlov, B; Petkov, P; Toteva, Z; Chen, G M; Chen, H S; Guan, W; Jiang, C H; Liang, D; Liu, B; Meng, X; Tao, J; Wang, J; Wang, Z; Xue, Z; Zhang, Z; Ban, Y; Cai, J; Ge, Y; Guo, S; Hu, Z; Mao, Y; Qian, S J; Teng, H; Zhu, B; Avila, C; Baquero Ruiz, M; Carrillo Montoya, C A; Gomez, A; Gomez Moreno, B; Ocampo Rios, A A; Osorio Oliveros, A F; Reyes Romero, D; Sanabria, J C; Godinovic, N; Lelas, K; Plestina, R; Polic, D; Puljak, I; Antunovic, Z; Dzelalija, M; Brigljevic, V; Duric, S; Kadija, K; Morovic, S; Fereos, R; Galanti, M; Mousa, J; Papadakis, A; Ptochos, F; Razis, P A; Tsiakkouri, D; Zinonos, Z; Hektor, A; Kadastik, M; Kannike, K; Müntel, M; Raidal, M; Rebane, L; Anttila, E; Czellar, S; Härkönen, J; Heikkinen, A; Karimäki, V; Kinnunen, R; Klem, J; Kortelainen, M J; Lampén, T; Lassila-Perini, K; Lehti, S; Lindén, T; Luukka, P; Mäenpää, T; Nysten, J; Tuominen, E; Tuominiemi, J; Ungaro, D; Wendland, L; Banzuzi, K; Korpela, A; Tuuva, T; Nedelec, P; Sillou, D; Besancon, M; Chipaux, R; Dejardin, M; Denegri, D; Descamps, J; Fabbro, B; Faure, J L; Ferri, F; Ganjour, S; Gentit, F X; Givernaud, A; Gras, P; Hamel de Monchenault, G; Jarry, P; Lemaire, M C; Locci, E; Malcles, J; Marionneau, M; Millischer, L; Rander, J; Rosowsky, A; Rousseau, D; Titov, M; Verrecchia, P; Baffioni, S; Bianchini, L; Bluj, M; Busson, P; Charlot, C; Dobrzynski, L; Granier de Cassagnac, R; Haguenauer, M; Miné, P; Paganini, P; Sirois, Y; Thiebaux, C; Zabi, A; Agram, J L; Besson, A; Bloch, D; Bodin, D; Brom, J M; Conte, E; Drouhin, F; Fontaine, J C; Gelé, D; Goerlach, U; Gross, L; Juillot, P; Le Bihan, A C; Patois, Y; Speck, J; Van Hove, P; Baty, C; Bedjidian, M; Blaha, J; Boudoul, G; Brun, H; Chanon, N; Chierici, R; Contardo, D; Depasse, P; Dupasquier, T; El Mamouni, H; Fassi, F; Fay, J; Gascon, S; Ille, B; Kurca, T; Le Grand, T; Lethuillier, M; Lumb, N; Mirabito, L; Perries, S; Vander Donckt, M; Verdier, P; Djaoshvili, N; Roinishvili, N; Roinishvili, V; Amaglobeli, N; Adolphi, R; Anagnostou, G; Brauer, R; Braunschweig, W; Edelhoff, M; Esser, H; Feld, L; Karpinski, W; Khomich, A; Klein, K; Mohr, N; Ostaptchouk, A; Pandoulas, D; Pierschel, G; Raupach, F; Schael, S; Schultz von Dratzig, A; Schwering, G; Sprenger, D; Thomas, M; Weber, M; Wittmer, B; Wlochal, M; Actis, O; Altenhöfer, G; Bender, W; Biallass, P; Erdmann, M; Fetchenhauer, G; Frangenheim, J; Hebbeker, T; Hilgers, G; Hinzmann, A; Hoepfner, K; Hof, C; Kirsch, M; Klimkovich, T; Kreuzer, P; Lanske, D; Merschmeyer, M; Meyer, A; Philipps, B; Pieta, H; Reithler, H; Schmitz, S A; Sonnenschein, L; Sowa, M; Steggemann, J; Szczesny, H; Teyssier, D; Zeidler, C; Bontenackels, M; Davids, M; Duda, M; Flügge, G; Geenen, H; Giffels, M; Haj Ahmad, W; Hermanns, T; Heydhausen, D; Kalinin, S; Kress, T; Linn, A; Nowack, A; Perchalla, L; Poettgens, M; Pooth, O; Sauerland, P; Stahl, A; Tornier, D; Zoeller, M H; Aldaya Martin, M; Behrens, U; Borras, K; Campbell, A; Castro, E; Dammann, D; Eckerlin, G; Flossdorf, A; Flucke, G; Geiser, A; Hatton, D; Hauk, J; Jung, H; Kasemann, M; Katkov, I; Kleinwort, C; Kluge, H; Knutsson, A; Kuznetsova, E; Lange, W; Lohmann, W; Mankel, R; Marienfeld, M; Meyer, A B; Miglioranzi, S; Mnich, J; Ohlerich, M; Olzem, J; Parenti, A; Rosemann, C; Schmidt, R; Schoerner-Sadenius, T; Volyanskyy, D; Wissing, C; Zeuner, W D; Autermann, C; Bechtel, F; Draeger, J; Eckstein, D; Gebbert, U; Kaschube, K; Kaussen, G; Klanner, R; Mura, B; Naumann-Emme, S; Nowak, F; Pein, U; Sander, C; Schleper, P; Schum, T; Stadie, H; Steinbrück, G; Thomsen, J; Wolf, R; Bauer, J; Blüm, P; Buege, V; Cakir, A; Chwalek, T; De Boer, W; Dierlamm, A; Dirkes, G; Feindt, M; Felzmann, U; Frey, M; Furgeri, A; Gruschke, J; Hackstein, C; Hartmann, F; Heier, S; Heinrich, M; Held, H; Hirschbuehl, D; Hoffmann, K H; Honc, S; Jung, C; Kuhr, T; Liamsuwan, T; Martschei, D; Mueller, S; Müller, Th; Neuland, M B; Niegel, M; Oberst, O; Oehler, A; Ott, J; Peiffer, T; Piparo, D; Quast, G; Rabbertz, K; Ratnikov, F; Ratnikova, N; Renz, M; Saout, C; Sartisohn, G; Scheurer, A; Schieferdecker, P; Schilling, F P; Schott, G; Simonis, H J; Stober, F M; Sturm, P; Troendle, D; Trunov, A; Wagner, W; Wagner-Kuhr, J; Zeise, M; Zhukov, V; Ziebarth, E B; Daskalakis, G; Geralis, T; Karafasoulis, K; Kyriakis, A; Loukas, D; Markou, A; Markou, C; Mavrommatis, C; Petrakou, E; Zachariadou, A; Gouskos, L; Katsas, P; Panagiotou, A; Evangelou, I; Kokkas, P; Manthos, N; Papadopoulos, I; Patras, V; Triantis, F A; Bencze, G; Boldizsar, L; Debreczeni, G; Hajdu, C; Hernath, S; Hidas, P; Horvath, D; Krajczar, K; Laszlo, A; Patay, G; Sikler, F; Toth, N; Vesztergombi, G; Beni, N; Christian, G; Imrek, J; Molnar, J; Novak, D; Palinkas, J; Szekely, G; Szillasi, Z; Tokesi, K; Veszpremi, V; Kapusi, A; Marian, G; Raics, P; Szabo, Z; Trocsanyi, Z L; Ujvari, B; Zilizi, G; Bansal, S; Bawa, H S; Beri, S B; Bhatnagar, V; Jindal, M; Kaur, M; Kaur, R; Kohli, J M; Mehta, M Z; Nishu, N; Saini, L K; Sharma, A; Singh, A; Singh, J B; Singh, S P; Ahuja, S; Arora, S; Bhattacharya, S; Chauhan, S; Choudhary, B C; Gupta, P; Jain, S; Jain, S; Jha, M; Kumar, A; Ranjan, K; Shivpuri, R K; Srivastava, A K; Choudhury, R K; Dutta, D; Kailas, S; Kataria, S K; Mohanty, A K; Pant, L M; Shukla, P; Topkar, A; Aziz, T; Guchait, M; Gurtu, A; Maity, M; Majumder, D; Majumder, G; Mazumdar, K; Nayak, A; Saha, A; Sudhakar, K; Banerjee, S; Dugad, S; Mondal, N K; Arfaei, H; Bakhshiansohi, H; Fahim, A; Jafari, A; Mohammadi Najafabadi, M; Moshaii, A; Paktinat Mehdiabadi, S; Rouhani, S; Safarzadeh, B; Zeinali, M; Felcini, M; Abbrescia, M; Barbone, L; Chiumarulo, F; Clemente, A; Colaleo, A; Creanza, D; Cuscela, G; De Filippis, N; De Palma, M; De Robertis, G; Donvito, G; Fedele, F; Fiore, L; Franco, M; Iaselli, G; Lacalamita, N; Loddo, F; Lusito, L; Maggi, G; Maggi, M; Manna, N; Marangelli, B; My, S; Natali, S; Nuzzo, S; Papagni, G; Piccolomo, S; Pierro, G A; Pinto, C; Pompili, A; Pugliese, G; Rajan, R; Ranieri, A; Romano, F; Roselli, G; Selvaggi, G; Shinde, Y; Silvestris, L; Tupputi, S; Zito, G; Abbiendi, G; Bacchi, W; Benvenuti, A C; Boldini, M; Bonacorsi, D; Braibant-Giacomelli, S; Cafaro, V D; Caiazza, S S; Capiluppi, P; Castro, A; Cavallo, F R; Codispoti, G; Cuffiani, M; D'Antone, I; Dallavalle, G M; Fabbri, F; Fanfani, A; Fasanella, D; Giacomelli, P; Giordano, V; Giunta, M; Grandi, C; Guerzoni, M; Marcellini, S; Masetti, G; Montanari, A; Navarria, F L; Odorici, F; Pellegrini, G; Perrotta, A; Rossi, A M; Rovelli, T; Siroli, G; Torromeo, G; Travaglini, R; Albergo, S; Costa, S; Potenza, R; Tricomi, A; Tuve, C; Barbagli, G; Broccolo, G; Ciulli, V; Civinini, C; D'Alessandro, R; Focardi, E; Frosali, S; Gallo, E; Genta, C; Landi, G; Lenzi, P; Meschini, M; Paoletti, S; Sguazzoni, G; Tropiano, A; Benussi, L; Bertani, M; Bianco, S; Colafranceschi, S; Colonna, D; Fabbri, F; Giardoni, M; Passamonti, L; Piccolo, D; Pierluigi, D; Ponzio, B; Russo, A; Fabbricatore, P; Musenich, R; Benaglia, A; Calloni, M; Cerati, G B; D'Angelo, P; De Guio, F; Farina, F M; Ghezzi, A; Govoni, P; Malberti, M; Malvezzi, S; Martelli, A; Menasce, D; Miccio, V; Moroni, L; Negri, P; Paganoni, M; Pedrini, D; Pullia, A; Ragazzi, S; Redaelli, N; Sala, S; Salerno, R; Tabarelli de Fatis, T; Tancini, V; Taroni, S; Buontempo, S; Cavallo, N; Cimmino, A; De Gruttola, M; Fabozzi, F; Iorio, A O M; Lista, L; Lomidze, D; Noli, P; Paolucci, P; Sciacca, C; Azzi, P; Bacchetta, N; Barcellan, L; Bellan, P; Bellato, M; Benettoni, M; Biasotto, M; Bisello, D; Borsato, E; Branca, A; Carlin, R; Castellani, L; Checchia, P; Conti, E; Dal Corso, F; De Mattia, M; Dorigo, T; Dosselli, U; Fanzago, F; Gasparini, F; Gasparini, U; Giubilato, P; Gonella, F; Gresele, A; Gulmini, M; Kaminskiy, A; Lacaprara, S; Lazzizzera, I; Margoni, M; Maron, G; Mattiazzo, S; Mazzucato, M; Meneghelli, M; Meneguzzo, A T; Michelotto, M; Montecassiano, F; Nespolo, M; Passaseo, M; Pegoraro, M; Perrozzi, L; Pozzobon, N; Ronchese, P; Simonetto, F; Toniolo, N; Torassa, E; Tosi, M; Triossi, A; Vanini, S; Ventura, S; Zotto, P; Zumerle, G; Baesso, P; Berzano, U; Bricola, S; Necchi, M M; Pagano, D; Ratti, S P; Riccardi, C; Torre, P; Vicini, A; Vitulo, P; Viviani, C; Aisa, D; Aisa, S; Babucci, E; Biasini, M; Bilei, G M; Caponeri, B; Checcucci, B; Dinu, N; Fanò, L; Farnesini, L; Lariccia, P; Lucaroni, A; Mantovani, G; Nappi, A; Piluso, A; Postolache, V; Santocchia, A; Servoli, L; Tonoiu, D; Vedaee, A; Volpe, R; Azzurri, P; Bagliesi, G; Bernardini, J; Berretta, L; Boccali, T; Bocci, A; Borrello, L; Bosi, F; Calzolari, F; Castaldi, R; Dell'Orso, R; Fiori, F; Foà, L; Gennai, S; Giassi, A; Kraan, A; Ligabue, F; Lomtadze, T; Mariani, F; Martini, L; Massa, M; Messineo, A; Moggi, A; Palla, F; Palmonari, F; Petragnani, G; Petrucciani, G; Raffaelli, F; Sarkar, S; Segneri, G; Serban, A T; Spagnolo, P; Tenchini, R; Tolaini, S; Tonelli, G; Venturi, A; Verdini, P G; Baccaro, S; Barone, L; Bartoloni, A; Cavallari, F; Dafinei, I; Del Re, D; Di Marco, E; Diemoz, M; Franci, D; Longo, E; Organtini, G; Palma, A; Pandolfi, F; Paramatti, R; Pellegrino, F; Rahatlou, S; Rovelli, C; Alampi, G; Amapane, N; Arcidiacono, R; Argiro, S; Arneodo, M; Biino, C; Borgia, M A; Botta, C; Cartiglia, N; Castello, R; Cerminara, G; Costa, M; Dattola, D; Dellacasa, G; Demaria, N; Dughera, G; Dumitrache, F; Graziano, A; Mariotti, C; Marone, M; Maselli, S; Migliore, E; Mila, G; Monaco, V; Musich, M; Nervo, M; Obertino, M M; Oggero, S; Panero, R; Pastrone, N; Pelliccioni, M; Romero, A; Ruspa, M; Sacchi, R; Solano, A; Staiano, A; Trapani, P P; Trocino, D; Vilela Pereira, A; Visca, L; Zampieri, A; Ambroglini, F; Belforte, S; Cossutti, F; Della Ricca, G; Gobbo, B; Penzo, A; Chang, S; Chung, J; Kim, D H; Kim, G N; Kong, D J; Park, H; Son, D C; Bahk, S Y; Song, S; Jung, S Y; Hong, B; Kim, H; Kim, J H; Lee, K S; Moon, D H; Park, S K; Rhee, H B; Sim, K S; Kim, J; Choi, M; Hahn, G; Park, I C; Choi, S; Choi, Y; Goh, J; Jeong, H; Kim, T J; Lee, J; Lee, S; Janulis, M; Martisiute, D; Petrov, P; Sabonis, T; Castilla Valdez, H; Sánchez Hernández, A; Carrillo Moreno, S; Morelos Pineda, A; Allfrey, P; Gray, R N C; Krofcheck, D; Bernardino Rodrigues, N; Butler, P H; Signal, T; Williams, J C; Ahmad, M; Ahmed, I; Ahmed, W; Asghar, M I; Awan, M I M; Hoorani, H R; Hussain, I; Khan, W A; Khurshid, T; Muhammad, S; Qazi, S; Shahzad, H; Cwiok, M; Dabrowski, R; Dominik, W; Doroba, K; Konecki, M; Krolikowski, J; Pozniak, K; Romaniuk, Ryszard; Zabolotny, W; Zych, P; Frueboes, T; Gokieli, R; Goscilo, L; Górski, M; Kazana, M; Nawrocki, K; Szleper, M; Wrochna, G; Zalewski, P; Almeida, N; Antunes Pedro, L; Bargassa, P; David, A; Faccioli, P; Ferreira Parracho, P G; Freitas Ferreira, M; Gallinaro, M; Guerra Jordao, M; Martins, P; Mini, G; Musella, P; Pela, J; Raposo, L; Ribeiro, P Q; Sampaio, S; Seixas, J; Silva, J; Silva, P; Soares, D; Sousa, M; Varela, J; Wöhri, H K; Altsybeev, I; Belotelov, I; Bunin, P; Ershov, Y; Filozova, I; Finger, M; Finger, M Jr; Golunov, A; Golutvin, I; Gorbounov, N; Kalagin, V; Kamenev, A; Karjavin, V; Konoplyanikov, V; Korenkov, V; Kozlov, G; Kurenkov, A; Lanev, A; Makankin, A; Mitsyn, V V; Moisenz, P; Nikonov, E; Oleynik, D; Palichik, V; Perelygin, V; Petrosyan, A; Semenov, R; Shmatov, S; Smirnov, V; Smolin, D; Tikhonenko, E; Vasil'ev, S; Vishnevskiy, A; Volodko, A; Zarubin, A; Zhiltsov, V; Bondar, N; Chtchipounov, L; Denisov, A; Gavrikov, Y; Gavrilov, G; Golovtsov, V; Ivanov, Y; Kim, V; Kozlov, V; Levchenko, P; Obrant, G; Orishchin, E; Petrunin, A; Shcheglov, Y; Shchetkovskiy, A; Sknar, V; Smirnov, I; Sulimov, V; Tarakanov, V; Uvarov, L; Vavilov, S; Velichko, G; Volkov, S; Vorobyev, A; Andreev, Yu; Anisimov, A; Antipov, P; Dermenev, A; Gninenko, S; Golubev, N; Kirsanov, M; Krasnikov, N; Matveev, V; Pashenkov, A; Postoev, V E; Solovey, A; Solovey, A; Toropin, A; Troitsky, S; Baud, A; Epshteyn, V; Gavrilov, V; Ilina, N; Kaftanov, V; Kolosov, V; Kossov, M; Krokhotin, A; Kuleshov, S; Oulianov, A; Safronov, G; Semenov, S; Shreyber, I; Stolin, V; Vlasov, E; Zhokin, A; Boos, E; Dubinin, M; Dudko, L; Ershov, A; Gribushin, A; Klyukhin, V; Kodolova, O; Lokhtin, I; Petrushanko, S; Sarycheva, L; Savrin, V; Snigirev, A; Vardanyan, I; Dremin, I; Kirakosyan, M; Konovalova, N; Rusakov, S V; Vinogradov, A; Akimenko, S; Artamonov, A; Azhgirey, I; Bitioukov, S; Burtovoy, V; Grishin, V; Kachanov, V; Konstantinov, D; Krychkine, V; Levine, A; Lobov, I; Lukanin, V; Mel'nik, Y; Petrov, V; Ryutin, R; Slabospitsky, S; Sobol, A; Sytine, A; Tourtchanovitch, L; Troshin, S; Tyurin, N; Uzunian, A; Volkov, A; Adzic, P; Djordjevic, M; Jovanovic, D; Krpic, D; Maletic, D; Puzovic, J; Smiljkovic, N; Aguilar-Benitez, M; Alberdi, J; Alcaraz Maestre, J; Arce, P; Barcala, J M; Battilana, C; Burgos Lazaro, C; Caballero Bejar, J; Calvo, E; Cardenas Montes, M; Cepeda, M; Cerrada, M; Chamizo Llatas, M; Clemente, F; Colino, N; Daniel, M; De La Cruz, B; Delgado Peris, A; Diez Pardos, C; Fernandez Bedoya, C; Fernández Ramos, J P; Ferrando, A; Flix, J; Fouz, M C; Garcia-Abia, P; Garcia-Bonilla, A C; Gonzalez Lopez, O; Goy Lopez, S; Hernandez, J M; Josa, M I; Marin, J; Merino, G; Molina, J; Molinero, A; Navarrete, J J; Oller, J C; Puerta Pelayo, J; Romero, L; Santaolalla, J; Villanueva Munoz, C; Willmott, C; Yuste, C; Albajar, C; Blanco Otano, M; de Trocóniz, J F; Garcia Raboso, A; Lopez Berengueres, J O; Cuevas, J; Fernandez Menendez, J; Gonzalez Caballero, I; Lloret Iglesias, L; Naves Sordo, H; Vizan Garcia, J M; Cabrillo, I J; Calderon, A; Chuang, S H; Diaz Merino, I; Diez Gonzalez, C; Duarte Campderros, J; Fernandez, M; Gomez, G; Gonzalez Sanchez, J; Gonzalez Suarez, R; Jorda, C; Lobelle Pardo, P; Lopez Virto, A; Marco, J; Marco, R; Martinez Rivero, C; Martinez Ruiz del Arbol, P; Matorras, F; Rodrigo, T; Ruiz Jimeno, A; Scodellaro, L; Sobron Sanudo, M; Vila, I; Vilar Cortabitarte, R; Abbaneo, D; Albert, E; Alidra, M; Ashby, S; Auffray, E; Baechler, J; Baillon, P; Ball, A H; Bally, S L; Barney, D; Beaudette, F; Bellan, R; Benedetti, D; Benelli, G; Bernet, C; Bloch, P; Bolognesi, S; Bona, M; Bos, J; Bourgeois, N; Bourrel, T; Breuker, H; Bunkowski, K; Campi, D; Camporesi, T; Cano, E; Cattai, A; Chatelain, J P; Chauvey, M; Christiansen, T; Coarasa Perez, J A; Conde Garcia, A; Covarelli, R; Curé, B; De Roeck, A; Delachenal, V; Deyrail, D; Di Vincenzo, S; Dos Santos, S; Dupont, T; Edera, L M; Elliott-Peisert, A; Eppard, M; Favre, M; Frank, N; Funk, W; Gaddi, A; Gastal, M; Gateau, M; Gerwig, H; Gigi, D; Gill, K; Giordano, D; Girod, J P; Glege, F; Gomez-Reino Garrido, R; Goudard, R; Gowdy, S; Guida, R; Guiducci, L; Gutleber, J; Hansen, M; Hartl, C; Harvey, J; Hegner, B; Hoffmann, H F; Holzner, A; Honma, A; Huhtinen, M; Innocente, V; Janot, P; Le Godec, G; Lecoq, P; Leonidopoulos, C; Loos, R; Lourenço, C; Lyonnet, A; Macpherson, A; Magini, N; Maillefaud, J D; Maire, G; Mäki, T; Malgeri, L; Mannelli, M; Masetti, L; Meijers, F; Meridiani, P; Mersi, S; Meschi, E; Meynet Cordonnier, A; Moser, R; Mulders, M; Mulon, J; Noy, M; Oh, A; Olesen, G; Onnela, A; Orimoto, T; Orsini, L; Perez, E; Perinic, G; Pernot, J F; Petagna, P; Petiot, P; Petrilli, A; Pfeiffer, A; Pierini, M; Pimiä, M; Pintus, R; Pirollet, B; Postema, H; Racz, A; Ravat, S; Rew, S B; Rodrigues Antunes, J; Rolandi, G; Rovere, M; Ryjov, V; Sakulin, H; Samyn, D; Sauce, H; Schäfer, C; Schlatter, W D; Schröder, M; Schwick, C; Sciaba, A; Segoni, I; Sharma, A; Siegrist, N; Siegrist, P; Sinanis, N; Sobrier, T; Sphicas, P; Spiga, D; Spiropulu, M; Stöckli, F; Traczyk, P; Tropea, P; Troska, J; Tsirou, A; Veillet, L; Veres, G I; Voutilainen, M; Wertelaers, P; Zanetti, M; Bertl, W; Deiters, K; Erdmann, W; Gabathuler, K; Horisberger, R; Ingram, Q; Kaestli, H C; König, S; Kotlinski, D; Langenegger, U; Meier, F; Renker, D; Rohe, T; Sibille, J; Starodumov, A; Betev, B; Caminada, L; Chen, Z; Cittolin, S; Da Silva Di Calafiori, D R; Dambach, S; Dissertori, G; Dittmar, M; Eggel, C; Eugster, J; Faber, G; Freudenreich, K; Grab, C; Hervé, A; Hintz, W; Lecomte, P; Luckey, P D; Lustermann, W; Marchica, C; Milenovic, P; Moortgat, F; Nardulli, A; Nessi-Tedaldi, F; Pape, L; Pauss, F; Punz, T; Rizzi, A; Ronga, F J; Sala, L; Sanchez, A K; Sawley, M C; Sordini, V; Stieger, B; Tauscher, L; Thea, A; Theofilatos, K; Treille, D; Trüb, P; Weber, M; Wehrli, L; Weng, J; Zelepoukine, S; Amsler, C; Chiochia, V; De Visscher, S; Regenfus, C; Robmann, P; Rommerskirchen, T; Schmidt, A; Tsirigkas, D; Wilke, L; Chang, Y H; Chen, E A; Chen, W T; Go, A; Kuo, C M; Li, S W; Lin, W; Bartalini, P; Chang, P; Chao, Y; Chen, K F; Hou, W S; Hsiung, Y; Lei, Y J; Lin, S W; Lu, R S; Schümann, J; Shiu, J G; Tzeng, Y M; Ueno, K; Velikzhanin, Y; Wang, C C; Wang, M; Adiguzel, A; Ayhan, A; Azman Gokce, A; Bakirci, M N; Cerci, S; Dumanoglu, I; Eskut, E; Girgis, S; Gurpinar, E; Hos, I; Karaman, T; Karaman, T; Kayis Topaksu, A; Kurt, P; Önengüt, G; Önengüt Gökbulut, G; Ozdemir, K; Ozturk, S; Polatöz, A; Sogut, K; Tali, B; Topakli, H; Uzun, D; Vergili, L N; Vergili, M; Akin, I V; Aliev, T; Bilmis, S; Deniz, M; Gamsizkan, H; Guler, A M; Öcalan, K; Serin, M; Sever, R; Surat, U E; Zeyrek, M; Deliomeroglu, M; Demir, D; Gülmez, E; Halu, A; Isildak, B; Kaya, M; Kaya, O; Ozkorucuklu, S; Sonmez, N; Levchuk, L; Lukyanenko, S; Soroka, D; Zub, S; Bostock, F; Brooke, J J; Cheng, T L; Cussans, D; Frazier, R; Goldstein, J; Grant, N; Hansen, M; Heath, G P; Heath, H F; Hill, C; Huckvale, B; Jackson, J; Mackay, C K; Metson, S; Newbold, D M; Nirunpong, K; Smith, V J; Velthuis, J; Walton, R; Bell, K W; Brew, C; Brown, R M; Camanzi, B; Cockerill, D J A; Coughlan, J A; Geddes, N I; Harder, K; Harper, S; Kennedy, B W; Murray, P; Shepherd-Themistocleous, C H; Tomalin, I R; Williams, J H; Womersley, W J; Worm, S D; Bainbridge, R; Ball, G; Ballin, J; Beuselinck, R; Buchmuller, O; Colling, D; Cripps, N; Davies, G; Della Negra, M; Foudas, C; Fulcher, J; Futyan, D; Hall, G; Hays, J; Iles, G; Karapostoli, G; MacEvoy, B C; Magnan, A M; Marrouche, J; Nash, J; Nikitenko, A; Papageorgiou, A; Pesaresi, M; Petridis, K; Pioppi, M; Raymond, D M; Rompotis, N; Rose, A; Ryan, M J; Seez, C; Sharp, P; Sidiropoulos, G; Stettler, M; Stoye, M; Takahashi, M; Tapper, A; Timlin, C; Tourneur, S; Vazquez Acosta, M; Virdee, T; Wakefield, S; Wardrope, D; Whyntie, T; Wingham, M; Cole, J E; Goitom, I; Hobson, P R; Khan, A; Kyberd, P; Leslie, D; Munro, C; Reid, I D; Siamitros, C; Taylor, R; Teodorescu, L; Yaselli, I; Bose, T; Carleton, M; Hazen, E; Heering, A H; Heister, A; John, J St; Lawson, P; Lazic, D; Osborne, D; Rohlf, J; Sulak, L; Wu, S; Andrea, J; Avetisyan, A; Bhattacharya, S; Chou, J P; Cutts, D; Esen, S; Kukartsev, G; Landsberg, G; Narain, M; Nguyen, D; Speer, T; Tsang, K V; Breedon, R; Calderon De La Barca Sanchez, M; Case, M; Cebra, D; Chertok, M; Conway, J; Cox, P T; Dolen, J; Erbacher, R; Friis, E; Ko, W; Kopecky, A; Lander, R; Lister, A; Liu, H; Maruyama, S; Miceli, T; Nikolic, M; Pellett, D; Robles, J; Searle, M; Smith, J; Squires, M; Stilley, J; Tripathi, M; Vasquez Sierra, R; Veelken, C; Andreev, V; Arisaka, K; Cline, D; Cousins, R; Erhan, S; Hauser, J; Ignatenko, M; Jarvis, C; Mumford, J; Plager, C; Rakness, G; Schlein, P; Tucker, J; Valuev, V; Wallny, R; Yang, X; Babb, J; Bose, M; Chandra, A; Clare, R; Ellison, J A; Gary, J W; Hanson, G; Jeng, G Y; Kao, S C; Liu, F; Liu, H; Luthra, A; Nguyen, H; Pasztor, G; Satpathy, A; Shen, B C; Stringer, R; Sturdy, J; Sytnik, V; Wilken, R; Wimpenny, S; Branson, J G; Dusinberre, E; Evans, D; Golf, F; Kelley, R; Lebourgeois, M; Letts, J; Lipeles, E; Mangano, B; Muelmenstaedt, J; Norman, M; Padhi, S; Petrucci, A; Pi, H; Pieri, M; Ranieri, R; Sani, M; Sharma, V; Simon, S; Würthwein, F; Yagil, A; Campagnari, C; D'Alfonso, M; Danielson, T; Garberson, J; Incandela, J; Justus, C; Kalavase, P; Koay, S A; Kovalskyi, D; Krutelyov, V; Lamb, J; Lowette, S; Pavlunin, V; Rebassoo, F; Ribnik, J; Richman, J; Rossin, R; Stuart, D; To, W; Vlimant, J R; Witherell, M; Apresyan, A; Bornheim, A; Bunn, J; Chiorboli, M; Gataullin, M; Kcira, D; Litvine, V; Ma, Y; Newman, H B; Rogan, C; Timciuc, V; Veverka, J; Wilkinson, R; Yang, Y; Zhang, L; Zhu, K; Zhu, R Y; Akgun, B; Carroll, R; Ferguson, T; Jang, D W; Jun, S Y; Paulini, M; Russ, J; Terentyev, N; Vogel, H; Vorobiev, I; Cumalat, J P; Dinardo, M E; Drell, B R; Ford, W T; Heyburn, B; Luiggi Lopez, E; Nauenberg, U; Stenson, K; Ulmer, K; Wagner, S R; Zang, S L; Agostino, L; Alexander, J; Blekman, F; Cassel, D; Chatterjee, A; Das, S; Gibbons, L K; Heltsley, B; Hopkins, W; Khukhunaishvili, A; Kreis, B; Kuznetsov, V; Patterson, J R; Puigh, D; Ryd, A; Shi, X; Stroiney, S; Sun, W; Teo, W D; Thom, J; Vaughan, J; Weng, Y; Wittich, P; Beetz, C P; Cirino, G; Sanzeni, C; Winn, D; Abdullin, S; Afaq, M A; Albrow, M; Ananthan, B; Apollinari, G; Atac, M; Badgett, W; Bagby, L; Bakken, J A; Baldin, B; Banerjee, S; Banicz, K; Bauerdick, L A T; Beretvas, A; Berryhill, J; Bhat, P C; Biery, K; Binkley, M; Bloch, I; Borcherding, F; Brett, A M; Burkett, K; Butler, J N; Chetluru, V; Cheung, H W K; Chlebana, F; Churin, I; Cihangir, S; Crawford, M; Dagenhart, W; Demarteau, M; Derylo, G; Dykstra, D; Eartly, D P; Elias, J E; Elvira, V D; Evans, D; Feng, L; Fischler, M; Fisk, I; Foulkes, S; Freeman, J; Gartung, P; Gottschalk, E; Grassi, T; Green, D; Guo, Y; Gutsche, O; Hahn, A; Hanlon, J; Harris, R M; Holzman, B; Howell, J; Hufnagel, D; James, E; Jensen, H; Johnson, M; Jones, C D; Joshi, U; Juska, E; Kaiser, J; Klima, B; Kossiakov, S; Kousouris, K; Kwan, S; Lei, C M; Limon, P; Lopez Perez, J A; Los, S; Lueking, L; Lukhanin, G; Lusin, S; Lykken, J; Maeshima, K; Marraffino, J M; Mason, D; McBride, P; Miao, T; Mishra, K; Moccia, S; Mommsen, R; Mrenna, S; Muhammad, A S; Newman-Holmes, C; Noeding, C; O'Dell, V; Prokofyev, O; Rivera, R; Rivetta, C H; Ronzhin, A; Rossman, P; Ryu, S; Sekhri, V; Sexton-Kennedy, E; Sfiligoi, I; Sharma, S; Shaw, T M; Shpakov, D; Skup, E; Smith, R P; Soha, A; Spalding, W J; Spiegel, L; Suzuki, I; Tan, P; Tanenbaum, W; Tkaczyk, S; Trentadue, R; Uplegger, L; Vaandering, E W; Vidal, R; Whitmore, J; Wicklund, E; Wu, W; Yarba, J; Yumiceva, F; Yun, J C; Acosta, D; Avery, P; Barashko, V; Bourilkov, D; Chen, M; Di Giovanni, G P; Dobur, D; Drozdetskiy, A; Field, R D; Fu, Y; Furic, I K; Gartner, J; Holmes, D; Kim, B; Klimenko, S; Konigsberg, J; Korytov, A; Kotov, K; Kropivnitskaya, A; Kypreos, T; Madorsky, A; Matchev, K; Mitselmakher, G; Pakhotin, Y; Piedra Gomez, J; Prescott, C; Rapsevicius, V; Remington, R; Schmitt, M; Scurlock, B; Wang, D; Yelton, J; Ceron, C; Gaultney, V; Kramer, L; Lebolo, L M; Linn, S; Markowitz, P; Martinez, G; Rodriguez, J L; Adams, T; Askew, A; Baer, H; Bertoldi, M; Chen, J; Dharmaratna, W G D; Gleyzer, S V; Haas, J; Hagopian, S; Hagopian, V; Jenkins, M; Johnson, K F; Prettner, E; Prosper, H; Sekmen, S; Baarmand, M M; Guragain, S; Hohlmann, M; Kalakhety, H; Mermerkaya, H; Ralich, R; Vodopiyanov, I; Abelev, B; Adams, M R; Anghel, I M; Apanasevich, L; Bazterra, V E; Betts, R R; Callner, J; Castro, M A; Cavanaugh, R; Dragoiu, C; Garcia-Solis, E J; Gerber, C E; Hofman, D J; Khalatian, S; Mironov, C; Shabalina, E; Smoron, A; Varelas, N; Akgun, U; Albayrak, E A; Ayan, A S; Bilki, B; Briggs, R; Cankocak, K; Chung, K; Clarida, W; Debbins, P; Duru, F; Ingram, F D; Lae, C K; McCliment, E; Merlo, J P; Mestvirishvili, A; Miller, M J; Moeller, A; Nachtman, J; Newsom, C R; Norbeck, E; Olson, J; Onel, Y; Ozok, F; Parsons, J; Schmidt, I; Sen, S; Wetzel, J; Yetkin, T; Yi, K; Barnett, B A; Blumenfeld, B; Bonato, A; Chien, C Y; Fehling, D; Giurgiu, G; Gritsan, A V; Guo, Z J; Maksimovic, P; Rappoccio, S; Swartz, M; Tran, N V; Zhang, Y; Baringer, P; Bean, A; Grachov, O; Murray, M; Radicci, V; Sanders, S; Wood, J S; Zhukova, V; Bandurin, D; Bolton, T; Kaadze, K; Liu, A; Maravin, Y; Onoprienko, D; Svintradze, I; Wan, Z; Gronberg, J; Hollar, J; Lange, D; Wright, D; Baden, D; Bard, R; Boutemeur, M; Eno, S C; Ferencek, D; Hadley, N J; Kellogg, R G; Kirn, M; Kunori, S; Rossato, K; Rumerio, P; Santanastasio, F; Skuja, A; Temple, J; Tonjes, M B; Tonwar, S C; Toole, T; Twedt, E; Alver, B; Bauer, G; Bendavid, J; Busza, W; Butz, E; Cali, I A; Chan, M; D'Enterria, D; Everaerts, P; Gomez Ceballos, G; Hahn, K A; Harris, P; Jaditz, S; Kim, Y; Klute, M; Lee, Y J; Li, W; Loizides, C; Ma, T; Miller, M; Nahn, S; Paus, C; Roland, C; Roland, G; Rudolph, M; Stephans, G; Sumorok, K; Sung, K; Vaurynovich, S; Wenger, E A; Wyslouch, B; Xie, S; Yilmaz, Y; Yoon, A S; Bailleux, D; Cooper, S I; Cushman, P; Dahmes, B; De Benedetti, A; Dolgopolov, A; Dudero, P R; Egeland, R; Franzoni, G; Haupt, J; Inyakin, A; Klapoetke, K; Kubota, Y; Mans, J; Mirman, N; Petyt, D; Rekovic, V; Rusack, R; Schroeder, M; Singovsky, A; Zhang, J; Cremaldi, L M; Godang, R; Kroeger, R; Perera, L; Rahmat, R; Sanders, D A; Sonnek, P; Summers, D; Bloom, K; Bockelman, B; Bose, S; Butt, J; Claes, D R; Dominguez, A; Eads, M; Keller, J; Kelly, T; Kravchenko, I; Lazo-Flores, J; Lundstedt, C; Malbouisson, H; Malik, S; Snow, G R; Baur, U; Iashvili, I; Kharchilava, A; Kumar, A; Smith, K; Strang, M; Alverson, G; Barberis, E; Boeriu, O; Eulisse, G; Govi, G; McCauley, T; Musienko, Y; Muzaffar, S; Osborne, I; Paul, T; Reucroft, S; Swain, J; Taylor, L; Tuura, L; Anastassov, A; Gobbi, B; Kubik, A; Ofierzynski, R A; Pozdnyakov, A; Schmitt, M; Stoynev, S; Velasco, M; Won, S; Antonelli, L; Berry, D; Hildreth, M; Jessop, C; Karmgard, D J; Kolberg, T; Lannon, K; Lynch, S; Marinelli, N; Morse, D M; Ruchti, R; Slaunwhite, J; Warchol, J; Wayne, M; Bylsma, B; Durkin, L S; Gilmore, J; Gu, J; Killewald, P; Ling, T Y; Williams, G; Adam, N; Berry, E; Elmer, P; Garmash, A; Gerbaudo, D; Halyo, V; Hunt, A; Jones, J; Laird, E; Marlow, D; Medvedeva, T; Mooney, M; Olsen, J; Piroué, P; Stickland, D; Tully, C; Werner, J S; Wildish, T; Xie, Z; Zuranski, A; Acosta, J G; Bonnett Del Alamo, M; Huang, X T; Lopez, A; Mendez, H; Oliveros, S; Ramirez Vargas, J E; Santacruz, N; Zatzerklyany, A; Alagoz, E; Antillon, E; Barnes, V E; Bolla, G; Bortoletto, D; Everett, A; Garfinkel, A F; Gecse, Z; Gutay, L; Ippolito, N; Jones, M; Koybasi, O; Laasanen, A T; Leonardo, N; Liu, C; Maroussov, V; Merkel, P; Miller, D H; Neumeister, N; Sedov, A; Shipsey, I; Yoo, H D; Zheng, Y; Jindal, P; Parashar, N; Cuplov, V; Ecklund, K M; Geurts, F J M; Liu, J H; Maronde, D; Matveev, M; Padley, B P; Redjimi, R; Roberts, J; Sabbatini, L; Tumanov, A; Betchart, B; Bodek, A; Budd, H; Chung, Y S; de Barbaro, P; Demina, R; Flacher, H; Gotra, Y; Harel, A; Korjenevski, S; Miner, D C; Orbaker, D; Petrillo, G; Vishnevskiy, D; Zielinski, M; Bhatti, A; Demortier, L; Goulianos, K; Hatakeyama, K; Lungu, G; Mesropian, C; Yan, M; Atramentov, O; Bartz, E; Gershtein, Y; Halkiadakis, E; Hits, D; Lath, A; Rose, K; Schnetzer, S; Somalwar, S; Stone, R; Thomas, S; Watts, T L; Cerizza, G; Hollingsworth, M; Spanier, S; Yang, Z C; York, A; Asaadi, J; Aurisano, A; Eusebi, R; Golyash, A; Gurrola, A; Kamon, T; Nguyen, C N; Pivarski, J; Safonov, A; Sengupta, S; Toback, D; Weinberger, M; Akchurin, N; Berntzon, L; Gumus, K; Jeong, C; Kim, H; Lee, S W; Popescu, S; Roh, Y; Sill, A; Volobouev, I; Washington, E; Wigmans, R; Yazgan, E; Engh, D; Florez, C; Johns, W; Pathak, S; Sheldon, P; Andelin, D; Arenton, M W; Balazs, M; Boutle, S; Buehler, M; Conetti, S; Cox, B; Hirosky, R; Ledovskoy, A; Neu, C; Phillips II, D; Ronquest, M; Yohay, R; Gollapinni, S; Gunthoti, K; Harr, R; Karchin, P E; Mattson, M; Sakharov, A; Anderson, M; Bachtis, M; Bellinger, J N; Carlsmith, D; Crotty, I; Dasu, S; Dutta, S; Efron, J; Feyzi, F; Flood, K; Gray, L; Grogg, K S; Grothe, M; Hall-Wilton, R; Jaworski, M; Klabbers, P; Klukas, J; Lanaro, A; Lazaridis, C; Leonard, J; Loveless, R; Magrans de Abril, M; Mohapatra, A; Ott, G; Polese, G; Reeder, D; Savin, A; Smith, W H; Sourkov, A; Swanson, J; Weinberg, M; Wenman, D; Wensveen, M; White, A

    2010-01-01

    The resolution and the linearity of time measurements made with the CMS electromagnetic calorimeter are studied with samples of data from test beam electrons, cosmic rays, and beam-produced muons. The resulting time resolution measured by lead tungstate crystals is better than 100 ps for energy deposits larger than 10 GeV. Crystal-to-crystal synchronization with a precision of 500 ps is performed using muons produced with the first LHC beams in 2008.

  20. Timing performance of the CMS electromagnetic calorimeter and prospects for the future

    CERN Document Server

    Bornheim, Adolf

    2014-01-01

    The CMS electromagnetic calorimeter (ECAL) is made of 75,848 scintillating lead tungstate crystals arranged in a barrel and two endcaps. The scintillation light is read out by avalanche photodiodes in the barrel and vacuum phototriodes in the endcaps, at which point the scintillation pulse is amplified and sampled at 40 MHz by the on-detector electronics. The fast signal from the crystal scintillation enables energy as well as timing measurements from the data collected in proton-proton collisions with high energy electrons and photons. The single-channel time resolution of ECAL measured at beam tests for high energy showers is better than 100 ps. The timing resolution achieved with the data collected in proton-proton collisions at the LHC is discussed. We present how precision timing is used in current physics measurements and discuss studies of subtle calorimetric effects, such as the timing response of different crystals belonging to the same electromagnetic shower. In addition, we present prospects for th...

  1. An FPGA-based sampling-ADC readout for the crystal barrel calorimeter

    Energy Technology Data Exchange (ETDEWEB)

    Muellers, Johannes [Helmholtz-Institut fuer Strahlen- und Kernphysik, Bonn (Germany); Marciniewski, Pawel [Angstroemlaboratoriet, Uppsala (Sweden); Collaboration: CBELSA/TAPS-Collaboration

    2015-07-01

    The CBELSA/TAPS experiment at the electron accelerator ELSA (Bonn) investigates the photoproduction of mesons off protons and neutrons. Presently the readout of the CsI(Tl)-crystals of the Crystal Barrel calorimeter is being upgraded from a PIN-diode readout to an APD readout to create a fast signal for first-level-triggering. This will increase the trigger efficiency especially for final states with only neutral particles substantially. To increase the possible data readout rate, which is currently limited by the digitization stage (LeCroy QDC 1885F) to ∼ 2 kHz, the implementation of a new Sampling-ADC (SADC) readout is being prepared. Based on the 64-channel PANDA-SADC, the CB-SADC design was modified and adapted to the needs of the CBELSA/TAPS experiment. It offers 64 channels in one NIM module, together with modular analog or FPGA-based digital shaping. The data transfer will be realized by two standard gigabit links. Using an FPGA together with SADCs provides a multitude of possibilities for online feature extraction, such as the determination of the energy deposited in the crystal, TDC capabilities and pile-up detection and recovery.

  2. Geometric calibration of the SND detector electromagnetic calorimeter

    CERN Document Server

    Korol, A A

    2016-01-01

    This paper presents the design, implementation and validation of the software alignment procedure used to perform geometric calibration of the electromagnetic calorimeter with respect to the tracking system of the Spherical Neutral Detector (SND) which is used for HEP experiments at the VEPP-2000 $e^{+}e^{-}$ collider (BINP, Novosibirsk). This procedure is based on the mathematical model describing the relative calorimeter position. The parameter values are determined by minimizing a $\\chi^{2}$ function using the difference between directions reconstructed in these two subdetectors for the $e^{+}e^{-}\\rightarrow e^{+}e^{-}$ scattering data events. The results of the calibration and its application to the data and MC simulation fit the model and give an improvement of the reconstructed particle parameters. They are used already in the actual experimental data analysis and more realistic MC simulation. We think that the ideas implemented in the calibration procedure can be useful for other experiments with hete...

  3. Performance of the CMS Electromagnetic Calorimeter in LHC

    CERN Document Server

    Theofilatos, Konstantinos

    2011-01-01

    The CMS Electromagnetic Calorimeter (ECAL) is a high resolution, fine grained calorimeter devised to measure photons and electrons at the LHC. Built of lead tungstate crystals, it plays a crucial role in the search for new physics as well as in precision measurements of the Standard Model. A pre-shower detector composed of sandwiches of lead and silicon strips improves $\\pi^0/\\gamma$ separation in the forward region. The operation and performance of the ECAL with pp collisions at $\\sqrt{s}$ = 7 TeV will be reviewed. Pure samples of electrons and photons from decays of known resonances have been exploited to improve and verify the trigger efficiency, the reconstruction algorithms, the detector calibration and stability, and the particle identification efficiency. A review of these aspects will be given.

  4. CMS Electromagnetic Calorimeter performance during the 2011 LHC run

    CERN Document Server

    Montanino, Damiana

    2012-01-01

    The CMS Electromagnetic Calorimeter (ECAL) is a high resolution, fine-grained calorimeter devised to measure photons and electrons at the LHC. Built of lead tungstate crystals, it plays a crucial role in the search for new physics as well as in precision measurements of the Standard Model. A pre-shower detector composed of sandwiches of lead and silicon strips improves pi0/gamma separation in the forward region. The operation and performance of the ECAL during the 2011 run at the LHC, with pp collisions at sqrt(s) = 7 TeV will be reviewed. Pure samples of electrons and photons from decays of known resonances have been exploited to improve and verify the trigger efficiency, the reconstruction algorithms, the detector calibration and stability, and the particle identification efficiency. A review of all these aspects will be given.

  5. Performance of the CMS Electromagnetic Calorimeter at the LHC

    CERN Document Server

    Della Ricca, Giuseppe

    2011-01-01

    The CMS Electromagnetic Calorimeter (ECAL) is a high resolution, fine-grained calorimeter devised to measure photons and electrons at the LHC. Built of lead tungstate crystals, it plays a crucial role in the search for new physics as well as in precision measurements of the Standard Model. A pre-shower detector composed of sandwiches of lead and silicon strips improves $\\pi^0/\\gamma$ separation in the forward region. The operation and performance of the ECAL during the 2010 run at the LHC, with pp collisions at $\\sqrt{s}$ = 7 TeV will be reviewed, and to some extent for the 2011 running as well. Pure samples of electrons and photons from decays of known resonances have been exploited to improve and verify the trigger efficiency, the reconstruction algorithms, the detector calibration and stability, and the particle identification efficiency. A review of these aspects will be given.

  6. Geometric calibration of the SND detector electromagnetic calorimeter

    Science.gov (United States)

    Korol, A. A.; Melnikova, N. A.

    2017-03-01

    This paper presents the design, implementation and validation of the software alignment procedure used to perform geometric calibration of the electromagnetic calorimeter with respect to the tracking system of the SND detector which is taking data at the VEPP-2000 e+e- collider (BINP, Novosibirsk). This procedure is based on the mathematical model describing the relative calorimeter position. The parameter values are determined by minimizing a χ2 function using the difference between particle directions reconstructed in these two subdetectors for e+e- →e+e- scattering events. The results of the calibration applied to data and MC simulation fit the model well and give an improvement in particle reconstruction. They are used in data reconstruction and MC simulation.

  7. A Study on Thermal Design of the BGO Electromagnetic Calorimeter

    Science.gov (United States)

    Chen, Dengyi; Hu, Yiming; Wu, Jian; Feng, Changqing; Zhang, Yunlong; Chang, Jin

    The BGO Electromagnetic Calorimeter (BGO ECAL) is one of the most important payload of the Chinese DArk Matter Particle Explorer (DAMPE), which can precisely measure the incident energy of cosmic ray. However, thermal control of the BGO ECAL plays a key role on its running in the space. In this paper, the thermal design of the BGO ECAL and the thermal FEM modal created by hyper-mesh & NASTRAN FEM software will be introduced. Then the temperature distribution of the BGO calorimeter with the given on orbit conditions is performed. In the end, we depicts the thermal test which has been carried out in February. By the comparisons between the experiment results and the analyses results, the methodology in this paper was proved to be effective.

  8. Performance of the ATLAS Calorimeters using Cosmic Ray Muons

    OpenAIRE

    Santoni, C.

    2010-01-01

    International audience; The ATLAS calorimeters provide precision measurements of electrons, photons, jets and missing transverse energy produced in the LHC proton-proton collisions. High granularity liquid-argon electromagnetic and hadronic sampling calorimeters are used. An iron-scintillator hadronic calorimeter surrounds the liquid-argon detectors. Results assessing the calorimeter performance obtained using cosmic ray muons are presented. The non-uniformity of the barrel electromagnetic ca...

  9. Development and Construction of Large Size Signal Electrodes for the ATLAS Electromagnetic Calorimeter

    CERN Document Server

    Aubert, B; Colas, Jacques; Girard, C; Jérémie, A; Jézéquel, S; Lesueur, J; Sauvage, G; Lissauer, D; Makowiecki, D S; Radeka, V; Rescia, S; Wolniewicz, K; Belymam, A; Hoummada, A; Cherif, A; Chevalley, J L; Hervás, L; Marin, C P; Fassnacht, P; Szeless, Balázs; Collot, J; Gallin-Martel, M L; Hostachy, J Y; Martin, P; Leltchouk, M; Seman, M; Dargent, P; Djama, F; Monnier, E; Olivier, C; Tisserant, S; Battistoni, G; Carminati, L; Cavalli, D; Costa, G; Delmastro, M; Fanti, M; Mandelli, L; Mazzanti, M; Perini, L; Tartarelli, F; Augé, E; Bonivento, W; Fournier, D; Puzo, P; Serin, L; de La Taille, C; Astesan, F; Canton, B; Imbault, D; Lacour, D; Rossel, F; Schwemling, P

    2005-01-01

    We describe the electric circuits (electrodes) which polarize and read out the Lead-Liquid Argon electromagnetic calorimeter for the ATLAS detector. The paper covers design and material choices of the circuits as well as their production in industry. We also show how the electrodes integrate into the calorimeter and conclude with results from groups of electrodes making up calorimeter modules.

  10. Light nuclear charge measurement with Alpha Magnetic Spectrometer Electromagnetic Calorimeter

    Energy Technology Data Exchange (ETDEWEB)

    Basara, Laurent [Trento Institute for Fundamental Physics and Applications, Povo 38123 (Italy); Choutko, Vitaly [Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Li, Qiang, E-mail: q.li@cern.ch [Harbin Institute of Technology, Harbin, 150001 (China)

    2016-06-11

    The Alpha Magnetic Spectrometer (AMS) is a high energy particle detector installed and operating on board of the International Space Station (ISS) since May 2011. So far more than 70 billion cosmic ray events have been recorded by AMS. In the present paper the Electromagnetic Calorimeter (ECAL) detector of AMS is used to measure cosmic ray nuclear charge magnitudes up to Z=10. The obtained charge magnitude resolution is about 0.1 and 0.3 charge unit for Helium and Carbon, respectively. These measurements are important for an accurate determination of the interaction probabilities of various nuclei with the AMS materials. The ECAL charge calibration and measurement procedures are presented.

  11. In-situ Calibration of the CMS Electromagnetic Calorimeter

    CERN Document Server

    Agostino, Lorenzo

    2006-01-01

    The CMS electromagnetic calorimeter is a key instrument to exploit the energy frontier represented by LHC, expected to deliver proton-proton collisions at a centre-of-mass energy of 14 TeV. High performance of the ECAL, in particular precise energy measurement of electrons and protons, will enhance the discovery potential of CMS. In-situ calibration with physics events will be the main tool to minimize the constant term in the resolution function. The calibration strategies and the studies performed on simulated data to achieve this goal are presented.

  12. Determination of the total absorption peak in an electromagnetic calorimeter

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Jia-Hua [Institute of Physics, National Chiao-Tung University, Hsinchu (China); Wang, Zhe, E-mail: wangzhe-hep@mail.tsinghua.edu.cn [Department of Engineering Physics, Tsinghua University, Beijing (China); Key Laboratory of Particle & Radiation Imaging (Tsinghua University), Ministry of Education (China); Lebanowski, Logan [Department of Engineering Physics, Tsinghua University, Beijing (China); Key Laboratory of Particle & Radiation Imaging (Tsinghua University), Ministry of Education (China); Lin, Guey-Lin [Institute of Physics, National Chiao-Tung University, Hsinchu (China); Chen, Shaomin [Department of Engineering Physics, Tsinghua University, Beijing (China); Key Laboratory of Particle & Radiation Imaging (Tsinghua University), Ministry of Education (China)

    2016-08-11

    A physically motivated function was developed to accurately determine the total absorption peak in an electromagnetic calorimeter and to overcome biases present in many commonly used methods. The function is the convolution of a detector resolution function with the sum of a delta function, which represents the complete absorption of energy, and a tail function, which describes the partial absorption of energy and depends on the detector materials and structures. Its performance was tested with the simulation of three typical cases. The accuracy of the extracted peak value, resolution, and peak area was improved by an order of magnitude on average, relative to the Crystal Ball function.

  13. Determination of the total absorption peak in an electromagnetic calorimeter

    CERN Document Server

    Cheng, Jia-Hua; Lebanowski, Logan; Lin, Guey-Lin; Chen, Shaomin

    2016-01-01

    A physically-motivated function was developed to accurately determine the total absorption peak in an electromagnetic calorimeter and to overcome biases present in many commonly used methods. The function is the convolution of a detector resolution function with the sum of a delta function, which represents the complete absorption of energy, and a tail function, which describes the partial absorption of energy and depends on the detector materials and structures. Its performance was tested with the simulation of three typical cases. The accuracy of the extracted peak value, resolution, and peak area was improved by an order of magnitude on average, relative to the Crystal Ball function.

  14. The electromagnetic calorimeter for the solenoidal tracker at RHIC. A Conceptual Design Report

    Energy Technology Data Exchange (ETDEWEB)

    Beddo, M.E.; Bielick, E.; Dawson, J.W. [Argonne National Lab., IL (United States)] [and others; The STAR EMC Collaboration

    1993-09-22

    This report discusses the following on the electromagnetic calorimeter for the solenoidal tracker at RHIC: conceptual design; the physics of electromagnetic calorimetry in STAR; trigger capability; integration into STAR; and cost, schedule, manpower, and funding.

  15. The CMS Electromagnetic Calorimeter: Results on Crystal Measurements, Quality Control and Data Management in the Rome Regional Center

    CERN Document Server

    Costantini, S

    2004-01-01

    The barrel of the CMS electromagnetic calorimeter is currently under construction and will contain 61200 PbWO4 crystals. Half of them are being fully characterized for dimensions, optical properties and light yield in the INFN-ENEA Regional Center near Rome. We describe the setup of an automatic quality control system for the crystal measurements and the present results on their qualification, as well as the REDACLE project, which has been developed to control and ease the production process. As it will not be possible to precalibrate the whole calorimeter,the crystal measurements and quality checks performed at the Regional Center will be crucial to provide a basis for fast in-situ calibration with particles. REDACLE is at the same time a fast database and a data management system, where the database and the workflow structures are decoupled, in order to obtain the best flexibility.

  16. The supermodule insertion tool of the CMS electromagnetic calorimeter and the first trial insertion of a supermodule.

    CERN Multimedia

    Maximilien Brice

    2006-01-01

    The first trial insertion of a complete Electromagnetic Calorimeter (ECAL) "supermodule" (1700 lead-tungstate crystals, with support structures, light detectors (avalanche photodiodes), readout electronics and cooling system) was performed on 1st March. This delicate operation - sliding a 2-tonne 3m-long object onto support rails (in real life these are attached to the barrel hadron calorimeter (HCAL)) - made use of a custom designed "squirrel cage". The rotatable squirrel cage allows the insertion of any supermodule into any of the 18 positions, including very fine (sub-mm) adjustments. The first supermodule will be inserted into the real HCAL later this month in preparation for the "magnet test and cosmic-ray challenge" (MTCC). In the first image the supermodule is in the centre and the alignment disks are highlighted by the flash.

  17. Performance of the CMS electromagnetic calorimeter at the LHC and role in the hunt for the Higgs boson

    CERN Document Server

    Paramatti, Riccardo

    2012-01-01

    The Electromagnetic Calorimeter (ECAL) of the Compact Muon Solenoid (CMS) experiment at the LHC is a hermetic, fine grained, homogeneous calorimeter, comprising 75,848 lead tungstate (PbWO$_4$) scintillating crystals, located inside the CMS superconducting solenoidal magnet. The scintillation light is detected by avalanche photodiodes (APDs) in the barrel section and by vacuum phototriodes (VPTs) in the two endcap sections. A silicon/lead preshower detector is installed in front of the endcaps in order to improve $\\gamma$ / $\\pi^0$ discrimination. Precise calibration of the ECAL detector is required. This includes inter-calibration, to account for the differing response of channels, and calibration of the energy scale. The performance obtained during the first LHC physics runs in 2010 and 2011 is presented and the role of the ECAL in the hunt for the Higgs boson, through the two-photon decay mode, is discussed.

  18. The ATLAS Liquid Argon Electromagnetic EndCap Calorimeter Construction and tests

    CERN Document Server

    Rodier, S; Del Peso, J

    2003-01-01

    This thesis has been carried out within the ATLAS collaboration. ATLAS is one of the two multipurpose experiments approved for data taking at the Large Hadron Collider (LHC) at CERN. The main goals of this experiment are, to find the Higgs boson, the missing piece in the otherwise so succesful Standard Model of Particle Physics, and to look for physics beyond the Standard Model up to a scale of 1TeV. For this purpose, electromagnetic (EM) calorimetry play a key role. The ATLAS Collaboration has chosen a Liquid Argon (LAr) option with lead as passive material. The liquid Argon Calorimeter is divided into two main subdetectors, the barrel and the end caps (EC). The design and construction of the LAr EM EC calorimeter is the responsability of the groups at Centre de Physique de Marseille (CPPM) and the Universidad Autonoma de Madrid (UAM)following the guideline developed by the research and development working, group 3 for LHC detectors (RD3). The sharing of responsabilities is such that CPPM provides spacers an...

  19. Performance of prototypes for the ALICE electromagnetic calorimeter

    CERN Document Server

    Allen, J; Badala, A; Baumgart, S; Bellwied, R; Benhabib, L; Bernard, C; Bianchi, N; Blanco, F; Bortoli, Y; Bourdaud, G; Bourrion, O; Boyer, B; Bruna, E; Butterworth, J; Caines, H; Calvo Diaz Aldagalan, D; Capitani, G P; Carcagno, Y; Casanova Diaz, A; Cherney, M; Conesa Balbastre, G; Cormier, T M; Cunqueiro Mendez, L; Delagrange, H; Del Franco, M; Dialinas, M; Di Nezza, P; Donoghue, A; Elnimr, M; Enokizono, A; Estienne, M; Faivre, J; Fantoni, A; Fichera, F; Foglio, B; Fresneau, S; Fujita, J; Furget, C; Gadrat, S; Garishvili, I; Germain, M; Giudice, N; Gorbunov, Y; Grimaldi, A; Guardone, N; Guernane, R; Hadjidakis, C; Hamblen, J; Harris, J W; Hasch, D; Heinz, M; Hille, P T; Hornback, D; Ichou, R; Jacobs, P; Jangal, S; Jayananda, K; Klay, J L; Knospe, A G; Kox, S; Kral, J; Laloux, P; LaPointe, S; La Rocca, P; Lewis, S; Li, Q; Librizzi, F; Madagodahettige Don, D; Martashvili, I; Mayes, B; Milletto, T; Muccifora, V; Muller, H; Muraz, J F; Nattrass, C; Noto, F; Novitzky, N; Odyniec, G; Orlandi, A; Palmeri, A; Pappalardo, G S; Pavlinov, A; Pesci, W; Petrov, V; Petta, C; Pichot, P; Pinsky, L; Ploskon, M; Pompei, F; Pulvirenti, A; Putschke, J; Pruneau, C A; Rak, J; Rasson, J; Read, K F; Real, J S; Reolon, A R; Riggi, F; Riso, J; Ronchetti, F; Roy, C; Roy, D; Salemi, M; Salur, S; Sharma, M; Silvermyr, D; Smirnov, N; Soltz, R; Sparti, V; Stutzmann, J.-S; Symons, T J.M; Tarazona Martinez, A; Tarini, L; Thomen, R; Timmins, A; van Leeuwen, M; Vieira, R; Viticchie, A; Voloshin, S; Wang, D; Wang, Y; Ward, R M

    2010-01-01

    The performance of prototypes for the ALICE electromagnetic sampling calorimeter has been studied in test beam measurements at FNAL and CERN. A $4\\times4$ array of final design modules showed an energy resolution of about 11% /$\\sqrt{E(\\mathrm{GeV})}$ $\\oplus$ 1.7 % with a uniformity of the response to electrons of 1% and a good linearity in the energy range from 10 to 100 GeV. The electromagnetic shower position resolution was found to be described by 1.5 mm $\\oplus$ 5.3 mm /$\\sqrt{E \\mathrm{(GeV)}}$. For an electron identification efficiency of 90% a hadron rejection factor of $>600$ was obtained.

  20. Online feature extraction for the PANDA electromagnetic calorimeter

    Energy Technology Data Exchange (ETDEWEB)

    Guliyev, Elmaddin; Tambave, Ganesh; Kavatsyuk, Myroslav; Loehner, Herbert [KVI, University of Groningen (Netherlands); Collaboration: PANDA-Collaboration

    2011-07-01

    Resonances in the charmonium mass region will be studied in antiproton annihilations at FAIR with the multi-purpose PANDA spectrometer providing measurements of electromagnetic signals in a wide dynamic range. The Sampling ADC (SADC) readout of the Electromagnetic Calorimeter (EMC) will allow to realize online hit-detection on the single-channel level and to derive time and energy information. A digital filtering and feature-extraction algorithm was developed and implemented in VHDL code for the online application in a commercial SADC. We discuss the readout scheme, the program logic, the precise signal amplitude detection with phase correction at low sampling frequencies, and the usage of a double moving-window deconvolution filter for the pulse-shape restoration. Such double filtering allows to operate the EMC at much higher rates and to minimize the amount of pile-up events.

  1. Timing performance of the CMS electromagnetic calorimeter and prospects for the future

    CERN Document Server

    Del Re, Daniele

    2014-01-01

    The CMS electromagnetic calorimeter (ECAL) is made of about 75000 scintillating lead tungstate crystals arranged in a barrel and two endcaps. The scintillation light is read out by avalanche photodiodes in the barrel and vacuum phototriodes in the endcaps, at which point the scintillation pulse is amplified and sampled at 40 MHz by the on-detector electronics. The fast signal from the crystal scintillation enables energy as well as timing measurements from the data collected in proton-proton collisions with high energy electrons and photons. The stability of the timing measurement required to maintain the energy resolution is on the order of 1ns. The single-channel time resolution of ECAL measured at beam tests for high energy showers is better than 100 ps. The timing resolution achieved with the data collected in proton-proton collisions at the LHC is presented. The timing precision achieved is used in important physics measurements and also allows the study of subtle calorimetric effects, such as the timin...

  2. A crystal barrel

    CERN Multimedia

    2007-01-01

    The production of crystals for the barrel of the CMS electromagnetic calorimeter has been completed. This is an important milestone for the experiment, which received the last of its 62,960 crystals on 9 March. The members of the team responsible for the crystal acceptance testing at CERN display the last crystal for the CMS electromagnetic calorimeter barrel. From left to right: Igor Tarasov, Etiennette Auffray and Hervé Cornet.One of the six machines specially developed to measure 67 different parameters on each crystal. Igor Tarasov is seen inserting the last batch of crystals into the machine. The last of the 62,960 CMS barrel crystals arrived at CERN on 9 March. Once removed from its polystyrene protection, this delicate crystal, like thousands of its predecessors, will be inserted into the last of the 36 supermodules of the barrel electromagnetic calorimeter in a few days' time. This marks the end of an important chapter in an almost 15-year-long journey by the CMS crystals team, some of whose member...

  3. Drift time measurement in the ATLAS liquid argon electromagnetic calorimeter using cosmic muons

    DEFF Research Database (Denmark)

    Aad..[], G.; Dam, Mogens; Hansen, Jørgen Beck

    2010-01-01

    The ionization signals in the liquid argon of the ATLAS electromagnetic calorimeter are studied in detail using cosmic muons. In particular, the drift time of the ionization electrons is measured and used to assess the intrinsic uniformity of the calorimeter gaps and estimate its impact on the co......The ionization signals in the liquid argon of the ATLAS electromagnetic calorimeter are studied in detail using cosmic muons. In particular, the drift time of the ionization electrons is measured and used to assess the intrinsic uniformity of the calorimeter gaps and estimate its impact...

  4. ATLAS Tile Calorimeter extended barrel side C, assembly and installation in the cavern.

    CERN Multimedia

    Nikolai Topilin

    2009-01-01

    These photos belong to the self-published book by Nikolai Topilin "ATLAS Hadron Calorimeter Assembly". The book is a collection of souvenirs from the years of assembly and installation of the Tile Hadron Calorimeter, which extended from November 2002 until May 2006.

  5. ATLAS Tile Calorimeter extended barrel Side A assembly and installation in the cavern.

    CERN Multimedia

    Nikolai Topilin

    2009-01-01

    These photos belong to the self-published book by Nikolai Topilin "ATLAS Hadron Calorimeter Assembly". The book is a collection of souvenirs from the years of assembly and installation of the Tile Hadron Calorimeter, which extended from November 2002 until May 2006.

  6. Calibration and Monitoring of the CMS Electromagnetic Calorimeter

    Science.gov (United States)

    La Licata, C.

    2014-06-01

    The CMS Electromagnetic Calorimeter (ECAL) is a homogeneous and hermetic calorimeter with high granularity and fast response, designed to provide high resolution measurements of electron and photon energy. Precise calibration of the ECAL must be performed in situ at the LHC, in order to achieve and maintain its design performance and to fully exploit the physics reach of CMS. Several techniques have been developed for the intercalibration of ECAL using collision data. These methods are based on the reconstruction of the invariant mass peak of unconverted photons from low mass particle decays (π0and η) and on the azimuthal symmetry of the average energy deposition at a given pseudorapidity. Further intercalibration is carried out by using isolated electrons from W and Z bosons decays to compare the energy measured in ECAL to the momentum of the reconstructed tracks. The absolute calibration of the energy scale is performed using Z decays into electron-positron pairs. Changes in the ECAL response due to crystal radiation damage and changes in photo-detector output must be monitored. A system based on the injection of laser light into each crystal is used to track and correct for these variations during LHC operations.

  7. Calibration and Monitoring of the CMS Electromagnetic Calorimeter

    CERN Document Server

    La Licata, Chiara

    2014-01-01

    The CMS Electromagnetic Calorimeter (ECAL) is an homogeneous and hermetic calorimeter with high granularity and fast response, designed to provide high resolution measurements of electron and photon energy. Precise calibration of the ECAL must be performed in situ at the LHC, in order to achieve and maintain its design performance and to fully exploit the physics reach of CMS. Several techniques have been developed for the inter-calibration of ECAL using collision data. These methods are based on the reconstruction of the invariant mass peak of unconverted photons from low mass particle decays (pi0 and eta) and the azimuthal symmetry of the average energy deposition at a given pseudorapidity. Further inter-calibration is carried out by using isolated electrons from W and Z bosons to compare the energy measured in ECAL to the momentum of the reconstructed track. The absolute calibration of the energy scale is performed using Z decays into electron-positron pairs. Changes in the ECAL response due to crystal rad...

  8. The Electromagnetic Calorimeter of the GLUEX Particle Detector

    Science.gov (United States)

    Katsaganis, Stamatios

    This thesis focuses on the GLUEX Barrel Calorimeter (BCAL), a key subsystem of the GLUE experiment, which is currently under construction. GLUE will shed light on an as yet unexplored area of the interaction between the fundamental constituents of matter, that of confinement. To achieve its goals, GLUE requires a hermetic detector with good acceptance and good energy and position resolution. To that end, a lot of effort has been spent on R&D in order to optimize the performance of the BCAL. Specifically, the effect of the thickness of the lead sheets, used to build the BCAL, on the performance of the BCAL was simulated using Monte Carlo techniques. Using the GEANT simulation package, three different geometry configurations were simulated and the shape of the longitudinal shower profile, energy resolution and the fractional energy deposition and energy leakage were extracted and the results comprise the first half of this thesis. The second half of the thesis consists of an analysis of data collected in 2006 from a beam test performed at Jefferson Lab on a BCAL prototype module. The analysis was done in order to extract the energy resolution for several different angles of incidence, including the 90° which was used as reference.

  9. Data Quality Monitoring for the CMS Electromagnetic Calorimeter

    CERN Document Server

    Della Ricca, Giuseppe

    2007-01-01

    One of the CMS design objectives is to construct and operate a very high quality electromagnetic calorimeter. The detector performance will be monitored using applications based on the CMS Data Quality Monitoring (DQM) framework and running on the High-Level Trigger Farm as well as on local DAQ systems. The monitorable quantities are organized into hierarchical structures based on the physics content. The information produced is delivered to client applications according to their subscription requests. The client applications process the received quantities, according to pre-defined analyses, making the results immediately available, and store the results in a database, and in the form of static web pages, for subsequent studies. We describe here the functionalities of the CMS ECAL DQM applications and report about their use in a real environment.

  10. The Data Quality Monitoring for the CMS Electromagnetic Calorimeter

    CERN Document Server

    Della Ricca, Giuseppe; Franzoni, Giovanni; Gobbo, Benigno

    2008-01-01

    The detector performance of the CMS electromagnetic calorimeter is monitored using applications based on the CMS Data Quality Monitoring (DQM) framework and running on the High-Level Trigger Farm as well as on local DAQ systems. The monitorable quantities are organized into hierarchical structures based on the physics content. The information produced is accessible by client applications according to their subscription requests. The client applications process the received quantities, according to pre-defined analyses, making the results immediately available, while also storing the results in a database, and in the form of static web pages, for subsequent studies. We describe here the functionalities of the CMS ECAL DQM applications and report about their use in real environments.

  11. Energy reconstruction and calibration algorithms for the ATLAS electromagnetic calorimeter

    CERN Document Server

    Delmastro, M

    2003-01-01

    The work of this thesis is devoted to the study, development and optimization of the algorithms of energy reconstruction and calibration for the electromagnetic calorimeter (EMC) of the ATLAS experiment, presently under installation and commissioning at the CERN Large Hadron Collider in Geneva (Switzerland). A deep study of the electrical characteristics of the detector and of the signals formation and propagation is conduced: an electrical model of the detector is developed and analyzed through simulations; a hardware model (mock-up) of a group of the EMC readout cells has been built, allowing the direct collection and properties study of the signals emerging from the EMC cells. We analyze the existing multiple-sampled signal reconstruction strategy, showing the need of an improvement in order to reach the advertised performances of the detector. The optimal filtering reconstruction technique is studied and implemented, taking into account the differences between the ionization and calibration waveforms as e...

  12. Tungsten Scintillating Fibers Electromagnetic Calorimeters for sPHENIX upgrade

    Science.gov (United States)

    Li, Siyang; Loggins, Vera; Phipps, Michael; Sickles, Anne

    2015-10-01

    sPHENIX, a planned new detector at RHIC, features electromagnetic and hadronic calorimetry that covers | η| design is optimized for the study of jets in heavy ion collisions. The design includes a tungsten fiber EmCal that is made out of a tower array of plastic scintillating fiber embedded inside a mixture of tungsten powder and epoxy. For this calorimeter, silicon photomultipliers will be attached at the end of the module to convert scintillated optical photons into electrical signals. The sPHENIX group at Illinois is currently making samples of these modules to study the production process and achievable density. In addition, we have set up a silicon photomultiplier read out test system which will be used to evaluate the module performance. sPHENIX collaboration and Brookhaven National Laboratory.

