WorldWideScience

Sample records for barnacle muscle fibers

  1. The morphological development of the locomotor and cardiac muscles of the migratory barnacle goose (Branta leucopsis)

    NARCIS (Netherlands)

    Bishop, CM; Butler, PJ; ElHaj, AJ; Egginton, S; Loonen, MJJE

    The masses of the locomotor and cardiac muscles of wild barnacle goose goslings, from a migratory population, were examined systematically during development and their values compared to those of pre-migratory geese. Pre-flight development was typified by approximately linear increases of body, leg,

  2. 'Flying barnacles'

    DEFF Research Database (Denmark)

    Tøttrup, Anders P; Chan, Benny K K; Koskinen, Hannu

    2010-01-01

    in temperate areas spreading widely over inland and marine habitats outside the breeding season. The species is known to perform long-distance migration to Africa and the Middle East. Combining present knowledge on the birds' migratory pattern and the home range of the barnacle species, it is concluded...... together on a single field-readable plastic leg ring. The barnacles could therefore, if ported alive to a new area, reproduce successfully and thus either introduce the species or genetically affect other native populations. This may pose a new and wholly unexpected transportation pathway for barnacles...... as invasive species....

  3. Deriving muscle fiber diameter from recorded single fiber potential.

    Science.gov (United States)

    Zalewska, Ewa

    2017-12-01

    The aim of the study was to estimate muscle fiber diameters through analysis of single muscle fiber potentials (SFPs) recorded in the frontalis muscle of a healthy subject. Our previously developed analytical and graphic method to derive fiber diameter from the analysis of the negative peak duration and the amplitude of SFP, was applied to a sample of ten SFPs recorded in vivo. Muscle fiber diameters derived from the simulation method for the sample of frontalis muscle SFPs are consistent with anatomical data for this muscle. The results confirm the utility of proposed simulation method. Outlying data could be considered as the result of a contribution of other fibers to the potential recorded using an SFEMG electrode. Our graphic tool provides a rapid estimation of muscle fiber diameter. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  4. Composition of Muscle Fiber Types in Rat Rotator Cuff Muscles.

    Science.gov (United States)

    Rui, Yongjun; Pan, Feng; Mi, Jingyi

    2016-10-01

    The rat is a suitable model to study human rotator cuff pathology owing to the similarities in morphological anatomy structure. However, few studies have reported the composition muscle fiber types of rotator cuff muscles in the rat. In this study, the myosin heavy chain (MyHC) isoforms were stained by immunofluorescence to show the muscle fiber types composition and distribution in rotator cuff muscles of the rat. It was found that rotator cuff muscles in the rat were of mixed fiber type composition. The majority of rotator cuff fibers labeled positively for MyHCII. Moreover, the rat rotator cuff muscles contained hybrid fibers. So, compared with human rotator cuff muscles composed partly of slow-twitch fibers, the majority of fast-twitch fibers in rat rotator cuff muscles should be considered when the rat model study focus on the pathological process of rotator cuff muscles after injury. Gaining greater insight into muscle fiber types in rotator cuff muscles of the rat may contribute to elucidate the mechanism of pathological change in rotator cuff muscles-related diseases. Anat Rec, 299:1397-1401, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  5. Single Muscle Fiber Proteomics Reveals Fiber-Type-Specific Features of Human Muscle Aging

    Directory of Open Access Journals (Sweden)

    Marta Murgia

    2017-06-01

    Full Text Available Skeletal muscle is a key tissue in human aging, which affects different muscle fiber types unequally. We developed a highly sensitive single muscle fiber proteomics workflow to study human aging and show that the senescence of slow and fast muscle fibers is characterized by diverging metabolic and protein quality control adaptations. Whereas mitochondrial content declines with aging in both fiber types, glycolysis and glycogen metabolism are upregulated in slow but downregulated in fast muscle fibers. Aging mitochondria decrease expression of the redox enzyme monoamine oxidase A. Slow fibers upregulate a subset of actin and myosin chaperones, whereas an opposite change happens in fast fibers. These changes in metabolism and sarcomere quality control may be related to the ability of slow, but not fast, muscle fibers to maintain their mass during aging. We conclude that single muscle fiber analysis by proteomics can elucidate pathophysiology in a sub-type-specific manner.

  6. Aging of Skeletal Muscle Fibers

    Science.gov (United States)

    Miljkovic, Natasa; Lim, Jae-Young; Miljkovic, Iva

    2015-01-01

    Aging has become an important topic for scientific research because life expectancy and the number of men and women in older age groups have increased dramatically in the last century. This is true in most countries of the world including the Republic of Korea and the United States. From a rehabilitation perspective, the most important associated issue is a progressive decline in functional capacity and independence. Sarcopenia is partly responsible for this decline. Many changes underlying the loss of muscle mass and force-generating capacity of skeletal muscle can be understood at the cellular and molecular levels. Muscle size and architecture are both altered with advanced adult age. Further, changes in myofibers include impairments in several physiological domains including muscle fiber activation, excitation-contraction coupling, actin-myosin cross-bridge interaction, energy production, and repair and regeneration. A thorough understanding of these alterations can lead to the design of improved preventative and rehabilitative interventions, such as personalized exercise training programs. PMID:25932410

  7. Denervated muscle fibers induce mitochondrial peroxide generation in neighboring innervated fibers: Role in muscle aging.

    Science.gov (United States)

    Pollock, Natalie; Staunton, Caroline A; Vasilaki, Aphrodite; McArdle, Anne; Jackson, Malcolm J

    2017-11-01

    Disruption of neuromuscular junctions and denervation of some muscle fibers occurs in ageing skeletal muscle and contribute to loss of muscle mass and function. Aging is associated with mitochondrial dysfunction and loss of redox homeostasis potentially occurs through increased mitochondrial generation of reactive oxygen species (ROS). No specific link between increased mitochondrial ROS generation and denervation has been defined in muscle ageing. To address this, we have examined the effect of experimental denervation of all fibers, or only a proportion of the fibers, in the mouse tibialis anterior (TA) muscle on muscle mitochondrial peroxide generation. Transection of the peroneal nerve of mice caused loss of pre-synaptic axons within 1-3 days with no significant morphological changes in post-synaptic structures up to 10 days post-surgery when decreased TA mass and fiber size were apparent. Mitochondria in the denervated muscle showed increased peroxide generation by 3 days post-transection. Use of electron transport chain (ETC) substrates and inhibitors of specific pathways indicated that the ETC was unlikely to contribute to increased ROS generation, but monoamine oxidase B, NADPH oxidase and phospholipase enzymes were implicated. Transection of one of the 3 branches of the peroneal nerve caused denervation of some TA muscle fibers while others retained innervation, but increased mitochondrial peroxide generation occurred in both denervated and innervated fibers. Thus the presence of recently denervated fibers leads to increased ROS generation by mitochondria in neighboring innervated fibers providing a novel explanation for the increased mitochondrial oxidative stress and damage seen with aging in skeletal muscles. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  8. Regeneration of muscle fibers in the extensor digitorum longus muscle of the aged rat.

    Science.gov (United States)

    Desaki, Junzo

    2008-04-01

    Regeneration of muscle fibers was observed in the extensor digitorum longus (EDL) muscle of aged (24 and 27 months) Wistar rats. The aged muscles consisted almost exclusively of medium-sized muscle fibers. In addition to degenerating and/or atrophied muscle fibers, very small muscle fibers <10 mum in diameter were observed in some muscle bundles which sporadically distributed in the muscle. In the degenerating muscle fibers, satellite cells mostly appeared to be normal, possibly surviving within the scaffold of basal lamina to form new (regenerating) muscle fibers. However, some of the satellite cells were degenerated and destroyed, suggesting the decrease in number of muscle fibers. On the other hand, very small muscle fibers existed between small and/or medium-sized muscle fibers or in the wide interstitial spaces between them solitarily or in small groups. In addition, immature muscle cells having a centrally located nucleus and sporadically distributed myofilaments were observed among the small and/or medium-sized muscle fibers and partially lacked a layer of basal lamina. These immature muscle cells were often closely apposed to fibroblasts with some slender cytoplasmic processes and/or to each other without an interposing basal lamina. These findings suggest that in addition to satellite cells within the basal lamina tubes, some of the regenerating muscle fibers in the aged EDL muscle may be originated from mesenchymal cells such as fibroblasts in the interstitial spaces.

  9. Muscle fiber size increases following resistance training in multiple sclerosis

    DEFF Research Database (Denmark)

    Dalgas, U; Stenager, Egon; Jakobsen, J

    2010-01-01

    To test the hypothesis that lower body progressive resistance training (PRT) leads to an increase of the muscle fiber cross-sectional area (CSA) and a shift in the proportion of fiber types in patients with multiple sclerosis (MS).......To test the hypothesis that lower body progressive resistance training (PRT) leads to an increase of the muscle fiber cross-sectional area (CSA) and a shift in the proportion of fiber types in patients with multiple sclerosis (MS)....

  10. Novel muscle spindles containing muscle fibers devoid of sensory innervation in the extensor digitorum longus muscle of aged rats.

    Science.gov (United States)

    Desaki, Junzo; Nishida, Naoya

    2008-04-01

    We examined the structural features of muscle spindles at the equatorial and juxtaequatorial regions in the extensor digitorum longus muscle of adult (12 months) and aged (25 months) rats. In aged muscle spindles, the lamellated layers of the spindle capsule were a little increased in number compared to those in the adult ones. Two novel muscle spindles were observed in the aged muscle. In one muscle spindle, the spindle capsule contained four thin intrafusal muscle fibers invested by the inner capsule and two muscle fibers between the layers of the spindle capsule. Serial semithin sections revealed that the latter lacked the investment of the spindle capsule at the polar region. The other muscle spindle contained four intrafusal muscle fibers: two thin sensory-innervated muscle fibers invested by the inner capsule and two thick muscle fibers similar in structural features to neighboring extrafusal muscle fibers and lacking sensory innervation within the wide periaxial space. These findings suggest that two muscle fibers between the layers of the spindle capsule may be invested by the newly formed capsular cells during aging, while two thick fibers within the periaxial space may fail to receive the sensory innervation during the early development and follow the course of extrafusal fiber differentiation.

  11. Muscle fiber population and biochemical properties of whole body muscles in Thoroughbred horses.

    Science.gov (United States)

    Kawai, Minako; Minami, Yoshio; Sayama, Yukiko; Kuwano, Atsutoshi; Hiraga, Atsushi; Miyata, Hirofumi

    2009-10-01

    We examine the muscle fiber population and metabolic properties of skeletal muscles from the whole body in Thoroughbred horses. Postmortem samples were taken from 46 sites in six Thoroughbred horses aged between 3 and 6 years. Fiber type population was determined on muscle fibers stained with monoclonal antibody to each myosin heavy chain isoform and metabolic enzyme activities were determined spectrophotometrically. Histochemical analysis demonstrated that most of the muscles had a high percentage of Type IIa fibers. In terms of the muscle characteristic in several parts of the horse body, the forelimb muscles had a higher percentage of Type IIa fiber and a significantly lower percentage of Type IIx fiber than the hindlimb muscles. The muscle fiber type populations in the thoracic and trunk portion were similar to those in the hindlimb portion. Biochemical analysis indicated high succinate dehydrogenase activity in respiratory-related muscle and high phosphofructokinase activity in hindlimbs. We suggested that the higher percentage of Type IIa fibers in Thoroughbred racehorses is attributed to training effects. To consider further the physiological significance of each part of the body, data for the recruitment pattern of each muscle fiber type during exercise are needed. The muscle fiber properties in this study combined with the recruitment data would provide fundamental information for physiological and pathological studies in Thoroughbred horses.

  12. A method for determination of muscle fiber diameter using single fiber potential (SFP) analysis.

    Science.gov (United States)

    Zalewska, Ewa; Nandedkar, Sanjeev D; Hausmanowa-Petrusewicz, Irena

    2012-12-01

    We have used computer simulation to study the relationship between the muscle fiber diameter and parameters: peak-to-peak amplitude and duration of the negative peak of the muscle fiber action potential. We found that the negative peak duration is useful in the determination of fiber diameter via the diameter dependence of conduction velocity. We have shown a direct link between the underlying physiology and the measurements characterizing single fiber potential. Using data from simulations, a graphical tool and an analytical method to estimate the muscle fiber diameter from the recorded action potential has been developed. The ability to quantify the fiber diameter can add significantly to the single fiber electromyography examination. It may help study of muscle fiber diameter variability and thus compliment the muscle biopsy studies.

  13. Mechanisms of nascent fiber formation during avian skeletal muscle hypertrophy

    Science.gov (United States)

    McCormick, K. M.; Schultz, E.

    1992-01-01

    This study examined two putative mechanisms of new fiber formation in postnatal skeletal muscle, namely longitudinal fragmentation of existing fibers and de novo formation. The relative contributions of these two mechanisms to fiber formation in hypertrophying anterior latissimus dorsi (ALD) muscle were assessed by quantitative analysis of their nuclear populations. Muscle hypertrophy was induced by wing-weighting for 1 week. All nuclei formed during the weighting period were labeled by continuous infusion of 5-bromo-2'-deoxyuridine (BrdU), a thymidine analog, and embryonic-like fibers were identified using an antibody to ventricular-like embryonic (V-EMB) myosin. The number of BrdU-labeled and unlabeled nuclei in V-EMB-positive fibers were counted. Wing-weighting resulted in significant muscle enlargement and the appearance of many V-EMB+ fibers. The majority of V-EMB+ fibers were completely independent of mature fibers and had a nuclear density characteristics of developing fibers. Furthermore, nearly 100% of the nuclei in independent V-EMB+ fibers were labeled. These findings strongly suggest that most V-EMB+ fibers were nascent fibers formed de novo during the weighting period by satellite cell activation and fusion. Nascent fibers were found primarily in the space between fascicles where they formed a complex anastomosing network of fibers running at angles to one another. Although wing-weighting induced an increase in the number of branched fibers, there was no evidence that V-EMB+ fibers were formed by longitudinal fragmentation. The location of newly formed fibers in wing-weighted and regenerating ALD muscle was compared to determine whether satellite cells in the ALD muscle were unusual in that, if stimulated to divide, they would form fibers in the inter- and intrafascicular space. In contrast to wing-weighted muscle, nascent fibers were always found closely associated with necrotic fibers. These results suggest that wing-weighting is not simply another

  14. Simulation of propagation in a bundle of skeletal muscle fibers: Modulation effects of passive fibers

    DEFF Research Database (Denmark)

    Henneberg, Kaj-åge; F.A., Roberge

    1997-01-01

    Computer simulations are used to study passive fiber modulation of propagation in a tightly packed bundle of frog skeletal muscle fibers (uniform fiber radius of 50 mu m). With T = 20 degrees C and a uniform nominal interstitial cleft width (d) over bar = 0.35 mu m, about 92% of the active fiber...

  15. Preferential type II muscle fiber damage from plyometric exercise.

    Science.gov (United States)

    Macaluso, Filippo; Isaacs, Ashwin W; Myburgh, Kathryn H

    2012-01-01

    Plyometric training has been successfully used in different sporting contexts. Studies that investigated the effect of plyometric training on muscle morphology are limited, and results are controversial with regard to which muscle fiber type is mainly affected. To analyze the skeletal muscle structural and ultrastructural change induced by an acute bout of plyometric exercise to determine which type of muscle fibers is predominantly damaged. Descriptive laboratory study. Research laboratory. Eight healthy, untrained individuals (age = 22 ± 1 years, height = 179.2 ± 6.4 cm, weight = 78.9 ± 5.9 kg). Participants completed an acute bout of plyometric exercise (10 sets of 10 squat-jumps with a 1-minute rest between sets). Blood samples were collected 9 days and immediately before and 6 hours and 1, 2, and 3 days after the acute intervention. Muscle samples were collected 9 days before and 3 days after the exercise intervention. Blood samples were analyzed for creatine kinase activity. Muscle biopsies were analyzed for damage using fluorescent and electron transmission microscopy. Creatine kinase activity peaked 1 day after the exercise bout (529.0 ± 317.8 U/L). Immunofluorescence revealed sarcolemmal damage in 155 of 1616 fibers analyzed. Mainly fast-twitch fibers were damaged. Within subgroups, 7.6% of type I fibers, 10.3% of type IIa fibers, and 14.3% of type IIx fibers were damaged as assessed by losses in dystrophin staining. Similar damage was prevalent in IIx and IIa fibers. Electron microscopy revealed clearly distinguishable moderate and severe sarcomere damage, with damage quantifiably predominant in type II muscle fibers of both the glycolytic and oxidative subtypes (86% and 84%, respectively, versus only 27% of slow-twitch fibers). We provide direct evidence that a single bout of plyometric exercise affected mainly type II muscle fibers.

  16. Effective fiber hypertrophy in satellite cell-depleted skeletal muscle

    Science.gov (United States)

    McCarthy, John J.; Mula, Jyothi; Miyazaki, Mitsunori; Erfani, Rod; Garrison, Kelcye; Farooqui, Amreen B.; Srikuea, Ratchakrit; Lawson, Benjamin A.; Grimes, Barry; Keller, Charles; Van Zant, Gary; Campbell, Kenneth S.; Esser, Karyn A.; Dupont-Versteegden, Esther E.; Peterson, Charlotte A.

    2011-01-01

    An important unresolved question in skeletal muscle plasticity is whether satellite cells are necessary for muscle fiber hypertrophy. To address this issue, a novel mouse strain (Pax7-DTA) was created which enabled the conditional ablation of >90% of satellite cells in mature skeletal muscle following tamoxifen administration. To test the hypothesis that satellite cells are necessary for skeletal muscle hypertrophy, the plantaris muscle of adult Pax7-DTA mice was subjected to mechanical overload by surgical removal of the synergist muscle. Following two weeks of overload, satellite cell-depleted muscle showed the same increases in muscle mass (approximately twofold) and fiber cross-sectional area with hypertrophy as observed in the vehicle-treated group. The typical increase in myonuclei with hypertrophy was absent in satellite cell-depleted fibers, resulting in expansion of the myonuclear domain. Consistent with lack of nuclear addition to enlarged fibers, long-term BrdU labeling showed a significant reduction in the number of BrdU-positive myonuclei in satellite cell-depleted muscle compared with vehicle-treated muscle. Single fiber functional analyses showed no difference in specific force, Ca2+ sensitivity, rate of cross-bridge cycling and cooperativity between hypertrophied fibers from vehicle and tamoxifen-treated groups. Although a small component of the hypertrophic response, both fiber hyperplasia and regeneration were significantly blunted following satellite cell depletion, indicating a distinct requirement for satellite cells during these processes. These results provide convincing evidence that skeletal muscle fibers are capable of mounting a robust hypertrophic response to mechanical overload that is not dependent on satellite cells. PMID:21828094

  17. Mitochondrial specialization revealed by single muscle fiber proteomics

    DEFF Research Database (Denmark)

    Schiaffino, S; Reggiani, C; Kostrominova, T Y

    2015-01-01

    that in skeletal muscle, IDH2 functions in the forward direction of the Krebs cycle and that substrate flux along the cycle occurs predominantly via IDH2 in type 1 fibers and via IDH3 in 2X and 2B fibers. IDH2-mediated conversion of isocitrate to α-ketoglutarate leads to the generation of NADPH, which is critical......We have developed a highly sensitive mass spectrometry-based proteomic workflow to examine the proteome of single muscle fibers. This study revealed significant differences in the mitochondrial proteome of the four major fiber types present in mouse skeletal muscle. Here, we focus on Krebs cycle...... enzymes and in particular on the differential distribution of the two mitochondrial isocitrate dehydrogenases, IDH2 and IDH3. Type 1/slow fibers contain high levels of IDH2 and relatively low levels of IDH3, whereas fast 2X and 2B fibers show an opposite expression pattern. The findings suggest...

  18. Changes in muscle fiber contractility and extracellular matrix production during skeletal muscle hypertrophy.

    Science.gov (United States)

    Mendias, Christopher L; Schwartz, Andrew J; Grekin, Jeremy A; Gumucio, Jonathan P; Sugg, Kristoffer B

    2017-03-01

    Skeletal muscle can adapt to increased mechanical loads by undergoing hypertrophy. Transient reductions in whole muscle force production have been reported during the onset of hypertrophy, but contractile changes in individual muscle fibers have not been previously studied. Additionally, the extracellular matrix (ECM) stores and transmits forces from muscle fibers to tendons and bones, and determining how the ECM changes during hypertrophy is important in understanding the adaptation of muscle tissue to mechanical loading. Using the synergist ablation model, we sought to measure changes in muscle fiber contractility, collagen content, and cross-linking, and in the expression of several genes and activation of signaling proteins that regulate critical components of myogenesis and ECM synthesis and remodeling during muscle hypertrophy. Tissues were harvested 3, 7, and 28 days after induction of hypertrophy, and nonoverloaded rats served as controls. Muscle fiber specific force (sF o ), which is the maximum isometric force normalized to cross-sectional area, was reduced 3 and 7 days after the onset of mechanical overload, but returned to control levels by 28 days. Collagen abundance displayed a similar pattern of change. Nearly a quarter of the transcriptome changed over the course of overload, as well as the activation of signaling pathways related to hypertrophy and atrophy. Overall, this study provides insight into fundamental mechanisms of muscle and ECM growth, and indicates that although muscle fibers appear to have completed remodeling and regeneration 1 mo after synergist ablation, the ECM continues to be actively remodeling at this time point. NEW & NOTEWORTHY This study utilized a rat synergist ablation model to integrate changes in single muscle fiber contractility, extracellular matrix composition, activation of important signaling pathways in muscle adaption, and corresponding changes in the muscle transcriptome to provide novel insight into the basic

  19. Induction of GLUT-1 protein in adult human skeletal muscle fibers

    DEFF Research Database (Denmark)

    Gaster, M; Franch, J; Staehr, P

    2000-01-01

    fibers. Metabolic stress (obesity, non-insulin-dependent diabetes mellitus), contractile activity (training), and conditions of de- and reinnervation (amyotrophic lateral sclerosis) could not induce GLUT-1 expression in human muscle fibers. However, regenerating muscle fibers in polymyositis expressed...

  20. From single muscle fiber to whole muscle mechanics: a finite element model of a muscle bundle with fast and slow fibers.

    Science.gov (United States)

    Marcucci, Lorenzo; Reggiani, Carlo; Natali, Arturo N; Pavan, Piero G

    2017-12-01

    Muscles exhibit highly complex, multi-scale architecture with thousands of muscle fibers, each with different properties, interacting with each other and surrounding connective structures. Consequently, the results of single-fiber experiments are scarcely linked to the macroscopic or whole muscle behavior. This is especially true for human muscles where it would be important to understand of how skeletal muscles disorders affect patients' life. In this work, we developed a mathematical model to study how fast and slow muscle fibers, well characterized in single-fiber experiments, work and generate together force and displacement in muscle bundles. We characterized the parameters of a Hill-type model, using experimental data on fast and slow single human muscle fibers, and comparing experimental data with numerical simulations obtained from finite element (FE) models of single fibers. Then, we developed a FE model of a bundle of 19 fibers, based on an immunohistochemically stained cross section of human diaphragm and including the corresponding properties of each slow or fast fiber. Simulations of isotonic contractions of the bundle model allowed the generation of its apparent force-velocity relationship. Although close to the average of the force-velocity curves of fast and slow fibers, the bundle curve deviates substantially toward the fast fibers at low loads. We believe that the present model and the characterization of the force-velocity curve of a fiber bundle represents the starting point to link the single-fiber properties to those of whole muscle with FE application in phenomenological models of human muscles.

  1. Single muscle fiber proteomics reveals unexpected mitochondrial specialization

    DEFF Research Database (Denmark)

    Murgia, Marta; Nagaraj, Nagarjuna; Deshmukh, Atul S

    2015-01-01

    Mammalian skeletal muscles are composed of multinucleated cells termed slow or fast fibers according to their contractile and metabolic properties. Here, we developed a high-sensitivity workflow to characterize the proteome of single fibers. Analysis of segments of the same fiber by traditional...... and unbiased proteomics methods yielded the same subtype assignment. We discovered novel subtype-specific features, most prominently mitochondrial specialization of fiber types in substrate utilization. The fiber type-resolved proteomes can be applied to a variety of physiological and pathological conditions...

  2. A method for preparing skeletal muscle fiber basal laminae

    International Nuclear Information System (INIS)

    Carlson, E.C.; Carlson, B.M.

    1991-01-01

    Previous attempts to prepare skeletal muscle basal laminae (BL) for ultrastructural analyses have been hampered by difficulties in successfully removing skeletal muscle proteins and cellular debris from BL tubes. In the present study the authors describe a two phase method which results in an acellular muscle preparation, the BL of which are examined by light, transmission electron, and scanning electron microscopy. In the first phase, excised rat extensor digitorum longus muscles are subjected to x-radiation and then soaked in Marcaine to inhibit muscle regeneration and to destroy peripheral muscle fibers. The muscles are then grafted back into their original sites and allowed to remain in place 7-14 days to allow for maximal removal of degenerating muscle tissue with minimal scar tissue formation. In the second phase, the muscle grafts are subjected sequentially to EDTA, triton X-100, DNAase, and sodium deoxycholate to remove phagocytizing cells and associated degenerating muscle tissue. These procedures result in translucent, acellular muscle grafts which show numerous empty tubes of BL backed by endomysial collagenous fibers. These preparations should be useful for morphological analyses of isolated muscle BL and for possible in vitro studies by which the biological activity of muscle BL can be examined

  3. A method for preparing skeletal muscle fiber basal laminae

    Energy Technology Data Exchange (ETDEWEB)

    Carlson, E.C.; Carlson, B.M. (University of North Dakota, Grand Forks (USA))

    1991-07-01

    Previous attempts to prepare skeletal muscle basal laminae (BL) for ultrastructural analyses have been hampered by difficulties in successfully removing skeletal muscle proteins and cellular debris from BL tubes. In the present study the authors describe a two phase method which results in an acellular muscle preparation, the BL of which are examined by light, transmission electron, and scanning electron microscopy. In the first phase, excised rat extensor digitorum longus muscles are subjected to x-radiation and then soaked in Marcaine to inhibit muscle regeneration and to destroy peripheral muscle fibers. The muscles are then grafted back into their original sites and allowed to remain in place 7-14 days to allow for maximal removal of degenerating muscle tissue with minimal scar tissue formation. In the second phase, the muscle grafts are subjected sequentially to EDTA, triton X-100, DNAase, and sodium deoxycholate to remove phagocytizing cells and associated degenerating muscle tissue. These procedures result in translucent, acellular muscle grafts which show numerous empty tubes of BL backed by endomysial collagenous fibers. These preparations should be useful for morphological analyses of isolated muscle BL and for possible in vitro studies by which the biological activity of muscle BL can be examined.

  4. Differential Responses of Soleus and Plantaris Muscle Fibers to Overloading

    Science.gov (United States)

    Kawano, Fuminori; Shibaguchi, Tsubasa; Ohira, Takashi; Nakai, Naoya; Ohira, Yoshinobu

    2013-02-01

    Responses of slow and fast fibers in soleus and plantaris muscles of adult rats to overloading by the tendon transection of synergists were studied. Overloading-related hypertrophy was noted in the slow fibers of plantaris and soleus, although the magnitude was greater in plantaris. Five genes with minor expression in slow soleus muscle were identified by microarray analysis. Base-line expressions of these genes in slow fibers of plantaris were also low. Further, repressive effects of overloading on these genes were seen in some fast fibers of plantaris, not in whole plantaris and soleus. The data suggested that the repression of particular genes might be related to the pronounced morphological response of fibers expressing type II, including I+II, myosin heavy chain (MyHC), although these genes with lower base-line expression in slow fibers did not respond to overloading.

  5. Stiff muscle fibers in calf muscles of patients with cerebral palsy lead to high passive muscle stiffness.

    Science.gov (United States)

    Mathewson, Margie A; Chambers, Henry G; Girard, Paul J; Tenenhaus, Mayer; Schwartz, Alexandra K; Lieber, Richard L

    2014-12-01

    Cerebral palsy (CP), caused by an injury to the developing brain, can lead to alterations in muscle function. Subsequently, increased muscle stiffness and decreased joint range of motion are often seen in patients with CP. We examined mechanical and biochemical properties of the gastrocnemius and soleus muscles, which are involved in equinus muscle contracture. Passive mechanical testing of single muscle fibers from gastrocnemius and soleus muscle of patients with CP undergoing surgery for equinus deformity showed a significant increase in fiber stiffness (p<0.01). Bundles of fibers that included their surrounding connective tissues showed no stiffness difference (p=0.28).). When in vivo sarcomere lengths were measured and fiber and bundle stiffness compared at these lengths, both fibers and bundles of patients with CP were predicted to be much stiffer in vivo compared to typically developing (TD) individuals. Interestingly, differences in fiber and bundle stiffness were not explained by typical biochemical measures such as titin molecular weight (a giant protein thought to impact fiber stiffness) or collagen content (a proxy for extracellular matrix amount). We suggest that the passive mechanical properties of fibers and bundles are thus poorly understood. © 2014 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  6. Obestatin controls skeletal muscle fiber-type determination.

    Science.gov (United States)

    Santos-Zas, Icía; Cid-Díaz, Tania; González-Sánchez, Jessica; Gurriarán-Rodriguez, Uxía; Seoane-Mosteiro, Carlos; Porteiro, Begoña; Nogueiras, Rubén; Casabiell, Xesús; Luis Relova, José; Gallego, Rosalía; Mouly, Vincent; Pazos, Yolanda; Camiña, Jesus P

    2017-05-18

    Obestatin/GPR39 signaling stimulates skeletal muscle growth and repair by inducing both G-protein-dependent and -independent mechanisms linking the activated GPR39 receptor with distinct sets of accessory and effector proteins. In this work, we describe a new level of activity where obestatin signaling plays a role in the formation, contractile properties and metabolic profile of skeletal muscle through determination of oxidative fiber type. Our data indicate that obestatin regulates Mef2 activity and PGC-1α expression. Both mechanisms result in a shift in muscle metabolism and function. The increase in Mef2 and PGC-1α signaling activates oxidative capacity, whereas Akt/mTOR signaling positively regulates myofiber growth. Taken together, these data indicate that the obestatin signaling acts on muscle fiber-type program in skeletal muscle.

  7. Measuring mitochondrial respiration in intact single muscle fibers.

    Science.gov (United States)

    Schuh, Rosemary A; Jackson, Kathryn C; Khairallah, Ramzi J; Ward, Christopher W; Spangenburg, Espen E

    2012-03-15

    Measurement of mitochondrial function in skeletal muscle is a vital tool for understanding regulation of cellular bioenergetics. Currently, a number of different experimental approaches are employed to quantify mitochondrial function, with each involving either mechanically or chemically induced disruption of cellular membranes. Here, we describe a novel approach that allows for the quantification of substrate-induced mitochondria-driven oxygen consumption in intact single skeletal muscle fibers isolated from adult mice. Specifically, we isolated intact muscle fibers from the flexor digitorum brevis muscle and placed the fibers in culture conditions overnight. We then quantified oxygen consumption rates using a highly sensitive microplate format. Peak oxygen consumption rates were significantly increased by 3.4-fold and 2.9-fold by simultaneous stimulation with the uncoupling agent, carbonyl cyanide p-(trifluoromethoxy)phenylhydrazone (FCCP), and/or pyruvate or palmitate exposure, respectively. However, when calculating the total oxygen consumed over the entire treatment, palmitate exposure resulted in significantly more oxygen consumption compared with pyruvate. Further, as proof of principle for the procedure, we isolated fibers from the mdx mouse model, which has known mitochondrial deficits. We found significant reductions in initial and peak oxygen consumption of 51% and 61% compared with fibers isolated from the wild-type (WT) animals, respectively. In addition, we determined that fibers isolated from mdx mice exhibited less total oxygen consumption in response to the FCCP + pyruvate stimulation compared with the WT mice. This novel approach allows the user to make mitochondria-specific measures in a nondisrupted muscle fiber that has been isolated from a whole muscle.

  8. Muscle strength and fiber composition in athletes and sedentary men.

    Science.gov (United States)

    Thorstensson, A; Larsson, L; Tesch, P; Karlsson, J

    1977-01-01

    Members of Swedish national teams in track and field events (sprinting and jumping), downhill skiing, race walking, orienteering, and a group of sedentary men were studied to examine the relationship between muslce fiber characteristics in needle biopsy samples form m. vastus lateralis and muscle strength measured as peak torque during isokinectic knee extensions. In comparison with the sedentary group the following differences were found: a) percentage fast twitch fibers was lower in the endurance athetes, b) fast to slow twitch muscle fiber area ratio was higher in the track athletes, c)track athletes and downhill skier attained higher peak torque values at all angular velocities examined. The track athletes had, however, higher torque values at the fastest angular velocity as compared to the downhill skiers, whereas there was no differnce under isometric conditions. The proportion of fast twitch fibers was related to torque produced, especially at high motion velocity. The training also appeared to affect the force-velocity relationship.

  9. Age-related botulinum toxin effects on muscle fiber conduction velocity in non-injected muscles

    NARCIS (Netherlands)

    Lange, Fiete; van Weerden, Tiemen W.; van der Hoeven, Johannes H.

    2007-01-01

    Objective: We studied systemic effects of botulinum toxin (BTX) treatment on muscle fiber conduction velocity (MFCV) and possible effects of age. Methods: MFCV was determined by an invasive EMG method in the biceps brachii muscle. Seventeen BTX treated patients and 58 controls were investigated. BTX

  10. Repeated blood flow restriction induces muscle fiber hypertrophy.

    Science.gov (United States)

    Sudo, Mizuki; Ando, Soichi; Kano, Yutaka

    2017-02-01

    We recently developed an animal model to investigate the effects of eccentric contraction (ECC) and blood flow restriction (BFR) on muscle tissue at the cellular level. This study clarified the effects of repeated BFR, ECC, and BFR combined with ECC (BFR+ECC) on muscle fiber hypertrophy. Male Wistar rats were assigned to 3 groups: BFR, ECC, and BFR+ECC. The contralateral leg in the BFR group served as a control (CONT). Muscle fiber cross-sectional area (CSA) of the tibialis anterior was determined after the respective treatments for 6 weeks. CSA was greater in the BFR+ECC group than in the CONT (P hypertrophy at the cellular level. Muscle Nerve 55: 274-276, 2017. © 2016 Wiley Periodicals, Inc.

  11. Satellite cell depletion prevents fiber hypertrophy in skeletal muscle.

    Science.gov (United States)

    Egner, Ingrid M; Bruusgaard, Jo C; Gundersen, Kristian

    2016-08-15

    The largest mammalian cells are the muscle fibers, and they have multiple nuclei to support their large cytoplasmic volumes. During hypertrophic growth, new myonuclei are recruited from satellite stem cells into the fiber syncytia, but it was recently suggested that such recruitment is not obligatory: overload hypertrophy after synergist ablation of the plantaris muscle appeared normal in transgenic mice in which most of the satellite cells were abolished. When we essentially repeated these experiments analyzing the muscles by immunohistochemistry and in vivo and ex vivo imaging, we found that overload hypertrophy was prevented in the satellite cell-deficient mice, in both the plantaris and the extensor digitorum longus muscles. We attribute the previous findings to a reliance on muscle mass as a proxy for fiber hypertrophy, and to the inclusion of a significant number of regenerating fibers in the analysis. We discuss that there is currently no model in which functional, sustainable hypertrophy has been unequivocally demonstrated in the absence of satellite cells; an exception is re-growth, which can occur using previously recruited myonuclei without addition of new myonuclei. © 2016. Published by The Company of Biologists Ltd.

  12. Revisiting the peculiar regional distribution of muscle fiber types in rat Sternomastoid Muscle

    Directory of Open Access Journals (Sweden)

    Barbara Ravara

    2018-03-01

    Full Text Available The sternomastoid (SM muscle in rodents is known to have a peculiar distribution of fiber types with a steep gradient from surface to deep region. We here further characterize this peculiar regional distribution by quantitative histochemical morphometrys. In Hematoxylin-Eosin (H-E stained transverse cryosections harvested in the medial portion of the muscle we counted around 10.000 myofibers with a mean diameter of 51.3±12.6 (μm. Cryisections of the SM stained by SDH reaction clearly show two distinct regions, toward the deep surface of the muscle a 40% area that contains packed SDH-positive myofibers, while the remaining area of the SM toward the external surface presents a more checker-board appearance. On the other hand, in the deep region of SM type 1 (slow contracting muscle fibers, caracterized by positive acidic ATPase pH 4.35 reaction, are only the 24.5% of the fibers in the deep area of SM muscles, being restricted to the deepest region. The 75.5% of the myofibers in the deep region are of the fast contracting types (either 48.4% 2A, SDH –positive fibers or 27.1% 2B, SDH-negative fibers, respectively. As expected the 2B muscle fibers, acidic ATPase pH 4.3-negative and SDH-negative, present the largest size, while Type 1 fibers, acidic ATPase pH 4.3-positive and SDH-positive, present the smallest size in rat SM muscle. Based on present and previous observations, comparison of change in absolute number and/or percentage of the fiber types in any experimental model of muscle atrophy/hypertrophy/plasticity/pathology /recovery in the rat SM, and possibly of all mammals, will ask for morphometry of the whole muscle cross-sections, muscle sampling by bioptic approches will provide only comparable data on the size of the different types of muscle fibers.

  13. Arrangement and Insertion of Muscle Fibers in the Human Gluteus Maximus.

    OpenAIRE

    松原, 貴子; 三木, 明徳

    1999-01-01

    Using 16 cases of the human gluteus maximus from 8 cadavers, we examined macroscopically the arrangement and insertion of the muscle fibers. The muscle fibers of the gluteus maximus were devided into the superficial and deep groups. The iliotibial ligamen

  14. Single muscle fiber gene expression with run taper.

    Directory of Open Access Journals (Sweden)

    Kevin Murach

    Full Text Available This study evaluated gene expression changes in gastrocnemius slow-twitch myosin heavy chain I (MHC I and fast-twitch (MHC IIa muscle fibers of collegiate cross-country runners (n = 6, 20±1 y, VO₂max = 70±1 ml•kg-1•min-1 during two distinct training phases. In a controlled environment, runners performed identical 8 kilometer runs (30:18±0:30 min:s, 89±1% HRmax while in heavy training (∼72 km/wk and following a 3 wk taper. Training volume during the taper leading into peak competition was reduced ∼50% which resulted in improved race times and greater cross-section and improved function of MHC IIa fibers. Single muscle fibers were isolated from pre and 4 hour post run biopsies in heavily trained and tapered states to examine the dynamic acute exercise response of the growth-related genes Fibroblast growth factor-inducible 14 (FN14, Myostatin (MSTN, Heat shock protein 72 (HSP72, Muscle ring-finger protein-1 (MURF1, Myogenic factor 6 (MRF4, and Insulin-like growth factor 1 (IGF1 via qPCR. FN14 increased 4.3-fold in MHC IIa fibers with exercise in the tapered state (P<0.05. MSTN was suppressed with exercise in both fiber types and training states (P<0.05 while MURF1 and HSP72 responded to running in MHC IIa and I fibers, respectively, regardless of training state (P<0.05. Robust induction of FN14 (previously shown to strongly correlate with hypertrophy and greater overall transcriptional flexibility with exercise in the tapered state provides an initial molecular basis for fast-twitch muscle fiber performance gains previously observed after taper in competitive endurance athletes.

  15. Underwater adhesion: The barnacle way

    Digital Repository Service at National Institute of Oceanography (India)

    Khandeparker, L.; Anil, A.C.

    silicone substrata. For both materials, significant variation among maternal families in the proportion of barnacles producing a thick adhesive plaque was observed, which suggests the presence of genetic variation, or maternal environmental effects...

  16. Glucose transporter expression in human skeletal muscle fibers

    DEFF Research Database (Denmark)

    Gaster, M; Handberg, A; Beck-Nielsen, H

    2000-01-01

    The present study was initiated to investigate GLUT-1 through -5 expression in developing and mature human skeletal muscle. To bypass the problems inherent in techniques using tissue homogenates, we applied an immunocytochemical approach, employing the sensitive enhanced tyramide signal amplifica......The present study was initiated to investigate GLUT-1 through -5 expression in developing and mature human skeletal muscle. To bypass the problems inherent in techniques using tissue homogenates, we applied an immunocytochemical approach, employing the sensitive enhanced tyramide signal...... amplification (TSA) technique to detect the localization of glucose transporter expression in human skeletal muscle. We found expression of GLUT-1, GLUT-3, and GLUT-4 in developing human muscle fibers showing a distinct expression pattern. 1) GLUT-1 is expressed in human skeletal muscle cells during gestation...

  17. Electrically and hybrid-induced muscle activations: effects of muscle size and fiber type

    Directory of Open Access Journals (Sweden)

    Kelly Stratton

    2016-07-01

    Full Text Available The effect of three electrical stimulation (ES frequencies (10, 35, and 50 Hz on two muscle groups with different proportions of fast and slow twitch fibers (abductor pollicis brevis (APB and vastus lateralis (VL was explored. We evaluated the acute muscles’ responses individually and during hybrid activations (ES superimposed by voluntary activations. Surface electromyography (sEMG and force measurements were evaluated as outcomes. Ten healthy adults (mean age: 24.4 ± 2.5 years participated after signing an informed consent form approved by the university Institutional Review Board. Protocols were developed to: 1 compare EMG activities during each frequency for each muscle when generating 25% Maximum Voluntary Contraction (MVC force, and 2 compare EMG activities during each frequency when additional voluntary activation was superimposed over ES-induced 25% MVC to reach 50% and 75% MVC. Empirical mode decomposition (EMD was utilized to separate ES artifacts from voluntary muscle activation. For both muscles, higher stimulation frequency (35 and 50Hz induced higher electrical output detected at 25% of MVC, suggesting more recruitment with higher frequencies. Hybrid activation generated proportionally less electrical activity than ES alone. ES and voluntary activations appear to generate two different modes of muscle recruitment. ES may provoke muscle strength by activating more fatiguing fast acting fibers, but voluntary activation elicits more muscle coordination. Therefore, during the hybrid activation, less electrical activity may be detected due to recruitment of more fatigue-resistant deeper muscle fibers, not reachable by surface EMG.

  18. Pervasive satellite cell contribution to uninjured adult muscle fibers.

    Science.gov (United States)

    Pawlikowski, Bradley; Pulliam, Crystal; Betta, Nicole Dalla; Kardon, Gabrielle; Olwin, Bradley B

    2015-01-01

    Adult skeletal muscle adapts to functional needs, maintaining consistent numbers of myonuclei and stem cells. Although resident muscle stem cells or satellite cells are required for muscle growth and repair, in uninjured muscle, these cells appear quiescent and metabolically inactive. To investigate the satellite cell contribution to myofibers in adult uninjured skeletal muscle, we labeled satellite cells by inducing a recombination of LSL-tdTomato in Pax7(CreER) mice and scoring tdTomato+ myofibers as an indicator of satellite cell fusion. Satellite cell fusion into myofibers plateaus postnatally between 8 and 12 weeks of age, reaching a steady state in hindlimb muscles, but in extra ocular or diaphragm muscles, satellite cell fusion is maintained at postnatal levels irrespective of the age assayed. Upon recombination and following a 2-week chase in 6-month-old mice, tdTomato-labeled satellite cells fused into myofibers as 20, 50, and 80 % of hindlimb, extra ocular, and diaphragm myofibers, respectively, were tdTomato+. Satellite cells contribute to uninjured myofibers either following a cell division or directly without an intervening cell division. The frequency of satellite cell fusion into the skeletal muscle fibers is greater than previously estimated, suggesting an important functional role for satellite cell fusion into adult myofibers and a requirement for active maintenance of satellite cell numbers in uninjured skeletal muscle.

  19. Overexpression of SMPX in adult skeletal muscle does not change skeletal muscle fiber type or size.

    Directory of Open Access Journals (Sweden)

    Einar Eftestøl

    Full Text Available Mechanical factors such as stretch are thought to be important in the regulation of muscle phenotype. Small muscle protein X-linked (SMPX is upregulated by stretch in skeletal muscle and has been suggested to serve both as a transcription factor and a mechanosensor, possibly giving rise to changes in both fiber size and fiber type. We have used in vivo confocal imaging to study the subcellular localization of SMPX in skeletal muscle fibers of adult rats using a SMPX-EGFP fusion protein. The fusion protein was localized predominantly in repetitive double stripes flanking the Z-disc, and was excluded from all nuclei. This localization would be consistent with SMPX being a mechanoreceptor, but not with SMPX playing a role as a transcription factor. In vivo overexpression of ectopic SMPX in skeletal muscle of adult mice gave no significant changes in fiber type distribution or cross sectional area, thus a role of SMPX in regulating muscle phenotype remains unclear.

  20. Fresh muscle fiber fragments on a scaffold in rats-a new concept in urogynecology?

    DEFF Research Database (Denmark)

    Boennelycke, Marie; Christensen, Lise; Nielsen, Lene F

    2011-01-01

    To investigate if a synthetic, biodegradable scaffold with either autologous in vitro cultured muscle-derived cells or autologous fresh muscle fiber fragments could be used for tissue repair.......To investigate if a synthetic, biodegradable scaffold with either autologous in vitro cultured muscle-derived cells or autologous fresh muscle fiber fragments could be used for tissue repair....

  1. Myoglobin plasma level related to muscle mass and fiber composition: a clinical marker of muscle wasting?

    Science.gov (United States)

    Weber, Marc-André; Kinscherf, Ralf; Krakowski-Roosen, Holger; Aulmann, Michael; Renk, Hanna; Künkele, Annette; Edler, Lutz; Kauczor, Hans-Ulrich; Hildebrandt, Wulf

    2007-08-01

    Progressive muscle wasting is a central feature of cancer-related cachexia and has been recognized as a determinant of poor prognosis and quality of life. However, until now, no easily assessable clinical marker exists that allows to predict or to track muscle wasting. The present study evaluated the potential of myoglobin (MG) plasma levels to indicate wasting of large locomotor muscles and, moreover, to reflect the loss of MG-rich fiber types, which are most relevant for daily performance. In 17 cancer-cachectic patients (weight loss 22%) and 27 age- and gender-matched healthy controls, we determined plasma levels of MG and creatine kinase (CK), maximal quadriceps muscle cross-sectional area (CSA) by magnetic resonance imaging, muscle morphology and fiber composition in biopsies from the vastus lateralis muscle, body cell mass (BCM) by impedance technique as well as maximal oxygen uptake (VO(2)max). In cachectic patients, plasma MG, muscle CSA, BCM, and VO(2)max were 30-35% below control levels. MG showed a significant positive correlation to total muscle CSA (r = 0.65, p max as an important functional readout. CK plasma levels appear to be less reliable because prolonged increases are observed in even subclinical myopathies or after exercise. Notably, cancer-related muscle wasting was not associated with increases in plasma MG or CK in this study.

  2. Muscle fiber velocity and electromyographic signs of fatigue in fibromyalgia.

    Science.gov (United States)

    Klaver-Król, Ewa G; Rasker, Johannes J; Henriquez, Nizare R; Verheijen, Wilma G; Zwarts, Machiel J

    2012-11-01

    Fibromyalgia (FM) is a disorder of widespread muscular pain. We investigated possible differences in surface electromyography (sEMG) in clinically unaffected muscle between patients with FM and controls. sEMG was performed on the biceps brachii muscle of 13 women with FM and 14 matched healthy controls during prolonged dynamic exercises, unloaded, and loaded up to 20% of maximum voluntary contraction. The sEMG parameters were: muscle fiber conduction velocity (CV); skewness of motor unit potential (peak) velocities; peak frequency (PF) (number of peaks per second); and average rectified voltage (ARV). There was significantly higher CV in the FM group. Although the FM group performed the tests equally well, their electromyographic fatigue was significantly less expressed compared with controls (in CV, PF, and ARV). In the patients with FM, we clearly showed functional abnormalities of the muscle membrane, which led to high conduction velocity and resistance to fatigue in electromyography. Copyright © 2012 Wiley Periodicals, Inc.

  3. Investigations of ultrastructure of damaged and regenerated skeletal muscle fibers.

    Science.gov (United States)

    Lańcut, Mirosław; Godlewski, Piotr; Lis-Sochocka, Marta; Visconti, Józef; Czerny, Krystyna

    2004-01-01

    Our investigations concerned the head of the parietal part of quadriceps femoris, and we based our investigation on observations of the ultrastructure of muscle fibers using an electron microscope. We observed tissue samples taken from patients (10 men) 25-35 years old, who had old damage of knee joint ligament (after about 6 week's immobilization). In the first group, segments of tissue of parietal head of quadriceps femoris were taken inter-operationally from patients in whom there was found old damage of knee joint ligament. The second group was of tissue segments of this muscle after surgical repair of knee and rehabilitation, which consisted in power training using resistance machines. The muscle fiber samples of quadriceps femoris which were taken from patients during the first operation, showed big changes in their ultrastructure. These changes included: myofibrils disintegration; disturbance of regularly arranged striation in sarcomers; dissappearance of Z line. In the sarcoplasm, we observed large vacuolisation, and in the interfibrillar spaces--an accumulation of exudate and morphotic elements of blood outside the capillary vessels. Observations of muscle tissue after regeneration, showed a big improvement in the muscle cell's ultrastructure--the myofibrils were regularly arranged, and the sarcomers striations showed no deviations from normal structure. We also observed a considerable increase in the number of properly formed ultrastructure mitochondria when compared with the first group.

  4. Skeletal muscle: energy metabolism, fiber types, fatigue and adaptability.

    Science.gov (United States)

    Westerblad, Håkan; Bruton, Joseph D; Katz, Abram

    2010-11-01

    Skeletal muscles cope with a large range of activities, from being able to support the body weight during long periods of upright standing to perform explosive movements in response to an unexpected threat. This requires systems for energy metabolism that can provide energy during long periods of moderately increased energy consumption as well as being able to rapidly increasing the rate of energy production more than 100-fold in response to explosive contractions. In this short review we discuss how muscles can deal with these divergent demands. We first outline the major energy metabolism pathways in skeletal muscle. Next we describe metabolic differences between different muscle fiber types. Contractile performance declines during intense activation, i.e. fatigue develops, and we discuss likely underlying mechanisms. Finally, we discuss the ability of muscle fibers to adapt to altered demands, and mechanisms behind these adaptations. The accumulated experimental evidence forces us to conclude that most aspects of energy metabolism involve multiple and overlapping signaling pathways, which indicates that the control of energy metabolism is too important to depend on one single molecule or mechanism. Copyright © 2010 Elsevier Inc. All rights reserved.

  5. Modeling the dispersion effects of contractile fibers in smooth muscles

    Science.gov (United States)

    Murtada, Sae-Il; Kroon, Martin; Holzapfel, Gerhard A.

    2010-12-01

    Micro-structurally based models for smooth muscle contraction are crucial for a better understanding of pathological conditions such as atherosclerosis, incontinence and asthma. It is meaningful that models consider the underlying mechanical structure and the biochemical activation. Hence, a simple mechanochemical model is proposed that includes the dispersion of the orientation of smooth muscle myofilaments and that is capable to capture available experimental data on smooth muscle contraction. This allows a refined study of the effects of myofilament dispersion on the smooth muscle contraction. A classical biochemical model is used to describe the cross-bridge interactions with the thin filament in smooth muscles in which calcium-dependent myosin phosphorylation is the only regulatory mechanism. A novel mechanical model considers the dispersion of the contractile fiber orientations in smooth muscle cells by means of a strain-energy function in terms of one dispersion parameter. All model parameters have a biophysical meaning and may be estimated through comparisons with experimental data. The contraction of the middle layer of a carotid artery is studied numerically. Using a tube the relationships between the internal pressure and the stretches are investigated as functions of the dispersion parameter, which implies a strong influence of the orientation of smooth muscle myofilaments on the contraction response. It is straightforward to implement this model in a finite element code to better analyze more complex boundary-value problems.

  6. Influence of exercise contraction mode and protein supplementation on human skeletal muscle satellite cell content and muscle fiber growth.

    Science.gov (United States)

    Farup, Jean; Rahbek, Stine Klejs; Riis, Simon; Vendelbo, Mikkel Holm; Paoli, Frank de; Vissing, Kristian

    2014-10-15

    Skeletal muscle satellite cells (SCs) are involved in remodeling and hypertrophy processes of skeletal muscle. However, little knowledge exists on extrinsic factors that influence the content of SCs in skeletal muscle. In a comparative human study, we investigated the muscle fiber type-specific association between emergence of satellite cells (SCs), muscle growth, and remodeling in response to 12 wk unilateral resistance training performed as eccentric (Ecc) or concentric (Conc) resistance training ± whey protein (Whey, 19.5 g protein + 19.5 g glucose) or placebo (Placebo, 39 g glucose) supplementation. Muscle biopsies (vastus lateralis) were analyzed for fiber type-specific SCs, myonuclei, and fiber cross-sectional area (CSA). Following training, SCs increased with Conc in both type I and type II fibers (P hypertrophy correlated with whole muscle hypertrophy exclusively following Conc training (P hypertrophy was accentuated when combining concentric resistance training with whey protein supplementation. Copyright © 2014 the American Physiological Society.

  7. Effect of one stretch a week applied to the immobilized soleus muscle on rat muscle fiber morphology

    Directory of Open Access Journals (Sweden)

    Gomes A.R.S.

    2004-01-01

    Full Text Available We determined the effect of stretching applied once a week to the soleus muscle immobilized in the shortened position on muscle fiber morphology. Twenty-six male Wistar rats weighing 269 ± 26 g were divided into three groups. Group I, the left soleus was immobilized in the shortened position for 3 weeks; group II, the soleus was immobilized in the shortened position and stretched once a week for 3 weeks; group III, the soleus was submitted only to stretching once a week for 3 weeks. The medial part of the soleus muscle was frozen for histology and muscle fiber area evaluation and the lateral part was used for the determination of number and length of serial sarcomeres. Soleus muscle submitted only to immobilization showed a reduction in weight (44 ± 6%, P = 0.002, in serial sarcomere number (23 ± 15% and in cross-sectional area of the fibers (37 ± 31%, P < 0.001 compared to the contralateral muscles. The muscle that was immobilized and stretched showed less muscle fiber atrophy than the muscles only immobilized (P < 0.05. Surprisingly, in the muscles submitted only to stretching, fiber area was decreased compared to the contralateral muscle (2548 ± 659 vs 2961 ± 806 µm², respectively, P < 0.05. In conclusion, stretching applied once a week for 40 min to the soleus muscle immobilized in the shortened position was not sufficient to prevent the reduction of muscle weight and of serial sarcomere number, but provided significant protection against muscle fiber atrophy. In contrast, stretching normal muscles once a week caused a reduction in muscle fiber area.

  8. Direct evidence of fiber type-dependent GLUT-4 expression in human skeletal muscle

    DEFF Research Database (Denmark)

    Gaster, M; Poulsen, P; Handberg, A

    2000-01-01

    GLUT-4 expression in individual fibers of human skeletal muscles in younger and older adults was studied. Furthermore, the dependency of insulin-stimulated glucose uptake on fiber type distribution was investigated. Fiber type distribution was determined in cryosections of muscle biopsies from 8...... younger (29 yr) and 8 older (64 yr) healthy subjects, and estimates of GLUT-4 expression in individual fibers were obtained by combining immunohistochemistry and stereology. GLUT-4 was more abundantly expressed in slow compared with fast muscle fibers in both younger (P ... of slow fibers in the young (r = -0.45, P > 0.25) or in the elderly (r = 0. 11, P > 0.75) subjects. In conclusion, in human skeletal muscle, GLUT-4 expression is fiber type dependent and decreases with age, particularly in fast muscle fibers....

  9. Inhibition of platelet-derived growth factor signaling prevents muscle fiber growth during skeletal muscle hypertrophy.

    Science.gov (United States)

    Sugg, Kristoffer B; Korn, Michael A; Sarver, Dylan C; Markworth, James F; Mendias, Christopher L

    2017-03-01

    The platelet-derived growth factor receptors alpha and beta (PDGFRα and PDGFRβ) mark fibroadipogenic progenitor cells/fibroblasts and pericytes in skeletal muscle, respectively. While the role that these cells play in muscle growth and development has been evaluated, it was not known whether the PDGF receptors activate signaling pathways that control transcriptional and functional changes during skeletal muscle hypertrophy. To evaluate this, we inhibited PDGFR signaling in mice subjected to a synergist ablation muscle growth procedure, and performed analyses 3 and 10 days after induction of hypertrophy. The results from this study indicate that PDGF signaling is required for fiber hypertrophy, extracellular matrix production, and angiogenesis that occur during muscle growth. © 2017 Federation of European Biochemical Societies.

  10. Postnatal development of fiber type composition in rabbit jaw and leg muscles

    NARCIS (Netherlands)

    Korfage, J. A. M.; Helmers, R.; Matignon, M. de Goüyon; van Wessel, T.; Langenbach, G. E. J.; van Eijden, T. M. G. J.

    2009-01-01

    We examined the difference in fiber type composition and cross-sectional areas during postnatal development in male rabbit jaw muscles and compared these with changes in leg muscles. The myosin heavy chain (MyHC) content of the fibers was determined by immunohistochemistry. No fiber type difference

  11. Direct evidence of fiber type-dependent GLUT-4 expression in human skeletal muscle

    DEFF Research Database (Denmark)

    Gaster, M; Poulsen, P; Handberg, A

    2000-01-01

    GLUT-4 expression in individual fibers of human skeletal muscles in younger and older adults was studied. Furthermore, the dependency of insulin-stimulated glucose uptake on fiber type distribution was investigated. Fiber type distribution was determined in cryosections of muscle biopsies from 8 ...

  12. Glucose transporter expression in human skeletal muscle fibers

    DEFF Research Database (Denmark)

    Gaster, M; Handberg, A; Beck-Nielsen, H

    2000-01-01

    The present study was initiated to investigate GLUT-1 through -5 expression in developing and mature human skeletal muscle. To bypass the problems inherent in techniques using tissue homogenates, we applied an immunocytochemical approach, employing the sensitive enhanced tyramide signal amplifica......The present study was initiated to investigate GLUT-1 through -5 expression in developing and mature human skeletal muscle. To bypass the problems inherent in techniques using tissue homogenates, we applied an immunocytochemical approach, employing the sensitive enhanced tyramide signal...... amplification (TSA) technique to detect the localization of glucose transporter expression in human skeletal muscle. We found expression of GLUT-1, GLUT-3, and GLUT-4 in developing human muscle fibers showing a distinct expression pattern. 1) GLUT-1 is expressed in human skeletal muscle cells during gestation......, but its expression is markedly reduced around birth and is further reduced to undetectable levels within the first year of life; 2) GLUT-3 protein expression appears at 18 wk of gestation and disappears after birth; and 3) GLUT-4 protein is diffusely expressed in muscle cells throughout gestation, whereas...

  13. Influence of exercise contraction mode and protein supplementation on human skeletal muscle satellite cell content and muscle fiber growth

    DEFF Research Database (Denmark)

    Farup, Jean; Rahbek, Stine Klejs; Riis, Simon

    2014-01-01

    Skeletal muscle satellite cells (SCs) are involved in remodeling and hypertrophy processes of skeletal muscle. However, little knowledge exists on extrinsic factors that influence the content of SCs in skeletal muscle. In a comparative human study, we investigated the muscle fiber type......-specific association between emergence of satellite cells (SCs), muscle growth, and remodeling in response to 12 wk unilateral resistance training performed as eccentric (Ecc) or concentric (Conc) resistance training ± whey protein (Whey, 19.5 g protein + 19.5 g glucose) or placebo (Placebo, 39 g glucose......) supplementation. Muscle biopsies (vastus lateralis) were analyzed for fiber type-specific SCs, myonuclei, and fiber cross-sectional area (CSA). Following training, SCs increased with Conc in both type I and type II fibers (P

  14. Evidence for ACTN3 as a Speed Gene in Isolated Human Muscle Fibers.

    Directory of Open Access Journals (Sweden)

    Siacia Broos

    Full Text Available To examine the effect of α-actinin-3 deficiency due to homozygosity for the ACTN3 577X-allele on contractile and morphological properties of fast muscle fibers in non-athletic young men.A biopsy was taken from the vastus lateralis of 4 RR and 4 XX individuals to test for differences in morphologic and contractile properties of single muscle fibers. The cross-sectional area of the fiber and muscle fiber composition was determined using standard immunohistochemistry analyses. Skinned single muscle fibers were subjected to active tests to determine peak normalized force (P0, maximal unloading velocity (V0 and peak power. A passive stretch test was performed to calculate Young's Modulus and hysteresis to assess fiber visco-elasticity.No differences were found in muscle fiber composition. The cross-sectional area of type IIa and IIx fibers was larger in RR compared to XX individuals (P<0.001. P0 was similar in both groups over all fiber types. A higher V0 was observed in type IIa fibers of RR genotypes (P<0.001 but not in type I fibers. The visco-elasticity as determined by Young's Modulus and hysteresis was unaffected by fiber type or genotype.The greater V0 and the larger fast fiber CSA in RR compared to XX genotypes likely contribute to enhanced whole muscle performance during high velocity contractions.

  15. Direct visualization of the dystrophin network on skeletal muscle fiber membrane

    OpenAIRE

    1992-01-01

    Dystrophin, the protein product of the Duchenne muscular dystrophy (DMD) gene locus, is expressed on the muscle fiber surface. One key to further understanding of the cellular function of dystrophin would be extended knowledge about its subcellular organization. We have shown that dystrophin molecules are not uniformly distributed over the humen, rat, and mouse skeletal muscle fiber surface using three independent methods. Incubation of single-teased muscle fibers with antibodies to dystrophi...

  16. Slow-twitch fiber proportion in skeletal muscle correlates with insulin responsiveness.

    Science.gov (United States)

    Stuart, Charles A; McCurry, Melanie P; Marino, Anna; South, Mark A; Howell, Mary E A; Layne, Andrew S; Ramsey, Michael W; Stone, Michael H

    2013-05-01

    The metabolic syndrome, characterized by central obesity with dyslipidemia, hypertension, and hyperglycemia, identifies people at high risk for type 2 diabetes. Our objective was to determine how the insulin resistance of the metabolic syndrome is related to muscle fiber composition. Thirty-nine sedentary men and women (including 22 with the metabolic syndrome) had insulin responsiveness quantified using euglycemic clamps and underwent biopsies of the vastus lateralis muscle. Expression of insulin receptors, insulin receptor substrate-1, glucose transporter 4, and ATP synthase were quantified with immunoblots and immunohistochemistry. Participants were nondiabetic, metabolic syndrome volunteers and sedentary control subjects studied at an outpatient clinic. Insulin responsiveness during an insulin clamp and the fiber composition of a muscle biopsy specimen were evaluated. There were fewer type I fibers and more mixed (type IIa) fibers in metabolic syndrome subjects. Insulin responsiveness and maximal oxygen uptake correlated with the proportion of type I fibers. Insulin receptor, insulin receptor substrate-1, and glucose transporter 4 expression were not different in whole muscle but all were significantly less in the type I fibers of metabolic syndrome subjects when adjusted for fiber proportion and fiber size. Fat oxidation and muscle mitochondrial expression were not different in the metabolic syndrome subjects. Lower proportion of type I fibers in metabolic syndrome muscle correlated with the severity of insulin resistance. Even though whole muscle content was normal, key elements of insulin action were consistently less in type I muscle fibers, suggesting their distribution was important in mediating insulin effects.

  17. Skeletal muscle fiber characteristics and oxidative capacity in hemiparetic stroke survivors

    DEFF Research Database (Denmark)

    Severinsen, Kaare; Dalgas, Ulrik; Overgaard, Kristian

    2016-01-01

    by ATPase histochemistry. Enzymatic concentrations of citrate synthase (CS) and 3-Hydroxyacyl-coenzymeA-dehydrogenase (HAD) were determined using freeze-dried muscle tissue. Findings were correlated with clinical outcomes. RESULTS: In the paretic muscles the mean fiber area was smaller (P=0.......0004), and a lower proportion of type 1 fibers (P=0.0016) and a higher proportion of type 2X fibers (P=0.0002) were observed. The paretic muscle had lower CS (P=0.013) and HAD concentrations (P=0.037). Mean fiber area correlated with muscle strength (r=0.43, P=0.041), and CS concentration correlated with aerobic...

  18. Constant Fiber Number During Skeletal Muscle Atrophy and Modified Arachidonate Metabolism During Hypertrophy

    Science.gov (United States)

    Templeton, G.

    1985-01-01

    A previously documented shift from Type I to IIA predominance of the soleus muscle during rat suspension was further investigated to determine if this shift was by selective reduction of a single fiber type, simultaneous reduction and formation of fibers with different fiber types, or a transformation of fiber type by individual fibers. By partial acid digestion and dissection, average total soleus fiber number was found to be 3022 + or - 80 (SE) and 3008 + or - 64 before and after four-week suspension (n=12). Another area of current research was based on previous studies which indicate that prostaglandins are biosynthesized by skeletal muscle and evoke protein synthesis and degradation.

  19. Concurrent training effect on muscle fibers in Wistar rats

    Directory of Open Access Journals (Sweden)

    Robson Chacon Castoldi

    2013-12-01

    Full Text Available The aim of the present study was to determine the modeling of muscle fibers in rats submitted to different exercise protocols. Fifty-five Wistar rats were submitted divided into four different groups: Control group (CG; N=16; endurance training group (ETG; N=13, strength training group (STG; N=13 and concurrent training group (CTG; N=13. The intensity of endurance training was determined by the critical workload. Statistical analysis involved the Kruskal-Wallis test for multiple comparisons, followed by Dunn's post test (p0.05 occurred in the STG and CTG at both four (mean:2952,95 ± 878,39 mean:2988,84 ± 822,58 and eight weeks respectively (mean:3020,26 ± 800.91; mean:3104,91 ± 817,87. The findings demonstrate similar results obtained with strength training and concurrent training, with a greater increase in muscle fiber area in both groups in comparison to the control group and group submitted to endurance training.

  20. Muscle fiber diameter assessment in cleft lip using image processing.

    Science.gov (United States)

    Khan, M F J; Little, J; Abelli, L; Mossey, P A; Autelitano, L; Nag, T C; Rubini, M

    2018-04-01

    To pilot investigation of muscle fiber diameter (MFD) on medial and lateral sides of the cleft in 18 infants with cleft lip with or without cleft palate (CL/P) using image processing. Formalin-fixed paraffin-embedded (FFPE) tissue samples from the medial and lateral sides of the cleft were analyzed for MFD using an image-processing program (ImageJ). For within-case comparison, a paired Student's t test was performed. For comparisons between classes, an unpaired t test was used. Image processing enabled rapid measurement of MFD with majority of fibers showing diameter between 6 and 11 μm. There was no significant difference in mean MFD between the medial and lateral sides, or between CL and CLP. However, we found a significant difference on the medial side (p = .032) between males and females. The image processing on FFPE tissues resulted in easy quantification of MFD with finding of a smaller MFD on the medial side in males suggesting possible differences in orbicularis oris (OO) muscle between the two sexes in CL that warrants replication using larger number of cases. Moreover, this finding can aid subclinical phenotyping and potentially in the restoration of the anatomy and function of the upper lip. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd. All rights reserved.

  1. Early changes in extrafusal and intrafusal muscle fibers following heterochronous isotransplantation

    Czech Academy of Sciences Publication Activity Database

    Jirmanová, Isa; Soukup, Tomáš

    2001-01-01

    Roč. 102, č. 5 (2001), s. 473-484 ISSN 0001-6322 R&D Projects: GA ČR GA304/00/1653 Institutional research plan: CEZ:AV0Z5011922 Keywords : muscle transplantation * degeneration and regeneration of muscle fibers * extrafusal and intrafusal fibers Subject RIV: FH - Neurology Impact factor: 2.165, year: 2001

  2. Assessment of passive muscle elongation using Diffusion Tensor MRI : Correlation between fiber length and diffusion coefficients

    NARCIS (Netherlands)

    Mazzoli, Valentina; Oudeman, Jos; Nicolay, Klaas; Maas, Mario; Verdonschot, Nico; Sprengers, Andre M.; Nederveen, Aart J.; Froeling, Martijn; Strijkers, Gustav J.

    2016-01-01

    In this study we investigated the changes in fiber length and diffusion parameters as a consequence of passive lengthening and stretching of the calf muscles. We hypothesized that changes in radial diffusivity (RD) are caused by changes in the muscle fiber cross sectional area (CSA) as a consequence

  3. Assessment of passive muscle elongation using Diffusion Tensor MRI: Correlation between fiber length and diffusion coefficients

    NARCIS (Netherlands)

    Mazzoli, Valentina; Oudeman, Jos; Nicolay, Klaas; Maas, Mario; Verdonschot, Nico; Sprengers, Andre M.; Nederveen, Aart J.; Froeling, Martijn; Strijkers, Gustav J.

    2016-01-01

    In this study we investigated the changes in fiber length and diffusion parameters as a consequence of passive lengthening and stretching of the calf muscles. We hypothesized that changes in radial diffusivity (RD) are caused by changes in the muscle fiber cross sectional area (CSA) as a consequence

  4. Deformation and three-dimensional displacement of fibers in isometrically contracting rat plantaris muscles

    NARCIS (Netherlands)

    Savelberg, Hans H.C.M.; Willems, Paul J.B.; Willems, P.; Baan, Guus C.; Huijing, P.A.J.B.M.

    2001-01-01

    In this study, the deformation of different fibers of the rat m. plantaris during isometric contractions at different muscle lengths was considered. Because the m. plantaris has an obviously inhomogeneous architecture, its fibers on the medial side of the muscle belly are judged to be shorter than

  5. Muscle-specific integrins in masseter muscle fibers of chimpanzees: an immunohistochemical study.

    Directory of Open Access Journals (Sweden)

    Gianluigi Vaccarino

    2010-05-01

    Full Text Available Most notably, recent comparative genomic analyses strongly indicate that the marked differences between modern human and chimpanzees are likely due more to changes in gene regulation than to modifications of the genes. The most peculiar aspect of hominoid karyotypes is that human have 46 chromosomes whereas gorillas and chimpanzees have 48. Interestingly, human and chimpanzees do share identical inversions on chromosome 7 and 9 that are not evident in the gorilla karyotype. Thus, the general phylogeny suggests that humans and chimpanzees are sister taxa; based on this, it seems that human-chimpanzee sequence similarity is an astonishing 99%. At this purpose, of particular interest is the inactivation of the myosin heavy chain 16 (MYH16 gene, most prominently expressed in the masticatory muscle of mammals. It has been showed that the loss of this gene in humans may have resulted in smaller masticatory muscle and consequential changes to cranio-facial morphology and expansion of the human brain case. Powerful masticatory muscles are found in most primates; contrarily, in both modern and fossil member Homo, these muscles are considerably smaller. The evolving hominid masticatory apparatus shifted towards a pattern of gracilization nearly simultaneously with accelerated encephalization in early Homo. To better comprehend the real role of the MYH16 gene, we studied the primary proteins present in the muscle fibers of humans and non-humans, in order to understand if they really can be influenced by MYH16 gene. At this aim we examined the muscle-specific integrins, alpha 7B and beta 1D-integrins, and their relative fetal isoforms, alpha 7A and beta 1A-integrins, analyzing, by immunohistochemistry, muscle biopsies of two components of a chimpanzee's group in captivity, an alpha male and a non-alpha male subjects; all these integrins participate in vital biological processes such as maintenance of tissue integrity, embryonic development, cell

  6. Striated muscle fiber size, composition and capillary density in diabetes in relation to neuropathy and muscle strength

    DEFF Research Database (Denmark)

    Andreassen, Christer Swan; Jensen, Jacob Malte; Jakobsen, Johannes

    2014-01-01

    OBJECTIVE: Diabetic polyneuropathy (DPN) leads to progressive loss of muscle strength in the lower extremities due to muscular atrophy. Changes in vascularization occur in diabetic striated muscle; however, the relationship between these changes and DPN is as yet unexplored. The aim of the present...... study was to evaluate histologic properties and capillarization of diabetic skeletal muscle in relation to DPN and muscle strength. METHODS: Twenty type 1 and 20 type 2 diabetic (T1D and T2D, respectively) patients underwent biopsy of the gastrocnemic muscle, isokinetic dynamometry at the ankle......, electrophysiological studies, clinical examination, and quantitative sensory examinations. Muscle biopsies were stained immunohistochemically and muscle fiber diameter, fiber type distribution, and capillary density determined. Twenty control subjects were also included in the study. RESULTS: No relationship was found...

  7. The organization of the Golgi complex and microtubules in skeletal muscle is fiber type-dependent

    DEFF Research Database (Denmark)

    Ralston, E; Lu, Z; Ploug, Thorkil

    1999-01-01

    and experimentally denervated. The total number of GC elements, small polarized stacks of cisternae, is quite similar in all fibers, but their intracellular distribution is fiber type-dependent. Thus, in slow-twitch, type I fibers, approximately 75% of all GC elements are located within 1 micrometer from the plasma...... membrane, and each nucleus is surrounded by a belt of GC elements. In contrast, in the fast-twitch type IIB fibers, most GC elements are in the fiber core, and most nuclei only have GC elements at their poles. Intermediate, type IIA fibers also have an intermediate distribution of GC elements...... of the hindlimb muscles, GC elements as well as microtubules converge toward a common pattern, that of the slow-twitch fibers, in all fibers. Our data suggest that innervation regulates the distribution of microtubules, which in turn organize the Golgi complex according to muscle fiber type....

  8. Ontogenetic changes in skeletal muscle fiber type, fiber diameter and myoglobin concentration in the Northern elephant seal (Mirounga angustirostris

    Directory of Open Access Journals (Sweden)

    Colby eMoore

    2014-06-01

    Full Text Available Northern elephant seals (Mirounga angustirostris (NES are known to be deep, long-duration divers and to sustain long-repeated patterns of breath-hold, or apnea. Some phocid dives remain within the bounds of aerobic metabolism, accompanied by physiological responses inducing lung compression, bradycardia and peripheral vasoconstriction. Current data suggest an absence of type IIb fibers in pinniped locomotory musculature. To date, no fiber type data exist for NES, a consummate deep diver. In this study, NES were biopsied in the wild. Ontogenetic changes in skeletal muscle were revealed through succinate dehydrogenase (SDH based fiber typing. Results indicated a predominance of uniformly shaped, large type I fibers and elevated myoglobin (Mb concentrations in the longissimus dorsi (LD muscle of adults. No type II muscle fibers were detected in any adult sampled. This was in contrast to the juvenile animals that demonstrated type II myosin in Western Blot analysis, indicative of an ontogenetic change in skeletal muscle with maturation. These data support previous hypotheses that the absence of type II fibers indicates reliance on aerobic metabolism during dives, as well as a depressed metabolic rate and low energy locomotion. We also suggest that the lack of type IIb fibers (adults may provide a protection against ischemia reperfusion (IR injury in vasoconstricted peripheral skeletal muscle.

