WorldWideScience

Sample records for barium titanate ceramics

  1. Impurities in barium titanate posistor ceramics

    Czech Academy of Sciences Publication Activity Database

    Korniyenko, S. M.; Bykov, I. P.; Glinchuk, M. J.; Laguta, V. V.; Belous, A. G.; Jastrabík, Lubomír

    2000-01-01

    Roč. 239, - (2000), s. 1209-1218 ISSN 0015-0193 Institutional research plan: CEZ:AV0Z1010914 Keywords : barium titanate phase transition * ESR * positive temperature coefficient of resistivity Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.547, year: 2000

  2. Preparation, structure and dielectric property of barium stannate titanate ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Wei Xiaoyong [Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education, Xi' an Jiaotong Univesity, Xi' an 710049 (China)]. E-mail: wdy@mail.xjtu.edu.cn; Yao Xi [Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education, Xi' an Jiaotong Univesity, Xi' an 710049 (China)

    2007-02-25

    The processing route of barium stannate titanate ceramics were optimized to prepare full composition range solid solution sample. The phase structure, microscopic morphology and dielectric properties of barium stannate titanate ceramics were studied. X-ray diffraction patterns indicated that the samples are of single perovskite structure. Linear empirical relationship between crystal lattice and tin content was proposed. This relationship is valid covering the full composition range, which suggests that this solid solution system is ultimate mutual soluble. The phase transition behavior was studied and a phase diagram was obtained based on the dielectric measurements.

  3. Synthesis of Barium Titanate Piezoelectric Ceramics for Multilayer Actuators (MLAs

    Directory of Open Access Journals (Sweden)

    Biglar Mojtaba

    2017-12-01

    Full Text Available In this paper the characteristics of BaTiO3 ceramics synthesized by solid state method is presented. In order to receive the monophase ceramics the double activation and calcination were applied. A spray drier was used to granulate the powder of BaTiO3. Isostatic and uniaxial pressing were applied to manufacture the barium titanate pellets. The properties of fabricated BaTiO3 ceramics were determined at different stages of production. After the sintering phase, the hardness, the bending strength, the fracture toughness, and the coefficient of thermal expansion of barium titanate sinter were estimated. The BaTiO3 powder is characterized by spherical grains and the average size of 0.5 μm. The small value of the specific surface area of granulate ensured good properties of material mouldability and finally allowed to receive sinters of high density.

  4. Compact pulse forming line using barium titanate ceramic material.

    Science.gov (United States)

    Kumar Sharma, Surender; Deb, P; Shukla, R; Prabaharan, T; Shyam, A

    2011-11-01

    Ceramic material has very high relative permittivity, so compact pulse forming line can be made using these materials. Barium titanate (BaTiO(3)) has a relative permittivity of 1200 so it is used for making compact pulse forming line (PFL). Barium titanate also has piezoelectric effects so it cracks during high voltages discharges due to stresses developed in it. Barium titanate is mixed with rubber which absorbs the piezoelectric stresses when the PFL is charged and regain its original shape after the discharge. A composite mixture of barium titanate with the neoprene rubber is prepared. The relative permittivity of the composite mixture is measured to be 85. A coaxial pulse forming line of inner diameter 120 mm, outer diameter 240 mm, and length 350 mm is made and the composite mixture of barium titanate and neoprene rubber is filled between the inner and outer cylinders. The PFL is charged up to 120 kV and discharged into 5 Ω load. The voltage pulse of 70 kV, 21 ns is measured across the load. The conventional PFL is made up of oil or plastics dielectrics with the relative permittivity of 2-10 [D. R. Linde, CRC Handbook of Chemistry and Physics, 90th ed. (CRC, 2009); Xia et al., Rev. Sci. Instrum. 79, 086113 (2008); Yang et al., Rev. Sci. Instrum. 81, 43303 (2010)], which increases the length of PFL. We have reported the compactness in length achieved due to increase in relative permittivity of composite mixture by adding barium titanate in neoprene rubber. © 2011 American Institute of Physics

  5. Experimental studies on 3D printing of barium titanate ceramics for medical applications

    Directory of Open Access Journals (Sweden)

    Schult Mark

    2016-09-01

    Full Text Available The present work deals with the 3D printing of porous barium titanate ceramics. Barium titanate is a biocompatible material with piezoelectric properties. Due to insufficient flowability of the starting material for 3D printing, the barium titanate raw material has been modified in three different ways. Firstly, barium titanate powder has been calcined. Secondly, flow additives have been added to the powder. And thirdly, flow additives have been added to the calcined powder. Finally, a polymer has been added to the three materials and specimens have been printed from these three material mixtures. The 3D printed parts were then sintered at 1320°C. The sintering leads to shrinkage which differs between 29.51–71.53% for the tested material mixtures. The porosity of the parts is beneficial for cell growth which is relevant for future medical applications. The results reported in this study demonstrate the possibility to fabricate porous piezoelectric barium titanate parts with a 3D printer that can be used for medical applications. 3D printed porous barium titanate ceramics can especially be used as scaffold for bone tissue engineering, where the bone formation can be promoted by electrical stimulation.

  6. Fabrication of crystal-oriented barium-bismuth titanate ceramics in high magnetic field and subsequent reaction sintering.

    Science.gov (United States)

    Tanaka, Satoshi; Tomita, Yusuke; Furushima, Ryoichi; Shimizu, Hiroyuki; Doshida, Yutaka; Uematsu, Keizo

    2009-02-01

    High magnetic field was applied to fabricate novel lead-free piezoelectric ceramics with a textured structure. A compact of crystallographically oriented grains was prepared by dry forming in a high magnetic field from a mixed slurry of bismuth titanate and barium titanate powders. Bismuth titanate particles with a size of about 1 μ m were used as the host material. In the forming process, the slurry was poured into a mold and set in a magnetic field of 10 T until completely dried. Bismuth titanate particles were highly oriented in the slurry under the magnetic field. The dried powder compact consisted of highly oriented bismuth titanate particles and randomly oriented barium titanate particles. Barium bismuth titanate ceramics with a - and b -axis orientations were successfully produced from the dried compact by sintering at temperatures above 1100 ° C.

  7. Review - Fabrication of crystal-oriented barium-bismuth titanate ceramics in high magnetic field and subsequent reaction sintering

    Directory of Open Access Journals (Sweden)

    Satoshi Tanaka, Yusuke Tomita, Ryoichi Furushima, Hiroyuki Shimizu, Yutaka Doshida and Keizo Uematsu

    2009-01-01

    Full Text Available High magnetic field was applied to fabricate novel lead-free piezoelectric ceramics with a textured structure. A compact of crystallographically oriented grains was prepared by dry forming in a high magnetic field from a mixed slurry of bismuth titanate and barium titanate powders. Bismuth titanate particles with a size of about 1 μ m were used as the host material. In the forming process, the slurry was poured into a mold and set in a magnetic field of 10 T until completely dried. Bismuth titanate particles were highly oriented in the slurry under the magnetic field. The dried powder compact consisted of highly oriented bismuth titanate particles and randomly oriented barium titanate particles. Barium bismuth titanate ceramics with a- and b-axis orientations were successfully produced from the dried compact by sintering at temperatures above 1100 ° C.

  8. Microwave assisted synthesis and characterization of barium titanate nanoparticles for multi layered ceramic capacitor applications.

    Science.gov (United States)

    Thirumalai, Sundararajan; Shanmugavel, Balasivanandha Prabu

    2011-01-01

    Barium titanate is a common ferroelectric electro-ceramic material having high dielectric constant, with photorefractive effect and piezoelectric properties. In this research work, nano-scale barium titanate powders were synthesized by microwave assisted mechano-chemical route. Suitable precursors were ball milled for 20 hours. TGA studies were performed to study the thermal stability of the powders. The powders were characterized by XRD, SEM and EDX Analysis. Microwave and Conventional heating were performed at 1000 degrees C. The overall heating schedule was reduced by 8 hours in microwave heating thereby reducing the energy and time requirement. The nano-scale, impurity-free and defect-free microstructure was clearly evident from the SEM micrograph and EDX patterns. LCR meter was used to measure the dielectric constant and dielectric loss values at various frequencies. Microwave heated powders showed superior dielectric constant value with low dielectric loss which is highly essential for the fabrication of Multi Layered Ceramic Capacitors.

  9. Microstructure Control of Barium Titanate Grain-oriented Ceramics and Their Piezoelectric Properties

    International Nuclear Information System (INIS)

    Mori, Rintaro; Nakashima, Koichi; Fujii, Ichiro; Wada, Satoshi; Hayashi, Hiroshi; Nagamori, Yoshitaka; Yamamoto, Yuichi

    2011-01-01

    The Barium titanate (BaTiO 3 , BT) [110] grain-oriented ceramics along [110] direction were prepared by a templated grain growth (TGG) method. The [110] oriented BT platelike particles (t-BT) were used as template particles. The relationship between poling treatment program and piezoelectric constant was investigated. The change in the poling conditions did not greatly influence domain size and the piezoelectric constant. The relationship between piezoelectric properties and domain size in BT grain-oriented ceramics was investigated. The smaller domain size was required to increase the piezoelectric constant.

  10. Impedance spectroscopy and dielectric studies of nanocrystalline iron doped barium strontium titanate ceramics

    Directory of Open Access Journals (Sweden)

    Reenu Jacob

    2015-06-01

    Full Text Available Barium titanate compounds have great research attention due to their good electric and in some case interesting magnetic properties. The synthesis and characterization of iron doped barium strontium titanate (BSFTO make an attempt to understand its structure and investigate electric/dielectric properties. The formation of a perovskite compound with tetragonal phase was confirmed through X-ray structural studies. Dielectric and electrical impedance properties of the sintered BSFTO ceramics were measured in the frequency range from 42 Hz to 2 MHz and at different temperatures (up to 600 °C. It was shown that the properties of this material are highly dependent on temperature and frequency. The nature of frequency dependence of AC conductivity confirms the Jonscher’s power law. The temperature dependence of DC conductivity obeys the Arrhenius behaviour.

  11. Study of the structure of ferroelectric domain walls in barium titanate ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Normand, L.; Thorel, A. [Centre des Materiaux, Evry cedex (France) ; Kilaas, R. [Lawrence Berkeley Lab., CA (United States); Montardi, Y. [Rhone-Poulenc, CRA, Aubervilliers (France)

    1995-02-01

    Structure of 90{degree} ferroelectric domain boundaries in barium titanate ceramics has been studied by means of Transmission Electron Microscopy and High Resolution TEM. Tilts of specific fringes across domain walls are measured on HREM images and Selected Area Diffraction Patterns. They are in a good agreement with the twin model admitted for these domain boundaries. A computerized method has been developed to give access to quantitative information about atomic displacements across these ferroelectric domain walls. The so calculated displacement field is then compared with Landau-Ginzburg based theoretical predictions.

  12. An in vitro study of electrically active hydroxyapatite-barium titanate ceramics using Saos-2 cells.

    Science.gov (United States)

    Baxter, Frances R; Turner, Irene G; Bowen, Christopher R; Gittings, Jonathan P; Chaudhuri, Julian B

    2009-08-01

    Electrically active ceramics are of interest as bone graft substitute materials. This study investigated the ferroelectric properties of hydroxyapatite-barium titanate (HABT) composites and the behaviour of osteoblast-like cells seeded on their surfaces. A piezoelectric coefficient (d(33)) of 57.8 pCN(-1) was observed in HABT discs prepared for cell culture. The attachment, proliferation, viability, morphology and metabolic activity of cells cultured on unpoled HABT were comparable to those observed on commercially available hydroxyapatite at all time points. No indication of the cytotoxicity of HABT was detected. At one day after seeding, cell attachment was modified on both the positive and negative surfaces of poled HABT. After longer incubations, all parameters observed were comparable on poled and unpoled ceramics. The results indicate that HABT ceramics are biocompatible in the short term in vitro and that further investigation of cell responses to these materials under mechanical load and at longer incubation times is warranted.

  13. Contribution of the irreversible displacement of domain walls to the piezoelectric effect in barium titanate and lead zirconate titanate ceramics

    CERN Document Server

    Damjanovic, D

    1997-01-01

    The contribution from the irreversible displacement of non-180 deg domain walls to the direct longitudinal piezoelectric d sub 3 sub 3 coefficient of BaTiO sub 3 and Pb(Zr, Ti)O sub 3 ceramics was determined quantitatively by using the Rayleigh law. Effects of the crystal structure and microstructure of the ceramics as well as the external d.c. pressure on the domain wall contribution to d sub 3 sub 3 were examined. In barium titanate, this domain wall contribution is large (up to 35% of the total d sub 3 sub 3 , under the experimental conditions used) and dependent on the external d.c. pressure in coarse grained ceramics, and much smaller and independent of the external d.c. pressure in fine-grained samples. The presence of internal stresses in fine-grained ceramics could account for the observed behaviour. The analysis shows that the domain-wall contribution to the d sub 3 sub 3 in lead zirconate titanate ceramics is large in compositions close to the morphotropic phase boundary that contain a mixture of te...

  14. Size effect of barium titanate and computer-aided design of multilayered ceramic capacitors.

    Science.gov (United States)

    Tsurumi, Takaaki; Hoshina, Takuya; Takeda, Hiroaki; Mizuno, Youichi; Chazono, Hirokazu

    2009-08-01

    The size effect of BaTiO3 (BTO) is the most important issue to design multilayer ceramic capacitors (MLCCs) with high capacitance. In the size effect of BTO particles, the size dependence of dielectric permittivity related with the complex structure in BTO nano-particles. The grain size dependence of dielectric permittivity in BTO ceramics was due to the domain wall contribution. The core-shell structure played an important role in the size effect of dielectric layers in X7R-MLCCs. Computer simulation technique was developed to predict the limit of capacitance density of MLCCs produced by the current technology. Dielectric properties of MLCCs with different particle size of BTO were measured, and the data were analyzed using B-SPLINE fitting to predict dielectric permittivity at arbitrary temperatures and AC-fields. The dielectric properties of barium titanate grains smaller than 100 nm were predicted using least squares fitting of the B-SPLINE coefficients. It was found from the simulation that the use of barium titanate grains smaller than 80 nm did not give an advantage to increase the capacitance density as well as temperature stability of the MLCCs. The maximum capacitance was predicted for the 1608 (mm) chip size.

  15. Unfolding grain size effects in barium titanate ferroelectric ceramics

    Science.gov (United States)

    Tan, Yongqiang; Zhang, Jialiang; Wu, Yanqing; Wang, Chunlei; Koval, Vladimir; Shi, Baogui; Ye, Haitao; McKinnon, Ruth; Viola, Giuseppe; Yan, Haixue

    2015-01-01

    Grain size effects on the physical properties of polycrystalline ferroelectrics have been extensively studied for decades; however there are still major controversies regarding the dependence of the piezoelectric and ferroelectric properties on the grain size. Dense BaTiO3 ceramics with different grain sizes were fabricated by either conventional sintering or spark plasma sintering using micro- and nano-sized powders. The results show that the grain size effect on the dielectric permittivity is nearly independent of the sintering method and starting powder used. A peak in the permittivity is observed in all the ceramics with a grain size near 1 μm and can be attributed to a maximum domain wall density and mobility. The piezoelectric coefficient d33 and remnant polarization Pr show diverse grain size effects depending on the particle size of the starting powder and sintering temperature. This suggests that besides domain wall density, other factors such as back fields and point defects, which influence the domain wall mobility, could be responsible for the different grain size dependence observed in the dielectric and piezoelectric/ferroelectric properties. In cases where point defects are not the dominant contributor, the piezoelectric constant d33 and the remnant polarization Pr increase with increasing grain size. PMID:25951408

  16. Unfolding grain size effects in barium titanate ferroelectric ceramics.

    Science.gov (United States)

    Tan, Yongqiang; Zhang, Jialiang; Wu, Yanqing; Wang, Chunlei; Koval, Vladimir; Shi, Baogui; Ye, Haitao; McKinnon, Ruth; Viola, Giuseppe; Yan, Haixue

    2015-05-07

    Grain size effects on the physical properties of polycrystalline ferroelectrics have been extensively studied for decades; however there are still major controversies regarding the dependence of the piezoelectric and ferroelectric properties on the grain size. Dense BaTiO3 ceramics with different grain sizes were fabricated by either conventional sintering or spark plasma sintering using micro- and nano-sized powders. The results show that the grain size effect on the dielectric permittivity is nearly independent of the sintering method and starting powder used. A peak in the permittivity is observed in all the ceramics with a grain size near 1 μm and can be attributed to a maximum domain wall density and mobility. The piezoelectric coefficient d33 and remnant polarization Pr show diverse grain size effects depending on the particle size of the starting powder and sintering temperature. This suggests that besides domain wall density, other factors such as back fields and point defects, which influence the domain wall mobility, could be responsible for the different grain size dependence observed in the dielectric and piezoelectric/ferroelectric properties. In cases where point defects are not the dominant contributor, the piezoelectric constant d33 and the remnant polarization Pr increase with increasing grain size.

  17. Defect properties of cobalt-doped hexagonal barium titanate ceramics.

    Science.gov (United States)

    Langhammer, H T; Böttcher, R; Müller, T; Walther, T; Ebbinghaus, S G

    2015-07-29

    X-ray diffraction (XRD) patterns, electron paramagnetic resonance (EPR) powder spectra (9 and 34 GHz) and the magnetic susceptibility of BaTiO3 + 0.04 BaO + x/2 Co2O3 (0.001 ⩽ x ⩽ 0.02) ceramics were studied to investigate the incorporation of Co ions in the BaTiO3 lattice and their valence states as well as the development of the hexagonal phase (6H modification) in dependence on doping level x and sintering temperature Ts. At Ts = 1400 °C the 6H modification begins to occur at a nominal Co concentration x of about 0.001 and for x > 0.005 the samples are completely hexagonal at room temperature. Two different EPR spectra were observed in the 6H modification of BaTiO3, which were both assigned to paramagnetic Co(2+) ions located at the two crystallographically non-equivalent Ti sites in 6H-BaTiO3. The EPR g tensor values as well as the molar paramagnetic susceptibility, measured in the temperature range 5 K-300 K at a magnetic field of 9 T, were analyzed in the framework of the ligand field theory using the program CONCORD. The combination of EPR and magnetic measurements reveals that in air-sintered 6H BaTiO3, the incorporated Co occurs as a mixture of paramagnetic Co(2+) and diamagnetic Co(3+) ions, whereas in samples annealed in reducing atmosphere the majority of Co is in the divalent state. The occurrence of Co(4+) can be excluded for all investigated samples. The sample color caused by Co(2+) and Co(3+) ions is beige/light yellow and dark grey/black, respectively. The majority of the Co(2+) ions substitutes Ti in the exclusively corner-sharing oxygen octahedra possessing nearly cubic symmetry. The corresponding ligand field parameter [Formula: see text] amounts to about -28 000 cm(-1) (Wybourne notation, 10Dq ≈ 20 000 cm(-1)). In the reduced samples nearly 5% of the detected Co(2+) ions occupy the Ti site in the face-sharing oxygen octahedra, which are significantly trigonally distorted. The negative sign of the obtained

  18. Effect of Semiconductor Element Substitution on the Electric Properties of Barium Titanate Ceramics

    Directory of Open Access Journals (Sweden)

    Garbarz-Glos B.

    2016-06-01

    Full Text Available The investigated ceramics were prepared by a solid-state reaction from simple oxides and carbonates with the use of a mixed oxide method (MOM. The morphology of BaTi0.96Si0.04O3 (BTSi04 ceramics was characterised by means of a scanning electron microscopy (SEM. It was found that Si+4 ion substitution supported the grain growth process in BT-based ceramics. The EDS results confirmed the high purity and expected quantitative composition of the synthesized material. The dielectric properties of the ceramics were also determined within the temperature range (ΔT=130-500K. It was found that the substitution of Si+4 ions had a significant influence on temperature behavior of the real (ε’ and imaginary (ε” parts of electric permittivity as well as the temperature dependence of a.c. conductivity. Temperature regions of PTCR effect (positive temperature coefficient of resistivity were determined for BTSi04 ceramics in the vicinity of structural phase transitions typical for barium titanate. No distinct maximum indicating a low-temperature structural transition to a rhombohedral phase in BTSi04 was found. The activation energy of conductivity was determined from the Arrhenius plots. It was found that substitution of Si ions in amount of 4wt.% caused almost 50% decrease in an activation energy value.

  19. LOWERING THE SINTERING TEMPERATURE OF BARIUM STRONTIUM TITANATE BULK CERAMICS BY BARIUM STRONTIUM TITANATE-GEL AND BaCu(B₂O₅

    Directory of Open Access Journals (Sweden)

    Uwe Gleissner

    2016-03-01

    Full Text Available In this paper the influence of barium strontium titanate (BST xerogel as a sinter additive and BaCu(B₂O₅(BCB as a liquid phase sintering aid on the sintering behavior of BST bulk ceramics is investigated. BST as well as BCB powders were synthesized via a mixed oxide route and BST gel via a sol-gel process. Compared to pure BST bulk ceramics, BST gel reduces the sintering start (onset temperature by up to 174°C and increases the density for a sintering temperature of 1200°C. By adding BCB to the BST powder the sintering was completed much faster and the onset temperatures were reduced by 281°C and 312°C for 1 mol% and 2.5 mol%, respectively. With 2.5 mol% BCB, the highest density of 96 % (5.41 g/cm³ was achieved at 950°C.

  20. Study of grain boundary tunneling in barium-titanate ceramic films

    CERN Document Server

    Wong, H; Poon, M C

    1999-01-01

    The temperature and the electric-field dependences of the current-voltage characteristics and the low-frequency noise of barium-titanate ceramic films are studied. An abnormal field dependence is observed in the resistivity of BaTiO sub 3 materials with a small average grain size. In addition, experiments show that the low-frequency noise behaviors are governed by grain-boundary tunneling at room temperature and by trapping-detrapping of grain-boundary states at temperatures above the Curie point. Physical models for the new observations are developed. Results suggest that grain-boundary tunneling of carriers is as important as the double Schottky barrier in the current conduction in BaTiO sub 3 materials with small grain sizes.

  1. Microstructure evolution and electrical characterization of Lanthanum doped Barium Titanate (BaTiO3) ceramics

    International Nuclear Information System (INIS)

    Billah, Masum; Ahmed, A.; Rahman, Md. Miftaur; Mahbub, Rubbayat; Gafur, M. A.; Bashar, M. Shahriar

    2016-01-01

    In the current work, we investigated the structural and dielectric properties of Lanthanum oxide (La 2 O 3 ) doped Barium Titanate (BaTiO 3 ) ceramics and established a correlation between them. Solid state sintering method was used to dope BaTiO 3 with 0.3, 0.5 and 0.7 mole% La 2 O 3 under different sintering parameters. The raw materials used were La 2 O 3 nano powder of ~80 nm grain size and 99.995% purity and BaTiO 3 nano powder of 100 nm grain size and 99.99% purity. Grain size distribution and morphology of fracture surface of sintered pellets were examined by Field Emission Scanning Electron Microscope and X-Ray Diffraction analysis was conducted to confirm the formation of desired crystal structure. The research result reveal that grain size and electrical properties of BaTiO 3 ceramic significantly enhanced for small amount of doping (up to 0.5 mole% La 2 O 3 ) and then decreased with increasing doping concentration. Desired grain growth (0.80-1.3 µm) and high densification (<90% theoretical density) were found by proper combination of temperature, sintering parameters and doping concentration. We found the resultant stable value of dielectric constant was 10000-12000 at 100-300 Hz in the temperature range of 30°-50° C for 0.5 mole% La 2 O 3 with corresponding shift of curie temperature around 30° C. So overall this research showed that proper La 3+ concentration can control the grain size, increase density, lower curie temperature and hence significantly improve the electrical properties of BaTiO 3 ceramics.