  13. Installation of CMS EB (ECAL Barrel) Supermodules 5 and 13 inside HB+ (HCAL Barrel) on 26/27 April 2006

    CERN Multimedia

    2006-01-01

    The first two barrel "supermodules" of the CMS Electromagnetic Calorimeter (ECAL) have been inserted into the barrel hadron calorimeter (HCAL) in the CMS experimental hall (called SX5) in Cessy in preparation for the forthcoming magnet test and cosmic challenge (MTCC). Each of the two supermodules contains 1700 lead tungstate crystals in glass-fibre alveolar support structures, with associated avalanche photodiodes (APDs, for scintillation light detection), electronics and cooling system.

  14. Kali: The framework for fine calibration of LHCb Electromagnetic Calorimeter

    CERN Document Server

    Puig, A; Graciani, R; Belyaev, I

    2011-01-01

    The precise calibration (at a level of below 1 %) of the electromagnetic calorimeter (ECAL) of the LHCb experiment is an essential task for the fulfilment of the LHCb physics program. The final step of this task is performed with two calibration methods using the real data from the experimental setup. It is a very CPU-consuming procedure as both methods require processing of $\\mathcal{O}10^8$ events which must be selected, reconstructed and analyzed. In this document we present the Kali framework developed within the LHCb software framework, which implements these two final calibration methods. It is integrated with Grid middleware and makes use of parallelism tools, such as python parallel processing modules, to provide an efficient way, both time and disk wise, for the final ECAL calibration. The results of the fine calibration with the very first data collected by the LHCb experiment will also be presented. With the use of the Kali framework it took only two days of processing and allowed to achieve a cali...

  15. Kali: The framework for fine calibration of LHCb Electromagnetic Calorimeter

    CERN Document Server

    Belyaev, I; Puig, A; Savrina, D

    2011-01-01

    The precise calibration of the electromagnetic calorimeter (ECAL) of the LHCb experiment is an essential task for the fulfilment of the LHCb physics program. The goal of the calibration of the ECAL is to intercalibrate the 6016 cells at a alevel better than 2% and provide an overall calibration below the 1% level. The final step of this task is performed with two calibration methods using the real data from the experimental setup. Both of them require processing of $\\mathcal{O}(10^8)$ events which must be selected, reconstructed and analyzed. The analysis is very CPU-consuming, since one method performs an adaptive multi-pass fitting of $\\mathcal{O}(2\\times( 10^5)$ histograms and the other one the minimization of $\\mathcal{O}(1.5\\times10^5)$ data-based functions.In this document we present the Kali framework developed within the LHCb software framework, which implements these two final calibration methods. It is integrated with Grid and makes use of parallelism tools, such as python parallel processing module...

  16. Calibration of the CMS electromagnetic calorimeter with LHC collision data

    Science.gov (United States)

    Obertino, M. M.; CMS Collaboration

    2013-08-01

    The CMS ECAL is a high resolution electromagnetic calorimeter which relies upon precision calibration in order to achieve and maintain its design performance. Variations in light collected from the lead tungstate crystals, due to intrinsic differences in crystals/photodetectors, as well as variations with time due to radiation damage for example, need to be taken into account. Sophisticated and effective methods of inter-crystal and absolute calibration have been devised, using collision data from the 2011 LHC run and a dedicated light injection system. For inter-calibration, low mass particle (π0 and η) decays to two photons are exploited, as well as the azimuthal symmetry of the average energy deposition at a given pseudorapidity. The light injection system monitors the channel response in real-time and enables the re-calibration of the measured energies over time. This is cross-checked by the comparison of E/p measurements of electrons from W decays (where the momentum is measured in the CMS tracker) with/without these re-calibrations applied. Absolute calibration has been performed using Z decays into electron-positron pairs.

  17. Calibration of the CMS Electromagnetic Calorimeter with LHC collision data

    CERN Document Server

    Obertino, Margherita Maria

    2012-01-01

    The CMS ECAL is one of the highest resolution electromagnetic calorimeters ever constructed, but relies upon precision calibration in order to achieve and maintain its design performance. Variations in light collected from the lead tungstate crystals, due to intrinsic differences in crystals/photodetectors, as well as variations with time due to radiation damage for example, need to be taken into account. Sophisticated and effective methods of inter-crystal and absolute calibration have been devised, using collision data from the 2011 LHC run and a dedicated light injection system. For inter-calibration, low mass particle decays ($\\pi^0$ and $\\eta$) to two photons are exploited, as well as the azimuthal symmetry of the average energy deposition at a given pseudorapidity. Absolute calibration has been performed using Z decays into electron-positron pairs. The light injection system monitors the channel response in real-time and enables the re-calibration of the measured energies over time. This is cross-checke...

  18. Early Physics at the LHC using the CMS Electromagnetic Calorimeter

    CERN Document Server

    Timlin, Claire

    2008-08-01

    The Compact Muon Solenoid (CMS) is a general purpose detector at the Large Hadron Collider (LHC) at CERN. It has been designed to study proton-proton col- lisions at a centre of mass energy of 14 TeV. CMS has constructed an electromagnetic calorimeter (ECAL) with extremely good energy resolution using scintillating lead tungstate crystals. Radiation studies performed on samples of these crystals are presented in this thesis. Results obtained from operating large parts (supermodules) of the ECAL in a test beam are also presented and compared to simulation. Methods of measuring electron efficiencies with data have been developed, tested and used in the measurement of W and Z boson cross sections in electron decay modes. Samples of ECAL crystals produced by the Shanghai Institute of Ceramics were tested during 2005 for radiation hardness by measuring the drop in light yield caused by irradiation. Results showed crystals were radiation hard enough for use in CMS. The ability to monitor crystals in situ and crysta...

  19. Simulations of the electromagnetic calorimeter in the presence of magnetic eld for the FCChh

    CERN Document Server

    Matas, Marek

    2016-01-01

    This work was focused on studying the properties of the electromagnetic calorimeter for the Future Circular Collider (FCC) [1]. FCC is an accelerator that will possibly be built in the 2040s-2050s. Its circumference would be 100 km with the center of mass energy ps=100TeV in proton-proton collisions. Detectors used to record FCC collisions will consist of the tracker, cryostat, electromagnetic calorimeter (EMCal), hadronic calorimeter (HCal) and muon chambers. In this work, we shall study the EMCal and its properties. One of the properties of the environment that this particular detector will have to face is the presence of a strong magnetic eld in the volume of the calorimeter. Studies carried out in this work are preliminary studies focused on addressing the eects that the magnetic eld will have on the electromagnetic shower evolution.

  20. Photon reconstruction in the ATLAS Inner Detector and Liquid Argon Barrel Calorimeter at the 2004 Combined Test Beam

    CERN Document Server

    Abat, E; Addy, T N; Adragna, P; Aharrouche, M; Ahmad, A; Akesson, T.P A; Aleksa, M; Alexa, C; Anderson, K; Andreazza, A; Anghinolfi, F; Antonaki, A; Arabidze, G; Arik, E; Atkinson, T; Baines, J; Baker, O K; Banfi, D; Baron, S; Barr, A J; Beccherle, R; Beck, H P; Belhorma, B; Bell, P J; Benchekroun, D; Benjamin, D P; Benslama, K; Bergeaas Kuutmann, E; Bernabeu, J; Bertelsen, H; Binet, S; Biscarat, C; Boldea, V; Bondarenko, V G; Boonekamp, M; Bosman, M; Bourdarios, C; Broklova, Z; Burckhart-Chromek, D; Bychkov, V; Callahan, J; Calvet, D; Canneri, M; Capeans Garrido, M; Caprini, M; Cardiel Sas, L; Carli, T; Carminati, L; Carvalho, J; Cascella, M; Castillo, M V; Catinaccio, A; Cauz, D; Cavalli, D; Cavalli-Sforza, M; Cavasinni, V; Cetin, S A; Chen, H; Cherkaoui, R; Chevalier, L; Chevallier, F; Chouridou, S; Ciobotaru, M; Citterio, M; Clark, A; Cleland, B; Cobal, M; Cogneras, E; Conde Muino, P; Consonni, M; Constantinescu, S; Cornelissen, T; Correard, S; Corso-Radu, A; Costa, G; Costa, M J; Costanzo, D; Cuneo, S; Cwetanski, P; Da Silva, D; Dam, M; Dameri, M; Danielsson, H O; Dannheim, D; Darbo, G; Davidek, T; De, K; Defay, P O; Dekhissi, B; Del Peso, J; Del Prete, T; Delmastro, M; Derue, F; Di Ciaccio, L; Di Girolamo, B; Dita, S; Dittus, F; Djama, F; Djobava, T; Dobos, D; Dobson, M; Dolgoshein, B A; Dotti, A; Drake, G; Drasal, Z; Dressnandt, N; Driouchi, C; Drohan, J; Ebenstein, W L; Eerola, P; Efthymiopoulos, I; Egorov, K; Eifert, T F; Einsweiler, K; El Kacimi, M; Elsing, M; Emelyanov, D; Escobar, C; Etienvre, A I; Fabich, A; Facius, K; Idrissi Fakhr-Eddine, A; Fanti, M; Farbin, A; Farthouat, P; Fassouliotis, D; Fayard, L; Febbraro, R; Fedin, O L; Fenyuk, A; Fergusson, D; Ferrari, P; Ferrari, R; Ferreira, B C; Ferrer, A; Ferrere, D; Filippini, G; Flick, T; Fournier, D; Francavilla, P; Francis, D; Froeschl, R; Froidevaux, D; Fullana, E; Gadomski, S; Gagliardi, G; Gagnon, P; Gallas, M; Gallop, B J; Gameiro, S; Gan, K K; Garcia, R; Garcia, C; Gavrilenko, I L; Gemme, C; Gerlach, P; Ghodbane, N; Giakoumopoulou, V; Giangiobbe, V; Giokaris, N; Glonti, G; Gottfert, T.; Golling, T; Gollub, N; Gomes, A; Gomez, M D; Gonzalez-Sevilla, S; Goodrick, M J; Gorfine, G; Gorini, B; Goujdami, D; Grahn, K J; Grenier, P; Grigalashvili, N; Grishkevich, Y; Grosse-Knetter, J; Gruwe, M; Guicheney, C; Gupta, A; Haeberli, C; Hartel, R.; Hajduk, Z; Hakobyan, H; Hance, M; Hansen, J D; Hansen, P H; Hara, K; Harvey, A., Jr; Hawkings, R J; Heinemann, F.E W; Henriques Correia, A; Henss, T; Hervas, L; Higon, E; Hill, J C; Hoffman, J; Hostachy, J Y; Hruska, I; Hubaut, F; Huegging, F; Hulsbergen, W; Hurwitz, M; Iconomidou-Fayard, L; Jansen, E; Jen-La Plante, I; Johansson, P.D C; Jon-And, K; Joos, M; Jorgensen, S; Joseph, J; Kaczmarska, A; Kado, M; Karyukhin, A; Kataoka, M; Kayumov, F; Kazarov, A; Keener, P T; Kekelidze, G D; Kerschen, N; Kersten, S; Khomich, A; Khoriauli, G; Khramov, E; Khristachev, A; Khubua, J; Kittelmann, T H; Klingenberg, R; Klinkby, E B; Kodys, P; Koffas, T; Kolos, S; Konovalov, S P; Konstantinidis, N; Kopikov, S; Korolkov, I; Kostyukhin, V; Kovalenko, S; Kowalski, T Z; Kruger, K.; Kramarenko, V; Kudin, L G; Kulchitsky, Y; Lacasta, C; Lafaye, R; Laforge, B; Lampl, W; Lanni, F; Laplace, S; Lari, T; Le Bihan, A C; Lechowski, M; Ledroit-Guillon, F; Lehmann, G; Leitner, R; Lelas, D; Lester, C G; Liang, Z; Lichard, P; Liebig, W; Lipniacka, A; Lokajicek, M; Louchard, L; Loureiro, K F; Lucotte, A; Luehring, F; Lund-Jensen, B; Lundberg, B; Ma, H; Mackeprang, R; Maio, A; Maleev, V P; Malek, F; Mandelli, L; Maneira, J; Mangin-Brinet, M; Manousakis, A; Mapelli, L; Marques, C; Marti i Garcia, S; Martin, F; Mathes, M; Mazzanti, M; McFarlane, K W; McPherson, R; Mchedlidze, G; Mehlhase, S; Meirosu, C; Meng, Z; Meroni, C; Mialkovski, V; Mikulec, B; Milstead, D; Minashvili, I; Mindur, B; Mitsou, V A; Moed, S; Monnier, E; Moorhead, G; Morettini, P; Morozov, S V; Mosidze, M; Mouraviev, S V; Moyse, E.W J; Munar, A; Myagkov, A; Nadtochi, A V; Nakamura, K; Nechaeva, P; Negri, A; Nemecek, S; Nessi, M; Nesterov, S Y; Newcomer, F M; Nikitine, I; Nikolaev, K; Nikolic-Audit, I; Ogren, H; Oh, S H; Oleshko, S B; Olszowska, J; Onofre, A; Padilla Aranda, C; Paganis, S; Pallin, D; Pantea, D; Paolone, V; Parodi, F; Parsons, J; Parzhitski, S; Pasqualucci, E; Passmore, S M; Pater, J; Patrichev, S; Peez, M; Perez Reale, V; Perini, L; Peshekhonov, V D; Petersen, J; Petersen, T C; Petti, R; Phillips, P W; Pilcher, J; Pina, J; Pinto, B; Podlyski, F; Poggioli, L; Poppleton, A; Poveda, J; Pralavorio, P; Pribyl, L; Price, M J; Prieur, D; Puigdengoles, C; Puzo, P; Ragusa, F; Rajagopalan, S; Reeves, K; Reisinger, I; Rembser, C; Bruckman de Renstrom, P.A.; Reznicek, P; Ridel, M; Risso, P; Riu, I; Robinson, D; Roda, C; Roe, S; Rohne, O.; Romaniouk, A; Rousseau, D; Rozanov, A; Ruiz, A; Rusakovich, N; Rust, D; Ryabov, Y F; Ryjov, V; Salto, O; Salvachua, B; Salzburger, A; Sandaker, H; Santamarina Rios, C.Santamarina; Santi, L; Santoni, C; Saraiva, J G; Sarri, F; Sauvage, G; Says, L P; Schaefer, M; Schegelsky, V A; Schiavi, C; Schieck, J; Schlager, G; Schlereth, J; Schmitt, C; Schultes, J; Schwemling, P; Schwindling, J; Seixas, J M; Seliverstov, D M; Serin, L; Sfyrla, A; Shalanda, N; Shaw, C; Shin, T; Shmeleva, A; Silva, J; Simion, S; Simonyan, M; Sloper, J E; Smirnov, S.Yu; Smirnova, L; Solans, C; Solodkov, A; Solovianov, O; Soloviev, I; Sosnovtsev, V V; Spano, F; Speckmayer, P; Stancu, S; Stanek, R; Starchenko, E; Straessner, A; Suchkov, S I; Suk, M; Szczygiel, R; Tarrade, F; Tartarelli, F; Tas, P; Tayalati, Y; Tegenfeldt, F; Teuscher, R; Thioye, M; Tikhomirov, V O; Timmermans, C.J.W P; Tisserant, S; Toczek, B; Tremblet, L; Troncon, C; Tsiareshka, P; Tyndel, M; Karagoz Unel, M.; Unal, G; Unel, G; Usai, G; Van Berg, R; Valero, A; Valkar, S; Valls, J A; Vandelli, W; Vannucci, F; Vartapetian, A; Vassilakopoulos, V I; Vasilyeva, L; Vazeille, F; Vernocchi, F; Vetter-Cole, Y; Vichou, I; Vinogradov, V; Virzi, J; Vivarelli, I; de Vivie, J B; Volpi, M; Vu Anh, T; Wang, C; Warren, M; Weber, J; Weber, M; Weidberg, A R; Weingarten, J; Wells, P S; Werner, P; Wheeler, S; Wiesmann, M; Wilkens, H; Williams, H H; Wingerter-Seez, I; Yasu, Y; Zaitsev, A; Zenin, A; Zenis, T; Zenonos, Z; Zhang, H; Zhelezko, A; Zhou, N

    2011-01-01

    The reconstruction of photons in the ATLAS detector is studied with data taken during the 2004 Combined Test Beam, where a full slice of the ATLAS detector was exposed to beams of particles of known energy at the CERN SPS. The results presented show significant differences in the longitudinal development of the electromagnetic shower between converted and unconverted photons as well as in the total measured energy. The potential to use the reconstructed converted photons as a means to precisely map the material of the tracker in front of the electromagnetic calorimeter is also considered. All results obtained are compared with a detailed Monte-Carlo simulation of the test-beam setup which is based on the same simulation and reconstruction tools as those used for the ATLAS detector itself.

  1. Liquid Argon Calorimeter - Barrel Cryostat Construction and Testing May-June 2000

    CERN Multimedia

    US, ATLAS

    1999-01-01

    Photo 1 - Outer Cold Cryostat showing 'Y' support. Photo 2 - Outer Cold Vessel half showing 'X' and 'Z' stops and 'Y' supports. Photo 3 - Cold Vessel Bulkhead, End 'C'. Photo 4 - Outer Cold Vessel half, showing EM Calorimeter support rail. Photo 5 - End of Outer Cold Vessel showing EM Calorimeter support rail. Photo 6 - Al/SST Transitions for Signal and High Voltage feedthroughs. Test weld blocks shown in background. Photo 7 - Welding of Al/SST Transitions onto Outer Cold Vessel. Photo 8 - Al/SST Transitions, including test pumpouts. Photo 9 - Machining of Inner Cold vessel. Photo 10 - Warm Vessel being assembled for leak testing Photo 11 - Setting up Warm Vessel on test stand. Photo 12 - Warm Vessel assembly for testing complete. Photo 13 - Dial indicators mounted against the Warm Vessel Bulkhead during testing. Photo 14 - Pumping on Warm Vessel. Photo 15 - Pumping on the Warm Vessel. Photo 16 - Checking the Solenoid Chimney. Photo 17 - Leak checking the Inner Warm Vessel/Bulkhead flange in the area of ID co...

  2. Extraction Method of Fine Granular Performance from Scintillator Strip Electromagnetic Calorimeter

    CERN Document Server

    Kotera, Katsushige; Miyamoto, Akiya; Takeshita, Tohru

    2014-01-01

    We describe an algorithm which has been developed to extract fine granularity information from an electromagnetic calorimeter with strip-based readout. Such a calorimeter, based on scintillator strips, is being developed to apply particle flow reconstruction to future experiments in high energy physics. Tests of this algorithm in full detector simulations, using strips of size 45 x 5 mm^2 show that the performance is close to that of a calorimeter with true 5 x 5 mm^2 readout granularity. The performance can be further improved by the use of 10 x 10 mm^2 tile- shaped layers interspersed between strip layers.

  3. The electromagnetic calorimeter in JLab Real Compton Scattering Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Albert Shahinyan; Eugene Chudakov; A. Danagoulian; P. Degtyarenko; K. Egiyan; V. Gorbenko; J. Hines; E. Hovhannisyan; Ch. Hyde; C.W. de Jager; A. Ketikyan; V. Mamyan; R. Michaels; A.M. Nathan; V. Nelyubin; I. Rachek; M. Roedelbrom; A. Petrosyan; R. Pomatsalyuk; V. Popov; J. Segal; Yu. Shestakov; J. Templon; H. Voskanyan; B. Wojtsekhowski

    2007-04-16

    A hodoscope calorimeter comprising of 704 lead-glass blocks is described. The calorimeter was constructed for use in the JLab Real Compton Scattering experiment. The detector provides a measurement of the coordinates and the energy of scattered photons in the GeV energy range with resolutions of 5 mm and 6\\%/$\\sqrt{E_\\gamma \\, [GeV]}$, respectively. Design features and performance parameters during the experiment are presented.

  4. A 3000 element lead-glass electromagnetic calorimeter

    Energy Technology Data Exchange (ETDEWEB)

    Crittenden, R.R.; Dzierba, A.R.; Gunter, J.; Lindenbusch, R.; Rust, D.R.; Scott, E.; Smith, P.T.; Sulanke, T.; Teige, S.; Brabson, B.B.; Adams, T.; Bishop, J.M.; Cason, N.M.; LoSecco, J.M.; Manak, J.J.; Sanjari, A.H.; Shephard, W.D.; Steinike, D.L.; Taegar, S.A.; Thompson, D.R.; Chung, S.U.; Hackenburg, R.W.; Olchanski, C.; Weygand, D.P.; Willutzki, H.J.; Denisov, S.; Dushkin, A.; Kochetkov, V.; Lipaev, V.; Popov, A.; Shein, I.; Soldatov, A.; Bar-Yam, Z.; Cummings, J.P.; Dowd, J.P.; Eugenio, P.; Hayek, M.; Kern, W.; King, E.; Anoshina, E.V.; Bodyagin, V.A.; Demianov, A.I.; Gribushin, A.M.; Kodolova, O.L.; Korotkikh, V.L.; Kostin, M.A.; Ostrovidov, A.I.; Sarycheva, L.I.; Sinev, N.B.; Vardanyan, I.N.; Yershov, A.A.; Brown, D.S.; Pedlar, T.K.; Seth, K.K.; Wise, J.; Zhao, D.; Adams, G.S.; Napolitano, J.; Nozar, M.; Smith, J.A.; Witkowski, M. [Indiana Univ., Bloomington, IN (United States). Dept. of Phys.]|[Department of Physics, University of Notre Dame, Notre Dame, IN 46556 (United States)]|[Department of Physics, Brookhaven National Laboratory, Upton, NY 11973 (United States)]|[Institute for High Energy Physics, Protvino (Russian Federation)]|[Department of Physics, University of Massachusetts Dartmouth, North Dartmouth, MA 02747 (United States)]|[Institute for Nuclear Physics, Moscow State University, Moscow (Russian Federation)]|[Department of Physics, Northwestern University, Evanston, IL 60208 (United States)]|[Department of Physics, Rensselaer Polytechnic Institute, Troy, NY 12180 (United States)

    1997-03-11

    A 3045 element lead glass calorimeter and an associated fast trigger processor have been constructed, tested and implemented in BNL experiment E852 in conjunction with the multi-particle spectrometer (MPS). Approximately, 10{sup 9} all-neutral and neutral plus charged triggers were recorded with this apparatus during data runs in 1994 and 1995. This paper reports on the construction, testing and performance of this lead glass calorimeter and the associated trigger processor. (orig.).

  5. Energy calibration and resolution of the CMS electromagnetic calorimeter in pp collisions at $\\sqrt{s}$ = 7 TeV

    CERN Document Server

    Chatrchyan, Serguei; Sirunyan, Albert M; Tumasyan, Armen; Adam, Wolfgang; Bergauer, Thomas; Dragicevic, Marko; Erö, Janos; Fabjan, Christian; Friedl, Markus; Fruehwirth, Rudolf; Ghete, Vasile Mihai; Hörmann, Natascha; Hrubec, Josef; Jeitler, Manfred; Kiesenhofer, Wolfgang; Knünz, Valentin; Krammer, Manfred; Krätschmer, Ilse; Liko, Dietrich; Mikulec, Ivan; Rabady, Dinyar; Rahbaran, Babak; Rohringer, Christine; Rohringer, Herbert; Schöfbeck, Robert; Strauss, Josef; Taurok, Anton; Treberer-Treberspurg, Wolfgang; Waltenberger, Wolfgang; Wulz, Claudia-Elisabeth; Mossolov, Vladimir; Shumeiko, Nikolai; Suarez Gonzalez, Juan; Alderweireldt, Sara; Bansal, Monika; Bansal, Sunil; Cornelis, Tom; De Wolf, Eddi A; Janssen, Xavier; Knutsson, Albert; Luyckx, Sten; Mucibello, Luca; Ochesanu, Silvia; Roland, Benoit; Rougny, Romain; Van Haevermaet, Hans; Van Mechelen, Pierre; Van Remortel, Nick; Van Spilbeeck, Alex; Blekman, Freya; Blyweert, Stijn; D'Hondt, Jorgen; Kalogeropoulos, Alexis; Keaveney, James; Maes, Michael; Olbrechts, Annik; Tavernier, Stefaan; Van Doninck, Walter; Van Mulders, Petra; Van Onsem, Gerrit Patrick; Villella, Ilaria; Clerbaux, Barbara; De Lentdecker, Gilles; Favart, Laurent; Gay, Arnaud; Hreus, Tomas; Léonard, Alexandre; Marage, Pierre Edouard; Mohammadi, Abdollah; Reis, Thomas; Seva, Tomislav; Thomas, Laurent; Vander Velde, Catherine; Vanlaer, Pascal; Wang, Jian; Adler, Volker; Beernaert, Kelly; Benucci, Leonardo; Cimmino, Anna; Costantini, Silvia; Dildick, Sven; Garcia, Guillaume; Klein, Benjamin; Lellouch, Jérémie; Marinov, Andrey; Mccartin, Joseph; Ocampo Rios, Alberto Andres; Ryckbosch, Dirk; Sigamani, Michael; Strobbe, Nadja; Thyssen, Filip; Tytgat, Michael; Walsh, Sinead; Yazgan, Efe; Zaganidis, Nicolas; Basegmez, Suzan; Beluffi, Camille; Bruno, Giacomo; Castello, Roberto; Caudron, Adrien; Ceard, Ludivine; Delaere, Christophe; Du Pree, Tristan; Favart, Denis; Forthomme, Laurent; Giammanco, Andrea; Hollar, Jonathan; Lemaitre, Vincent; Liao, Junhui; Militaru, Otilia; Nuttens, Claude; Pagano, Davide; Pin, Arnaud; Piotrzkowski, Krzysztof; Popov, Andrey; Selvaggi, Michele; Vizan Garcia, Jesus Manuel; Beliy, Nikita; Caebergs, Thierry; Daubie, Evelyne; Hammad, Gregory Habib; Alves, Gilvan; Correa Martins Junior, Marcos; Martins, Thiago; Pol, Maria Elena; Henrique Gomes E Souza, Moacyr; Aldá Júnior, Walter Luiz; Carvalho, Wagner; Chinellato, Jose; Custódio, Analu; Da Costa, Eliza Melo; De Jesus Damiao, Dilson; De Oliveira Martins, Carley; Fonseca De Souza, Sandro; Malbouisson, Helena; Malek, Magdalena; Matos Figueiredo, Diego; Mundim, Luiz; Nogima, Helio; Prado Da Silva, Wanda Lucia; Santoro, Alberto; Soares Jorge, Luana; Sznajder, Andre; Tonelli Manganote, Edmilson José; Vilela Pereira, Antonio; Souza Dos Anjos, Tiago; Bernardes, Cesar Augusto; De Almeida Dias, Flavia; Tomei, Thiago; De Moraes Gregores, Eduardo; Lagana, Caio; Da Cunha Marinho, Franciole; Mercadante, Pedro G; Novaes, Sergio F; Padula, Sandra; Genchev, Vladimir; Iaydjiev, Plamen; Piperov, Stefan; Rodozov, Mircho; Stoykova, Stefka; Sultanov, Georgi; Tcholakov, Vanio; Trayanov, Rumen; Vutova, Mariana; Dimitrov, Anton; Hadjiiska, Roumyana; Kozhuharov, Venelin; Litov, Leander; Pavlov, Borislav; Petkov, Peicho; Bian, Jian-Guo; Chen, Guo-Ming; Chen, He-Sheng; Jiang, Chun-Hua; Liang, Dong; Liang, Song; Meng, Xiangwei; Tao, Junquan; Wang, Jian; Wang, Xianyou; Wang, Zheng; Xiao, Hong; Xu, Ming; Asawatangtrakuldee, Chayanit; Ban, Yong; Guo, Yifei; Li, Qiang; Li, Wenbo; Liu, Shuai; Mao, Yajun; Qian, Si-Jin; Wang, Dayong; Zhang, Linlin; Zou, Wei; Avila, Carlos; Carrillo Montoya, Camilo Andres; Gomez, Juan Pablo; Gomez Moreno, Bernardo; Sanabria, Juan Carlos; Godinovic, Nikola; Lelas, Damir; Plestina, Roko; Polic, Dunja; Puljak, Ivica; Antunovic, Zeljko; Kovac, Marko; Brigljevic, Vuko; Duric, Senka; Kadija, Kreso; Luetic, Jelena; Mekterovic, Darko; Morovic, Srecko; Tikvica, Lucija; Attikis, Alexandros; Mavromanolakis, Georgios; Mousa, Jehad; Nicolaou, Charalambos; Ptochos, Fotios; Razis, Panos A; Finger, Miroslav; Finger Jr, Michael; Assran, Yasser; Ellithi Kamel, Ali; Mahmoud, Mohammed; Mahrous, Ayman; Radi, Amr; Kadastik, Mario; Müntel, Mait; Murumaa, Marion; Raidal, Martti; Rebane, Liis; Tiko, Andres; Eerola, Paula; Fedi, Giacomo; Voutilainen, Mikko; Härkönen, Jaakko; Karimäki, Veikko; Kinnunen, Ritva; Kortelainen, Matti J; Lampén, Tapio; Lassila-Perini, Kati; Lehti, Sami; Lindén, Tomas; Luukka, Panja-Riina; Mäenpää, Teppo; Peltola, Timo; Tuominen, Eija; Tuominiemi, Jorma; Tuovinen, Esa; Wendland, Lauri; Korpela, Arja; Tuuva, Tuure

    2013-01-01

    The energy calibration and resolution of the electromagnetic calorimeter (ECAL) of the CMS detector have been determined using proton-proton collision data from LHC operation in 2010 and 2011 at a centre-of-mass energy of $\\sqrt{s}$=7 TeV with integrated luminosities of about 5 inverse femtobarns. Crucial aspects of detector operation, such as the environmental stability, alignment, and synchronization, are presented. The in-situ calibration procedures are discussed in detail and include the maintenance of the calibration in the challenging radiation environment inside the CMS detector. The energy resolution for electrons from Z-boson decays is better than 2% in the central region of the ECAL barrel (for pseudorapidity abs(eta) < 0.8) and is 2-5% elsewhere. The derived energy resolution for photons from 125 GeV Higgs boson decays varies across the barrel from 1.1% to 2.6% and from 2.2% to 5% in the entraps. The calibration of the absolute energy is determined from $Z \\to e^+e^-$ decays to a precision of 0....

  6. PWO crystals for CMS electromagnetic calorimeter studies of the radiation damage kinetics

    CERN Document Server

    Drobychev, G Yu; Dormenev, V; Korzhik, M; Lecoq, P; Lopatic, A; Nédélec, P; Peigneux, J P; Sillou, D

    2005-01-01

    Kinetics of radiation damage of the PWO crystals under irradiation and recovery were studied. Crystals were irradiated with dose corresponding to average one expected in the electromagnetic calorimeter (working dose irradiation). Radiation damage and recovery were monitored through measurements of PWO optical transmission. An approach is proposed which allows evaluating the influence of the PWO crystals properties on the statistical term in the energy resolution of the electromagnetic calorimeter. The analysis also gives important information about the nature of the radiation damage mechanism in scintillation crystals. The method was used during development of technology of the mass production of radiation hard crystals and during development of methods for crystals certification

  7. A hadron calorimeter with scintillators parallel to the beam

    Science.gov (United States)

    Abramov, V.; Goncharov, P.; Gorin, A.; Gurzhiev, A.; Dyshkant, A.; Evdokimov, V.; Kolosov, V.; Korablev, A.; Korneev, Yu.; Kostritskii, A.; Krinitsyn, A.; Kryshkin, V.; Podstavkov, V.; Polyakov, V.; Shtannikov, A.; Tereschenko, S.; Turchanovich, L.; Zaichenko, A.

    1997-02-01

    A hadron calorimeter in which scintillators are arranged nearly parallel to the incident particle direction and light is collected by optical fibres with WLS, has been built. The iron absorber plates are of the tapered shape to fit a barrel structure of the collider geometry. The performance of the calorimeter studied with hadron beam is presented as a function of tilt angle without and with electromagnetic calorimeter in front of the hadron one.

  8. A hadron calorimeter with scintillators parallel to the beam

    Energy Technology Data Exchange (ETDEWEB)

    Abramov, V.; Goncharov, P.; Gorin, A.; Gurzhiev, A.; Dyshkant, A.; Evdokimov, V.; Kolosov, V.; Korablev, A.; Korneev, Yu.; Kostritskii, A.; Krinitsyn, A.; Kryshkin, V.; Podstavkov, V.; Polyakov, V.; Shtannikov, A.; Tereschenko, S.; Turchanovich, L.; Zaichenko, A. [Institut Fiziki Vysokikh Ehnergij, Protvino (Russian Federation)

    1997-08-11

    A hadron calorimeter in which scintillators are arranged nearly parallel to the incident particle direction and light is collected by optical fibres with WLS, has been built. The iron absorber plates are of the tapered shape to fit a barrel structure of the collider geometry. The performance of the calorimeter studied with hadron beam is presented as a function of tilt angle without and with electromagnetic calorimeter in front of the hadron one. (orig.).

  9. Design and status of the Mu2e electromagnetic calorimeter

    Science.gov (United States)

    Atanov, N.; Baranov, V.; Budagov, J.; Carosi, R.; Cervelli, F.; Colao, F.; Cordelli, M.; Corradi, G.; Dané, E.; Davydov, Yu. I.; Di Falco, S.; Donati, S.; Donghia, R.; Echenard, B.; Flood, K.; Giovannella, S.; Glagolev, V.; Grancagnolo, F.; Happacher, F.; Hitlin, D. G.; Martini, M.; Miscetti, S.; Miyashita, T.; Morescalchi, L.; Murat, P.; Pasciuto, D.; Pezzullo, G.; Porter, F.; Saputi, A.; Sarra, I.; Soleti, S. R.; Spinella, F.; Tassielli, G.; Tereshchenko, V.; Usubov, Z.; Zhu, R. Y.

    2016-07-01

    The Mu2e experiment at Fermilab aims at measuring the neutrinoless conversion of a negative muon into an electron and reach a single event sensitivity of 2.5 ×10-17 after three years of data taking. The monoenergetic electron produced in the final state, is detected by a high precision tracker and a crystal calorimeter, all embedded in a large superconducting solenoid (SD) surrounded by a cosmic ray veto system. The calorimeter is complementary to the tracker, allowing an independent trigger and powerful particle identification, while seeding the track reconstruction and contributing to remove background tracks mimicking the signal. In order to match these requirements, the calorimeter should have an energy resolution of O(5)% and a time resolution better than 500 ps at 100 MeV. The baseline solution is a calorimeter composed of two disks of BaF2 crystals read by UV extended, solar blind, Avalanche Photodiode (APDs), which are under development from a JPL, Caltech, RMD consortium. In this paper, the calorimeter design, the R&D studies carried out so far and the status of engineering are described. A backup alternative setup consisting of a pure CsI crystal matrix read by UV extended Hamamatsu MPPC's is also presented.

  10. Investigation of an electromagnetic calorimeter based on liquid krypton

    Energy Technology Data Exchange (ETDEWEB)

    Aulchenko, V.M.; Klimenko, S.G.; Kolachev, G.M.; Leontiev, L.A.; Onuchin, A.P.; Panin, V.S.; Pril, Yu.V.; Rodyakin, V.A.; Rylin, A.V.; Tayursky, V.A.; Tikhonov, Yu.A. (AN SSSR, Novosibirsk. Inst. Yadernoj Fiziki (The Netherlands)); Cantoni, P.; Frabetti, P.L.; Stagni, L. (Istituto Nazionale di Fisica Nucleare, Bologna (Italy) Bologna Univ. (Italy)); Lo Bianco, G.; Palombo, F. (Istituto Nazionale di Fisica Nucleare, Milan (Italy) Milan Univ. (Italy). Dipt. di Fisica); Manfredi, P.F.; Re, V.; Speziali, V. (Istituto Nazionale di Fisica Nucleare, Milan (Italy) Pavia Univ. (Italy). Dipt. di Elettronica)

    1990-04-15

    Effects determining the energy and spatial resolution of a calorimeter based on liquid krypton have been studied. With cathode strips of 10 mm a spatial resolution of 0.4 mm has been obtained in a cosmic rays test. The energy resolution of the calorimeter (0.4 ton of krypton) has been measured with positrons, achieving a rms of 5.7% at E=130 MeV and 1.7% at E=1200 MeV. The measurements are compared to Monte Carlo simulations. (orig.).

  11. The design and performance of the electromagnetic calorimeters in Hall C at Jefferson Lab

    Energy Technology Data Exchange (ETDEWEB)

    Vardan Tadevosyan, Hamlet Mkrtchyan, Arshak Asaturyan, Arthur Mkrtchyan, Simon Zhamkochyan

    2012-12-01

    The design and performance of the electromagnetic calorimeters in the magnetic spectrometers in Hall C at Jefferson Lab are presented. For the existing HMS and SOS spectrometers, construction information and comparisons of simulated and experimental results are presented. The design and simulated performance for a new calorimeter to be used in the new SHMS spectrometer is also presented. We have developed and constructed electromagnetic calorimeters from TF-1 type lead-glass blocks for the HMS and SOS magnetic spectrometers at JLab Hall C. The HMS/SOS calorimeters are of identical design and construction except for their total size. Blocks of dimension 10 cm × 10 cm × 70 cm are arranged in four planes and stacked 13 and 11 blocks high in the HMS and SOS respectively. The energy resolution of these calorimeters is better than 6%/√E, and pion/electron (π/e) separation of about 100:1 has been achieved in energy range 1–5 GeV. Good agreement has been observed between the experimental and GEANT4 simulated energy resolutions. The HMS/SOS calorimeters have been used nearly in all Hall C experiments, providing good energy resolution and a high pion suppression factor. No significant deterioration in their performance has been observed in the course of use since 1994. For the SHMS spectrometer, presently under construction, details on the calorimeter design and accompanying GEANT4 simulation efforts are given. A Preshower+Shower design was selected as the most cost-effective among several design choices. The preshower will consist of a layer of 28 modules with TF-1 type lead glass radiators, stacked in two columns. The shower part will consist of 224 modules with F-101 type lead glass radiators, stacked in a “fly's eye” configuration of 14 columns and 16 rows. The active area of 120 × 130 cm(2) will encompass the beam envelope at the calorimeter. The anticipated performance of the new calorimeter is simulated over the full momentum range of the SHMS, predicting

  12. Frozen-shower simulation of electromagnetic showers in the ATLAS forward calorimeter

    CERN Document Server

    Gasnikova, Ksenia; The ATLAS collaboration

    2016-01-01

    Accurate simulation of calorimeter response for high energy electromagnetic particles is essential for the LHC experiments. Detailed simulation of the electromagnetic showers using Geant4 is however very CPU intensive and various fast simulation methods were proposed instead. The frozen shower simulation substitutes the full propagation of the showers for energies below 1~GeV by showers taken from a pre-simulated library. The method is used for production of the main ATLAS Monte Carlo samples, greatly improving the production time. The frozen showers describe shower shapes, sampling fraction, sampling and noise-related fluctuations very well, while description of the constant term, related to calorimeter non-uniformity, requires a careful choice of the shower library binning. A new method is proposed to tune the binning variables, using multivariate techniques. The method is tested and optimized for the description of the ATLAS forward calorimeter.

  13. Design and status of the Mu2e electromagnetic calorimeter

    CERN Document Server

    Atanov, N; Budagov, J; Carosi, R; Cervelli, F; Colao, F; Cordelli, M; Corradi, G; Dane', E; Davydov, Yu I; Di Falco, S; Donati, S; Donghia, R; Echenard, B; Flood, K; Giovannella, S; Glagolev, V; Grancagnolo, F; Happacher, F; Hitlin, D G; Martini, M; Miscetti, S; Miyashita, T; Morescalchi, L; Murat, P; Pasciuto, D; Pezzullo, G; Porter, F; Saputi, A; Sarra, I; Soleti, S R; Spinella, F; Tassielli, G; Tereshchenko, V; Usubov, Z; Zhu, R Y

    2016-01-01

    The Mu2e experiment at Fermilab aims at measuring the neutrinoless conversion of a negative muon into an electron and reach a single event sensitivity of 2.5x10^{-17} after three years of data taking. The monoenergetic electron produced in the final state, is detected by a high precision tracker and a crystal calorimeter, all embedded in a large superconducting solenoid (SD) surrounded by a cosmic ray veto system. The calorimeter is complementary to the tracker, allowing an independent trigger and powerful particle identification, while seeding the track reconstruction and contributing to remove background tracks mimicking the signal. In order to match these requirements, the calorimeter should have an energy resolution of O(5)% and a time resolution better than 500 ps at 100 MeV. The baseline solution is a calorimeter composed of two disks of BaF2 crystals read by UV extended, solar blind, Avalanche Photodiode (APDs), which are under development from a JPL, Caltech, RMD consortium. In this paper, the calorim...

  14. Precision measurement of energy and position resolutions of the BTeV electromagnetic calorimeter prototype

    Energy Technology Data Exchange (ETDEWEB)

    Batarin, V.A.; Brennan, T.; Butler, J.; Cheung, H.; Derevschikov, A.A.; Fomin, Y.V.; Frolov, V.; Goncharenko, Y.M.; Grishin, V.N.; Kachanov, V.A.; Khodyrev, V.Y.; Khroustalev, K.; Konstantinov, A.S.; Kravtsov, V.I.; Kubota, Y.; Leontiev, V.M.; Maisheev, V.A.; Matulenko, Y.A.; Melnick, Y.M.; Meschanin, A.P.; Mikhalin, N.E.; Minaev, N.G.; Mochalov, V.V.; Morozov, D.A.; Mountain, R.; Nogach, L.V.; Ryazantsev, A.V.; Semenov, P.A. E-mail: semenov@mx.ihep.su; Shestermanov, K.E.; Soloviev, L.F.; Solovianov, V.L.; Stone, S.; Ukhanov, M.N.; Uzunian, A.V.; Vasiliev, A.N.; Yakutin, A.E.; Yarba, J

    2003-09-11

    The energy dependence of the energy and position resolutions of the electromagnetic calorimeter prototype made of lead tungstate crystals produced in Bogoroditsk (Russia) and Shanghai (China) is presented. These measurements were carried out at the Protvino accelerator using a 1-45 GeV electron beam. The crystals were coupled to photomultiplier tubes. The dependence of energy and position resolutions on different factors as well as the measured electromagnetic shower lateral profile are presented.

  15. Precision Measurement of Energy and Position Resolutions of the BTeV Electromagnetic Calorimeter Prototype

    CERN Document Server

    Batarin, V; Butler, J; Cheung, H; Derevshchikov, A A; Fomin, Y; Frolov, V; Goncharenko, Yu M; Grishin, V; Kachanov, V A; Khodyrev, V Yu; Khroustalev, K; Konstantinov, A S; Kravtsov, V; Kubota, Y; Leontiev, V M; Maisheev, V; Matulenko, Yu A; Melnik, Yu M; Meshchanin, A P; Mikhalin, N; Minaev, N G; Mochalov, V; Morozov, D A; Mountain, R; Nogach, L V; Ryazantsev, A; Semenov, P A; Shestermanov, K E; Soloviev, L; Solovianov, Vladimir L; Stone, S; Ukhanov, M N; Uzunian, A V; Vasilev, A; Yakutin, A; Yarba, J V

    2003-01-01

    The energy dependence of the energy and position resolutions of the electromagnetic calorimeter prototype made of lead tungstate crystals produced in Bogoroditsk (Russia) and Shanghai (China) is presented. These measurementswere carried out at the Protvino accelerator using a 1 to 45 GeV electron beam. The crystals were coupled to photomultiplier tubes. The dependence of energy and position resolutions on different factors as well as the measured electromagnetic shower lateral profile are presented.

  16. PWO crystals for CMS electromagnetic calorimeter : studies of the radiation damage kinetics

    OpenAIRE

    Drobychev, G.; Auffray, E.; Dormenev, V.; Korzhik, M; Lecoq, P.; Lopatic, A.; Nédélec, P.; Peigneux, J. P.; D. Sillou

    2005-01-01

    Kinetics of radiation damage of the PWO crystals under irradiation and recovery were studied. Crystals were irradiated with dose corresponding to average one expected in the electromagnetic calorimeter (working dose irradiation). Radiation damage and recovery were monitored through measurements of PWO optical transmission. An approach is proposed which allows evaluating the influence of the PWO crystals properties on the statistical term in the energy resolution of the electromagnetic calorim...

  17. Understanding the ATLAS electromagnetic barrel pulse shapes and the absolute electronic calibration

    CERN Document Server

    Neukermans, L; Zitoun, R

    2001-01-01

    We present an original method to undestand the calibration and physics pulse shapes collected in the 2000 barrel test beam runs with the prototype module. It is based on an electrical description of the calorimeter and its electronics. It allows an understanding of the physics pulse shapes and its absolute calibration (in microA/ADC) to a very good level of accuracy with a small number of parameters (capacitances and inductances). The electrical parameters found by this method agree with the direct measurements independantly performed on the prototype module. Optimal filtering coefficients can then be derived from these physics pulse shape predictions, and more crucial, an absolute electronic calibration. These coefficients are released in the official test beam software EMTB.

  18. Trigger-less readout system with pulse pile-up recovery for the PANDA electromagnetic calorimeter

    NARCIS (Netherlands)

    Kavatsyuk, M.; Tambave, G.; Hevinga, M.; Lemmens, P. J. J.; Schakel, P.; Schreuder, F.; Speelman, R.; Löhner, H.

    2013-01-01

    A simple, efficient, and robust on-line data-processing scheme was developed for the digital front-end electronics of the electromagnetic calorimeter of the PANDA spectrometer at FAIR, Darmstadt. The implementation of the processing algorithm in FPGA enables the construction of an almost dead-time f

  19. Estimation of radiation effects in the front-end electronics of an ILC electromagnetic calorimeter

    Science.gov (United States)

    Bartsch, V.; Postranecky, M.; Targett-Adams, C.; Warren, M.; Wing, M.

    2008-08-01

    The front-end electronics of the electromagnetic calorimeter of an International Linear Collider detector are situated in a radiation environment. This requires the effect of the radiation on the performance of the electronics, specifically FPGAs, to be examined. In this paper we study the flux, particle spectra and deposited doses at the front-end electronics of the electromagnetic calorimeter of a detector at the ILC. We also study the occupancy of the electromagnetic calorimeter. These estimates are compared with measurements, e.g. of the radiation damage of FPGAs, done elsewhere. The outcome of the study shows that the radiation doses and the annual flux is low enough to allow today's FPGAs to operate. The Single Event Upset rate, however, lies between 14 min and 12 h depending on the FPGA used and therefore needs to be considered in the design of the data acquisition system of the electromagnetic calorimeter. The occupancy is about 0.002 per bunch train not taking into account the effect of noise which depends on the choice of the detector.

  20. VHDL implementation of feature-extraction algorithm for the PANDA electromagnetic calorimeter

    NARCIS (Netherlands)

    Guliyev, E.; Kavatsyuk, M.; Lemmens, P. J. J.; Tambave, G.; Löhner, H.

    2012-01-01

    A simple, efficient, and robust feature-extraction algorithm, developed for the digital front-end electronics of the electromagnetic calorimeter of the PANDA spectrometer at FAIR, Darmstadt, is implemented in VHDL for a commercial 16 bit 100 MHz sampling ADC. The source-code is available as an open-

  1. VHDL Implementation of Feature-Extraction Algorithm for the PANDA Electromagnetic Calorimeter

    NARCIS (Netherlands)

    Kavatsyuk, M.; Guliyev, E.; Lemmens, P. J. J.; Löhner, H.; Tambave, G.

    2010-01-01

    The feature-extraction algorithm, developed for the digital front-end electronics of the electromagnetic calorimeter of the PANDA detector at the future FAIR facility, is implemented in VHDL for a commercial 16 bit 100 MHz sampling ADC. The use of modified firmware with the running on-line data-proc

  2. Kinematic Fit for the Radiative Bhabha Calibration of BaBar's Electromagnetic Calorimeter

    OpenAIRE

    2000-01-01

    For the radiative Bhabha calibration of BaBar's electromagnetic calorimeter, the measured energy of a photon cluster is being compared with the energy obtained via a kinematic fit involving other quantities from that event. The details of the fitting algorithm are described in this note, together with its derivation and checks that ensure that the fitting routine is working properly.

  3. Fast simulation of electromagnetic showers in the ATLAS calorimeter Frozen showers

    CERN Document Server

    Barberio, E; Butler, B; Cheung, S L; Dell'Acqua, A; Di Simone, A; Ehrenfeld, E; Gallas, M V; Glazov, A; Marshall, Z; Mueller, J; Plačakyte, R; Rimoldi, A; Savard, P; Tsulaia, V; Waugh, A; Young, C C

    2009-01-01

    One of the most time consuming process simulating pp interactions in the ATLAS detector at LHC is the simulation of electromagnetic showers in the calorimeter. In order to speed up the event simulation several parametrisation methods are available in ATLAS. In this paper we present a short description of a frozen shower technique, together with some recent benchmarks and comparison with full simulation.

  4. Electromagnetic Calorimeter studies for the GEp(5) experiment

    Science.gov (United States)

    Ayerbe Gayoso, Carlos

    2013-10-01

    The GEp(5) experiment, part of the SBS collaboration, will be the fourth measurement of the GEp /GMp ratio using the proton recoil polarization technique. The current data suggests that the GEp /GMp ratio obtained with this technique, might cross zero near Q2 ~ 10 GeV2 , now reachable with the CEBAF upgrade to 12 GeV energy beam. This measurement technique requires a precise measurement of the energy and angles of the scattered electron in coincidence with the recoil proton. The electron's measured energy and crude position will be used in the trigger, while the offline position measurement will be used in kinematic cuts to separate the elastic process from the background. A lead-glass calorimeter, which was used in the previous experiments, is not optimal for the planned experiment due to the rapid radiation damage in the experiment's running conditions. A sampling calorimeter, made of lead and plastic scintillators, is under consideration. Results from a test beam and Monte Carlo simulations of this kind of calorimeter will be presented. Supported from a NSF grant, PHY-1066374.

  5. Energy Measurement with the ATLAS Electromagnetic Calorimeter at the Per Mill Accuracy Level

    CERN Document Server

    Teischinger, Florian; Fabjan, Christian

    The ATLAS experiment is designed to study the proton-proton collisions produced at the Large Hadron Collider (LHC) at CERN. It is made up of various sub-detectors to measure the properties of all the particles produced at the proton-proton collision. Over the last three years of running around 20 x 10^14 collisions of proton data have been recorded. Liquid argon (LAr) sampling calorimeters are used for all electromagnetic calorimetry and for hadronic calorimetry in the end-caps. The Inner Detector, on the other hand, measures the transverse momentum of charged particles down to a momentum of 0.5 GeV. This thesis deals with the absolute measurement of the energy in the electromagnetic calorimeter and the improvement of the systematic uncertainties. A method using the ratio of the energy E in the calorimeter and the momentum measurement p in the Inner Detector (E/p) was used to extract the energy scale of the electromagnetic LAr calorimeter for electrons and positrons. To investigate and further reduce the syst...

  6. Performance of the first prototype of the CALICE scintillator strip electromagnetic calorimeter

    CERN Document Server

    Francis, K.; Schlereth, J.; Smith, J.; Xia, L.; Baldolemar, E.; Li, J.; Park, S.T.; Sosebee, M.; White, A.P.; Yu, J.; Eigen, G.; Mikami, Y.; Watson, N.K.; Thomson, M.A.; Ward, D.R.; Benchekroun, D.; Hoummada, A.; Khoulaki, Y.; Apostolakis, J.; Dotti, A.; Folger, G.; Ivantchenko, V.; Ribon, A.; Uzhinskiy, V.; Carloganu, C.; Gay, P.; Manen, S.; Royer, L.; Tytgat, M.; Zaganidis, N.; Blazey, G.C.; Dyshkant, A.; Lima, J.G.R.; Zutshi, V.; Hostachy, J. -Y.; Morin, L.; Cornett, U.; David, D.; Ebrahimi, A.; Falley, G.; Gadow, K.; Goettlicher, P.; Guenter, C.; Hartbrich, O.; Hermberg, B.; Karstensen, S.; Krivan, F.; Krueger, K.; Lutz, B.; Morozov, S.; Morgunov, V.; Neubueser, C.; Reinecke, M.; Sefkow, F.; Smirnov, P.; Terwort, M.; Garutti, E.; Laurien, S.; Lu, S.; Marchesini, I.; Matysek, M.; Ramilli, M.; Briggl, K.; Eckert, P.; Harion, T.; Schultz-Coulon, H. -Ch.; Shen, W.; Stamen, R.; Bilki, B.; Norbeck, E.; Northacker, D.; Onel, Y.; Wilson, G.W.; Kawagoe, K.; Sudo, Y.; Yoshioka, T.; Dauncey, P.D.; Wing, M.; Salvatore, F.; Cortina Gil, E.; Mannai, S.; Baulieu, G.; Calabria, P.; Caponetto, L.; Combaret, C.; Della Negra, R.; Grenier, G.; Han, R.; Ianigro, J-C.; Kieffer, R.; Laktineh, I.; Lumb, N.; Mathez, H.; Mirabito, L.; Petrukhin, A.; Steen, A.; Tromeur, W.; Vander donckt, M.; Zoccarato, Y.; Calvo Alamillo, E.; Fouz, M.-C.; Puerta-Pelayo, J.; Corriveau, F.; Bobchenko, B.; Chadeeva, M.; Danilov, M.; Epifantsev, A.; Markin, O.; Mizuk, R.; Novikov, E.; Popov, V.; Rusinov, V.; Tarkovsky, E.; Besson, D.; Buzhan, P.; Ilyin, A.; Kantserov, V.; Kaplin, V.; Karakash, A.; Popova, E.; Tikhomirov, V.; Kiesling, C.; Seidel, K.; Simon, F.; Soldner, C.; Weuste, L.; Amjad, M.S.; Bonis, J.; Callier, S.; Conforti di Lorenzo, S.; Cornebise, P.; Doublet, Ph.; Dulucq, F.; Fleury, J.; Frisson, T.; van der Kolk, N.; Li, H.; Martin-Chassard, G.; Richard, F.; de la Taille, Ch.; Poeschl, R.; Raux, L.; Rouene, J.; Seguin-Moreau, N.; Anduze, M.; Balagura, V.; Boudry, V.; Brient, J-C.; Cornat, R.; Frotin, M.; Gastaldi, F.; Guliyev, E.; Haddad, Y.; Magniette, F.; Musat, G.; Ruan, M.; Tran, T.H.; Videau, H.; Bulanek, B.; Zacek, J.; Cvach, J.; Gallus, P.; Havranek, M.; Janata, M.; Kvasnicka, J.; Lednicky, D.; Marcisovsky, M.; Polak, I.; Popule, J.; Tomasek, L.; Tomasek, M.; Ruzicka, P.; Sicho, P.; Smolik, J.; Vrba, V.; Zalesak, J.; Belhorma, B.; Ghazlane, H.; Kotera, K.; Ono, H.; Takeshita, T.; Uozumi, S.; Jeans, D.; Chang, S.; Khan, A.; Kim, D.H.; Kong, D.J.; Oh, Y.D.; Goetze, M.; Sauer, J.; Weber, S.; Zeitnitz, C.

    2014-01-01

    A first prototype of a scintillator strip-based electromagnetic calorimeter was built, consisting of 26 layers of tungsten absorber plates interleaved with planes of 45x10x3 mm3 plastic scintillator strips. Data were collected using a positron test beam at DESY with momenta between 1 and 6 GeV/c. The prototype's performance is presented in terms of the linearity and resolution of the energy measurement. These results represent an important milestone in the development of highly granular calorimeters using scintillator strip technology. This technology is being developed for a future linear collider experiment, aiming at the precise measurement of jet energies using particle flow techniques.

  7. Simulation studies of crystal-photodetector assemblies for the Turkish accelerator center particle factory electromagnetic calorimeter

    Energy Technology Data Exchange (ETDEWEB)

    Kocak, F., E-mail: fkocak@uludag.edu.tr

    2015-07-01

    The Turkish Accelerator Center Particle Factory detector will be constructed for the detection of the produced particles from the collision of a 1 GeV electron beam against a 3.6 GeV positron beam. PbWO{sub 4} and CsI(Tl) crystals are considered for the construction of the electromagnetic calorimeter part of the detector. The generated optical photons in these crystals are detected by avalanche or PIN photodiodes. Geant4 simulation code has been used to estimate the energy resolution of the calorimeter for these crystal–photodiode assemblies.

  8. The lead-glass electromagnetic calorimeters for the magnetic spectrometers in Hall C at Jefferson Lab

    CERN Document Server

    Mkrtchyan, H; Tadevosyan, V; Arrington, J; Asaturyan, A; Christy, M E; Dutta, D; Ent, R; Fenker, H C; Gaskell, D; Horn, T; Jones, M K; Keppel, C E; Mack, D J; Malace, S P; Mkrtchyan, A; Niculescu, M I; Seely, J; Tvaskis, V; Wood, S A; Zhamkochyan, S

    2012-01-01

    The electromagnetic calorimeters of the various magnetic spectrometers in Hall C at Jefferson Lab are presented. For the existing HMS and SOS spectrometers design considerations, relevant construction information, and comparisons of simulated and experimental results are included. The energy resolution of the HMS and SOS calorimeters is better than $\\sigma/E \\sim 6%/\\sqrt E $, and pion/electron ($\\pi/e$) separation of about 100:1 has been achieved in energy range 1 -- 5 GeV. Good agreement has been observed between the experimental and simulated energy resolutions, but simulations systematically exceed experimentally determined $\\pi^-$ suppression factors by close to a factor of two. For the SHMS spectrometer presently under construction details on the design and accompanying GEANT4 simulation efforts are given. The anticipated performance of the new calorimeter is predicted over the full momentum range of the SHMS. Good electron/hadron separation is anticipated by combining the energy deposited in an initial...

  9. Performance of an endcap prototype of the ATLAS accordion electromagnetic calorimeter

    CERN Document Server

    Gingrich, D M; Boos, E; Zhautykov, B O; Aubert, Bernard; Bazan, A; Beaugiraud, B; Boniface, J; Colas, Jacques; Jézéquel, S; Le Flour, T; Maire, M; Rival, F; Stipcevic, M; Thion, J; Van den Plas, D; Wingerter-Seez, I; Zitoun, R; Zolnierowski, Y; Chmeissani, M; Fernández, E; Garrido, L; Martínez, M; Padilla, C; Gordon, H A; Radeka, V; Rahm, David Charles; Stephani, D; Baisin, L; Berset, J C; Chevalley, J L; Gianotti, F; Gildemeister, O; Marin, C P; Nessi, Marzio; Poggioli, Luc; Richter, W; Vuillemin, V; Baze, J M; Gosset, L G; Lavocat, P; Lottin, J P; Mansoulié, B; Meyer, J P; Renardy, J F; Schwindling, J; Teiger, J; Collot, J; de Saintignon, P; Dzahini, D; Hostachy, J Y; Laborie, G; Mahout, G; Merchez, E; Pouxe, J; Hervás, L; Labarga, L; Scheel, C V; Chekhtman, A; Dargent, P; Dinkespiler, B; Etienne, F; Fassnacht, P; Fouchez, D; Martin, L; Martin, O; Miotto, A; Monnier, E; Nagy, E; Olivetto, C; Tisserant, S; Battistoni, G; Camin, D V; Cavalli, D; Costa, G; Cozzi, L; Resconi, S; Fedyakin, N N; Ferrari, A; Mandelli, L; Mazzanti, M; Perini, L; Sala, P R; Azuelos, Georges; Beaudoin, G; Depommier, P; León-Florián, E; Leroy, C; Roy, P; Serman, M; Augé, E; Chase, Robert L; Chollet, J C; de La Taille, C; Fayard, Louis; Fournier, D; Hrisoho, A T; Merkel, B; Noppe, J M; Parrour, G; Pétroff, P; Schaffer, A C; Seguin-Moreau, N; Serin, L; Tisserand, V; Vichou, I; Canton, B; David, J; Genat, J F; Imbault, D; Le Dortz, O; Savoy-Navarro, Aurore; Schwemling, P; Eek, L O; Lund-Jensen, B; Söderqvist, J; Lefebvre, M; Robertson, S; White, J

    1997-01-01

    The design and construction of a lead-liquid argon endcap calorimeter prototype using an accordion geometry and conceived as a sector of the inner wheel of the endcap calorimeter of the future ATLAS experiment at the LHC is described. The performance obtained using electron beam data is presented. The main results are an energy resolution with a sampling term below $11\\%/\\sqrt{E(\\rm GeV)}$ and a small local constant term, a good linearity of the response with the incident energy and a global constant term of 0.8\\% over an extended area in the rapidity range of $2.2 < \\eta <2.9$. These properties make the design suitable for the ATLAS electromagnetic endcap calorimeter.

  10. Performance of an endcap prototype of the ATLAS accordion electromagnetic calorimeter

    Energy Technology Data Exchange (ETDEWEB)

    Gingrich, D.M. [Alberta Univ., Edmonton, AB (Canada); Greeniaus, G. [Alberta Univ., Edmonton, AB (Canada); Kitching, P. [Alberta Univ., Edmonton, AB (Canada); Olsen, B. [Alberta Univ., Edmonton, AB (Canada); Pinfold, J.L. [Alberta Univ., Edmonton, AB (Canada); Rodning, N.L. [Alberta Univ., Edmonton, AB (Canada); Boos, E.; Zhautykov, B.O.; Aubert, B.; Bazan, A.; Beaugiraud, B.; Boniface, J.; Colas, J.; Jezequel, S.; Leflour, T.; Maire, M.; Rival, F.; Stipcevic, M.; Thion, J.; Van Den Plas, D.; Wingerter-Seez, I.; Zitoun, R.; Zolnierowski, Y.P.; Chmeissani, M.; Fernandez, E.; Garrido, Ll.; Martinez, M.; Padilla, C.; Gordon, H.A.; Radeka, V.; Rahm, D.; Stephani, D.; Baisin, L.; Berset, J.C.; Chevalley, J.L.; Gianotti, F.; Gildemeister, O.; Marin, C.P.; Nessi, M.; Poggioli, L.; Richter, W.; Vuillemin, V.; Baze, J.M.; Gosset, L.; Lavocat, P.; Lottin, J.P.; Mansoulie, B.; Meyer, J.P.; Renardy, J.F.; Schwindling, J.; Teiger, J.; Collot, J.; Saintignon, P. de; Dzahini, D.; Hostachy, J.Y.; Laborie, G.; Mahout, G.; Merchez, E.; Pouxe, J.; Hervas, L.; Labarga, L.; Scheel, C.V.; Chekhtman, A.; Dargent, P.; Dinkespiller, B.; Etienne, F.; Fassnacht, P.; Fouchez, D.; Martin, L.; Martin, O.; Miotto, A.; Monnier, E.; Nagy, E.; Olivetto, C.; Tisserant, S.; Battistoni, G.; Camin, D.V.; Cavalli, D.; Costa, G.; Cozzi, L.; Cravero, A.; Fedyakin, N.; Ferrari, A.; Mandelli, L.; Mazzanti, M.; Perini, L.; Sala, P.; Azuelos, G.; Beaudoin, G.; Depommier, P.; Leon-Florian, E.; Leroy, C.; Roy, P.; Seman, M.; Auge, E.; Chase, R.; Chollet, J.C.; La Taille, C. de; Fayard, L.; Fournier, D.; Hrisoho, A.; Merkel, B.; Noppe, J.M.; Parrour, G.; Petroff, P.; Schaffer, A.; Seguin-Moreau, N.; Serin, L.; Tisserand, V.; Vichou, I.; Canton, B.; David, J.; Genat, J.F.; Imbault, D.; Le Dortz, O.; Savoy-Navarro, A.; Schwemling, P.; Eek, L.O.; Lund-Jensen, B.; Soederqvist, J.; Lefebvre, M.; Robertson, S.; White, J.; RD3 Collaboration

    1997-04-21

    The design and construction of a lead-liquid-argon endcap calorimeter prototype using an accordion geometry and conceived as a sector of the inner wheel of the endcap calorimeter of the future ATLAS experiment at the LHC is described. The performance obtained using electron beam data is presented. The main results are energy resolution with a sampling term below 11%/{radical}(E(GeV)) and a small local constant term, good linearity of the response with the incident energy and a global constant term of 0.8% over an extended area in the rapidity range 2.2 < {eta} < 2.9. These properties make the design suitable for the ATLAS electromagnetic endcap calorimeter. (orig.).

  11. The supermodule insertion tool of the CMS electromagnetic calorimeter is leaving to the experimental hall located at P5.

    CERN Multimedia

    2006-01-01

    The supermodule insertion tool of the CMS electromagnetic calorimeter is leaving to the experimental hall located at P5. A successful test has been performed with a real supermodule, visible as a silver-coloured box on the last picture.

  12. ATLAS: last few metresfor the Calorimeter

    CERN Multimedia

    2005-01-01

    On Friday 4th November, the ATLAS Barrel Calorimeter was moved from its assembly point at the side of the ATLAS cavern to the centre of the toroidal magnet system. The detector was finally aligned, to the precision of within a millimetre, on Wednesday 9th November. The ATLAS installation team, led by Tommi Nyman, after having positioned the Barrel Calorimeter in its final location in the ATLAS experimental cavern UX15. The Barrel Calorimeter which will absorb and measure the energy of photons, electrons and hadrons at the core of the ATLAS detector is 8.6 meters in diameter, 6.8 meters long, and weighs over 1600 Tonnes. It consists of two concentric cylindrical detector elements. The innermost comprises aluminium pressure vessels containing the liquid argon electromagnetic calorimeter and the solenoid magnet. The outermost is an assembly of 64 hadron tile calorimeter sectors. Assembled 18 meters away from its final position, the Barrel Calorimeter was relocated with the help of a railway, which allows the ...

  13. The lead-glass electromagnetic calorimeters for the magnetic spectrometers in Hall C at Jefferson Lab

    Energy Technology Data Exchange (ETDEWEB)

    Mkrtchyan, Hamlet [Yerevan Physics Institute, JLAB; Carlini, Roger D. [JLAB; Tadevosyan, Vardan H. [Yerevan Physics Institute; Arrington, John Robert [ANL; Asaturyan, Arshak Razmik [Yerevan Physics Institute; Christy, Michael Eric [Hampton U.; Dutta, Dipangkar [Mississippi State U.; Ent, Rolf [JLAB; Fenker, Howard C. [JLAB; Gaskell, David J. [JLAB; Horn, Tanja [Catholic University of America, JLAB; Jones, Mark K. [JLAB; Keppel, Cynthia [JLAB, Hampton U.; Mack, David J. [JLAB; Malace, Simona P. [Triangle Universities Nuclear Laboratory and Duke University; Mkrtchyan, Arthur [Yerevan Physics Institute; Niculescu, Maria-Ioana [James Madison U.; Seely, Charles Jason [MIT; Tvaskis, Vladas [University of Manitoba; Wood, Stephen A. [JLAB; Zhamkochyan, Simon [Yerevan Physics Institute

    2013-08-01

    The electromagnetic calorimeters of the various magnetic spectrometers in Hall C at Jefferson Lab are presented. For the existing HMS and SOS spectrometers design considerations, relevant construction information, and comparisons of simulated and experimental results are included. The energy resolution of the HMS and SOS calorimeters is better than $\\sigma/E \\sim 6%/\\sqrt E $, and pion/electron ($\\pi/e$) separation of about 100:1 has been achieved in energy range 1 -- 5 GeV. Good agreement has been observed between the experimental and simulated energy resolutions, but simulations systematically exceed experimentally determined $\\pi^-$ suppression factors by close to a factor of two. For the SHMS spectrometer presently under construction details on the design and accompanying GEANT4 simulation efforts are given. The anticipated performance of the new calorimeter is predicted over the full momentum range of the SHMS. Good electron/hadron separation is anticipated by combining the energy deposited in an initial (preshower) calorimeter layer with the total energy deposited in the calorimeter.

  14. Calibration and reconstruction performances of the KLOE electromagnetic calorimeter

    Energy Technology Data Exchange (ETDEWEB)

    Adinolfi, M.; Aloisio, A.; Ambrosino, F.; Andryakov, A.; Antonelli, A.; Antonelli, M.; Anulli, F.; Bacci, C.; Bankamp, A.; Barbiellini, G.; Bellini, F.; Bencivenni, G.; Bertolucci, S.; Bini, C.; Bloise, C.; Bocci, V.; Bossi, F.; Branchini, P.; Bulychjov, S.A.; Cabibbo, G.; Calcaterra, A.; Caloi, R.; Campana, P.; Capon, G.; Carboni, G.; Cardini, A.; Casarsa, M.; Cataldi, G.; Ceradini, F.; Cervelli, F.; Cevenini, F.; Chiefari, G.; Ciambrone, P.; Conetti, S.; Conticelli, S.; Lucia, E. De; Robertis, G. De; Sangro, R. De; Simone, P. De; Zorzi, G. De; Dell' Agnello, S.; Denig, A.; Domenico, A. Di; Donato, C. Di; Falco, S. Di; Doria, A.; Drago, E.; Elia, V.; Erriquez, O.; Farilla, A.; Felici, G.; Ferrari, A.; Ferrer, M.L.; Finocchiaro, G.; Forti, C.; Franceschi, A.; Franzini, P.; Gao, M.L.; Gatti, C.; Gauzzi, P.; Giovannella, S.; Golovatyuk, V.; Gorini, E.; Grancagnolo, F.; Grandegger, W.; Graziani, E.; Guarnaccia, P.; Hagel, U.V.; Han, H.G.; Han, S.W.; Huang, X.; Incagli, M.; Ingrosso, L.; Jang, Y.Y.; Kim, W.; Kluge, W.; Kulikov, V.; Lacava, F.; Lanfranchi, G.; Lee-Franzini, J.; Lomtadze, F.; Luisi, C.; Mao, C.S.; Martemianov, M.; Matsyuk, M.; Mei, W.; Merola, L.; Messi, R.; Miscetti, S. E-mail: stefano.miscetti@lnf.infn.it; Moalem, A.; Moccia, S.; Moulson, M.; Mueller, S.; Murtas, F.; Napolitano, M.; Nedosekin, A.; Panareo, M.; Pacciani, L.; Pages, P.; Palutan, M.; Paoluzi, L.; Pasqualucci, E.; Passalacqua, L.; Passaseo, M.; Passeri, A.; Patera, V.; Petrolo, E.; Petrucci, G.; Picca, D.; Pirozzi, G.; Pistillo, C.; Pollack, M.; Pontecorvo, L.; Primavera, M.; Ruggieri, F.; Santangelo, P.; Santovetti, E.; Saracino, G.; Schamberger, R.D.; Schwick, C.; Sciascia, B.; Sciubba, A.; Scuri, F.; Sfiligoi, I.; Shan, J.; Silano, P.; Spadaro, T.; Spagnolo, S.; Spiriti, E.; Stanescu, C.; Tong, G.L.; Tortora, L.; Valente, E.; Valente, P.; Valeriani, B.; Venanzoni, G.; Veneziano, S.; Wu, Y.; Xie, Y.G.; Zhao, P.P.; Zhou, Y

    2001-04-01

    The main aim of the KLOE experiment at DAPHINE, the Frascati phi-factory, is to study CP violation in the K{sup 0}-K-bar{sup 0} system. Requirements on shower detection are very stringent. An hermetic, lead-scintillating fiber sampling calorimeter has been chosen and built. A review of the methods used to calibrate and reconstruct energy and timing is reported in this paper. Emphasis is given to the calibration procedures developed using the 2.4 pb{sup -1} collected in 1999. An energy resolution of 5.7% E/GeV is achieved together with a linearity in energy response better than 1% above 50 MeV. A time resolution of {approx}54 ps E/GeV is also measured on samples of radiative Bhabha and PHI decays.