  9. Excitation-calcium release uncoupling in aged single human skeletal muscle fibers.

    Science.gov (United States)

    Delbono, O; O'Rourke, K S; Ettinger, W H

    1995-12-01

    The biological mechanisms underlying decline in muscle power and fatigue with age are not completely understood. The contribution of alterations in the excitation-calcium release coupling in single muscle fibers was explored in this work. Single muscle fibers were voltage-clamped using the double Vaseline gap technique. The samples were obtained by needle biopsy of the vastus lateralis (quadriceps) from 9 young (25-35 years; 25.9 +/- 9.1; 5 female and 4 male) and 11 old subjects (65-75 years; 70.5 +/- 2.3; 6 f, 5 m). Data were obtained from 36 and 39 fibers from young and old subjects, respectively. Subjects included in this study had similar physical activity. Denervated and slow-twitch muscle fibers were excluded from this study. A significant reduction of maximum charge movement (Qmax) and DHP-sensitive Ca current were recorded in muscle fibers from the 65-75 group. Qmax values were 7.6 +/- 0.9 and 3.2 +/- 0.3 nC/muF for young and old muscle fibers, respectively (P charge inactivation or interconversion (charge 1 to charge 2) were found. The peak Ca current was (-)4.7 +/- 0.08 and (-)2.15 +/- 0.11 muA/muF for young and old fibers, respectively (P muscle fibers, respectively. Caffeine (0.5 mM) induced potentiation of the peak calcium transient in both groups. The decrease in the voltage-/Ca-dependent Ca release ratio in old fibers (0.18 +/- 0.02) compared to young fibers (0.47 +/- 0.03) (P skeletal muscle and, the reduction of Ca release is due to DHPR-ryanodine receptor uncoupling in fast-twitch fibers. These alterations can account, at least partially for the skeletal muscle function impairment associated with aging.

  10. Muscle fiber characteristics and performance correlates of male Olympic-style weightlifters.

    Science.gov (United States)

    Fry, Andrew C; Schilling, Brian K; Staron, Robert S; Hagerman, Fredrick C; Hikida, Robert S; Thrush, John T

    2003-11-01

    Biopsies fro the vastus lateralis muscle of male weightlifters (WL; n=6; X +/- SE, age=27.0 +/- 2.1 years), and non-weight-trained men (CON; n=7; age=27.0 +/- 2.0 years) were compared for fiber types, myosin heavy chain (MHC) and titin content, and fiber type-specific capillary density. Differences (pWeightlifting performances and vertical jump power were correlated with type II fiber characteristics. These results suggest that successful weightlifting performance is not dependent on IIB fibers, and that weightlifters exhibit large percentages of type IIA muscle fibers and MHC IIa isoform content.

  11. Simulation of propagation along an isolated skeletal muscle fiber in an isotropic volume conductor

    DEFF Research Database (Denmark)

    Henneberg, Kaj-åge; F.A., Roberge

    1997-01-01

    This paper describes a model of the frog skeletal muscle fiber that includes the effects of the transverse tubular system (T system) on propagation. Uniform propagation on an isolated fiber suspended in Ringer's solution or in air is simulated by placing the cylindrical fiber model in a concentric...

  12. FACTORS OF SUCCESS IN ENDURANCE SPORTS; CHANGING OF MUSCLE FIBER TYPE

    Directory of Open Access Journals (Sweden)

    Luka Smrkolj

    2013-12-01

    Full Text Available Endurance is one of the factors which considerably influences performance of sportsmen. One important factor is a change in muscle fiber type. The latter is determined by the speed of contraction and histochemical analysis of the muscle fiber. The typology of muscle fibers is divided into three aspects: histochemical aspect (I, IIa and IIb, mechanical aspect (slow oxidative - SO, fatigue resistant - FR, and fatigable fibers - FF and biological aspect (slow aerobic, fast aerobic, fast glycolytic. A human is born, on average, with a higher ratio (50-55% of slow muscle fibers. During development, the share varies by type of activity that might occur. It is assumed that athletes who perform short abrupt action need more of the fast glycolytic IIb fibers than other athletes. On the other hand, endurance sports require a higher ratio of slow oxidative type I muscle fiber from athletes. Characteristics of specific adjustments depending on the type of exercise have been recognized. Prolonged endurance exercise elicits different metabolic and morphological changes including mitochondrial biogenesis, transforming fast into slow muscle fibers and metabolism substrate. In contrast, heavy exercise stimulates the synthesis of proteins responsible for contractive muscle hypertrophy and increases maximum contraction.

  13. Persistent muscle fiber regeneration in long term denervation. Past, present, future

    Directory of Open Access Journals (Sweden)

    Ugo Carraro

    2015-03-01

    Full Text Available Despite the ravages of long term denervation there is structural and ultrastructural evidence for survival of muscle fibers in mammals, with some fibers surviving at least ten months in rodents and 3-6 years in humans. Further, in rodents there is evidence that muscle fibers may regenerate even after repeated damage in the absence of the nerve, and that this potential is maintained for several months after denervation. While in animal models permanently denervated muscle sooner or later loses the ability to contract, the muscles may maintain their size and ability to function if electrically stimulated soon after denervation. Whether in mammals, humans included, this is a result of persistent de novo formation of muscle fibers is an open issue we would like to explore in this review. During the past decade, we have studied muscle biopsies from the quadriceps muscle of Spinal Cord Injury (SCI patients suffering with Conus and Cauda Equina syndrome, a condition that fully and irreversibly disconnects skeletal muscle fibers from their damaged innervating motor neurons. We have demonstrated that human denervated muscle fibers survive years of denervation and can be rescued from severe atrophy by home-based Functional Electrical Stimulation (h-bFES. Using immunohistochemistry with both non-stimulated and the h-bFES stimulated human muscle biopsies, we have observed the persistent presence of muscle fibers which are positive to labeling by an antibody which specifically recognizes the embryonic myosin heavy chain (MHCemb. Relative to the total number of fibers present, only a small percentage of these MHCemb positive fibers are detected, suggesting that they are regenerating muscle fibers and not pre-existing myofibers re-expressing embryonic isoforms. Although embryonic isoforms of acetylcholine receptors are known to be re-expressed and to spread from the end-plate to the sarcolemma of muscle fibers in early phases of muscle denervation, we suggest

  14. Influence of muscle fiber type composition on early fat accumulation under high-fat diet challenge.

    Science.gov (United States)

    Hua, Ning; Takahashi, Hirokazu; Yee, Grace M; Kitajima, Yoichiro; Katagiri, Sayaka; Kojima, Motoyasu; Anzai, Keizo; Eguchi, Yuichiro; Hamilton, James A

    2017-01-01

    To investigate whether differences in muscle fiber types affect early-stage fat accumulation, under high fat diet challenge in mice. Twelve healthy male C57BL/6 mice experienced with short-term (6 weeks) diet treatment for the evaluation of early pattern changes in muscular fat. The mice were randomly divided into two groups: high fat diet (n = 8) and normal control diet (n = 4). Extra- and intra-myocellular lipid (EMCL and IMCL) in lumbar muscles (type I fiber predominant) and tibialis anterior (TA) muscle (type II fiber predominant) were determined using magnetic resonance spectroscopy (MRS). Correlation of EMCL, IMCL and their ratio between TA and lumbar muscles was evaluated. EMCL increased greatly in both muscle types after high fat diet. IMCL in TA and lumbar muscles increased to a much lower extent, with a slightly greater increase in TA muscles. EMCLs in the 2 muscles were positively correlated (r = 0.84, p = 0.01), but IMCLs showed a negative relationship (r = -0.84, p = 0.01). In lumbar muscles, high fat diet significantly decreased type I fiber while it increased type II fiber (all p≤0.001). In TA muscle, there was no significant fiber type shifting (p>0.05). Under short-time high fat diet challenge, lipid tends to initially accumulate extra-cellularly. In addition, compared to type II dominant muscle, Type I dominant muscle was less susceptible to IMCL accumulation but more to fiber type shifting. These phenomena might reflect compensative responses of skeletal muscle to dietary lipid overload in order to regulate metabolic homeostasis.

  15. STALKED BARNACLES CONCHODERMA AURITUM ON AN ...

    African Journals Online (AJOL)

    lower jaw, the palate and the penis of the sperm whale - Carke 1966). The occurrence of. C. auritum on the body skin of an elephant seal is therefore ... It can be inferred from Sorensen's remark that "barnacles up to an inch in length have been seen ... " that a stalked barnacle was involved, and Laws indeed refers to those.

  16. Induction of GLUT-1 protein in adult human skeletal muscle fibers

    DEFF Research Database (Denmark)

    Gaster, M; Franch, J; Staehr, P

    2000-01-01

    Prompted by our recent observations that GLUT-1 is expressed in fetal muscles, but not in adult muscle fibers, we decided to investigate whether GLUT-1 expression could be reactivated. We studied different stimuli concerning their ability to induce GLUT-1 expression in mature human skeletal muscl...

  17. Lipid droplet size and location in human skeletal muscle fibers are associated with insulin sensitivity

    DEFF Research Database (Denmark)

    Nielsen, Joachim; Christensen, Anders E; Nellemann, Birgitte

    2017-01-01

    In skeletal muscle, an accumulation of lipid droplets (LDs) in the subsarcolemmal space is associated with insulin resistance, but the underlying mechanism is not clear. We aimed to investigate how the size, number and location of LDs are associated with insulin sensitivity and muscle fiber types...... are associated with insulin resistance in skeletal muscle....

  18. Effects of aging on muscle mechanical function and muscle fiber morphology during short-term immobilization and subsequent retraining

    DEFF Research Database (Denmark)

    Hvid, Lars; Aagaard, Per; Justesen, Lene

    2010-01-01

    Very little attention has been given to the combined effects of aging and disuse as separate factors causing deterioration in muscle mechanical function. Thus the purpose of this study was to investigate the effects of 2 wk of immobilization followed by 4 wk of retraining on knee extensor muscle...... to the deleterious effects of short-term muscle disuse on muscle fiber size and rapid force capacity than YM. Furthermore, OM seems to require longer time to recover and regain rapid muscle force capacity, which may lead to a larger risk of falling in aged individuals after periods of short-term disuse....

  19. Effects of aging on muscle mechanical function and muscle fiber morphology during short-term immobilization and subsequent retraining

    DEFF Research Database (Denmark)

    Hvid, Lars; Aagaard, Per; Justesen, Lene

    2010-01-01

    to the deleterious effects of short-term muscle disuse on muscle fiber size and rapid force capacity than YM. Furthermore, OM seems to require longer time to recover and regain rapid muscle force capacity, which may lead to a larger risk of falling in aged individuals after periods of short-term disuse.......Very little attention has been given to the combined effects of aging and disuse as separate factors causing deterioration in muscle mechanical function. Thus the purpose of this study was to investigate the effects of 2 wk of immobilization followed by 4 wk of retraining on knee extensor muscle...

  20. Denervated muscle fibers explain the deficit in specific force following reinnervation of the rat extensor digitorum longus muscle.

    Science.gov (United States)

    van der Meulen, Jack H; Urbanchek, Melanie G; Cederna, Paul S; Eguchi, Tomoaki; Kuzon, William M

    2003-10-01

    The authors tested the hypothesis that, after denervation and reinnervation of skeletal muscle, observed deficits in specific force can be completely attributed to the presence of denervated muscle fibers. The peroneal nerve innervating the extensor digitorum longus muscle in rats was sectioned and the distal stump was coapted to the proximal stump, allowing either a large number of motor axons (nonreduced, n = 12) or a drastically reduced number of axons access to the distal nerve stump (drastically reduced, n = 18). A control group of rats underwent exposure of the peroneal nerve, without transection, followed by wound closure (control, n = 9). Four months after the operation, the maximum tetanic isometric force (Fo) of the extensor digitorum longus muscle was measured in situ and the specific force (sFo) was calculated. Cross-sections of the muscles were labeled for neural cell adhesion molecule (NCAM) protein to distinguish between innervated and denervated muscle fibers. Compared with extensor digitorum longus muscles from rats in the control (295 +/- 11 kN/m2) and nonreduced (276 +/- 12 kN/m2) groups, sFo of the extensor digitorum longus muscles from animals in the drastically reduced group was decreased (227 +/- 15 kN/m2, p extensor digitorum longus muscles from animals in the drastically reduced group (18 +/- 3 percent) was significantly higher than in the control (3 +/- 1 percent) group, but not compared with the nonreduced (9 +/- 2 percent) group. After exclusion of the denervated fibers, sFo did not differ between extensor digitorum longus muscles from animals in the drastically reduced (270 +/- 20 kN/m2), nonreduced (301 +/- 13 kN/m2), or control (303 +/- 10 kN/m2) groups. The authors conclude that, under circumstances of denervation and rapid reinnervation, the decrease in sFo of muscle can be attributed to the presence of denervated muscle fibers.

  1. Muscle-fiber conduction velocity and electromyography as diagnostic tools in patients with suspected inflammatory myopathy: a prospective study.

    NARCIS (Netherlands)

    Blijham, P.J.; Hengstman, G.J.D.; Laak, H.J. ter; Engelen, B.G.M. van; Zwarts, M.J.

    2004-01-01

    Combinations of different techniques can increase the diagnostic yield from neurophysiological examination of muscle. In 25 patients with suspected inflammatory myopathy, we prospectively performed needle electromyography (EMG) and measured muscle-fiber conduction velocity (MFCV) in a single muscle,

  2. Effect of passive stretching on the immobilized soleus muscle fiber morphology

    Directory of Open Access Journals (Sweden)

    Coutinho E.L.

    2004-01-01

    Full Text Available The aim of the present study was to determine the effect of stretching applied every 3 days to the soleus muscle immobilized in the shortened position on muscle fiber morphology. Eighteen 16-week-old Wistar rats were used and divided into three groups of 6 animals each: a the left soleus muscle was immobilized in the shortened position for 3 weeks; b during immobilization, the soleus was stretched for 40 min every 3 days; c the non-immobilized soleus was only stretched. Left and right soleus muscles were examined. One portion of the soleus was frozen for histology and muscle fiber area evaluation, while the other portion was used to identify the number and length of serial sarcomeres. Immobilized muscles (group A showed a significant decrease in weight (44 ± 6%, length (19 ± 7%, serial sarcomere number (23 ± 15%, and fiber area (37 ± 31% compared to the contralateral muscles (P < 0.05, paired Student t-test. The immobilized and stretched soleus (group B showed a similar reduction but milder muscle fiber atrophy compared to the only immobilized group (22 ± 40 vs 37 ± 31%, respectively; P < 0.001, ANOVA test. Muscles submitted only to stretching (group C significantly increased the length (5 ± 2%, serial sarcomere number (4 ± 4%, and fiber area (16 ± 44% compared to the contralateral muscles (P < 0.05, paired Student t-test. In conclusion, stretching applied every 3 days to immobilized muscles did not prevent the muscle shortening, but reduced muscle atrophy. Stretching sessions induced hypertrophic effects in the control muscles. These results support the use of muscle stretching in sports and rehabilitation.

  3. Catalase-positive microperoxisomes in rat soleus and extensor digitorum longus muscle fiber types

    Science.gov (United States)

    Riley, Danny A.; Bain, James L. W.; Ellis, Stanley

    1988-01-01

    The size, distribution, and content of catalase-reactive microperoxisomes were investigated cytochemically in three types of muscle fibers from the soleus and the extensor digitorum longus (EDL) of male rats. Muscle fibers were classified on the basis of the mitochondrial content and distribution, the Z-band widths, and the size and shape of myofibrils as the slow-twitch oxidative (SO), the fast-twitch oxidative glycolytic (FOG), and the fast-twitch glycolytic (FG) fibers. It was found that both the EDL and soleus SO fibers possessed the largest microperoxisomes. A comparison of microperoxisome number per muscle fiber area or the microperoxisome area per fiber area revealed following ranking, starting from the largest number and the area-ratio values: soleus SO, EDL SO, EDL FOG, and EDL FG.

  4. Slow to fast alterations in skeletal muscle fibers caused by clenbuterol, a beta(2)-receptor agonist

    Science.gov (United States)

    Zeman, Richard J.; Ludemann, Robert; Easton, Thomas G.; Etlinger, Joseph D.

    1988-01-01

    The effects of a beta(2)-receptor agonist, clenbuterol, and a beta(2) antagonist, butoxamine, on the skeletal muscle fibers of rats were investigated. It was found that chronic treatment of rats with clenbuterol caused hypertrophy of histochemically identified fast-twitch, but not slow-twitch, fibers within the soleus, while in the extensor digitorum longus the mean areas of both fiber types were increased; in both muscles, the ratio of the number of fast-twitch to slow-twitch fibers was increased. In contrast, a treatment with butoxamine caused a reduction of the fast-twitch fiber size in both muscles, and the ratio of the fast-twitch to slow-twitch fibers was decreased.

  5. Calcium-activated force of human muscle fibers following a standardized eccentric contraction.

    Science.gov (United States)

    Choi, Seung Jun; Widrick, Jeffrey J

    2010-12-01

    Peak Ca(2+)-activated specific force (force/fiber cross-sectional area) of human chemically skinned vastus lateralis muscle fiber segments was determined before and after a fixed-end contraction or an eccentric contraction of standardized magnitude (+0.25 optimal fiber length) and velocity (0.50 unloaded shortening velocity). Fiber myosin heavy chain (MHC) isoform content was assayed by SDS-PAGE. Posteccentric force deficit, a marker of damage, was similar for type I and IIa fibers but threefold greater for type IIa/IIx hybrid fibers. A fixed-end contraction had no significant effect on force. Multiple linear regression revealed that posteccentric force was explained by a model consisting of a fiber type-independent and a fiber type-specific component (r(2) = 0.91). Preeccentric specific force was directly associated with a greater posteccentric force deficit. When preeccentric force was held constant, type I and IIa fibers showed identical susceptibility to damage, while type IIa/IIx fibers showed a significantly greater force loss. This heightened sensitivity to damage was directly related to the amount of type IIx MHC in the hybrid fiber. Our model reveals a fiber-type sensitivity of the myofilament lattice or cytoskeleton to mechanical strain that can be described as follows: type IIa/IIx > type IIa = type I. If these properties extend to fibers in vivo, then alterations in the number of type IIa/IIx fibers may modify a muscle's susceptibility to eccentric damage.

  6. Intrauterine growth-restricted sheep fetuses exhibit smaller hindlimb muscle fibers and lower proportions of insulin-sensitive Type I fibers near term.

    Science.gov (United States)

    Yates, Dustin T; Cadaret, Caitlin N; Beede, Kristin A; Riley, Hannah E; Macko, Antoni R; Anderson, Miranda J; Camacho, Leticia E; Limesand, Sean W

    2016-06-01

    Intrauterine growth restriction (IUGR) reduces muscle mass and insulin sensitivity in offspring. Insulin sensitivity varies among muscle fiber types, with Type I fibers being most sensitive. Differences in fiber-type ratios are associated with insulin resistance in adults, and thus we hypothesized that near-term IUGR sheep fetuses exhibit reduced size and proportions of Type I fibers. Placental insufficiency-induced IUGR fetuses were ∼54% smaller (P fetal muscles develop smaller fibers and have proportionally fewer Type I fibers, which is indicative of developmental adaptations that may help explain the link between IUGR and adulthood insulin resistance. Copyright © 2016 the American Physiological Society.

  7. Age-related effect of cell death on fiber morphology and number in tongue muscle.

    Science.gov (United States)

    Kletzien, Heidi; Hare, Allison J; Leverson, Glen; Connor, Nadine P

    2018-01-01

    Multiple pathways may exist for age-related tongue muscle degeneration. Cell death is one mechanism contributing to muscle atrophy and decreased function. We hypothesized with aging, apoptosis, and apoptotic regulators would be increased, and muscle fiber size and number would be reduced in extrinsic tongue muscles. Cell death indices, expression of caspase-3 and Bcl-2, and measures of muscle morphology and number were determined in extrinsic tongue muscles of young and old rats. Significant increases in cell death, caspase-3, and Bcl-2 were observed in all extrinsic tongue muscles along with reductions in muscle fiber number in old rats. We demonstrated that apoptosis indices increase with age in lingual muscles and that alterations in apoptotic regulators may be associated with age-related degeneration in muscle fiber size and number. These observed apoptotic processes may be detrimental to muscle function, and may contribute to degradation of cranial functions with age. Muscle Nerve 57: E29-E37, 2018. © 2017 Wiley Periodicals, Inc.

  8. Activation of muscle fibers in individual motor units revealed by 2-deoxyglucose-6-phosphate.

    Science.gov (United States)

    Nemeth, P M; Norris, B J; Lowry, O H; Gordon, D A; Enoka, R M; Stuart, D G

    1988-11-01

    Motor units of the cat tibialis posterior muscle were selectively activated by prolonged electrical stimulation of functionally isolated motor axons in situ. During the activation, the glucose analog 2-deoxyglucose (DG) was administered systemically. Single muscle fibers were subsequently examined for accumulation of the metabolite 2-deoxyglucose-6-phosphate (DG6P) by an analytical assay and for depletion of glycogen by a PAS glycogen-specific staining reaction (periodic acid Schiff; PAS). In general, levels of DG6P were 20 times greater in unstained (PAS-negative) fibers compared with stained (PAS-positive) fibers. However, some glycogen-depleted fibers, particularly in putative ischemic fascicles of the muscle, did not have elevated DG6P, suggesting that depletion of glycogen is not always a reliable indicator of fiber activation. Furthermore, the PAS-staining reaction was not necessarily indicative of quantitative glycogen levels in single fibers. Thus, this report shows that DG6P accumulation enhances the identification of motor-unit fibers selectively activated via their common motor-nerve axon. Evidence is also presented for differential glucose uptake in muscle fibers of different phenotype, thereby indicating that the DG6P measurement in muscle has broad applicability to the investigation of cellular glucose utilization.

  9. Caveolin-3 is associated with the T-tubules of mature skeletal muscle fibers

    DEFF Research Database (Denmark)

    Ralston, E; Ploug, Thorkil

    1999-01-01

    Caveolae are abundant in skeletal muscle and their coat contains a specific isoform of caveolin, caveolin-3. It has been suggested that during muscle development, caveolin-3 is associated with the T-tubules, but that in adult muscle it is found on the plasma membrane only. We have studied...... the distribution of caveolin-3 in single skeletal muscle fibers from adult rat soleus by confocal immunofluorescence and by immunogold electron microscopy. We found that caveolin-3 occurs at the highest density on the plasma membrane but is also present in the core of the fibers, at the I-band/A-band interface...

  10. Enhancement of Force Generated by Individual Myosin Heads in Skinned Rabbit Psoas Muscle Fibers at Low Ionic Strength

    OpenAIRE

    Sugi, Haruo; Abe, Takahiro; Kobayashi, Takakazu; Chaen, Shigeru; Ohnuki, Yoshiki; Saeki, Yasutake; Sugiura, Seiryo

    2013-01-01

    Although evidence has been presented that, at low ionic strength, myosin heads in relaxed skeletal muscle fibers form linkages with actin filaments, the effect of low ionic strength on contraction characteristics of Ca(2+)-activated muscle fibers has not yet been studied in detail. To give information about the mechanism of muscle contraction, we have examined the effect of low ionic strength on the mechanical properties and the contraction characteristics of skinned rabbit psoas muscle fiber...

  11. A Rapid Automated Protocol for Muscle Fiber Population Analysis in Rat Muscle Cross Sections Using Myosin Heavy Chain Immunohistochemistry.

    Science.gov (United States)

    Bergmeister, Konstantin D; Gröger, Marion; Aman, Martin; Willensdorfer, Anna; Manzano-Szalai, Krisztina; Salminger, Stefan; Aszmann, Oskar C

    2017-03-28

    Quantification of muscle fiber populations provides a deeper insight into the effects of disease, trauma, and various other influences on skeletal muscle composition. Various time-consuming methods have traditionally been used to study fiber populations in many fields of research. However, recently developed immunohistochemical methods based on myosin heavy chain protein expression provide a quick alternative to identify multiple fiber types in a single section. Here, we present a rapid, reliable and reproducible protocol for improved staining quality, allowing automatic acquisition of whole cross sections and automatic quantification of fiber populations with ImageJ. For this purpose, embedded skeletal muscles are cut in cross sections, stained using myosin heavy chains antibodies with secondary fluorescent antibodies and DAPI for cell nuclei staining. Whole cross sections are then scanned automatically using a slide scanner to obtain high-resolution composite pictures of the entire specimen. Fiber population analyses are subsequently performed to quantify slow, intermediate and fast fibers using an automated macro for ImageJ. We have previously shown that this method can identify fiber populations reliably to a degree of ±4%. In addition, this method reduces inter-user variability and time per analyses significantly using the open source platform ImageJ.

  12. Human muscle fiber type-specific insulin signaling: impact of obesity and type 2 diabetes.

    Science.gov (United States)

    Albers, Peter H; Pedersen, Andreas J T; Birk, Jesper B; Kristensen, Dorte E; Vind, Birgitte F; Baba, Otto; Nøhr, Jane; Højlund, Kurt; Wojtaszewski, Jørgen F P

    2015-02-01

    Skeletal muscle is a heterogeneous tissue composed of different fiber types. Studies suggest that insulin-mediated glucose metabolism is different between muscle fiber types. We hypothesized that differences are due to fiber type-specific expression/regulation of insulin signaling elements and/or metabolic enzymes. Pools of type I and II fibers were prepared from biopsies of the vastus lateralis muscles from lean, obese, and type 2 diabetic subjects before and after a hyperinsulinemic-euglycemic clamp. Type I fibers compared with type II fibers have higher protein levels of the insulin receptor, GLUT4, hexokinase II, glycogen synthase (GS), and pyruvate dehydrogenase-E1α (PDH-E1α) and a lower protein content of Akt2, TBC1 domain family member 4 (TBC1D4), and TBC1D1. In type I fibers compared with type II fibers, the phosphorylation response to insulin was similar (TBC1D4, TBC1D1, and GS) or decreased (Akt and PDH-E1α). Phosphorylation responses to insulin adjusted for protein level were not different between fiber types. Independently of fiber type, insulin signaling was similar (TBC1D1, GS, and PDH-E1α) or decreased (Akt and TBC1D4) in muscle from patients with type 2 diabetes compared with lean and obese subjects. We conclude that human type I muscle fibers compared with type II fibers have a higher glucose-handling capacity but a similar sensitivity for phosphoregulation by insulin. © 2015 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  13. Morphology of electrophysiologically identified junctions between Purkinje fibers and ventricular muscle in rabbit and pig hearts

    NARCIS (Netherlands)

    Tranum-Jensen, J.; Wilde, A. A.; Vermeulen, J. T.; Janse, M. J.

    1991-01-01

    Purkinje fiber-ventricular muscle (PV) junctions were identified by extracellular recording in isolated, superfused preparations from rabbit and pig hearts. Microelectrode recordings from different cell types at the PV junctions were obtained, and the cells recorded from were retrieved

  14. Cycle Training Increased GLUT4 and Activation of mTOR in Fast Twitch Muscle Fibers

    Science.gov (United States)

    Stuart, Charles A.; Howell, Mary E.A.; Baker, Jonathan D.; Dykes, Rhesa J.; Duffourc, Michelle M.; Ramsey, Michael W.; Stone, Michael H.

    2009-01-01

    Purpose To determine if cycle training of sedentary subjects would increase the expression of the principle muscle glucose transporters, six volunteers completed six weeks of progressively increasing intensity stationary cycle cycling. Methods In vastus lateralis muscle biopsies, changes in expression of GLUT1, GLUT4, GLUT5, and GLUT12 were compared using quantitative immunoblots with specific protein standards. Regulatory pathway components were evaluated by immunoblots of muscle homogenates and immunohistochemistry of microscopic sections. Results GLUT1 was unchanged, GLUT4 increased 66%, GLUT12 increased 104%, and GLUT5 decreased 72%. A mitochondrial marker (cytochrome c) and regulators of mitochondrial biogenesis (PGC-1α and phospho-AMPK) were unchanged, but the muscle hypertrophy pathway component, phospho-mTOR increased 83% after the exercise program. In baseline biopsies, GLUT4 by immunohistochemical techniques was 37% greater in Type I (slow twitch, red) muscle fibers, but the exercise training increased GLUT4 expression in Type II (fast twitch, white) fibers by 50%, achieving parity with the Type I fibers. Baseline phospho-mTOR expression was 50% higher in Type II fibers and increased more in Type II fibers (62%) with training, but also increased in Type I fibers (34%). Conclusion Progressive intensity stationary cycle training of previously sedentary subjects increased muscle insulin-responsive glucose transporters (GLUT4 and GLUT12) and decreased the fructose transporter (GLUT5). The increase in GLUT4 occurred primarily in Type II muscle fibers and this coincided with activation of the mTOR muscle hypertrophy pathway. There was little impact on Type I fiber GLUT4 expression and no evidence of change in mitochondrial biogenesis. PMID:20010125

  15. Low Po2 conditions induce reactive oxygen species formation during contractions in single skeletal muscle fibers

    OpenAIRE

    Zuo, Li; Shiah, Amy; Roberts, William J.; Chien, Michael T.; Wagner, Peter D.; Hogan, Michael C.

    2013-01-01

    Contractions in whole skeletal muscle during hypoxia are known to generate reactive oxygen species (ROS); however, identification of real-time ROS formation within isolated single skeletal muscle fibers has been challenging. Consequently, there is no convincing evidence showing increased ROS production in intact contracting fibers under low Po2 conditions. Therefore, we hypothesized that intracellular ROS generation in single contracting skeletal myofibers increases during low Po2 compared wi...

  16. Contractile properties of muscle fibers from the deep and superficial digital flexors of horses.

    Science.gov (United States)

    Butcher, M T; Chase, P B; Hermanson, J W; Clark, A N; Brunet, N M; Bertram, J E A

    2010-10-01

    Equine digital flexor muscles have independent tendons but a nearly identical mechanical relationship to the main joint they act upon. Yet these muscles have remarkable diversity in architecture, ranging from long, unipennate fibers ("short" compartment of DDF) to very short, multipennate fibers (SDF). To investigate the functional relevance of the form of the digital flexor muscles, fiber contractile properties were analyzed in the context of architecture differences and in vivo function during locomotion. Myosin heavy chain (MHC) isoform fiber type was studied, and in vitro motility assays were used to measure actin filament sliding velocity (V(f)). Skinned fiber contractile properties [isometric tension (P(0)/CSA), velocity of unloaded shortening (V(US)), and force-Ca(2+) relationships] at both 10 and 30°C were characterized. Contractile properties were correlated with MHC isoform and their respective V(f). The DDF contained a higher percentage of MHC-2A fibers with myosin (heavy meromyosin) and V(f) that was twofold faster than SDF. At 30°C, P(0)/CSA was higher for DDF (103.5 ± 8.75 mN/mm(2)) than SDF fibers (81.8 ± 7.71 mN/mm(2)). Similarly, V(US) (pCa 5, 30°C) was faster for DDF (2.43 ± 0.53 FL/s) than SDF fibers (1.20 ± 0.22 FL/s). Active isometric tension increased with increasing Ca(2+) concentration, with maximal Ca(2+) activation at pCa 5 at each temperature in fibers from each muscle. In general, the collective properties of DDF and SDF were consistent with fiber MHC isoform composition, muscle architecture, and the respective functional roles of the two muscles in locomotion.

  17. Enzymatically modified isoquercitrin supplementation intensifies plantaris muscle fiber hypertrophy in functionally overloaded mice.

    Science.gov (United States)

    Kohara, Akiko; Machida, Masanao; Setoguchi, Yuko; Ito, Ryouichi; Sugitani, Masanori; Maruki-Uchida, Hiroko; Inagaki, Hiroyuki; Ito, Tatsuhiko; Omi, Naomi; Takemasa, Tohru

    2017-01-01

    Enzymatically modified isoquercitrin (EMIQ) is produced from rutin using enzymatic hydrolysis followed by treatment with glycosyltransferase in the presence of dextrin to add glucose residues. EMIQ is absorbed in the same way as quercetin, a powerful antioxidant reported to prevent disused muscle atrophy by targeting mitochondria and to have ergogenic effects. The present study investigated the effect of EMIQ on skeletal muscle hypertrophy induced by functional overload. In Study 1, 6-week-old ICR male mice were divided into 4 groups: sham-operated control, sham-operated EMIQ, overload-operated control, and overload-operated EMIQ groups. In Study 2, mice were divided into 3 groups: overload-operated whey control, overload-operated whey/EMIQ (low dose), and overload-operated whey/EMIQ (high dose) groups. The functional overload of the plantaris muscle was induced by ablation of the synergist (gastrocnemius and soleus) muscles. EMIQ and whey protein were administered with food. Three weeks after the operation, the cross-sectional area and minimal fiber diameter of the plantaris muscle fibers were measured. In Study 1, functional overload increased the cross-sectional area and minimal fiber diameter of the plantaris muscle. EMIQ supplementation significantly increased the cross-sectional area and minimal fiber diameter of the plantaris muscle in both the sham-operated and overload-operated groups. In Study 2, EMIQ supplementation combined with whey protein administration significantly increased the cross-sectional area and minimal fiber diameter of the plantaris muscle. EMIQ, even when administered as an addition to whey protein supplementation, significantly intensified the fiber hypertrophy of the plantaris muscle in functionally overloaded mice. EMIQ supplementation also induced fiber hypertrophy of the plantaris in sham-operated mice.

  18. Spermine oxidase maintains basal skeletal muscle gene expression and fiber size and is strongly repressed by conditions that cause skeletal muscle atrophy

    Science.gov (United States)

    Bongers, Kale S.; Fox, Daniel K.; Kunkel, Steven D.; Stebounova, Larissa V.; Murry, Daryl J.; Pufall, Miles A.; Ebert, Scott M.; Dyle, Michael C.; Bullard, Steven A.; Dierdorff, Jason M.

    2014-01-01

    Skeletal muscle atrophy is a common and debilitating condition that remains poorly understood at the molecular level. To better understand the mechanisms of muscle atrophy, we used mouse models to search for a skeletal muscle protein that helps to maintain muscle mass and is specifically lost during muscle atrophy. We discovered that diverse causes of muscle atrophy (limb immobilization, fasting, muscle denervation, and aging) strongly reduced expression of the enzyme spermine oxidase. Importantly, a reduction in spermine oxidase was sufficient to induce muscle fiber atrophy. Conversely, forced expression of spermine oxidase increased muscle fiber size in multiple models of muscle atrophy (immobilization, fasting, and denervation). Interestingly, the reduction of spermine oxidase during muscle atrophy was mediated by p21, a protein that is highly induced during muscle atrophy and actively promotes muscle atrophy. In addition, we found that spermine oxidase decreased skeletal muscle mRNAs that promote muscle atrophy (e.g., myogenin) and increased mRNAs that help to maintain muscle mass (e.g., mitofusin-2). Thus, in healthy skeletal muscle, a relatively low level of p21 permits expression of spermine oxidase, which helps to maintain basal muscle gene expression and fiber size; conversely, during conditions that cause muscle atrophy, p21 expression rises, leading to reduced spermine oxidase expression, disruption of basal muscle gene expression, and muscle fiber atrophy. Collectively, these results identify spermine oxidase as an important positive regulator of muscle gene expression and fiber size, and elucidate p21-mediated repression of spermine oxidase as a key step in the pathogenesis of skeletal muscle atrophy. PMID:25406264

  19. A multiscale chemo-electro-mechanical skeletal muscle model to analyze muscle contraction and force generation for different muscle fiber arrangements

    Directory of Open Access Journals (Sweden)

    Thomas eHeidlauf

    2014-12-01

    Full Text Available The presented chemo-electro-mechanical skeletal muscle model relies on a continuum mechanical formulation describing the muscle’s deformation and force generation on the macroscopic muscle level. Unlike other three-dimensional models, the description of the activation-induced behavior of the mechanical model is entirely based on chemo-electro-mechanical principles on the microscopic sarcomere level. Yet, the multiscale model reproduces key characteristics of skeletal muscles such as experimental force-length and force-velocity data on the macroscopic whole muscle level. The paper presents the methodological approaches required to obtain such a multiscale model, and demonstrates the feasibility of using such a model to analyze differences in the mechanical behavior of parallel-fibered muscles, in which the muscle fibers either span the entire length of the fascicles or terminate intrafascicularly. The presented results reveal that muscles, in which the fibers span the entire length of the fascicles, show lower peak forces, more dispersed twitches and fusion of twitches at lower stimulation frequencies. In detail, the model predicted twitch rise times of 38.2ms and 17.2ms for a 12 cm long muscle, in which the fibers span the entire length of the fascicles and with twelve fiber compartments in series, respectively. Further, the twelve-compartment model predicted peak twitch forces that were 19% higher than in the single-compartment model. The analysis of sarcomere lengths during fixed-end single twitch contractions at optimal length predicts rather small sarcomere length changes. The observed lengths range from 75 to 111% of the optimal sarcomere length, which corresponds to a region with maximum filament overlap. This result suggests that stability issues resulting from activation-induced stretches of non-activated sarcomeres are unlikely in muscles with passive forces appearing at short muscle length.

  20. DNA methylation assessment from human slow- and fast-twitch skeletal muscle fibers.

    Science.gov (United States)

    Begue, Gwénaëlle; Raue, Ulrika; Jemiolo, Bozena; Trappe, Scott

    2017-04-01

    A new application of the reduced representation bisulfite sequencing method was developed using low-DNA input to investigate the epigenetic profile of human slow- and fast-twitch skeletal muscle fibers. Successful library construction was completed with as little as 15 ng of DNA, and high-quality sequencing data were obtained with 32 ng of DNA. Analysis identified 143,160 differentially methylated CpG sites across 14,046 genes. In both fiber types, selected genes predominantly expressed in slow or fast fibers were hypomethylated, which was supported by the RNA-sequencing analysis. These are the first fiber type-specific methylation data from human skeletal muscle and provide a unique platform for future research. NEW & NOTEWORTHY This study validates a low-DNA input reduced representation bisulfite sequencing method for human muscle biopsy samples to investigate the methylation patterns at a fiber type-specific level. These are the first fiber type-specific methylation data reported from human skeletal muscle and thus provide initial insight into basal state differences in myosin heavy chain I and IIa muscle fibers among young, healthy men. Copyright © 2017 the American Physiological Society.

  1. A new method for non-invasive estimation of human muscle fiber type composition.

    Directory of Open Access Journals (Sweden)

    Audrey Baguet

    Full Text Available BACKGROUND: It has been established that excellence in sports with short and long exercise duration requires a high proportion of fast-twitch (FT or type-II fibers and slow-twitch (ST or type-I fibers, respectively. Until today, the muscle biopsy method is still accepted as gold standard to measure muscle fiber type composition. Because of its invasive nature and high sampling variance, it would be useful to develop a non-invasive alternative. METHODOLOGY: Eighty-three control subjects, 15 talented young track-and-field athletes, 51 elite athletes and 14 ex-athletes volunteered to participate in the current study. The carnosine content of all 163 subjects was measured in the gastrocnemius muscle by proton magnetic resonance spectroscopy ((1H-MRS. Muscle biopsies for fiber typing were taken from 12 untrained males. PRINCIPAL FINDINGS: A significant positive correlation was found between muscle carnosine, measured by (1H-MRS, and percentage area occupied by type II fibers. Explosive athletes had ∼30% higher carnosine levels compared to a reference population, whereas it was ∼20% lower than normal in typical endurance athletes. Similar results were found in young talents and ex-athletes. When active elite runners were ranked according to their best running distance, a negative sigmoidal curve was found between logarithm of running distance and muscle carnosine. CONCLUSIONS: Muscle carnosine content shows a good reflection of the disciplines of elite track-and-field athletes and is able to distinguish between individual track running distances. The differences between endurance and sprint muscle types is also observed in young talents and former athletes, suggesting this characteristic is genetically determined and can be applied in early talent identification. This quick method provides a valid alternative for the muscle biopsy method. In addition, this technique may also contribute to the diagnosis and monitoring of many conditions and

  2. Possible Cause of Nonlinear Tension Rise in Activated Muscle Fiber during Stretching.

    Science.gov (United States)

    Kochubei, P V; Bershitsky, S Yu

    2016-11-01

    Tension in contracting muscle fiber under conditions of ramp stretching rapidly increases, but after reaching a critical stretch P c sharply decreases. To find out the cause of these changes in muscle fiber tension, we stopped stretching before and after reaching P c and left the fiber stretched for 50 msec. After rapid tension drop, the transient tension rise not accompanied by fiber stiffness increase was observed only in fibers heated to 25°C and stretched to P c . Under other experimental conditions, this growth was absent. We suppose that stretch of the fiber to P c induces transition of stereo-specifically attached myosin heads to pre-power stroke state and when the stretching is stopped, they make their step on actin and generate force. When the tension reaches P c , all stereospecifically attached myosin heads turn out to be non-stereospecifically, or weakly attached to actin, and are unable to make the force-generating step.

  3. Restricting calcium currents is required for correct fiber type specification in skeletal muscle.

    Science.gov (United States)

    Sultana, Nasreen; Dienes, Beatrix; Benedetti, Ariane; Tuluc, Petronel; Szentesi, Peter; Sztretye, Monika; Rainer, Johannes; Hess, Michael W; Schwarzer, Christoph; Obermair, Gerald J; Csernoch, Laszlo; Flucher, Bernhard E

    2016-05-01

    Skeletal muscle excitation-contraction (EC) coupling is independent of calcium influx. In fact, alternative splicing of the voltage-gated calcium channel CaV1.1 actively suppresses calcium currents in mature muscle. Whether this is necessary for normal development and function of muscle is not known. However, splicing defects that cause aberrant expression of the calcium-conducting developmental CaV1.1e splice variant correlate with muscle weakness in myotonic dystrophy. Here, we deleted CaV1.1 (Cacna1s) exon 29 in mice. These mice displayed normal overall motor performance, although grip force and voluntary running were reduced. Continued expression of the developmental CaV1.1e splice variant in adult mice caused increased calcium influx during EC coupling, altered calcium homeostasis, and spontaneous calcium sparklets in isolated muscle fibers. Contractile force was reduced and endurance enhanced. Key regulators of fiber type specification were dysregulated and the fiber type composition was shifted toward slower fibers. However, oxidative enzyme activity and mitochondrial content declined. These findings indicate that limiting calcium influx during skeletal muscle EC coupling is important for the secondary function of the calcium signal in the activity-dependent regulation of fiber type composition and to prevent muscle disease. © 2016. Published by The Company of Biologists Ltd.

  4. Human muscle fiber type-specific insulin signaling: Impact of obesity and type 2 diabetes

    DEFF Research Database (Denmark)

    Albers, Peter Hjorth; Pedersen, Andreas J T; Birk, Jesper Bratz

    2015-01-01

    -responses to insulin adjusted for protein level were not different between fiber types. Independently of fiber type, insulin signaling was similar (TBC1D1, GS and PDH-E1α) or decreased (Akt and TBC1D4) in muscle from patients with type 2 diabetes compared to lean and obese subjects. We conclude that human type I...

  5. Size and myonuclear domains in Rhesus soleus muscle fibers: short-term spaceflight

    Science.gov (United States)

    Roy, R. R.; Zhong, H.; Talmadge, R. J.; Bodine, S. C.; Fanton, J. W.; Koslovskaya, I.; Edgerton, V. R.

    2001-01-01

    The cross-sectional area (CSA), myonuclear number per mm of fiber length, and myonuclear domain (cytoplasmic volume/myonucleus) of mechanically isolated single fibers from biopsies of the soleus muscle of 5 vivarium control, 3 flight simulation and 2 flight (BION 11) Rhesus monkeys (Macaca [correction of Macacca] mulatta) were determined using confocal microscopy before and after a 14-day experimental period. Simulation monkeys were confined in chairs placed in capsules identical to those used during the flight. Fibers were classified as type I, type II or hybrid (containing both types I and II) based on myosin heavy chain (MHC) gel electrophoresis. A majority of the fibers sampled contained only type I MHC, i.e. 89, 62 and 68% for the control, simulation and flight groups, respectively. Most of the remaining fibers were hybrids, i.e. 8, 36 and 32% for the same groups. There were no significant pre-post differences in the fiber type composition for any of the experimental groups. There also were no significant pre-post differences in fiber CSA, myonuclear number or myonuclear domain. There was, however, a tendency for the fibers in the post-flight biopsies to have a smaller mean CSA and myonuclear domain (approximately 10%, p=0.07) than the fibers in the pre-flight biopsy. The combined mean cytoplasmic volume/myonucleus for all muscle fiber phenotypes in the Rhesus soleus muscle was approximately 25,000 micrometers3 and there were no differences in pre-post samples for the control and simulated groups. The cytoplasmic domains tended to be lower (p=0.08) after than before flight. No phenotype differences in cytoplasmic domains were observed. These data suggest that after a relatively short period of actual spaceflight, modest fiber atrophy occurs in the soleus muscle fibers without a concomitant change in myonuclear number.

  6. Effect of Quadriceps Exercise Training on Muscle Fiber Angle in Patients With Patellofemoral Pain Syndrome

    Directory of Open Access Journals (Sweden)

    Honarpishe

    2015-10-01

    Full Text Available Background Imbalance between the vastus medialis oblique (VMO muscle and the vastus lateralis oblique (VTO Vastus lateralis has been thought to be a primary cause of abnormal patellar tracking, possibly leading to patellofemoral pain syndrome (PFPS. Objectives The purpose of this study was to investigate the effect of quadriceps muscle strengthening exercises on the ratio of VMO to VL oblique and longus muscle fiber angles. Patients and Methods Thirty-five subjects (23 females and 12 males, mean age 26.6 years ± 1.1 SD with PFPS were randomized into an exercise group or a control group. The exercise group performed knee extension exercises for four weeks based on the Kaya exercise program (three times per week, while the control group received no treatment. Measurements included knee extensor concentric and eccentric muscle torque using a Biodex isokinetic machine and the fiber angle of the VMO, VL oblique and longus muscles using ultrasonography, all of which were evaluated at the time of the initial examination and at the end of the four-week period. Results There were no significant differences in the muscle strength and fiber angle of the VMO, VL oblique and longus muscles after training between the control and experimental groups (P > 0.05. Conclusions The study findings indicate that short-term exercises had no significant effect on the ratio of VMO to VL muscle fiber angles in patients with PFPS.

  7. The organization of the Golgi complex and microtubules in skeletal muscle is fiber type-dependent

    DEFF Research Database (Denmark)

    Ralston, E; Lu, Z; Ploug, Thorkil

    1999-01-01

    Skeletal muscle has a nonconventional Golgi complex (GC), the organization of which has been a subject of controversy in the past. We have now examined the distribution of the GC by immunofluorescence and immunogold electron microscopy in whole fibers from different rat muscles, both innervated a...

  8. Diet‐induced obesity alters skeletal muscle fiber types of male but not female mice

    Science.gov (United States)

    DeNies, Maxwell S.; Johnson, Jordan; Maliphol, Amanda B.; Bruno, Michael; Kim, Annabelle; Rizvi, Abbas; Rustici, Kevyn; Medler, Scott

    2014-01-01

    Abstract Skeletal muscles are highly plastic tissues capable dramatic remodeling in response to use, disuse, disease, and other factors. Growing evidence suggests that adipose tissues exert significant effects on the basic fiber‐type composition of skeletal muscles. In the current study, we investigated the long‐term effects of a high‐fat diet and subsequent obesity on the muscle fiber types in C57 BLK/6J mice. Litters of mice were randomly assigned to either a high‐fat diet or a control group at the time of weaning, and were maintained on this diet for approximately 1 year. Single fibers were harvested from the soleus and plantaris muscles, and fiber types were determined using SDS‐PAGE. The high‐fat diet mice were significantly heavier than the control mice (39.17 ± 2.7 g vs. 56.87 ± 3.4 g; P muscle masses were not different. In male mice, the high‐fat diet was associated with a significantly lower proportion of slow, type I fibers in the soleus muscle (40.4 ± 3.5% vs. 29.33 ± 2.6%; P < 0.0165). Moreover, the proportion of type I fibers in the soleus of male mice was inversely proportional to the relative fatness of the male mice (P < 0.003; r2 = 0.65), but no association was observed in female mice. In male mice, the decline in type I fibers was correlated with an increase in type I/IIA hybrid fibers, suggesting that the type I fibers were transformed primarily into these hybrids. The reported trends indicate that type I fibers are most susceptible to the effects of obesity, and that these fiber‐type changes can be sex specific. PMID:24744883

  9. Jaw-muscle fiber architecture in tufted capuchins favors generating relatively large muscle forces without compromising jaw gape

    Science.gov (United States)

    Taylor, Andrea B.; Vinyard, Christopher J.

    2009-01-01

    Cebus apella is renowned for its dietary flexibility and capacity to exploit hard and tough objects. Cebus apella differs from other capuchins in displaying a suite of craniodental features that have been functionally and adaptively linked to their feeding behavior, particularly the generation and dissipation of relatively large jaw forces. We compared fiber architecture of the masseter and temporalis muscles between the tufted capuchin (C. apella; n = 12 ) and two “untufted” capuchins (C. capuchinus, n = 3; C. albifrons, n = 5). These three species share broadly similar diets, but tufted capuchins occasionally exploit mechanically challenging tissues. We tested the hypothesis that C. apella exhibits architectural properties of their jaw muscles that facilitate relatively large forces, including relatively greater physiologic cross-sectional areas (PCSA), more pinnate fibers, and lower ratios of mass to tetanic tension (Mass/P0). Results show some evidence supporting these predictions, as C. apella has relatively greater superficial masseter, whole masseter, and temporalis PCSAs, significantly so only for the temporalis following Bonferroni adjustment. Capuchins did not differ in pinnation angle or Mass/P0. As an architectural trade-off between maximizing muscle force and muscle excursion/contraction velocity, we also tested the hypothesis that C. apella exhibits relatively shorter muscle fibers. Contrary to our prediction, there are no significant differences in relative fiber lengths between tufted and untufted capuchins. Therefore, we attribute the relatively greater PCSAs in C. apella primarily to their larger muscle masses. These findings suggest that relatively large jaw-muscle PCSAs can be added to the suite of masticatory features that have been functionally linked to the exploitation of a more resistant diet by C. apella. By enlarging jaw-muscle mass to increase PCSA, rather than reducing fiber lengths and increasing pinnation, tufted capuchins appear

  10. Intermittent Cold Exposure Causes a Muscle-Specific Shift in the Fiber Type Composition in Rats

    Science.gov (United States)

    1993-01-01

    exposure on the fiber type composition of the predominantly type I soleus and the predominantly type lIb extensor digitorum longus (EDL) muscles of rats...the predominantly type Ilb extensor digitorum longus (EDL) muscles of rats. Cold exposure was accomplished by submerg- position would occur in rats if...were killed with an over- dose of pentobarbital sodium (Nembutal). The soleus "* -4 and extensor digitorum longus (EDL. muscles were ex- cised

  11. Ca sensitivity and acetylcholine receptor currents of twitch and tonic snake muscle fibers.

    Science.gov (United States)

    Ruff, R L; Spiegel, P

    1990-12-01

    Myofibrillar Ca sensitivity and single-channel acetylcholine receptor (AChR) currents were studied in garter snake (Thamnophis sirtalis sirtalis) costocutaneous muscle fibers. Nomarski optics were used to identify tonic and fast- and slow-twitch fibers. Measurements of tension generation were made using chemically skinned fibers. The maximum tensions of the three types of fibers were similar, and the fast- and slow-twitch fibers had similar Ca sensitivities. Compared with twitch fibers, tonic fibers had lower threshold Ca concentrations for tension generation and a larger range of Ca concentrations between threshold and maximum tension. The AChR channels were studied by enzymatically removing the nerve terminals and performing patch-clamp recordings on the exposed postsynaptic membrane. Twitch fibers had only one class of end-plate channel with a conductance of approximately 51 pS. Tonic fibers had two types of synaptic channels. One AChR channel in the tonic fibers resembled the type seen in twitch fibers. The other channel in tonic fibers had a smaller conductance of approximately 33 pS and resembled extrajunctional AChRs on denervated twitch fibers.

  12. Fiber size and myosin phenotypes of selected rhesus lower limb muscles after a 14-day spaceflight

    Science.gov (United States)

    Roy, R. R.; Zhong, H.; Bodine, S. C.; Pierotti, D. J.; Talmadge, R. J.; Barkhoudarian, G.; Kim, J.; Fanton, J. W.; Kozlovskaya, I. B.; Edgerton, V. R.

    2000-01-01

    Muscle biopsies were taken from the rhesus (Macaca mulatta) soleus (Sol, a slow ankle extensor), medial gastrocnemius (MG, a fast ankle extensor), tibialis anterior (TA, a fast ankle flexor), and vastus lateralis (VL, a fast knee extensor) muscles in vivarium controls (n=5) before and after either a 14-day spaceflight (Bion 11, n=2) or a 14-day ground-based flight simulation (n=3). Myosin heavy chain (MHC) composition (gel electrophoresis), fiber type distribution (immunohistochemistry), and fiber size were determined. Although there were no significant changes, each muscle showed trends towards adaptation.

  13. Nuclear receptor/microRNA circuitry links muscle fiber type to energy metabolism.

    Science.gov (United States)

    Gan, Zhenji; Rumsey, John; Hazen, Bethany C; Lai, Ling; Leone, Teresa C; Vega, Rick B; Xie, Hui; Conley, Kevin E; Auwerx, Johan; Smith, Steven R; Olson, Eric N; Kralli, Anastasia; Kelly, Daniel P

    2013-06-01

    The mechanisms involved in the coordinate regulation of the metabolic and structural programs controlling muscle fitness and endurance are unknown. Recently, the nuclear receptor PPARβ/δ was shown to activate muscle endurance programs in transgenic mice. In contrast, muscle-specific transgenic overexpression of the related nuclear receptor, PPARα, results in reduced capacity for endurance exercise. We took advantage of the divergent actions of PPARβ/δ and PPARα to explore the downstream regulatory circuitry that orchestrates the programs linking muscle fiber type with energy metabolism. Our results indicate that, in addition to the well-established role in transcriptional control of muscle metabolic genes, PPARβ/δ and PPARα participate in programs that exert opposing actions upon the type I fiber program through a distinct muscle microRNA (miRNA) network, dependent on the actions of another nuclear receptor, estrogen-related receptor γ (ERRγ). Gain-of-function and loss-of-function strategies in mice, together with assessment of muscle biopsies from humans, demonstrated that type I muscle fiber proportion is increased via the stimulatory actions of ERRγ on the expression of miR-499 and miR-208b. This nuclear receptor/miRNA regulatory circuit shows promise for the identification of therapeutic targets aimed at maintaining muscle fitness in a variety of chronic disease states, such as obesity, skeletal myopathies, and heart failure.

  14. Effects of high-intensity physical training on muscle fiber characteristics in poststroke patients.

    Science.gov (United States)

    Andersen, Jesper L; Jørgensen, Jørgen R; Zeeman, Peter; Bech-Pedersen, Daniel T; Sørensen, Jane; Ara, Ignacio; Andersen, Lars L

    2017-11-01

    Stroke is a leading cause of disability worldwide. High-intensity physical training can improve muscle strength and gait speed, but adaptive mechanisms at the muscle cellular level are largely unknown. Outpatients with poststroke hemiparesis participated in a 3-month rehabilitation program combining high-intensity strength and body-weight supported treadmill-training. Biopsies sampled bilaterally from vastus lateralis muscles, before, after, and at 1-year follow-up after intervention, were analyzed for fiber size, type, and capillarization. At baseline, paretic lower limbs had smaller muscle fiber size and lower type I and IIA and higher type IIX percentages than nonparetic lower limbs. Paretic lower limbs had increased type IIA fibers after training. At follow-up, no difference between the lower limbs remained. Although high-intensity training appeared not to induce changes in fiber size or capillarization, increased type IIA fiber percentages may contribute to muscle power and endurance, which is crucial for functional capacity. Muscle Nerve 56: 954-962, 2017. © 2016 Wiley Periodicals, Inc.

  15. In Vivo Microscopy Reveals Extensive Embedding of Capillaries within the Sarcolemma of Skeletal Muscle Fibers

    Science.gov (United States)

    Glancy, Brian; Hsu, Li-Yueh; Dao, Lam; Bakalar, Matthew; French, Stephanie; Chess, David J.; Taylor, Joni L.; Picard, Martin; Aponte, Angel; Daniels, Mathew P.; Esfahani, Shervin; Cushman, Samuel; Balaban, Robert S.

    2013-01-01

    Objective To provide insight into mitochondrial function in vivo, we evaluated the 3D spatial relationship between capillaries, mitochondria, and muscle fibers in live mice. Methods 3D volumes of in vivo murine Tibialis anterior muscles were imaged by multi-photon microscopy (MPM). Muscle fiber type, mitochondrial distribution, number of capillaries, and capillary-to-fiber contact were assessed. The role of myoglobin-facilitated diffusion was examined in myoglobin knockout mice. Distribution of GLUT4 was also evaluated in the context of the capillary and mitochondrial network. Results MPM revealed that 43.6 ± 3.3% of oxidative fiber capillaries had ≥ 50% of their circumference embedded in a groove in the sarcolemma, in vivo. Embedded capillaries were tightly associated with dense mitochondrial populations lateral to capillary grooves and nearly absent below the groove. Mitochondrial distribution, number of embedded capillaries, and capillary-to-fiber contact were proportional to fiber oxidative capacity and unaffected by myoglobin knockout. GLUT4 did not preferentially localize to embedded capillaries. Conclusions Embedding capillaries in the sarcolemma may provide a regulatory mechanism to optimize delivery of oxygen to heterogeneous groups of muscle fibers. We hypothesize that mitochondria locate to paravascular regions due to myofibril voids created by embedded capillaries, not to enhance the delivery of oxygen to the mitochondria. PMID:25279425

  16. Effects of high-intensity physical training on muscle fiber characteristics in poststroke patients

    DEFF Research Database (Denmark)

    Andersen, Jesper Løvind; Jørgensen, Jørgen R.; Zeeman, Peter

    2017-01-01

    INTRODUCTION: Stroke is a leading cause of disability worldwide. High-intensity physical training can improve muscle strength and gait speed, but adaptive mechanisms at the muscle cellular level are largely unknown. METHODS: Outpatients with poststroke hemiparesis participated in a 3-month...... rehabilitation program combining high-intensity strength and body-weight supported treadmill-training. Biopsies sampled bilaterally from vastus lateralis muscles, before, after, and at 1-year follow-up after intervention, were analyzed for fiber size, type, and capillarization. RESULTS: At baseline, paretic...... lower limbs had smaller muscle fiber size and lower type I and IIA and higher type IIX percentages than nonparetic lower limbs. Paretic lower limbs had increased type IIA fibers after training. At follow-up, no difference between the lower limbs remained. CONCLUSIONS: Although high-intensity training...

  17. The role of nitric oxide in muscle fibers with oxidative phosphorylation defects

    International Nuclear Information System (INIS)

    Tengan, Celia H.; Kiyomoto, Beatriz H.; Godinho, Rosely O.; Gamba, Juliana; Neves, Afonso C.; Schmidt, Beny; Oliveira, Acary S.B.; Gabbai, Alberto A.

    2007-01-01

    NO has been pointed as an important player in the control of mitochondrial respiration, especially because of its inhibitory effect on cytochrome c oxidase (COX). However, all the events involved in this control are still not completely elucidated. We demonstrate compartmentalized abnormalities on nitric oxide synthase (NOS) activity on muscle biopsies of patients with mitochondrial diseases. NOS activity was reduced in the sarcoplasmic compartment in COX deficient fibers, whereas increased activity was found in the sarcolemma of fibers with mitochondrial proliferation. We observed increased expression of neuronal NOS (nNOS) in patients and a correlation between nNOS expression and mitochondrial content. Treatment of skeletal muscle culture with an NO donor induced an increase in mitochondrial content. Our results indicate specific roles of NO in compensatory mechanisms of muscle fibers with mitochondrial deficiency and suggest the participation of nNOS in the signaling process of mitochondrial proliferation in human skeletal muscle

  18. Adaptation of fibers in fast-twitch muscles of rats to spaceflight and hindlimb suspension

    Science.gov (United States)

    Jiang, Bian; Ohira, Yoshi; Roy, Roland R.; Nguyen, Quyet; Il'ina-Kakueva, E. I.; Oganov, V.; Edgerton, V. R.

    1992-01-01

    The adaptation of single fibers in medial gastrocnemius (MG), a fast-twitch extensor, and in tibialis anterior (TA), a fast-twitch flexor, was studied after 14 days of spaceflight onboard Cosmos 2044 or hindlimb suspension. Quantitative myosin ATPase activities of single fibers were measured in flight and suspended rats. Each of the enzyme and size measurements were directly correlated within each fiber with respect to its qualitative myosin ATPase staining properties and its expression of fast, slow, or both myosin heavy chains (MHC). The percentage of slow- and fast-twitch fibers of the MG and TA were found to be unchanged. Mean fiber size of all fibers was unaffected after flight or suspension. The ATPase activity in the MG was higher in flight than in control or suspended rats. In comparison to Cosmos 1887 spaceflight, the adaptations in the muscle fibers of the MG were more moderate.

  19. Mitochondrial specialization revealed by single muscle fiber proteomics: focus on the Krebs cycle.

    Science.gov (United States)

    Schiaffino, S; Reggiani, C; Kostrominova, T Y; Mann, M; Murgia, M

    2015-12-01

    We have developed a highly sensitive mass spectrometry-based proteomic workflow to examine the proteome of single muscle fibers. This study revealed significant differences in the mitochondrial proteome of the four major fiber types present in mouse skeletal muscle. Here, we focus on Krebs cycle enzymes and in particular on the differential distribution of the two mitochondrial isocitrate dehydrogenases, IDH2 and IDH3. Type 1/slow fibers contain high levels of IDH2 and relatively low levels of IDH3, whereas fast 2X and 2B fibers show an opposite expression pattern. The findings suggest that in skeletal muscle, IDH2 functions in the forward direction of the Krebs cycle and that substrate flux along the cycle occurs predominantly via IDH2 in type 1 fibers and via IDH3 in 2X and 2B fibers. IDH2-mediated conversion of isocitrate to α-ketoglutarate leads to the generation of NADPH, which is critical to buffering the H2O2 produced by the respiratory chain. Nicotinamide nucleotide transhydrogenase (NNT), the other major mitochondrial enzyme involved in NADPH generation, is also more abundant in type 1 fibers. We suggest that the continuously active type 1 fibers are endowed with a more efficient H2O2 scavenging capacity to cope with the higher levels of reactive oxygen species production. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  20. Clustering of the human skeletal muscle fibers using linear programming and angular Hilbertian metrics.

    Science.gov (United States)

    Neji, Radhouène; Besbes, Ahmed; Komodakis, Nikos; Deux, Jean-François; Maatouk, Mezri; Rahmouni, Alain; Bassez, Guillaume; Fleury, Gilles; Paragios, Nikos

    2009-01-01

    In this paper, we present a manifold clustering method fo the classification of fibers obtained from diffusion tensor images (DTI) of the human skeletal muscle. Using a linear programming formulation of prototype-based clustering, we propose a novel fiber classification algorithm over manifolds that circumvents the necessity to embed the data in low dimensional spaces and determines automatically the number of clusters. Furthermore, we propose the use of angular Hilbertian metrics between multivariate normal distributions to define a family of distances between tensors that we generalize to fibers. These metrics are used to approximate the geodesic distances over the fiber manifold. We also discuss the case where only geodesic distances to a reduced set of landmark fibers are available. The experimental validation of the method is done using a manually annotated significant dataset of DTI of the calf muscle for healthy and diseased subjects.

  1. Intracellular calcium movements during excitation–contraction coupling in mammalian slow-twitch and fast-twitch muscle fibers

    Science.gov (United States)

    Hollingworth, Stephen

    2012-01-01

    In skeletal muscle fibers, action potentials elicit contractions by releasing calcium ions (Ca2+) from the sarcoplasmic reticulum. Experiments on individual mouse muscle fibers micro-injected with a rapidly responding fluorescent Ca2+ indicator dye reveal that the amount of Ca2+ released is three- to fourfold larger in fast-twitch fibers than in slow-twitch fibers, and the proportion of the released Ca2+ that binds to troponin to activate contraction is substantially smaller. PMID:22450485

  2. Inhibition of FoxO transcriptional activity prevents muscle fiber atrophy during cachexia and induces hypertrophy.

    Science.gov (United States)

    Reed, Sarah A; Sandesara, Pooja B; Senf, Sarah M; Judge, Andrew R

    2012-03-01

    Cachexia is characterized by inexorable muscle wasting that significantly affects patient prognosis and increases mortality. Therefore, understanding the molecular basis of this muscle wasting is of significant importance. Recent work showed that components of the forkhead box O (FoxO) pathway are increased in skeletal muscle during cachexia. In the current study, we tested the physiological significance of FoxO activation in the progression of muscle atrophy associated with cachexia. FoxO-DNA binding dependent transcription was blocked in the muscles of mice through injection of a dominant negative (DN) FoxO expression plasmid prior to inoculation with Lewis lung carcinoma cells or the induction of sepsis. Expression of DN FoxO inhibited the increased mRNA levels of atrogin-1, MuRF1, cathepsin L, and/or Bnip3 and inhibited muscle fiber atrophy during cancer cachexia and sepsis. Interestingly, during control conditions, expression of DN FoxO decreased myostatin expression, increased MyoD expression and satellite cell proliferation, and induced fiber hypertrophy, which required de novo protein synthesis. Collectively, these data show that FoxO-DNA binding-dependent transcription is necessary for normal muscle fiber atrophy during cancer cachexia and sepsis, and further suggest that basal levels of FoxO play an important role during normal conditions to depress satellite cell activation and limit muscle growth.

  3. Voluntary running induces fiber type-specific angiogenesis in mouse skeletal muscle.

    Science.gov (United States)

    Waters, Richard E; Rotevatn, Svein; Li, Ping; Annex, Brian H; Yan, Zhen

    2004-11-01

    Adult skeletal muscle undergoes adaptation in response to endurance exercise, including fast-to-slow fiber type transformation and enhanced angiogenesis. The purpose of this study was to determine the temporal and spatial changes in fiber type composition and capillary density in a mouse model of endurance training. Long-term voluntary running (4 wk) in C57BL/6 mice resulted in an approximately twofold increase in capillary density and capillary-to-fiber ratio in plantaris muscle as measured by indirect immunofluorescence with an antibody against the endothelial cell marker CD31 (466 +/- 16 capillaries/mm2 and 0.95 +/- 0.04 capillaries/fiber in sedentary control mice vs. 909 +/- 55 capillaries/mm2 and 1.70 +/- 0.04 capillaries/fiber in trained mice, respectively; P angiogenesis occurs first, followed by fiber type transformation. Further analysis with simultaneous staining of endothelial cells and isoforms of myosin heavy chains (MHCs) showed that the increase in capillary contact manifested transiently in type IIb + IId/x fibers at the time (day 7) of significant increase in total capillary density. These findings suggest that endurance training induces angiogenesis in a subpopulation of type IIb + IId/x fibers before switching to type IIa fibers.

  4. Mechanical muscle function, morphology, and fiber type in lifelong trained elderly

    DEFF Research Database (Denmark)

    Aagaard, Per; Magnusson, Peter S; Larsson, Benny

    2007-01-01

    PURPOSE: Maximal muscle contraction force and muscle mass are both reduced during the natural aging process. Long-term training may be used to attenuate this age-related loss in muscle function and muscle size. METHODS: Maximum isometric quadriceps strength (MVC), rate of force development (RFD...... (i.e., lifelong) strength training. This relative preservation in muscle morphology and function may provide an important physical reserve capacity to retain muscle mass and function above the critical threshold for independent living at old age.......), and muscle fiber composition and size (CSA) were studied in elderly individuals (68-78 yr) chronically exposed (> 50 yr) to either endurance (E) or strength (S) training, and in age-matched, untrained (U) elderly group. RESULTS: E and S showed greater MVC than did U. Contractile RFD was elevated in S...

  5. Matrix metalloproteinase-2 ablation in dystrophin-deficient mdx muscles reduces angiogenesis resulting in impaired growth of regenerated muscle fibers.

    Science.gov (United States)

    Miyazaki, Daigo; Nakamura, Akinori; Fukushima, Kazuhiro; Yoshida, Kunihiro; Takeda, Shin'ichi; Ikeda, Shu-ichi

    2011-05-01

    Matrix metalloproteases (MMPs) are a family of endopeptidases classified into subgroups based on substrate preference in normal physiological processes such as embryonic development and tissue remodeling, as well as in various disease processes via degradation of extracellular matrix components. Among the MMPs, MMP-9 and MMP-2 have been reported to be up-regulated in skeletal muscles in the lethal X-linked muscle disorder Duchenne muscular dystrophy (DMD), which is caused by loss of dystrophin. A recent study showed that deletion of the MMP9 gene in mdx, a mouse model for DMD, improved skeletal muscle pathology and function; however, the role of MMP-2 in the dystrophin-deficient muscle is not well known. In this study, we aimed at verifying the role of MMP-2 in the dystrophin-deficient muscle by using mdx mice with genetic ablation of MMP-2 (mdx/MMP-2(-/-)). We found impairment of regenerated muscle fiber growth with reduction of angiogenesis in mdx/MMP-2(-/-) mice at 3 months of age. Expression of vascular endothelial growth factor-A (VEGF-A), an important angiogenesis-related factor, decreased in mdx/MMP-2(-/-) mice at 3 months of age. MMP-2 had not a critical role in the degradation of dystrophin-glycoprotein complex (DGC) components such as β-dystroglycan and β-sarcoglycan in the regeneration process of the dystrophic muscle. Accordingly, MMP-2 may be essential for growth of regenerated muscle fibers through VEGF-associated angiogenesis in the dystrophin-deficient skeletal muscle.

  6. Size and metabolic properties of fibers in rat fast-twitch muscles after hindlimb suspension

    Science.gov (United States)

    Roy, Roland R.; Bello, Maureen A.; Bouissou, Phillip; Edgerton, V. Reggie

    1987-01-01

    The effect of hind-limb suspension (HS) on single fibers of the medial gastrocnemius (MG) and the tibialis anterior (TA) muscles were studied in rats. Fiber area and the activities of succinate dehydrogenase (SDH) and alpha-glycerophosphate dehydrogenase (GPD) were determined in tissue sections using an image analysis system. After 28 days of HS, the MG atrophied 28 percent, whereas the TA weight was maintained. Both dark- and light-ATPase fibers in the deep region of the MG had decreased cross-sectional areas following HS, with the atrophic response being twice as great in the light-ATPase fibers than in the dark-ATPase fibers. Following HS, mean SDH activities of both fiber types were significantly lower in the MG and TA than in the CON; by contrast, mean GPD activities were either maintained at the CON level or were higher in both MG and TA muscles. The data suggest an independence of the mechanisms determining the muscle fiber size and the metabolic adaptations associated with HS.

  7. Bion 11 Spaceflight Project: Effect of Weightlessness on Single Muscle Fiber Function in Rhesus Monkeys

    Science.gov (United States)

    Fitts, Robert H.; Romatowski, Janell G.; Widrick, Jeffrey J.; DeLaCruz, Lourdes

    1999-01-01

    Although it is well known that microgravity induces considerable limb muscle atrophy, little is known about how weightlessness alters cell function. In this study, we investigated how weightlessness altered the functional properties of single fast and slow striated muscle fibers. Physiological studies were carried out to test the hypothesis that microgravity causes fiber atrophy, a decreased peak force (Newtons), tension (Newtons/cross-sectional area) and power, an elevated peak rate of tension development (dp/dt), and an increased maximal shortening velocity (V(sub o)) in the slow type I fiber, while changes in the fast-twitch fiber are restricted to atrophy and a reduced peak force. For each fiber, we determined the peak force (P(sub o)), V(sub o), dp/dt, the force-velocity relationship, peak power, the power-force relationship, the force-pCa relationship, and fiber stiffness. Biochemical studies were carried out to assess the effects of weightlessness on the enzyme and substrate profile of the fast- and slow-twitch fibers. We predicted that microgravity would increase resting muscle glycogen and glycolytic metabolism in the slow fiber type, while the fast-twitch fiber enzyme profile would be unaltered. The increased muscle glycogen would in part result from an elevated hexokinase and glycogen synthase. The enzymes selected for study represent markers for mitochondrial function (citrate synthase and 0-hydroxyacyl-CoA dehydrogenase), glycolysis (Phosphofructokinase and lactate dehydrogenase), and fatty acid transport (Carnitine acetyl transferase). The substrates analyzed will include glycogen, lactate, adenosine triphosphate, and phosphocreatine.

  8. Impact of Western and Mediterranean Diets and Vitamin D on Muscle Fibers of Sedentary Rats.

    Science.gov (United States)

    Trovato, Francesca Maria; Castrogiovanni, Paola; Szychlinska, Marta Anna; Purrello, Francesco; Musumeci, Giuseppe

    2018-02-17

    The metabolic syndrome is associated with sarcopenia. Decreased serum levels of Vitamin D (VitD) and insulin-like growth factor (IGF)-1 and their mutual relationship were also reported. We aimed to evaluate whether different dietary profiles, containing or not VitD, may exert different effects on muscle molecular morphology. Twenty-eight male rats were fed for 10 weeks in order to detect early defects induced by different dietary regimens: regular diet (R); regular diet with vitamin D supplementation (R-DS) and regular diet with vitamin D restriction (R-DR); high-fat butter-based diets (HFB-DS and HFB-DR) with 41% energy from fat; high-fat extra-virgin olive oil-based diets (HFEVO-DS and HFEVO-DR) with 41% energy from fat. IL-1β, insulin-like growth factor (IGF)1, Dickkopf-1 (DKK-1), and VitD-receptor (VDR) expressions were evaluated by immunohistochemistry. Muscle fiber perimeter was measured by histology and morphometric analysis. The muscle fibers of the HEVO-DS rats were hypertrophic, comparable to those of the R-DS rats. An inverse correlation existed between the dietary fat content and the perimeter of the muscle fibers ( p < 0.01). In the HFB-DR rats, the muscle fibers appeared hypotrophic with an increase of IL-1β and a dramatic decrease of IGF-1 expression. High-fat western diet could impair muscle metabolism and lay the ground for subsequent muscle damage. VitD associated with a Mediterranean diet showed trophic action on the muscle fibers.