  2. Onset of multiferroicity in nickel and lithium co-substituted barium titanate ceramics

    Science.gov (United States)

    Alkathy, Mahmoud S.; James Raju, K. C.

    2018-04-01

    The structural, magnetic and ferroelectric properties of nickel and lithium co-substituted barium titanate were investigated in this work. Ba(1-x)LixNix/2TiO3 (x = 0, 0.02, 0.04 and 0.08) ceramics were synthesized via solid-state reaction with the assistance of microwave heating of the starting materials. The tetragonal structure has been observed in all samples, and it is confirmed by the Rietveld refinement study. The morphological study has been carried out by FE-SEM. Electron spin resonance (ESR) has been used to study the electron interaction and to verify the magnetism behavior of present samples. No resonance signal was observed in pure BaTiO3 samples. However, the resonance signal has appeared in the co-substituted samples. The result shows that the electron interactions are strongly affected by Ni2+ and Li+ concentrations. M-H loop was traced using VSM at room temperature. The results confirm that the sample with x = 0 shows an anti-ferromagnetic response. However, a ferromagnetic hysteresis loop arises with co-substitution. The emergence of M-H loops confirms the appearance of magnetic properties in Ni2+ and Li+ co-substituted BaTiO3 ceramics. The origin of magnetic behavior could be due to the carrier-mediated exchange interactions. Room temperature P-E hysteresis loop has been investigated at an applied electric field of 35 kV/cm and 33 Hz frequency. Measurements of room temperature ferroelectric and magnetic hysteresis loops indicate that the Ni2+ and Li+ co-substituted BaTiO3 ceramics show ferroelectricity and ferromagnetism simultaneously.

  3. Cavity resonator for dielectric measurements of high-ε, low loss materials, demonstrated with barium strontium zirconium titanate ceramics.

    Science.gov (United States)

    Marksteiner, Quinn R; Treiman, Michael B; Chen, Ching-Fong; Haynes, William B; Reiten, M T; Dalmas, Dale; Pulliam, Elias

    2017-06-01

    A resonant cavity method is presented which can measure loss tangents and dielectric constants for materials with dielectric constant from 150 to 10 000 and above. This practical and accurate technique is demonstrated by measuring barium strontium zirconium titanate bulk ferroelectric ceramic blocks. Above the Curie temperature, in the paraelectric state, barium strontium zirconium titanate has a sufficiently low loss that a series of resonant modes are supported in the cavity. At each mode frequency, the dielectric constant and loss tangent are obtained. The results are consistent with low frequency measurements and computer simulations. A quick method of analyzing the raw data using the 2D static electromagnetic modeling code SuperFish and an estimate of uncertainties are presented.

  4. Synthesis and Characterization of Low Loss Dielectric Ceramics Prepared from Composite of Titanate Nanosheets with Barium Ions

    Directory of Open Access Journals (Sweden)

    Aleksandra Wypych-Puszkarz

    2017-01-01

    Full Text Available We report a strategy for preparing barium titanate precursor, being the composite of titanate nanosheets (TN with barium ions (Ba-TN, which subjected to step sintering allows obtaining TiO2 rich barium titanate ceramics of stoichiometry BaTi4O9 or Ba2Ti9O20. These compounds are important in modern electronics due to their required dielectric properties and grains’ size that can be preserved in nanometric range. The morphology studies, structural characterization, and dielectric investigations were performed simultaneously in each step of Ba-TN calcinations in order to properly characterize type of obtained ceramic, its grains’ morphology, and dielectric properties. The Ba-TN precursor can be sintered at given temperatures, so that its dielectric permittivity can be tuned between 25 and 42 with controlled temperature coefficients that change from negative 32 ppm/°C for Ba-TN sintered at 900°C up to positive 37 ppm/°C after calcination at 1300°C. XRD analysis and Raman investigations performed for the Ba-TN in the temperature range of 900÷1250°C showed that below 1100°C we obtained as a main phase BaTi4O9, whereas the higher calcinations temperature transformed Ba-TN into Ba2Ti9O20. Taking into account trend of device miniaturization and nanoscopic size requirements, temperatures of 900°C and 1100°C seem to be an optimal condition for Ba-TN precursor calcinations that guarantee the satisfactory value of dielectric permittivity (ε=26 and 32 and ceramic grains with a mean size of ~180 nm and ~550 nm, respectively.

  5. Barium titanate coated with magnesium titanate via fused salt method and its dielectric property

    International Nuclear Information System (INIS)

    Chen Renzheng; Cui Aili; Wang Xiaohui; Li Longtu

    2003-01-01

    Barium titanate fine particles were coated homogeneously with magnesium titanate via the fused salt method. The thickness of the magnesium titanate film is 20 nm, as verified by TEM and XRD. The mechanism of the coating is that: when magnesium chloride is liquated in 800 deg. C, magnesium will replace barium in barium titanate, and form magnesium titanate film on the surface of barium titanate particles. Ceramics sintered from the coated particles show improved high frequency ability. The dielectric constant is about 130 at the frequency from 1 to 800 MHz

  6. History and challenges of barium titanate: Part II

    Directory of Open Access Journals (Sweden)

    Vijatović M.M.

    2008-01-01

    Full Text Available Barium titanate is the first ferroelectric ceramics and a good candidate for a variety of applications due to its excellent dielectric, ferroelectric and piezoelectric properties. Barium titanate is a member of a large family of compounds with the general formula ABO3 which is called perovskite. Barium titanate can be prepared using different methods. The synthesis method depends on the desired characteristics for the end application and the method used has a significant influence on the structure and properties of barium titanate materials. In this review paper, in Part II the properties of obtained materials and their application are presented.

  7. History and challenges of barium titanate: Part I

    Directory of Open Access Journals (Sweden)

    Vijatović M.M.

    2008-01-01

    Full Text Available Barium titanate is the first ferroelectric ceramics and a good candidate for a variety of applications due to its excellent dielectric, ferroelectric and piezoelectric properties. Barium titanate is a member of a large family of compounds with the general formula ABO3 called perovskites. Barium titanate can be prepared using different methods. The synthesis method depends on the desired characteristics for the end application. The used method has a significant influence on the structure and properties of barium titanate materials. In this review paper, Part I contains a study of the BaTiO3 structure and frequently used synthesis methods.

  8. Luminescence properties of barium--gadolinium-titanate ceramics doped with rare-earth ions (Eu3+ and Tb3+).

    Science.gov (United States)

    Hemasundara Raju, S; Muni Sudhakar, B; Sudhakar Reddy, B; Dhoble, S J; Thyagarajan, K; Nageswara Raju, C

    2014-11-01

    Barium-gadolinium-titanate (BaGd2 Ti4 O12) powder ceramics doped with rare-earth ions (Eu(3+) and Tb(3+)) were synthesized by a solid-state reaction method. From the X-ray diffraction spectrum, it was observed that Eu(3+) and Tb(3+):BaGd2 Ti4 O12 powder ceramics are crystallized in the form of an orthorhombic structure. Scanning electron microscopy image shows that the particles are agglomerated and the particle size is about 200 nm. Eu(3+) - and Tb(3+) -doped BaGd2 Ti4 O12 powder ceramics were examined by energy dispersive X-ray analysis, Fourier transform infrared spectroscopy, photoluminescence and thermoluminescence (TL) spectra. Emission spectra of Eu(3+)-doped BaGd2 Ti4 O12 powder ceramics showed bright red emission at 613 nm ((5)D0 →(7)F2) with an excitation wavelength λ(exci)  = 408 nm ((7)F0 → (5)D3) and Tb(3+):BaGd2 Ti4 O12 ceramic powder has shown green emission at 534 nm ((5)D4 → (7)F5) with an excitation wavelength λ(exci)  = 331 nm (((7)F6 → (5)D1). TL spectra show that Eu(3+) and Tb(3+) ions affect TL sensitivity. Copyright © 2014 John Wiley & Sons, Ltd.

  9. The Overview of The Electrical Properties of Barium Titanate

    OpenAIRE

    Burcu Ertuğ

    2013-01-01

    The perovskite family includes many titanates used in various electroceramic applications, for example, electronic, electro-optical, and electromechanical applications of ceramics. Barium titanate, perovskite structure, is a common ferroelectric material with a high dielectric constant, widely utilized to manufacture electronic components such as mutilayer capacitors (MLCs), PTC thermistors, piezoelectric transducers, and a variety of electro-optic devices. Pure barium titanate is an insulato...

  10. Measurement of Elastic Modulus of Alumina and Barium Strontium Titanate Wafers Produced by Tape Casting Method

    Science.gov (United States)

    2014-02-01

    DATES COVERED (From – To) 4. TITLE AND SUBTITLE MEASUREMENT OF ELASTIC MODULUS OF ALUMINA AND BARIUM STRONTIUM TITANATE WAFERS PRODUCED BY...configuration testing method. Samples of barium strontium titanate (BST) were made using a regular powder pressing, sintering, pelletizing, and...fabricated using thin wafers of barium strontium titanate (BST) and aluminum oxide (alumina) ceramic during launch of a system. Sandia National

  11. Effect of donor and acceptor dopants on crystallization, microstructural and dielectric behaviors of barium strontium titanate glass ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Yadav, Avadhesh Kumar, E-mail: yadav.av11@gmail.com [Department of Physics, Dr. Bheem Rao Ambedkar Government Degree College, Anaugi, Kannauj (India); Gautam, C.R. [Department of Physics, University of Lucknow, Lucknow 226007 (India); Singh, Prabhakar [Department of Physics, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005 (India)

    2016-07-05

    Bulk transparent barium strontium titanate borosilicate glasses in glass system (65-x)[(Ba{sub 0.6}Sr{sub 0.4}).TiO{sub 3}]-30[2SiO{sub 2}.B{sub 2}O{sub 3}]-5[K{sub 2}O]-x[A{sub 2}O{sub 3}], A = La, Fe (x = 2, 5 and 10) were prepared by rapid melt-quench technique and subsequently, converted into glass ceramics by regulated heat treatment process. The phase identification was carried out by X-ray powder diffraction and their surface morphology was studied by scanning electron microscopy. The dielectric properties were studied by impedance spectroscopic technique. Investigated glass samples were crystallized into major and secondary phases of Ba{sub 1.91}Sr{sub 0.09}TiO{sub 4} and Ba{sub 2}TiSi{sub 2}O{sub 8}, respectively. A very high dielectric constant having value upto 68000 was found in glass ceramic sample BST5K10F. This high value of dielectric constant was attributed to interfacial polarization, which arose due to conductivity difference among semiconducting crystalline phases, conducting grains and insulating grain boundaries. Donor dopant La{sub 2}O{sub 3} and acceptor dopant Fe{sub 2}O{sub 3} play an important role for enhancing crystallization, dielectric constant and retardation of dielectric loss in the samples. Moreover, higher value of dielectric constant and lower value of dielectric loss was found in Fe{sub 2}O{sub 3} doped samples in comparison to La{sub 2}O{sub 3} doped samples. - Highlights: • Bulk transparent barium strontium titanate glasses are successfully prepared. • A very high dielectric constant upto 68000 was found in glass ceramics. • La{sub 2}O{sub 3} and Fe{sub 2}O{sub 3} play role for enhancing value of dielectric constant. • Higher dielectric constant with low dielectric loss was found in Fe{sub 2}O{sub 3} doped sample. • Such glass ceramics may be used in making capacitors for high energy storage.

  12. Biocompatible evaluation of barium titanate foamed ceramic structures for orthopedic applications.

    Science.gov (United States)

    Ball, Jordan P; Mound, Brittnee A; Nino, Juan C; Allen, Josephine B

    2014-07-01

    The potential of barium titanate (BT) to be electrically active makes it a material of interest in regenerative medicine. To enhance the understanding of this material for orthopedic applications, the in vitro biocompatibility of porous BT fabricated using a direct foaming technique was investigated. Characterization of the resultant foams yielded an overall porosity between 50 and 70% with average pore size in excess of 30 µm in diameter. A mouse osteoblast (7F2) cell line was cultured with the BT to determine the extent of the foams' toxicity using a LDH assay. After 72 h, BT foams showed a comparable cytotoxicity of 6.4 ± 0.8% to the 8.4 ± 1.5% of porous 45S5 Bioglass®. The in vitro inflammatory response elicited from porous BT was measured as a function of tumor necrosis factor alpha (TNF-α) secreted from a human monocytic leukemia cell line (THP-1). Results indicate that the BT foams do not cause a significant inflammatory response, eliciting a 9.4 ± 1.3 pg of TNF-α per mL of media compared with 20.2 ± 2.3 pg/mL from untreated cells. These results indicate that porous BT does not exhibit short term cytotoxicity and has potential for orthopedic tissue engineering applications. © 2013 Wiley Periodicals, Inc.

  13. Microstructure evolution and electrical characterization of Lanthanum doped Barium Titanate (BaTiO{sub 3}) ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Billah, Masum, E-mail: masum.buet09@gmail.com; Ahmed, A., E-mail: jhinukbuetmme@gmail.com; Rahman, Md. Miftaur, E-mail: miftaurrahman@mme.buet.ac.bd [Department of Materials & Metallurgical Engineering, Bangladesh University of Engineering and Technology, Dhaka-1000 (Bangladesh); Mahbub, Rubbayat, E-mail: rubayyatm@gce.buet.ac.bd [Department of Glass and Ceramic Engineering, Bangladesh University of Engineering and Technology, Dhaka-1000 (Bangladesh); Gafur, M. A., E-mail: d-r-magafur@bcsir.gov.bd [Bangladesh Council of Scientific & Industrial Research (BCSIR), Dhaka-1205 (Bangladesh); Bashar, M. Shahriar, E-mail: bashar@agni.com [Institute of Fuel Research & Development, Bangladesh Council of Scientific & Industrial Research (BCSIR), Dhaka-1205 (Bangladesh)

    2016-07-12

    In the current work, we investigated the structural and dielectric properties of Lanthanum oxide (La{sub 2}O{sub 3}) doped Barium Titanate (BaTiO{sub 3}) ceramics and established a correlation between them. Solid state sintering method was used to dope BaTiO{sub 3} with 0.3, 0.5 and 0.7 mole% La{sub 2}O{sub 3} under different sintering parameters. The raw materials used were La{sub 2}O{sub 3} nano powder of ~80 nm grain size and 99.995% purity and BaTiO{sub 3} nano powder of 100 nm grain size and 99.99% purity. Grain size distribution and morphology of fracture surface of sintered pellets were examined by Field Emission Scanning Electron Microscope and X-Ray Diffraction analysis was conducted to confirm the formation of desired crystal structure. The research result reveal that grain size and electrical properties of BaTiO{sub 3} ceramic significantly enhanced for small amount of doping (up to 0.5 mole% La{sub 2}O{sub 3}) and then decreased with increasing doping concentration. Desired grain growth (0.80-1.3 µm) and high densification (<90% theoretical density) were found by proper combination of temperature, sintering parameters and doping concentration. We found the resultant stable value of dielectric constant was 10000-12000 at 100-300 Hz in the temperature range of 30°-50° C for 0.5 mole% La{sub 2}O{sub 3} with corresponding shift of curie temperature around 30° C. So overall this research showed that proper La{sup 3+} concentration can control the grain size, increase density, lower curie temperature and hence significantly improve the electrical properties of BaTiO{sub 3} ceramics.

  14. Dielectric properties of composite based on ferroelectric copolymer of poly(vinylidene fluoride-trifluoroethylene and ferroelectric ceramics of barium lead zirconate titanate

    Directory of Open Access Journals (Sweden)

    A. V. Solnyshkin

    2017-10-01

    Full Text Available A study of dielectric properties of composite films on the base of poly(vinylidene fluoride-trifluoroethylene copolymer P(VDF-TrFE and ferroelectric ceramics of barium lead zirconate titanate (BPZT solid solution is presented in this work. The composite films containing up to 50 vol.% of BPZT grains with size ∼1μm were prepared by the solvent cast method. Frequency dependences of real and imaginary components of the complex permittivity were determined. The concentration dependence of the dielectric constant was discussed.

  15. Doped barium titanate nanoparticles

    Indian Academy of Sciences (India)

    Wintec

    electric random access memories (FRAM) etc (Mathews et al 1997; Scott 1998; Park et al 1999). With the minia- turization of electronic devices, it is both scientifically interesting and technologically challenging to synthesize and characterize an ultrafine, preferably nanosized, bar- ium titanate powders. Bulk BaTiO3 has the ...

  16. Barium titanate nanometric polycrystalline ceramics fired by spark plasma sintering.

    Czech Academy of Sciences Publication Activity Database

    Ctibor, Pavel; Sedláček, J.; Ryukhtin, Vasyl; Cinert, Jakub; Lukáč, František

    2016-01-01

    Roč. 42, č. 14 (2016), s. 15989-15993 ISSN 0272-8842 R&D Projects: GA ČR GB14-36566G; GA MŠk LM2015056 Institutional support: RVO:61389021 ; RVO:61389005 Keywords : BaTiO3 * Spark plasma sintering * Electrical properties Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass; JH - Ceramics, Fire-Resistant Materials and Glass (UJF-V) Impact factor: 2.986, year: 2016 http://www.sciencedirect.com/science/article/pii/S0272884216311695

  17. Electric field induced strain, switching and energy storage behaviour of lead free Barium Zirconium Titanate ceramic

    Science.gov (United States)

    Badapanda, T.; Chaterjee, S.; Mishra, Anupam; Ranjan, Rajeev; Anwar, S.

    2017-09-01

    There is a huge demand of lead-free high performance ceramics with large strain, low hysteresis loss and high-energy storage ability at room temperature. In this context, we investigated the large electric field induced strain, switching behaviour and energy storage properties of BaZr0.05Ti0.95O3 ceramic (BZT) prepared by high energy ball milling technique, reportedly exhibiting a triple point transition near the room temperature. The X-ray diffraction of the BZT ceramic confirms orthorhombic symmetry with space group Amm2 at room temperature. The room temperature dielectric study reveals that there is a negligible variation of dielectric constant and dielectric loss with frequency. The polarization behaviour at various applied electric fields was studied and the energy storage densities were obtained from the integral area of P-E loops. Electric field induced strain behaviour has been studied with due emphasis on the electrostrictive response at room temperature. The ferroelectric and electromechanical properties derived from the P-E and S-E loops suggest that the present ceramic encompass the properties of actuation and energy storage simultaneously.

  18. Combinatorial bulk ceramic magnetoelectric composite libraries of strontium hexaferrite and barium titanate.

    Science.gov (United States)

    Pullar, Robert C

    2012-07-09

    Bulk ceramic combinatorial libraries were produced via a novel, high-throughput (HT) process, in the form of polycrystalline strips with a gradient composition along the length of the library. Step gradient ceramic composite libraries with 10 mol % steps of SrFe12O19-BaTiO3 (SrM-BT) were made and characterized using HT methods, as a proof of principle of the combinatorial bulk ceramic process, and sintered via HT thermal processing. It was found that the SrM-BT libraries sintered at 1175 °C had the optimum morphology and density. The compositional, electrical and magnetic properties of this library were analyzed, and it was found that the SrM and BT phases did not react and remained discrete. The combinatorial synthesis method produced a relatively linear variation in composition. The magnetization of the library followed the measured compositions very well, as did the low frequency permittivity values of most compositions in the library. However, with high SrM content of ≥80 mol %, the samples became increasingly conductive, and no reliable dielectric measurements could be made. Such conductivity would also greatly inhibit any ferroelectricity and magnetoelectric coupling with these composites with high levels of the SrM hexagonal ferrite.

  19. Anion and cation diffusion in barium titanate and strontium titanate

    International Nuclear Information System (INIS)

    Kessel, Markus Franz

    2012-01-01

    Perovskite oxides show various interesting properties providing several technical applications. In many cases the defect chemistry is the key to understand and influence the material's properties. In this work the defect chemistry of barium titanate and strontium titanate is analysed by anion and cation diffusion experiments and subsequent time-of-flight secondary ion mass spectrometry (ToF-SIMS). The reoxidation equation for barium titanate used in multi-layer ceramic capacitors (MLCCs) is found out by a combination of different isotope exchange experiments and the analysis of the resulting tracer diffusion profiles. It is shown that the incorporation of oxygen from water vapour is faster by orders of magnitude than from molecular oxygen. Chemical analysis shows the samples contain various dopants leading to a complex defect chemistry. Dysprosium is the most important dopant, acting partially as a donor and partially as an acceptor in this effectively acceptor-doped material. TEM and EELS analysis show the inhomogeneous distribution of Dy in a core-shell microstructure. The oxygen partial pressure and temperature dependence of the oxygen tracer diffusion coefficients is analysed and explained by the complex defect chemistry of Dy-doped barium titanate. Additional fast diffusion profiles are attributed to fast diffusion along grain boundaries. In addition to the barium titanate ceramics from an important technical application, oxygen diffusion in cubic, nominally undoped BaTiO 3 single crystals has been studied by means of 18 O 2 / 16 O 2 isotope exchange annealing and subsequent determination of the isotope profiles in the solid by ToF-SIMS. It is shown that a correct description of the diffusion profiles requires the analysis of the diffusion through the surface space-charge into the material's bulk. Surface exchange coefficients, space-charge potentials and bulk diffusion coefficients are analysed as a function of oxygen partial pressure and temperature. The

  20. Processing effects on core-shell grain formation in zirconium dioxide-modified barium titanate ceramics

    Science.gov (United States)

    Zhou, Lei

    2001-07-01

    Formation of core-shell grains in BaTiO3 based dielectric ceramics is essential to achieve stable dielectric temperature characteristic. This grain core-shell structure consists of a grain core, which is high purity BaTiO3, ferroelectric, and a paraelectric grain shell, where there is a concentration gradient of dopant. Most commonly core-shell additives are ZrO2, CeO2, Nb2O5+CO 2O3. As a result, internal stress is generated due to this dopant inhomogeneity within the grain and the normally sharp phase transition at Curie point becomes diffused. Up to now understanding and control of core-shell grains in BaTiO3 ceramics is still far from satisfying, which is the basis of this thesis work. In this work, processing influences on core-shell grain formation were investigated in the terms of powder size, stoichiometry, particle surface modification by slurry pH and leached Ba2+, pressing pressure and additive effects such as ZrO2, Nd2O3, BaO and flux CuO, BaCuO2, followed by multiple regression analysis to identify significant variables so as to form core-shell grains in a controller manner. It is found that ZrO2 amount; powder size, stoichiometry and temperature/time are most significant in control of core-shell characteristic (low Deltaepsilon% slurry pH; with adequate eutectic liquid phase, uniformly distributed fine grain morphology was achieved with high sintered densities. A dielectric formulation of 0.8˜1.3 wt% ZrO2, and 3 m/o BaCuO2 and 0.1˜0.3 m/o Nd2 O3 was successfully developed to be sintered at 1055˜1085°C/45˜90 min with Deltaepsilon% < 25%. This formulation has the potential to be co-fired with base metal electrodes.