  15. Calibration and reconstruction performances of the KLOE electromagnetic calorimeter

    CERN Document Server

    Adinolfi, M; Ambrosino, F; Andryakov, A; Antonelli, A; Antonelli, M; Anulli, F; Bacci, C; Bankamp, A; Barbiellini, G; Bellini, F; Bencivenni, G; Bertolucci, Sergio; Bini, C; Bloise, C; Bocci, V; Bossi, F; Branchini, P; Bulychjov, S A; Cabibbo, G; Calcaterra, A; Caloi, R; Campana, P; Capon, G; Carboni, G; Cardini, A; Casarsa, M; Cataldi, G; Ceradini, F; Cervelli, F; Cevenini, F; Chiefari, G; Ciambrone, P; Conetti, S; Conticelli, S; Lucia, E D; Robertis, G D; Sangro, R D; Simone, P D; Zorzi, G D; Dell'Agnello, S; Denig, A; Domenico, A D; Donato, C D; Falco, S D; Doria, A; Drago, E; Elia, V; Erriquez, O; Farilla, A; Felici, G; Ferrari, A; Ferrer, M L; Finocchiaro, G; Forti, C; Franceschi, A; Franzini, P; Gao, M L; Gatti, C; Gauzzi, P; Giovannella, S; Golovatyuk, V; Gorini, E; Grancagnolo, F; Grandegger, W; Graziani, E; Guarnaccia, P; Von Hagel, U; Han, H G; Han, S W; Huang, X; Incagli, M; Ingrosso, L; Jang, Y Y; Kim, W; Kluge, W; Kulikov, V; Lacava, F; Lanfranchi, G; Lee-Franzini, J; Lomtadze, F; Luisi, C; Mao Chen Sheng; Martemyanov, M; Matsyuk, M; Mei, W; Merola, L; Messi, R; Miscetti, S; Moalem, A; Moccia, S; Moulson, M; Müller, S; Murtas, F; Napolitano, M; Nedosekin, A; Panareo, M; Pacciani, L; Pagès, P; Palutan, M; Paoluzi, L; Pasqualucci, E; Passalacqua, L; Passaseo, M; Passeri, A; Patera, V; Petrolo, E; Petrucci, Guido; Picca, D; Pirozzi, G; Pistillo, C; Pollack, M; Pontecorvo, L; Primavera, M; Ruggieri, F; Santangelo, P; Santovetti, E; Saracino, G; Schamberger, R D; Schwick, C; Sciascia, B; Pirozzi, G; Sciubba, A; Scuri, F; Sfiligoi, I; Shan, J; Silano, P; Spadaro, T; Spagnolo, S; Spiriti, E; Stanescu, C; Tong, G L; Tortora, L; Valente, E; Valente, P; Valeriani, B; Venanzoni, G; Veneziano, Stefano; Wu, Y; Xie, Y G; Zhao, P P; Zhou, Y

    2001-01-01

    The main aim of the KLOE experiment at DAPHINE, the Frascati phi-factory, is to study CP violation in the K sup 0 -K-bar sup 0 system. Requirements on shower detection are very stringent. An hermetic, lead-scintillating fiber sampling calorimeter has been chosen and built. A review of the methods used to calibrate and reconstruct energy and timing is reported in this paper. Emphasis is given to the calibration procedures developed using the 2.4 pb sup - sup 1 collected in 1999. An energy resolution of 5.7% E/GeV is achieved together with a linearity in energy response better than 1% above 50 MeV. A time resolution of approx 54 ps E/GeV is also measured on samples of radiative Bhabha and PHI decays.

  16. Angular Reconstruction of a Lead Scintillating-Fiber Sandwiched Electromagnetic Calorimeter

    CERN Document Server

    Li, Zu-Hao; Wang, Ling-Yu; Zhang, Cheng; Tang, Zhi-Cheng; Yan, Qi; Yang, Min; Lu, Yu-Sheng; Chen, Guo-Ming; Chen, He-Sheng

    2013-01-01

    A new method called Neighbor Cell Deposited Energy Ratio (NCDER) is proposed to reconstruct incidence position in a single layer for a 3-dimensional imaging electromagnetic calorimeter (ECAL).This method was applied to reconstruct the ECAL test beam data for the Alpha Magnetic Spectrometer-02 (AMS-02). The results show that this method can achieve an angular resolution of 7.36\\pm 0.08 / \\sqrt(E) \\oplus 0.28 \\pm 0.02 degree in the determination of the photons direction, which is much more precise than that obtained with the commonly-adopted Center of Gravity(COG) method (8.4 \\pm 0.1 /sqrt(E) \\oplus 0.8\\pm0.3 degree). Furthermore, since it uses only the properties of electromagnetic showers, this new method could also be used for other type of fine grain sampling calorimeters.

  17. Probing the material in front of the ATLAS electromagnetic calorimeter with energy flow from sqrt(s)=7 TeV minimum bias events

    CERN Document Server

    The ATLAS collaboration

    2010-01-01

    In early April 2010, ATLAS collected several million of minimum bias events at a center of mass energy of 7 TeV. Counting the number of energy deposits above 5 times the measured electronic noise in all electromagnetic calorimeter cells allows a channel by channel check of the response to physics. A readout cabling inversion and a high voltage cable swap, affecting 0.4% of the total number of cells in the region |eta|<2.5, were identified and corrected. The method is also sensitive to the total amount of material in front of the calorimeter, complementing other analyses which are only sensitive to the tracker material. The amount of material of the inner detector services running at constant phi in front of the barrel calorimeter, representing ~0.2 X0, is found in good agreement between data and simulations. Up to 1 X0 lack of material in the ATLAS description has been observed in the localised regions close to the rails supporting the inner detector, which can be fed into new Monte Carlo geometry.

  18. Performance of the ATLAS electromagnetic calorimeter end-cap module 0

    Energy Technology Data Exchange (ETDEWEB)

    Aubert, B.; Ballansat, J.; Bazan, A.; Beaugiraud, B.; Boniface, J.; Chollet, F.; Colas, J.; Delebecque, P.; Di Ciaccio, L.; Dumont-Dayot, N.; El Kacimi, M.; Gaumer, O.; Ghez, P.; Girard, C.; Gouanere, M.; Kambara, H.; Jeremie, A.; Jezequel, S.; Lafaye, R.; Leflour, T.; Le Maner, C.; Lesueur, J.; Massol, N.; Moynot, M.; Neukermans, L.; Perrodo, P.; Perrot, G.; Poggioli, L.; Prast, J.; Przysiezniak, H.; Riccadona, X.; Sauvage, G.; Thion, J.; Wingerter-Seez, I.; Zitoun, R.; Zolnierowski, Y.; Chen, H.; Citterio, M.; Farrell, J.; Gordon, H.; Hackenburg, B.; Hoffman, A.; Kierstead, J.; Lanni, F.; Leite, M.; Lissauer, D.; Ma, H.; Makowiecki, D.; Radeka, V.; Rahm, D.; Rajagopalan, S.; Rescia, S.; Stumer, I.; Takai, H.; Yip, K.; Benchekroun, D.; Driouichi, C.; Hoummada, A.; Hakimi, M.; Stroynowski, R.; Ye, J.; Beck Hansen, J.; Belymam, A.; Bremer, J.; Chevalley, J.L.; Fassnacht, P.; Gianotti, F.; Hervas, L.; Marin, C.P.; Pailler, P.; Schilly, P.; Seidl, W.; Vossebeld, J.; Vuillemin, V.; Clark, A.; Efthymiopoulos, I.; Moneta, L.; Belhorma, B.; Collot, J.; Ferrari, A.; Gallin-Martel, M.L.; Hostachy, J.Y.; Martin, P.; Ohlsson-Malek, F.; Saboumazrag, S.; Ban, J.; Cartiglia, N.; Cunitz, H.; Dodd, J.; Gara, A.; Leltchouk, M.; Negroni, S.; Parsons, J.A.; Seman, M.; Simion, S.; Sippach, W.; Willis, W.; Barreiro, F.; Garcia, G.; Labarga, L.; Rodier, S.; Peso, J. del; Alexa, C.; Barrillon, P.; Benchouk, C.; Chekhtman, A.; Dinkespiler, B.; Djama, F.; Duval, P.Y.; Henry-Couannier, F.; Hinz, L.; Jevaud, M.; Karst, P.; Le Van Suu, A.; Martin, L.; Martin, O.; Mirea, A.; Monnier, E.; Nagy, E.; Nicod, D.; Olivier, C.; Pralavorio, P. E-mail: pralavor@cppm.in2p3.fr; Repetti, B.; Raymond, M.; Sauvage, D.; Tisserant, S.; Toth, J.; Wielers, M.; Battistoni, G.; Carminati, L.; Costa, G.; Delmastro, M.; Fanti, M.; Mandelli, L.; Mazzanti, M.; Tartarelli, G.F.; Aulchenko, V.; Kazanin, V.; Kolachev, G.; Malyshev, V.; Maslennikov, A.; Pospelov, G.; Snopkov, R.; Shousharo, A.; Talyshev, A. [and others

    2003-03-11

    The construction and beam test results of the ATLAS electromagnetic end-cap calorimeter pre-production module 0 are presented. The stochastic term of the energy resolution is between 10% and 12.5% GeV{sup 1/2} over the full pseudorapidity range. Position and angular resolutions are found to be in agreement with simulation. A global constant term of 0.6% is obtained in the pseudorapidity range 2.5<{eta}<3.2 (inner wheel)

  19. Performance of the ATLAS electromagnetic calorimeter end-cap module 0

    Science.gov (United States)

    Aubert, B.; Ballansat, J.; Bazan, A.; Beaugiraud, B.; Boniface, J.; Chollet, F.; Colas, J.; Delebecque, P.; Di Ciaccio, L.; Dumont-Dayot, N.; El Kacimi, M.; Gaumer, O.; Ghez, P.; Girard, C.; Gouanère, M.; Kambara, H.; Jérémie, A.; Jézéquel, S.; Lafaye, R.; Leflour, T.; Le Maner, C.; Lesueur, J.; Massol, N.; Moynot, M.; Neukermans, L.; Perrodo, P.; Perrot, G.; Poggioli, L.; Prast, J.; Przysiezniak, H.; Riccadona, X.; Sauvage, G.; Thion, J.; Wingerter-Seez, I.; Zitoun, R.; Zolnierowski, Y.; Chen, H.; Citterio, M.; Farrell, J.; Gordon, H.; Hackenburg, B.; Hoffman, A.; Kierstead, J.; Lanni, F.; Leite, M.; Lissauer, D.; Ma, H.; Makowiecki, D.; Radeka, V.; Rahm, D.; Rajagopalan, S.; Rescia, S.; Stumer, I.; Takai, H.; Yip, K.; Benchekroun, D.; Driouichi, C.; Hoummada, A.; Hakimi, M.; Stroynowski, R.; Ye, J.; Beck Hansen, J.; Belymam, A.; Bremer, J.; Chevalley, J. L.; Fassnacht, P.; Gianotti, F.; Hervas, L.; Marin, C. P.; Pailler, P.; Schilly, P.; Seidl, W.; Vossebeld, J.; Vuillemin, V.; Clark, A.; Efthymiopoulos, I.; Moneta, L.; Belhorma, B.; Collot, J.; Ferrari, A.; Gallin-Martel, M. L.; Hostachy, J. Y.; Martin, P.; Ohlsson-Malek, F.; Saboumazrag, S.; Ban, J.; Cartiglia, N.; Cunitz, H.; Dodd, J.; Gara, A.; Leltchouk, M.; Negroni, S.; Parsons, J. A.; Seman, M.; Simion, S.; Sippach, W.; Willis, W.; Barreiro, F.; Garcia, G.; Labarga, L.; Rodier, S.; del Peso, J.; Alexa, C.; Barrillon, P.; Benchouk, C.; Chekhtman, A.; Dinkespiler, B.; Djama, F.; Duval, P. Y.; Henry-Couannier, F.; Hinz, L.; Jevaud, M.; Karst, P.; Le Van Suu, A.; Martin, L.; Martin, O.; Mirea, A.; Monnier, E.; Nagy, E.; Nicod, D.; Olivier, C.; Pralavorio, P.; Repetti, B.; Raymond, M.; Sauvage, D.; Tisserant, S.; Toth, J.; Wielers, M.; Battistoni, G.; Carminati, L.; Costa, G.; Delmastro, M.; Fanti, M.; Mandelli, L.; Mazzanti, M.; Tartarelli, G. F.; Aulchenko, V.; Kazanin, V.; Kolachev, G.; Malyshev, V.; Maslennikov, A.; Pospelov, G.; Snopkov, R.; Shousharo, A.; Talyshev, A.; Tikhonov, Yu; Augé, E.; Bourdarios, C.; Breton, D.; Bonivento, W.; Cros, P.; de La Taille, C.; Falleau, I.; Fournier, D.; Guilhem, G.; Hassani, S.; Jacquier, Y.; Kordas, K.; Macé, G.; Merkel, B.; Noppe, J. M.; Parrour, G.; Pétroff, P.; Puzo, P.; Richer, J. P.; Rousseau, D.; Seguin-Moreau, N.; Serin, L.; Tocut, V.; Veillet, J. J.; Zerwas, D.; Astesan, F.; Bertoli, W.; Camard, A.; Canton, B.; Fichet, S.; Hubaut, F.; Imbault, D.; Lacour, D.; Laforge, B.; Le Dortz, O.; Martin, D.; Nikolic-Audit, I.; Orsini, F.; Rossel, F.; Schwemling, P.; Cleland, W.; McDonald, J.; Abouelouafa, E. M.; Ben Mansour, A.; Cherkaoui, R.; El Mouahhidi, Y.; Ghazlane, H.; Idrissi, A.; Belorgey, J.; Bernard, R.; Chalifour, M.; Le Coroller, A.; Ernwein, J.; Mansoulié, B.; Renardy, J. F.; Schwindling, J.; Taguet, J.-P.; Teiger, J.; Clément, C.; Lund-Jensen, B.; Lundqvist, J.; Megner, L.; Pearce, M.; Rydstrom, S.; Egdemir, J.; Engelmann, R.; Hoffman, J.; McCarthy, R.; Rijssenbeek, M.; Steffens, J.; This paper is dedicated to the memory of our colleague Dominique Sauvage, actively involved in the detector construction; beam test activities, who died accidentaly on March 16, 2002.

    2003-03-01

    The construction and beam test results of the ATLAS electromagnetic end-cap calorimeter pre-production module 0 are presented. The stochastic term of the energy resolution is between 10% and 12.5% GeV1/2 over the full pseudorapidity range. Position and angular resolutions are found to be in agreement with simulation. A global constant term of 0.6% is obtained in the pseudorapidity range 2.5< η<3.2 (inner wheel).

  20. Radiation hardness qualification of PbWO4 scintillation crystals for the CMS Electromagnetic Calorimeter

    CERN Document Server

    Adzic, P; Andelin, D; Anicin, I; Antunovic, Z; Arcidiacono, R; Arenton, M W; Auffray, E; Argiro, S; Askew, A; Baccaro, S; Baffioni, S; Balazs, M; Bandurin, D; Barney, D; Barone, L M; Bartoloni, A; Baty, C; Beauceron, S; Bell, K W; Bernet, C; Besancon, M; Betev, B; Beuselinck, R; Biino, C; Blaha, J; Bloch, P; Borisevitch, A; Bornheim, A; Bourotte, J; Brown, R M; Buehler, M; Busson, P; Camanzi, B; Camporesi, T; Cartiglia, N; Cavallari, F; Cecilia, A; Chang, P; Chang, Y H; Charlot, C; Chen, E A; Chen, W T; Chen, Z; Chipaux, R; Choudhary, B C; Choudhury, R K; Cockerill, D J A; Conetti, S; Cooper, S; Cossutti, F; Cox, B; Cussans, D G; Dafinei, I; Da Silva Di Calafiori, D R; Daskalakis, G; David, A; Deiters, K; Dejardin, M; De Benedetti, A; Della Ricca, G; Del Re, D; Denegri, D; Depasse, P; Descamps, J; Diemoz, M; Di Marco, E; Dissertori, G; Dittmar, M; Djambazov, L; Djordjevic, M; Dobrzynski, L; Dolgopolov, A; Drndarevic, S; Drobychev, G; Dutta, D; Dzelalija, M; Elliott-Peisert, A; El Mamouni, H; Evangelou, I; Fabbro, B; Faure, J L; Fay, J; Fedorov, A; Ferri, F; Franci, D; Franzoni, G; Freudenreich, K; Funk, W; Ganjour, S; Gascon, S; Gataullin, M; Gentit, F X; Ghezzi, A; Givernaud, A; Gninenko, S; Go, A; Gobbo, B; Godinovic, N; Golubev, N; Govoni, P; Grant, N; Gras, P; Haguenauer, M; Hamel de Monchenault, G; Hansen, M; Haupt, J; Heath, H F; Heltsley, B; Hintz, W; Hirosky, R; Hobson, P R; Honma, A; Hou, G W S; Hsiung, Y; Huhtinen, M; Ille, B; Ingram, Q; Inyakin, A; Jarry, P; Jessop, C; Jovanovic, D; Kaadze, K; Kachanov, V; Kailas, S; Kataria, S K; Kennedy, B W; Kokkas, P; Kolberg, T; Korjik, M; Krasnikov, N; Krpic, D; Kubota, Y; Kuo, C M; Kyberd, P; Kyriakis, A; Lebeau, M; Lecomte, P; Lecoq, P; Ledovskoy, A; Lethuillier, M; Lin, S W; Lin, W; Litvine, V; Locci, E; Longo, E; Loukas, D; Luckey, P D; Lustermann, W; Ma, Y; Malberti, M; Malclès, J; Maletic, D; Manthos, N; Maravin, Y; Marchica, C; Marinelli, N; Markou, A; Markou, C; Marone, M; Matveev, V; Mavrommatis, C; Meridiani, P; Milenovic, P; Miné, P; Missevitch, O; Mohanty, A K; Moortgat, F; Musella, P; Musienko, Y; Nardulli, A; Nash, J; Nedelec, P; Negri, P; Newman, H B; Nikitenko, A; Nessi-Tedaldi, F; Obertino, M M; Organtini, G; Orimoto, T; Paganoni, M; Paganini, P; Palma, A; Pant, L; Papadakis, A; Papadakis, I; Papadopoulos, I; Paramatti, R; Parracho, P; Pastrone, N; Patterson, J R; Pauss, F; Peigneux, J-P; Petrakou, E; Phillips II, D G; Piroué, P; Ptochos, F; Puljak, I; Pullia, A; Punz, T; Puzovic, J; Ragazzi, S; Rahatlou, S; Rander, J; Razis, P A; Redaelli, N; Renker, D; Reucroft, S; Ribeiro, P; Rogan, C; Ronquest, M; Rosowsky, A; Rovelli, C; Rumerio, P; Rusack, R; Rusakov, S V; Ryan, M J; Sala, L; Salerno, R; Schneegans, M; Seez, C; Sharp, P; Shepherd-Themistocleous, C H; Shiu, J G; Shivpuri, R K; Shukla, P; Siamitros, C; Sillou, D; Silva, J; Silva, P; Singovsky, A; Sirois, Y; Sirunyan, A; Smith, V J; Stöckli, F; Swain, J; Tabarelli de Fatis, T; Takahashi, M; Tancini, V; Teller, O; Theofilatos, K; Thiebaux, C; Timciuc, V; Timlin, C; Titov, M; Topkar, A; Triantis, F A; Troshin, S; Tyurin, N; Ueno, K; Uzunian, A; Varela, J; Verrecchia, P; Veverka, J; Virdee, T; Wang, M; Wardrope, D; Weber, M; Weng, J; Williams, J H; Yang, Y; Yaselli, I; Yohay, R; Zabi, A; Zelepoukine, S; Zhang, J; Zhang, L Y; Zhu, K; Zhu, R Y

    2010-01-01

    Ensuring the radiation hardness of PbWO4 crystals was one of the main priorities during the construction of the electromagnetic calorimeter of the CMS experiment at CERN. The production on an industrial scale of radiation hard crystals and their certification over a period of several years represented a difficult challenge both for CMS and for the crystal suppliers. The present article reviews the related scientific and technological problems encountered.

  1. Digital signal processing in the PANDA Electromagnetic Calorimeter

    Energy Technology Data Exchange (ETDEWEB)

    Kavatsyuk, Myroslav; Guliyev, Elmaddin; Tambave, Ganesh; Loehner, Herbert [KVI, University of Groningen (Netherlands); Collaboration: PANDA-Collaboration

    2011-07-01

    The PANDA collaboration at FAIR will employ antiproton annihilations to investigate yet undiscovered charm-meson states and glueballs. The aim is to study QCD phenomena in the non-perturbative regime and to unravel the origin of hadronic masses. A multi-purpose detector for tracking, calorimetry and particle identification is presently being developed to run at high luminosities providing up to 2.10{sup 7} interactions/s. One of the crucial components of the PANDA spectrometer is the EMC, composed of cooled PbWO{sub 4} crystals coupled to the Large Area Avalanche Photodiodes or Vacuum Photo-Triodes/Tetrodes. The photo-sensor signals are continuously digitized by the Sampling ADC (SADC) and analyzed on-line in the FPGA of the digitizer module to detect hits and extract energy and time information. Measurements with a prototype calorimeter were performed at the tagged-photon facility at MAMI-C, Mainz. The results demonstrate the excellent performance of the SADC readout, with energy resolutions better than achieved by analogue electronics and a sub-nanosecond time resolution. A fast on-line pile-up recovery algorithm has been developed. The layout of the complete digital read-out chain is presented, and results from applications in test experiments with the PANDA-EMC prototypes are reported.

  2. Electron and photon energy reconstruction in the electromagnetic calorimeter of ATLAS

    CERN Document Server

    AUTHOR|(CDS)2075753; Mandelli, Luciano

    2007-01-01

    The Atlas LAr electromagnetic calorimeter is designed to provide a precise measurement of electrons and photons energies, in order to meet the requirements coming from the LHC physics program. This request of precision makes important to understand the behavior of the detector in all its aspect. Of fundamental importance to achieve the best possible performances is the calibration of the EM calorimeter, and this is the topic of this thesis. With detailed Monte Carlo simulations of single electrons and photons in the Atlas detector, we find a method to calibrate the electromagnetic calorimeter, based only on the informations that come from it. All the informations needed to develop a calibration method come from the simulations made with the technique of the Calibration Hits, that allows to know the en- ergy deposited in all the materials inside the detector volume, and not only in the active layer of each subdetector as possible in the standard simulations. This technique required a big effort for the develop...

  3. Tungsten and Scintillating Fiber Electromagnetic Calorimeter for sPHENIX

    Science.gov (United States)

    Higdon, Michael

    2016-09-01

    Utilizing the products of relativistic heavy ion collisions, one can shed light on the physics behind the earliest stages of the universe. Consisted of unbounded quarks and gluons, the Quark Gluon Plasma (QGP) results from the collisions of heavy ions. The use of electromagnetic and hadronic calorimetry is an option for studying the strong interactions which govern the QGP. The sPHENIX detector is planned for use at the Relativistic Heavy Ion Collider (RHIC) which detects jets from the collisions of large nuclei. The sPHENIX EMCal will consist of a tungsten absorber and scintillating fibers and will be read out with silicon photomultipliers. Made up of many individual towers, the EMCal covers full ϕ and large η. We will discuss the production process of these towers as well as the projectivity of the towers. Towers projective in one dimension (ϕ) have been produced and tested in beam at Fermilab. We will present recent developments in the first two dimensionally projective towers and future plans.

  4. Atlas barrel electromagnetic calorimeter performance study. Measurement of the Forward-Backward asymmetry in the qq-bar {yields} Z/{gamma}{sup *} {yields} e{sup +}e{sup -} events; Etude des performances du calorimetre electromagnetique tonneau d'ATLAS. Mesure de l'asymetrie Avant-Arriere dans les evenements qq-bar {yields} Z/{gamma}{sup *} {yields} e{sup +}e{sup -}

    Energy Technology Data Exchange (ETDEWEB)

    Aharrouche, M

    2006-12-15

    The start up of the ATLAS experiment at the CERN LHC is planned for the year 2007. The physics program of the experiment covers a wide field, going from tests of Standard Model (Higgs boson discovery) to new theories beyond the Standard Model (Supersymmetry, extra dimensions... etc). The work presented in this thesis has been made within the framework of the preparation of this experiment. After having presented the 2004 combined run, its installation, pedestal data and calibration data analysis, we develop a method for calibrating the energy measurement based on Geant4 Monte-Carlo simulation of the combined run. These simulations are done in the general framework developed for the analysis of the ATLAS data. We present then the performance studies of the electromagnetic calorimeter as well as the results obtained: a sampling term of the energy resolution of 10.6% GeV and local constant term of 0.43%, a non-uniformity of response of 0.44% giving a total constant term of 0.6% and a linearity better than 0.2% for electrons energies between 20 and 250 GeV. Concerning the 'physics' side of this thesis, we show a first study on the determination of the effective weak mixing angle, sin{sup 2}({theta}(lept,eff) with one precision better than the current results, 10{sup -4}. To reach such a precision it has been necessary to identify the electrons in the forward regions of the detector. This point is the subject of the last part of this manuscript, it shows that one can reach an electron-jet rejection of 100 with an efficiency of the electrons reconstruction of 50%, by using a discriminating analysis based on the methods of Fisher, the likelihood and the neural networks. (author)

  5. Performance of the ATLAS Electromagnetic Calorimeter End-cap Module 0

    CERN Document Server

    Aubert, Bernard; Alexa, C; Astesan, F; Augé, E; Aulchenko, V M; Ballansat, J; Barreiro, F; Barrillon, P; Battistoni, G; Bazan, A; Beaugiraud, B; Beck-Hansen, J; Belhorma, B; Belorgey, J; Belymam, A; Ben-Mansour, A; Benchekroun, D; Benchouk, C; Bernard, R; Bertoli, W; Boniface, J; Bonivento, W; Bourdarios, C; Bremer, J; Breton, D; Bán, J; Camard, A; Canton, B; Carminati, L; Cartiglia, N; Chalifour, M; Chekhtman, A; Chen, H; Cherkaoui, R; Chevalley, J L; Chollet, F; Citterio, M; Clark, A; Cleland, W; Clément, C; Colas, Jacques; Collot, J; Costa, G; Cros, P; Cunitz, H; Del Peso, J; Delebecque, P; Delmastro, M; Di Ciaccio, Lucia; Dinkespiler, B; Djama, F; Dodd, J; Driouichi, C; Dumont-Dayot, N; Duval, P Y; Efthymiopoulos, I; Egdemir, J; El-Kacimi, M; El-Mouahhidi, Y; Engelmann, R; Ernwein, J; Falleau, I; Fanti, M; Farrell, J; Fassnacht, P; Ferrari, A; Fichet, S; Fournier, D; Gallin-Martel, M L; Gara, A; García, G; Gaumer, O; Ghazlane, H; Ghez, P; Gianotti, F; Girard, C; Gordon, H; Gouanère, M; Guilhem, G; Hackenburg, B; Hakimi, M; Hassani, S; Henry-Coüannier, F; Hervás, L; Hinz, L; Hoffman, A; Hoffman, J; Hostachy, J Y; Hoummada, A; Hubaut, F; Idrissi, A; Imbault, D; Jacquier, Y; Jevaud, M; Jérémie, A; Jézéquel, S; Kambara, H; Karst, P; Kazanin, V; Kierstead, J A; Kolachev, G M; Kordas, K; de La Taille, C; Labarga, L; Lacour, D; Lafaye, R; Laforge, B; Lanni, F; Le Coroller, A; Le Dortz, O; Le Maner, C; Le Van-Suu, A; Le Flour, T; Leite, M; Leltchouk, M; Lesueur, J; Lissauer, D; Lund-Jensen, B; Lundqvist, J M; Ma, H; Macé, G; Makowiecki, D S; Malsyshev, V; Mandelli, L; Mansoulié, B; Marin, C P; Martin, D; Martin, L; Martin, O; Martin, P; Maslennikov, A L; Massol, N; Mazzanti, M; McCarthy, R; McDonald, J; Megner, L; Merkel, B; Mirea, A; Moneta, L; Monnier, E; Moynot, M; Nagy, E; Negroni, S; Neukermans, L; Nicod, D; Nikolic-Audit, I; Noppe, J M; Ohlsson-Malek, F; Olivier, C; Orsini, F; Pailler, P; Parrour, G; Parsons, J A; Pearce, M; Perrodo, P; Perrot, G; Poggioli, Luc; Pospelov, G E; Pralavorio, Pascal; Prast, J; Przysiezniak, H; Puzo, P; Pétroff, P; Radeka, V; Rahm, David Charles; Rajagopalan, S; Raymond, M; Renardy, J F; Repetti, B; Rescia, S; Riccadona, X; Richer, J P; Rijssenbeek, M; Rodier, S; Rossel, F; Rousseau, D; Rydström, S; Saboumazrag, S; Sauvage, D; Sauvage, G; Schilly, P; Schwemling, P; Schwindling, J; Seguin-Moreau, N; Seidl, W; Seman, M; Serin, L; Shousharo, A; Simion, S; Sippach, W; Snopkov, R; Steffens, J; Stroynowski, R; Stumer, I; Taguet, J P; Takai, H; Talyshev, A A; Tartarelli, F; Teiger, J; Thion, J; Tikhonov, Yu A; Tisserant, S; Tocut, V; Tóth, J; Veillet, J J; Vossebeld, Joost Herman; Vuillemin, V; Wielers, M; Willis, W J; Wingerter-Seez, I; Ye, J; Yip, K; Zerwas, D; Zitoun, R; Zolnierowski, Y

    2003-01-01

    The construction and beam test results of the ATLAS electromagnetic end-cap calorimeter pre-production module 0 are presented. The stochastic term of the energy resolution is between 10% GeV^1/2 and 12.5% GeV^1/2 over the full pseudorapidity range. Position and angular resolutions are found to be in agreement with simulation. A global constant term of 0.6% is obtained in the pseudorapidity range 2.5 < eta < 3.2 (inner wheel).

  6. Study of the response of ATLAS electromagnetic liquid argon calorimeters to muons

    Energy Technology Data Exchange (ETDEWEB)

    Schwemling, P.; Lanni, F.; Aharrouche, M.; Colas, J.; Di Ciaccio, L.; El Kacimi, M.; Gaumer, O.; Gouanere, M.; Goujdami, D.; Lafaye, R.; Laplace, S.; Le Maner, C.; Neukermans, L.; Perrodo, P.; Poggioli, L.; Prieur, D.; Przysiezniak, H.; Sauvage, G.; Wingerter-Seez, I.; Zitoun, R.; Lanni, F.; Ma, H.; Rajagopalan, S.; Rescia, S.; Takai, H.; Belymam, A.; Benchekroun, D.; Hakimi, M.; Hoummada, A.; Gao, Y.; Lu, L.; Stroynowski, R.; Aleksa, M.; Carli, T.; Fassnacht, P.; Gianotti, F.; Hervas, L.; Lampl, W.; Collot, J.; Hostachy, J.Y.; Ledroit-Guillon, F.; Malek, F.; Martin, P.; Viret, S.; Leltchouk, M.; Parsons, J.A.; Simion, S.; Barreiro, F.; DelPeso, J.; Labarga, L.; Oliver, C.; Rodier, S.; Barrillon, P.; Djama, F.; Hubaut, F.; Mangeard, P.S.; Monnier, E.; Niess, V.; Pralavorio, P.; Resende, B.; Sauvage, D.; Serfon, C.; Tisserant, S.; Toth, J.; Zhang, H.; Banfi, D.; Carminati, L.; Cavalli, D.; Costa, G.; Delmastro, M.; Fanti, M.; Mandelli, L.; Mazzanti, M.; Tartarelli, G.F.; Kotov, K.; Maslennikov, A.; Pospelov, G.; Tikhonov, Yu.; Bourdarios, C.; Fayard, L.; Fournier, D.; Iconomidou-Fayard, L.; Kado, M.; Parrour, G.; Plamondon, M.; Puzo, P.; Rousseau, D.; Sacco, R.; Serin, L.; Unal, G.; Zerwas, D.; Dekhissi, B.; Derkaoui, J.; El Kharrim, A.; Maaroufi, F.; Cleland, W.; Lacour, D.; Laforge, B.; Nikolic-Audit, I.; Schwemling, Ph.; Ghazlane, H.; Cherkaoui El Moursli, R.; Idrissi Fakhr-Eddine, A.; Boonekamp, M.; Mansoulie, B.; Meyer, P.; Schwindling, J.; Lund-Jensen,B.; Tayalat, Y.

    2009-01-01

    The response of the ATLAS electromagnetic calorimeter to muons has been studied in this paper. Results on signal over noise ratio, assessment of the detector response uniformity, and position resolution are presented. The possibility to study fine details of the structure of the detector through its response to muons is illustrated on a specific example. Finally, the performance obtained on muons in test-beam is used to estimate the detector uniformity and time alignment precision that will be reachable after the commissioning of the ATLAS detector with cosmic rays.

  7. Custom integrated front-end circuit for the CMS electromagnetic calorimeter

    CERN Document Server

    Walder, J P; Denes, P; Mathez, H; Pangaud, P

    2001-01-01

    A wide dynamic range multi-gain transimpedance amplifier custom integrated circuit has been developed for the readout of avalanche photodiode and vacuum photodiode in the CMS electromagnetic calorimeter for LHC experiment. The 92 db input dynamic range is divided into four ranges of 12 bits each in order to provide 40 MHz analog sampled data to a 12 bits ADC. This concept, which has been integrated in rad-hard full complementary bipolar technology, will be described. Experimental results obtained in lab and under irradiation will be presented along with test strategy being used for mass production. 6 Refs.

  8. Contribution to the study of the readout of the electromagnetic calorimeter crystals in the CMS experiment at LHC; Contribution a l`etude de la lecture des cristaux du calorimetre electromagnetique de l`experience CMS au LHC

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Franck [Universite Claude Bernard Lyon-1, 69 - Lyon (France)

    1998-07-03

    The search for neutral Higgs boson through its decay into two photons provides a very promising signal for a mass between 90 and 150 GeV. It requires an electromagnetic calorimeter of very high resolution. The CMS (Compact Muon Solenoid) electromagnetic calorimeter must be made up of more than 80,000 lead tungstate crystals. In the central part (the barrel), the scintillation light readout is performed by means of avalanche photodiodes, a silicon photo-sensor with internal gain which is a relative novelty in high energy physics. Concerning the readout electronics, the energy available in the centre-of-mass (14 TeV) as well as the collision frequency (40 MHz) of LHC impose constraints with respect to the signal treatment up to the acquisition. The retained solution consists in pairing two avalanche photodiodes, the parameters of which (gain, temperature dependence, dark current, etc) must be controlled, and coupling them to a low noise preamplifier of high dynamical range (5 MeV - 2 TeV) followed by a four-slopes linear compressor and a analog-digital sampling converter of 12 bits, 40 MHz. The thesis presents the prototypes of different electromagnetic calorimeters tested in the high energy beam. An energy resolution of 0.6% at 100 GeV was obtained with a conventional readout circuitry, while the integrated associated circuits were radiation resistant 73 refs., 100 figs., 19 tabs.

  9. Readiness of the ATLAS Liquid Argon Calorimeter for LHC Collisions

    CERN Document Server

    Aad, G; Abdallah, J; Abdelalim, A A; Abdesselam, A; Abdinov, O; Abi, B; Abolins, M; Abramowicz, H; Abreu, H; Acharya, B S; Adams, D L; Addy, T N; Adelman, J; Adorisio, C; Adragna, P; Adye, T; Aefsky, S; Aguilar-Saavedra, J A; Aharrouche, M; Ahlen, S P; Ahles, F; Ahmad, A; Ahmed, H; Ahsan, M; Aielli, G; Akdogan, T; Åkesson, T P A; Akimoto, G; Akimov, A V; Aktas, A; Alam, M S; Alam, M A; Albert, J; Albrand, S; Aleksa, M; Aleksandrov, I N; Alessandria, F; Alexa, C; Alexander, G; Alexandre, G; Alexopoulos, T; Alhroob, M; Aliev, M; Alimonti, G; Alison, J; Aliyev, M; Allport, P P; Allwood-Spiers, S E; Almond, J; Aloisio, A; Alon, R; Alonso, A; Alviggi, M G; Amako, K; Amelung, C; Ammosov, V V; Amorim, A; Amorós, G; Amram, N; Anastopoulos, C; Andeen, T; Anders, C F; Anderson, K J; Andreazza, A; Andrei, V; Anduaga, X S; Angerami, A; Anghinolfi, F; Anjos, N; Antonaki, A; Antonelli, M; Antonelli, S; Antunovic, B; Anulli, F; Aoun, S; Arabidze, G; Aracena, I; Arai, Y; Arce, A T H; Archambault, J P; Arfaoui, S; Arguin, J-F; Argyropoulos, T; Arik, E; Arik, M; Armbruster, A J; Arnaez, O; Arnault, C; Artamonov, A; Arutinov, D; Asai, M; Asai, S; Asfandiyarov, R; Ask, S; Åsman, B; Asner, D; Asquith, L; Assamagan, K; Astbury, A; Astvatsatourov, A; Atoian, G; Auerbach, B; Auge, E; Augsten, K; Aurousseau, M; Austin, N; Avolio, G; Avramidou, R; Axen, D; Ay, C; Azuelos, G; Azuma, Y; Baak, M A; Baccaglioni, G; Bacci, C; Bach, A; Bachacou, H; Bachas, K; Backes, M; Badescu, E; Bagnaia, P; Bai, Y; Bailey, D C; Bain, T; Baines, J T; Baker, O K; Baker, M D; Baltasar Dos Santos Pedrosa, F; Banas, E; Banerjee, P; Banerjee, S; Banfi, D; Bangert, A; Bansal, V; Baranov, S P; Baranov, S; Barashkou, A; Barber, T; Barberio, E L; Barberis, D; Barbero, M; Bardin, D Y; Barillari, T; Barisonzi, M; Barklow, T; Barlow, N; Barnett, B M; Barnett, R M; Baron, S; Baroncelli, A; Barr, A J; Barreiro, F; BarreiroGuimarães da Costa, J; Barrillon, P; Barros, N; Bartoldus, R; Bartsch, D; Bastos, J; Bates, R L; Bathe, S; Batkova, L; Batley, J R; Battaglia, A; Battistin, M; Bauer, F; Bawa, H S; Bazalova, M; Beare, B; Beau, T; Beauchemin, P H; Beccherle, R; Becerici, N; Bechtle, P; Beck, G A; Beck, H P; Beckingham, M; Becks, K H; Bedajanek, I; Beddall, A J; Beddall, A; Bednár, P; Bednyakov, V A; Bee, C; Begel, M; Behar Harpaz, S; Behera, P K; Beimforde, M; Belanger-Champagne, C; Bell, P J; Bell, W H; Bella, G; Bellagamba, L; Bellina, F; Bellomo, M; Belloni, A; Belotskiy, K; Beltramello, O; Ben Ami, S; Benary, O; Benchekroun, D; Bendel, M; Benedict, B H; Benekos, N; Benhammou, Y; Benincasa, G P; Benjamin, D P; Benoit, M; Bensinger, J R; Benslama, K; Bentvelsen, S; Beretta, M; Berge, D; Bergeaas Kuutmann, E; Berger, N; Berghaus, F; Berglund, E; Beringer, J; Bernardet, K; Bernat, P; Bernhard, R; Bernius, C; Berry, T; Bertin, A; Besson, N; Bethke, S; Bianchi, R M; Bianco, M; Biebel, O; Biesiada, J; Biglietti, M; Bilokon, H; Bindi, M; Binet, S; Bingul, A; Bini, C; Biscarat, C; Bitenc, U; Black, K M; Blair, R E; Blanchard, J-B; Blanchot, G; Blocker, C; Blocki, J; Blondel, A; Blum, W; Blumenschein, U; Bobbink, G J; Bocci, A; Boehler, M; Boek, J; Boelaert, N; Böser, S; Bogaerts, J A; Bogouch, A; Bohm, C; Bohm, J; Boisvert, V; Bold, T; Boldea, V; Boldyrev, A; Bondarenko, V G; Bondioli, M; Boonekamp, M; Booth, J R A; Bordoni, S; Borer, C; Borisov, A; Borissov, G; Borjanovic, I; Borroni, S; Bos, K; Boscherini, D; Bosman, M; Bosteels, M; Boterenbrood, H; Bouchami, J; Boudreau, J; Bouhova-Thacker, E V; Boulahouache, C; Bourdarios, C; Boyd, J; Boyko, I R; Bozovic-Jelisavcic, I; Bracinik, J; Braem, A; Branchini, P; Brandenburg, G W; Brandt, A; Brandt, G; Brandt, O; Bratzler, U; Brau, B; Brau, J E; Braun, H M; Brelier, B; Bremer, J; Brenner, R; Bressler, S; Breton, D; Brett, N D; Britton, D; Brochu, F M; Brock, I; Brock, R; Brodbeck, T J; Brodet, E; Broggi, F; Bromberg, C; Brooijmans, G; Brooks, W K; Brown, G; Brubaker, E; Bruckman de Renstrom, P A; Bruncko, D; Bruneliere, R; Brunet, S; Bruni, A; Bruni, G; Bruschi, M; Buanes, T; Bucci, F; Buchanan, J; Buchholz, P; Buckley, A G; Budagov, I A; Budick, B; Büscher, V; Bugge, L; Bulekov, O; Bunse, M; Buran, T; Burckhart, H; Burdin, S; Burgess, T; Burke, S; Busato, E; Bussey, P; Buszello, C P; Butin, F; Butler, B; Butler, J M; Buttar, C M; Butterworth, J M; Byatt, T; Caballero, J; Cabrera Urbán, S; Caforio, D; Cakir, O; Calafiura, P; Calderini, G; Calfayan, P; Calkins, R; Caloba, L P; Caloi, R; Calvet, D; Camarri, P; Cambiaghi, M; Cameron, D; Campabadal-Segura, F; Campana, S; Campanelli, M; Canale, V; Canelli, F; Canepa, A; Cantero, J; Capasso, L; Capeans-Garrido, M D M; Caprini, I; Caprini, M; Capua, M; Caputo, R; Caracinha, D; Caramarcu, C; Cardarelli, R; Carli, T; Carlino, G; Carminati, L; Caron, B; Caron, S; Carrillo Montoya, G D; Carron Montero, S; Carter, A A; Carter, J R; Carvalho, J; Casadei, D; Casado, M P; Cascella, M; Caso, C; Castaneda Hernadez, A M; Castaneda-Miranda, E; Castillo Gimenez, V; Castro, N; Cataldi, G; Catinaccio, A; Catmore, J R; Cattai, A; Cattani, G; Caughron, S; Cauz, D; Cavalleri, P; Cavalli, D; Cavalli-Sforza, M; Cavasinni, V; Ceradini, F; Cerqueira, A S; Cerri, A; Cerrito, L; Cerutti, F; Cetin, S A; Cevenini, F; Chafaq, A; Chakraborty, D; Chan, K; Chapman, J D; Chapman, J W; Chareyre, E; Charlton, D G; Chavda, V; Cheatham, S; Chekanov, S; Chekulaev, S V; Chelkov, G A; Chen, H; Chen, S; Chen, T; Chen, X; Cheng, S; Cheplakov, A; Chepurnov, V F; Cherkaoui El Moursli, R; Tcherniatine, V; Chesneanu, D; Cheu, E; Cheung, S L; Chevalier, L; Chevallier, F; Chiarella, V; Chiefari, G; Chikovani, L; Childers, J T; Chilingarov, A; Chiodini, G; Chizhov, M; Choudalakis, G; Chouridou, S; Chren, D; Christidi, I A; Christov, A; Chromek-Burckhart, D; Chu, M L; Chudoba, J; Ciapetti, G; Ciftci, A K; Ciftci, R; Cinca, D; Cindro, V; Ciobotaru, M D; Ciocca, C; Ciocio, A; Cirilli, M; Citterio, M; Clark, A; Cleland, W; Clemens, J C; Clement, B; Clement, C; Clements, D; Coadou, Y; Cobal, M; Coccaro, A; Cochran, J; Coelli, S; Coggeshall, J; Cogneras, E; Cojocaru, C D; Colas, J; Cole, B; Colijn, A P; Collard, C; Collins, N J; Collins-Tooth, C; Collot, J; Colon, G; Coluccia, R; Conde Muiño, P; Coniavitis, E; Consonni, M; Constantinescu, S; Conta, C; Conventi, F; Cook, J; Cooke, M; Cooper, B D; Cooper-Sarkar, A M; Cooper-Smith, N J; Copic, K; Cornelissen, T; Corradi, M; Corriveau, F; Corso-Radu, A; Cortes-Gonzalez, A; Cortiana, G; Costa, G; Costa, M J; Costanzo, D; Costin, T; Côté, D; Coura Torres, R; Courneyea, L; Cowan, G; Cowden, C; Cox, B E; Cranmer, K; Cranshaw, J; Cristinziani, M; Crosetti, G; Crupi, R; Crépé-Renaudin, S; Cuenca Almenar, C; Cuhadar Donszelmann, T; Curatolo, M; Curtis, C J; Cwetanski, P; Czyczula, Z; D'Auria, S; D'Onofrio, M; D'Orazio, A; Da Silva, P V M; Da Via, C; Dabrowski, W; Dai, T; Dallapiccola, C; Dallison, S J; Daly, C H; Dam, M; Danielsson, H O; Dannheim, D; Dao, V; Darbo, G; Darlea, G L; Davey, W; Davidek, T; Davidson, N; Davidson, R; Davison, A R; Dawson, I; Dawson, J W; Daya, R K; De, K; de Asmundis, R; De Castro, S; De Castro Faria Salgado, P E; De Cecco, S; de Graat, J; De Groot, N; de Jong, P; De La Cruz Burelo, E; De La Taille, C; De Mora, L; De Oliveira Branco, M; De Pedis, D; De Salvo, A; De Sanctis, U; De Santo, A; De Vivie De Regie, J B; De Zorzi, G; Dean, S; Deberg, H; Dedes, G; Dedovich, D V; Defay, P O; Degenhardt, J; Dehchar, M; Del Papa, C; Del Peso, J; Del Prete, T; Dell'Acqua, A; Dell'Asta, L; Della Pietra, M; della Volpe, D; Delmastro, M; Delruelle, N; Delsart, P A; Deluca, C; Demers, S; Demichev, M; Demirkoz, B; Deng, J; Deng, W; Denisov, S P; Dennis, C; Derkaoui, J E; Derue, F; Dervan, P; Desch, K; Deviveiros, P O; Dewhurst, A; DeWilde, B; Dhaliwal, S; Dhullipudi, R; Di Ciaccio, A; Di Ciaccio, L; Di Domenico, A; Di Girolamo, A; Di Girolamo, B; Di Luise, S; Di Mattia, A; Di Nardo, R; Di Simone, A; Di Sipio, R; Diaz, M A; Diblen, F; Diehl, E B; Dietrich, J; Diglio, S; Dindar Yagci, K; Dingfelder, D J; Dionisi, C; Dita, P; Dita, S; Dittus, F; Djama, F; Djilkibaev, R; Djobava, T; do Vale, M A B; Do Valle Wemans, A; Dobbs, M; Dobos, D; Dobson, E; Dobson, M; Dodd, J; Dogan, O B; Doherty, T; Doi, Y; Dolejsi, J; Dolenc, I; Dolezal, Z; Dolgoshein, B A; Dohmae, T; Donega, M; Donini, J; Dopke, J; Doria, A; Dos Anjos, A; Dotti, A; Dova, M T; Doxiadis, A; Doyle, A T; Drasal, Z; Driouichi, C; Dris, M; Dubbert, J; Duchovni, E; Duckeck, G; Dudarev, A; Dudziak, F; Dührssen , M; Duflot, L; Dufour, M-A; Dunford, M; Duperrin, A; Duran-Yildiz, H; Dushkin, A; Duxfield, R; Dwuznik, M; Düren, M; Ebenstein, W L; Ebke, J; Eckert, S; Eckweiler, S; Edmonds, K; Edwards, C A; Eerola, P; Egorov, K; Ehrenfeld, W; Ehrich, T; Eifert, T; Eigen, G; Einsweiler, K; Eisenhandler, E; Ekelof, T; El Kacimi, M; Ellert, M; Elles, S; Ellinghaus, F; Ellis, K; Ellis, N; Elmsheuser, J; Elsing, M; Ely, R; Emeliyanov, D; Engelmann, R; Engl, A; Epp, B; Eppig, A; Epshteyn, V S; Ereditato, A; Eriksson, D; Ermoline, I; Ernst, J; Ernst, M; Ernwein, J; Errede, D; Errede, S; Ertel, E; Escalier, M; Escobar, C; Espinal Curull, X; Esposito, B; Etienne, F; Etienvre, A I; Etzion, E; Evans, H; Fabbri, L; Fabre, C; Faccioli, P; Facius, K; Fakhrutdinov, R M; Falciano, S; Falou, A C; Fang, Y; Fanti, M; Farbin, A; Farilla, A; Farley, J; Farooque, T; Farrington, S M; Farthouat, P; Fassi, F; Fassnacht, P; Fassouliotis, D; Fatholahzadeh, B; Fayard, L; Fayette, F; Febbraro, R; Federic, P; Fedin, O L; Fedorko, I; Fedorko, W; Feligioni, L; Felzmann, C U; Feng, C; Feng, E J; Fenyuk, A B; Ferencei, J; Ferland, J; Fernandes, B; Fernando, W; Ferrag, S; Ferrando, J; Ferrari, A; Ferrari, P; Ferrari, R; Ferrer, A; Ferrer, M L; Ferrere, D; Ferretti, C; Fiascaris, M; Fiedler, F; Filipcic, A; Filippas, A; Filthaut, F; Fincke-Keeler, M; Fiolhais, M C N; Fiorini, L; Firan, A; Fischer, G; Fisher, M J; Flechl, M; Fleck, I; Fleckner, J; Fleischmann, P; Fleischmann, S; Flick, T; Flores-Castillo, L R; Flowerdew, M J; Föhlisch, F; Fokitis, M; Fonseca Martin, T; Forbush, D A; Formica, A; Forti, A; Fortin, D; Foster, J M; Fournier, D; Foussat, A; Fowler, A J; Fowler, K; Fox, H; Francavilla, P; Franchino, S; Francis, D; Franklin, M; Franz, S; Fraternali, M; Fratina, S; Freestone, J; French, S T; Froeschl, R; Froidevaux, D; Frost, J A; Fukunaga, C; Fullana Torregrosa, E; Fuster, J; Gabaldon, C; Gabizon, O; Gadfort, T; Gadomski, S; Gagliardi, G; Gagnon, P; Galea, C; Gallas, E J; Gallas, M V; Gallop, B J; Gallus, P; Galyaev, E; Gan, K K; Gao, Y S; Gaponenko, A; Garcia-Sciveres, M; Garcí­a, C; Garcí­a Navarro, J E; Gardner, R W; Garelli, N; Garitaonandia, H; Garonne, V; Gatti, C; Gaudio, G; Gaumer, O; Gauzzi, P; Gavrilenko, I L; Gay, C; Gaycken, G; Gayde, J-C; Gazis, E N; Ge, P; Gee, C N P; Geich-Gimbel, Ch; Gellerstedt, K; Gemme, C; Genest, M H; Gentile, S; Georgatos, F; George, S; Gerlach, P; Gershon, A; Geweniger, C; Ghazlane, H; Ghez, P; Ghodbane, N; Giacobbe, B; Giagu, S; Giakoumopoulou, V; Giangiobbe, V; Gianotti, F; Gibbard, B; Gibson, A; Gibson, S M; Gilbert, L M; Gilchriese, M; Gilewsky, V; Gillberg, D; Gillman, A R; Gingrich, D M; Ginzburg, J; Giokaris, N; Giordani, M P; Giordano, R; Giovannini, P; Giraud, P F; Girtler, P; Giugni, D; Giusti, P; Gjelsten, B K; Gladilin, L K; Glasman, C; Glazov, A; Glitza, K W; Glonti, G L; Godfrey, J; Godlewski, J; Goebel, M; Göpfert, T; Goeringer, C; Gössling, C; Göttfert, T; Goggi, V; Goldfarb, S; Goldin, D; Golling, T; Gollub, N P; Gomes, A; Gomez Fajardo, L S; Gonçalo, R; Gonella, L; Gong, C; González de la Hoz, S; Gonzalez Silva, M L; Gonzalez-Sevilla, S; Goodson, J J; Goossens, L; Gorbounov, P A; Gordon, H A; Gorelov, I; Gorfine, G; Gorini, B; Gorini, E; Gorisek, A; Gornicki, E; Goryachev, S V; Goryachev, V N; Gosdzik, B; Gosselink, M; Gostkin, M I; Gough Eschrich, I; Gouighri, M; Goujdami, D; Goulette, M P; Goussiou, A G; Goy, C; Grabowska-Bold, I; Grafström, P; Grahn, K-J; Granado Cardoso, L; Grancagnolo, F; Grancagnolo, S; Grassi, V; Gratchev, V; Grau, N; Gray, H M; Gray, J A; Graziani, E; Green, B; Greenshaw, T; Greenwood, Z D; Gregor, I M; Grenier, P; Griesmayer, E; Griffiths, J; Grigalashvili, N; Grillo, A A; Grimm, K; Grinstein, S; Grishkevich, Y V; Groer, L S; Grognuz, J; Groh, M; Groll, M; Gross, E; Grosse-Knetter, J; Groth-Jensen, J; Grybel, K; Guarino, V J; Guicheney, C; Guida, A; Guillemin, T; Guler, H; Gunther, J; Guo, B; Gupta, A; Gusakov, Y; Gutierrez, A; Gutierrez, P; Guttman, N; Gutzwiller, O; Guyot, C; Gwenlan, C; Gwilliam, C B; Haas, A; Haas, S; Haber, C; Hackenburg, R; Hadavand, H K; Hadley, D R; Haefner, P; Härtel, R; Hajduk, Z; Hakobyan, H; Haller, J; Hamacher, K; Hamilton, A; Hamilton, S; Han, H; Han, L; Hanagaki, K; Hance, M; Handel, C; Hanke, P; Hansen, J R; Hansen, J B; Hansen, J D; Hansen, P H; Hansl-Kozanecka, T; Hansson, P; Hara, K; Hare, G A; Harenberg, T; Harrington, R D; Harris, O B; Harris, O M; Harrison, K; Hartert, J; Hartjes, F; Haruyama, T; Harvey, A; Hasegawa, S; Hasegawa, Y; Hashemi, K; Hassani, S; Hatch, M; Haug, F; Haug, S; Hauschild, M; Hauser, R; Havranek, M; Hawkes, C M; Hawkings, R J; Hawkins, D; Hayakawa, T; Hayward, H S; Haywood, S J; He, M; Head, S J; Hedberg, V; Heelan, L; Heim, S; Heinemann, B; Heisterkamp, S; Helary, L; Heller, M; Hellman, S; Helsens, C; Hemperek, T; Henderson, R C W; Henke, M; Henrichs, A; Henriques-Correia, A M; Henrot-Versille, S; Hensel, C; Henß, T; Hershenhorn, A D; Herten, G; Hertenberger, R; Hervas, L; Hessey, N P; Hidvegi, A; Higón-Rodriguez, E; Hill, D; Hill, J C; Hiller, K H; Hillier, S J; Hinchliffe, I; Hirose, M; Hirsch, F; Hobbs, J; Hod, N; Hodgkinson, M C; Hodgson, P; Hoecker, A; Hoeferkamp, M R; Hoffman, J; Hoffmann, D; Hohlfeld, M; Holmgren, S O; Holy, T; Holzbauer, J L; Homma, Y; Homola, P; Horazdovsky, T; Hori, T; Horn, C; Horner, S; Horvat, S; Hostachy, J-Y; Hou, S; Houlden, M A; Hoummada, A; Howe, T; Hrivnac, J; Hryn'ova, T; Hsu, P J; Hsu, S-C; Huang, G S; Hubacek, Z; Hubaut, F; Huegging, F; Hughes, E W; Hughes, G; Hughes-Jones, R E; Hurst, P; Hurwitz, M; Husemann, U; Huseynov, N; Huston, J; Huth, J; Iacobucci, G; Iakovidis, G; Ibragimov, I; Iconomidou-Fayard, L; Idarraga, J; Iengo, P; Igonkina, O; Ikegami, Y; Ikeno, M; Ilchenko, Y; Iliadis, D; Ilyushenka, Y; Imori, M; Ince, T; Ioannou, P; Iodice, M; Irles-Quiles, A; Ishikawa, A; Ishino, M; Ishmukhametov, R; Isobe, T; Issakov, V; Issever, C; Istin, S; Itoh, Y; Ivashin, A V; Iwanski, W; Iwasaki, H; Izen, J M; Izzo, V; Jackson, J N; Jackson, P; Jaekel, M; Jahoda, M; Jain, V; Jakobs, K; Jakobsen, S; Jakubek, J; Jana, D; Jansen, E; Jantsch, A; Janus, M; Jared, R C; Jarlskog, G; Jarron, P; Jeanty, L; Jelen, K; Jen-La Plante, I; Jenni, P; Jez, P; Jézéquel, S; Ji, W; Jia, J; Jiang, Y; Jimenez Belenguer, M; Jin, G; Jin, S; Jinnouchi, O; Joffe, D; Johansen, M; Johansson, K E; Johansson, P; Johnert, S; Johns, K A; Jon-And, K; Jones, G; Jones, R W L; Jones, T W; Jones, T J; Jonsson, O; Joos, D; Joram, C; Jorge, P M; Juranek, V; Jussel, P; Kabachenko, V V; Kabana, S; Kaci, M; Kaczmarska, A; Kado, M; Kagan, H; Kagan, M; Kaiser, S; Kajomovitz, E; Kalinovskaya, L V; Kalinowski, A; Kama, S; Kanaya, N; Kaneda, M; Kantserov, V A; Kanzaki, J; Kaplan, B; Kapliy, A; Kaplon, J; Karagounis, M; Karagoz Unel, M; Kartvelishvili, V; Karyukhin, A N; Kashif, L; Kasmi, A; Kass, R D; Kastanas, A; Kastoryano, M; Kataoka, M; Kataoka, Y; Katsoufis, E; Katzy, J; Kaushik, V; Kawagoe, K; Kawamoto, T; Kawamura, G; Kayl, M S; Kayumov, F; Kazanin, V A; Kazarinov, M Y; Kazi, S I; Keates, J R; Keeler, R; Keener, P T; Kehoe, R; Keil, M; Kekelidze, G D; Kelly, M; Kennedy, J; Kenyon, M; Kepka, O; Kerschen, N; Kersevan, B P; Kersten, S; Kessoku, K; Khakzad, M; Khalil-zada, F; Khandanyan, H; Khanov, A; Kharchenko, D; Khodinov, A; Kholodenko, A G; Khomich, A; Khoriauli, G; Khovanskiy, N; Khovanskiy, V; Khramov, E; Khubua, J; Kilvington, G; Kim, H; Kim, M S; Kim, P C; Kim, S H; Kind, O; Kind, P; King, B T; Kirk, J; Kirsch, G P; Kirsch, L E; Kiryunin, A E; Kisielewska, D; Kittelmann, T; Kiyamura, H; Kladiva, E; Klein, M; Klein, U; Kleinknecht, K; Klemetti, M; Klier, A; Klimentov, A; Klingenberg, R; Klinkby, E B; Klioutchnikova, T; Klok, P F; Klous, S; Kluge, E-E; Kluge, T; Kluit, P; Klute, M; Kluth, S; Knecht, N S; Kneringer, E; Ko, B R; Kobayashi, T; Kobel, M; Koblitz, B; Kocian, M; Kocnar, A; Kodys, P; Köneke, K; König, A C; Köpke, L; Koetsveld, F; Koevesarki, P; Koffas, T; Koffeman, E; Kohn, F; Kohout, Z; Kohriki, T; Kokott, T; Kolanoski, H; Kolesnikov, V; Koletsou, I; Koll, J; Kollar, D; Kolos, S; Kolya, S D; Komar, A A; Komaragiri, J R; Kondo, T; Kono, T; Kononov, A I; Konoplich, R; Konovalov, S P; Konstantinidis, N; Koperny, S; Korcyl, K; Kordas, K; Koreshev, V; Korn, A; Korolkov, I; Korolkova, E V; Korotkov, V A; Kortner, O; Kostka, P; Kostyukhin, V V; Kotamäki, M J; Kotov, S; Kotov, V M; Kotov, K Y; Koupilova, Z; Kourkoumelis, C; Koutsman, A; Kowalewski, R; Kowalski, H; Kowalski, T Z; Kozanecki, W; Kozhin, A S; Kral, V; Kramarenko, V A; Kramberger, G; Krasny, M W; Krasznahorkay, A; Kreisel, A; Krejci, F; Krepouri, A; Kretzschmar, J; Krieger, P; Krobath, G; Kroeninger, K; Kroha, H; Kroll, J; Kroseberg, J; Krstic, J; Kruchonak, U; Krüger, H; Krumshteyn, Z V; Kubota, T; Kuehn, S; Kugel, A; Kuhl, T; Kuhn, D; Kukhtin, V; Kulchitsky, Y; Kuleshov, S; Kummer, C; Kuna, M; Kupco, A; Kurashige, H; Kurata, M; Kurchaninov, L L; Kurochkin, Y A; Kus, V; Kuykendall, W; Kuznetsova, E; Kvasnicka, O; Kwee, R; La Rosa, M; La Rotonda, L; Labarga, L; Labbe, J; Lacasta, C; Lacava, F; Lacker, H; Lacour, D; Lacuesta, V R; Ladygin, E; Lafaye, R; Laforge, B; Lagouri, T; Lai, S; Lamanna, M; Lampen, C L; Lampl, W; Lancon, E; Landgraf, U; Landon, M P J; Lane, J L; Lankford, A J; Lanni, F; Lantzsch, K; Lanza, A; Laplace, S; Lapoire, C; Laporte, J F; Lari, T; Larionov, A V; Larner, A; Lasseur, C; Lassnig, M; Laurelli, P; Lavrijsen, W; Laycock, P; Lazarev, A B; Lazzaro, A; Le Dortz, O; Le Guirriec, E; Le Maner, C; Le Menedeu, E; Le Vine, M; Leahu, M; Lebedev, A; Lebel, C; LeCompte, T; Ledroit-Guillon, F; Lee, H; Lee, J S H; Lee, S C; Lefebvre, M; Legendre, M; LeGeyt, B C; Legger, F; Leggett, C; Lehmacher, M; Lehmann Miotto, G; Lei, X; Leitner, R; Lelas, D; Lellouch, D; Lellouch, J; Leltchouk, M; Lendermann, V; Leney, K J C; Lenz, T; Lenzen, G; Lenzi, B; Leonhardt, K; Leroy, C; Lessard, J-R; Lester, C G; Leung Fook Cheong, A; Levêque, J; Levin, D; Levinson, L J; Levitski, M S; Levonian, S; Lewandowska, M; Leyton, M; Li, H; Li, J; Li, S; Li, X; Liang, Z; Liang, Z; Liberti, B; Lichard, P; Lichtnecker, M; Lie, K; Liebig, W; Liko, D; Lilley, J N; Lim, H; Limosani, A; Limper, M; Lin, S C; Lindsay, S W; Linhart, V; Linnemann, J T; Liolios, A; Lipeles, E; Lipinsky, L; Lipniacka, A; Liss, T M; Lissauer, D; Litke, A M; Liu, C; Liu, D; Liu, H; Liu, J B; Liu, M; Liu, S; Liu, T; Liu, Y; Livan, M; Lleres, A; Lloyd, S L; Lobodzinska, E; Loch, P; Lockman, W S; Lockwitz, S; Loddenkoetter, T; Loebinger, F K; Loginov, A; Loh, C W; Lohse, T; Lohwasser, K; Lokajicek, M; Loken, J; Lopes, L; Lopez Mateos, D; Losada, M; Loscutoff, P; Losty, M J; Lou, X; Lounis, A; Loureiro, K F; Lovas, L; Love, J; Love, P; Lowe, A J; Lu, F; Lu, J; Lubatti, H J; Luci, C; Lucotte, A; Ludwig, A; Ludwig, D; Ludwig, I; Ludwig, J; Luehring, F; Luisa, L; Lumb, D; Luminari, L; Lund, E; Lund-Jensen, B; Lundberg, B; Lundberg, J; Lundquist, J; Lutz, G; Lynn, D; Lys, J; Lytken, E; Ma, H; Ma, L L; Maccarrone, G; Macchiolo, A; Macek, B; Machado Miguens, J; Mackeprang, R; Madaras, R J; Mader, W F; Maenner, R; Maeno, T; Mättig, P; Mättig, S; Magalhaes Martins, P J; Magradze, E; Magrath, C A; Mahalalel, Y; Mahboubi, K; Mahmood, A; Mahout, G; Maiani, C; Maidantchik, C; Maio, A; Majewski, S; Makida, Y; Makouski, M; Makovec, N; Malecki, Pa; Malecki, P; Maleev, V P; Malek, F; Mallik, U; Malon, D; Maltezos, S; Malyshev, V; Malyukov, S; Mambelli, M; Mameghani, R; Mamuzic, J; Manabe, A; Mandelli, L; Mandic, I; Mandrysch, R; Maneira, J; Mangeard, P S; Manjavidze, I D; Manousakis-Katsikakis, A; Mansoulie, B; Mapelli, A; Mapelli, L; March, L; Marchand, J F; Marchese, F; Marcisovsky, M; Marino, C P; Marques, C N; Marroquim, F; Marshall, R; Marshall, Z; Martens, F K; Marti i Garcia, S; Martin, A J; Martin, A J; Martin, B; Martin, B; Martin, F F; Martin, J P; Martin, T A; Martin dit Latour, B; Martinez, M; Martinez Outschoorn, V; Martini, A; Martynenko, V; Martyniuk, A C; Maruyama, T; Marzano, F; Marzin, A; Masetti, L; Mashimo, T; Mashinistov, R; Masik, J; Maslennikov, A L; Massaro, G; Massol, N; Mastroberardino, A; Masubuchi, T; Mathes, M; Matricon, P; Matsumoto, H; Matsunaga, H; Matsushita, T; Mattravers, C; Maxfield, S J; May, E N; Mayne, A; Mazini, R; Mazur, M; Mazzanti, M; Mazzanti, P; Mc Donald, J; Mc Kee, S P; McCarn, A; McCarthy, R L; McCubbin, N A; McFarlane, K W; McGlone, H; Mchedlidze, G; McLaren, R A; McMahon, S J; McMahon, T R; McPherson, R A; Meade, A; Mechnich, J; Mechtel, M; Medinnis, M; Meera-Lebbai, R; Meguro, T M; Mehdiyev, R; Mehlhase, S; Mehta, A; Meier, K; Meirose, B; Melamed-Katz, A; Mellado Garcia, B R; Meng, Z; Menke, S; Meoni, E; Merkl, D; Mermod, P; Merola, L; Meroni, C; Merritt, F S; Messina, A M; Messmer, I; Metcalfe, J; Mete, A S; Meyer, J-P; Meyer, J; Meyer, T C; Meyer, W T; Miao, J; Micu, L; Middleton, R P; Migas, S; Mijovic, L; Mikenberg, G; Mikuz, M; Miller, D W; Mills, W J; Mills, C M; Milov, A; Milstead, D A; Minaenko, A A; Miñano, M; Minashvili, I A; Mincer, A I; Mindur, B; Mineev, M; Mir, L M; Mirabelli, G; Misawa, S; Miscetti, S; Misiejuk, A; Mitrevski, J; Mitsou, V A; Miyagawa, P S; Mjörnmark, J U; Mladenov, D; Moa, T; Mockett, P; Moed, S; Moeller, V; Mönig, K; Möser, N; Mohn, B; Mohr, W; Mohrdieck-Möck, S; Moles-Valls, R; Molina-Perez, J; Moloney, G; Monk, J; Monnier, E; Montesano, S; Monticelli, F; Moore, R W; Mora-Herrera, C; Moraes, A; Morais, A; Morel, J; Morello, G; Moreno, D; Moreno Llácer, M; Morettini, P; Morii, M; Morley, A K; Mornacchi, G; Morozov, S V; Morris, J D; Moser, H G; Mosidze, M; Moss, J; Mount, R; Mountricha, E; Mouraviev, S V; Moyse, E J W; Mudrinic, M; Mueller, F; Mueller, J; Mueller, K; Müller, T A; Muenstermann, D; Muir, A; Murillo Garcia, R; Murray, W J; Mussche, I; Musto, E; Myagkov, A G; Myska, M; Nadal, J; Nagai, K; Nagano, K; Nagasaka, Y; Nairz, A M; Nakamura, K; Nakano, I; Nakatsuka, H; Nanava, G; Napier, A; Nash, M; Nation, N R; Nattermann, T; Naumann, T; Navarro, G; Nderitu, S K; Neal, H A; Nebot, E; Nechaeva, P; Negri, A; Negri, G; Nelson, A; Nelson, T K; Nemecek, S; Nemethy, P; Nepomuceno, A A; Nessi, M; Neubauer, M S; Neusiedl, A; Neves, R N; Nevski, P; Newcomer, F M; Nicholson, C; Nickerson, R B; Nicolaidou, R; Nicolas, L; Nicoletti, G; Niedercorn, F; Nielsen, J; Nikiforov, A; Nikolaev, K; Nikolic-Audit, I; Nikolopoulos, K; Nilsen, H; Nilsson, P; Nisati, A; Nishiyama, T; Nisius, R; Nodulman, L; Nomachi, M; Nomidis, I; Nomoto, H; Nordberg, M; Nordkvist, B; Notz, D; Novakova, J; Nozaki, M; Nozicka, M; Nugent, I M; Nuncio-Quiroz, A-E; Nunes Hanninger, G; Nunnemann, T; Nurse, E; O'Neil, D C; O'Shea, V; Oakham, F G; Oberlack, H; Ochi, A; Oda, S; Odaka, S; Odier, J; Odino, G A; Ogren, H; Oh, S H; Ohm, C C; Ohshima, T; Ohshita, H; Ohsugi, T; Okada, S; Okawa, H; Okumura, Y; Olcese, M; Olchevski, A G; Oliveira, M; Oliveira Damazio, D; Oliver, J; Oliver Garcia, E; Olivito, D; Olszewski, A; Olszowska, J; Omachi, C; Onofre, A; Onyisi, P U E; Oram, C J; Ordonez, G; Oreglia, M J; Oren, Y; Orestano, D; Orlov, I; Oropeza Barrera, C; Orr, R S; Ortega, E O; Osculati, B; Osuna, C; Otec, R; Ottersbach, J P; Ould-Saada, F; Ouraou, A; Ouyang, Q; Owen, M; Owen, S; Ozcan, V E; Ozone, K; Ozturk, N; Pacheco Pages, A; Padhi, S; Padilla Aranda, C; Paganis, E; Pahl, C; Paige, F; Pajchel, K; Pal, A; Palestini, S; Pallin, D; Palma, A; Palmer, J D; Pan, Y B; Panagiotopoulou, E; Panes, B; Panikashvili, N; Panitkin, S; Pantea, D; Panuskova, M; Paolone, V; Papadopoulou, Th D; Park, S J; Park, W; Parker, M A; Parker, S I; Parodi, F; Parsons, J A; Parzefall, U; Pasqualucci, E; Passardi, G; Passeri, A; Pastore, F; Pastore, Fr; Pásztor, G; Pataraia, S; Pater, J R; Patricelli, S; Patwa, A; Pauly, T; Peak, L S; Pecsy, M; Pedraza Morales, M I; Peleganchuk, S V; Peng, H; Penson, A; Penwell, J; Perantoni, M; Perez, K; Perez Codina, E; Pérez García-Estañ, M T; Perez Reale, V; Perini, L; Pernegger, H; Perrino, R; Perrodo, P; Persembe, S; Perus, P; Peshekhonov, V D; Petersen, B A; Petersen, J; Petersen, T C; Petit, E; Petridou, C; Petrolo, E; Petrucci, F; Petschull, D; Petteni, M; Pezoa, R; Pfeifer, B; Phan, A; Phillips, A W; Piacquadio, G; Piccinini, M; Piegaia, R; Pilcher, J E; Pilkington, A D; Pina, J; Pinamonti, M; Pinfold, J L; Ping, J; Pinto, B; Pirotte, O; Pizio, C; Placakyte, R; Plamondon, M; Plano, W G; Pleier, M-A; Poblaguev, A; Poddar, S; Podlyski, F; Poffenberger, P; Poggioli, L; Pohl, M; Polci, F; Polesello, G; Policicchio, A; Polini, A; Poll, J; Polychronakos, V; Pomarede, D M; Pomeroy, D; Pommès, K; Pontecorvo, L; Pope, B G; Popovic, D S; Poppleton, A; Popule, J; Portell Bueso, X; Porter, R; Pospelov, G E; Pospichal, P; Pospisil, S; Potekhin, M; Potrap, I N; Potter, C J; Potter, C T; Potter, K P; Poulard, G; Poveda, J; Prabhu, R; Pralavorio, P; Prasad, S; Pravahan, R; Preda, T; Pretzl, K; Pribyl, L; Price, D; Price, L E; Prichard, P M; Prieur, D; Primavera, M; Prokofiev, K; Prokoshin, F; Protopopescu, S; Proudfoot, J; Prudent, X; Przysiezniak, H; Psoroulas, S; Ptacek, E; Puigdengoles, C; Purdham, J; Purohit, M; Puzo, P; Pylypchenko, Y; Qi, M; Qian, J; Qian, W; Qian, Z; Qin, Z; Qing, D; Quadt, A; Quarrie, D R; Quayle, W B; Quinonez, F; Raas, M; Radeka, V; Radescu, V; Radics, B; Rador, T; Ragusa, F; Rahal, G; Rahimi, A M; Rahm, D; Rajagopalan, S; Rammes, M; Ratoff, P N; Rauscher, F; Rauter, E; Raymond, M; Read, A L; Rebuzzi, D M; Redelbach, A; Redlinger, G; Reece, R; Reeves, K; Reinherz-Aronis, E; Reinsch, A; Reisinger, I; Reljic, D; Rembser, C; Ren, Z L; Renkel, P; Rescia, S; Rescigno, M; Resconi, S; Resende, B; Reznicek, P; Rezvani, R; Richards, A; Richards, R A; Richter, D; Richter, R; Richter-Was, E; Ridel, M; Rieke, S; Rijpstra, M; Rijssenbeek, M; Rimoldi, A; Rinaldi, L; Rios, R R; Riu, I; Rivoltella, G; Rizatdinova, F; Rizvi, E R; Roa-Romero, D A; Robertson, S H; Robichaud-Veronneau, A; Robinson, D; Robinson, M; Robson, A; Rocha de Lima, J G; Roda, C; Rodriguez, D; Rodriguez Garcia, Y; Roe, S; Røhne, O; Rojo, V; Rolli, S; Romaniouk, A; Romanov, V M; Romeo, G; Romero-Maltrana, D; Roos, L; Ros, E; Rosati, S; Rosenbaum, G A; Rosenberg, E I; Rosselet, L; Rossi, L P; Rotaru, M; Rothberg, J; Rottländer, I; Rousseau, D; Royon, C R; Rozanov, A; Rozen, Y; Ruan, X; Ruckert, B; Ruckstuhl, N; Rud, V I; Rudolph, G; Rühr, F; Ruggieri, F; Ruiz-Martinez, A; Rumyantsev, L; Rusakovich, N A; Rutherfoord, J P; Ruwiedel, C; Ruzicka, P; Ryabov, Y F; Ryadovikov, V; Ryan, P; Rybkin, G; Rzaeva, S; Saavedra, A F; Sadrozinski, H F-W; Sadykov, R; Sakamoto, H; Salamanna, G; Salamon, A; Saleem, M; Salihagic, D; Salnikov, A; Salt, J; Salvachua-Ferrando, B M; Salvatore, D; Salvatore, F; Salvucci, A; Salzburger, A; Sampsonidis, D; Samset, B H; Sanchis Lozano, M A; Sandaker, H; Sander, H G; Sanders, M P; Sandhoff, M; Sandstroem, R; Sandvoss, S; Sankey, D P C; Sanny, B; Sansoni, A; Santamarina Rios, C; Santi, L; Santoni, C; Santonico, R; Santos, D; Santos, J; Saraiva, J G; Sarangi, T; Sarkisyan-Grinbaum, E; Sarri, F; Sasaki, O; Sasaki, T; Sasao, N; Satsounkevitch, I; Sauvage, G; Savard, P; Savine, A Y; Savinov, V; Sawyer, L; Saxon, D H; Says, L P; Sbarra, C; Sbrizzi, A; Scannicchio, D A; Schaarschmidt, J; Schacht, P; Schäfer, U; Schaetzel, S; Schaffer, A C; Schaile, D; Schamberger, R D; Schamov, A G; Schegelsky, V A; Scheirich, D; Schernau, M; Scherzer, M I; Schiavi, C; Schieck, J; Schioppa, M; Schlenker, S; Schlereth, J L; Schmid, P; Schmidt, M P; Schmieden, K; Schmitt, C; Schmitz, M; Schott, M; Schouten, D; Schovancova, J; Schram, M; Schreiner, A; Schroeder, C; Schroer, N; Schroers, M; Schuler, G; Schultes, J; Schultz-Coulon, H-C; Schumacher, J; Schumacher, M; Schumm, B A; Schune, Ph; Schwanenberger, C; Schwartzman, A; Schwemling, Ph; Schwienhorst, R; Schwierz, R; Schwindling, J; Scott, W G; Searcy, J; Sedykh, E; Segura, E; Seidel, S C; Seiden, A; Seifert, F; Seixas, J M; Sekhniaidze, G; Seliverstov, D M; Sellden, B; Seman, M; Semprini-Cesari, N; Serfon, C; Serin, L; Seuster, R; Severini, H; Sevior, M E; Sfyrla, A; Shamim, M; Shan, L Y; Shank, J T; Shao, Q T; Shapiro, M; Shatalov, P B; Shaver, L; Shaw, C; Shaw, K; Sherman, D; Sherwood, P; Shibata, A; Shimojima, M; Shin, T; Shmeleva, A; Shochet, M J; Shupe, M A; Sicho, P; Sidoti, A; Siebel, A; Siegert, F; Siegrist, J; Sijacki, Dj; Silbert, O; Silva, J; Silver, Y; Silverstein, D; Silverstein, S B; Simak, V; Simic, Lj; Simion, S; Simmons, B; Simonyan, M; Sinervo, P; Sinev, N B; Sipica, V; Siragusa, G; Sisakyan, A N; Sivoklokov, S Yu; Sjoelin, J; Sjursen, T B; Skubic, P; Skvorodnev, N; Slater, M; Slavicek, T; Sliwa, K; Sloper, J; Sluka, T; Smakhtin, V; Smirnov, S Yu; Smirnov, Y; Smirnova, L N; Smirnova, O; Smith, B C; Smith, D; Smith, K M; Smizanska, M; Smolek, K; Snesarev, A A; Snow, S W; Snow, J; Snuverink, J; Snyder, S; Soares, M; Sobie, R; Sodomka, J; Soffer, A; Solans, C A; Solar, M; Solfaroli-Camillocci, E; Solodkov, A A; Solovyanov, O V; Soluk, R; Sondericker, J; Sopko, V; Sopko, B; Sosebee, M; Sosnovtsev, V V; Sospedra-Suay, L; Soukharev, A; Spagnolo, S; Spanò, F; Speckmayer, P; Spencer, E; Spighi, R; Spigo, G; Spila, F; Spiwoks, R; Spousta, M; Spreitzer, T; Spurlock, B; St Denis, R D; Stahl, T; Stamen, R; Stancu, S N; Stanecka, E; Stanek, R W; Stanescu, C; Stapnes, S; Starchenko, E A; Stark, J; Staroba, P; Starovoitov, P; Stastny, J; Staude, A; Stavina, P; Stavropoulos, G; Steinbach, P; Steinberg, P; Stekl, I; Stelzer, B; Stelzer, H J; Stelzer-Chilton, O; Stenzel, H; Stevenson, K; Stewart, G; Stockton, M C; Stoerig, K; Stoicea, G; Stonjek, S; Strachota, P; Stradling, A; Straessner, A; Strandberg, J; Strandberg, S; Strandlie, A; Strauss, M; Strizenec, P; Ströhmer, R; Strom, D M; Strong, J A; Stroynowski, R; Strube, J; Stugu, B; Stumer, I; Soh, D A; Su, D; Suchkov, S I; Sugaya, Y; Sugimoto, T; Suhr, C; Suk, M; Sulin, V V; Sultansoy, S; Sumida, T; Sun, X; Sundermann, J E; Suruliz, K; Sushkov, S; Susinno, G; Sutton, M R; Suzuki, T; Suzuki, Y; Sviridov, Yu M; Sykora, I; Sykora, T; Szymocha, T; Sánchez, J; Ta, D; Tackmann, K; Taffard, A; Tafirout, R; Taga, A; Takahashi, Y; Takai, H; Takashima, R; Takeda, H; Takeshita, T; Talby, M; Talyshev, A; Tamsett, M C; Tanaka, J; Tanaka, R; Tanaka, S; Tanaka, S; Tappern, G P; Tapprogge, S; Tardif, D; Tarem, S; Tarrade, F; Tartarelli, G F; Tas, P; Tasevsky, M; Tassi, E; Taylor, C; Taylor, F E; Taylor, G N; Taylor, R P; Taylor, W; Teixeira-Dias, P; Ten Kate, H; Teng, P K; Terada, S; Terashi, K; Terron, J; Terwort, M; Testa, M; Teuscher, R J; Tevlin, C M; Thadome, J; Thananuwong, R; Thioye, M; Thoma, S; Thomas, J P; Thomas, T L; Thompson, E N; Thompson, P D; Thompson, P D; Thompson, R J; Thompson, A S; Thomson, E; Thun, R P; Tic, T; Tikhomirov, V O; Tikhonov, Y A; Timmermans, C J W P; Tipton, P; Tique-Aires-Viegas, F J; Tisserant, S; Tobias, J; Toczek, B; Todorov, T; Todorova-Nova, S; Toggerson, B; Tojo, J; Tokár, S; Tokushuku, K; Tollefson, K; Tomasek, L; Tomasek, M; Tomasz, F; Tomoto, M; Tompkins, D; Tompkins, L; Toms, K; Tong, G; Tonoyan, A; Topfel, C; Topilin, N D; Torrence, E; Torró Pastor, E; Toth, J; Touchard, F; Tovey, D R; Tovey, S N; Trefzger, T; Tremblet, L; Tricoli, A; Trigger, I M; Trincaz-Duvoid, S; Trinh, T N; Tripiana, M F; Triplett, N; Trivedi, A; Trocmé, B; Troncon, C; Trzupek, A; Tsarouchas, C; Tseng, J C-L; Tsiafis, I; Tsiakiris, M; Tsiareshka, P V; Tsionou, D; Tsipolitis, G; Tsiskaridze, V; Tskhadadze, E G; Tsukerman, I I; Tsulaia, V; Tsung, J-W; Tsuno, S; Tsybychev, D; Turala, M; Turecek, D; Turk Cakir, I; Turlay, E; Tuts, P M; Twomey, M S; Tylmad, M; Tyndel, M; Tzanakos, G; Uchida, K; Ueda, I; Uhlenbrock, M; Uhrmacher, M; Ukegawa, F; Unal, G; Underwood, D G; Undrus, A; Unel, G; Unno, Y; Urbaniec, D; Urkovsky, E; Urquijo, P; Urrejola, P; Usai, G; Uslenghi, M; Vacavant, L; Vacek, V; Vachon, B; Vahsen, S; Valenta, J; Valente, P; Valentinetti, S; Valkar, S; Valladolid Gallego, E; Vallecorsa, S; Valls Ferrer, J A; Van Berg, R; van der Graaf, H; van der Kraaij, E; van der Poel, E; Van Der Ster, D; van Eldik, N; van Gemmeren, P; van Kesteren, Z; van Vulpen, I; Vandelli, W; Vandoni, G; Vaniachine, A; Vankov, P; Vannucci, F; Varela Rodriguez, F; Vari, R; Varnes, E W; Varouchas, D; Vartapetian, A; Varvell, K E; Vasilyeva, L; Vassilakopoulos, V I; Vazeille, F; Vegni, G; Veillet, J J; Vellidis, C; Veloso, F; Veness, R; Veneziano, S; Ventura, A; Ventura, D; Venturi, M; Venturi, N; Vercesi, V; Verducci, M; Verkerke, W; Vermeulen, J C; Vetterli, M C; Vichou, I; Vickey, T; Viehhauser, G H A; Villa, M; Villani, E G; Villaplana Perez, M; Villate, J; Vilucchi, E; Vincter, M G; Vinek, E; Vinogradov, V B; Viret, S; Virzi, J; Vitale, A; Vitells, O V; Vivarelli, I; Vives Vaques, F; Vlachos, S; Vlasak, M; Vlasov, N; Vogt, H; Vokac, P; Volpi, M; Volpini, G; von der Schmitt, H; von Loeben, J; von Radziewski, H; von Toerne, E; Vorobel, V; Vorobiev, A P; Vorwerk, V; Vos, M; Voss, R; Voss, T T; Vossebeld, J H; Vranjes, N; Vranjes Milosavljevic, M; Vrba, V; Vreeswijk, M; Vu Anh, T; Vudragovic, D; Vuillermet, R; Vukotic, I; Wagner, P; Wahlen, H; Walbersloh, J; Walder, J; Walker, R; Walkowiak, W; Wall, R; Wang, C; Wang, H; Wang, J; Wang, J C; Wang, S M; Ward, C P; Warsinsky, M; Wastie, R; Watkins, P M; Watson, A T; Watson, M F; Watts, G; Watts, S; Waugh, A T; Waugh, B M; Webel, M; Weber, J; Weber, M D; Weber, M; Weber, M S; Weber, P; Weidberg, A R; Weingarten, J; Weiser, C; Wellenstein, H; Wells, P S; Wen, M; Wenaus, T; Wendler, S; Wengler, T; Wenig, S; Wermes, N; Werner, M; Werner, P; Werth, M; Werthenbach, U; Wessels, M; Whalen, K; Wheeler-Ellis, S J; Whitaker, S P; White, A; White, M J; White, S; Whiteson, D; Whittington, D; Wicek, F; Wicke, D; Wickens, F J; Wiedenmann, W; Wielers, M; Wienemann, P; Wiglesworth, C; Wiik, L A M; Wildauer, A; Wildt, M A; Wilhelm, I; Wilkens, H G; Williams, E; Williams, H H; Willis, W; Willocq, S; Wilson, J A; Wilson, M G; Wilson, A; Wingerter-Seez, I; Winklmeier, F; Wittgen, M; Wolter, M W; Wolters, H; Wosiek, B K; Wotschack, J; Woudstra, M J; Wraight, K; Wright, C; Wright, D; Wrona, B; Wu, S L; Wu, X; Wulf, E; Xella, S; Xie, S; Xie, Y; Xu, D; Xu, N; Yamada, M; Yamamoto, A; Yamamoto, S; Yamamura, T; Yamanaka, K; Yamaoka, J; Yamazaki, T; Yamazaki, Y; Yan, Z; Yang, H; Yang, U K; Yang, Y; Yang, Z; Yao, W-M; Yao, Y; Yasu, Y; Ye, J; Ye, S; Yilmaz, M; Yoosoofmiya, R; Yorita, K; Yoshida, R; Young, C; Youssef, S P; Yu, D; Yu, J; Yu, M; Yu, X; Yuan, J; Yuan, L; Yurkewicz, A; Zaidan, R; Zaitsev, A M; Zajacova, Z; Zambrano, V; Zanello, L; Zarzhitsky, P; Zaytsev, A; Zeitnitz, C; Zeller, M; Zema, P F; Zemla, A; Zendler, C; Zenin, O; Zenis, T; Zenonos, Z; Zenz, S; Zerwas, D; Zevi della Porta, G; Zhan, Z; Zhang, H; Zhang, J; Zhang, Q; Zhang, X; Zhao, L; Zhao, T; Zhao, Z; Zhemchugov, A; Zheng, S; Zhong, J; Zhou, B; Zhou, N; Zhou, Y; Zhu, C G; Zhu, H; Zhu, Y; Zhuang, X; Zhuravlov, V; Zilka, B; Zimmermann, R; Zimmermann, S; Zimmermann, S; Ziolkowski, M; Zitoun, R; Zivkovic, L; Zmouchko, V V; Zobernig, G; Zoccoli, A; zur Nedden, M; Zutshi, V