  9. Presence and distribution of serotonin immunoreactivity in the cyprids of the barnacle Balanus amphitrite

    Directory of Open Access Journals (Sweden)

    L Gallus

    2009-06-01

    Full Text Available In this work, the presence and distribution of serotonin in the cyprid of the barnacle Balanus amphitrite were investigated by immunohistochemical methods. Serotonin-like immunoreactive neuronal cell bodies were detected in the central nervous system only. Various clusters of immunoreactive neuronal cell bodies are distributed in the brain (protocerebrum, deutocerebrum, optical lobes, and at least, four pairs of neuronal cell bodies were detected in the centrally positioned neuropil of the posterior ganglion. Rich plexuses of immunoreactive nerve fibers in the neuropil area were also observed. Furthermore, bundles of strongly immunoreactive nerve fibers surrounding the gut wall were localized, and immunoreactive nerve terminals in the antennules and compound eyes were observed. These data demonstrate the presence of a serotonin-like immunoreactive substance in the barnacle cyprids; furthermore, its immunolocalization in the cephalic nerve terminals allows us to postulate the involvement of this bioactive molecule in substrate recognition during the settlement process.

  10. The arrangement of muscle fibers and tendons in two muscles used for growth studies.

    Science.gov (United States)

    Stickland, N C

    1983-01-01

    The arrangement of muscle fibres and tendons was examined in the soleus muscle of rats from 6 to 175 days post partum. The muscle was seen to change from a simple structure, with mean fibre length of approximately 90% of complete muscle length, to a unipennate structure, with mean fibre length of only about 60% of muscle length. The dog pectineus muscle was also investigated and found to have a bipennate structure throughout postnatal growth. The arrangement of muscle fibres in both these muscles is such that it might be difficult (particularly in the older animals) to cut a transverse section through all the fibres contained in the muscle; some fibres might not enter the plane of section. Results on muscle fibre number in these muscles at different ages may therefore be misleading.

  11. Transplantation of Devitalized Muscle Scaffolds is Insufficient for Appreciable De Novo Muscle Fiber Regeneration After Volumetric Muscle Loss Injury

    Science.gov (United States)

    2014-10-10

    minced muscle grafts were shown to support de novo skeletal muscle regeneration. For instance, devitalized whole extensor digitorum longus (EDL) muscle...antero- lateral aspect of the ankle, and the distal EDL muscle tendon and extensor hallicus longus (EHL) muscle was isolated and severed above the

  12. Inhibition of FoxO transcriptional activity prevents muscle fiber atrophy during cachexia and induces hypertrophy

    Science.gov (United States)

    Reed, Sarah A.; Sandesara, Pooja B.; Senf, Sarah M.; Judge, Andrew R.

    2012-01-01

    Cachexia is characterized by inexorable muscle wasting that significantly affects patient prognosis and increases mortality. Therefore, understanding the molecular basis of this muscle wasting is of significant importance. Recent work showed that components of the forkhead box O (FoxO) pathway are increased in skeletal muscle during cachexia. In the current study, we tested the physiological significance of FoxO activation in the progression of muscle atrophy associated with cachexia. FoxO-DNA binding dependent transcription was blocked in the muscles of mice through injection of a dominant negative (DN) FoxO expression plasmid prior to inoculation with Lewis lung carcinoma cells or the induction of sepsis. Expression of DN FoxO inhibited the increased mRNA levels of atrogin-1, MuRF1, cathepsin L, and/or Bnip3 and inhibited muscle fiber atrophy during cancer cachexia and sepsis. Interestingly, during control conditions, expression of DN FoxO decreased myostatin expression, increased MyoD expression and satellite cell proliferation, and induced fiber hypertrophy, which required de novo protein synthesis. Collectively, these data show that FoxO-DNA binding-dependent transcription is necessary for normal muscle fiber atrophy during cancer cachexia and sepsis, and further suggest that basal levels of FoxO play an important role during normal conditions to depress satellite cell activation and limit muscle growth.—Reed, S. A., Sandesara, P. B., Senf, S. F., Judge, A. R. Inhibition of FoxO transcriptional activity prevents muscle fiber atrophy during cachexia and induces hypertrophy. PMID:22102632

  13. GLUT4 is reduced in slow muscle fibers of type 2 diabetic patients: is insulin resistance in type 2 diabetes a slow, type 1 fiber disease?

    DEFF Research Database (Denmark)

    Gaster, M; Staehr, P; Beck-Nielsen, H

    2001-01-01

    To gain further insight into the mechanisms underlying muscle insulin resistance, the influence of obesity and type 2 diabetes on GLUT4 immunoreactivity in slow and fast skeletal muscle fibers was studied. Through a newly developed, very sensitive method using immunohistochemistry combined...... and thus contribute to skeletal muscle insulin resistance....

  14. Design and analysis of adaptive honeycomb structure with pneumatic muscle fibers

    Science.gov (United States)

    Yin, Weilong; Tian, Dongkui; Chen, Yijin

    2012-04-01

    The adaptive honeycomb structure actuated by pneumatic muscle fibers is proposed in this paper. The FE model of adaptive honeycomb structure is developed by use of ANSYS software. The elastics modulus of the developed pneumatic muscle fibers is experimentally determined and their output force is tested. The results show that the contraction ratio of the pneumatic muscle fibers with inner diameter of 2mm could reach up to 26.8% and the force could reach to a value of 27N when the applied pressure is 0.4MPa and the contraction ratio is zero. When the adaptive honeycomb has a certain load and an effective output displacement, the applied force must be greater than a certain value. The adaptive honeycomb must be consumed extra energy when the output displacement and force are produced.

  15. The effect of resistance training combined with timed ingestion of protein on muscle fiber size and muscle strength

    DEFF Research Database (Denmark)

    Andersen, L.L.; Tufekovic, G.; Zebis, M.K.

    2005-01-01

    ) concentric and eccentric contractions of the knee extensor muscle was measured in an isokinetic dynamometer. After 14 weeks of resistance training, the protein group showed hypertrophy of type I (18% +/- 5%; P muscle fibers, whereas no change above baseline occurred...... in the carbohydrate group. Squat jump height increased only in the protein group, whereas countermovement jump height and peak torque during slow isokinetic muscle contraction increased similarly in both groups. In conclusion, a minor advantage of protein supplementation over carbohydrate supplementation during......Acute muscle protein metabolism is modulated not only by resistance exercise but also by amino acids. However, less is known about the long-term hypertrophic effect of protein supplementation in combination with resistance training. The present study was designed to compare the effect of 14 weeks...

  16. STRETCHY ELECTRONICS. Hierarchically buckled sheath-core fibers for superelastic electronics, sensors, and muscles.

    Science.gov (United States)

    Liu, Z F; Fang, S; Moura, F A; Ding, J N; Jiang, N; Di, J; Zhang, M; Lepró, X; Galvão, D S; Haines, C S; Yuan, N Y; Yin, S G; Lee, D W; Wang, R; Wang, H Y; Lv, W; Dong, C; Zhang, R C; Chen, M J; Yin, Q; Chong, Y T; Zhang, R; Wang, X; Lima, M D; Ovalle-Robles, R; Qian, D; Lu, H; Baughman, R H

    2015-07-24

    Superelastic conducting fibers with improved properties and functionalities are needed for diverse applications. Here we report the fabrication of highly stretchable (up to 1320%) sheath-core conducting fibers created by wrapping carbon nanotube sheets oriented in the fiber direction on stretched rubber fiber cores. The resulting structure exhibited distinct short- and long-period sheath buckling that occurred reversibly out of phase in the axial and belt directions, enabling a resistance change of less than 5% for a 1000% stretch. By including other rubber and carbon nanotube sheath layers, we demonstrated strain sensors generating an 860% capacitance change and electrically powered torsional muscles operating reversibly by a coupled tension-to-torsion actuation mechanism. Using theory, we quantitatively explain the complementary effects of an increase in muscle length and a large positive Poisson's ratio on torsional actuation and electronic properties. Copyright © 2015, American Association for the Advancement of Science.

  17. The tempo and mode of barnacle evolution

    DEFF Research Database (Denmark)

    Pérez-Losada, Marcos; Harp, Margaret; Høeg, Jens T

    2008-01-01

    (outgroup) species representing almost all the Thoracica families to assess the tempo and mode of barnacle evolution. Using phylogenetic methods of maximum parsimony, maximum likelihood, and Bayesian inference and 14 fossil calibrations, we found that: (1) Iblomorpha form a monophyletic group; (2......) pedunculated barnacles without shell plates (Heteralepadomorpha) are not ancestral, but have evolved, at least twice, from plated forms; (3) the ontogenetic pattern with 5-->6-->8-->12+ plates does not reflect Thoracica shell evolution; (4) the traditional asymmetric barnacles (Verrucidae) and the Balanomorpha......) the Thoracica suborders evolved since the Early Carboniferous (340mya) with the final radiation of the Sessilia in the Upper Jurassic (147mya). These results, therefore, reject many of the underlying hypotheses about character evolution in the Cirripedia Thoracica, stimulate a variety of new thoughts...

  18. Differentiation and fiber type-specific activity of a muscle creatine kinase intronic enhancer

    Directory of Open Access Journals (Sweden)

    Tai Phillip WL

    2011-07-01

    Full Text Available Abstract Background Hundreds of genes, including muscle creatine kinase (MCK, are differentially expressed in fast- and slow-twitch muscle fibers, but the fiber type-specific regulatory mechanisms are not well understood. Results Modulatory region 1 (MR1 is a 1-kb regulatory region within MCK intron 1 that is highly active in terminally differentiating skeletal myocytes in vitro. A MCK small intronic enhancer (MCK-SIE containing a paired E-box/myocyte enhancer factor 2 (MEF2 regulatory motif resides within MR1. The SIE's transcriptional activity equals that of the extensively characterized 206-bp MCK 5'-enhancer, but the MCK-SIE is flanked by regions that can repress its activity via the individual and combined effects of about 15 different but highly conserved 9- to 24-bp sequences. ChIP and ChIP-Seq analyses indicate that the SIE and the MCK 5'-enhancer are occupied by MyoD, myogenin and MEF2. Many other E-boxes located within or immediately adjacent to intron 1 are not occupied by MyoD or myogenin. Transgenic analysis of a 6.5-kb MCK genomic fragment containing the 5'-enhancer and proximal promoter plus the 3.2-kb intron 1, with and without MR1, indicates that MR1 is critical for MCK expression in slow- and intermediate-twitch muscle fibers (types I and IIa, respectively, but is not required for expression in fast-twitch muscle fibers (types IIb and IId. Conclusions In this study, we discovered that MR1 is critical for MCK expression in slow- and intermediate-twitch muscle fibers and that MR1's positive transcriptional activity depends on a paired E-box MEF2 site motif within a SIE. This is the first study to delineate the DNA controls for MCK expression in different skeletal muscle fiber types.

  19. Muscle fiber velocity and electromyographic signs of fatigue in fibromyalgia

    NARCIS (Netherlands)

    Klaver-Krol, E.G.; Rasker, J.J.; Henriquez, N.R.; Verheijen, W.G.; Zwarts, M.J.

    2012-01-01

    INTRODUCTION: Fibromyalgia (FM) is a disorder of widespread muscular pain. We investigated possible differences in surface electromyography (sEMG) in clinically unaffected muscle between patients with FM and controls. METHODS: sEMG was performed on the biceps brachii muscle of 13 women with FM and

  20. Muscle fiber velocity and electromyographic signs of fatigue in fibromyalgia

    NARCIS (Netherlands)

    Klaver-Krol, E.G.; Rasker, Johannes J.; Henriquez, N.R.; Verheijen, W.G.; Zwarts, M.J.

    2012-01-01

    Introduction: Fibromyalgia (FM) is a disorder of widespread muscular pain. We investigated possible differences in surface electromyography (sEMG) in clinically unaffected muscle between patients with FM and controls. Methods: sEMG was performed on the biceps brachii muscle of 13 women with FM and

  1. Na+-K+-ATPase in rat skeletal muscle: muscle fiber-specific differences in exercise-induced changes in ion affinity and maximal activity

    DEFF Research Database (Denmark)

    Juel, Carsten

    2008-01-01

    It is unclear whether muscle activity reduces or increases Na(+)-K(+)-ATPase maximal in vitro activity in rat skeletal muscle, and it is not known whether muscle activity changes the Na(+)-K(+)-ATPase ion affinity. The present study uses quantification of ATP hydrolysis to characterize muscle fiber...... membranes of glycolytic muscle, which abolished the fiber-type difference in Na(+) affinity. K(m) for K(+) (in the presence of Na(+)) was not influenced by running. Running only increased the maximal in vitro activity (V(max)) in total membranes from soleus, whereas V(max) remained constant in the three...... other muscles tested. In conclusion, muscle activity induces fiber type-specific changes both in Na(+) affinity and maximal in vitro activity of the Na(+)-K(+)-ATPase. The underlying mechanisms may involve translocation of subunits and increased association between PLM units and the alphabeta complex...

  2. The arrangement of muscle fibers and tendons in two muscles used for growth studies.

    OpenAIRE

    Stickland, N C

    1983-01-01

    The arrangement of muscle fibres and tendons was examined in the soleus muscle of rats from 6 to 175 days post partum. The muscle was seen to change from a simple structure, with mean fibre length of approximately 90% of complete muscle length, to a unipennate structure, with mean fibre length of only about 60% of muscle length. The dog pectineus muscle was also investigated and found to have a bipennate structure throughout postnatal growth. The arrangement of muscle fibres in both these mus...

  3. Changes in types of muscle fibers induced by transcutaneous electrical stimulation of the diaphragm of rats

    Directory of Open Access Journals (Sweden)

    D. Costa

    2008-09-01

    Full Text Available The objective of the present study was to assess the effect of transcutaneous electrical diaphragmatic stimulation (TEDS on different types of diaphragm muscle fibers. Male Wistar rats (8-12 weeks old were divided into 2 experimental groups (N = 8 in each group: 1 control, 2 animals submitted to TEDS [frequency = 50 Hz; T ON/T OFF (contraction/relaxation time = 2/2 s; pulse duration = 0.4 ms, intensity = 5 mA with a 1 mA increase every 3 min for 20 min] for 7 days. After completing this treatment period, the I, IIA, IIB, and IID diaphragm muscle fibers were identified using the mATPase technique. Statistical analysis consisted of the normality, homoscedasticity and t-tests (P < 0.05. There was a 19.6% (P < 0.05 reduction in the number of type I fibers and a 49.7% increase (P < 0.05 in type IID fibers in the TEDS group compared with the control group. An important result of the present study was that electrical stimulation with surface electrodes was efficient in altering the distribution of fibers in diaphragm muscle. This therapeutic resource could be used in the treatment of respiratory muscle alterations.

  4. Influence of muscle fiber type composition on early fat accumulation under high-fat diet challenge

    OpenAIRE

    Hua, Ning; Takahashi, Hirokazu; Yee, Grace M.; Kitajima, Yoichiro; Katagiri, Sayaka; Kojima, Motoyasu; Anzai, Keizo; Eguchi, Yuichiro; Hamilton, James A.

    2017-01-01

    Objective: To investigate whether differences in muscle fiber types affect early-stage fat accumulation, under high fat diet challenge in mice. Methods: Twelve healthy male C57BL/6 mice experienced with short-term (6 weeks) diet treatment for the evaluation of early pattern changes in muscular fat. The mice were randomly divided into two groups: high fat diet (n = 8) and normal control diet (n = 4). Extra- and intra-myocellular lipid (EMCL and IMCL) in lumbar muscles (type I fiber predominant...

  5. The Masticatory Contractile Load Induced Expression and Activation of Akt1/PKBα in Muscle Fibers at the Myotendinous Junction within Muscle-Tendon-Bone Unit

    Directory of Open Access Journals (Sweden)

    Yüksel Korkmaz

    2010-01-01

    Full Text Available The cell specific detection of enzyme activation in response to the physiological contractile load within muscle-tendon-bone unit is essential for understanding of the mechanical forces transmission from muscle cells via tendon to the bone. The hypothesis that the physiological mechanical loading regulates activation of Akt1/PKBα at Thr308 and at Ser473 in muscle fibers within muscle-tendon-bone unit was tested using quantitative immunohistochemistry, confocal double fluorescence analysis, and immunoblot analysis. In comparison to the staining intensities in peripheral regions of the muscle fibers, Akt1/PKBα was detected with a higher staining intensity in muscle fibers at the myotendinous junction (MTJ areas. In muscle fibers at the MTJ areas, Akt1/PKBα is dually phosphorylated at Thr308 and Ser473. The immunohistochemical results were confirmed by immunoblot analysis. We conclude that contractile load generated by masticatory muscles induces local domain-dependent expression of Akt1/PKBα as well as activation by dually phosphorylation at Thr308 and Ser473 in muscle fibers at the MTJ areas within muscle-tendon-bone unit.

  6. Regulation of the muscle fiber microenvironment by activated satellite cells during hypertrophy

    Science.gov (United States)

    Fry, Christopher S.; Lee, Jonah D.; Jackson, Janna R.; Kirby, Tyler J.; Stasko, Shawn A.; Liu, Honglu; Dupont-Versteegden, Esther E.; McCarthy, John J.; Peterson, Charlotte A.

    2014-01-01

    Our aim in the current study was to determine the necessity of satellite cells for long-term muscle growth and maintenance. We utilized a transgenic Pax7-DTA mouse model, allowing for the conditional depletion of > 90% of satellite cells with tamoxifen treatment. Synergist ablation surgery, where removal of synergist muscles places functional overload on the plantaris, was used to stimulate robust hypertrophy. Following 8 wk of overload, satellite cell-depleted muscle demonstrated an accumulation of extracellular matrix (ECM) and fibroblast expansion that resulted in reduced specific force of the plantaris. Although the early growth response was normal, an attenuation of hypertrophy measured by both muscle wet weight and fiber cross-sectional area occurred in satellite cell-depleted muscle. Isolated primary myogenic progenitor cells (MPCs) negatively regulated fibroblast ECM mRNA expression in vitro, suggesting a novel role for activated satellite cells/MPCs in muscle adaptation. These results provide evidence that satellite cells regulate the muscle environment during growth.—Fry, C. S., Lee, J. D., Jackson, J. R., Kirby, T. J., Stasko, S. A., Liu, H., Dupont-Versteegden, E. E., McCarthy, J. J., Peterson, C. A. Regulation of the muscle fiber microenvironment by activated satellite cells during hypertrophy. PMID:24376025

  7. Function and position determine relative proportions of different fiber types in limb muscles of the lizard Tropidurus psammonastes.

    Science.gov (United States)

    Pereira, Anieli G; Abdala, Virginia; Kohlsdorf, Tiana

    2015-02-01

    Skeletal muscles can be classified as flexors or extensors according to their function, and as dorsal or ventral according to their position. The latter classification evokes their embryological origin from muscle masses initially divided during limb development, and muscles sharing a given position do not necessarily perform the same function. Here, we compare the relative proportions of different fiber types among six limb muscles in the lizard Tropidurus psammonastes. Individual fibers were classified as slow oxidative (SO), fast glycolytic (FG) or fast oxidative-glycolytic (FOG) based on mitochondrial content; muscles were classified according to position and function. Mixed linear models considering one or both effects were compared using likelihood ratio tests. Variation in the proportion of FG and FOG fibers is mainly explained by function (flexor muscles have on average lower proportions of FG and higher proportions of FOG fibers), while variation in SO fibers is better explained by position (they are less abundant in ventral muscles than in those developed from a dorsal muscle mass). Our results clarify the roles of position and function in determining the relative proportions of the various muscle fibers and provide evidence that these factors may differentially affect distinct fiber types. Copyright © 2014. Published by Elsevier GmbH.

  8. Smooth muscle-like tissue constructs with circumferentially oriented cells formed by the cell fiber technology.

    Directory of Open Access Journals (Sweden)

    Amy Y Hsiao

    Full Text Available The proper functioning of many organs and tissues containing smooth muscles greatly depends on the intricate organization of the smooth muscle cells oriented in appropriate directions. Consequently controlling the cellular orientation in three-dimensional (3D cellular constructs is an important issue in engineering tissues of smooth muscles. However, the ability to precisely control the cellular orientation at the microscale cannot be achieved by various commonly used 3D tissue engineering building blocks such as spheroids. This paper presents the formation of coiled spring-shaped 3D cellular constructs containing circumferentially oriented smooth muscle-like cells differentiated from dedifferentiated fat (DFAT cells. By using the cell fiber technology, DFAT cells suspended in a mixture of extracellular proteins possessing an optimized stiffness were encapsulated in the core region of alginate shell microfibers and uniformly aligned to the longitudinal direction. Upon differentiation induction to the smooth muscle lineage, DFAT cell fibers self-assembled to coiled spring structures where the cells became circumferentially oriented. By changing the initial core-shell microfiber diameter, we demonstrated that the spring pitch and diameter could be controlled. 21 days after differentiation induction, the cell fibers contained high percentages of ASMA-positive and calponin-positive cells. Our technology to create these smooth muscle-like spring constructs enabled precise control of cellular alignment and orientation in 3D. These constructs can further serve as tissue engineering building blocks for larger organs and cellular implants used in clinical treatments.

  9. Smooth muscle-like tissue constructs with circumferentially oriented cells formed by the cell fiber technology.

    Science.gov (United States)

    Hsiao, Amy Y; Okitsu, Teru; Onoe, Hiroaki; Kiyosawa, Mahiro; Teramae, Hiroki; Iwanaga, Shintaroh; Kazama, Tomohiko; Matsumoto, Taro; Takeuchi, Shoji

    2015-01-01

    The proper functioning of many organs and tissues containing smooth muscles greatly depends on the intricate organization of the smooth muscle cells oriented in appropriate directions. Consequently controlling the cellular orientation in three-dimensional (3D) cellular constructs is an important issue in engineering tissues of smooth muscles. However, the ability to precisely control the cellular orientation at the microscale cannot be achieved by various commonly used 3D tissue engineering building blocks such as spheroids. This paper presents the formation of coiled spring-shaped 3D cellular constructs containing circumferentially oriented smooth muscle-like cells differentiated from dedifferentiated fat (DFAT) cells. By using the cell fiber technology, DFAT cells suspended in a mixture of extracellular proteins possessing an optimized stiffness were encapsulated in the core region of alginate shell microfibers and uniformly aligned to the longitudinal direction. Upon differentiation induction to the smooth muscle lineage, DFAT cell fibers self-assembled to coiled spring structures where the cells became circumferentially oriented. By changing the initial core-shell microfiber diameter, we demonstrated that the spring pitch and diameter could be controlled. 21 days after differentiation induction, the cell fibers contained high percentages of ASMA-positive and calponin-positive cells. Our technology to create these smooth muscle-like spring constructs enabled precise control of cellular alignment and orientation in 3D. These constructs can further serve as tissue engineering building blocks for larger organs and cellular implants used in clinical treatments.

  10. Fiber type specific expression of TNF-alpha, IL-6 and IL-18 in human skeletal muscles

    DEFF Research Database (Denmark)

    Plomgaard, Peter; Penkowa, Milena; Pedersen, Bente K

    2005-01-01

    Skeletal muscle is now recognized as an endocrine organ with the capacity to produce signal peptides in response to muscle contractions. Here we demonstrate that resting healthy human muscles express cytokines in a fiber type specific manner. Human muscle biopsies from seven healthy young males...... were obtained from m. triceps, m. quadriceps vastus lateralis and m. soleus. Type I fibers contributed (mean +/- SE) 24.0 +/- 2.5% in triceps of total fibers, 51.3 +/- 2.4% in vastus and 84.9 +/- 22% in soleus. As expected, differences in the fiber type composition were accompanied by marked...... differences between the three muscles with regard to MHC I and MHC IIa mRNA expression. Immunohistochemistry demonstrated that tumor necrosis factor (TNF)-alpha and interleukin (IL)-18 were solely expressed by type II fibers, whereas the expression of IL-6 was more prominent in type I compared to type II...

  11. Coenzyme Q10 Deficiency and Type 2C Muscle Fibers

    Directory of Open Access Journals (Sweden)

    J Gordon Millichap

    2013-12-01

    Full Text Available Investigators at Washington University School of Medicine, St Louis, MO, evaluated retrospectively clinical, laboratory, and muscle histochemistry and oxidative enzyme characteristics in 49 children with suspected mitochondrial disorders.

  12. Changes in human muscle oxygen saturation and mean fiber conduction velocity during intense dynamic exercise - effect of muscular training status

    DEFF Research Database (Denmark)

    Kilen, Anders; Gizzi, Leonardo; Jensen, Bente Rona

    2012-01-01

    Introduction: In this study we investigated whether an association exists between muscle fiber conduction velocity (MFCV) and local muscle oxygen saturation (StO(2) ) in the superficial part of the latissimus dorsi muscle of runners and swimmers during exhaustive dynamic exercise. Methods...... correlated in both swimmers and runners. Conclusion: No association exists between surface MFCV and StO(2) in either trained or untrained human skeletal muscle during exhaustive intense dynamic exercise. Muscle Nerve, 2012....

  13. RNA sequencing reveals a slow to fast muscle fiber type transition after olanzapine infusion in rats.

    Directory of Open Access Journals (Sweden)

    Christopher J Lynch

    Full Text Available Second generation antipsychotics (SGAs, like olanzapine, exhibit acute metabolic side effects leading to metabolic inflexibility, hyperglycemia, adiposity and diabetes. Understanding how SGAs affect the skeletal muscle transcriptome could elucidate approaches for mitigating these side effects. Male Sprague-Dawley rats were infused intravenously with vehicle or olanzapine for 24h using a dose leading to a mild hyperglycemia. RNA-Seq was performed on gastrocnemius muscle, followed by alignment of the data with the Rat Genome Assembly 5.0. Olanzapine altered expression of 1347 out of 26407 genes. Genes encoding skeletal muscle fiber-type specific sarcomeric, ion channel, glycolytic, O2- and Ca2+-handling, TCA cycle, vascularization and lipid oxidation proteins and pathways, along with NADH shuttles and LDH isoforms were affected. Bioinformatics analyses indicate that olanzapine decreased the expression of slower and more oxidative fiber type genes (e.g., type 1, while up regulating those for the most glycolytic and least metabolically flexible, fast twitch fiber type, IIb. Protein turnover genes, necessary to bring about transition, were also up regulated. Potential upstream regulators were also identified. Olanzapine appears to be rapidly affecting the muscle transcriptome to bring about a change to a fast-glycolytic fiber type. Such fiber types are more susceptible than slow muscle to atrophy, and such transitions are observed in chronic metabolic diseases. Thus these effects could contribute to the altered body composition and metabolic disease olanzapine causes. A potential interventional strategy is implicated because aerobic exercise, in contrast to resistance exercise, can oppose such slow to fast fiber transitions.

  14. Protein Supplementation Does Not Further Increase Latissimus Dorsi Muscle Fiber Hypertrophy after Eight Weeks of Resistance Training in Novice Subjects, but Partially Counteracts the Fast-to-Slow Muscle Fiber Transition

    Directory of Open Access Journals (Sweden)

    Antonio Paoli

    2016-06-01

    Full Text Available The response to resistance training and protein supplementation in the latissimus dorsi muscle (LDM has never been investigated. We investigated the effects of resistance training (RT and protein supplementation on muscle mass, strength, and fiber characteristics of the LDM. Eighteen healthy young subjects were randomly assigned to a progressive eight-week RT program with a normal protein diet (NP or high protein diet (HP (NP 0.85 vs. HP 1.8 g of protein·kg−1·day−1. One repetition maximum tests, magnetic resonance imaging for cross-sectional muscle area (CSA, body composition, and single muscle fibers mechanical and phenotype characteristics were measured. RT induced a significant gain in strength (+17%, p < 0.0001, whole muscle CSA (p = 0.024, and single muscle fibers CSA (p < 0.05 of LDM in all subjects. Fiber isometric force increased in proportion to CSA (+22%, p < 0.005 and thus no change in specific tension occurred. A significant transition from 2X to 2A myosin expression was induced by training. The protein supplementation showed no significant effects on all measured outcomes except for a smaller reduction of 2X myosin expression. Our results suggest that in LDM protein supplementation does not further enhance RT-induced muscle fiber hypertrophy nor influence mechanic muscle fiber characteristics but partially counteracts the fast-to-slow fiber shift.

  15. Controlled chaos: three-dimensional kinematics, fiber histochemistry, and muscle contractile dynamics of autotomized lizard tails.

    Science.gov (United States)

    Higham, Timothy E; Lipsett, Kathryn R; Syme, Douglas A; Russell, Anthony P

    2013-01-01

    The ability to shed an appendage occurs in both vertebrates and invertebrates, often as a tactic to avoid predation. The tails of lizards, unlike most autotomized body parts of animals, exhibit complex and vigorous movements once disconnected from the body. Despite the near ubiquity of autotomy across groups of lizards and the fact that this is an extraordinary event involving the self-severing of the spinal cord, our understanding of why and how tails move as they do following autotomy is sparse. We herein explore the histochemistry and physiology of the tail muscles of the leopard gecko (Eublepharis macularius), a species that exhibits vigorous and variable tail movements following autotomy. To confirm that the previously studied tail movements of this species are generally representative of geckos and therefore suitable for in-depth muscle studies, we quantified the three-dimensional kinematics of autotomized tails in three additional species. The movements of the tails of all species were generally similar and included jumps, flips, and swings. Our preliminary analyses suggest that some species of gecko exhibit short but high-frequency movements, whereas others exhibit larger-amplitude but lower-frequency movements. We then compared the ATPase and oxidative capacity of muscle fibers and contractile dynamics of isolated muscle bundles from original tails, muscle from regenerate tails, and fast fibers from an upper limb muscle (iliofibularis) of the leopard gecko. Histochemical analysis revealed that more than 90% of the fibers in original and regenerate caudal muscles had high ATPase but possessed a superficial layer of fibers with low ATPase and high oxidative capacity. We found that contraction kinetics, isometric force, work, power output, and the oscillation frequency at which maximum power was generated were lowest in the original tail, followed by the regenerate tail and then the fast fibers of the iliofibularis. Muscle from the original tail exhibited

  16. Role of selected polymorphisms in determining muscle fiber composition in Japanese men and women.

    Science.gov (United States)

    Kumagai, Hiroshi; Tobina, Takuro; Ichinoseki-Sekine, Noriko; Kakigi, Ryo; Tsuzuki, Takamasa; Zempo, Hirofumi; Shiose, Keisuke; Yoshimura, Eiichi; Kumahara, Hideaki; Ayabe, Makoto; Higaki, Yasuki; Yamada, Ryo; Kobayashi, Hiroyuki; Kiyonaga, Akira; Naito, Hisashi; Tanaka, Hiroaki; Fuku, Noriyuki

    2018-01-18

    Genetic polymorphisms and sex differences are suggested to affect muscle fiber composition; however, no study has investigated the effects of genetic polymorphisms on muscle fiber composition with respect to sex differences. Therefore, the present study examined the effects of genetic polymorphisms on muscle fiber composition with respect to sex differences in Japanese population. The present study included 211 healthy Japanese individuals (102 men and 109 women). Muscle biopsies were obtained from the vastus lateralis to determine the proportion of myosin heavy chain isoforms (MHC-I, MHC-IIa, and MHC-IIx). Moreover, we analysed polymorphisms in ACTN3 (rs1815739), ACE (rs4341), HIF1A (rs11549465), VEGFR2 (rs1870377), and AGTR2 (rs11091046) by TaqMan SNP genotyping assays. The proportion of MHC-I was 9.8% lower in men than in women, whereas the proportion of MHC-IIa and MHC-IIx was higher in men than in women (5.0% and 4.6%, respectively). Men with ACTN3 RR+RX genotype had 4.8% higher proportion of MHC-IIx than those with ACTN3 XX genotype. Moreover, men with ACE ID+DD genotype had 4.7% higher proportion of MHC-I than those with ACE II genotype. Furthermore, combined genotype of ACTN3 R577X and ACE I/D was significantly correlated with proportion of MHC-I (r = -0.23) and MHC-IIx (r = 0.27) in men. In contrast, no significant correlation was observed between the examined polymorphisms and muscle fiber composition in women. These results suggest that the ACTN3 R577X and ACE I/D polymorphisms independently affect the proportion of human skeletal muscle fibers MHC-I and MHC-IIx in men but not in women.

  17. Anatomical distribution of voltage-dependent membrane capacitance in frog skeletal muscle fibers.

    Science.gov (United States)

    Huang, C L; Peachey, L D

    1989-03-01

    Components of nonlinear capacitance, or charge movement, were localized in the membranes of frog skeletal muscle fibers by studying the effect of 'detubulation' resulting from sudden withdrawal of glycerol from a glycerol-hypertonic solution in which the muscles had been immersed. Linear capacitance was evaluated from the integral of the transient current elicited by imposed voltage clamp steps near the holding potential using bathing solutions that minimized tubular voltage attenuation. The dependence of linear membrane capacitance on fiber diameter in intact fibers was consistent with surface and tubular capacitances and a term attributable to the capacitance of the fiber end. A reduction in this dependence in detubulated fibers suggested that sudden glycerol withdrawal isolated between 75 and 100% of the transverse tubules from the fiber surface. Glycerol withdrawal in two stages did not cause appreciable detubulation. Such glycerol-treated but not detubulated fibers were used as controls. Detubulation reduced delayed (q gamma) charging currents to an extent not explicable simply in terms of tubular conduction delays. Nonlinear membrane capacitance measured at different voltages was expressed normalized to accessible linear fiber membrane capacitance. In control fibers it was strongly voltage dependent. Both the magnitude and steepness of the function were markedly reduced by adding tetracaine, which removed a component in agreement with earlier reports for q gamma charge. In contrast, detubulated fibers had nonlinear capacitances resembling those of q beta charge, and were not affected by adding tetracaine. These findings are discussed in terms of a preferential localization of tetracaine-sensitive (q gamma) charge in transverse tubule membrane, in contrast to a more even distribution of the tetracaine-resistant (q beta) charge in both transverse tubule and surface membranes. These results suggest that q beta and q gamma are due to different molecules and that

  18. Muscle Fiber Specific Antioxidative System Adaptation to Swim Training in Rats: Influence of Intermittent Hypoxia

    Science.gov (United States)

    Gonchar, Olga

    2005-01-01

    The aim of the present study was to examine the influence of intermittent hypoxia at rest and in combination with long-term high-intensity swimming exercise on lipid peroxidation and antioxidant defense system adaptation in skeletal muscles differing in fiber type composition. High-intensity chronic exercise was performed as swimming training with load that corresponded to ~ 75 % VO2max (30 min·day-1, 5 days·wk-1, for 4 wk). Intermittent hypoxic training (IHT) consisted of repeated episodes of hypoxia (12%O2, 15 min), interrupted by equal periods of recovery (5 sessions/day, for 2 wk). Sessions of IHT were used during the first two weeks and during the last two weeks of chronic exercise. Oxidative (red gastrocnemius and soleus, mix) and glycolytic (white gastrocnemius) muscles were sampled. Our results indicated that high-intensity swim training in combination with sessions of IHT induced more profound antioxidative adaptations in skeletal muscles than the exercise training only. This adaptation has muscle fiber type specificity and is reflected in significantly elevated superoxide dismutase and catalase activities in highly oxidative muscle only. Training adaptation of GSH system (reduced glutathione content, activities of glutathione reductase, glutathione peroxidase, NADPH-supplying enzyme glucose-6-phosphate dehydrogenase) occurred both in slow- and fast-twitch muscles. However, this process was more effective in oxidative muscles. IHT attenuated the increase in TBARS content induced by high-intensity swimming training. The test on exercise tolerance demonstrated a significant elevation of the swimming time to exhaustion after IHT at rest and after IHT in conjunction with high-intensity exercise in comparison with untrained and chronically exercised rats. These results confirmed that sessions of IHT might improve exercise tolerance and increase maximal work capacity. Key PointsSingle high-intensity exercise induces a significant increase in TBARS content

  19. CREATINE SUPPLEMENTATION INDUCES ALTERATION IN CROSS-SECTIONAL AREA IN SKELETAL MUSCLE FIBERS OF WISTAR RATS UNDER SWIMMING TRAINING

    Directory of Open Access Journals (Sweden)

    Luiz C. Fernandes

    2002-09-01

    Full Text Available Creatine has been shown to increase the total muscle mass. In this study, we investigated the effect of oral creatine monohydrate supplementation on cross-sectional area of type I, IIA and IIB fibers of gastrocnemius, extensor digitorum longus - EDL and soleus muscles from male Wistar rats subjected to swimming training for 33 days. Four groups were set up: sedentary with no supplementation (CON, sedentary with creatine supplementation (3.3 mg creatine per g chow (CR, exercised with no supplementation (EX and exercised with supplementation (CREX. The rats performed in a special swimming pool and swam five times a week for 1 hour each day, with a extra lead weight corresponding to 15% of their body weight. At the end of 33 days, skeletal muscles of the animals were dissected and the samples got immediately frozen using liquid nitrogen. Muscle samples were allocated to slices of 10 µm by a cryostat at -20ºC, which was followed by histochemical analysis in order to identify fiber types of the muscles, and morphometrical analysis to calculate the muscle fiber areas. All groups gained body weight at the end of 33 days but there was no statistical difference among them. The EX and CREX rats had a larger food intake than the sedentary groups (CON and CR, and the CREX group had a larger food intake than CR rats. The cross-sectional area of type I and IIA fibers of the soleus muscle, type IIA and IIB fibers of EDL muscle and type IIA and IIB fibers of the white portion of gastrocnemius muscle were greater in the EX and CREX groups in comparison to sedentary rats. In addition, these fibers were greater in the CREX rats than in the EX group. There was no change in the cross sectional area of type I fibers in EDL muscle among all groups studied. Our results suggest that creatine supplementation enhances the exercise related muscle fiber hypertrophy in rodents

  20. Altered skeletal muscle fiber composition and size precede whole-body insulin resistance in young men with low birth weight

    DEFF Research Database (Denmark)

    Jensen, Christine B; Storgaard, Heidi; Madsbad, Sten

    2007-01-01

    CONTEXT: Low birth weight (LBW), a surrogate marker of an adverse fetal milieu, is linked to muscle insulin resistance, impaired insulin-stimulated glycolysis, and future risk of type 2 diabetes. Skeletal muscle mass, fiber composition, and capillary density are important determinants of muscle f...... was not significantly different between groups. CONCLUSION: Alterations in fiber composition and size may contribute to development of type 2 diabetes in individuals with LBW....

  1. Supramaximal stimuli do not evoke a maximal contraction in urinary bladder smooth muscle fibers

    NARCIS (Netherlands)

    J. Minekus (Joanne); A.J. Visser (Anna); R. van Mastrigt (Ron)

    2001-01-01

    textabstractBACKGROUND: Smooth muscle fibers can be stimulated with an electrical field, high potassium or carbachol. We studied the effect of combined, supramaximal stimulation on the isometric force and the maximum shortening velocity of the pig urinary bladder. MATERIALS AND METHODS: After

  2. Expression of Dihydropyridine and Ryanodine Receptors in Type IIA Fibers of Rat Skeletal Muscle

    International Nuclear Information System (INIS)

    Anttila, Katja; Mänttäri, Satu; Järvilehto, Matti

    2007-01-01

    In this study, the fiber type specificity of dihydropyridine receptors (DHPRs) and ryanodine receptors (RyRs) in different rat limb muscles was investigated. Western blot and histochemical analyses provided for the first time evidence that the expression of both receptors correlates to a specific myosin heavy chain (MHC) composition. We observed a significant (p=0.01) correlation between DHP as well as Ry receptor density and the expression of MHC IIa (correlation factor r=0.674 and r=0.645, respectively) in one slow-twitch, postural muscle (m. soleus), one mixed, fast-twitch muscle (m. gastrocnemius) and two fast-twitch muscles (m. rectus femoris, m. extensor digitorum longus). The highest DHP and Ry receptor density was found in the white part of m. rectus femoris (0.058±0.0060 and 0.057±0.0158 ODu, respectively). As expected, the highest relative percentage of MHC IIa was also found in the white part of m. rectus femoris (70.0±7.77%). Furthermore, histochemical experiments revealed that the IIA fibers stained most strongly for the fluorophore-conjugated receptor blockers. Our data clearly suggest that the expression of DHPRs and RyRs follows a fiber type-specific pattern, indicating an important role for these proteins in the maintenance of an effective Ca 2+ cycle in the fast contracting fiber type IIA

  3. Effect of Tongue Exercise on Protrusive Force and Muscle Fiber Area in Aging Rats

    Science.gov (United States)

    Connor, Nadine P.; Russell, John A.; Wang, Hao; Jackson, Michelle A.; Mann, Laura; Kluender, Keith

    2009-01-01

    Purpose: Age-related changes in tongue function may contribute to dysphagia in elderly people. The authors' purpose was to investigate whether aged rats that have undergone tongue exercise would manifest increased protrusive tongue forces and increased genioglossus (GG) muscle fiber cross-sectional areas. Method: Forty-eight young adult,…

  4. An image processing pipeline to detect and segment nuclei in muscle fiber microscopic images.

    Science.gov (United States)

    Guo, Yanen; Xu, Xiaoyin; Wang, Yuanyuan; Wang, Yaming; Xia, Shunren; Yang, Zhong

    2014-08-01

    Muscle fiber images play an important role in the medical diagnosis and treatment of many muscular diseases. The number of nuclei in skeletal muscle fiber images is a key bio-marker of the diagnosis of muscular dystrophy. In nuclei segmentation one primary challenge is to correctly separate the clustered nuclei. In this article, we developed an image processing pipeline to automatically detect, segment, and analyze nuclei in microscopic image of muscle fibers. The pipeline consists of image pre-processing, identification of isolated nuclei, identification and segmentation of clustered nuclei, and quantitative analysis. Nuclei are initially extracted from background by using local Otsu's threshold. Based on analysis of morphological features of the isolated nuclei, including their areas, compactness, and major axis lengths, a Bayesian network is trained and applied to identify isolated nuclei from clustered nuclei and artifacts in all the images. Then a two-step refined watershed algorithm is applied to segment clustered nuclei. After segmentation, the nuclei can be quantified for statistical analysis. Comparing the segmented results with those of manual analysis and an existing technique, we find that our proposed image processing pipeline achieves good performance with high accuracy and precision. The presented image processing pipeline can therefore help biologists increase their throughput and objectivity in analyzing large numbers of nuclei in muscle fiber images. © 2014 Wiley Periodicals, Inc.

  5. Genetic Effects of Polymorphisms in Myogenic Regulatory Factors on Chicken Muscle Fiber Traits

    Directory of Open Access Journals (Sweden)

    Zhi-Qin Yang

    2015-06-01

    Full Text Available The myogenic regulatory factors is a family of transcription factors that play a key role in the development of skeletal muscle fibers, which are the main factors to affect the meat taste and texture. In the present study, we performed candidate gene analysis to identify single-nucleotide polymorphisms in the MyoD, Myf5, MyoG, and Mrf4 genes using polymerase chain reaction-single strand conformation polymorphism in 360 Erlang Mountain Chickens from three different housing systems (cage, pen, and free-range. The general linear model procedure was used to estimate the statistical significance of association between combined genotypes and muscle fiber traits of chickens. Two polymorphisms (g.39928301T>G and g.11579368C>T were detected in the Mrf4 and MyoD gene, respectively. The diameters of thigh and pectoralis muscle fibers were higher in birds with the combined genotypes of GG-TT and TT-CT (p0.05. Our findings suggest that the combined genotypes of TT-CT and GG-TT might be advantageous for muscle fiber traits, and could be the potential genetic markers for breeding program in Erlang Mountain Chickens.

  6. Different responses in soleus muscle fibers of Wistar and Wistar Hannover rats to hindlimb unloading

    Science.gov (United States)

    Wang, Xiaodong; Kawano, Fuminori; Terada, Masahiro; Matsuoka, Yoshikazu; Shinoda, Yo; Ishihara, Akihiko; Ohira, Yoshinobu

    2005-08-01

    Effects of 16 days of hindlimb suspension on the characteristics of single soleus muscle fibers were compared between male Wistar and Wistar Hannover rats (5 weeks old). The greater effects of unloading were noted in Wistar Hannover rats. The unloading-related reductions of muscle weight and fiber cross-sectional area vs. the pre-suspension levels were greater than Wistar rats. The percent of fibers expressing pure type I myosin heavy chain (MHC) was decreased and that of type I+II MHC fibers was increased, the magnitudes of these changes were greater than Wistar rats. Total number of myonuclei in control situation was greater in Wistar Hannover rats, but the more numbers of myonuclei were decreased following unloading. Responses of myonuclear domain levels were similar. The numbers of both quiescent and mitotic active satellite cells in control situation were greater in Wistar rats. But the magnitude of the unloading- related decrease was identical for Wistar Hannover and Wistar rats. Although the level of heat shock protein 27 (HSP27) expression in Wistar rats was decreased by unloading, de novo appearance of HSP27 was noted in Wistar Hannover rats. It is suggested that greater responses of soleus muscle fibers of Wistar Hannover than Wistar rats may be related to the different expression of protein, although the precise mechanism is still unclear.

  7. Newly formed skeletal muscle fibers are prone to false positive immunostaining by rabbit antibodies

    DEFF Research Database (Denmark)

    Andersen, Ditte C; Kliem, Anette; Schrøder, Henrik Daa

    2011-01-01

    Reports on muscle biology and regeneration often implicate immuno(cyto/histo)chemical protein characterization using rabbit polyclonal antibodies. In this study we demonstrate that newly formed myofibers are especially prone to false positive staining by rabbit antibodies and this unwanted staining...... is only recognized (1) by a negative muscle tissue control that does not harbor the protein to be examined (fx. from knockout mouse) or (2) by use of a nonsense rabbit antibody that has been prepared in the same way as the antibody of interest. However, many muscle immuno(cyto/histo)chemical studies only...... rely on controls that reveal non-specific binding by the secondary antibody and neglect that the primary rabbit antibody itself may cause false positive staining of the muscle. We suggest that reliable immuno-based protein detection in newly formed muscle fibers at least requires a nonsense rabbit...

  8. Tetranectin in slow intra- and extrafusal chicken muscle fibers

    DEFF Research Database (Denmark)

    Xu, X; Gilpin, B; Iba, K

    2001-01-01

    Tetranectin is a C-type lectin that occurs in the mammalian musculoskeletal system. In the present report we describe the first studies on an avian tetranectin. A full-length chicken tetranectin cDNA was isolated. Comparison of the deduced amino acid sequence of chicken tetranectin with mouse...... and human tetranectin showed an identity of 67 and 68%, respectively. Northern blot analysis demonstrated broad expression of chicken tetranectin mRNA, which was first detected on embryonic day 4. Tetranectin protein was detected in chicken serum and egg yolk. Since muscle is one of few tissues in which...... tetranectin protein is retained, we examined the distribution of tetranectin in various muscle types in chicken. Myofibers strongly positive for tetranectin were observed in several muscles including m. tibialis ant. and m. sartorius (from embryonic day 10 to adult). Using antibodies to fast and slow myosin...

  9. The expression of HSP in human skeletal muscle. Effects of muscle fiber phenotype and training background

    DEFF Research Database (Denmark)

    Folkesson, Mattias; Mackey, Abigail L; Langberg, Henning

    2013-01-01

    AIM: Exercise-induced adaptations of skeletal muscle are related to training mode and can be muscle fibre type specific. This study aimed to investigate heat shock protein expression in type I and type II muscle fibres in resting skeletal muscle of subjects with different training backgrounds...... HSPs in human skeletal muscle is influenced by muscle fibre phenotype. The fibre type specific expression of HSP70 is influenced by resistance and endurance training whereas those of αB-crystallin and HSP27 are influenced only by endurance training suggesting the existence of a training......-modality specific action on the adaptive processes including heat shock proteins in human skeletal muscle. This article is protected by copyright. All rights reserved....

  10. Fiber-type susceptibility to eccentric contraction-induced damage of hindlimb-unloaded rat AL muscles

    Science.gov (United States)

    Vijayan, K.; Thompson, J. L.; Norenberg, K. M.; Fitts, R. H.; Riley, D. A.

    2001-01-01

    Slow oxidative (SO) fibers of the adductor longus (AL) were predominantly damaged during voluntary reloading of hindlimb unloaded (HU) rats and appeared explainable by preferential SO fiber recruitment. The present study assessed damage after eliminating the variable of voluntary recruitment by tetanically activating all fibers in situ through the motor nerve while applying eccentric (lengthening) or isometric contractions. Muscles were aldehyde fixed and resin embedded, and semithin sections were cut. Sarcomere lesions were quantified in toluidine blue-stained sections. Fibers were typed in serial sections immunostained with antifast myosin and antitotal myosin (which highlights slow fibers). Both isometric and eccentric paradigms caused fatigue. Lesions occurred only in eccentrically contracted control and HU muscles. Fatigue did not cause lesions. HU increased damage because lesioned- fiber percentages within fiber types and lesion sizes were greater than control. Fast oxidative glycolytic (FOG) fibers were predominantly damaged. In no case did damaged SO fibers predominate. Thus, when FOG, SO, and hybrid fibers are actively lengthened in chronically unloaded muscle, FOG fibers are intrinsically more susceptible to damage than SO fibers. Damaged hybrid-fiber proportions ranged between these extremes.

  11. Chronic intrinsic transient tracheal occlusion elicits diaphragmatic muscle fiber remodeling in conscious rodents.

    Directory of Open Access Journals (Sweden)

    Barbara K Smith

    Full Text Available BACKGROUND: Although the prevalence of inspiratory muscle strength training has increased in clinical medicine, its effect on diaphragm fiber remodeling is not well-understood and no relevant animal respiratory muscle strength training-rehabilitation experimental models exist. We tested the postulate that intrinsic transient tracheal occlusion (ITTO conditioning in conscious animals would provide a novel experimental model of respiratory muscle strength training, and used significant increases in diaphragmatic fiber cross-sectional area (CSA as the primary outcome measure. We hypothesized that ITTO would increase costal diaphragm fiber CSA and further hypothesized a greater duration and magnitude of occlusions would amplify remodeling. METHODOLOGY/PRINCIPAL FINDINGS: Sprague-Dawley rats underwent surgical placement of a tracheal cuff and were randomly assigned to receive daily either 10-minute sessions of ITTO, extended-duration, 20-minute ITTO (ITTO-20, partial obstruction with 50% of cuff inflation pressure (ITTO-PAR or observation (SHAM over two weeks. After the interventions, fiber morphology, myosin heavy chain composition and CSA were examined in the crural and ventral, medial, and dorsal costal regions. In the medial costal diaphragm, with ITTO, type IIx/b fibers were 26% larger in the medial costal diaphragm (p<0.01 and 24% larger in the crural diaphragm (p<0.05. No significant changes in fiber composition or morphology were detected. ITTO-20 sessions also yielded significant increases in medial costal fiber cross-sectional area, but the effects were not greater than those elicited by 10-minute sessions. On the other hand, ITTO-PAR resulted in partial airway obstruction and did not generate fiber hypertrophy. CONCLUSIONS/SIGNIFICANCE: The results suggest that the magnitude of the load was more influential in altering fiber cross-sectional area than extended-duration conditioning sessions. The results also indicated that ITTO was

  12. The combined influence of stretch, mobility and electrical stimulation in the prevention of muscle fiber atrophy caused hypokinesia and hypodynamia

    Science.gov (United States)

    Goldspink, G.; Goldspink, D.; Loughna, P.

    1984-01-01

    The morphological and biochemical changes which occur in the hind limb muscles of the rat in response to hypokinesia and hypodynamia were investigated. Hind limb cast fixation and suspension techniques were employed to study the musclar atrophy after five days of hypokinesia and hypodynamia induced by suspension, appreciable muscular atrophy was apparent, particularly in the anti-gravity muscles. The effect of passive stretching and electrical stimulation on muscle atrophy was studied. Changes in muscle protein mass were assessed with spectrophotometric and radioactive techniques. Passive stretch is shown to counteract muscle disuse atrophy. The change in the numbers of specific muscle fibers in atrophied muscles is discussed.

  13. Solutions to muscle fiber equations and their long time behaviour

    Czech Academy of Sciences Publication Activity Database

    Krejčí, Pavel; Sainte-Marie, J.; Sorine, M.; Urquiza, J.M.

    2006-01-01

    Roč. 7, č. 4 (2006), s. 535-558 ISSN 1468-1218 Institutional research plan: CEZ:AV0Z10190503 Keywords : existence * uniqueness * muscle and cardiac mechanics Subject RIV: BA - General Mathematics Impact factor: 1.194, year: 2006 http://www.sciencedirect.com/science/article/pii/S1468121805000507

  14. Quantitative PCR Analysis of Laryngeal Muscle Fiber Types

    Science.gov (United States)

    Van Daele, Douglas J.

    2010-01-01

    Voice and swallowing dysfunction as a result of recurrent laryngeal nerve paralysis can be improved with vocal fold injections or laryngeal framework surgery. However, denervation atrophy can cause late-term clinical failure. A major determinant of skeletal muscle physiology is myosin heavy chain (MyHC) expression, and previous protein analyses…

  15. Muscle fiber conduction abnormalities in early diabetic polyneuropathy

    NARCIS (Netherlands)

    Meijer, J. W. G.; Lange, F.; Links, T. P.; van der Hoeven, J. H.

    Objective: Diabetic polyneuropathy (PNP) has been proposed to be a primary disorder of sensory nerves. At an early stage motor nerve conduction velocity (MNCV) and muscle strength remain preserved due to compensatory mechanisms (axonal sprouting, reinnervation). We evaluated the use of invasive

  16. Effect of Myostatin SNP on muscle fiber properties in male Thoroughbred horses during training period.

    Science.gov (United States)

    Miyata, Hirofumi; Itoh, Rika; Sato, Fumio; Takebe, Naoya; Hada, Tetsuro; Tozaki, Teruaki

    2017-10-20

    Variants of the Myostatin gene have been shown to have an influence on muscle hypertrophy phenotypes in a wide range of mammalian species. Recently, a Thoroughbred horse with a C-Allele at the g.66493737C/T single-nucleotide polymorphism (SNP) has been reported to be suited to short-distance racing. In this study, we examined the effect of the Myostatin SNP on muscle fiber properties in young Thoroughbred horses during a training period. To investigate the effect of the Myostatin SNP on muscle fiber before training, several mRNA expressions were relatively quantified in biopsy samples from the middle gluteal muscle of 27 untrained male Thoroughbred horses (1.5 years old) using real-time RT-PCR analysis. The remaining muscle samples were used for immunohistochemical analysis to determine the population and area of each fiber type. All measurements were revaluated in biopsy samples of the same horses after a 5-month period of conventional training. Although the expressions of Myostatin mRNA decreased in all SNP genotypes, a significant decrease was found in only the C/C genotype after training. While, expression of VEGFa, PGC1α, and SDHa mRNAs, which relate to the biogenesis of mitochondria and capillaries, was significantly higher (54-82%) in the T/T than the C/C genotypes after training. It is suggested that hypertrophy of muscle fiber is directly associated with a decrease in Myostatin mRNA expression in the C/C genotype, and that increased expressions of VEGFa, PGC1α, and SDHa in the T/T genotype might be indirectly caused by the Myostatin SNP.

  17. Hindlimb muscle fiber types in two frogs (Rana catesbeiana and Litoria caerulea) with different locomotor behaviors: histochemical and enzymatic comparison.

    Science.gov (United States)

    Crockett, Christy J; Peters, Susan E

    2008-03-01

    To test how differences in locomotor behaviors may be reflected in muscle fiber-type diversity within anurans, a comparison of hindlimb muscles between the powerful terrestrial hopper, Rana catesbeiana, and the tree frog, Litoria caerulea, was done. One postural muscle (tibialis posticus, TP) and one primary hopping muscle (plantaris longus, PL), were characterized to identify muscle fiber types using standard histochemical methods. In addition, spectophotometric analysis of activity levels of the oxidative enzyme citrate synthase (CS) and the glycolytic enzyme lactate dehydrogenase (LDH) were done in each muscle. In spite of presumed differences in behavior between the species, we found no significant differences in the proportions of the identified fiber types when the muscles were compared across species. In addition, there were no significant differences in the proportions of the different fiber types between the postural versus phasic muscles within species. Within Rana, the postural muscle (TP) had greater oxidative capacity (as measured by CS activity) than did the phasic muscle (PL). Both muscles had equivalent LDH activities. Within Litoria, PL and TP did not differ in either LDH or CS activities. Both PL and TP of Litoria had less LDH activity and greater CS activity than their homologs in Rana. Thus, in spite of the uniform populations of fiber types between muscles and species, the metabolic diversity based on enzyme activity is consistent with behavioral differences between the species. These results suggest that the range of functional diversity within fiber types may be very broad in anurans, and histochemical fiber typing alone is not a clear indicator of their metabolic or functional properties.

  18. Histoenzymatic and Morphometric Analysis of Muscle Fiber Type Transformation during the Postnatal Development of the Chronically Food-Deprived Rat

    Science.gov (United States)

    Ruiz-Rosado, Azucena; Fernández-Valverde, Francisca; Mariscal-Tovar, Silvia; Hinojosa-Rodriguez, Cindy Xilonen; Hernández-Valencia, Jorge Arturo; Anzueto-Rios, Álvaro; Guadarrama-Olmos, José Carlos; Segura-Alegría, Bertha

    2013-01-01

    We analyze the effect of chronic undernourishment on extensor digitorum longus (EDL) muscle maturation in the rat. Cytochrome c oxidase (COX) and alkaline ATPase histoenzymatic techniques were used to determine the relative proportion of different fiber types (oxidative/glycolytic and type I, IIa/IId, or IIb, respectively) and their cross-sectional area in control and undernourished EDL muscles at several postnatal (PN) ages. From PN days 15 to 45, undernourished EDL muscles showed predominance of oxidative and type IIa/IId fibers, but from PN days 60 to 90, there were a larger proportion of oxidative fibers and an equal proportion of type IIa/IId and IIb fibers. Meanwhile, in adult stages (from PN days 130–365), the relative proportion of fiber types in control and undernourished EDL muscles showed no significant differences. In addition, from PN days 15 to 90, there was a significant reduction in the cross-sectional area of all fibers (slow: 13–53%; intermediate: 24–74%; fast: 9–80%) but no differences from PN days 130 to 365. It is suggested that chronic undernourishment affects the maturation of fast-type muscle fibers only at juvenile stages (from PN days 15–45) and the probable occurrence of adaptive mechanisms in muscle fibers, allowing adult rats to counterbalance the alterations provoked by chronic food deprivation. PMID:23392735

  19. A comparative study of aging of the elastic fiber system of the diaphragm and the rectus abdominis muscles in rats

    Directory of Open Access Journals (Sweden)

    Rodrigues C.J.

    2000-01-01

    Full Text Available In the present study the age-related changes of the striated muscle elastic fiber system were investigated in the diaphragm and rectus abdominis muscles of 1-, 4-, 8- and 18-month-old rats. The activation patterns of these muscles differ in that the diaphragm is regularly mobilized tens of times every minute during the entire life of the animal whereas the rectus abdominis, although mobilized in respiration, is much less and more irregularly activated. The elastic fibers were stained by the Verhoeff technique for mature elastic fibers. Weigert stain was used to stain mature and elaunin elastic fibers, and Weigert-oxone to stain mature, elaunin and oxytalan elastic fibers. The density of mature and elaunin elastic fibers showed a progressive increase with age, whereas the amount of oxytalan elastic fibers decreased in both diaphragm and rectus abdominis muscles and their muscular fascias. These age-related quantitative and structural changes of the elastic fiber system may reduce the viscoelastic properties of the diaphragm and rectus abdominis muscles, which may compromise the transmission of tensile muscle strength to the tendons and may affect maximum total strength.

  20. Fiber type specific response of skeletal muscle satellite cells to high-intensity resistance training in dialysis patients

    DEFF Research Database (Denmark)

    Molsted, Stig; Andersen, Jesper Løvind; Harrison, Adrian Paul

    2015-01-01

    weekly. SC and myonuclear number were determined by immunohistochemistry of vastus lateralis muscle biopsy cross-sections. Knee extension torque was tested in a dynamometer. Results. During training SCs/type I fibers increased by 15%, whereas SCs/type II fibers remained unchanged. Myonuclear content......Introduction. The aim was to investigate the effect of high-intensity resistance training on satellite cell (SC) and myonuclear number in the muscle of patients undergoing dialysis. Methods. Patients (n=21) underwent a 16-week control period, followed by 16 weeks of resistance training thrice...... of type II, but not type I, fibers increased with training. Before the control period, the SC content of type II fibers was lower than type I fibers, whereas contents were comparable when normalized to fiber area. Torque increased after training. Discussion. Increased myonuclear content of type II muscle...

  1. Effects of submaximal exercise on adenine nucleotide concentrations in skeletal muscle fibers of horses with polysaccharide storage myopathy.

    Science.gov (United States)

    Annandale, Erin J; Valberg, Stephanie J; Essen-Gustavsson, Birgitta

    2005-05-01

    To determine whether disruption of adenine triphosphate (ATP) regeneration and subsequent adenine nucleotide degradation are potential mechanisms for rhabdomyolysis in horses with polysaccharide storage myopathy (PSSM) performing submaximal exercise. 7 horses with PSSM and 4 control horses. Horses with PSSM performed 2-minute intervals of a walk and trot exercise on a treadmill until muscle cramping developed. Control horses exercised similarly for 20 minutes. Serum creatine kinase (CK) activity was measured 4 hours after exercise. Citrate synthase (CS), 3-OH-acylCoA dehydrogenase, and lactate dehydrogenase activities prior to exercise and glucose-6-phosphate (G-6-P) and lactate concentrations before and after exercise were measured in gluteal muscle specimens. Adenine triphosphate, diphosphate (ADP), monophosphate (AMP), and inosine monophosphate (IMP) concentrations were measured before and after exercise in whole muscle, single muscle fibers, and pooled single muscle fibers. Serum CK activity ranged from 255 to 22,265 U/L in horses with PSSM and 133 to 278 U/L in control horses. Muscle CS activity was lower in horses with PSSM, compared with control horses. Muscle G-6-P lactate, ATP, ADP, and AMP concentrations in whole muscle did not change with exercise in any horses. Concentration of IMP increased with exercise in whole muscle, pooled muscle fibers, and single muscle fibers in horses with PSSM. Large variations in ATP and IMP concentrations were observed within single muscle fibers. Increased IMP concentration without depletion of ATP in individual muscle fibers of horses with PSSM during submaximal exercise indicates an energy imbalance that may contribute to the development of exercise intolerance and rhabdomyolysis.

  2. The Human Tongue Slows Down to Speak: Muscle Fibers of the Human Tongue

    Science.gov (United States)

    SANDERS, IRA; MU, LIANCAI; AMIRALI, ASIF; SU, HUNGXI; SOBOTKA, STANISLAW

    2013-01-01

    Little is known about the specializations of human tongue muscles. In this study, myofibrillar adenosine triphosphatase (mATPase) histochemical staining was used to study the percentage and distribution of slow twitch muscle fibers (slow MFs) within tongue muscles of 4 neurologically normal human adults and specimens from a 2 year old human, a newborn human, an adult with idiopathic Parkinson’s disease (IPD), and a macaque monkey. The average percentage of slow MFs in adult and the 2 year old muscle specimens was 54%, the IPD was 45%, while the neonatal human (32%) and macaque monkey (28%) had markedly fewer slow MFs. In contrast the tongue muscles of the rat and cat have been reported to have no slow MFs. There was a marked spatial gradient in the distribution of slow MFs with the highest percentages found medially and posterially. Normal adult tongue muscles were found to have a variety of uniquely specialized features including MF type grouping (usually found in neuromuscular disorders), large amounts of loose connective tissue, and short branching MFs. In summary, normal adult human tongue muscles have by far the highest proportion of slow MFs of any mammalian tongue studied to date. Moreover, adult human tongue muscles have multiple unique anatomic features. As the tongue shape changes that are seen during speech articulation are unique to humans we hypothesize that the large proportion of slow MFs and the anatomical specializations observed in the adult human tongue have evolved to perform these movements. PMID:23929762

  3. Na+,K+-ATPase Na+ affinity in rat skeletal muscle fiber types

    DEFF Research Database (Denmark)

    Kristensen, Michael; Juel, Carsten

    2010-01-01

    Previous studies in expression systems have found different ion activation of the Na(+)/K(+)-ATPase isozymes, which suggest that different muscles have different ion affinities. The rate of ATP hydrolysis was used to quantify Na(+),K(+)-ATPase activity, and the Na(+) affinity of Na(+),K(+)-ATPase......Previous studies in expression systems have found different ion activation of the Na(+)/K(+)-ATPase isozymes, which suggest that different muscles have different ion affinities. The rate of ATP hydrolysis was used to quantify Na(+),K(+)-ATPase activity, and the Na(+) affinity of Na......(+),K(+)-ATPase was studied in total membranes from rat muscle and purified membranes from muscle with different fiber types. The Na(+) affinity was higher (K(m) lower) in oxidative muscle compared with glycolytic muscle and in purified membranes from oxidative muscle compared with glycolytic muscle. Na......(+),K(+)-ATPase isoform analysis implied that heterodimers containing the beta(1) isoform have a higher Na(+) affinity than heterodimers containing the beta(2) isoform. Immunoprecipitation experiments demonstrated that dimers with alpha(1) are responsible for approximately 36% of the total Na,K-ATPase activity. Selective...

  4. Aging Enhances Indirect Flight Muscle Fiber Performance yet Decreases Flight Ability in Drosophila

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Mark S.; Lekkas, Panagiotis; Braddock, Joan M.; Farman, Gerrie P.; Ballif, Bryan A.; Irving, Thomas C.; Maughan, David W.; Vigoreaux, Jim O. (IIT); (Vermont)

    2008-10-02

    We investigated the effects of aging on Drosophila melanogaster indirect flight muscle from the whole organism to the actomyosin cross-bridge. Median-aged (49-day-old) flies were flight impaired, had normal myofilament number and packing, barely longer sarcomeres, and slight mitochondrial deterioration compared with young (3-day-old) flies. Old (56-day-old) flies were unable to beat their wings, had deteriorated ultrastructure with severe mitochondrial damage, and their skinned fibers failed to activate with calcium. Small-amplitude sinusoidal length perturbation analysis showed median-aged indirect flight muscle fibers developed greater than twice the isometric force and power output of young fibers, yet cross-bridge kinetics were similar. Large increases in elastic and viscous moduli amplitude under active, passive, and rigor conditions suggest that median-aged fibers become stiffer longitudinally. Small-angle x-ray diffraction indicates that myosin heads move increasingly toward the thin filament with age, accounting for the increased transverse stiffness via cross-bridge formation. We propose that the observed protein composition changes in the connecting filaments, which anchor the thick filaments to the Z-disk, produce compensatory increases in longitudinal stiffness, isometric tension, power and actomyosin interaction in aging indirect flight muscle. We also speculate that a lack of MgATP due to damaged mitochondria accounts for the decreased flight performance.

  5. Distinct Fiber Type Signature in Mouse Muscles Expressing a Mutant Lamin A Responsible for Congenital Muscular Dystrophy in a Patient

    Directory of Open Access Journals (Sweden)

    Alice Barateau

    2017-04-01

    Full Text Available Specific mutations in LMNA, which encodes nuclear intermediate filament proteins lamins A/C, affect skeletal muscle tissues. Early-onset LMNA myopathies reveal different alterations of muscle fibers, including fiber type disproportion or prominent dystrophic and/or inflammatory changes. Recently, we identified the p.R388P LMNA mutation as responsible for congenital muscular dystrophy (L-CMD and lipodystrophy. Here, we asked whether viral-mediated expression of mutant lamin A in murine skeletal muscles would be a pertinent model to reveal specific muscle alterations. We found that the total amount and size of muscle fibers as well as the extent of either inflammation or muscle regeneration were similar to wildtype or mutant lamin A. In contrast, the amount of fast oxidative muscle fibers containing myosin heavy chain IIA was lower upon expression of mutant lamin A, in correlation with lower expression of genes encoding transcription factors MEF2C and MyoD. These data validate this in vivo model for highlighting distinct muscle phenotypes associated with different lamin contexts. Additionally, the data suggest that alteration of muscle fiber type identity may contribute to the mechanisms underlying physiopathology of L-CMD related to R388P mutant lamin A.

  6. Trigeminal Proprioception Evoked by Strong Stretching of the Mechanoreceptors in Müller's Muscle Induces Reflex Contraction of the Orbital Orbicularis Oculi Slow-Twitch Muscle Fibers.

    Science.gov (United States)

    Matsuo, Kiyoshi; Ban, Ryokuya; Ban, Midori; Yuzuriha, Shunsuke

    2014-01-01

    The mixed orbicularis oculi muscle lacks an intramuscular proprioceptive system such as muscle spindles, to induce reflex contraction of its slow-twitch fibers. We evaluated whether the mechanoreceptors in Müller's muscle function as extrinsic mechanoreceptors to induce reflex contraction of the slow-twitch fibers of the orbicularis oculi in addition to those of the levator and frontalis muscles. We evaluated in patients with aponeurosis-disinserted blepharoptosis whether strong stretching of the mechanoreceptors in Müller's muscle from upgaze with unilateral lid load induced reflex contraction of the orbicularis oculi slow-twitch fibers and whether anesthesia of Müller's muscle precluded the contraction. We compared the electromyographic responses of the bilateral orbicularis oculi muscles to unilateral intraoperative direct stimulation of the trigeminal proprioceptive nerve with those to unilateral transcutaneous electrical stimulation of the supraorbital nerve. Upgaze with a unilateral 3-g lid load induced reflex contraction of the bilateral orbicularis oculi muscles with ipsilateral dominance. Anesthesia of Müller's muscle precluded the reflex contraction. The orbicularis oculi reflex evoked by stimulation of the trigeminal proprioceptive nerve differed from that by electrical stimulation of the supraorbital nerve in terms of the intensity of current required to induce the reflex, the absence of R1, and duration. The mechanoreceptors in Müller's muscle functions as an extramuscular proprioceptive system to induce reflex contraction of the orbital orbicularis oculi slow-twitch fibers. Whereas reflex contraction of the pretarsal orbicularis fast-twitch fibers functions in spontaneous or reflex blinking, that of the orbital orbicularis oculi slow-twitch fibers may factor in grimacing and blepharospasm.

  7. Atrophy of type I and II muscle fibers is reversible in the case of grade >2 fatty degeneration of the supraspinatus muscle: an experimental study in rabbits.

    Science.gov (United States)

    Fabis, Jaroslaw; Danilewicz, Marian; Zwierzchowski, Jacek T; Niedzielski, Kryspin

    2016-03-01

    Although clinical investigations indicate that the limit of reversibility of rotator cuff muscles fibers type I and II atrophy is grade 2 of fatty degeneration (FD) according to the Goutallier computed tomography classification, little is known about the morphometric verification of these findings. The supraspinatus tendon was detached from the greater tubercle and the infraspinatus and subscapularis in 12 rabbits, and a 12-week observation period followed. This proved to be sufficient for development of grade >2 FD of the supraspinatus tendon. The tendon was then reinserted. The animals were euthanized 24 weeks after tendon reconstruction. The sections of middle part of supraspinatus were stained for adenosine triphosphatase reaction, and morphometric measurements were taken of type I and II muscle fiber diameters. The contralateral shoulders served as controls. The macroscopic inspection of the supraspinatus tendons revealed complete healing in all cases. No statistically significant differences were found between controls and operated-on shoulders for type I (P = .13) and type II (P = .55) muscle fibers. Atrophy of type I and II muscle fibers in rabbit supraspinatus muscle, characterized by grade >2 fatty degeneration according to the Goutallier computed tomography classification, is reversible after 24 weeks from reattachment of its tendon. A requirement for type I and II muscle fibers hypertrophy is a change in the biomechanical and functional conditions of the muscle after its tendon is reconstructed. Copyright © 2016 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.

  8. Therapeutic angiogenesis in ischemic muscles after local injection of fragmented fibers with loaded traditional Chinese medicine

    Science.gov (United States)

    Li, Huiyan; Wan, Huiying; Xia, Tian; Chen, Maohua; Zhang, Yun; Luo, Xiaoming; Li, Xiaohong

    2015-07-01

    Therapeutic angiogenesis remains the most effective method to re-establish a proper blood flow in ischemic tissues. There is a great clinical need to identify an injectable format to achieve a well accumulation following local administration and a sustained delivery of biological factors at the ischemic sites. In the current study, fragmented nanofibers with loaded traditional Chinese medicines, astragaloside IV (AT), the main active ingredient of astragalus, and ferulic acid (FA), the main ingredient of angelica, were proposed to promote the microvessel formation after intramuscular injection into ischemic hindlimbs. Fragmented fibers with average lengths of 5 (FF-5), 20 (FF-20) and 80 μm (FF-80) were constructed by the cryocutting of aligned electrospun fibers. Their dispersion in sodium alginate solution (0.2%) indicated good injectability. After injection into the quadriceps muscles of the hindlimbs, FF-20 and FF-80 fiber fragments showed higher tissue retentions than FF-5, and around 90% of the injected doses were determined after 7 days. On a hindlimb ischemia model established by ligating the femoral arteries, intramuscular injection of the mixtures of FA-loaded and AT-loaded FF-20 fiber fragments substantially reduced the muscle degeneration with minimal fibrosis formation, significantly enhanced the neovessel formation and hindlimb perfusion in the ischemic tissues, and efficiently promoted the limb salvage with few limb losses. Along with the easy manipulation and lower invasiveness for in vivo administration, fragmented fibers should become potential drug carriers for disease treatment, wound recovery and tissue repair after local injection.

  9. Walking performance is positively correlated to calf muscle fiber size in peripheral artery disease subjects, but fibers show aberrant mitophagy: an observational study.