  1. Microstructure evolution and phase transition in La/Mn doped barium titanate ceramics

    Directory of Open Access Journals (Sweden)

    Vesna Paunović

    2010-12-01

    Full Text Available La/Mn codoped BaTiO3 with different La2O3 content, ranging from 0.1 to 5.0 at% La, was investigated regarding their microstructural and dielectric characteristics. The content of 0.05 at% Mn was constant in all investigated samples. The samples were sintered at 1320°C and 1350°C for two hours. Microstructural studies were done using SEM and EDS analysis. The fine-grained microstructure was obtained even for low content of La. The appearance of secondary abnormal grains with serrated features along grain boundaries was observed in 1.0 at% La-BaTiO3 sintered at 1350°C. Nearly flat permittivity-temperature response was obtained in specimens with 2.0 and 5.0 at% La. Using the modified Curie-Weiss law a critical exponent γ and C’were calculated. The obtained values of γ pointed out the diffuse phase transformation in heavily doped BaTiO3 and great departure from the Curie-Weiss law for low doped ceramics.

  2. INFLUENCE OF REOXIDATION ON SILICA-CONTAINING BARIUM TITANATE CERAMICS FOR PTCR THERMISTORS PREPARED BY TAPE CASTING

    Directory of Open Access Journals (Sweden)

    Jianqiao Liu

    2016-03-01

    Full Text Available Silica-containing barium-rich BaTiO₃ ceramics for thermistors with a positive temperature coefficient of resistance are prepared by a tape-casting technique. The ceramics are sintered in a reducing atmosphere at low temperatures of 1175-1225°C. The influences of reoxidation are investigated after the reduced ceramics are reoxidized in air at 700-900°C. An anomalous correlation is illustrated between room temperature resistivity and reoxidation temperature. The anomaly results from the ferroelectricity rebuilding mechanism, which includes the spontaneous polarization theory and the ferroelectricity degradation caused by oxygen vacancies. The acceptor-state densities are estimated from the temperature-dependent resistivity. A critical temperature of 750-800°C is concluded for the grain boundary reoxidation.

  3. Centrifugal Jet Spinning for Highly Efficient and Large-scale Fabrication of Barium Titanate Nanofibers.

    Science.gov (United States)

    Ren, Liyun; Kotha, Shiva P

    2014-02-15

    The centrifugal jet spinning (CJS) method has been developed to enable large-scale synthesis of barium titanate nanofibers. Barium titanate nanofibers with fiber diameters down to 50 nm and grain sizes around 25 nm were prepared with CJS by spinning a sol-gel solution of barium titanate and poly(vinylpyrrolidone) with subsequent heat treatment at 850 °C. XRD and FTIR analysis demonstrated high purity and tetragonal perovskite structured barium titanate nanofibers. SEM and TEM images confirm the continuous high aspect ratio structure of barium titanate nanofibers after heat treatment. It is demonstrated that the CJS technique offers a highly efficient method for large-scale fabrication of ceramic nanofibers at production rates of up to 0.3 gram/minute.

  4. Hydrogen diffusion in lead zirconate titanate and barium titanate

    Science.gov (United States)

    Alvine, K. J.; Vijayakumar, M.; Bowden, M. E.; Schemer-Kohrn, A. L.; Pitman, S. G.

    2012-08-01

    Hydrogen is a potential clean-burning, next-generation fuel for vehicle and stationary power. Unfortunately, hydrogen is also well known to have serious materials compatibility issues in metals, polymers, and ceramics. Piezoelectric actuator materials proposed for low-cost, high efficiency high-pressure hydrogen internal combustion engines (HICE) are known to degrade rapidly in hydrogen. This limits their potential use and poses challenges for HICE. Hydrogen-induced degradation of piezoelectrics is also an issue for low-pressure hydrogen passivation in ferroelectric random access memory. Currently, there is a lack of data in the literature on hydrogen species diffusion in piezoelectrics in the temperature range appropriate for the HICE as charged via a gaseous route. We present 1HNMR quantification of the local hydrogen species diffusion within lead zirconate titanate and barium titanate on samples charged by exposure to high-pressure gaseous hydrogen ˜32 MPa. Results are discussed in context of theoretically predicted interstitial hydrogen lattice sites and aqueous charging experiments from existing literature.

  5. Synthesis of nanosized barium titanate/epoxy resin composites and ...

    Indian Academy of Sciences (India)

    Barium titanate/epoxy resin composites have been synthesized and tested for microwave absorption/ transmission. Nanocrystalline barium titanate (BaTiO3 or BT) ... Anechoic chamber; barium titanate; electromagnetic interference and compatibility; epoxy resin ..... electromagnetic waves, the two port calibrations have been.

  6. High temperature dielectric relaxation anomaly of Y³⁺ and Mn²⁺ doped barium strontium titanate ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Shiguang; Mao, Chaoliang, E-mail: maochaoliang@mail.sic.ac.cn, E-mail: xldong@mail.sic.ac.cn; Wang, Genshui; Yao, Chunhua; Cao, Fei; Dong, Xianlin, E-mail: maochaoliang@mail.sic.ac.cn, E-mail: xldong@mail.sic.ac.cn [Key Laboratory of Inorganic Functional Materials and Devices, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050 (China)

    2014-10-14

    Relaxation like dielectric anomaly is observed in Y³⁺ and Mn²⁺ doped barium strontium titanate ceramics when the temperature is over 450 K. Apart from the conventional dielectric relaxation analysis method with Debye or modified Debye equations, which is hard to give exact temperature dependence of the relaxation process, dielectric response in the form of complex impedance, assisted with Cole-Cole impedance model corrected equivalent circuits, is adopted to solve this problem and chase the polarization mechanism in this paper. Through this method, an excellent description to temperature dependence of the dielectric relaxation anomaly and its dominated factors are achieved. Further analysis reveals that the exponential decay of the Cole distribution parameter n with temperature is confirmed to be induced by the microscopic lattice distortion due to ions doping and the interaction between the defects. At last, a clear sight to polarization mechanism containing both the intrinsic dipolar polarization and extrinsic distributed oxygen vacancies hopping response under different temperature is obtained.

  7. The fabrication and characterization of barium titanate/akermanite nano-bio-ceramic with a suitable piezoelectric coefficient for bone defect recovery.

    Science.gov (United States)

    Shokrollahi, H; Salimi, F; Doostmohammadi, A

    2017-10-01

    In recent years, due to the controllable mechanical properties and degradation rate, calcium silicates such as akermanite (Ca 2 MgSi 2 O 7 ) with Ca-Mg and Si- containing bio-ceramics have received much more attention. In addition, the piezoelectric effect plays an important role in bone growth, remodeling and defect healing. To achieve our objective, the porous bioactive nano-composite with a suitable piezoelectric coefficient was fabricated by the freeze-casting technique from the barium titanate and nano-akermanite (BT/nAK) suspension. The highest d 33 of 4pC/N was obtained for BT90/nAK10. The compressive strength and porosity were for BT75/nAK25 and BT60/nAK40 at the highest level, respectively. The average pore channel diameter was 41 for BT75/nAK25. Interestingly enough, the inter-connected pore channel was observed in the SEM images. There was no detectable transformation phase in the XRD pattern for the BT/nAK composites. The manipulation flexibility of this method indicated the potential for the customized needs in the application of bone substitutes. An ((3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide)) MTT assay indicated that the obtained scaffolds have no cytotoxic effects on the human bone marrow mesenchymal stem cells. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Barium titanate nanoparticles: promising multitasking vectors in nanomedicine.

    Science.gov (United States)

    Genchi, Giada Graziana; Marino, Attilio; Rocca, Antonella; Mattoli, Virgilio; Ciofani, Gianni

    2016-06-10

    Ceramic materials based on perovskite-like oxides have traditionally been the object of intense interest for their applicability in electrical and electronic devices. Due to its high dielectric constant and piezoelectric features, barium titanate (BaTiO3) is probably one of the most studied compounds of this family. Recently, an increasing number of studies have been focused on the exploitation of barium titanate nanoparticles (BTNPs) in the biomedical field, owing to the high biocompatibility of BTNPs and their peculiar non-linear optical properties that have encouraged their use as nanocarriers for drug delivery and as label-free imaging probes. In this review, we summarize all the recent findings about these 'smart' nanoparticles, including the latest, most promising potential as nanotransducers for cell stimulation.

  9. Electrical characterization of zirconium substituted barium titanate ...

    Indian Academy of Sciences (India)

    Nyquist (Cole–Cole) plots show both inter and intra grain boundary ... Ferroelectrics; barium zirconate titanate; complex impedance spectroscopy. ... The impedance plots in the complex plane appear in the form of succe- ssion of semicircles representing electrical phenomena due to the bulk material, grain boundary effect ...

  10. Nanostructured tetragonal barium titanate produced by the polyol and spark plasma sintering (SPS) route

    Science.gov (United States)

    Acevedo-Salas, Ulises; Breitwieser, Romain; Gaudisson, Thomas; Nowak, Sophie; Ammar, Souad; Valenzuela, Raúl

    2017-10-01

    There is a great interest to synthesize ferroelectric ceramics both with fine grain size and significant electric properties. Here, we report the preparation of nanostructured tetragonal barium titanate by combining forced hydrolysis of metallic salts in polyol, soft annealing and 650 °C spark plasma sintering under uniaxial pressure of 120 MPa for 5 min. The stabilization of highly dense (density of 90%), nanostructured (grains about 50 nm) tetragonal barium titanate ceramic was achieved. The produced ceramic exhibited ferroelectric behavior and a dielectric permittivity of 3600 at 1 kHz and room temperature.

  11. Dielectric properties and vacancy-like defects in plasma-sprayed barium titanate.

    Czech Academy of Sciences Publication Activity Database

    Ctibor, Pavel; Čížek, J.; Sedláček, J.; Lukáč, František

    2017-01-01

    Roč. 100, č. 7 (2017), s. 2972-2983 ISSN 0002-7820 Institutional support: RVO:61389021 Keywords : barium titanate * plasma spraying * vacancies Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass OBOR OECD: Ceramics Impact factor: 2.841, year: 2016

  12. The review of various synthesis methods of barium titanate with the enhanced dielectric properties

    International Nuclear Information System (INIS)

    More, S. P.; Topare, R. J.

    2016-01-01

    The Barium Titanate is a very well known dielectric ceramic belongs to perovskite structure. It has very wide applications in the field of electronic, electro ceramic, electromechanical and electro-optical applications. Barium Titanate has very high dielectric constant as well as low dielectric loss. Substituted dielectrics are one of the most important technological compounds in modern electro ceramics. Its electrical properties can be tuned flexibly by a simple substitution technique. This has encouraged researchers to select a typical cation to be substituted at cationic sites. In the present paper, the review of various synthesis methods of Barium Titanate compound with the effect of different dopants, the grain size on the dielectric properties at various temperatures is discussed.

  13. Study of barium bismuth titanate prepared by mechanochemical synthesis

    Directory of Open Access Journals (Sweden)

    Lazarević Z.Ž.

    2009-01-01

    Full Text Available Barium-bismuth titanate, BaBi4Ti4O15 (BBT, a member of Aurivillius bismuth-based layer-structure perovskites, was prepared from stoichiometric amounts of barium titanate and bismuth titanate obtained via mechanochemical synthesis. Mechanochemical synthesis was performed in air atmosphere in a planetary ball mill. The reaction mechanism of BaBi4Ti4O15 and the preparation and characteristics of BBT ceramic powders were studied using XRD, Raman spectroscopy, particle analysis and SEM. The Bi-layered perovskite structure of BaBi4Ti4O15 ceramic forms at 1100 °C for 4 h without a pre-calcination step. The microstructure of BaBi4Ti4O15 exhibits plate-like grains typical for the Bi-layered structured material and spherical and polygonal grains. The Ba2+ addition leads to changes in the microstructure development, particularly in the change of the average grain size.

  14. Deflocculants for Tape Casting Barium Titanate.

    Science.gov (United States)

    1983-07-01

    are discussed in detail by Mitchell and Smith (2). The measurement of free and bound water was performed by titration to an electrometric end point by...the dead- stop ( biamperometric ) technique using a Fisher Model 391 aquametry apparatus. The fundamental theory behind this technique is reviewed p in... Titrations were performed at 25 ± 10C. "i 9 For insoluble materials, such as the barium titanate powder, the solid was added to the pyridine solvent

  15. Enhanced flexoelectricity through residual ferroelectricity in barium strontium titanate

    International Nuclear Information System (INIS)

    Garten, Lauren M.; Trolier-McKinstry, Susan

    2015-01-01

    Residual ferroelectricity is observed in barium strontium titanate ceramics over 30 °C above the global phase transition temperature, in the same temperature range in which anomalously large flexoelectric coefficients are reported. The application of a strain gradient leads to strain gradient-induced poling or flexoelectric poling. This was observed by the development of a remanent polarization in flexoelectric measurements, an induced d 33 piezoelectric response even after the strain gradient was removed, and the production of an internal bias of 9 kV m −1 . It is concluded that residual ferroelectric response considerably enhances the observed flexoelectric response

  16. Enhanced flexoelectricity through residual ferroelectricity in barium strontium titanate

    Energy Technology Data Exchange (ETDEWEB)

    Garten, Lauren M., E-mail: lmg309@psu.edu; Trolier-McKinstry, Susan [Department of Materials Science and Engineering and Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802 (United States)

    2015-03-07

    Residual ferroelectricity is observed in barium strontium titanate ceramics over 30 °C above the global phase transition temperature, in the same temperature range in which anomalously large flexoelectric coefficients are reported. The application of a strain gradient leads to strain gradient-induced poling or flexoelectric poling. This was observed by the development of a remanent polarization in flexoelectric measurements, an induced d{sub 33} piezoelectric response even after the strain gradient was removed, and the production of an internal bias of 9 kV m{sup −1}. It is concluded that residual ferroelectric response considerably enhances the observed flexoelectric response.

  17. Enhanced flexoelectricity through residual ferroelectricity in barium strontium titanate

    Science.gov (United States)

    Garten, Lauren M.; Trolier-McKinstry, Susan

    2015-03-01

    Residual ferroelectricity is observed in barium strontium titanate ceramics over 30 °C above the global phase transition temperature, in the same temperature range in which anomalously large flexoelectric coefficients are reported. The application of a strain gradient leads to strain gradient-induced poling or flexoelectric poling. This was observed by the development of a remanent polarization in flexoelectric measurements, an induced d33 piezoelectric response even after the strain gradient was removed, and the production of an internal bias of 9 kV m-1. It is concluded that residual ferroelectric response considerably enhances the observed flexoelectric response.

  18. Electrooptic modulation in thin film barium titanate plasmonic interferometers.

    Science.gov (United States)

    Dicken, Matthew J; Sweatlock, Luke A; Pacifici, Domenico; Lezec, Henri J; Bhattacharya, Kaushik; Atwater, Harry A

    2008-11-01

    We demonstrate control of the surface plasmon polariton wavevector in an active metal-dielectric plasmonic interferometer by utilizing electrooptic barium titanate as the dielectric layer. Arrays of subwavelength interferometers were fabricated from pairs of parallel slits milled in silver on barium titanate thin films. Plasmon-mediated transmission of incident light through the subwavelength slits is modulated by an external voltage applied across the barium titanate thin film. Transmitted light modulation is ascribed to two effects, electrically induced domain switching and electrooptic modulation of the barium titanate index.

  19. Structural and functional characterization of barium zirconium titanate / epoxy composites

    Directory of Open Access Journals (Sweden)

    Filiberto González Garcia

    2011-12-01

    Full Text Available The dielectric behavior of composite materials (barium zirconium titanate / epoxy system was analyzed as a function of ceramic concentration. Structure and morphologic behavior of the composites was investigated by X-ray Diffraction (XRD, Fourier transformed infrared spectroscopy (FT-IR, Raman spectroscopy, field emission scanning electron microscopy (FE-SEM and transmission electron microscopy (TEM analyses. Composites were prepared by mixing the components and pouring them into suitable moulds. It was demonstrated that the amount of inorganic phase affects the morphology of the presented composites. XRD revealed the presence of a single phase while Raman scattering confirmed structural transitions as a function of ceramic concentration. Changes in the ceramic concentration affected Raman modes and the distribution of particles along into in epoxy matrix. Dielectric permittivity and dielectric losses were influenced by filler concentration.

  20. Synthesis of Barium Titanate Using Deep Eutectic Solvents.

    Science.gov (United States)

    Boston, Rebecca; Foeller, Philip Y; Sinclair, Derek C; Reaney, Ian M

    2017-01-03

    Novel synthetic routes to prepare functional oxides at lower temperatures are an increasingly important area of research. Many of these synthetic routes, however, use water as the solvent and rely on dissolution of the precursors, precluding their use with, for example, titanates. Here we present a low-cost solvent system as a means to rapidly create phase-pure ferroelectric barium titanate using a choline chloride-malonic acid deep eutectic solvent. This solvent is compatible with alkoxide precursors and allows for the rapid synthesis of nanoscale barium titanate powders at 950 °C. The phase and morphology were determined, along with investigation of the synthetic pathway, with the reaction proceeding via BaCl 2 and TiO 2 intermediates. The powders were also used to create sintered ceramics, which exhibit a permittivity maximum corresponding to a tetragonal-cubic transition at 112 °C, as opposed to the more conventional temperature of ∼120 °C. The lower-than-expected value for the ferro- to para-electric phase transition is likely due to undetectable levels of contaminants.

  1. Preparation and characterization of nanofibers barium strontium titanate using electrospinning route

    International Nuclear Information System (INIS)

    Faraco, B.S.; Engel, A.B.; Alves, A.K.; Bergmann, C.P.

    2011-01-01

    The barium strontium titanate (BST) is a ferroelectric material well known for exhibiting a ferroelectric transition temperature that can be adjusted by varying the Ba /Sr ratio. The reduction of the Curie point can be achieved by the substitution of strontium for barium. Due to the combination of interesting properties, such as high crystallographic orientation of grains and high thermal stability, ferroelectric fibers have attracted considerable interest for their potential use as functional ceramic fibers in the reinforcement of ceramics and metals. The electrospinning process is an effective method for the preparation of nano ceramic fibers with uniform diameter and having different composition. The objective of this work was to product and to characterize the structure and morphology of barium strontium titanate nanofibers made using the electrospinning method. (author)

  2. Anion and cation diffusion in barium titanate and strontium titanate; Anionen- und Kationendiffusion in Barium- und Strontiumtitanat

    Energy Technology Data Exchange (ETDEWEB)

    Kessel, Markus Franz

    2012-12-19

    Perovskite oxides show various interesting properties providing several technical applications. In many cases the defect chemistry is the key to understand and influence the material's properties. In this work the defect chemistry of barium titanate and strontium titanate is analysed by anion and cation diffusion experiments and subsequent time-of-flight secondary ion mass spectrometry (ToF-SIMS). The reoxidation equation for barium titanate used in multi-layer ceramic capacitors (MLCCs) is found out by a combination of different isotope exchange experiments and the analysis of the resulting tracer diffusion profiles. It is shown that the incorporation of oxygen from water vapour is faster by orders of magnitude than from molecular oxygen. Chemical analysis shows the samples contain various dopants leading to a complex defect chemistry. Dysprosium is the most important dopant, acting partially as a donor and partially as an acceptor in this effectively acceptor-doped material. TEM and EELS analysis show the inhomogeneous distribution of Dy in a core-shell microstructure. The oxygen partial pressure and temperature dependence of the oxygen tracer diffusion coefficients is analysed and explained by the complex defect chemistry of Dy-doped barium titanate. Additional fast diffusion profiles are attributed to fast diffusion along grain boundaries. In addition to the barium titanate ceramics from an important technical application, oxygen diffusion in cubic, nominally undoped BaTiO{sub 3} single crystals has been studied by means of {sup 18}O{sub 2}/{sup 16}O{sub 2} isotope exchange annealing and subsequent determination of the isotope profiles in the solid by ToF-SIMS. It is shown that a correct description of the diffusion profiles requires the analysis of the diffusion through the surface space-charge into the material's bulk. Surface exchange coefficients, space-charge potentials and bulk diffusion coefficients are analysed as a function of oxygen partial

  3. Barium titanate nanocomposite capacitor FY09 year end report.

    Energy Technology Data Exchange (ETDEWEB)

    Stevens, Tyler E.; DiAntonio, Christopher Brian; Yang, Pin; Chavez, Tom P.; Winter, Michael R.; Monson, Todd C.; Roesler, Alexander William; Fellows, Benjamin D.

    2009-11-01

    This late start RTBF project started the development of barium titanate (BTO)/glass nanocomposite capacitors for future and emerging energy storage applications. The long term goal of this work is to decrease the size, weight, and cost of ceramic capacitors while increasing their reliability. Ceramic-based nanocomposites have the potential to yield materials with enhanced permittivity, breakdown strength (BDS), and reduced strain, which can increase the energy density of capacitors and increase their shot life. Composites of BTO in glass will limit grain growth during device fabrication (preserving nanoparticle grain size and enhanced properties), resulting in devices with improved density, permittivity, BDS, and shot life. BTO will eliminate the issues associated with Pb toxicity and volatility as well as the variation in energy storage vs. temperature of PZT based devices. During the last six months of FY09 this work focused on developing syntheses for BTO nanoparticles and firing profiles for sintering BTO/glass composite capacitors.

  4. Dielectric properties of barium titanate supramolecular nanocomposites.

    Science.gov (United States)

    Lee, Keun Hyung; Kao, Joseph; Parizi, Saman Salemizadeh; Caruntu, Gabriel; Xu, Ting

    2014-04-07

    Nanostructured dielectric composites can be obtained by dispersing high permittivity fillers, barium titanate (BTO) nanocubes, within a supramolecular framework. Thin films of BTO supramolecular nanocomposites exhibit a dielectric permittivity (εr) as high as 15 and a relatively low dielectric loss of ∼0.1 at 1 kHz. These results demonstrate a new route to control the dispersion of high permittivity fillers toward high permittivity dielectric nanocomposites with low loss. Furthermore, the present study shows that the size distribution of nanofillers plays a key role in their spatial distribution and local ordering and alignment within supramolecular nanostructures.