    2010-01-01

    The ATLAS liquid argon calorimeter has been operating continuously since August 2006. At this time, only part of the calorimeter was readout, but since the beginning of 2008, all calorimeter cells have been connected to the ATLAS readout system in preparation for LHC collisions. This paper gives an overview of the liquid argon calorimeter performance measured in situ with random triggers, calibration data, cosmic muons, and LHC beam splash events. Results on the detector operation, timing performance, electronics noise, and gain stability are presented. High energy deposits from radiative cosmic muons and beam splash events allow to check the intrinsic constant term of the energy resolution. The uniformity of the electromagnetic barrel calorimeter response along eta (averaged over phi) is measured at the percent level using minimum ionizing cosmic muons. Finally, studies of electromagnetic showers from radiative muons have been used to cross-check the Monte Carlo simulation. The performance results obtained u...

  10. Research status of electromagnetic rail gun barrel structure%电磁轨道炮身管结构的研究概况

    Institute of Scientific and Technical Information of China (English)

    吕彦; 任泽宁; 钱学梅; 胡俊; 黄建文; 杨忠贤; 赵鸿雁

    2012-01-01

    电磁轨道炮身管工况特殊、结构复杂,开发轻质、高效的身管是电磁轨道炮走向实战应用的关键.从结构力学方面介绍电磁轨道炮管对材料和结构的要求,综述典型的轨道炮身管结构设计概况.归纳实战型轨道炮管结构设计的关键点.%Due to special working conditions and complex structure of electromagnetic rail gun barrel, the exploration of lightweight, efficient barrel becomes the key for actual cnmbal application of electromagnetic rail gun. Material and structural requirements of gun barrel are illustrated from the viewpoints of structural mechanics, typical barrel designs are reviewed, and the key points of actual combat barrel design are summarized.

  11. Design and assembly of the CsI(T1) crystal module of the BESⅢ electro-magnetic calorimeter

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The CsI(T1) crystal modules of the Beijing Spectrometer Ⅲ (BESⅢ) electro-magnetic calorimeter (EMC) were designed and assembled through Monte Carlo simulation and experiments. After the assembly was finished, the performance of each crystal module was tested by cosmic rays. All crystal modules were found to work well before the installation of EMC.

  12. Study of requirements and performances of the electromagnetic calorimeter for the Mu2e experiment at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Soleti, S. [Sapienza Univ. of Rome (Italy)

    2015-06-15

    In this thesis we discuss the simulation and tests carried out for the optimization and design of the electromagnetic calorimeter for the Mu2e (Muon to electron conversion) experiment, which is a proposed experiment part of the Muon Campus hosted at Fermi National Accelerator Laboratory (FNAL) in Batavia, United States.

  13. First two barrel ECAL supermodules inserted in CMS HCAL

    CERN Multimedia

    K.Bell

    2006-01-01

    The first two barrel "supermodules" for the CMS Electromagnetic Calorimeter (ECAL) have been inserted into the barrel hadron calorimeter (HCAL) in the experimental hall (called SX5) in Cessy in preparation for the forthcoming magnet test and cosmic challenge (MTCC). Each of the two supermodules contains 1700 lead tungstate crystals in glass-fibre alveolar support structures, with associated avalanche photodiodes (APDs, for scintillation light detection), electronics and cooling system. The barrel ECAL will consist of 36 supermodules, many of which have already been produced (see CERN Bulletin 17-18, 2006). Team from CMS ECAL, CMS Integration and CEA-DAPNIA were involved in the insertion, with the production/integration of the supermodules themselves involving many technicians, engineers and physicists from many institutes. From left to right: Olivier Teller, Maf Alidra and Lucien Veillet.

  14. R&D for a highly granular silicon tungsten electromagnetic calorimeter

    CERN Document Server

    Pöschl, R

    2015-01-01

    This article reports on first experience with the technological prototype of a highly- granular silicon-tungsten electromagnetic calorimeter as envisaged for the detectors at a future lepton collider. In the focus of the analysis is the performance of a highly integrated Application Specific Integrated Circuit designed to meet the requirements in terms of dynamic range, compactness and power consumption. The beam test results show that the circuit will allow a future detector with a signal over noise ratio of at least 10:1. To minimise the power dissipation the ASIC will be operated in a power pulsed mode. So far no conceptual problem was revealed but the studies show the way for further work. The prototype is read out by a DAQ system conceived to meet the needs of a trigger less system with a huge number of readout cells.

  15. Improving Code Quality of the Compact Muon Solenoid Electromagnetic Calorimeter Control Software to Increase System Maintainability

    CERN Multimedia

    Holme, Oliver; Dissertori, Günther; Djambazov, Lubomir; Lustermann, Werner; Zelepoukine, Serguei

    2013-01-01

    The Detector Control System (DCS) software of the Electromagnetic Calorimeter (ECAL) of the Compact Muon Solenoid (CMS) experiment at CERN is designed primarily to enable safe and efficient operation of the detector during Large Hadron Collider (LHC) data-taking periods. Through a manual analysis of the code and the adoption of ConQAT [1], a software quality assessment toolkit, the CMS ECAL DCS team has made significant progress in reducing complexity and improving code quality, with observable results in terms of a reduction in the effort dedicated to software maintenance. This paper explains the methodology followed, including the motivation to adopt ConQAT, the specific details of how this toolkit was used and the outcomes that have been achieved. [1] ConQAT, Continuous Quality Assessment Toolkit; https://www.conqat.org/

  16. VHDL implementation of feature-extraction algorithm for the PANDA electromagnetic calorimeter

    Science.gov (United States)

    Guliyev, E.; Kavatsyuk, M.; Lemmens, P. J. J.; Tambave, G.; Löhner, H.; Panda Collaboration

    2012-02-01

    A simple, efficient, and robust feature-extraction algorithm, developed for the digital front-end electronics of the electromagnetic calorimeter of the PANDA spectrometer at FAIR, Darmstadt, is implemented in VHDL for a commercial 16 bit 100 MHz sampling ADC. The source-code is available as an open-source project and is adaptable for other projects and sampling ADCs. Best performance with different types of signal sources can be achieved through flexible parameter selection. The on-line data-processing in FPGA enables to construct an almost dead-time free data acquisition system which is successfully evaluated as a first step towards building a complete trigger-less readout chain. Prototype setups are studied to determine the dead-time of the implemented algorithm, the rate of false triggering, timing performance, and event correlations.

  17. Monitoring and Correcting for Response Changes in the CMS Lead-tungstate Electromagnetic Calorimeter

    CERN Document Server

    Ferri, Federico

    2012-01-01

    The CMS Electromagnetic Calorimeter (ECAL) comprises 75848 lead-tungstate scintillating crystals. Changes in the ECAL response, due to crystal radiation damage or changes in photo-detector output, are monitored in real time with a sophisticated system of lasers and LEDs to allow corrections to the energy measurements to be calculated and used. The excellent intrinsic resolution of the CMS ECAL requires the monitoring system itself to be calibrated to a high precision and its stability to be controlled and understood. The components of the CMS ECAL monitoring system, and how it has evolved to include modern solid-state lasers, are described. Several physics channels are exploited to normalize the ECAL response to the changes measured by the monitoring system. These include low energy di-photon resonances, electrons from W and Z decays (using shower energy versus track momentum measurements), and the azimuthal symmetry of low energy deposits in minimum bias events. This talk describes how the monitoring system ...

  18. A CMOS variable gain amplifier for PHENIX electromagnetic calorimeter and RICH energy measurements

    Energy Technology Data Exchange (ETDEWEB)

    Wintenberg, A.L.; Simpson, M.L.; Young, G.R. [Oak Ridge National Lab., TN (United States); Palmer, R.L.; Moscone, C.G.; Jackson, R.G. [Tennessee Univ., Knoxville, TN (United States)

    1996-12-31

    A variable gain amplifier (VGA) has been developed equalizing the gains of integrating amplifier channels used with multiple photomultiplier tubes operating from common high-voltage supplies. The PHENIX lead-scintillator electromagnetic calorimeter will operate in that manner, and gain equalization is needed to preserve the dynamic range of the analog memory and ADC following the integrating amplifier. The VGA is also needed for matching energy channel gains prior to forming analog sums for trigger purposes. The gain of the VGA is variable over a 3:1 range using a 5-bit digital control, and the risetime is held between 15 and 23 ns using switched compensation in the VGA. An additional feature is gated baseline restoration. Details of the design and results from several prototype devices fabricated in 1.2-{mu}m Orbit CMOS are presented.

  19. Study of BESIII electromagnetic calorimeter performance with radiative lepton pair events

    CERN Document Server

    Prasad, Vindhyawasini; Ji, Xiaobin; Li, Weidong; Liu, Huaimin; Lou, Xinchou

    2016-01-01

    We study the photon detection efficiency and position resolution of the electromagnetic calorimeter (EMC) of the BESIII detector. The control samples of the initial-state-radiation (ISR) process of $e^+e^-\\rightarrow \\gamma \\mu^+\\mu^-$ at $J/\\psi$ and $\\psi(3770)$ resonances are used for the calibration of the photon cluster shapes and photon detection efficiency study. The photon detection efficiency is defined as the fraction of predicted photon, determined by performing a kinematic fit with the four momenta of two charged tracks only, matched with the actual photons in the EMC. The spatial resolution of the EMC is studied in polar ($\\theta$) and azimuthal ($\\phi$) angle directions in a cylindrical coordinate system centered at the interaction point, with z-axis along the beam direction.

  20. Study of photon detection efficiency and position resolution of BESIII electromagnetic calorimeter

    CERN Document Server

    Prasad, Vindhyawasini; Ji, Xiaobin; Li, Weidong; Liu, Huaimin; Lou, Xinchou

    2016-01-01

    We study the photon detection efficiency and position resolution of the electromagnetic calorimeter (EMC) of the BESIII experiment. The control sample of the initial-state-radiation (ISR) process of $e^+e^-\\rightarrow \\gamma \\mu^+\\mu^-$ is used at $J/\\psi$ and $\\psi(3770)$ resonances for the EMC calibration and photon detection efficiency study. Photon detection efficiency is defined as the predicted photon, obtained by performing a kinematic fit with two muon tracks, matched with real photons in the EMC. The spatial resolution of the EMC is defined as the separation in polar ($\\theta$) and azimuthal ($\\phi$) angles between charged track and associated cluster centroid on the front face of the EMC crystals.

  1. A Tungsten / Scintillating Fiber Electromagnetic Calorimeter Prototype for a High-Rate Muon g-2 Experiment

    CERN Document Server

    McNabb, R; Crnkovic, J D; Hertzog, D W; Kiburg, B; Kunkle, J; Thorsland, E; Webber, D M; Lynch, K R; 10.1016/j.nima.2009.01.007

    2009-01-01

    A compact and fast electromagnetic calorimeter prototype was designed, built, and tested in preparation for a next-generation, high-rate muon g-2 experiment. It uses a simple assembly procedure: alternating layers of 0.5-mm-thick tungsten plates and 0.5-mm-diameter plastic scintillating fiber ribbons. This geometry leads to a detector having a calculated radiation length of 0.69 cm, a Moliere radius of 1.73 cm, and a measured intrinsic sampling resolution term of (11.8\\pm1.1)/\\sqrt{E(GeV)}, in the range 1.5 to 3.5 GeV. The construction procedure, test beam results, and GEANT-4 comparative simulations are described.

  2. Light-to-light readout system of the CMS electromagnetic calorimeter

    CERN Document Server

    Denes, P; Lustermann, W; Mathez, H; Pangaud, P; Walder, J P

    2001-01-01

    For the CMS experiment at the Large Hadron Collider at CERN, an 8OOOO-crysral electromagnetic calorimeter will measure electron and photon energies with high precision over a dynamic range of roughly 16 bits. The readout electronics will be located directly behind the crystals, and must survive a total dose of up to 2x10 Gy along with 5x10**1**3 n/cm**2. A readout chain consisting of a custom wide-range acquisition circuit, commercial ADC and custom optical link for each crystal is presently under construction. An overview of the design is presented, with emphasis on the large-scale fiber communication system. 11 Refs.

  3. The upgrade and re-validation of the Compact Muon Solenoid Electromagnetic Calorimeter Control System

    CERN Multimedia

    Holme, Oliver; Di Calafiori, Diogo; Dissertori, Günther; Djambazov, Lubomir; Jovanovic, Dragoslav; Lustermann, Werner; Zelepoukine, Serguei

    2013-01-01

    The Electromagnetic Calorimeter (ECAL) is one of the sub-detectors of the Compact Muon Solenoid (CMS) experiment at the Large Hadron Collider (LHC) at CERN. The Detector Control System (DCS) that has been developed and implemented for the CMS ECAL was deployed in accordance with the LHC schedule and has been supporting the CMS data-taking since LHC physics runs started in 2009. During these years, the control system has been regularly adapted according to operational experience and new requirements, always respecting the constraints imposed on significant changes to a running system. Several hardware and software upgrades and system extensions were therefore deferred to the first LHC Long Shutdown (LS1). This paper presents the main architectural differences between the system that supported the CMS ECAL during its first years and the new design for the coming physics runs after LS1. Details on the upgrade planning, including the certification methods performed in the CMS ECAL DCS laboratory facilities, repor...

  4. The electromagnetic calorimeter of the KLOE experiment at DA{Phi}NE

    Energy Technology Data Exchange (ETDEWEB)

    Antonelli, M.; Barbiellini, G.; Bertolucci, S.; Bini, C.; Bloise, C.; Caloi, R.; Campana, P.; Cervelli, F.; De Zorzi, G.; Di Cosimo, G.; Di Domenico, A.; Erriquez, O.; Farilla, A.; Ferrari, A.; Franzini, P.; Gauzzi, P.; Giovannella, S.; Graziani, E.; Han, S.W.; Incagli, M.; Kim, W.; Lanfranchi, G.; Lee-Franzini, J.; Lomtadze, T.; Miscetti, S.; Murtas, F.; Scuri, F.; Spiriti, E.; Tortora, L.; Venanzoni, G.; Woelfle, S.; Zhang, J.Q. [Bari Univ. (Italy). Dipartimento di Fisica]|[Institute of High Energy Physics of Academica Sinica, Beijing (China)]|[Laboratori Nazionali di Frascati dell`INFN, Frascati (Italy)]|[Physics Department, Columbia University, New York (United States)]|[Dipartimento di Fisica dell`Universita e Sezione INFN, Pisa (Italy)]|[Dipartimento di Fisica dell`Universita e Sezione INFN, Roma I (Italy)]|[Istituto Superiore di Sanita and Sezione INFN, ISS, Roma (Italy)]|[Physics Department, State University of New York at, Stony Brook (United States)]|[Dipartimento di Fisica dell`Universita e Sezione INFN, Trieste/Udine (Italy); KLOE calorimeter group

    1996-09-21

    The main aim of the KLOE experiment at DA{Phi}NE, the Frascati {phi}-factory, is to study CP violation in the K{sup 0}-K{sup 0} system. Requirements on electromagnetic shower detection, in the 20-280 MeV/c range, are very stringent. A hermetic, lead-scintillating fiber sampling calorimeter, characterized by a fiber:lead:glue volume ratio of approximately 48:42:10, has been chosen. Energy resolution of {sigma}{sub E}/E{proportional_to}4.7%/{radical}(E (GeV)) and time resolution of {sigma}{sub T}{proportional_to}58 ps/{radical}(E (GeV)) are the most significant characteristics of this detector. (orig.).

  5. Liquid Argon Barrel Cryostat Arrived

    CERN Multimedia

    Pailler, P

    Last week the first of three cryostats for the ATLAS liquid argon calorimeter arrived at CERN. It had travelled for 46 days over several thousand kilometers from Japan to CERN. During three years it has been fabricated by Kawasaki Heavy Industries Ltd. at Harima, close to Kobe, under contract from Brookhaven National Laboratory (BNL) of the U.S.. This cryostat consists of two concentric cylinders made of aluminium: the outer vacuum vessel with a diameter of 5.5 m and a length of 7 m, and the inner cold vessel which will contain the electromagnetic barrel calorimeter immersed in liquid argon. The total weight will be 270 tons including the detectors and the liquid argon. The cryostat is now located in building 180 where it will be equipped with 64 feed-throughs which serve for the passage of 122,880 electrical lines which will carry the signals of the calorimeter. After integration of the calorimeter, the solenoidal magnet of ATLAS will be integrated in the vacuum vessel. A final cold test of the cryostat inc...

  6. Construction and testing of a large scale prototype of a silicon tungsten electromagnetic calorimeter for a future lepton collider

    CERN Document Server

    Rouëné,J

    2013-01-01

    The CALICE collaboration is preparing large scale prototypes of highly granular calorimeters for detectors to be operated at a future linear electron positron collider. After several beam campaigns at DESY, CERN and FNAL, the CALICE collaboration has demonstrated the principle of highly granular electromagnetic calorimeters with a first prototype called physics prototype. The next prototype, called technological prototype, addresses the engineering challenges which come along with the realisation of highly granular calorimeters. This prototype will comprise 30 layers where each layer is composed of four 9_9 cm2 silicon wafers. The front end electronics is integrated into the detector layers. The size of each pixel is 5_5 mm2. This prototype enter sits construction phase. We present results of the first layers of the technological prototype obtained during beam test campaigns in spring and summer 2012. According to these results the signal over noise ratio of the detector exceeds the R&D goal of10:1.

  7. Study and optimization of the performances of the CMS electromagnetic calorimeter for the physics at LHC; Etude et optimisation des performances du calorimetre electromagnetique de l'experience CMS pour la physique au LHC

    Energy Technology Data Exchange (ETDEWEB)

    Descamps, J

    2007-07-15

    The CMS experiment (Compact Muon Solenoid) is one of the two multi-purpose experiments of the proton-proton collider LHC (Large Hadron Collider). One of the main goals of CMS is the search for the Higgs boson. The collaboration has chosen an electromagnetic calorimeter made of about 75000 scintillating lead tungstate crystals PbWO{sub 4}, at the same time fast, radiation hard, and extremely precise, especially in the energy range for the Higgs boson search, in the channel where it decays in 2 photons. The five first chapters of this thesis present the LHC, the CMS detector and notably the electromagnetic calorimeter (ECAL). The sixth chapter presents a test beam analysis realized in 2004 at CERN with an electron beam of different energies (20-250 GeV) incident on a part (1/36) of the calorimeter barrel called super-module. A study of the energy measurement variation within 9 (3*3) and 25 (5*5) crystals matrices as function of the impact position of the initial electron was done to infer a correction method of the energy measured as function of different parameters. This method has improved very significantly the energy resolution of the calorimeter in the test beam configuration. The last chapter of this thesis presents an application of this correction method for the electrons and photons in the full simulation chain of CMS. The energy reconstruction of photons and electrons is more complicated compared to the test beam case, because of an important amount of matter in front of the calorimeter and of the strong magnetic field in the central part of the CMS detector. The photons have a non negligible probability to convert into an electron-positron pair before the calorimeter, while the electrons (and positrons), whose trajectory is bent in the transverse plan, lose energy in the matter and can emit a random number of Bremsstrahlung photons. A reconstruction algorithm of the electrons and photons energy has been developed to take into account this issue and to

  8. Improving the Prompt Electromagnetic Energy Component of Jet Energy Resolution with pi0 Fitting in High Granularity Electromagnetic Calorimeters

    CERN Document Server

    van Doren, Brian

    2012-01-01

    We investigate improving the hadronic jet energy resolution using mass-constrained fits of pi0 decays using high granularity electromagnetic calorimeters. Single pi0 studies have indicated a large potential for improvement in the energy resolution of pi0's, typically reducing the average energy resolution by a factor of two for 4 GeV pi0's. We apply this method to fully simulated multi-hadronic events with multiple pi0's with widely varying energies using the ILD00 detector model. Several methods for identifying the correct pairings of photons with parent pi0's were explored. The combinatorics become challenging as the number of pi0's increases and we employ the Blossom V implementation of Edmonds' matching algorithm for handling this. For events where both photons of the pi0 are detected, the resulting solutions lead to an improvement in the pi0 component of the event energy resolution for 91.2 GeV Z0 events from 18.0%/sqrt(E) to 13.9%/sqrt(E) using the ILD00 detector and its reconstruction algorithms. This ...

  9. Studies of lead tungstate crystal matrices in high energy beams for the CMS electromagnetic calorimeter at the LHC

    CERN Document Server

    Alexeev, G; Baillon, Paul; Barney, D; Bassompierre, Gabriel; Bateman, E; Bell, K W; Benhammou, Ya; Bloch, P; Bomestar, D; Borgia, B; Bourotte, J; Burge, S R; Cameron, W; Chipaux, Rémi; Cockerill, D J A; Connolly, J; Dafinei, I; Denes, P; Depasse, P; Deiters, K; Dobrzynski, Ludwik; El-Mamouni, H; Faure, J L; Felcini, Marta; Finger, M H; Flügel, T; Gautheron, F; Givernaud, Alain; Gninenko, S N; Godinovic, N; Graham, D J; Guillaud, J P; Guschin, E; Haguenauer, Maurice; Hillemanns, H; Hofer, H; Ille, B; Jääskeläinen, S; Katchanov, V A; Kennedy, B W; Kirn, T; Korzhik, M V; Lassila-Perini, K M; Lebeau, M; Lebrun, P; Lecoq, P; Lecoeur, Gérard; Lecomte, P; Leonardi, E; Locci, E; Loos, R; Ma, D; Martin, F; Mendiburu, J P; Musienko, Yu V; Nédélec, P; Nessi-Tedaldi, F; Newbold, D; Newman, H; Oukhanov, M; Pacciani, L; Peigneux, J P; Pirro, S; Popov, S; Puljak, I; Purves, C; Renker, D; Rondeaux, F; Rosso, E; Rusack, R W; Rykaczewski, H; Schmitz, D; Schneegans, M; Schwenke, J; Seez, Christopher J; Semeniouk, I N; Shagin, P M; Shevchenko, S; Shi, X; Sillou, D; Simohand, D; Singovsky, A V; Soric, I; Smith, B; Stephenson, R; Verrecchia, P; Vialle, J P; Virdee, Tejinder S; Zhu, R Y

    1997-01-01

    Using matrices of lead tungstate crystals energy resolutions better than 0.6% at 100 GeV have been achieved in the test beam in 1995. It has been demonstrated that a lead tungstate electromagnetic calorimeter read out by avalanche photodiodes can consistently achieve the excellent energy resolutions necessary to justify its construction in the CMS detector. The performance achieved has been understood in terms of the properties of the crystals and photodetectors.

  10. Kali: The framework for fine calibration of the LHCb Electromagnetic Calorimeter

    Science.gov (United States)

    Belyaev, Ivan; Savrina, Daria; Graciani, Ricardo; Puig, Albert; LHCb Collaboration

    2011-12-01

    The precise calibration (at a level of below 1%) of the electromagnetic calorimeter (ECAL) of the LHCb experiment is an essential task for the fulfilment of the LHCb physics program. The final step of this task is performed with two calibration methods using the real data from the experimental setup. It is a very CPU-consuming procedure as both methods require processing of Script O(108) events which must be selected, reconstructed and analyzed. In this document we present the Kali framework developed within the LHCb software framework, which implements these two final calibration methods. It is integrated with Grid middleware and makes use of parallelism tools, such as python parallel processing modules, to provide an efficient way, both time and disk wise, for the final ECAL calibration. The results of the fine calibration with the very first data collected by the LHCb experiment will also be presented. With the use of the Kali framework it took only two days of processing and allowed to achieve a calibration accuracy of 2-2.5% for the different ECAL areas.

  11. Monitoring and Correcting for Response Changes in the CMS Lead-tungstate Electromagnetic Calorimeter

    Science.gov (United States)

    Ferri, Federico

    2012-12-01

    The CMS Electromagnetic Calorimeter (ECAL) comprises 75848 lead-tungstate scintillating crystals. Changes in the ECAL response, due to crystal radiation damage or changes in photo-detector output, are monitored in real time with a sophisticated system of lasers to allow corrections to the energy measurements to be calculated and used. The excellent intrinsic resolution of the CMS ECAL requires the monitoring system itself to be calibrated to a high precision and its stability to be controlled and understood. The components of the CMS ECAL monitoring system, and how it has evolved to include modern solid-state lasers, are described. Several physics channels are exploited to normalise the ECAL response to the changes measured by the monitoring system. These include low energy diphoton resonances, electrons from W and Z decays (using shower energy versus track momentum measurements), and the azimuthal symmetry of low energy deposits in minimum bias events. This paper describes how the monitoring system is operated, how the corrections are obtained, and the resulting ECAL performance.

  12. The Electromagnetic Calorimeter for the T2K Near Detector ND280

    CERN Document Server

    Allan, D; Angelsen, C; Barker, G J; Barr, G; Bentham, S; Bertram, I; Boyd, S; Briggs, K; Calland, R G; Carroll, J; Cartwright, S L; Chavez, C; Christodoulou, G; Coleman, J; Cooke, P; Davies, G; Densham, C; Dobson, J; Duboyski, T; Durkin, T; Evans, D L; Finch, A; Fitton, M; Gannaway, F C; Grant, A; Grant, N; Grenwood, S; Guzowski, P; Hadley, D; Haigh, M; Harrison, P F; Hatzikoutelis, A; Haycock, T D J; Hyndman, A; Ilic, J; Ives, S; Kaboth, A C; Kasey, V; Kellet, L; Khaleeq, M; Kogan, G; Kormos, L L; Lawe, M; Lawson, T B; Lister, C; Litchfield, R P; Lockwood, M; DiLodovico, F; Malek, M; Maryon, T; Masliah, P; Mavrokoridis, K; McCauley, N; Mercer, I; Metelko, C; Morgan, B; Morris, J; Muir, A; Murdoch, M; Nicholls, T; Noy, M; O'Keeffe, H M; Owen, R A; Payne, D; Pearce, G F; Perkin, J D; Poplawska, E; Preece, R; Qian, W; Ratoff, P; Raufer, T; Raymond, M; Reeves, M; Richards, D; Rooney, M; Sacco, R; Sadler, S; Schaack, P; Scott, M; Scully, D I; Short, S; Siyad, M; Smith, R; Still, B; Sutcliffe, P; Taylor, I J; Terri, R; Thompson, L F; Thorley, A; Thorpe, M; Timis, C; Touramanis, C; Uchida, M A; Uchida, Y; Vacheret, A; VanSchalkwyk, J F; Veledar, O; Waldron, A V; Ward, M A; Ward, G P; Wark, D; Wascko, M O; Weber, A; West, N; Whitehead, L H; Wilkinson, C; Wilson, J R

    2013-01-01

    The T2K experiment studies oscillations of an off-axis muon neutrino beam between the J-PARC accelerator complex and the Super-Kamiokande detector. Special emphasis is placed on measuring the mixing angle theta_13 by observing electron neutrino appearance via the sub-dominant muon neutrino to electron neutrino oscillation, and searching for CP violation in the lepton sector. The experiment includes a sophisticated, off-axis, near detector, the ND280, situated 280 m downstream of the neutrino production target in order to measure the properties of the neutrino beam and to understand better neutrino interactions at the energy scale below a few GeV. The data collected with the ND280 are used to study charged- and neutral-current neutrino interaction rates and kinematics prior to oscillation, in order to reduce uncertainties in the oscillation measurements by the far detector. A key element of the near detector is the ND280 electromagnetic calorimeter (ECal), consisting of active scintillator bars sandwiched betw...

  13. The selective read-out processor for the CMS electromagnetic calorimeter

    CERN Document Server

    Girão de Almeida, Nuño Miguel; Faure, Jean Louis; Gachelin, Olivier; Gras, Philippe; Mandjavidze, Irakli; Mur, Michel; Varela, João

    2005-01-01

    This paper describes the selective read-out processor (SRP) proposed for the electromagnetic calorimeter (ECAL) of the Compact Muon Solenoid (CMS) experiment at LHC (CERN). The aim is to reduce raw ECAL data to a level acceptable by the CMS data acquisition (DAQ) system. For each positive level 1 trigger, the SRP is guided by trigger primitive generation electronics to identify ECAL regions with energy deposition satisfying certain programmable criteria. It then directs the ECAL read-out electronics to apply predefined zero suppression levels to the crystal data, depending whether the crystals fall within these regions or not. The main challenges for the SRP are some 200 high speed (1.6 Gbit/s) I/O channels, asynchronous operation at up to 100 kHz level 1 trigger rate, a 5- mu s real-time latency requirement and a need to retain flexibility in choice of selection algorithms. The architecture adopted for the SRP is based on modern parallel optic pluggable modules and high density field programmable gate array ...

  14. End of the EM Barrel Presampler Construction and Insertion

    CERN Multimedia

    Hostachy, J.Y.

    The liquid argon barrel presampler is a thin detector placed in front of the electromagnetic barrel calorimeter, made up of two half barrels also, but with 32 sectors per half barrel instead of 16. Each of these 64 sectors is 3.1 m long, 28 cm large and 2.9 cm thick. Three countries took part in its construction: France (LPSC-Grenoble), Sweden (KTH-Stockholm) and Morocco (Hassan II Ain Chock-Casablanca and Mohamed V-Rabat universities, and CNESTEN-Rabat). The design of the presampler started 11 years ago and the series production began at the end of 2000. Cabling, mechanical and electronic tests of the anodes were achieved in Morocco. Forty-one sectors were assembled and validated at the LPSC-Grenoble and 25 at the KTH-Stockholm. In November 2002, the first half was inserted on the inner face of the first EM calorimeter wheel. The insertion of the other 32 sectors in the second EM calorimeter wheel was achieved in July 2003 (see pictures). The production of two additional sectors will allow us to study the p...

  15. Calorimeter detectors

    CERN Document Server

    de Barbaro, P; The ATLAS collaboration

    2013-01-01

    Although the instantaneous and integrated luminosity in HL-LHC will be far higher than the LHC detectors were originally designed for, the Barrel calorimeters of the four experiments are expected to continue to perform well  throughout the Phase II program. The conditions for the End-Cap calorimeters are far more challenging and whilst some detectors will require relatively modest changes, others require far more substantial upgrades. We present the results of longevity and performance studies for the calorimeter systems of the four main LHC experiments and outline the upgrade options under consideration. We include a discussion of the R&D required to make the final technology choices for the upgraded detectors.

  16. Calibration of the ATLAS Tile hadronic calorimeter using muons

    CERN Document Server

    van Woerden, M C; The ATLAS collaboration

    2012-01-01

    The ATLAS Tile Calorimeter (TileCal) is the barrel hadronic calorimeter of the ATLAS experiment at the CERN Large Hadron Collider (LHC). It is a sampling calorimeter using plastic scintillator as the active material and iron as the absorber. TileCal , together with the electromagnetic calorimeter, provides precise measurements of hadrons, jets, taus and the missing transverse energy. Cosmic rays muons and muon events produced by scraping 450 GeV protons in one collimator of the LHC machine have been used to test the calibration of the calorimeter. The analysis of the cosmic rays data shows: a) the response of the third longitudinal layer of the Barrel differs from those of the first and second Barrel layers by about 3-4%, respectively and b) the differences between the energy scales of each layer obtained in this analysis and the value set at beam tests using electrons are found to range between -3% and +1%. In the case of the scraping beam data, the responses of all the layer pairs were found to be consisten...

  17. Design, performance, and calibration of the CMS hadron-outer calorimeter

    Energy Technology Data Exchange (ETDEWEB)

    Abdullin, S.; Gavrilov, V.; Ilyina, N.; Kaftanov, V.; Kisselevich, I.; Kolossov, V.; Krokhotin, A.; Kuleshov, S.; Pozdnyakov, A.; Safronov, G.; Semenov, S.; Stolin, V.; Ulyanov, A. [ITEP, Moscow (Russian Federation); Abramov, V.; Goncharov, P.; Kalinin, A.; Khmelnikov, A.; Korablev, A.; Korneev, Y.; Krinitsyn, A.; Kryshkin, V.; Lukanin, V.; Pikalov, V.; Ryazanov, A.; Talov, V.; Turchanovich, L.; Volkov, A. [IHEP, Protvino (Russian Federation); Acharya, B.; Aziz, T.; Banerjee, Sudeshna; Banerjee, Sunanda; Bose, S.; Chendvankar, S.; Deshpande, P.V.; Dugad, S.; Ganguli, S.N.; Guchait, M.; Gurtu, A.; Kalmani, S.; Krishnaswamy, M.R.; Maity, M.; Majumder, G.; Mazumdar, K.; Mondal, N.; Nagaraj, P.; Narasimham, V.S.; Patil, M.; Reddy, L.; Satyanarayana, B.; Sharma, S.; Sudhakar, K.; Tonwar, S.; Verma, P. [Tata Inst. of Fundamental Research, Mumbai (India); Adam, N.; Fisher, W.; Halyo, V.; Hunt, A.; Jones, J.; Laird, E.; Landsberg, G.; Marlow, D.; Tully, C.; Werner, J. [Princeton Univ., NJ (United States); Adams, M.; Bard, R.; Burchesky, K.; Qian, W. [Univ. of Illinois, Chicago, IL (United States); Akchurin, N.; Berntzon, L.; Carrell, K.; Guemues, K.; Jeong, C.; Kim, H.; Lee, S.W.; Popescu, S.; Roh, Y.; Spezziga, M.; Thomas, R.; Volobouev, I.; Wigmans, R.; Yazgan, E. [Texas Tech Univ., Lubbock, TX (United States); Akgun, U.; Albayrak, E.; Ayan, S.; Clarida, W.; Debbins, P.; Duru, F.; Ingram, D.; Merlo, J.P.; Mestvirishvili, A.; Miller, M.; Moeller, A.; Norbeck, E.; Olson, J.; Onel, Y.; Ozok, F.; Schmidt, I.; Yetkin, T. [Univ. of Iowa, Iowa City, IA (United States); Anderson, E.W.; Hauptman, J. [Iowa State Univ., Ames, IA (United States); Antchev, G.; Arcidy, M.; Hazen, E.; Heister, A.; Lawlor, C.; Lazic, D.; Machado, E.; Posch, C.; Rohlf, J.; Sulak, L.; Varela, F.; Wu, S.X. [Boston Univ., MA (United States); Aydin, S.; Bakirci, M.N.; Cerci, S.; Dumanoglu, I.; Erturk, S.; Eskut, E.; Kayis-Topaksu, A.; Onengut, G.; Ozkurt, H.; Polatoz, A.; Sogut, K. [and others

    2008-10-15

    The Outer Hadron Calorimeter (HCAL HO) of the CMS detector is designed to measure the energy that is not contained by the barrel (HCAL HB) and electromagnetic (ECAL EB) calorimeters. Due to space limitation the barrel calorimeters do not contain completely the hadronic shower and an outer calorimeter (HO) was designed, constructed and inserted in the muon system of CMS to measure the energy leakage. Testing and calibration of the HO was carried out in a 300 GeV/c test beam that improved the linearity and resolution. HO will provide a net improvement in missing E{sub T} measurements at LHC energies. Information from HO will also be used for the muon trigger in CMS. (orig.)

  18. Design of the LHC US ATLAS Barrel Cryostat

    CERN Document Server

    Rehak, M L; Farah, Y; Grandinetti, R; Müller, T; Norton, S; Sondericker, J

    2002-01-01

    One of the experiments of CERN's Large Hadron Collider (LHC) is the ATLAS Liquid Argon detector. The Liquid Argon Barrel Cryostat is part of the United States contribution to the LHC project and its design is presented here. The device is made up of four concentric cylinders: the smallest and largest of which form a vacuum vessel enclosing a cold vessel cryostat filled with liquid argon. The Cryostat serves as the housing for an electromagnetic barrel calorimeter, supports and provides space in vacuum for a solenoid magnet while the toroidal opening furnishes room for a tracker detector. Design requirements are determined by its use in a collider experiment: the construction has to be compact, the material between the interaction region and the calorimeter has to be minimal and made of aluminum to reduce the amount of absorbing material. The design complies with code regulations while being optimized for its use in a physics environment. (2 refs).

  19. A novel strip energy splitting algorithm for the fine granular readout of a scintillator strip electromagnetic calorimeter

    Energy Technology Data Exchange (ETDEWEB)

    Kotera, Katsushige, E-mail: coterra@azusa.shinshu-u.ac.jp [Department of Physics, Shinshu University, 3-1-1 Asahi, Matsumoto, Nagano 390-8621 (Japan); Jeans, Daniel [Department of Physics, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Miyamoto, Akiya [High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan); Takeshita, Tohru [Department of Physics, Shinshu University, 3-1-1 Asahi, Matsumoto, Nagano 390-8621 (Japan)

    2015-07-21

    We describe an algorithm which has been developed to extract fine granularity information from an electromagnetic calorimeter (ECAL) with strip-based readout. Such a calorimeter, based on scintillator strips, is being developed to apply particle flow reconstruction to future experiments in high energy physics. The application of this algorithm to 100 GeV hadronic jets in an ECAL with 45×5 mm{sup 2} transverse segmentation improves the energy resolution from 3.6% to 3.0%, to be compared to the resolution of 2.9% achieved by an ECAL with 5×5 mm{sup 2} segmentation. The performance can be further improved by the use of 10×10 mm{sup 2} tile-shaped layers interspersed between strip layers.

  20. Radiation hard micro-coaxial cables for the ATLAS liquid argon calorimeters

    CERN Document Server

    Bonivento, W; Imbert, P; de La Taille, C

    2000-01-01

    The ATLAS collaboration has chosen for the electromagnetic barrel calorimeter and for all the end-cap calorimeters a sampling technique, with liquid argon as the active medium. The read-out electronics and the calibration pulsers are located in boxes outside the cryostats housing the detectors. Signals are transmitted between the detectors and the electronic boxes through custom-designed micro- coaxial cables, which are the subject of this paper. These cables have to satisfy very stringent tolerances in terms of signal transmission, dimensions and radiation hardness. Following a successful pre-series production, these cables have been selected for equipping the ATLAS calorimeter. (16 refs).

  1. The electromagnetic calorimeter for the T2K near detector ND280

    Science.gov (United States)

    Allan, D.; Andreopoulos, C.; Angelsen, C.; Barker, G. J.; Barr, G.; Bentham, S.; Bertram, I.; Boyd, S.; Briggs, K.; Calland, R. G.; Carroll, J.; Cartwright, S. L.; Carver, A.; Chavez, C.; Christodoulou, G.; Coleman, J.; Cooke, P.; Davies, G.; Densham, C.; Di Lodovico, F.; Dobson, J.; Duboyski, T.; Durkin, T.; Evans, D. L.; Finch, A.; Fitton, M.; Gannaway, F. C.; Grant, A.; Grant, N.; Grenwood, S.; Guzowski, P.; Hadley, D.; Haigh, M.; Harrison, P. F.; Hatzikoutelis, A.; Haycock, T. D. J.; Hyndman, A.; Ilic, J.; Ives, S.; Kaboth, A. C.; Kasey, V.; Kellet, L.; Khaleeq, M.; Kogan, G.; Kormos, L. L.; Lawe, M.; Lawson, T. B.; Lister, C.; Litchfield, R. P.; Lockwood, M.; Malek, M.; Maryon, T.; Masliah, P.; Mavrokoridis, K.; McCauley, N.; Mercer, I.; Metelko, C.; Morgan, B.; Morris, J.; Muir, A.; Murdoch, M.; Nicholls, T.; Noy, M.; O'Keeffe, H. M.; Owen, R. A.; Payne, D.; Pearce, G. F.; Perkin, J. D.; Poplawska, E.; Preece, R.; Qian, W.; Ratoff, P.; Raufer, T.; Raymond, M.; Reeves, M.; Richards, D.; Rooney, M.; Sacco, R.; Sadler, S.; Schaack, P.; Scott, M.; Scully, D. I.; Short, S.; Siyad, M.; Smith, R.; Still, B.; Sutcliffe, P.; Taylor, I. J.; Terri, R.; Thompson, L. F.; Thorley, A.; Thorpe, M.; Timis, C.; Touramanis, C.; Uchida, M. A.; Uchida, Y.; Vacheret, A.; Van Schalkwyk, J. F.; Veledar, O.; Waldron, A. V.; Ward, M. A.; Ward, G. P.; Wark, D.; Wascko, M. O.; Weber, A.; West, N.; Whitehead, L. H.; Wilkinson, C.; Wilson, J. R.

    2013-10-01

    The T2K experiment studies oscillations of an off-axis muon neutrino beam between the J-PARC accelerator complex and the Super-Kamiokande detector. Special emphasis is placed on measuring the mixing angle θ13 by observing νe appearance via the sub-dominant νμ → νe oscillation and searching for CP violation in the lepton sector. The experiment includes a sophisticated, off-axis, near detector, the ND280, situated 280 m downstream of the neutrino production target in order to measure the properties of the neutrino beam and to understand better neutrino interactions at the energy scale below a few GeV. The data collected with the ND280 are used to study charged- and neutral-current neutrino interaction rates and kinematics prior to oscillation, in order to reduce uncertainties in the oscillation measurements by the far detector. A key element of the near detector is the ND280 electromagnetic calorimeter (ECal), consisting of active scintillator bars sandwiched between lead sheets and read out with multi-pixel photon counters (MPPCs). The ECal is vital to the reconstruction of neutral particles, and the identification of charged particle species. The ECal surrounds the Pi-0 detector (PØD) and the tracking region of the ND280, and is enclosed in the former UA1/NOMAD dipole magnet. This paper describes the design, construction and assembly of the ECal, as well as the materials from which it is composed. The electronic and data acquisition (DAQ) systems are discussed, and performance of the ECal modules, as deduced from measurements with particle beams, cosmic rays, the calibration system, and T2K data, is described.

  2. FoCal - A high granularity electromagnetic calorimeter for forward direct photon measurements

    Science.gov (United States)

    Zhang, C.

    2017-02-01

    The measurement of direct photon production at forward rapidity (y ∼ 3 - 5) at the LHC provides access to the structure of protons and nuclei at very small values of fractional momentum (x ∼10-5) . FoCal, an extremely-high-granularity Forward Calorimeter covering 3.3 technology for use in the proposed detector upgrade. They also show the extremely high potential of this technology for future calorimeter development.

  3. Electromagnetic calorimeter for the Heavy Photon Search Experiment at Jefferson Lab

    Energy Technology Data Exchange (ETDEWEB)

    Buchanan, Emma [Univ. of Glasgow, Scotland (United Kingdom)

    2014-11-01

    The Heavy Photon Search Experiment (HPS) seeks to detect a hypothesised hidden sector boson, the A', predicted to be produced in dark matter decay or annihilation. Theories suggest that the A' couples weakly to electric charge through kinetic mixing, allowing it, as a result, to decay to Standard Matter (SM) lepton pair, which may explain the electron and positron excess recently observed in cosmic rays. Measuring the lepton pair decay of the A' could lead to indirect detection of dark matter. The HPS experiment is a fixed target experiment that will utilize the electron beam produced at the Thomas Jefferson National Accelerator Facility (Jefferson Lab). The detector set-up includes a silicon vertex tracker (SVT) and an Electromagnetic Calorimeter (ECal). The ECal will provide the trigger and detect e+e- pairs and its construction and testing forms the focus of this thesis. The ECal consists of 442 PbWO4- tapered crystals with a length 16cm and a 1.6x1.6cm2 cross-section, stacked into a rectangular array and are coupled to Large Area APDs and corresponding pre-amplifiers. Supplementary to the ECal is a Light Monitoring System (LMS) consisting of bi-coloured LEDs that will monitor changes in APD gain and crystal transparency due to radiation damage. Before construction of the ECal each of the components were required to be individually tested to determine a number of different characteristics. Irradiation tests were performed on PbWO4 ECal crystals and, as a comparison, one grown by a different manufacturer to determine their radiation hardness. A technique for annealing the radiation damage by optical bleaching, which involves injecting light of various wavelengths into the crystal, was tested using the blue LED from the LMS as a potential candidate. The light yield dependence on temperature was also measured for one of the PbWO4 crystal types. Each APD was individually tested to determine if they

  4. The PANDA backward calorimeter

    Energy Technology Data Exchange (ETDEWEB)

    Ahmadi, Heybat; Deiseroth, Malte; Khaneft, Dmitry; Noll, Oliver; Valente, Roserio; Zambrana, Manuel [Johannes Gutenberg-Universitaet Mainz (Germany); Helmholtz-Institut Mainz (Germany); Ahmed, Samer [Helmholtz-Institut Mainz (Germany); Capozza, Luigi; Dbeyssi, Alaa; Froehlich, Bertold; Lin, Dexu; Maas, Frank; Mora Espi, Maria Carmen; Morales Morales, Cristina; Rodriguez Pineiro, David; Zimmermann, Iris [Helmholtz-Institut Mainz (Germany); GSI Helmholtzzentrum fuer Schwerionenforschung GmbH (Germany)

    2015-07-01

    The PANDA experiment at FAIR is being devised for a broad physics programme in hadron structure and spectroscopy. Full and accurate reconstruction of scattering events, reliable particle identification and an almost complete solid angle coverage are required. An important tool for meeting this requirements will be the electromagnetic calorimeter (EMC). It is required to measure particle energies ranging from some MeVs to several GeVs with a relative resolution of 1% + 2%/√(E/GeV), assuring a compact geometry and radiation hardness at the same time. For these reasons PbWO{sub 4} was chosen as scintillation material. The whole calorimeter has been designed in three sections: a forward end-cap, a central barrel and a backward end-cap (BWEC). The BWEC, under development at Mainz, will cover scattering polar angles between 140 and 170 and will be made of 524 PbWO{sub 4} crystals. The scintillation light will be detected by large area avalanche photodiodes which will be read out by customised front-end ASIC chips. A status report on the development of the BWEC will be given in this contribution.

  5. ATLAS LAr calorimeters readout electronics upgrade R&D for sLHC

    CERN Document Server

    Chen, Hucheng

    2010-01-01

    The ATLAS Liquid Argon (LAr) calorimeters consist of an electromagnetic barrel calorimeter and two end-caps with electromagnetic, hadronic and forward calorimeters. A total of 182,468 signals are digitized and processed real-time on detector, to provide energy and time deposited in each detector element at every occurrence of the Level-1 trigger. A luminosity upgrade of the LHC will occur in the years 2018. The current readout electronics will need to be upgraded to sustain the higher radiation levels. A completely innovative readout scheme is being developed. The front-end readout will send out data continuously at each bunch crossing through high speed radiation resistant optical links, the data will be processed real-time with the possibility of implementing trigger algorithms. This article is an overview of the R&D activities and architectural studies the ATLAS LAr Calorimeter Group is developing.

  6. Electromagnetic calorimeter and accurate measurement with the ATLAS detector of the LHC collider; Calorimetrie electromagnetique et mesures de precision avec le detecteur ATLAS aupres du collisionneur LHC

    Energy Technology Data Exchange (ETDEWEB)

    Pralavorio, P

    2007-06-15

    The main purpose of the ATLAS experiment is the understanding of the underlying mechanisms that drive the breaking of the electro-weak symmetry through the discovery of Higgs bosons. An important element to achieve this aim was the design of an electromagnetic calorimeter able to investigate the decay channels: H {yields} {gamma}{gamma} and H {yields} 4e. The high performance of the calorimeter will allow us to get a better accuracy on the measuring values of W and top masses which is essential to indirectly constrain the mass of the Higgs. In the same way, accurate measurements of top and W properties during the decays of top and tWb vertex will be necessary to question the standard model and to see beyond. The author has been working for 9 years in the ATLAS project, he has been involved in the design, construction, qualification and testing phases of the electromagnetic calorimeter of ATLAS. This document is a detailed presentation of the calorimeter, of its qualification and of its expectations when LHC is operating. This document is organized into 4 chapters: 1) assets and weaknesses of the standard model, 2) the ATLAS experiment, 3) the electromagnetic calorimeter, and 4) accurate measurements with ATLAS. This document presented before an academic board will allow its author to manage research works and particularly to tutor thesis students. (A.C.)

  7. Readiness of the ATLAS liquid argon calorimeter for LHC collisions

    Science.gov (United States)