    Science.gov (United States)

    White, Sarah H; McDermott, Mary M; Sufit, Robert L; Kosmac, Kate; Bugg, Alex W; Gonzalez-Freire, Marta; Ferrucci, Luigi; Tian, Lu; Zhao, Lihui; Gao, Ying; Kibbe, Melina R; Criqui, Michael H; Leeuwenburgh, Christiaan; Peterson, Charlotte A

    2016-09-29

    Patients with lower extremity peripheral artery disease (PAD) have decreased mobility, which is not fully explained by impaired blood supply to the lower limb. Additionally, reports are conflicted regarding fiber type distribution patterns in PAD, but agree that skeletal muscle mitochondrial respiration is impaired. To test the hypothesis that reduced muscle fiber oxidative activity and type I distribution are negatively associated with walking performance in PAD, calf muscle biopsies from non-PAD (n = 7) and PAD participants (n = 26) were analyzed immunohistochemically for fiber type and size, oxidative activity, markers of autophagy, and capillary density. Data were analyzed using analysis of covariance. There was a wide range in fiber type distribution among subjects with PAD (9-81 % type I fibers) that did not correlate with walking performance. However, mean type I fiber size correlated with 4-min normal- and fastest-paced walk velocity (r = 0.4940, P = 0.010 and r = 0.4944, P = 0.010, respectively). Although intensity of succinate dehydrogenase activity staining was consistent with fiber type, up to 17 % of oxidative fibers were devoid of mitochondria in their cores, and the core showed accumulation of the autophagic marker, LC3, which did not completely co-localize with LAMP2, a lysosome marker. Calf muscle type I fiber size positively correlates with walking performance in PAD. Accumulation of LC3 and a lack of co-localization of LC3 with LAMP2 in the area depleted of mitochondria in PAD fibers suggests impaired clearance of damaged mitochondria, which may contribute to reduced muscle oxidative capacity. Further study is needed to determine whether defective mitophagy is associated with decline in function over time, and whether interventions aimed at preserving mitochondrial function and improving autophagy can improve walking performance in PAD.

  10. Muscle power failure in mobility-limited older adults: preserved single fiber function despite lower whole muscle size, quality and rate of neuromuscular activation.

    Science.gov (United States)

    Reid, Kieran F; Doros, Gheorghe; Clark, David J; Patten, Carolynn; Carabello, Robert J; Cloutier, Gregory J; Phillips, Edward M; Krivickas, Lisa S; Frontera, Walter R; Fielding, Roger A

    2012-06-01

    This study investigated the physiological and gender determinants of the age-related loss of muscle power in 31 healthy middle-aged adults (aged 40-55 years), 28 healthy older adults (70-85 years) and 34 mobility-limited older adults (70-85 years). We hypothesized that leg extensor muscle power would be significantly lower in mobility-limited elders relative to both healthy groups and sought to characterize the physiological mechanisms associated with the reduction of muscle power with aging. Computed tomography was utilized to assess mid-thigh body composition and calculate specific muscle power and strength. Surface electromyography was used to assess rate of neuromuscular activation and muscle biopsies were taken to evaluate single muscle fiber contractile properties. Peak muscle power, strength, muscle cross-sectional area, specific muscle power and rate of neuromuscular activation were significantly lower among mobility-limited elders compared to both healthy groups (P ≤ 0.05). Mobility-limited older participants had greater deposits of intermuscular adipose tissue (P mobility-limited elders relative to both healthy groups. Male gender was associated with greater decrements in peak and specific muscle power among mobility-limited participants. Impairments in the rate of neuromuscular activation and concomitant reductions in muscle quality are important physiological mechanisms contributing to muscle power deficits and mobility limitations. The dissociation between age-related changes at the whole muscle and single fiber level suggest that, even among older adults with overt mobility problems, contractile properties of surviving muscle fibers are preserved in an attempt to maintain overall muscle function.

  11. Muscle Fiber Characteristics, Satellite Cells and Soccer Performance in Young Athletes

    Directory of Open Access Journals (Sweden)

    Thomas I. Metaxas, Athanasios Mandroukas, Efstratios Vamvakoudis, Kostas Kotoglou, Björn Ekblom, Konstantinos Mandroukas

    2014-09-01

    Full Text Available This study is aimed to examine the muscle fiber type, composition and satellite cells in young male soccer players and to correlate them to cardiorespiratory indices and muscle strength. The participants formed three Groups: Group A (n = 13, 11.2 ± 0.4yrs, Group B (n=10, 13.1 ± 0.5yrs and Group C (n = 9, 15.2 ± 0.6yrs. Muscle biopsies were obtained from the vastus lateralis. Peak torque values of the quadriceps and hamstrings were recorded and VO2max was measured on the treadmill. Group C had lower type I percentage distribution compared to A by 21.3% (p < 0.01, while the type IIA relative percentage was higher by 18.1% and 18.4% than in Groups A and B (p < 0.05. Groups B and C had higher cross-sectional area (CSA values in all fiber types than in Group A (0.05 < p < 0.001. The number of satellite cells did not differ between the groups. Groups B and C had higher peak torque at all angular velocities and absolute VO2max in terms of ml·min-1 than Group A (0.05 < p < 0.001. It is concluded that the increased percentage of type IIA muscle fibers noticed in Group C in comparison to the Groups A and B should be mainly attributed to the different workload exercise and training programs. The alteration of myosin heavy chain (MHC isoforms composition even in children is an important mechanism for skeletal muscle characteristics. Finally, CSA, isokinetic muscle strength and VO2max values seems to be expressed according to age.

  12. Effects of resistance training on endurance capacity and muscle fiber composition in young top-level cyclists

    DEFF Research Database (Denmark)

    Aagaard, P; Andersen, J L; Bennekou, M

    2011-01-01

    Equivocal findings exist on the effect of concurrent strength (S) and endurance (E) training on endurance performance and muscle morphology. Further, the influence of concurrent SE training on muscle fiber-type composition, vascularization and endurance capacity remains unknown in top......-level endurance athletes. The present study examined the effect of 16 weeks of concurrent SE training on maximal muscle strength (MVC), contractile rate of force development (RFD), muscle fiber morphology and composition, capillarization, aerobic power (VO2max), cycling economy (CE) and long/short-term endurance...

  13. Effects of resistance training on endurance capacity and muscle fiber composition in young top-level cyclists

    DEFF Research Database (Denmark)

    Aagaard, P; Andersen, J L; Bennekou, M

    2011-01-01

    Equivocal findings exist on the effect of concurrent strength (S) and endurance (E) training on endurance performance and muscle morphology. Further, the influence of concurrent SE training on muscle fiber-type composition, vascularization and endurance capacity remains unknown in top......-level endurance athletes. The present study examined the effect of 16 weeks of concurrent SE training on maximal muscle strength (MVC), contractile rate of force development (RFD), muscle fiber morphology and composition, capillarization, aerobic power (VO(2max) ), cycling economy (CE) and long....../short-term endurance capacity in young elite competitive cyclists (n=14). MVC and RFD increased 12-20% with SE (P...

  14. Expression of a dominant negative CELF protein in vivo leads to altered muscle organization, fiber size, and subtype.

    Directory of Open Access Journals (Sweden)

    Dara S Berger

    2011-04-01

    Full Text Available CUG-BP and ETR-3-like factor (CELF proteins regulate tissue- and developmental stage-specific alternative splicing in striated muscle. We previously demonstrated that heart muscle-specific expression of a nuclear dominant negative CELF protein in transgenic mice (MHC-CELFΔ effectively disrupts endogenous CELF activity in the heart in vivo, resulting in impaired cardiac function. In this study, transgenic mice that express the dominant negative protein under a skeletal muscle-specific promoter (Myo-CELFΔ were generated to investigate the role of CELF-mediated alternative splicing programs in normal skeletal muscle.Myo-CELFΔ mice exhibit modest changes in CELF-mediated alternative splicing in skeletal muscle, accompanied by a reduction of endomysial and perimysial spaces, an increase in fiber size variability, and an increase in slow twitch muscle fibers. Weight gain and mean body weight, total number of muscle fibers, and overall muscle strength were not affected.Although these findings demonstrate that CELF activity contributes to the normal alternative splicing of a subset of muscle transcripts in vivo, the mildness of the effects in Myo-CELFΔ muscles compared to those in MHC-CELFΔ hearts suggests CELF activity may be less determinative for alternative splicing in skeletal muscle than in heart muscle. Nonetheless, even these small changes in CELF-mediated splicing regulation were sufficient to alter muscle organization and muscle fiber properties affected in myotonic dystrophy. This lends further evidence to the hypothesis that dysregulation of CELF-mediated alternative splicing programs may be responsible for the disruption of these properties during muscle pathogenesis.

  15. Distinctive genes determine different intramuscular fat and muscle fiber ratios of the longissimus dorsi muscles in Jinhua and landrace pigs.

    Directory of Open Access Journals (Sweden)

    Ting Wu

    Full Text Available Meat quality is determined by properties such as carcass color, tenderness and drip loss. These properties are closely associated with meat composition, which includes the types of muscle fiber and content of intramuscular fat (IMF. Muscle fibers are the main contributors to meat mass, while IMF not only contributes to the sensory properties but also to the plethora of physical, chemical and technological properties of meat. However, little is known about the molecular mechanisms that determine meat composition in different pig breeds. In this report we show that Jinhua pigs, a Chinese breed, contains much higher levels of IMF than do Landrace pigs, a Danish breed. We analyzed global gene expression profiles in the longissimus dorsi muscles in Jinhua and Landrace breeds at the ages of 30, 90 and 150 days. Cross-comparison analysis revealed that genes that regulate fatty acid biosynthesis (e.g., fatty acid synthase and stearoyl-CoA desaturase are expressed at higher levels in Jinhua pigs whereas those that regulate myogenesis (e.g., myogenic factor 6 and forkhead box O1 are expressed at higher levels in Landrace pigs. Among those genes which are highly expressed in Jinhua pigs at 90 days (d90, we identified a novel gene porcine FLJ36031 (pFLJ, which functions as a positive regulator of fat deposition in cultured intramuscular adipocytes. In summary, our data showed that the up-regulation of fatty acid biosynthesis regulatory genes such as pFLJ and myogenesis inhibitory genes such as myostatin in the longissimus dorsi muscles of Jinhua pigs could explain why this local breed produces meat with high levels of IMF.

  16. Distinctive genes determine different intramuscular fat and muscle fiber ratios of the longissimus dorsi muscles in Jinhua and landrace pigs.

    Science.gov (United States)

    Wu, Ting; Zhang, Zhenhai; Yuan, Zhangqin; Lo, Li Jan; Chen, Jun; Wang, Yizhen; Peng, Jinrong

    2013-01-01

    Meat quality is determined by properties such as carcass color, tenderness and drip loss. These properties are closely associated with meat composition, which includes the types of muscle fiber and content of intramuscular fat (IMF). Muscle fibers are the main contributors to meat mass, while IMF not only contributes to the sensory properties but also to the plethora of physical, chemical and technological properties of meat. However, little is known about the molecular mechanisms that determine meat composition in different pig breeds. In this report we show that Jinhua pigs, a Chinese breed, contains much higher levels of IMF than do Landrace pigs, a Danish breed. We analyzed global gene expression profiles in the longissimus dorsi muscles in Jinhua and Landrace breeds at the ages of 30, 90 and 150 days. Cross-comparison analysis revealed that genes that regulate fatty acid biosynthesis (e.g., fatty acid synthase and stearoyl-CoA desaturase) are expressed at higher levels in Jinhua pigs whereas those that regulate myogenesis (e.g., myogenic factor 6 and forkhead box O1) are expressed at higher levels in Landrace pigs. Among those genes which are highly expressed in Jinhua pigs at 90 days (d90), we identified a novel gene porcine FLJ36031 (pFLJ), which functions as a positive regulator of fat deposition in cultured intramuscular adipocytes. In summary, our data showed that the up-regulation of fatty acid biosynthesis regulatory genes such as pFLJ and myogenesis inhibitory genes such as myostatin in the longissimus dorsi muscles of Jinhua pigs could explain why this local breed produces meat with high levels of IMF.

  17. Promoter analysis of the fish gene of slow/cardiac-type myosin heavy chain implicated in specification of muscle fiber types.

    Science.gov (United States)

    Kinoshita, Shigeharu; Ceyhun, Saltuk Bugrahan; Md, Asaduzzamann; Siddique, Bhuiyan Sharmin; Akolkar, Dadasaheb B; Asakawa, Shuichi; Watabe, Shugo

    2018-04-01

    Vertebrate skeletal muscles consist of heterogeneous tissues containing various types of muscle fibers, where specification of the fiber type is crucial for muscle development. Fish are an attractive experimental model to study the mechanisms of such fiber type specification because of the separated localization of slow and fast muscles in the trunk myotome. We examined regulation of expression of the torafugu gene of slow/cardiac-type myosin heavy chain, MYH M5 , and isolated an operational promoter in order to force its tissue-specific expression across different fish species via the transgenic approach in zebrafish and medaka. This promoter activity was observed in adaxial cell-derived superficial slow muscle fibers under the control of a hedgehog signal. We also uncovered coordinated expression of MYH M5 and Sox6b, which is an important transcriptional repressor for specification of muscle fiber types and participates in hedgehog signaling. Sequence comparison in the 5'-flanking region identified three conserved regions, CSR1-CSR3, between torafugu MYH M5 and its zebrafish ortholog. Analysis of deletion mutants showed that CSR1 significantly stimulates gene expression in slow muscle fibers. In contrast, deletion of CSR3 resulted in ectopic expression of a reporter gene in fast muscle fibers. CSR3 was found to contain a putative Sox family protein-binding site. These results indicate that the dual mechanism causing inhibition in fast muscle fibers and activation in slow muscle fibers is essential for slow muscle fiber-specific gene expression in fish.

  18. Fiber type composition of unoperated rat soleus and extensor digitorum longus muscles after unilateral isotransplantation of a foreign muscle in long-term experiments.

    Science.gov (United States)

    Soukup, T; Smerdu, V; Zacharová, G

    2009-01-01

    We examined the effects of the unilateral heterochronous isotransplantation on the fiber type composition and myosin heavy chain (MyHC) isoform content of unoperated slow soleus and fast extensor digitorum longus muscles of female inbred Lewis strain rats. Comparison was made between "control" unoperated muscles of experimental rats (after intramuscular transplantation surgery) with the corresponding muscles of completely naive (unoperated) rats of three age groups (5-, 8- and 14-month-old). This was done in order to ascertain whether these muscles can be used as reliable controls to the transplanted and host muscles for our ongoing grafting experiments. The fiber type composition was determined by assessing the histochemical reaction for myofibrillar adenosine triphosphatase, the MyHC isoform content was determined immunocytochemically using monoclonal antibodies specific to different MyHC isoforms and by sodium dodecyl sulphate polyacrylamide gel electrophoresis. Our experiments show that the heterochronous intramuscular isotransplantation procedure had no significant effect on the fiber type composition and MyHC isoform content of the "control" unoperated muscles of the experimental rats when compared to the corresponding muscles of the naive animals. Furthermore, the duration and type of isotransplantation did not also lead to differences among corresponding "control" muscles of experimental animals. We conclude that the unoperated muscles of the experimental rats can be used as controls in our current transplantation project dealing with long-term grafting experiments.

  19. MUSCLE FIBER SPECIFIC ANTIOXIDATIVE SYSTEM ADAPTATION TO SWIM TRAINING IN RATS: INFLUENCE OF INTERMITTENT HYPOXIA

    Directory of Open Access Journals (Sweden)

    Olga Gonchar

    2005-06-01

    Full Text Available The aim of the present study was to examine the influence of intermittent hypoxia at rest and in combination with long-term high-intensity swimming exercise on lipid peroxidation and antioxidant defense system adaptation in skeletal muscles differing in fiber type composition. High-intensity chronic exercise was performed as swimming training with load that corresponded to ~ 75 % VO2max (30 min·day-1, 5 days·wk-1, for 4 wk. Intermittent hypoxic training (IHT consisted of repeated episodes of hypoxia (12%O2, 15 min, interrupted by equal periods of recovery (5 sessions/day, for 2 wk. Sessions of IHT were used during the first two weeks and during the last two weeks of chronic exercise. Oxidative (red gastrocnemius and soleus, mix and glycolytic (white gastrocnemius muscles were sampled. Our results indicated that high-intensity swim training in combination with sessions of IHT induced more profound antioxidative adaptations in skeletal muscles than the exercise training only. This adaptation has muscle fiber type specificity and is reflected in significantly elevated superoxide dismutase and catalase activities in highly oxidative muscle only. Training adaptation of GSH system (reduced glutathione content, activities of glutathione reductase, glutathione peroxidase, NADPH-supplying enzyme glucose-6-phosphate dehydrogenase occurred both in slow- and fast-twitch muscles. However, this process was more effective in oxidative muscles. IHT attenuated the increase in TBARS content induced by high-intensity swimming training. The test on exercise tolerance demonstrated a significant elevation of the swimming time to exhaustion after IHT at rest and after IHT in conjunction with high-intensity exercise in comparison with untrained and chronically exercised rats. These results confirmed that sessions of IHT might improve exercise tolerance and increase maximal work capacity

  20. Human Masseter Muscle Fibers From the Elderly Express Less Neonatal Myosin Than Those of Young Adults

    Czech Academy of Sciences Publication Activity Database

    Cvetko, E.; Karen, Petr; Janáček, Jiří; Kubínová, Lucie; Plasencia, A.L.; Eržen, I.

    2012-01-01

    Roč. 295, č. 8 (2012), s. 1364-1372 ISSN 1932-8486 R&D Projects: GA MŠk(CZ) LC06063; GA MŠk(CZ) MEB090910 Institutional research plan: CEZ:AV0Z50110509 Institutional support: RVO:67985823 Keywords : aging * confocal microscopy * myosin heavy chain * immunohistochemistry * muscle fiber types Subject RIV: FH - Neurology Impact factor: 1.343, year: 2012

  1. Structural design and analysis of morphing skin embedded with pneumatic muscle fibers

    International Nuclear Information System (INIS)

    Chen, Yijin; Yin, Weilong; Leng, Jinsong; Liu, Yanju

    2011-01-01

    In this paper, a kind of morphing skin embedded with pneumatic muscle fibers is proposed from the bionics perspective. The elastic modulus of the designed pneumatic muscle fibers is experimentally determined and their output force is tested with internal air pressure varying from 0 to 0.4 MPa. The experimental results show that the contraction ratio of the pneumatic muscle fibers using the given material could reach up to 26.8%. Isothermal tensile tests are conducted on the fabricated morphing skin, and the results are compared with theoretical predictions based on the rule of mixture. When the strain is lower than 3% and in its linear-elastic range, the rule of mixture is proved to possess satisfying accuracy in the prediction of the elastic modulus of the morphing skin. Subsequently, the output force of the morphing skin is tested. It is revealed that when the volume ratio of the pneumatic muscle fibers is 0.228, the contraction ratio can reach up to 17.8%, which is satisfactory for meeting the camber requirement of morphing skin with maximum strain level below 2%. Finally, stress-bearing capability tests of the morphing skin on local uniformly distributed loads are conducted, and the test results show that the transverse stiffness of the morphing skin can be regulated by changing the internal air pressure. Under a uniformly distributed load of 540 Pa, the designed morphing skin is capable of varying by more than two orders of magnitude in the transverse stiffness by changing the internal air pressure

  2. Structural design and analysis of morphing skin embedded with pneumatic muscle fibers

    Science.gov (United States)

    Chen, Yijin; Yin, Weilong; Liu, Yanju; Leng, Jinsong

    2011-08-01

    In this paper, a kind of morphing skin embedded with pneumatic muscle fibers is proposed from the bionics perspective. The elastic modulus of the designed pneumatic muscle fibers is experimentally determined and their output force is tested with internal air pressure varying from 0 to 0.4 MPa. The experimental results show that the contraction ratio of the pneumatic muscle fibers using the given material could reach up to 26.8%. Isothermal tensile tests are conducted on the fabricated morphing skin, and the results are compared with theoretical predictions based on the rule of mixture. When the strain is lower than 3% and in its linear-elastic range, the rule of mixture is proved to possess satisfying accuracy in the prediction of the elastic modulus of the morphing skin. Subsequently, the output force of the morphing skin is tested. It is revealed that when the volume ratio of the pneumatic muscle fibers is 0.228, the contraction ratio can reach up to 17.8%, which is satisfactory for meeting the camber requirement of morphing skin with maximum strain level below 2%. Finally, stress-bearing capability tests of the morphing skin on local uniformly distributed loads are conducted, and the test results show that the transverse stiffness of the morphing skin can be regulated by changing the internal air pressure. Under a uniformly distributed load of 540 Pa, the designed morphing skin is capable of varying by more than two orders of magnitude in the transverse stiffness by changing the internal air pressure.

  3. Effects of D-600 on intramembrane charge movement of polarized and depolarized frog muscle fibers

    OpenAIRE

    1989-01-01

    Intramembrane charge movement has been measured in frog cut skeletal muscle fibers using the triple vaseline gap voltage-clamp technique. Ionic currents were reduced using an external solution prepared with tetraethylammonium to block potassium currents, and O sodium + tetrodotoxin to abolish sodium currents. The internal solution contained 10 mM EGTA to prevent contractions. Both the internal and external solutions were prepared with impermeant anions. Linear capacitive currents were subtrac...

  4. Sequence basis of Barnacle Cement Nanostructure is Defined by Proteins with Silk Homology

    Science.gov (United States)

    So, Christopher R.; Fears, Kenan P.; Leary, Dagmar H.; Scancella, Jenifer M.; Wang, Zheng; Liu, Jinny L.; Orihuela, Beatriz; Rittschof, Dan; Spillmann, Christopher M.; Wahl, Kathryn J.

    2016-11-01

    Barnacles adhere by producing a mixture of cement proteins (CPs) that organize into a permanently bonded layer displayed as nanoscale fibers. These cement proteins share no homology with any other marine adhesives, and a common sequence-basis that defines how nanostructures function as adhesives remains undiscovered. Here we demonstrate that a significant unidentified portion of acorn barnacle cement is comprised of low complexity proteins; they are organized into repetitive sequence blocks and found to maintain homology to silk motifs. Proteomic analysis of aggregate bands from PAGE gels reveal an abundance of Gly/Ala/Ser/Thr repeats exemplified by a prominent, previously unidentified, 43 kDa protein in the solubilized adhesive. Low complexity regions found throughout the cement proteome, as well as multiple lysyl oxidases and peroxidases, establish homology with silk-associated materials such as fibroin, silk gum sericin, and pyriform spidroins from spider silk. Distinct primary structures defined by homologous domains shed light on how barnacles use low complexity in nanofibers to enable adhesion, and serves as a starting point for unraveling the molecular architecture of a robust and unique class of adhesive nanostructures.

  5. Optical polarization tractography revealed significant fiber disarray in skeletal muscles of a mouse model for Duchenne muscular dystrophy.

    Science.gov (United States)

    Wang, Y; Zhang, K; Wasala, N B; Duan, D; Yao, G

    2015-02-01

    Optical polarization tractography (OPT) was recently developed to visualize tissue fiber architecture with cellular-level resolution and accuracy. In this study, we explored the feasibility of using OPT to study muscle disease in the mdx4cv mouse model of Duchenne muscular dystrophy. The freshly dissected tibialis anterior muscles of mdx4cv and normal mice were imaged. A "fiber disarray index" (FDI) was developed to quantify the myofiber disorganization. In necrotic muscle regions of the mdx4cv mice, the FDI was significantly elevated and can be used to segment the 3D necrotic regions for assessing the overall muscle damage. These results demonstrated the OPT's capability for imaging microscopic fiber alternations in muscle research.

  6. Muscle fibers from senescent mice retain excitation-contraction coupling properties in culture.

    Science.gov (United States)

    Wang, Zhong-Min; Zheng, Zhenlin; Messi, María L; Delbono, Osvaldo

    2007-01-01

    In the present study, we test the hypothesis that mouse skeletal muscle in culture retains the fundamental properties of excitation-sarcoplasmic reticulum Ca(2+) release coupling reported for young-adult (3-4 mo) and senescent (22-23) mice. Dissociated flexor digitorum brevis (FDB) muscles from young-adult and senescent mice were cultured for 7 d in a serum-free medium. During this period, the overall morphology of cultured fibers resembled that exhibited by acutely dissociated cells. In addition, survival analysis revealed that more than 70% of the fibers from both young and old mice remained suitable for electrophysiological studies during this same culture period. Charge movement and intracellular Ca(2+) recordings in FDB fibers, voltage clamped in the whole cell configuration of the patch-clamp technique, reproduced the maximal values, and voltage dependence similarly displayed by acutely dissociated cells for both parameters in young-adult and senescent mice. The analysis of the dihydropyridine receptor by immunoblots confirmed, in the culture system, the age-dependent decrease in the expression of this protein. In conclusion, FDB fibers from young-adult and old mice retain the excitation-contraction coupling phenotype during the course of a week in serum-free medium culture.

  7. Revertant fibers in the mdx murine model of Duchenne muscular dystrophy: an age- and muscle-related reappraisal.

    Directory of Open Access Journals (Sweden)

    Sarah R Pigozzo

    Full Text Available Muscles in Duchenne dystrophy patients are characterized by the absence of dystrophin, yet transverse sections show a small percentage of fibers (termed "revertant fibers" positive for dystrophin expression. This phenomenon, whose biological bases have not been fully elucidated, is present also in the murine and canine models of DMD and can confound the evaluation of therapeutic approaches. We analyzed 11 different muscles in a cohort of 40 mdx mice, the most commonly model used in pre-clinical studies, belonging to four age groups; such number of animals allowed us to perform solid ANOVA statistical analysis. We assessed the average number of dystrophin-positive fibers, both absolute and normalized for muscle size, and the correlation between their formation and the ageing process. Our results indicate that various muscles develop different numbers of revertant fibers, with different time trends; besides, they suggest that the biological mechanism(s behind dystrophin re-expression might not be limited to the early development phases but could actually continue during adulthood. Importantly, such finding was seen also in cardiac muscle, a fact that does not fit into the current hypothesis of the clonal origin of "revertant" myonuclei from satellite cells. This work represents the largest, statistically significant analysis of revertant fibers in mdx mice so far, which can now be used as a reference point for improving the evaluation of therapeutic approaches for DMD. At the same time, it provides new clues about the formation of revertant fibers/cardiomyocytes in dystrophic skeletal and cardiac muscle.

  8. The miRNA Transcriptome Directly Reflects the Physiological and Biochemical Differences between Red, White, and Intermediate Muscle Fiber Types

    Directory of Open Access Journals (Sweden)

    Jideng Ma

    2015-04-01

    Full Text Available MicroRNAs (miRNAs are small non-coding RNAs that can regulate their target genes at the post-transcriptional level. Skeletal muscle comprises different fiber types that can be broadly classified as red, intermediate, and white. Recently, a set of miRNAs was found expressed in a fiber type-specific manner in red and white fiber types. However, an in-depth analysis of the miRNA transcriptome differences between all three fiber types has not been undertaken. Herein, we collected 15 porcine skeletal muscles from different anatomical locations, which were then clearly divided into red, white, and intermediate fiber type based on the ratios of myosin heavy chain isoforms. We further illustrated that three muscles, which typically represented each muscle fiber type (i.e., red: peroneal longus (PL, intermediate: psoas major muscle (PMM, white: longissimus dorsi muscle (LDM, have distinct metabolic patterns of mitochondrial and glycolytic enzyme levels. Furthermore, we constructed small RNA libraries for PL, PMM, and LDM using a deep sequencing approach. Results showed that the differentially expressed miRNAs were mainly enriched in PL and played a vital role in myogenesis and energy metabolism. Overall, this comprehensive analysis will contribute to a better understanding of the miRNA regulatory mechanism that achieves the phenotypic diversity of skeletal muscles.

  9. Effect of fiber type and nutritional state on AICAR- and contraction-stimulated glucose transport in rat muscle

    DEFF Research Database (Denmark)

    Ai, Hua; Ihlemann, Jacob; Hellsten, Ylva

    2002-01-01

    )- and alpha(2)-isoforms of AMPK. Expression of both isoforms varied with fiber types, and alpha(2) was highly expressed in nuclei. In conclusion, AICAR-stimulated glucose transport varies with muscle fiber type and nutritional state. AMPK is unlikely to be the sole mediator of contraction-stimulated glucose...

  10. Ecology and Evolution of Phenotypic Plasticity in the Penis and Cirri of Barnacles.

    Science.gov (United States)

    Hoch, J Matthew; Schneck, Daniel T; Neufeld, Christopher J

    2016-10-01

    Most barnacles are sessile, simultaneous hermaphrodites that reproduce by copulation. This is achieved through the extension of a muscular penis, famous for being the proportionally largest in the animal kingdom. The penis is a long cylindrical or conical organ, composed of a series of folded rings, allowing it to stretch to great lengths. The penises are covered with chemosensory setae allowing them to seek out receptive neighbors. For many species, the condition of the penis changes seasonally. In the most extreme circumstances, it degenerates and is shed during the first post-mating molt and is re-grown for the next mating season. Barnacle penises have been shown to exhibit phenotypic plasticity in response to many different challenges. When exposed to heavy waves, diameter is increased by thickening both the cuticle and muscles. When mates are far, length increases by adding ringed annulations. Experiments have shown that these plastic traits are modular, capable of changing independently from each other and that they improve mating ability. Alternate strategies to increase reproductive ability by barnacles include the production of dwarf and complemental males, sperm casting and sperm leakage, and aerial copulation. All of these mating strategies may have important implications for the study of reproductive biology, life history, and sex allocation theory. © The Author 2016. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.

  11. A biologically inspired artificial muscle based on fiber-reinforced and electropneumatic dielectric elastomers

    Science.gov (United States)

    Liu, Lei; Zhang, Chi; Luo, Meng; Chen, Xi; Li, Dichen; Chen, Hualing

    2017-08-01

    Dielectric elastomers (DEs) have great potential for use as artificial muscles because of the following characteristics: electrical activity, fast and large deformation under stimuli, and softness as natural muscles. Inspired by the traditional McKibben actuators, in this study, we developed a cylindrical soft fiber-reinforced and electropneumatic DE artificial muscle (DEAM) by mimicking the spindle shape of natural muscles. Based on continuum mechanics and variation principle, the inhomogeneous actuation of DEAMs was theoretically modeled and calculated. Prototypes of DEAMs were prepared to validate the design concept and theoretical model. The theoretical predictions are consistent with the experimental results; they successfully predicted the evolutions of the contours of DEAMs with voltage. A pneumatically supported high prestretch in the hoop direction was achieved by our DEAM prototype without buckling the soft fibers sandwiched by the DE films. Besides, a continuously tunable prestretch in the actuation direction was achieved by varying the supporting pressure. Using the theoretical model, the failure modes, maximum actuations, and critical voltages were analyzed; they were highly dependent on the structural parameters, i.e., the cylinder aspect ratio, prestretch level, and supporting pressure. The effects of structural parameters and supporting pressure on the actuation performance were also investigated to optimize the DEAMs.

  12. Myostatin promotes distinct responses on protein metabolism of skeletal and cardiac muscle fibers of rodents

    Directory of Open Access Journals (Sweden)

    L.H. Manfredi

    2017-10-01

    Full Text Available Myostatin is a novel negative regulator of skeletal muscle mass. Myostatin expression is also found in heart in a much less extent, but it can be upregulated in pathological conditions, such as heart failure. Myostatin may be involved in inhibiting protein synthesis and/or increasing protein degradation in skeletal and cardiac muscles. Herein, we used cell cultures and isolated muscles from rats to determine protein degradation and synthesis. Muscles incubated with myostatin exhibited an increase in proteolysis with an increase of Atrogin-1, MuRF1 and LC3 genes. Extensor digitorum longus muscles and C2C12 myotubes exhibited a reduction in protein turnover. Cardiomyocytes showed an increase in proteolysis by activating autophagy and the ubiquitin proteasome system, and a decrease in protein synthesis by decreasing P70S6K. The effect of myostatin on protein metabolism is related to fiber type composition, which may be associated to the extent of atrophy mediated effect of myostatin on muscle.

  13. The November 2011 irruption of buoy barnacles Dosima fascicularis ...

    African Journals Online (AJOL)

    Dissection failed to reveal foreign attachment sites in 40 floats, but digesting 70 floats in potassium hydroxide revealed small plastic fragments in eight floats, one tar ball and one Velella skeleton. The 100 study colonies were comprised solely of buoy barnacles, but a Janthina shell had one buoy barnacle and 18 Lepas ...

  14. Composition and adaptation of human myotendinous junction and neighboring muscle fibers to heavy resistance training

    DEFF Research Database (Denmark)

    Jakobsen, Johannes; Mackey, A L; Knudsen, A B

    2017-01-01

    The myotendinous junction (MTJ) is a common site of strain injury and yet understanding of its composition and ability to adapt to loading is poor. The main aims of this study were to determine the profile of selected collagens and macrophage density in human MTJ and adjoining muscle fibers......, and to investigate whether heavy exercise loading would alter this profile. Fifteen individuals scheduled for anterior cruciate ligament repair surgery were randomized into three groups: control, acute or 4 weeks heavy resistance training. MTJ samples were collected from the semitendinosus and gracilis muscles...... collagens were abundant at the MTJ and in muscle perimysium or endomysium. The endomysial content of collagen XIV, macrophages and Tenascin-C increased following 4 weeks of training. These findings illustrate the heterogeneity of collagen type composition of human MTJ. The increase in collagen XIV following...

  15. The relationships among jaw-muscle fiber architecture, jaw morphology, and feeding behavior in extant apes and modern humans.

    Science.gov (United States)

    Taylor, Andrea B; Vinyard, Christopher J

    2013-05-01

    The jaw-closing muscles are responsible for generating many of the forces and movements associated with feeding. Muscle physiologic cross-sectional area (PCSA) and fiber length are two architectural parameters that heavily influence muscle function. While there have been numerous comparative studies of hominoid and hominin craniodental and mandibular morphology, little is known about hominoid jaw-muscle fiber architecture. We present novel data on masseter and temporalis internal muscle architecture for small- and large-bodied hominoids. Hominoid scaling patterns are evaluated and compared with representative New- (Cebus) and Old-World (Macaca) monkeys. Variation in hominoid jaw-muscle fiber architecture is related to both absolute size and allometry. PCSAs scale close to isometry relative to jaw length in anthropoids, but likely with positive allometry in hominoids. Thus, large-bodied apes may be capable of generating both absolutely and relatively greater muscle forces compared with smaller-bodied apes and monkeys. Compared with extant apes, modern humans exhibit a reduction in masseter PCSA relative to condyle-M1 length but retain relatively long fibers, suggesting humans may have sacrificed relative masseter muscle force during chewing without appreciably altering muscle excursion/contraction velocity. Lastly, craniometric estimates of PCSAs underestimate hominoid masseter and temporalis PCSAs by more than 50% in gorillas, and overestimate masseter PCSA by as much as 30% in humans. These findings underscore the difficulty of accurately estimating jaw-muscle fiber architecture from craniometric measures and suggest models of fossil hominin and hominoid bite forces will be improved by incorporating architectural data in estimating jaw-muscle forces. Copyright © 2013 Wiley Periodicals, Inc.

  16. Titin-based stiffening of muscle fibers in Ehlers-Danlos Syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Ottenheijm, Coen A.C.; Voermans, Nicol C.; Hudson, Bryan D.; Irving, Thomas; Stienen, Ger J.M.; van Engelen, Baziel G.; Granzier, Henk (IIT); (Radboud); (Ariz); (Vrije)

    2012-05-09

    Tenascin-X (TNX) is an extracellular matrix glycoprotein whose absence leads to Ehlers-Danlos Syndrome (EDS). TNX-deficient EDS patients present with joint hypermobility and muscle weakness attributable to increased compliance of the extracellular matrix. We hypothesized that in response to the increased compliance of the extracellular matrix in TNX-deficient EDS patients, intracellular adaptations take place in the elastic properties of the giant muscle protein titin. We performed extensive single muscle fiber mechanical studies to determine active and passive properties in TNX-deficient EDS patients. Gel-electrophoresis, Western blotting, and microarray studies were used to evaluate titin expression and phosphorylation. X-ray diffraction was used to measure myofilament lattice spacing. Passive tension of muscle fibers from TNX-deficient EDS patients was markedly increased. Myofilament extraction experiments indicated that the increased passive tension is attributable to changes in the properties of the sarcomeric protein titin. Transcript and protein data indicated no changes in titin isoform expression. Instead, differences in posttranslational modifications within titin's elastic region were found. In patients, active tension was not different at maximal activation level, but at submaximal activation level it was augmented attributable to increased calcium sensitivity. This increased calcium sensitivity might be attributable to stiffer titin molecules. In response to the increased compliance of the extracellular matrix in muscle of TNX-deficient EDS patients, a marked intracellular stiffening occurs of the giant protein titin. The stiffening of titin partly compensates for the muscle weakness in these patients by augmenting submaximal active tension generation.

  17. Effects of resistance training on endurance capacity and muscle fiber composition in young top-level cyclists

    DEFF Research Database (Denmark)

    Aagaard, P; Andersen, J L; Bennekou, M

    2011-01-01

    -level endurance athletes. The present study examined the effect of 16 weeks of concurrent SE training on maximal muscle strength (MVC), contractile rate of force development (RFD), muscle fiber morphology and composition, capillarization, aerobic power (VO2max), cycling economy (CE) and long/short-term endurance...

  18. Could the peristaltic transition zone be caused by non-uniform esophageal muscle fiber architecture? A simulation study.

    Science.gov (United States)

    Kou, W; Pandolfino, J E; Kahrilas, P J; Patankar, N A

    2017-06-01

    Based on a fully coupled computational model of esophageal transport, we analyzed how varied esophageal muscle fiber architecture and/or dual contraction waves (CWs) affect bolus transport. Specifically, we studied the luminal pressure profile in those cases to better understand possible origins of the peristaltic transition zone. Two groups of studies were conducted using a computational model. The first studied esophageal transport with circumferential-longitudinal fiber architecture, helical fiber architecture and various combinations of the two. In the second group, cases with dual CWs and varied muscle fiber architecture were simulated. Overall transport characteristics were examined and the space-time profiles of luminal pressure were plotted and compared. Helical muscle fiber architecture featured reduced circumferential wall stress, greater esophageal distensibility, and greater axial shortening. Non-uniform fiber architecture featured a peristaltic pressure trough between two high-pressure segments. The distal pressure segment showed greater amplitude than the proximal segment, consistent with experimental data. Dual CWs also featured a pressure trough between two high-pressure segments. However, the minimum pressure in the region of overlap was much lower, and the amplitudes of the two high-pressure segments were similar. The efficacy of esophageal transport is greatly affected by muscle fiber architecture. The peristaltic transition zone may be attributable to non-uniform architecture of muscle fibers along the length of the esophagus and/or dual CWs. The difference in amplitude between the proximal and distal pressure segments may be attributable to non-uniform muscle fiber architecture. © 2017 John Wiley & Sons Ltd.

  19. Size and Proportions of Slow-Twitch and Fast-Twitch Muscle Fibers in Human Costal Diaphragm.

    Science.gov (United States)

    Meznaric, Marija; Cvetko, Erika

    2016-01-01

    Smaller diaphragmatic motor unit potentials (MUPs) compared to MUPs of limb muscles lead to the hypothesis that diaphragmatic muscle fibers, being the generators of MUPs, might be also smaller. We compared autopsy samples of costal diaphragm and vastus lateralis of healthy men with respect to fibers' size and expression of slow myosin heavy chain isoform (MyHC-1) and fast 2A isoform (MyHC-2A). Diaphragmatic fibers were smaller than fibers in vastus lateralis with regard to the mean minimal fiber diameter of slow-twitch (46.8 versus 72.2  μ m, p twitch (45.1 versus 62.4  μ m, p twitch (2376.0 versus 5455.9  μ m 2 , p twitch (2258.7 versus 4189.7  μ m 2 , p twitch fibers was higher (50.2 versus 36.3%, p twitch fibers (47.2 versus 58.7%, p < 0.01) was lower. The numerical proportion of hybrid fibers did not differ. Muscle fibers of costal diaphragm have specific characteristics which support increased resistance of diaphragm to fatigue.

  20. Protein Supplementation Does Not Further Increase Latissimus Dorsi Muscle Fiber Hypertrophy after Eight Weeks of Resistance Training in Novice Subjects, but Partially Counteracts the Fast-to-Slow Muscle Fiber Transition.

    Science.gov (United States)

    Paoli, Antonio; Pacelli, Quirico F; Cancellara, Pasqua; Toniolo, Luana; Moro, Tatiana; Canato, Marta; Miotti, Danilo; Neri, Marco; Morra, Aldo; Quadrelli, Marco; Reggiani, Carlo

    2016-06-01

    The response to resistance training and protein supplementation in the latissimus dorsi muscle (LDM) has never been investigated. We investigated the effects of resistance training (RT) and protein supplementation on muscle mass, strength, and fiber characteristics of the LDM. Eighteen healthy young subjects were randomly assigned to a progressive eight-week RT program with a normal protein diet (NP) or high protein diet (HP) (NP 0.85 vs. HP 1.8 g of protein·kg(-1)·day(-1)). One repetition maximum tests, magnetic resonance imaging for cross-sectional muscle area (CSA), body composition, and single muscle fibers mechanical and phenotype characteristics were measured. RT induced a significant gain in strength (+17%, p supplementation showed no significant effects on all measured outcomes except for a smaller reduction of 2X myosin expression. Our results suggest that in LDM protein supplementation does not further enhance RT-induced muscle fiber hypertrophy nor influence mechanic muscle fiber characteristics but partially counteracts the fast-to-slow fiber shift.

  1. Morphometric analysis of somatotropic cells of the adenohypophysis and muscle fibers of the psoas muscle in the process of aging in humans.

    Science.gov (United States)

    Antić, Vladimir M; Stefanović, Natalija; Jovanović, Ivan; Antić, Milorad; Milić, Miroslav; Krstić, Miljan; Kundalić, Braca; Milošević, Verica

    2015-07-01

    The aim of this research was to quantify changes of the adenohypophyseal somatotropes and types 1 and 2 muscle fibers with aging, as well as to establish mutual interactions and correlations with age. Material was samples of hypophysis and psoas major muscle of 27 cadavers of both genders, aged from 30 to 90 years. Adenohypophyseal and psoas major tissue sections were immunohistochemically processed and stained by anti-human growth hormone and anti-fast myosin antibodies, respectively. Morphometric analysis was performed by ImageJ. Results of morphometric analysis showed a significant increase in the somatotrope area, and significant decrease in somatotrope volume density and nucleocytoplasmic ratio with age. Cross-sectional areas of types 1 and 2, and volume density of type 2 muscle fibers decreased significantly with age. One Way ANOVA showed that the latter cited changes in the somatotropes and types 1 and 2 muscle fibers mostly become significant after the age of 70. Significant positive correlation was observed between the area of the somatotropes and volume density of type 2 muscle fibers. A significant negative correlation was detected between the nucleocytoplasmic ratio of the somatotropes and cross-sectional areas of types 1 and 2 muscle fibers. So, it can be concluded that after the age of 70, there is significant loss of the anterior pituitary's somatotropes associated with hypertrophy and possible functional decline of the remained cells. Age-related changes in the somatotropes are correlated with the simultaneous atrophy of type 1, as well as with the atrophy and loss of type 2 muscle fibers. Copyright © 2015 Elsevier GmbH. All rights reserved.

  2. Pre-embedding staining of single muscle fibers for light and electron microscopy studies of subcellular organization

    DEFF Research Database (Denmark)

    Ralston, E; Ploug, Thorkil

    1996-01-01

    ) immunocytochemistry. Here we show that pre-embedding staining of single teased fibers, or of single enzymatically dissociated fibers, has several advantages over the use of sections for observing discrete patterns that extend over long distances in the cells. We report on an optimization study carried out......Skeletal muscle fibers are large, multinucleated cells which pose a challenge to the morphologist. In the course of studies of the distribution of the glucose transporter GLUT4, in muscle, we have compared different preparative procedures, for both light (LM) and electron microscopy (EM...

  3. Systemic administration of monosodium glutamate elevates intramuscular glutamate levels and sensitizes rat masseter muscle afferent fibers.

    Science.gov (United States)

    Cairns, Brian E; Dong, Xudong; Mann, Mandeep K; Svensson, Peter; Sessle, Barry J; Arendt-Nielsen, Lars; McErlane, Keith M

    2007-11-01

    There is evidence that elevated tissue concentrations of glutamate may contribute to pain and sensitivity in certain musculoskeletal pain conditions. In the present study, the food additive monosodium glutamate (MSG) was injected intravenously into rats to determine whether it could significantly elevate interstitial concentrations of glutamate in the masseter muscle and whether MSG administration could excite and/or sensitize slowly conducting masseter afferent fibers through N-methyl-D-aspartate (NMDA) receptor activation. The interstitial concentration of glutamate after systemic injection of isotonic phosphate-buffered saline (control) or MSG (10 and 50mg/kg) was measured with a glutamate-selective biosensor. The pre-injection baseline interstitial concentration of glutamate in the rat masseter muscle was 24+/-11 microM. Peak interstitial concentration after injection of 50mg/kg MSG was 63+/-18 microM and remained elevated above baseline for approximately 18 min. In vivo single unit recording experiments were undertaken to assess the effect of MSG (50mg/kg) on masseter afferent fibers. Injection of MSG evoked a brief discharge in one afferent fiber, and significantly decreased ( approximately 25%) the average afferent mechanical threshold (n=10) during the first 5 min after injection of MSG. Intravenous injection of ketamine (1mg/kg), 5 min prior to MSG, prevented the MSG-induced decreases in the mechanical threshold of masseter afferent fibers. The present results indicate that a 2- to 3-fold elevation in interstitial glutamate levels in the masseter muscle is sufficient to excite and induce afferent mechanical sensitization through NMDA receptor activation. These findings suggest that modest elevations of interstitial glutamate concentration could alter musculoskeletal pain sensitivity in humans.

  4. Elevation in heat shock protein 72 mRNA following contractions in isolated single skeletal muscle fibers

    OpenAIRE

    Stary, Creed M.; Walsh, Brandon J.; Knapp, Amy E.; Brafman, David; Hogan, Michael C.

    2008-01-01

    The purpose of the present study was 1) to develop a stable model for measuring contraction-induced elevations in mRNA in single skeletal muscle fibers and 2) to utilize this model to investigate the response of heat shock protein 72 (HSP72) mRNA following an acute bout of fatiguing contractions. Living, intact skeletal muscle fibers were microdissected from lumbrical muscle of Xenopus laevis and either electrically stimulated for 15 min of tetanic contractions (EX; n = 26) or not stimulated ...

  5. The equivalent circuit of single crab muscle fibers as determined by impedance measurements with intracellular electrodes.

    Science.gov (United States)

    Eisenberg, R S

    1967-07-01

    The input impedance of muscle fibers of the crab was determined with microelectrodes over the frequency range 1 cps to 10 kc/sec. Care was taken to analyze, reduce, and correct for capacitive artifact. One dimensional cable theory was used to determine the properties of the equivalent circuit of the membrane admittance, and the errors introduced by the neglect of the three dimensional spread of current are discussed. In seven fibers the equivalent circuit of an element of the membrane admittance must contain a DC path and two capacitances, each in series with a resistance. In two fibers, the element of membrane admittance could be described by one capacitance in parallel with a resistance. In several fibers there was evidence for a third very large capacitance. The values of the elements of the equivalent circuit depend on which of several equivalent circuits is chosen. The circuit (with a minimum number of elements) that was considered most reasonably consistent with the anatomy of the fiber has two branches in parallel: one branch having a resistance R(e) in series with a capacitance C(e); the other branch having a resistance R(b) in series with a parallel combination of a resistance R(m) and a capacitance C(m). The average circuit values (seven fibers) for this model, treating the fiber as a cylinder of sarcolemma without infoldings or tubular invaginations, are R(e) = 21 ohm cm(2); C(e) = 47 microf/cm(2); R(b) = 10.2 ohm cm(2); R(m) = 173 ohm cm(2); C(m) = 9.0 microf/cm(2). The relation of this equivalent circuit and another with a nonminimum number of circuit elements to the fine structure of crab muscle is discussed. In the above equivalent circuit R(m) and C(m) are attributed to the sarcolemma; R(e) and C(e), to the sarcotubular system; and R(b), to the amorphous material found around crab fibers. Estimates of actual surface area of the sarcolemma and sarcotubular system permit the average circuit values to be expressed in terms of unit membrane area. The

  6. Regulation of mitochondrial respiration by inorganic phosphate; comparing permeabilized muscle fibers and isolated mitochondria prepared from type-1 and type-2 rat skeletal muscle

    DEFF Research Database (Denmark)

    Scheibye-Knudsen, Morten; Quistorff, Bjørn

    2008-01-01

    -II muscle from male Wistar rats were prepared. Respiration was measured while the medium P(i) concentration was gradually increased. The apparent K(m) values for P(i) were 607 +/- 17 microM and 405 +/- 15 microM (P ...ADP is generally accepted as a key regulator of oxygen consumption both in isolated mitochondria and in permeabilized fibers from skeletal muscle. The present study explored inorganic phosphate in a similar regulatory role. Saponin permeabilized fibers and isolated mitochondria from type-I and type...... were significantly lower than type-1 permeabilized fibers, 338 +/- 130 microM and 235 +/- 30 microM (P muscle is unknown, but a similar pattern has been observed for K(m) of ADP...

  7. 3D visualization and measurement of capillaries supplying metabolically different fiber types in the rat extensor digitorum longus muscle during denervation and reinnervation.

    Science.gov (United States)

    Janácek, Jirí; Cebasek, Vita; Kubínová, Lucie; Ribaric, Samo; Erzen, Ida

    2009-05-01

    The aim of this study was to determine whether capillarity in the denervated and reinnervated rat extensor digitorum longus muscle (EDL) is scaled by muscle fiber oxidative potential. We visualized capillaries adjacent to a metabolically defined fiber type and estimated capillarity of fibers with very high oxidative potential (O) vs fibers with very low oxidative potential (G). Capillaries and muscle fiber types were shown by a combined triple immunofluorescent technique and the histochemical method for NADH-tetrazolium reductase. Stacks of images were captured by a confocal microscope. Applying the Ellipse program, fibers were outlined, and the diameter, perimeter, cross-sectional area, length, surface area, and volume within the stack were calculated for both fiber types. Using the Tracer plug-in module, capillaries were traced within the three-dimensional (3D) volume, the length of capillaries adjacent to individual muscle fibers was measured, and the capillary length per fiber length (Lcap/Lfib), surface area (Lcap/Sfib), and volume (Lcap/Vfib) were calculated. Furthermore, capillaries and fibers of both types were visualized in 3D. In all experimental groups, O and G fibers significantly differed in girth, Lcap/Sfib, and Lcap/Vfib, but not in Lcap/Lfib. We conclude that capillarity in the EDL is scaled by muscle fiber size and not by muscle fiber oxidative potential.

  8. Nandrolone normalizes determinants of muscle mass and fiber type after spinal cord injury.

    Science.gov (United States)

    Wu, Yong; Zhao, Jingbo; Zhao, Weidong; Pan, Jiangping; Bauman, William A; Cardozo, Christopher P

    2012-05-20

    Spinal cord injury (SCI) results in atrophy of skeletal muscle and changes from slow oxidative to fast glycolytic fibers, which may reflect reduced levels of peroxisome proliferator-activated receptor gamma coactivator-1α (PGC-1α), increased myostatin signaling, or both. In animals, testosterone reduces loss of muscle fiber cross-sectional area and activity of enzymes of energy metabolism. To identify the molecular mechanisms behind the benefits of androgens on paralyzed muscle, male rats were spinal cord transected and treated for 8 weeks with vehicle, testosterone at a physiological replacement dose, or testosterone plus nandrolone, an anabolic steroid. Treatments were initiated immediately after SCI and continued until the day animals were euthanized. In the SCI animals, gastrocnemius muscle mass was significantly increased by testosterone plus nandrolone, but not by testosterone alone. Both treatments significantly reduced nuclear content of Smad2/3 and mRNA levels of activin receptor IIB and follistatin-like 3. Testosterone alone or with nandrolone reversed SCI-induced declines in cellular and nuclear levels of PGC-1α protein and PGC-1α mRNA levels. For PGC-1α target genes, testosterone plus nandrolone partially reversed SCI-induced decreases in levels of proteins without corresponding increases in their mRNA levels. Thus, the findings demonstrate that following SCI, signaling through activin receptors and Smad2/3 is increased, and that androgens suppress activation of this signaling pathway. The findings also indicate that androgens upregulate PGC-1α in paralyzed muscle and promote its nuclear localization, but that these effects are insufficient to fully activate transcription of PGC-1α target genes. Furthermore, the transcription of these genes is not tightly coupled with their translation.

  9. Finite element analysis of mechanics of lateral transmission of force in single muscle fiber.

    Science.gov (United States)

    Zhang, Chi; Gao, Yingxin

    2012-07-26

    Most of the myofibers in long muscles of vertebrates terminate within fascicles without reaching either end of the tendon, thus force generated in myofibers has to be transmitted laterally through the extracellular matrix (ECM) to adjacent fibers; which is defined as the lateral transmission of force in skeletal muscles. The goal of this study was to determine the mechanisms of lateral transmission of force between the myofiber and ECM. In this study, a 2D finite element model of single muscle fiber was developed to study the effects of mechanical properties of the endomysium and the tapered ends of myofiber on lateral transmission of force. Results showed that most of the force generated is transmitted near the end of the myofiber through shear to the endomysium, and the force transmitted to the end of the model increases with increased stiffness of ECM. This study also demonstrated that the tapered angle of the myofiber ends can reduce the stress concentration near the myofiber end while laterally transmitting force efficiently. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Barnacle cement: a polymerization model based on evolutionary concepts

    Science.gov (United States)

    Dickinson, Gary H.; Vega, Irving E.; Wahl, Kathryn J.; Orihuela, Beatriz; Beyley, Veronica; Rodriguez, Eva N.; Everett, Richard K.; Bonaventura, Joseph; Rittschof, Daniel

    2009-01-01

    Summary Enzymes and biochemical mechanisms essential to survival are under extreme selective pressure and are highly conserved through evolutionary time. We applied this evolutionary concept to barnacle cement polymerization, a process critical to barnacle fitness that involves aggregation and cross-linking of proteins. The biochemical mechanisms of cement polymerization remain largely unknown. We hypothesized that this process is biochemically similar to blood clotting, a critical physiological response that is also based on aggregation and cross-linking of proteins. Like key elements of vertebrate and invertebrate blood clotting, barnacle cement polymerization was shown to involve proteolytic activation of enzymes and structural precursors, transglutaminase cross-linking and assembly of fibrous proteins. Proteolytic activation of structural proteins maximizes the potential for bonding interactions with other proteins and with the surface. Transglutaminase cross-linking reinforces cement integrity. Remarkably, epitopes and sequences homologous to bovine trypsin and human transglutaminase were identified in barnacle cement with tandem mass spectrometry and/or western blotting. Akin to blood clotting, the peptides generated during proteolytic activation functioned as signal molecules, linking a molecular level event (protein aggregation) to a behavioral response (barnacle larval settlement). Our results draw attention to a highly conserved protein polymerization mechanism and shed light on a long-standing biochemical puzzle. We suggest that barnacle cement polymerization is a specialized form of wound healing. The polymerization mechanism common between barnacle cement and blood may be a theme for many marine animal glues. PMID:19837892

  11. The effect of lattice spacing change on cross-bridge kinetics in chemically skinned rabbit psoas muscle fibers. I. Proportionality between the lattice spacing and the fiber width

    OpenAIRE

    Kawai, M.; Wray, J.S.; Zhao, Y.

    1993-01-01

    Chemically skinned rabbit psoas muscle fibers/bundles were osmotically compressed with a macromolecule dextran T-500 (0-16%, g/100 ml) at 20 degrees C, 200 mM ionic strength, and pH 7.0. The lattice spacing of psoas bundles was measured by equatorial x-ray diffraction studies during relaxation and after rigor induction, and the results were compared with the fiber width measurements by optical microscopy. The purpose of the present study is to determine whether fiber width is a reliable measu...

  12. Effects of D-600 on intramembrane charge movement of polarized and depolarized frog muscle fibers.

    Science.gov (United States)

    Caputo, C; Bolaños, P

    1989-07-01

    Intramembrane charge movement has been measured in frog cut skeletal muscle fibers using the triple vaseline gap voltage-clamp technique. Ionic currents were reduced using an external solution prepared with tetraethylammonium to block potassium currents, and O sodium + tetrodotoxin to abolish sodium currents. The internal solution contained 10 mM EGTA to prevent contractions. Both the internal and external solutions were prepared with impermeant anions. Linear capacitive currents were subtracted using the P-P/4 procedure, with the control pulses being subtracted either at very negative potentials, for the case of polarized fibers, or at positive potentials, for the case of depolarized fibers. In 63 polarized fibers dissected from Rana pipiens or Leptodactylus insularis frogs the following values were obtained for charge movement parameters: Qmax = 39 nC/microF, V = 36 mV, k = 18.5 mV. After depolarization we found that the total amount of movable charge was not appreciably reduced, while the voltage sensitivity was much changed. For 10 fibers, in which charge movement was measured at -100 and at 0 mV, Qmax changed from 46 to 41 nC/microF, while V changed from -41 to -103 mV and k changed from 20.5 to 30 mV. Thus membrane depolarization to 0 mV produces a shift of greater than 50 mV in the Q-V relationship and a decrease of the slope. Membrane depolarization to -20 and -30 mV, caused a smaller shift of the Q-V relationship. In normally polarized fibers addition of D-600 at concentrations of 50-100 microM, does not cause important changes in charge movement parameters. However, the drug appears to have a use-dependent effect after depolarization. Thus in depolarized fibers, total charge is reduced by approximately 20%. D-600 causes no further changes in the voltage sensitivity of charge movement in fibers depolarized to 0 mV, while in fibers depolarized to -20 and -30 mV it causes the same effects as that obtained with depolarization to 0 mV. These results are

  13. Effects of beta-adrenergic blockade on endurance and short-time performance in respect to individual muscle fiber composition.

    Science.gov (United States)

    Kaiser, P; Rössner, S; Karlsson, J

    1981-02-01

    Nine physically active males were studied three times with four different exercise tests after administration of placebo, 0.1 g atenolol, or 0.08 g propranolol in random order. The test modals were: bicycle ergometer exercise at 50% of VO2max, peak torque during knee extension, the Wingate muscle power test, and 2000 m track running. Muscle fiber composition had previously been determined. In subjects with a high percentage of slow-twitch fibers the beta-blockers caused a more marked impairment in the exercising muscles. This effect was more pronounced with the unselective beta-blocker propranolol than with atenolol. One interpretation of our findings is that peripheral sympathetic beta 2-receptors in skeletal muscles may contribute to regulating muscle metabolism.

  14. Electrically controllable twisted-coiled artificial muscle actuators using surface-modified polyester fibers

    Science.gov (United States)

    Park, Jungwoo; Yoo, Ji Wang; Seo, Hee Won; Lee, Youngkwan; Suhr, Jonghwan; Moon, Hyungpil; Koo, Ja Choon; Ryeol Choi, Hyouk; Hunt, Robert; Kim, Kwang Jin; Kim, Soo Hyun; Nam, Jae-Do

    2017-03-01

    As a new class of thermally activated actuators based on polymeric fibers, we investigated polyethylene terephthalate (PET) yarns for the development of a twisted-coiled polymer fiber actuator (TCA). The PET yarn TCA exhibited the maximum linear actuation up to 8.9% by external heating at above the glass transition temperature, 160 °C-180 °C. The payload of the actuator was successfully correlated with the preload and training-load conditions by an empirical equation. Furthermore, the PET-based TCA was electrically driven by Joule heating after the PET surface was metallization with silver. For the fast and precise control of PET yarn TCA, electroless silver plating was conducted to form electrical conductive layers on the PET fiber surface. The silver plated PET-based TCA was tested by Joule heating and the tensile actuation was increased up to 12.1% (6 V) due to the enhanced surface hardness and slippage of PET fibers. Overall, silver plating of the polymeric yarn provided a fast actuation speed and enhanced actuation performance of the TCA actuator by Joule heating, providing a great potential for being used in artificial muscle for biomimetic machines including robots, industrial actuators and powered exoskeletons.

  15. Low Po2 conditions induce reactive oxygen species formation during contractions in single skeletal muscle fibers

    Science.gov (United States)

    Shiah, Amy; Roberts, William J.; Chien, Michael T.; Wagner, Peter D.; Hogan, Michael C.

    2013-01-01

    Contractions in whole skeletal muscle during hypoxia are known to generate reactive oxygen species (ROS); however, identification of real-time ROS formation within isolated single skeletal muscle fibers has been challenging. Consequently, there is no convincing evidence showing increased ROS production in intact contracting fibers under low Po2 conditions. Therefore, we hypothesized that intracellular ROS generation in single contracting skeletal myofibers increases during low Po2 compared with a value approximating normal resting Po2. Dihydrofluorescein was loaded into single frog (Xenopus) fibers, and fluorescence was used to monitor ROS using confocal microscopy. Myofibers were exposed to two maximal tetanic contractile periods (1 contraction/3 s for 2 min, separated by a 60-min rest period), each consisting of one of the following treatments: high Po2 (30 Torr), low Po2 (3–5 Torr), high Po2 with ebselen (antioxidant), or low Po2 with ebselen. Ebselen (10 μM) was administered before the designated contractile period. ROS formation during low Po2 treatment was greater than during high Po2 treatment, and ebselen decreased ROS generation in both low- and high-Po2 conditions (P Po2. Force was reduced >30% for each condition except low Po2 with ebselen, which only decreased ∼15%. We concluded that single myofibers under low Po2 conditions develop accelerated and more oxidative stress than at Po2 = 30 Torr (normal human resting Po2). Ebselen decreases ROS formation in both low and high Po2, but only mitigates skeletal muscle fatigue during reduced Po2 conditions. PMID:23576612

  16. Transgenic mice expressing mutant Pinin exhibit muscular dystrophy, nebulin deficiency and elevated expression of slow-type muscle fiber genes

    International Nuclear Information System (INIS)

    Wu, Hsu-Pin; Hsu, Shu-Yuan; Wu, Wen-Ai; Hu, Ji-Wei; Ouyang, Pin

    2014-01-01

    Highlights: •Pnn CCD domain functions as a dominant negative mutant regulating Pnn expression and function. •Pnn CCD mutant Tg mice have a muscle wasting phenotype during development and show dystrophic histological features. •Pnn mutant muscles are susceptible to slow fiber type gene transition and NEB reduction. •The Tg mouse generated by overexpression of the Pnn CCD domain displays many characteristics resembling NEB +/− mice. -- Abstract: Pinin (Pnn) is a nuclear speckle-associated SR-like protein. The N-terminal region of the Pnn protein sequence is highly conserved from mammals to insects, but the C-terminal RS domain-containing region is absent in lower species. The N-terminal coiled-coil domain (CCD) is, therefore, of interest not only from a functional point of view, but also from an evolutionarily standpoint. To explore the biological role of the Pnn CCD in a physiological context, we generated transgenic mice overexpressing Pnn mutant in skeletal muscle. We found that overexpression of the CCD reduces endogenous Pnn expression in cultured cell lines as well as in transgenic skeletal muscle fibers. Pnn mutant mice exhibited reduced body mass and impaired muscle function during development. Mutant skeletal muscles show dystrophic histological features with muscle fibers heavily loaded with centrally located myonuclei. Expression profiling and pathway analysis identified over-representation of genes in gene categories associated with muscle contraction, specifically those related to slow type fiber. In addition nebulin (NEB) expression level is repressed in Pnn mutant skeletal muscle. We conclude that Pnn downregulation in skeletal muscle causes a muscular dystrophic phenotype associated with NEB deficiency and the CCD domain is incapable of replacing full length Pnn in terms of functional capacity

  17. Transgenic mice expressing mutant Pinin exhibit muscular dystrophy, nebulin deficiency and elevated expression of slow-type muscle fiber genes

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Hsu-Pin; Hsu, Shu-Yuan [Department of Anatomy, Chang Gung University Medical College, Taiwan (China); Wu, Wen-Ai; Hu, Ji-Wei [Transgenic Mouse Core Laboratory, Chang Gung University, Taiwan (China); Ouyang, Pin, E-mail: ouyang@mail.cgu.edu.tw [Department of Anatomy, Chang Gung University Medical College, Taiwan (China); Transgenic Mouse Core Laboratory, Chang Gung University, Taiwan (China); Molecular Medicine Research Center, Chang Gung University, Taiwan (China)

    2014-01-03

    Highlights: •Pnn CCD domain functions as a dominant negative mutant regulating Pnn expression and function. •Pnn CCD mutant Tg mice have a muscle wasting phenotype during development and show dystrophic histological features. •Pnn mutant muscles are susceptible to slow fiber type gene transition and NEB reduction. •The Tg mouse generated by overexpression of the Pnn CCD domain displays many characteristics resembling NEB{sup +/−} mice. -- Abstract: Pinin (Pnn) is a nuclear speckle-associated SR-like protein. The N-terminal region of the Pnn protein sequence is highly conserved from mammals to insects, but the C-terminal RS domain-containing region is absent in lower species. The N-terminal coiled-coil domain (CCD) is, therefore, of interest not only from a functional point of view, but also from an evolutionarily standpoint. To explore the biological role of the Pnn CCD in a physiological context, we generated transgenic mice overexpressing Pnn mutant in skeletal muscle. We found that overexpression of the CCD reduces endogenous Pnn expression in cultured cell lines as well as in transgenic skeletal muscle fibers. Pnn mutant mice exhibited reduced body mass and impaired muscle function during development. Mutant skeletal muscles show dystrophic histological features with muscle fibers heavily loaded with centrally located myonuclei. Expression profiling and pathway analysis identified over-representation of genes in gene categories associated with muscle contraction, specifically those related to slow type fiber. In addition nebulin (NEB) expression level is repressed in Pnn mutant skeletal muscle. We conclude that Pnn downregulation in skeletal muscle causes a muscular dystrophic phenotype associated with NEB deficiency and the CCD domain is incapable of replacing full length Pnn in terms of functional capacity.

  18. Size and Proportions of Slow-Twitch and Fast-Twitch Muscle Fibers in Human Costal Diaphragm

    Directory of Open Access Journals (Sweden)

    Marija Meznaric

    2016-01-01

    Full Text Available Smaller diaphragmatic motor unit potentials (MUPs compared to MUPs of limb muscles lead to the hypothesis that diaphragmatic muscle fibers, being the generators of MUPs, might be also smaller. We compared autopsy samples of costal diaphragm and vastus lateralis of healthy men with respect to fibers’ size and expression of slow myosin heavy chain isoform (MyHC-1 and fast 2A isoform (MyHC-2A. Diaphragmatic fibers were smaller than fibers in vastus lateralis with regard to the mean minimal fiber diameter of slow-twitch (46.8 versus 72.2 μm, p<0.001, fast-twitch (45.1 versus 62.4 μm, p<0.001, and hybrid fibers (47.3 versus 65.0 μm, p<0.01 as well as to the mean fiber cross-sectional areas of slow-twitch (2376.0 versus 5455.9 μm2, p<0.001, fast-twitch (2258.7 versus 4189.7 μm2, p<0.001, and hybrid fibers (2404.4 versus 4776.3 μm2, p<0.01. The numerical proportion of slow-twitch fibers was higher (50.2 versus 36.3%, p<0.01 in costal diaphragm and the numerical proportion of fast-twitch fibers (47.2 versus 58.7%, p<0.01 was lower. The numerical proportion of hybrid fibers did not differ. Muscle fibers of costal diaphragm have specific characteristics which support increased resistance of diaphragm to fatigue.

  19. Elevation in heat shock protein 72 mRNA following contractions in isolated single skeletal muscle fibers.

    Science.gov (United States)

    Stary, Creed M; Walsh, Brandon J; Knapp, Amy E; Brafman, David; Hogan, Michael C

    2008-08-01

    The purpose of the present study was 1) to develop a stable model for measuring contraction-induced elevations in mRNA in single skeletal muscle fibers and 2) to utilize this model to investigate the response of heat shock protein 72 (HSP72) mRNA following an acute bout of fatiguing contractions. Living, intact skeletal muscle fibers were microdissected from lumbrical muscle of Xenopus laevis and either electrically stimulated for 15 min of tetanic contractions (EX; n=26) or not stimulated to contract (REST; n=14). The relative mean developed tension of EX fibers decreased to 29+/-7% of initial peak tension at the stimulation end point. Following treatment, individual fibers were allowed to recover for 1 (n=9), 2 (n=8), or 4 h (n=9) prior to isolation of total cellular mRNA. HSP72, HSP60, and cardiac alpha-actin mRNA content were then assessed in individual fibers using quantitative PCR detection. Relative HSP72 mRNA content was significantly (Pelevated at the 2-h postcontraction time point relative to REST fibers when normalized to either HSP60 (18.5+/-7.5-fold) or cardiac alpha-actin (14.7+/-4.3-fold), although not at the 1- or 4-h time points. These data indicate that 1) extraction of RNA followed by relative quantification of mRNA of select genes in isolated single skeletal muscle fibers can be reliably performed, 2) HSP60 and cardiac alpha-actin are suitable endogenous normalizing genes in skeletal muscle following contractions, and 3) a significantly elevated content of HSP72 mRNA is detectable in skeletal muscle 2 h after a single bout of fatiguing contractions, despite minimal temperature changes and without influence from extracellular sources.

  20. Nitrate intake promotes shift in muscle fiber type composition during sprint interval training in hypoxia

    OpenAIRE

    De Smet, S; Van Thienen, R; Deldicque, L; James, R; Sale, C; Bishop, DJ; Hespel, P

    2016-01-01

    Purpose: We investigated the effect of sprint interval training (SIT) in normoxia, vs. SIT in hypoxia alone or in conjunction with oral nitrate intake, on buffering capacity of homogenized muscle (βhm) and fiber type distribution, as well as on sprint and endurance performance. Methods: Twenty-seven moderately-trained participants were allocated to one of three experimental groups: SIT in normoxia (20.9% FiO2) + placebo (N), SIT in hypoxia (15% FiO2) + placebo (H), or SIT in hypoxia + nitr...

  1. Functional pools of oxidative and glycolytic fibers in human muscle observed by 31P magnetic resonance spectroscopy during exercise

    International Nuclear Information System (INIS)

    Park, J.H.; Brown, R.L.; Park, C.R.; McCully, K.; Cohn, M.; Haselgrove, J.; Chance, B.

    1987-01-01

    Quantitative probing of heterogeneous regions in muscle is feasible with phosphorus-31 magnetic resonance spectroscopy because of the differentiation of metabolic patterns of glycolytic and oxidative fibers. A differential recruitment of oxidative and glycolytic fibers during exercise was demonstrated in 4 of 10 untrained young men by following changes in phosphate metabolites. Concentrations of inorganic phosphate (P/sub i/), phosphocreatine, and ATP were estimated in the wrist flexor muscles of the forearm at rest, during two cycles of three grades of exercise, and in recovery. At high work levels (40% of maximum strength), two distinct P/sub i/ peaks were observed and identified with P/sub i/ pools at pH 6.9 and pH 5.9-6.4, respectively. These could be accounted for as follows. At the lowest level of work (using 20% of maximum strength), early recruitment primarily of oxidative (type I) and possibly some intermediate (type IIA) muscle fibers occurs with relatively little net lactate production and consequently little decrease in pH. At higher work loads, however, primarily glycolytic (type IIB) muscle fibers are recruited, which have relatively high net lactate production and therefore generate a second pool of P/sub i/ at low pH. These observations indicated exhaustion of glycolytic type IIB fibers, removal of lactate by high local blood flow, and sustained contractions largely by oxidative type I and IIA fibers. A functional differentiation of fiber types could also be demonstrated during recovery if exercise was stopped while two pools of P/sub i/ were still apparent. The potential of magnetic resonance spectroscopy to characterize oxidative and glycolytic fibers, predict capacity for aerobic performance, and signal the presence of muscle pathology is discussed

  2. Improved fatigue resistance in Gsα-deficient and aging mouse skeletal muscles due to adaptive increases in slow fibers

    Science.gov (United States)

    Feng, Han-Zhong; Chen, Min; Weinstein, Lee S.

    2011-01-01

    Genetically modified mice with deficiency of the G protein α-subunit (Gsα) in skeletal muscle showed metabolic abnormality with reduced glucose tolerance, low muscle mass, and low contractile force, along with a fast-to-slow-fiber-type switch (Chen M, Feng HZ, Gupta D, Kelleher J, Dickerson KE, Wang J, Hunt D, Jou W, Gavrilova O, Jin JP, Weinstein LS. Am J Physiol Cell Physiol 296: C930–C940, 2009). Here we investigated a hypothesis that the switching to more slow fibers is an adaptive response with specific benefit. The results showed that, corresponding to the switch of myosin isoforms, the thin-filament regulatory proteins troponin T and troponin I both switched to their slow isoforms in the atrophic soleus muscle of 3-mo-old Gsα-deficient mice. This fiber-type switch involving coordinated changes of both thick- and thin-myofilament proteins progressed in the Gsα-deficient soleus muscles of 18- to 24-mo-old mice, as reflected by the expression of solely slow isoforms of myosin and troponin. Compared with age-matched controls, Gsα-deficient soleus muscles with higher proportion of slow fibers exhibited slower contractile and relaxation kinetics and lower developed force, but significantly increased resistance to fatigue, followed by a better recovery. Gsα-deficient soleus muscles of neonatal and 3-wk-old mice did not show the increase in slow fibers. Therefore, the fast-to-slow-fiber-type switch in Gsα deficiency at older ages was likely an adaptive response. The benefit of higher fatigue resistance in adaption to metabolic deficiency and aging provides a mechanism to sustain skeletal muscle function in diabetic patients and elderly individuals. PMID:21680879

  3. Effects of concurrent strength and endurance training on genes related to myostatin signaling pathway and muscle fiber responses.

    Science.gov (United States)

    de Souza, Eduardo O; Tricoli, Valmor; Aoki, Marcelo S; Roschel, Hamilton; Brum, Patrícia C; Bacurau, Aline V N; Silva-Batista, Carla; Wilson, Jacob M; Neves, Manoel; Soares, Antonio G; Ugrinowitsch, Carlos

    2014-11-01

    Concurrent training (CT) seems to impair training-induced muscle hypertrophy. This study compared the effects of CT, strength training (ST) and interval training (IT) on the muscle fiber cross-sectional area (CSA) response, and on the expression of selected genes involved in the myostatin (MSTN) signaling mRNA levels. Thirty-seven physically active men were randomly divided into 4 groups: CT (n = 11), ST (n = 11), IT (n = 8), and control group (C) (n = 7) and underwent an 8-week training period. Vastus lateralis biopsy muscle samples were obtained at baseline and 48 hours after the last training session. Muscle fiber CSA, selected genes expression, and maximum dynamic ST (1 repetition maximum) were evaluated before and after training. Type IIa and type I muscle fiber CSA increased from pre- to posttest only in the ST group (17.08 and 17.9%, respectively). The SMAD-7 gene expression significantly increased at the posttest in the ST (53.9%) and CT groups (39.3%). The MSTN and its regulatory genes ActIIb, FLST-3, FOXO-3a, and GASP-1 mRNA levels remained unchanged across time and groups. One repetition maximum increased from pre- to posttest in both the ST and CT groups (ST = 18.5%; CT = 17.6%). Our findings are suggestive that MSTN and their regulatory genes at transcript level cannot differentiate muscle fiber CSA responses between CT and ST regimens in humans.