  5. Photoexcited-carrier transport in barium strontium titanate/strontium titanate heterostructures

    Science.gov (United States)

    Yan, H.; Wang, J. Y.; Zhang, Z. T.; Yang, B.; Chen, C. L.; Jin, K. X.

    2017-09-01

    Photoexcited-carrier transport properties at the surface and the interface of barium strontium titanate/strontium titanate heterostructures are reported. Under a 365 nm light irradiation, the surfaces of barium strontium titanate films exhibit a metal-to-insulator transition, while the interfaces favor the metallic conduction with increasing temperatures. By analyzing, we consider that these results might be attributed to the intrinsic features of strontium titanate and the polarization state of barium strontium titanate films under the irradiation. Our results would contribute to further understanding of the photocarrier effect at the interface and demonstrate great potential applications in optoelectronic devices of all-oxide heterostructures.

  6. Synthesis of barium titanate crystalline nanoparticles using hydrothermal microwave method

    International Nuclear Information System (INIS)

    Souza, A.E.; Silva, R.A.; Teixeira, S.R.; Moreira, M.L.; Volanti, D.P.; Longo, E.

    2009-01-01

    The hydrothermal microwave method (HTMW) was used in the synthesis of barium titanate (BaTiO 3 ) nanoparticles. The solution was prepared in deionized water by using titanium (IV) isopropoxide (C 12 H 28 O 4 Ti), barium chloride (BaCl 2 .2H 2 O) and potassium hydroxide (KOH). Afterwards it was heated in an adapted conventional microwave oven. The system is composed of a temperature controller with thermocouple, a hermetic camera of reaction made of teflon, a manometer and a safety valve. The solution was heated to 140 deg C, at a 140 deg C/min heating rate, and maintained at this temperature for 40 minutes. The obtained ceramic powder was characterized by using X-ray diffraction (XRD) and field emission scanning electron microscopy (FE-SEM). The XRD data confirms the formation of a high crystalline ceramic material with perovskite structure. The FE-SEM images reveal morphologies with dimensions varying from 27 to 54 nm. (author)

  7. Large Flexoelectric Anisotropy in Paraelectric Barium Titanate.

    Science.gov (United States)

    Narvaez, Jackeline; Saremi, Sahar; Hong, Jiawang; Stengel, Massimiliano; Catalan, Gustau

    2015-07-17

    The bending-induced polarization of barium titanate single crystals has been measured with an aim to elucidate the origin of the large difference between theoretically predicted and experimentally measured flexoelectricity in this material. The results indicate that part of the difference is due to polar regions (short-range order) that exist above T(C) and up to T*≈200-225 °C. Above T*, however, the flexovoltage coefficient still shows an unexpectedly large anisotropy for a cubic material, with (001)-oriented crystals displaying 10 times more flexoelectricity than (111)-oriented crystals. Theoretical analysis shows that this anisotropy cannot be a bulk property, and we therefore interpret it as indirect evidence for the theoretically predicted but experimentally elusive contribution of surface piezoelectricity to macroscopic bending-induced polarization.

  8. Large Flexoelectric Anisotropy in Paraelectric Barium Titanate

    Science.gov (United States)

    Narvaez, Jackeline; Saremi, Sahar; Hong, Jiawang; Stengel, Massimiliano; Catalan, Gustau

    2015-07-01

    The bending-induced polarization of barium titanate single crystals has been measured with an aim to elucidate the origin of the large difference between theoretically predicted and experimentally measured flexoelectricity in this material. The results indicate that part of the difference is due to polar regions (short-range order) that exist above TC and up to T*≈2 00 - 2 2 5 °C . Above T* , however, the flexovoltage coefficient still shows an unexpectedly large anisotropy for a cubic material, with (001)-oriented crystals displaying 10 times more flexoelectricity than (111)-oriented crystals. Theoretical analysis shows that this anisotropy cannot be a bulk property, and we therefore interpret it as indirect evidence for the theoretically predicted but experimentally elusive contribution of surface piezoelectricity to macroscopic bending-induced polarization.

  9. Study on a flexoelectric microphone using barium strontium titanate

    International Nuclear Information System (INIS)

    Kwon, S R; Huang, W B; Yuan, F G; Jiang, X N; Zhang, S J

    2016-01-01

    In this study, a flexoelectric microphone was, for the first time, designed and fabricated in a bridge structure using barium strontium titanate (Ba 0.65 Sr 0.35 TiO 3 ) ceramic and tested afterwards. The prototyped flexoelectric microphone consists of a 1.5 mm  ×  768 μm  ×  50 μm BST bridge structure and a silicon substrate with a cavity. The sensitivity and resonance frequency were designed to be 0.92 pC/Pa and 98.67 kHz, respectively. The signal to noise ratio was measured to be 74 dB. The results demonstrate that the flexoelectric microphone possesses high sensitivity and a wide working frequency range simultaneously, suggesting that flexoelectricity could be an excellent alternative sensing mechanism for microphone applications. (paper)

  10. Study on a flexoelectric microphone using barium strontium titanate

    Science.gov (United States)

    Kwon, S. R.; Huang, W. B.; Zhang, S. J.; Yuan, F. G.; Jiang, X. N.

    2016-04-01

    In this study, a flexoelectric microphone was, for the first time, designed and fabricated in a bridge structure using barium strontium titanate (Ba0.65Sr0.35TiO3) ceramic and tested afterwards. The prototyped flexoelectric microphone consists of a 1.5 mm  ×  768 μm  ×  50 μm BST bridge structure and a silicon substrate with a cavity. The sensitivity and resonance frequency were designed to be 0.92 pC/Pa and 98.67 kHz, respectively. The signal to noise ratio was measured to be 74 dB. The results demonstrate that the flexoelectric microphone possesses high sensitivity and a wide working frequency range simultaneously, suggesting that flexoelectricity could be an excellent alternative sensing mechanism for microphone applications.

  11. Study of the photovoltaic effect in thin film barium titanate

    Science.gov (United States)

    Grannemann, W. W.; Dharmadhikari, V. S.

    1983-01-01

    The feasibility of making non-volatile digital memory devices of barium titanate, BaTiO3, that are integrated onto a silicon substrate with the required ferroelectric film produced by processing, compatible with silicon technology was examined.

  12. Microstructure of doped barium titanate prepared from polymeric precursors

    Directory of Open Access Journals (Sweden)

    Stojanovic, B. D.

    2002-02-01

    Full Text Available Barium titanate is used extensively as a dielectric in ceramic capacitors, particularly due to its high dielectric constant and low dielectric loss characteristics. It can be made semiconducting by addition of certain dopants and by proper modification of grains and grain boundary properties obtaining very interesting characteristics for various applications. The synthesis method and sintering regime have a strong influence on properties of obtained barium titanate ceramics. Doped barium titanate was prepared with Nb+5 and Y+3 ions as donor dopants, and with Mn+2 ions as acceptor dopant by polymeric precursors method. By this procedure nanosized powders were obtained after calcination. Sintering was performed in the temperature range of 1290ºC to 1380ºC. The microstructure of doped BaTiO3 was performed using scanning electron microscopy. The influence of dopants and sintering temperature on grain size was analysed.

    El titanato de bario se usa extensamente como dieléctrico en condensadores cerámicos, debido principalmente a su elevada constante dieléctrica y a sus bajas pérdidas dieléctricas. Puede hacerse semiconductor mediante la adición de ciertos dopantes y a través de modificaciones adecuadas de las propiedades de los granos y los bordes de grano se obtienen características muy interesantes para muchas aplicaciones. El método de síntesis y el régimen de sinterización tienen una fuerte influencia sobre las propiedades del titanato de bario cerámico. El titanato de bario dopado con Nb5+ y Y3+ como dopantes donores y con Mn2+ como dopante aceptor se preparó mediante el método de precursores poliméricos. Mediante este procedimiento se obtuvieron polvos nanométricos después de la etapa de calcinación. La sinterización se realizó en el intervalo de temperaturas entre 1290ºC y 1380ºC. La microestructura del BaTiO3 dopado se estudió usando microscopía electrónica de barrido. Se analizó la influencia de los

  13. The Novel Formation of Barium Titanate Nanodendrites

    Directory of Open Access Journals (Sweden)

    Chien-Jung Huang

    2014-01-01

    Full Text Available The barium titanate (BaTiO3 nanoparticles with novel dendrite-like structures have been successfully fabricated via a simple coprecipitation method, the so-called BaTiO3 nanodendrites (BTNDs. This method was remarkable, fast, simple, and scalable. The growth solution is prepared by barium chloride (BaCl2, titanium tetrachloride (TiCl4, and oxalic acid. The shape and size of BaTiO3 depend on the amount of added BaCl2 solvent. To investigate the influence of amount of BaCl2 on BTNDs, the amount of BaCl2 was varied in the range from 3 to 6 mL. The role of BaCl2 is found to have remarkable influence on the morphology, crystallite size, and formation of dendrite-like structures. The thickness and length of the central stem of BTND were ~300 nm and ~20 μm, respectively. The branchings were found to occur at irregular intervals along the main stem. Besides, the formation mechanism of BTND is proposed and discussed.

  14. Mapping of strain mechanisms in barium titanate by three-dimensional X-ray diffraction

    DEFF Research Database (Denmark)

    Majkut, Marta

    This thesis presents an in-situ three-dimensional study of the grain-scale response of a prototypical piezoelectric ceramic, barium titanate (BT), to an exernally applied electric field. Piezoceramics take advantage of the coupling of electrical and mechanical energies for use in sensors and actu......This thesis presents an in-situ three-dimensional study of the grain-scale response of a prototypical piezoelectric ceramic, barium titanate (BT), to an exernally applied electric field. Piezoceramics take advantage of the coupling of electrical and mechanical energies for use in sensors...... to study the material at the grain scale. First, we use the intensity ratios of split diffraction peaks to extract grain-scale domain volume fractions for 139 grains. We find that even in the as-processed state there exist unequal volume fractions of each domain type, which we attribute to a heterogeneous...

  15. Specific features of the ferroelectric state in two-layer barium strontium titanate-based heterostructures

    Science.gov (United States)

    Stryukov, D. V.; Mukhortov, V. M.; Golovko, Yu. I.; Biryukov, S. V.

    2018-01-01

    The structural properties of one- and two-layer heterostructures based on the barium-strontium titanate of various compositions deposited by the Frank-Van der Merve on a magnesium oxide substrate have been studied. The heterostructures have been prepared by the rf sputtering of the stoichiometric ceramic targets in a Plazma 50 SE deposition system. The principal difference of this method of deposition from known analogs is that the growth of single-crystal films occurs from a disperse oxide phase formed in the plasma of a high-current rf discharge during the ceramic target sputtering at the cluster level. The peculiarities of the manifestation of the ferroelectric state in the two-layer heterostructures when changing the sequence order of the films with various compositions of barium-strontium titanate.

  16. Effects of surrounding powder in sintering process on the properties of Sb and Mn- doped barium-strontium titanate PTCR ceramics

    Directory of Open Access Journals (Sweden)

    Pornsuda Bomlai

    2006-05-01

    Full Text Available In this research, the effects of surrounding powder used during sintering of Sb and Mn doped bariumstrontium titanate (BST ceramics were studied. The ceramic samples were prepared by a conventional mixed-oxide method and placed on different powders during sintering. Phase formation, microstructure and PTCR behavior of the samples were then observed. Microstructures and PTCR behavior varied with the type of surrounding powder, whereas the crystal structure did not change. The surrounding powder has more effects on the shape of the grain than on the size. The grain size of samples was in the range of 5-20 μm. The most uniform grain size and the highest increase of the ratio of ρmax/ρRT were found to be about 106 for samples which had been sintered on Sb-doped BST powder. This value was an order of magnitude greater than for samples sintered on a powder of the equivalent composition to that of the sample pellet.

  17. Centrifugal Jet Spinning for Highly Efficient and Large-scale Fabrication of Barium Titanate Nanofibers

    OpenAIRE

    Ren, Liyun; Kotha, Shiva P.

    2013-01-01

    The centrifugal jet spinning (CJS) method has been developed to enable large-scale synthesis of barium titanate nanofibers. Barium titanate nanofibers with fiber diameters down to 50 nm and grain sizes around 25 nm were prepared with CJS by spinning a sol-gel solution of barium titanate and poly(vinylpyrrolidone) with subsequent heat treatment at 850 °C. XRD and FTIR analysis demonstrated high purity and tetragonal perovskite structured barium titanate nanofibers. SEM and TEM images confirm t...

  18. Barium titanate thick films prepared by screen printing technique

    Directory of Open Access Journals (Sweden)

    Mirjana M. Vijatović

    2010-06-01

    Full Text Available The barium titanate (BaTiO3 thick films were prepared by screen printing technique using powders obtained by soft chemical route, modified Pechini process. Three different barium titanate powders were prepared: i pure, ii doped with lanthanum and iii doped with antimony. Pastes for screen printing were prepared using previously obtained powders. The thick films were deposited onto Al2O3 substrates and fired at 850°C together with electrode material (silver/palladium in the moving belt furnace in the air atmosphere. Measurements of thickness and roughness of barium titanate thick films were performed. The electrical properties of thick films such as dielectric constant, dielectric losses, Curie temperature, hysteresis loop were reported. The influence of different factors on electrical properties values was analyzed.

  19. Methods for producing monodispersed particles of barium titanate

    Science.gov (United States)

    Hu, Zhong-Cheng

    2001-01-01

    The present invention is a low-temperature controlled method for producing high-quality, ultrafine monodispersed nanocrystalline microsphere powders of barium titanate and other pure or composite oxide materials having particles ranging from nanosized to micronsized particles. The method of the subject invention comprises a two-stage process. The first stage produces high quality monodispersed hydrous titania microsphere particles prepared by homogeneous precipitation via dielectric tuning in alcohol-water mixed solutions of inorganic salts. Titanium tetrachloride is used as an inorganic salt precursor material. The second stage converts the pure hydrous titania microsphere particles into crystalline barium titanate microsphere powders via low-temperature, hydrothermal reactions.

  20. Real time observation of the hydrothermal crystallization of barium titanate using in situ neutron powder diffraction.

    Science.gov (United States)

    Walton, R I; Millange, F; Smith, R I; Hansen, T C; O'Hare, D

    2001-12-19

    The hydrothermal crystallization of barium titanate, BaTiO3, has been studied in situ by time-resolved powder neutron diffraction methods using the recently developed Oxford/ISIS hydrothermal cell. This technique has allowed the formation of the ferroelectric ceramic to be followed in a noninvasive manner in real time and under genuine reaction conditions. In a first set of experiments, Ba(OD)2-8D2O was reacted with two different titanium sources, either crystalline TiO2 (anatase) or amorphous TiO2-H2O in D2O, at 100-140 degrees C and the reaction studied using the POLARIS time-of-flight neutron powder diffractometer, at the ISIS Facility. In a second series of experiments, the reaction between barium chloride and crystalline TiO2 (anatase) in NaOD/D2O was studied at temperatures between 100 and 200 degrees C and at different deuterioxide concentrations using the constant-wavelength D20 neutron powder diffractometer at the Institut Laue Langevin. Quantitative growth and decay curves were determined from analysis of the integrated intensities of Bragg reflections of starting materials and product phases. In both sets of experiments the rapid dissolution of the barium source was observed, followed by dissolution of the titanium source before the onset of crystallization of barium titanate. Using a nucleation-growth model we are able to simulate the growth curve of barium titanate at three temperatures. Our results indicate the predominance of a homogeneous dissolution-precipitation mechanism for the hydrothermal formation of barium titanate, rather than other possible mechanisms that have been discussed in the literature. Analysis of the line widths of the Bragg reflections in the neutron diffraction data indicates that the particle size of the BaTiO3 product phase prepared from the amorphous TiO2-H2O is smaller than that prepared from crystalline TiO2 (anatase).

  1. High-k 3D-barium titanate foam/phenolphthalein poly(ether sulfone)/cyanate ester composites with frequency-stable dielectric properties and extremely low dielectric loss under reduced concentration of ceramics

    Science.gov (United States)

    Zheng, Longhui; Yuan, Li; Guan, Qingbao; Liang, Guozheng; Gu, Aijuan

    2018-01-01

    Higher dielectric constant, lower dielectric loss and better frequency stability have been the developing trends for high dielectric constant (high-k) materials. Herein, new composites have been developed through building unique structure by using hyperbranched polysiloxane modified 3D-barium titanate foam (BTF) (BTF@HSi) as the functional fillers and phenolphthalein poly(ether sulfone) (cPES)/cyanate ester (CE) blend as the resin matrix. For BTF@HSi/cPES/CE composite with 34.1 vol% BTF, its dielectric constant at 100 Hz is as high as 162 and dielectric loss is only 0.007; moreover, the dielectric properties of BTF@HSi/cPES/CE composites exhibit excellent frequency stability. To reveal the mechanism behind these attractive performances of BTF@HSi/cPES/CE composites, three kinds of composites (BTF/CE, BTF/cPES/CE, BTF@HSi/CE) were prepared, their structure and integrated performances were intensively investigated and compared with those of BTF@HSi/cPES/CE composites. Results show that the surface modification of BTF is good for preparing composites with improved thermal stability; while introducing flexible cPES to CE is beneficial to fabricate composites with good quality through effectively blocking cracks caused by the stress concentration, and then endowing the composites with good dielectric properties at reduced concentration of ceramics.

  2. Preparation of stable dispersion of barium titanate nanoparticles: Potential applications in biomedicine.

    Science.gov (United States)

    Ciofani, G; Danti, S; Moscato, S; Albertazzi, L; D'Alessandro, D; Dinucci, D; Chiellini, F; Petrini, M; Menciassi, A

    2010-04-01

    Nanoscale structures and materials have been explored in many biological applications because of their extraordinary novel properties. Here we propose a study of cellular interactions with barium titanate nanoparticles, an interesting ceramic material that has received a lot of interest in the nanotechnology research, but without any attention about its biological potential. We introduced for the first time an efficient method for the preparation of stable aqueous dispersions of barium titanate nanoparticles, characterized with FIB, TEM and AFM imaging, light scattering, Z-potential and UV/vis analysis. Finally, we presented a systematic study of short-term cytotoxicity of the prepared dispersion based both on quantitative (metabolism, proliferation) and qualitative (apoptosis, viability, differentiation) assays. Copyright (c) 2009 Elsevier B.V. All rights reserved.

  3. Flexoelectric sensing using a multilayered barium strontium titanate structure

    International Nuclear Information System (INIS)

    Kwon, S R; Huang, W B; Yuan, F G; Jiang, X N; Zhang, S J

    2013-01-01

    The flexoelectric effect has been recently explored for its promise in electromechanical sensing. However, the relatively low flexoelectric coefficients of ferroelectrics inhibit the potential to develop flexoelectric sensing devices. In this paper, a multilayered structure using flexoelectric barium strontium titanate (Ba 0.65 Sr 0.35 TiO 3 or BST) ceramic was fabricated in an attempt to enhance the effective flexoelectric coefficients using its inherent scale effect, and hence to improve the flexoelectric sensitivity. The performances of piezoelectric and flexoelectric cantilevers with the same dimensions and under the same conditions were compared. Owing to the flexoelectric scaling effect, under the same force input, the BST flexoelectric structure generated a higher charge output than its piezoelectric P(VDF-TrFE) and PMN-30PT counterparts when its thickness was less than 73.1 μm and 1.43 μm, respectively. Also, amplification of the charge output using the multilayered structure was then experimentally verified. The prototyped structure consisted of three layers of 350 μm-thick BST plates with a parallel electric connection. The charge output was approximately 287% of that obtained using a single-layer structure with the same total thickness of the multilayered structure under the same end deflection input, which suggests high sensitivity sensing can be achieved using multilayer flexoelectric structures. (paper)

  4. Synthesis of nanosized barium titanate/epoxy resin composites and ...

    Indian Academy of Sciences (India)

    Anechoic chamber; barium titanate; electromagnetic interference and compatibility; epoxy resin composites; microwave absorbers; radio frequency absorbers. ... The reflection loss (RL) and transmission loss (TL) of the composite materials were measured by the reflection/transmission method using a vector network ...

  5. peroxo-oxalate preparation of doped barium titanate

    NARCIS (Netherlands)

    van der Gijp, S.; Winnubst, Aloysius J.A.; Verweij, H.

    1999-01-01

    The peroxo-oxalate complexation method is a method that can be used for the preparation of doped barium titanate. In this paper we focus on BaTi0.91Zr0.09O3, which can be used for discharge capacitors in lamp starters. The preparation method described here is based on the complexation and subsequent

  6. Microwave-hydrothermal synthesis of barium strontium titanate nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Simoes, A.Z., E-mail: alezipo@yahoo.co [Universidade Federal de Itajuba- Unifei - Campus Itabira, Rua Sao Paulo, 377, Bairro, Amazonas, CEP 35900-37, Itabira, MG (Brazil); Universidade Estadual Paulista- Unesp - Faculdade de Engenharia de Guaratingueta, Av. Dr. Ariberto Pereira da Cunha, 333, Bairro Pedregulho, CEP 12516-410 Guaratingueta, SP (Brazil); Moura, F.; Onofre, T.B. [Universidade Federal de Itajuba- Unifei - Campus Itabira, Rua Sao Paulo, 377, Bairro, Amazonas, CEP 35900-37, Itabira, MG (Brazil); Ramirez, M.A.; Varela, J.A.; Longo, E. [Laboratorio Interdisciplinar em Ceramica (LIEC), Departamento de Fisico-Quimica, Instituto de Quimica, UNESP, CEP 14800-900, Araraquara, SP (Brazil)

    2010-10-22

    Research highlights: {yields} Barium strontium titanate nanoparticles were obtained by the Hydrothemal microwave technique (HTMW) {yields} This is a genuine technique to obtain nanoparticles at low temperature and short times {yields} Barium strontium titanate free of carbonates with tetragonal structure was grown at 130 {sup o}C. - Abstract: Hydrothermal-microwave method (HTMW) was used to synthesize crystalline barium strontium titanate (Ba{sub 0.8}Sr{sub 0.2}TiO{sub 3}) nanoparticles (BST) in the temperature range of 100-130 {sup o}C. The crystallization of BST with tetragonal structure was reached at all the synthesis temperatures along with the formation of BaCO{sub 3} as a minor impurity at lower syntheses temperatures. Typical FT-IR spectra for tetragonal (BST) nanoparticles presented well defined bands, indicating a substantial short-range order in the system. TG-DTA analyses confirmed the presence of lattice OH- groups, commonly found in materials obtained by HTMW process. FE/SEM revealed that lower syntheses temperatures led to a morphology that consisted of uniform grains while higher syntheses temperature consisted of big grains isolated and embedded in a matrix of small grains. TEM has shown BST nanoparticles with diameters between 40 and 80 nm. These results show that the HTMW synthesis route is rapid, cost effective, and could serve as an alternative to obtain BST nanoparticles.