    Aad, G.; Abbott, B.; Abdallah, J.; Abdelalim, A. A.; Abdesselam, A.; Abdinov, O.; Abi, B.; Abolins, M.; Abramowicz, H.; Abreu, H.; Acharya, B. S.; Adams, D. L.; Addy, T. N.; Adelman, J.; Adorisio, C.; Adragna, P.; Adye, T.; Aefsky, S.; Aguilar-Saavedra, J. A.; Aharrouche, M.; Ahlen, S. P.; Ahles, F.; Ahmad, A.; Ahmed, H.; Ahsan, M.; Aielli, G.; Akdogan, T.; Åkesson, T. P. A.; Akimoto, G.; Akimov, A. V.; Aktas, A.; Alam, M. S.; Alam, M. A.; Albert, J.; Albrand, S.; Aleksa, M.; Aleksandrov, I. N.; Alessandria, F.; Alexa, C.; Alexander, G.; Alexandre, G.; Alexopoulos, T.; Alhroob, M.; Aliev, M.; Alimonti, G.; Alison, J.; Aliyev, M.; Allport, P. P.; Allwood-Spiers, S. E.; Almond, J.; Aloisio, A.; Alon, R.; Alonso, A.; Alviggi, M. G.; Amako, K.; Amelung, C.; Ammosov, V. V.; Amorim, A.; Amorós, G.; Amram, N.; Anastopoulos, C.; Andeen, T.; Anders, C. F.; Anderson, K. J.; Andreazza, A.; Andrei, V.; Anduaga, X. S.; Angerami, A.; Anghinolfi, F.; Anjos, N.; Antonaki, A.; Antonelli, M.; Antonelli, S.; Antunovic, B.; Anulli, F.; Aoun, S.; Arabidze, G.; Aracena, I.; Arai, Y.; Arce, A. T. H.; Archambault, J. P.; Arfaoui, S.; Arguin, J.-F.; Argyropoulos, T.; Arik, E.; Arik, M.; Armbruster, A. J.; Arnaez, O.; Arnault, C.; Artamonov, A.; Arutinov, D.; Asai, M.; Asai, S.; Asfandiyarov, R.; Ask, S.; Åsman, B.; Asner, D.; Asquith, L.; Assamagan, K.; Astbury, A.; Astvatsatourov, A.; Atoian, G.; Auerbach, B.; Auge, E.; Augsten, K.; Aurousseau, M.; Austin, N.; Avolio, G.; Avramidou, R.; Axen, D.; Ay, C.; Azuelos, G.; Azuma, Y.; Baak, M. A.; Baccaglioni, G.; Bacci, C.; Bach, A.; Bachacou, H.; Bachas, K.; Backes, M.; Badescu, E.; Bagnaia, P.; Bai, Y.; Bailey, D. C.; Bain, T.; Baines, J. T.; Baker, O. K.; Baker, M. D.; Dos Santos Pedrosa, F. Baltasar; Banas, E.; Banerjee, P.; Banerjee, S.; Banfi, D.; Bangert, A.; Bansal, V.; Baranov, S. P.; Baranov, S.; Barashkou, A.; Barber, T.; Barberio, E. L.; Barberis, D.; Barbero, M.; Bardin, D. Y.; Barillari, T.; Barisonzi, M.; Barklow, T.; Barlow, N.; Barnett, B. M.; Barnett, R. M.; Baron, S.; Baroncelli, A.; Barr, A. J.; Barreiro, F.; Barreiro Guimarães da Costa, J.; Barrillon, P.; Barros, N.; Bartoldus, R.; Bartsch, D.; Bastos, J.; Bates, R. L.; Bathe, S.; Batkova, L.; Batley, J. R.; Battaglia, A.; Battistin, M.; Bauer, F.; Bawa, H. S.; Bazalova, M.; Beare, B.; Beau, T.; Beauchemin, P. H.; Beccherle, R.; Becerici, N.; Bechtle, P.; Beck, G. A.; Beck, H. P.; Beckingham, M.; Becks, K. H.; Bedajanek, I.; Beddall, A. J.; Beddall, A.; Bednár, P.; Bednyakov, V. A.; Bee, C.; Begel, M.; Behar Harpaz, S.; Behera, P. K.; Beimforde, M.; Belanger-Champagne, C.; Bell, P. J.; Bell, W. H.; Bella, G.; Bellagamba, L.; Bellina, F.; Bellomo, M.; Belloni, A.; Belotskiy, K.; Beltramello, O.; Ben Ami, S.; Benary, O.; Benchekroun, D.; Bendel, M.; Benedict, B. H.; Benekos, N.; Benhammou, Y.; Benincasa, G. P.; Benjamin, D. P.; Benoit, M.; Bensinger, J. R.; Benslama, K.; Bentvelsen, S.; Beretta, M.; Berge, D.; Bergeaas Kuutmann, E.; Berger, N.; Berghaus, F.; Berglund, E.; Beringer, J.; Bernardet, K.; Bernat, P.; Bernhard, R.; Bernius, C.; Berry, T.; Bertin, A.; Besson, N.; Bethke, S.; Bianchi, R. M.; Bianco, M.; Biebel, O.; Biesiada, J.; Biglietti, M.; Bilokon, H.; Bindi, M.; Binet, S.; Bingul, A.; Bini, C.; Biscarat, C.; Bitenc, U.; Black, K. M.; Blair, R. E.; Blanchard, J.-B.; Blanchot, G.; Blocker, C.; Blocki, J.; Blondel, A.; Blum, W.; Blumenschein, U.; Bobbink, G. J.; Bocci, A.; Boehler, M.; Boek, J.; Boelaert, N.; Böser, S.; Bogaerts, J. A.; Bogouch, A.; Bohm, C.; Bohm, J.; Boisvert, V.; Bold, T.; Boldea, V.; Boldyrev, A.; Bondarenko, V. G.; Bondioli, M.; Boonekamp, M.; Booth, J. R. A.; Bordoni, S.; Borer, C.; Borisov, A.; Borissov, G.; Borjanovic, I.; Borroni, S.; Bos, K.; Boscherini, D.; Bosman, M.; Bosteels, M.; Boterenbrood, H.; Bouchami, J.; Boudreau, J.; Bouhova-Thacker, E. V.; Boulahouache, C.; Bourdarios, C.; Boyd, J.; Boyko, I. R.; Bozovic-Jelisavcic, I.; Bracinik, J.; Braem, A.; Branchini, P.; Brandenburg, G. W.; Brandt, A.; Brandt, G.; Brandt, O.; Bratzler, U.; Brau, B.; Brau, J. E.; Braun, H. M.; Brelier, B.; Bremer, J.; Brenner, R.; Bressler, S.; Breton, D.; Brett, N. D.; Britton, D.; Brochu, F. M.; Brock, I.; Brock, R.; Brodbeck, T. J.; Brodet, E.; Broggi, F.; Bromberg, C.; Brooijmans, G.; Brooks, W. K.; Brown, G.; Brubaker, E.; Bruckman de Renstrom, P. A.; Bruncko, D.; Bruneliere, R.; Brunet, S.; Bruni, A.; Bruni, G.; Bruschi, M.; Buanes, T.; Bucci, F.; Buchanan, J.; Buchholz, P.; Buckley, A. G.; Budagov, I. A.; Budick, B.; Büscher, V.; Bugge, L.; Bulekov, O.; Bunse, M.; Buran, T.; Burckhart, H.; Burdin, S.; Burgess, T.; Burke, S.; Busato, E.; Bussey, P.; Buszello, C. P.; Butin, F.; Butler, B.; Butler, J. M.; Buttar, C. M.; Butterworth, J. M.; Byatt, T.; Caballero, J.; Cabrera Urbán, S.; Caforio, D.; Cakir, O.; Calafiura, P.; Calderini, G.; Calfayan, P.; Calkins, R.; Caloba, L. P.; Caloi, R.; Calvet, D.; Camarri, P.; Cambiaghi, M.; Cameron, D.; Campabadal Segura, F.; Campana, S.; Campanelli, M.; Canale, V.; Canelli, F.; Canepa, A.; Cantero, J.; Capasso, L.; Capeans Garrido, M. D. M.; Caprini, I.; Caprini, M.; Capua, M.; Caputo, R.; Caracinha, D.; Caramarcu, C.; Cardarelli, R.; Carli, T.; Carlino, G.; Carminati, L.; Caron, B.; Caron, S.; Carrillo Montoya, G. D.; Carron Montero, S.; Carter, A. A.; Carter, J. R.; Carvalho, J.; Casadei, D.; Casado, M. P.; Cascella, M.; Caso, C.; Castaneda Hernadez, A. M.; Castaneda-Miranda, E.; Castillo Gimenez, V.; Castro, N.; Cataldi, G.; Catinaccio, A.; Catmore, J. R.; Cattai, A.; Cattani, G.; Caughron, S.; Cauz, D.; Cavalleri, P.; Cavalli, D.; Cavalli-Sforza, M.; Cavasinni, V.; Ceradini, F.; Cerqueira, A. S.; Cerri, A.; Cerrito, L.; Cerutti, F.; Cetin, S. A.; Cevenini, F.; Chafaq, A.; Chakraborty, D.; Chan, K.; Chapman, J. D.; Chapman, J. W.; Chareyre, E.; Charlton, D. G.; Chavda, V.; Cheatham, S.; Chekanov, S.; Chekulaev, S. V.; Chelkov, G. A.; Chen, H.; Chen, S.; Chen, T.; Chen, X.; Cheng, S.; Cheplakov, A.; Chepurnov, V. F.; Cherkaoui El Moursli, R.; Tcherniatine, V.; Chesneanu, D.; Cheu, E.; Cheung, S. L.; Chevalier, L.; Chevallier, F.; Chiarella, V.; Chiefari, G.; Chikovani, L.; Childers, J. T.; Chilingarov, A.; Chiodini, G.; Chizhov, M.; Choudalakis, G.; Chouridou, S.; Chren, D.; Christidi, I. A.; Christov, A.; Chromek-Burckhart, D.; Chu, M. L.; Chudoba, J.; Ciapetti, G.; Ciftci, A. K.; Ciftci, R.; Cinca, D.; Cindro, V.; Ciobotaru, M. D.; Ciocca, C.; Ciocio, A.; Cirilli, M.; Citterio, M.; Clark, A.; Cleland, W.; Clemens, J. C.; Clement, B.; Clement, C.; Clements, D.; Coadou, Y.; Cobal, M.; Coccaro, A.; Cochran, J.; Coelli, S.; Coggeshall, J.; Cogneras, E.; Cojocaru, C. D.; Colas, J.; Cole, B.; Colijn, A. P.; Collard, C.; Collins, N. J.; Collins-Tooth, C.; Collot, J.; Colon, G.; Coluccia, R.; Conde Muiño, P.; Coniavitis, E.; Consonni, M.; Constantinescu, S.; Conta, C.; Conventi, F.; Cook, J.; Cooke, M.; Cooper, B. D.; Cooper-Sarkar, A. M.; Cooper-Smith, N. J.; Copic, K.; Cornelissen, T.; Corradi, M.; Corriveau, F.; Corso-Radu, A.; Cortes-Gonzalez, A.; Cortiana, G.; Costa, G.; Costa, M. J.; Costanzo, D.; Costin, T.; Côté, D.; Coura Torres, R.; Courneyea, L.; Cowan, G.; Cowden, C.; Cox, B. E.; Cranmer, K.; Cranshaw, J.; Cristinziani, M.; Crosetti, G.; Crupi, R.; Crépé-Renaudin, S.; Cuenca Almenar, C.; Cuhadar Donszelmann, T.; Curatolo, M.; Curtis, C. J.; Cwetanski, P.; Czyczula, Z.; D'Auria, S.; D'Onofrio, M.; D'Orazio, A.; da Silva, P. V. M.; da Via, C.; Dabrowski, W.; Dai, T.; Dallapiccola, C.; Dallison, S. J.; Daly, C. H.; Dam, M.; Danielsson, H. O.; Dannheim, D.; Dao, V.; Darbo, G.; Darlea, G. L.; Davey, W.; Davidek, T.; Davidson, N.; Davidson, R.; Davison, A. R.; Dawson, I.; Dawson, J. W.; Daya, R. K.; de, K.; de Asmundis, R.; de Castro, S.; de Castro Faria Salgado, P. E.; de Cecco, S.; de Graat, J.; de Groot, N.; de Jong, P.; de La Cruz-Burelo, E.; de La Taille, C.; de Mora, L.; de Oliveira Branco, M.; de Pedis, D.; de Salvo, A.; de Sanctis, U.; de Santo, A.; de Vivie de Regie, J. B.; de Zorzi, G.; Dean, S.; Deberg, H.; Dedes, G.; Dedovich, D. V.; Defay, P. O.; Degenhardt, J.; Dehchar, M.; Del Papa, C.; Del Peso, J.; Del Prete, T.; Dell'Acqua, A.; Dell'Asta, L.; Della Pietra, M.; Della Volpe, D.; Delmastro, M.; Delruelle, N.; Delsart, P. A.; Deluca, C.; Demers, S.; Demichev, M.; Demirkoz, B.; Deng, J.; Deng, W.; Denisov, S. P.; Dennis, C.; Derkaoui, J. E.; Derue, F.; Dervan, P.; Desch, K.; Deviveiros, P. O.; Dewhurst, A.; Dewilde, B.; Dhaliwal, S.; Dhullipudi, R.; di Ciaccio, A.; di Ciaccio, L.; di Domenico, A.; di Girolamo, A.; di Girolamo, B.; di Luise, S.; di Mattia, A.; di Nardo, R.; di Simone, A.; di Sipio, R.; Diaz, M. A.; Diblen, F.; Diehl, E. B.; Dietrich, J.; Diglio, S.; Dindar Yagci, K.; Dingfelder, D. J.; Dionisi, C.; Dita, P.; Dita, S.; Dittus, F.; Djama, F.; Djilkibaev, R.; Djobava, T.; Do Vale, M. A. B.; Do Valle Wemans, A.; Dobbs, M.; Dobos, D.; Dobson, E.; Dobson, M.; Dodd, J.; Dogan, O. B.; Doherty, T.; Doi, Y.; Dolejsi, J.; Dolenc, I.; Dolezal, Z.; Dolgoshein, B. A.; Dohmae, T.; Donega, M.; Donini, J.; Dopke, J.; Doria, A.; Dos Anjos, A.; Dotti, A.; Dova, M. T.; Doxiadis, A.; Doyle, A. T.; Drasal, Z.; Driouichi, C.; Dris, M.; Dubbert, J.; Duchovni, E.; Duckeck, G.; Dudarev, A.; Dudziak, F.; Dührssen, M.; Duflot, L.; Dufour, M.-A.; Dunford, M.; Duperrin, A.; Duran Yildiz, H.; Dushkin, A.; Duxfield, R.; Dwuznik, M.; Düren, M.; Ebenstein, W. L.; Ebke, J.; Eckert, S.; Eckweiler, S.; Edmonds, K.; Edwards, C. A.; Eerola, P.; Egorov, K.; Ehrenfeld, W.; Ehrich, T.; Eifert, T.; Eigen, G.; Einsweiler, K.; Eisenhandler, E.; Ekelof, T.; El Kacimi, M.; Ellert, M.; Elles, S.; Ellinghaus, F.; Ellis, K.; Ellis, N.; Elmsheuser, J.; Elsing, M.; Ely, R.; Emeliyanov, D.; Engelmann, R.; Engl, A.; Epp, B.; Eppig, A.; Epshteyn, V. S.; Ereditato, A.; Eriksson, D.; Ermoline, I.; Ernst, J.; Ernst, M.; Ernwein, J.; Errede, D.; Errede, S.; Ertel, E.; Escalier, M.; Escobar, C.; Espinal Curull, X.; Esposito, B.; Etienne, F.; Etienvre, A. I.; Etzion, E.; Evans, H.; Fabbri, L.; Fabre, C.; Faccioli, P.; Facius, K.; Fakhrutdinov, R. M.; Falciano, S.; Falou, A. C.; Fang, Y.; Fanti, M.; Farbin, A.; Farilla, A.; Farley, J.; Farooque, T.; Farrington, S. M.; Farthouat, P.; Fassi, F.; Fassnacht, P.; Fassouliotis, D.; Fatholahzadeh, B.; Fayard, L.; Fayette, F.; Febbraro, R.; Federic, P.; Fedin, O. L.; Fedorko, I.; Fedorko, W.; Feligioni, L.; Felzmann, C. U.; Feng, C.; Feng, E. J.; Fenyuk, A. B.; Ferencei, J.; Ferland, J.; Fernandes, B.; Fernando, W.; Ferrag, S.; Ferrando, J.; Ferrari, A.; Ferrari, P.; Ferrari, R.; Ferrer, A.; Ferrer, M. L.; Ferrere, D.; Ferretti, C.; Fiascaris, M.; Fiedler, F.; Filipčič, A.; Filippas, A.; Filthaut, F.; Fincke-Keeler, M.; Fiolhais, M. C. N.; Fiorini, L.; Firan, A.; Fischer, G.; Fisher, M. J.; Flechl, M.; Fleck, I.; Fleckner, J.; Fleischmann, P.; Fleischmann, S.; Flick, T.; Flores Castillo, L. R.; Flowerdew, M. J.; Föhlisch, F.; Fokitis, M.; Fonseca Martin, T.; Forbush, D. A.; Formica, A.; Forti, A.; Fortin, D.; Foster, J. M.; Fournier, D.; Foussat, A.; Fowler, A. J.; Fowler, K.; Fox, H.; Francavilla, P.; Franchino, S.; Francis, D.; Franklin, M.; Franz, S.; Fraternali, M.; Fratina, S.; Freestone, J.; French, S. T.; Froeschl, R.; Froidevaux, D.; Frost, J. A.; Fukunaga, C.; Fullana Torregrosa, E.; Fuster, J.; Gabaldon, C.; Gabizon, O.; Gadfort, T.; Gadomski, S.; Gagliardi, G.; Gagnon, P.; Galea, C.; Gallas, E. J.; Gallas, M. V.; Gallop, B. J.; Gallus, P.; Galyaev, E.; Gan, K. K.; Gao, Y. S.; Gaponenko, A.; Garcia-Sciveres, M.; García, C.; García Navarro, J. E.; Gardner, R. W.; Garelli, N.; Garitaonandia, H.; Garonne, V.; Gatti, C.; Gaudio, G.; Gaumer, O.; Gauzzi, P.; Gavrilenko, I. L.; Gay, C.; Gaycken, G.; Gayde, J.-C.; Gazis, E. N.; Ge, P.; Gee, C. N. P.; Geich-Gimbel, Ch.; Gellerstedt, K.; Gemme, C.; Genest, M. H.; Gentile, S.; Georgatos, F.; George, S.; Gerlach, P.; Gershon, A.; Geweniger, C.; Ghazlane, H.; Ghez, P.; Ghodbane, N.; Giacobbe, B.; Giagu, S.; Giakoumopoulou, V.; Giangiobbe, V.; Gianotti, F.; Gibbard, B.; Gibson, A.; Gibson, S. M.; Gilbert, L. M.; Gilchriese, M.; Gilewsky, V.; Gillberg, D.; Gillman, A. R.; Gingrich, D. M.; Ginzburg, J.; Giokaris, N.; Giordani, M. P.; Giordano, R.; Giovannini, P.; Giraud, P. F.; Girtler, P.; Giugni, D.; Giusti, P.; Gjelsten, B. K.; Gladilin, L. K.; Glasman, C.; Glazov, A.; Glitza, K. W.; Glonti, G. L.; Godfrey, J.; Godlewski, J.; Goebel, M.; Göpfert, T.; Goeringer, C.; Gössling, C.; Göttfert, T.; Goggi, V.; Goldfarb, S.; Goldin, D.; Golling, T.; Gollub, N. P.; Gomes, A.; Gomez Fajardo, L. S.; Gonçalo, R.; Gonella, L.; Gong, C.; González de La Hoz, S.; Gonzalez Silva, M. L.; Gonzalez-Sevilla, S.; Goodson, J. J.; Goossens, L.; Gorbounov, P. A.; Gordon, H. A.; Gorelov, I.; Gorfine, G.; Gorini, B.; Gorini, E.; Gorišek, A.; Gornicki, E.; Goryachev, S. V.; Goryachev, V. N.; Gosdzik, B.; Gosselink, M.; Gostkin, M. I.; Gough Eschrich, I.; Gouighri, M.; Goujdami, D.; Goulette, M. P.; Goussiou, A. G.; Goy, C.; Grabowska-Bold, I.; Grafström, P.; Grahn, K.-J.; Granado Cardoso, L.; Grancagnolo, F.; Grancagnolo, S.; Grassi, V.; Gratchev, V.; Grau, N.; Gray, H. M.; Gray, J. A.; Graziani, E.; Green, B.; Greenshaw, T.; Greenwood, Z. D.; Gregor, I. M.; Grenier, P.; Griesmayer, E.; Griffiths, J.; Grigalashvili, N.; Grillo, A. A.; Grimm, K.; Grinstein, S.; Grishkevich, Y. V.; Groer, L. S.; Grognuz, J.; Groh, M.; Groll, M.; Gross, E.; Grosse-Knetter, J.; Groth-Jensen, J.; Grybel, K.; Guarino, V. J.; Guicheney, C.; Guida, A.; Guillemin, T.; Guler, H.; Gunther, J.; Guo, B.; Gupta, A.; Gusakov, Y.; Gutierrez, A.; Gutierrez, P.; Guttman, N.; Gutzwiller, O.; Guyot, C.; Gwenlan, C.; Gwilliam, C. B.; Haas, A.; Haas, S.; Haber, C.; Hackenburg, R.; Hadavand, H. K.; Hadley, D. R.; Haefner, P.; Härtel, R.; Hajduk, Z.; Hakobyan, H.; Haller, J.; Hamacher, K.; Hamilton, A.; Hamilton, S.; Han, H.; Han, L.; Hanagaki, K.; Hance, M.; Handel, C.; Hanke, P.; Hansen, J. R.; Hansen, J. B.; Hansen, J. D.; Hansen, P. H.; Hansl-Kozanecka, T.; Hansson, P.; Hara, K.; Hare, G. A.; Harenberg, T.; Harrington, R. D.; Harris, O. B.; Harris, O. M.; Harrison, K.; Hartert, J.; Hartjes, F.; Haruyama, T.; Harvey, A.; Hasegawa, S.; Hasegawa, Y.; Hashemi, K.; Hassani, S.; Hatch, M.; Haug, F.; Haug, S.; Hauschild, M.; Hauser, R.; Havranek, M.; Hawkes, C. M.; Hawkings, R. J.; Hawkins, D.; Hayakawa, T.; Hayward, H. S.; Haywood, S. J.; He, M.; Head, S. J.; Hedberg, V.; Heelan, L.; Heim, S.; Heinemann, B.; Heisterkamp, S.; Helary, L.; Heller, M.; Hellman, S.; Helsens, C.; Hemperek, T.; Henderson, R. C. W.; Henke, M.; Henrichs, A.; Correia, A. M. Henriques; Henrot-Versille, S.; Hensel, C.; Henß, T.; Hershenhorn, A. D.; Herten, G.; Hertenberger, R.; Hervas, L.; Hessey, N. P.; Hidvegi, A.; Higón-Rodriguez, E.; Hill, D.; Hill, J. C.; Hiller, K. H.; Hillier, S. J.; Hinchliffe, I.; Hirose, M.; Hirsch, F.; Hobbs, J.; Hod, N.; Hodgkinson, M. C.; Hodgson, P.; Hoecker, A.; Hoeferkamp, M. R.; Hoffman, J.; Hoffmann, D.; Hohlfeld, M.; Holmgren, S. O.; Holy, T.; Holzbauer, J. L.; Homma, Y.; Homola, P.; Horazdovsky, T.; Hori, T.; Horn, C.; Horner, S.; Horvat, S.; Hostachy, J.-Y.; Hou, S.; Houlden, M. A.; Hoummada, A.; Howe, T.; Hrivnac, J.; Hryn'ova, T.; Hsu, P. J.; Hsu, S.-C.; Huang, G. S.; Hubacek, Z.; Hubaut, F.; Huegging, F.; Hughes, E. W.; Hughes, G.; Hughes-Jones, R. E.; Hurst, P.; Hurwitz, M.; Husemann, U.; Huseynov, N.; Huston, J.; Huth, J.; Iacobucci, G.; Iakovidis, G.; Ibragimov, I.; Iconomidou-Fayard, L.; Idarraga, J.; Iengo, P.; Igonkina, O.; Ikegami, Y.; Ikeno, M.; Ilchenko, Y.; Iliadis, D.; Ilyushenka, Y.; Imori, M.; Ince, T.; Ioannou, P.; Iodice, M.; Irles Quiles, A.; Ishikawa, A.; Ishino, M.; Ishmukhametov, R.; Isobe, T.; Issakov, V.; Issever, C.; Istin, S.; Itoh, Y.; Ivashin, A. V.; Iwanski, W.; Iwasaki, H.; Izen, J. M.; Izzo, V.; Jackson, J. N.; Jackson, P.; Jaekel, M.; Jahoda, M.; Jain, V.; Jakobs, K.; Jakobsen, S.; Jakubek, J.; Jana, D.; Jansen, E.; Jantsch, A.; Janus, M.; Jared, R. C.; Jarlskog, G.; Jarron, P.; Jeanty, L.; Jelen, K.; Jen-La Plante, I.; Jenni, P.; Jez, P.; Jézéquel, S.; Ji, W.; Jia, J.; Jiang, Y.; Jimenez Belenguer, M.; Jin, G.; Jin, S.; Jinnouchi, O.; Joffe, D.; Johansen, M.; Johansson, K. E.; Johansson, P.; Johnert, S.; Johns, K. A.; Jon-And, K.; Jones, G.; Jones, R. W. L.; Jones, T. W.; Jones, T. J.; Jonsson, O.; Joos, D.; Joram, C.; Jorge, P. M.; Juranek, V.; Jussel, P.; Kabachenko, V. V.; Kabana, S.; Kaci, M.; Kaczmarska, A.; Kado, M.; Kagan, H.; Kagan, M.; Kaiser, S.; Kajomovitz, E.; Kalinovskaya, L. V.; Kalinowski, A.; Kama, S.; Kanaya, N.; Kaneda, M.; Kantserov, V. A.; Kanzaki, J.; Kaplan, B.; Kapliy, A.; Kaplon, J.; Karagounis, M.; Karagoz Unel, M.; Kartvelishvili, V.; Karyukhin, A. N.; Kashif, L.; Kasmi, A.; Kass, R. D.; Kastanas, A.; Kastoryano, M.; Kataoka, M.; Kataoka, Y.; Katsoufis, E.; Katzy, J.; Kaushik, V.; Kawagoe, K.; Kawamoto, T.; Kawamura, G.; Kayl, M. S.; Kayumov, F.; Kazanin, V. A.; Kazarinov, M. Y.; Kazi, S. I.; Keates, J. R.; Keeler, R.; Keener, P. T.; Kehoe, R.; Keil, M.; Kekelidze, G. D.; Kelly, M.; Kennedy, J.; Kenyon, M.; Kepka, O.; Kerschen, N.; Kerševan, B. P.; Kersten, S.; Kessoku, K.; Khakzad, M.; Khalil-Zada, F.; Khandanyan, H.; Khanov, A.; Kharchenko, D.; Khodinov, A.; Kholodenko, A. G.; Khomich, A.; Khoriauli, G.; Khovanskiy, N.; Khovanskiy, V.; Khramov, E.; Khubua, J.; Kilvington, G.; Kim, H.; Kim, M. S.; Kim, P. C.; Kim, S. H.; Kind, O.; Kind, P.; King, B. T.; Kirk, J.; Kirsch, G. P.; Kirsch, L. E.; Kiryunin, A. E.; Kisielewska, D.; Kittelmann, T.; Kiyamura, H.; Kladiva, E.; Klein, M.; Klein, U.; Kleinknecht, K.; Klemetti, M.; Klier, A.; Klimentov, A.; Klingenberg, R.; Klinkby, E. B.; Klioutchnikova, T.; Klok, P. F.; Klous, S.; Kluge, E.-E.; Kluge, T.; Kluit, P.; Klute, M.; Kluth, S.; Knecht, N. S.; Kneringer, E.; Ko, B. R.; Kobayashi, T.; Kobel, M.; Koblitz, B.; Kocian, M.; Kocnar, A.; Kodys, P.; Köneke, K.; König, A. C.; Köpke, L.; Koetsveld, F.; Koevesarki, P.; Koffas, T.; Koffeman, E.; Kohn, F.; Kohout, Z.; Kohriki, T.; Kokott, T.; Kolanoski, H.; Kolesnikov, V.; Koletsou, I.; Koll, J.; Kollar, D.; Kolos, S.; Kolya, S. D.; Komar, A. A.; Komaragiri, J. R.; Kondo, T.; Kono, T.; Kononov, A. I.; Konoplich, R.; Konovalov, S. P.; Konstantinidis, N.; Koperny, S.; Korcyl, K.; Kordas, K.; Koreshev, V.; Korn, A.; Korolkov, I.; Korolkova, E. V.; Korotkov, V. A.; Kortner, O.; Kostka, P.; Kostyukhin, V. V.; Kotamäki, M. J.; Kotov, S.; Kotov, V. M.; Kotov, K. Y.; Koupilova, Z.; Kourkoumelis, C.; Koutsman, A.; Kowalewski, R.; Kowalski, H.; Kowalski, T. Z.; Kozanecki, W.; Kozhin, A. S.; Kral, V.; Kramarenko, V. A.; Kramberger, G.; Krasny, M. W.; Krasznahorkay, A.; Kreisel, A.; Krejci, F.; Krepouri, A.; Kretzschmar, J.; Krieger, P.; Krobath, G.; Kroeninger, K.; Kroha, H.; Kroll, J.; Kroseberg, J.; Krstic, J.; Kruchonak, U.; Krüger, H.; Krumshteyn, Z. V.; Kubota, T.; Kuehn, S.; Kugel, A.; Kuhl, T.; Kuhn, D.; Kukhtin, V.; Kulchitsky, Y.; Kuleshov, S.; Kummer, C.; Kuna, M.; Kupco, A.; Kurashige, H.; Kurata, M.; Kurchaninov, L. L.; Kurochkin, Y. A.; Kus, V.; Kuykendall, W.; Kuznetsova, E.; Kvasnicka, O.; Kwee, R.; La Rosa, M.; La Rotonda, L.; Labarga, L.; Labbe, J.; Lacasta, C.; Lacava, F.; Lacker, H.; Lacour, D.; Lacuesta, V. R.; Ladygin, E.; Lafaye, R.; Laforge, B.; Lagouri, T.; Lai, S.; Lamanna, M.; Lampen, C. L.; Lampl, W.; Lancon, E.; Landgraf, U.; Landon, M. P. J.; Lane, J. L.; Lankford, A. J.; Lanni, F.; Lantzsch, K.; Lanza, A.; Laplace, S.; Lapoire, C.; Laporte, J. F.; Lari, T.; Larionov, A. V.; Larner, A.; Lasseur, C.; Lassnig, M.; Laurelli, P.; Lavrijsen, W.; Laycock, P.; Lazarev, A. B.; Lazzaro, A.; Le Dortz, O.; Le Guirriec, E.; Le Maner, C.; Le Menedeu, E.; Le Vine, M.; Leahu, M.; Lebedev, A.; Lebel, C.; Lecompte, T.; Ledroit-Guillon, F.; Lee, H.; Lee, J. S. H.; Lee, S. C.; Lefebvre, M.; Legendre, M.; Legeyt, B. C.; Legger, F.; Leggett, C.; Lehmacher, M.; Lehmann Miotto, G.; Lei, X.; Leitner, R.; Lelas, D.; Lellouch, D.; Lellouch, J.; Leltchouk, M.; Lendermann, V.; Leney, K. J. C.; Lenz, T.; Lenzen, G.; Lenzi, B.; Leonhardt, K.; Leroy, C.; Lessard, J.-R.; Lester, C. G.; Leung Fook Cheong, A.; Levêque, J.; Levin, D.; Levinson, L. J.; Levitski, M. S.; Levonian, S.; Lewandowska, M.; Leyton, M.; Li, H.; Li, J.; Li, S.; Li, X.; Liang, Z.; Liang, Z.; Liberti, B.; Lichard, P.; Lichtnecker, M.; Lie, K.; Liebig, W.; Liko, D.; Lilley, J. N.; Lim, H.; Limosani, A.; Limper, M.; Lin, S. C.; Lindsay, S. W.; Linhart, V.; Linnemann, J. T.; Liolios, A.; Lipeles, E.; Lipinsky, L.; Lipniacka, A.; Liss, T. M.; Lissauer, D.; Litke, A. M.; Liu, C.; Liu, D.; Liu, H.; Liu, J. B.; Liu, M.; Liu, S.; Liu, T.; Liu, Y.; Livan, M.; Lleres, A.; Lloyd, S. L.; Lobodzinska, E.; Loch, P.; Lockman, W. S.; Lockwitz, S.; Loddenkoetter, T.; Loebinger, F. K.; Loginov, A.; Loh, C. W.; Lohse, T.; Lohwasser, K.; Lokajicek, M.; Loken, J.; Lopes, L.; Lopez Mateos, D.; Losada, M.; Loscutoff, P.; Losty, M. J.; Lou, X.; Lounis, A.; Loureiro, K. F.; Lovas, L.; Love, J.; Love, P.; Lowe, A. J.; Lu, F.; Lu, J.; Lubatti, H. J.; Luci, C.; Lucotte, A.; Ludwig, A.; Ludwig, D.; Ludwig, I.; Ludwig, J.; Luehring, F.; Luisa, L.; Lumb, D.; Luminari, L.; Lund, E.; Lund-Jensen, B.; Lundberg, B.; Lundberg, J.; Lundquist, J.; Lutz, G.; Lynn, D.; Lys, J.; Lytken, E.; Ma, H.; Ma, L. L.; Maccarrone, G.; Macchiolo, A.; Maček, B.; Miguens, J. Machado; Mackeprang, R.; Madaras, R. J.; Mader, W. F.; Maenner, R.; Maeno, T.; Mättig, P.; Mättig, S.; Magalhaes Martins, P. J.; Magradze, E.; Magrath, C. A.; Mahalalel, Y.; Mahboubi, K.; Mahmood, A.; Mahout, G.; Maiani, C.; Maidantchik, C.; Maio, A.; Majewski, S.; Makida, Y.; Makouski, M.; Makovec, N.; Malecki, Pa.; Malecki, P.; Maleev, V. P.; Malek, F.; Mallik, U.; Malon, D.; Maltezos, S.; Malyshev, V.; Malyukov, S.; Mambelli, M.; Mameghani, R.; Mamuzic, J.; Manabe, A.; Mandelli, L.; Mandić, I.; Mandrysch, R.; Maneira, J.; Mangeard, P. S.; Manjavidze, I. D.; Manousakis-Katsikakis, A.; Mansoulie, B.; Mapelli, A.; Mapelli, L.; March, L.; Marchand, J. F.; Marchese, F.; Marcisovsky, M.; Marino, C. P.; Marques, C. N.; Marroquim, F.; Marshall, R.; Marshall, Z.; Martens, F. K.; Marti I Garcia, S.; Martin, A. J.; Martin, A. J.; Martin, B.; Martin, B.; Martin, F. F.; Martin, J. P.; Martin, T. A.; Martin Dit Latour, B.; Martinez, M.; Martinez Outschoorn, V.; Martini, A.; Martynenko, V.; Martyniuk, A. C.; Maruyama, T.; Marzano, F.; Marzin, A.; Masetti, L.; Mashimo, T.; Mashinistov, R.; Masik, J.; Maslennikov, A. L.; Massaro, G.; Massol, N.; Mastroberardino, A.; Masubuchi, T.; Mathes, M.; Matricon, P.; Matsumoto, H.; Matsunaga, H.; Matsushita, T.; Mattravers, C.; Maxfield, S. J.; May, E. N.; Mayne, A.; Mazini, R.; Mazur, M.; Mazzanti, M.; Mazzanti, P.; Mc Donald, J.; Mc Kee, S. P.; McCarn, A.; McCarthy, R. L.; McCubbin, N. A.; McFarlane, K. W.; McGlone, H.; McHedlidze, G.; McLaren, R. A.; McMahon, S. J.; McMahon, T. R.; McPherson, R. A.; Meade, A.; Mechnich, J.; Mechtel, M.; Medinnis, M.; Meera-Lebbai, R.; Meguro, T. M.; Mehdiyev, R.; Mehlhase, S.; Mehta, A.; Meier, K.; Meirose, B.; Melamed-Katz, A.; Mellado Garcia, B. R.; Meng, Z.; Menke, S.; Meoni, E.; Merkl, D.; Mermod, P.; Merola, L.; Meroni, C.; Merritt, F. S.; Messina, A. M.; Messmer, I.; Metcalfe, J.; Mete, A. S.; Meyer, J.-P.; Meyer, J.; Meyer, T. C.; Meyer, W. T.; Miao, J.; Micu, L.; Middleton, R. P.; Migas, S.; Mijović, L.; Mikenberg, G.; Mikuž, M.; Miller, D. W.; Mills, W. J.; Mills, C. M.; Milov, A.; Milstead, D. A.; Minaenko, A. A.; Miñano, M.; Minashvili, I. A.; Mincer, A. I.; Mindur, B.; Mineev, M.; Mir, L. M.; Mirabelli, G.; Misawa, S.; Miscetti, S.; Misiejuk, A.; Mitrevski, J.; Mitsou, V. A.; Miyagawa, P. S.; Mjörnmark, J. U.; Mladenov, D.; Moa, T.; Mockett, P.; Moed, S.; Moeller, V.; Mönig, K.; Möser, N.; Mohn, B.; Mohr, W.; Mohrdieck-Möck, S.; Moles-Valls, R.; Molina-Perez, J.; Moloney, G.; Monk, J.; Monnier, E.; Montesano, S.; Monticelli, F.; Moore, R. W.; Herrera, C. Mora; Moraes, A.; Morais, A.; Morel, J.; Morello, G.; Moreno, D.; Moreno Llácer, M.; Morettini, P.; Morii, M.; Morley, A. K.; Mornacchi, G.; Morozov, S. V.; Morris, J. D.; Moser, H. G.; Mosidze, M.; Moss, J.; Mount, R.; Mountricha, E.; Mouraviev, S. V.; Moyse, E. J. W.; Mudrinic, M.; Mueller, F.; Mueller, J.; Mueller, K.; Müller, T. A.; Muenstermann, D.; Muir, A.; Murillo Garcia, R.; Murray, W. J.; Mussche, I.; Musto, E.; Myagkov, A. G.; Myska, M.; Nadal, J.; Nagai, K.; Nagano, K.; Nagasaka, Y.; Nairz, A. M.; Nakamura, K.; Nakano, I.; Nakatsuka, H.; Nanava, G.; Napier, A.; Nash, M.; Nation, N. R.; Nattermann, T.; Naumann, T.; Navarro, G.; Nderitu, S. K.; Neal, H. A.; Nebot, E.; Nechaeva, P.; Negri, A.; Negri, G.; Nelson, A.; Nelson, T. K.; Nemecek, S.; Nemethy, P.; Nepomuceno, A. A.; Nessi, M.; Neubauer, M. S.; Neusiedl, A.; Neves, R. N.; Nevski, P.; Newcomer, F. M.; Nicholson, C.; Nickerson, R. B.; Nicolaidou, R.; Nicolas, L.; Nicoletti, G.; Niedercorn, F.; Nielsen, J.; Nikiforov, A.; Nikolaev, K.; Nikolic-Audit, I.; Nikolopoulos, K.; Nilsen, H.; Nilsson, P.; Nisati, A.; Nishiyama, T.; Nisius, R.; Nodulman, L.; Nomachi, M.; Nomidis, I.; Nomoto, H.; Nordberg, M.; Nordkvist, B.; Notz, D.; Novakova, J.; Nozaki, M.; Nožička, M.; Nugent, I. M.; Nuncio-Quiroz, A.-E.; Nunes Hanninger, G.; Nunnemann, T.; Nurse, E.; O'Neil, D. C.; O'Shea, V.; Oakham, F. G.; Oberlack, H.; Ochi, A.; Oda, S.; Odaka, S.; Odier, J.; Odino, G. A.; Ogren, H.; Oh, S. H.; Ohm, C. C.; Ohshima, T.; Ohshita, H.; Ohsugi, T.; Okada, S.; Okawa, H.; Okumura, Y.; Olcese, M.; Olchevski, A. G.; Oliveira, M.; Oliveira Damazio, D.; Oliver, J.; Oliver Garcia, E.; Olivito, D.; Olszewski, A.; Olszowska, J.; Omachi, C.; Onofre, A.; Onyisi, P. U. E.; Oram, C. J.; Ordonez, G.; Oreglia, M. J.; Oren, Y.; Orestano, D.; Orlov, I.; Oropeza Barrera, C.; Orr, R. S.; Ortega, E. O.; Osculati, B.; Osuna, C.; Otec, R.; P Ottersbach, J.; Ould-Saada, F.; Ouraou, A.; Ouyang, Q.; Owen, M.; Owen, S.; Ozcan, V. E.; Ozone, K.; Ozturk, N.; Pacheco Pages, A.; Padhi, S.; Padilla Aranda, C.; Paganis, E.; Pahl, C.; Paige, F.; Pajchel, K.; Pal, A.; Palestini, S.; Pallin, D.; Palma, A.; Palmer, J. D.; Pan, Y. B.; Panagiotopoulou, E.; Panes, B.; Panikashvili, N.; Panitkin, S.; Pantea, D.; Panuskova, M.; Paolone, V.; Papadopoulou, Th. D.; Park, S. J.; Park, W.; Parker, M. A.; Parker, S. I.; Parodi, F.; Parsons, J. A.; Parzefall, U.; Pasqualucci, E.; Passardi, G.; Passeri, A.; Pastore, F.; Pastore, Fr.; Pásztor, G.; Pataraia, S.; Pater, J. R.; Patricelli, S.; Patwa, A.; Pauly, T.; Peak, L. S.; Pecsy, M.; Pedraza Morales, M. I.; Peleganchuk, S. V.; Peng, H.; Penson, A.; Penwell, J.; Perantoni, M.; Perez, K.; Perez Codina, E.; Pérez García-Estañ, M. T.; Perez Reale, V.; Perini, L.; Pernegger, H.; Perrino, R.; Perrodo, P.; Persembe, S.; Perus, P.; Peshekhonov, V. D.; Petersen, B. A.; Petersen, J.; Petersen, T. C.; Petit, E.; Petridou, C.; Petrolo, E.; Petrucci, F.; Petschull, D.; Petteni, M.; Pezoa, R.; Pfeifer, B.; Phan, A.; Phillips, A. W.; Piacquadio, G.; Piccinini, M.; Piegaia, R.; Pilcher, J. E.; Pilkington, A. D.; Pina, J.; Pinamonti, M.; Pinfold, J. L.; Ping, J.; Pinto, B.; Pirotte, O.; Pizio, C.; Placakyte, R.; Plamondon, M.; Plano, W. G.; Pleier, M.-A.; Poblaguev, A.; Poddar, S.; Podlyski, F.; Poffenberger, P.; Poggioli, L.; Pohl, M.; Polci, F.; Polesello, G.; Policicchio, A.; Polini, A.; Poll, J.; Polychronakos, V.; Pomarede, D. M.; Pomeroy, D.; Pommès, K.; Pontecorvo, L.; Pope, B. G.; Popovic, D. S.; Poppleton, A.; Popule, J.; Portell Bueso, X.; Porter, R.; Pospelov, G. E.; Pospichal, P.; Pospisil, S.; Potekhin, M.; Potrap, I. N.; Potter, C. J.; Potter, C. T.; Potter, K. P.; Poulard, G.; Poveda, J.; Prabhu, R.; Pralavorio, P.; Prasad, S.; Pravahan, R.; Preda, T.; Pretzl, K.; Pribyl, L.; Price, D.; Price, L. E.; Prichard, P. M.; Prieur, D.; Primavera, M.; Prokofiev, K.; Prokoshin, F.; Protopopescu, S.; Proudfoot, J.; Prudent, X.; Przysiezniak, H.; Psoroulas, S.; Ptacek, E.; Puigdengoles, C.; Purdham, J.; Purohit, M.; Puzo, P.; Pylypchenko, Y.; Qi, M.; Qian, J.; Qian, W.; Qian, Z.; Qin, Z.; Qing, D.; Quadt, A.; Quarrie, D. R.; Quayle, W. B.; Quinonez, F.; Raas, M.; Radeka, V.; Radescu, V.; Radics, B.; Rador, T.; Ragusa, F.; Rahal, G.; Rahimi, A. M.; Rahm, D.; Rajagopalan, S.; Rammes, M.; Ratoff, P. N.; Rauscher, F.; Rauter, E.; Raymond, M.; Read, A. L.; Rebuzzi, D. M.; Redelbach, A.; Redlinger, G.; Reece, R.; Reeves, K.; Reinherz-Aronis, E.; Reinsch, A.; Reisinger, I.; Reljic, D.; Rembser, C.; Ren, Z. L.; Renkel, P.; Rescia, S.; Rescigno, M.; Resconi, S.; Resende, B.; Reznicek, P.; Rezvani, R.; Richards, A.; Richards, R. A.; Richter, D.; Richter, R.; Richter-Was, E.; Ridel, M.; Rieke, S.; Rijpstra, M.; Rijssenbeek, M.; Rimoldi, A.; Rinaldi, L.; Rios, R. R.; Riu, I.; Rivoltella, G.; Rizatdinova, F.; Rizvi, E. R.; Roa Romero, D. A.; Robertson, S. H.; Robichaud-Veronneau, A.; Robinson, D.; Robinson, M.; Robson, A.; Rocha de Lima, J. G.; Roda, C.; Rodriguez, D.; Rodriguez Garcia, Y.; Roe, S.; Røhne, O.; Rojo, V.; Rolli, S.; Romaniouk, A.; Romanov, V. M.; Romeo, G.; Romero Maltrana, D.; Roos, L.; Ros, E.; Rosati, S.; Rosenbaum, G. A.; Rosenberg, E. I.; Rosselet, L.; Rossi, L. P.; Rotaru, M.; Rothberg, J.; Rottländer, I.; Rousseau, D.; Royon, C. R.; Rozanov, A.; Rozen, Y.; Ruan, X.; Ruckert, B.; Ruckstuhl, N.; Rud, V. I.; Rudolph, G.; Rühr, F.; Ruggieri, F.; Ruiz-Martinez, A.; Rumyantsev, L.; Rusakovich, N. A.; Rutherfoord, J. P.; Ruwiedel, C.; Ruzicka, P.; Ryabov, Y. F.; Ryadovikov, V.; Ryan, P.; Rybkin, G.; Rzaeva, S.; Saavedra, A. F.; Sadrozinski, H. F.-W.; Sadykov, R.; Sakamoto, H.; Salamanna, G.; Salamon, A.; Saleem, M.; Salihagic, D.; Salnikov, A.; Salt, J.; Salvachua Ferrando, B. M.; Salvatore, D.; Salvatore, F.; Salvucci, A.; Salzburger, A.; Sampsonidis, D.; Samset, B. H.; Sanchis Lozano, M. A.; Sandaker, H.; Sander, H. G.; Sanders, M. P.; Sandhoff, M.; Sandstroem, R.; Sandvoss, S.; Sankey, D. P. C.; Sanny, B.; Sansoni, A.; Santamarina Rios, C.; Santi, L.; Santoni, C.; Santonico, R.; Santos, D.; Santos, J.; Saraiva, J. G.; Sarangi, T.; Sarkisyan-Grinbaum, E.; Sarri, F.; Sasaki, O.; Sasaki, T.; Sasao, N.; Satsounkevitch, I.; Sauvage, G.; Savard, P.; Savine, A. Y.; Savinov, V.; Sawyer, L.; Saxon, D. H.; Says, L. P.; Sbarra, C.; Sbrizzi, A.; Scannicchio, D. A.; Schaarschmidt, J.; Schacht, P.; Schäfer, U.; Schaetzel, S.; Schaffer, A. C.; Schaile, D.; Schamberger, R. D.; Schamov, A. G.; Schegelsky, V. A.; Scheirich, D.; Schernau, M.; Scherzer, M. I.; Schiavi, C.; Schieck, J.; Schioppa, M.; Schlenker, S.; Schlereth, J. L.; Schmid, P.; Schmidt, M. P.; Schmieden, K.; Schmitt, C.; Schmitz, M.; Schott, M.; Schouten, D.; Schovancova, J.; Schram, M.; Schreiner, A.; Schroeder, C.; Schroer, N.; Schroers, M.; Schuler, G.; Schultes, J.; Schultz-Coulon, H.-C.; Schumacher, J.; Schumacher, M.; Schumm, B. A.; Schune, Ph.; Schwanenberger, C.; Schwartzman, A.; Schwemling, Ph.; Schwienhorst, R.; Schwierz, R.; Schwindling, J.; Scott, W. G.; Searcy, J.; Sedykh, E.; Segura, E.; Seidel, S. C.; Seiden, A.; Seifert, F.; Seixas, J. M.; Sekhniaidze, G.; Seliverstov, D. M.; Sellden, B.; Seman, M.; Semprini-Cesari, N.; Serfon, C.; Serin, L.; Seuster, R.; Severini, H.; Sevior, M. E.; Sfyrla, A.; Shamim, M.; Shan, L. Y.; Shank, J. T.; Shao, Q. T.; Shapiro, M.; Shatalov, P. B.; Shaver, L.; Shaw, C.; Shaw, K.; Sherman, D.; Sherwood, P.; Shibata, A.; Shimojima, M.; Shin, T.; Shmeleva, A.; Shochet, M. J.; Shupe, M. A.; Sicho, P.; Sidoti, A.; Siebel, A.; Siegert, F.; Siegrist, J.; Sijacki, Dj.; Silbert, O.; Silva, J.; Silver, Y.; Silverstein, D.; Silverstein, S. B.; Simak, V.; Simic, Lj.; Simion, S.; Simmons, B.; Simonyan, M.; Sinervo, P.; Sinev, N. B.; Sipica, V.; Siragusa, G.; Sisakyan, A. N.; Sivoklokov, S. Yu.; Sjoelin, J.; Sjursen, T. B.; Skubic, P.; Skvorodnev, N.; Slater, M.; Slavicek, T.; Sliwa, K.; Sloper, J.; Sluka, T.; Smakhtin, V.; Smirnov, S. Yu.; Smirnov, Y.; Smirnova, L. N.; Smirnova, O.; Smith, B. C.; Smith, D.; Smith, K. M.; Smizanska, M.; Smolek, K.; Snesarev, A. A.; Snow, S. W.; Snow, J.; Snuverink, J.; Snyder, S.; Soares, M.; Sobie, R.; Sodomka, J.; Soffer, A.; Solans, C. A.; Solar, M.; Solfaroli Camillocci, E.; Solodkov, A. A.; Solovyanov, O. V.; Soluk, R.; Sondericker, J.; Sopko, V.; Sopko, B.; Sosebee, M.; Sosnovtsev, V. V.; Sospedra Suay, L.; Soukharev, A.; Spagnolo, S.; Spanò, F.; Speckmayer, P.; Spencer, E.; Spighi, R.; Spigo, G.; Spila, F.; Spiwoks, R.; Spousta, M.; Spreitzer, T.; Spurlock, B.; Denis, R. D. St.; Stahl, T.; Stamen, R.; Stancu, S. N.; Stanecka, E.; Stanek, R. W.; Stanescu, C.; Stapnes, S.; Starchenko, E. A.; Stark, J.; Staroba, P.; Starovoitov, P.; Stastny, J.; Staude, A.; Stavina, P.; Stavropoulos, G.; Steinbach, P.; Steinberg, P.; Stekl, I.; Stelzer, B.; Stelzer, H. J.; Stelzer-Chilton, O.; Stenzel, H.; Stevenson, K.; Stewart, G.; Stockton, M. C.; Stoerig, K.; Stoicea, G.; Stonjek, S.; Strachota, P.; Stradling, A.; Straessner, A.; Strandberg, J.; Strandberg, S.; Strandlie, A.; Strauss, M.; Strizenec, P.; Ströhmer, R.; Strom, D. M.; Strong, J. A.; Stroynowski, R.; Strube, J.; Stugu, B.; Stumer, I.; Soh, D. A.; Su, D.; Suchkov, S. I.; Sugaya, Y.; Sugimoto, T.; Suhr, C.; Suk, M.; Sulin, V. V.; Sultansoy, S.; Sumida, T.; Sun, X.; Sundermann, J. E.; Suruliz, K.; Sushkov, S.; Susinno, G.; Sutton, M. R.; Suzuki, T.; Suzuki, Y.; Sviridov, Yu. M.; Sykora, I.; Sykora, T.; Szymocha, T.; Sánchez, J.; Ta, D.; Tackmann, K.; Taffard, A.; Tafirout, R.; Taga, A.; Takahashi, Y.; Takai, H.; Takashima, R.; Takeda, H.; Takeshita, T.; Talby, M.; Talyshev, A.; Tamsett, M. C.; Tanaka, J.; Tanaka, R.; Tanaka, S.; Tanaka, S.; Tappern, G. P.; Tapprogge, S.; Tardif, D.; Tarem, S.; Tarrade, F.; Tartarelli, G. F.; Tas, P.; Tasevsky, M.; Tassi, E.; Taylor, C.; Taylor, F. E.; Taylor, G. N.; Taylor, R. P.; Taylor, W.; Teixeira-Dias, P.; Ten Kate, H.; Teng, P. K.; Terada, S.; Terashi, K.; Terron, J.; Terwort, M.; Testa, M.; Teuscher, R. J.; Tevlin, C. M.; Thadome, J.; Thananuwong, R.; Thioye, M.; Thoma, S.; Thomas, J. P.; Thomas, T. L.; Thompson, E. N.; Thompson, P. D.; Thompson, P. D.; Thompson, R. J.; Thompson, A. S.; Thomson, E.; Thun, R. P.; Tic, T.; Tikhomirov, V. O.; Tikhonov, Y. A.; Timmermans, C. J. W. P.; Tipton, P.; Tique Aires Viegas, F. J.; Tisserant, S.; Tobias, J.; Toczek, B.; Todorov, T.; Todorova-Nova, S.; Toggerson, B.; Tojo, J.; Tokár, S.; Tokushuku, K.; Tollefson, K.; Tomasek, L.; Tomasek, M.; Tomasz, F.; Tomoto, M.; Tompkins, D.; Tompkins, L.; Toms, K.; Tong, G.; Tonoyan, A.; Topfel, C.; Topilin, N. D.; Torrence, E.; Torró Pastor, E.; Toth, J.; Touchard, F.; Tovey, D. R.; Tovey, S. N.; Trefzger, T.; Tremblet, L.; Tricoli, A.; Trigger, I. M.; Trincaz-Duvoid, S.; Trinh, T. N.; Tripiana, M. F.; Triplett, N.; Trivedi, A.; Trocmé, B.; Troncon, C.; Trzupek, A.; Tsarouchas, C.; Tseng, J. C.-L.; Tsiafis, I.; Tsiakiris, M.; Tsiareshka, P. V.; Tsionou, D.; Tsipolitis, G.; Tsiskaridze, V.; Tskhadadze, E. G.; Tsukerman, I. I.; Tsulaia, V.; Tsung, J.-W.; Tsuno, S.; Tsybychev, D.; Turala, M.; Turecek, D.; Turk Cakir, I.; Turlay, E.; Tuts, P. M.; Twomey, M. S.; Tylmad, M.; Tyndel, M.; Tzanakos, G.; Uchida, K.; Ueda, I.; Uhlenbrock, M.; Uhrmacher, M.; Ukegawa, F.; Unal, G.; Underwood, D. G.; Undrus, A.; Unel, G.; Unno, Y.; Urbaniec, D.; Urkovsky, E.; Urquijo, P.; Urrejola, P.; Usai, G.; Uslenghi, M.; Vacavant, L.; Vacek, V.; Vachon, B.; Vahsen, S.; Valenta, J.; Valente, P.; Valentinetti, S.; Valkar, S.; Valladolid Gallego, E.; Vallecorsa, S.; Valls Ferrer, J. A.; van Berg, R.; van der Graaf, H.; van der Kraaij, E.; van der Poel, E.; van der Ster, D.; van Eldik, N.; van Gemmeren, P.; van Kesteren, Z.; van Vulpen, I.; Vandelli, W.; Vandoni, G.; Vaniachine, A.; Vankov, P.; Vannucci, F.; Varela Rodriguez, F.; Vari, R.; Varnes, E. W.; Varouchas, D.; Vartapetian, A.; Varvell, K. E.; Vasilyeva, L.; Vassilakopoulos, V. I.; Vazeille, F.; Vegni, G.; Veillet, J. J.; Vellidis, C.; Veloso, F.; Veness, R.; Veneziano, S.; Ventura, A.; Ventura, D.; Venturi, M.; Venturi, N.; Vercesi, V.; Verducci, M.; Verkerke, W.; Vermeulen, J. C.; Vetterli, M. C.; Vichou, I.; Vickey, T.; Viehhauser, G. H. A.; Villa, M.; Villani, E. G.; Villaplana Perez, M.; Villate, J.; Vilucchi, E.; Vincter, M. G.; Vinek, E.; Vinogradov, V. B.; Viret, S.; Virzi, J.; Vitale, A.; Vitells, O. V.; Vivarelli, I.; Vives Vaques, F.; Vlachos, S.; Vlasak, M.; Vlasov, N.; Vogt, H.; Vokac, P.; Volpi, M.; Volpini, G.; von der Schmitt, H.; von Loeben, J.; von Radziewski, H.; von Toerne, E.; Vorobel, V.; Vorobiev, A. P.; Vorwerk, V.; Vos, M.; Voss, R.; Voss, T. T.; Vossebeld, J. H.; Vranjes, N.; Vranjes Milosavljevic, M.; Vrba, V.; Vreeswijk, M.; Vu Anh, T.; Vudragovic, D.; Vuillermet, R.; Vukotic, I.; Wagner, P.; Wahlen, H.; Walbersloh, J.; Walder, J.; Walker, R.; Walkowiak, W.; Wall, R.; Wang, C.; Wang, H.; Wang, J.; Wang, J. C.; Wang, S. M.; Ward, C. P.; Warsinsky, M.; Wastie, R.; Watkins, P. M.; Watson, A. T.; Watson, M. F.; Watts, G.; Watts, S.; Waugh, A. T.; Waugh, B. M.; Webel, M.; Weber, J.; Weber, M. D.; Weber, M.; Weber, M. S.; Weber, P.; Weidberg, A. R.; Weingarten, J.; Weiser, C.; Wellenstein, H.; Wells, P. S.; Wen, M.; Wenaus, T.; Wendler, S.; Wengler, T.; Wenig, S.; Wermes, N.; Werner, M.; Werner, P.; Werth, M.; Werthenbach, U.; Wessels, M.; Whalen, K.; Wheeler-Ellis, S. J.; Whitaker, S. P.; White, A.; White, M. J.; White, S.; Whiteson, D.; Whittington, D.; Wicek, F.; Wicke, D.; Wickens, F. J.; Wiedenmann, W.; Wielers, M.; Wienemann, P.; Wiglesworth, C.; Wiik, L. A. M.; Wildauer, A.; Wildt, M. A.; Wilhelm, I.; Wilkens, H. G.; Williams, E.; Williams, H. H.; Willis, W.; Willocq, S.; Wilson, J. A.; Wilson, M. G.; Wilson, A.; Wingerter-Seez, I.; Winklmeier, F.; Wittgen, M.; Wolter, M. W.; Wolters, H.; Wosiek, B. K.; Wotschack, J.; Woudstra, M. J.; Wraight, K.; Wright, C.; Wright, D.; Wrona, B.; Wu, S. L.; Wu, X.; Wulf, E.; Xella, S.; Xie, S.; Xie, Y.; Xu, D.; Xu, N.; Yamada, M.; Yamamoto, A.; Yamamoto, S.; Yamamura, T.; Yamanaka, K.; Yamaoka, J.; Yamazaki, T.; Yamazaki, Y.; Yan, Z.; Yang, H.; Yang, U. K.; Yang, Y.; Yang, Z.; Yao, W.-M.; Yao, Y.; Yasu, Y.; Ye, J.; Ye, S.; Yilmaz, M.; Yoosoofmiya, R.; Yorita, K.; Yoshida, R.; Young, C.; Youssef, S. P.; Yu, D.; Yu, J.; Yu, M.; Yu, X.; Yuan, J.; Yuan, L.; Yurkewicz, A.; Zaidan, R.; Zaitsev, A. M.; Zajacova, Z.; Zambrano, V.; Zanello, L.; Zarzhitsky, P.; Zaytsev, A.; Zeitnitz, C.; Zeller, M.; Zema, P. F.; Zemla, A.; Zendler, C.; Zenin, O.; Zenis, T.; Zenonos, Z.; Zenz, S.; Zerwas, D.; Zevi Della Porta, G.; Zhan, Z.; Zhang, H.; Zhang, J.; Zhang, Q.; Zhang, X.; Zhao, L.; Zhao, T.; Zhao, Z.; Zhemchugov, A.; Zheng, S.; Zhong, J.; Zhou, B.; Zhou, N.; Zhou, Y.; Zhu, C. G.; Zhu, H.; Zhu, Y.; Zhuang, X.; Zhuravlov, V.; Zilka, B.; Zimmermann, R.; Zimmermann, S.; Zimmermann, S.; Ziolkowski, M.; Zitoun, R.; Živković, L.; Zmouchko, V. V.; Zobernig, G.; Zoccoli, A.; Zur Nedden, M.; Zutshi, V.

    2010-12-01

    The ATLAS liquid argon calorimeter has been operating continuously since August 2006. At this time, only part of the calorimeter was readout, but since the beginning of 2008, all calorimeter cells have been connected to the ATLAS readout system in preparation for LHC collisions. This paper gives an overview of the liquid argon calorimeter performance measured in situ with random triggers, calibration data, cosmic muons, and LHC beam splash events. Results on the detector operation, timing performance, electronics noise, and gain stability are presented. High energy deposits from radiative cosmic muons and beam splash events allow to check the intrinsic constant term of the energy resolution. The uniformity of the electromagnetic barrel calorimeter response along η (averaged over φ) is measured at the percent level using minimum ionizing cosmic muons. Finally, studies of electromagnetic showers from radiative muons have been used to cross-check the Monte Carlo simulation. The performance results obtained using the ATLAS readout, data acquisition, and reconstruction software indicate that the liquid argon calorimeter is well-prepared for collisions at the dawn of the LHC era.

  8. Progress of the EM Barrel Presampler Assembly

    CERN Multimedia

    Hostachy, J.Y.

    The liquid argon barrel presampler is a separate detector which will be placed in front of the electromagnetic barrel calorimeter, in the same cryostat. It is made of 32×2 sectors, each of them being 3.1 m long, about 28 cm large and a few cm thick. Three countries are involved in its construction: France (ISN-Grenoble), Sweden (KTH-Stockholm) and Morocco (Universities: Hassan II Ain Chock-Casablanca and Mohamed V-Rabat, and CNESTEN-Rabat). The design of the presampler started ten years ago and the series production began at the end of the year 2000. Today two-thirds of the sectors are produced and validated. In November 2002, half the detector (i.e. 32 sectors), was inserted on the internal face of the first EM calorimeter wheel (see pictures). Despite the fact that only 0.4 mm was available between sectors, it was possible to insert them all without meeting major difficulties. This operation was led by a team of four people, the sectors being systematically tested after insertion in the wheel. The inserti...

  9. A Highly Granular Silicon-Tungsten Electromagnetic Calorimeter and Top Quark Production at the International Linear Collider

    CERN Document Server

    Rouëné, J

    2014-01-01

    This thesis deals with two aspects of the International Linear Collider (ILC) which is a project of a linear electron-positron collider of up to at least 500 GeV center of mass energy. The first aspect is the development of a silicon-tungsten electromagnetic calorimeter (SiW-ECAL) for one of the detectors of the ILC. The concept of this detector is driven by the ILC beam specifications and by the Particle Flow Algorithm (PFA). This requires highly granular calorimeter and very compact one with integrated electronics. To prove the capability of the SiW- ECAL a technological prototype has been built and tested in test beam at DESY. The results are presented here, and show, after the calibration procedure a signal over noise ratio of 10, even in the power pulsing mode. The second aspect is the study of one of the important physics channels of the ILC, the top anti-top quark pairs production. The main goal of this study is to determine the precision that we can expect at the ILC on the top coupling with the W bos...

  10. First Half Of CMS Hadron Calorimeter Completed

    CERN Document Server

    2001-01-01

    CMS HCAL electronics coordinator John Elias from Fermilab inspecting the assembled first half of the calorimeter. The first half barrel of the CMS hadron calorimeter was completed last month and assembly work on the elements of the second half commenced just last week. This is not a simple task considering the fact that the constructed half-barrel consists of eighteen 30 tonne segments each made with 0.15 mm tolerance. But through the work of everyone on the CMS hadron calorimeter team it is all moving forward. In the LHC, detection of particles produced in collisions of two proton beams requires measurement of their energy. To do this, the particle energy has to be changed into a form that can be easily measured. This is achieved by stopping the initial particles in a dense medium, where they create a shower of secondary particles. While particles that interact through electromagnetic forces (electrons and positrons) create relatively small showers, the size of showers created by hadrons, particles that i...

  11. Re-integration and Consolidation of the Detector Control System for the Compact Muon Solenoid Electromagnetic Calorimeter

    CERN Multimedia

    Holme, Oliver; Dissertori, Günther; Djambazov, Lubomir; Lustermann, Werner; Zelepoukine, Serguei

    2013-01-01

    The current shutdown of the Large Hadron Collider (LHC), following three successful years of physics data-taking, provides an opportunity for major upgrades to be performed on the Detector Control System (DCS) of the Electromagnetic Calorimeter (ECAL) of the Compact Muon Solenoid (CMS) experiment. The upgrades involve changes to both hardware and software, with particular emphasis on taking advantage of more powerful servers and updating third-party software to the latest supported versions. The considerable increase in available processing power enables a reduction from fifteen to three or four servers. To host the control system on fewer machines and to ensure that previously independent software components could run side-by-side without incompatibilities, significant changes in the software and databases were required. Additional work was undertaken to modernise and concentrate I/O interfaces. The challenges to prepare and validate the hardware and software upgrades are described along with details of the ...

  12. Performance of the ATLAS Liquid Argon Calorimeter After Three Years of LHC Operation and Plans for a Future Upgrade

    CERN Document Server

    Ilic, N; The ATLAS collaboration

    2013-01-01

    The ATLAS experiment is a multi-purpose detector built for analyzing LHC collision data. In July 2012, ATLAS announced the discovery of the Higgs boson, the last undiscovered particle in the Standard Model of particle physics. The ATLAS Liquid Argon (LAr) Calorimeter played a crucial role in the discovery by providing accurate measurements of Higgs final states such as photons, electrons and jets. The LAr detector is a sampling calorimeter consisting of four subsystems: an electromagnetic barrel (EMB), electromagnetic end-caps (EMEC), hadronic end-caps (HEC), and forward calorimeters (FCAL). The liquid argon purity, temperature and time stability remained well above the required levels throughout the data-taking period. Overall the calorimeter performed very well, with over 99% of data it collected in 2012 proton-proton collisions being suitable for physics analysis. In order to maintain good LAr detector performance, several upgrades are currently being implemented and planned.

  13. Identification of positrons and electrons in the cosmic radiation with the electromagnetic calorimeter ECAL for the AMS-02 experiment

    CERN Document Server

    AUTHOR|(CDS)2080883

    2011-07-19

    In May 2011 AMS-02 detector has been successfully installed on the International Space Station (ISS), where it will take data on cosmic radiation from 1 to 1000 GeV for at least 10 years. Among all scientific objectives of the experiment, one of the most important is the search for Dark Matter (DM), which constitutes 80% of the Universe matter, but its nature is still unknown. A DM signal can be identified by studying the combined fluxes of positrons, photons, antiprotons and antideuterium. Thanks to its high acceptance and its performances, AMS-02 detector can extend primary cosmic ray physics search to a new energy range with high accuracy. A key role for these measurements, in particular for the electromagnetic channels, is played by ECAL calorimeter. This subdetector has been developed to measure e− and e+ energy with an accuracy of few %. Thanks to its 3D shower reconstruction imaging capabilities, it also has a high separation power between electromagnetic and hadronic showers (e/p rejection), essent...

  14. Performance and upgrade of the CMS electromagnetic calorimeter trigger for Run II

    CERN Document Server

    Sauvan, Jean-baptiste

    2014-01-01

    The CMS experiment implements a sophisticated two-level online trigger selection system that achieves a rejection factor of nearly $10^5$. The level one (L1) trigger is based on coarse information coming from the calorimeters and the muon detectors while the high-level trigger combines fine-grain information from all sub-detectors. In the near future the LHC will increase its centre of mass energy to 13 TeV and progressively reach an instantaneous luminosity of $2\\times 10^{34}\\,\\textrm{cm}^{-2}\\textrm{s}^{-1}$. In order to guarantee a successful and ambitious physics program under this challenging environment, the CMS Trigger and Data acquisition system must be consolidated. In particular the L1 calorimeter Trigger hardware and architecture will be changed. The aim is to maintain the current thresholds and improve the performance. This programme will be achieved by using $\\mu$TCA (Advanced Mezzanine Card) architecture with fast optical links and latest generation FPGAs. Sophisticated object reconstruction al...

  15. Construction and Performance of an Iron-Scintillator Hadron Calorimeter with Longitudinal Tile Configuration

    CERN Multimedia

    2002-01-01

    % RD34 \\\\ \\\\ In a scintillator tile calorimeter with wavelength shifting fiber readout significant simplifications of the construction and the assembly are possible if the tiles are oriented $^{\\prime\\prime}$longitudinally$^{\\prime\\prime}$, i.e.~in a r-$\\phi$ planes for a barrel configuration. For a hybrid calorimeter consisting of a scintillator tile hadron compartment and a sufficiently containing liquid argon electromagnetic (EM) compartment, as proposed for the ATLAS detector, good jet resolution is predicted by simulations, which is not affected by this particular orientation of the tiles. \\\\ \\\\The aim of the proposed development program is to construct a calorimeter test module with longitudinal tiles and to check the simulation results by test beam measurements. In addition several component tests and further simulations and engineering studies are needed to optimize the design of a large calorimeter structure to be used in collider experiments. The construction of a test module will also provide valua...

  16. A method for the separation and reconstructions of charged hadron and neutral hadron from their overlapped showers in an electromagnetic calorimeter

    Institute of Scientific and Technical Information of China (English)

    LIANG Song; TAO Jun-Quan; SHEN Yu-Qiao; FAN Jia-Wei; XIAO Hong; CHEN Guo-Ming; CHEN He-Sheng

    2013-01-01

    The separation and reconstructions of charged hadron and neutral hadron from their overlapped showers in an electromagnetic calorimeter is very important for the reconstructions of some particles with hadronic decays,for example the tau reconstruction in the searches for the Standard Model and supersymmetric Higgs bosons at the LHC.In this paper,a method combining the shower cluster in an electromagnetic calorimeter and the parametric formula for hadron showers,was developed to separate the overlapped showers between charged hadron and neutral hadron.Taking the hadronic decay containing one charged pion and one neutral pion in the final status of tau for example,satisfied results of the separation of the overlapped showers,the reconstructions of the energy and positions of the hadrons were obtained.An improved result for the tau reconstruction with this decay model can be also achieved after the application of the proposed method.

  17. Response of avalanche photo-diodes of the CMS Electromagnetic Calorimeter to neutrons from an Americium-Beryllium source.

    CERN Document Server

    Deiters, Konrad; Renker, Dieter

    2010-01-01

    The response of avalanche photo-diodes (APDs) used in the CMS Electromagnetic Calorimeter to low energy neutrons from an Americium-Beryllium source is reported. Signals due to recoil protons from neutron interactions with the hydrogen nuclei in the protective epoxy layer, mainly close to the silicon surface of the APD, have been identified. These signals increase in size with the applied bias voltage more slowly than the nominal gain of the APDs, and appear to have a substantially lower effective gain at the operating voltage. The signals originating from interactions in the epoxy are mostly equivalent to signals of a few GeV in CMS, but range up to a few tens of GeV equivalent. There are also signals not attributed to reactions in the epoxy extending up to the end of the range of these measurements, a few hundreds of GeV equivalent. Signals from the x-rays from the source can also be in the GeV equivalent scale in CMS. Simulations used to describe events due to particle interactions in the APDs need to take ...

  18. Role of the CMS electromagnetic calorimeter in the measurement of the Higgs boson properties and search for new physics

    CERN Document Server

    Ferri, Federico

    2014-01-01

    The precise determination of the mass, the width and the couplings of the particle discovered in 2012 around 125 GeV is of capital importance to clarify the nature of such a particle, in particular to establish precisely if it is a Standard Higgs boson. In several new physics scenarios, in fact, a Higgs boson may behave differently with respect to the Standard one, or may not be unique, i.e. there can be more than one Higgs boson. In order to achieve the precision needed to discriminate between different models, the energy resolution, the scale uncertainty and the position resolution for electrons and photons are required to be as good as possible. The CMS scintillating lead-tungstate electromagnetic calorimeter (ECAL) was built as a precise tool with an exceptional energy resolution and a very good position resolution that improved over the years with the knowledge of the detector. Moreover, thanks to the fact that most of the lead-tungstate scintillation light is emitted in about 25 ns, ECAL can be used to ...

  19. Multiple-neutral-meson decays of the /tau/ lepton and electromagnetic calorimeter requirements at Tau-Charm Factory

    Energy Technology Data Exchange (ETDEWEB)

    Gan, K.K.

    1989-08-01

    This is a study of the physics sensitivity to the multiple-neutral-meson decays of the /tau/ lepton at the Tau-Charm Factory. The sensitivity is compared for a moderate and an ultimate electromagnetic calorimeter. With the high luminosity of the Tau- Charm Factory, a very large sample of the decays /tau//sup /minus// /yields/ /pi//sup /minus//2/pi//sup 0//nu//sub /tau// and /tau//sup /minus// /yields/ /pi//sup /minus//3/pi//sup 0//nu//sub /tau// can be collected with both detectors. However, with the ultimate detector, 2/pi//sup 0/ and 3/pi//sup 0/ can be unambiguously reconstructed with very little background. For the suppressed decay /tau//sup /minus// /yields/ /pi//sup /minus///eta//pi//sup 0//nu//sub /tau//, only the ultimate detector has the sensitivity. The ultimate detector is also sensitive to the more suppressed decay /tau//sup /minus// /yields/ K/sup /minus///eta//nu//sub /tau// and the moderate detector may have the sensitivity if the hadronic background is not significantly larger than that predicted by Lund. In the case of the highly suppressed second-class-current decay /tau//sup /minus// /yields/ /pi//sup /minus///eta//nu//sub /tau//, only the ultimate detector has sensitivity. The sensitivity can be greatly enhanced with a small-angle photon veto. 16 refs., 9 figs., 2 tabs.

  20. Photomultipliers on an LHCb calorimeter

    CERN Multimedia

    Maximilien Brice

    2006-01-01

    An engineer attaches photomultiplier tubes to the electromagnetic calorimeter on the LHCb experiment. These large wall detectors will be used to study the bottom quark, a heavy, short-lived version of quarks found in protons and neutrons. The electromagnetic calorimeter will be used to detect photons, electrons and positrons produced by the decay of these short-lived quarks.

  1. The CMS Outer Hadron Calorimeter

    CERN Document Server

    Acharya, Bannaje Sripathi; Banerjee, Sunanda; Banerjee, Sudeshna; Bawa, Harinder Singh; Beri, Suman Bala; Bhandari, Virender; Bhatnagar, Vipin; Chendvankar, Sanjay; Deshpande, Pandurang Vishnu; Dugad, Shashikant; Ganguli, Som N; Guchait, Monoranjan; Gurtu, Atul; Kalmani, Suresh Devendrappa; Kaur, Manjit; Kohli, Jatinder Mohan; Krishnaswamy, Marthi Ramaswamy; Kumar, Arun; Maity, Manas; Majumder, Gobinda; Mazumdar, Kajari; Mondal, Naba Kumar; Nagaraj, P; Narasimham, Vemuri Syamala; Patil, Mandakini Ravindra; Reddy, L V; Satyanarayana, B; Sharma, Seema; Singh, B; Singh, Jas Bir; Sudhakar, Katta; Tonwar, Suresh C; Verma, Piyush

    2006-01-01

    The CMS hadron calorimeter is a sampling calorimeter with brass absorber and plastic scintillator tiles with wavelength shifting fibres for carrying the light to the readout device. The barrel hadron calorimeter is complemented with a outer calorimeter to ensure high energy shower containment in CMS and thus working as a tail catcher. Fabrication, testing and calibrations of the outer hadron calorimeter are carried out keeping in mind its importance in the energy measurement of jets in view of linearity and resolution. It will provide a net improvement in missing $\\et$ measurements at LHC energies. The outer hadron calorimeter has a very good signal to background ratio even for a minimum ionising particle and can hence be used in coincidence with the Resistive Plate Chambers of the CMS detector for the muon trigger.

  2. Study of the photomultiplier R7600-00-M4 for the purpose of the electromagnetic calorimeter in the AMS-02 experiment

    CERN Document Server

    Kossakowski, R; Dubois, J M; Fougeron, D; Hermel-Richard; Sottile, R; Vialle, J P

    2002-01-01

    The properties of the 4-channels photomultiplier R7600-00-M4 from Hamamatsu were extensively studied for use in the AMS-02 electromagnetic calorimeter. A scan of the photocathode with a precision in position better than 0.1 mm was performed in order to measure the position dependence of the sensitivity and of the cross talk between pixels. The influence of the magnetic field applied in X, Y and Z directions was measured. The dynamic range of the photomultiplier was measured and optimized by the appropriate choice of the high voltage divider and of the value of the high voltage.

  3. Study of the photomultiplier R7600-00-M4 for the purpose of the electromagnetic calorimeter in the AMS-02 experiment

    Energy Technology Data Exchange (ETDEWEB)

    Kossakowski, Roman; Audemer, Jean Charles; Dubois, Jean Marc; Fougeron, Denis; Hermel Richard; Sottile, Rico; Vialle, Jean Pierre [Laboratoire d' Annecy-Le-Vieux de Physique des Particules, LAPP, IN2P3-CNRS, BP 110, F-74941 Annecy-Le-Vieux (France)

    2002-07-01

    The properties of the 4-channels photomultiplier R7600-00-M4 from Hamamatsu were extensively studied for use in the AMS-02 electromagnetic calorimeter. A scan of the photocathode with a precision in position better than 0.1 mm was performed in order to measure the position dependence of the sensitivity and of the cross talk between pixels. The influence of the magnetic field applied in X, Y and Z directions was measured. The dynamic range of the photomultiplier was measured and optimized by the appropriate choice of the high voltage divider and of the value of the high voltage. (authors)

  4. Installation of CMS EB (ECAL Barrel) Supermodules 5 and 13 inside HB+ (HCAL Barrel) on 26/27 April 2006

    CERN Multimedia

    Ken Bell, RAL

    2006-01-01

    The first two barrel "supermodules" of the CMS Electromagnetic Calorimeter (ECAL) have been inserted into the barrel hadron calorimeter (HCAL) in the CMS experimental hall (called SX5) in Cessy in preparation for the forthcoming magnet test and cosmic challenge (MTCC). Each of the two supermodules contains 1700 lead tungstate crystals in glass-fibre alveolar support structures, with associated avalanche photodiodes (APDs, for scintillation light detection), electronics and cooling system. See also the document CMS-PHO-OREACH-2006-019. The first two pictures show the two supermodules in their final position. Fig. 3: the "enfourneur" in position on the HB Cradle. Fig. 4: supermodule n. 5 and extension rails being lifted to the enforneur. Figs. 5-6: supermodule approaching the enforneur. Fig. 7: rotating the Enfourneur to the correct phi direction Figs. 8-9: aligning the extension rails with the rails inside HB and view from inside HB, once the rails are aligned. Figs. 10-12: insertion of supermodule n. 5. Fig. ...

  5. Calorimeter insertion

    CERN Multimedia

    2006-01-01

    Calorimeter insertion between toroids in the ATLAS experiment detector Calorimeters are surrounding the inner detector. Calorimeters will absorb and measure the energies of the most charged and neutral particles after the collisions. The saved energy in the calorimeter is detected and converted to signals that are taken out with data taking electronics.

  6. ELECTROMAGNETIC CALORIMETER (ECAL)

    CERN Multimedia

    D. Barney

    2012-01-01

      There are no major concerns for the ECAL running and operation in 2012. The necessary ameliorations to the system were planned in December, and reviewed in a dedicated workshop at the end of January. Many interventions have taken place, mainly on the Trigger and DAQ side in order to bring all software into line with central developments (e.g. SLC5, XDAQ11 and use of SVN). In addition, steps are being taken to improve the recovery time of the system from “single event upsets (SEU)”, which are suspected to be the cause of some downtimes in 2011 (and, if so, would be more frequent in 2012 due to higher luminosities). A new blue laser, for crystal transparency monitoring, is currently being commissioned in Caltech and will be installed at P5 in March. We have optimised the ECAL zero-suppression settings applied online in preparation for the LHC running with high pile-up conditions. The algorithm to reduce the rate of anomalous signals  (“spikes”) fir...

  7. ELECTROMAGNETIC CALORIMETER (ECAL)

    CERN Multimedia

    D. Barney

    2012-01-01

      All necessary improvements to the online system and configuration to cope with the high-pile-up running conditions in 2012 have been commissioned successfully before the start of data-taking and during 2012 RunA. Hardware interventions included a rework of the preshower HV distribution system (increasing the number of working silicon sensor channels by 2%) and the deployment of two new lasers (blue and green) to improve the long-term stability of the monitoring system. The new lasers were deployed before the start of 2012 running and have been steadily producing monitoring constants since April, in parallel with the old laser, which is still used for the default monitoring corrections. Improvements to the DAQ include a firmware upgrade to recover on-the-fly from many types of suspected single-event upsets (SEUs). Configuration changes include new zero-suppression settings applied online and a new tuning for the algorithm to reduce the rate of anomalous signals firing the Level-1 trigger. Moreo...

  8. ELECTROMAGNETIC CALORIMETER (ECAL)

    CERN Multimedia

    T. Tabarelli and D. Barney

    2011-01-01

    ECAL operations have been rather smooth during the past months, with few hardware problems, stable trigger rates etc. The downtimes attributed to ECAL have, however, increased recently, due to some crashes of the DAQ on the ECAL side. The frequency of problems has increased with luminosity and seems to occur more in the EE than in the EB. There are some indications suggesting these problems may be due to Single Event Upsets – radiation-induced modifications to the front-end electronics. Although this is not yet confirmed, measures are already being taken to reduce the time taken to recover from such problems in order to minimise downtime. No such problems have (yet) been seen in the ES. There has been enormous progress in improving the quality of the corrections required to take into account transparency variations of the ECAL crystals with radiation, through a detailed calibration of the response of the laser diagnostic line. The special LHC runs taken recently – 25-ns operation and h...

  9. The HPS electromagnetic calorimeter

    OpenAIRE

    Balossino, Ilaria; Baltzell, Nathan; Battaglieri, Marco; Bondi, Mariangela; Buchanan, Emma; Calvo, Daniela; Celentano, Andrea; Charles, Gabriel; Colaneri, Luca; D'Angelo, Annalisa; De Napoli, Marzio; De Vita, Raffaella; Dupre, Raphael; Egiyan, Hovanes; Ehrhart, Mathieu

    2016-01-01

    The Heavy Photon Search experiment (HPS) is searching for a new gauge boson, the so-called "heavy photon." Through its kinetic mixing with the Standard Model photon, this particle could decay into an electron-positron pair. It would then be detectable as a narrow peak in the invariant mass spectrum of such pairs, or, depending on its lifetime, by a decay downstream of the production target. The HPS experiment is installed in Hall-B of Jefferson Lab. This article presents the design and perfor...

  10. ELECTROMAGNETIC CALORIMETER (ECAL)

    CERN Multimedia

    T. Tabarelli

    2011-01-01

    All components of ECAL have been running smoothly throughout the 2011 run; the general health of the system is stable since 2010, with close to 99% of the channels available for energy reconstruction. Less than 3% of the registered luminosity to date has bad data quality in ECAL. About 2/3 of the data lost were affected by a low-voltage (LV) failure in one EB super-module due to a flaky contact. After prompt repair, all the remaining contacts were thoroughly checked in the late-March technical stop, with some additional repairs being carried-out. After extensive tests in late 2010 and further optimisation with first 2011 collisions, the rejection at L1 of anomalous signals ascribed to the nuclear counter effect in the APDs is now incorporated in standard running. The required factor-of-3 reduction in the lowest un-prescaled electron/photon trigger (EG12) was met, with larger reduction factors for higher transverse energies, as expected. Studies are ongoing to anticipate the anomalous signal rejection perform...