  4. The Expression of MMP-2 Following Immobilization and High-Intensity Running in Plantaris Muscle Fiber in Rats

    Directory of Open Access Journals (Sweden)

    Eli Carmeli

    2006-01-01

    Full Text Available The effect of 2-week, high-intensity running and a 2-week immobilization on muscle fiber type composition of the plantaris muscle from 18 female, 6-month-old Wistar rats (running, n = 6; immobilization, n = 6; sedentary control, n = 6 was bio- and histochemically investigated. The high-intensity treadmill running began with 20 min (32 m/min, 0% gradient, 75% VO2 max, up to 50 min/day. Right hind limbs were immobilized by an external fixation procedure for 13 days. Muscle mass of the plantaris muscle in the immobilized groups was reduced by 16% in comparison with the sedentary control group. High-intensity running and immobilization increased both mRNA and protein levels of matrix metalloproteinase type 2 (MMP-2 in plantaris. Running and immobilization decreased the percentages of transverse sectional area of fast-twitch glycolytic (FG type IIb fibers, running increased relative cross-sectional area of fast-twitch oxidative glycolytic (FOG type IIa muscle fibers, whereas immobilization increased relative cross-sectional area of slow-twitch oxidative (SO muscle fibers (type I. Our results suggest that both high-intensity running and immobilization are enough to induce overwhelming changes in plantaris.

  5. Prevention of muscle fibers atrophy during gravitational unloading: The effect of L-arginine administration

    Science.gov (United States)

    Kartashkina, N.; Lomonosova, Y.; Shevchenko, T. F.; Bugrova, A. E.; Turtikova, O. V.; Kalamkarov, G. R.; Nemirovskaya, T. L.

    2011-05-01

    Gravitational unloading results in pronounced atrophy of m.soleus. Probably, the output of NO is controlled by the muscle activity. We hypothesized that NO may be involved in the protein metabolism and increase of its concentration in muscle can prevent atrophic changes induced by gravitational unloading. In order to test the hypothesis we applied NO donor L-arginine during gravitational unloading. 2.5-month-old male Wistar rats weighing 220-230g were divided into sedentary control group (CTR, n=7), 14-day hindlimb suspension (HS, n=7), 14 days of hindlimb suspension+ L-arginine (HSL, n=7) (with a daily supplementation of 500 mg/kg wt L-arginine) and 14 days of hindlimb suspension+ L-NAME (HSN, n=7) (90 mg/kg wt during 14 days). Cross sectional area (CSA) of slow twitch (ST) and fast twitch (FT) soleus muscle fibers decreased by 45% and 28% in the HS group ( pL-arginine administration. The levels of atrogin-1 mRNA were considerably altered in suspended animals (HS group: plus 27%, HSL group: minus 13%) as compared to the control level. Conclusion: L-arginine administration allows maintaining NO concentration in m.soleus at the level of cage control group, prevents from dystrophin layer destruction, decreases the atrogin mRNA concentration in the muscle and atrophy level under gravitational unloading.

  6. Action potential-evoked calcium release is impaired in single skeletal muscle fibers from heart failure patients.

    Directory of Open Access Journals (Sweden)

    Marino DiFranco

    Full Text Available Exercise intolerance in chronic heart failure (HF has been attributed to abnormalities of the skeletal muscles. Muscle function depends on intact excitation-contraction coupling (ECC, but ECC studies in HF models have been inconclusive, due to deficiencies in the animal models and tools used to measure calcium (Ca2+ release, mandating investigations in skeletal muscle from HF patients. The purpose of this study was to test the hypothesis that Ca2+ release is significantly impaired in the skeletal muscle of HF patients in whom exercise capacity is severely diminished compared to age-matched healthy volunteers.Using state-of-the-art electrophysiological and optical techniques in single muscle fibers from biopsies of the locomotive vastus lateralis muscle, we measured the action potential (AP-evoked Ca2+ release in 4 HF patients and 4 age-matched healthy controls. The mean peak Ca2+ release flux in fibers obtained from HF patients (10±1.2 µM/ms was markedly (2.6-fold and significantly (p<0.05 smaller than in fibers from healthy volunteers (28±3.3 µM/ms. This impairment in AP-evoked Ca2+ release was ubiquitous and was not explained by differences in the excitability mechanisms since single APs were indistinguishable between HF patients and healthy volunteers.These findings prove the feasibility of performing electrophysiological experiments in single fibers from human skeletal muscle, and offer a new approach for investigations of myopathies due to HF and other diseases. Importantly, we have demonstrated that one step in the ECC process, AP-evoked Ca2+ release, is impaired in single muscle fibers in HF patients.

  7. Excitation of skinned muscle fibers by imposed ion gradients. IV. Effects of stretch and perchlorate ion.

    Science.gov (United States)

    Stephenson, E W

    1989-01-01

    Depolarizing ion gradients stimulate 45Ca release in skeletal muscle fibers skinned by microdissection. Several lines of indirect evidence suggest that sealed transverse (T) tubules rather than sarcoplasmic reticulum (SR) are the locus of such stimulatory depolarization. Two implications of this hypothesis were tested. (a) A requirement for signal transmission was evaluated from the stimulation of 45Ca efflux in fibers that had been highly stretched, an intervention that can impair the electrical stimulation of intact fibers. Length was increased over approximately 95-115 s, after loading with 45Ca and rinsing at normal length; prestimulus 45Ca loss due to stretch itself was very small. In the first study, stimulation of 45Ca release by KCl replacement of K propionate was inhibited completely in fibers stretched to twice slack length, compared with fibers at 1.05-1.1 times slack length. Identical protocols did not alter 45Ca release stimulated by caffeine or Mg2+ reduction, implying that SR Ca release per se was fully functional and inhibition was selective for a preceding step in ionic stimulation. In a second study, stimulation by choline Cl replacement of K methanesulfonate, at constant [K+] [Cl-] product, was inhibited strongly; total 45Ca release decreased 69%, and stimulation above control loss decreased 78%, in segments stretched to twice the length at which sarcomere spacing had been 2.2 micron, compared with paired controls from the same fibers kept at 2.3 micron. (b) Perchlorate potentiation of T tubule activation was evaluated in fibers stimulated at constant [K+] [Cl-] at normal length (2.3 micron); this anion shifts the voltage dependence of intramembrane charge movement and contractile activation in intact fibers. Perchlorate (8 mM) potentiated both submaximal stimulation of Ca2+-dependent 45Ca release by partial choline Cl replacement of K methanesulfonate and the small Ca2+-insensitive 45Ca efflux component stimulated by nearly full replacement in

  8. Orientation of spin-labeled light chain 2 of myosin heads in muscle fibers.

    Science.gov (United States)

    Arata, T

    1990-07-20

    Electron paramagnetic resonance (e.p.r.) spectroscopy has been used to monitor the orientation of spin labels attached rigidly to a reactive SH residue on the light chain 2 (LC2) of myosin heads in muscle fibers. e.p.r. spectra from spin-labeled myosin subfragment-1 (S1), allowed to diffuse into unlabeled rigor (ATP-free) fibers, were roughly approximated by a narrow angular distribution of spin labels centered at 66 degrees relative to the fiber axis, indicating a uniform orientation of S1 bound to actin. On the other hand, spectra from spin-labeled heavy meromyosin (HMM) were roughly approximated by two narrow angular distributions centered at 42 degrees and 66 degrees, suggesting that the LC2 domains of the two HMM heads have different orientations. In contrast to S1 or HMM, the spectra from rigor fibers, in which LC2 of endogenous myosin heads was labeled, showed a random orientation which may be due to distortion imposed by the structure of the filament lattice and the mismatch of the helical periodicities of the thick and thin filaments. However, spectra from the fibers in the presence of ATP analog 5'-adenylyl imidodiphosphate (AMPPNP) were approximated by two narrow angular distributions similar to those obtained with HMM. Thus, AMPPNP may cause the LC2 domain to be less flexible and/or the S2 portion to be more flexible, so as to release the distortion of the LC2 domain and make it return to its natural position. At high ionic strength, AMPPNP disoriented the spin labels as ATP did under relaxing conditions, suggesting that the myosin head is detached from and/or weakly (flexibly) attached to a thin filament.

  9. Unilateral lower limb suspension does not mimic bed rest or spaceflight effects on human muscle fiber function

    Science.gov (United States)

    Widrick, J. J.; Trappe, S. W.; Romatowski, J. G.; Riley, D. A.; Costill, D. L.; Fitts, R. H.

    2002-01-01

    We used Ca2+-activated skinned muscle fibers to test the hypothesis that unilateral lower leg suspension (ULLS) alters cross-bridge mechanisms of muscle contraction. Soleus and gastrocnemius biopsies were obtained from eight subjects before ULLS, immediately after 12 days of ULLS (post-0 h), and after 6 h of reambulation (post-6 h). Post-0 h soleus fibers expressing type I myosin heavy chain (MHC) showed significant reductions in diameter, absolute and specific peak Ca2+-activated force, unloaded shortening velocity, and absolute and normalized peak power. Fibers obtained from the gastrocnemius were less affected by ULLS, particularly fibers expressing fast MHC isoforms. Post-6 h soleus fibers produced less absolute and specific peak force than did post-0 h fibers, suggesting that reambulation after ULLS induced cell damage. Like bed rest and spaceflight, ULLS primarily affects soleus over gastrocnemius fibers. However, in contrast to these other models, slow soleus fibers obtained after ULLS showed a decrease in unloaded shortening velocity and a greater reduction in specific force.

  10. Bilateral muscle fiber and nerve influences by TNF-alpha in response to unilateral muscle overuse - studies on TNF receptor expressions.

    Science.gov (United States)

    Renström, Lina; Stål, Per; Song, Yafeng; Forsgren, Sture

    2017-11-28

    TNF-alpha is suggested to be involved in muscle damage and muscle inflammation (myositis). In order to evaluate whether TNF-alpha is involved in the myositis that occurs in response to muscle overuse, the aim was to examine the expression patterns of TNF receptors in this condition. A rabbit muscle overuse model leading to myositis in the soleus muscle was used. The expression patterns of the two TNF receptors Tumor Necrosis Factor Receptor type 1 (TNFR1) and Tumor Necrosis Factor Receptor type 2 (TNFR2) were investigated. In situ hybridization and immunofluorescence were utilized. Immunostainings for desmin, NK-1R and CD31 were made in parallel. Immunoreactions (IR) for TNF receptors were clearly observed in white blood cells, fibroblasts and vessel walls, and most interestingly also in muscle fibers and nerve fascicles in the myositis muscles. There were very restricted reactions for these in the muscles of controls. The upregulation of TNF receptors was for all types of structures seen for both the experimental side and the contralateral nonexperimental side. TNF receptor expressing muscle fibers were present in myositis muscles. They can be related to attempts for reparation/regeneration, as evidenced from results of parallel stainings. Necrotic muscle fibers displayed TNFR1 mRNA and TNFR2 immunoreaction (IR) in the invading white blood cells. In myositis muscles, TNFR1 IR was observed in both axons and Schwann cells while TNFR2 IR was observed in Schwann cells. Such observations were very rarely made for control animals. The findings suggest that there is a pronounced involvement of TNF-alpha in the developing myositis process. Attempts for reparation of the muscle tissue seem to occur via both TNFR1 and TNFR2. As the myositis process also occurs in the nonexperimental side and as TNF receptors are confined to nerve fascicles bilaterally it can be asked whether TNF-alpha is involved in the spreading of the myositis process to the contralateral side via the

  11. Fiber type conversion by PGC-1α activates lysosomal and autophagosomal biogenesis in both unaffected and Pompe skeletal muscle.

    Directory of Open Access Journals (Sweden)

    Shoichi Takikita

    2010-12-01

    Full Text Available PGC-1α is a transcriptional co-activator that plays a central role in the regulation of energy metabolism. Our interest in this protein was driven by its ability to promote muscle remodeling. Conversion from fast glycolytic to slow oxidative fibers seemed a promising therapeutic approach in Pompe disease, a severe myopathy caused by deficiency of the lysosomal enzyme acid alpha-glucosidase (GAA which is responsible for the degradation of glycogen. The recently approved enzyme replacement therapy (ERT has only a partial effect in skeletal muscle. In our Pompe mouse model (KO, the poor muscle response is seen in fast but not in slow muscle and is associated with massive accumulation of autophagic debris and ineffective autophagy. In an attempt to turn the therapy-resistant fibers into fibers amenable to therapy, we made transgenic KO mice expressing PGC-1α in muscle (tgKO. The successful switch from fast to slow fibers prevented the formation of autophagic buildup in the converted fibers, but PGC-1α failed to improve the clearance of glycogen by ERT. This outcome is likely explained by an unexpected dramatic increase in muscle glycogen load to levels much closer to those observed in patients, in particular infants, with the disease. We have also found a remarkable rise in the number of lysosomes and autophagosomes in the tgKO compared to the KO. These data point to the role of PGC-1α in muscle glucose metabolism and its possible role as a master regulator for organelle biogenesis - not only for mitochondria but also for lysosomes and autophagosomes. These findings may have implications for therapy of lysosomal diseases and other disorders with altered autophagy.

  12. High-speed jaw-opening exercise in training suprahyoid fast-twitch muscle fibers

    Directory of Open Access Journals (Sweden)

    Matsubara M

    2018-01-01

    Full Text Available Mariko Matsubara,1,2 Haruka Tohara,1 Koji Hara,1 Hiromichi Shinozaki,1 Yasuhiro Yamazaki,1 Chiaki Susa,1 Ayako Nakane,1 Yoko Wakasugi,1 Shunsuke Minakuchi1 1Gerodontology and Oral Rehabilitation, Department of Gerontology and Gerodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, 2Department of Oral Surgery, Ichigao Carillon Hospital, Kanagawa, Japan Purpose: This study was aimed to examine the effectiveness of a high-speed jaw-opening exercise, which targets the contraction of fast-twitch muscle fibers, in improving swallowing function.Subjects and methods: Twenty-one subjects (mean age 74.0±5.7 years with dysphagia-related symptoms, such as coughing or choking during eating, performed the exercise. None of the included subjects had neurological symptoms or history of surgery that could cause significant dysphagia. All subjects took regular meals, and maintained independent activities of daily life. The exercise schedule consisted of 3 sets of 20 repetitions each of rapid and maximum jaw-opening movement with a 10-second interval between sets. The exercise was performed twice daily for 4 weeks.Results: Following the intervention, there was a significant increase in the vertical position of the hyoid bone at rest. Furthermore, during swallowing, the elevation of the hyoid bone and the velocity of its movement and esophageal sphincter opening increased significantly while the duration of the hyoid elevation and the pharyngeal transit time reduced significantly.Conclusions: Our results demonstrated that high-speed jaw-opening exercise resulted in increased elevation velocity of the hyoid bone during swallowing, indicating its role in effectively strengthening the fast-twitch muscle fibers of suprahyoid muscles. Furthermore, since the rest position of the hyoid bone appeared to have improved, this exercise may be especially useful in elderly individuals with a lower position of the hyoid bone at

  13. Regulation of mitochondrial respiration by inorganic phosphate; comparing permeabilized muscle fibers and isolated mitochondria prepared from type-1 and type-2 rat skeletal muscle.

    Science.gov (United States)

    Scheibye-Knudsen, Morten; Quistorff, Bjørn

    2009-01-01

    ADP is generally accepted as a key regulator of oxygen consumption both in isolated mitochondria and in permeabilized fibers from skeletal muscle. The present study explored inorganic phosphate in a similar regulatory role. Saponin permeabilized fibers and isolated mitochondria from type-I and type-II muscle from male Wistar rats were prepared. Respiration was measured while the medium P(i) concentration was gradually increased. The apparent K(m) values for P(i) were 607 +/- 17 microM and 405 +/- 15 microM (P muscle is unknown, but a similar pattern has been observed for K(m) of ADP. Our data indicate that phosphate may play a role in regulation of oxygen consumption in vitro and in vivo.

  14. Properties of extensor digitorum longus muscle and skinned fibers from adult and aged male and female Actn3 knockout mice.

    Science.gov (United States)

    Chan, Stephen; Seto, Jane T; Houweling, Peter J; Yang, Nan; North, Kathryn N; Head, Stewart I

    2011-01-01

    Absence of α-actinin-3, encoded by the ACTN3 "speed gene," is associated with poorer sprinting performance in athletes and a slowing of relaxation in fast-twitch muscles of Actn3 knockout (KO) mice. Our first aim was to investigate, at the individual-fiber level, possible mechanisms for this slowed relaxation. Our second aim was to characterize the contractile properties of whole extensor digitorum longus (EDL) muscles from KO mice by age and gender. We examined caffeine-induced Ca(2+) release in mechanically skinned EDL fibers from KO mice, and measured isolated whole EDL contractile properties. The sarcoplasmic reticulum of KO muscle fibers loaded Ca(2+) more slowly than that of wild-types (WTs). Whole KO EDL muscles had longer twitch and tetanus relaxation times than WTs, and reduced mass and cross-sectional area. These effects occurred in both male and female mice, but they diminished with age. These changes in KO muscles and fibers help to explain the effects of α-actinin-3 deficiency observed in athletes. Copyright © 2010 Wiley Periodicals, Inc.

  15. High-speed jaw-opening exercise in training suprahyoid fast-twitch muscle fibers.

    Science.gov (United States)

    Matsubara, Mariko; Tohara, Haruka; Hara, Koji; Shinozaki, Hiromichi; Yamazaki, Yasuhiro; Susa, Chiaki; Nakane, Ayako; Wakasugi, Yoko; Minakuchi, Shunsuke

    2018-01-01

    This study was aimed to examine the effectiveness of a high-speed jaw-opening exercise, which targets the contraction of fast-twitch muscle fibers, in improving swallowing function. Twenty-one subjects (mean age 74.0±5.7 years) with dysphagia-related symptoms, such as coughing or choking during eating, performed the exercise. None of the included subjects had neurological symptoms or history of surgery that could cause significant dysphagia. All subjects took regular meals, and maintained independent activities of daily life. The exercise schedule consisted of 3 sets of 20 repetitions each of rapid and maximum jaw-opening movement with a 10-second interval between sets. The exercise was performed twice daily for 4 weeks. Following the intervention, there was a significant increase in the vertical position of the hyoid bone at rest. Furthermore, during swallowing, the elevation of the hyoid bone and the velocity of its movement and esophageal sphincter opening increased significantly while the duration of the hyoid elevation and the pharyngeal transit time reduced significantly. Our results demonstrated that high-speed jaw-opening exercise resulted in increased elevation velocity of the hyoid bone during swallowing, indicating its role in effectively strengthening the fast-twitch muscle fibers of suprahyoid muscles. Furthermore, since the rest position of the hyoid bone appeared to have improved, this exercise may be especially useful in elderly individuals with a lower position of the hyoid bone at rest and those with decreased elevation of the hyoid bone during swallowing, which are known to be associated with an increased risk of aspiration.

  16. Increasing temperature speeds intracellular PO2 kinetics during contractions in single Xenopus skeletal muscle fibers.

    Science.gov (United States)

    Koga, S; Wüst, R C I; Walsh, B; Kindig, C A; Rossiter, H B; Hogan, M C

    2013-01-01

    Precise determination of the effect of muscle temperature (T(m)) on mitochondrial oxygen consumption kinetics has proven difficult in humans, in part due to the complexities in controlling for T(m)-related variations in blood flow, fiber recruitment, muscle metabolism, and contractile properties. To address this issue, intracellular Po(2) (P(i)(O(2))) was measured continuously by phosphorescence quenching following the onset of contractions in single Xenopus myofibers (n = 24) while controlling extracellular temperature. Fibers were subjected to two identical contraction bouts, in random order, at 15°C (cold, C) and 20°C (normal, N; n = 12), or at N and 25°C (hot, H; n = 12). Contractile properties were determined for every contraction. The time delay of the P(i)(O(2)) response was significantly greater in C (59 ± 35 s) compared with N (35 ± 26 s, P = 0.01) and H (27 ± 14 s, P = 0.01). The time constant for the decline in P(i)(O(2)) was significantly greater in C (89 ± 34 s) compared with N (52 ± 15 s; P kinetics and T(m) (r = 0.322, P = 0.03). Estimated ATP turnover was significantly greater in H than in C (P kinetics among conditions. These results demonstrate that P(i)(O(2)) kinetics in single contracting myofibers are dependent on T(m), likely caused by temperature-induced differences in metabolic demand and by temperature-dependent processes underlying mitochondrial activation at the start of muscle contractions.

  17. Unexpected dependence of RyR1 splice variant expression in human lower limb muscles on fiber-type composition.

    Science.gov (United States)

    Willemse, Hermia; Theodoratos, Angelo; Smith, Paul N; Dulhunty, Angela F

    2016-02-01

    The skeletal muscle ryanodine receptor Ca(2+) release channel (RyR1), essential for excitation-contraction (EC) coupling, demonstrates a known developmentally regulated alternative splicing in the ASI region. We now find unexpectedly that the expression of the splice variants is closely related to fiber type in adult human lower limb muscles. We examined the distribution of myosin heavy chain isoforms and ASI splice variants in gluteus minimus, gluteus medius and vastus medialis from patients aged 45 to 85 years. There was a strong positive correlation between ASI(+)RyR1 and the percentage of type 2 fibers in the muscles (r = 0.725), and a correspondingly strong negative correlation between the percentages of ASI(+)RyR1 and percentage of type 1 fibers. When the type 2 fiber data were separated into type 2X and type 2A, the correlation with ASI(+)RyR1 was stronger in type 2X fibers (r = 0.781) than in type 2A fibers (r = 0.461). There was no significant correlation between age and either fiber-type composition or ASI(+)RyR1/ASI(-)RyR1 ratio. The results suggest that the reduced expression of ASI(-)RyR1 during development may reflect a reduction in type 1 fibers during development. Preferential expression of ASI(-) RyR1, having a higher gain of in Ca(2+) release during EC coupling than ASI(+)RyR1, may compensate for the reduced terminal cisternae volume, fewer junctional contacts and reduced charge movement in type 1 fibers.

  18. Kinetics of nuclear-cytoplasmic translocation of Foxo1 and Foxo3A in adult skeletal muscle fibers

    Science.gov (United States)

    Schachter, Tova Neustadt; Shen, Tiansheng; Liu, Yewei

    2012-01-01

    In skeletal muscle, the transcription factors Foxo1 and Foxo3A control expression of proteins that mediate muscle atrophy, making the nuclear concentration and nuclear-cytoplasmic movements of Foxo1 and Foxo3A of therapeutic interest in conditions of muscle wasting. Here, we use Foxo-GFP fusion proteins adenovirally expressed in cultured adult mouse skeletal muscle fibers to characterize the time course of nuclear efflux of Foxo1-GFP in response to activation of the insulin-like growth factor-1 (IGF-1)/phosphatidylinositol-3-kinase (PI3K)/Akt pathway to determine the time course of nuclear influx of Foxo1-GFP during inhibition of this pathway and to show that Akt mediates the efflux of nuclear Foxo1-GFP induced by IGF-1. Localization of endogenous Foxo1 in muscle fibers, as determined via immunocytochemistry, is consistent with that of Foxo1-GFP. Inhibition of the nuclear export carrier chromosome region maintenance 1 by leptomycin B (LMB) traps Foxo1 in the nucleus and results in a relatively rapid rate of Foxo1 nuclear accumulation, consistent with a high rate of nuclear-cytoplasmic shuttling of Foxo1 under control conditions before LMB application, with near balance of unidirectional influx and efflux. Expressed Foxo3A-GFP shuttles ∼20-fold more slowly than Foxo1-GFP. Our approach allows quantitative kinetic characterization of Foxo1 and Foxo3A nuclear-cytoplasmic movements in living muscle fibers under various experimental conditions. PMID:22932683

  19. Overexpression of the mitochondrial T3 receptor p43 induces a shift in skeletal muscle fiber types.

    Directory of Open Access Journals (Sweden)

    François Casas

    Full Text Available In previous studies, we have characterized a new hormonal pathway involving a mitochondrial T3 receptor (p43 acting as a mitochondrial transcription factor and consequently stimulating mitochondrial activity and mitochondrial biogenesis. We have established the involvement of this T3 pathway in the regulation of in vitro myoblast differentiation. We have generated mice overexpressing p43 under control of the human alpha-skeletal actin promoter. In agreement with the previous characterization of this promoter, northern-blot and western-blot experiments confirmed that after birth p43 was specifically overexpressed in skeletal muscle. As expected from in vitro studies, in 2-month old mice, p43 overexpression increased mitochondrial genes expression and mitochondrial biogenesis as attested by the increase of mitochondrial mass and mt-DNA copy number. In addition, transgenic mice had a body temperature 0.8 degrees C higher than control ones and displayed lower plasma triiodothyronine levels. Skeletal muscles of transgenic mice were redder than wild-type animals suggesting an increased oxidative metabolism. In line with this observation, in gastrocnemius, we recorded a strong increase in cytochrome oxidase activity and in mitochondrial respiration. Moreover, we observed that p43 drives the formation of oxidative fibers: in soleus muscle, where MyHC IIa fibers were partly replaced by type I fibers; in gastrocnemius muscle, we found an increase in MyHC IIa and IIx expression associated with a reduction in the number of glycolytic fibers type IIb. In addition, we found that PGC-1alpha and PPARdelta, two major regulators of muscle phenotype were up regulated in p43 transgenic mice suggesting that these proteins could be downstream targets of mitochondrial activity. These data indicate that the direct mitochondrial T3 pathway is deeply involved in the acquisition of contractile and metabolic features of muscle fibers in particular by regulating PGC-1alpha

  20. Comparative growth performance in different Japanese quail lines: the effect of muscle DNA content and fiber morphology.

    Science.gov (United States)

    Choi, Y M; Sarah, D; Shin, S; Wick, M P; Kim, B C; Lee, K

    2013-07-01

    The aim of this study was to investigate the DNA content and morphological characteristics of muscle fibers, and their relation to the growth performance in random bred control (RBC) and heavy weight (HW) Japanese quail lines. The 2 lines were of similar embryo size at 6 and 8 d of incubation; however, HW quail were significantly larger than their counterparts after 10 d of incubation (P quail line was approximately 1.3-fold higher than the RBC quail line (P quail lines. The RBC line showed a faster rate of increase in PMW (2.7- vs. 2.1-fold) and total DNA mass (2.2- vs. 1.6-fold) between 0 and 4 d posthatch. The HW line exhibited a greater rate of the PMW (33.0- vs. 12.9-fold) and total DNA mass (10.3- vs. 4.0-fold) between 4 and 15 d posthatch than the RBC line. Moreover, the greatest increase in total DNA mass occurred between 0 and 8 d posthatch for the RBC line and 4 to 15 d posthatch for the HW line. These differences in the DNA content indicate a difference in the hypertrophic potential of muscle fibers between the 2 quail lines. The cross-sectional area of muscle fibers was 1.3-fold greater in the HW line compared with the RBC line at 8 d posthatch (158.5 vs. 97.11 μm(2), P quail lines are between 0 to 8 d and 4 to 15 d posthatch, respectively. Rapid muscle growth rate and a greater muscle mass in the HW quail line may be partially due to the hypertrophic potential of muscle fibers, which is characterized by larger fiber size.

  1. Divergent effects of cold water immersion versus active recovery on skeletal muscle fiber type and angiogenesis in young men.

    Science.gov (United States)

    D'Souza, Randall F; Zeng, Nina; Markworth, James F; Figueiredo, Vandre Casagrande; Roberts, Llion Arwyn; Raastad, Truls; Coombes, Jeff S; Peake, Jonathan M; Cameron-Smith, David; Mitchell, Cameron J

    2018-02-21

    Resistance training (RT) increases muscle fiber size and induces angiogenesis to maintain capillary density. Cold water immersion (CWI), a common post-exercise recovery modality may improve acute recovery, but it attenuates muscle hypertrophy compared with active recovery (ACT). It is unknown if CWI following RT alters muscle fiber type expression or angiogenesis. Twenty-one men strength trained for 12 weeks, with either 10 min of CWI (n=11) or ACT (n=10) performed following each session. Vastus lateralis biopsies were collected at rest before and after training. Type IIx myofiber % decreased (p=0.013) and type IIa myofiber % increased with training (p=0.012), with no difference between groups. The number of capillaries per-fiber increased from pre-training in the CWI group (p=0.004), but not the ACT group (p=0.955). Expression of myosin heavy chain genes (MYH1 and MYH2), encoding type IIx and IIa fibers respectively, decreased in the ACT group whereas MYH7 (encoding type I fibers) increased in the ACT group vs. CWI (p=0.004). MyHCIIa protein increased with training (p=0.012) with no difference between groups. The pro-angiogenic VEGF protein decreased post-training in the ACT group vs. CWI (p<0.001), whereas anti-angiogenic SPRED-1 protein increased with training in both groups (p=0.015). Expression of microRNAs that regulate muscle fiber type (miR-208b and -499a) and angiogenesis (miR-15a, -16 and -126) increased only in the ACT group (P<0.05). CWI recovery after each training session altered the angiogenic and fiber-type specific response to RT through regulation at the levels of microRNA, gene and protein expression.

  2. Synchronized reconstitution of muscle fibers, peripheral nerves and blood vessels by murine skeletal muscle-derived CD34(-)/45 (-) cells.

    Science.gov (United States)

    Tamaki, Tetsuro; Okada, Yoshinori; Uchiyama, Yoshiyasu; Tono, Kayoko; Masuda, Maki; Wada, Mika; Hoshi, Akio; Akatsuka, Akira

    2007-10-01

    In order to establish the practical isolation and usage of skeletal muscle-derived stem cells (MDSCs), we determined reconstitution capacity of CD34(-)/CD45(-) (Sk-DN) cells as a candidate somatic stem cell source for transplantation. Sk-DN cells were enzymatically isolated from GFP transgenic mice (C57/BL6N) skeletal muscle and sorted using fluorescence activated cell sorting (FACS), and expanded by collagen gel-based cell culture with bFGF and EGF. The number of Sk-DN cells was small after sorting (2-8 x 10(4)); however, the number increased 10-20 fold (2-16 x 10(5)) after 6 days of expansion culture, and the cells maintained immature state and multipotency, expressing mRNAs for mesodermal and ectodermal cell lineages. Transplantation of expanded Sk-DN cells into the severe muscle damage model (C57/BL6N wild-type) resulted in the synchronized reconstitution of blood vessels, peripheral nerves and muscle fibers following significant recovery of total muscle mass (57%) and contractile function (55%), whereas the non-cell-transplanted control group showed around 20% recovery in both factors. These reconstitution capacities were supported by the intrinsic plasticity of Sk-DN cells that can differentiate into muscular (skeletal muscle), vascular (pericyte, endothelial cell and smooth muscle) and peripheral nerve (Schwann cells and perineurium) cell lineages that was revealed by transplantation to non-muscle tissue (beneath renal capsule) and fluorescence in situ hybridization (FISH) analysis.

  3. Eccentric contraction-induced injury to type I, IIa, and IIa/IIx muscle fibers of elderly adults.

    Science.gov (United States)

    Choi, Seung Jun; Lim, Jae-Young; Nibaldi, Eva G; Phillips, Edward M; Frontera, Walter R; Fielding, Roger A; Widrick, Jeffrey J

    2012-02-01

    Muscles of old laboratory rodents experience exaggerated force losses after eccentric contractile activity. We extended this line of inquiry to humans and investigated the influence of fiber myosin heavy chain (MHC) isoform content on the injury process. Skinned muscle fiber segments, prepared from vastus lateralis biopsies of elderly men and women (78 ± 2 years, N = 8), were subjected to a standardized eccentric contraction (strain, 0.25 fiber length; velocity, 0.50 unloaded shortening velocity). Injury was assessed by evaluating pre- and post-eccentric peak Ca(2+)-activated force per fiber cross-sectional area (F (max)). Over 90% of the variability in post-eccentric F (max) could be explained by a multiple linear regression model consisting of an MHC-independent slope, where injury was directly related to pre-eccentric F (max), and MHC-dependent y-intercepts, where the susceptibility to injury could be described as type IIa/IIx fibers > type IIa fibers > type I fibers. We previously reported that fiber type susceptibility to the same standardized eccentric protocol was type IIa/IIx > type IIa = type I for vastus lateralis fibers of 25-year-old adults (Choi and Widrick, Am J Physiol Cell Physiol 299:C1409-C1417, 2010). Modeling combined data sets revealed significant age by fiber type interactions, with post-eccentric F (max) deficits greater for type IIa and type IIa/IIx fibers from elderly vs. young subjects at constant pre-eccentric F (max). We conclude that the resistance of the myofilament lattice to mechanical strain has deteriorated for type IIa and type IIa/IIx, but not for type I, vastus lateralis fibers of elderly adults.

  4. Effects of strength training on muscle fiber types and size; consequences for athletes training for high-intensity sport

    DEFF Research Database (Denmark)

    Andersen, J L; Aagaard, P

    2010-01-01

    of the muscle and finally how will this affect the performance of the athlete. In addition, the review will deal with muscle hypertrophy and how it develops with strength training. Overall, it is not the purpose of this review to give a comprehensive up-date of the area, but to pin-point a few issues from which...... way into almost all sports in which high intense work is conducted. In this review we will focus on a few selected aspects and consequences of strength training; namely what effects do strength training have of muscle fiber type composition, and how may these effects change the contractile properties...

  5. Mitochondrial biogenesis drives a vicious cycle of metabolic insufficiency and mitochondrial DNA deletion mutation accumulation in aged rat skeletal muscle fibers.

    Directory of Open Access Journals (Sweden)

    Allen Herbst

    Full Text Available Aged muscles possess dysfunctional fibers that contain intracellular expansions of somatically derived mitochondrial DNA deletion mutations. At high abundance, these mutations disrupt the expression of mitochondrially-encoded protein subunits of the electron transport chain resulting in aerobic respiration deficient muscle fiber segments. These fiber segments atrophy and break contributing to the loss of muscle mass and function that occurs with age. By combining micro-dissection of individual muscle fibers with microarray analysis, we observed the response induced within these abnormal muscle fibers and detected an increase in many genes affecting metabolism and metabolic regulation. The transcriptional profile and subsequent protein validation suggested that a non-compensatory program of mitochondrial biogenesis was initiated. We hypothesized that this non-adaptive program of mitochondrial biogenesis was driving mtDNA deletion mutation accumulation. We tested this hypothesis by treating aged rats with β-Guanidinopropionic acid, a compound that stimulates mitochondrial biogenesis. β-Guanidinopropionic acid treatment increased muscle mitochondrial genome copy number and resulted in a 3.7 fold increase in the abundance of electron transport chain negative muscle fiber segments. We conclude that in electron transport system abnormal muscle fiber segments, a vicious cycle of metabolic insufficiency and non-compensatory mitochondrial biogenesis drive mtDNA deletion mutation accumulation.

  6. Energy composition of diet affects muscle fiber recruitment, body composition, and growth trajectory in rainbow trout (Oncorhnychus mykiss)

    Science.gov (United States)

    Energy composition of diet affects muscle fiber recruitment, body composition, and growth trajectory in rainbow trout (Oncorhnychus mykiss) The cost and scarcity of key ingredients for aquaculture feed formulation call for a wise use of resources, especially dietary proteins and energy. For years t...

  7. Effects of acute exposure of heavy ion to spinal cord on the properties of motoneurons and muscle fibers in rats

    International Nuclear Information System (INIS)

    Ishihara, Akihiko; Ohira, Yoshinobu; Kawano, Norifumi; Nagaoka, Shunji; Nojima, Kumie

    2003-01-01

    We investigate effects of localized exposure of heavy ion to the lumbar 4th to 6th segments of the rat spinal cord on the properties of motoneurons and the innervated muscle fibers without surgical treatments. Twenty 7-week-old male Wistar rats were exposed to 5 mm spread-out Bragg peak (SOBP) carbon beam (290 MeV, linear energy transfer (LET)=130 keV/μm): Two doses (15 Gy or 20 Gy) were applied to each group of rats (n=5) in two different depths; one group was exposed only for ventral horn of the spinal cord while other for whole spinal cord. Five rats served as controls. The rats were exposed to carbon irons on October 26, 2002. We will sacrifice the rats soon after they show an abnormal behavior including posture and walking. Cell body size and oxidative enzyme activity of spinal motoneurons of the control and heavy-ion-exposed rats will be analyzed. In addition, cell size, oxidative enzyme activity, and expressions of myosin heavy chain isoforms of the gastrocnemius, soleus, plantaris, extensor digitorum longus, and tibialis anterior muscle fibers will be also determined. This study is performed to test our hypothesis that atrophy and a decrease in cross-sectional area of motoneurons and muscle fibers which they innervate, as well as a decrease in oxidative activity of motoneurons and muscle fibers, will be induced due to exposure to heavy ion. (author)

  8. Effect of nucleotides on the orientation and mobility of myosin subfragment-1 in ghost muscle fiber.

    Science.gov (United States)

    Pronina, O E; Wrzosek, A; Dabrowska, R; Borovikov, Yu S

    2005-10-01

    Using polarization fluorimetry, the orientation and mobility of 1,5-IAEDANS specifically bound to Cys707 of myosin subfragment-1 (S1) were studied in ghost muscle tropomyosin-containing fibers in the absence and in the presence of MgADP, MgAMP-PNP, MgATPgammaS, or MgATP. Modeling of various intermediate states was accompanied by discrete changes in actomyosin orientation and mobility of fluorescent dye dipoles. This suggests multistep changes in the structural state of the myosin head during the ATPase cycle. Maximal differences in the probe orientation by 4 degrees and its mobility by 30% were found between actomyosin states in the presence of MgADP and MgATP. It is suggested that interaction of S1 with F-actin induces nucleotide-dependent rotation of the whole motor domain of the myosin head or only the dye-binding site and also change in the head mobility.

  9. Comparison of Muscle Fiber and Meat Quality Characteristics in Different Japanese Quail Lines

    Directory of Open Access Journals (Sweden)

    Y. M. Choi

    2016-09-01

    Full Text Available The aim of this study was to compare the growth performance, fiber characteristics of the pectoralis major muscle, and meat quality characteristics in the heavy weight (HW and random bred control (RBC quail lines and genders. The HW male exhibited more than two times greater body (245.7 vs 96.1 g, p0.05 and cooking loss (21.9% vs 20.4%, p>0.05 between the HW and RBC lines. Therefore, the HW quail line developed by selection from the RBC quail, was slightly different in the meat quality characteristics compared to the RBC line, and a marked difference was found in growth performance between the two quail lines.

  10. Communication channel modeling of human forearm with muscle fiber tissue characteristics.

    Science.gov (United States)

    Zhang, Shuang; Pun, Sio Hang; Mak, Peng Un; Qin, Yu-Ping; Liu, Yi-He; Vai, Mang I

    2016-09-14

    Human-Body Communication (HBC) is a wireless communication method using the human body tissue as a transmission medium for signals. This paper on the basis of human muscle fiber tissues' characteristics, it is first proposed to establish the analytical model of galvanic coupling human-body communication channel. In this model, the parallel and the transverse electrical characteristics of muscular tissue are fully considered, and the model accurately presents the transmission mechanism of galvanic coupling human-body communication signals in the channel. At last, through compare with the experimental results and calculation results, the maximum error of the model is 22.4% and the average error is 14.2% within the frequency range.

  11. Enhancement of force generated by individual myosin heads in skinned rabbit psoas muscle fibers at low ionic strength.

    Science.gov (United States)

    Sugi, Haruo; Abe, Takahiro; Kobayashi, Takakazu; Chaen, Shigeru; Ohnuki, Yoshiki; Saeki, Yasutake; Sugiura, Seiryo

    2013-01-01

    Although evidence has been presented that, at low ionic strength, myosin heads in relaxed skeletal muscle fibers form linkages with actin filaments, the effect of low ionic strength on contraction characteristics of Ca(2+)-activated muscle fibers has not yet been studied in detail. To give information about the mechanism of muscle contraction, we have examined the effect of low ionic strength on the mechanical properties and the contraction characteristics of skinned rabbit psoas muscle fibers in both relaxed and maximally Ca(2+)-activated states. By progressively decreasing KCl concentration from 125 mM to 0 mM (corresponding to a decrease in ionic strength μ from 170 mM to 50 mM), relaxed fibers showed changes in mechanical response to sinusoidal length changes and ramp stretches, which are consistent with the idea of actin-myosin linkage formation at low ionic strength. In maximally Ca(2+)-activated fibers, on the other hand, the maximum isometric force increased about twofold by reducing KCl concentration from 125 to 0 mM. Unexpectedly, determination of the force-velocity curves indicated that, the maximum unloaded shortening velocity Vmax, remained unchanged at low ionic strength. This finding indicates that the actin-myosin linkages, which has been detected in relaxed fibers at low ionic strength, are broken quickly on Ca(2+) activation, so that the linkages in relaxed fibers no longer provide any internal resistance against fiber shortening. The force-velocity curves, obtained at various levels of steady Ca(2+)-activated isometric force, were found to be identical if they are normalized with respect to the maximum isometric force. The MgATPase activity of muscle fibers during isometric force generation was found not to change appreciably at low ionic strength despite the two-fold increase in Ca(2+)-activated isometric force. These results can be explained in terms of enhancement of force generated by individual myosin heads, but not by any changes in

  12. Enhancement of force generated by individual myosin heads in skinned rabbit psoas muscle fibers at low ionic strength.

    Directory of Open Access Journals (Sweden)

    Haruo Sugi

    Full Text Available Although evidence has been presented that, at low ionic strength, myosin heads in relaxed skeletal muscle fibers form linkages with actin filaments, the effect of low ionic strength on contraction characteristics of Ca(2+-activated muscle fibers has not yet been studied in detail. To give information about the mechanism of muscle contraction, we have examined the effect of low ionic strength on the mechanical properties and the contraction characteristics of skinned rabbit psoas muscle fibers in both relaxed and maximally Ca(2+-activated states. By progressively decreasing KCl concentration from 125 mM to 0 mM (corresponding to a decrease in ionic strength μ from 170 mM to 50 mM, relaxed fibers showed changes in mechanical response to sinusoidal length changes and ramp stretches, which are consistent with the idea of actin-myosin linkage formation at low ionic strength. In maximally Ca(2+-activated fibers, on the other hand, the maximum isometric force increased about twofold by reducing KCl concentration from 125 to 0 mM. Unexpectedly, determination of the force-velocity curves indicated that, the maximum unloaded shortening velocity Vmax, remained unchanged at low ionic strength. This finding indicates that the actin-myosin linkages, which has been detected in relaxed fibers at low ionic strength, are broken quickly on Ca(2+ activation, so that the linkages in relaxed fibers no longer provide any internal resistance against fiber shortening. The force-velocity curves, obtained at various levels of steady Ca(2+-activated isometric force, were found to be identical if they are normalized with respect to the maximum isometric force. The MgATPase activity of muscle fibers during isometric force generation was found not to change appreciably at low ionic strength despite the two-fold increase in Ca(2+-activated isometric force. These results can be explained in terms of enhancement of force generated by individual myosin heads, but not by any

  13. Velocity and attenuation of shear waves in the phantom of a muscle-soft tissue matrix with embedded stretched fibers

    Science.gov (United States)

    Rudenko, O. V.; Tsyuryupa, S. N.; Sarvazyan, A. P.

    2016-09-01

    We develop a theory of the elasticity moduli and dissipative properties of a composite material: a phantom simulating muscle tissue anisotropy. The model used in the experiments was made of a waterlike polymer with embedded elastic filaments imitating muscle fiber. In contrast to the earlier developed phenomenological theory of the anisotropic properties of muscle tissue, here we obtain the relationship of the moduli with characteristic sizes and moduli making up the composite. We introduce the effective elasticity moduli and viscosity tensor components, which depend on stretching of the fibers. We measure the propagation velocity of shear waves and the shear viscosity of the model for regulated tension. Waves were excited by pulsed radiation pressure generated by modulated focused ultrasound. We show that with increased stretching of fibers imitating muscle contraction, an increase in both elasticity and viscosity takes place, and this effect depends on the wave propagation direction. The results of theoretical and experimental studies support our hypothesis on the protective function of stretched skeletal muscle, which protects bones and joints from trauma.

  14. Effect of temperature on crossbridge force changes during fatigue and recovery in intact mouse muscle fibers.

    Directory of Open Access Journals (Sweden)

    Marta Nocella

    Full Text Available Repetitive or prolonged muscle contractions induce muscular fatigue, defined as the inability of the muscle to maintain the initial tension or power output. In the present experiments, made on intact fiber bundles from FDB mouse, fatigue and recovery from fatigue were investigated at 24°C and 35°C. Force and stiffness were measured during tetani elicited every 90 s during the pre-fatigue control phase and recovery and every 1.5 s during the fatiguing phase made of 105 consecutive tetani. The results showed that force decline could be split in an initial phase followed by a later one. Loss of force during the first phase was smaller and slower at 35°C than at 24°C, whereas force decline during the later phase was greater at 35°C so that total force depression at the end of fatigue was the same at both temperatures. The initial force decline occurred without great reduction of fiber stiffness and was attributed to a decrease of the average force per attached crossbridge. Force decline during the later phase was accompanied by a proportional stiffness decrease and was attributed to a decrease of the number of attached crossbridge. Similarly to fatigue, at both 24 and 35°C, force recovery occurred in two phases: the first associated with the recovery of the average force per attached crossbridge and the second due to the recovery of the pre-fatigue attached crossbridge number. These changes, symmetrical to those occurring during fatigue, are consistent with the idea that, i initial phase is due to the direct fast inhibitory effect of [Pi]i increase during fatigue on crossbridge force; ii the second phase is due to the delayed reduction of Ca(2+ release and /or reduction of the Ca(2+ sensitivity of the myofibrils due to high [Pi]i.

  15. Effect of speed endurance training and reduced training volume on running economy and single muscle fiber adaptations in trained runners

    DEFF Research Database (Denmark)

    Skovgaard, Casper; Christiansen, Danny; Christensen, Peter Møller

    2018-01-01

    The aim of the present study was to examine whether improved running economy with a period of speed endurance training and reduced training volume could be related to adaptations in specific muscle fibers. Twenty trained male (n = 14) and female (n = 6) runners (maximum oxygen consumption (VO2 -max...... was performed. In addition, running at 60% vVO2 -max, and a 10-km run was performed in a normal and a muscle slow twitch (ST) glycogen-depleted condition. After compared to before the intervention, expression of mitochondrial uncoupling protein 3 (UCP3) was lower (P ....05) in ST muscle fibers, and sarcoplasmic reticulum calcium ATPase 1 (SERCA1) was lower (P VO2 -max (11.6 ± 0.2 km/h) and at v10-km (13.7 ± 0.3 km/h) was ~2% better (P

  16. Fiber type composition of unoperated rat soleus and extensor digitorum longus muscles after unilateral isotransplantation of a foreign muscle in long-term experiments

    Czech Academy of Sciences Publication Activity Database

    Soukup, Tomáš; Smerdu, V.; Zachařová, Gisela

    2009-01-01

    Roč. 58, č. 2 (2009), s. 253-262 ISSN 0862-8408 R&D Projects: GA ČR(CZ) GA304/05/0327; GA ČR(CZ) GA304/08/0256; GA MŠk(CZ) LC554 Grant - others:EC(XE) LSH-CT-2004-511978 Institutional research plan: CEZ:AV0Z50110509 Keywords : muscle transplantations * muscle fiber types * myosin heavy chains Subject RIV: ED - Physiology Impact factor: 1.430, year: 2009

  17. The effect of temperature on charge movement repriming in amphibian skeletal muscle fibers.

    Science.gov (United States)

    Gonzalez, A; Caputo, C

    1996-03-01

    Cut twitch muscle fibers, mounted in a triple Vaseline-gap chamber, were used to study the effects of temperature on intramembranous charge movement and, in particular, on the repriming of charge 1 (the intramembranous charge that normally moves in the potential range between -100 and +40 mV). Changing the holding potential from -90 to 0 mV modified the voltage distribution of charge movement but not the maximum movable charge. Temperature changes between 16 and 5 degrees C did not modify the fiber linear capacitance, the maximum nonlinear intramembranous charge, or the voltage distribution of charge 1 and charge 2 (the intramembranous charge moving in the membrane potential range between approximately -4 and -160 mV). We used a pulse protocol designed to study the repriming time course of charge 1, with little contamination from charge 2. The time course of charge movement repriming at 15 degrees C is described by a double exponential with time constants of 4.2 and 25 s. Repriming kinetics were found to be highly temperature dependent, with two rate-limiting steps having Q10 (increase in rate of a process by raising temperature 10 degrees C) values of 1.7 and 7.1 above and below 11.5 degrees C, respectively. This is characteristic of processes with a high energy of activation and could be associated with a conformational change of the voltage sensor or with the interaction between the voltage sensor and the calcium release channel.

  18. The effect of a unilateral muscle transplantation on the muscle fiber type and the MyHC isoform content in unoperated hind limb slow and fast muscles of the inbred Lewis rats

    Czech Academy of Sciences Publication Activity Database

    Zachařová, Gisela; Vadászová, Adriana; Smerdu, V.; Asmussen, G.; Soukup, Tomáš

    2005-01-01

    Roč. 54, č. 6 (2005), s. 691-696 ISSN 0862-8408 R&D Projects: GA ČR(CZ) GA304/05/0327 Grant - others:MYORES(XE) 511978; CZ-SK(CZ) 02-2004-05 Institutional research plan: CEZ:AV0Z50110509 Keywords : muscle fiber phenotype * influence of surgery * muscle transplantation Subject RIV: ED - Physiology Impact factor: 1.806, year: 2005

  19. Effects of low level laser in the morphology of the skeletal muscle fiber during compensatory hypertrophy in plantar muscle of rats

    Science.gov (United States)

    Terena, Stella Maris Lins; Fernandes, Kristianne Porta Santos; Kalil, Sandra; Alves, Agnelo Neves; Mesquita Ferrari, Raquel Agnelli

    2015-06-01

    The hypertrophy is known as an increase the cross-sectional area of the muscle as a result of a muscular work against an overload, and it is compensatory because the overload is induced by functional elimination of synergistic muscles. The importance of study the compensatory hypertrophy is understand how this process can be influenced by the irradiation with regard to the weight and muscle cross-sectional area, to assist in the rehabilitation process and the effectiveness functional return. The aim was evaluate the effects of low-level laser irradiation on morphological aspects of muscle tissue, comparing the weight and cross-sectional area in rat skeletal muscle. Wistar rats were divided into three groups: control, hypertrophy group without irradiation (right plantar muscle) and hypertrophy group and irradiation (left plantar muscle), both analyzed after 7 and 14 days. The irradiation was performed daily immediately after the surgery. The parameters were: λ = 780nm, beam spot of 0.04 cm2, output power of 40mW, power density of 1W/cm2, energy density of 10J / cm2 and 10s exposure time with a total energy of 3.2 J. The results revealed that low level laser irradiation an increase the weight of the plantaris muscle after 7 and 14 days with a difference of 7.06% and 11.51% respectively. In conclusion, low level laser irradiation has an effect on compensatory hypertrophy to produce increased muscle weight and promoted an increase in cross-sectional area of muscle fibers in the compensatory hypertrophy model after 14 days with parameters cited above.

  20. Elemental microchemistry, fatty acid profile and geometric morphometrics signatures of goose barnacles (Pollicipes pollicipes reveal their place of origin

    Directory of Open Access Journals (Sweden)

    Rui Albuquerque

    2014-06-01

    Full Text Available Seafood plays an important role in the socioeconomic, gastronomy and cultural heritage of Portuguese coastal communities. In the Iberian Peninsula, the goose barnacle Pollicipes pollicipes is the intertidal biological resource most heavily exploited by man, resulting on overexploitation of stocks. In the MPA of BNR P.pollicipes harvesting is however strictly regulated, making it a good example of marine resources management. Analytical methods able to identify the origin of goose barnacle would be an important tool to help the management of the trade. For such purpose, we investigated whether P. pollicipes have site-specific differences based on its elemental microchemistry (EM, fatty acid profile (FA and capitulum shape (CS. The analysis was performed on specimens collected from 3 sites in the BNR and 7 along a 300 km stretch of the Portuguese coast. For each individual we analysed the largest lateral shell for EM using ICP-MS, the FA content of the muscle using GC-FID, and the CS using geometric morphometrics. Discriminant function analyses (DFA for both EM and FA separately provided a high reclassification success (77.6% and 99% respectively, of cross-validated cases correctly classified, while for EM combined with FA allowed for a 100% reclassification success. DFA analysis based only on CS, revealed a low classification success (29.6%. These results show that EM and FA signatures can be a powerful tool to infer goose barnacles origin. Such “fingerprinting” approach can be used to track and identify goose barnacles origin, helping in establishing an origin certificate and increasing the potential value of biological resources from Portuguese MPAs.

  1. Effects of ractopamine administration and castration method on muscle fiber characteristics and sensory quality of the longissimus muscle in two Piétrain pig genotypes.

    Science.gov (United States)

    Li, Hui; Gariépy, Claude; Jin, Ye; Font I Furnols, Maria; Fortin, Jacinthe; Rocha, Luiene M; Faucitano, Luigi

    2015-04-01

    Single and combined effects of ractopamine supplementation (RAC, 7.5 vs. 0 ppm), castration method (surgical castration: SC vs. immuno-castration: IM) and genotype (genotype A: GA vs. GB containing 25% or 50% Piétrain) were determined on longissimus muscle (LM) fiber traits and quality of pork (n=512). RAC increased fiber IIX cross-sectional area (P=0.009) and decreased glycolytic potential (P=0.02) and pork tenderness (Pcombination affected some fiber traits and some quality parameters but differences reported were small indicating these treatments or their combination could be used without major prejudice to meat quality. Crown Copyright © 2014. Published by Elsevier Ltd. All rights reserved.

  2. High spectral resolution image of Barnacle Bill

    Science.gov (United States)

    1997-01-01

    The rover Sojourner's first target for measurement by the Alpha-Proton-Xray Spectrometer (APXS) was the rock named Barnacle Bill, located close to the ramp down which the rover made its egress from the lander. The full spectral capability of the Imager for Mars Pathfinder (IMP), consisting of 13 wavelength filters, was used to characterize the rock's surface. The measured area is relatively dark, and is shown in blue. Nearby on the rock surface, soil material is trapped in pits (shown in red).Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator. JPL is an operating division of the California Institute of Technology (Caltech).

  3. Lecithin Prevents Cortical Cytoskeleton Reorganization in Rat Soleus Muscle Fibers under Short-Term Gravitational Disuse.

    Directory of Open Access Journals (Sweden)

    Irina V Ogneva

    Full Text Available The aim of this study was to prevent the cortical cytoskeleton reorganization of rat soleus muscle fibers under short-term gravitational disuse. Once a day, we injected the right soleus muscle with 0.5 ml lecithin at a concentration of 200 mg/ml and the left soleus muscle with a diluted solution in an equal volume for 3 days prior to the experiment. To simulate microgravity conditions in rats, an anti-orthostatic suspension was used according to the Ilyin-Novikov method modified by Morey-Holton et al. for 6 hours. The following groups of soleus muscle tissues were examined: "C", "C+L", "HS", and "HS+L". The transversal stiffness of rat soleus muscle fibers after 6 hours of suspension did not differ from that of the control group for the corresponding legs; there were no differences between the groups without lecithin «C» and «HS» or between the groups with lecithin "C+L" and "HS+L". However, lecithin treatment for three days resulted in an increase in cell stiffness; in the "C+L" group, cell stiffness was significantly higher by 22.7% (p < 0.05 compared with that of group "C". The mRNA content of genes encoding beta- and gamma-actin and beta-tubulin did not significantly differ before and after suspension in the corresponding groups. However, there was a significant increase in the mRNA content of these genes after lecithin treatment: the beta-actin and gamma-actin mRNA content in group "C+L" increased by 200% compared with that of group "C", and beta-tubulin increased by 100% (as well as the mRNA content of tubulin-binding proteins Ckap5, Tcp1, Cct5 and Cct7. In addition, desmin mRNA content remained unchanged in all of the experimental groups. As a result of the lecithin injections, there was a redistribution of the mRNA content of genes encoding actin monomer- and filament-binding proteins in the direction of increasing actin polymerization and filament stability; the mRNA content of Arpc3 and Lcp1 increased by 3- and 5-fold, respectively

  4. Effect of cattle breed on meat quality, muscle fiber characteristics, lipid oxidation and Fatty acids in china.

    Science.gov (United States)

    Xie, Xiangxue; Meng, Qingxiang; Cui, Zhenliang; Ren, Liping

    2012-06-01

    The objective was to compare meat quality, muscle fiber characteristics, lipid oxidation and fatty acids of Limousin (LIM), Simmtental (SIM), Luxi (LX), Qinchuan (QC) and Jinnan (JN) offered the same diet in China. After finishing, eight bulls from each breed were randomly selected for slaughter at 18.5 months old. Longissimus dorsi (ld) muscle was taken from the carcass for meat quality evaluations. Breed had little effect on most of meat and fat color parameters except for Hue and b* in which QC had lower values. LIM showed higher pH (24 h) and better water holding capacity than other breeds. LIM showed the lowest dry matter content but the highest crude protein. LX and LIM had higher percentage and density of red muscle fiber than other breeds. Lipid oxidations were significantly lower in LIM than in QC, with the LX, SIM and JN having the intermediate values. Compared to other four breeds, QC provided the highest values of polyunsaturated fatty acids (PUFA), n-6 fatty acids and n-3 fatty acids. In conclusion, LIM scored better on most of meat quality characteristics; however, local breeds such as LX and QC also had better muscle fiber characteristics and better fatty acids composition.

  5. Effect of Cattle Breed on Meat Quality, Muscle Fiber Characteristics, Lipid Oxidation and Fatty Acids in China

    Directory of Open Access Journals (Sweden)

    Xiangxue Xie

    2012-06-01

    Full Text Available The objective was to compare meat quality, muscle fiber characteristics, lipid oxidation and fatty acids of Limousin (LIM, Simmtental (SIM, Luxi (LX, Qinchuan (QC and Jinnan (JN offered the same diet in China. After finishing, eight bulls from each breed were randomly selected for slaughter at 18.5 months old. Longissimus dorsi (ld muscle was taken from the carcass for meat quality evaluations. Breed had little effect on most of meat and fat color parameters except for Hue and b* in which QC had lower values. LIM showed higher pH (24 h and better water holding capacity than other breeds. LIM showed the lowest dry matter content but the highest crude protein. LX and LIM had higher percentage and density of red muscle fiber than other breeds. Lipid oxidations were significantly lower in LIM than in QC, with the LX, SIM and JN having the intermediate values. Compared to other four breeds, QC provided the highest values of polyunsaturated fatty acids (PUFA, n-6 fatty acids and n-3 fatty acids. In conclusion, LIM scored better on most of meat quality characteristics; however, local breeds such as LX and QC also had better muscle fiber characteristics and better fatty acids composition.

  6. Viscous dietary fiber reduces adiposity and plasma leptin and increases muscle expression of fat oxidation genes in rats.

    Science.gov (United States)

    Islam, Ajmila; Civitarese, Anthony E; Hesslink, Robert L; Gallaher, Daniel D

    2012-02-01

    Dietary interventions that reduce accumulation of body fat are of great interest. Consumption of viscous dietary fibers cause well-known positive metabolic effects, such as reductions in the postprandial glucose and insulin concentrations. However, their effect on body composition and fuel utilization has not been previously studied. To examine this, rats were fed a viscous nonfermentable dietary fiber, hydroxypropyl methylcellulose (HPMC), for 6 weeks. Body composition was measured by dual-energy X-ray absorptiometry (DXA) and fat pad weight. Plasma adipokines, AMP kinase activation, and enzyme and mRNA analysis of key regulators of energetics in liver and soleus muscle were measured. The HPMC diet significantly lowered percent body fat mass and increased percent lean body mass, compared to a cellulose-containing diet (no viscosity). Fasting leptin was reduced 42% and resistin 28% in the HPMC group compared to the cellulose group. Rats fed HPMC had greater activation of AMP kinase in liver and muscle and lower phosphoenolpyruvate carboxykinase (PEPCK) expression in liver. mRNA expression in skeletal muscle was significantly increased for carnitine palmitoyltransferase 1B (CPT-1B), PPARγ coactivator 1α, PPARδ and uncoupling protein 3 (UCP3), as was citrate synthase (CS) activity, in the HPMC group relative to the cellulose group. These results indicate that viscous dietary fiber preserves lean body mass and reduces adiposity, possibly by increasing mitochondrial biogenesis and fatty acid oxidation in skeletal muscle, and thus represents a metabolic effect of viscous fiber not previously described. Thus, viscous dietary fiber may be a useful dietary component to assist in reduction of body fat.

  7. Tumor necrosis factor-like weak inducer of apoptosis regulates quadriceps muscle atrophy and fiber-type alteration in a rat model of chronic obstructive pulmonary disease

    OpenAIRE

    Lu, Jun-Juan; Wang, Qing; Xie, Li Hua; Zhang, Qiang; Sun, Sheng Hua

    2017-01-01

    Background In chronic obstructive pulmonary disease (COPD), weakness and muscle mass loss of the quadriceps muscle has been demonstrated to predict survival and mortality rates of patients. Tumor necrosis factor (TNF)-like weak inducer of apoptosis (TWEAK), as a member of the TNF superfamily, has recently been identified as a key regulator of skeletal muscle wasting and metabolic dysfunction. So our aim was to study the role of TWEAK during quadriceps muscle atrophy and fiber-type transformat...

  8. Protein Supplementation Does Not Further Increase Latissimus Dorsi Muscle Fiber Hypertrophy after Eight Weeks of Resistance Training in Novice Subjects, but Partially Counteracts the Fast-to-Slow Muscle Fiber Transition

    OpenAIRE

    Antonio Paoli; Quirico F. Pacelli; Pasqua Cancellara; Luana Toniolo; Tatiana Moro; Marta Canato; Danilo Miotti; Marco Neri; Aldo Morra; Marco Quadrelli; Carlo Reggiani

    2016-01-01

    The response to resistance training and protein supplementation in the latissimus dorsi muscle (LDM) has never been investigated. We investigated the effects of resistance training (RT) and protein supplementation on muscle mass, strength, and fiber characteristics of the LDM. Eighteen healthy young subjects were randomly assigned to a progressive eight-week RT program with a normal protein diet (NP) or high protein diet (HP) (NP 0.85 vs. HP 1.8 g of protein·kg−1·day−1). One repetition maximu...

  9. Barnacles - recorders of environmental conditions with unique geochemical signatures

    Science.gov (United States)

    Vinzenz Ullmann, Clemens; Gale, Andy; Korte, Christoph; Frei, Robert; Huggett, Jenny; Wray, Dave

    2017-04-01

    Barnacles are calcite-forming arthropods that occur in a wide range of habitats in modern times and are found in sedimentary successions reaching back to the Paleozoic. Despite potential use of their mostly low-Mg calcite hard parts for palaeoenvironmental reconstructions, their geochemical composition has been little studied. Here, we present the first comprehensive overview of barnacle geochemistry, with C and O isotope, as well as Mg/Ca, Sr/Ca, Mn/Ca and Fe/Ca data for multiple samples of 42 species covering the orders Sessilia, Scalpelliformes, and Lepadiformes. XRD analyses confirm calcite as the only significant carbonate mineral of the studied barnacle shell material. Apart from one species, median Mg/Ca ratios fall below 50 mmol/mol, the approximate limit for low-Mg-calcite. In the order Sessilia, the scuta and terga are on average enriched in Mg by 36 % over the unmoveable plates. Amongst the calcite-forming marine animals, barnacles have very high Sr/Ca ratios of 2.6 to 5.9 mmol/mol, amongst the highest known for calcite secreting animals. Mn/Ca and Fe/Ca ratios are commonly low and compatible with other modern shell calcite, but can be strongly enriched to > 1 mmol/mol in proximal habitats, particularly close to areas strongly affected by human activity. Carbon and oxygen isotope data indicate formation of the calcite in or near isotopic equilibrium with ambient water conditions. Apart from species showing δ18O values below 0 ‰ V-PDB, a negative correlation of oxygen isotope ratios with Sr/Ca ratios is observed, which may be related to metabolic activity. Compositional patterns in barnacle shell material, particularly high Sr concentrations and Mg distribution in shell plates of the Sessilia, point to a great potential of barnacles for high fidelity reconstruction of past seawater chemistry and environmental conditions complementary to other archives.

  10. Reduced resting potentials in dystrophic (mdx) muscle fibers are secondary to NF-κB-dependent negative modulation of ouabain sensitive Na+-K+ pump activity.

    Science.gov (United States)

    Miles, M T; Cottey, E; Cottey, A; Stefanski, C; Carlson, C G

    2011-04-15

    To examine potential mechanisms for the reduced resting membrane potentials (RPs) of mature dystrophic (mdx) muscle fibers, the Na(+)-K(+) pump inhibitor ouabain was added to freshly isolated nondystrophic and mdx fibers. Ouabain produced a 71% smaller depolarization in mdx fibers than in nondystrophic fibers, increased the [Na(+)](i) in nondystrophic fibers by 40%, but had no significant effect on the [Na(+)](i) of mdx fibers, which was approximately double that observed in untreated nondystrophic fibers. Western blots indicated no difference in total and phosphorylated Na(+)-K(+) ATPase catalytic α1 subunit between nondystrophic and mdx muscle. Examination of the effects of the NF-κB inhibitor pyrrolidine dithiocarbamate (PDTC) indicated that direct application of the drug slowly hyperpolarized mdx fibers (7 mV in 90 min) but had no effect on nondystrophic fibers. Pretreatment with ouabain abolished this hyperpolarization, and pretreatment with PDTC restored ouabain-induced depolarization and reduced [Na(+)](i). Administration of an NF-κB inhibitor that utilizes a different mechanism for reducing nuclear NF-κB activation, ursodeoxycholic acid (UDCA), also hyperpolarized mdx fibers. These results suggest that in situ Na(+)-K(+) pump activity is depressed in mature dystrophic fibers by NF-κB dependent modulators, and that this reduced pump activity contributes to the weakness characteristic of dystrophic muscle. Copyright © 2011 Elsevier B.V. All rights reserved.

  11. Morphometric and molecular identification of individual barnacle cyprids from wild plankton: an approach to detecting fouling and invasive barnacle species.

    Science.gov (United States)

    Chen, Hsi-Nien; Høeg, Jens T; Chan, Benny K K

    2013-01-01

    The present study used DNA barcodes to identify individual cyprids to species. This enables accurate quantification of larvae of potential fouling species in the plankton. In addition, it explains the settlement patterns of barnacles and serves as an early warning system of unwanted immigrant species. Sequences from a total of 540 individual cypris larvae from Taiwanese waters formed 36 monophyletic clades (species) in a phylogenetic tree. Of these clades, 26 were identified to species, but 10 unknown monophyletic clades represented non-native species. Cyprids of the invasive barnacle, Megabalanus cocopoma, were identified. Multivariate analysis of antennular morphometric characters revealed three significant clusters in a nMDS plot, viz. a bell-shaped attachment organ (most species), a shoe-shaped attachment organ (some species), and a spear-shaped attachment organ (coral barnacles only). These differences in attachment organ structure indicate that antennular structures interact directly with the diverse substrata involved in cirripede settlement.

  12. Histotopographical study of human periocular elastic fibers using aldehyde-fuchsin staining with special reference to the sleeve and pulley system for extraocular rectus muscles.

    Science.gov (United States)

    Osanai, Hajime; Murakami, Gen; Ohtsuka, Aiji; Suzuki, Daisuke; Nakagawa, Takashi; Tatsumi, Haruyuki

    2009-09-01

    The aim of this study was to investigate the detailed configuration of periocular elastic fibers. Semiserial paraffin sections were made using 40 whole orbital contents from 27 elderly cadavers and stained by the aldehyde-fuchsin method. Periocular tissues were classified into three types according to directions of the elastic fibers, i.e., tissues containing anteroposteriorly running elastic fibers, those with mediolateral fibers, and those with meshwork of fibers. Anteroposterior elastic fiber-dominant tissue was seen in the upper eyelid and newly defined pulley plate for the medial and lateral recti (MR, LR). Mediolateral fibers were predominant in the central part of the inferior rectus pulley. In the pulley plates for the MR and LR, anteroposteriorly running fibers encased the striated muscle. Tenon's capsule and the epimysium of the recti were mediolateral fiber-dominant. However, at the entrance of the muscle terminal where Tenon's capsule reflects and continues to the epimysium, composite elastic fibers provided a meshwork-like skeleton. The elastic mesh was also seen around the lacrimal canaliculi. The pulley for the recti seemed to be composed of two parts--a connective tissue plate encasing the recti and specialized Tenon's capsule at an entrance or porta of the muscle. For both parts, elastic fibers were major functional components. The anteroposterior elastic fibers in the MR and LR pulley plates, especially, seemed to receive anteroposteriorly directed stress and tension from these striated muscles. The elastic interfaces seemed to prevent any concentration of stress that would interfere with periocular striated muscle functions, including hypothetical active pulleys.

  13. Fiber

    Science.gov (United States)

    ... for the treatment of diverticulosis , diabetes , and heart disease . ... fiber is found in oat bran, barley, nuts, seeds, beans, lentils, peas, ... heart disease. Insoluble fiber is found in foods such as ...

  14. The Effects of Ligustrazine on the Ca2+ Concentration of Soleus and Gastrocnemius Muscle Fibers in Hindlimb Unloaded Rat

    Science.gov (United States)

    Gao, Yunfang; Goswami, Nandu; Du, Bei; Hu, Huanxin; Wu, Xue

    Background Spaceflight or inactivity (bed rest, limb immobilization, hindlimb unloading) causes skeletal muscle atrophy. Recent studies show that an increase in protein degradation is an important mechanism for disuse atrophy. Furthermore, the calcium overload of disuse-atrophied muscle fiber has been shown to initiate the skeletal muscle proteolysis in disuse atrophy. Ligustrazine (tetramethylpyrazine, TMP), one of the important active ingredient extracted from Chuanxiong, has been shown by our group to increase muscle fiber cross-sectional area in atrophied soleus induced by 14 days hindlimb unloading. However, the underlying mechanisms of ligustrazine effects on disuse-atrophied muscle fibers remain unknown. Objective: We investigated the effects of ligustrazine on the cytoplasmic calcium overloading in soleus and gastrocnemius in 14 days hindlimb unloaded (HU) rats. Methods: Adult female Sprague-Dawley rats were matched for body mass and randomly assigned to three groups (n=8, each group): 1) synchronous control (CON); HU + intragastric water instillation (HU+W); HU + intragastric 60.0 mg kg-1 ligustrazine instillation (HU+Tmp). Laser scanning confocal microscope assessed the concentrations of cytoplasmic calcium ions. Spaceflight disuse atrophy was simulated by hindlimb unloading, provided by tail suspension. Results: 1) Compared with CON, the concentration of soleus intracellular calcium ion in HU+W and HU+Tmp increased 330% and 86% respectively P<0.01). Compared with HU+W, the concentration of soleus intracellular calcium ion in HU+Tmp decreased by 130% P<0.01). 2) Compared with CON, the concentration of gastrocnemius intracellular calcium ion in HU+W and HU+Tmp increased 189.8% and 32.1% respectively P<0.01). Compared with HU+W, the concentration of gastrocnemius intracellular calcium ion in HU+Tmp decreased by 119.3% (P<0.01). Conclusion: After 14 days of hindlimb unloading, cytoplasmic calcium of soleus (slow-twitch muscle) and gastrocnemius (fast

  15. Long-term, but not short-term high-fat diet induces fiber composition changes and impaired contractile force in mouse fast-twitch skeletal muscle.

    Science.gov (United States)

    Eshima, Hiroaki; Tamura, Yoshifumi; Kakehi, Saori; Kurebayashi, Nagomi; Murayama, Takashi; Nakamura, Kyoko; Kakigi, Ryo; Okada, Takao; Sakurai, Takashi; Kawamori, Ryuzo; Watada, Hirotaka

    2017-04-01

    In this study, we investigated the effects of a short-term and long-term high-fat diet (HFD) on morphological and functional features of fast-twitch skeletal muscle. Male C57BL/6J mice were fed a HFD (60% fat) for 4 weeks (4-week HFD) or 12 weeks (12-week HFD). Subsequently, the fast-twitch extensor digitorum longus muscle was isolated, and the composition of muscle fiber type, expression levels of proteins involved in muscle contraction, and force production on electrical stimulation were analyzed. The 12-week HFD, but not the 4-week HFD, resulted in a decreased muscle tetanic force on 100 Hz stimulation compared with control (5.1 ± 1.4 N/g in the 12-week HFD vs. 7.5 ± 1.7 N/g in the control group; P  twitch muscle fibers. Given that skeletal muscle strength largely depends on muscle fiber type, the impaired muscle contractile force by a HFD might result from morphological changes of fiber type composition. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  16. Fiber

    Science.gov (United States)

    ... not getting enough fiber. According to the 2010 Dietary Guidelines, teen girls (14 to 18 years) should get 25 grams of fiber per day and teen boys (14 to 18 years) should get 31 grams of fiber per day. The best sources are fresh fruits and vegetables, nuts and legumes, ...

  17. Protein Supplementation Augments Muscle Fiber Hypertrophy but Does Not Modulate Satellite Cell Content During Prolonged Resistance-Type Exercise Training in Frail Elderly.