  7. Obtaining and electrical characterization of silicone/barium titanate composite for variable capacitor applications; Obtencao e caracterizacao eletrica de composito silicone/titanato de bario para aplicacoes em capacitor variavel

    Energy Technology Data Exchange (ETDEWEB)

    Vieira, D.A.; Souza, P.S.S.; Souza, C.P., E-mail: debora.vieira@cear.ufpb.br [Universidade Federal da Paraiba (UFPB), Joao Pessoa, PB (Brazil). Centro de Energias Alternativas e Renovaveis. Departamento de Engenharia Eletrica; Menezes, P.C.F. [Universidade Federal de Campina Grande (UFCG), Campina Grande, PB (Brazil). Departamento de Engenharia de Materiais

    2014-07-01

    Silicone/barium titanate composites are excellent candidates for applications in the production of electronics components. In this work, silicone/barium titanate composite was obtained for the production of capacitors with variable dielectric distance. The mixture of composite (20% of barium titanate) was performed in a mixer with stem type propellers, at room temperature for 20 minutes. The cure was held in vacuum kiln. After obtaining the composite, was mounted a parallel plate capacitor, using composite as dielectric. The composite obtained was subjected to x-ray diffraction, scanning electron microscopy and capacitive electrical test. The DRX confirms the presence of ceramic charge in composite with the presence of broad peaks of barium titanate and micrographs show the barium titanate particles dispersed in polymer matrix. The capacitance of the sample was approximately 28,7pF. (author)

  8. Pyroelectric response mechanism of barium strontium titanate ceramics in dielectric bolometer mode: The underlying essence of the enhancing effect of direct current bias field

    Energy Technology Data Exchange (ETDEWEB)

    Mao, Chaoliang; Cao, Sheng; Yan, Shiguang; Yao, Chunhua; Cao, Fei; Wang, Genshui; Dong, Xianlin [Key Laboratory of Inorganic Functional Materials and Devices, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Changning, Shanghai 200050 (China); Hu, Xu; Yang, Chunli [Kunming Institute of Physics, Kunming 650223 (China)

    2013-06-17

    Pyroelectric response mechanism of Ba{sub 0.70}Sr{sub 0.30}TiO{sub 3} ceramics under dielectric bolometer (DB) mode was investigated by dielectric and pyroelectric properties measurement. The variations of total, intrinsic, and induced pyroelectric coefficients (p{sub tot}, p{sub int}, p{sub ind}) with temperatures and bias fields were analyzed. p{sub int} plays the dominant role to p{sub tot} through most of the temperature range and p{sub ind} will be slightly higher than p{sub int} above T{sub 0}. The essence of the enhancing effect of DC bias field on pyroelectric coefficient can be attributed to the high value of p{sub int}. This mechanism is useful for the pyroelectric materials (DB mode) applications.

  9. Crystalline Structure, Defect Chemistry and Room Temperature Colossal Permittivity of Nd-doped Barium Titanate.

    Science.gov (United States)

    Sun, Qiaomei; Gu, Qilin; Zhu, Kongjun; Jin, Rongying; Liu, Jinsong; Wang, Jing; Qiu, Jinhao

    2017-02-13

    Dielectric materials with high permittivity are strongly demanded for various technological applications. While polarization inherently exists in ferroelectric barium titanate (BaTiO 3 ), its high permittivity can only be achieved by chemical and/or structural modification. Here, we report the room-temperature colossal permittivity (~760,000) obtained in xNd: BaTiO 3 (x = 0.5 mol%) ceramics derived from the counterpart nanoparticles followed by conventional pressureless sintering process. Through the systematic analysis of chemical composition, crystalline structure and defect chemistry, the substitution mechanism involving the occupation of Nd 3+ in Ba 2+ -site associated with the generation of Ba vacancies and oxygen vacancies for charge compensation has been firstly demonstrated. The present study serves as a precedent and fundamental step toward further improvement of the permittivity of BaTiO 3 -based ceramics.

  10. Barium Titanate Nanoparticles: Highly Cytocompatible Dispersions in Glycol-chitosan and Doxorubicin Complexes for Cancer Therapy

    Directory of Open Access Journals (Sweden)

    Danti Serena

    2010-01-01

    Full Text Available Abstract In the latest years, innovative nanomaterials have attracted a dramatic and exponentially increasing interest, in particular for their potential applications in the biomedical field. In this paper, we reported our findings on the cytocompatibility of barium titanate nanoparticles (BTNPs, an extremely interesting ceramic material. A rational and systematic study of BTNP cytocompatibility was performed, using a dispersion method based on a non-covalent binding to glycol-chitosan, which demonstrated the optimal cytocompatibility of this nanomaterial even at high concentration (100 μg/ml. Moreover, we showed that the efficiency of doxorubicin, a widely used chemotherapy drug, is highly enhanced following the complexation with BTNPs. Our results suggest that innovative ceramic nanomaterials such as BTNPs can be realistically exploited as alternative cellular nanovectors.

  11. Barium Titanate Nanoparticles: Highly Cytocompatible Dispersions in Glycol-chitosan and Doxorubicin Complexes for Cancer Therapy.

    Science.gov (United States)

    Ciofani, Gianni; Danti, Serena; D'Alessandro, Delfo; Moscato, Stefania; Petrini, Mario; Menciassi, Arianna

    2010-05-09

    In the latest years, innovative nanomaterials have attracted a dramatic and exponentially increasing interest, in particular for their potential applications in the biomedical field. In this paper, we reported our findings on the cytocompatibility of barium titanate nanoparticles (BTNPs), an extremely interesting ceramic material. A rational and systematic study of BTNP cytocompatibility was performed, using a dispersion method based on a non-covalent binding to glycol-chitosan, which demonstrated the optimal cytocompatibility of this nanomaterial even at high concentration (100 μg/ml). Moreover, we showed that the efficiency of doxorubicin, a widely used chemotherapy drug, is highly enhanced following the complexation with BTNPs. Our results suggest that innovative ceramic nanomaterials such as BTNPs can be realistically exploited as alternative cellular nanovectors.

  12. Room-temperature biosynthesis of ferroelectric barium titanate nanoparticles.

    Science.gov (United States)

    Bansal, Vipul; Poddar, Pankaj; Ahmad, Absar; Sastry, Murali

    2006-09-13

    The syntheses of inorganic materials by biological systems is characterized by processes that occur close to ambient temperatures, pressures, and neutral pH, as is exemplified by biosilicification and biomineralization processes in nature. Conversely, laboratory-based syntheses of oxide materials often require extremes of temperature and pressure. We have shown here the extracellular, room-temperature biosynthesis of 4-5 nm ternary oxide nanoparticles such as barium titanate (BT) using a fungus-mediated approach. The tetragonality as well as a lowered Curie transition temperature in sub-10 nm particles was established, and the ferroelectricity in these particles was shown using Kelvin probe microscopy.

  13. Barium strontium titanate powders prepared by spray pyrolysis

    International Nuclear Information System (INIS)

    Brankovic, G.; Brankovic, Z.; Goes, M.S.; Paiva-Santos, C.O.; Cilense, M.; Varela, J.A.; Longo, E.

    2005-01-01

    Ultasonic spray pyrolysis (SP) has been investigated for the production of the barium strontium titanate (BST) powders from the polymeric precursors. The processing parameters, such as flux of aerosol and temperature profile inside the furnace, were optimized to obtain single phase BST. The powders were characterized by the methods of X-ray diffraction analysis, SEM, EDS and TEM. The obtained powders were submicronic, consisting of spherical, polycrystalline particles, with internal nanocrystalline structure. Crystallite size of 10 nm, calculated using Rietveld refinement, is in a good agreement with results of HRTEM

  14. The influence of cation ordering, oxygen vacancy distribution and proton siting on observed properties in ceramic electrolytes: the case of scandium substituted barium titanate.

    Science.gov (United States)

    Torino, Nico; Henry, Paul F; Knee, Christopher S; Bjørheim, Tor Svendsen; Rahman, Seikh M H; Suard, Emma; Giacobbe, Carlotta; Eriksson, Sten G

    2017-07-04

    The origin of the 2-order of magnitude difference in the proton conductivity of the hydrated forms of hexagonal and cubic oxygen deficient BaSc x Ti 1-x O 3-δ (x = 0.2 and x = 0.7) was probed using a combination of neutron diffraction and density functional theory techniques to support published X-ray diffraction, conductivity, thermogravimetric and differential scanning calorimetry studies. Cation ordering is found in the 6H structure type (space group P6 3 /mmc) adopted by BaSc 0.2 Ti 0.8 O 3-δ with scandium preferentially substituting in the vertex sharing octahedra (2a crystallographic site) and avoiding the face-sharing octahedra (4f site). This is coupled with oxygen vacancy ordering in the central plane of the face-sharing octahedra (O1 site). In BaSc 0.7 Ti 0.3 O 3-δ a simple cubic perovskite (space group Pm3[combining macron]m) best represents the average structure from Rietveld analysis with no evidence of either cation ordering or oxygen vacancy ordering. Significant diffuse scattering is observed, indicative of local order. Hydration in both cases leads to complete filling of the available oxygen vacancies and permits definition of the proton sites. We suggest that the more localised nature of the proton sites in the 6H structure is responsible for the significantly lower proton conduction observed in the literature. Within the 6H structure type final model, proton diffusion requires a 3-step process via higher energy proton sites that are unoccupied at room temperature and is also likely to be anisotropic whereas the highly disordered cubic perovskite proton position allows 3-dimensional diffusion by well-described modes. Finally, we propose how this knowledge can be used to further materials design for ceramic electrolytes for proton conducting fuel cells.

  15. Electron microscopy of X7R and Y5V type barium titanate multilayer ceramic capacitors with noble and base metal electrodes

    Science.gov (United States)

    Feng, Qiquan

    Two types of multilayer ceramic capacitors (MLCCs), Y5V with Ni electrodes and X7R with Ag/Pd electrodes, were characterized by transmission electron microscopy (TEM) and showed quite different microstructures which determined their dielectric behaviors. In X7R-type MLCCs, core-shell structures were observed. The flat dielectric constant-temperature curves obtained from these materials can be interpreted in terms of the internal stress states in individual grains. The stress states were observed using weak beam dark field (WBDF) microscopy. The strain contours observed were formed by distorted crystal planes and were dependent on the stress state of the crystal instead of crystal symmetry. The stress distribution in individual grains was determined by both the thickness ratio of shell and core and the geometrical relationship of the core and the shell. (111) lamella twins and dislocation loops in the paraelectric phases of BaTiO3 doped with Bi2O3 were analyzed by TEM under two-beam conditions. Y5V-type MLCCs based on re-oxidized Ba(Ti 0.88,Zr0.12)O3 (BTZ) materials exhibited frequency relaxation effects. Multi-domain structures coexisting in one grain were observed at dynamical diffraction conditions. Uneven distribution of internal stress and coexistence of multi-phases and multi-domains in individual grains were considered to be responsible for the frequency relaxor behavior observed in these materials. The compatibility of electrodes and dielectrics in cofired MLCCs with both Ni and Ag/Pd electrodes was characterized by TEM using tripod polished samples. NiO lamellae and P-rich intermediate layers were found in highly accelerated life tested (HALT) MLCCs with Ni electrodes. It is believed that Mn ions were reduced by the Ni electrodes, as P-rich and Mn-rich segregated layers were observed in the virginal non-life tested MLCCs. No silver diffusion was found in either the BaTiO3 based perovskite lattices or the flux phases in air-fired X7R type MLCCs.

  16. Flexoelectricity in barium strontium titanate thin film

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Seol Ryung; Huang, Wenbin; Yuan, Fuh-Gwo; Jiang, Xiaoning, E-mail: xjiang5@ncsu.edu [Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, North Carolina 27695 (United States); Shu, Longlong [Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, North Carolina 27695 (United States); Electronic Materials Research Laboratory, International Center for Dielectric Research, Xi' an Jiao Tong University, Xi' an, Shaanxi 710049 (China); Maria, Jon-Paul [Department of Material Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695 (United States)

    2014-10-06

    Flexoelectricity, the linear coupling between the strain gradient and the induced electric polarization, has been intensively studied as an alternative to piezoelectricity. Especially, it is of interest to develop flexoelectric devices on micro/nano scales due to the inherent scaling effect of flexoelectric effect. Ba{sub 0.7}Sr{sub 0.3}TiO{sub 3} thin film with a thickness of 130 nm was fabricated on a silicon wafer using a RF magnetron sputtering process. The flexoelectric coefficients of the prepared thin films were determined experimentally. It was revealed that the thin films possessed a transverse flexoelectric coefficient of 24.5 μC/m at Curie temperature (∼28 °C) and 17.44 μC/m at 41 °C. The measured flexoelectric coefficients are comparable to that of bulk BST ceramics, which are reported to be 10–100 μC/m. This result suggests that the flexoelectric thin film structures can be effectively used for micro/nano-sensing devices.

  17. Flexoelectricity in barium strontium titanate thin film

    International Nuclear Information System (INIS)

    Kwon, Seol Ryung; Huang, Wenbin; Yuan, Fuh-Gwo; Jiang, Xiaoning; Shu, Longlong; Maria, Jon-Paul

    2014-01-01

    Flexoelectricity, the linear coupling between the strain gradient and the induced electric polarization, has been intensively studied as an alternative to piezoelectricity. Especially, it is of interest to develop flexoelectric devices on micro/nano scales due to the inherent scaling effect of flexoelectric effect. Ba 0.7 Sr 0.3 TiO 3 thin film with a thickness of 130 nm was fabricated on a silicon wafer using a RF magnetron sputtering process. The flexoelectric coefficients of the prepared thin films were determined experimentally. It was revealed that the thin films possessed a transverse flexoelectric coefficient of 24.5 μC/m at Curie temperature (∼28 °C) and 17.44 μC/m at 41 °C. The measured flexoelectric coefficients are comparable to that of bulk BST ceramics, which are reported to be 10–100 μC/m. This result suggests that the flexoelectric thin film structures can be effectively used for micro/nano-sensing devices.

  18. Barium titanate core--gold shell nanoparticles for hyperthermia treatments.

    Science.gov (United States)

    FarrokhTakin, Elmira; Ciofani, Gianni; Puleo, Gian Luigi; de Vito, Giuseppe; Filippeschi, Carlo; Mazzolai, Barbara; Piazza, Vincenzo; Mattoli, Virgilio

    2013-01-01

    The development of new tools and devices to aid in treating cancer is a hot topic in biomedical research. The practice of using heat (hyperthermia) to treat cancerous lesions has a long history dating back to ancient Greece. With deeper knowledge of the factors that cause cancer and the transmissive window of cells and tissues in the near-infrared region of the electromagnetic spectrum, hyperthermia applications have been able to incorporate the use of lasers. Photothermal therapy has been introduced as a selective and noninvasive treatment for cancer, in which exogenous photothermal agents are exploited to achieve the selective destruction of cancer cells. In this manuscript, we propose applications of barium titanate core-gold shell nanoparticles for hyperthermia treatment against cancer cells. We explored the effect of increasing concentrations of these nanoshells (0-100 μg/mL) on human neuroblastoma SH-SY5Y cells, testing the internalization and intrinsic toxicity and validating the hyperthermic functionality of the particles through near infrared (NIR) laser-induced thermoablation experiments. No significant changes were observed in cell viability up to nanoparticle concentrations of 50 μg/mL. Experiments upon stimulation with an NIR laser revealed the ability of the nanoshells to destroy human neuroblastoma cells. On the basis of these findings, barium titanate core-gold shell nanoparticles resulted in being suitable for hyperthermia treatment, and our results represent a promising first step for subsequent investigations on their applicability in clinical practice.

  19. Studies on Nano Barium Strontium Titanate/Cellulose Derivatives Composites

    Directory of Open Access Journals (Sweden)

    Y. Hamzeh

    2009-12-01

    Full Text Available Studies were carried out on the preparation and properties of the composites made from cellulose acetate butyrate and cellulose acetate propionate with various amounts of barium strontium titanate nano-particle. The nano-particles of barium strontium titanate (BST with formulation of Ba0.77Sr0.23TiO3 were made by sol-gel method and their purity and particle size were analyzed by X-ray diffraction (XRD. The composites were prepared with BST nano-particle loading of 10 to 50 vol%, and their distribution in the composites studied using SEM imaging. The dielectric constant of the composites was measured at 1 kHz and 100 kHz at room temperature. It was found that the adopted procedure produced dense and uniform composites. The dielectric constant of the composites increased with the solid contentof BST and followed the modified Lichtenecker equation. The increasing rate of dielectric constant with increased BST content was more pronounced for the BST/CAP composite. The dielectric constant of the composites decreased withincreasing the frequency which was more obvious at higher loading of BST nano-particle

  20. Barium titanate core – gold shell nanoparticles for hyperthermia treatments

    Science.gov (United States)

    FarrokhTakin, Elmira; Ciofani, Gianni; Puleo, Gian Luigi; de Vito, Giuseppe; Filippeschi, Carlo; Mazzolai, Barbara; Piazza, Vincenzo; Mattoli, Virgilio

    2013-01-01

    The development of new tools and devices to aid in treating cancer is a hot topic in biomedical research. The practice of using heat (hyperthermia) to treat cancerous lesions has a long history dating back to ancient Greece. With deeper knowledge of the factors that cause cancer and the transmissive window of cells and tissues in the near-infrared region of the electromagnetic spectrum, hyperthermia applications have been able to incorporate the use of lasers. Photothermal therapy has been introduced as a selective and noninvasive treatment for cancer, in which exogenous photothermal agents are exploited to achieve the selective destruction of cancer cells. In this manuscript, we propose applications of barium titanate core–gold shell nanoparticles for hyperthermia treatment against cancer cells. We explored the effect of increasing concentrations of these nanoshells (0–100 μg/mL) on human neuroblastoma SH-SY5Y cells, testing the internalization and intrinsic toxicity and validating the hyperthermic functionality of the particles through near infrared (NIR) laser-induced thermoablation experiments. No significant changes were observed in cell viability up to nanoparticle concentrations of 50 μg/mL. Experiments upon stimulation with an NIR laser revealed the ability of the nanoshells to destroy human neuroblastoma cells. On the basis of these findings, barium titanate core–gold shell nanoparticles resulted in being suitable for hyperthermia treatment, and our results represent a promising first step for subsequent investigations on their applicability in clinical practice. PMID:23847415

  1. Characterization of barium titanate powder doped with sodium and potassium ions by using Rietveld refining

    International Nuclear Information System (INIS)

    Andrade, M.C.; Assis, J.T.; Pereira, F.R.

    2009-01-01

    A solid-reaction synthesis of doped barium titanate was done by employing barium carbonates, sodium, potassium and titanium oxides with classic procedures. Rietveld refining of X ray diffraction data of perovskite samples with tetragonal symmetry was applying and show good agreement. Besides, the treatment performed from 600 deg C produces nanocrystals of barium titanate with average size of 33 nm. The presence of endothermic peaks related to BaTiO 3 formation at relatively low temperatures was determined by thermal analysis. A pseudo-Voigt Thompson-Cox-Hastings function was used to fit the standard samples of barium titanate. The Rietveld method has showed be efficient to detect the influences of temperature and doping on barium titanate microstructures. (author)

  2. Synthesis of barium-zinc-titanate ceramics

    Directory of Open Access Journals (Sweden)

    Obradović N.

    2012-01-01

    Full Text Available Mixtures of BaCO3, ZnO and TiO2 powders, with molar ratio of 1:2:4, were mechanically activated for 20, 40 and minutes in a planetary ball mill. The resulting powders were compacted into pellets and isothermally sintered at 1250°C for 2h with a heating rate of 10°C/min. X-ray diffraction analysis of obtained powders and sintered samples was performed in order to investigate changes of the phase composition. The microstructure of sintered samples was examined by scanning electron microscopy. The photoacoustic phase and amplitude spectra of sintered samples were measured as a function of the laser beam modulating frequency using a transmission detection configuration. Fitting of experimental data enabled determination of photoacoustic properties including thermal diffusivity. Based on the results obtained correlation between thermal diffusivity and experimental conditions, as well the samples microstructure characteristics, was discussed.

  3. Fabrication and characterization of cerium-doped barium titanate inverse opal by sol-gel method

    International Nuclear Information System (INIS)

    Jin Yi; Zhu Yihua; Yang Xiaoling; Li Chunzhong; Zhou Jinghong

    2007-01-01

    Cerium-doped barium titanate inverted opal was synthesized from barium acetate contained cerous acetate and tetrabutyl titanate in the interstitial spaces of a polystyrene (PS) opal. This procedure involves infiltration of precursors into the interstices of the PS opal template followed by hydrolytic polycondensation of the precursors to amorphous barium titanate and removal of the PS opal by calcination. The morphologies of opal and inverse opal were characterized by scanning electron microscope (SEM). The pores were characterized by mercury intrusion porosimetry (MIP). X-ray photoelectron spectroscopy (XPS) investigation showed the doping structure of cerium, barium and titanium. And powder X-ray diffraction allows one to observe the influence of doping degree on the grain size. The lattice parameters, crystal size and lattice strain were calculated by the Rietveld refinement method. The synthesis of cerium-doped barium titanate inverted opals provides an opportunity to electrically and optically engineer the photonic band structure and the possibility of developing tunable three-dimensional photonic crystal devices. - Graphical abstract: Cerium-doped barium titanate inverted opal was synthesized from barium acetate acid contained cerous acetate and tetrabutyl titanate in the interstitial spaces of a PS opal, which involves infiltration of precursors into the interstices of the PS opal template and removal of the PS opal by calcination

  4. Polarization switching kinetics in ultrathin ferroelectric barium titanate film

    Energy Technology Data Exchange (ETDEWEB)

    Gaynutdinov, R., E-mail: rgaynutdinov@gmail.com [Institute of Crystallography, Russian Academy of Sciences, Moscow 119333 (Russian Federation); Minnekaev, M., E-mail: m.minnekaev@gmail.com [NRNU Moscow Engineering Physics Institute, Moscow 115409 (Russian Federation); Mitko, S., E-mail: sergey_m@ntmdt.ru [NT-MDT Co., Moscow 124482 (Russian Federation); Tolstikhina, A., E-mail: alla@ns.crys.ras.ru [Institute of Crystallography, Russian Academy of Sciences, Moscow 119333 (Russian Federation); Zenkevich, A., E-mail: avzenkevich@mephi.ru [NRNU Moscow Engineering Physics Institute, Moscow 115409 (Russian Federation); NRC Kurchatov Institute, Moscow 123182 (Russian Federation); Ducharme, S., E-mail: sducharme@unl.edu [Department of Physics and Astronomy and Nebraska Center for Materials and Nanoscience, University of Nebraska-Lincoln, NE 68588-0299 (United States); Fridkin, V., E-mail: fridkin@ns.crys.ras.ru [Institute of Crystallography, Russian Academy of Sciences, Moscow 119333 (Russian Federation)

    2013-09-01

    The investigation of polarization switching kinetics in an ultrathin barium titanate film reveals true threshold switching at a large coercive electric field, evidence that switching is of intrinsic thermodynamic nature, rather than of extrinsic nature initiated by thermal nucleation, which has no true threshold field. The switching speed of a 7 nm thick epitaxial film exhibits a critical slowing as the threshold is approached from above, a key characteristic of intrinsic switching. In contrast, a bulk crystal exhibits nucleation-initiated switching, which has no threshold, and proceeds even at fields well below the nominal coercive field, which was determined independently from the polarization-electric field hysteresis loop. Previously, this phenomenon was only reported for ultrathin ferroelectric polymer Langmuir–Blodgett films. Since both the thermodynamic coercive field and the intrinsic switching kinetics are derived from the mean field theory of ferroelectricity, we expect that these phenomena will be found in other ferroelectric films at the nanoscale.