  11. ELECTROMAGNETIC CALORIMETER (ECAL)

    CERN Multimedia

    2011-01-01

    All components of ECAL – EB, EE and ES – operated well throughout 2010 with few problems, and negligible evolution of dead channels. About 2% of the ES silicon sensors were unplugged in the second part of the year due to unacceptable increases in leakage currents attributed to radiation damage of the surfaces. The LHC winter technical stop allowed many improvements to the ECAL infrastructure at Point 5. For example, the High Voltage distribution systems for the EE and ES were both improved, with further modifications planned for the ES later in the year. Monitoring and alarming of power supplies was also improved, increasing the level of safety. Some cables in the USC and UXC were re-worked, recovering the operation of some environmental monitoring sensors and improving robustness overall. A thorough Readiness Review Workshop was organised at the end of January 2011 to review 2010 data quality and online and offline operations, and to prepare for the higher luminosities in 2011. All prese...

  12. ELECTROMAGNETIC CALORIMETER (ECAL)

    CERN Multimedia

    Dave Barney

    2010-01-01

    The operation of ECAL during the whole proton-proton period was very successful, with little down time. During this period we witnessed the first expected signs of radiation damage, both in the preshower detector, where we measured a small but clear increase in the current drawn by the silicon sensors (due to bulk damage) and in the endcap crystals, with the first evidence of a decreasing crystal transparency. The extent of the damage is in general as expected from simulations. However, a small fraction of the preshower sensors also show signs of unexpected surface damage. This is under investigation.
 The running period was very smooth overall but not without glitches. Among these occurrences we had a few high voltage problems in the endcaps, a low voltage connector at the preshower failed, a few unnoticed DCS alarms and our fair share of DAQ "out-of-sync". All problems were followed-up and mitigated where possible. Lessons learnt will be very useful for the long running period ahead of ...

  13. The LHCb electromagnetic calorimeter

    CERN Multimedia

    Maximilien Brice

    2005-01-01

    This huge 6X7 square metre wall consists of 3300 blocks containing scintillator, fibre optics and lead, which took engineers on the LHCb experiment at CERN only one month to construct. It will measure the energy of particles produced in proton-proton collisions at the LHC when it is started in 2008. Photons, electrons and positrons will pass through the layers of material in these modules and deposit their energy in the detector through a shower of particles.

  14. ELECTROMAGNETIC CALORIMETER (ECAL)

    CERN Multimedia

    D. Petyt

    2013-01-01

    In a break with tradition, the ECAL general meetings during the April CMS Week were devoted to a series of brainstorming sessions, focusing on a small number of hot-topic items. These included sessions on ECAL upgrades, analysis of 2012 detector performance and resolution, software development plans and a review of the ECAL calibration sequence. These sessions were well attended and extremely productive, and have helped to define and guide the direction of the ECAL effort planned for LS1. The area of ECAL upgrades has been particularly active over the past several months. A note summarising the test-beam performance of crystal matrices, irradiated with proton fluences representative of the end of Phase 1 LHC running, has been prepared and is being reviewed by ECAL. This important note provides data to tune and validate the simulation of ECAL ageing that has been implemented in CMSSW. This simulation is being used by the ECAL group and others to evaluate the physics performance of the ECAL at the end of Pha...

  15. ELECTROMAGNETIC CALORIMETER (ECAL)

    CERN Multimedia

    T. Tabarelli

    2012-01-01

      ECAL has been stably running with an up-time efficiency of 99.4% during Run 2012D, with about half of the inefficiency due to a single downtime episode. More than 99% of the collected data are certified good by ECAL for offline analysis. The monitoring system and calibration chain have also been working smoothly, with an excellent stability of the new laser source, after final tuning during the technical stop in September. Some drifts in the response upon monitoring corrections and some degradation in the resolution throughout Run 2012C and 2012D have been observed and will be corrected in the next reprocessing. Calibration constants for the full 2012 dataset –– derived with well-established procedures –– are going to be delivered by the end of the pp run. In parallel to this, studies of the performance evolution have been carried out to predict the longevity of ECAL towards HL-LHC. Radiation damage effects are studied from P5 data, particularly in the end...

  16. Performance of a uranium/tetramethylpentane calorimeter backed by an iron/scintillator calorimeter

    Energy Technology Data Exchange (ETDEWEB)

    Apsimon, R.; Bacci, C.; Bauer, G.; Bezaguet, A.; Bloess, D.; Bodenes, J.M.; Bonino, R.; Buchanan, C.; Busetto, G.; Caner, A.; Casoli, L.; Castilla-Valdez, H.; Cavanna, F.; Cennini, P.; Centro, S.; Ceradini, F.; Conte, R.; Della Negra, M.; DiCiaccio, A.; De Giorgi, M.; Diez-Hedo, F.J.; Drijard, D.; Dumps, L.; Evans, H.; Ferrando, A.; Fuess, T.; Givernaud, A.; Gonidec, A.; Gronberg, J.; Josa, M.I.; Kienzle, W.; Krammer, M.; Lavaca, F.; Lindgren, M.; Marchand, D.; Martinelli, R.; Maurin, G.; Meneguzzo, A.; Mohammadi, M.; Morgan, K.; Munoz, R.C.; Naumann, L.; Nedelec, P.; Otwinowski, S.; Petrolo, E.; Piano-Mortari, G.; Placci, A.; Pontecorvo, L.; Radermacher, E.; Revol, J.P.; Robinson, D.; Rodrigo, T.; Rubbia, C.; Schinzel, D.; Schmidt, W.F.; Seez, C.; Seidl, W.; Stork, D.; Stubenrauch, C.; Sumorok, K.; Tan, Q.H.; Tether, S.; Teykal, H.; Torrente-Lujan, E.; Ullaland, O.; Guchte, M.W. van de; Veneziano, S.; Virdee, T.S.; Vuillemin, V.; Walzel, G.; Winterter, I.; Wu, X.; Zotto, P.L.; UA1 Collaboration

    1991-07-20

    We present results from the barrel depleted uranium/TMP calorimeter modules constructed by the UA1 Collaboration. Electromagnetic and hadronic energy resolutions have been measured using electron and pion beams with momenta in the range 7 to 70 GeV/c. Results on the energy linearity and the spatial uniformity of response are reported. The electromagnetic shower position resolution has been measured as a function of energy using a fine grained position detector placed at a depth of {proportional to}3.5 X{sub 0}. The noise arising both from the electronics chain and from the uranium radioactivity is compared with 70 GeV/c muon signals. The ratio of the electron to pion response has been measured both as a function of the energy and of the electric field. The high lateral and longitudinal granularity of the calorimeter and the presence of a position detector have been used to determine the electron-pion separation as a function of energy. (orig.).

  17. Top quark studies with Atlas at the LHC. Electromagnetic calorimeter commissioning; Etude du quark top avec Atlas au LHC. Mise en route du calorimetre electromagnetique

    Energy Technology Data Exchange (ETDEWEB)

    Resende Vaz de Melo Xavier, B

    2007-05-15

    The first proton-proton collisions in the Large Hadron Collider at CERN will take place on 2007. It aims at understanding the origins of mass. and it will also look for new physics. The ATLAS experiment will exploit all those physics potentialities. using a multilayer generalist detector. Quark top studies will be an important step in ATLAS physics program: its properties may reveal hints of new phenomena. One way to look for new physics is through quark top and W boson polarizations. which are studied here. This detailed simulation study has confirmed previous fast simulation results including extensive systematics estimation. ATLAS should thus yield a precision of a few percents with 10 fb{sup -1} of data. that is a year of LHC working. This precision is sufficient to select among several new physics models. Among ATLAS subsystems, the electromagnetic calorimeter plays a crucial role in the characterisation of electrons and photons. which are used in particular for the Higgs boson search. This document deals with the calorimeter commissioning as the time of the first collisions approaches. The detector itself and its electronics will be described, as well as its installation and calibration. Cosmic muons observation will then be presented. as the first overall test of the reading and reconstruction electronics chain in actual working conditions. (author)

  18. Construction of the ATLAS end cap electromagnetic calorimeter and study of its performances; Construction du bouchon du calorimetre electromagnetique d'ATLAS et etudes de ses performances

    Energy Technology Data Exchange (ETDEWEB)

    Barrillon, P

    2002-09-01

    ATLAS is one of the four experiments which will take place at the LHC, the CERN future protons collider. This accelerator, which should start in 2007, will allow to continue the studies carried out by its predecessors, as the standard model Higgs boson and new physics searches. The very high luminosity -10 fb{sup -1} during the first three functioning years, then 100 fb{sup -1}- and the 14 TeV in the frame center will ease these studies. The Centre de Physique des Particules de Marseille took part in the ATLAS collaboration, taking in charge half of the End-cap electromagnetic calorimeter modules construction. The description of this sub-detector and the construction steps, in particular the electrical tests which allow the stacking validation, are presented in this document. These tests results, obtained for the live first production modules, are analysed. The pre-series module (module 0) performances, obtained with beam tests performed at CERN in 1999, are also presented. The detector uniformity studies have allowed to perform important improvements on the calorimeter components. A 0.6% global constant term has been determined in the End-cap internal region (wheel). (author)

  19. ALEPH end-cap and barrel

    CERN Multimedia

    Patrice Loiez

    1993-01-01

    The end-cap is pulled away from the barrel on the ALEPH detector so that the hadronic calorimeter and muon chambers are revealed. The end-cap maximises the data available from particles produced along the direction of the beam. The workers on the inner part of the detector give a sense of scale.

  20. 电磁轨道炮身管设计的预紧机理分析%Pretightening Mechanism Analysis of Barrel Design in Electromagnetic Rail Gun

    Institute of Scientific and Technical Information of China (English)

    李明涛; 孙小超; 李菊香; 陈彦辉; 国伟; 苏子舟; 刘金钢

    2014-01-01

    电磁轨道炮发射时导轨在电磁斥力作用下向外侧扩张,这种扩张作用直接影响着导轨与固体电枢接触性能。身管结构设计需要对电磁斥力引起的导轨分离量进行限制。利用材料弹性理论对某预紧型电磁轨道身管在预紧力与导轨斥力综合作用下的结构形变进行了理论分析,提出了预估载荷、预紧系数、载荷系数和结构参数等概念,导出了基于导轨分离量和以上参数间的预紧机理数学解析公式,进行了 ANSYS仿真。计算结果表明,预紧技术作为一项重要工程技术可以大幅提高身管径向刚度,减小电磁斥力作用下的导轨分离量。预紧机理的数学解析有助于在身管设计和制造阶段更好地理解和控制导轨分离量。%The rails were expanded outside under the action of the electromagnetic repulsed force when the electromagnetic rail gun was launching.The magnitude of the expanding has di-rect influence on the electrical contact performance between the rail and the solid armature. The rail deflections must be limited for the sake of the design of the rail gun equipment.The e-lasticity theory of the materials was used to analyze the barrel material deflection of certain rail gun equipment under the action of compound effect of assumed load,pretightening force coeffi-cient,load coefficient and configuration parameters.At last,a model was analyzed and simula-ted by use of ANSYS software,and some conclusions were acquired.Conclusions showed that the theory is true and pretightening technique can reduce the rail deflections when the armature is thrown.These analysis and conclusions are help to achieve a better understanding of how to control rail deflections during the process of the electromagnetic rail gun design.

  1. The Evolution of the Control System for the Electromagnetic Calorimeter of the Compact Muon Solenoid Experiment at the Large Hadron Collider

    CERN Multimedia

    Holme, Oliver; Dissertori, Günther; Lustermann, Werner; Zelepoukine, Serguei

    2011-01-01

    This paper discusses the evolution of the Detector Control System (DCS) designed and implemented for the Electromagnetic Calorimeter (ECAL) of the Compact Muon Solenoid (CMS) experiment at the Large Hadron Collider (LHC) as well as the operational experience acquired during the LHC physics data taking periods of 2010 and 2011. The current implementation in terms of functionality and planned hardware upgrades are presented. Furthermore, a project for reducing the long-term software maintenance, including a year-long detailed analysis of the existing applications, is put forward and the current outcomes which have informed the design decisions for the next CMS ECAL DCS software generation are described. The main goals for the new version are to minimize external dependencies enabling smooth migration to new hardware and software platforms and to maintain the existing functionality whilst substantially reducing support and maintenance effort through homogenization, simplification and standardization of the contr...

  2. The TileCal Barrel Test Assembly

    CERN Multimedia

    Leitner, R

    On 30th October, the mechanics test assembly of the central barrel of the ATLAS tile hadronic calorimeter was completed in building 185. It started on 23rd June and is the second wheel for the Tilecal completely assembled this year. The ATLAS engineers and technicians are quick: instead of the 27 weeks initially foreseen for assembling the central barrel of the tile hadronic calorimeter (Tilecal) in building 185, they inserted the last of the 64 modules on 30th October after only 19 weeks. In part, this was due to the experience gained in the dry run assembly of the first extended barrel, produced in Spain, in spring this year (see Bulletin 23/2003); however, the central barrel is twice as long - and twice as heavy. With a length of 6.4 metres, an outer diameter of 8.5 metres and an inner diameter of 4.5 metres, the object weight is 1300 tonnes. The whole barrel cylinder is supported by the stainless steel support structure weighing only 27 tons. The barrel also has to have the right shape: over the whole 8...

  3. Manufactured by Kawasaki Heavy Industries Ltd of Harima, in Japan, the cryostat of the ATLAS electromagnetic calorimeter barrel underwent very strict cryogenic tests before being shipped to Europe

    CERN Multimedia

    2001-01-01

    The cryostat consists of a vacuum chamber, a cylinder that is 5.5 metres in diameter, 7 metres long, and a concentric cold chamber to be filled with liquid argon that will house the detector. The whole unit is made out of aluminium 5083 and will weigh 210 tonnes when put together with the detector.

  4. LHCb calorimeter electronics. Photon identification. Calorimeter calibration

    CERN Document Server

    Machefert, F

    LHCb is one of the four large experiments installed on the LHC accelerator ring. The aim of the detector is to precisely measure CP violation observables and rare decays in the B meson sector. The calorimeter system of LHCb is made of four sub-systems: the scintillating pad detector, the preshower, the electromagnetic (ECAL) and hadronic (HCAL) calorimeters. It is essential to reconstruct B decays, to efficiently trigger on interesting events and to identify electrons and photons. After a review of the LHCb detector sub-systems, the first part of this document describes the calorimeter electronics. First, the front-end electronics in charge of measuring the ECAL and HCAL signals from the photomultipliers is presented, then the following section is an overview of the control card of the four calorimeters. The chapters three and four concern the test software of this electronics and the technological choices making it tolerant to radiations in the LHCb cavern environment. The measurements performed to ensure th...

  5. The CMS forward calorimeter with quartz fibres

    CERN Multimedia

    Laurent Guiraud

    1999-01-01

    Part of the forward hadron calorimeter for the CMS experiment at the LHC is seen here. The calorimeter will be placed at the ends of the experiment barrel to measure the energy of particles produced in the 14 TeV proton-proton collisions. In consists of an iron absorber and specially designed radiation-hard quartz so that it survives the high radiation levels produced by collisions.

  6. Analysis of Performance of a Radiation-Hard, Highly-Segmented Shashlik Electromagnetic Calorimeter in the CERN H4 Testbeam

    Science.gov (United States)

    Culbertson, Eric; Neu, Chris; Dezoort, Gage; Ledovskoy, Alexander; Sinthuprasith, Tutanon

    2017-01-01

    A shashlik style calorimeter with alternating tungsten and LYSO crystal plates underwent testbeam analysis to determine its energy resolution. A single shashlik module is a tiny rectangular prism composed of 28 2.5 mm thick tungsten plates alternating with 29 1.5 mm thick LYSO crystals, which each have a length and width of 14 mm. The expected stochastic energy resolution of this design was predicted to be 10%/√{ E } by standalone GEANT4 simulations and subsequent beam tests. A 4x4 array of shashlik modules has been tested using the H4 beamline at CERN. Following a correction to the nonlinearity of SiPM response, the energy resolution was determined.

  7. Test beam results on Atlas electromagnetic end-cap calorimeter: Electrons-jets separation; Resultats des tests en faisceau sur les bouchons du calorimetre electromagnetique d'ATLAS - separation electrons-jets

    Energy Technology Data Exchange (ETDEWEB)

    Serfon, C

    2005-05-15

    ATLAS is one of the four experiments being built on the future proton-proton collider at CERN: the LHC. This experiment has a large physics program, from Standard Model to new physics. The search for the Higgs boson in two photons or in four leptons, or the search of Z' or W' needs a good energy resolution for the electromagnetic calorimeter. This thesis describes the beam tests performed on three modules of the electromagnetic end cap calorimeter. A 0.6% non-uniformity, and a 0.7% energy resolution global constant term (dominant at high energy) has been obtained. Moreover, a study on the separation between electrons and jets is also performed. This study shows that a jets rejection factor of 10{sup 5} can be obtained keeping an electron efficiency better than 78%. (author)

  8. CALIFA Barrel prototype detector characterisation

    Energy Technology Data Exchange (ETDEWEB)

    Pietras, B., E-mail: benjamin.pietras@usc.es [Universidade de Santiago de Compostela, E-15782 (Spain); Gascón, M. [Universidade de Santiago de Compostela, E-15782 (Spain); Lawrence Berkeley National Laboratory, 1 Cyclotron Rd. Berkeley, CA 94701 (United States); Álvarez-Pol, H. [Universidade de Santiago de Compostela, E-15782 (Spain); Bendel, M. [Technische Universität München, 80333 (Germany); Bloch, T. [Technische Universität Darmstadt, D-64289 Darmstadt (Germany); Casarejos, E. [Universidade de Vigo, E-36310 (Spain); Cortina-Gil, D.; Durán, I. [Universidade de Santiago de Compostela, E-15782 (Spain); Fiori, E. [Gesellschaft für Schwerionenforschung (GSI), D-64291 Darmstadt (Germany); Gernhäuser, R. [Technische Universität München, 80333 (Germany); González, D. [Universidade de Santiago de Compostela, E-15782 (Spain); Kröll, T. [Technische Universität Darmstadt, D-64289 Darmstadt (Germany); Le Bleis, T. [Technische Universität München, 80333 (Germany); Montes, N. [Universidade de Santiago de Compostela, E-15782 (Spain); Nácher, E. [Instituto de Estructura de la Materia, CSIC, E-28006 Madrid (Spain); Robles, M. [Universidade de Santiago de Compostela, E-15782 (Spain); Perea, A. [Instituto de Estructura de la Materia, CSIC, E-28006 Madrid (Spain); Vilán, J.A. [Universidade de Vigo, E-36310 (Spain); Winkel, M. [Technische Universität München, 80333 (Germany)

    2013-11-21

    Well established in the field of scintillator detection, Caesium Iodide remains at the forefront of scintillators for use in modern calorimeters. Recent developments in photosensor technology have lead to the production of Large Area Avalanche Photo Diodes (LAAPDs), a huge advancement on traditional photosensors in terms of high internal gain, dynamic range, magnetic field insensitivity, high quantum efficiency and fast recovery time. The R{sup 3}B physics programme has a number of requirements for its calorimeter, one of the most challenging being the dual functionality as both a calorimeter and a spectrometer. This involves the simultaneous detection of ∼300MeV protons and gamma rays ranging from 0.1 to 20 MeV. This scintillator – photosensor coupling provides an excellent solution in this capacity, in part due to the near perfect match of the LAAPD quantum efficiency peak to the light output wavelength of CsI(Tl). Modern detector development is guided by use of Monte Carlo simulations to predict detector performance, nonetheless it is essential to benchmark these simulations against real data taken with prototype detector arrays. Here follows an account of the performance of two such prototypes representing different polar regions of the Barrel section of the forthcoming CALIFA calorimeter. Measurements were taken for gamma–ray energies up to 15.1 MeV (Maier-Leibnitz Laboratory, Garching, Germany) and for direct irradiation with a 180 MeV proton beam (The Svedberg Laboratoriet, Uppsala, Sweden). Results are discussed in light of complementary GEANT4 simulations. -- Highlights: •Prototypes corresponding to different sections of the forthcoming CALIFA Barrel calorimeter were tested. •The response to both high energy gamma rays and high energy protons was observed. •This response was reproduced by use of R3BROOT simulations, the geometry extrapolated to predict performance of the complete calorimeter. •Effects such as energy straggling of wrapping

  9. Design, Performance, and Calibration of the CMS Hadron-Outer Calorimeter

    CERN Document Server

    Abdullin, Salavat; Acharya, Bannaje Sripathi; Adam, Nadia; Adams, Mark Raymond; Akchurin, Nural; Akgun, Ugur; Albayrak, Elif Asli; Anderson, E Walter; Antchev, Georgy; Arcidy, M; Ayan, S; Aydin, Sezgin; Aziz, Tariq; Baarmand, Marc M; Babich, Kanstantsin; Baden, Drew; Bakirci, Mustafa Numan; Banerjee, Sunanda; Banerjee, Sudeshna; Bard, Robert; Barnes, Virgil E; Bawa, Harinder Singh; Baiatian, G; Bencze, Gyorgy; Beri, Suman Bala; Berntzon, Lisa; Bhatnagar, Vipin; Bhatti, Anwar; Bodek, Arie; Bose, Suvadeep; Bose, Tulika; Budd, Howard; Burchesky, Kyle; Camporesi, Tiziano; Cankocak, Kerem; Carrell, Kenneth Wayne; Cerci, Salim; Chendvankar, Sanjay; Chung, Yeon Sei; Clarida, Warren; Cremaldi, Lucien Marcus; Cushman, Priscilla; Damgov, Jordan; De Barbaro, Pawel; Debbins, Paul; Deliomeroglu, Mehmet; Demianov, A; de Visser, Theo; Deshpande, Pandurang Vishnu; Díaz, Jonathan; Dimitrov, Lubomir; Dugad, Shashikant; Dumanoglu, Isa; Duru, Firdevs; Efthymiopoulos, I; Elias, John E; Elvira, D; Emeliantchik, Igor; Eno, Sarah Catherine; Ershov, Alexander; Erturk, Sefa; Esen, Selda; Eskut, Eda; Fenyvesi, Andras; Fisher, Wade Cameron; Freeman, Jim; Ganguli, Som N; Gaultney, Vanessa; Gamsizkan, Halil; Gavrilov, Vladimir; Genchev, Vladimir; Gleyzer, Sergei V; Golutvin, Igor; Goncharov, Petr; Grassi, Tullio; Green, Dan; Gribushin, Andrey; Grinev, B; Gurtu, Atul; Murat Güler, A; Gülmez, Erhan; Gümüs, K; Haelen, T; Hagopian, Sharon; Hagopian, Vasken; Halyo, Valerie; Hashemi, Majid; Hauptman, John M; Hazen, Eric; Heering, Arjan Hendrix; Heister, Arno; Hunt, Adam; Ilyina, N; Ingram, D; Isiksal, Engin; Jarvis, Chad; Jeong, Chiyoung; Johnson, Kurtis F; Jones, John; Kaftanov, Vitali; Kalagin, Vladimir; Kalinin, Alexey; Kalmani, Suresh Devendrappa; Karmgard, Daniel John; Kaur, Manjit; Kaya, Mithat; Kaya, Ozlem; Kayis-Topaksu, A; Kellogg, Richard G; Khmelnikov, Alexander; Kim, Heejong; Kisselevich, I; Kodolova, Olga; Kohli, Jatinder Mohan; Kolossov, V; Korablev, Andrey; Korneev, Yury; Kosarev, Ivan; Kramer, Laird; Krinitsyn, Alexander; Krishnaswamy, Marthi Ramaswamy; Krokhotin, Andrey; Kryshkin, V; Kuleshov, Sergey; Kumar, Arun; Kunori, Shuichi; Laasanen, Alvin T; Ladygin, Vladimir; Laird, Edward; Landsberg, Greg; Laszlo, Andras; Lawlor, C; Lazic, Dragoslav; Lee, Sang Joon; Levchuk, Leonid; Linn, Stephan; Litvintsev, Dmitri; Lobolo, L; Los, Serguei; Lubinsky, V; Lukanin, Vladimir; Ma, Yousi; Machado, Emanuel; Maity, Manas; Majumder, Gobinda; Mans, Jeremy; Marlow, Daniel; Markowitz, Pete; Martínez, German; Mazumdar, Kajari; Merlo, Jean-Pierre; Mermerkaya, Hamit; Mescheryakov, G; Mestvirishvili, Alexi; Miller, Michael; Möller, A; Mohammadi-Najafabadi, M; Moissenz, P; Mondal, Naba Kumar; Mossolov, Vladimir; Nagaraj, P; Narasimham, Vemuri Syamala; Norbeck, Edwin; Olson, Jonathan; Onel, Yasar; Onengüt, G; Ozkan, Cigdem; Ozkurt, Halil; Ozkorucuklu, Suat; Ozok, Ferhat; Paktinat, S; Pal, Andras; Patil, Mandakini Ravindra; Penzo, Aldo; Petrushanko, Sergey; Petrosian, A; Pikalov, Vladimir; Piperov, Stefan; Podrasky, V; Polatoz, A; Pompos, Arnold; Popescu, Sorina; Posch, C; Pozdnyakov, Andrey; Qian, Weiming; Ralich, Robert; Reddy, L; Reidy, Jim; Rogalev, Evgueni; Roh, Youn; Rohlf, James; Ronzhin, Anatoly; Ruchti, Randy; Ryazanov, Anton; Safronov, Grigory; Sanders, David A; Sanzeni, Christopher; Sarycheva, Ludmila; Satyanarayana, B; Schmidt, Ianos; Sekmen, Sezen; Semenov, Sergey; Senchishin, V; Sergeyev, S; Serin, Meltem; Sever, Ramazan; Singh, B; Singh, Jas Bir; Sirunyan, Albert M; Skuja, Andris; Sharma, Seema; Sherwood, Brian; Shumeiko, Nikolai; Smirnov, Vitaly; Sogut, Kenan; Sonmez, Nasuf; Sorokin, Pavel; Spezziga, Mario; Stefanovich, R; Stolin, Viatcheslav; Sudhakar, Katta; Sulak, Lawrence; Suzuki, Ichiro; Talov, Vladimir; Teplov, Konstantin; Thomas, Ray; Tonwar, Suresh C; Topakli, Huseyin; Tully, Christopher; Turchanovich, L; Ulyanov, A; Vanini, A; Vankov, Ivan; Vardanyan, Irina; Varela, F; Vergili, Mehmet; Verma, Piyush; Vesztergombi, Gyorgy; Vidal, Richard; Vishnevskiy, Alexander; Vlassov, E; Vodopiyanov, Igor; Volobouev, Igor; Volkov, Alexey; Volodko, Anton; Wang, Lei; Werner, Jeremy Scott; Wetstein, Matthew; Winn, Dave; Wigmans, Richard; Whitmore, Juliana; Wu, Shouxiang; Yazgan, Efe; Yetkin, Taylan; Zálán, Peter; Zarubin, Anatoli; Zeyrek, Mehmet

    2008-01-01

    The CMS hadron calorimeter is a sampling calorimeter with brass absorber and plastic scintillator tiles with wavelength shifting fibres for carrying the light to the readout device. The barrel hadron calorimeter is complemented with an outer calorimeter to ensure high energy shower containment in the calorimeter. Fabrication, testing and calibration of the outer hadron calorimeter are carried out keeping in mind its importance in the energy measurement of jets in view of linearity and resolution. It will provide a net improvement in missing $\\et$ measurements at LHC energies. The outer hadron calorimeter will also be used for the muon trigger in coincidence with other muon chambers in CMS.

  10. The CMS crystal calorimeter

    CERN Document Server

    Lustermann, W

    2004-01-01

    The measurement of the energy of electrons and photons with very high accuracy is of primary importance far the study of many physics processes at the Large Hadron Collider (LHC), in particular for the search of the Higgs Boson. The CMS experiment will use a crystal calorimeter with pointing geometry, almost covering 4p, as it offers a very good energy resolution. It is divided into a barrel composed of 61200 lead tungstate crystals, two end-caps with 14648 crystals and a pre-shower detector in front of the end-cap. The challenges of the calorimeter design arise from the high radiation environment, the 4 Tesla magnetic eld, the high bunch crossing rate of 40 MHz and the large dynamic range, requiring the development of fast, radiation hard crystals, photo-detectors and readout electronics. An overview of the construction and design of the calorimeter will be presented, with emphasis on some of the details required to meet the demanding performance goals. 19 Refs.

  11. LIQUID ARGON CALORIMETER PERFORMANCE AT HIGH RATES

    CERN Document Server

    Kukhtin, V; The ATLAS collaboration

    2011-01-01

    The performance of the ATLAS liquid argon endcap and forward calorimeters has been projected at the planned high luminosity LHC option HL-LHC by exposing small calorimeter modules of the electromagnetic, hadronic, and forward calorimeters to high intensity proton beams at IHEP/Protvino accelerator. The results of HV current and of pulse shape analysis, and also the dependence of signal amplitude on beam intensity are presented.

  12. LHCb: Physics with the LHCb calorimeter

    CERN Multimedia

    Barsuk, S

    2007-01-01

    The LHCb calorimeter comprises the scintillator pad detector (SPD), preshower (PS), electromagnetic Shashlyk type (ECAL) and hadronichadronic Tile (HCAL) calorimeters, arranged in pseudo-projective geometry. All the four detectors follow the general principle of reading the light from scintillator tiles with wave length shifting fibers, and transporting the light towards photomultipliers (25 ns R/O).

  13. Search for new physics in the Compact Muon Solenoid (CMS) experiment and the response of the CMS calorimeters to particles and jets

    Energy Technology Data Exchange (ETDEWEB)

    Gumus, Kazim Ziya [Texas Tech Univ., Lubbock, TX (United States)

    2008-08-01

    A Monte Carlo study of a generic search for new resonances beyond the Standard Model (SM) in the CMS experiment is presented. The resonances are axigluon, coloron, E6 diquark, excited quark, W', Z', and the Randall-Sundrum graviton which decay to dijets. The dijet resonance cross section that the CMS can expect to discover at a 5σ significance or to exclude at 95% confidence level for integrated luminosities of 100 pb-1, 1 fb-1, and 10 fb-1 is evaluated. It is shown that a 5σ discovery of a multi-TeV dijet resonance is possible for an axigluon, excited quark, and E6 diquark. However, a 5σ discovery can not be projected with confidence for a W', Z' and the Randall-Sundrum graviton. On the other hand, 95% CL exclusion mass regions can be measured for all resonances at high luminosities. In the second part of this dissertation, the analyses of the 2006 test beam data from the combined electromagnetic and hadronic barrel calorimeters are presented. The CMS barrel calorimeters response to a variety of beam particles in a wide momenta range (1 to 350 GeV/c) is measured. Furthermore, using these beam data, the expected performance of the barrel calorimeters to jets is predicted.

  14. ATLAS: First rehearsal for the tile calorimeter

    CERN Multimedia

    2003-01-01

    The dry run assembly of the first barrel of the ATLAS tile hadron calorimeter has been successfully completed. It is now being dismantled again so that it can be lowered into the ATLAS cavern where it will be reassembled in October 2004.

  15. The ATLAS Tile Calorimeter gets into shape!

    CERN Document Server

    2002-01-01

    The last of the 64 modules for one of the ATLAS Hadron tile calorimeter barrels has just arrived at CERN. This arrival puts an end to two and a half years work assembling and testing all the modules in the Institut de Física d'Altes Energies (IFAE), in Barcelona.

  16. High density fluoride glass calorimeter

    Science.gov (United States)

    Xie, Q.; Scheltzbaum, J.; Akgun, U.

    2014-04-01

    The unprecedented radiation levels in current Large Hadron Collider runs, and plans to even increase the luminosity creates a need for new detector technologies to be investigated. Quartz plates to replace the plastic scintillators in current LHC calorimeters have been proposed in recent reports. Quartz based Cherenkov calorimeters can solve the radiation damage problem, however light production and transfer have proven to be challenging. This report summarizes the results from a computational study on the performance of a high-density glass calorimeter. High-density, scintillating, fluoride glass, CHG3, was used as the active material. This glass has been developed specifically for hadron collider experiments, and is known for fast response time, in addition to high light yield. Here, the details of a Geant4 model for a sampling calorimeter prototype with 20 layers, and its hadronic as well as electromagnetic performances are reported.

  17. Secondary Emission Calorimeter (SEC)

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, J. J. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Northrop, Richard [Univ. of Chicago, IL (United States); Frisch, Henry [Univ. of Chicago, IL (United States); Elagin, Andrey [Univ. of Chicago, IL (United States); Ronzhin, Anatoly [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Ramberg, Erik [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Spiropulu, Maria [California Inst. of Technology (CalTech), Pasadena, CA (United States); Apresyan, Artur [California Inst. of Technology (CalTech), Pasadena, CA (United States); Xie, Si [California Inst. of Technology (CalTech), Pasadena, CA (United States)

    2014-06-25

    This is a technical scope of work (TSW) between the Fermi National Accelerator Laboratory (Fermilab) the experimenters of University of Chicago and California Institute of Technology, who have committed to participate in beam tests to be carried out during the 2014-2015 Fermilab Test Beam Facility program. The TSW is intended primarily for the purpose of recording expectations for budget estimates and work allocations. The experimenters propose using large-area micro-channel plates assembled without the usual bialkali photocathodes as the active element in sampling calorimeters, Modules without photocathodes can be economically assembled in a glove box and then pumped and sealed using the process to construct photomultipliers, This electromagnetic calorimeter is based on W and Pb absorber plates sandwiched with detectors. Measurements can be made with bare plates and absorber inside the vacuum vessel.

  18. Hadron response and shower development in the ATLAS calorimeters

    CERN Document Server

    Simonyan, M; The ATLAS collaboration

    2010-01-01

    Abstract 1 In the year 2004 a full slice of the Atlas barrel detector has been exposed to a pion test-beam covering the momentum range between 2 and 350 GeV. We report on results from a scan of beam impact points from eta=0.2 to eta=0.65 for beam momenta from 20 to 350 GeV in a set-up with the electro-magnetic (Lar/Pb and the hadronic calorimeter (Tile/scintillator) operational, and, on the results of a data taking period were, in addition, the inner detector system was operational and pion momenta from 2 to 180 GeV. The mean energy, the energy resolution and the longitudinal and radial shower profiles, and, various observables characterizing the shower topology in the calorimeter are measured using the same reconstruction method as used for the analysis of proton-proton collisions. The Monte Carlo simulation based on the Geant4 program is able to reproduce the pion response within a few percent. The largest deviations (up to 5%) are observed in the low pion momentum range. The simulation predicts a resolutio...

  19. Participation to the study of the electromagnetic calorimeter calibration for the CMS experiment and to the study of avalanche photodiodes; Participation a l'etude de la calibration du calorimetre electromagnetique de l'experience CMS et a l'etude de photodiodes a avalanche

    Energy Technology Data Exchange (ETDEWEB)

    Da Ponte Puill, V

    1999-12-13

    The electromagnetic calorimeter CMS (Compact Muon Solenoid) has been chosen to study the Higgs boson production. This calorimeter will be constituted of more than 80000 lead tungstate scintillating crystals radiation resistant. Photodiodes have been especially optimized to detect the scintillating light of these crystals: avalanche photodiodes (APD). This thesis includes two separate parts. A first part deals with the APD submitted to high rate of radiations and tested in the Ulysse reactor of the Cea. The second part deals with the calorimeter calibration. (A.L.B.)

  20. Rain Barrels in Utah

    OpenAIRE

    Greene, Brian; Mesner, Nancy; Brain, Roslynn

    2015-01-01

    Rain barrels are an easy way to conserve rain water and help protect our environment. This fact sheet tells how to find out about the current regulations in Utah and how to build a rain barrel for your own home.

  1. Performances of the ATLAS Hadronic Tile Calorimeter Modules for Electrons and Pions

    CERN Document Server

    Kulchitskii, Yu A

    2004-01-01

    With the aim of establishing of an electromagnetic energy scale of the ATLAS Tile calorimeter and understanding of performance of the calorimeter to electrons 12 \\% of modules have been exposed in electron beams with various energies by three possible ways: cell-scan at $\\theta =20^o$ at the centers of the front face cells, $\\eta$-scan and tilerow scan at $\\theta = 90^o$ for the module side cells. We have extracted the electron calibration constants and electron energy resolutions some of these barrel and extended barrel modules at energies E = 10, 20, 50, 100 and 180 GeV for the cell-scan at $\\theta = 20^o$, the $\\eta$ scan and the tile scan at $90^o$. The average values of these constants are equal to $\\langle R_e \\rangle =1.157\\pm0.002$ pC/GeV for the cell-scan at $\\theta = 20^o$, $\\langle R_e \\rangle =1.143\\pm0.005$ pC/GeV for the $\\eta$-scan and $\\langle R_e\\rangle =1.196\\pm0.005$ pC/GeV for the tile-scan at $\\theta = 90^o$. The RMS values are the following: for the cell-scan is $RMS=2.6\\pm0.1$ \\%, for t...

  2. Characterisation and exploitation of Atlas electromagnetic calorimeter performances: muons study and timing resolution use; Caracterisation et exploitation des performances du calorimetre electromagneique d'Atlas: etude des muons et mise a profit de la resolution en temps

    Energy Technology Data Exchange (ETDEWEB)

    Camard, A

    2004-10-01

    The ATLAS detector in LHC involves electromagnetic calorimeters. The purpose of this work is to study the calorimeter response to the muons contaminating the beam used to test the different modules of ATLAS. We have showed how data analysis from the testing beam can be used to assure that the required performance for the study of the detector response to muons provides a complementary diagnostic tool for electrons. We have taken part into the design of a testing bench aimed at assessing the performance of the receiver circuit for timing and triggering signals. We have developed, in the framework of a quick simulation of ATLAS, a tool for the reconstruction in a simple and fast manner of the localization of the main event vertex by using the measurement of the arrival time of particles with ATLAS's calorimeters. It is likely that this tool will be fully used during the starting phase of the ATLAS experiment because it is easier to operate it quickly and is less sensitive to the background noise than traditional tools based on charged-particle tracks recognition inside the detector.

  3. Performance of the Electromagnetic Calorimeter of AMS-02 on the International Space Station ans measurement of the positronic fraction in the 1.5 – 350 GeV energy range

    CERN Document Server

    Basara, Laurent

    The AMS-02 experiment is a particle detector installed on the International Space Station (ISS) since May 2011, which measures the characteristics of the cosmic rays to bring answers to the problematics risen by the astroparticle physics since a few decades, in particular the study of dark matter and the search of antimatter. The phenomenological aspects of the physics of cosmic rays are reviewed in a first part. A second one describes the in-flight performances of the different subdetectors of AMS-02, in particular the electromagnetic calorimeter. It is shown, using particles at the ionizing minimum (MIPs), accounting for the main part of cosmic rays, that the calorimeter works as expected, and we find the same performances as on ground. This study is used to follow in time the evolution of the detector performances. It also allows to develop a charge estimator for the nuclei using the calorimeter. A third and final part, deals with the determination of the positronic fraction. The main difficulty of this me...

  4. Study of the optical monitoring system of the scintillating crystal involved in the electromagnetic calorimeter of CMS experiment; Etude du systeme de suivi optique des cristaux scintillants du calorimetre electromagnetique de l`experience CMS

    Energy Technology Data Exchange (ETDEWEB)

    Geleoc, M

    1998-09-04

    The prospect of the experimental discovery of the Higgs boson is one of the motivations to build the large hadron collider (LHC). Proton beams will collide and the emitted particles will be detected by ATLAS and CMS equipment. In each detector the electromagnetic calorimeter will allow the characterisation of the 2 photons coming from one of the disintegration channels of the Higgs boson. CMS collaboration has chosen an homogeneous calorimeter fitted with PbWO{sub 4} crystals. Each crystal with its photodetector and its electronic device forms one detection channel. The resolution of the detection channels should not deteriorate all along the operating time. The optical monitoring system of the crystals logs then controls the response of each detection channel in order to allow an accurate calibration of the calorimeter. The optical properties, the resistance to irradiation of PbWO{sub 4} crystals and the modelling of light collection are investigated in this work. The description of the different components of the optical monitoring system highlights the technical difficulties we had to challenge. An experimental testing bench has been set up to study the coupling between the scintillation signal and the signal that feeds the monitoring system, this coupling has been studied under irradiation in the conditions of CMS operating. (A.C.) 94 refs.

  5. Status of the CALICE analog calorimeter technological prototypes

    CERN Document Server

    Terwort, Mark

    2012-01-01

    The CALICE collaboration is currently developing engineering prototypes of electromagnetic and hadronic calorimeters for a future linear collider detector. This detector is designed to be used in particle-flow based event reconstruction. In particular, the calorimeters are optimized for the individual reconstruction and separation of electromagnetic and hadronic showers. They are conceived as sampling calorimeters with tungsten and steel absorbers, respectively. Two electromagnetic calorimeters are being developed, one with silicon-based active layers and one based on scintillator strips that are read out by MPPCs, allowing highly granular readout. The analog hadron calorimeter is based on scintillating tiles that are also read out individually by silicon photomultipliers. The multi-channel, auto-triggered front-end chips are integrated into the active layers of the calorimeters and are designed for minimal power consumption (power pulsing). The goal of the construction of these prototypes is to demonstrate t...

  6. Calibration of the Atlas electromagnetic calorimeter. Search for the Higgs boson in its invisible decays; Etalonnage du calorimetre electromagnetique d'ATLAS. Recherche du boson de Higgs dans ses desintegrations invisibles

    Energy Technology Data Exchange (ETDEWEB)

    Neukermans, L

    2002-05-01

    The most promising channels for an intermediate mass Higgs boson discovery at LHC are leptonic and photonic decays. Therefore, a good uniformity of response of the electromagnetic calorimeter is required to reach the 0.7% constant term needed. This thesis deals with the absolute calibration of this detector. An electrical description of the calibration system, the detector and its read-out chain has been made for a better comprehension of the signal pulse shapes. A method, using a convolution of the calibration waveforms, has been developed to predict physics response, leading to absolute calibration. The level of accuracy obtained allows to reach the 0.3% contribution to the constant term required. Test beam analysis of a prototype module showed the performance of the electromagnetic calorimeter in terms of local resolution and linearity. A uniformity study has been made, leading to a 0.8% dispersion on a {delta}{eta} x {delta}{phi} = 1.2 x 0.75 area. In a second part, the observability of an invisible Higgs boson produced via weak boson fusion at the LHC is presented. A level 1 trigger strategy for this purely jet and missing E{sub T} final states is discussed. A method to measure the level of background using physics events is presented. This analysis shows that an invisible branching ratio of 25% could be reached at 95% CL with only 30 fb{sup -1} for a Higgs boson mass of 120 GeV/c{sup 2}. (author)

  7. Performance of prototypes for the PANDA barrel EMC

    Science.gov (United States)

    Bremer, D. A.; Eissner, T.; Drexler, P.; Moritz, M.; Novotny, R. W.; PANDA Collaboration

    2015-02-01

    The PANDA experiment will be part of the future Facility for Antiproton and Ion Research (FAIR) and aims for the study of strong interaction within the charm sector via antiproton proton collisions up to antiproton momenta of 15 GeV/c. Reflecting the variety of the physics program the PANDA detector is designed as a multi-purpose detector able to perform tracking, calorimetry and particle identification with nearly complete coverage of the solid angle. The Electromagnetic Calorimeter (EMC) contained inside its Target Spectrometer is based on cooled PbWO4 scintillator crystals. In order to ensure an excellent performance throughout the large dynamic range of photon/electron energies ranging from a few MeV up to 15 GeV an extensive prototyping phase is mandatory. This contribution describes the measured response of the EMC barrel part prototype PROTO60 at the largest design energy to secondary beams provided by the SPS at CERN. In addition to PROTO60 a tracking station was deployed, providing precise position information of the 15 GeV/c positrons. For calibration purposes a 150 GeV/c muon beam and cosmic radiation, in combination with estimations from GEANT4 simulations were used. The obtained performance concerning energy, position and time information is presented.

  8. Calibration of the electromagnetic calorimeter of the Atlas detector: reconstruction of events with non-pointing photons in the frame of a GMSB supersymmetric model; Etalonnage du calorimetre electromagnetique du detecteur Atlas: reconstruction des evenements avec des photons non pointants das le cadre d'un modele supersymetrique GMSB

    Energy Technology Data Exchange (ETDEWEB)

    Prieur, D

    2005-04-15

    The analysis of test-beam data is focused on the calibration of the ATLAS electromagnetic calorimeter. An electrical model has been developed to predict the shape of the physics pulse out of the calibration signal in order to produce optimal filtering coefficients. They are used to compute energy while minimizing electronic noise and getting rid of any possible time shift. Using these coefficients, the uniformity response is 0.6%, in agreement with the 0.7% global constant term required for the whole calorimeter. The study of non pointing photon is driven by the detection of long lived neutralinos predicted by GMSB SUSY models. A systematic study with a detailed simulation of the ATLAS detector was performed to determine the electromagnetic calorimeter angular resolution for such photons. Results were used to parametrized the detector response and to reconstruct SUSY events from this model. (author)

  9. The CMS crystal calorimeter for the LHC

    CERN Document Server

    Seez, Christopher J

    1999-01-01

    The CMS crystal calorimeter, comprising about 80,000 scintillating lead tungstate crystals read out by avalanche photodiodes ( in the barrel) and vacuum phototriodes ( in the endcap) is designed to give excellent energy resolution in the demanding LHC environment. It is now entering the construction phase. A status report on the project is presented, including recent results from test beam verification, crystal production and photodetector development.

  10. Analysis of the response evolution of the CMS electromegnetic calorimeter under electron and pion irradiation

    CERN Document Server

    Ghezzi, Alessio; Ragazzi, Stefano; Rovelli, Chiara; Tabarelli de Fatis, Tommaso

    2006-01-01

    The electromagnetic calorimeter of the CMS experiment consists of about 75000 PbWO_4 scintillating crystals. A monitoring system using laser light injection into the crystals is foreseen to follow variations in the light transmission through the crystals due to radiation exposure. The reliability of the monitoring system was demonstrated in the past on a restricted number of PbWO_4 crystals all belonging to the same production batch. To get more insight in the crystal behaviour under different irradiation conditions, during year 2003 additional PbWO_4 crystals in their final configuration were exposed to pion and electron beams providing a radiation dose comparable to the one expected in the ECAL barrel electromagnetic calorimeter at the LHC. The evolution of their response was monitored with a reference electron beam of 120 GeV/c momentum and compared to the response of the laser monitoring system. Here we report the results of the data analysis, which corroborates the reliability of the laser monitoring sho...

  11. Barrel Weight Reduction

    Science.gov (United States)

    2005-05-01

    Process 16 Prototype Hardware Testing and Results 17 Barrel Weight 17 Functional Testing 17 Barrel Deflection 18 Drop Test 19 Thermal Test 20 References 23...measurements were compliant. 19 Thermal Test As discussed in the Transient Analysis Model Verification section of this report, the analytical results from the

  12. Electromagnetism

    CERN Multimedia

    Without the electromagnetic force, you would not be solid. The atoms of your body are held together by electromagnetism: negatively charged electrons are held around the positively charged nucleus. Atoms share electrons to form molecules, so building up the structure of matter. As its name suggests, electromagnetism has a double nature: a moving electric charge creates a magnetic field. This intimate connection between electricity and magnetism was described by James Maxwell in 1864. The electromagnetic force can be both positive and negative : opposite charges attract, whereas like charges repel. Electromagnetic radiation, such as radio, microwaves, light and X-rays, is emitted by charges when they are made to move. For example, an oscillating current in a wire emits radio waves. Text for the interactive: Why do the needles move when you switch on the current ?

  13. Maintaining an effective and efficient control system for the Electromagnetic Calorimeter of the Compact Muon Solenoid experiment during Long-Term Operations of CERN�??s Large Hadron Collider

    CERN Document Server

    Holme, Oliver

    2012-01-01

    The sub-detectors of the Compact Muon Solenoid (CMS) multi-purpose particle detector at the CERN Large Hadron Collider (LHC) have been collecting physics data from particle collisions for almost three years. During this period, the CMS Electromagnetic Calorimeter (ECAL) Detector Control System (DCS) has contributed to the high level of availability of the experiment. This paper presents the current architecture of this distributed and heterogeneous control system alongside plans and developments for future improvements. To ensure that the system can efficiently operate and adapt to changes throughout the required operation lifetime of more than a decade, the potential legacy aspects of this kind of control system must be carefully managed. Such issues include evolving system requirements, turnover of staff members, potential benefits from new technologies and the need to follow release schedules of external software dependencies. The techniques and results of the work to continually maintain, improve and stre...

  14. ATLAS-Hadronic Calorimeter

    CERN Multimedia

    2003-01-01

    Hall 180 work on Hadronic Calorimeter The ATLAS hadronic tile calorimeter The Tile Calorimeter, which constitutes the central section of the ATLAS hadronic calorimeter, is a non-compensating sampling device made of iron and scintillating tiles. (IEEE Trans. Nucl. Sci. 53 (2006) 1275-81)

  15. Performance of a liquid argon accordion hadronic calorimeter prototype

    Energy Technology Data Exchange (ETDEWEB)

    Gingrich, D.M. [Alberta Univ., Edmonton, AB (Canada); Greeniaus, G. [Alberta Univ., Edmonton, AB (Canada); Kitching, P. [Alberta Univ., Edmonton, AB (Canada); Olsen, B. [Alberta Univ., Edmonton, AB (Canada); Pinfold, J.L. [Alberta Univ., Edmonton, AB (Canada); Rodning, N.L. [Alberta Univ., Edmonton, AB (Canada); Boos, E. [Alma-Ata (Kazakhstan); Schaoutnikov, B.O. [Alma-Ata (Kazakhstan); Aubert, B. [Grenoble-1 Univ., 74 - Annecy (France). Lab. de Physique des Particules; Bazan, A. [Grenoble-1 Univ., 74 - Annecy (France). Lab. de Physique des Particules; Beaugiraud, B. [Grenoble-1 Univ., 74 - Annecy (France). Lab. de Physique des Particules; Boniface, J. [Grenoble-1 Univ., 74 - Annecy (France). Lab. de Physique des Particules; Colas, J. [Grenoble-1 Univ., 74 - Annecy (France). Lab. de Physique des Particules; Jezequel, S. [Grenoble-1 Univ., 74 - Annecy (France). Lab. de Physique des Particules; Leflour, T. [Grenoble-1 Univ., 74 - Annecy (France). Lab. de Physique des Particules; Maire, M. [Grenoble-1 Univ., 74 - Annecy (France). Lab. de Physique des Particules; Rival, F. [Grenoble-1 Univ., 74 - Annecy (France). Lab. de Physique des Particules; Stipcevic, M. [Grenoble-1 Univ., 74 - Annecy (France). Lab. de Physique des Particules; Thion, J. [Grenoble-1 Univ., 74 - Annecy (France). Lab. de Physique des Particules; VanDenPlas, D. [Grenoble-1 Univ., 74 - Annecy (France). Lab. de Physique des Particules; Wingerter-Seez, I. [Grenoble-1 Univ., 74 - Annecy (France). Lab. de Physique des Particules; Zolnierowski, Y.P. [Grenoble-1 Univ., 74 - Annecy (France). Lab. de Physique des Particules; Chmeissani, M. [Universidad Autonoma de Barcelona (Spain); Fernandez, E. [Universidad Autonoma de Barcelona (Spain); Garrido, L. [Universidad Autonoma de Barcelona (Spain); Martinez, M. [Universidad Autonoma de Barcelona (Spain); Padilla, C. [Universidad Autonoma de Barcelona (Spain); Gordon, H.A. [Brookhaven National Lab., Upton, NY (United States); RD3 Colla...

    1995-02-15

    A liquid argon hadronic calorimeter using the ``accordion`` geometry and the electrostatic transformer readout scheme has been tested at CERN, together with a liquid argon accordion electromagnetic prototype. The results obtained for pions on the linearity, the energy resolution and the uniformity of the calorimeter response are well within the requirements for operation at the LHC. ((orig.))

  16. Computer vision barrel inspection

    Science.gov (United States)

    Wolfe, William J.; Gunderson, James; Walworth, Matthew E.

    1994-02-01

    One of the Department of Energy's (DOE) ongoing tasks is the storage and inspection of a large number of waste barrels containing a variety of hazardous substances. Martin Marietta is currently contracted to develop a robotic system -- the Intelligent Mobile Sensor System (IMSS) -- for the automatic monitoring and inspection of these barrels. The IMSS is a mobile robot with multiple sensors: video cameras, illuminators, laser ranging and barcode reader. We assisted Martin Marietta in this task, specifically in the development of image processing algorithms that recognize and classify the barrel labels. Our subsystem uses video images to detect and locate the barcode, so that the barcode reader can be pointed at the barcode.

  17. Timing and tracking for the Crystal Barrel detector

    Directory of Open Access Journals (Sweden)

    Beck Reinhard

    2017-01-01

    Full Text Available The aim of the project D.3 is the upgrade of several detector components used in the CBELSA/TAPS experiment at ELSA. The readout of the Crystal Barrel Calorimeter will be extended by a timing branch in order to gain trigger capability for the detector, which will allow to measure completely neutral final states in photoproduction reactions (see projects A.1 and C.5. Additionally, the readout of the inner crystals of the TAPS detector, which covers the forward opening of the Crystal Barrel Calorimeter, will be modified to be capable of high event rates due to the intensity upgrade of ELSA. Furthermore, a full-scale prototype Time Projection Chamber (TPC has been built to be used as a new central tracker for the CBELSA/TAPS experiment at ELSA and the FOPI experiment at GSI.

  18. Overview of the LHCb Calorimeter Detectors

    CERN Document Server

    Perret, P

    2013-01-01

    The LHCb calorimeter system is composed of four subdetectors: an electromagnetic calorimeter (ECAL) followed by a hadron calorimeter (HCAL). In addition the system includes in front of them the Scintillating Pad Detector (SPD) and Pre-Shower (PS). It is used to select transverse energy hadron, electron and photon candidates for the first trigger level and it provides the identification of electrons, photons and hadrons as well as the measurement of their energies and positions. The design and construction characteristics of the LHCb calorimeter will be recalled. Strategies for monitoring and calibration during data taking will be detailed in all aspects. Scintillating fibres, plastics and photomultipliers suffer from ageing due to radiation damage or high currents. Different methods which are used to calibrate the detectors and to recover the initial performances will be presented. The performances achieved will be illustrated in selected channels of interest for B physics.

  19. SCT Barrel Assembly Complete

    CERN Multimedia

    L. Batchelor

    As reported in the April 2005 issue of the ATLAS eNews, the first of the four Semiconductor Tracker (SCT) barrels, complete with modules and services, arrived safely at CERN in January of 2005. In the months since January, the other three completed barrels arrived as well, and integration of the four barrels into the entire barrel assembly commenced at CERN, in the SR1 building on the ATLAS experimental site, in July. Assembly was completed on schedule in September, with the addition of the innermost layer to the 4-barrel assembly. Work is now underway to seal the barrel thermal enclosure. This is necessary in order to enclose the silicon tracker in a nitrogen atmosphere and provide it with faraday-cage protection, and is a delicate and complicated task: 352 silicon module powertapes, 352 readout-fibre bundles, and over 400 Detector Control System sensors must be carefully sealed into the thermal enclosure bulkhead. The team is currently verifying the integrity of the low mass cooling system, which must be d...

  20. Qualification procedure of the electromagnetic calorimeter of the ATLAS detector; Conception et mise au point de la procedure de qualification du calorimetre electromagnetique a argon liquide du detecteur ATLAS

    Energy Technology Data Exchange (ETDEWEB)

    Massol, N

    2000-04-19

    LHC is the next collider based at CERN in Europe. The purpose of this machine is the Higgs boson and SUSY particles search. The detectors must have an excellent electromagnetic calorimetry to measure electron and photon energy. To maximize the signal to noise ratio for a low mass Higgs, it is fundamental to obtain a constant term as small as possible. LAPP is participating in the construction of the liquid argon electromagnetic calorimeter of the ATLAS collaboration. This technology is well adapted to the LHC experimental conditions. A systematic procedure to qualify the modules of this detector is an essential step to guarantee a 0,7% constant term, which is the collaboration objective. The procedure detailed in this thesis consists of quality monitoring during mechanical assembly and of a set of electrical tests such as electrical continuity, cell and cross-talk capacitance measurement, and high-voltage behaviour. For the whole test, it has been necessary to develop dedicated electronic cards, to develop measurement methods, and the whole operation software. Making the procedure automatic will guarantee the quality of each module during assembly, cabling, and test in liquid argon. (author)

  1. sPHENIX Calorimeter Design and Jet Performance

    Science.gov (United States)

    Haggerty, John S.

    2016-12-01

    The PHENIX collaboration is planning a detector upgrade, sPHENIX, which consists of large acceptance calorimetry and tracking detectors built around the superconducting solenoid recently shipped to Brookhaven from the decommissioned BaBar experiment at SLAC. The sPHENIX calorimeter system includes three radial layers of sampling calorimeters, a tungsten-scintillating fiber electromagnetic calorimeter, and two longitudinally segmented sampling hadron calorimeters that are made of scintillator tiles and steel plates. Together, they provide hermetic coverage in | η | < 1 for calorimetry based jet measurements as well as minimal bias jet trigger capability, which coupled with high resolution tracking, enable an extremely rich jet physics program at RHIC.

  2. The BaBar level 1 electromagnetic calorimeter trigger and a measurement of the branching ratio of B sup o->J/psi K sup o sub s

    CERN Document Server

    Wallom, D C H

    2002-01-01

    the K sub s sup 0 decaying through the pi sup 0 mode is made. This is then corrected to provide the overall B sup 0 -> J/PSI K sub s sup 0 measurement. The filial measurement used 58.15 fully reconstructed B mesons giving: B sup 0 -> J/PSI K sub s sup 0 / B sup 0 -> X = 8.65 +- 0.6(Stat) sub 0 sub . sub 9 sub 9 sup + sup 0 sup . sup 4 sup 8 (Sys) x 10 sup - sup 4. During the last year the BABAR detector at SLAC has been collecting data to try to further our fundamental understanding of the universe very shortly after the big bang. The design requirements for the experiment were understandably tight and to this end a very high performance calorimeter trigger was required. The design for the system used the inputs from 280 segments or towers within the calorimeter to provide input. The basic operation of the trigger uses sums of these towers operating over the whole theta strip to provide an energy sum that is compared against a set of thresholds. As well as these energy dependent triggers 2 positional triggers...

  3. Studies of the LHC detection systems: scintillating fibers projective electromagnetic calorimeter prototype and light reading by avalanche photodiodes; Etudes de systemes de detection pour LHC: prototype d`un calorimetre electromagnetique projectif a fibres scintillantes et lecture de la lumiere par des photodiodes a avalanches

    Energy Technology Data Exchange (ETDEWEB)

    Bouhemaid, N.

    1995-09-22

    In this thesis a study concerning the hardware detection system of ATLAS experiment in preparation for L.H.C. is presented. The study is divided in two parts. After a general introduction of the L.H.C. and the ATLAS detector, the first part concerning the electromagnetic calorimeter, and the second part concerning the readout with avalanche photodiodes, are discussed. For both subjects the basic principles are presented before various test results are described. Within the RD1 program three different electromagnetic calorimeter prototypes, which all use the lead scintillating fibres technique, have been built. The first is a non-projective, compensating calorimeter called ``500{mu}m``, the second is a pseudo projective, non-compensating, called ``1 mm``, and the third is fully projective, called ``Radial``. The last prototype is discussed in more detail. Avalanches photodiodes which are used as readout of the ``1 mm`` calorimeter, have been exposed to both, a dedicated test bench in the laboratory as well as to test beams. The results of these tests are also presented. (author). 35 refs., 96 figs., 30 tabs.

  4. TRT Barrel milestones passed

    CERN Multimedia

    Ogren, H

    2004-01-01

    The barrel TRT detector passed three significant milestones this spring. The Barrel Support Structure (BSS) was completed and moved to the SR-1 building on February 24th. On March 12th the first module passed the quality assurance testing in Building 154 and was transported to the assembly site in the SR-1 building for barrel assembly. Then on April 21st the final production module that had been scanned at Hampton University was shipped to CERN. TRT Barrel Module Production The production of the full complement of barrel modules (96 plus 9 total spares) is now complete. This has been a five-year effort by Duke University, Hampton University, and Indiana University. Actual construction of the modules in the United States was completed in the first part of 2004. The production crews at each of the sites in the United States have now completed their missions. They are shown in the following pictures. Duke University: Production crew with the final completed module. Indiana University: Module producti...

  5. Peltier ac calorimeter

    OpenAIRE

    Jung, D. H.; Moon, I. K.; Jeong, Y. H.

    2001-01-01

    A new ac calorimeter, utilizing the Peltier effect of a thermocouple junction as an ac power source, is described. This Peltier ac calorimeter allows to measure the absolute value of heat capacity of small solid samples with sub-milligrams of mass. The calorimeter can also be used as a dynamic one with a dynamic range of several decades at low frequencies.

  6. Electron identification in and performance of the ND280 Calorimeter

    CERN Document Server

    Carver, Antony

    T2K is an o axis neutrino beam experiment with a baseline of 295 km to the far detector, Super-Kamiokande. The near detector, ND280, measures the ux and energy spectra of electron and muon neutrinos in the direction of Super-Kamiokande. An electromagnetic calorimeter constructed from lead and scintillator surrounds the inner detector. Three time projection chambers and two ne grained scintillator detectors sit inside the calorimeter. This thesis describes the development of a particle identification algorithm for the calorimeter and studies how it can enhance a simple electron neutrino analysis. A particle identification algorithm was written for the electromagnetic calorimeter to separate minimally ionising particles, electromagnetic and hadronic showers. A Monte Carlo study suggested that the algorithm produced an electron sample with a relative muon contamination of 10+-2 whilst maintaining an electron efficiency of 80%. Data collected at CERN was then used to make comparisons between the Monte Carlo simul...

  7. Barrelled locally convex spaces

    CERN Document Server

    Pérez Carreras, P

    1987-01-01

    This book is a systematic treatment of barrelled spaces, and of structures in which barrelledness conditions are significant. It is a fairly self-contained study of the structural theory of those spaces, concentrating on the basic phenomena in the theory, and presenting a variety of functional-analytic techniques.Beginning with some basic and important results in different branches of Analysis, the volume deals with Baire spaces, presents a variety of techniques, and gives the necessary definitions, exploring conditions on discs to ensure that they are absorbed by the barrels of the sp

  8. Preparation of the ATLAS experiment in the LHC proton collider, performances of the electromagnetic calorimeter and its potentialities for the top quark; Preparation de l'experience ATLAS aupres du futur grand collisionneur de protons LHC: performances du calorimetre electromagnetique et potentiels pour la physique du quark top

    Energy Technology Data Exchange (ETDEWEB)

    Hubaut, F

    2007-03-15

    ATLAS is the biggest and the more complex detector ever built, it will operate on the LHC and is the outcome of a huge international collaboration of 2000 physicists. This document reviews the theoretical and experimental achievements of one of them, his collaboration spread over 7 years and has followed 2 axis. First, the design, construction and test of the electromagnetic calorimeter of ATLAS and secondly, the development of analysis strategies in the physics of the top quark. The expected important production of top quarks in LHC will allow an accurate measurement of the properties of this particle and in the same way will provide new testing areas for the standard model. The top quark, being extremely massive, might play a significant role in the mechanism of electro-weak symmetry breaking. This document is organized into 5 chapters: 1) ATLAS detector, performance and progress, 2) the optimization of the energy measurement with the electromagnetic calorimeter, 3) the performance of the electromagnetic calorimeter, 4) the physics of the top quark, and 5) the potentialities of ATLAS in the top quark sector. This document presented before an academic board will allow its author to manage research works and particularly to tutor thesis students. (A.C.)

  9. The Optical Instrumentation of the ATLAS Tile Calorimeter

    CERN Document Server

    Abdallah, J; Alexa, C; Alves, R; Amaral, P; Ananiev, A; Anderson, K; Andresen, X; Antonaki, A; Batusov, V; Bednar, P; Bergeaas, E; Biscarat, C; Blanch, O; Blanchot, G; Bohm, C; Boldea, V; Bosi, F; Bosman, M; Bromberg, C; Budagov, Yu A; Calvet, D; Cardeira, C; Carli, T; Carvalho, J; Cascella, M; Castillo, M V; Costelo, J; Cavalli-Sforza, M; Cavasinni, V; Cerqueira, A S; Clément, C; Cobal, M; Cogswell, F; Constantinescu, S; Costanzo, D; Da Silva, P; David, M; Davidek, T; Dawson, J; De, K; Del Prete, T; Diakov, E; Di Girolamo, B; Dita, S; Dolejsi, J; Dolezal, Z; Dotti, A; Downing, R; Drake, G; Efthymiopoulos, I; Errede, D; Errede, S; Farbin, A; Fassouliotis, D; Feng, E; Fenyuk, A; Ferdi, C; Ferreira, B C; Ferrer, A; Flaminio, V; Flix, J; Francavilla, P; Fullana, E; Garde, V; Gellerstedt, K; Giakoumopoulou, V; Giangiobbe, V; Gildemeister, O; Gilewsky, V; Giokaris, N; Gollub, N; Gomes, A; González, V; Gouveia, J; Grenier, P; Gris, P; Guarino, V; Guicheney, C; Sen-Gupta, A; Hakobyan, H; Haney, M; Hellman, S; Henriques, A; Higón, E; Hill, N; Holmgren, S; Hruska, I; Hurwitz, M; Huston, J; Jen-La Plante, I; Jon-And, K; Junk, T; Karyukhin, A; Khubua, J; Klereborn, J; Konsnantinov, V; Kopikov, S; Korolkov, I; Krivkova, P; Kulchitsky, Y; Kurochkin, Yu; Kuzhir, P; Lapin, V; Le Compte, T; Lefèvre, R; Leitner, R; Li, J; Liablin, M; Lokajícek, M; Lomakin, Y; Lourtie, P; Lovas, L; Lupi, A; Maidantchik, C; Maio, A; Maliukov, S; Manousakis, A; Marques, C; Marroquim, F; Martin, F; Mazzoni, E; Merritt, F S; Myagkov, A; Miller, R; Minashvili, I; Miralles, L; Montarou, G; Némécek, S; Nessi, M; Nikitine, I; Nodulman, L; Norniella, O; Onofre, A; Oreglia, M; Palan, B; Pallin, D; Pantea, D; Pereira, A; Pilcher, J E; Pina, J; Pinhão, J; Pod, E; Podlyski, F; Portell, X; Poveda, J; Pribyl, L; Price, L E; Proudfoot, J; Ramalho, M; Ramstedt, M; Raposeiro, L; Reis, J; Richards, R; Roda, C; Romanov, V; Rosnet, R; Roy, P; Ruiz, A; Rumiantsau, V; Russakovich, N; Sada Costa, J; Salto, O; Salvachúa, B; Sanchis, E; Sanders, H; Santoni, C; Santos, J; Saraiva, J G; Sarri, F; Says, L P; Schlager, G; Schlereth, J L; Seixas, J M; Selldén, B; Shalanda, N; Shevtsov, P; Shochet, M; Silva, J; Simaitis, V; Simonyan, M; Sisakian, A; Sjölin, J; Solans, C; Solodkov, A; Solovyanov, O; Sosebee, M; Spanó, F; Speckmeyer, P; Stanek, R; Starchenko, E; Starovoitov, P; Suk, M; Sykora, I; Tang, F; Tas, P; Teuscher, R; Tischenko, M; Tokar, S; Topilin, N; Torres, J; Underwood, D; Usai, G; Valero, A; Valkár, S; Valls, J A; Vartapetian, A; Vazielle, F; Vellidis, C; Ventura, F; Vichou, I; Vivarelli, I; Volpi, M; White, A; Zaitsev, A; Zaytsev, Yu; Zenin, A; Zenis, T; Zenonos, Z; Zenz, S; Zilka, B

    2013-01-01

    The purpose of this Note is to describe the optical assembly procedure called here Optical Instrumentation and the quality tests conducted on the assembled units. Altogether, 65 Barrel (or LB) modules were constructed - including one spare - together with 129 Extended Barrel (EB) modules (including one spare). The LB modules were mechanically assembled at JINR (Dubna, Russia) and transported to CERN, where the optical instrumentation was performed with personnel contributed by several Institutes. The modules composing one of the two Extended Barrels (known as EBA) were mechanically assembled in the USA, and instrumented in two US locations (ANL, U. of Michigan), while the modules of the other Extended barrel (EBC) were assembled in Spain and instrumented at IFAE (Barcelona). Each of the EB modules includes a subassembly known as ITC that contributes to the hermeticity of the calorimeter; all ITCs were assembled at UTA (Texas), and mounted onto the module mechanical structures at the EB mechanical assembly loc...