    Science.gov (United States)

    Dirks, Marlou L; Tieland, Michael; Verdijk, Lex B; Losen, Mario; Nilwik, Rachel; Mensink, Marco; de Groot, Lisette C P G M; van Loon, Luc J C

    2017-07-01

    Protein supplementation increases gains in lean body mass following prolonged resistance-type exercise training in frail older adults. We assessed whether the greater increase in lean body mass can be attributed to muscle fiber type specific hypertrophy with concomitant changes in satellite cell (SC) content. A total of 34 frail elderly individuals (77 ± 1 years, n = 12 male adults) participated in this randomized, double-blind, placebo-controlled trial with 2 arms in parallel. Participants performed 24 weeks of progressive resistance-type exercise training (2 sessions per week) during which they were supplemented twice-daily with milk protein (2 × 15 g) or a placebo. Muscle biopsies were taken at baseline, and after 12 and 24 weeks of intervention, to determine type I and type II muscle fiber specific cross-sectional area (CSA), SC content, and myocellular characteristics. In the placebo group, a trend for a 20% ± 11% increase in muscle fiber CSA was observed in type II fibers only (P = .051), with no increase in type I muscle fiber CSA. In the protein group, type I and II muscle fiber CSA increased by 23% ± 7% and 34% ± 10% following 6 months of training, respectively (P  .05). No changes in myonuclear content and SC contents were observed over time in either group (both P > .05). Regression analysis showed that changes in myonuclear content and domain size are predictive of muscle fiber hypertrophy. Protein supplementation augments muscle fiber hypertrophy following prolonged resistance-type exercise training in frail older people, without changes in myonuclear and SC content. Copyright © 2017 AMDA – The Society for Post-Acute and Long-Term Care Medicine. Published by Elsevier Inc. All rights reserved.

  18. Effect of spaceflight on the maximal shortening velocity, morphology, and enzyme profile of fast- and slow-twitch skeletal muscle fibers in rhesus monkeys

    Science.gov (United States)

    Fitts, R. H.; Romatowski, J. G.; De La Cruz, L.; Widrick, J. J.; Desplanches, D.

    2000-01-01

    Weightlessness has been shown to cause limb muscle wasting and a reduced peak force and power in the antigravity soleus muscle. Despite a reduced peak power, Caiozzo et al. observed an increased maximal shortening velocity in the rat soleus muscle following a 14-day space flight. The major purpose of the present investigation was to determine if weightlessness induced an elevated velocity in the antigravity slow type I fibers of the rhesus monkey (Macaca mulatta), as well as to establish a cellular mechanism for the effect. Spaceflight or models of weightlessness have been shown to increase glucose uptake, elevate muscle glycogen content, and increase fatigability of the soleus muscle. The latter appears to be in part caused by a reduced ability of the slow oxidative fibers to oxidize fats. A second goal of this study was to establish the extent to which weightlessness altered the substrate profile and glycolytic and oxidative enzyme capacity of individual slow- and fast-twitch fibers.

  19. Orai1 enhances muscle endurance by promoting fatigue-resistant type I fiber content but not through acute store-operated Ca2+ entry

    Science.gov (United States)

    Carrell, Ellie M.; Coppola, Aundrea R.; McBride, Helen J.; Dirksen, Robert T.

    2016-01-01

    Orai1 is a transmembrane protein that forms homomeric, calcium-selective channels activated by stromal interaction molecule 1 (STIM1) after depletion of intracellular calcium stores. In adult skeletal muscle, depletion of sarcoplasmic reticulum calcium activates STIM1/Orai1-dependent store-operated calcium entry. Here, we used constitutive and inducible muscle-specific Orai1-knockout (KO) mice to determine the acute and long-term developmental effects of Orai1 ablation on muscle structure and function. Skeletal muscles from constitutive, muscle-specific Orai-KO mice exhibited normal postnatal growth and fiber type differentiation. However, a significant reduction in fiber cross-sectional area occurred by 3 mo of age, with the most profound reduction observed in oxidative, fatigue-resistant fiber types. Soleus muscles of constitutive Orai-KO mice exhibited a reduction in unique type I fibers, concomitant with an increase in hybrid fibers expressing both type I and type IIA myosins. Additionally, ex vivo force measurements showed reduced maximal specific force and in vivo exercise assays revealed reduced endurance in constitutive muscle-specific Orai-KO mice. Using tamoxifen-inducible, muscle-specific Orai-KO mice, these functional deficits were found to be the result of the delayed fiber changes resulting from an early developmental loss of Orai1 and not the result of an acute loss of Orai1-dependent store-operated calcium entry.—Carrell, E. M., Coppola, A. R., McBride, H. J., Dirksen, R. T. Orai1 enhances muscle endurance by promoting fatigue-resistant type I fiber content but not through acute store-operated Ca2+ entry. PMID:27587568

  20. An ultrastructural and histochemical study of the flexor tibialis muscle fiber types in male and female stick insects (Eurycantha calcarata, L).

    Science.gov (United States)

    Pilehvarian, Ali Asghar

    2015-10-01

    In this study the ultrastructural and histochemical characteristics of the flexor tibialis muscle fibers of the specialized metathoracic legs in the male and those of homologous and unspecialized ones in the female stick insects, Eurycantha calcarata, L, were examined. For the ultrastructural analysis, the muscle was divided longitudinally and vertically to produce a total of 12 sample parts e.g., anterior-dorsal-distal (ADD), posterior-ventral-medial (PVM) and so on. Light and electron microscopes were used to observe the muscle tissue. The methods for myosin adenosine triphosphatase (mATPase) and nicotine adenine dinucleotide- tetrazolium (NADH-TR) staining were modified from the methods of (Stokes et al., '79; Anttila et al., 2009; Anttila and Manttari, 2009). Sections with thickness of 22 μm, were cut from the anterior and the posterior surfaces of the muscle, using a cryostat. The histochemical and ultrastructural results showed that the muscles of both the male and the female were mixtures of physiological fiber types, with predominantly fast fibers. The muscles were composed of fibers with different staining properties for both mATPase and NADH-TR activities. The population of fibers within the muscles was heterogeneous. The differences between the population of the male and that of the female were significant. The means of most criteria e.g., mitochondrial amount and sarcoplasmic reticulum area predicted that the muscle of the male contained more fast fibers than the female. The histochemical examination also showed that the muscle of the male contained more fibers stained darkly for mATPase and lightly for NADH-TR. © 2015 Wiley Periodicals, Inc.

  1. ROS-mediated decline in maximum Ca2+-activated force in rat skeletal muscle fibers following in vitro and in vivo stimulation.

    Directory of Open Access Journals (Sweden)

    Travis L Dutka

    Full Text Available We hypothesised that normal skeletal muscle stimulated intensely either in vitro or in situ would exhibit reactive oxygen species (ROS-mediated contractile apparatus changes common to many pathophysiological conditions. Isolated soleus (SOL and extensor digitorum longus (EDL muscles of the rat were bubbled with 95% O(2 and stimulated in vitro at 31°C to give isometric tetani (50 Hz for 0.5 s every 2 s until maximum force declined to ≤30%. Skinned superficial slow-twitch fibers from the SOL muscles displayed a large reduction (∼41% in maximum Ca(2+-activated specific force (F(max, with Ca(2+-sensitivity unchanged. Fibers from EDL muscles were less affected. The decrease in F(max in SOL fibers was evidently due to oxidation effects on cysteine residues because it was reversed if the reducing agent DTT was applied prior to activating the fiber. The GSH:GSSG ratio was ∼3-fold lower in the cytoplasm of superficial fibers from stimulated muscle compared to control, confirming increased oxidant levels. The presence of Tempol and L-NAME during in vitro stimulation prevented reduction in F(max. Skinned fibers from SOL muscles stimulated in vivo at 37°C with intact blood supply also displayed reduction in F(max, though to a much smaller extent (∼12%. Thus, fibers from muscles stimulated even with putatively adequate O(2 supply display a reversible oxidation-induced decrease in F(max without change in Ca(2+-sensitivity, consistent with action of peroxynitrite (or possibly superoxide on cysteine residues of the contractile apparatus. Significantly, the changes closely resemble the contractile deficits observed in a range of pathophysiological conditions. These findings highlight how readily muscle experiences ROS-related deficits, and also point to potential difficulties when defining muscle performance and fatigue.

  2. Qualitative-feed-restricted heavy swine: meat quality and morpho-histochemical characteristics of muscle fibers

    Directory of Open Access Journals (Sweden)

    Maria Cristina Thomaz

    2009-10-01

    Full Text Available To evaluate the effect of different levels of qualitative feed restriction (0, 5, 10, 15 and 20% on pork quality and muscle morpho-histochemical characteristics, 60 castrated male swines were used. Ten animals were slaughtered at 89 kg BW. Other 50 pigs were fed experimental diets and slaughtered at 128 kg BW. Qualitative restriction increased pH45, and water holding capacity, and reduced the redness, yellowness and cholesterol concentrations of Longissimus lumborum. Quadratic tendency for oleic acid contents of loin and fiber cross-section area of Multifidus dorsi (P=0.08 were observed, with maximum point at 11-12% of restriction. No effect (P>0.1 on percentage of M. dorsi fibers SO, FG and FOG was found. The meat from 128-kg-BW pig showed numerically higher values for colorness, water losses, and lipid content and lower shear force than 89-kg-BW pigs. Qualitative feed restriction for finishing swines neither affected negatively pork quality nor modified the muscle fiber profile.Para avaliar o efeito de diferentes níveis de restrição alimentar qualitative (0, 5, 10, 15 e 20% sobre a qualidade da carne e características morfohistoquímicas musculares, sessenta suínos machos castrados foram utilizados. Dez suínos formaram o grupo abatido inicialmente (89 kg PV e outros 50 suínos foram alimentados com as dietas experimentais e foram abatidos aos 128 kg PV. A restrição qualitativa aumentou o pH45, e a capacidade de retenção de água, bem como reduziu a coloração vermelha e amarela, e o teor de colesterol do músculo Longissimus lumborum. Tendência quadrática para conteúdo de ácido oléico do lombo e da área de seção transversal do músculo Multifidus dorsi (P=0.08 foram observada, com ponto de máxima em11-12% de restrição. Não foi encontrado efeito (P>0.1 na porcentagem de fibras SO, FG e FOG no músculo Multifidus. A carne dos animais abatidos aos 128 kg PV apresentou valores numericamente maiores para coloração, perda de

  3. Short communications Goose barnacles on seals and a penguin at ...

    African Journals Online (AJOL)

    During a survey of seals in September and October 2009 at Gough Island, South Atlantic Ocean, we recorded goose barnacles (Lepas australis) attached to the pelage of two of the 12 elephant seals (Mirounga leonina) inspected and one of the seven vagrant Antarctic fur seals (Arctocephalus gazella) which were found ...

  4. Mercury associated neurochemical response in Arctic barnacle goslings (Branta leucopsis)

    NARCIS (Netherlands)

    Brink, van den Nico W.; Scheiber, Isabella B.R.; Jong, de Margje E.; Braun, Anna; Arini, Adeline; Basu, Niladri; Berg, van den Hans; Komdeur, Jan; Loonen, Maarten J.J.E.

    2018-01-01

    There remains great concern over mercury pollution in the Arctic, though relatively little is known about impacts on biota that inhabit Arctic terrestrial systems. To help address this, the current study was performed with barnacle goslings (Branta leucopsis) from a coal mine-impacted site and a

  5. Additions to the barnacle (Crustacea: Cirripedia) fauna of South Africa

    African Journals Online (AJOL)

    The purpose of this paper is to document recent additions to the South African barnacle (Cirripedia) fauna. New species records were obtained by examining accumulated collections of unidentified material in the Iziko South African Museum, as well as via material collected directly by the authors. Fourteen species, none of ...

  6. Barnacle cement: an etchant for stainless steel 316L?

    Science.gov (United States)

    Sangeetha, R; Kumar, R; Doble, M; Venkatesan, R

    2010-09-01

    Localized corrosion of stainless steel beneath the barnacle-base is an unsolved issue for the marine industry. In this work, we clearly bring out for the first time the role of the barnacle cement in acting as an etchant, preferentially etching the grain boundaries, and initiating the corrosion process in stainless steel 316L. The investigations include structural characterization of the cement and corroded region, and also chemical characterization of the corrosion products generated beneath the barnacle-base. Structural characterization studies using scanning electron microscopy (SEM) reveals the morphological changes in the cement structure across the interface of the base-plate and the substrate, modification of the steel surface by the cement and the corrosion pattern beneath the barnacle-base. Fourier transform infrared spectroscopy (FTIR) of the corrosion products show that they are composed of mainly oxides of iron thereby implying that the corrosion is aerobic in nature. A model for the etching and corrosion mechanism is proposed based on our observations.

  7. In vivo visualization of the levator ani muscle subdivisions using MR fiber tractography with diffusion tensor imaging.

    Science.gov (United States)

    Rousset, Pascal; Delmas, Vincent; Buy, Jean-Noël; Rahmouni, Alain; Vadrot, Dominique; Deux, Jean-François

    2012-09-01

    Understanding the levator ani complex architecture is of major clinical relevance. The aim of this study was to determine the feasibility of magnetic resonance (MR) fiber tractography with diffusion tensor imaging (DTI) as a tool for the three-dimensional (3D) representation of normal subdivisions of the levator ani. Ten young nulliparous female volunteers underwent DTI at 1.5 T MR imaging. Diffusion-weighted axial sequence of the pelvic floor was performed with additional T2-weighted multiplanar sequences for anatomical reference. Fiber tractography for visualization of each Terminologia Anatomica-listed major levator ani subdivision was performed. Numeric muscular fibers extracted after tractography were judged as accurate when localized within the boundaries of the muscle, and inaccurate when projecting out of the boundaries of the muscle. From the fiber tracking of each subdivision the number of numeric fibers (inaccurate and accurate) and a score (from 3 to 0) of the adequacy of the 3D representation were calculated. All but two volunteers completed the protocol. The mean number of accurate fibers was 17 ± 2 for the pubovisceralis, 14 ± 6 for the puborectalis and 1 ± 1 for the iliococcygeus. The quality of the 3D representation was judged as good (score = 2) for the pubovisceralis and puborectalis, and inaccurate (score = 0) for the iliococcygeus. Our study is the first step to a 3D visualization of the three major levator ani subdivisions, which could help to better understand their in vivo functional anatomy. © 2012 The Authors. Journal of Anatomy © 2012 Anatomical Society.

  8. Effect of cleft palate repair on the susceptibility to contraction-induced injury of single permeabilized muscle fibers from congenitally-clefted goat palates.

    Science.gov (United States)

    Despite cleft palate repair, velopharyngeal competence is not achieved in ~ 15% of patients, often necessitating secondary surgical correction. Velopharyngeal competence postrepair may require the conversion of levator veli palatini muscle fibers from injury-susceptible type 2 fibers to injury-resi...

  9. PHRED-1 is a divergent neurexin-1 homolog that organizes muscle fibers and patterns organs during regeneration.

    Science.gov (United States)

    Adler, Carolyn E; Sánchez Alvarado, Alejandro

    2017-07-01

    Regeneration of body parts requires the replacement of multiple cell types. To dissect this complex process, we utilized planarian flatworms that are capable of regenerating any tissue after amputation. An RNAi screen for genes involved in regeneration of the pharynx identified a novel gene, Pharynx regeneration defective-1 (PHRED-1) as essential for normal pharynx regeneration. PHRED-1 is a predicted transmembrane protein containing EGF, Laminin G, and WD40 domains, is expressed in muscle, and has predicted homologs restricted to other lophotrochozoan species. Knockdown of PHRED-1 causes abnormal regeneration of muscle fibers in both the pharynx and body wall muscle. In addition to defects in muscle regeneration, knockdown of PHRED-1 or the bHLH transcription factor MyoD also causes defects in muscle and intestinal regeneration. Together, our data demonstrate that muscle plays a key role in restoring the structural integrity of closely associated organs, and in planarians it may form a scaffold that facilitates normal intestinal branching. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  10. Effects of Nitric Oxide Synthase Inhibition on Fiber-Type Composition, Mitochondrial Biogenesis, and SIRT1 Expression in Rat Skeletal Muscle

    Directory of Open Access Journals (Sweden)

    Masataka Suwa, Hiroshi Nakano, Zsolt Radak, Shuzo Kumagai

    2015-09-01

    Full Text Available It was hypothesized that nitric oxide synthases (NOS regulated SIRT1 expression and lead to a corresponding changes of contractile and metabolic properties in skeletal muscle. The purpose of the present study was to investigate the influence of long-term inhibition of nitric oxide synthases (NOS on the fiber-type composition, metabolic regulators such as and silent information regulator of transcription 1 (SIRT1 and peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α, and components of mitochondrial biogenesis in the soleus and plantaris muscles of rats. Rats were assigned to two groups: control and NOS inhibitor (Nω-nitro-L-arginine methyl ester hydrochloride (L-NAME, ingested for 8 weeks in drinking water-treated groups. The percentage of Type I fibers in the L-NAME group was significantly lower than that in the control group, and the percentage of Type IIA fibers was concomitantly higher in soleus muscle. In plantaris muscle, muscle fiber composition was not altered by L-NAME treatment. L-NAME treatment decreased the cytochrome C protein expression and activity of mitochondrial oxidative enzymes in the plantaris muscle but not in soleus muscle. NOS inhibition reduced the SIRT1 protein expression level in both the soleus and plantaris muscles, whereas it did not affect the PGC-1α protein expression. L-NAME treatment also reduced the glucose transporter 4 protein expression in both muscles. These results suggest that NOS plays a role in maintaining SIRT1 protein expression, muscle fiber composition and components of mitochondrial biogenesis in skeletal muscle.

  11. Effect of speed endurance training and reduced training volume on running economy and single muscle fiber adaptations in trained runners.

    Science.gov (United States)

    Skovgaard, Casper; Christiansen, Danny; Christensen, Peter M; Almquist, Nicki W; Thomassen, Martin; Bangsbo, Jens

    2018-02-01

    The aim of the present study was to examine whether improved running economy with a period of speed endurance training and reduced training volume could be related to adaptations in specific muscle fibers. Twenty trained male (n = 14) and female (n = 6) runners (maximum oxygen consumption (VO 2 -max): 56.4 ± 4.6 mL/min/kg) completed a 40-day intervention with 10 sessions of speed endurance training (5-10 × 30-sec maximal running) and a reduced (36%) volume of training. Before and after the intervention, a muscle biopsy was obtained at rest, and an incremental running test to exhaustion was performed. In addition, running at 60% vVO 2 -max, and a 10-km run was performed in a normal and a muscle slow twitch (ST) glycogen-depleted condition. After compared to before the intervention, expression of mitochondrial uncoupling protein 3 (UCP3) was lower (P < 0.05) and dystrophin was higher (P < 0.05) in ST muscle fibers, and sarcoplasmic reticulum calcium ATPase 1 (SERCA1) was lower (P < 0.05) in fast twitch muscle fibers. Running economy at 60% vVO 2 -max (11.6 ± 0.2 km/h) and at v10-km (13.7 ± 0.3 km/h) was ~2% better (P < 0.05) after the intervention in the normal condition, but unchanged in the ST glycogen-depleted condition. Ten kilometer performance was improved (P < 0.01) by 3.2% (43.7 ± 1.0 vs. 45.2 ± 1.2 min) and 3.9% (45.8 ± 1.2 vs. 47.7 ± 1.3 min) in the normal and the ST glycogen-depleted condition, respectively. VO 2 -max was the same, but vVO 2 -max was 2.0% higher (P < 0.05; 19.3 ± 0.3 vs. 18.9 ± 0.3 km/h) after than before the intervention. Thus, improved running economy with intense training may be related to changes in expression of proteins linked to energy consuming processes in primarily ST muscle fibers. © 2018 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  12. Effect of cleft palate repair on the susceptibility to contraction-induced injury of single permeabilized muscle fibers from congenitally-clefted goat palates.

    Science.gov (United States)

    Rader, Erik P; Cederna, Paul S; McClellan, William T; Caterson, Stephanie A; Panter, Kip E; Yu, Deborah; Buchman, Steven R; Larkin, Lisa M; Faulkner, John A; Weinzweig, Jeffrey

    2008-03-01

    Despite cleft palate repair, velopharyngeal competence is not achieved in approximately 15% of patients, often necessitating secondary surgical correction. Velopharyngeal competence postrepair may require the conversion of levator veli palatini muscle fibers from injury-susceptible type 2 fibers to injury-resistant type 1 fibers. As an initial step to determining the validity of this theory, we tested the hypothesis that, in most cases, repair induces the transformation to type 1 fibers, thus diminishing susceptibility to injury. Single permeabilized levator veli palatini muscle fibers were obtained from normal palates and nonrepaired congenitally-clefted palates of young (2 months old) and adult (14 to 15 months old) goats and from repaired palates of adult goats (8 months old). Repair was done at 2 months of age using a modified von Langenbeck technique. Fiber type was determined by contractile properties and susceptibility to injury was assessed by force deficit, the decrease in maximum force following a lengthening contraction protocol expressed as a percentage of initial force. For normal palates and cleft palates of young goats, the majority of the fibers were type 2 with force deficits of approximately 40%. Following repair, 80% of the fibers were type 1 with force deficits of 20% +/- 2%; these deficits were 45% of those for nonrepaired cleft palates of adult goats (p < .0001). The decrease in the percentage of type 2 fibers and susceptibility to injury may be important for the development of a functional levator veli palatini muscle postrepair.

  13. Coordinated increase in skeletal muscle fiber area and expression of IGF-I with resistance exercise in elderly post-operative patients

    DEFF Research Database (Denmark)

    Suetta, Charlotte; Clemmensen, Christoffer; Andersen, Jesper L

    2010-01-01

    Hypertrophy of developing skeletal muscle involves stimulation by insulin-like growth factor-I (IGF-I), however, the role of IGF-I in adult muscle is less clarified. In the present study, the mRNA splice variants of IGF-I (IGF-IEa and MGF) and the changes in muscle fiber cross sectional area after...... and in addition induces marked increases in the expression of IGF-I splice variants, supporting the idea that IGF-I is involved in regulating muscle hypertrophy.......-operated-side served as a within subject control. Muscle biopsies were obtained from the vastus lateralis of both limbs at +2d post-operative (baseline), at 5weeks and 12weeks post-surgery to analyze for changes in type 1 and type 2 muscle fiber area. Changes in expression levels of IGF-I mRNA isoforms were determined...

  14. Comparison of myoplasmic calcium movements during excitation–contraction coupling in frog twitch and mouse fast-twitch muscle fibers

    Science.gov (United States)

    Hollingworth, Stephen

    2013-01-01

    Single twitch fibers from frog leg muscles were isolated by dissection and micro-injected with furaptra, a rapidly responding fluorescent Ca2+ indicator. Indicator resting fluorescence (FR) and the change evoked by an action potential (ΔF) were measured at long sarcomere length (16°C); ΔF/FR was scaled to units of ΔfCaD, the change in fraction of the indicator in the Ca2+-bound form. ΔfCaD was simulated with a multicompartment model of the underlying myoplasmic Ca2+ movements, and the results were compared with previous measurements and analyses in mouse fast-twitch fibers. In frog fibers, sarcoplasmic reticulum (SR) Ca2+ release evoked by an action potential appears to be the sum of two components. The time course of the first component is similar to that of the entire Ca2+ release waveform in mouse fibers, whereas that of the second component is severalfold slower; the fractional release amounts are ∼0.8 (first component) and ∼0.2 (second component). Similar results were obtained in frog simulations with a modified model that permitted competition between Mg2+ and Ca2+ for occupancy of the regulatory sites on troponin. An anatomical basis for two release components in frog fibers is the presence of both junctional and parajunctional SR Ca2+ release channels (ryanodine receptors [RyRs]), whereas mouse fibers (usually) have only junctional RyRs. Also, frog fibers have two RyR isoforms, RyRα and RyRβ, whereas the mouse fibers (usually) have only one, RyR1. Our simulations suggest that the second release component in frog fibers functions to supply extra Ca2+ to activate troponin, which, in mouse fibers, is not needed because of the more favorable location of their triadic junctions (near the middle of the thin filament). We speculate that, in general, parajunctional RyRs permit increased myofilament activation in fibers whose triadic junctions are located at the z-line. PMID:23630340

  15. Calcium dependence of inactivation of calcium release from the sarcoplasmic reticulum in skeletal muscle fibers.

    Science.gov (United States)

    Simon, B J; Klein, M G; Schneider, M F

    1991-03-01

    The steady-state calcium dependence of inactivation of calcium release from the sarcoplasmic reticulum was studied in voltage-clamped, cut segments of frog skeletal muscle fibers containing two calcium indicators, fura-2 and anti-pyrylazo III (AP III). Fura-2 fluorescence was used to monitor resting calcium and relatively small calcium transients during small depolarizations. AP III absorbance signals were used to monitor larger calcium transients during larger depolarizations. The rate of release (Rrel) of calcium from the sarcoplasmic reticulum was calculated from the calcium transients. The equilibrium calcium dependence of inactivation of calcium release was determined using 200-ms prepulses of various amplitudes to elevate [Ca2+] to various steady levels. Each prepulse was followed by a constant test pulse. The suppression of peak Rrel during the test pulse provided a measure of the extent of inactivation of release at the end of the prepulse. The [Ca2+] dependence of inactivation indicated that binding of more than one calcium ion was required to inactivate each release channel. Half-maximal inactivation was produced at a [Ca2+] of approximately 0.3 microM. Variation of the prepulse duration and amplitude showed that the suppression of peak release was consistent with calcium-dependent inactivation of calcium release but not with calcium depletion. The same calcium dependence of inactivation was obtained using different amplitude test pulses to determine the degree of inactivation. Prepulses that produced near maximal inactivation of release during the following test pulse produced no suppression of intramembrane charge movement during the test pulse, indicating that inactivation occurred at a step beyond the voltage sensor for calcium release. Three alternative set of properties that were assumed for the rapidly equilibrating calcium-binding sites intrinsic to the fibers gave somewhat different Rrel records, but gave very similar calcium dependence of

  16. [Changes in cell respiration of postural muscle fibers under long-term gravitational unloading after dietary succinate supplementation].

    Science.gov (United States)

    Ogneva, I V; Veselova, O M; Larina, I M

    2011-01-01

    The intensity of cell respiration of the rat m. soleus, m. gastrocnemius c.m. and tibialis anterior fibers during 35-day gravitational unloading, with the addition of succinate in the diet at a dosage rate of 50 mg per 1 kg animal weight has been investigated. The gravitational unloading was modeled by antiorthostatic hindlimb suspension. The intensity of cell respiration was estimated by polarography. It was shown that the rate of oxygen consumption by soleus and gastrocnemius fibers on endogenous and exogenous substrates and with the addition of ADP decreases after the discharge. This may be associated with the transition to the glycolytic energy path due to a decrease in the EMG-activity. At the same time, the respiration rate after the addition of exogenous substrates in soleus fibers did not increase, indicating a disturbance in the function of the NCCR-section of the respiratory chain and more pronounced changes in the structure of muscle fibers. In tibialis anterior fibers, no changes in oxygen consumption velocity were observed. The introduction of succinate to the diet of rats makes it possible to prevent the negative effects of hypokinesia, although it reduces the basal level of intensity of cell respiration.

  17. Caloric restriction induces energy-sparing alterations in skeletal muscle contraction, fiber composition and local thyroid hormone metabolism that persist during catch-up fat upon refeeding

    Directory of Open Access Journals (Sweden)

    Paula Bresciani M. De Andrade

    2015-09-01

    Full Text Available Weight regain after caloric restriction results in accelerated fat storage in adipose tissue. This catch-up fat phenomenon is postulated to result partly from suppressed skeletal muscle thermogenesis, but the underlying mechanisms are elusive. We investigated whether the reduced rate of skeletal muscle contraction-relaxation cycle that occurs after caloric restriction persists during weight recovery and could contribute to catch-up fat. Using a rat model of semistarvation-refeeding, in which fat recovery is driven by suppressed thermogenesis, we show that contraction and relaxation of leg muscles are slower after both semistarvation and refeeding. These effects are associated with (i higher expression of muscle deiodinase type 3 (DIO3 which inactivates tri-iodothyronine (T3, and lower expression of T3-activating enzyme, deiodinase type 2 (DIO2, (ii slower net formation of T3 from its T4 precursor in muscles, and (iii accumulation of slow fibers at the expense of fast fibers. These semistarvation-induced changes persisted during recovery and correlated with impaired expression of transcription factors involved in slow-twitch muscle development.We conclude that diminished muscle thermogenesis following caloric restriction results from reduced muscle T3 levels, alteration in muscle-specific transcription factors, and fast-to-slow fiber shift causing slower contractility. Energy-sparing effects persist during weight recovery and likely contribute to catch-up fat.

  18. Relationship of Physical Function to Single Muscle Fiber Contractility in Older Adults: Effects of Resistance Training with and without Caloric Restriction.

    Science.gov (United States)

    Wang, Zhong-Min; Leng, Xiaoyan; Messi, María Laura; Choi, Seung J; Marsh, Anthony P; Nicklas, Barbara; Delbono, Osvaldo

    2018-03-13

    Previous studies support beneficial effects of both resistance exercise training (RT) and caloric restriction (CR) on skeletal muscle strength and physical performance. The goal of this study was to determine the effects of adding CR to RT on single-muscle fiber contractility responses to RT in older overweight and obese adults. We analyzed contractile properties in 1,253 single myofiber from muscle biopsies of the vastus lateralis, as well as physical performance and thigh muscle volume, in 31 older (65-80 yrs), overweight or obese (body mass index= 27-35 kg/m2) men (n=19) and women (n=12) who were randomly assigned to a standardized, progressive RT intervention with CR (RT+CR; n=15) or without CR (RT; n=16) for 5 months. Both interventions evoked an increase in force normalized to CSA, in type-I and type-II fibers and knee extensor quality. However, these improvements were not different between intervention groups. In the RT group, changes in total thigh fat volume inversely correlated with changes in type-II fiber force (r = -0.691; p=0.019). Within the RT+CR group, changes in gait speed correlated positively with changes in type-I fiber CSA (r=0.561; p=0.030). In addition, increases in type-I normalized fiber force were related to decreases in thigh intermuscular fat volume (r= -0.539; p= 0.038). Single muscle fiber force and knee extensor quality improve with RT and RT+CR; however, CR does not enhance improvements in single muscle fiber contractility or whole muscle in response to RT in older overweight and obese men and women.

  19. miR-206 Represses Hypertrophy of Myogenic Cells but Not Muscle Fibers via Inhibition of HDAC4

    Science.gov (United States)

    Winbanks, Catherine E.; Beyer, Claudia; Hagg, Adam; Qian, Hongwei; Sepulveda, Patricio V.; Gregorevic, Paul

    2013-01-01

    microRNAs regulate the development of myogenic progenitors, and the formation of skeletal muscle fibers. However, the role miRNAs play in controlling the growth and adaptation of post-mitotic musculature is less clear. Here, we show that inhibition of the established pro-myogenic regulator miR-206 can promote hypertrophy and increased protein synthesis in post-mitotic cells of the myogenic lineage. We have previously demonstrated that histone deacetylase 4 (HDAC4) is a target of miR-206 in the regulation of myogenic differentiation. We confirmed that inhibition of miR-206 de-repressed HDAC4 accumulation in cultured myotubes. Importantly, inhibition of HDAC4 activity by valproic acid or sodium butyrate prevented hypertrophy of myogenic cells otherwise induced by inhibition of miR-206. To test the significance of miRNA-206 as a regulator of skeletal muscle mass in vivo, we designed recombinant adeno-associated viral vectors (rAAV6 vectors) expressing miR-206, or a miR-206 “sponge,” featuring repeats of a validated miR-206 target sequence. We observed that over-expression or inhibition of miR-206 in the muscles of mice decreased or increased endogenous HDAC4 levels respectively, but did not alter muscle mass or myofiber size. We subsequently manipulated miR-206 levels in muscles undergoing follistatin-induced hypertrophy or denervation-induced atrophy (models of muscle adaptation where endogenous miR-206 expression is altered). Vector-mediated manipulation of miR-206 activity in these models of cell growth and wasting did not alter gain or loss of muscle mass respectively. Our data demonstrate that although the miR-206/HDAC4 axis operates in skeletal muscle, the post-natal expression of miR-206 is not a key regulator of basal skeletal muscle mass or specific modes of muscle growth and wasting. These studies support a context-dependent role of miR-206 in regulating hypertrophy that may be dispensable for maintaining or modifying the adult skeletal muscle phenotype

  20. miR-206 represses hypertrophy of myogenic cells but not muscle fibers via inhibition of HDAC4.

    Directory of Open Access Journals (Sweden)

    Catherine E Winbanks

    Full Text Available microRNAs regulate the development of myogenic progenitors, and the formation of skeletal muscle fibers. However, the role miRNAs play in controlling the growth and adaptation of post-mitotic musculature is less clear. Here, we show that inhibition of the established pro-myogenic regulator miR-206 can promote hypertrophy and increased protein synthesis in post-mitotic cells of the myogenic lineage. We have previously demonstrated that histone deacetylase 4 (HDAC4 is a target of miR-206 in the regulation of myogenic differentiation. We confirmed that inhibition of miR-206 de-repressed HDAC4 accumulation in cultured myotubes. Importantly, inhibition of HDAC4 activity by valproic acid or sodium butyrate prevented hypertrophy of myogenic cells otherwise induced by inhibition of miR-206. To test the significance of miRNA-206 as a regulator of skeletal muscle mass in vivo, we designed recombinant adeno-associated viral vectors (rAAV6 vectors expressing miR-206, or a miR-206 "sponge," featuring repeats of a validated miR-206 target sequence. We observed that over-expression or inhibition of miR-206 in the muscles of mice decreased or increased endogenous HDAC4 levels respectively, but did not alter muscle mass or myofiber size. We subsequently manipulated miR-206 levels in muscles undergoing follistatin-induced hypertrophy or denervation-induced atrophy (models of muscle adaptation where endogenous miR-206 expression is altered. Vector-mediated manipulation of miR-206 activity in these models of cell growth and wasting did not alter gain or loss of muscle mass respectively. Our data demonstrate that although the miR-206/HDAC4 axis operates in skeletal muscle, the post-natal expression of miR-206 is not a key regulator of basal skeletal muscle mass or specific modes of muscle growth and wasting. These studies support a context-dependent role of miR-206 in regulating hypertrophy that may be dispensable for maintaining or modifying the adult skeletal

  1. miR-206 represses hypertrophy of myogenic cells but not muscle fibers via inhibition of HDAC4.

    Science.gov (United States)

    Winbanks, Catherine E; Beyer, Claudia; Hagg, Adam; Qian, Hongwei; Sepulveda, Patricio V; Gregorevic, Paul

    2013-01-01

    microRNAs regulate the development of myogenic progenitors, and the formation of skeletal muscle fibers. However, the role miRNAs play in controlling the growth and adaptation of post-mitotic musculature is less clear. Here, we show that inhibition of the established pro-myogenic regulator miR-206 can promote hypertrophy and increased protein synthesis in post-mitotic cells of the myogenic lineage. We have previously demonstrated that histone deacetylase 4 (HDAC4) is a target of miR-206 in the regulation of myogenic differentiation. We confirmed that inhibition of miR-206 de-repressed HDAC4 accumulation in cultured myotubes. Importantly, inhibition of HDAC4 activity by valproic acid or sodium butyrate prevented hypertrophy of myogenic cells otherwise induced by inhibition of miR-206. To test the significance of miRNA-206 as a regulator of skeletal muscle mass in vivo, we designed recombinant adeno-associated viral vectors (rAAV6 vectors) expressing miR-206, or a miR-206 "sponge," featuring repeats of a validated miR-206 target sequence. We observed that over-expression or inhibition of miR-206 in the muscles of mice decreased or increased endogenous HDAC4 levels respectively, but did not alter muscle mass or myofiber size. We subsequently manipulated miR-206 levels in muscles undergoing follistatin-induced hypertrophy or denervation-induced atrophy (models of muscle adaptation where endogenous miR-206 expression is altered). Vector-mediated manipulation of miR-206 activity in these models of cell growth and wasting did not alter gain or loss of muscle mass respectively. Our data demonstrate that although the miR-206/HDAC4 axis operates in skeletal muscle, the post-natal expression of miR-206 is not a key regulator of basal skeletal muscle mass or specific modes of muscle growth and wasting. These studies support a context-dependent role of miR-206 in regulating hypertrophy that may be dispensable for maintaining or modifying the adult skeletal muscle phenotype

  2. Diaphragm muscle fiber dysfunction in chronic obstructive pulmonary disease: toward a pathophysiological concept.

    NARCIS (Netherlands)

    Ottenheijm, C.A.C.; Heunks, L.M.A.; Dekhuijzen, P.N.R.

    2007-01-01

    Inspiratory muscle weakness in patients with chronic obstructive pulmonary disease (COPD) is of major clinical relevance; maximum inspiratory pressure generation is an independent determinant of survival in severe COPD. Traditionally, inspiratory muscle weakness has been ascribed to

  3. Muscle Fiber Hypertrophy and Myonuclei Addition: A Systematic Review and Meta-analysis.

    Science.gov (United States)

    Conceição, Miguel S; Vechin, Felipe C; Lixandrão, Manoel; Damas, Felipe; Libardi, Cleiton A; Tricoli, Valmor; Roschel, Hamilton; Camera, Donny; Ugrinowitsch, Carlos

    2018-03-05

    The myonuclear domain theory postulates that myonuclei are added to muscle fibres when increases in fibre cross-sectional area (i.e. hypertrophy) are ≥26%. However, recent studies have reported increased myonuclear content with lower levels (e.g. 12%) of muscle fibre hypertrophy. To determine whether a muscle fibre hypertrophy "threshold" is required to drive the addition of new myonuclei to existing muscle fibres. Studies of resistance training (RT), endurance training (ET), with or without nutrient (i.e., protein) supplementation and steroid administration, with measures of muscle fibre hypertrophy and myonuclei number, as primary or secondary outcomes, were considered. Twenty-seven studies incorporating 62 treatment groups and 903 subjects fulfilled the inclusion criteria and were included in the analyses. Muscle fibre hypertrophy ≤ 10% induces increases in myonuclear content although a significantly higher number of myonuclei are observed when muscle hypertrophy is ~22%. Additional analyses showed that age, sex and muscle fibre type do not influence muscle fibre hypertrophy nor myonuclei addition. Even though a more consistent myonuclei addition occurs when muscle fibre hypertrophy is >22%, our results challenge the concept of a muscle hypertrophy threshold as significant myonuclei addition occurs with lower muscle hypertrophy (i.e. <10%).

  4. Carbonic Anhydrase III Is Expressed in Mouse Skeletal Muscles Independent of Fiber Type-Specific Myofilament Protein Isoforms and Plays a Role in Fatigue Resistance.

    Science.gov (United States)

    Feng, Han-Zhong; Jin, J-P

    2016-01-01

    Carbonic anhydrase III (CAIII) is a metabolic enzyme and a regulator for intracellular pH. CAIII has been reported with high level expression in slow twitch skeletal muscles. Here we demonstrate that CAIII is expressed in multiple slow and fast twitch muscles of adult mouse independent of the expression of myosin isoforms. Expressing similar fast type of myofilament proteins, CAIII-positive tibial anterior (TA) muscle exhibits higher tolerance to fatigue than that of CAIII-negative fast twitch extensor digitorum longus (EDL) muscle in in situ contractility studies. We further studied the muscles of CAIII knockout ( Car3 -KO) mice. The loss of CAIII in soleus and TA muscles in Car3 -KO mice did not change muscle mass, sarcomere protein isoform contents, and the baseline twitch and tetanic contractility as compared with age-matched wild type (WT) controls. On the other hand, Car3 -KO TA muscle showed faster force reduction at the beginning but higher resistance at the end during a fatigue test, followed by slower post fatigue recovery than that of WT TA muscle. Superfused Car3 -KO soleus muscle also had faster total force reduction during fatigue test than that of WT soleus. However, it showed a less elevation of resting tension followed by a better post fatigue recovery under acidotic stress. CAIII was detected in neonatal TA and EDL muscle, downregulated during development, and then re-expressed in adult TA but not EDL muscles. The expression of CAIII in Tnnt1 -KO myopathy mouse soleus muscle that has diminished slow fiber contents due to the loss of slow troponin T remained high. Car3 -KO EDL, TA, and soleus muscles showed no change in the expression of mitochondria biomarker proteins. The data suggest a fiber type independent expression of CAIII with a role in the regulation of intracellular pH in skeletal muscle and may be explored as a target for improving fatigue resistance and for the treatment of TNNT1 myopathies.

  5. Carbonic Anhydrase III Is Expressed in Mouse Skeletal Muscles Independent of Fiber Type-Specific Myofilament Protein Isoforms and Plays a Role in Fatigue Resistance

    Science.gov (United States)

    Feng, Han-Zhong; Jin, J.-P.

    2016-01-01

    Carbonic anhydrase III (CAIII) is a metabolic enzyme and a regulator for intracellular pH. CAIII has been reported with high level expression in slow twitch skeletal muscles. Here we demonstrate that CAIII is expressed in multiple slow and fast twitch muscles of adult mouse independent of the expression of myosin isoforms. Expressing similar fast type of myofilament proteins, CAIII-positive tibial anterior (TA) muscle exhibits higher tolerance to fatigue than that of CAIII-negative fast twitch extensor digitorum longus (EDL) muscle in in situ contractility studies. We further studied the muscles of CAIII knockout (Car3-KO) mice. The loss of CAIII in soleus and TA muscles in Car3-KO mice did not change muscle mass, sarcomere protein isoform contents, and the baseline twitch and tetanic contractility as compared with age-matched wild type (WT) controls. On the other hand, Car3-KO TA muscle showed faster force reduction at the beginning but higher resistance at the end during a fatigue test, followed by slower post fatigue recovery than that of WT TA muscle. Superfused Car3-KO soleus muscle also had faster total force reduction during fatigue test than that of WT soleus. However, it showed a less elevation of resting tension followed by a better post fatigue recovery under acidotic stress. CAIII was detected in neonatal TA and EDL muscle, downregulated during development, and then re-expressed in adult TA but not EDL muscles. The expression of CAIII in Tnnt1-KO myopathy mouse soleus muscle that has diminished slow fiber contents due to the loss of slow troponin T remained high. Car3-KO EDL, TA, and soleus muscles showed no change in the expression of mitochondria biomarker proteins. The data suggest a fiber type independent expression of CAIII with a role in the regulation of intracellular pH in skeletal muscle and may be explored as a target for improving fatigue resistance and for the treatment of TNNT1 myopathies. PMID:28018233

  6. Tension relaxation induced by pulse photolysis of caged ATP in partially crosslinked fibers from rabbit psoas muscle.

    Science.gov (United States)

    Emoto, Y; Horiuti, K; Tawada, K; Yamada, K

    1995-02-28

    Muscle contractile force is thought to be generated by ATP-induced conformational changes in myosin crossbridges. In the present study, we investigated the response to ATP binding of force-bearing, attached cross-bridges. For this investigation, skinned fibers, in which myosin heads were in part covalently crosslinked to thin filaments with a zero-length crosslinker, were prepared. Caged ATP [the P3-1-(2-nitro)phenylethyl ester of ATP] was then pulse-photolyzed in these crosslinked fibers, which retained ATP-induced "rigor" tension, and then the subsequent tension changes were followed at 14-16 degrees C and ionic strengths of 0.1-2 M. A rapid tension decrease was observed after the photolysis in the partially crosslinked fibers. The rate of the decrease was not any different from that in the uncrosslinked fibers compared at ionic strength of 0.2 M. This and other results thus indicate a kinetic similarity in the crosslinked and uncrosslinked crossbridges in response to ATP binding. These findings also suggest that ATP-induced structural changes take place in the attached crossbridges at a rate similar to that of the ATP-induced dissociation of crossbridges from thin filaments.

  7. Influence of Hamstring Fatigue on the Estimated Percentage of Fast-Twitch Muscle Fibers for the Vastus Lateralis.

    Science.gov (United States)

    Mota, Jacob A; Stock, Matt S; Carrillo, Elias C; Olinghouse, Kendra D; Drusch, Alexander S; Thompson, Brennan J

    2015-12-01

    A previous study has demonstrated the ability to roughly estimate the percentage of fast-twitch muscle fibers for the vastus lateralis through the analysis of peak torque values during fatiguing isokinetic testing. We examined whether use of the hamstrings influenced peak torque and electromyographic (EMG) responses for the quadriceps during fatiguing isokinetic muscle actions. On 2 separate occasions, 21 men (mean age = 23 years) performed 50 repeated, maximal concentric isokinetic muscle actions of the left leg extensors at a velocity of 180°·s. For 1 trial, the subjects maximally flexed the knee joint after each full extension to bring the dynamometer's lever arm back to the starting position. For the other trial, the subjects relaxed after each maximal extension and an investigator assisted in returning the lever arm. Surface EMG signals were detected from the vastus lateralis and biceps femoris throughout testing. Dependent variables that assessed the decline in peak torque and EMG mean frequency for the vastus lateralis were examined using dependent samples t-tests, effect size statistics, and the number of subjects who exceeded the minimal difference needed to be considered real. Our results showed small mean differences between the trials (Cohen's d ≤0.136). For the estimated percentage of fast-twitch fibers, none of the subjects showed a difference between trials that we considered meaningful. The mean estimated percentages of fast-twitch fibers were 61.6 and 60.1. Collectively, use of the hamstrings during fatiguing isokinetic testing of the quadriceps had little influence on peak torque and EMG.

  8. Differential effects of peroxynitrite on contractile protein properties in fast- and slow-twitch skeletal muscle fibers of rat.

    Science.gov (United States)

    Dutka, T L; Mollica, J P; Lamb, G D

    2011-03-01

    Oxidative modification of contractile proteins is thought to be a key factor in muscle weakness observed in many pathophysiological conditions. In particular, peroxynitrite (ONOO(-)), a potent short-lived oxidant, is a likely candidate responsible for this contractile dysfunction. In this study ONOO(-) or 3-morpholinosydnonimine (Sin-1, a ONOO(-) donor) was applied to rat skinned muscle fibers to characterize the effects on contractile properties. Both ONOO(-) and Sin-1 exposure markedly reduced maximum force in slow-twitch fibers but had much less effect in fast-twitch fibers. The rate of isometric force development was also reduced without change in the number of active cross bridges. Sin-1 exposure caused a disproportionately large decrease in Ca(2+) sensitivity, evidently due to coproduction of superoxide, as it was prevented by Tempol, a superoxide dismutase mimetic. The decline in maximum force with Sin-1 and ONOO(-) treatments could be partially reversed by DTT, provided it was applied before the fiber was activated. Reversal by DTT indicates that the decrease in maximum force was due at least in part to oxidation of cysteine residues. Ascorbate caused similar reversal, further suggesting that the cysteine residues had undergone S-nitrosylation. The reduction in Ca(2+) sensitivity, however, was not reversed by either DTT or ascorbate. Western blot analysis showed cross-linking of myosin heavy chain (MHC) I, appearing as larger protein complexes after ONOO(-) exposure. The findings suggest that ONOO(-) initially decreases maximum force primarily by oxidation of cysteine residues on the myosin heads, and that the accompanying decrease in Ca(2+) sensitivity is likely due to other, less reversible actions of hydroxyl or related radicals.

  9. Reproducibility Analysis of Diffusion Tensor Indices and Fiber Architecture of Human Calf Muscles in vivo at 1.5 Tesla in Neutral and Plantarflexed Ankle Positions at Rest

    Science.gov (United States)

    Sinha, Shantanu; Sinha, Usha

    2011-01-01

    Purpose To investigate the reproducibility of diffusion tensor imaging (DTI) derived indices and fiber architecture of calf muscles at 1.5 Tesla, to establish an imaging based method to confirm ankle position, and to compare fiber architecture at different ankle positions. Materials and Methods Six subjects were imaged at 1.5T with the foot in neutral and plantarflexed positions. DTI indices were calculated in four muscle compartments (medial and lateral gastrocnemius (MG, LG), superficial and deep anterior tibialis (AT-S, AT-D). Two subjects were scanned on three days to calculate the coefficient of variability (CV) and the repeatability coefficient (RC). Results DTI indices were close to the values obtained in earlier 3T and 1.5 T studies. FA decreased significantly in the MG and increased significantly in the AT-S and AT-D compartments while fiber orientation with respect to the magnet Z-axis increased significantly in the MG and decreased significantly in the AT-S compartment with plantarflexion. The CV and RC for the DTI indices and fiber orientations were comparable to 3T studies. Fiber lengths and orientation angles in the MG matched corresponding measures from ultrasound studies. Conclusion DTI at 1.5 Tesla provides reproducible measures of diffusion indices and fiber architecture of calf muscle at different muscle lengths. PMID:21608064

  10. Effects of strength training on muscle fiber types and size; consequences for athletes training for high-intensity sport

    DEFF Research Database (Denmark)

    Andersen, J L; Aagaard, P

    2010-01-01

    way into almost all sports in which high intense work is conducted. In this review we will focus on a few selected aspects and consequences of strength training; namely what effects do strength training have of muscle fiber type composition, and how may these effects change the contractile properties...... functional training advises can be made. Thus, more than a review in the traditional context this review should be viewed upon as an attempt to bring sports-physiologists and coaches or others working directly with the athletes together for a mutual discussion on how recently acquired physiological knowledge...

  11. Adaptive evolution of sexual systems in pedunculate barnacles

    DEFF Research Database (Denmark)

    Yusa, Yoichi; Yoshikawa, Mai; Kitaura, Jun

    2012-01-01

    to mating in small groups. Within the pedunculate barnacle phylogeny, dwarf males and females have evolved repeatedly. Females are more likely to evolve in androdioecious than hermaphroditic populations, suggesting that evolution of dwarf males has preceded that of females in pedunculates. Both dwarf males...... and females are associated with a higher proportion of solitary individuals in the population, corroborating the hypothesis that limited mating opportunities have favoured evolution of these diverse sexual systems, which have puzzled biologists since Darwin....

  12. Preslaughter Transport Effect on Broiler Meat Quality and Post-mortem Glycolysis Metabolism of Muscles with Different Fiber Types.

    Science.gov (United States)

    Wang, Xiaofei; Li, Jiaolong; Cong, Jiahui; Chen, Xiangxing; Zhu, Xudong; Zhang, Lin; Gao, Feng; Zhou, Guanghong

    2017-11-29

    Preslaughter transport has been reported to decrease the quality of breast meat but not thigh meat of broilers. However, tissue-specific difference in glycogen metabolism between breast and thigh muscles of transported broilers has not been well studied. We thus investigated the differences in meat quality, adenosine phosphates, glycolysis, and bound key enzymes associated with glycolysis metabolism in skeletal muscles with different fiber types of preslaughter transported broilers during summer. Compared to a 0.5 h transport, a 3 h transport during summer decreased ATP content, increased AMP content and AMP/ATP ratio, and accelerated glycolysis metabolism via the upregulation of glycogen phosphorylase expression accompanied by increased activities of bound glycolytic enzymes (hexokinase, pyruvate kinase, and lactate dehydrogenase) in pectoralis major muscle, which subsequently increased the likelihood of pale, soft, and exudative-like breast meat. On the other hand, a 3 h transport induced only a moderate glycolysis metabolism in tibialis anterior muscle, which did not cause any noticeable changes in the quality traits of the thigh meat.

  13. Four days of muscle disuse impairs single fiber contractile function in young and old healthy men

    DEFF Research Database (Denmark)

    Hvid, Lars G; Suetta, Charlotte; Aagaard, Per

    2013-01-01

    The purpose of the study was to investigate the effects of 4days of disuse (knee brace) on contractile function of isolated vastus lateralis fibers (n=486) from 11 young (24.3±0.9yrs) and 11 old (67.2±1.0yrs) healthy men having comparable levels of physical activity. Prior to disuse single fiber...

  14. The Regulation of Skeletal Muscle Active Hyperemia: The Differential Role of Adenosine in Muscles of Varied Fiber Types

    Science.gov (United States)

    1986-04-21

    Regulation of the urea cycle and TCA cycle by ammonia. In: Advances in Enzyme Regulation, Vol. 4, edited by G. t-leber. New York: Pergamon Press, 1966, pp...glycolysis enters mitochondria where it is completely oxidized to COz and HzO through the citric Reid cycle and the electron-transport chain. However...from studies using free-flow perfusion techniques have been less clear. Using a canine anterior calf muscle preparation, Phair and Sparks (1979

  15. Immunohistochemical detection of interleukin-6 in human skeletal muscle fibers following exercise

    DEFF Research Database (Denmark)

    Penkowa, Milena; Keller, Charlotte; Keller, Pernille

    2003-01-01

    Interleukin-6 (IL-6) is produced by many different cell types. Human skeletal muscles produce and release high amounts of IL-6 during exercise; however, the cell source of origin in the muscle is not known. Therefore, we studied the protein expression of IL-6 by immunohistochemistry in human musc...... are the dominant cell source of exercise-induced release of IL-6 from working muscle....

  16. Contraction-induced muscle fiber damage is increased in soleus muscle of streptozotocin-diabetic rats and is associated with elevated expression of brain-derived neurotrophic factor mRNA in muscle fibers and activated satellite cells

    NARCIS (Netherlands)

    Copray, S; Liem, R; Brouwer, N; Greenhaff, P; Habens, F; Fernyhough, P

    The expression of brain-derived neurotrophic factor (BDNF) is elevated in the soleus muscle of streptozotocin-diabetic rats. To determine whether this diabetes-induced elevation was associated with or enhanced by muscle activity we have induced high-intensity muscle contraction by electrically

  17. Experiment K-6-21. Effect of microgravity on 1) metabolic enzymes of type 1 and type 2 muscle fibers and on 2) metabolic enzymes, neutransmitter amino acids, and neurotransmitter associated enzymes in motor and somatosensory cerebral cortex. Part 1: Metabolic enzymes of individual muscle fibers; part 2: metabolic enzymes of hippocampus and spinal cord

    Science.gov (United States)

    Lowry, O.; Mcdougal, D., Jr.; Nemeth, Patti M.; Maggie, M.-Y. Chi; Pusateri, M.; Carter, J.; Manchester, J.; Norris, Beverly; Krasnov, I.

    1990-01-01

    The individual fibers of any individual muscle vary greatly in enzyme composition, a fact which is obscured when enzyme levels of a whole muscle are measured. The purpose of this study was therefore to assess the changes due to weightless on the enzyme patterns composed by the individual fibers within the flight muscles. In spite of the limitation in numbers of muscles examined, it is apparent that: (1) that the size of individual fibers (i.e., their dry weight) was reduced about a third, (2) that this loss in dry mass was accompanied by changes in the eight enzymes studied, and (3) that these changes were different for the two muscles, and different for the two enzyme groups. In the soleus muscle the absolute amounts of the three enzymes of oxidative metabolism decreased about in proportion to the dry weight loss, so that their concentration in the atrophic fibers was almost unchanged. In contrast, there was little loss among the four enzymes of glycogenolysis - glycolysis so that their concentrations were substantially increased in the atrophic fibers. In the TA muscle, these seven enzymes were affected in just the opposite direction. There appeared to be no absolute loss among the oxidative enzymes, whereas the glycogenolytic enzymes were reduced by nearly half, so that the concentrations of the first metabolic group were increased within the atrophic fibers and the concentrations of the second group were only marginally decreased. The behavior of hexokinase was exceptional in that it did not decrease in absolute terms in either type of muscle and probably increased as much as 50 percent in soleus. Thus, their was a large increase in concentration of this enzyme in the atrophied fibers of both muscles. Another clear-cut finding was the large increase in the range of activities of the glycolytic enzymes among individual fibers of TA muscles. This was due to the emergence of TA fibers with activities for enzymes of this group extending down to levels as low as

  18. Muscle spindles exhibit core lesions and extensive degeneration of intrafusal fibers in the Ryr1I4895T/wt mouse model of core myopathy

    International Nuclear Information System (INIS)

    Zvaritch, Elena; MacLennan, David H.

    2015-01-01

    Muscle spindles from the hind limb muscles of adult Ryr1 I4895T/wt (IT/+) mice exhibit severe structural abnormalities. Up to 85% of the spindles are separated from skeletal muscle fascicles by a thick layer of connective tissue. Many intrafusal fibers exhibit degeneration, with Z-line streaming, compaction and collapse of myofibrillar bundles, mitochondrial clumping, nuclear shrinkage and pyknosis. The lesions resemble cores observed in the extrafusal myofibers of this animal model and of core myopathy patients. Spindle abnormalities precede those in extrafusal fibers, indicating that they are a primary pathological feature in this murine Ryr1-related core myopathy. Muscle spindle involvement, if confirmed for human core myopathy patients, would provide an explanation for an array of devastating clinical features characteristic of these diseases and provide novel insights into the pathology of RYR1-related myopathies. - Highlights: • Muscle spindles exhibit structural abnormalities in a mouse model of core myopathy. • Myofibrillar collapse and mitochondrial clumping is observed in intrafusal fibers. • Myofibrillar degeneration follows a pattern similar to core formation in extrafusal myofibers. • Muscle spindle abnormalities are a part of the pathological phenotype in the mouse model of core myopathy. • Direct involvement of muscle spindles in the pathology of human RYR1-related myopathies is proposed

  19. Activation of fast skeletal muscle: contributions of studies on skinned fibers.

    Science.gov (United States)

    Stephenson, E W

    1981-01-01

    The membrane potential of vertebrate twitch fibers closely controls Ca fluxes between intracellular compartments, which in turn control contraction. Recent work on intracellular Ca movement is reviewed in the general context of current efforts to synthesize physiological, biochemical, and structural observations on the contractile mechanism and its regulation, emphasizing the increasing role of functionally skinned fibers in this synthesis. Skinned fiber preparations, with removed or disrupted sarcolemma, bridge the gap between properties of isolated subsystems and their constrained operation in the intact fiber. Recent studies indicate that the surface action potential propagates along the transverse tubules, but not the sarcoplasmic reticulum (SR), which appears to be a distinct intracellular compartment. Voltage-dependent charge movements in the transverse tubules probably control Ca flux across the SR membranes. Current questions concern the mechanism of the signal that bridges the junctional gap between the two membrane systems, the mechanism and properties of the activated Ca efflux to the myofilament space, and the operation of the Ca pump of the SR during activation. New methods applied to intact fibers, cut fibers, skinned fibers, and subcellular systems are yielding the kind of information needed for a complete description of these central steps in excitation-contraction coupling and of Ca regulation of the myofilaments.

  20. Patch-clamp recording of charge movement, Ca(2+) current, and Ca(2+) transients in adult skeletal muscle fibers

    Science.gov (United States)

    Wang, ZM; Messi, ML; Delbono, O

    1999-01-01

    Intramembrane charge movement (Q), Ca(2+) conductance (G(m)) through the dihydropyridine-sensitive L-type Ca(2+) channel (DHPR) and intracellular Ca(2+) fluorescence (F) have been recorded simultaneously in flexor digitorum brevis muscle fibers of adult mice, using the whole-cell configuration of the patch-clamp technique. The voltage distribution of Q was fitted to a Boltzmann equation; the Q(max), V(1/2Q), and effective valence (z(Q)) values were 41 +/- 3.1 nC/&mgr;F, -17.6 +/- 0.7 mV, and 2.0 +/- 0.12, respectively. V(1/2G) and z(G) values were -0.3 +/- 0.06 mV and 5.6 +/- 0.34, respectively. Peak Ca(2+) transients did not change significantly after 30 min of recording. F was fit to a Boltzmann equation, and the values for V(F1/2) and z(F) were 6.2 +/- 0.04 mV and 2.4, respectively. F was adequately fit to the fourth power of Q. These results demonstrate that the patch-clamp technique is appropriate for recording Q, G(m), and intracellular [Ca(2+)] simultaneously in mature skeletal muscle fibers and that the voltage distribution of the changes in intracellular Ca(2+) can be predicted by a Hodgkin-Huxley model. PMID:10545370

  1. Predicted high-performing piglets exhibit more and larger skeletal muscle fibers

    NARCIS (Netherlands)

    Paredes Escobar, S.P.; Kalbe, C.; Jansman, A.J.M.; Verstegen, M.W.A.; Hees, van H.M.J.; Lösel, D.; Gerrits, W.J.J.; Rehfeldt, C.

    2013-01-01

    Postnatal (muscle) growth potential in pigs depends on the total number and hypertrophy of myofibers in skeletal muscle tissue. In a previous study an algorithm was developed to predict piglet BW at the end of the nursery period (10 wk of age) on the basis of BW at birth, at weaning, and at 6 wk of

  2. Electrophysiological characteristics of motor units and muscle fibers in trained and untrained young male subjects

    DEFF Research Database (Denmark)

    Duez, Lene; Qerama, Erisela; Fuglsang-Frederiksen, Anders

    2010-01-01

    were obtained by direct muscle stimulation (DMS) with two stainless-steel subdermal electrodes placed subcutaneously in the distal third of the muscle. Amplitudes of CMAP and IPA were significantly larger in trained subjects compared with untrained subjects. We found no differences between trained...

  3. SB431542 treatment promotes the hypertrophy of skeletal muscle fibers but decreases specific force

    NARCIS (Netherlands)

    Watt, K.I.; Jaspers, R.T.; Atherton, P.; Smith, K.; Rennie, M.J.; Ratkevicius, A.; Wackerhage, H.

    2010-01-01

    The small molecule inhibitor SB431542 inhibits activin type I receptors. The muscle growth-inhibitor myostatin binds to and signals via these receptors. The aim of this study was to test the hypothesis that SB431542 can inhibit myostatinrelated Smad signaling and induce muscle growth in cultured

  4. Recyclable plastics as substrata for settlement and growth of bryozoans Bugula neritina and barnacles Amphibalanus amphitrite.

    Science.gov (United States)

    Li, Heng-Xiang; Orihuela, Beatriz; Zhu, Mei; Rittschof, Daniel

    2016-11-01

    Plastics are common and pervasive anthropogenic debris in marine environments. Floating plastics provide opportunities to alter the abundance, distribution and invasion potential of sessile organisms that colonize them. We selected plastics from seven recycle categories and quantified settlement of (i) bryozoans Bugula neritina (Linnaeus, 1758) in the lab and in the field, and of (ii) barnacles Amphibalanus (= Balanus) amphitrite (Darwin, 1854) in the field. In the laboratory we cultured barnacles on the plastics for 8 weeks and quantified growth, mortality, and breaking strength of the side plates. In the field all recyclable plastics were settlement substrata for bryozoans and barnacles. Settlement depended on the type of plastic. Fewer barnacles settled on plastic surfaces compared to glass. In the lab and in the field, bryozoan settlement was higher on plastics than on glass. In static laboratory rearing, barnacles growing on plastics were initially significantly smaller than on glass. This suggested juvenile barnacles were adversely impacted by materials leaching from the plastics. Barnacle mortality was not significantly different between plastic and glass surfaces, but breaking strength of side plates of barnacles on polyvinyl chloride (PVC) and polycarbonate (PC) were significantly lower than breakage strength on glass. Plastics impact marine ecosystems directly by providing new surfaces for colonization with fouling organisms and by contaminants shown previously to leach out of plastics and impact biological processes. Published by Elsevier Ltd.

  5. Slaughter performance of four different turkey strains, with special focus on the muscle fiber structure and the meat quality of the breast muscle.

    Science.gov (United States)

    Werner, C; Riegel, J; Wicke, M

    2008-09-01

    The increase in human consumption of turkey meat and the shift in the poultry market from whole birds to further processed meat products increases the visibility of meat alterations (e.g., heterogenic color, drip loss, petechial hemorrhages) at retail. Changes in poultry meat quality have been related to the intensive growth of the current turkey strains. Considering this, the main objective of this investigation was to evaluate the meat quality and muscle structure of commercially available turkey strains with different growth properties but similar breast yields. Toms (n = 120) of 4 different turkey strains (British United Turkeys Big 6, Kelly Broad-Breasted Bronze, Kelly Wrolstad, Kelly Super Mini; n = 30 per strain) were reared in an experimental barn under similar environmental and feeding conditions and were slaughtered at 22 wk of age in a commercial slaughterhouse. The strains Big 6 and Broad-Breasted Bronze belong to the fast-growing (FG) turkey strain and the other 2 to the slow-growing (SG) turkey strain. The carcass weights, as estimated by video imaging, differed significantly (P turkey strains but the creatine kinase activities were greater in the FG turkeys at the time of slaughter. Determination of the different meat quality parameters [pH, electrical conductivity, color (L a b), drip loss, shear force] did not result in clear differences between the SG and FG turkey strains. There were larger muscle fibers in the FG in comparison with the SG strains, but no differences could be determined in the capillary density and incidence of degenerated or giant fibers, except for a higher rate in the Wrolstad strain. The present results are contradictory to the opinion that turkeys with faster growth have worse meat quality.

  6. The influence of temperature on the distribution and intensity of the reaction product in rat muscle fibers obtained with the histochemical method for myosin ATPase

    DEFF Research Database (Denmark)

    Kirkeby, S; Tuxen, A

    1989-01-01

    The influence of temperature in the incubation medium on the localization and intensity of myosin ATPase was investigated in striated muscles from the rat using a conventional histochemical technique. It was found that the enzyme reaction was temperature-dependent since the activity in some fibers...... was raised and in others was depressed by alteration of the incubation temperature. There was no obvious correlation between the temperature sensitivity of ATPase in the muscle fibers and their activity for succinic dehydrogenase. It is proposed that the histochemical method for myosin ATPase can be used...

  7. Desensitization of the Mechanoreceptors in Müller's Muscle Reduces the Increased Reflex Contraction of the Orbicularis Oculi Slow-Twitch Fibers in Blepharospasm.

    Science.gov (United States)

    Matsuo, Kiyoshi; Ban, Ryokuya; Ban, Midori

    2014-01-01

    Although the mixed orbicularis oculi muscle lacks the muscle spindles required to induce reflex contraction of its slow-twitch fibers, the mechanoreceptors in Müller's muscle function as extrinsic mechanoreceptors to induce reflex contraction. We hypothesize that strong stretching of these mechanoreceptors increases reflex contraction of the orbicularis oculi slow-twitch muscle fibers, resulting in blepharospasm. We examined a 71-year-old man with right blepharospasm and bilateral aponeurosis-disinserted blepharoptosis to determine whether the patient's blepharospasm was worsened by increased trigeminal proprioceptive evocation via stretching of the mechanoreceptors in Müller's muscle owing to a 60° upward gaze and serrated eyelid closure, and whether local anesthesia of the mechanoreceptors via lidocaine administration to the upper fornix as well as surgical disinsertion of Müller's muscle from the tarsus and fixation of the disinserted aponeurosis to the tarsus decreased trigeminal proprioceptive evocation and improved patient's blepharospasm. Before pharmacological desensitization, 60° upward gaze and serrated eyelid closure exacerbated the patient's blepharospasm. In contrast, these maneuvers did not worsen his blepharospasm following lidocaine administration. One year after surgical desensitization, the blepharospasm had disappeared and a 60° upward gaze did not induce blepharospasm. Strong stretching of the mechanoreceptors in Müller's muscle appeared to increase reflex contraction of the orbicularis oculi slow-twitch muscle fibers, resulting in blepharospasm. In addition to botulinum neurotoxin injections into the involuntarily contracted orbicularis oculi muscle and myectomy, surgical desensitization of the mechanoreceptors in Müller's muscle may represent an additional procedure to reduce blepharospasm.

  8. Effects of testosterone supplementation on skeletal muscle fiber hypertrophy and satellite cells in community-dwelling older men.

    Science.gov (United States)

    Sinha-Hikim, Indrani; Cornford, Marcia; Gaytan, Hilda; Lee, Martin L; Bhasin, Shalender

    2006-08-01

    In this study, we determined the effects of graded doses of testosterone on muscle fiber cross-sectional area (CSA) and satellite cell number and replication in older men. Healthy men, 60-75 yr old, received a long-acting GnRH agonist to suppress endogenous testosterone production and 25, 50, 125, 300, or 600 mg testosterone enanthate im weekly for 20 wk. Immunohistochemistry, light and confocal microscopy, and electron microscopy were used to perform fiber typing and quantitate myonuclear and satellite cell number in vastus lateralis biopsies, obtained before and after 20 wk of treatment. Testosterone administration in older men was associated with dose-dependent increases in CSA of both types I and II fibers. Satellite cell number increased dose dependently at the three highest doses (3% at baseline vs. 6.2, 9.2, and 13.0% at 125, 300, and 600 mg doses, P hypertrophy in older men is associated with increased satellite cell replication and activation.

  9. Influence of intramuscular fiber orientation on the Achilles tendon curvature using three-dimensional finite element modeling of contracting skeletal muscle.

    Science.gov (United States)

    Kinugasa, Ryuta; Yamamura, Naoto; Sinha, Shantanu; Takagi, Shu

    2016-10-03

    Tendon curvature plays a key role in mechanical gain (amplifying the joint excursion relative to fiber length change) during joint motion, but the mechanism remains unresolved. A three-dimensional finite element (FE) model was used to investigate the influence of intramuscular fiber orientation upon the curvature pattern of the Achilles tendon during active muscular contraction. Two simulation models, with fiber pennation angles of θ = 25° and 47° were tested for the gastrocnemius and soleus muscles. A smaller pennation angle (25°) of the soleus muscle fibers was accompanied by a large change in curvature whereas a larger pennation angle (47°) of the soleus muscle was accompanied by small effects. These results suggest that the fiber pennation angle determines the curvature of the tendon, and the magnitude of the curvature varies along the length of the aponeurosis. Such FE modeling has the potential of determining changes in force output consequent to changes in intramuscular fiber orientation arising from resistance training or unloading, and provides mechanism for predicting the risk of Achilles tendon ruptures. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. The effect of gender on the characteristics of muscle fibers in pork

    Directory of Open Access Journals (Sweden)

    Monika OKROUHL

    2014-12-01

    Full Text Available The aim of this study was to evaluate the influence of gender on the proportional representation of different types of muscle fibres and their selected characteristics. The experiment was carried out with the use of 72 crossbred pigs of final TOPIGS hybrid combination with balanced gender ratio (24 boars/24 gilts/24 barrows at an average live weight of 22.5 kg. The average slaughter weight of the animals was 108.7 kg. In order to determine the quantitative (number and qualitative (area, diameter, length characteristics of the muscle fibre, samples were obtained from the loin carcass part, specifically the muscle musculus longissimus lumborum et thoracis (MLLT. These samples were used for the manufacture and evaluation of permanent histological slides. There were negative correlations found between the number of muscle fibres and their size. Gilts had the highest number of muscle fibres (208.55 per measured surface (1 mm2 and simultaneously the smallest diameter (66.31 m of muscle fibres in comparison with boars and barrows. Statistically significant (P<0.05 differences in the area and diameter of muscle fibres type IIA were detected between gilts and barrows.

  11. Nitric Oxide Regulates Skeletal Muscle Fatigue, Fiber Type, Microtubule Organization, and Mitochondrial ATP Synthesis Efficiency Through cGMP-Dependent Mechanisms.

    Science.gov (United States)

    Moon, Younghye; Balke, Jordan E; Madorma, Derik; Siegel, Michael P; Knowels, Gary; Brouckaert, Peter; Buys, Emmanuel S; Marcinek, David J; Percival, Justin M

    2017-06-10

    Skeletal muscle nitric oxide-cyclic guanosine monophosphate (NO-cGMP) pathways are impaired in Duchenne and Becker muscular dystrophy partly because of reduced nNOSμ and soluble guanylate cyclase (GC) activity. However, GC function and the consequences of reduced GC activity in skeletal muscle are unknown. In this study, we explore the functions of GC and NO-cGMP signaling in skeletal muscle. GC1, but not GC2, expression was higher in oxidative than glycolytic muscles. GC1 was found in a complex with nNOSμ and targeted to nNOS compartments at the Golgi complex and neuromuscular junction. Baseline GC activity and GC agonist responsiveness was reduced in the absence of nNOS. Structural analyses revealed aberrant microtubule directionality in GC1 -/- muscle. Functional analyses of GC1 -/- muscles revealed reduced fatigue resistance and postexercise force recovery that were not due to shifts in type IIA-IIX fiber balance. Force deficits in GC1 -/- muscles were also not driven by defects in resting mitochondrial adenosine triphosphate (ATP) synthesis. However, increasing muscle cGMP with sildenafil decreased ATP synthesis efficiency and capacity, without impacting mitochondrial content or ultrastructure. GC may represent a new target for alleviating muscle fatigue and that NO-cGMP signaling may play important roles in muscle structure, contractility, and bioenergetics. These findings suggest that GC activity is nNOS dependent and that muscle-specific control of GC expression and differential GC targeting may facilitate NO-cGMP signaling diversity. They suggest that nNOS regulates muscle fiber type, microtubule organization, fatigability, and postexercise force recovery partly through GC1 and suggest that NO-cGMP pathways may modulate mitochondrial ATP synthesis efficiency. Antioxid. Redox Signal. 26, 966-985.

  12. Cryopreservation with dimethyl sulfoxide prevents accurate analysis of skinned skeletal muscle fibers mitochondrial respiration.

    Science.gov (United States)

    Meyer, Alain; Charles, Anne-Laure; Zoll, Joffrey; Guillot, Max; Lejay, Anne; Singh, François; Schlagowski, Anna-Isabel; Isner-Horobeti, Marie-Eve; Pistea, Cristina; Charloux, Anne; Geny, Bernard

    2014-05-01

    Impact of cryopreservation protocols on skeletal muscle mitochondrial respiration remains controversial. We showed that oxygen consumption with main mitochondrial substrates in rat skeletal muscles was higher in fresh samples than in cryopreserved samples and that this difference was not fixed but grow significantly with respiration rates with wide fluctuations around the mean difference. Very close results were observed whatever the muscle type and the substrate used. Importantly, the deleterious effects of ischemia-reperfusion observed on fresh samples vanished when cryopreserved samples were studied. These data demonstrate that this technic should probably be performed only extemporaneously. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  13. Kinetics of contraction-induced GLUT4 translocation in skeletal muscle fibers from living mice

    DEFF Research Database (Denmark)

    Lauritzen, Hans Peter M. Mortensen; Galbo, Henrik; Toyoda, Taro

    2010-01-01

    Exercise is an important strategy for the treatment of type 2 diabetes. This is due in part to an increase in glucose transport that occurs in the working skeletal muscles. Glucose transport is regulated by GLUT4 translocation in muscle, but the molecular machinery mediating this process is poorly...... understood. The purpose of this study was to 1) use a novel imaging system to elucidate the kinetics of contraction-induced GLUT4 translocation in skeletal muscle and 2) determine the function of AMP-activated protein kinase alpha2 (AMPKalpha2) in this process....

  14. Muscle fiber conduction velocity and fractal dimension of EMG during fatiguing contraction of young and elderly active men.