  5. Effect of Nb on barium titanate prepared from citrate solutions

    Directory of Open Access Journals (Sweden)

    Stojanović Biljana D.

    2002-01-01

    Full Text Available The influence of the addition of dopants on the microstructure development and electrical properties of BaTiO3 doped with 0.2, 0.4, 0.6, 0.8 mol% of Nb and 0.01 mol% of Mn based compounds was studied. Doped barium titanate was prepared using the polymeric precursor method from citrate solutions. The powders calcined at 700°C for 4 hours were analysed by infrared (IR spectroscopy to verify the presence of carbonates, and by X-ray diffraction (XRD for phase formation. The phase composition, microstructure and dielectric properties show a strong dependence on the amount of added niobium.

  6. Ultrasonic de-agglomeration of barium titanate powder.

    Science.gov (United States)

    Marković, S; Mitrić, M; Starcević, G; Uskoković, D

    2008-01-01

    BaTiO3 (BT) powder, with average particle size of 1.4 microm, was synthesized by solid-state reaction. A high-intensity ultrasound irradiation (ultrasonication) was used to de-agglomerate micro-sized powder to nano-sized one. The crystal structure, crystallite size, morphology, particle size, particle size distribution, and specific surface area of the BT powder de-agglomerated for different ultrasonication times (0, 10, 60, and 180 min) were determined. It was found that the particles size of the BT powder was influenced by ultrasonic treatment, while its tetragonal structure was maintained. Therefore, ultrasonic irradiation can be proposed as an environmental-friendly, economical, and effective tool for the de-agglomeration of barium titanate powders.

  7. Verification of the flexoelectricity in barium strontium titanate through d33 meter

    Directory of Open Access Journals (Sweden)

    Longlong Shu

    2016-12-01

    Full Text Available Flexoelectricity is a newly arising electromechanical property that couples strain gradient to polarization. This physical property widely exists in most of the solid dielectrics but has quite weak response that often overlooked. Recently, barium strontium titanate (BST, a well-known ferroelectrics, has been reported to be a promising flexoelectric material, and thus triggered the associated studies on flexoelectricity to a new height. However, part of the researchers argued the observed flexoelectricity in BST is either by residual piezoelectricity or centric symmetry breaking during the densification process. In this paper, we would verify the flexoelectricity in BST ceramics by many comparison experiments. Our experimental result suggested the observed polarization in BST material is likely to be induced by strain gradient through flexoelectricity.

  8. Verification of the flexoelectricity in barium strontium titanate through d33 meter

    Science.gov (United States)

    Shu, Longlong; Wang, Tong; Jiang, Xiaoning; Huang, Wenbin

    2016-12-01

    Flexoelectricity is a newly arising electromechanical property that couples strain gradient to polarization. This physical property widely exists in most of the solid dielectrics but has quite weak response that often overlooked. Recently, barium strontium titanate (BST), a well-known ferroelectrics, has been reported to be a promising flexoelectric material, and thus triggered the associated studies on flexoelectricity to a new height. However, part of the researchers argued the observed flexoelectricity in BST is either by residual piezoelectricity or centric symmetry breaking during the densification process. In this paper, we would verify the flexoelectricity in BST ceramics by many comparison experiments. Our experimental result suggested the observed polarization in BST material is likely to be induced by strain gradient through flexoelectricity.

  9. Low-Temperature Synthesis and Thermodynamic and Electrical Properties of Barium Titanate Nanorods

    Directory of Open Access Journals (Sweden)

    Florentina Maxim

    2015-01-01

    Full Text Available Studies regarding the morphology dependence of the perovskite-type oxides functional materials properties are of recent interest. With this aim, nanorods (NRs and nanocubes (NCs of barium titanate (BaTiO3 have been successfully synthesized via a hydrothermal route at temperature as low as 408 K, employing barium acetate, titanium isopropoxide, and sodium hydroxide as reagents without any surfactant or template. Scanning electron microscopy (SEM, transmission electron microscopy (TEM, and X-ray powder diffraction (XRD, used for the morphology and structure analyses, showed that the NRs were formed by an oriented attachment of the NCs building-blocks with 20 nm average crystallites size. The thermodynamic properties represented by the relative partial molar free energies, enthalpies, and entropies of the oxygen dissolution in the perovskite phase, as well as the equilibrium partial pressure of oxygen, indicated that NRs powders have lower oxygen vacancies concentration than the NCs. This NRs characteristic, together with higher tetragonallity of the structure, leads to the enhancement of the dielectric properties of BaTiO3 ceramics. The results presented in this work show indubitably the importance of the nanopowders morphology on the material properties.

  10. Electronic properties of lithium titanate ceramic

    International Nuclear Information System (INIS)

    Padilla-Campos, Luis; Buljan, Antonio

    2001-01-01

    Research on tritium breeder material is fundamental to the development of deuterium-tritium type fusion reactors for producing clean, non contaminating, electrical energy, since only energy and helium, a harmless gas, are produced from the fusion reaction. Lithium titanate ceramic is one of the possible candidates for the tritium breeder material. This last material is thought to form part of the first wall of the nucleus of the reactor which will provide the necessary tritium for the fusion and will also serve as a shield. Lithium titanate has advantageous characteristics compared to other materials. Some of these are low activation under the irradiation of neutrons, good thermal stability, high density of lithium atoms and relatively fast tritium release at low temperatures. However, there are still several physical and chemical properties with respect to the tritium release mechanism and mechanical properties that have not been studied at all. This work presents a theoretical study of the electronic properties of lithium titanate ceramic and the corresponding tritiated material. Band calculations using the Extended H kel Tight-Binding approach were carried out. Results show that after substituting lithium for tritium atoms, the electronic states for the latter appear in the middle of prohibited band gap which it is an indication that the tritiated material should behave as a semiconductor, contrary to Li 2 TiO 3 which is a dielectric isolator. A study was also carried out to determine the energetically most favorable sites for the substitution of lithium for tritium atoms. Additionally, we analyzed possible pathways for the diffusion of a tritium atom within the crystalline structure of the Li 2 TiO 3

  11. Pyro- and electromagnetic effects in ferrite/barium titanate composite

    Directory of Open Access Journals (Sweden)

    Andrey A. Pan'kov

    2016-09-01

    Full Text Available New solutions for tensors of effective pyroelectromagnetic properties of piezoactive composites on the basis of boundary value problem solution for electromagnetic elasticity have been obtained. For the solution of the boundary value problem, new solutions for singular components of the second derivative Green functions for displacements, electric and magnetic potentials in homogeneous transversal isotropic piezoelectromagnetic medium with ellipsoidal grain of heterogeneity have been used. Calculation results on the concentration dependences for effective coefficients of pyromagnetic and electromagnetic coherence of ferrite/barium titanate composite with ellipsoidal, spherical and fibrous inclusions for various polydisperse structures and those of a layered structure composite have been presented. Considerable influence of the shape of the inclusions, features of relative positioning and inversion of the properties of phases on the effective coefficients of pyromagnetic and electromagnetic coherence of the composite material have been revealed. The conclusion is drawn on the preferable use of the pyroelectric phase as spherical inclusions, and ferrite as the composite matrix. This allows for more than a fivefold increase in the effective constant of pyromagnetic coherence of the composite material in comparison with its value for the same structure but with inversion of properties of phases for constant volume fractions of the ferrite and pyroelectric phases.

  12. Structure and multiferroic properties of barium hexaferrite ceramics

    International Nuclear Information System (INIS)

    Tan, Guolong; Chen, Xiuna

    2013-01-01

    Simultaneous occurrence of large ferroelectricity and strong ferromagnetism have been observed in barium hexaferrite ceramics. Barium hexaferrite (BaFe 12 O 19 ) powders with hexagonal crystal structure were successfully synthesized in a polymer precursor method using barium acetate and ferric acetylacetonate as the precursors. The powders were pressed into pellets which were sintered into ceramics at 1200 °C and 1300 °C for 1 h. The structure and morphology of the ceramics were examined using X-ray diffraction and field emission scanning electron microscopy. Large spontaneous polarization was observed in the BaFe 12 O 19 ceramics at room temperature, revealing a clear ferroelectric hysteresis loop. The maximum remanent polarization of the BaFe 12 O 19 ceramic was estimated approximately 11.8 μC cm −2 . The FeO 6 octahedron in its perovskite-like hexagonal unit cell and the shift of Fe 3+ off the center of octahedron are suggested to be the origin of the polarization in BaFe 12 O 19 . The BaFe 12 O 19 ceramics also showed strong ferromagnetism at room temperature. - Graphical abstract: Ferroelectric hysteresis loops of BaFe 12 O 19 ceramics measured at a frequency of 120 Hz, which shows that the ceramics sintered at 1200 °C is ferroelectric with P r ∼11.8 μC/cm 2 . Highlights: ► Large ferroelectricity and strong ferromagnetism were observed in barium hexaferrite ceramics. ► The maximum remanent polarization of the BaFe 12 O 19 ceramic was estimated to be 11.8 μC cm −2 . ► The FeO 6 octahedron and off-center shift of Fe 3+ are suggested to be the origin of the polarization.

  13. Synthesis and characterization of nickel oxide doped barium strontium titanate ceramics Síntese e caracterização de cerâmicas de titanato de estrôncio e bário dopado com óxido de níquel

    Directory of Open Access Journals (Sweden)

    M. Banerjee

    2012-03-01

    Full Text Available Barium strontium titanate (BST ceramics (Ba0.6Sr0.4TiO3 were synthesized by solid state sintering using barium carbonate, strontium carbonate and rutile as the precursor materials. The samples were doped with nickel oxide in different proportions. Different phases present in the sintered samples were determined from X-ray diffraction investigation and the distribution of different phases in the microstructure was assessed from scanning electron microscopy study. It was observed that the dielectric properties of BST were modified significantly with nickel oxide doping. These ceramics held promise for applications in tuned circuits.Cerâmicas de titanato de bário e estrôncio (TBS (Ba0,6Sr0,4TiO3 foram sintetizadas por sinterização do estado sólido usando carbonato de bário, carbonato de estrôncio e rutilo como materiais precursores. As amostras foram dopadas com diferentes proporções de óxido de níquel. Diferentes fases presentes nas amostras sinterizadas foram determinadas por difração de raios X e a distribuição de diferentes fases na microestrutura foi avaliada por microscopia eletrônica de varredura. Foi observado que as propriedades dielétricas do TBS foram modificadas significativamente com a dopagem do óxido de níquel. Essas cerâmicas são promissoras para aplicação em dispositivos.

  14. [Adsorption behavior of immobilized nanometer barium-strontium titanate for cadmium ion in water].

    Science.gov (United States)

    Zhang, Dong; Zhang, Wen-Jie; Guan, Xin; Gao, Hong; He, Hong-Bo

    2009-03-01

    Nanometer barium-strontium titanate immobilized on silica gel G was successfully prepared by the citrate acid sol-gel method and characterized using X-ray diffraction (XRD), scanning electron microscope (SEM) and Fourier transform infrared spectrophotometer (FTIR). By means of the determination of flame atomic absorption spectrometry (FAAS), the adsorption behavior of immobilized nanometer-barium strontium titanate for cadmium ion was investigated. The results showed that the nanometer barium-strontium titanate was immobilized on the silica gel G firmly, gaining a new sort of adsorbent. And the cadmium ion studied could be quantitatively retained in the pH value range of 4-7. The adsorption behavior followed a Freundlich adsorption isotherm and a pseudo-second-order kinetic model. The thermodynamic constants of the adsorption process, such as enthalpy changes (deltaH), Gibbs free energy changes (deltaG) and entropy changes (deltaS), were evaluated. These showed that the adsorption of cadmium ion by immobilized nanometer barium-strontium titanate was endothermic and spontaneous physical process. The cadmium ion adsorbed could be completely eluted using 1 mol x L(-1) HNO3. A new method for the determination of trace cadmium ion in water based on this immobilized nanometer barium-strontium titanate preconcentration and FAAS determination was proposed. The method has been applied to the determination of trace cadmium ion in tap water and river water with satisfactory results.

  15. Synthesis and In vitro Evaluation of Electrodeposited Barium Titanate Coating on Ti6Al4V.

    Science.gov (United States)

    Rahmati, Shahram; Basiriani, Mohammad Basir; Rafienia, Mohammad; Yaghini, Jaber; Raeisi, Keyvan

    2016-01-01

    Osseointegration has been the concern of implantology for many years. Researchers have used various ceramic coatings for this purpose; however, piezoelectric ceramics (e.g., barium titanate [BTO]) are a novel field of interest. In this regard, BTO (BaTiO3) coating was fabricated by electrophoretic deposition on Ti6Al4V medical alloy, using sol-gel-synthesized nanometer BTO powder. Structure and morphologies were studied using X-ray diffraction and scanning electron microscopy (SEM), respectively. Bioactivity response of coated samples was evaluated by SEM and inductively coupled plasma (ICP) analysis after immersion in simulated body fluid (SBF). Cell compatibility was also studied via MTT assay and SEM imaging. Results showed homogenous coating with cubic structure and crystallite size of about 41 nm. SEM images indicated apatite formation on the coating after 7 days of SBF immersion, and ICP analysis approved ions concentration decrement in SBF. Cells showed flattened morphology in intimate contact with coating after 7 days of culture. Altogether, coated samples demonstrated appropriate bioactivity and biocompatibility.

  16. Relaxor properties of barium titanate crystals grown by Remeika method

    Science.gov (United States)

    Roth, Michel; Tiagunov, Jenia; Dul'kin, Evgeniy; Mojaev, Evgeny

    2017-06-01

    Barium titanate (BaTiO3, BT) crystals have been grown by the Remeika method using both the regular KF and mixed KF-NaF (0.6-0.4) solvents. Typical acute angle "butterfly wing" BT crystals have been obtained, and they were characterized using x-ray diffraction, scanning electron microscopy (including energy dispersive spectroscopy), conventional dielectric and acoustic emission methods. A typical wing has a triangular plate shape which is up to 0.5 mm thick with a 10-15 mm2 area. The plate has a (001) habit and an atomically smooth outer surface. Both K+ and F- solvent ions are incorporated as dopants into the crystal lattice during growth substituting for Ba2+ and O2- ions respectively. The dopants' distribution is found to be inhomogeneous, their content being almost an order of magnitude higher (up to 2 mol%) at out surface of the plate relatively to the bulk. A few μm thick surface layer is formed where a multidomain ferroelectric net is confined between two≤1 μm thick dopant-rich surfaces. The layer as a whole possess relaxor ferroelectric properties, which is apparent from the appearance of additional broad maxima, Tm, in the temperature dependence of the dielectric permittivity around the ferroelectric phase transition. Intense acoustic emission responses detected at temperatures corresponding to the Tm values allow to observe the Tm shift to lower temperatures at higher frequencies, or dispersion, typical for relaxor ferroelectrics. The outer surface of the BT wing can thus serve as a relaxor thin film for various electronic application, such as capacitors, or as a substrate for BT-based multiferroic structure. Crystals grown from KF-NaF fluxes contain sodium atoms as an additional impurity, but the crystal yield is much smaller, and while the ferroelectric transition peak is diffuse it does not show any sign of dispersion typical for relaxor behavior.

  17. Sputtered Modified Barium Titanate for Thin-Film Capacitor Applications.

    Science.gov (United States)

    Reynolds, Glyn J; Kratzer, Martin; Dubs, Martin; Felzer, Heinz; Mamazza, Robert

    2012-04-10

    New apparatus and a new process for the sputter deposition of modified barium titanate thin-films were developed. Films were deposited at temperatures up to 900 °C from a Ba₀ .96 Ca 0. 04 Ti 0. 82 Zr 0. 18 O₃ (BCZTO) target directly onto Si, Ni and Pt surfaces and characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). Film texture and crystallinity were found to depend on both deposition temperature and substrate: above 600 °C, the as-deposited films consisted of well-facetted crystallites with the cubic perovskite structure. A strongly textured Pt (111) underlayer enhanced the (001) orientation of BCZTO films deposited at 900 °C, 10 mtorr pressure and 10% oxygen in argon. Similar films deposited onto a Pt (111) textured film at 700 °C and directly onto (100) Si wafers showed relatively larger (011) and diminished intensity (00ℓ) diffraction peaks. Sputter ambients containing oxygen caused the Ni underlayers to oxidize even at 700 °C: Raising the process temperature produced more diffraction peaks of NiO with increased intensities. Thin-film capacitors were fabricated using ~500 nm thick BCZTO dielectrics and both Pt and Ni top and bottom electrodes. Small signal capacitance measurements were carried out to determine capacitance and parallel resistance at low frequencies and from these data, the relative permittivity (e r ) and resistivity (r) of the dielectric films were calculated; values ranged from ~50 to >2,000, and from ~10⁴ to ~10 10 Ω∙cm, respectively.

  18. Evaluation of antibacterial properties of Barium Zirconate Titanate (BZT nanoparticle

    Directory of Open Access Journals (Sweden)

    Simin Mohseni

    2014-12-01

    Full Text Available So far, the antibacterial activity of some organic and inorganic compounds has been studied. Barium zirconate titanate [Ba(Zr xTi1-xO3] (x = 0.05 nanoparticle is an example of inorganic materials. In vitro studies have provided evidence for the antibacterial activity of this nanoparticle. In the current study, the nano-powder was synthesized by sol-gel method. X-ray diffraction showed that the powder was single-phase and had a perovskite structure at the calcination temperature of 1000 ºC. Antibacterial activity of the desired nanoparticle was assessed on two gram-positive (Staphylococcus aureus PTCC1431 and Micrococcus luteus PTCC1625 and two gram-negative (Escherichia coli HP101BA 7601c and clinically isolated Klebsiella pneumoniae bacteria according to Radial Diffusion Assay (RDA. The results showed that the antibacterial activity of BZT nano-powder on both gram-positive and gram-negative bacteria was acceptable. The minimum inhibitory concentration of this nano-powder was determined. The results showed that MIC values for E. coli, K. pneumoniae, M. luteus and S. aureus were about 2.3 µg/mL, 7.3 µg/mL, 3 µg/mL and 12 µg/mL, respectively. Minimum bactericidal concentration (MBC was also evaluated and showed that the growth of E. coli, K. pneumoniae, M. luteus and S. aureus could be decreased at 2.3, 14, 3 and 18 µg/mL of BZT. Average log reduction in viable bacteria count in time-kill assay ranged between 6 Log10 cfu/mL to zero after 24 h of incubation with BZT nanoparticle.

  19. Evaluation of antibacterial properties of Barium Zirconate Titanate (BZT) nanoparticle.

    Science.gov (United States)

    Mohseni, Simin; Aghayan, Mahdi; Ghorani-Azam, Adel; Behdani, Mohammad; Asoodeh, Ahmad

    2014-01-01

    So far, the antibacterial activity of some organic and inorganic compounds has been studied. Barium zirconate titanate [Ba(ZrxTi₁-x)O₃] (x = 0.05) nanoparticle is an example of inorganic materials. In vitro studies have provided evidence for the antibacterial activity of this nanoparticle. In the current study, the nano-powder was synthesized by sol-gel method. X-ray diffraction showed that the powder was single-phase and had a perovskite structure at the calcination temperature of 1000 °C. Antibacterial activity of the desired nanoparticle was assessed on two gram-positive (Staphylococcus aureus PTCC1431 and Micrococcus luteus PTCC1625) and two gram-negative (Escherichia coli HP101BA 7601c and clinically isolated Klebsiella pneumoniae) bacteria according to Radial Diffusion Assay (RDA). The results showed that the antibacterial activity of BZT nano-powder on both gram-positive and gram-negative bacteria was acceptable. The minimum inhibitory concentration of this nano-powder was determined. The results showed that MIC values for E. coli, K. pneumoniae, M. luteus and S. aureus were about 2.3 μg/mL, 7.3 μg/mL, 3 μg/mL and 12 μg/mL, respectively. Minimum bactericidal concentration (MBC) was also evaluated and showed that the growth of E. coli, K. pneumoniae, M. luteus and S. aureus could be decreased at 2.3, 14, 3 and 18 μg/mL of BZT. Average log reduction in viable bacteria count in time-kill assay ranged between 6 Log₁₀ cfu/mL to zero after 24 h of incubation with BZT nanoparticle.

  20. Sputtered Modified Barium Titanate for Thin-Film Capacitor Applications

    Directory of Open Access Journals (Sweden)

    Robert Mamazza

    2012-04-01

    Full Text Available New apparatus and a new process for the sputter deposition of modified barium titanate thin-films were developed. Films were deposited at temperatures up to 900 °C from a Ba0.96Ca0.04Ti0.82Zr0.18O3 (BCZTO target directly onto Si, Ni and Pt surfaces and characterized by X-ray diffraction (XRD, scanning electron microscopy (SEM and X-ray photoelectron spectroscopy (XPS. Film texture and crystallinity were found to depend on both deposition temperature and substrate: above 600 °C, the as-deposited films consisted of well-facetted crystallites with the cubic perovskite structure. A strongly textured Pt (111 underlayer enhanced the (001 orientation of BCZTO films deposited at 900 °C, 10 mtorr pressure and 10% oxygen in argon. Similar films deposited onto a Pt (111 textured film at 700 °C and directly onto (100 Si wafers showed relatively larger (011 and diminished intensity (00ℓ diffraction peaks. Sputter ambients containing oxygen caused the Ni underlayers to oxidize even at 700 °C: Raising the process temperature produced more diffraction peaks of NiO with increased intensities. Thin-film capacitors were fabricated using ~500 nm thick BCZTO dielectrics and both Pt and Ni top and bottom electrodes. Small signal capacitance measurements were carried out to determine capacitance and parallel resistance at low frequencies and from these data, the relative permittivity (er and resistivity (r of the dielectric films were calculated; values ranged from ~50 to >2,000, and from ~104 to ~1010 Ω∙cm, respectively.

  1. Extrusion and properties of lead zirconate titanate piezoelectric ceramics

    DEFF Research Database (Denmark)

    Cai, S.; Millar, C.E.; Pedersen, L.

    1997-01-01

    The purpose of this work was to develop a procedure for fabricating electroceramic actuators with good piezoelectric properties. The preparation of lead zirconate titanate (PZT) piezoelectric ceramic rods and tubes by extrusion processing is described. The microstructure of extrudates was investi......The purpose of this work was to develop a procedure for fabricating electroceramic actuators with good piezoelectric properties. The preparation of lead zirconate titanate (PZT) piezoelectric ceramic rods and tubes by extrusion processing is described. The microstructure of extrudates...