  10. Electromagnetism

    CERN Document Server

    Grant, Ian S

    1990-01-01

    The Manchester Physics Series General Editors: D. J. Sandiford; F. Mandl; A. C. Phillips Department of Physics and Astronomy, University of Manchester Properties of Matter B. H. Flowers and E. Mendoza Optics Second Edition F. G. Smith and J. H. Thomson Statistical Physics Second Edition F. Mandl Electromagnetism Second Edition I. S. Grant and W. R. Phillips Statistics R. J. Barlow Solid State Physics Second Edition J. R. Hook and H. E. Hall Quantum Mechanics F. Mandl Particle Physics Second Edition B. R. Martin and G. Shaw the Physics of Stars Second Edition A. C. Phillips Computing for Scient

  11. Muon Detection Based on a Hadronic Calorimeter

    CERN Document Server

    Ciodaro, T; Abreu, R; Achenbach, R; Adragna, P; Aharrouche, M; Aielli, G; Al-Shabibi, A; Aleksandrov, I; Alexandrov, E; Aloisio, A; Alviggi, M G; Amorim, A; Amram, N; Andrei, V; Anduaga, X; Angelaszek, D; Anjos, N; Annovi, A; Antonelli, S; Anulli, F; Apolle, R; Aracena, I; Ask, S; Åsman, B; Avolio, G; Baak, M; Backes, M; Backlund, S; Badescu, E; Baines, J; Ballestrero, S; Banerjee, S; Bansil, H S; Barnett, B M; Bartoldus, R; Bartsch, V; Batraneanu, S; Battaglia, A; Bauss, B; Beauchemin, P; Beck, H P; Bee, C; Begel, M; Behera, P K; Bell, P; Bell, W H; Bellagamba, L; Bellomo, M; Ben Ami, S; Bendel, M; Benhammou, Y; Benslama, K; Berge, D; Bernius, C; Berry, T; Bianco, M; Biglietti, M; Blair, R E; Bogaerts, A; Bohm, C; Boisvert, V; Bold, T; Bondioli, M; Borer, C; Boscherini, D; Bosman, M; Bossini, E; Boveia, A; Bracinik, J; Brandt, A G; Brawn, I P; Brelier, B; Brenner, R; Bressler, S; Brock, R; Brooks, W K; Brown, G; Brunet, S; Bruni, A; Bruni, G; Bucci, F; Buda, S; Burckhart-Chromek, D; Buscher, V; Buttinger, W; Calvet, S; Camarri, P; Campanelli, M; Canale, V; Canelli, F; Capasso, L; Caprini, M; Caracinha, D; Caramarcu, C; Cardarelli, R; Carlino, G; Casadei, D; Casado, M P; Cattani, G; Cerri, A; Cerrito, L; Chapleau, B; Childers, J T; Chiodini, G; Christidi, I; Ciapetti, G; Cimino, D; Ciobotaru, M; Coccaro, A; Cogan, J; Collins, N J; Conde Muino, P; Conidi, C; Conventi, F; Corradi, M; Corso-Radu, A; Coura Torres, R; Cranmer, K; Crescioli, F; Crone, G; Crupi, R; Cuenca Almenar, C; Cummings, J T; Curtis, C J; Czyczula, Z; Dam, M; Damazio, D; Dao, V; Darlea, G L; Davis, A O; De Asmundis, R; De Pedis, D; De Santo, A; de Seixas, J M; Degenhardt, J; Della Pietra, M; Della Volpe, D; Demers, S; Demirkoz, B; Di Ciaccio, A; Di Mattia, A; Di Nardo, R; Di Simone, A; Diaz, M A; Dietzsch, T A; Dionisi, C; Dobson, E; Dobson, M; dos Anjos, A; Dotti, A; Dova, M T; Drake, G; Dufour, M-A; Dumitru, I; Eckweiler, S; Ehrenfeld, W; Eifert, T; Eisenhandler, E; Ellis, K V; Ellis, N; Emeliyanov, D; Enoque Ferreira de Lima, D; Ermoline, Y; Ernst, J; Etzion, E; Falciano, S; Farrington, S; Farthouat, P; Faulkner , P J W; Fedorko, W; Fellmann, D; Feng, E; Ferrag, S; Ferrari, R; Ferrer, M L; Fiorini, L; Fischer, G; Flowerdew, M J; Fonseca Martin, T; Francis, D; Fratina, S; French, S T; Front, D; Fukunaga, C; Gadomski, S; Garelli, N; Garitaonandia Elejabarrieta, H; Gaudio, G; Gee, C N P; George, S; Giagu, S; Giannetti, P; Gillman, A R; Giorgi, M; Giunta, M; Giusti, P; Goebel, M; Gonçalo, R; Gonzalez Silva, L; Göringer, C; Gorini, B; Gorini, E; Grabowska-Bold, I; Green, B; Groll, M; Guida, A; Guler, H; Haas, S; Hadavand, H; Hadley, D R; Haller, J; Hamilton, A; Hanke, P; Hansen, J R; Hasegawa, S; Hasegawa, Y; Hauser, R; Hayakawa, T; Hayden, D; Head, S; Heim, S; Hellman, S; Henke, M; Hershenhorn, A; Hidvégi, A; Hillert, S; Hillier, S J; Hirayama, S; Hod, N; Hoffmann, D; Hong, T M; Hryn'ova, T; Huston, J; Iacobucci, G; Igonkina, O; Ikeno, M; Ilchenko, Y; Ishikawa, A; Ishino, M; Iwasaki, H; Izzo, V; Jez, P; Jimenez Otero, S; Johansen, M; Johns, K; Jones, G; Joos, M; Kadlecik, P; Kajomovitz, E; Kanaya, N; Kanega, F; Kanno, T; Kapliy, A; Kaushik, V; Kawagoe, K; Kawamoto, T; Kazarov, A; Kehoe, R; Kessoku, K; Khomich, A; Khoriauli, G; Kieft, G; Kirk, J; Klemetti, M; Klofver, P; Klous, S; Kluge, E-E; Kobayashi, T; Koeneke, K; Koletsou, I; Koll, J D; Kolos, S; Kono, T; Konoplich, R; Konstantinidis, N; Korcyl, K; Kordas, K; Kotov, V; Kowalewski, R V; Krasznahorkay, A; Kraus, J; Kreisel, A; Kubota, T; Kugel, A; Kunkle, J; Kurashige, H; Kuze, M; Kwee, R; Laforge, B; Landon, M; Lane, J; Lankford, A J; Laranjeira Lima, S M; Larner, A; Leahu, L; Lehmann Miotto, G; Lei, X; Lellouch, D; Levinson, L; Li, S; Liberti, B; Lilley, J N; Linnemann, J T; Lipeles, E; Lohse, T; Losada, M; Lowe, A; Luci, C; Luminari, L; Lundberg, J; Lupu, N; Machado Miguéns, J; Mackeprang, R; Maettig, S; Magnoni, L; Maiani, C; Maltrana, D; Mangeard, P-S; Männer, R; Mapelli, L; Marchese, F; Marino, C; Martin, B; Martin, B T; Martin, T; Martyniuk, A; Marzano, F; Masik, J; Mastrandrea, P; Matsushita, T; McCarn, A; Mechnich, J; Medinnis, M; Meier, K; Melachrinos, C; Mendoza Nava, L M; Merola, L; Messina, A; Meyer, C P; Middleton, R P; Mikenberg, G; Mills, C M; Mincer, A; Mineev, M; Misiejuk, A; Moa, T; Moenig, K; Monk, J; Monticelli, F; Mora Herrera, C; Morettini, P; Morris, J D; Müller, F; Munwes, Y; Murillo Garcia, R; Nagano, K; Nagasaka, Y; Navarro, G A; Negri, A; Nelson, S; Nemethy, P; Neubauer, M S; Neusiedl, A; Newman, P; Nisati, A; Nomoto, H; Nozaki, M; Nozicka, M; Nurse, E; Ochando, C; Ochi, A; Oda, S; Oh, A; Ohm, C; Okumura, Y; Olivito, D; Omachi, C; Osculati, B; Oshita, H; Ospanov, R; Owen, M A; Özcan, V E; Ozone, K; Padilla, C; Panes, B; Panikashvili, N; Paramonov, A; Parodi, F; Pasqualucci, E; Pastore, F; Patricelli, S; Pauly, T; Perera, V J O; Perez, E; Petcu, M; Petersen, B A; Petersen, J; Petrolo, E; Phan, A; Piegaia, R; Pilkington, A; Pinder, A; Poddar, S; Polini, A; Pope, B G; Potter, C T; Primavera, M; Prokoshin, F; Ptacek, E; Qian, W; Quinonez, F; Rajagopalan, S; Ramos Dos Santos Neves, R; Reinherz-Aronis, E; Reinsch, A; Renkel, P; Rescigno, M; Rieke, S; Riu, I; Robertson, S H; Robinson, M; Rodriguez, D; Roich, A; Romeo, G; Romero, R; Roos, L; Ruiz Martinez, A; Ryabov, Y; Ryan, P; Saavedra, A; Safai Tehrani, F; Sakamoto, H; Salamanna, G; Salamon, A; Saland, J; Salnikov, A; Salvatore, F; Sankey, D P C; Santamarina, C; Santonico, R; Sarkisyan-Grinbaum, E; Sasaki, O; Savu, D; Scannicchio, D A; Schäfer, U; Scharf, V L; Scheirich, D; Schiavi, C; Schlereth, J; Schmitt, K; Schroder, C; Schroer, N; Schultz-Coulon, H-C; Schwienhorst, R; Sekhniaidze, G; Sfyrla, A; Shamim, M; Sherman, D; Shimojima, M; Shochet, M; Shooltz, D; Sidoti, A; Silbert, O; Silverstein, S; Sinev, N; Siragusa, G; Sivoklokov, S; Sjoen, R; Sjölin, J; Slagle, K; Sloper, J E; Smith, B C; Soffer, A; Soloviev, I; Spagnolo, S; Spiwoks, R; Staley, R J; Stamen, R; Stancu, S; Steinberg, P; Stelzer, J; Stockton, M C; Straessner, A; Strauss, E A; Strom, D; Su, D; Sugaya, Y; Sugimoto, T; Sushkov, S; Sutton, M R; Suzuki, Y; Taffard, A; Taiblum, N; Takahashi, Y; Takeda, H; Takeshita, T; Tamsett, M; Tan, C L A; Tanaka, S; Tapprogge, S; Tarem, S; Tarem, Z; Taylor, C; Teixeira-Dias, P; Thomas, J P; Thompson, P D; Thomson, M A; Tokushuku, K; Tollefson, K; Tomoto, M; Topfel, C; Torrence, E; Touchard, F; Traynor, D; Tremblet, L; Tricoli, A; Tripiana, M; Triplett, N; True, P; Tsiakiris, M; Tsuno, S; Tuggle, J; Ünel, G; Urquijo, P; Urrejola, P; Usai, G; Vachon, B; Vallecorsa, S; Valsan, L; Vandelli, W; Vari, R; Vaz Gil Lopes, L; Veneziano, S; Ventura, A; Venturi, N; Vercesi, V; Vermeulen, J C; Volpi, G; Vorwerk, V; Wagner, P; Wang, M; Warburton, A; Watkins, P M; Watson, A T; Watson, M; Weber, P; Weidberg, A R; Wengler, T; Werner, P; Werth, M; Wessels, M; White, M; Whiteson, D; Wickens, F J; Wiedenmann, W; Wielers, M; Winklmeier, F; Woods, K S; Wu, S-L; Wu, X; Xaplanteris Karampatsos, L; Xella, S; Yakovlev, A; Yamazaki, Y; Yang, U; Yasu, Y; Yuan, L; Zaitsev, A; Zanello, L; Zhang, H; Zhang, J; Zhao, L; Zobernig, H; zur Nedden, M

    2010-01-01

    The ATLAS Tile hadronic calorimeter (TileCal) provides highly-segmented energy measurements of incoming particles. The information from TileCal's last segmentation layer can assist in muon tagging and it is being considered for a near future upgrade of the level-one trigger, mainly for rejecting triggers due to cavern background at the barrel region. A muon receiver for the TileCal muon signals is being designed in order to interface with the ATLAS level-one trigger. This paper addresses the preliminary studies concerning the muon discrimination capability for the muon receiver. Monte Carlo simulations for single muons from the interaction point were used to study the effectiveness of hadronic calorimeter information on muon detection.

  12. Instrumented module of the ATLAS tile calorimeter

    CERN Multimedia

    Laurent Guiraud

    1998-01-01

    The ATLAS tile calorimeter consists of steel absorber plates interspersed with plastic scintillator tiles. Interactions of high-energy hadrons in the plates transform the incident energy into a 'hadronic shower'. When shower particles traverse the scintillating tiles, the latter emit an amount of light proportional to the incident energy. This light is transmitted along readout fibres to a photomultiplier, where a detectable electrical signal is produced. These pictures show one of 64 modules or 'wedges' of the barrel part of the tile calorimeter, which are arranged to form a cylinder around the beam axis. The wedge has been instrumented with scintillators and readout fibres. Photos 03, 06: Checking the routing of the readout fibres into the girder that houses the photomultipliers. Photo 04: A view of the fibre bundles inside the girder.

  13. Use of Artificial Neural Networks for Improvement of CMS Hadron Calorimeter Resolution

    CERN Document Server

    Gleyzer, S V; Prosper, H B

    2009-01-01

    The Compact Muon Solenoid (CMS) experiment features an electromagnetic calorimeter (ECAL) composed of lead tungstate crystals and a sampling hadronic calorimeter (HCAL) made of brass and scintillator, along with other detectors. For hadrons, the response of the electromagnetic and hadronic calorimeters is inherently different. Because sampling calorimeters measure a fraction of the energy spread over several measuring towers, the energy resolution as well as the linearity are not easily preserved, especially at low energies. Several sophisticated algorithms have been developed to optimize the resolution of the CMS calorimeter system for single particles. One such algorithm, based on the artificial neural network application to the combined electromagnetic and hadronic calorimeter system, was developed and applied to test beam data using particles in the momentum range of 2-300 GeV/c. The method improves the energy measurement and linearity, especially at low energies below 10 GeV/c.

  14. Secondary Emission Calorimeter Sensor Development

    Science.gov (United States)

    Winn, David R.; Onel, Yasar

    2012-12-01

    In a Secondary Emission electron(SEe) detector module, Secondary Emission electrons (SEe) are generated from an SE surface/cathode, when charged hadronic or electromagnetic particles, particularly shower particles, penetrate an SE sampling module placed between absorber materials (Fe, Cu, Pb, W etc) in calorimeters. The SE cathode is a thin (10-50 nm thick) film (simple metal-oxides, or other higher yield materials) on the surface of a metal plate, which serves as the entrance “window” to a compact vacuum vessel (metal or metal-ceramic); this SE film cathode is analogous to a photocathode, and the SEe are similar to p.e., which are then amplified by dynodes, also is in a PMT. SE sensor modules can make use of electrochemically etched/machined or laser-cut metal mesh dynode sheets, as large as ~30 cm square, to amplify the Secondary Emission Electrons (SEe), much like those that compact metal mesh or mesh dynode PMT's use to amplify p.e.'s. The construction requirements easier than a PMT, since the entire final assembly can be done in air; there are no critical controlled thin film depositions, cesiation or other oxygen-excluded processes or other required vacuum activation, and consequently bake-out can be a refractory temperatures; the module is sealed by normal vacuum techniques (welding or brazing or other high temperature joinings), with a simple final heated vacuum pump-out and tip-off. The modules envisioned are compact, high gain, high speed, exceptionally radiation damage resistant, rugged, and cost effective, and can be fabricated in arbitrary tileable shapes. The SE sensor module anodes can be segmented transversely to sizes appropriate to reconstruct electromagnetic cores with high precision. The GEANT4 and existing calorimeter data estimated calorimeter response performance is between 35-50 Secondary Emission electrons per GeV, in a 1 cm thick Cu absorber calorimeter, with a gain per SEe > 105 per SEe, and an e/pi<1.2. The calorimeter pulse width is

  15. ATLAS TRT barrel

    CERN Multimedia

    CERN Video Productions

    2005-01-01

    On 3 February 2005, members of the US-TRT team proceeded to the installation of the last TRT barrel module for the Transition Radiation Tracker, which will be used for tracking in the Atlas detector. The TRT barrel is made of 96 modules containing around 52 000 4-mm straws, each of them equipped with a 20 microns sense wire. The modules were first designed at CERN, then built in the USA between 1996 and 2003. Duke, Hampton and Indiana Universities, tested in details at CERN between 2003 and 2005 by members of the US-TRT group, and mounted on the support structure in the SR-1 building where this video was taken. During assembly of the last module, one can see Kirill Egorov (PNPI, Gatchina, Russia), Chuck Mahlong (Hampton) as well as John Callahan and Pauline Gagnon (Indiana). (Written by Pauline Gagnon)

  16. Update on the Hadron calorimeter of the CMS Experiment at CERN.

    CERN Document Server

    Hagopian, Vasken

    2008-01-01

    The construction and assembly of the Hadron Calorimeter is now complete and commissioning is almost done. The hadron calorimeter inside the CMS detector is made of scintillator and copper absorber covering the |η| range of 0.0 to 3.0. The forward calorimeter, made of quartz fibers and iron absorber, covers the |η| range of 3.0 to 5.0. Recent test beam effort is aimed at understanding of the performance of the Hadron Calorimeter in conjunction with the lead tungstate crystal Electromagnetic Calorimeter. Recent test beam results using production modules help us improve resolution. Work has started on several upgrade fronts for the high luminosity LHC.

  17. Paying by the Barrel

    Institute of Scientific and Technical Information of China (English)

    Francis L.Sackitey; Ghana

    2012-01-01

    CHINA'S UNIPEC Asia Co. Ltd. will buy up the entire oil share from Ghana's Jubilee field for the next 15 years in a commercial agreement entered into by the government of Ghana. Under the agreement, the West African nation will be supplying China with 13,000 barrels of crude oil daily to pay for a $3 billion loan granted to Ghana by China under a Master Facility Agreement with the China Development Bank.

  18. Design, Performance and Calibration of the CMS Forward Calorimeter Wedges

    CERN Document Server

    Baiatian, G; Emeliantchik, Igor; Massolov, V; Shumeiko, Nikolai; Stefanovich, R; Damgov, Jordan; Dimitrov, Lubomir; Genchev, Vladimir; Piperov, Stefan; Vankov, Ivan; Litov, Leander; Bencze, Gyorgy; Laszlo, Andras; Pal, Andras; Vesztergombi, Gyorgy; Zálán, Peter; Fenyvesi, Andras; Bawa, Harinder Singh; Beri, Suman Bala; Bhatnager, V; Kaur, Manjit; Kumar, Arun; Kohli, Jatinder Mohan; Singh, Jas Bir; Acharya, Bannaje Sripathi; Chendvankar, Sanjay; Dugad, Shashikant; Kalmani, Suresh Devendrappa; Katta, S; Mazumdar, Kajari; Mondal, Naba Kumar; Nagaraj, P; Patil, Mandakini Ravindra; Reddy, L V; Satyanarayana, B; Sharma, Seema; Verma, Piyush; Hashemi, Majid; Mohammadi-Najafabadi, M; Paktinat, S; Babich, Kanstantsin; Golutvin, Igor; Kalagin, Vladimir; Kosarev, Ivan; Ladygin, Vladimir; Meshcheryakov, Gleb; Moissenz, P; Petrosian, A; Rogalev, Evgueni; Sergeyev, S; Smirnov, Vitaly; Vishnevski, A V; Volodko, Anton; Zarubin, Anatoli; Gavrilov, Vladimir; Gershtein, Yuri; Ilyina, N P; Kaftanov, Vitali; Kisselevich, I; Kolossov, V; Krokhotin, Andrey; Kuleshov, Sergey; Litvintsev, Dmitri; Oulyanov, A; Safronov, S; Semenov, Sergey; Stolin, Viatcheslav; Gribushin, Andrey; Demianov, A; Kodolova, Olga; Petrushanko, Sergey; Sarycheva, Ludmila; Teplov, Konstantin; Vardanyan, Irina; Yershov, A A; Abramov, Victor; Goncharov, Petr; Kalinin, Alexey; Korablev, Andrey; Khmelnikov, V A; Korneev, Yury; Krinitsyn, Alexander; Kryshkin, V; Lukanin, Vladimir; Pikalov, Vladimir; Ryazanov, Anton; Talov, Vladimir; Turchanovich, L K; Volkov, Alexey; Camporesi, Tiziano; De Visser, Theo; Vlassov, E; Aydin, Sezgin; Bakirci, Mustafa Numan; Cerci, Salim; Dumanoglu, Isa; Eskut, Eda; Kayis-Topaksu, A; Koylu, S; Kurt, Pelin; Kuzucu, A; Onengüt, G; Ozdes-Koca, N; Ozkurt, Halil; Sogut, Kenan; Topakli, Huseyin; Vergili, Mehmet; Yetkin, Taylan; Cankocak, Kerem; Gamsizkan, Halil; Ozkan, Cigdem; Sekmen, Sezen; Serin-Zeyrek, M; Sever, Ramazan; Yazgan, Efe; Zeyrek, Mehmet; Deliomeroglu, Mehmet; Dindar, Kamile; Gülmez, Erhan; Isiksal, Engin; Kaya, Mithat; Ozkorucuklu, Suat; Levchuk, Leonid; Sorokin, Pavel; Grinev, B; Lubinsky, V; Senchyshyn, Vitaliy; Anderson, E Walter; Hauptman, John M; Elias, John E; Freeman, Jim; Green, Dan; Heering, Arjan Hendrix; Lazic, Dragoslav; Los, Serguei; Ronzhin, Anatoly; Suzuki, Ichiro; Vidal, Richard; Whitmore, Juliana; Antchev, Georgy; Arcidy, M; Hazen, Eric; Lawlor, C; Machado, Emanuel; Posch, C; Rohlf, James; Sulak, Lawrence; Varela, F; Wu, Shouxiang; Adams, Mark Raymond; Burchesky, Kyle; Qiang, W; Abdullin, Salavat; Baden, Drew; Bard, Robert; Eno, Sarah Catherine; Grassi, Tullio; Jarvis, Chad; Kellogg, Richard G; Kunori, Shuichi; Mans, Jeremy; Skuja, Andris; Wang, Lei; Wetstein, Matthew; Ayan, S; Akgun, Ugur; Duru, Firdevs; Merlo, Jean-Pierre; Mestvirishvili, Alexi; Miller, Michael; Norbeck, Edwin; Olson, Jonathan; Onel, Yasar; Schmidt, Ianos; Akchurin, Nural; Carrell, Kenneth Wayne; Gumus, Kazim; Kim, Heejong; Spezziga, Mario; Thomas, Ray; Wigmans, Richard; Baarmand, Marc M; Mermerkaya, Hamit; Vodopyanov, I; Kramer, Laird; Linn, Stephan; Markowitz, Pete; Martínez, German; Cushman, Priscilla; Ma, Yousi; Sherwood, Brian; Cremaldi, Lucien Marcus; Reidy, Jim; Sanders, David A; Fisher, Wade Cameron; Tully, Christopher; Hagopian, Sharon; Hagopian, Vasken; Johnson, Kurtis F; Barnes, Virgil E; Laasanen, Alvin T; Pompos, Arnold

    2008-01-01

    We report on the test beam results and calibration methods using charged particles of the CMS Forward Calorimeter (HF). The HF calorimeter covers a large pseudorapidity region (3\\l |\\eta| \\le 5), and is essential for large number of physics channels with missing transverse energy. It is also expected to play a prominent role in the measurement of forward tagging jets in weak boson fusion channels. The HF calorimeter is based on steel absorber with embedded fused-silica-core optical fibers where Cherenkov radiation forms the basis of signal generation. Thus, the detector is essentially sensitive only to the electromagnetic shower core and is highly non-compensating (e/h \\approx 5). This feature is also manifest in narrow and relatively short showers compared to similar calorimeters based on ionization. The choice of fused-silica optical fibers as active material is dictated by its exceptional radiation hardness. The electromagnetic energy resolution is dominated by photoelectron statistics and can be expressed...

  19. The spaghetti calorimeter. Research, development, application

    Energy Technology Data Exchange (ETDEWEB)

    Scheel, C.V.

    1994-12-22

    The Spaghetti Calorimeter (SPACAL) is a detector intended primarily for the energy measurement of high-energy particles, but also provides spatial information and particle identification. It is a sampling calorimeter composed of plastic scintillating fibers, oriented in the direction of the particle, embedded in lead. The scintillation light is read out by photomultipliers, which are coupled to bunches of fibers through light guides, each forming a tower. It was developed as an electromagnetic (e.m.) and compensating hadronic calorimeter for use in future multi-TeV collider experiments. The largest prototype was installed for an alternative application as an hadronic calorimeter in the WA89 experiment, where it is used for the detection of neutrons resulting from {Sigma} decays. The basic concepts behind calorimetry are discussed in detail. Several prototypes were tested in beams of electrons and pions with energies up to 150 GeV. Resonable e.m. energy resolution, at {sigma}/E=12.9%/{radical}E[GeV]+1.23%, was measured. Excellent hadronic energy resolution was found, at 30.6%/{radical}E[GeV]+1.0%, but the calorimeter was found to be slightly undercompensating with e/h=1.15. The position of the shower barycenter for both electrons and pions was easily found according to the relative energy deposits in the calorimeter towers. The calorimeter was also found to be able to provide effective discrimination between electrons and hadrons. The performance of SPACAL in the WA89 experiment at the Omega spectrometer at CERN was studied with the reconstruction of beam {Sigma}{sup -}particles via its decay {Sigma}{sup -}{yields}n{pi}{sup -}. Details of the calibration of SPACAL with electrons and protons are presented. (orig.).

  20. LHCb Calorimeter modules arrive at CERN

    CERN Multimedia

    2002-01-01

    Two of the three components of the LHCb Calorimeter system have started to arrive from Russia. Members of the LHCb Calorimeter group with the ECAL and HCAL modules that have just arrived at CERN. The first two of the 56 Hadron Calorimeter (HCAL) modules and 1200 of the 3300 modules of the Electromagnetic Calorimeter (ECAL) have reached CERN from Russia. The third part of the system, the Preshower detector, is still being prepared in Russia. The calorimeter system identifies and triggers on high-energy particles, namely electrons, hadrons and photons by measuring their positions and energies. The HCAL is going to be a pure trigger device. The ECAL will also be used in the triggering, but in addition it will reconstruct neutral pions and photons from B meson decays. One of the major aims of the LHCb experiment is to study CP violation through B meson decays including Bs mesons with high statistics in different decay modes. CP violation (violation of charge and parity) is necessary to explain why the Universe...

  1. Closing LHCb's calorimeter around the beam-pipe

    CERN Multimedia

    Kristic, R

    2008-01-01

    Photos 1 and 2 show the pre-shower, lead absorber and the scintillating pad detector layers moving in towards the beam-pipe. Photos 3,4 and 5 show the hadron calorimeter with both halves closed around the beam-pipe, to the left of the picture and, in the centre, half of the electromagnetic calorimeter closed in towards the beam-pipe.

  2. sPHENIX Calorimeter Design and Jet Performance

    Energy Technology Data Exchange (ETDEWEB)

    Haggerty J. S.

    2016-09-27

    The PHENIX collaboration is planning a detector upgrade, sPHENIX, which consists of large acceptance calorimetry and tracking detectors built around the superconducting solenoid recently shipped to Brookhaven from the decommissioned BaBar experiment at SLAC. The sPHENIX calorimeter system includes three radial layers of samplingcalorimeters, a tungsten-scintillating fiber electromagnetic calorimeter, and two longitudinally segmented samplinghadron calorimeters that are made of scintillator tiles and steel plates. Together, they provide hermetic coverage in n < 1 for calorimetry based jet measurements as well as minimal bias jet trigger capability, which coupled with high resolution tracking, enable an extremely rich jet physics program at RHIC.

  3. Fiber and Crystals Dual Readout calorimeters

    CERN Document Server

    Cascella, Michele; Lee, Sehwook

    2016-01-01

    The RD52 (DREAM) collaboration is performing R\\&D on dual readout calorimetry techniques with the aim of improving hadronic energy resolution for future high energy physics experiments. The simultaneous detection of Cherenkov and scintillation light enables us to measure the electromagnetic fraction of hadron shower event-by-event. As a result, we could eliminate the main fluctuation which prevented from achieving precision energy measurement for hadrons. We have tested the performance of the lead and copper fiber prototypes calorimeters with various energies of electromagnetic particles and hadrons. During the beam test, we investigated the energy resolutions for electrons and pions as well as the identification of those particles in a longitudinally unsegmented calorimeter. Measurements were also performed on pure and doped PbWO$_{4}$ crystals, as well as BGO and BSO, with the aim of realising a crystal based dual readout detector. We will describe our results, focusing on the more promising properties ...

  4. The CMS electromagnetic calorimeter for the Higgs boson search H {yields} ZZ{sup *} {yields} 4e at the LHC; Le calorimetre electromagnetique de CMS pour la recherche du boson de higgs, H {yields} ZZ{sup *} {yields} 4e au LHC

    Energy Technology Data Exchange (ETDEWEB)

    Ferri, F

    2006-01-15

    The work presented in this thesis has focused on the electromagnetic calorimeter (ECAL) of the CMS (Compact Muon Solenoid) detector and on its relevance in the discovery of the Higgs boson in the channel H {yields} ZZ{sup *} {yields} 4e, for which the performance of ECAL is essential. The calorimeter has been studied in detail with test beam data and with simulated data using a complete description of the CMS detector. The test beam studies have been directed to the analysis of the electronic noise and to the amplitude reconstruction of the signal acquired from the calorimeter. A procedure to evaluate the spectral power density of the signals has been determined using the maximum entropy method. Using the full CMS detector simulation, a detailed study of the electron reconstruction inside CMS has pointed out the problems which affect the measurements of the electron energy with the calorimeter. A particular case has been given to electrons of low transverse momentum (p{sub T} < 30 GeV/c) for which these effects are crucial. Namely the Bremsstrahlung effect, which is due to the tracking material in front of the calorimeter and constitutes the major problem, has been examined in depth. These results have been applied in the analysis of the Higgs boson signal in the channel H {yields} ZZ{sup *} {yields} 4e, where the electron and positron coming from the Z with the lowest mass have typically low transverse momentum. A neural network analysis extended to mass points ranging from 115 GeV/c{sup 2} shows that a discovery claim could be made in this channel for Higgs masses between 130 GeV/c{sup 2} and 145 GeV/c{sup 2} and greater than 185 GeV/c{sup 2}. (A.C.)

  5. Test of the little Higgs model in Atlas at LHC: simulation of the digitization of the electromagnetic calorimeter; Test du modele du petit Higgs dans ATLAS au LHC: simulation de la numerisation du calorimetre electromagnetique

    Energy Technology Data Exchange (ETDEWEB)

    Lechowski, M

    2005-04-15

    LHC is a proton-proton collider with an energy of 14 TeV in the center of mass, which will start operating in 2007 at CERN. Two of its experiments, ATLAS, and CMS, will search and study in particular the Higgs boson, Supersymmetry and other new physics. This thesis was about two aspects of the ATLAS experiment. On one hand the simulation of the liquid Argon electromagnetic calorimeter, with the emulation of the electronic chain in charge of the digitization of the signal and also the evaluation of the electronic noise and the pile-up noise (coming from minimum bias events of inelastic collisions at LHC). These two points have been validated by the analysis of the data taken during beam tests in 2002 and 2004. On the other hand, a physics study concerning the Little Higgs model. This recent model solves the hierarchy problem of the Standard Model, in introducing new heavy particles to cancel quadratic divergences arising in the calculation of the Higgs boson mass. These new particles, with a mass about the TeV/c{sup 2}, are a heavy quark top, heavy gauge bosons Z{sub H}, W{sub H} and A{sub H}, and a heavy Higgs boson triplet. The physics study dealt with the characteristic decays of the model, Z{sub H} in Z + H and W{sub H} in W + H, with a Higgs mass either at 120 GeV/c{sup 2} decaying in two photons or at 200 GeV/c{sup 2} decaying in ZZ or WW. Results show that in both cases, for 300 fb{sup -1} (3 years at high luminosity), an observation of the signal at 5 {sigma} for Z{sub H} et W{sub H} masses less than 2 TeV/c{sup 2} is possible, covering a large part of the parameter space. (author)

  6. AIDA: concerted calorimeter development

    CERN Multimedia

    Felix Sefkow

    2013-01-01

    AIDA – the EU-funded project bringing together more than 80 institutes worldwide – aims at developing new detector solutions for future accelerators. Among the highlights reported at AIDA’s recent annual meeting in Frascati was the completion of an impressive calorimeter test beam programme, conducted by the CALICE collaboration over the past two years at CERN’s PS and SPS beam lines.   The CALICE tungsten calorimeter prototype under test at CERN. This cubic-metre hadron calorimeter prototype has almost 500,000 individually read-out electronics channels – more than all the calorimeters of ATLAS and CMS put together. Calorimeter development in AIDA is mainly motivated by experiments at possible future electron-positron colliders, namely ILC or CLIC. The physics requirements of such future machines demand extremely high-performance calorimetry. This is best achieved using a finely segmented system that reconstructs events using the so-called pa...

  7. Software studies of GLD calorimeter

    Indian Academy of Sciences (India)

    H Matsunaga

    2007-12-01

    The baseline design of the GLD calorimeter is scintillator-strip arrays interleaved with absorber plates. We present preliminary performance studies of the hit clustering with this calorimeter using a simulator. Also, simulation results of a `digital' calorimeter, which is an option of the GLD calorimeter, are presented.

  8. Weapons barrel life cycle determination

    Directory of Open Access Journals (Sweden)

    Nebojša Pene Hristov

    2013-10-01

    Full Text Available This article describes the dynamic processes within the gun barrel during the firing process in exploitation. It generally defines the basic principles of constructing tube elements, and shows the distortion of the basic geometry of the tube interior due to wear as well as the impact it causes during exploitation. The article also defines basic empirical models as well as a model based on fracture mechanics for the calculation of a use-life of the barrel, and other elements essential for the safe use of the barrel as the basic weapon element. Erosion causes are analysed in order to control and reduce wear and prolong the lifetime of the gun barrel. It gives directions for the reparation of barrels with wasted resources. In conclusion, the most influential elements of tube wear are given as well as possible modifications of existing systems, primarily propellant charges, with a purpose of prolonging lifetime of gun barrels. The guidelines for a proper determination of the lifetime based on the barrel condition assessment are given as well. INTRODUCTION The barrel as the basic element of each weapon is described as well as the processes occurring during the firing that have impulsive character and are accompanied by large amounts of energy. The basic elements of barrel and itheir constructive characteristics are descibed. The relation between Internal ballistics, ie calculation of the propellant gas pressure in the firing process, and structural elements defined by the barrel material resistance is shown. In general, this part of the study explains the methodology of the gun barrel structural elements calculation, ie. barrel geometry, taking into account the degrees of safety in accordance with Military Standards.   TUBE WEAR AND DEFORMATIONS The weapon barrel gradually wears out during exploitation due to which it no longer satisfies the set requirements. It is considered that the barrel has experienced a lifetime when it fails to fulfill the

  9. Variant M4 Barrel Characterization

    Science.gov (United States)

    2009-07-01

    in the button broached barrels. 6. Acknowledgments The authors are pleased to acknowledge the sample preparation provided by Mrs. A. Welty , RDAR...Rickard, C., & Welty , A. (2007). Comparison of electroplated chromium coatings applied to M4 and M16 barrels. US Army-ARDEC. 3) Smith, S. B., & Rickard

  10. Contribution to the study of electromagnetic calorimeter with PbWO{sub 4} crystals in the CMS experiment at LHC; Contribution a l`etude du calorimetre electromagnetique a cristaux de PbWO{sub 4} de l`experience CMS au LHC

    Energy Technology Data Exchange (ETDEWEB)

    Benhammou, Y. [Lyon-1 Univ., 69 (France)

    1997-01-13

    The Higgs bosons can be observed in the [90-130] GeV mass range in the channel h -> {gamma}{gamma} if a high resolution electromagnetic calorimeter is used. The needed performances are met in the Pb W O{sub 4} crystals. This thesis is devoted to the study of the first Pb W O{sub 4} crystals (23 cm length) and their associated electronic equipment. Of crucial importance it was found to be the behaviour of these crystals under long radiation exposure. The understanding of the radiation effects, the crystal growth procedure mastering and the realization of a green light monitoring system of high performance were successful results obtained in the study described in this thesis. A rather high energy (0.6 % at 100 GeV) and position resolution was achieved by using a APD readout. In addition, the prototype of a final readout chain of large dynamic range and low consumption was built with very encouraging results. Concerning the APDs it was established that increasing the active surface and reduction of exceeding noise factor F improves significantly the stochastic term in the energy resolution. Besides, a complete readout chain comprising current preamplifiers, a linear compressing (multi-slope) system and a fast ADC (40 MHz), were found necessary to met the requirements imposed on the high performing Pb W O{sub 4} calorimeter. Research and development works based on the pioneering studies described in this thesis devoted to the crystal calorimeters are underway 77 refs.

  11. GSPEL - Calorimeter Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — Testing performance claims on heat transfer components The Calorimeter Lab, located in the Ground Systems Power and Energy Lab (GSPEL), is one of the largest in the...

  12. GSPEL - Calorimeter Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — Testing performance claims on heat transfer componentsThe Calorimeter Lab, located in the Ground Systems Power and Energy Lab (GSPEL), is one of the largest in the...

  13. Performance of the ATLAS Tile Calorimeter

    CERN Document Server

    Hrynevich, Aliaksei; The ATLAS collaboration

    2017-01-01

    The Tile Calorimeter (TileCal) is the central scintillator-steel sampling hadronic calorimeter of the ATLAS experiment at the LHC. Jointly with other calorimeters it is designed for energy reconstruction of hadrons, jets, tau-particles and missing transverse energy. The scintillation light produced in the scintillator tiles is transmitted by wavelength shifting fibers to photomultiplier tubes (PMTs). The analog signals from the PMTs are amplified, shaped and digitized by sampling the signal every 25 ns. The TileCal frontend electronics reads out the signals produced by about 10000 channels measuring energies ranging from ~30 MeV to ~2 TeV. Each stage of the signal production from scintillation light to the signal reconstruction is monitored and calibrated. The performance of the calorimeter has been established with cosmic ray muons and the large sample of the proton-proton collisions. The response of high momentum isolated muons is used to study the energy response at the electromagnetic scale, isolated hadr...

  14. The ATLAS hadronic tile calorimeter from construction toward physics

    CERN Document Server

    Adragna, P; Anderson, K; Antonaki, A; Batusov, V; Bednar, P; Binet, S; Biscarat, C; Blanchot, G; Bogush, A A; Bohm, C; Boldea, V; Bosman, M; Bromberg, C; Budagov, Yu A; Caloba, L; Calvet, D; Carvalho, J; Castelo, J; Castillo, M V; Sforza, M C; Cavasinni, V; Cerqueira, A S; Chadelas, R; Costanzo, D; Cogswell, F; Constantinescu, S; Crouau, M; Cuenca, C; Damazio, D O; Daudon, F; David, M; Davidek, T; De, K; Del Prete, T; Di Girolamo, B; Dita, S; Dolejsi, J; Dolezal, Z; Dotti, A; Downing, R; Efthymiopoulos, I; Errede, D; Errede, S; Farbin, A; Fassouliotis, D; Fedorko, I; Fenyuk, A; Ferdi, C; Ferrer, A; Flaminio, V; Fullana, E; Garde, V; Giakoumopoulou, V; Gildemeister, O; Gilewsky, V; Giangiobbe, V; Giokaris, N; Gomes, A; González, V; Grabskii, V; Grenier, P; Gris, P; Guarino, V; Guicheney, C; Sen-Gupta, A; Hakobyan, H; Haney, M; Henriques, A; Higón, E; Holmgren, S O; Hurwitz, M; Huston, J; Iglesias, C; And, K J; Junk, T; Karyukhin, A N; Khubua, J; Klereborn, J; Korolkov, I Ya; Krivkova, P; Kulchitskii, Yu A; Kurochkin, Yu; Kuzhir, P; Lambert, D; Le Compte, T; Lefèvre, R; Leitner, R; Lembesi, M; Li, J; Liablin, M; Lokajícek, M; Lomakin, Y; Amengual, J M L; Lupi, A; Maidantchik, C; Maio, A; Maliukov, S; Manousakis, A; Marques, C; Marroquim, F; Martin, F; Mazzoni, E; Montarou, G; Merritt, F S; Myagkov, A; Miller, R; Minashvili, I A; Miralles, L; Némécek, S; Nessi, M; Nodulman, L; Norniella, O; Onofre, A; Oreglia, M J; Pantea, D; Pallin, D; Pilcher, J E; Pina, J; Pinhão, J; Podlyski, F; Portell, X; Poveda, J; Price, L E; Pribyl, L; Proudfoot, J; Ramstedt, M; Reinmuth, G; Richards, R; Roda, C; Romanov, V; Rosnet, P; Roy, P; Rumiantsau, V; Russakovich, N; Salto, O; Salvachúa, B; Sanchis, E; Sanders, H; Santoni, C; Santos, J; Saraiva, J G; Sarri, F; Satsunkevich, I S; Says, L P; Schlager, G; Schlereth, J L; Seixas, J M; Selldén, B; Shevtsov, P; Shochet, M; Da Silva, P; Silva, J; Simaitis, V; Sissakian, A N; Solodkov, A; Solovyanov, O; Sosebee, M; Spanó, F; Stanek, R; Starchenko, E A; Starovoitov, P; Suk, M; Sykora, I; Tang, F; Tas, P; Teuscher, R; Tokar, S; Topilin, N; Torres, J; Tsulaia, V; Underwood, D; Usai, G; Valkár, S; Valls, J A; Vartapetian, A H; Vazeille, F; Vichou, I; Vinogradov, V; Vivarelli, I; Volpi, M; White, A; Zaitsev, A; Zenine, A; Zenis, T

    2006-01-01

    The Tile Calorimeter, which constitutes the central section of the ATLAS hadronic calorimeter, is a non-compensating sampling device made of iron and scintillating tiles. The construction phase of the calorimeter is nearly complete, and most of the effort now is directed toward the final assembly and commissioning in the underground experimental hall. The layout of the calorimeter and the tasks carried out during construction are described, first with a brief reminder of the requirements that drove the calorimeter design. During the last few years a comprehensive test-beam program has been followed in order to establish the calorimeter electromagnetic energy scale, to study its uniformity, and to compare real data to Monte Carlo simulation. The test-beam setup and first results from the data are described. During the test-beam period in 2004, lasting several months, data have been acquired with a complete slice of the central ATLAS calorimeter. The data collected in the test-beam are crucial in order to study...

  15. LHCb: First year of running for the LHCb calorimeter system

    CERN Multimedia

    Guz, Y

    2011-01-01

    The LHCb experiment is dedicated to precision measurements of CP violation and rare decays of B hadrons at the Large Hadron Collider (LHC) at CERN (Geneva) [1, 2]. LHCb is a single-arm spectrometer with a forward angular coverage from approximately 10 mrad to 300 mrad. It comprises a calorimeter system composed of four subdetectors [3]. It selects transverse energy hadron, electron and photon candidates for the first trigger level (L0), which makes a decision 4µs after the interaction. It provides the identification of electrons, photons and hadrons as well as the measurement of their energies and positions. The set of constraints resulting from these functionalities defines the general structure and the main characteristics of the calorimeter system and its associated electronics. A classical structure of an electromagnetic calorimeter (ECAL) followed by a hadron calorimeter (HCAL) has been adopted. In addition the system includes in front of them the Scintillating Pad Detector (SPD) and Pre-Showe...

  16. Geant4 simulations of the lead fluoride calorimeter

    CERN Document Server

    Savchenko, A A; Dabagov, S B; Anastasi, A; Venanzoni, G; Strikhanov, M N

    2016-01-01

    In this paper we simulate the emission by charged particles in complex structures with help of Geant4. We take into account Cherenkov radiation, transition radiation, bremsstrahlung, pair production and other accompanying processes. As an application we investigate the full size electromagnetic calorimeter for the muon g-2 experiment at Fermilab. A calorimeter module (24 are expected in the experiment) consists of a Delrin front panel for installation of the laser calibration system, 54 PbF2 Cherenkov crystals wrapped by the black Millipore paper, and silicon photo-multiplier sensors. We report here on a simulation of radiation from positrons passing through the calorimeter system. We carry out the simulation using Geant4 toolkit, which provides a complete set of tools for all areas of detector simulation: geometry, tracking, detector response, run, event and track management, and visualization. We consider Cherenkov photons expansion when a positron moves down through the calorimeter at the arbitrary angle o...

  17. The Forward Calorimeter of the GlueX Experiment

    Science.gov (United States)

    Bennett, Daniel; GlueX Collaboration

    2013-10-01

    The Forward Calorimeter (FCAL) of the GlueX experiment is a lead glass electromagnetic calorimeter currently being built in Hall D of Jefferson Lab. The GlueX experiment is a photoproduction experiment that will utilize coherent bremsstrahlung radiation to map out the light meson spectrum, including a search for hybrid mesons with exotic quantum numbers (JPC). The FCAL will detect photons between 1° and 10 .8° downstream from the target. The calorimeter is built out of 2800 elements, each of which consists of a lead glass block, an FEU 84-3 PMT, and a custom Cockcroft-Walton electronic base. In the Fall of 2011, a 25 element prototype detector was installed in Hall B of Jefferson Lab to measure the energy and timing resolution of the calorimeter using electrons between 100 and 250 MeV. The design and construction of FCAL and the results from the prototype test will be discussed.

  18. Fiber and crystals dual readout calorimeters

    Science.gov (United States)

    Cascella, Michele; Franchino, Silvia; Lee, Sehwook

    2016-11-01

    The RD52 (DREAM) collaboration is performing R&D on dual readout calorimetry techniques with the aim of improving hadronic energy resolution for future high energy physics experiments. The simultaneous detection of Cherenkov and scintillation light enables us to measure the electromagnetic fraction of hadron shower event-by-event. As a result, we could eliminate the main fluctuation which prevented from achieving precision energy measurement for hadrons. We have tested the performance of the lead and copper fiber prototypes calorimeters with various energies of electromagnetic particles and hadrons. During the beam test, we investigated the energy resolutions for electrons and pions as well as the identification of those particles in a longitudinally unsegmented calorimeter. Measurements were also performed on pure and doped PbWO4 crystals, as well as BGO and BSO, with the aim of realizing a crystal based dual readout detector. We will describe our results, focusing on the more promising properties of homogeneous media for the technique. Guidelines for additional developments on crystals will be also given. Finally we discuss the construction techniques that we have used to assemble our prototypes and give an overview of the ones that could be industrialized for the construction of a full hermetic calorimeter.

  19. Commissioning of the ATLAS electromagnetic calorimeter and Z' {yields} e{sup +}e{sup -} discovery potential in the first LHC data; Mise en service du calorimetre electromagnetique d'Atlas et determination du potentiel de decouverte d'un Z' {yields} e{sup +}e{sup -} dans les premieres donnees LHC

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-07-15

    After about fifteen years of development, the ATLAS detector is ready to operate and it recorded, in 2008, several millions of cosmic events as well as first LHC data. This achievement is based on the long experience of beam tests and on the large effort towards the detector in situ commissioning undertaken by the ATLAS collaboration. This promises fast ability to perform searches for evidence of the Higgs boson and new physics. I heavily contributed to the in situ commissioning of the electromagnetic calorimeter. To verify its performance, I studied the first cosmic data taken in 2006 which allowed the first in situ analysis of dead channels, energy reconstruction and detector response uniformity. This participation to the commissioning has continued with the study of the single beam data recorded during the first week of LHC operation (Sept. 2008). Expanding on my expertise of the electromagnetic calorimeter, I focused my physics analysis, prepared with simulation, on the promising discovery potential of new physics at LHC via the di-electron/di-photon decay of new heavy gauge boson in the early LHC data (the first 100 pb{sup -1}). Possible limitations coming from early hardware problems or imperfect electron energy calibration in first data have been estimated. According to the new schedule of LHC operation, this analysis will be possible with 10 TeV pp collisions data in 2010. (author)

  20. The PANDA Barrel DIRC

    Science.gov (United States)

    Dzhygadlo, R.; Schwarz, C.; Belias, A.; Gerhardt, A.; Götzen, K.; Kalicy, G.; Krebs, M.; Lehmann, D.; Nerling, F.; Patsyuk, M.; Peters, K.; Schepers, G.; Schmitt, L.; Schwiening, J.; Traxler, M.; Zühlsdorf, M.; Britting, A.; Eyrich, W.; Lehmann, A.; Pfaffinger, M.; Uhlig, F.; Düren, M.; Etzelmüller, E.; Föhl, K.; Hayrapetyan, A.; Kröck, B.; Merle, O.; Rieke, J.; Schmidt, M.; Cowie, E.; Keri, T.; Achenbach, P.; Cardinali, M.; Hoek, M.; Lauth, W.; Schlimme, S.; Sfienti, C.; Thiel, M.

    2016-05-01

    The PANDA detector at the international accelerator Facility for Antiproton and Ion Research in Europe (FAIR) addresses fundamental questions of hadron physics. Experiments concerning charmonium spectroscopy, the search for hybrids and glueballs and the interaction of hidden and open charm particles with nucleons and nuclei will be performed with antiproton beams impinging on hydrogen or nuclear targets. Cooled beams allow the precision scan of resonances in formation experiments. The momentum range of the antiproton beam between 1.5 GeV/c and 15 GeV/c tests predictions by perturbation theory and will reveal deviations originating from strong QCD . An excellent hadronic particle identification will be accomplished by DIRC (Detection of Internally Reflected Cherenkov light) counters. The design for the barrel region is based on the successful BaBar DIRC with several key improvements, such as fast photon timing and a compact imaging region. DIRC designs based on different radiator geometries with several focusing options were studied in simulation. The performance of each design was characterized in terms of photon yield and single photon Cherenkov angle resolution. Selected design options were implemented in prototypes and tested with hadronic particle beams at GSI and CERN.

  1. LHCb: Upgrade of the LHCb calorimeter electronics

    CERN Multimedia

    Mauricio Ferre, J

    2013-01-01

    The LHCb collaboration foresees a major upgrade of the detector for the high luminosity run that should take place after 2018. Apart from the increase of the instantaneous luminosity at the interaction point of the experiment, one of the major ingredients of this upgrade is a full readout at 40MHz of the sub-detectors and the acquisition of the data by a large farm of PC. The trigger will be done by this farm and should increase the overall trigger efficiency with respect to the current detector, especially in hadronic B meson decays. A general overview of the modifications foreseen to the calorimeter system and the integration of the electromagnetic and hadronic calorimeters in this new scheme will be described.

  2. Magnetically Coupled Calorimeters

    Science.gov (United States)

    Bandler, Simon

    2011-01-01

    Calorimeters that utilize the temperature sensitivity of magnetism have been under development for over 20 years. They have targeted a variety of different applications that require very high resolution spectroscopy. I will describe the properties of this sensor technology that distinguish it from other low temperature detectors and emphasize the types of application to which they appear best suited. I will review what has been learned so far about the best materials, geometries, and read-out amplifiers and our understanding of the measured performance and theoretical limits. I will introduce some of the applications where magnetic calorimeters are being used and also where they are in development for future experiments. So far, most magnetic calorimeter research has concentrated on the use of paramagnets to provide temperature sensitivity; recent studies have also focused on magnetically coupled calorimeters that utilize the diamagnetic response of superconductors. I will present some of the highlights of this research, and contrast the properties of the two magnetically coupled calorimeter types.

  3. ATLAS - End-Cap calorimeter

    CERN Multimedia

    2006-01-01

    The End-cap calorimeter was moved with the help of the rails and this calorimeter will measure the energy of particles close to the beam axis when protons collide. Cooling is important for maximum detector efficiency.

  4. LHCb : First years of running for the LHCb calorimeter system and preparation for run 2

    CERN Multimedia

    Chefdeville, Maximilien

    2015-01-01

    The LHCb experiment is dedicated to precision measurements of CP violation and rare decays of B hadrons at the Large Hadron Collider (LHC) at CERN (Geneva). It comprises a calorimeter system composed of four subdetectors: a Scintillating Pad Detector (SPD) and a Pre-Shower detector (PS) in front of an electromagnetic calorimeter (ECAL) which is followed by a hadron calorimeter (HCAL). They are used to select transverse energy hadron, electron and photon candidates for the first trigger level and they provides the identification of electrons, photons and hadrons as well as the measurement of their energies and positions. The calorimeter has been pre-calibrated before its installation in the pit. The calibration techniques have been tested with data taken in 2010 and used regularly during run 1. For run 2, new calibration methods have been devised to follow and correct online the calorimeter detector response. The design and construction characteristics of the LHCb calorimeter will be recalled. Strategies for...

  5. Data Quality system of the ATLAS hadronic Tile calorimeter

    CERN Document Server

    Nemecek, S; The ATLAS collaboration

    2012-01-01

    The Tile Calorimeter (TileCal) is the central section of the hadronic calorimeter of the ATLAS experiment. It is subdivided into a large central barrel and two smaller lateral extended barrels. Each barrel consists of 64 wedges, made of iron plates and scintillating tiles. Two edges of each scintillating tile are air-coupled to wave-length shifting fibres which collect the scintillating light and transmit it to photo-multipliers. The total number of channels is about 10000. An essential part of the TileCal detector is the Data Quality (DQ) system. The DQ system is designed to check the status of the electronic channels. It is designed to provide information at two levels - online and offline. The online TileCal DQ system monitors continuously the data while they are recorded and provides a fast feedback. The offline DQ system allows a detailed study, if needed it provides corrections to be applied to the recorded data and it allows to validate the data for physics analysis. In addition to the check of physics...

  6. Performance of a prototype for stimulated recovery of radiation damage for the PANDA EMC forward endcap and barrel

    Energy Technology Data Exchange (ETDEWEB)

    Kuske, Till; Dormenev, Valera; Novotny, Rainer; Zaunick, Hans-Georg [II. Physikalisches Institut, Justus-Liebig Universitaet (Germany)

    2015-07-01

    The future Electromagnetic Calorimeter (EMC) of the PANDA detector at FAIR will be based on a new generation of lead tungstate crystals (PWO-II). It is optimized to measure particle energies from 10 GeV down to 10-20 MeV. The operating temperature of the EMC will be -25 C. Due to the operation in a strong radiation environment one of the most critical parameter of PWO-II is radiation hardness. The radiation damage of PWO-II can be compensated by spontaneous relaxation of the color centers via thermo-activation. The process is strongly suppressed at -25 C, which is limiting the energy resolution of the EMC. The recovery process can be accelerated by illumination of the crystal with light even in the infrared region. A prototype implementation of the stimulated recovery for the PANDA EMC forward endcap is shown. Detailed studies concerning flux and intensity for different recovery modes at -25 C are presented. Additionally a concept for the recovery of radiation damage in the barrel part of the EMC is discussed.

  7. ALICE Zero Degree Calorimeter

    CERN Multimedia

    De Marco, N

    2013-01-01

    Two identical sets of calorimeters are located on both sides with respect to the beam Interaction Point (IP), 112.5 m away from it. Each set of detectors consists of a neutron (ZN) and a proton (ZP) Zero Degree Calorimeter (ZDC), positioned on remotely controlled platforms. The ZN is placed at zero degree with respect to the LHC beam axis, between the two beam pipes, while the ZP is positioned externally to the outgoing beam pipe. The spectator protons are separated from the ion beams by means of the dipole magnet D1.

  8. Pion showers in highly granular calorimeters

    Indian Academy of Sciences (India)

    Jaroslav Cvach; on behalf of the CALICE Collaboration

    2012-10-01

    New results on properties of hadron showers created by pion beam at 8–80 GeV in high granular electromagnetic and hadron calorimeters are presented. Data were used for the first time to investigate the separation of the neutral and charged hadron showers. The result is important to verify the prediction of the PFA algorithm based up to now on the simulated data only. Next, the properties of hadron showers were compared to different physics lists of GEANT4 version 9.3.

  9. Energy loss correction for a crystal calorimeter

    Institute of Scientific and Technical Information of China (English)

    HE Miao; LI Hai-Bo; LI Wei-Dong; LIU Chun-Xiu; LIU Huai-Min; MA Qiu-Mei; MA Xiang; MAO Ya-Jun; MAO Ze-Pu; MO Xiao-Hu; QIU Jin-Fa; WANG Yi-Fang; SUN Sheng-Sen; SUN Yong-Zhao; WANG Ji-Ke; WANG Liang-Liang; WEN Shuo-Pin; WU Ling-Hui; XIE Yu-Guang; YANG Ming; YOU Zheng-Yun; YU Guo-Wei; BIAN Jian-Ming; YUAN Chang-Zheng; YUAN Ye; ZANG Shi-Lei; ZHANG Chang-Chun; ZHANG Jian-Yong; ZHANG Ling; ZHANG Xue-Yao; ZHANG Yao; ZHENG Zhi-Peng; ZHU Yong-Sheng; CAO Guo-Fu; ZOU Jia-Heng; DENG Zi-Yan; HE Kang-Lin; HUANG Bin; JI Xiao-Bin; LI Gang

    2008-01-01

    Material effect of inner-detectors on the performances of the BESⅢ Electromagnetic Calorimeter (EMC)is investigated.The BESⅢ Time-Of-Flight counters(TOF)have been utilized to improve the energy resolution and detection efficiency for photons after a careful energy calibration.A matching algorithm between TOF and EMC energy deposits is developed,and the effects of beam-related background are discussed.The energy resolution is improved and the photon detection efficiency can be increased by the combined measurement of EMC and TOF detectors.

  10. The ATLAS hadronic tile calorimeter from construction toward physics

    CERN Document Server

    Roda, C

    2004-01-01

    The tile calorimeter, which constitutes the central section of the ATLAS hadronic calorimeter, is a non-compensating sampling device made of iron and scintillating tiles. Almost all the work to build the calorimeter has been completed and most of the effort is now directed toward the final assembly and testing in the experimental area. The lay-out of the calorimeter and the tasks carried out during construction are described after a brief reminder of the requirements that drove the calorimeter design. During the last years a lot of work has also been put in the test accomplish the tests on beam to set the electromagnetic scale, to study its uniformity and to acquire data to tune the detector simulation. The test beam setup and selected results obtained from the acquired data are described. In this last year a few months long test on beam has been carried out acquiring data with a complete slice of the central ATLAS calorimeter. The data collected at the test on beam are crucial to study the algorithms to reco...

  11. OSIRIS camera barrel optomechanical design

    Science.gov (United States)

    Farah, Alejandro; Tejada, Carlos; Gonzalez, Jesus; Cobos, Francisco J.; Sanchez, Beatriz; Fuentes, Javier; Ruiz, Elfego

    2004-09-01

    A Camera Barrel, located in the OSIRIS imager/spectrograph for the Gran Telescopio Canarias (GTC), is described in this article. The barrel design has been developed by the Institute for Astronomy of the University of Mexico (IA-UNAM), in collaboration with the Institute for Astrophysics of Canarias (IAC), Spain. The barrel is being manufactured by the Engineering Center for Industrial Development (CIDESI) at Queretaro, Mexico. The Camera Barrel includes a set of eight lenses (three doublets and two singlets), with their respective supports and cells, as well as two subsystems: the Focusing Unit, which is a mechanism that modifies the first doublet relative position; and the Passive Displacement Unit (PDU), which uses the third doublet as thermal compensator to maintain the camera focal length and image quality when the ambient temperature changes. This article includes a brief description of the scientific instrument; describes the design criteria related with performance justification; and summarizes the specifications related with misalignment errors and generated stresses. The Camera Barrel components are described and analytical calculations, FEA simulations and error budgets are also included.

  12. An Inexpensive Solution Calorimeter

    Science.gov (United States)

    Kavanagh, Emma; Mindel, Sam; Robertson, Giles; Hughes, D. E. Peter

    2008-01-01

    We describe the construction of a simple solution calorimeter, using a miniature bead thermistor as a temperature-sensing element. This has a response time of a few seconds and made it possible to carry out a thermometric reaction in under a minute, which led to minimal heat losses. Small temperature changes of 1 K associated with enthalpies of…

  13. The ATLAS tile calorimeter

    CERN Multimedia

    Maximilien Brice

    2003-01-01

    Louis Rose-Dulcina, a technician from the ATLAS collaboration, works on the ATLAS tile calorimeter. Special manufacturing techniques were developed to mass produce the thousands of elements in this detector. Tile detectors are made in a sandwich-like structure where these scintillator tiles are placed between metal sheets.

  14. CMS Central Hadron Calorimeter

    OpenAIRE

    Budd, Howard S.

    2001-01-01

    We present a description of the CMS central hadron calorimeter. We describe the production of the 1996 CMS hadron testbeam module. We show the results of the quality control tests of the testbeam module. We present some results of the 1995 CMS hadron testbeam.

  15. Noise dependence with pile-up in the ATLAS Tile Calorimeter. Pile-up noise studies in the ATLAS TileCal calorimeter

    Energy Technology Data Exchange (ETDEWEB)

    Araque, J.P. [ATLAS Tile Calorimeter System, Laboratorio de Instrumentacao e Fisica Experimental de Particulas, Departamento de Fisica da Universidade do Minho, Campus de Gualtar, 4710-057 Braga (Portugal)

    2015-07-01

    The Tile Calorimeter, TileCal, is the central hadronic calorimeter of the ATLAS experiment, positioned between the electromagnetic calorimeter and the muon chambers. It comprises alternating layers of steel (as absorber material) and plastic (as active material), known as tiles. Between 2009 and 2012, the LHC has performed better than expected producing proton-proton collisions at a very high rate. These conditions are really challenging when dealing with the energy measurements in the calorimeter since not only the energy from an interesting event will be measured but a component coming from other collisions, which are difficult to distinguish from the interesting one, will also be present. This component is referred to as pile-up noise. Studies carried out to better understand how pile-up affects calorimeter noise under different circumstances are described. (author)

  16. Design, performance, and calibration of CMS forward calorimeter wedges

    Energy Technology Data Exchange (ETDEWEB)

    Abdullin, S. [Fermi National Accelerator Lab., Batavia, IL (United States)]|[Univ. of Maryland, College Park, MD (United States); Abramov, V.; Goncharov, P.; Kalinin, A.; Khmelnikov, A.; Korablev, A.; Korneev, Y.; Krinitsyn, A.; Kryshkin, V.; Lukanin, V.; Pikalov, V.; Ryazanov, A.; Talov, V.; Turchanovich, L.; Volkov, A. [IHEP, Protvino (Russian Federation); Acharya, B.; Banerjee, Sud.; Banerjee, Sun.; Chendvankar, S.; Dugad, S.; Kalmani, S.; Katta, S.; Mazumdar, K.; Mondal, N.; Nagaraj, P.; Patil, M.; Reddy, L.; Satyanarayana, B.; Sharma, S.; Verma, P. [Tata Inst. of Fundamental Research, Mumbai (India); Adams, M.; Burchesky, K.; Qiang, W. [Univ. of Illinois, Chicago, IL (United States); Akchurin, N.; Carrell, K.; Guemues, K.; Kim, H.; Spezziga, M.; Thomas, R.; Wigmans, R. [Texas Tech Univ., Dept. of Physics, Lubbock, TX (United States); Akgun, U.; Ayan, S.; Duru, F.; Merlo, J.P.; Mestvirishvili, A.; Miller, M.; Norbeck, E.; Olson, J.; Onel, Y.; Schmidt, I. [Univ. of Iowa, Iowa City, IA (United States); Anderson, E.W.; Hauptman, J. [Iowa State Univ., Ames, IA (United States); Antchev, G.; Arcidy, M.; Hazen, E.; Lawlor, C.; Machado, E.; Posch, C.; Rohlf, J.; Sulak, L.; Varela, F.; Wu, S.X. [Boston Univ., MA (United States); Aydin, S.; Bakirci, M.N.; Cerci, S.; Dumanoglu, I.; Eskut, E.; Kayis-Topaksu, A.; Koylu, S.; Kurt, P.; Kuzucu-Polatoz, A.; Onengut, G.; Ozdes-Koca, N.; Ozkurt, H.; Sogut, K.; Topakli, H.; Vergili, M.; Yetkin, T. [Cukurova Univ., Adana (Turkey); Baarmand, M.; Mermerkaya, H.; Vodopiyanov, I. [Florida Inst. of Tech., Melbourne, FL (United States); Babich, K.; Golutvin, I.; Kalagin, V.; Kosarev, I.; Ladygin, V.; Mescheryakov, G.; Moissenz, P.; Petrosyan, A.; Rogalev, E.; Smirnov, V.; Vishnevskiy, A.; Volodko, A.; Zarubin, A. [JINR, Dubna (Russian Federation); Baden, D.; Bard, R.; Eno, S.; Grassi, T.; Jarvis, C.; Kellogg, R.; Kunori, S.; Skuja, A.; Wang, L.; Wetstein, M. [Univ. of Maryland, College Park, MD (United States)] [and others

    2008-01-15

    We report on the test beam results and calibration methods using high energy electrons, pions and muons with the CMS forward calorimeter (HF). The HF calorimeter covers a large pseudorapidity region (3{<=} vertical stroke {eta} vertical stroke {<=}5), and is essential for a large number of physics channels with missing transverse energy. It is also expected to play a prominent role in the measurement of forward tagging jets in weak boson fusion channels in Higgs production. The HF calorimeter is based on steel absorber with embedded fused-silica-core optical fibers where Cherenkov radiation forms the basis of signal generation. Thus, the detector is essentially sensitive only to the electromagnetic shower core and is highly non-compensating (e/h{approx}5). This feature is also manifest in narrow and relatively short showers compared to similar calorimeters based on ionization. The choice of fused-silica optical fibers as active material is dictated by its exceptional radiation hardness. The electromagnetic energy resolution is dominated by photoelectron statistics and can be expressed in the customary form as (a)/({radical}(E))+b. The stochastic term a is 198% and the constant term b is 9%. The hadronic energy resolution is largely determined by the fluctuations in the neutral pion production in showers, and when it is expressed as in the electromagnetic case, a=280% and b=11%. (orig.)

  17. Response of the ATLAS tile calorimeter prototype to muons

    CERN Document Server

    Ajaltouni, Ziad J; Alifanov, A; Amaral, P; Amorim, A; Anderson, K J; Angelini, C; Astvatsaturov, A R; Autiero, D; Badaud, F; Barreira, G; Berglund, S R; Blanchot, G; Blucher, E; Blaj, C; Bogush, A A; Bohm, C; Boldea, V; Borisov, O N; Bosman, M; Bouhemaid, N; Brette, P; Bromberg, C; Brossard, M; Budagov, Yu A; Calôba, L P; Carvalho, J; Casado, M P; Cavalli-Sforza, M; Cavasinni, V; Chadelas, R; Chevaleyre, J C; Chirikov-Zorin, I E; Chlachidze, G; Cobal, M; Cogswell, F; Colaço, F; Constantinescu, S; Costanzo, D; Crouau, M; Daudon, F; David, M; Davidek, T; Dawson, J; Dugne, J J; De, K; Del Prete, T; De Santo, A; Di Girolamo, B; Dita, S; Dolejsi, J; Dolezal, Z; Downing, R; Efthymiopoulos, I; Errede, D; Errede, S; Evans, H; Ferrer, A; Flaminio, Vincenzo; Gallas, E J; Gaspar, M; Gildemeister, O; Glagolev, V V; Golubev, V B; Gómez, A; Grabskii, V; Haney, M; Hakopian, H H; Hellman, S; Henriques, A; Holmgren, S O; Honoré, P F; Huston, J; Ivanyushenkov, Yu M; Johansson, E K; Jon-And, K; Juste, A; Kakurin, S; Karapetian, G V; Karyukhin, A N; Khokhlov, Yu A; Klioukhine, V I; Kolomoets, V; Kopikov, S V; Kostrikov, M E; Kovtun, V E; Kukhtin, V V; Kulagin, M; Kulchitskii, Yu A; Lami, S; Lapin, V; Lazzeroni, C; Lebedev, A; Leitner, R; Li, J; Liba, I; Lomakin, Yu F; Lomakina, O V; Lokajícek, M; Maio, A; Malyukov, S N; Marroquin, F; Martins, J P; Mazzoni, E; Merritt, F S; Michel, B; Miller, E; Minashvili, I A; Miralles, L; Mnatzakanian, E A; Montarou, G; Muanza, G S; Némécek, S; Nessi, Marzio; Onofre, A; Orteu, S; Padilla, C; Pallin, D; Pantea, D; Patriarca, J; Pereira, A; Perlas, J A; Pilcher, J E; Pinhão, J; Poggioli, Luc; Poirot, S; Price, L; Protopopov, Yu; Proudfoot, J; Pukhov, O; Reinmuth, G; Renzoni, G; Richards, R; Riu, I; Romanov, V; Ronceux, B; Rumyantsev, V; Rusakovitch, N A; Sanders, H; Santos, J; Sawyer, L; Says, L P; Seixas, J M; Selldén, B; Semenov, A A; Senchyshyn, V G; Shchelchkov, A S; Shevtsov, V P; Shochet, M J; Sidorov, V; Simaitis, V J; Sissakian, A N; Solodkov, A A; Sonderegger, P; Soustruznik, K; Stanek, R; Starchenko, E A; Stephens, R; Studenov, S; Suk, M; Surkov, A; Tang, F; Tardell, S; Tas, P; Teubert, F; Thaler, J J; Tokár, S; Topilin, N D; Trka, Z; Turcot, A S; Turcotte, M; Valkár, S; Varanda, M J; Vartapetian, A H; Vazeille, F; Vinogradov, V; Vorozhtsov, S B; Wagner, D; White, Alan R; Wolters, H; Yamdagni, N; Yarygin, G; Yosef, C; Zaitsev, A; Zdrazil, M

    1996-01-01

    A study of high energy muons traversing the ATLAS hadron Tile calorimeter in the barrel region in the energy range between 10 and 300~GeV is presented. Both test beam experimental data and Monte Carlo simulations are given and show good agreement. The Tile calorimeter capability of detecting isolated muons over the above energy range is demonstrated. A signal to background ratio of about 10 is expected for the nominal LHC luminosity ($10^{34} cm^{-2} sec^{-1}$). The photoelectron statistics effect in the muon shape response is shown. The e/mip ratio is found to be $ 0.81 \\pm 0.03$; the e/$\\mu$ ratio is in the range 0.91 - 0.97. The energy loss of a muon in the calorimeter, dominated by the energy lost in the absorber, can be correlated to the energy loss in the active material. This correlation allows one to correct on an event by event basis the muon energy loss in the calorimeter and therefore reduce the low energy tails in the muon momentum distribution.

  18. Calorimeters for present and future accelerators a status report

    CERN Document Server

    Ceccucci, Augusto

    2001-01-01

    Calorimeters play an important role in experiments operated at present accelerators and will continue to do so in the future. The field of calorimetry is very wide and only a few examples can be reviewed in this paper. As far as present accelerators are concerned, we will describe the performance of a few, recently commissioned, precision electro-magnetic (EM) calorimeters. As an application to future accelerators, we will briefly review the status of calorimetry for the proton-proton experiments at the Large Hadron Collider (LHC). (21 refs).

  19. Study of a Novel Concept for a Liquid Argon Calorimeter \

    CERN Multimedia

    2002-01-01

    % RD33 \\\\ \\\\ The development of a fast, highly granular and compact electromagnetic liquid argon calorimeter prototype is proposed as a generic R\\&D project for a novel concept of calorimetry in proton-proton and electron-positron collider detectors: the $^{\\prime$Thin Gap Turbine$^{\\prime}$ (TGT). The TGT calorimeter has a modular construction, is flexible in its longitudinal and transverse granularity, and offers a uniform energy response and resolution, independent of the production angle of incident particles. An important aspect of the project is the development of fast, radiation-hard front-end electronics which is operating in the cold.

  20. Precision timing calorimeter for high energy physics

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Dustin; Apresyan, Artur [California Institute of Technology, Pasadena, CA 91125 (United States); Bornheim, Adolf, E-mail: bornheim@hep.caltech.edu [California Institute of Technology, Pasadena, CA 91125 (United States); Duarte, Javier; Peña, Cristián; Spiropulu, Maria; Trevor, Jason; Xie, Si [California Institute of Technology, Pasadena, CA 91125 (United States); Ronzhin, Anatoly [Fermi National Accelerator Laboratory, PO Box 500, Batavia, IL 60510-5011 (United States)

    2016-07-11

    Scintillator based calorimeter technology is studied with the aim to achieve particle detection with a time resolution on the order of a few 10 ps for photons and electrons at energies of a few GeV and above. We present results from a prototype of a 1.4×1.4×11.4 cm{sup 3} sampling calorimeter cell consisting of tungsten absorber plates and Cerium-doped Lutetium Yttrium Orthosilicate (LYSO) crystal scintillator plates. The LYSO plates are read out with wave lengths shifting fibers which are optically coupled to fast photo detectors on both ends of the fibers. The measurements with electrons were performed at the Fermilab Test Beam Facility (FTBF) and the CERN SPS H2 test beam. In addition to the baseline setup plastic scintillation counter and a MCP-PMT were used as trigger and as a reference for a time of flight measurement (TOF). We also present measurements with a fast laser to further characterize the response of the prototype and the photo sensors. All data were recorded using a DRS4 fast sampling digitizer. These measurements are part of an R&D program whose aim is to demonstrate the feasibility of building a large scale electromagnetic calorimeter with a time resolution on the order of 10 ps, to be used in high energy physics experiments.

  1. Preliminary conceptual design about the CEPC calorimeters

    Science.gov (United States)

    Yang, Haijun

    2016-11-01

    The Circular Electron Positron Collider (CEPC) as a Higgs factory was proposed in September 2013. The preliminary conceptual design report was completed in 2015.1 The CEPC detector design was using International Linear Collider Detector — ILD2 as an initial baseline. The CEPC calorimeters, including the high granularity electromagnetic calorimeter (ECAL) and the hadron calorimeter (HCAL), are designed for precise energy measurements of electrons, photons, taus and hadronic jets. The basic resolution requirements for the ECAL and HCAL are about 16%E (GeV) and 50%E (GeV), respectively. To fully exploit the physics potential of the Higgs, W, Z and related Standard Model processes, the jet energy resolution is required to reach 3%-4%, or 30%/E (GeV) at energies below about 100 GeV. To achieve the required performance, a Particle Flow Algorithm (PFA) — oriented calorimetry system is being considered as the baseline design. The CEPC ECAL detector options include silicon-tungsten or scintillator-tungsten structures with analog readout, while the HCAL detector options have scintillator or gaseous detector as the active sensor and iron as the absorber. Some latest R&D studies about ECAL and HCAL within the CEPC working group is also presented.

  2. Precision timing calorimeter for high energy physics

    Science.gov (United States)

    Anderson, Dustin; Apresyan, Artur; Bornheim, Adolf; Duarte, Javier; Peña, Cristián; Spiropulu, Maria; Trevor, Jason; Xie, Si; Ronzhin, Anatoly

    2016-07-01

    Scintillator based calorimeter technology is studied with the aim to achieve particle detection with a time resolution on the order of a few 10 ps for photons and electrons at energies of a few GeV and above. We present results from a prototype of a 1.4×1.4×11.4 cm3 sampling calorimeter cell consisting of tungsten absorber plates and Cerium-doped Lutetium Yttrium Orthosilicate (LYSO) crystal scintillator plates. The LYSO plates are read out with wave lengths shifting fibers which are optically coupled to fast photo detectors on both ends of the fibers. The measurements with electrons were performed at the Fermilab Test Beam Facility (FTBF) and the CERN SPS H2 test beam. In addition to the baseline setup plastic scintillation counter and a MCP-PMT were used as trigger and as a reference for a time of flight measurement (TOF). We also present measurements with a fast laser to further characterize the response of the prototype and the photo sensors. All data were recorded using a DRS4 fast sampling digitizer. These measurements are part of an R&D program whose aim is to demonstrate the feasibility of building a large scale electromagnetic calorimeter with a time resolution on the order of 10 ps, to be used in high energy physics experiments.

  3. The Zeus calorimeter first level trigger

    Energy Technology Data Exchange (ETDEWEB)

    Smith, W.J. [Univ. of Wisconsin, Madison, WI (United States)

    1989-04-01

    The design of the Zeus Detector Calorimeter Level Trigger is presented. The Zeus detector is being built for operation at HERA, a new storage ring that will provide collisions between 820 GeV protons and 30 GeV electrons in 1990. The calorimeter is made of depleted uranium plates and plastic scintillator read out by wavelength shifter bars into 12,864 photomultiplier tubes. These signals are combined into 974 trigger towers with separate electromagnetic and hadronic sums. The calorimeter first level trigger is pipelined with a decision provided 5 {mu}sec after each beam crossing, occurring every 96 nsec. The trigger determines the total energy, the total transverse energy, the missing energy, and the energy and number of isolated electrons and muons. It also provides information on the number and energy of clusters. The trigger rate needs to be held to 1 kHz against a rate of proton-beam gas interactions of approximately 500 kHz. The summed trigger tower pulseheights are digitized by flash ADC`s. The digital values are linearized, stored and used for sums and pattern tests.

  4. Design studies and sensor tests for the beam calorimeter of the ILC detector

    Energy Technology Data Exchange (ETDEWEB)

    Kuznetsova, E.

    2007-03-15

    The International Linear Collider (ILC) is being designed to explore particle physics at the TeV scale. The design of the Very Forward Region of the ILC detector is considered in the presented work. The Beam Calorimeter - one of two electromagnetic calorimeters situated there - is the subject of this thesis. The Beam Calorimeter has to provide a good hermeticity for high energy electrons, positrons and photons down to very low polar angles, serve for fast beam diagnostics and shield the inner part of the detector from backscattered beamstrahlung remnants and synchrotron radiation. As a possible technology for the Beam Calorimeter a diamond-tungsten sandwich calorimeter is considered. Detailed simulation studies are done in order to explore the suitability of the considered design for the Beam Calorimeter objectives. Detection efficiency, energy and angular resolution for electromagnetic showers are studied. At the simulation level the diamondtungsten design is shown to match the requirements on the Beam Calorimeter performance. Studies of polycrystalline chemical vapour deposition (pCVD) diamond as a sensor material for the Beam Calorimeter are done to explore the properties of the material. Results of the measurements performed with pCVD diamond samples produced by different manufacturers are presented. (orig.)