    Science.gov (United States)

    Boccia, Gennaro; Dardanello, Davide; Beretta-Piccoli, Matteo; Cescon, Corrado; Coratella, Giuseppe; Rinaldo, Nicoletta; Barbero, Marco; Lanza, Massimo; Schena, Federico; Rainoldi, Alberto

    2016-01-01

    Over the past decade, linear and nonlinear surface electromyography (EMG) variables highlighting different components of fatigue have been developed. In this study, we tested fractal dimension (FD) and conduction velocity (CV) rate of changes as descriptors, respectively, of motor unit synchronization and peripheral manifestations of fatigue. Sixteen elderly (69  ±  4 years) and seventeen young (23  ±  2 years) physically active men (almost 3-5 h of physical activity per week) executed one knee extensor contraction at 70% of a maximal voluntary contraction for 30 s. Muscle fiber CV and FD were calculated from the multichannel surface EMG signal recorded from the vastus lateralis and medialis muscles. The main findings were that the two groups showed a similar rate of change of CV, whereas FD rate of change was higher in the young than in the elderly group. The trends were the same for both muscles. CV findings highlighted a non-different extent of peripheral manifestations of fatigue between groups. Nevertheless, FD rate of change was found to be steeper in the elderly than in the young, suggesting a greater increase in motor unit synchronization with ageing. These findings suggest that FD analysis could be used as a complementary variable providing further information on central mechanisms with respect to CV in fatiguing contractions.

  15. Adhesive proteins of stalked and acorn barnacles display homology with low sequence similarities.

    Directory of Open Access Journals (Sweden)

    Jaimie-Leigh Jonker

    Full Text Available Barnacle adhesion underwater is an important phenomenon to understand for the prevention of biofouling and potential biotechnological innovations, yet so far, identifying what makes barnacle glue proteins 'sticky' has proved elusive. Examination of a broad range of species within the barnacles may be instructive to identify conserved adhesive domains. We add to extensive information from the acorn barnacles (order Sessilia by providing the first protein analysis of a stalked barnacle adhesive, Lepas anatifera (order Lepadiformes. It was possible to separate the L. anatifera adhesive into at least 10 protein bands using SDS-PAGE. Intense bands were present at approximately 30, 70, 90 and 110 kilodaltons (kDa. Mass spectrometry for protein identification was followed by de novo sequencing which detected 52 peptides of 7-16 amino acids in length. None of the peptides matched published or unpublished transcriptome sequences, but some amino acid sequence similarity was apparent between L. anatifera and closely-related Dosima fascicularis. Antibodies against two acorn barnacle proteins (ab-cp-52k and ab-cp-68k showed cross-reactivity in the adhesive glands of L. anatifera. We also analysed the similarity of adhesive proteins across several barnacle taxa, including Pollicipes pollicipes (a stalked barnacle in the order Scalpelliformes. Sequence alignment of published expressed sequence tags clearly indicated that P. pollicipes possesses homologues for the 19 kDa and 100 kDa proteins in acorn barnacles. Homology aside, sequence similarity in amino acid and gene sequences tended to decline as taxonomic distance increased, with minimum similarities of 18-26%, depending on the gene. The results indicate that some adhesive proteins (e.g. 100 kDa are more conserved within barnacles than others (20 kDa.

  16. Adhesive Proteins of Stalked and Acorn Barnacles Display Homology with Low Sequence Similarities

    Science.gov (United States)

    Jonker, Jaimie-Leigh; Abram, Florence; Pires, Elisabete; Varela Coelho, Ana; Grunwald, Ingo; Power, Anne Marie

    2014-01-01

    Barnacle adhesion underwater is an important phenomenon to understand for the prevention of biofouling and potential biotechnological innovations, yet so far, identifying what makes barnacle glue proteins ‘sticky’ has proved elusive. Examination of a broad range of species within the barnacles may be instructive to identify conserved adhesive domains. We add to extensive information from the acorn barnacles (order Sessilia) by providing the first protein analysis of a stalked barnacle adhesive, Lepas anatifera (order Lepadiformes). It was possible to separate the L. anatifera adhesive into at least 10 protein bands using SDS-PAGE. Intense bands were present at approximately 30, 70, 90 and 110 kilodaltons (kDa). Mass spectrometry for protein identification was followed by de novo sequencing which detected 52 peptides of 7–16 amino acids in length. None of the peptides matched published or unpublished transcriptome sequences, but some amino acid sequence similarity was apparent between L. anatifera and closely-related Dosima fascicularis. Antibodies against two acorn barnacle proteins (ab-cp-52k and ab-cp-68k) showed cross-reactivity in the adhesive glands of L. anatifera. We also analysed the similarity of adhesive proteins across several barnacle taxa, including Pollicipes pollicipes (a stalked barnacle in the order Scalpelliformes). Sequence alignment of published expressed sequence tags clearly indicated that P. pollicipes possesses homologues for the 19 kDa and 100 kDa proteins in acorn barnacles. Homology aside, sequence similarity in amino acid and gene sequences tended to decline as taxonomic distance increased, with minimum similarities of 18–26%, depending on the gene. The results indicate that some adhesive proteins (e.g. 100 kDa) are more conserved within barnacles than others (20 kDa). PMID:25295513

  17. Free-range rearing of pigs during the winter: adaptations in muscle fiber characteristics and effects on adipose tissue composition and meat quality traits.

    Science.gov (United States)

    Bee, G; Guex, G; Herzog, W

    2004-04-01

    This research aimed to determine whether outdoor free-range rearing during the winter (average ambient temperature of 5 degrees C) vs. indoor housing (22 degrees C) affects meat quality, muscle metabolic traits, and muscle fiber characteristics. Forty Large White gilts and barrows were blocked by weight within each gender (20 per gender) and allotted randomly into two groups of pigs, with one reared indoors (IN) in individual pens (2.6 m2) and the other reared outdoors (OUT) from December to March in a 0.92-ha pasture. Both groups had free access to the same grower-finisher diet from 23 to 105 kg. At slaughter, adipose (backfat [BF] and omental fat [OF]) and muscle tissues (longissimus muscle [LM], rectus femoris [RF], and semitendinosus [ST]) were obtained from the right side of each carcass. Muscle fibers were stained and classified on the basis of stain reaction as slow-oxidative (SO), fast oxidative-glycolytic (FOG), and fast glycolytic (FG); fiber area and distribution were determined. Also assessed were carcass characteristics, initial and ultimate pH, L*a*b* values, drip loss percent, glycolytic potential (GP), and intramuscular lipid content, as well as the fatty acid profile of each muscle and adipose tissue. The OUT pigs had lower (P 0.63) affect the intramuscular lipid content of the ST, but intramuscular lipid content was lower (P meat quality traits.

  18. Enzymatically modified isoquercitrin supplementation intensifies plantaris muscle fiber hypertrophy in functionally overloaded mice

    OpenAIRE

    Kohara, Akiko; Machida, Masanao; Setoguchi, Yuko; Ito, Ryouichi; Sugitani, Masanori; Maruki-Uchida, Hiroko; Inagaki, Hiroyuki; Ito, Tatsuhiko; Omi, Naomi; Takemasa, Tohru

    2017-01-01

    Background Enzymatically modified isoquercitrin (EMIQ) is produced from rutin using enzymatic hydrolysis followed by treatment with glycosyltransferase in the presence of dextrin to add glucose residues. EMIQ is absorbed in the same way as quercetin, a powerful antioxidant reported to prevent disused muscle atrophy by targeting mitochondria and to have ergogenic effects. The present study investigated the effect of EMIQ on skeletal muscle hypertrophy induced by functional overload. Methods In...

  19. The relation between maximal voluntary force in m. palmaris longus and the temporal and spatial summation of muscle fiber recruitment in human subjects

    DEFF Research Database (Denmark)

    Claudel, Cécyl G.; Ahmed, Waqas; Elbrønd, Vibeke S.

    2018-01-01

    This study aimed at looking at the frequency (T-score) and the amplitude (S-score) of fiber use during contraction of a forearm muscle, m. palmaris longus, as measured by acoustic myography (AMG). An additional aim was to relate the T- and S-scores to the recorded force obtained from a hand...

  20. Protein Supplementation Augments Muscle Fiber Hypertrophy but Does Not Modulate Satellite Cell Content During Prolonged Resistance-Type Exercise Training in Frail Elderly

    NARCIS (Netherlands)

    Dirks, Marlou L.; Tieland, Michael; Verdijk, Lex B.; Losen, Mario; Nilwik, Rachel; Mensink, Marco; Groot, de Lisette C.P.G.M.; Loon, van Luc J.C.

    2017-01-01

    Objective: Protein supplementation increases gains in lean body mass following prolonged resistance-type exercise training in frail older adults. We assessed whether the greater increase in lean body mass can be attributed to muscle fiber type specific hypertrophy with concomitant changes in

  1. Rapid detection of parasite in muscle fibers of fishes using a portable microscope imaging technique (Conference Presentation)

    Science.gov (United States)

    Lee, Jayoung; Lee, Hoonsoo; Kim, Moon S.; Cho, Byoungkwan

    2017-05-01

    Fishes are a widely used food material in the world. Recently about 4% of the fishes are infected with Kudoa thyrsites in Asian ocean. Kudoa thyrsites is a parasite that is found within the muscle fibers of fishes. The infected fishes can be a reason of food poisoning, which should be sorted out before distribution and consumption. Although Kudoa thyrsites is visible to the naked eye, it could be easily overlooked due to the micro-scale size and similar color with fish tissue. In addition, the visual inspection is labor intensive works resulting in loss of money and time. In this study, a portable microscopic camera was utilized to obtain images of raw fish slices. The optimized image processing techniques with polarized transmittance images provided reliable performance. The result shows that the portable microscopic imaging method can be used to detect parasites rapidly and non-destructively, which could be an alternative to manual inspections.

  2. Effects of variation in porcine MYOD1 gene on muscle fiber characteristics, lean meat production, and meat quality traits.

    Science.gov (United States)

    Lee, E A; Kim, J M; Lim, K S; Ryu, Y C; Jeon, W M; Hong, K C

    2012-09-01

    Three single nucleotide polymorphisms (SNPs) in the porcine MYOD1 gene were used for association analysis and haplotype construction to evaluate the effects of their substitution. Four hundred and three pigs of Yorkshire and Berkshire breeds were used. The mRNA expression levels of MYOD1 were examined. The g.489C>T and g.1264C>A SNPs were significantly associated with several muscle fiber characteristics, the loin eye area, and lightness. Particularly, animals having hetero-genotypes of both sites showed good performance both in lean meat production and meat quality traits. The results of haplotype substitution were similar to the associations of individual SNPs. Moreover, the 2 SNPs had significant effects on mRNA expression. Therefore, the g.489C>T and g.1264C>A SNPs in MYOD1 may be meaningful DNA markers that can be used for improving important porcine economic traits. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. [Parameters of fibers cell respiration and desmin content in rat soleus muscle at early stages of gravitational unloading].

    Science.gov (United States)

    Mirzoev, T M; Biriukov, N S; Veselova, O M; Larina, I M; Shenkman, B S; Ogneva, I V

    2012-01-01

    The aim of the work was to study the parameters of fibers cell respiration and desmin content in Wistar rat soleus muscle after 1, 3, 7 and 14 days of gravitational unloading. Gravitational unloading was simulated by antiorthostatic hindlimb suspension. The parameters of cell respiration were determined using the polarography, and desmin content was assessed by means of Western blotting. The results showed that the intensity of cell respiration is reduced after three days of gravitational unloading, reaches a minimum level after seven days and slightly increases by the fourteenth day of hindlimb unloading, as well as the content of desmin, which, however, to the fourteenth day returns to the control level. Taking into account that mitochondrial function depends on the state of cytoskeleton the data allow us to assume that early reduction of the intensity of cell respiration under unloading could be caused by degradation of the protein desmin that determines intracellular localization of mitochondria.

  4. The impact of desiccation on the adhesion of barnacles attached to non-stick coatings.

    Science.gov (United States)

    Wiegemann, Maja; Watermann, Burkard

    2004-06-01

    Fouling-release coatings prevent fouling of ships' hulls through hydrodynamic forces generated as the ship moves through the water. The effectiveness of such coatings may be evaluated by measuring the adhesion strength of settled organisms, e.g. barnacles. The influence of desiccation of the barnacle adhesive on such measurements was investigated. Shear forces required to remove barnacles of the genus Balanus increased during the course of desiccation up to the point when the barnacles suddenly self-detached. The increase was thought to be due to the rising cohesive strength of the adhesive. Growing tensile forces within the weakly cross-linked adhesive, however, are suggested to have led to self-detachment. The shear forces required to remove barnacles of the genus Elminius were generally low and did not differ significantly during the course of desiccation. The different results may be attributed to specific base morphologies. It was concluded that measuring the adhesion strength of members of the Balanidae on non-stick surfaces in air could produce flawed results due to the influence of desiccation of the barnacle adhesive. The investigations have also provided new insights into the characteristics of barnacle adhesive.

  5. Slow recovery of the impaired fatigue resistance in postunloading mouse soleus muscle corresponding to decreased mitochondrial function and a compensatory increase in type I slow fibers

    Science.gov (United States)

    Feng, Han-Zhong; Chen, Xuequn; Malek, Moh H.

    2015-01-01

    Unloading or disuse rapidly results in skeletal muscle atrophy, switching to fast-type fibers, and decreased resistance to fatigue. The recovery process is of major importance in rehabilitation for various clinical conditions. Here we studied mouse soleus muscle during 60 days of reloading after 4 wk of hindlimb suspension. Unloading produced significant atrophy of soleus muscle with decreased contractile force and fatigue resistance, accompanied by switches of myosin isoforms from IIa to IIx and IIb and fast troponin T to more low-molecular-weight splice forms. The total mass, fiber size, and contractile force of soleus muscle recovered to control levels after 15 days of reloading. However, the fatigue resistance showed a trend of worsening during this period with significant infiltration of inflammatory cells at days 3 and 7, indicating reloading injuries that were accompanied by active regeneration with upregulations of filamin-C, αB-crystallin, and desmin. The fatigue resistance partially recovered after 30–60 days of reloading. The expression of peroxisome proliferator-activated receptor γ coactivator 1α and mitofusin-2 showed changes parallel to that of fatigue resistance after unloading and during reloading, suggesting a causal role of decreased mitochondrial function. Slow fiber contents in the soleus muscle were increased after 30–60 days of reloading to become significantly higher than the normal level, indicating a secondary adaption to compensate for the slow recovery of fatigue resistance. PMID:26447205

  6. Treadmill Slope Modulates Inflammation, Fiber Type Composition, Androgen, and Glucocorticoid Receptors in the Skeletal Muscle of Overtrained Mice

    Science.gov (United States)

    da Rocha, Alisson L.; Pereira, Bruno C.; Teixeira, Giovana R.; Pinto, Ana P.; Frantz, Fabiani G.; Elias, Lucila L. K.; Lira, Fábio S.; Pauli, José R.; Cintra, Dennys E.; Ropelle, Eduardo R.; de Moura, Leandro P.; Mekary, Rania A.; de Freitas, Ellen C.; da Silva, Adelino S. R.

    2017-01-01

    Overtraining (OT) may be defined as an imbalance between excessive training and adequate recovery period. Recently, a downhill running-based overtraining (OTR/down) protocol induced the nonfunctional overreaching state, which is defined as a performance decrement that may be associated with psychological and hormonal disruptions and promoted intramuscular and systemic inflammation. To discriminate the eccentric contraction effects on interleukin 1beta (IL-1β), IL-6, IL-10, IL-15, and SOCS-3, we compared the release of these cytokines in OTR/down with other two OT protocols with the same external load (i.e., the product between training intensity and volume), but performed in uphill (OTR/up) and without inclination (OTR). Also, we evaluated the effects of these OT models on the muscle morphology and fiber type composition, serum levels of fatigue markers and corticosterone, as well as androgen receptor (AR) and glucocorticoid receptor (GR) expressions. For extensor digitorum longus (EDL), OTR/down and OTR groups increased the cytokines and exhibited micro-injuries with polymorphonuclear infiltration. While OTR/down group increased the cytokines in soleus muscle, OTR/up group only increased IL-6. All OT groups presented micro-injuries with polymorphonuclear infiltration. In serum, while OTR/down and OTR/up protocols increased IL-1β, IL-6, and tumor necrosis factor alpha, OTR group increased IL-1β, IL-6, IL-15, and corticosterone. The type II fibers in EDL and soleus, total and phosphorylated AR levels in soleus, and total GR levels in EDL and soleus were differentially modulated by the OT protocols. In summary, the proinflammatory cytokines were more sensitive for OTR/down than for OTR/up and OTR. Also, the specific treadmill inclination of each OT model influenced most of the other evaluated parameters. PMID:29163473

  7. Treadmill Slope Modulates Inflammation, Fiber Type Composition, Androgen, and Glucocorticoid Receptors in the Skeletal Muscle of Overtrained Mice

    Directory of Open Access Journals (Sweden)

    Alisson L. da Rocha

    2017-10-01

    Full Text Available Overtraining (OT may be defined as an imbalance between excessive training and adequate recovery period. Recently, a downhill running-based overtraining (OTR/down protocol induced the nonfunctional overreaching state, which is defined as a performance decrement that may be associated with psychological and hormonal disruptions and promoted intramuscular and systemic inflammation. To discriminate the eccentric contraction effects on interleukin 1beta (IL-1β, IL-6, IL-10, IL-15, and SOCS-3, we compared the release of these cytokines in OTR/down with other two OT protocols with the same external load (i.e., the product between training intensity and volume, but performed in uphill (OTR/up and without inclination (OTR. Also, we evaluated the effects of these OT models on the muscle morphology and fiber type composition, serum levels of fatigue markers and corticosterone, as well as androgen receptor (AR and glucocorticoid receptor (GR expressions. For extensor digitorum longus (EDL, OTR/down and OTR groups increased the cytokines and exhibited micro-injuries with polymorphonuclear infiltration. While OTR/down group increased the cytokines in soleus muscle, OTR/up group only increased IL-6. All OT groups presented micro-injuries with polymorphonuclear infiltration. In serum, while OTR/down and OTR/up protocols increased IL-1β, IL-6, and tumor necrosis factor alpha, OTR group increased IL-1β, IL-6, IL-15, and corticosterone. The type II fibers in EDL and soleus, total and phosphorylated AR levels in soleus, and total GR levels in EDL and soleus were differentially modulated by the OT protocols. In summary, the proinflammatory cytokines were more sensitive for OTR/down than for OTR/up and OTR. Also, the specific treadmill inclination of each OT model influenced most of the other evaluated parameters.

  8. Cross-bridge blocker BTS permits direct measurement of SR Ca2+ pump ATP utilization in toadfish swimbladder muscle fibers.

    Science.gov (United States)

    Young, Iain S; Harwood, Claire L; Rome, Lawrence C

    2003-10-01

    Because the major processes involved in muscle contraction require rapid utilization of ATP, measurement of ATP utilization can provide important insights into the mechanisms of contraction. It is necessary, however, to differentiate between the contribution made by cross-bridges and that of the sarcoplasmic reticulum (SR) Ca2+ pumps. Specific and potent SR Ca2+ pump blockers have been used in skinned fibers to permit direct measurement of cross-bridge ATP utilization. Up to now, there was no analogous cross-bridge blocker. Recently, N-benzyl-p-toluene sulfonamide (BTS) was found to suppress force generation at micromolar concentrations. We tested whether BTS could be used to block cross-bridge ATP utilization, thereby permitting direct measurement of SR Ca2+ pump ATP utilization in saponin-skinned fibers. At 25 microM, BTS virtually eliminates force and cross-bridge ATP utilization (both BTS. At 25 microM, BTS had no effect on SR pump ATP utilization. Hence, we used BTS to make some of the first direct measurements of ATP utilization of intact SR over a physiological range of [Ca2+]at 15 degrees C. Curve fits to SR Ca2+ pump ATP utilization vs. pCa indicate that they have much lower Hill coefficients (1.49) than that describing cross-bridge force generation vs. pCa (approximately 5). Furthermore, we found that BTS also effectively eliminates force generation in bundles of intact swimbladder muscle, suggesting that it will be an important tool for studying integrated SR function during normal motor behavior.

  9. Effect of age on the occurrence of muscle fiber degeneration associated with myopathies in broiler chickens submitted to feed restriction.

    Science.gov (United States)

    Radaelli, G; Piccirillo, A; Birolo, M; Bertotto, D; Gratta, F; Ballarin, C; Vascellari, M; Xiccato, G; Trocino, A

    2017-02-01

    To evaluate muscle fiber degeneration (MFD) associated with white striping and wooden breast, pectoralis major of 192 broilers differing for genotype (standard vs. high breast yield), gender, and feeding regime (ad libitum vs. restricted rate 80% from 13 to 21 d of age) were sampled at 14, 21, 28, 35, and 46 d of age for histological analyses by hematoxylin and eosin (H&E) staining to evaluate tissue morphology, Masson's trichrome to identify collagen presence, and Oil red and Nile blue for lipid presence. Microvessels (diameter ≤15 μm), nuclei positive to anti-cleaved lamin A and monoclonal proliferating cell nuclear antigen (PCNA) antisera were counted to assess apoptotic and regenerative processes, respectively. Significant differences were found according to feeding system, age, and their interactions. The frequency of chickens with MFD was higher with ad libitum than restricted feeding (75.0% vs. 62.5%; P = 0.01) and increased with age (18.8%, 28.1%, 75.1%, 96.9%, and 96.9% at 14, 21, 28, 35, and 46 d). However, at 14 d a similar frequency (18.8%) was found in all broilers; at 21 d, MFD occurred more in broilers fed ad libitum than in those under restriction (50.0% vs. 6.3%; P < 0.01); at 28 d differences were reduced (87.5% vs. 62.5%; P  = 0.10) to disappear by 35 (100% and 93.8%) and 46 d (96.9% and 96.9%). The number of microvessels decreased with age (20.7 to 9.46; P < 0.001) and the number of nuclei positive to the anti-cleaved lamin A antibody increased. At histology, MFD at 46 d corresponded to loss of typical cross striations, massive necrotic process, degenerating fibers surrounded by inflammatory cells, scattered fibers in an abundant collagen-rich connective tissue, numerous adipose cells; necrotic fibers showed a high percentage of apoptotic nuclei, and regenerating fibers appeared positive to anti-PCNA antibody. In conclusion, MFD soon occurred after 2 wk of growth and increased dramatically within 28 d. Early feed restriction

  10. Effect of acute and chronic eccentric exercise on FOXO1 mRNA expression as fiber type transition factor in rat skeletal muscles.

    Science.gov (United States)

    Azad, Milad; Khaledi, Neda; Hedayati, Mehdi

    2016-06-15

    Skeletal muscle is a highly elastic tissue which can respond to various functional demands by altering fiber-type composition. Exercise affects muscle fiber phenotype. One of the transcription factors that induce fiber-type transition is forkhead box O1 (FOXO1). Since eccentric contraction considered an essential part of exercise, so we are interested to see the effects of eccentric exercise (acute/chronic) on FOXO1 as an important factor of fiber-type transition in rat skeletal muscles. Twenty-four Sprague-Dawley rats (190-235g) were divided to 3 groups of 8 rats: 1) chronic eccentric exercise (CEE), 2) acute eccentric exercise (AEE), and 3) control (C). The exercise groups underwent downhill running protocol. CEE was running on treadmill in 3 days of week for 9 weeks, that slope and duration gradually managed from -4° to -16° and 15 to 90 min, respectively. AEE group was running with 16 m/min on -16° slope for 3 consecutive days that included 18 sets of 5 min with rest interval of 2 min in between. Soleus and super vastus lateralis (SVL) muscles mRNA were analyzed by real-time RT-PCR. SVL FOXO1 mRNA levels increased by 3.92-fold in the AEE and decreased 0.56-fold in the CEE group and were not significant in soleus muscle. In soleus muscle, myosin heavy chain (MHC) IIa, IIx, and IIb decreased in the AEE group and MHC IIa and IIx decreased in the CEE group. In SVL muscle, MHC I, IIa, and IIx increased in the AEE group and MHC IIa and IIX increased in the CEE group. In summary, both acute and chronic eccentric exercise could lead to change in FOXO1 mRNA only in fast SVL muscle of rat and so could induce fiber-type transition in both muscles regardless of changes in expression of FOXO1. So, oxidative stress can play important role in change of FOXO1. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Contraction and AICAR Stimulate IL-6 Vesicle Depletion From Skeletal Muscle Fibers In Vivo

    DEFF Research Database (Denmark)

    Lauritzen, Hans P M M; Brandauer, Josef; Schjerling, Peter

    2013-01-01

    Recent studies suggest that interleukin 6 (IL-6) is released from contracting skeletal muscles; however, the cellular origin, secretion kinetics, and signaling mechanisms regulating IL-6 secretion are unknown. To address these questions, we developed imaging methodology to study IL-6 in fixed mou...

  12. Severe insulin-resistant diabetes mellitus in patients with congenital muscle fiber type disproportion myopathy

    DEFF Research Database (Denmark)

    Vestergaard, H; Klein, H H; Hansen, T

    1995-01-01

    severe insulin resistance of both liver and peripheral tissues. The impaired insulin-stimulated glucose disposal to peripheral tissues was primarily due to reduced nonoxidative glucose metabolism. These changes were paralleled by reduced basal values of muscle GS total activity, allosterical activation...

  13. Severe insulin-resistant diabetes mellitus in patients with congenital muscle fiber type disproportion myopathy

    DEFF Research Database (Denmark)

    Vestergaard, H; Klein, H H; Hansen, T

    1995-01-01

    . Insulin receptor function and glycogen synthase (GS) activity and expression were examined in biopsies of vastus lateralis muscle. Despite a 45-90-fold increase in both fasting and postprandial serum insulin levels, both CFTDM patients had diabetes mellitus. Clamp studies revealed that the oldest boy had...

  14. Structure of cortical cytoskeleton in fibers of mouse muscle cells after being exposed to a 30-day space flight on board the BION-M1 biosatellite.

    Science.gov (United States)

    Ogneva, I V; Maximova, M V; Larina, I M

    2014-05-15

    The aim of the work was to analyze changes in the organization of the cortical cytoskeleton in fibers of the mouse soleus muscle, tibialis anterior muscle and left ventricular cardiomyocytes after completion of a 30-day space flight on board the BION-M1 biosatellite (Russia, 2013). The transversal stiffness of the cortical cytoskeleton of the cardiomyocytes and fibers of the skeletal muscles did not differ significantly within the study groups compared with the vivarium control group. The content of beta- and gamma-actin in the membranous fraction of proteins in the left ventricular cardiomyocytes did not differ significantly within all study groups and correlated with the transversal stiffness. A similar situation was revealed in fibers of the soleus muscle and tibialis anterior muscle. At the same time, the content of beta-actin in the cytoplasmic fraction of proteins was found to be decreased in all types of studied tissues compared with the control levels in the postflight group, with lowered beta-actin gene expression rates in the postflight group. After completion of the space flight, the content of alpha-actinin-4 was found to be reduced in the membranous fraction of proteins from the mouse cardiomyocytes, while its content in the cytoplasmic fraction of proteins did not change significantly. Furthermore, gene expression rates of this protein were decreased at the time of dissection (it was started after 13 h after landing). At the same time, the content of alpha-actinin-1 decreased in the membranous fraction and increased in the cytoplasmic fraction of proteins from the soleus muscle fibers. Copyright © 2014 the American Physiological Society.

  15. FES Training in Aging: interim results show statistically significant improvements in mobility and muscle fiber size

    Directory of Open Access Journals (Sweden)

    Helmut Kern

    2012-03-01

    Full Text Available Aging is a multifactorial process that is characterized by decline in muscle mass and performance. Several factors, including reduced exercise, poor nutrition and modified hormonal metabolism, are responsible for changes in the rates of protein synthesis and degradation that drive skeletal muscle mass reduction with a consequent decline of force generation and mobility functional performances. Seniors with normal life style were enrolled: two groups in Vienna (n=32 and two groups in Bratislava: (n=19. All subjects were healthy and declared not to have any specific physical/disease problems. The two Vienna groups of seniors exercised for 10 weeks with two different types of training (leg press at the hospital or home-based functional electrical stimulation, h-b FES. Demografic data (age, height and weight were recorded before and after the training period and before and after the training period the patients were submitted to mobility functional analyses and muscle biopsies. The mobility functional analyses were: 1. gait speed (10m test fastest speed, in m/s; 2. time which the subject needed to rise from a chair for five times (5x Chair-Rise, in s; 3. Timed –Up-Go- Test, in s; 4. Stair-Test, in s; 5. isometric measurement of quadriceps force (Torque/kg, in Nm/kg; and 6. Dynamic Balance in mm. Preliminary analyses of muscle biopsies from quadriceps in some of the Vienna and Bratislava patients present morphometric results consistent with their functional behaviors. The statistically significant improvements in functional testings here reported demonstrates the effectiveness of h-b FES, and strongly support h-b FES, as a safe home-based method to improve contractility and performances of ageing muscles.

  16. Gene expression changes of single skeletal muscle fibers in response to modulation of the mitochondrial calcium uniporter (MCU

    Directory of Open Access Journals (Sweden)

    Francesco Chemello

    2015-09-01

    Full Text Available The mitochondrial calcium uniporter (MCU gene codifies for the inner mitochondrial membrane (IMM channel responsible for mitochondrial Ca2+ uptake. Cytosolic Ca2+ transients are involved in sarcomere contraction through cycles of release and storage in the sarcoplasmic reticulum. In addition cytosolic Ca2+ regulates various signaling cascades that eventually lead to gene expression reprogramming. Mitochondria are strategically placed in close contact with the ER/SR, thus cytosolic Ca2+ transients elicit large increases in the [Ca2+] of the mitochondrial matrix ([Ca2+]mt. Mitochondrial Ca2+ uptake regulates energy production and cell survival. In addition, we recently showed that MCU-dependent mitochondrial Ca2+ uptake controls skeletal muscle trophism. In the same report, we dissected the effects of MCU-dependent mitochondrial Ca2+ uptake on gene expression through microarray gene expression analysis upon modulation of MCU expression by in vivo AAV infection. Analyses were performed on single skeletal muscle fibers at two time points (7 and 14 days post-AAV injection. Raw and normalized data are available on the GEO database (http://www.ncbi.nlm.nih.gov/geo/ (GSE60931.

  17. Fast-twitch skeletal muscle fiber adaptation to SERCA1 deficiency in a Dutch Improved Red and White calf pseudomyotonia case.

    Science.gov (United States)

    Dorotea, Tiziano; Grünberg, Walter; Murgiano, Leonardo; Plattet, Philippe; Drögemüller, Cord; Mascarello, Francesco; Sacchetto, Roberta

    2015-11-01

    Missense mutations in ATP2A1 gene, encoding SERCA1 protein, cause a muscle disorder designed as congenital pseudomyotonia (PMT) in Chianina and Romagnola cattle or congenital muscular dystonia1 (CMD1) in Belgian Blue cattle. Although PMT is not life-threatening, CMD1 affected calves usually die within a few weeks of age as a result of respiratory complication. We have recently described a muscular disorder in a double muscle Dutch Improved Red and White cross-breed calf. Mutation analysis revealed an ATP2A1 mutation identical to that described in CMD1, even though clinical phenotype was quite similar to that of PMT. Here, we provide evidence for a deficiency of mutated SERCA1 in PMT affected muscles of Dutch Improved Red and White calf, but not of its mRNA. The reduced expression of SERCA1 is selective and not compensated by the SERCA2 isoform. By contrast, pathological muscles are characterized by a broad distribution of mitochondrial markers in all fiber types, not related to intrinsic features of double muscle phenotype and by an increased expression of sarcolemmal calcium extrusion pump. Calcium removal mechanisms, operating in muscle fibers as compensatory response aimed at lowering excessive cytoplasmic calcium concentration caused by SERCA1 deficiency, could explain the difference in severity of clinical signs. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Pre-power-stroke cross-bridges contribute to force transients during imposed shortening in isolated muscle fibers.

    Directory of Open Access Journals (Sweden)

    Fabio C Minozzo

    Full Text Available When skeletal muscles are activated and mechanically shortened, the force that is produced by the muscle fibers decreases in two phases, marked by two changes in slope (P₁ and P₂ that happen at specific lengths (L₁ and L₂. We tested the hypothesis that these force transients are determined by the amount of myosin cross-bridges attached to actin and by changes in cross-bridge strain due to a changing fraction of cross-bridges in the pre-power-stroke state. Three separate experiments were performed, using skinned muscle fibers that were isolated and subsequently (i activated at different Ca²⁺ concentrations (pCa²⁺ 4.5, 5.0, 5.5, 6.0 (n = 13, (ii activated in the presence of blebbistatin (n = 16, and (iii activated in the presence of blebbistatin at varying velocities (n = 5. In all experiments, a ramp shortening was imposed (amplitude 10%L₀, velocity 1 L₀•sarcomere length (SL•s⁻¹, from an initial SL of 2.5 µm (except by the third group, in which velocities ranged from 0.125 to 2.0 L₀•s⁻¹. The values of P₁, P₂, L₁, and L₂ did not change with Ca²⁺ concentrations. Blebbistatin decreased P₁, and it did not alter P₂, L₁, and L₂. We developed a mathematical cross-bridge model comprising a load-dependent power-stroke transition and a pre-power-stroke cross-bridge state. The P₁ and P₂ critical points as well as the critical lengths L₁ and L₂ were explained qualitatively by the model, and the effects of blebbistatin inhibition on P₁ were also predicted. Furthermore, the results of the model suggest that the mechanism by which blebbistatin inhibits force is by interfering with the closing of the myosin upper binding cleft, biasing cross-bridges into a pre-power-stroke state.

  19. Composição de fibras musculares esqueléticas de eqüinos jovens da raça Brasileiro de Hipismo Composition of skeletal muscle fibers of young Brasileiro de Hipismo horse breed

    Directory of Open Access Journals (Sweden)

    F.H.F. D’Angelis

    2006-08-01

    Full Text Available The aim of this study was to typify the skeletal striated fibers of the gluteus medius muscle of young Brasileiro de Hipismo (BH horses by means of histochemical analysis with m-ATPase and NADH-TR according to the sex and the biopsy depth. It was observed that the frequency (F;% and the relative cross sectional area (RCSA;% of the fibers type IIX were greater than the fibers type IIA, which F and RCSA were greater than the fibers type I. The comparison between sex and muscles depht, showed no significant difference in F and RCSA in the three types of fibers. The results of morphometry showed that the gluteus medius muscle has greater glycolitic metabolism and anaerobic capacity because of the presence of large proportion of type IIX fibers. This may be justified by the genetic influence of Thoroughbred in the formation of Brasileiro de Hipismo breed.

  20. Fiber type-specific muscle glycogen sparing due to carbohydrate intake before and during exercise

    OpenAIRE

    De Bock, Katrien; Derave, W; Ramaekers, M; Richter, E A; Hespel, Peter

    2007-01-01

    The effect of carbohydrate intake before and during exercise on muscle glycogen content was investigated. According to a randomized crossover study design, eight young healthy volunteers (n = 8) participated in two experimental sessions with an interval of 3 wk. In each session subjects performed 2 h of constant-load bicycle exercise ( approximately 75% maximal oxygen uptake). On one occasion (CHO), they received carbohydrates before ( approximately 150 g) and during (1 g.kg body weight(-1).h...

  1. Potassium-transporting proteins in skeletal muscle: cellular location and fiber-type differences

    DEFF Research Database (Denmark)

    Kristensen, Michael; Juel, Carsten

    2010-01-01

    , but is suggested primarily to participate in K+ release to the interstitium. Because there is restricted diffusion of K+ to the interstitium, K+ released to the T-tubules during AP propagation will be removed primarily by reuptake mediated by transport proteins located in the T-tubule membrane. The most important....... The relative content of the different K+-transporting proteins differs in oxidative and glycolytic muscles, and might explain the different [K+]e tolerance observed....

  2. In vivo and in situ synchrotron radiation-based μ-XRF reveals elemental distributions during the early attachment phase of barnacle larvae and juvenile barnacles.

    Science.gov (United States)

    Senkbeil, Tobias; Mohamed, Tawheed; Simon, Rolf; Batchelor, David; Di Fino, Alessio; Aldred, Nick; Clare, Anthony S; Rosenhahn, Axel

    2016-02-01

    Barnacles are able to establish stable surface contacts and adhere underwater. While the composition of adult barnacle cement has been intensively studied, far less is known about the composition of the cement of the settlement-stage cypris larva. The main challenge in studying the adhesives used by these larvae is the small quantity of material available for analysis, being on the order of nanograms. In this work, we applied, for the first time, synchrotron radiation-based μ-X-ray fluorescence analysis (SR-μ-XRF) for in vivo and in situ analysis of young barnacles and barnacle cyprids. To obtain biologically relevant information relating to the body tissues, adhesives, and shell of the organisms, an in situ sample environment was developed to allow direct microprobe investigation of hydrated specimens without pretreatment of the samples. In 8-day-old juvenile barnacles (Balanus improvisus), the junctions between the six plates forming the shell wall showed elevated concentrations of calcium, potassium, bromine, strontium, and manganese. Confocal measurements allowed elemental characterization of the adhesive interface of recently attached cyprids (Balanus amphitrite), and substantiated the accumulation of bromine both at the point of initial attachment as well as within the cyprid carapace. In situ measurements of the cyprid cement established the presence of bromine, chlorine, iodine, sulfur, copper, iron, zinc, selenium, and nickel for both species. The previously unrecognized presence of bromine, iron, and selenium in the cyprid permanent adhesive will hopefully inspire further biochemical investigations of the function of these substances.

  3. A non-cross-bridge, static tension is present in permeabilized skeletal muscle fibers after active force inhibition or actin extraction.

    Science.gov (United States)

    Cornachione, Anabelle S; Rassier, Dilson E

    2012-02-01

    When activated muscle fibers are stretched, there is a long-lasting increase in the force. This phenomenon, referred to as "residual force enhancement," has characteristics similar to those of the "static tension," a long-lasting increase in force observed when muscles are stretched in the presence of Ca(2+) but in the absence of myosin-actin interaction. Independent studies have suggested that these two phenomena have a common mechanism and are caused either by 1) a Ca(2+)-induced stiffening of titin or by 2) promoting titin binding to actin. In this study, we performed two sets of experiments in which activated fibers (pCa(2+) 4.5) treated with the myosin inhibitor blebbistatin were stretched from 2.7 to 2.8 μm at a speed of 40 L(o)/s, first, after partial extraction of TnC, which inhibits myosin-actin interactions, or, second, after treatment with gelsolin, which leads to the depletion of thin (actin) filaments. We observed that the static tension, directly related with the residual force enhancement, was not changed after treatments that inhibit myosin-actin interactions or that deplete fibers from troponin C and actin filaments. The results suggest that the residual force enhancement is caused by a stiffening of titin upon muscle activation but not with titin binding to actin. This finding indicates the existence of a Ca(2+)-regulated, titin-based stiffness in skeletal muscles.

  4. Differentiation of the intracellular structure of slow- versus fast-twitch muscle fibers through evaluation of the dielectric properties of tissue

    Science.gov (United States)

    Sanchez, B.; Li, J.; Bragos, R.; Rutkove, S. B.

    2014-05-01

    Slow-twitch (type 1) skeletal muscle fibers have markedly greater mitochondrial content than fast-twitch (type 2) fibers. Accordingly, we sought to determine whether the dielectric properties of these two fiber types differed, consistent with their distinct intracellular morphologies. The longitudinal and transverse dielectric spectrum of the ex vivo rat soleus (a predominantly type 1 muscle) and the superficial layers of rat gastrocnemius (predominantly type 2) (n = 15) were measured in the 1 kHz-10 MHz frequency range and modeled to a resistivity Cole-Cole function. Major differences were especially apparent in the dielectric spectrum in the 1 to 10 MHz range. Specifically, the gastrocnemius demonstrated a well-defined, higher center frequency than the soleus muscle, whereas the soleus muscle showed a greater difference in the modeled zero and infinite resistivities than the gastrocnemius. These findings are consistent with the fact that soleus tissue has larger and more numerous mitochondria than gastrocnemius. Evaluation of tissue at high frequency could provide a novel approach for assessing intracellular structure in health and disease.

  5. Differential effect of chronic undernutrition on the fiber type composition of fascicles in the extensor digitorum longus muscles of the rat.

    Science.gov (United States)

    Vázquez-Mendoza, Enrique; Rodríguez-Torres, Erika Elizabeth; López-García, Kenia; Hinojosa-Rodríguez, Cindy Xilonen; Jiménez-Estrada, Ismael

    2017-05-01

    Several studies have shown that chronic low food consumption alters the composition and metabolism of the extensor digitorum longus muscle (EDLm) fiber types. EDLm is constituted by four independent fascicles (F2-F5) of different sizes; their constitution and metabolism, however, as well as how chronic undernourishment affects these is virtually unknown. Thus, the aim of this study is to evaluate the relative fiber type composition and metabolism of each independent fascicle in the EDLm, using control and chronically undernourished young male rats by using the alkaline ATPase and NADH-TR histochemical techniques. Our results indicate that all control fascicles showed a higher percentage of intermediate fibers (P0.05), except for F3, in which oxidative fibers increased (P<0.05). After determining the possible predominant metabolism expressed in intermediate fibers, we propose that chronic undernutrition induces the transformation of fast-glycolytic to intermediate-oxidative/glycolytic fibers, mainly in F3 and F5. Our observations confirm that chronic undernourishment differentially affects the fiber types of each fascicle in the EDLm, which could alter their individual physiological contractile properties. Copyright © 2017 Elsevier GmbH. All rights reserved.

  6. Oceanic barnacles act as foundation species on plastic debris: implications for marine dispersal.

    Science.gov (United States)

    Gil, Michael A; Pfaller, Joseph B

    2016-01-27

    Plastic has emerged as an abundant, stable substratum for oceanic dispersal of organisms via rafting. However, the ecological mechanisms underlying community diversity on plastic debris remain poorly understood. On a cruise from California to Hawai'i, we surveyed plastic debris, some likely originating from the 2011 Tōhoku tsunami, to examine the relationship between rafting community diversity and both habitat area and stalked barnacle (Lepas spp.) abundance. For sessile taxa richness, we observed an interaction in which the positive effect of debris area weakened the negative effect of barnacle cover. In contrast, for mobile taxa richness, including cohabiting species from opposite sides of the Pacific Ocean, barnacle abundance had a positive effect that was strongest at smaller debris sizes. These findings suggest that barnacles, through interactions with habitat area, have trait-dependent effects on other species, serving as both foundation species and competitors, mediating the diversity and dispersal potential of marine organisms on plastic debris.

  7. Settlement and recruitment of the barnacle Balanus amphitrite from a tropical environment influenced by monsoons

    Digital Repository Service at National Institute of Oceanography (India)

    Gaonkar, C.A; Anil, A

    Studies on the settlement and the subsequent recruitment of intertidal organisms are crucial steps in understanding their population structure in a particular bioregion. However, studying the recruitment of intertidal organisms such as barnacles...

  8. Antifouling properties of tough gels against barnacles in a long-term marine environment experiment

    OpenAIRE

    Murosaki, T.; Noguchi, T.; Hashimoto, K.; Kakugo, A.; Kurokawa, T.; Saito, J.; Chen, Y. M.; Furukawa, H.; Gong, J. P.

    2009-01-01

    In marine environment, the antifouling properties against marine sessile organisms (algae, sea squirts, barnacles, etc.) were tested on various kinds of hydrogels in a long term. The results demonstrate that most hydrogels can ensure at least 2 months in marine environment. In particular, mechanically tough PAMPS/PAAm DN and PVA gels exhibited amazing antifouling activity against marine sessile organisms, especially barnacles as long as 330 days. The antifouling ability of hydrogels to barnac...

  9. Role of conspecific cues and sugars in the settlement of cyprids of the barnacle, Balanus amphitrite

    Digital Repository Service at National Institute of Oceanography (India)

    Khandeparker, L; Anil, A.C.

    inoculated with these extracts at a protein concentration of 50mgmL C01 . After 3h, the multiwells were washed thrice with autoclaved, filtered seawater. The adsorption of glycoprotein was confirmed under the micro- scope after staining the washed dishes... and sugars in the settlement of cyprids of the barnacle, Balanus amphitrite L. Khandeparker & A. C. Anil National Institute of Oceanography, Council of Scientific and Industrial Research, Dona Paula, Goa, India Keywords arthropodin; sugars; barnacle; Balanus...

  10. The reproducibility of different metabolic markers for muscle fiber type distributions investigated by functional {sup 31}P-MRS during dynamic exercise

    Energy Technology Data Exchange (ETDEWEB)

    Rzanny, Reinhard; Hiepe, Patrick; Gussew, Alexander; Reichenbach, Juergen R. [Univ. Hospital Jena (Germany). Medical Physics Group, Inst. of Diagnostics and Interventional Radiology; Stutzig, Norman [Univ. of Stuttgart (Germany). Exercise Science, Inst. of Sport and Movement Science; Thorhauer, Hans-Alexander [Friedrich-Schiller-Univ. Jena (Germany). Exercise Science, Inst. of Sports Science

    2016-07-01

    The objective of the study was to investigate the reproducibility of exercise induced pH-heterogeneity by splitting of the inorganic phosphate (Pi) signal in the corresponding {sup 31}P-MRS spectra and to compare results of this approach with other fiber-type related markers, like phosphocreatine/adenosine triphosphate (PCr/ATP) ratio, and PCr-recovery parameters. Subjects (N = 3) with different sportive background were tested in 10 test sessions separated by at least 3 days. A MR-compatible pedal ergometer was used to perform the exercise and to induce a pH-based splitting of the Pi-signal in {sup 31}P-MR spectra of the medial gastrocnemius muscle. The PCr recovery was analyzed using a non-negative least square algorithm (NNLS) and multi-exponential regression analysis to estimate the number of non-exponential components as well as their amplitude and time constant. The reproducibility of the estimated metabolic marker and the resulting fiber-type distributions between the 10 test sessions were compared. The reproducibility (standard deviation between measurements) based on (1) Pi components varied from 2% to 4%, (2) PCr recovery time components varied from 10% to 12% and (3) phosphate concentrations at rest varied from 8% to 11% between test sessions. Due to the sportive activity differences between the 3 subjects were expected in view of fiber type distribution. All estimated markers indicate the highest type I percentage for volunteer 3 medium for volunteer 2 and the lowest for volunteer 1. The relative high reproducibility of pH dependent Pi components during exercise indicates a high potential of this method to estimate muscle fiber-type distributions in vivo. To make this method usable not only to detect differences in muscle fiber distributions but also to determine individual fiber-type volume contents it is therefore recommended to validate this marker by histological methods and to reveal the effects of muscle fiber recruitments and fiber-type specific

  11. The reproducibility of different metabolic markers for muscle fiber type distributions investigated by functional 31P-MRS during dynamic exercise

    International Nuclear Information System (INIS)

    Rzanny, Reinhard; Hiepe, Patrick; Gussew, Alexander; Reichenbach, Juergen R.; Stutzig, Norman; Thorhauer, Hans-Alexander

    2016-01-01

    The objective of the study was to investigate the reproducibility of exercise induced pH-heterogeneity by splitting of the inorganic phosphate (Pi) signal in the corresponding 31 P-MRS spectra and to compare results of this approach with other fiber-type related markers, like phosphocreatine/adenosine triphosphate (PCr/ATP) ratio, and PCr-recovery parameters. Subjects (N = 3) with different sportive background were tested in 10 test sessions separated by at least 3 days. A MR-compatible pedal ergometer was used to perform the exercise and to induce a pH-based splitting of the Pi-signal in 31 P-MR spectra of the medial gastrocnemius muscle. The PCr recovery was analyzed using a non-negative least square algorithm (NNLS) and multi-exponential regression analysis to estimate the number of non-exponential components as well as their amplitude and time constant. The reproducibility of the estimated metabolic marker and the resulting fiber-type distributions between the 10 test sessions were compared. The reproducibility (standard deviation between measurements) based on (1) Pi components varied from 2% to 4%, (2) PCr recovery time components varied from 10% to 12% and (3) phosphate concentrations at rest varied from 8% to 11% between test sessions. Due to the sportive activity differences between the 3 subjects were expected in view of fiber type distribution. All estimated markers indicate the highest type I percentage for volunteer 3 medium for volunteer 2 and the lowest for volunteer 1. The relative high reproducibility of pH dependent Pi components during exercise indicates a high potential of this method to estimate muscle fiber-type distributions in vivo. To make this method usable not only to detect differences in muscle fiber distributions but also to determine individual fiber-type volume contents it is therefore recommended to validate this marker by histological methods and to reveal the effects of muscle fiber recruitments and fiber-type specific Pi

  12. Individual, age and sex differences in fiber type composition of slow and fast muscles of adult Lewis rats: comparison with other rat strains

    Czech Academy of Sciences Publication Activity Database

    Novák, Petr; Zachařová, Gisela; Soukup, Tomáš

    2010-01-01

    Roč. 59, č. 5 (2010), s. 783-801 ISSN 0862-8408 R&D Projects: GA MŠk(CZ) LC554; GA ČR(CZ) GA304/08/0256; GA ČR GA305/09/1228 Grant - others:EC(XE) LSH-CT-2001-511978 Institutional research plan: CEZ:AV0Z50110509 Keywords : mATPase and muscle fiber types * fiber type composition * inter-strain, individual, age and sex differences Subject RIV: ED - Physiology Impact factor: 1.646, year: 2010

  13. Species-specific detection and quantification of common barnacle larvae from the Japanese coast using quantitative real-time PCR.

    Science.gov (United States)

    Endo, Noriyuki; Sato, Kana; Matsumura, Kiyotaka; Yoshimura, Erina; Odaka, Yukiko; Nogata, Yasuyuki

    2010-11-01

    Species-specific detection and quantification methods for barnacle larvae using quantitative real-time polymerase chain reaction (qPCR) were developed. Species-specific primers for qPCR were designed for 13 barnacle species in the mitochondrial 12S ribosomal RNA gene region. Primer specificity was examined by PCR using template DNA extracted from each of the 13 barnacle species, other unidentified barnacle species, and field collected zooplankton samples. The resulting PCR products comprised single bands following agarose gel electrophoresis when the templates corresponded to primers. The amplifications were highly species-specific even for the field plankton samples. The field plankton samples were subjected to qPCR assay. The calculated DNA contents for each barnacle species were closely correlated with the number of larvae measured by microscopic examination. The method could be applied to quantify barnacle larvae in natural plankton samples.

  14. L-arginine supplementation protects exercise performance and structural integrity of muscle fibers after a single bout of eccentric exercise in rats.

    Directory of Open Access Journals (Sweden)

    Yulia N Lomonosova

    Full Text Available Eccentric exercise is known to disrupt sarcolemmal integrity and induce damage of skeletal muscle fibers. We hypothesized that L-arginine (L-Arg; nitric oxide synthase (NOS substrate supplementation prior to a single bout of eccentric exercise would diminish exercise-induced damage. In addition, we used N-nitro-L-arginine methyl ester hydrochloride (L-NAME; NOS inhibitor to clarify the role of native NOS activity in the development of exercise-induced muscle damage. Rats were divided into four groups: non-treated control (C, downhill running with (RA or without (R L-Arg supplementation and downhill running with L-NAME supplementation (RN. Twenty four hours following eccentric exercise seven rats in each group were sacrificed and soleus muscles were dissected and frozen for further analysis. The remaining seven rats in each group were subjected to the exercise performance test. Our experiments showed that L-Arg supplementation prior to a single bout of eccentric exercise improved subsequent exercise performance capacity tests in RA rats when compared with R, RN and C rats by 37%, 27% and 13%, respectively. This outcome is mediated by L-Arg protection against post-exercise damage of sarcolemma (2.26- and 0.87-fold less than R and RN groups, respectively, reduced numbers of damaged muscle fibers indicated by the reduced loss of desmin content in the muscle (15% and 25% less than R and RN groups, respectively, and diminished µ-calpain mRNA up-regulation (42% and 30% less than R and RN groups, respectively. In conclusion, our study indicates that L-Arg supplementation prior to a single bout of eccentric exercise alleviates muscle fiber damage and preserves exercise performance capacity.

  15. L-arginine supplementation protects exercise performance and structural integrity of muscle fibers after a single bout of eccentric exercise in rats.

    Science.gov (United States)

    Lomonosova, Yulia N; Shenkman, Boris S; Kalamkarov, Grigorii R; Kostrominova, Tatiana Y; Nemirovskaya, Tatyana L

    2014-01-01

    Eccentric exercise is known to disrupt sarcolemmal integrity and induce damage of skeletal muscle fibers. We hypothesized that L-arginine (L-Arg; nitric oxide synthase (NOS) substrate) supplementation prior to a single bout of eccentric exercise would diminish exercise-induced damage. In addition, we used N-nitro-L-arginine methyl ester hydrochloride (L-NAME; NOS inhibitor) to clarify the role of native NOS activity in the development of exercise-induced muscle damage. Rats were divided into four groups: non-treated control (C), downhill running with (RA) or without (R) L-Arg supplementation and downhill running with L-NAME supplementation (RN). Twenty four hours following eccentric exercise seven rats in each group were sacrificed and soleus muscles were dissected and frozen for further analysis. The remaining seven rats in each group were subjected to the exercise performance test. Our experiments showed that L-Arg supplementation prior to a single bout of eccentric exercise improved subsequent exercise performance capacity tests in RA rats when compared with R, RN and C rats by 37%, 27% and 13%, respectively. This outcome is mediated by L-Arg protection against post-exercise damage of sarcolemma (2.26- and 0.87-fold less than R and RN groups, respectively), reduced numbers of damaged muscle fibers indicated by the reduced loss of desmin content in the muscle (15% and 25% less than R and RN groups, respectively), and diminished µ-calpain mRNA up-regulation (42% and 30% less than R and RN groups, respectively). In conclusion, our study indicates that L-Arg supplementation prior to a single bout of eccentric exercise alleviates muscle fiber damage and preserves exercise performance capacity.

  16. Impact of maximal strength training on work efficiency and muscle fiber type in the elderly: Implications for physical function and fall prevention.

    Science.gov (United States)

    Wang, Eivind; Nyberg, Stian Kwak; Hoff, Jan; Zhao, Jia; Leivseth, Gunnar; Tørhaug, Tom; Husby, Otto Schnell; Helgerud, Jan; Richardson, Russell S

    2017-05-01

    Although aging is typically associated with a decreased efficiency of locomotion, somewhat surprisingly, there is also a reduction in the proportion of less efficient fast-twitch Type II skeletal muscle fibers and subsequently a greater propensity for falls. Maximal strength training (MST), with an emphasis on velocity in the concentric phase, improves maximal strength, the rate of force development (RFD), and work efficiency, but the impact on muscle morphology in the elderly is unknown. Therefore we evaluated force production, walking work efficiency, and muscle morphology in 11 old (72±3years) subjects before and after MST of the legs. Additionally, for reference, the MST-induced morphometric changes were compared with 7 old (74±6years) subjects who performed conventional strength training (CST), with focus on hypertrophy, as well as 13 young (24±2years) controls. As expected, MST in the old improved maximal strength (68%), RFD (48%), and work efficiency (12%), restoring each to a level similar to the young. However, of importance, these MST-induced functional changes were accompanied by a significant increase in the size (66%) and shift toward a larger percentage (56%) of Type II skeletal muscle fibers, mirroring the adaptations in the hypertrophy trained old subjects, with muscle composition now being similar to the young. In conclusion, MST can increase both work efficiency and Type II skeletal muscle fiber size and percentage in the elderly, supporting the potential role of MST as a countermeasure to maintain both physical function and fall prevention in this population. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Increased algal fouling on mussels with barnacle epibionts: a fouling cascade

    Science.gov (United States)

    Gutiérrez, Jorge L.; Palomo, M. Gabriela

    2016-06-01

    If the external surfaces of epibionts are more suitable to other fouling species than those of their basibionts, a 'fouling cascade' might occur where epibionts facilitate secondary colonization by other epibionts. Here we evaluate whether the presence of epibiotic barnalces (Balanus glandula) influences the probability of mussel (Brachidontes rodriguezii) fouling by ephemeral red algae (Porphyra sp.) in a Southwestern Atlantic rocky shore. Mussels with barnacle epibionts showed a higher prevalence of Porphyra sp. fouling (32-40% depending on sampling date) than mussels without them (3-7%). Two lines of evidence indicate that barnacles facilitate Porphyra sp. fouling. First, most Porphyra sp. thalli in mussels with barnacle epibionts were attached to barnacle shells (75-92% of cases). Secondly, Porphyra sp. associated with mussels with barnacle epibionts in a proportion that significantly exceeded that expected under random co-occurrence. These results suggest the occurrence of a fouling cascade where barnacle epibiosis on mussels facilitates subsequent algal fouling. Recognizing the occurrence of such fouling cascades is important because they might explain the non-random aggregation of multiple epibiotic species onto a proportionally few individuals of the host species.

  18. 'Flying barnacles': implications for the spread of non-indigenous species.

    Science.gov (United States)

    Tøttrup, Anders P; Chan, Benny K K; Koskinen, Hannu; Høeg, Jens T

    2010-07-01

    The presence of adult barnacles of Fistulobalanus pallidus (Darwin) and Fistulobalanus albicostatus (Pilsbry) attached to field-readable plastic leg rings on the Lesser Black-backed Gull Larus fuscus in Northern Europe is reported. L. fuscus is a long-distance palaearctic migrant, breeding in temperate areas spreading widely over inland and marine habitats outside the breeding season. The species is known to perform long-distance migration to Africa and the Middle East. Combining present knowledge on the birds' migratory pattern and the home range of the barnacle species, it is concluded that the cypris larvae of F. pallidus must have settled in African waters, whereas the area where F. albicostatus settled on the bird leg rings is less certain. The barnacles were of adult size and must thus have been attached for a period of no less than 2 months. More than 30 individual barnacles could occur together on a single field-readable plastic leg ring. The barnacles could therefore, if ported alive to a new area, reproduce successfully and thus either introduce the species or genetically affect other native populations. This may pose a new and wholly unexpected transportation pathway for barnacles as invasive species.

  19. Larval vision contributes to gregarious settlement in barnacles: adult red fluorescence as a possible visual signal

    KAUST Repository

    Matsumura, K.

    2014-02-26

    Gregarious settlement, an essential behavior for many barnacle species that can only reproduce by mating with a nearby barnacle, has long been thought to rely on larval ability to recognize chemical signals from conspecifics during settlement. However, the cyprid, the settlement stage larva in barnacles, has one pair of compound eyes that appear only at the late nauplius VI and cyprid stages, but the function(s) of these eyes remains unknown. Here we show that cyprids of the intertidal barnacle Balanus (=Amphibalanus) amphitrite can locate adult barnacles even in the absence of chemical cues, and prefer to settle around them probably via larval sense of vision. We also show that the cyprids can discriminate color and preferred to settle on red surfaces. Moreover, we found that shells of adult B. amphitrite emit red auto-fluorescence and the adult extracts with the fluorescence as a visual signal attracted cyprid larvae to settle around it. We propose that the perception of specific visual signals can be involved in behavior of zooplankton including marine invertebrate larvae, and that barnacle auto-fluorescence may be a specific signal involved in gregarious larval settlement.

  20. Worldwide genetic differentiation in the common fouling barnacle, Amphibalanus amphitrite

    KAUST Repository

    Chen, Hsi-Nien

    2014-10-21

    © 2014, © 2014 Taylor & Francis. Amphibalanus amphitrite is a common fouling barnacle distributed globally in tropical and subtropical waters. In the present study, the genetic (mitochondrial cytochrome oxidase subunit I) and morphological differentiation in A. amphitrite from 25 localities around the world were investigated. The results revealed three clades within A. amphitrite with a genetic divergence of ~ 4% among clades, whereas there were no diagnostic morphological differences among clades. Clade 1 is widely distributed in both temperate and tropical waters, whereas Clade 3 is currently restricted to the tropical region. The deep divergence among clades suggests historical isolation within A. amphitrite; thus, the present geographical overlaps are possibly a result of the combined effects of rising sea level and human-mediated dispersals. This study highlights the genetic differentiation that exists in a common, widely distributed fouling organism with great dispersal potential; future antifouling research should take into account the choice of lineages.

  1. Acute effects of taurine on sarcoplasmic reticulum Ca2+ accumulation and contractility in human type I and type II skeletal muscle fibers.

    Science.gov (United States)

    Dutka, T L; Lamboley, C R; Murphy, R M; Lamb, G D

    2014-10-01

    Taurine occurs in high concentrations in muscle and is implicated in numerous physiological processes, yet its effects on many aspects of contractility remain unclear. Using mechanically skinned segments of human vastus lateralis muscle fibers, we characterized the effects of taurine on sarcoplasmic reticulum (SR) Ca2+ accumulation and contractile apparatus properties in type I and type II fibers. Prolonged myoplasmic exposure (>10 min) to taurine substantially increased the rate of accumulation of Ca2+ by the SR in both fiber types, with no change in the maximum amount accumulated; no such effect was found with carnosine. SR Ca2+ accumulation was similar with 10 or 20 mM taurine, but was significantly slower at 5 mM taurine. Cytoplasmic taurine (20 mM) had no detectable effects on the responsiveness of the Ca2+ release channels in either fiber type. Taurine caused a small increase in Ca2+ sensitivity of the contractile apparatus in type I fibers, but type II fibers were unaffected; maximum Ca(2+)-activated force was unchanged in both cases. The effects of taurine on SR Ca2+ accumulation (1) only became apparent after prolonged cytoplasmic exposure, and (2) persisted for some minutes after complete removal of taurine from the cytoplasm, consistent with the hypothesis that the effects were due to an action of taurine from inside the SR. In summary, taurine potentiates the rate of SR Ca2+ uptake in both type I and type II human fibers, possibly via an action from within the SR lumen, with the degree of potentiation being significantly reduced at low physiological taurine levels. Copyright © 2014 the American Physiological Society.

  2. The meat quality, muscle fiber characteristics and fatty acid profile in Jinjiang and F1 Simmental×Jinjiang yellow cattle

    Directory of Open Access Journals (Sweden)

    Yue Zheng

    2018-02-01

    Full Text Available Objective This study compared the meat quality, muscle fiber characteristics, and fatty acids between Jinjiang yellow cattle (JJ and F1 Simmental×Jinjiang yellow cattle (SJ which were offered the same diet. Methods Six JJ and six SJ individuals were reared and fattened from 10 to 26 months of age. After feeding, the highrib (HR, ribeye (RB, and tenderloin (TL samples were taken from the carcass for meat quality evaluations. Results The results showed that growth performance of SJ was higher than that of JJ (higher live weight and average daily gain, and the hot carcass weight of SJ was higher than that of JJ (p<0.05. pH of JJ was higher than that of SJ in TL (p<0.05; the color of a* of SJ was higher than that of JJ in TL and RB (p<0.05; the cooking loss of SJ was significantly lower than that of JJ in TL and RB (p<0.05; the shear force value was significantly lower in SJ compared to JJ (p<0.05; the muscle fiber diameter was higher and the fiber density was lower in SJ compared to JJ in HR and TL (p<0.05; compared to SJ, the muscles of JJ had higher saturated fatty acid (SFA composition; the sum of monounsaturated fatty acid and polyunsaturated fatty acid (PUFA were lower in the muscle of JJ; the mRNA expressions of myosin heavy chain-I (MyHC-I and MyHC-IIa were higher in SJ compared to JJ in muscle of HR and RB; the mRNA expressions of MyHC-IIx and MyHC-IIb were lower in SJ compared to JJ in HR and RB (p<0.05. Conclusion Meat quality and fatty acid profile differed between SJ and JJ; the muscle of SJ had higher a* and SFA; SJ had lower cooking loss, shear force and PUFA compared to the muscle of JJ. In addition, the type and development characteristics of the muscle fiber had some difference between SJ and JJ; these might be factors which caused the differences in meat quality and fatty acid profile between SJ and JJ.

  3. Modulation of cross-bridge affinity for MgGTP by Ca2+ in skinned fibers of rabbit psoas muscle.

    Science.gov (United States)

    Frisbie, S M; Chalovich, J M; Brenner, B; Yu, L C

    1997-05-01

    Previously we reported that saturation of cross-bridges with MgATP gamma S in skinned muscle fibers was calcium sensitive. In the present study we investigate whether this observation can be generalized to other nucleotides by studying saturation of cross-bridges with MgGTP. In solution, myosin-subfragment 1 (S1) in the presence of 10 mM MgGTP was found to bind to actin with low affinity, similar to that in the presence of MgATP and MgATP gamma S. In EGTA buffer, the equatorial x-ray diffraction intensity ratio I11/I10 recorded in single skinned fibers decreased upon increasing MgGTP concentration from 0 to 10 mM (1 degree C and 170 mM ionic strength). The I11/I10 ratio leveled off at 10 mM MgGTP, indicating full saturation of cross-bridges with the nucleotide. Under these conditions, the value of I11/I10 is indistinguishable from that obtained in the presence of saturating [MgATP]. In CaEGTA buffer, however, the decrease in I11/I10 occurs over a wider range of concentrations, and there is no indication of I11/I10 leveling off at 10 mM MgGTP, suggesting that full saturation is not reached. The Ca2+ dependence of GTP binding appears to be a direct consequence of the differences in the affinities of the strongly bound cross-bridges to actin versus weakly bound cross-bridges to actin. A biochemical scheme that could qualitatively explain the titration behavior of ATP gamma S and GTP is presented.

  4. Muscle-specific SIRT1 gain-of-function increases slow-twitch fibers and ameliorates pathophysiology in a mouse model of duchenne muscular dystrophy.

    Science.gov (United States)

    Chalkiadaki, Angeliki; Igarashi, Masaki; Nasamu, Armiyaw Sebastian; Knezevic, Jovana; Guarente, Leonard

    2014-07-01

    SIRT1 is a metabolic sensor and regulator in various mammalian tissues and functions to counteract metabolic and age-related diseases. Here we generated and analyzed mice that express SIRT1 at high levels specifically in skeletal muscle. We show that SIRT1 transgenic muscle exhibits a fiber shift from fast-to-slow twitch, increased levels of PGC-1α, markers of oxidative metabolism and mitochondrial biogenesis, and decreased expression of the atrophy gene program. To examine whether increased activity of SIRT1 protects from muscular dystrophy, a muscle degenerative disease, we crossed SIRT1 muscle transgenic mice to mdx mice, a genetic model of Duchenne muscular dystrophy. SIRT1 overexpression in muscle reverses the phenotype of mdx mice, as determined by histology, creatine kinase release into the blood, and endurance in treadmill exercise. In addition, SIRT1 overexpression also results in increased levels of utrophin, a functional analogue of dystrophin, as well as increased expression of PGC-1α targets and neuromuscular junction genes. Based on these findings, we suggest that pharmacological interventions that activate SIRT1 in skeletal muscle might offer a new approach for treating muscle diseases.

  5. Muscle-specific SIRT1 gain-of-function increases slow-twitch fibers and ameliorates pathophysiology in a mouse model of duchenne muscular dystrophy.

    Directory of Open Access Journals (Sweden)

    Angeliki Chalkiadaki

    2014-07-01

    Full Text Available SIRT1 is a metabolic sensor and regulator in various mammalian tissues and functions to counteract metabolic and age-related diseases. Here we generated and analyzed mice that express SIRT1 at high levels specifically in skeletal muscle. We show that SIRT1 transgenic muscle exhibits a fiber shift from fast-to-slow twitch, increased levels of PGC-1α, markers of oxidative metabolism and mitochondrial biogenesis, and decreased expression of the atrophy gene program. To examine whether increased activity of SIRT1 protects from muscular dystrophy, a muscle degenerative disease, we crossed SIRT1 muscle transgenic mice to mdx mice, a genetic model of Duchenne muscular dystrophy. SIRT1 overexpression in muscle reverses the phenotype of mdx mice, as determined by histology, creatine kinase release into the blood, and endurance in treadmill exercise. In addition, SIRT1 overexpression also results in increased levels of utrophin, a functional analogue of dystrophin, as well as increased expression of PGC-1α targets and neuromuscular junction genes. Based on these findings, we suggest that pharmacological interventions that activate SIRT1 in skeletal muscle might offer a new approach for treating muscle diseases.

  6. Voltage-dependent antagonist/agonist actions of taurine on Ca(2+)-activated potassium channels of rat skeletal muscle fibers.

    Science.gov (United States)

    Tricarico, D; Barbieri, M; Conte Camerino, D

    2001-09-01

    Emerging evidence supports the idea that taurine exerts some of its actions through inhibition of inward rectifier K(+) channels, ATP-sensitive K(+) channels, and voltage-dependent K(+) channels. However, to date not much is known about the effects of this sulfonic amino acid on Ca(2+)-activated K(+) (K(Ca(2+))) channels, which are widely expressed in various tissues, including skeletal muscle. In the present work, the effects of taurine on K(Ca(2+)) channels of rat skeletal muscle fibers were investigated using the patch-clamp technique. The application of the amino acid to the internal side of the excised macropatches induced a dose-dependent decrease in the outward K(Ca(2+)) currents recorded at positive membrane potentials in the presence of 8 to 16 microM concentrations of free Ca(2+) ions in the bath with an IC(50) of 31.9. 10(-3) +/- 1 M (slope factor = 1.2) (n = 11 patches). In contrast, at negative membrane potentials taurine caused an enhancement of the muscular inward K(Ca(2+)) currents with a DE(50) (drug concentration needed to enhance the current by 50%) of 46.7. 10(-3) +/- 2 M (slope factor = 1.3) (n = 9 patches). Single channel analysis revealed that this effect was mediated by changes in the reversal potential of the K(Ca(2+)) channel for K(+) ions with no changes in the gating properties or in the sensitivity of the channel to Ca(2+) ions. Taurine also did not affect the single channel conductance. In conclusion, taurine shows a voltage-dependent dualistic action on K(Ca(2+)) channels, being an inhibitor of the channel at positive membrane potentials and an activator at negative membrane potentials.

  7. Epigallocatechin Gallate Reduces Slow-Twitch Muscle Fiber Formation and Mitochondrial Biosynthesis in C2C12 Cells by Repressing AMPK Activity and PGC-1α Expression.

    Science.gov (United States)

    Wang, Lina; Wang, Zhen; Yang, Kelin; Shu, Gang; Wang, Songbo; Gao, Ping; Zhu, Xiaotong; Xi, Qianyun; Zhang, Yongliang; Jiang, Qingyan

    2016-08-31

    Epigallocatechin gallate (EGCG) is a major active compound in green tea polyphenols. EGCG acts as an antioxidant to prevent the cell damage caused by free radicals and their derivatives. In skeletal muscle, exercise causes the accumulation of intracellular reactive oxygen species (ROS) and promotes the formation of slow-type muscle fiber. To determine whether EGCG, as a ROS scavenger, has any effect on skeletal muscle fiber type, we applied different concentrations (0, 5, 25, and 50 μM) of EGCG in the culture medium of differentiated C2C12 cells for 2 days. The fiber-type composition, mitochondrial biogenesis-related gene expression, antioxidant and glucose metabolism enzyme activity, and ROS levels in C2C12 cells were then detected. According to our results, 5 μM EGCG significantly decreased the cellular activity of SDH, 25 μM EGCG significantly downregulated the MyHC I, PGC-1α, NRF-1, and p-AMPK levels and SDH activity while enhancing the CAT and GSH-Px activity and decreasing the intracellular ROS levels, and 50 μM EGCG significantly downregulated MyHC I, PGC-1α, and NRF-1 expression and HK and SDH activity while increasing LDH activity. Furthermore, 300 μM H2O2 and 0.5 mM AMPK agonist (AICAR) improved the expression of MyHC I, PGC-1α, and p-AMPK, which were all reversed by 25 μM EGCG. In conclusion, the effect of EGCG on C2C12 cells may occur through the reduction of the ROS level, thereby decreasing both AMPK activity and PGC-1α expression and eventually reducing slow-twitch muscle fiber formation and mitochondrial biosynthesis.

  8. 3D Visualization and Measurement of Capillaries Supplying Metabolically Different Fiber Types in the Rat Extensor Digitorum Longus Muscle During Denervation and Reinnervation

    Czech Academy of Sciences Publication Activity Database

    Janáček, Jiří; Čebašek, V.; Kubínová, Lucie; Ribarič, S.; Eržen, I.

    2009-01-01

    Roč. 57, č. 5 (2009), s. 437-447 ISSN 0022-1554 R&D Projects: GA MŠk(CZ) LC06063; GA MŠk(CZ) MEB090606; GA AV ČR(CZ) IAA100110502 Institutional research plan: CEZ:AV0Z50110509 Keywords : capillaries * denervation * muscle fiber types Subject RIV: ED - Physiology Impact factor: 2.372, year: 2009

  9. [Desmin content and transversal stiffness of the left ventricle mouse cardiomyocytes and skeletal muscle fibers after a 30-day space flight on board "BION-M1" biosatellite].

    Science.gov (United States)

    Ogneva, I V; Maximova, M V; Larina, I M

    2014-01-01

    The aim of this study was to determine the transversal stiffness of the cortical cytoskeleton and the cytoskeletal protein desmin content in the left ventricle cardiomyocytes, fibers of the mouse soleus and tibialis anterior muscle after a 30-day space flight on board the "BION-M1" biosatellite (Russia, 2013). The dissection was made after 13-16.5 h after landing. The transversal stiffness was measured in relaxed and calcium activated state by, atomic force microscopy. The desmin content was estimated by western blotting, and the expression level of desmin-coding gene was detected using real-time PCR. The results indicate that, the transversal stiffness of the left ventricle cardiomyocytes and fibers of the soleus muscle in relaxed and activated states did not differ from the control. The transversal stiffness of the tibialis muscle fibers in relaxed and activated state was increased in the mice group after space flight. At the same time, in all types of studied tissues the desmin content and the expression level of desmin-coding gene did not differ from the control level.