  2. Preparation of barium titanate nanoparticle sphere arrays and their dielectric properties.

    Science.gov (United States)

    Wada, Satoshi; Yazawa, Aki; Hoshina, Takuya; Kameshima, Yoshikazu; Kakemoto, Hirofumi; Tsurumi, Takaaki; Kuroiwa, Yoshihiro

    2008-09-01

    Barium titanate (BaTiO(3)) nanoparticles from 27 to 192 nm were prepared by the 2-step thermal decomposition method from barium titanyl oxalate nanoparticles. These particles were dispersed well into 1-propanol, and dense BaTiO(3); nanoparticle sphere arrays without stress-field were prepared by the meniscus method. Temperature dependence of dielectric properties was successfully measured using these dense nanoparticle sphere arrays, and size effect on dielectric properties was discussed.

  3. Electrical and thermal properties of lead titanate glass ceramics

    International Nuclear Information System (INIS)

    Shankar, J.; Deshpande, V.K.

    2011-01-01

    Glass samples with composition of (50-X)PbO-(25+X)TiO 2 -25B 2 O 3 (where X=0, 5, 10 and 12.5 mol%) were prepared using conventional quenching technique. The glass transition temperature, T g and crystallization temperature T c were determined from the DTA. These glass samples were converted to glass ceramics by following two stage heat treatment schedule. The glass ceramic samples were characterized by XRD, SEM and dielectric constant measurements. The XRD results revealed the formation of ferroelectric lead titanate (PT) as a major crystalline phase in the glass ceramics. The density increases and the CTE decreases for all glass ceramics with increase in X (mol%). This may be attributed to increase in PT phase. The SEM results which show rounded crystallites of lead titanate, also supports other results. Hysteresis loops observed at room temperature confirms the ferroelectric nature of glass ceramics. The optimized glass ceramic sample exhibits high dielectric constant which is of technical importance. -- Research Highlights: →Lead titanate glass ceramics prepared by conventional quenching technique. →Lead titanate is a major crystalline phase in the glass ceramics. →The ferroelectric nature of glass ceramics is confirmed by the hysteresis study. →The high value of ε observed at room temperature is quite promising in the study.

  4. Effects of barium titanate nanoparticles on proliferation and differentiation of rat mesenchymal stem cells.

    Science.gov (United States)

    Ciofani, Gianni; Ricotti, Leonardo; Canale, Claudio; D'Alessandro, Delfo; Berrettini, Stefano; Mazzolai, Barbara; Mattoli, Virgilio

    2013-02-01

    Nanomaterials hold great promise in the manipulation and treatments of mesenchymal stem cells, since they allow the modulation of their properties and differentiation. However, systematic studies have to be carried out in order to assess their potential toxicological effects. The present study reports on biocompatibility evaluation of glycol-chitosan coated barium titanate nanoparticles (BTNPs) on rat mesenchymal stem cells (MSCs). BTNPs are a class of ceramic systems which possess interesting features for biological applications thanks to their peculiar dielectric and piezoelectric properties. Viability was evaluated up to 5 days of incubation (concentrations in the range 0-100 μg/ml) both quantitatively and qualitatively with specific assays. Interactions cells/nanoparticles were further investigated with analysis of the cytoskeleton conformation, with SEM and TEM imaging, and with AFM analysis. Finally, differentiation in adipocytes and osteocytes was achieved in the presence of high doses of BTNPs, thus highlighting the safety of these nanostructures towards mesenchymal stem cells. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. Mechanical and Microstructural Evaluation of Barium Strontium Titanate Thin Films for Improved Antenna Performance and Reliability

    National Research Council Canada - National Science Library

    Hubbard, C

    1999-01-01

    Ferroelectric barium strontium titanate (Ba(1-x)SrxTiO3 BSTO) films of 1-micron nominal thickness were deposited on single crystals of sapphire and electroded substrates at substrate temperatures varying from 30 deg C to 700 deg C...

  6. A plasmonic modulator based on metal-insulator-metal waveguide with barium titanate core

    DEFF Research Database (Denmark)

    Babicheva, Viktoriia; Lavrinenko, Andrei

    2013-01-01

    We design a plasmonic modulator which can be utilized as a compact active device in photonic integrated circuits. The active material, barium titanate (BaTiO3), is sandwiched between metal plates and changes its refractive index under applied voltage. Some degree of switching of ferroelectric...

  7. Electromechanical Response of Polycrystalline Barium Titanate Resolved at the Grain Scale

    DEFF Research Database (Denmark)

    Majkut, Marta; Daniels, John E.; Wright, Jonathan P.

    2017-01-01

    critical for understanding bulk polycrystalline ferroic behavior. Here, three-dimensional X-ray diffraction is used to reconstruct a 3D grain map (grain orientations and neighborhoods) of a polycrystalline barium titanate sample and track the grain-scale non-180° ferroelectric domain switching strains...

  8. an oxalate-peroxide complex used in the preparation of doped barium titanate

    NARCIS (Netherlands)

    van der Gijp, S.; Winnubst, Aloysius J.A.; Verweij, H.

    1998-01-01

    A method is described for the preparation of homogeneously doped barium titanate, which can be applied in non-linear dielectric elements. Ba and Ti salts are dissolved, mixed with hydrogen peroxide and added to a solution of ammonium oxalate, resulting in the formation of an insoluble peroxo-oxalate

  9. Nanostructure Development in Alkoxide-Carboxylate-Derived Precursor Films of Barium Titanate

    NARCIS (Netherlands)

    Stawski, Tomasz; Veldhuis, Sjoerd; Besselink, R.; Castricum, H.L.; Portale, G.; Blank, David H.A.; ten Elshof, Johan E.

    2012-01-01

    The structural evolution in wet alkoxide-carboxylate sol–gel precursor films of barium titanate upon drying was investigated by time-resolved small-angle X-ray scattering (SAXS). The morphology of as-dried amorphous precursor thin films was investigated by transmission electron microscopy (TEM) and

  10. New developments in aluminium titanate ceramics and refractories

    Energy Technology Data Exchange (ETDEWEB)

    Alecu, I.D.; Cilia, R.A.; Dean, G.A.; Reuben, R.; Stead, R.J.; Wing, R.F. [Rojan Advanced Ceramics Pty Ltd., Spearwood, WA (Australia)

    2002-07-01

    During the recent years there has been a world-wide resurgence in the interest for aluminium titanate ceramics. Aluminium titanate (AT) possesses a unique collection of outstanding properties that make it a favourite candidate for applications where thermal shock resistance, thermal and / or phonic insulation, or compatibility with molten metals are key requirements. Particularly promising are the applications of aluminium titanate in the non-ferrous metallurgical industry, primarily in aluminium smelters and foundries. Aluminium titanate is best suitable for manufacturing ceramic components for gravity and low-pressure die casting of non-ferrous metals and alloys. Examples of such components are casting nozzles and spouts, sprue bushes, connecting tubes, riser tubes, etc. As aluminium titanate (AT) is generally known as a ceramic material with a modest mechanical strength, most applications have been so far as components that either are small enough, or are subjected to small enough mechanical loads, so that the risk of failure is acceptably low. Currently there is an increasing demand for larger and / or stronger components, which obviously require significantly stronger aluminium titanate ceramic materials, as well as adequate forming technologies. (orig.)

  11. Reaction sintering of a zirconia-containing barium feldspar ceramic

    International Nuclear Information System (INIS)

    Nordmann, A.; Cheng, Y-B.; Muddle, B. C.

    1996-01-01

    Zircon (ZrSiO 4 ) is a natural mineral resource known to react with certain oxides to produce a dispersion of zirconia particles within ceramic or glass-ceramic matrices. Barium aluminosilicates, particularly the celsian polymorphs of BaO- Al 2 O 3 2SiO 2 display oxidation resistance and refractory characteristics commensurate with the properties required of high temperature materials. Such properties, coupled with the high melting point of ZrO 2 (2680 deg C), suggest that barium aluminosilicates and zirconia are an ideal combination from which to fabricate high temperature materials. A recent study has indicated that a barium aluminosilicate containing up to 40mol% ZrO 2 can be prepared via a sol-gel process. However, the desire to utilise a natural resource in the form of zircon in the present work has led to the choice of reaction sintering as an alternative processing route. The current work was undertaken to investigate the possibility of forming a zirconia-containing barium feldspar composite material using the reaction sintering of zircon and assuming the following stoichiometric reaction: 2ZrSiO 4 + BaCO 3 + Al 2 O 3 → 2ZrO 2 + BaO-Al 2 O 3 -2SiO 2 + CO 2 ↑. The reaction sintering of zircon with alumina and barium carbonate produces a composite material comprising distributed ZrO 2 in a continous barium feldspar matrix. Yttria added during processing allows a significant fraction of the ZrO 2 to be retained as tetragonal phase to room temperature and thus the potential for a measure of transformation toughening

  12. Radiation losses in microwave K{sub u} region by conducting pyrrole/barium titanate and barium hexaferrite based nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Kaur, Talwinder [Department of Physics, Lovely Professional University, Phagwara 144411 (India); Kumar, Sachin [Department of Chemistry, Guru Nanak Dev University, Amritsar 143005 (India); Narang, S.B. [Department of Electronics Technology, Guru Nanak Dev University, Amritsar 143005 (India); Srivastava, A.K., E-mail: srivastava_phy@yahoo.co.in [Department of Physics, Lovely Professional University, Phagwara 144411 (India)

    2016-12-15

    Nanocomposites of substituted barium hexaferrite and barium titanate embedded in a polymer were synthesized via emulsion polymerization. The study was performed by using X-ray diffraction, Fourier transform infrared spectroscopy, transmission electron microscopy, electron spin resonance spectroscopy, a vibrating sample magnetometer and a vector network analyzer. It is found that maximum radiation loss occur at 16.09 GHz (−14.23 dB) frequency owing to the combined effect of conducting polymer, suitable dielectric and magnetic material. This suggests that prepared material is suitable for radiation losses. Micro structural study reveals the presence of all the phases of the compounds comprises composite. Benzene ring absorption band (at 1183 cm{sup −1}) in FT-IR spectra illustrates the presence of polymer. Surface morphology reveals the presence of array of particles encapsulated by the polymer. - Highlights: • Composites having polymer, barium titanate and hexaferrite have been successfully prepared. • Effective radiation absorption and losses have been achieved. • Magnetic properties have made an impact on shielding effectiveness.

  13. Electronic structure of barium strontium titanate by soft-x-ray absorption spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Uehara, Y. [Mitsubishi Electric Co., Hyogo (Japan); Underwood, J.H.; Gullikson, E.M.; Perera, R.C.C. [Ernest Orlando Lawrence Berkeley National Lab., CA (United States)

    1997-04-01

    Perovskite-type titanates, such as Strontium Titanate (STO), Barium Titanate (BTO), and Lead Titanate (PTO) have been widely studied because they show good electric and optical properties. In recent years, thin films of Barium Strontium Titanate (BST) have been paid much attention as dielectrics of dynamic random access memory (DRAM) capacitors. BST is a better insulator with a higher dielectric constant than STO and can be controlled in a paraelectric phase with an appropriate ratio of Ba/Sr composition, however, few studies have been done on the electronic structure of the material. Studies of the electronic structure of such materials can be beneficial, both for fundamental physics research and for improving technological applications. BTO is a famous ferroelectric material with a tetragonal structure, in which Ti and Ba atoms are slightly displaced from the lattice points. On the other hand, BST keeps a paraelectric phase, which means that the atoms are still at the cubic lattice points. It should be of great interest to see how this difference of the local structure around Ti atoms between BTO and BST effects the electronic structure of these two materials. In this report, the authors present the Ti L{sub 2,3} absorption spectra of STO, BTO, and BST measured with very high accuracy in energy of the absorption features.

  14. A Study on Reactive Ion Etching of Barium Strontium Titanate Films Using Mixtures of Argon (Ar), Carbon Tetrafluoride (CF4), and Sulfur Hexafluoride (SF6)

    Science.gov (United States)

    2014-07-01

    A Study on Reactive Ion Etching of Barium Strontium Titanate Films Using Mixtures of Argon (Ar), Carbon Tetrafluoride (CF4), and Sulfur...Etching of Barium Strontium Titanate Films Using Mixtures of Argon (Ar), Carbon Tetrafluoride (CF4), and Sulfur Hexafluoride (SF6) Samuel G...Study on Reactive Ion Etching of Barium Strontium Titanate Films Using Mixtures of Argon (Ar), Carbon Tetrafluoride (CF4), and Sulfur Hexafluoride

  15. High-sensitivity accelerometer composed of ultra-long vertically aligned barium titanate nanowire arrays.

    Science.gov (United States)

    Koka, Aneesh; Sodano, Henry A

    2013-01-01

    A configuration that shows great promise in sensing applications is vertically aligned piezoelectric nanowire arrays that allow facile interfacing with electrical interconnects. Nano-electromechanical systems developed using piezoelectric nanowires have gained interest primarily for their potential in energy harvesting applications, because they are able to convert several different sources of mechanical energy into useful electrical power. To date, no results have demonstrated the capability to use aligned piezoelectric nanowire arrays as a highly accurate nano-electromechanical system based dynamic sensor with a wide operating bandwidth and unity coherence. Here we report the growth of vertically aligned (~45 μm long) barium titanate nanowire arrays, realized through a two-step hydrothermal synthesis approach, and demonstrate their use as an accurate accelerometer. High sensitivity of up to 50 mV g(-1) is observed from the sensor composed of vertically aligned barium titanate nanowire arrays, thus providing performance comparable to many of the commercial accelerometer systems.

  16. Barium titanate thin films deposited by electrophoresis on p-Doped Si (001) substrates.

    Science.gov (United States)

    Barbosa, J G; Pereira, M R; Moura, C; Mendes, J A; Almeida, B G

    2011-10-01

    Barium titanate (BaTiO3) thin films have been prepared by electrophoretic deposition on p-doped and platinum covered silicon (Si) substrates. Their structure, nanostructure and dielectric properties were characterized. The as-deposited films were polycrystalline and composed by barium titanate nanograins with an average grain size approximately 9 nm. Annealing at high temperatures promoted grain growth, so that the samples annealed at 600 degrees C presented average grain sizes approximately 24 nm. From Raman spectroscopy measurements it was found that the tetragonal (ferroelectric) BaTiO3 phase was stabilized on the films. Also, at higher annealing temperatures, cation disorder was reduced on the films. From measurements of the temperature dependence of the dielectric permittivity the corresponding paraelectric-ferroelectric phase transition was determined. The observed transition temperature (approximately 100 degrees C) was found to be below the BaTiO3 bulk or thick film values, due to the small nanosized grains composing the films.

  17. Surface-initiated polymerization from barium titanate nanoparticles for hybrid dielectric capacitors.

    Science.gov (United States)

    Paniagua, Sergio A; Kim, Yunsang; Henry, Katherine; Kumar, Ritesh; Perry, Joseph W; Marder, Seth R

    2014-03-12

    A phosphonic acid is used as a surface initiator for the growth of polystyrene and polymethylmethacrylate (PMMA) from barium titanate (BTO) nanoparticles through atom transfer radical polymerization with activators regenerated by electron transfer. This results in the barium titanate cores embedded in the grafted polymer. The one-component system, PMMA-grafted-BTO, achieves a maximum extractable energy density of 2 J/cm(3) at a field strength of ∼220 V/μm, which exhibits a 2-fold increase compared to that of the composite without covalent attachment or the neat polymer. Such materials have potential applications in hybrid capacitors due to the high permittivity of the nanoparticles and the high breakdown strength, mechanical flexibility, and ease of processability due to the organic polymer. The synthesis, processing, characterization, and testing of the materials in capacitors are discussed.

  18. Characterization of individual barium titanate nanorods and their assessment as building blocks of new circuit architectures.

    Science.gov (United States)

    Zagar, Kristina; Hernandez-Ramirez, Francisco; Prades, Joan Daniel; Morante, Joan Ramon; Rečnik, Aleksander; Ceh, Miran

    2011-09-23

    In this work, we report on the integration of individual BaTiO(3) nanorods into simple circuit architectures. Polycrystalline BaTiO(3) nanorods were synthesized by electrophoretic deposition (EPD) of barium titanate sol into aluminium oxide (AAO) templates and subsequent annealing. Transmission electron microscopy (TEM) observations revealed the presence of slabs of hexagonal polymorphs intergrown within cubic grains, resulting from the local reducing atmosphere during the thermal treatment. Electrical measurements performed on individual BaTiO(3) nanorods revealed resistivity values between 10 and 100 Ω cm, which is in good agreement with typical values reported in the past for oxygen-deficient barium titanate films. Consequently the presence of oxygen vacancies in their structure was indirectly validated. Some of these nanorods were tested as proof-of-concept humidity sensors. They showed reproducible responses towards different moisture concentrations, demonstrating that individual BaTiO(3) nanorods may be integrated in complex circuit architectures with functional capacities.

  19. Characterization of individual barium titanate nanorods and their assessment as building blocks of new circuit architectures

    International Nuclear Information System (INIS)

    Zagar, Kristina; Recnik, Aleksander; Ceh, Miran; Hernandez-Ramirez, Francisco; Morante, Joan Ramon; Prades, Joan Daniel

    2011-01-01

    In this work, we report on the integration of individual BaTiO 3 nanorods into simple circuit architectures. Polycrystalline BaTiO 3 nanorods were synthesized by electrophoretic deposition (EPD) of barium titanate sol into aluminium oxide (AAO) templates and subsequent annealing. Transmission electron microscopy (TEM) observations revealed the presence of slabs of hexagonal polymorphs intergrown within cubic grains, resulting from the local reducing atmosphere during the thermal treatment. Electrical measurements performed on individual BaTiO 3 nanorods revealed resistivity values between 10 and 100 Ω cm, which is in good agreement with typical values reported in the past for oxygen-deficient barium titanate films. Consequently the presence of oxygen vacancies in their structure was indirectly validated. Some of these nanorods were tested as proof-of-concept humidity sensors. They showed reproducible responses towards different moisture concentrations, demonstrating that individual BaTiO 3 nanorods may be integrated in complex circuit architectures with functional capacities.

  20. Doping a mixture of two smectogenic liquid crystals with barium titanate nanoparticles.

    Science.gov (United States)

    Lorenz, Alexander; Zimmermann, Natalie; Kumar, Satyendra; Evans, Dean R; Cook, Gary; Fernández Martínez, Manuel; Kitzerow, Heinz-S

    2013-01-24

    A mixture of two smectic liquid crystals was doped with harvested ferroelectric barium titanate nanoparticles and investigated with wide- and small-angle X-ray scattering during cooling from the isotropic phase. A decrease in the isotropic to nematic and in the nematic to partially bilayer smectic-A(d) (SmA(d)) phase transition temperatures was observed accompanied by an increase of the layer spacing in the SmA(d) phase.

  1. Modelling of conjugate heat transfer in barium titanate plates heated by the air flow

    Science.gov (United States)

    Kozyulin, Nikolay; Bobrov, Maxim; Hrebtov, Michael

    2017-10-01

    We present the results of simulation of conjugate heat transfer between the grid of barium titanate plates and the hot air flow. The air temperature undergoes rapid change and the thermal front propagation and heat exchange with the solid plates have been studied for several plate configurations. The results show that the air heat could be effectively absorbed by the plates during the time of thermal front propagation, making such configuration attractive for pyroelectric energy harvesting applications.

  2. Preliminary experiments on phase conjugation for flow visualization. [barium titanate single crystals

    Science.gov (United States)

    Weimer, D.; Howes, W. L.

    1984-01-01

    Barium titanate single crystals are discussed in the context of: the procedure for polarizing a crystal; a test for phase conjugation; transients in the production of phase conjugation; real time readout by a separate laser of a hologram induced within the crystal, including conjugation response times to on-off switching of each beam; and a demonstration of a Twyman-Green interferometer utilizing phase conjugation.

  3. Extrusion and properties of lead zirconate titanate piezoelectric ceramics

    DEFF Research Database (Denmark)

    Cai, S.; Millar, C.E.; Pedersen, L.

    1997-01-01

    The purpose of this work was to develop a procedure for fabricating electroceramic actuators with good piezoelectric properties. The preparation of lead zirconate titanate (PZT) piezoelectric ceramic rods and tubes by extrusion processing is described. The microstructure of extrudates...... was investigated in comparision with different processing conditions. Finally, the measuremental results of density, dielectric and piezoelectric properties are reported and analyzed....

  4. Direct probing of semiconductor barium titanate via electrostatic force microscopy Sondagem direta de titanato de bário semicondutorpor meio de microscopia de força eletrostática

    OpenAIRE

    S. M. Gheno; H. L. Hasegawa; P. I. Paulin Filho

    2007-01-01

    Electrostatic force microscopy (EFM) was used to directly probe surface potential in doped barium titanate semiconducting ceramics. EFM measurements were performed using noncontact scans at a constant tip-sample separation of 75 nm with varied bias voltages applied to the sample. The applied voltage was mapped up to 10 V and the distribution of potential across the sample showed changes in regions that matched the grain boundaries, displaying a constant barrier width of 145.2 nm.A microscopia...

  5. Comparative analysis of barium titanate thin films dry etching using inductively coupled plasmas by different fluorine-based mixture gas.

    Science.gov (United States)

    Li, Yang; Wang, Cong; Yao, Zhao; Kim, Hong-Ki; Kim, Nam-Young

    2014-01-01

    In this work, the inductively coupled plasma etching technique was applied to etch the barium titanate thin film. A comparative study of etch characteristics of the barium titanate thin film has been investigated in fluorine-based (CF4/O2, C4F8/O2 and SF6/O2) plasmas. The etch rates were measured using focused ion beam in order to ensure the accuracy of measurement. The surface morphology of etched barium titanate thin film was characterized by atomic force microscope. The chemical state of the etched surfaces was investigated by X-ray photoelectron spectroscopy. According to the experimental result, we monitored that a higher barium titanate thin film etch rate was achieved with SF6/O2 due to minimum amount of necessary ion energy and its higher volatility of etching byproducts as compared with CF4/O2 and C4F8/O2. Low-volatile C-F compound etching byproducts from C4F8/O2 were observed on the etched surface and resulted in the reduction of etch rate. As a result, the barium titanate films can be effectively etched by the plasma with the composition of SF6/O2, which has an etch rate of over than 46.7 nm/min at RF power/inductively coupled plasma (ICP) power of 150/1,000 W under gas pressure of 7.5 mTorr with a better surface morphology.

  6. Magnetoelectric effect in cobalt ferrite–barium titanate composites ...

    Indian Academy of Sciences (India)

    CoFe2O4–BaTiO3 composites were prepared using conventional ceramic double sintering process with various compositions. Presence of two phases in the composites was confirmed using X-ray diffraction. The dc resistivity and thermoemf as a function of temperature in the temperature range 300 K to 600 K were ...