  5. Experimental study of the test module of the electromagnetic end-cap calorimeter for the ATLAS experiment. Study of the spin correlation in the production of pairs tt-bar; Etude experimentale des performances du module 0 du calorimetre electromagnetique bouchon d'ATLAS. Etude de la correlation de spin dans la production des paires tt-bar au LHC

    Energy Technology Data Exchange (ETDEWEB)

    Hinz, L

    2001-06-01

    LHC, the future CERN proton collider, will start in 2006. It will be devoted to a better understanding of the Standard Model and new physics research. With a 10 {integral}b{sup -1} per year at low luminosity during the first three years, then 100 {integral}b{sup -1} per year, and energy of 14 TeV in the center of mass, the LHC is designed to discover the Standard or SUSY Higgs boson, or probe signature of new physics. ATLAS, one of the four experiments at the LHC, can study a large physics range, as Higgs boson, top and bottom, gauge bosons and new particles expected by SUSY model or other models beyond the Standard Model. The CPPM laboratory is responsible of a part of the electromagnetic end-cap calorimeter for the ATLAS experiment. In 1999, an ATLAS-like prototype of module was stacked in Marseille and intensively tested at CERN. Description of the calorimeter and a part of test-beam results are presented in this PhD manuscript. In parallel, a study about potentiality of the tt-bar spin correlation measurement was done. The high tt-bar statistic produced at the LHC allows to explore the quark top properties in details and being sensitive to new physics phenomena. Signatures of such physics can be extracted from tt-bar decay product angular distributions which are sensitive to tt-bar spin correlation. (authors)

  6. ID Barrel installed in cryostat

    CERN Multimedia

    Apsimon, R.; Romaniouk, A.

    Wednesday 23rd August was a memorable day for the Inner Detector community as they witnessed the transport and installation of the central part of the inner detector (ID-barrel) into the ATLAS detector. Many members of the collaboration gathered to witness this moment at Point 1. After years of design, construction and commissioning, the outer two detectors (TRT and SCT) of the ID barrel were moved from the SR1 cleanroom to the ATLAS cavern. The barrel was moved across the car park from building 2175 to SX1. Although only a journey of about 100 metres, this required weeks of planning and some degree of luck as far as the weather was concerned. Accelerometers were fitted to the barrel to provide real-time monitoring and no values greater than 0.1 g were recorded, fully satisfying the transport specification for this extremely precise and fragile detector. Muriel, despite her fear of heights, bravely volunteered to keep a close eye on the detector. Swapping cranes to cross the entire parking lot, while Mur...

  7. NA48 prototype calorimeter

    CERN Document Server

    1990-01-01

    This is a calorimeter, a detector which measures the energy of particles. When in use, it is filled with liquid krypton at -152°C. Electrons and photons passing through interact with the krypton, creating a shower of charged particles which are collected on the copper ribbons. The ribbons are aligned to an accuracy of a tenth of a millimetre. The folding at each end allows them to be kept absolutely flat. Each shower of particles also creates a signal in scintillating material embedded in the support disks. These flashes of light are transmitted to electronics by the optical fibres along the side of the detector. They give the time at which the interaction occurred. The photo shows the calorimeter at NA48, a CERN experiment which is trying to understand the lack of anti-matter in the Universe today.

  8. UA2 central calorimeter

    CERN Multimedia

    The UA2 central calorimeter measured the energy of individual particles created in proton-antiproton collisions. Accurate calibration allowed the W and Z masses to be measured with a precision of about 1%. The calorimeter had 24 slices like this one, each weighing 4 tons. The slices were arranged like orange segments around the collision point. Incoming particles produced showers of secondary particles in the layers of heavy material. These showers passed through the layers of plastic scintillator, generating light which was taken by light guides (green) to the data collection electronics. The amount of light was proportional to the energy of the original particle. The inner 23 cm of lead and plastic sandwiches measured electrons and photons; the outer 80 cm of iron and plastic sandwiches measured strongly interacting hadrons. The detector was calibrated by injecting light through optical fibres or by placing a radioactive source in the tube on the bottom edge.

  9. The CMS electromagnetic calorimeter and the search for the Higgs boson in the decay channel H {yields} WW{sup *} {yields} 2e2{nu}; Le calorimetre electromagnetique de CMS et la recherche du boson de Higgs dans le canal de desintegration H {yields} WW{sup *} {yields} 2e2{nu}

    Energy Technology Data Exchange (ETDEWEB)

    Rovelli, I.Ch

    2006-01-15

    CMS is one of the four experiments that will take data at the LHC. Large part of my work was devoted to the development of electron reconstruction tools aimed at improving the Higgs boson discovery potential in the H {yields} WW{sup *} {yields} 2e2{nu} channel. A major role in the electron reconstruction is played by the electromagnetic calorimeter ECAL, an homogeneous calorimeter made of scintillating PbWO{sub 4} crystals. The first 3 chapters give an overview of LHC and CMS.In chapter 4 the analysis of the data collected during the 2003 electromagnetic calorimeter test beam is presented. First the problem of the intercalibration at the test beam is addressed. This is a major task, since the precision of the intercalibration directly affects the constant term of the energy resolution, for which the CMS goal is to reach a precision better than 0.5%. The good initial intercalibration, anyway, could be spoiled during the data taking by the effects of the radiation on the crystals, which can change the relative responses of the channels. A monitoring laser system is foreseen at CMS. The possibility to check the calibration stability and to correct the changes in the response with a precision within the required limits is demonstrated. Chapter five describes the electron reconstruction and identification in CMS. A crucial problem for the electron reconstruction is represented by the Bremsstrahlung emission in the tracker. A tracking procedure dealing with the Bremsstrahlung energy loss is discussed. Together with an improvement in the reconstruction efficiency, the procedure allows to identify electrons with a small fraction of radiated energy, which can be usefully exploited for the ECAL calibration. The developed algorithms are applied in chapter 6, which presents the study of the CMS discovery potential of the Higgs boson in the H {yields} WW{sup *} {yields} 2e2{nu} channel. This is the discovery channel in the range of masses between 2m{sub W} and 2m{sub Z}. Here

  10. CMS Hadron Endcap Calorimeter Upgrade Studies for Super-LHC

    Science.gov (United States)

    Bilki, Burak; CMS HCAL Collaboration

    2011-04-01

    When the Large Hadron Collider approaches Super-LHC conditions above a luminosity of 1034cm-2s-1, the scintillator tiles of the CMS Hadron Endcap calorimeters will lose their efficiencies. As a radiation hard solution, the scintillator tiles are planned to be replaced by quartz plates. In order to improve the efficiency of the photodetection, various methods were investigated including radiation hard wavelength shifters, p-terphenyl or 4% gallium doped zinc oxide. We constructed a 20 layer calorimeter prototype with pTp coated plates of size 20 cm × 20 cm, and tested the hadronic and the electromagnetic capabilities at the CERN H2 beam-line. The beam tests revealed a substantial light collection increase with pTp or ZnO:Ga deposited quartz plates. Here we report on the current R&D for a viable endcap calorimeter solution for CMS with beam tests and radiation damage studies.

  11. CMS Hadron Endcap Calorimeter Upgrade Studies for Super-LHC

    CERN Document Server

    Bilki, Burak

    2010-01-01

    When the Large Hadron Collider approaches Super-LHC conditions above a luminosity of $10^{34} cm^{-2} s^{-1}$, the scintillator tiles of the CMS Hadron Endcap calorimeters will lose their efficiencies. As a radiation hard solution, the scintillator tiles are planned to be replaced by quartz plates. In order to improve the efficiency of the photodetection, various methods were investigated including radiation hard wavelength shifters, p-terphenyl or 4\\% gallium doped zinc oxide. We constructed a 20 layer calorimeter prototype with pTp coated plates of size 20 cm x 20 cm, and tested the hadronic and the electromagnetic capabilities at the CERN H2 beam-line. The beam tests revealed a substantial light collection increase with pTp or ZnO:Ga deposited quartz plates. Here we report on the current R\\&D for a viable endcap calorimeter solution for CMS with beam tests and radiation damage studies.

  12. Energy Reconstruction of Hadron Showers in the CALICE Calorimeters

    CERN Document Server

    Simon, Frank

    2009-01-01

    The CALICE collaboration has constructed highly granular electromagnetic and hadronic calorimeter prototypes to evaluate technologies for the use in detector systems at the future International Linear Collider. These calorimeters have been tested extensively in particle beams at CERN and at Fermilab. We present analysis results for hadronic events recorded at CERN with a SiW ECAL, a scintillator tile HCAL and a scintillator strip tail catcher, the latter two with SiPM readout, focusing both on the HCAL alone and on the complete calorimeter setup. Particular emphasis is placed on the study of the linearity of the detector response and on the single particle energy resolution. The high granularity of the detectors was used to perform first studies of software compensation based on the local shower energy density, yielding significant improvements in the energy resolution. The required calibration precision to achieve this resolution, and the effect of calibration uncertainties, for the CALICE HCAL as well as fo...

  13. Performance of the ATLAS Calorimeters and Commissioning for LHC Run-2

    CERN Document Server

    Rossetti, Valerio; The ATLAS collaboration

    2015-01-01

    The ATLAS general-purpose experiment at the Large Hadron Collider (LHC) is equipped with electromagnetic and hadronic liquid-argon (LAr) calorimeters and a hadronic scintillator-steel sampling calorimeter (TileCal) for measuring energy and direction of final state particles in the pseudorapidity range $|\\eta| < 4.9$. The calibration and performance of the calorimetry system was established during beam tests, cosmic ray muon measurements and in particular the first three years of pp collision data-taking. During this period, referred to as Run-1, approximately 27~fb$^{-1}$ of data have been collected at the center-of-mass energies of 7 and 8~TeV. Results on the calorimeter operation, monitoring and data quality, as well as their performance will be presented, including the calibration and stability of the electromagnetic scale, response uniformity and time resolution. These results demonstrate that the LAr and Tile calorimeters perform excellently within their design requirements. The calorimetry system thu...

  14. Application of the image calorimeter in the high energy gamma astronomy

    Energy Technology Data Exchange (ETDEWEB)

    Casolino, M.; Sparvoli, R.; Morselli, A.; Picozza, P. [Rome Univ. `Tor Vergata` (Italy). Dip. di Fisica]|[INFN, Sezione Univ. `Tor Vergata`, Rome (Italy); Carlson, P. [Royal Institute of Technology, Stockholm (Sweden); Fuglesang, C. [ESA-EAC, Cologne (Germany); Ozerov, Yu.V.; Zemskov, V.M.; Zverev, V.G.; Galper, A.M. [Moscow Engineering Physics Institute, Moscow (Russian Federation)

    1995-09-01

    The capability of registration of the primary high energy cosmic ray gamma emission by a gamma-telescope made of an image calorimeter is shown in this paper. The problem of triggering and off-line identification of primary particles by the analysis of the electromagnetic showers induced in the calorimeter is under consideration. The estimations of the background flux of delayed secondaries induced by nuclear interactions are presented too.

  15. Results on the calibration of the L3 BGO calorimeter with cosmic rays

    Energy Technology Data Exchange (ETDEWEB)

    Bakken, J.A.; Barone, L.; Bay, A.; Blaising, J.J.; Borgia, B.; Bourilkov, D.; Boutigny, D.; Brock, I.C.; Buisson, C.; Capell, M.; Chaturvedi, U.K.; Chemarin, M.; Clare, R.; Coignet, G.; Denes, P.; DeNotaristefani, F.; Diemoz, M.; Duchesneau, D.; El Mamouni, H.; Extermann, P.; Fay, J.; Ferroni, F.; Gailloud, M.; Goujon, D.; Gratta, G.; Gupta, V.K.; Hilgers, K.; Ille, B.; Janssen, H.; Karyotakis, Y.; Kasser, A.; Kienzle-Focacci, M.N.; Krenz, W.; Lebrun, P.; Lecoq, P.; Leonardi, E.; Linde, F.L.; Lindemann, B.; Longo, E.; Lu, Y.S.; Luci, C.; Luckey, D.; Martin, J.P.; Merk, M.; Micke, M.; Morganti, S.; Newman, H.; Organtini, G.; Piroue, P.A.; Read, K.; Rosier-Lees, S.; Rosselet, P.; Sauvage, G.; Schmitz, D.; Schneegans, M.; Schwenke, J.; Stickland, D.P.; Tully, C.; Valente, E.; Vivargent, M.; Vuilleumier, L.; Wang, Y.F.; Weber, A.; Weill, R.; Wenninger, J. (1. Physikalisches Inst., RWTH-Aachen (Germany) National Inst. for High Energy Physics, NIKHEF, Amsterdam (Netherlands) Lab. d' Annecy-l; L3 BGO Collaboration

    1994-04-11

    During 1991 two cosmic rays runs took place for the calibration of the L3 electromagnetic calorimeter. In this paper we present the results of the first high statistics cosmic ray calibration of the calorimeter in situ, including the end caps. Results show that the accuracy on the measurement of the calibration constants that can be achieved in one month of data taking is of 1.3%. (orig.)

  16. Electromagnetic Gun With Commutated Coils

    Science.gov (United States)

    Elliott, David G.

    1991-01-01

    Proposed electromagnetic gun includes electromagnet coil, turns of which commutated in sequence along barrel. Electrical current fed to two armatures by brushes sliding on bus bars in barrel. Interaction between armature currents and magnetic field from coil produces force accelerating armature, which in turn, pushes on projectile. Commutation scheme chosen so magnetic field approximately coincides and moves with cylindrical region defined by armatures. Scheme has disadvantage of complexity, but in return, enables designer to increase driving magnetic field without increasing armature current. Attainable muzzle velocity increased substantially.

  17. Cryogenic Tests of the Atlas Liquid Argon Calorimeter

    CERN Document Server

    Fabre, C; Chalifour, M; Gonidec, A; Passardi, Giorgio

    2006-01-01

    The ATLAS liquid argon calorimeter consists of the barrel and two end-cap detectors housed in three independent cryostats filled with a total volume of 78 m3 of liquid argon. During cool-down the temperature differences in the composite structure of the detectors must be kept within strict limits to avoid excessive mechanical stresses and relative displacements. During normal operation the formation of gas bubbles, which are detrimental to the functioning of the detector, must be prevented and temperature gradients of less than 0.7 K across the argon bath are mandatory due to the temperature dependence of the energy measurements. Between April 2004 and May 2005 the barrel (120 t) and one end-cap (219 t) underwent qualification tests at the operating temperature of 87.3 K using a dedicated test facility at ground level. These tests provided a validation of the cooling methods to be adopted in the final underground configuration. In total 6.9 GJ and 15.7 GJ were extracted from the calorimeters and a temperature...

  18. The PANDA Barrel DIRC detector

    Energy Technology Data Exchange (ETDEWEB)

    Hoek, M., E-mail: matthias.hoek@uni-mainz.de [Institut für Kernphysik, Johannes Gutenberg University Mainz, Mainz (Germany); Dzhygadlo, R.; Gerhardt, A.; Götzen, K.; Hohler, R.; Kalicy, G.; Kumawat, H.; Lehmann, D.; Lewandowski, B.; Patsyuk, M.; Peters, K.; Schepers, G.; Schmitt, L.; Schwarz, C.; Schwiening, J.; Traxler, M.; Zühlsdorf, M. [GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt (Germany); Dodokhov, V. Kh. [Joint Institute for Nuclear Research, Dubna (Russian Federation); Britting, A.; Eyrich, W. [Friedrich Alexander-University of Erlangen-Nuremberg, Erlangen (Germany); and others

    2014-12-01

    The PANDA experiment at the new Facility for Antiproton and Ion Research in Europe (FAIR) at GSI, Darmstadt, will study fundamental questions of hadron physics and QCD using high-intensity cooled antiproton beams with momenta between 1.5 and 15 GeV/c. Efficient Particle Identification for a wide momentum range and the full solid angle is required for reconstructing the various physics channels of the PANDA program. Hadronic Particle Identification in the barrel region of the detector will be provided by a DIRC counter. The design is based on the successful BABAR DIRC with important improvements, such as focusing optics and fast photon timing. Several of these improvements, including different radiator geometries and optics, were tested in particle beams at GSI and at CERN. The evolution of the conceptual design of the PANDA Barrel DIRC and the performance of complex prototypes in test beam campaigns will be discussed.

  19. Performance of the CMS Hadron Calorimeter with Cosmic Ray Muons and LHC Beam Data

    CERN Document Server

    Chatrchyan, S; Sirunyan, A M; Adam, W; Arnold, B; Bergauer, H; Bergauer, T; Dragicevic, M; Eichberger, M; Erö, J; Friedl, M; Frühwirth, R; Ghete, V M; Hammer, J; Hänsel, S; Hoch, M; Hörmann, N; Hrubec, J; Jeitler, M; Kasieczka, G; Kastner, K; Krammer, M; Liko, D; Magrans de Abril, I; Mikulec, I; Mittermayr, F; Neuherz, B; Oberegger, M; Padrta, M; Pernicka, M; Rohringer, H; Schmid, S; Schöfbeck, R; Schreiner, T; Stark, R; Steininger, H; Strauss, J; Taurok, A; Teischinger, F; Themel, T; Uhl, D; Wagner, P; Waltenberger, W; Walzel, G; Widl, E; Wulz, C E; Chekhovsky, V; Dvornikov, O; Emeliantchik, I; Litomin, A; Makarenko, V; Marfin, I; Mossolov, V; Shumeiko, N; Solin, A; Stefanovitch, R; Suarez Gonzalez, J; Tikhonov, A; Fedorov, A; Karneyeu, A; Korzhik, M; Panov, V; Zuyeuski, R; Kuchinsky, P; Beaumont, W; Benucci, L; Cardaci, M; De Wolf, E A; Delmeire, E; Druzhkin, D; Hashemi, M; Janssen, X; Maes, T; Mucibello, L; Ochesanu, S; Rougny, R; Selvaggi, M; Van Haevermaet, H; Van Mechelen, P; Van Remortel, N; Adler, V; Beauceron, S; Blyweert, S; D'Hondt, J; De Weirdt, S; Devroede, O; Heyninck, J; Kalogeropoulos, A; Maes, J; Maes, M; Mozer, M U; Tavernier, S; Van Doninck, W; Van Mulders, P; Villella, I; Bouhali, O; Chabert, E C; Charaf, O; Clerbaux, B; De Lentdecker, G; Dero, V; Elgammal, S; Gay, A P R; Hammad, G H; Marage, P E; Rugovac, S; Vander Velde, C; Vanlaer, P; Wickens, J; Grunewald, M; Klein, B; Marinov, A; Ryckbosch, D; Thyssen, F; Tytgat, M; Vanelderen, L; Verwilligen, P; Basegmez, S; Bruno, G; Caudron, J; Delaere, C; Demin, P; Favart, D; Giammanco, A; Grégoire, G; Lemaitre, V; Militaru, O; Ovyn, S; Piotrzkowski, K; Quertenmont, L; Schul, N; Beliy, N; Daubie, E; Alves, G A; Pol, M E; Souza, M H G; Carvalho, W; De Jesus Damiao, D; De Oliveira Martins, C; Fonseca De Souza, S; Mundim, L; Oguri, V; Santoro, A; Silva Do Amaral, S M; Sznajder, A; Fernandez Perez Tomei, T R; Ferreira Dias, M A; Gregores, E M; Novaes, S F; Abadjiev, K; Anguelov, T; Damgov, J; Darmenov, N; Dimitrov, L; Genchev, V; Iaydjiev, P; Piperov, S; Stoykova, S; Sultanov, G; Trayanov, R; Vankov, I; Dimitrov, A; Dyulendarova, M; Kozhuharov, V; Litov, L; Marinova, E; Mateev, M; Pavlov, B; Petkov, P; Toteva, Z; Chen, G M; Chen, H S; Guan, W; Jiang, C H; Liang, D; Liu, B; Meng, X; Tao, J; Wang, J; Wang, Z; Xue, Z; Zhang, Z; Ban, Y; Cai, J; Ge, Y; Guo, S; Hu, Z; Mao, Y; Qian, S J; Teng, H; Zhu, B; Avila, C; Baquero Ruiz, M; Carrillo Montoya, C A; Gomez, A; Gomez Moreno, B; Ocampo Rios, A A; Osorio Oliveros, A F; Reyes Romero, D; Sanabria, J C; Godinovic, N; Lelas, K; Plestina, R; Polic, D; Puljak, I; Antunovic, Z; Dzelalija, M; Brigljevic, V; Duric, S; Kadija, K; Morovic, S; Fereos, R; Galanti, M; Mousa, J; Papadakis, A; Ptochos, F; Razis, P A; Tsiakkouri, D; Zinonos, Z; Hektor, A; Kadastik, M; Kannike, K; Müntel, M; Raidal, M; Rebane, L; Anttila, E; Czellar, S; Härkönen, J; Heikkinen, A; Karimäki, V; Kinnunen, R; Klem, J; Kortelainen, M J; Lampén, T; Lassila-Perini, K; Lehti, S; Lindén, T; Luukka, P; Mäenpää, T; Nysten, J; Tuominen, E; Tuominiemi, J; Ungaro, D; Wendland, L; Banzuzi, K; Korpela, A; Tuuva, T; Nedelec, P; Sillou, D; Besancon, M; Chipaux, R; Dejardin, M; Denegri, D; Descamps, J; Fabbro, B; Faure, J L; Ferri, F; Ganjour, S; Gentit, F X; Givernaud, A; Gras, P; Hamel de Monchenault, G; Jarry, P; Lemaire, M C; Locci, E; Malcles, J; Marionneau, M; Millischer, L; Rander, J; Rosowsky, A; Rousseau, D; Titov, M; Verrecchia, P; Baffioni, S; Bianchini, L; Bluj, M; Busson, P; Charlot, C; Dobrzynski, L; Granier de Cassagnac, R; Haguenauer, M; Miné, P; Paganini, P; Sirois, Y; Thiebaux, C; Zabi, A; Agram, J L; Besson, A; Bloch, D; Bodin, D; Brom, J M; Conte, E; Drouhin, F; Fontaine, J C; Gelé, D; Goerlach, U; Gross, L; Juillot, P; Le Bihan, A C; Patois, Y; Speck, J; Van Hove, P; Baty, C; Bedjidian, M; Blaha, J; Boudoul, G; Brun, H; Chanon, N; Chierici, R; Contardo, D; Depasse, P; Dupasquier, T; El Mamouni, H; Fassi, F; Fay, J; Gascon, S; Ille, B; Kurca, T; Le Grand, T; Lethuillier, M; Lumb, N; Mirabito, L; Perries, S; Vander Donckt, M; Verdier, P; Djaoshvili, N; Roinishvili, N; Roinishvili, V; Amaglobeli, N; Adolphi, R; Anagnostou, G; Brauer, R; Braunschweig, W; Edelhoff, M; Esser, H; Feld, L; Karpinski, W; Khomich, A; Klein, K; Mohr, N; Ostaptchouk, A; Pandoulas, D; Pierschel, G; Raupach, F; Schael, S; Schultz von Dratzig, A; Schwering, G; Sprenger, D; Thomas, M; Weber, M; Wittmer, B; Wlochal, M; Actis, O; Altenhöfer, G; Bender, W; Biallass, P; Erdmann, M; Fetchenhauer, G; Frangenheim, J; Hebbeker, T; Hilgers, G; Hinzmann, A; Hoepfner, K; Hof, C; Kirsch, M; Klimkovich, T; Kreuzer, P; Lanske, D; Merschmeyer, M; Meyer, A; Philipps, B; Pieta, H; Reithler, H; Schmitz, S A; Sonnenschein, L; Sowa, M; Steggemann, J; Szczesny, H; Teyssier, D; Zeidler, C; Bontenackels, M; Davids, M; Duda, M; Flügge, G; Geenen, H; Giffels, M; Haj Ahmad, W; Hermanns, T; Heydhausen, D; Kalinin, S; Kress, T; Linn, A; Nowack, A; Perchalla, L; Poettgens, M; Pooth, O; Sauerland, P; Stahl, A; Tornier, D; Zoeller, M H; Aldaya Martin, M; Behrens, U; Borras, K; Campbell, A; Castro, E; Dammann, D; Eckerlin, G; Flossdorf, A; Flucke, G; Geiser, A; Hatton, D; Hauk, J; Jung, H; Kasemann, M; Katkov, I; Kleinwort, C; Kluge, H; Knutsson, A; Kuznetsova, E; Lange, W; Lohmann, W; Mankel, R; Marienfeld, M; Meyer, A B; Miglioranzi, S; Mnich, J; Ohlerich, M; Olzem, J; Parenti, A; Rosemann, C; Schmidt, R; Schoerner-Sadenius, T; Volyanskyy, D; Wissing, C; Zeuner, W D; Autermann, C; Bechtel, F; Draeger, J; Eckstein, D; Gebbert, U; Kaschube, K; Kaussen, G; Klanner, R; Mura, B; Naumann-Emme, S; Nowak, F; Pein, U; Sander, C; Schleper, P; Schum, T; Stadie, H; Steinbrück, G; Thomsen, J; Wolf, R; Bauer, J; Blüm, P; Buege, V; Cakir, A; Chwalek, T; De Boer, W; Dierlamm, A; Dirkes, G; Feindt, M; Felzmann, U; Frey, M; Furgeri, A; Gruschke, J; Hackstein, C; Hartmann, F; Heier, S; Heinrich, M; Held, H; Hirschbuehl, D; Hoffmann, K H; Honc, S; Jung, C; Kuhr, T; Liamsuwan, T; Martschei, D; Mueller, S; Müller, Th; Neuland, M B; Niegel, M; Oberst, O; Oehler, A; Ott, J; Peiffer, T; Piparo, D; Quast, G; Rabbertz, K; Ratnikov, F; Ratnikova, N; Renz, M; Saout, C; Sartisohn, G; Scheurer, A; Schieferdecker, P; Schilling, F P; Schott, G; Simonis, H J; Stober, F M; Sturm, P; Troendle, D; Trunov, A; Wagner, W; Wagner-Kuhr, J; Zeise, M; Zhukov, V; Ziebarth, E B; Daskalakis, G; Geralis, T; Karafasoulis, K; Kyriakis, A; Loukas, D; Markou, A; Markou, C; Mavrommatis, C; Petrakou, E; Zachariadou, A; Gouskos, L; Katsas, P; Panagiotou, A; Evangelou, I; Kokkas, P; Manthos, N; Papadopoulos, I; Patras, V; Triantis, F A; Bencze, G; Boldizsar, L; Debreczeni, G; Hajdu, C; Hernath, S; Hidas, P; Horvath, D; Krajczar, K; Laszlo, A; Patay, G; Sikler, F; Toth, N; Vesztergombi, G; Beni, N; Christian, G; Imrek, J; Molnar, J; Novak, D; Palinkas, J; Szekely, G; Szillasi, Z; Tokesi, K; Veszpremi, V; Kapusi, A; Marian, G; Raics, P; Szabo, Z; Trocsanyi, Z L; Ujvari, B; Zilizi, G; Bansal, S; Bawa, H S; Beri, S B; Bhatnagar, V; Jindal, M; Kaur, M; Kaur, R; Kohli, J M; Mehta, M Z; Nishu, N; Saini, L K; Sharma, A; Singh, A; Singh, J B; Singh, S P; Ahuja, S; Arora, S; Bhattacharya, S; Chauhan, S; Choudhary, B C; Gupta, P; Jain, S; Jain, S; Jha, M; Kumar, A; Ranjan, K; Shivpuri, R K; Srivastava, A K; Choudhury, R K; Dutta, D; Kailas, S; Kataria, S K; Mohanty, A K; Pant, L M; Shukla, P; Topkar, A; Aziz, T; Guchait, M; Gurtu, A; Maity, M; Majumder, D; Majumder, G; Mazumdar, K; Nayak, A; Saha, A; Sudhakar, K; Banerjee, S; Dugad, S; Mondal, N K; Arfaei, H; Bakhshiansohi, H; Fahim, A; Jafari, A; Mohammadi Najafabadi, M; Moshaii, A; Paktinat Mehdiabadi, S; Rouhani, S; Safarzadeh, B; Zeinali, M; Felcini, M; Abbrescia, M; Barbone, L; Chiumarulo, F; Clemente, A; Colaleo, A; Creanza, D; Cuscela, G; De Filippis, N; De Palma, M; De Robertis, G; Donvito, G; Fedele, F; Fiore, L; Franco, M; Iaselli, G; Lacalamita, N; Loddo, F; Lusito, L; Maggi, G; Maggi, M; Manna, N; Marangelli, B; My, S; Natali, S; Nuzzo, S; Papagni, G; Piccolomo, S; Pierro, G A; Pinto, C; Pompili, A; Pugliese, G; Rajan, R; Ranieri, A; Romano, F; Roselli, G; Selvaggi, G; Shinde, Y; Silvestris, L; Tupputi, S; Zito, G; Abbiendi, G; Bacchi, W; Benvenuti, A C; Boldini, M; Bonacorsi, D; Braibant-Giacomelli, S; Cafaro, V D; Caiazza, S S; Capiluppi, P; Castro, A; Cavallo, F R; Codispoti, G; Cuffiani, M; D'Antone, I; Dallavalle, G M; Fabbri, F; Fanfani, A; Fasanella, D; Giacomelli, P; Giordano, V; Giunta, M; Grandi, C; Guerzoni, M; Marcellini, S; Masetti, G; Montanari, A; Navarria, F L; Odorici, F; Pellegrini, G; Perrotta, A; Rossi, A M; Rovelli, T; Siroli, G; Torromeo, G; Travaglini, R; Albergo, S; Costa, S; Potenza, R; Tricomi, A; Tuve, C; Barbagli, G; Broccolo, G; Ciulli, V; Civinini, C; D'Alessandro, R; Focardi, E; Frosali, S; Gallo, E; Genta, C; Landi, G; Lenzi, P; Meschini, M; Paoletti, S; Sguazzoni, G; Tropiano, A; Benussi, L; Bertani, M; Bianco, S; Colafranceschi, S; Colonna, D; Fabbri, F; Giardoni, M; Passamonti, L; Piccolo, D; Pierluigi, D; Ponzio, B; Russo, A; Fabbricatore, P; Musenich, R; Benaglia, A; Calloni, M; Cerati, G B; D'Angelo, P; De Guio, F; Farina, F M; Ghezzi, A; Govoni, P; Malberti, M; Malvezzi, S; Martelli, A; Menasce, D; Miccio, V; Moroni, L; Negri, P; Paganoni, M; Pedrini, D; Pullia, A; Ragazzi, S; Redaelli, N; Sala, S; Salerno, R; Tabarelli de Fatis, T; Tancini, V; Taroni, S; Buontempo, S; Cavallo, N; Cimmino, A; De Gruttola, M; Fabozzi, F; Iorio, A O M; Lista, L; Lomidze, D; Noli, P; Paolucci, P; Sciacca, C; Azzi, P; Bacchetta, N; Barcellan, L; Bellan, P; Bellato, M; Benettoni, M; Biasotto, M; Bisello, D; Borsato, E; Branca, A; Carlin, R; Castellani, L; Checchia, P; Conti, E; Dal Corso, F; De Mattia, M; Dorigo, T; Dosselli, U; Fanzago, F; Gasparini, F; Gasparini, U; Giubilato, P; Gonella, F; Gresele, A; Gulmini, M; Kaminskiy, A; Lacaprara, S; Lazzizzera, I; Margoni, M; Maron, G; Mattiazzo, S; Mazzucato, M; Meneghelli, M; Meneguzzo, A T; Michelotto, M; Montecassiano, F; Nespolo, M; Passaseo, M; Pegoraro, M; Perrozzi, L; Pozzobon, N; Ronchese, P; Simonetto, F; Toniolo, N; Torassa, E; Tosi, M; Triossi, A; Vanini, S; Ventura, S; Zotto, P; Zumerle, G; Baesso, P; Berzano, U; Bricola, S; Necchi, M M; Pagano, D; Ratti, S P; Riccardi, C; Torre, P; Vicini, A; Vitulo, P; Viviani, C; Aisa, D; Aisa, S; Babucci, E; Biasini, M; Bilei, G M; Caponeri, B; Checcucci, B; Dinu, N; Fanò, L; Farnesini, L; Lariccia, P; Lucaroni, A; Mantovani, G; Nappi, A; Piluso, A; Postolache, V; Santocchia, A; Servoli, L; Tonoiu, D; Vedaee, A; Volpe, R; Azzurri, P; Bagliesi, G; Bernardini, J; Berretta, L; Boccali, T; Bocci, A; Borrello, L; Bosi, F; Calzolari, F; Castaldi, R; Dell'Orso, R; Fiori, F; Foà, L; Gennai, S; Giassi, A; Kraan, A; Ligabue, F; Lomtadze, T; Mariani, F; Martini, L; Massa, M; Messineo, A; Moggi, A; Palla, F; Palmonari, F; Petragnani, G; Petrucciani, G; Raffaelli, F; Sarkar, S; Segneri, G; Serban, A T; Spagnolo, P; Tenchini, R; Tolaini, S; Tonelli, G; Venturi, A; Verdini, P G; Baccaro, S; Barone, L; Bartoloni, A; Cavallari, F; Dafinei, I; Del Re, D; Di Marco, E; Diemoz, M; Franci, D; Longo, E; Organtini, G; Palma, A; Pandolfi, F; Paramatti, R; Pellegrino, F; Rahatlou, S; Rovelli, C; Alampi, G; Amapane, N; Arcidiacono, R; Argiro, S; Arneodo, M; Biino, C; Borgia, M A; Botta, C; Cartiglia, N; Castello, R; Cerminara, G; Costa, M; Dattola, D; Dellacasa, G; Demaria, N; Dughera, G; Dumitrache, F; Graziano, A; Mariotti, C; Marone, M; Maselli, S; Migliore, E; Mila, G; Monaco, V; Musich, M; Nervo, M; Obertino, M M; Oggero, S; Panero, R; Pastrone, N; Pelliccioni, M; Romero, A; Ruspa, M; Sacchi, R; Solano, A; Staiano, A; Trapani, P P; Trocino, D; Vilela Pereira, A; Visca, L; Zampieri, A; Ambroglini, F; Belforte, S; Cossutti, F; Della Ricca, G; Gobbo, B; Penzo, A; Chang, S; Chung, J; Kim, D H; Kim, G N; Kong, D J; Park, H; Son, D C; Bahk, S Y; Song, S; Jung, S Y; Hong, B; Kim, H; Kim, J H; Lee, K S; Moon, D H; Park, S K; Rhee, H B; Sim, K S; Kim, J; Choi, M; Hahn, G; Park, I C; Choi, S; Choi, Y; Goh, J; Jeong, H; Kim, T J; Lee, J; Lee, S; Janulis, M; Martisiute, D; Petrov, P; Sabonis, T; Castilla Valdez, H; Sánchez Hernández, A; Carrillo Moreno, S; Morelos Pineda, A; Allfrey, P; Gray, R N C; Krofcheck, D; Bernardino Rodrigues, N; Butler, P H; Signal, T; Williams, J C; Ahmad, M; Ahmed, I; Ahmed, W; Asghar, M I; Awan, M I M; Hoorani, H R; Hussain, I; Khan, W A; Khurshid, T; Muhammad, S; Qazi, S; Shahzad, H; Cwiok, M; Dabrowski, R; Dominik, W; Doroba, K; Konecki, M; Krolikowski, J; Pozniak, K; Romaniuk, Ryszard; Zabolotny, W; Zych, P; Frueboes, T; Gokieli, R; Goscilo, L; Górski, M; Kazana, M; Nawrocki, K; Szleper, M; Wrochna, G; Zalewski, P; Almeida, N; Antunes Pedro, L; Bargassa, P; David, A; Faccioli, P; Ferreira Parracho, P G; Freitas Ferreira, M; Gallinaro, M; Guerra Jordao, M; Martins, P; Mini, G; Musella, P; Pela, J; Raposo, L; Ribeiro, P Q; Sampaio, S; Seixas, J; Silva, J; Silva, P; Soares, D; Sousa, M; Varela, J; Wöhri, H K; Altsybeev, I; Belotelov, I; Bunin, P; Ershov, Y; Filozova, I; Finger, M; Finger, M Jr; Golunov, A; Golutvin, I; Gorbounov, N; Kalagin, V; Kamenev, A; Karjavin, V; Konoplyanikov, V; Korenkov, V; Kozlov, G; Kurenkov, A; Lanev, A; Makankin, A; Mitsyn, V V; Moisenz, P; Nikonov, E; Oleynik, D; Palichik, V; Perelygin, V; Petrosyan, A; Semenov, R; Shmatov, S; Smirnov, V; Smolin, D; Tikhonenko, E; Vasil'ev, S; Vishnevskiy, A; Volodko, A; Zarubin, A; Zhiltsov, V; Bondar, N; Chtchipounov, L; Denisov, A; Gavrikov, Y; Gavrilov, G; Golovtsov, V; Ivanov, Y; Kim, V; Kozlov, V; Levchenko, P; Obrant, G; Orishchin, E; Petrunin, A; Shcheglov, Y; Shchetkovskiy, A; Sknar, V; Smirnov, I; Sulimov, V; Tarakanov, V; Uvarov, L; Vavilov, S; Velichko, G; Volkov, S; Vorobyev, A; Andreev, Yu; Anisimov, A; Antipov, P; Dermenev, A; Gninenko, S; Golubev, N; Kirsanov, M; Krasnikov, N; Matveev, V; Pashenkov, A; Postoev, V E; Solovey, A; Solovey, A; Toropin, A; Troitsky, S; Baud, A; Epshteyn, V; Gavrilov, V; Ilina, N; Kaftanov, V; Kolosov, V; Kossov, M; Krokhotin, A; Kuleshov, S; Oulianov, A; Safronov, G; Semenov, S; Shreyber, I; Stolin, V; Vlasov, E; Zhokin, A; Boos, E; Dubinin, M; Dudko, L; Ershov, A; Gribushin, A; Klyukhin, V; Kodolova, O; Lokhtin, I; Petrushanko, S; Sarycheva, L; Savrin, V; Snigirev, A; Vardanyan, I; Dremin, I; Kirakosyan, M; Konovalova, N; Rusakov, S V; Vinogradov, A; Akimenko, S; Artamonov, A; Azhgirey, I; Bitioukov, S; Burtovoy, V; Grishin, V; Kachanov, V; Konstantinov, D; Krychkine, V; Levine, A; Lobov, I; Lukanin, V; Mel'nik, Y; Petrov, V; Ryutin, R; Slabospitsky, S; Sobol, A; Sytine, A; Tourtchanovitch, L; Troshin, S; Tyurin, N; Uzunian, A; Volkov, A; Adzic, P; Djordjevic, M; Jovanovic, D; Krpic, D; Maletic, D; Puzovic, J; Smiljkovic, N; Aguilar-Benitez, M; Alberdi, J; Alcaraz Maestre, J; Arce, P; Barcala, J M; Battilana, C; Burgos Lazaro, C; Caballero Bejar, J; Calvo, E; Cardenas Montes, M; Cepeda, M; Cerrada, M; Chamizo Llatas, M; Clemente, F; Colino, N; Daniel, M; De La Cruz, B; Delgado Peris, A; Diez Pardos, C; Fernandez Bedoya, C; Fernández Ramos, J P; Ferrando, A; Flix, J; Fouz, M C; Garcia-Abia, P; Garcia-Bonilla, A C; Gonzalez Lopez, O; Goy Lopez, S; Hernandez, J M; Josa, M I; Marin, J; Merino, G; Molina, J; Molinero, A; Navarrete, J J; Oller, J C; Puerta Pelayo, J; Romero, L; Santaolalla, J; Villanueva Munoz, C; Willmott, C; Yuste, C; Albajar, C; Blanco Otano, M; de Trocóniz, J F; Garcia Raboso, A; Lopez Berengueres, J O; Cuevas, J; Fernandez Menendez, J; Gonzalez Caballero, I; Lloret Iglesias, L; Naves Sordo, H; Vizan Garcia, J M; Cabrillo, I J; Calderon, A; Chuang, S H; Diaz Merino, I; Diez Gonzalez, C; Duarte Campderros, J; Fernandez, M; Gomez, G; Gonzalez Sanchez, J; Gonzalez Suarez, R; Jorda, C; Lobelle Pardo, P; Lopez Virto, A; Marco, J; Marco, R; Martinez Rivero, C; Martinez Ruiz del Arbol, P; Matorras, F; Rodrigo, T; Ruiz Jimeno, A; Scodellaro, L; Sobron Sanudo, M; Vila, I; Vilar Cortabitarte, R; Abbaneo, D; Albert, E; Alidra, M; Ashby, S; Auffray, E; Baechler, J; Baillon, P; Ball, A H; Bally, S L; Barney, D; Beaudette, F; Bellan, R; Benedetti, D; Benelli, G; Bernet, C; Bloch, P; Bolognesi, S; Bona, M; Bos, J; Bourgeois, N; Bourrel, T; Breuker, H; Bunkowski, K; Campi, D; Camporesi, T; Cano, E; Cattai, A; Chatelain, J P; Chauvey, M; Christiansen, T; Coarasa Perez, J A; Conde Garcia, A; Covarelli, R; Curé, B; De Roeck, A; Delachenal, V; Deyrail, D; Di Vincenzo, S; Dos Santos, S; Dupont, T; Edera, L M; Elliott-Peisert, A; Eppard, M; Favre, M; Frank, N; Funk, W; Gaddi, A; Gastal, M; Gateau, M; Gerwig, H; Gigi, D; Gill, K; Giordano, D; Girod, J P; Glege, F; Gomez-Reino Garrido, R; Goudard, R; Gowdy, S; Guida, R; Guiducci, L; Gutleber, J; Hansen, M; Hartl, C; Harvey, J; Hegner, B; Hoffmann, H F; Holzner, A; Honma, A; Huhtinen, M; Innocente, V; Janot, P; Le Godec, G; Lecoq, P; Leonidopoulos, C; Loos, R; Lourenço, C; Lyonnet, A; Macpherson, A; Magini, N; Maillefaud, J D; Maire, G; Mäki, T; Malgeri, L; Mannelli, M; Masetti, L; Meijers, F; Meridiani, P; Mersi, S; Meschi, E; Meynet Cordonnier, A; Moser, R; Mulders, M; Mulon, J; Noy, M; Oh, A; Olesen, G; Onnela, A; Orimoto, T; Orsini, L; Perez, E; Perinic, G; Pernot, J F; Petagna, P; Petiot, P; Petrilli, A; Pfeiffer, A; Pierini, M; Pimiä, M; Pintus, R; Pirollet, B; Postema, H; Racz, A; Ravat, S; Rew, S B; Rodrigues Antunes, J; Rolandi, G; Rovere, M; Ryjov, V; Sakulin, H; Samyn, D; Sauce, H; Schäfer, C; Schlatter, W D; Schröder, M; Schwick, C; Sciaba, A; Segoni, I; Sharma, A; Siegrist, N; Siegrist, P; Sinanis, N; Sobrier, T; Sphicas, P; Spiga, D; Spiropulu, M; Stöckli, F; Traczyk, P; Tropea, P; Troska, J; Tsirou, A; Veillet, L; Veres, G I; Voutilainen, M; Wertelaers, P; Zanetti, M; Bertl, W; Deiters, K; Erdmann, W; Gabathuler, K; Horisberger, R; Ingram, Q; Kaestli, H C; König, S; Kotlinski, D; Langenegger, U; Meier, F; Renker, D; Rohe, T; Sibille, J; Starodumov, A; Betev, B; Caminada, L; Chen, Z; Cittolin, S; Da Silva Di Calafiori, D R; Dambach, S; Dissertori, G; Dittmar, M; Eggel, C; Eugster, J; Faber, G; Freudenreich, K; Grab, C; Hervé, A; Hintz, W; Lecomte, P; Luckey, P D; Lustermann, W; Marchica, C; Milenovic, P; Moortgat, F; Nardulli, A; Nessi-Tedaldi, F; Pape, L; Pauss, F; Punz, T; Rizzi, A; Ronga, F J; Sala, L; Sanchez, A K; Sawley, M C; Sordini, V; Stieger, B; Tauscher, L; Thea, A; Theofilatos, K; Treille, D; Trüb, P; Weber, M; Wehrli, L; Weng, J; Zelepoukine, S; Amsler, C; Chiochia, V; De Visscher, S; Regenfus, C; Robmann, P; Rommerskirchen, T; Schmidt, A; Tsirigkas, D; Wilke, L; Chang, Y H; Chen, E A; Chen, W T; Go, A; Kuo, C M; Li, S W; Lin, W; Bartalini, P; Chang, P; Chao, Y; Chen, K F; Hou, W S; Hsiung, Y; Lei, Y J; Lin, S W; Lu, R S; Schümann, J; Shiu, J G; Tzeng, Y M; Ueno, K; Velikzhanin, Y; Wang, C C; Wang, M; Adiguzel, A; Ayhan, A; Azman Gokce, A; Bakirci, M N; Cerci, S; Dumanoglu, I; Eskut, E; Girgis, S; Gurpinar, E; Hos, I; Karaman, T; Karaman, T; Kayis Topaksu, A; Kurt, P; Önengüt, G; Önengüt Gökbulut, G; Ozdemir, K; Ozturk, S; Polatöz, A; Sogut, K; Tali, B; Topakli, H; Uzun, D; Vergili, L N; Vergili, M; Akin, I V; Aliev, T; Bilmis, S; Deniz, M; Gamsizkan, H; Guler, A M; Öcalan, K; Serin, M; Sever, R; Surat, U E; Zeyrek, M; Deliomeroglu, M; Demir, D; Gülmez, E; Halu, A; Isildak, B; Kaya, M; Kaya, O; Ozkorucuklu, S; Sonmez, N; Levchuk, L; Lukyanenko, S; Soroka, D; Zub, S; Bostock, F; Brooke, J J; Cheng, T L; Cussans, D; Frazier, R; Goldstein, J; Grant, N; Hansen, M; Heath, G P; Heath, H F; Hill, C; Huckvale, B; Jackson, J; Mackay, C K; Metson, S; Newbold, D M; Nirunpong, K; Smith, V J; Velthuis, J; Walton, R; Bell, K W; Brew, C; Brown, R M; Camanzi, B; Cockerill, D J A; Coughlan, J A; Geddes, N I; Harder, K; Harper, S; Kennedy, B W; Murray, P; Shepherd-Themistocleous, C H; Tomalin, I R; Williams, J H; Womersley, W J; Worm, S D; Bainbridge, R; Ball, G; Ballin, J; Beuselinck, R; Buchmuller, O; Colling, D; Cripps, N; Davies, G; Della Negra, M; Foudas, C; Fulcher, J; Futyan, D; Hall, G; Hays, J; Iles, G; Karapostoli, G; MacEvoy, B C; Magnan, A M; Marrouche, J; Nash, J; Nikitenko, A; Papageorgiou, A; Pesaresi, M; Petridis, K; Pioppi, M; Raymond, D M; Rompotis, N; Rose, A; Ryan, M J; Seez, C; Sharp, P; Sidiropoulos, G; Stettler, M; Stoye, M; Takahashi, M; Tapper, A; Timlin, C; Tourneur, S; Vazquez Acosta, M; Virdee, T; Wakefield, S; Wardrope, D; Whyntie, T; Wingham, M; Cole, J E; Goitom, I; Hobson, P R; Khan, A; Kyberd, P; Leslie, D; Munro, C; Reid, I D; Siamitros, C; Taylor, R; Teodorescu, L; Yaselli, I; Bose, T; Carleton, M; Hazen, E; Heering, A H; Heister, A; John, J St; Lawson, P; Lazic, D; Osborne, D; Rohlf, J; Sulak, L; Wu, S; Andrea, J; Avetisyan, A; Bhattacharya, S; Chou, J P; Cutts, D; Esen, S; Kukartsev, G; Landsberg, G; Narain, M; Nguyen, D; Speer, T; Tsang, K V; Breedon, R; Calderon De La Barca Sanchez, M; Case, M; Cebra, D; Chertok, M; Conway, J; Cox, P T; Dolen, J; Erbacher, R; Friis, E; Ko, W; Kopecky, A; Lander, R; Lister, A; Liu, H; Maruyama, S; Miceli, T; Nikolic, M; Pellett, D; Robles, J; Searle, M; Smith, J; Squires, M; Stilley, J; Tripathi, M; Vasquez Sierra, R; Veelken, C; Andreev, V; Arisaka, K; Cline, D; Cousins, R; Erhan, S; Hauser, J; Ignatenko, M; Jarvis, C; Mumford, J; Plager, C; Rakness, G; Schlein, P; Tucker, J; Valuev, V; Wallny, R; Yang, X; Babb, J; Bose, M; Chandra, A; Clare, R; Ellison, J A; Gary, J W; Hanson, G; Jeng, G Y; Kao, S C; Liu, F; Liu, H; Luthra, A; Nguyen, H; Pasztor, G; Satpathy, A; Shen, B C; Stringer, R; Sturdy, J; Sytnik, V; Wilken, R; Wimpenny, S; Branson, J G; Dusinberre, E; Evans, D; Golf, F; Kelley, R; Lebourgeois, M; Letts, J; Lipeles, E; Mangano, B; Muelmenstaedt, J; Norman, M; Padhi, S; Petrucci, A; Pi, H; Pieri, M; Ranieri, R; Sani, M; Sharma, V; Simon, S; Würthwein, F; Yagil, A; Campagnari, C; D'Alfonso, M; Danielson, T; Garberson, J; Incandela, J; Justus, C; Kalavase, P; Koay, S A; Kovalskyi, D; Krutelyov, V; Lamb, J; Lowette, S; Pavlunin, V; Rebassoo, F; Ribnik, J; Richman, J; Rossin, R; Stuart, D; To, W; Vlimant, J R; Witherell, M; Apresyan, A; Bornheim, A; Bunn, J; Chiorboli, M; Gataullin, M; Kcira, D; Litvine, V; Ma, Y; Newman, H B; Rogan, C; Timciuc, V; Veverka, J; Wilkinson, R; Yang, Y; Zhang, L; Zhu, K; Zhu, R Y; Akgun, B; Carroll, R; Ferguson, T; Jang, D W; Jun, S Y; Paulini, M; Russ, J; Terentyev, N; Vogel, H; Vorobiev, I; Cumalat, J P; Dinardo, M E; Drell, B R; Ford, W T; Heyburn, B; Luiggi Lopez, E; Nauenberg, U; Stenson, K; Ulmer, K; Wagner, S R; Zang, S L; Agostino, L; Alexander, J; Blekman, F; Cassel, D; Chatterjee, A; Das, S; Gibbons, L K; Heltsley, B; Hopkins, W; Khukhunaishvili, A; Kreis, B; Kuznetsov, V; Patterson, J R; Puigh, D; Ryd, A; Shi, X; Stroiney, S; Sun, W; Teo, W D; Thom, J; Vaughan, J; Weng, Y; Wittich, P; Beetz, C P; Cirino, G; Sanzeni, C; Winn, D; Abdullin, S; Afaq, M A; Albrow, M; Ananthan, B; Apollinari, G; Atac, M; Badgett, W; Bagby, L; Bakken, J A; Baldin, B; Banerjee, S; Banicz, K; Bauerdick, L A T; Beretvas, A; Berryhill, J; Bhat, P C; Biery, K; Binkley, M; Bloch, I; Borcherding, F; Brett, A M; Burkett, K; Butler, J N; Chetluru, V; Cheung, H W K; Chlebana, F; Churin, I; Cihangir, S; Crawford, M; Dagenhart, W; Demarteau, M; Derylo, G; Dykstra, D; Eartly, D P; Elias, J E; Elvira, V D; Evans, D; Feng, L; Fischler, M; Fisk, I; Foulkes, S; Freeman, J; Gartung, P; Gottschalk, E; Grassi, T; Green, D; Guo, Y; Gutsche, O; Hahn, A; Hanlon, J; Harris, R M; Holzman, B; Howell, J; Hufnagel, D; James, E; Jensen, H; Johnson, M; Jones, C D; Joshi, U; Juska, E; Kaiser, J; Klima, B; Kossiakov, S; Kousouris, K; Kwan, S; Lei, C M; Limon, P; Lopez Perez, J A; Los, S; Lueking, L; Lukhanin, G; Lusin, S; Lykken, J; Maeshima, K; Marraffino, J M; Mason, D; McBride, P; Miao, T; Mishra, K; Moccia, S; Mommsen, R; Mrenna, S; Muhammad, A S; Newman-Holmes, C; Noeding, C; O'Dell, V; Prokofyev, O; Rivera, R; Rivetta, C H; Ronzhin, A; Rossman, P; Ryu, S; Sekhri, V; Sexton-Kennedy, E; Sfiligoi, I; Sharma, S; Shaw, T M; Shpakov, D; Skup, E; Smith, R P; Soha, A; Spalding, W J; Spiegel, L; Suzuki, I; Tan, P; Tanenbaum, W; Tkaczyk, S; Trentadue, R; Uplegger, L; Vaandering, E W; Vidal, R; Whitmore, J; Wicklund, E; Wu, W; Yarba, J; Yumiceva, F; Yun, J C; Acosta, D; Avery, P; Barashko, V; Bourilkov, D; Chen, M; Di Giovanni, G P; Dobur, D; Drozdetskiy, A; Field, R D; Fu, Y; Furic, I K; Gartner, J; Holmes, D; Kim, B; Klimenko, S; Konigsberg, J; Korytov, A; Kotov, K; Kropivnitskaya, A; Kypreos, T; Madorsky, A; Matchev, K; Mitselmakher, G; Pakhotin, Y; Piedra Gomez, J; Prescott, C; Rapsevicius, V; Remington, R; Schmitt, M; Scurlock, B; Wang, D; Yelton, J; Ceron, C; Gaultney, V; Kramer, L; Lebolo, L M; Linn, S; Markowitz, P; Martinez, G; Rodriguez, J L; Adams, T; Askew, A; Baer, H; Bertoldi, M; Chen, J; Dharmaratna, W G D; Gleyzer, S V; Haas, J; Hagopian, S; Hagopian, V; Jenkins, M; Johnson, K F; Prettner, E; Prosper, H; Sekmen, S; Baarmand, M M; Guragain, S; Hohlmann, M; Kalakhety, H; Mermerkaya, H; Ralich, R; Vodopiyanov, I; Abelev, B; Adams, M R; Anghel, I M; Apanasevich, L; Bazterra, V E; Betts, R R; Callner, J; Castro, M A; Cavanaugh, R; Dragoiu, C; Garcia-Solis, E J; Gerber, C E; Hofman, D J; Khalatian, S; Mironov, C; Shabalina, E; Smoron, A; Varelas, N; Akgun, U; Albayrak, E A; Ayan, A S; Bilki, B; Briggs, R; Cankocak, K; Chung, K; Clarida, W; Debbins, P; Duru, F; Ingram, F D; Lae, C K; McCliment, E; Merlo, J P; Mestvirishvili, A; Miller, M J; Moeller, A; Nachtman, J; Newsom, C R; Norbeck, E; Olson, J; Onel, Y; Ozok, F; Parsons, J; Schmidt, I; Sen, S; Wetzel, J; Yetkin, T; Yi, K; Barnett, B A; Blumenfeld, B; Bonato, A; Chien, C Y; Fehling, D; Giurgiu, G; Gritsan, A V; Guo, Z J; Maksimovic, P; Rappoccio, S; Swartz, M; Tran, N V; Zhang, Y; Baringer, P; Bean, A; Grachov, O; Murray, M; Radicci, V; Sanders, S; Wood, J S; Zhukova, V; Bandurin, D; Bolton, T; Kaadze, K; Liu, A; Maravin, Y; Onoprienko, D; Svintradze, I; Wan, Z; Gronberg, J; Hollar, J; Lange, D; Wright, D; Baden, D; Bard, R; Boutemeur, M; Eno, S C; Ferencek, D; Hadley, N J; Kellogg, R G; Kirn, M; Kunori, S; Rossato, K; Rumerio, P; Santanastasio, F; Skuja, A; Temple, J; Tonjes, M B; Tonwar, S C; Toole, T; Twedt, E; Alver, B; Bauer, G; Bendavid, J; Busza, W; Butz, E; Cali, I A; Chan, M; D'Enterria, D; Everaerts, P; Gomez Ceballos, G; Hahn, K A; Harris, P; Jaditz, S; Kim, Y; Klute, M; Lee, Y J; Li, W; Loizides, C; Ma, T; Miller, M; Nahn, S; Paus, C; Roland, C; Roland, G; Rudolph, M; Stephans, G; Sumorok, K; Sung, K; Vaurynovich, S; Wenger, E A; Wyslouch, B; Xie, S; Yilmaz, Y; Yoon, A S; Bailleux, D; Cooper, S I; Cushman, P; Dahmes, B; De Benedetti, A; Dolgopolov, A; Dudero, P R; Egeland, R; Franzoni, G; Haupt, J; Inyakin, A; Klapoetke, K; Kubota, Y; Mans, J; Mirman, N; Petyt, D; Rekovic, V; Rusack, R; Schroeder, M; Singovsky, A; Zhang, J; Cremaldi, L M; Godang, R; Kroeger, R; Perera, L; Rahmat, R; Sanders, D A; Sonnek, P; Summers, D; Bloom, K; Bockelman, B; Bose, S; Butt, J; Claes, D R; Dominguez, A; Eads, M; Keller, J; Kelly, T; Kravchenko, I; Lazo-Flores, J; Lundstedt, C; Malbouisson, H; Malik, S; Snow, G R; Baur, U; Iashvili, I; Kharchilava, A; Kumar, A; Smith, K; Strang, M; Alverson, G; Barberis, E; Boeriu, O; Eulisse, G; Govi, G; McCauley, T; Musienko, Y; Muzaffar, S; Osborne, I; Paul, T; Reucroft, S; Swain, J; Taylor, L; Tuura, L; Anastassov, A; Gobbi, B; Kubik, A; Ofierzynski, R A; Pozdnyakov, A; Schmitt, M; Stoynev, S; Velasco, M; Won, S; Antonelli, L; Berry, D; Hildreth, M; Jessop, C; Karmgard, D J; Kolberg, T; Lannon, K; Lynch, S; Marinelli, N; Morse, D M; Ruchti, R; Slaunwhite, J; Warchol, J; Wayne, M; Bylsma, B; Durkin, L S; Gilmore, J; Gu, J; Killewald, P; Ling, T Y; Williams, G; Adam, N; Berry, E; Elmer, P; Garmash, A; Gerbaudo, D; Halyo, V; Hunt, A; Jones, J; Laird, E; Marlow, D; Medvedeva, T; Mooney, M; Olsen, J; Piroué, P; Stickland, D; Tully, C; Werner, J S; Wildish, T; Xie, Z; Zuranski, A; Acosta, J G; Bonnett Del Alamo, M; Huang, X T; Lopez, A; Mendez, H; Oliveros, S; Ramirez Vargas, J E; Santacruz, N; Zatzerklyany, A; Alagoz, E; Antillon, E; Barnes, V E; Bolla, G; Bortoletto, D; Everett, A; Garfinkel, A F; Gecse, Z; Gutay, L; Ippolito, N; Jones, M; Koybasi, O; Laasanen, A T; Leonardo, N; Liu, C; Maroussov, V; Merkel, P; Miller, D H; Neumeister, N; Sedov, A; Shipsey, I; Yoo, H D; Zheng, Y; Jindal, P; Parashar, N; Cuplov, V; Ecklund, K M; Geurts, F J M; Liu, J H; Maronde, D; Matveev, M; Padley, B P; Redjimi, R; Roberts, J; Sabbatini, L; Tumanov, A; Betchart, B; Bodek, A; Budd, H; Chung, Y S; de Barbaro, P; Demina, R; Flacher, H; Gotra, Y; Harel, A; Korjenevski, S; Miner, D C; Orbaker, D; Petrillo, G; Vishnevskiy, D; Zielinski, M; Bhatti, A; Demortier, L; Goulianos, K; Hatakeyama, K; Lungu, G; Mesropian, C; Yan, M; Atramentov, O; Bartz, E; Gershtein, Y; Halkiadakis, E; Hits, D; Lath, A; Rose, K; Schnetzer, S; Somalwar, S; Stone, R; Thomas, S; Watts, T L; Cerizza, G; Hollingsworth, M; Spanier, S; Yang, Z C; York, A; Asaadi, J; Aurisano, A; Eusebi, R; Golyash, A; Gurrola, A; Kamon, T; Nguyen, C N; Pivarski, J; Safonov, A; Sengupta, S; Toback, D; Weinberger, M; Akchurin, N; Berntzon, L; Gumus, K; Jeong, C; Kim, H; Lee, S W; Popescu, S; Roh, Y; Sill, A; Volobouev, I; Washington, E; Wigmans, R; Yazgan, E; Engh, D; Florez, C; Johns, W; Pathak, S; Sheldon, P; Andelin, D; Arenton, M W; Balazs, M; Boutle, S; Buehler, M; Conetti, S; Cox, B; Hirosky, R; Ledovskoy, A; Neu, C; Phillips II, D; Ronquest, M; Yohay, R; Gollapinni, S; Gunthoti, K; Harr, R; Karchin, P E; Mattson, M; Sakharov, A; Anderson, M; Bachtis, M; Bellinger, J N; Carlsmith, D; Crotty, I; Dasu, S; Dutta, S; Efron, J; Feyzi, F; Flood, K; Gray, L; Grogg, K S; Grothe, M; Hall-Wilton, R; Jaworski, M; Klabbers, P; Klukas, J; Lanaro, A; Lazaridis, C; Leonard, J; Loveless, R; Magrans de Abril, M; Mohapatra, A; Ott, G; Polese, G; Reeder, D; Savin, A; Smith, W H; Sourkov, A; Swanson, J; Weinberg, M; Wenman, D; Wensveen, M; White, A

    2010-01-01

    The CMS Hadron Calorimeter in the barrel, endcap and forward regions is fully commissioned. Cosmic ray data were taken with and without magnetic field at the surface hall and after installation in the experimental hall, hundred meters underground. Various measurements were also performed during the few days of beam in the LHC in September 2008. Calibration parameters were extracted, and the energy response of the HCAL determined from test beam data has been checked.

  20. Completion of the TRT Barrel

    CERN Document Server

    Gagnon, P

    On February 3, the US-TRT team proudly completed the installation of the 96th barrel TRT module on its support structure in the SR building at CERN. This happy event came after many years of R&D initiated in the nineties by the TA1 team at CERN, followed by the construction of the modules in three American institutes (Duke, Hampton and Indiana Universities) from 1996 to 2003. In total, the 96 barrel modules contain 52544 kapton straws, each 4 mm in diameter and strung with a 30 micron gold-plated tungsten wire. Each wire was manually inserted, a feat in itself! The inner layer modules contain 329 straws, the middle layer modules have 520 straws and the outer layer, 793 straws. Thirty- two modules of each type form a full layer. Their special geometry was designed such as to leave no dead region. On average, a particle will cross 36 straws. Kirill Egorov, Chuck Mahlon and John Callahan inserted the last module in the Barrel Support Structure. After completion in the US, all modules were transferred...

  1. Resource Review Board Celebrates the Magnet and Liquid Argon Barrel Tests in Hall 180

    CERN Multimedia

    Jenni, P.

    2004-01-01

    Address by the Director-General, R. Aymar, in front of the barrel cryostat. On 25th October 2004 many RRB delegates and guests, ATLAS National Contact Physicists, and colleagues from far and from CERN working on the Liquid Argon calorimeter and the magnet system were gathering in Hall 180 to celebrate the major milestones reached during the past months in this hall: the successful cold tests of the first barrel toroid coil, of the solenoid, and of the barrel Liquid Argon calorimeter. About 250 people spent a relaxing evening after the speeches by the Director-General R. Aymar and by the spokesperson who gave the following address: 'It is a great pleasure for me to welcome you all here in Hall 180 in the name of the ATLAS Collaboration! With a few words I would like to recall why we are actually here today to share, what I hope, is a relaxed and joyful moment. To concentrate it all in one sentence I could say: To thank cordially all the main actors for the enormous work accomplished here over many years,...

  2. CMS Technical Design Report for the Phase 1 Upgrade of the Hadron Calorimeter

    CERN Document Server

    Mans, J; Dahmes, B; de Barbaro, P; Freeman, J; Grassi, T; Hazen, E; Mans, J; Ruchti, R; Schimdt, I; Shaw, T; Tully, C; Whitmore, J; Yetkin, T

    2012-01-01

    This report describes the technical design and outlines the expected performance of the Phase 1 Upgrade of the CMS Hadron Calorimeters. The upgrade is designed to improve the performance of the calorimeters at high luminosity with large numbers of pileup events by increasing the depth-segmentation of the calorimeter and providing new capabilities for anomalous background rejection. The photodetectors of the CMS Barrel and Endcap Hadron Calorimeters, currently hybrid photodiodes (HPDs), will be replaced by silicon photomultiplier (SiPM) devices. The single-channel phototubes of the Forward Hadron Calorimeter will be replaced by multi-anode phototubes operated in a dual-anode configuration. The readout electronics for all three calorimeter systems will also be replaced. A new charge-integrating ADC, the QIE10, with an integrated TDC will be used along with a 4.8 Gbps data-link. The off-detector electronics will also be substantially upgraded to handle higher data volumes and improve the information sent to the ...

  3. Optimization of the nonuniformity in light collection of tapered PbWO{sub 4} crystals and its influence on the energy resolution of the PANDA barrel EMC

    Energy Technology Data Exchange (ETDEWEB)

    Diehl, Stefan; Drexler, Peter; Dormenev, Valery; Nazarenko, Svetlana; Kuske, Till; Novotny, Rainer W.; Rosenbaum, Christoph; Zaunick, Hans-Georg [II. Physics Institute, University Giessen (Germany); Kavatsyuk, Myroslav [KVI-CART Groningen (Netherlands); Rosier, Philippe [IPN, Orsay (France); Ryantsev, Andrej [IHEP Protvino (Russian Federation); Wieczorek, Peter; Wilms, Andrea [GSI Helmholtzzentrum fuer Schwerionenforschung, Darmstadt (Germany)

    2015-07-01

    The barrel part of the electromagnetic (EM) calorimeter of the PANDA detector at the future FAIR facility will consist of 11 crystal geometries with a different degree of tapering. Due to tapering the crystals show a nonuniformity (NUF) in light collection. For the most tapered crystals the light detected by the photosensor is enhanced by a factor 1.4, if the scintillation light is created in the front part of the crystal. Due to the spread and the fluctuations of the EM shower within the crystal, this effect causes a smearing of the response, resulting in a reduced energy resolution. Therefore one lateral side has been depolished for 9 crystals, decreasing the NUF down to <5%, with only a slighty reduced light yield. The contribution will compare the response of a 3 x 3 matrix of crystals with one depolished side, with an identical matrix of polished crystals using a tagged photon beam with energies <1 GeV and the results from GEANT4 simulations, which indicate a significant improvement of the energy resolution.

  4. HADRON CALORIMETER (HCAL)

    CERN Multimedia

    A. Skuja

    Central Calorimeter (HB/HE/HO) Photodetectors The main activity of the HCAL group during the present shutdown is the replacement of a small fraction of the Central Calorimeter (HB/HE/HO) photodetectors -- the Hybrid Photo-Detectors (HPDs). During the MTCC of 2006 it was established that all HPDs exhibit a low rate of discharge generating large random pulses. This behaviour persists at the full CMS field. However, at relatively low fields (0.5 Tesla) this discharge rate increases dramatically and becomes very large for a fraction of the HPDs. The HO HPDs which sit in the gap of the return yoke are thus adversly affected. These discharge pulses have been labelled "HPD noise" (which must be distinguished from low level electronic noise which manifests itself as pedestal noise for all HPD readout channels). Additional intermediate level noise can be generated by ion-feedback arising from thermal and field emission electrons. Ion feedback noise never exceeds the equivalent of few 10s of GeV, the...

  5. Radiation hardness of plastic scintillators for the Tile Calorimeter of the ATLAS detector

    CERN Document Server

    Jivan, Harshna; The ATLAS collaboration

    2014-01-01

    The Tile Calorimeter of the ATLAS detector, is a hadronic calorimeter responsible for detecting hadrons as well as accommodating for the missing transverse energy that result from the p-p collisions within the LHC. Plastic scintillators form an integral component of this calorimeter due to their ability to undergo prompt fluorescence when exposed to ionising particles. The scintillators employed are specifically chosen for their properties of high optical transmission and fast rise and decay time which enables efficient data capture since fast signal pulses can be generated. The main draw-back of plastic scintillators however is their susceptibility to radiation damage. The damage caused by radiation exposure reduces the scintillation light yield and introduces an error into the time-of flight data acquired. During Run 1 of the LHC data taking period, plastic scintillators employed within the GAP region between the Tile Calorimeter’s central and extended barrels sustained a significant amount of damage. Wit...

  6. Final definition of sets of photomultipliers for the tile hadron calorimeter of the ATLAS detector.

    CERN Document Server

    Lefèvre, R; Vazeille, F

    2001-01-01

    In order to fulfil to technical and physical requirements, the photomultiplier blocks of the tile hadron calorimeter of ATLAS have to be classified in sets corresponding to different types of cells. This note presents the final setting. It is an update of what has been done in [1]. The main difference is that it takes into account the fact that some cells of the calorimeter are equipped with tiles made of PSM polystyrene and some with tiles made of BASF polystyrene. The output light for BASF tiles is about 25% higher than for PSM ones [2]. To correct a part of this effect of non-uniformity of the calorimeter, it is foreseen here to associate photomultipliers with lower quantum efficiencies to cells equipped with BASF tiles. It leads to define six sets of photomultipliers: two for barrel like super-drawer and four for extended barrel ones. The method used to define the sets is reported and two applications are presented. The first ones takes into account the overall calorimeter needs and is based on 2445 photo...

  7. Geometry Design of Wooden Barrels

    Directory of Open Access Journals (Sweden)

    Ivan CISMARU

    2010-12-01

    Full Text Available The aim of this paper is to present a design methodology of the wooden barrel geometry, as an algorithm of successive calculations. Thus, starting from the required elements (volume, length, shape, maximum height of storage space the user will be able to define the geometry which must be obtained by processing. Based on these calculations, one can define the structure, size and shape of the staves in order to establish the processing technology of both components and subassemblies (jacket and bottoms which are to form the final product by their assembling using metal circles.

  8. DELPHI Barrel Muon Chamber Module

    CERN Multimedia

    1989-01-01

    The module was used as part of the muon identification system on the barrel of the DELPHI detector at LEP, and was in active use from 1989 to 2000. The module consists of 7 individual muons chambers arranged in 2 layers. Chambers in the upper layer are staggered by half a chamber width with respect to the lower layer. Each individual chamber is a drift chamber consisting of an anode wire, 47 microns in diameter, and a wrapped copper delay line. Each chamber provided 3 signal for each muon passing through the chamber, from which a 3D space-point could be reconstructed.

  9. Mechanical Self-shrinkage of Artillery Barrels

    Directory of Open Access Journals (Sweden)

    Ioan Ciorba

    2012-09-01

    Full Text Available Objective of this paper is to define what self-shrink artillery barrel is. She is considered to be a compound barrel like as a thick-walled tube (k>2, in his wall being introduced a state of stress and strain using specific technological proceeds. This type of treatment is aimed to increase the artillery barrel load capacity and wear resistance in operation. The experimental part was realized using an industrial plant at Mechanical Factory of Resita. This part presents a comparative study between mechanical self-shrinkage on artillery head barrel, first using a mandrel and seconds a ball.

  10. ATLAS Liquid Argon Calorimeter Module Zero

    CERN Multimedia

    1993-01-01

    This module was built and tested with beam to validate the ATLAS electromagnetic calorimeter design. One original design feature is the folding. 10 000 lead plates and electrodes are folded into an accordion shape and immersed in liquid argon. As they cross the folds, particles are slowed down by the lead. As they collide with the lead atoms, electrons and photons are ejected. There is a knock-on effect and as they continue on into the argon, a whole shower is produced. The electrodes collect up all the electrons and this signal gives a measurement of the energy of the initial particle. The M0 was fabricated by French institutes (LAL, LAPP, Saclay, Jussieu) in the years 1993-1994. It was tested in the H6/H8 beam lines in 1994, leading to the Technical Design Report in 1996.

  11. TRT and SCT barrels merge

    CERN Multimedia

    Wells, P S

    2006-01-01

    The SCT barrel was inserted in the TRT on 17 February, just missing Valentine's day. This was a change of emphasis for the two detectors. In the preceeding months there had been a lot of focus on testing their performance. The TRT had been observing cosmic rays through several sectors of the barrel, and all the modules on each of the four layers of the SCT had been characterised prior to integration. In parallel, the engineering teams, lead by Marco Olcese, Andrea Catinaccio, Eric Perrin, Neil Dixon, Iourii Gusakov, Gerard Barbier and Takashi Kohriki, had been preparing for this critical operation. Figure 1: Neil Dixon and Marco Olcese verifying the final alignment The two detectors had to be painstakingly aligned to be concentric to within a millimetre. The SCT was held on a temporary cantilever stand, and the TRT in the ID trolley had to inch over it. Finally the weight of the SCT was transferred to the rails on the inside of the TRT itself. The SCT services actually protruded a little outside the oute...