  10. The Effect of Soursop (Announa Muricata L. Leaves Powder on Diameter of Muscle Fiber, Lipid Cell, Body Weight Gain and Carcass Percentage of Tegal Duck

    Directory of Open Access Journals (Sweden)

    Elly Tugiyanti

    2017-09-01

    Full Text Available The present study investigated the supplementation of soursop leaves powder (Annona muricata L. on body weight gain and carcass percentage of male Tegal duck. Research was conducted from 29 November 2015 to 3 January 2016 in duck cage in Sokaraja Kulon, Purwokerto. One hundred male Tegal duck were fed basal feed consisted of 30% corn, 7% soy bean meal, 6,1% vegetable oil, 17% poultry meat meal, 38,2% ricebran, 0,1% L-lysin HCL, 0,3% DL-methionin, 0,2% topmix, 0,1% NaCl, and 1% CaCO3. Experimental research used completely randomized design with treatments composed of basal feed plus 0, 5, 10, and 15% soursop leaves meal, each with 5 replicates. The observed variables were diameter of muscle fiber, lipid cell, body weight gain, and carcass percentage. The obtained data were subject to analysis of variance followed by orthogonal polynomial test. Result showed that treatments affected non significantly (P>0.05 to the diameter of chest muscle fiber, carcass percentage and carcass but significantly affected (P<0,05 body weight gain with equation Y  =  427,74  - 67,10 X  + 2,27 X2..  Conclusively, supplementation of soursop leaves meal (Annona muricata L. in feed has not been able to increase the muscle fiber diameter of intermuscular lipid cell, carcass percentage and carcass parts. Excessive supplement even lowers the body weight gain of male Tegal duck.

  11. Downhill Running Excessive Training Inhibits Hypertrophy in Mice Skeletal Muscles with Different Fiber Type Composition.

    Science.gov (United States)

    da Rocha, Alisson L; Pereira, Bruno C; Pauli, José R; de Souza, Claudio T; Teixeira, Giovana R; Lira, Fábio S; Cintra, Dennys E; Ropelle, Eduardo R; Júnior, Carlos R B; da Silva, Adelino S R

    2016-05-01

    The aim of this study was to verify the effects of running overtraining protocols performed in downhill, uphill, and without inclination on the proteins related to hypertrophy signaling pathway in extensor digitorum longus (EDL) and soleus of C57BL/6 mice. We also performed histological and stereological analyses. Rodents were divided into control (CT; sedentary mice), overtrained by downhill running (OTR/down), overtrained by uphill running (OTR/up), and overtrained by running without inclination (OTR). The incremental load, exhaustive, and grip force tests were used as performance evaluation parameters. 36 h after the grip force test, EDL and soleus were removed and immediately used for immunoblotting analysis or stored at -80°C for histological and stereological analyses. For EDL, OTR/down decreased the protein kinase B (Akt) and tuberous sclerosis protein 2 (TSC2) phosphorylation (p), and increased myostatin, receptor-activated Smads (pSMAD2-3), and insulin receptor substrate-1 (pIRS-1; Ser307/636). OTR/down also presented low and high relative proportions of cytoplasm and connective tissue, respectively. OTR/up increased the mammalian target of rapamycin (pmTOR), 70-kDa ribosomal protein S6 kinase 1 (pS6K1) and pSMAD2-3, and decreased pTSC2. OTR decreased pTSC2 and increased pIRS-1 (Ser636). For soleus, OTR/down increased S6 ribosomal protein (pS6RP) and pSMAD2-3, and decreased pIRS-1 (Ser639). OTR/up decreased pS6K1, pS6RP and pIRS-1 (Ser639), and increased pTSC2 (Ser939), and pSMAD2-3. OTR increased pS6RP, 4E-binding protein-1 (p4E-BP1), pTSC2 (Ser939), and pSMAD2-3, and decreased pIRS-1 (Ser639). In summary, OTR/down inhibited the skeletal muscle hypertrophy with concomitant signs of atrophy in EDL. The effects of OTR/up and OTR depended on the analyzed skeletal muscle type. © 2015 Wiley Periodicals, Inc.

  12. Proteomics Analysis of Skeletal Muscle from Leptin-Deficient ob/ob Mice Reveals Adaptive Remodeling of Metabolic Characteristics and Fiber Type Composition

    DEFF Research Database (Denmark)

    Schönke, Milena; Björnholm, Marie; Chibalin, Alexander V

    2018-01-01

    Skeletal muscle insulin resistance, an early metabolic defect in the pathogenesis of type 2 diabetes (T2D), may be a cause or consequence of altered protein expression profiles. Proteomics technology offers enormous promise to investigate molecular mechanisms underlying pathologies, however...... mice in mere two fractions in a short time (8 h per sample). We identified more than 6000 proteins with 118 proteins differentially regulated in obesity. This included protein kinases, phosphatases, and secreted and fiber type associated proteins. Enzymes involved in lipid metabolism in skeletal muscle...... from ob/ob mice were increased, providing evidence against reduced fatty acid oxidation in lipid-induced insulin resistance. Mitochondrial and peroxisomal proteins, as well as components of pyruvate and lactate metabolism, were increased. Finally, the skeletal muscle proteome from ob/ob mice displayed...

  13. Unchanged content of oxidative enzymes in fast-twitch muscle fibers and V˙O2 kinetics after intensified training in trained cyclists.

    Science.gov (United States)

    Christensen, Peter M; Gunnarsson, Thomas P; Thomassen, Martin; Wilkerson, Daryl P; Nielsen, Jens Jung; Bangsbo, Jens

    2015-07-01

    The present study examined if high intensity training (HIT) could increase the expression of oxidative enzymes in fast-twitch muscle fibers causing a faster oxygen uptake (V˙O2) response during intense (INT), but not moderate (MOD), exercise and reduce the V˙O2 slow component and muscle metabolic perturbation during INT. Pulmonary V˙O2 kinetics was determined in eight trained male cyclists (V˙O2-max: 59 ± 4 (means ± SD) mL min(-1) kg(-1)) during MOD (205 ± 12 W ~65% V˙O2-max) and INT (286 ± 17 W ~85% V˙O2-max) exercise before and after a 7-week HIT period (30-sec sprints and 4-min intervals) with a 50% reduction in volume. Both before and after HIT the content in fast-twitch fibers of CS (P twitch fibers. Content of CS, COX-4, and PFK in homogenate and fast-twitch fibers was unchanged with HIT. Maximal activity (μmol g DW(-1) min(-1)) of CS (56 ± 8 post-HIT vs. 59 ± 10 pre-HIT), HAD (27 ± 6 vs. 29 ± 3) and PFK (340 ± 69 vs. 318 ± 105) and the capillary to fiber ratio (2.30 ± 0.16 vs. 2.38 ± 0.20) was unaltered following HIT. V˙O2 kinetics was unchanged with HIT and the speed of the primary response did not differ between MOD and INT. Muscle creatine phosphate was lower (42 ± 15 vs. 66 ± 17 mmol kg DW(-1)) and muscle lactate was higher (40 ± 18 vs. 14 ± 5 mmol kg DW(-1)) at 6 min of INT (P twitch fibers, and did not change V˙O2 kinetics. © 2015 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.

  14. Correlation between cross-bridge kinetics obtained from Trp fluorescence of myofibril suspensions and mechanical studies of single muscle fibers in rabbit psoas.

    Science.gov (United States)

    Candau, Robin; Kawai, Masataka

    2011-12-01

    Our goal is to correlate kinetic constants obtained from fluorescence studies of myofibril suspension with those from mechanical studies of skinned muscle fibers from rabbit psoas. In myofibril studies, the stopped-flow technique with tryptophan fluorescence was used; in muscle fiber studies, tension transients with small amplitude sinusoidal length perturbations were used. All experiments were performed using the equivalent solution conditions (200 mM ionic strength, pH 7.00) at 10°C. The concentration of MgATP was varied to characterize kinetic constants of the ATP binding step 1 (K (1): dissociation constant), the binding induced cross-bridge detachment step 2 (k (2), k (-2): rate constants), and the ATP cleavage step 3 (k (3), k (-3)). In myofibrils we found that K (1) = 0.52 ± 0.08 mM (±95% confidence limits), k (2) = 242 ± 24 s(-1), and k (-2) ≈ 0; in muscle fibers, K (1) = 0.46 ± 0.06 mM, k (2) = 286 ± 32 s(-1), and k (-2) = 57 ± 21 s(-1). From these results, we conclude that myofibrils and muscle fibers exhibit nearly equal ATP binding step, and nearly equal ATP binding induced cross-bridge detachment step. Consequently, there is a good correlation between process C (phase 2 of step analysis) and the cross-bridge detachment step. The reverse detachment step is finite in fibers, but almost absent in myofibrils. We further studied partially cross-linked myofibrils and found little change in steps 2 and 3, indicating that cross-linking does not affect these steps. However, we found that K (1) is 2.5× of native myofibrils, indicating that MgATP binding is weakened by the presence of the extra load. We further studied the phosphate (Pi) effect in myofibrils, and found that Pi is a competitive inhibitor of MgATP, with the inhibitory dissociation constant of ~9 mM. Similar results were also deduced from fiber studies. To characterize the ATP cleavage step in myofibrils, we measured the slow rate constant in fluorescence, and

  15. Dietary energy source affecting fat deposition mechanism, muscle fiber metabolic and overall meat quality

    Directory of Open Access Journals (Sweden)

    M. Al-Hijazeen

    2017-03-01

    Full Text Available A study was conducted to investigate the effect of two dietary energy sources, soy bean oil, and sucrose on regulatory mechanisms of meat preservation. Twenty one day-old Hubbard commercial broilers were randomly allocated into two dietary treatment groups with six replicates per treatment, and four broilers per replicate. All birds were coded for the influence of energy source: fat based diet (FD, and sugar based diet (SD. Formulated grower diets were isonitrogenous and isocaloric. The chickens were slaughtered and then boneless, skinless ground chicken tight meat was prepared. Both raw and cooked meats were analyzed for lipid and protein oxidation, and sensory panel evaluation. In addition, meat from the small muscles of the raw thigh was used to evaluate other meat quality characteristics. Proximate analyses showed no significant differences between both dietary treatments on protein, ash and moisture percentage values. Meat samples of the group that was fed FD showed higher significant values of both TBARS and total carbonyl at day 7 of storage time. However, samples of the second group (Fed SD showed lower values of both ultimate pH and water separation % using raw thigh meat. The effect of FD treatment on the meat composition appeared clearly especially on fat percentage content. In addition, meat samples obtained from chickens fed SD showed better significant values of the overall acceptability attribute. According to the current findings, sucrose could be an excellent alternative to oil in dietary broilers which improved the meat preservation bio-system, and post-mortem storage stability.

  16. GLUT4 is reduced in slow muscle fibers of type 2 diabetic patients: is insulin resistance in type 2 diabetes a slow, type 1 fiber disease?

    DEFF Research Database (Denmark)

    Gaster, M; Staehr, P; Beck-Nielsen, H

    2001-01-01

    was reduced to 77% in the obese subjects and to 61% in type 2 diabetic patients compared with the control subjects. We propose that a reduction in the fraction of slow-twitch fibers, combined with a reduction in GLUT4 expression in slow fibers, may reduce the insulin-sensitive GLUT4 pool in type 2 diabetes...

  17. Characterization of the Campylobacter jejuni population in the barnacle geese reservoir.

    Science.gov (United States)

    Llarena, A-K; Skarp-de Haan, C P A; Rossi, M; Hänninen, M-L

    2015-05-01

    Campylobacter spp. are the most common cause of bacterial gastroenteritis worldwide and have been isolated from a wide number of different hosts and environmental sources. Waterfowl is considered a natural reservoir for this zoonotic bacterium and may act as a potential infection source for human campylobacteriosis. In this study, faecal samples from 924 barnacle geese were tested for the presence of C. jejuni and C. coli. The resulting C. jejuni and C. coli populations were characterized by multilocus sequence typing (MLST), structure analysis by BAPS and phylogenetic analysis based on full genome sequences. The prevalences of C. jejuni in barnacle geese faeces were 11.5% and 23.1% in 2011 and 2012, respectively, and only 0.2% of the samples were positive for C. coli in both years. Furthermore, a possible adaption of the clonal complexes (CCs) ST-702 and ST-1034 to the barnacle geese reservoir was found, as these two CCs represented the majority of the typed isolates and were repeatedly isolated from different flocks at several time-points. Further core genome phylogenetic analysis using ClonalFrame revealed a formation of a distinct monophyletic lineage by these two CCs, suggesting a certain degree of clonality of the C. jejuni population adapted to barnacle geese. Therefore, although STs also commonly found in humans patients (e.g. ST-45) were among the barnacle geese C. jejuni isolates, this reservoir is probably an infrequent source for human campylobacteriosis. © 2014 Blackwell Verlag GmbH.

  18. Precisely proportioned: intertidal barnacles alter penis form to suit coastal wave action

    Science.gov (United States)

    Neufeld, Christopher J; Palmer, A. Richard

    2008-01-01

    For their size, barnacles possess the longest penis of any animal (up to eight times their body length). However, as one of few sessile animals to copulate, they face a trade-off between reaching more mates and controlling ever-longer penises in turbulent flow. We observed that penises of an intertidal barnacle (Balanus glandula) from wave-exposed shores were shorter than, stouter than, and more than twice as massive for their length as, those from nearby protected bays. In addition, penis shape variation was tightly correlated with maximum velocity of breaking waves, and, on all shores, larger barnacles had disproportionately stouter penises. Finally, field experiments confirmed that most of this variation was due to phenotypic plasticity: barnacles transplanted to a wave-exposed outer coast produced dramatically shorter and wider penises than counterparts moved to a protected harbour. Owing to the probable trade-off between penis length and ability to function in flow, and owing to the ever-changing wave conditions on rocky shores, intertidal barnacles appear to have acquired the capacity to change the size and shape of their penises to suit local hydrodynamic conditions. This dramatic plasticity in genital form is a valuable reminder that factors other than the usual drivers of genital diversification—female choice, sexual conflict and male–male competition—can influence genital form. PMID:18252665

  19. Effects of anabolic implants and ractopamine-HCl on muscle fiber morphometrics, collagen solubility, and tenderness of beef longissimus lumborum steaks.

    Science.gov (United States)

    Ebarb, S M; Phelps, K J; Drouillard, J S; Maddock-Carlin, K R; Vaughn, M A; Burnett, D D; Noel, J A; Van Bibber-Krueger, C L; Paulk, C B; Grieger, D M; Gonzalez, J M

    2017-03-01

    The objective of this study was to examine the effects of growth-promoting technologies (GP) and postmortem aging on longissimus lumborum muscle fiber cross-sectional area (CSA), collagen solubility, and their relationship to meat tenderness. Two groups of black-hided crossbred feedlot heifers (group 1: = 33, initial BW 430 ± 7 kg; group 2: = 32, initial BW 466 ± 7 kg) were blocked by BW and assigned to 1 of 3 treatments consisting of: no implant and no ractopamine hydrochloride (CON; = 21); implant, no ractopamine hydrochloride (IMP; = 22); implant and ractopamine hydrochloride (COMBO; = 22). Heifers that received an implant were administered an implant containing 200 mg trenbolone acetate and 20 mg estradiol on d 0 of the study, and heifers in the COMBO group received 400 mg∙head∙d of ractopamine hydrochloride for 28 (Group 1) or 29 d (Group 2) at the end of 90- (Group 1) or 106-d (Group 2) feeding period. Following harvest, strip loins were collected and further fabricated into 5 roasts for postmortem aging (DOA) periods of 2, 7, 14, 21, or 35 d. After aging, Warner-Bratzler shear force (WBSF), muscle fiber CSA, and collagen solubility were measured. There was no treatment × DOA interaction for WBSF ( = 0.86), but treatment and DOA impacted WBSF ( 0.33). Collagen amounts were not impacted by GP treatment ( > 0.72), but DOA increased the concentration of soluble collagen ( = 0.04). Fiber CSA of all fiber types were positively correlated ( < 0.05; = 0.21 to 0.28) with WBSF only on d 2 of aging, while soluble collagen amount tended to negatively correlate with WBSF on d 7 and 14 of aging ( < 0.10; = -0.24 and -0.23, respectively). Administration of GP during heifer finishing resulted in greater steak WBSF over 35 d of aging, which was not due to collagen characteristics and only minimally affected by fiber CSA.

  20. Endurance Exercise Enhances the Effect of Strength Training on Muscle Fiber Size and Protein Expression of Akt and mTOR.

    Directory of Open Access Journals (Sweden)

    Zuzanna Kazior

    Full Text Available Reports concerning the effect of endurance exercise on the anabolic response to strength training have been contradictory. This study re-investigated this issue, focusing on training effects on indicators of protein synthesis and degradation. Two groups of male subjects performed 7 weeks of resistance exercise alone (R; n = 7 or in combination with preceding endurance exercise, including both continuous and interval cycling (ER; n = 9. Muscle biopsies were taken before and after the training period. Similar increases in leg-press 1 repetition maximum (30%; P<0.05 were observed in both groups, whereas maximal oxygen uptake was elevated (8%; P<0.05 only in the ER group. The ER training enlarged the areas of both type I and type II fibers, whereas the R protocol increased only the type II fibers. The mean fiber area increased by 28% (P<0.05 in the ER group, whereas no significant increase was observed in the R group. Moreover, expression of Akt and mTOR protein was enhanced in the ER group, whereas only the level of mTOR was elevated following R training. Training-induced alterations in the levels of both Akt and mTOR protein were correlated to changes in type I fiber area (r = 0.55-0.61, P<0.05, as well as mean fiber area (r = 0.55-0.61, P<0.05, reflecting the important role played by these proteins in connection with muscle hypertrophy. Both training regimes reduced the level of MAFbx protein (P<0.05 and tended to elevate that of MuRF-1. The present findings indicate that the larger hypertrophy observed in the ER group is due more to pronounced stimulation of anabolic rather than inhibition of catabolic processes.

  1. Reappraisal of VAChT-Cre: Preference in slow motor neurons innervating type I or IIa muscle fibers.

    Science.gov (United States)

    Misawa, Hidemi; Inomata, Daijiro; Kikuchi, Miseri; Maruyama, Sae; Moriwaki, Yasuhiro; Okuda, Takashi; Nukina, Nobuyuki; Yamanaka, Tomoyuki

    2016-11-01

    VAChT-Cre.Fast and VAChT-Cre.Slow mice selectively express Cre recombinase in approximately one half of postnatal somatic motor neurons. The mouse lines have been used in various studies with selective genetic modifications in adult motor neurons. In the present study, we crossed VAChT-Cre lines with a reporter line, CAG-Syp/tdTomato, in which synaptophysin-tdTomato fusion proteins are efficiently sorted to axon terminals, making it possible to label both cell bodies and axon terminals of motor neurons. In the mice, Syp/tdTomato fluorescence preferentially co-localized with osteopontin, a recently discovered motor neuron marker for slow-twitch fatigue-resistant (S) and fast-twitch fatigue-resistant (FR) types. The fluorescence did not preferentially co-localize with matrix metalloproteinase-9, a marker for fast-twitch fatigable (FF) motor neurons. In the neuromuscular junctions, Syp/tdTomato fluorescence was detected mainly in motor nerve terminals that innervate type I or IIa muscle fibers. These results suggest that the VAChT-Cre lines are Cre-drivers that have selectivity in S and FR motor neurons. In order to avoid confusion, we have changed the mouse line names from VAChT-Cre.Fast and VAChT-Cre.Slow to VAChT-Cre.Early and VAChT-Cre.Late, respectively. The mouse lines will be useful tools to study slow-type motor neurons, in relation to physiology and pathology. © 2016 Wiley Periodicals, Inc.

  2. Mechanical properties of non-sarcomeric cytoskeleton of mice cardiomyocytes and skeletal muscle fibers after 30-day spaceflight biosatellite BION-M1

    Science.gov (United States)

    Ogneva, Irina; Maximova, Maria; Larina, Irina

    The aim of this study was to determine transversal stiffness of the cortical cytoskeleton and cytoskeletal protein desmin content of the left ventricle cardiomyocytes, soleus and tibialis anterior muscle fibers of the mice after 30-days space flight biosatellite «BION-M1» (Russia, 2013). The dissection was made after 13-16.5 hours after landing. Transversal stiffness was measured in relaxed and calcium activated state by atomic force microscope. Desmin content was estimated by using western-blot, expression level of the gene, coding desmin, - by real time PCR. The transversal stiffness of the cortical cytoskeleton of the cardiomyocytes and fibers of the skeletal muscles (as measured using the atomic force microscopy) did not differ significantly within the study groups in comparison to the vivarium control group, except for its slight increase in tibialis anterior fibers muscle in the post-flight group of animals. The content of beta- and gamma-actin in the membranous fraction of proteins in the left ventricular cardiomyocytes (as detected using the western blot technique) did not differ significantly within all study groups and correlated with the transversal stiffness. Similar situation was revealed in fibers of the soleus muscle and tibialis anterior muscle, as well as correlation with the transversal stiffness of their cortical cytoskeleton was noted. At the same time, the content of beta-actin in the cytoplasmic fraction of proteins was found to be decreased in all types of studied tissues in comparison to the control levels in the post-flight group, as well as lowered beta-actin gene expression rates in the post-flight group of animals (as detected using the RT-PCR technique). After completion of the space flight, content of alpha-actinin-4 was found to be reduced in the membranous fraction of proteins of mouse cardiomyocytes, while its content in the cytoplasmic fraction of proteins did not change significantly. Furthermore, gene expression rates of this

  3. Male parasitism and intrasexual competition in a burrowing barnacle.

    Science.gov (United States)

    Gotelli, Nicholas J; Spivey, Henry R

    1992-10-01

    In sexually dimorphic animals, large male body size is often associated with direct interference competition among males for access to females or resources used in reproduction. In constrast, small male body size may be associated with indirect scramble competition among males for temporal or spatial access to females. Minute, "parasitic" males of the acrothoracican barnacleTrypetesa lampas (Hancock) appear to compete with one another for permanent attachment sites on the external body of the female. Several spatial patterns suggest indirect male-male competition: 1) males were consistently aggregated on the anterior surface of the female ovarian disc; 2) the average distance from attached males to the site of insemination correlated positively with local male density; 3) average male body size on a female decreased as a function of male density; 4) the distribution of males on the left and right hand sides of the female ovarian disc was more even than expected, suggesting that males avoided crowded settlement sites. The number of males attached to a female increased with female body size and matched a null model in which males colonized female "targets" of differing areas. These results suggest that competition between males primarily affected settlement sites and male body sizes within, rather than among, females. Male parasitism may have evolved through both sexual selection for efficient access to females (Ghiselin 1974) and natural selection for reduced burrow density in a space-limited habitat (Turner and Yakovlev 1983).

  4. Morphometric and molecular identification of individual barnacle cyprids from wild plankton

    DEFF Research Database (Denmark)

    Chen, Hsi-Nien; Høeg, Jens Thorvald; Chan, Benny K.K.

    2013-01-01

    The present study used DNA barcodes to identify individual cyprids to species. This enables accurate quantification of larvae of potential fouling species in the plankton. In addition, it explains the settlement patterns of barnacles and serves as an early warning system of unwanted immigrant...... species. Sequences from a total of 540 individual cypris larvae from Taiwanese waters formed 36 monophyletic clades (species) in a phylogenetic tree. Of these clades, 26 were identified to species, but 10 unknown monophyletic clades represented non-native species. Cyprids of the invasive barnacle......, Megabalanus cocopoma, were identified. Multivariate analysis of antennular morphometric characters revealed three significant clusters in a nMDS plot, viz. a bell-shaped attachment organ (most species), a shoe-shaped attachment organ (some species), and a spear-shaped attachment organ (coral barnacles only...

  5. Unusual adhesive production system in the barnacle Lepas anatifera: an ultrastructural and histochemical investigation.

    Science.gov (United States)

    Jonker, Jaimie-Leigh; von Byern, Janek; Flammang, Patrick; Klepal, Waltraud; Power, Anne Marie

    2012-12-01

    Adhesives that are naturally produced by marine organisms are potential sources of inspiration in the search for medical adhesives. Investigations of barnacle adhesives are at an early stage but it is becoming obvious that barnacles utilize a unique adhesive system compared to other marine organisms. The current study examined the fine structure and chemistry of the glandular system that produces the adhesive of the barnacle Lepas anatifera. All components for the glue originated from large single-cell glands (70-180 μm). Staining (including immunostaining) showed that L-3,4-dihydroxyphenylalanine and phosphoserine were not present in the glue producing tissues, demonstrating that the molecular adhesion of barnacles differs from all other permanently gluing marine animals studied to date. The glandular tissue and adhesive secretion primarily consisted of slightly acidic proteins but also included some carbohydrate. Adhesive proteins were stored in cytoplasmic granules adjacent to an intracellular drainage canal (ICC); observations implicated both merocrine and apocrine mechanisms in the transport of the secretion from the cell cytoplasm to the ICC. Inside the ICC, the secretion was no longer contained within granules but was a flocculent material which became "clumped" as it traveled through the canal network. Hemocytes were not seen within the adhesive "apparatus" (comprising of the glue producing cells and drainage canals), nor was there any structural mechanism by which additions such as hemocytes could be made to the secretion. The unicellular adhesive gland in barnacles is distinct from multicellular adhesive systems observed in marine animals such as mussels and tubeworms. Because the various components are not physically separated in the apparatus, the barnacle adhesive system appears to utilize completely different and unknown mechanisms for maintaining the liquid state of the glue within the body, as well as unidentified mechanisms for the conversion of

  6. Selective expression of the type 3 isoform of ryanodine receptor Ca2+ release channel (RyR3) in a subset of slow fibers in diaphragm and cephalic muscles of adult rabbits

    International Nuclear Information System (INIS)

    Conti, Antonio; Reggiani, Carlo; Sorrentino, Vincenzo

    2005-01-01

    The expression pattern of the RyR3 isoform of Ca 2+ release channels was analysed by Western blot in neonatal and adult rabbit skeletal muscles. The results obtained show that the expression of the RyR3 isoform is developmentally regulated. In fact, RyR3 expression was detected in all muscles analysed at 2 and 15 days after birth while, in adult animals, it was restricted to a subset of muscles that includes diaphragm, masseter, pterygoideus, digastricus, and tongue. Interestingly, all of these muscles share a common embryonic origin being derived from the somitomeres or from the cephalic region of the embryo. Immunofluorescence analysis of rabbit skeletal muscle cross-sections showed that RyR3 staining was detected in all fibers of neonatal muscles. In contrast, in those adult muscles expressing RyR3 only a fraction of fibers was labelled. Staining of these muscles with antibodies against fast and slow myosins revealed a close correlation between expression of RyR3 and fibers expressing slow myosin isoform

  7. NHE- and diffusion-dependent proton fluxes across the tubular system membranes of fast-twitch muscle fibers of the rat.

    Science.gov (United States)

    Launikonis, Bradley S; Cully, Tanya R; Csernoch, Laszlo; Stephenson, D George

    2018-01-02

    The complex membrane structure of the tubular system (t-system) in skeletal muscle fibers is open to the extracellular environment, which prevents measurements of H + movement across its interface with the cytoplasm by conventional methods. Consequently, little is known about the t-system's role in the regulation of cytoplasmic pH, which is different from extracellular pH. Here we describe a novel approach to measure H + -flux measurements across the t-system of fast-twitch fibers under different conditions. The approach involves loading the t-system of intact rat fast-twitch fibers with a strong pH buffer (20 mM HEPES) and pH-sensitive fluorescent probe (10 mM HPTS) before the t-system is sealed off. The pH changes in the t-system are then tracked by confocal microscopy after rapid changes in cytoplasmic ionic conditions. T-system sealing is achieved by removing the sarcolemma by microdissection (mechanical skinning), which causes the tubules to pinch off and seal tight. After this procedure, the t-system repolarizes to physiological levels and can be electrically stimulated when placed in K + -based solutions of cytosolic-like ionic composition. Using this approach, we show that the t-system of fast-twitch skeletal fibers displays amiloride-sensitive Na + /H + exchange (NHE), which decreases markedly at alkaline cytosolic pH and has properties similar to that in mammalian cardiac myocytes. We observed mean values for NHE density and proton permeability coefficient of 339 pmol/m 2 of t-system membrane and 158 µm/s, respectively. We conclude that the cytosolic pH in intact resting muscle can be quantitatively explained with respect to extracellular pH by assuming that these values apply to the t-system membrane and the sarcolemma. © 2018 Launikonis et al.

  8. Weighted Mean of Signal Intensity for Unbiased Fiber Tracking of Skeletal Muscles: Development of a New Method and Comparison With Other Correction Techniques.

    Science.gov (United States)

    Giraudo, Chiara; Motyka, Stanislav; Weber, Michael; Resinger, Christoph; Thorsten, Feiweier; Traxler, Hannes; Trattnig, Siegfried; Bogner, Wolfgang

    2017-08-01

    The aim of this study was to investigate the origin of random image artifacts in stimulated echo acquisition mode diffusion tensor imaging (STEAM-DTI), assess the role of averaging, develop an automated artifact postprocessing correction method using weighted mean of signal intensities (WMSIs), and compare it with other correction techniques. Institutional review board approval and written informed consent were obtained. The right calf and thigh of 10 volunteers were scanned on a 3 T magnetic resonance imaging scanner using a STEAM-DTI sequence.Artifacts (ie, signal loss) in STEAM-based DTI, presumably caused by involuntary muscle contractions, were investigated in volunteers and ex vivo (ie, human cadaver calf and turkey leg using the same DTI parameters as for the volunteers). An automated postprocessing artifact correction method based on the WMSI was developed and compared with previous approaches (ie, iteratively reweighted linear least squares and informed robust estimation of tensors by outlier rejection [iRESTORE]). Diffusion tensor imaging and fiber tracking metrics, using different averages and artifact corrections, were compared for region of interest- and mask-based analyses. One-way repeated measures analysis of variance with Greenhouse-Geisser correction and Bonferroni post hoc tests were used to evaluate differences among all tested conditions. Qualitative assessment (ie, images quality) for native and corrected images was performed using the paired t test. Randomly localized and shaped artifacts affected all volunteer data sets. Artifact burden during voluntary muscle contractions increased on average from 23.1% to 77.5% but were absent ex vivo. Diffusion tensor imaging metrics (mean diffusivity, fractional anisotropy, radial diffusivity, and axial diffusivity) had a heterogeneous behavior, but in the range reported by literature. Fiber track metrics (number, length, and volume) significantly improved in both calves and thighs after artifact

  9. Unchanged content of oxidative enzymes in fast-twitch muscle fibers and V˙O2 kinetics after intensified training in trained cyclists

    DEFF Research Database (Denmark)

    Christensen, Peter Møller; Gunnarsson, Thomas Gunnar Petursson; Thomassen, Martin

    2015-01-01

    The present study examined if high intensity training (HIT) could increase the expression of oxidative enzymes in fast-twitch muscle fibers causing a faster oxygen uptake (V˙O2) response during intense (INT), but not moderate (MOD), exercise and reduce the V˙O2 slow component and muscle metabolic...... perturbation during INT. Pulmonary V˙O2 kinetics was determined in eight trained male cyclists (V˙O2-max: 59 ± 4 (means ± SD) mL min(-1) kg(-1)) during MOD (205 ± 12 W ~65% V˙O2-max) and INT (286 ± 17 W ~85% V˙O2-max) exercise before and after a 7-week HIT period (30-sec sprints and 4-min intervals) with a 50...... between MOD and INT. Muscle creatine phosphate was lower (42 ± 15 vs. 66 ± 17 mmol kg DW(-1)) and muscle lactate was higher (40 ± 18 vs. 14 ± 5 mmol kg DW(-1)) at 6 min of INT (P training with a volume reduction did not increase the content...

  10. Three days of intermittent stretching after muscle disuse alters the proteins involved in force transmission in muscle fibers in weanling rats.

    Science.gov (United States)

    Gianelo, M C S; Polizzelo, J C; Chesca, D; Mattiello-Sverzut, A C

    2016-02-01

    The aim of this study was to determine the effects of intermittent passive manual stretching on various proteins involved in force transmission in skeletal muscle. Female Wistar weanling rats were randomly assigned to 5 groups: 2 control groups containing 21- and 30-day-old rats that received neither immobilization nor stretching, and 3 test groups that received 1) passive stretching over 3 days, 2) immobilization for 7 days and then passive stretching over 3 days, or 3) immobilization for 7 days. Maximal plantar flexion in the right hind limb was imposed, and the stretching protocol of 10 repetitions of 30 s stretches was applied. The soleus muscles were harvested and processed for HE and picrosirius staining; immunohistochemical analysis of collagen types I, III, IV, desmin, and vimentin; and immunofluorescence labeling of dystrophin and CD68. The numbers of desmin- and vimentin-positive cells were significantly decreased compared with those in the control following immobilization, regardless of whether stretching was applied (Pstretching protocol was applied. In conclusion, the largest changes in response to stretching were observed in muscles that had been previously immobilized, and the stretching protocol applied here did not mitigate the immobilization-induced muscle changes. Muscle disuse adversely affected several proteins involved in the transmission of forces between the intracellular and extracellular compartments. Thus, the 3-day rehabilitation period tested here did not provide sufficient time for the muscles to recover from the disuse maladaptations in animals undergoing postnatal development.

  11. Glycolytic fast-twitch muscle fiber restoration counters adverse age-related changes in body composition and metabolism.

    Science.gov (United States)

    Akasaki, Yuichi; Ouchi, Noriyuki; Izumiya, Yasuhiro; Bernardo, Barbara L; Lebrasseur, Nathan K; Walsh, Kenneth

    2014-02-01

    Aging is associated with the development of insulin resistance, increased adiposity, and accumulation of ectopic lipid deposits in tissues and organs. Starting in mid-life there is a progressive decline in lean muscle mass associated with the preferential loss of glycolytic, fast-twitch myofibers. However, it is not known to what extent muscle loss and metabolic dysfunction are causally related or whether they are independent epiphenomena of the aging process. Here, we utilized a skeletal-muscle-specific, conditional transgenic mouse expressing a constitutively active form of Akt1 to examine the consequences of glycolytic, fast-twitch muscle growth in young vs. middle-aged animals fed standard low-fat chow diets. Activation of the Akt1 transgene led to selective skeletal muscle hypertrophy, reversing the loss of lean muscle mass observed upon aging. The Akt1-mediated increase in muscle mass led to reductions in fat mass and hepatic steatosis in older animals, and corrected age-associated impairments in glucose metabolism. These results indicate that the loss of lean muscle mass is a significant contributor to the development of age-related metabolic dysfunction and that interventions that preserve or restore fast/glycolytic muscle may delay the onset of metabolic disease. © 2013 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  12. Gooseneck barnacles (Lepas spp. ingest microplastic debris in the North Pacific Subtropical Gyre

    Directory of Open Access Journals (Sweden)

    Miriam C. Goldstein

    2013-10-01

    Full Text Available Substantial quantities of small plastic particles, termed “microplastic,” have been found in many areas of the world ocean, and have accumulated in particularly high densities on the surface of the subtropical gyres. While plastic debris has been documented on the surface of the North Pacific Subtropical Gyre (NPSG since the early 1970s, the ecological implications remain poorly understood. Organisms associated with floating objects, termed the “rafting assemblage,” are an important component of the NPSG ecosystem. These objects are often dominated by abundant and fast-growing gooseneck barnacles (Lepas spp., which predate on plankton and larval fishes at the sea surface. To assess the potential effects of microplastic on the rafting community, we examined the gastrointestinal tracts of 385 barnacles collected from the NPSG for evidence of plastic ingestion. We found that 33.5% of the barnacles had plastic particles present in their gastrointestinal tract, ranging from one plastic particle to a maximum of 30 particles. Particle ingestion was positively correlated to capitulum length, and no blockage of the stomach or intestines was observed. The majority of ingested plastic was polyethylene, with polypropylene and polystyrene also present. Our results suggest that barnacle ingestion of microplastic is relatively common, with unknown trophic impacts on the rafting community and the NPSG ecosystem.

  13. Isolation of living Algae growing in the shells of Molluscs and Barnacles with EDTA (ethylenediaminetetraacetic acid)

    NARCIS (Netherlands)

    Prud’homme van Reine, W.F.; Hoek, van den C.

    1966-01-01

    Several decalcifying mixtures or aqueous solutions of inorganic or organic acids are generally used for releasing algae growing in the shells of molluscs and barnacles, for instance dilute hydrochloric, nitric, citric, or acetic acid (4), a mixture of nitric acid, chromic acid and alcolhol (1),

  14. Involvement of reactive oxygen species in the electrochemical inhibition of barnacle (Amphibalanus amphitrite) settlement

    Science.gov (United States)

    Rodolfo E. Perez-Roa; Marc A. Anderson; Dan Rittschof; Christopher G. Hunt; Daniel R. Noguera

    2009-01-01

    The role of reactive oxygen species (ROS) in electrochemical biofouling inhibition was investigated using a series of abiotic tests and settlement experiments with larvae of the barnacle Amphibalanus amphitrite, a cosmopolitan fouler. Larval settlement, a measure of biofouling potential, was reduced from 43% ± 14% to 5% ± 6% upon the application of...

  15. Response of cyprid specific genes to natural settlement cues in the barnacle Balanus (=Amphibalanus) amphitrite

    KAUST Repository

    Li, Honglei

    2010-06-01

    Quantitative real-time PCR was used to further our understanding of the molecular processes involved in the attachment and metamorphosis of larval barnacles. We report the effects of natural settlement cues (microbial biofilms and conspecific settlement-inducing factor) on the expression profiles of six barnacle cyprid specific (bcs) genes in cyprids of the barnacle Balanus (=Amphibalanus) amphitrite Darwin. Genes bcs-1 to bcs-5 all showed marked decreases in their expression between initial cyprid attachment and the completion of metamorphosis, whereas bcs-6 showed significant up-regulation. Generally, settlement cues exerted no significant effect on the decreasing trend of bcs-1 to bcs-5 expression during attachment and metamorphosis. However, the expression of bcs-6 increased prior to cyprid attachment in response to both settlement cues. This elevated expression of bcs-6 gene indicates the importance and key regulatory role of this specific gene to larval attachment and metamorphosis in this barnacle species. © 2010 Elsevier B.V. All rights reserved.

  16. Cypris morphology in the barnacles Ibla and Paralepas (Crustacea: Cirripedia Thoracica) implications for cirripede evolution

    DEFF Research Database (Denmark)

    Høeg, Jens T; Achituv, Yair; Chan, Benny K K

    2009-01-01

    We used scanning electron microscopy (SEM) to describe cypris morphology in species of the barnacles Ibla and Paralepas, both of which are pivotal in understanding cirripede evolution. In Ibla, we also studied late naupliar stages with video and SEM. Special emphasis was put on the lattice organs...

  17. Growth and molting in epizoic pedunculate barnacles genus Octolasmis (Crustacea: Thecostraca: Cirripedia: Thoracica)

    DEFF Research Database (Denmark)

    Blomsterberg, Mikkel; Glenner, Henrik; Høeg, Jens T

    2004-01-01

    Scanning electron microscopy, light microscopy, and histology were used to study growth in species of the pedunculate barnacle genus Octolasmis (O. angulata, O. cor, O. californiana, O. mülleri). These species are epizoic in the gill chamber of portunid crabs and have highly reduced capitular she...

  18. Bryophyte DNA sequences from faeces of an arctic herbivore, barnacle goose (Branta leucopsis)

    NARCIS (Netherlands)

    Stech, M.; Kolvoort, E.; Loonen, M. J. J. E.; Vrieling, K.; Kruijer, J. D.

    We tested DNA extraction methods and PCR conditions for the amplification of bryophyte DNA from barnacle goose (Branta leucopsis) faeces collected from Spitsbergen (Svalbard). Both the Qiagen stool kit and a silica-based extraction method received sufficient DNA from fresh and older droppings, as

  19. Predation on transmission stages reduces parasitism: sea anemones consume transmission stages of a barnacle parasite.

    Science.gov (United States)

    Fong, Caitlin R; Kuris, Armand M

    2017-06-01

    While parasites serve as prey, it is unclear how the spatial distribution of parasite predators provides transmission control and influences patterns of parasitism. Because many of its organisms are sessile, the rocky intertidal zone is a valuable but little used system to understand spatial patterns of parasitism and elucidate the underlying mechanisms driving these patterns. Sea anemones and barnacles are important space competitors in the rocky intertidal zone along the Pacific coast of North America. Anemones are voracious, indiscriminate predators; thus, they may intercept infectious stages of parasites before they reach a host. We investigate whether a sea anemone protects an associated barnacle from parasitism by Hemioniscus balani, an isopod parasitic castrator. At Coal Oil Point, Santa Barbara, California USA, 29% of barnacles were within 1 cm from an anemone at the surveyed tidal height. Barnacles associated with anemones had reduced parasite prevalence and higher reproductive productivity than those remote from sea anemones. In the laboratory, anemones readily consumed the transmission stage of the parasite. Hence, anemone consumption of parasite transmission stages may provide a mechanism by which community context regulates parasite prevalence at a local scale. Our results suggest predation may be an important process providing parasite transmission control.

  20. Predation danger can explain changes in timing of migration: the case of the Barnacle goose

    NARCIS (Netherlands)

    Jonker, R.M.; Eichhorn, Goetz; van Langevelde, F.; Bauer, S.

    2010-01-01

    Understanding stopover decisions of long-distance migratory birds is crucial for conservation and management of these species along their migratory flyway. Recently, an increasing number of Barnacle geese breeding in the Russian Arctic have delayed their departure from their wintering site in the

  1. Predation danger can explain changes in timing of migration: the case of the barnacle goose.

    Directory of Open Access Journals (Sweden)

    Rudy M Jonker

    Full Text Available Understanding stopover decisions of long-distance migratory birds is crucial for conservation and management of these species along their migratory flyway. Recently, an increasing number of Barnacle geese breeding in the Russian Arctic have delayed their departure from their wintering site in The Netherlands by approximately one month and have reduced their staging duration at stopover sites in the Baltic accordingly. Consequently, this extended stay increases agricultural damage in The Netherlands. Using a dynamic state variable approach we explored three hypotheses about the underlying causes of these changes in migratory behavior, possibly related to changes in (i onset of spring, (ii potential intake rates and (iii predation danger at wintering and stopover sites. Our simulations showed that the observed advance in onset of spring contradicts the observed delay of departure, whereas both increased predation danger and decreased intake rates in the Baltic can explain the delay. Decreased intake rates are expected as a result of increased competition for food in the growing Barnacle goose population. However, the effect of predation danger in the model was particularly strong, and we hypothesize that Barnacle geese avoid Baltic stopover sites as a response to the rapidly increasing number of avian predators in the area. Therefore, danger should be considered as an important factor influencing Barnacle goose migratory behavior, and receive more attention in empirical studies.

  2. The effects of a serine protease, Alcalase ®, on the adhesives of barnacle cyprids (Balanus amphitrite),

    NARCIS (Netherlands)

    Aldred, Nick; Phang, In Yee; Conlan, Sheelagh L.; Clare, Anthony S.; Vancso, Gyula J.

    2008-01-01

    Barnacles are a persistent fouling problem in the marine environment, although their effects (eg reduced fuel efficiency, increased corrosion) can be reduced through the application of antifouling or fouling-release coatings to marine structures. However, the developments of fouling-resistant

  3. The horizontal zonation of two species of intertidal barnacle in South ...

    African Journals Online (AJOL)

    Along the west and south coasts of South Africa, the two most abundant intertidal barnacles Octomeris angulosa Sowerby and Tetraclita serrata Darwin have similar vertical ranges, but tend to be segregated along a horizontal gradient of wave exposure. This horizontal pattern is described and the mechanisms producing ...

  4. Gooseneck barnacles (Lepas spp.) ingest microplastic debris in the North Pacific Subtropical Gyre.

    Science.gov (United States)

    Goldstein, Miriam C; Goodwin, Deborah S

    2013-01-01

    Substantial quantities of small plastic particles, termed "microplastic," have been found in many areas of the world ocean, and have accumulated in particularly high densities on the surface of the subtropical gyres. While plastic debris has been documented on the surface of the North Pacific Subtropical Gyre (NPSG) since the early 1970s, the ecological implications remain poorly understood. Organisms associated with floating objects, termed the "rafting assemblage," are an important component of the NPSG ecosystem. These objects are often dominated by abundant and fast-growing gooseneck barnacles (Lepas spp.), which predate on plankton and larval fishes at the sea surface. To assess the potential effects of microplastic on the rafting community, we examined the gastrointestinal tracts of 385 barnacles collected from the NPSG for evidence of plastic ingestion. We found that 33.5% of the barnacles had plastic particles present in their gastrointestinal tract, ranging from one plastic particle to a maximum of 30 particles. Particle ingestion was positively correlated to capitulum length, and no blockage of the stomach or intestines was observed. The majority of ingested plastic was polyethylene, with polypropylene and polystyrene also present. Our results suggest that barnacle ingestion of microplastic is relatively common, with unknown trophic impacts on the rafting community and the NPSG ecosystem.

  5. Food intake, body reserves and reproductive success of barnacle geese Branta leucopsis staging in different habitats

    NARCIS (Netherlands)

    Prop, J; Black, JM; Mehlum, F; Black, JM; Madsen, J

    1998-01-01

    This paper concerns the effect of habitat choice on the dynamics of deposition of body reserves in spring-staging barnacle geese Branta leucopsis. On their way to breeding areas in Spitsbergen, these geese reside for several weeks on islands off the coast of Helgeland, Norway. They use three

  6. The benefit of large broods in barnacle geese : a study using natural and experimental manipulations

    NARCIS (Netherlands)

    Loonen, MJJE; Bruinzeel, Leo W.; Black, JM; Drent, RH

    1. In precocial birds, where the young feed themselves, the costs and benefits of brood size are still poorly understood. An experimental manipulation of brood size was employed to examine the effects of brood size on both parents and young in a wild population of barnacle geese [Branta leucopsis

  7. Effects of predation risk on site selection of barnacle geese during brood-rearing

    NARCIS (Netherlands)

    Stahl, J; Loonen, MJJE; Mehlum, F; Black, JM; Madsen, J

    1998-01-01

    Barnacle geese Branta leucopsis breed on small islands in the Kongsfjorden area, Spitsbergen. Shortly after hatching, families approach feeding sites at the mainland coast in the close surroundings of the village Ny-Alesund. The goslings are subject to predation by arctic foxes Alopex lagopus

  8. Epibiotic community on the acorn barnacle (Balanus amphitrite) from a monsoon-influenced tropical estuary

    Digital Repository Service at National Institute of Oceanography (India)

    Sahoo, G.; Khandeparker, L.

    The epibiotic communities (diatoms and metazoans) on the outer surfaces of the shell of the barnacle Balanus amphitrite (BSh) and its opercular valves (the scutum and tergum; BST) were investigated on a monthly basis for 1 year in a tropical monsoon...

  9. A case of homonymy in fossil verrucid barnacles: Verruca withersi (Crustacea, Thoracica)

    NARCIS (Netherlands)

    Jagt, J.W.M.; Buckeridge, J.S.

    2005-01-01

    For fossil verrucid barnacles, the name Verruca withersi appears to have been used twice; Schram & Newman described material from the Albian-Cenomanian (Cretaceous) of Colombia, while Kruizinga had previously recorded a new species from the Pleistocene(?) or perhaps younger strata of Sumba

  10. Body size declines despite positive directional selection on heritable size traits in a barnacle goose population

    NARCIS (Netherlands)

    Larsson, K; van der Jeugd, HP; van der Veen, IT; Forslund, P

    Analyses of more than 2000 marked barnacle geese (Branta leucopsis) in the largest Baltic colony, Sweden, showed that structurally large females generally produced larger clutches and larger eggs, hatched their broods earlier in the season, and produced more and heavier-young than smaller females.

  11. Speculations on the Immigration of the Barnacle Elminius modestus in France

    NARCIS (Netherlands)

    Hartog, den C.

    1956-01-01

    The literature on the recent immigration of the Australian barnacle Elminius modestus to West European coasts is rather exhaustive. The present author has given details on the exact centre of immigration on the Dutch coast. The spreading from this centre has been followed in subsequent years (DEN

  12. A further observation of muscle spindles in the extensor digitorum longus muscle of the aged rat.

    Science.gov (United States)

    Desaki, Junzo; Nishida, Naoya

    2010-01-01

    We observed three novel muscle spindles in the extensor digitorum longus muscle of the aged (20 months) rat. Two muscle spindles of the three contained thin muscle fibers lacking sensory innervation between the layers of the spindle capsule and within the periaxial space, respectively. The other one contained sensory-innervated thin muscle fibers with an indistinct equatorial nucleation between the layers of the spindle capsule. These findings suggest that the occurrence of thin muscle fibers may be intimately related to the degeneration and regeneration of extrafusal muscle fibers during aging and that these newly formed thin muscle fibers may often fail to receive sensory innervation.

  13. Skeletal muscle eEF2 and 4EBP1 phosphorylation during endurance exercise is dependent on intensity and muscle fiber type

    DEFF Research Database (Denmark)

    Rose, Adam John; Bisiani, Bruno; Vistisen, Bodil

    2009-01-01

    Protein synthesis in skeletal muscle is known to decrease during exercise and it has been suggested that this may depend on the magnitude of the relative metabolic stress within the contracting muscle. To examine the mechanisms behind this, the effect of exercise intensity on skeletal muscle......) increased during exercise but was not influenced by exercise intensity, and was lower than rest 30min after exercise. On the other hand, 4EBP1 phosphorylation at Thr(37/46) decreased during exercise and this decrease was greater at higher exercise intensities, and was similar to rest 30min after exercise....... AMPK activity, as indexed by AMPK alpha-subunit phosphorylation at Thr(172) and phosphorylation of the AMPK substrate ACCbeta at Ser(221), was higher with higher exercise intensities, and these indices were higher than rest after high intensity exercise only. Using immunohistochemistry, it was shown...

  14. Low-frequency fatigue is fiber type related and most pronounced after eccentric activity in rat medial gastrocnemius muscle

    NARCIS (Netherlands)

    Rijkelijkhuizen, J.M.; de Ruiter, C.J.; Huijing, P.A.J.B.M.; de Haan, A.

    2003-01-01

    Effects of fibre type composition and type of contraction on low-frequency fatigue (LFF) were investigated in isolated rat medial gastrocnemius (GM) muscle. Fast oxidative or fast glycolytic GM muscle parts of anaesthetised male Wistar rats (n=18) were activated selectively by maximal electrical

  15. Three dimensional finite element modeling of skeletal muscle using a two-domain approach: Linked fiber-matrix mesh model

    NARCIS (Netherlands)

    Yucesoy, C.A.; Huijing, P.A.J.B.M.; Koopman, Hubertus F.J.M.; Grootenboer, H.J.

    2002-01-01

    In previous applications of the finite element method in modeling mechanical behavior of skeletal muscle, the passive and active properties of muscle tissue were lumped in one finite element. Although this approach yields increased understanding of effects of force transmission, it does not support

  16. Muscle fiber conduction velocity and EMG amplitude of the upper trapezius muscle in healthy subjects after low-level laser irradiation: a randomized, double-blind, placebo-controlled, crossover study.

    Science.gov (United States)

    Sarilho de Mendonça, Fabiana; de Tarso Camillo de Carvalho, Paulo; Biasotto-Gonzalez, Daniela Aparecida; Calamita, Simone Aparecida Penimpedo; de Paula Gomes, Cid André Fidelis; Amorim, César Ferreira; Fumagalli, Marco Antônio; Politti, Fabiano

    2017-12-05

    Although low-level laser therapy (LLLT) is an important resource for the treatment of non-specific neck pain patients, the dose which presents the greatest therapeutic potential for the treatment of this pathology is still unclear. The present study aimed to evaluate the immediate effect of LLLT on the muscle fiber conduction velocity (MFCV) and electromyographic activity (EMG) of the upper trapezius (UT) muscle in healthy individuals. A total of 20 healthy subjects were enrolled in a randomized, double-blind, crossover study. Active LLLT (820 nm wavelength, 30 mW, energy total 18 J) or placebo LLLT (pLLLT) was delivered on the UT muscle. Each subject was subjected to a single session of active LLLT and pLLLT. Surface electromyography (sEMG) signal of the UT muscle was recorded during five different step contractions of shoulder elevation force (10-30% maximal voluntary contraction) pre- and post-LLLT irradiation. The values of MFCV and sEMG global amplitude (RMS G ) were used to calculate the effects of LLLT. The results showed no difference in the MFCV comparing the LLLT and pLLLT groups (F = 0.72 p = 0.39, η p 2  = 0.004). However, a significant difference was observed in the RMS G between the LLLT and pLLLT (F 1,2  = 16.66; P upper trapezius muscle in healthy subjects to a level of up to 30% of maximal voluntary contraction.

  17. An animal model for human masseter muscle: histochemical characterization of mouse, rat, rabbit, cat, dog, pig, and cow masseter muscle

    DEFF Research Database (Denmark)

    Tuxen, A; Kirkeby, S

    1990-01-01

    .4, type IM fibers react moderately, and type II fibers react strongly. Rat and mouse masseter muscles contained type II fibers only, as did some rabbit masseter muscles, whereas other rabbit masseter muscles possessed equal amounts of type I and II fibers. Cat and dog masseter muscles possessed both type...

  18. The development of a genome wide SNP set for the Barnacle goose Branta leucopsis.

    Directory of Open Access Journals (Sweden)

    Rudy M Jonker

    Full Text Available Migratory birds are of particular interest for population genetics because of the high connectivity between habitats and populations. A high degree of connectivity requires using many genetic markers to achieve the required statistical power, and a genome wide SNP set can fit this purpose. Here we present the development of a genome wide SNP set for the Barnacle Goose Branta leucopsis, a model species for the study of bird migration. We used the genome of a different waterfowl species, Mallard Anas platyrhynchos, as a reference to align Barnacle Goose second generation sequence reads from an RRL library and detected 2188 SNPs genome wide. Furthermore, we used chimeric flanking sequences, merged from both Mallard and Barnacle Goose DNA sequence information, to create primers for validation by genotyping. Validation with a 384 SNP genotyping set resulted in 374 (97% successfully typed SNPs in the assay, of which 358 (96% were polymorphic. Additionally, we validated our SNPs on relatively old (30 years museum samples, which resulted in a success rate of at least 80%. This shows that museum samples could be used in standard SNP genotyping assays. Our study also shows that the genome of a related species can be used as reference to detect genome wide SNPs in birds, because genomes of birds are highly conserved. This is illustrated by the use of chimeric flanking sequences, which showed that the incorporation of flanking nucleotides from Mallard into Barnacle Goose sequences lead to equal genotyping performance when compared to flanking sequences solely composed of Barnacle Goose sequence.

  19. The fluid dynamics of Balanus glandula barnacles: Adaptations to sheltered and exposed habitats.

    Science.gov (United States)

    Vo, Maureen; Mehrabian, Sasan; Villalpando, Fernando; Etienne, Stephane; Pelletier, Dominique; Cameron, Christopher B

    2018-04-11

    Suspension feeders use a wide range of appendages to capture particles from the surrounding fluid. Their functioning, either as a paddle or a sieve, depends on the leakiness, or amount of fluid that passes through the gaps between the appendages. Balanus glandula is the most common species of barnacle distributed along the Pacific coast of North America. It shows a strong phenotypic response to water flow velocity. Individuals from exposed, high flow sites have short and robust cirral filters, whereas those from sheltered, low velocity sites have long, spindly appendages. Computational fluid dynamics (CFD) simulations of these two ecophenotypes were done using a finite volume method. Leakiness was determined by simulating flow velocity fields at increasing Reynolds numbers, results that have been unattainable at higher velocities by observation. CFD also allowed us to characterize flow in hard to see regions of the feeding legs (rami). Laser-illumination experiments were performed at low to medium flow velocities in a flume tank and corroborated results from CFD. Barnacle filters from a sheltered site become completely leaky at Re=2.24(0.16m/s), well above the maximum habitat velocity, suggesting that this ecophenotype is not mechanically optimized for feeding. Barnacles from exposed environments become fully leaky within the range of habitat velocities Re=3.50(0.18m/s). Our CFD results revealed that the drag force on exposed barnacles feeding appendages are the same as the sheltered barnacles feeding appendages despite their shape difference and spacing ratio. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Effects of ionic strength on force transients induced by flash photolysis of caged ATP in covalently crosslinked rabbit psoas muscle fibers.

    Science.gov (United States)

    Yamada, K; Emoto, Y; Horiuti, K; Tawada, K

    1993-01-01

    Single fibers from glycerinated rabbit psoas muscle were treated with 1-ethyl-3[3-(dimethylamino) propyl] carbodiimide (EDC), after rigor was induced, to crosslink myosin heads to actin. The optimally pre-stretched (approximately 1.8%), partially crosslinked fibers produce a large force when MgATP is depleted, and this force is abolished when MgATP is reintroduced, even in high ionic strength solution of 0.5 M (Tawada et al. 1989). We investigated the rate of force decay in the crosslinked, force-producing fibers using pulse photolysis of caged ATP (Goldman et al. 1984). The decay of force was fast, the rate of which depending both on the ionic strength and on the amount of ATP released (0.2-2.2 mM) with the second-order rate constant of 0.5-1 x 10(5) M-1s-1 at the ionic strength of 0.5 M. At high ionic strength (1-2M) force decayed at lower rate. At low ionic strength (0.1-0.2 M), however, force decayed more rapidly, but force redeveloped subsequently, which is probably caused by uncrosslinked myosin heads.

  1. An optimized histochemical method to assess skeletal muscle glycogen and lipid stores reveals two metabolically distinct populations of type I muscle fibers

    DEFF Research Database (Denmark)

    Prats Gavalda, Clara; Gomez-Cabello, Alba; Nordby, Pernille

    2013-01-01

    Skeletal muscle energy metabolism has been a research focus of physiologists for more than a century. Yet, how the use of intramuscular carbohydrate and lipid energy stores are coordinated during different types of exercise remains a subject of debate. Controversy arises from contradicting data...

  2. Growth associated protein 43 is expressed in skeletal muscle fibers and is localized in proximity of mitochondria and calcium release units.

    Directory of Open Access Journals (Sweden)

    Simone Guarnieri

    Full Text Available The neuronal Growth Associated Protein 43 (GAP43, also known as B-50 or neuromodulin, is involved in mechanisms controlling pathfinding and branching of neurons during development and regeneration. For many years this protein was classified as neuron-specific, but recent evidences suggest that a GAP43 is expressed in the nervous system not only in neurons, but also in glial cells, and b probably it is present also in other tissues. In particular, its expression was revealed in muscles from patients affected by various myopathies, indicating that GAP43 can no-longer considered only as a neuron-specific molecule. We have investigated the expression and subcellular localization of GAP43 in mouse satellite cells, myotubes, and adult muscle (extensor digitorum longus or EDL using Western blotting, immuno-fluorescence combined to confocal microscopy and electron microscopy. Our in vitro results indicated that GAP43 is indeed expressed in both myoblasts and differentiating myotubes, and its cellular localization changes dramatically during maturation: in myoblasts the localization appeared to be mostly nuclear, whereas with differentiation the protein started to display a sarcomeric-like pattern. In adult fibers, GAP43 expression was evident with the protein labeling forming (in longitudinal views a double cross striation reminiscent of the staining pattern of other organelles, such as calcium release units (CRUs and mitochondria. Double immuno-staining and experiments done in EDL muscles fixed at different sarcomere lengths, allowed us to determine the localization, from the sarcomere Z-line, of GAP43 positive foci, falling between that of CRUs and of mitochondria. Staining of cross sections added a detail to the puzzle: GAP43 labeling formed a reticular pattern surrounding individual myofibrils, but excluding contractile elements. This work leads the way to further investigation about the possible physiological and structural role of GAP43 protein in

  3. Mouse model of testosterone-induced muscle fiber hypertrophy: involvement of p38 mitogen-activated protein kinase-mediated Notch signaling.

    Science.gov (United States)

    Brown, Danielle; Hikim, Amiya P Sinha; Kovacheva, Ekaterina L; Sinha-Hikim, Indrani

    2009-04-01

    As a prerequisite for studies using mutant mice, we established a mouse model for investigating the molecular mechanisms by which testosterone (T) promotes muscle growth. Groups of six adult male mice (C57BL/6) received one of the following treatments: 1) vehicle (sterile distilled water; normal control) and 2) GnRH antagonist with empty (sham control) or 2 cm T- filled implant. Mice were killed 2, 6, and 8 weeks after treatment. T treatment for 8 weeks resulted in a significant (Phypertrophy was accompanied by up-regulation of the Notch ligand Delta 1 and activation of Notch signaling, as evidenced by increase in activated forms of Notch 1 and Notch 2. Consistent with this, we also observed an increase in the number of proliferating cell nuclear antigen (PCNA)-positive nuclei in muscles of T-treated mice, indicating that activation of Notch signaling enhanced cell proliferation. T supplementation not only triggered p38 mitogen-activated protein kinase (MAPK) activation but also concurrently inhibited c-Jun NH(2)-terminal kinase (JNK) activation within 2 weeks of treatment. Concomitant administration of SB203580, a p38 MAPK inhibitor, effectively blocked T-induced activation of Notch signaling and significantly (Phypertrophy through activation of Notch signaling and the inactivation of JNK together with the activation of p38 MAPK may be critical for T-induced activation of Notch signaling and, as a consequence, muscle fiber hypertrophy.

  4. Characterisation of the bacteria associated with barnacle, Balanus amphitrite, shell and their role in gregarious settlement of cypris larvae

    Digital Repository Service at National Institute of Oceanography (India)

    BacchettiDeGregoris, T.; Khandeparker, L.; Anil, A.C.; Mesbahi, E.; Burgess, J.G.; Clare, A.S.

    biofilms at low taxonomic levels. Our results indicate that barnacle larvae may be able to detect parentally-associated biofilms and use this information to settle close to members of its own species....

  5. Electrical characteristics of rat skeletal muscle in immaturity, adulthood and after sciatic nerve injury, and their relation to muscle fiber size

    International Nuclear Information System (INIS)

    A Ahad, Mohammad; Fogerson, P Michelle; D Rosen, Glenn; Narayanaswami, Pushpa; Rutkove, Seward B

    2009-01-01

    Localized impedance methods can provide useful approaches for assessing neuromuscular disease. The mechanism of these impedance changes remains, however, uncertain. In order to begin to understand the relation of muscle pathology to surface impedance values, 8 immature rats, 12 mature rats and 8 mature rats that had undergone sciatic crush were killed. Measurement was made on tissue from the gastrocnemius muscle from each animal in an impedance cell, and the conductivity and relative permittivity of the tissue were calculated in both the longitudinal and transverse directions for frequencies of 2 kHz to 1 MHz. In addition, quantitative histological analysis was performed on the tissue. Significant elevations in transverse conductivity and transverse relative permittivity were found with animal growth, but longitudinal values showed no difference. After sciatic crush, both transverse and longitudinal conductivity increased significantly, with no change in the relative permittivity in either direction. The frequency dependence of the values also changed after nerve injury. In the healthy animals, there was a strong linear relation between measured conductivity and relative permittivity with cell area, but not for the sciatic crush animals. These results provide a first step toward developing a comprehensive understanding of how the electrical properties of muscle alter in neuromuscular disease states

  6. Similar changes in muscle fiber phenotype with differentiated consequences for rate of force development: endurance versus resistance training.

    Science.gov (United States)

    Farup, Jean; Sørensen, Henrik; Kjølhede, Tue

    2014-04-01

    Resistance training has been shown to positively affect the rate of force development (RFD) whereas there is currently no data on the effect of endurance training on RFD. Subjects completed ten weeks of either resistance training (RT, n=7) or endurance cycling (END, n=7). Pre and post measurements included biopsies obtained from m. vastus lateralis to quantify fiber phenotype and fiber area and isokinetic dynamometer tests to quantify maximal torque (Nm) and RFD (Nm/s) at 0-30, 0-50, 0-100 and 0-200ms during maximal isometric contraction for both knee extensors and flexors. Both groups increased the area percentage of type IIa fibers (presistance training may be very important for maintaining RFD, whereas endurance training may negatively impact RFD. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Comparison of myosin heavy chain mRNAs, protein isoforms and fiber type proportions in the rat slow and fast muscles

    Czech Academy of Sciences Publication Activity Database

    Žurmanová, J.; Soukup, Tomáš

    2013-01-01

    Roč. 62, č. 4 (2013), s. 445-453 ISSN 0862-8408 R&D Projects: GA ČR(CZ) GA304/08/0256; GA ČR(CZ) GA305/09/1228; GA MŠk(CZ) 7AMB12SK158; GA MŠk(CZ) LH12058 Grant - others:EC(XE) LSH-CT-2004-511978 Institutional research plan: CEZ:AV0Z50110509 Institutional support: RVO:67985823 Keywords : rat * soleus * extensor digitorum longus * myosin heavy chain isoforms * muscle gene expression * quantitative Real Time RT-PCR * SDS - PAGE * fiber type analysis Subject RIV: EA - Cell Biology Impact factor: 1.487, year: 2013

  8. Effects of creatine supplementation during resistance training on myosin heavy chain (MHC) expression in rat skeletal muscle fibers.

    Science.gov (United States)

    Aguiar, Andreo F; Aguiar, Danilo H; Felisberto, Alan D S; Carani, Fernanda R; Milanezi, Rachel C; Padovani, Carlos R; Dal-Pai-Silva, Maeli

    2010-01-01

    The purpose of this study was to utilize a rodent model to test the hypothesis that creatine (Cr) supplementation during resistance training would influence the pattern of slow-twitch muscle myosin heavy chain (MHC) isoforms expression. Male Wistar rats (2-3 months old, 250-300 g) were divided into 4 groups: Nontrained without creatine supplementation (CO), nontrained with creatine supplementation (CR), trained without creatine supplementation (TR), and trained with creatine supplementation (TRCR). TR and TRCR groups were submitted to a resistance training program for 5 weeks (5 days/week) for morphological and biochemical analysis of the soleus muscle. Weightlifting exercise involved jump sessions into water, carrying progressive overload equivalent to percentage of body weight. CR and TRCR groups were given creatine at 0.5 g/kg(-1)/d(-1). Both Cr supplementation and resistance training alone or associated did not result in significant alterations (p > 0.05) in body weight gain, food intake, and muscle weight in the CR, TR and TRCR groups compared to the CO group. Also compared to the CO group, the CR group showed a significant (p training did not promote significant (p > 0.05) changes in MHC content of the TRCR group compared to the CO group. The data show that Cr supplementation provides a potential action to abolish the exercise-induced MHC isoform transitions from slow to fast in slow-twitch muscle. Thus, Cr supplementation might be a suitable strategy to maintaining a slow phenotype in slow muscle during resistance training, which may be favorable to maintenance of muscle oxidative capacity of endurance athletes.

  9. Antifouling Activity of Simple Synthetic Diterpenoids against Larvae of the Barnacle Balanus albicostatus Pilsbry

    Directory of Open Access Journals (Sweden)

    Dan-Qing Feng

    2010-11-01

    Full Text Available Five new pimarane diterpenoids 1-5 were synthesized using ent-8(14-pimarene-15R,16-diol as starting material. The structures were elucidated by means of extensive NMR and MS analysis. The antifouling activity against larval settlement of the barnacle Balanus albicostatus were evaluated using capsaicin as a positive control. Compounds 1-3 and 5 showed more potent antifouling activity than capsaicin. Compound 5, which exhibited almost the same antifouling activity as starting material, showed better stability than starting material. These compounds all showed antifouling activity in a non-toxic way against larval settlement of the barnacle B. albicostatus. Analysis of structure-activity relationships (SAR demonstrated that the substituents on the C-15 and C-16 position of pimarane diterpenoid were responsible for the antifouling activity.

  10. Preslaughter handling effects on pork quality and glycolytic potential in two muscles differing in fiber type composition

    NARCIS (Netherlands)

    Hambrecht, E.; Eissen, J.J.; Newman, D.J.; Smits, C.H.M.; Verstegen, M.W.A.; Hartog, den L.A.

    2005-01-01

    The objective of the present experiment was to investigate the effects of transportation, lairage, and preslaughter stressor treatment on glycolytic potential and pork quality of the glycolytic longissimus and the oxidative supraspinatus (SSP) or serratus ventralis (SV) muscles. In a 2 x 2 x 2

  11. Myosin content of single muscle fibers following short-term disuse and active recovery in young and old healthy men

    DEFF Research Database (Denmark)

    Hvid, Lars G; Brocca, Lorenza; Ørtenblad, Niels

    2017-01-01

    Short-term disuse and subsequent recovery affect whole muscle and single myofiber contractile function in young and old. While the loss and recovery of single myofiber specific force (SF) following disuse and rehabilitation has been shown to correlate with alterations in myosin concentrations...

  12. Myopathic EMG findings and type II muscle fiber atrophy in patients with Lambert-Eaton myasthenic syndrome

    DEFF Research Database (Denmark)

    Crone, Clarissa; Christiansen, Ingelise; Vissing, John

    2013-01-01

    Lambert-Eaton myasthenic syndrome (LEMS) is a rare condition, which may mimic myopathy. A few reports have described that EMG in LEMS may show changes compatible with myopathy, and muscle biopsies have been described with type II as well as type I atrophy. The EMG results were, however, based...

  13. Muscle ceramide content in man is higher in type I than type II fibers and not influenced by glycogen content

    DEFF Research Database (Denmark)

    Nordby, P; Prats, C; Kristensen, D

    2010-01-01

    +/- 2 mL O2 min(-1) kg(-1)) participated in the study. On the first day, one leg was glycogen-depleted (DL) by exhaustive intermittent exercise followed by low carbohydrate diet. Next day, in the overnight fasted condition, muscle biopsies were excised from vastus lateralis before and after exhaustive...

  14. Neuronal nitric oxide synthase is dislocated in type I fibers of myalgic muscle but can recover with physical exercise training

    DEFF Research Database (Denmark)

    Jensen, L; Andersen, L L; Schrøder, H D

    2015-01-01

    Trapezius myalgia is the most common type of chronic neck pain. While physical exercise reduces pain and improves muscle function, the underlying mechanisms remain unclear. Nitric oxide (NO) signaling is important in modulating cellular function, and a dysfunctional neuronal NO synthase (nNOS) may...

  15. The Effect of Cleft Palate Repair on Contractile Properties of Single Permeabilized Muscle Fibers From Congenitally Cleft Goats Palates

    Science.gov (United States)

    A cleft palate goat model was used to study the contractile properties of the levator veli palatini (LVP) muscle which is responsible for the movement of the soft palate. In 15-25% of patients that undergo palatoplasty, residual velopharyngeal insufficiency (VPI) remains a problem and often require...

  16. Adaptation of rat jaw muscle fibers in postnatal development with a different food consistency: an immunohistochemical and electromyographic study

    NARCIS (Netherlands)

    Kawai, N.; Sano, R.; Korfage, J.A.M.; Nakamura, S.; Kinouchi, N.; Kawakami, E.; Tanne, K.; Langenbach, G.E.J.; Tanaka, E.

    2010-01-01

    The development of the craniofacial system occurs, among other reasons, as a response to functional needs. In particular, the deficiency of the proper masticatory stimulus affects the growth. The purpose of this study was to relate alterations of muscle activity during postnatal development to

  17. Oceanic barnacles act as foundation species on plastic debris: implications for marine dispersal

    OpenAIRE

    Gil, Michael A.; Pfaller, Joseph B.

    2016-01-01

    Plastic has emerged as an abundant, stable substratum for oceanic dispersal of organisms via rafting. However, the ecological mechanisms underlying community diversity on plastic debris remain poorly understood. On a cruise from California to Hawai?i, we surveyed plastic debris, some likely originating from the 2011 T?hoku tsunami, to examine the relationship between rafting community diversity and both habitat area and stalked barnacle (Lepas spp.) abundance. For sessile taxa richness, we ob...

  18. Fluvastatin and atorvastatin affect calcium homeostasis of rat skeletal muscle fibers in vivo and in vitro by impairing the sarcoplasmic reticulum/mitochondria Ca2+-release system.

    Science.gov (United States)

    Liantonio, Antonella; Giannuzzi, Viviana; Cippone, Valentina; Camerino, Giulia Maria; Pierno, Sabata; Camerino, Diana Conte

    2007-05-01

    The mechanism by which the 3-hydroxy-3-methyl-glutaryl-CoA reductase inhibitors (statins) induce skeletal muscle injury is still under debate. By using fura-2 cytofluorimetry on intact extensor digitorum longus muscle fibers, here we provided the first evidence that 2 months in vivo chronic treatment of rats with fluvastatin (5 and 20 mg kg-1) and atorvastatin (5 and 10 mg kg-1) caused an alteration of calcium homeostasis. All treated animals showed a significant increase of resting cytosolic calcium [Ca2+]i, up to 60% with the higher fluvastatin dose and up to 20% with the other treatments. The [Ca2+]i rise induced by statin administration was not due to an increase of sarcolemmal permeability to calcium. Furthermore, the treatments reduced caffeine responsiveness. In vitro application of fluvastatin caused changes of [Ca2+]i, resembling the effect obtained after the in vivo administration. Indeed, fluvastatin produced a shift of mechanical threshold for contraction toward negative potentials and an increase of resting [Ca2+]i. By using ruthenium red and cyclosporine A, we determined the sequence of the statin-induced Ca2+ release mechanism. Mitochondria appeared as the cellular structure responsible for the earlier event leading to a subsequent large sarcoplasmic reticulum Ca2+ release. In conclusion, we suggest that calcium homeostasis alteration may be a crucial event for myotoxicity induced by this widely used class of hypolipidemic drugs.

  19. Effects of conformational peptide probe DP4 on bidirectional signaling between DHPR and RyR1 calcium channels in voltage-clamped skeletal muscle fibers.

    Science.gov (United States)

    Olojo, Rotimi O; Hernández-Ochoa, Erick O; Ikemoto, Noriaki; Schneider, Martin F

    2011-05-18

    In skeletal muscle, excitation-contraction coupling involves the activation of dihydropyridine receptors (DHPR) and type-1 ryanodine receptors (RyR1) to produce depolarization-dependent sarcoplasmic reticulum Ca²⁺ release via orthograde signaling. Another form of DHPR-RyR1 communication is retrograde signaling, in which RyRs modulate the gating of DHPR. DP4 (domain peptide 4), is a peptide corresponding to residues Leu²⁴⁴²-Pro²⁴⁷⁷ of the central domain of the RyR1 that produces RyR1 channel destabilization. Here we explore the effects of DP4 on orthograde excitation-contraction coupling and retrograde RyR1-DHPR signaling in isolated murine muscle fibers. Intracellular dialysis of DP4 increased the peak amplitude of Ca²⁺ release during step depolarizations by 64% without affecting its voltage-dependence or kinetics, and also caused a similar increase in Ca²⁺ release during an action potential waveform. DP4 did not modify either the amplitude or the voltage-dependence of the intramembrane charge movement. However, DP4 augmented DHPR Ca²⁺ current density without affecting its voltage-dependence. Our results demonstrate that the conformational changes induced by DP4 regulate both orthograde E-C coupling and retrograde RyR1-DHPR signaling. Copyright © 2011 Biophysical Society. Published by Elsevier Inc. All rights reserved.