  7. Dielectric Enhancement in Graphene/Barium Titanate Nanocomposites.

    Science.gov (United States)

    Luo, Bingcheng; Wang, Xiaohui; Tian, Enke; Gong, Huiling; Zhao, Qiancheng; Shen, Zhengbo; Xu, Yan; Xiao, Xiaoyue; Li, Longtu

    2016-02-10

    GN/BT nanocomposites were fabricated via colloidal processing methods, and ceramics were sintered through two-step sintering methods. The microstructure and morphology were characterized by X-ray diffraction, high-resolution transmission electron microscopy, and field emission scanning electron microscopy. XRD analysis shows that all samples are perovskite phases, and the lattice parameters a and c almost decrease linearly with the increase of graphene nanosheets. The dielectric properties were tested by using precision impedance. The maximum dielectric constant at the Curie temperature for the nanocomposites with graphene addition of 3 wt % is about 16,000, almost 2 times more than that of pure BaTiO3 ceramics. The relaxation, band structure, density of states, and charge density distribution of GN/BT superlattices were calculated using first-principles calculations for the first time, and results showed the strong hybrid interactions between C 2p states and O 2p and Ti 3d orbitals.

  8. Patterned solid state growth of barium titanate crystals

    Science.gov (United States)

    Ugorek, Michael Stephen

    An understanding of microstructure evolution in ceramic materials, including single crystal development and abnormal/enhanced grain growth should enable more controlled final ceramic element structures. In this study, two different approaches were used to control single crystal development in a patterned array. These two methods are: (1) patterned solid state growth in BaTiO 3 ceramics, and (2) metal-mediated single crystal growth in BaTiO 3. With the patterned solid state growth technique, optical photolithography was used to pattern dopants as well as [001] and [110] BaTiO3 single crystal template arrays with a 1000 microm line pattern array with 1000 microm spacings. These patterns were subsequently used to control the matrix grain growth evolution and single crystal development in BaTiO3. It was shown that the growth kinetics can be controlled by a small initial grain size, atmosphere conditions, and the introduction of a dopant at selective areas/interfaces. By using a PO2 of 1x10-5 atm during high temperature heat treatment, the matrix coarsening has been limited (to roughly 2 times the initial grain size), while retaining single crystal boundary motion up to 0.5 mm during growth for dwell times up to 9 h at 1300°C. The longitudinal and lateral growth rates were optimized at 10--15 microm/h at 1300°C in a PO2 of 1x10 -5 atm for single crystal growth with limited matrix coarsening. Using these conditions, a patterned microstructure in BaTiO3 was obtained. With the metal-mediated single crystal growth technique, a novel approach for fabricating 2-2 single crystal/polymer composites with a kerf ceramic) composites were prepared. The piezoelectric and dielectric properties of the composites of the two compositions were measured. The d33 and d31 of the composites were similar to the polycrystalline ceramic of the same composition.

  9. Supramolecular curcumin-barium prodrugs for formulating with ceramic particles.

    Science.gov (United States)

    Kamalasanan, Kaladhar; Anupriya; Deepa, M K; Sharma, Chandra P

    2014-10-01

    A simple and stable curcumin-ceramic combined formulation was developed with an aim to improve curcumin stability and release profile in the presence of reactive ceramic particles for potential dental and orthopedic applications. For that, curcumin was complexed with barium (Ba(2+)) to prepare curcumin-barium (BaCur) complex. Upon removal of the unbound curcumin and Ba(2+) by dialysis, a water-soluble BaCur complex was obtained. The complex was showing [M+1](+) peak at 10,000-20,000 with multiple fractionation peaks of MALDI-TOF-MS studies, showed that the complex was a supramolecular multimer. The (1)H NMR and FTIR studies revealed that, divalent Ba(2+) interacted predominantly through di-phenolic groups of curcumin to form an end-to-end complex resulted in supramolecular multimer. The overall crystallinity of the BaCur was lower than curcumin as per XRD analysis. The complexation of Ba(2+) to curcumin did not degrade curcumin as per HPLC studies. The fluorescence spectrum was blue shifted upon Ba(2+) complexation with curcumin. Monodisperse nanoparticles with size less than 200dnm was formed, out of the supramolecular complex upon dialysis, as per DLS, and upon loading into pluronic micelles the size was remaining in similar order of magnitude as per DLS and AFM studies. Stability of the curcumin was improved greater than 50% after complexation with Ba(2+) as per UV/Vis spectroscopy. Loading of the supramloecular nanoparticles into pluronic micelles had further improved the stability of curcumin to approx. 70% in water. These BaCur supramolecule nanoparticles can be considered as a new class of prodrugs with improved solubility and stability. Subsequently, ceramic nanoparticles with varying chemical composition were prepared for changing the material surface reactivity in terms of the increase in, degradability, surface pH and protein adsorption. Further, these ceramic particles were combined with curcumin prodrug formulations and optimized the curcumin release

  10. Synthesis of Barium Titanate (BT) Nano Particles via Hydrothermal Route for the Production of BT-Polymer Nanocomposite

    Science.gov (United States)

    Habib, A.; Haubner, R.; Jakopic, G.; Stelzer, N.

    2007-08-01

    Barium titanate (high-k dielectric material) nano-powders (approx. 30 nm to 60 nm) were synthesised using hydrothermal route under moderate conditions. Effect of temperature and time was studied using transmission electron microscopy (TEM), scanning electron microscopy (SEM) and X-ray diffraction techniques. Obtained barium titanate nano-powders were dispersed in thermoplastic polymethyl methacrylate (PMMA) to get homogeneous dispersions. Thin layers were obtained using these dispersions to achieve BaTiO3 endorsed polymer layers by dip-coating for improved polymer insulators on various substrates e.g., glass, and Au sputtered silicon wafers. SEM and focused ion beam (FIB) techniques were used to study the dispersion of barium titanate nano-particles in PMMA. The layers obtained showed homogenous distribution of BaTiO3 nano particles with no agglomeration.

  11. Hydrothermal Synthesis and Processing of Barium Titanate Nanoparticles Embedded in Polymer Films.

    Science.gov (United States)

    Toomey, Michael D; Gao, Kai; Mendis, Gamini P; Slamovich, Elliott B; Howarter, John A

    2015-12-30

    Barium titanate nanoparticles embedded in flexible polymer films were synthesized using hydrothermal processing methods. The resulting films were characterized with respect to material composition, size distribution of nanoparticles, and spatial location of particles within the polymer film. Synthesis conditions were varied based on the mechanical properties of the polymer films, ratio of polymer to barium titanate precursors, and length of aging time between initial formulations of the solution to final processing of nanoparticles. Block copolymers of poly(styrene-co-maleic anhydride) (SMAh) were used to spatially separate titanium precursors based on specific chemical interactions with the maleic anhydride moiety. However, the glassy nature of this copolymer restricted mobility of the titanium precursors during hydrothermal processing. The addition of rubbery butadiene moieties, through mixing of the SMAh with poly(styrene-butadiene-styrene) (SBS) copolymer, increased the nanoparticle dispersion as a result of greater diffusivity of the titanium precursor via higher mobility of the polymer matrix. Additionally, an aminosilane was used as a means to retard cross-linking in polymer-metalorganic solutions, as the titanium precursor molecules were shown to react and form networks prior to hydrothermal processing. By adding small amounts of competing aminosilane, excessive cross-linking was prevented without significantly impacting the quality and composition of the final barium titanate nanoparticles. X-ray diffraction and X-ray photoelectron spectroscopy were used to verify nanoparticle compositions. Particle sizes within the polymer films were measured to be 108 ± 5 nm, 100 ± 6 nm, and 60 ± 5 nm under different synthetic conditions using electron microscopy. Flexibility of the films was assessed through measurement of the glass transition temperature using dynamic mechanical analysis. Dielectric permittivity was measured using an impedance analyzer.

  12. Fabrication and Characterization of Carbonized Rice Husk/Barium Titanate Nanocomposites

    Science.gov (United States)

    Melvin, G. J. H.; Wang, Z.; Ni, Q.-Q.; Siambun, N. J.; Rahman, M. M.

    2017-09-01

    Carbon materials were prepared by carbonizing rice husk (RHs) at 2500°C. Few- and multi-layer graphene were obtained from this carbonization process. Barium titanate (BTO) nanoparticles were fabricated by using sol-gel method. Then, the BTO nanoparticles were grafted onto the surface of carbonized rice husk (CRH) to fabricate CRH/BTO nanocomposites. The nanocomposites were characterized using scanning transmission electron microscopy (STEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), Raman measurement, and X-ray photoelectron spectroscopy (XPS). Based on the broadening of (1 1 0) peak from XRD result, the average crystalline size of BTO nanoparticles were calculated to be 16.5 nm. Coexistence of cubic and tetragonal phase of BTO nanoparticles is expected, based on the XRD and Raman results. From XPS result, carbon, barium, titanium, and oxygen peaks were also observed. The combination of CRH with BTO can integrate the properties of these two components to form nanocomposites for broad applications.

  13. Formation of nanocrystalline barium titanate in benzyl alcohol at room temperature.

    Science.gov (United States)

    Veldhuis, Sjoerd A; Vijselaar, Wouter J C; Stawski, Tomasz M; ten Elshof, Johan E

    2014-12-15

    Nanocrystalline barium titanate (8-10 nm crystallite size) was prepared at temperatures of 23-78 °C through reaction of a modified titanium alkoxide precursor in benzyl alcohol with barium hydroxide octahydrate. The room temperature formation of a perovskite phase from solution is associated with the use of benzyl alcohol as solvent medium. The formation mechanism was elucidated by studying the stability and interaction of each precursor with the solvent and with each other using various experimental characterization techniques. Density functional theory (DFT) computational models which agreed well with our experimental data could explain the formation of the solid phase. The stability of the Ti precursor was enhanced by steric hindrance exerted by phenylmethoxy ligands that originated from the benzyl alcohol solvent. Electron microscopy and X-ray diffraction indicated that the crystallite sizes were independent of the reaction temperature. Crystal growth was inhibited by the stabilizing phenylmethoxy groups present on the surface of the crystallites.

  14. Modified Pechini Processing of Barium and Lanthanum-Lithium Titanate Nanoparticles and Thin Films.

    Science.gov (United States)

    Suslov, A; Kobylianska, S; Durilin, D; Ovchar, O; Trachevskii, V; Jancar, B; Belous, A

    2017-12-01

    Barium-strontium titanate (BST) Ba 0.6 Sr 0.4 TiO 3 and lanthanum-lithium titanate (LLT) La 0.5 Li 0.5 TiO 3 nanopowders and thin films have been obtained via the modified Pechini route. Polyesterification and complexation processes of gel formation have been examined. Hypothetical models of coordinative polymers formed in sol-gel system have been suggested. It has been shown that BST and LLT solid solutions form in one step at relatively low temperature. X-ray diffraction confirms that the final products, which are single phases and have cubic shape, are formed at 600 and 700 °C for BST and LLT respectively. It has been found that use of thermal shock as pretreatment allows to increase the density of BST- and LLT-based thin films.

  15. Domain epitaxial growth of ferroelectric films of barium strontium titanate on sapphire

    Science.gov (United States)

    Tumarkin, A. V.; Odinets, A. A.

    2018-01-01

    A model of the epitaxial growth of crystalline multicomponent films on single-crystal substrates with a domain correspondence is presented using a solid solution of barium strontium titanate on sapphire substrates ( r cut). The domain epitaxial growth suggests the matching of the lattice planes of the film and the substrate having similar structures by comparison of domain multiple of an integral number of the interplanar spacings. Variation of the component composition of the solid solution enables changes in the domain size in the range sufficient for epitaxial growth. This method can be used to project the epitaxial growth of films of various solid solutions on single-crystal substrates.

  16. Comparison of barium titanate thin films prepared by inkjet printing and spin coating

    Directory of Open Access Journals (Sweden)

    Jelena Vukmirović

    2015-09-01

    Full Text Available In this paper, barium titanate films were prepared by different deposition techniques (spin coating, office Epson inkjet printer and commercial Dimatix inkjet printer. As inkjet technique requires special rheological properties of inks the first part of the study deals with the preparation of inks, whereas the second part examines and compares structural characteristics of the deposited films. Inks were synthesized by sol-gel method and parameters such as viscosity, particle size and surface tension were measured. Deposited films were examined by optical and scanning electron microscopy, XRD analysis and Raman spectroscopy. The findings consider advantages and disadvantages of the particular deposition techniques.

  17. Optically tuned dielectric property of barium titanate thin film by THz spectroscopy

    Science.gov (United States)

    Zhou, Siyan; Ji, Jie; Tian, Yue; Ling, Furi; Yu, Wenfeng

    2017-11-01

    The dielectric property of ferroelectric barium titanate (BaTiO3) thin film with optical field was investigated by terahertz time-domain spectroscopy at room temperature. Experimental results showed that dielectric constant of BTO film was increased with the optical pump powers, and tunability of the real part of dielectric constant could be reached to74%. The reason of realizing high modulation depth could be explained as photorefractive and photothermal effects. Furthermore, the variation of refractive index displayed a monotonically increase with the optical powers.

  18. Thermostable ferroelectric capacitors based on graded films of barium strontium titanate

    Science.gov (United States)

    Tumarkin, A. V.; Razumov, S. V.; Volpyas, V. A.; Gagarin, A. G.; Odinets, A. A.; Zlygostov, M. V.; Sapego, E. N.

    2017-10-01

    The influence of the pressure of working gas during the ion-plasma sputtering on properties of deposited ferroelectric barium strontium titanate coatings has been experimentally studied. Variations in the of pressure of the working gas during deposition allows the component composition of the deposited layer to be changed, which leads to the diffusion of the phase transition and the improvement of temperature stability of properties of ferroelectric film. The gradation of layers has an impact on the temperature of the dielectric permittivity maximum, the shape of the dependence of the capacity on temperature, and the capacitance-voltage characteristics of the capacitor structures.

  19. Fabrication and characterization of highly porous barium titanate based scaffold coated by Gel/HA nanocomposite with high piezoelectric coefficient for bone tissue engineering applications.

    Science.gov (United States)

    Ehterami, Arian; Kazemi, Mansure; Nazari, Bahareh; Saraeian, Payam; Azami, Mahmoud

    2018-03-01

    It is well established that the piezoelectric effect plays an important physiological role in bone growth, remodeling and fracture healing. Barium titanate, as a well-known piezoelectric ceramic, is especially an attractive material as a scaffold for bone tissue engineering applications. In this regard, we tried to fabricate a highly porous barium titanate based scaffolds by foam replication method and polarize them by applying an external electric field. In order to enhance the mechanical and biological properties, polarized/non-polarized scaffolds were coated with gelatin and nanostructured HA and characterized for their morphologies, porosities, piezoelectric and mechanical properties. The results showed that the compressive strength and piezoelectric coefficient of porous scaffolds increased with the increase of sintering temperature. After being coated with Gel/HA nanocomposite, the interconnected porous structure and pore size of the scaffolds almost remain unchanged while the Gel/nHA-coated scaffolds exhibited enhanced compressive strength and elastic modulus compared with the uncoated samples. Also, the effect of polarizing and coating of optimal scaffolds on adhesion, viability, and proliferation of the MG63 osteoblast-like cell line was evaluated by scanning electron microscope (SEM) and MTT assay. The cell culture experiments revealed that developed scaffolds had good biocompatibility and cells were able to adhere, proliferate and migrate into pores of the scaffolds. Furthermore, cell density was significantly higher in the coated scaffolds at all tested time-points. These results indicated that highly porous barium titanate scaffolds coated with Gel/HA nanocomposite has great potential in tissue engineering applications for bone tissue repair and regeneration. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Paramagnetic resonance study of nickel ions in hexagonal barium titanate

    Science.gov (United States)

    Böttcher, R.; Langhammer, H. T.; Müller, T.

    2011-03-01

    X-ray diffraction patterns and electron paramagnetic resonance (EPR) powder spectra (9 and 34 GHz) of BaTiO3 + 0.04 BaO + xNiO (0.001 Ni ions and their valence states as well as the development of the hexagonal phase (6H modification) of Ni-doped material with respect to doping level x and sintering temperature Ts. The 6H modification begins to occur at a nominal Ni concentration of between x = 0.005 and 0.01 and its percentage increases with increasing sintering temperature. Ni-doped BaTiO3 with x = 0.02 sintered at Ts = 1400 °C is completely hexagonal. In the 3C modification, present in as-sintered ceramics with low nominal Ni concentrations, only one type of Ni EPR spectrum was observed. By comparing its principal values of the g tensor with data of single-crystal measurements the clear assignment of this spectrum to Ni + ions is possible. Two different EPR spectra with orthorhombic g tensors are observed in the as-sintered samples with hexagonal crystal structure. These spectra were assigned to Ni3 + ions with the electron spin S = 1/2 (electron configuration 3d7, strong crystal field) substituted at Ti lattice sites corresponding to the different distorted octahedra of the hexagonal modification. Measurements of the concentration reveal that only 5% of the doping material is in the state Ni3 + . No EPR spectra of Ni2 + ions have been detected in either 3C or 6H modification in as-sintered ceramics. Therefore, we suppose that the main part of nickel is substituted as Ni4 + ions on Ti4 + lattice sites. After heat treatment of the samples in H2/Ar atmosphere a single-line spectrum with g = 2.21 ± 0.01 at room temperature has been observed which is assigned to metallic Ni or antiferromagnetically coupled Ni2 + ions in secondary phases segregated at grain boundaries or triple points.

  1. Nanostructured Barium Titanate/Carbon Nanotubes Incorporated Polyaniline as Synergistic Electromagnetic Wave Absorbers

    Directory of Open Access Journals (Sweden)

    Lujun Yu

    2016-01-01

    Full Text Available The three-dimensional (3D conductive network structures formed by barium titanate/carbon nanotubes incorporated polyaniline were favorable for strengthening electromagnetic absorption capability. Herein, an easy and flexible method consisting of sol-gel technique, in situ polymerization, and subsequent mechanical method have been developed to prepare the barium titanate/carbon nanotubes incorporated polyaniline (CNTs/BaTiO3/PANI or CBP ternary composites. The dielectric properties and microwave absorption properties of CNTs/BaTiO3/PANI composites were investigated in the frequency range of 2–18 GHz by vector network analyzer. Interestingly, it is found that the CNTs/BaTiO3/PANI composites with 3D conductive network structures presented outstanding electromagnetic absorption properties, which may be attributed to the high impedance matching behavior and improved dielectric loss ability and novel synergistic effect. Additionally, it also can be supposed that the “geometrical effect” of composite was more beneficial to absorbing the incident electromagnetic wave. The CNTs/BaTiO3/PANI composite (the mass ratio of CNTs/BaTiO3 to PANI is 2 : 3 exhibits the best microwave absorption properties, of which the minimum reflection loss value can reach −30.9 dB at 8 GHz and the absorption bandwidth with a reflection loss blew −10 dB ranges from 7.5 to 10.2 GHz.

  2. Experimental investigation of the effect of titanium dioxide and barium titanate additives on DC transient currents in low density polyethylene

    DEFF Research Database (Denmark)

    Khalil, M.S; Henk, Peter O; Henriksen, Mogens

    1988-01-01

    The effect of titanium dioxide as a semiconductive additive and barium titanate as a highly polar additive on the DC transient currents in low-density polyethylene is investigated. Experiments were made using thick specimens under a high electric field (>25×106 V/m) and a constant temperature of 40...

  3. Fabrication of Barium Strontium Titanate (Ba1-xSrxTiO3) Films Used for Bio-inspired Infrared Detector Arrays

    Science.gov (United States)

    2012-09-01

    Fabrication of Barium Strontium Titanate (Ba1–xSrxTiO3) Films Used for Bio-inspired Infrared Detector Arrays by Kimberley A. Olver ARL...MD 20783-1197 ARL-TR-6112 September 2012 Fabrication of Barium Strontium Titanate (Ba1–xSrxTiO3) Films Used for Bio-inspired Infrared...MM-YYYY) September 2012 2. REPORT TYPE Final 3. DATES COVERED (From - To) 4. TITLE AND SUBTITLE Fabrication of Barium Strontium Titanate (Ba1

  4. Synthesis of barium titanate crystalline nanoparticles using hydrothermal microwave method; Obtencao de nanoparticulas cristalinas de titanato de bario usando metodo hidrotermal assistido por microondas

    Energy Technology Data Exchange (ETDEWEB)

    Souza, A.E.; Silva, R.A.; Teixeira, S.R. [Universidade Estadual Paulista (DFQB/FCT/UNESP), Presidente Prudente, SP (Brazil). Dept. de Fisica, Quimica e Biologia. Lab. de Compositos e Ceramicas Funcionais; Moreira, M.L. [Universidade Federal de Sao Carlos (LiEC/UFSCAR), SP (Brazil). Lab. Interdisciplinar de Eletroquimica e Ceramica; Volanti, D.P.; Longo, E. [Universidade Estadual Paulista (LiEC/UNESP), Araraquara, SP (Brazil). Lab. Interdisciplinar de Eletroquimica e Ceramica

    2009-07-01

    The hydrothermal microwave method (HTMW) was used in the synthesis of barium titanate (BaTiO{sub 3}) nanoparticles. The solution was prepared in deionized water by using titanium (IV) isopropoxide (C{sub 12}H{sub 28}O{sub 4}Ti), barium chloride (BaCl{sub 2}.2H{sub 2}O) and potassium hydroxide (KOH). Afterwards it was heated in an adapted conventional microwave oven. The system is composed of a temperature controller with thermocouple, a hermetic camera of reaction made of teflon, a manometer and a safety valve. The solution was heated to 140 deg C, at a 140 deg C/min heating rate, and maintained at this temperature for 40 minutes. The obtained ceramic powder was characterized by using X-ray diffraction (XRD) and field emission scanning electron microscopy (FE-SEM). The XRD data confirms the formation of a high crystalline ceramic material with perovskite structure. The FE-SEM images reveal morphologies with dimensions varying from 27 to 54 nm. (author)

  5. Defect controlled room temperature ferromagnetism in Co-doped barium titanate nanocrystals

    International Nuclear Information System (INIS)

    Ray, Sugata; Kolen'ko, Yury V; Watanabe, Tomoaki; Yoshimura, Masahiro; Itoh, Mitsuru; Kovnir, Kirill A; Lebedev, Oleg I; Turner, Stuart; Erni, Rolf; Tendeloo, Gustaaf Van; Chakraborty, Tanushree

    2012-01-01

    Defect mediated high temperature ferromagnetism in oxide nanocrystallites is the central feature of this work. Here, we report the development of room temperature ferromagnetism in nanosized Co-doped barium titanate particles with a size of around 14 nm, synthesized by a solvothermal drying method. A combination of x-ray diffraction with state-of-the-art electron microscopy techniques confirms the intrinsic doping of Co into BaTiO 3 . The development of the room temperature ferromagnetism was tracked down to the different donor defects, namely hydroxyl groups at the oxygen site and oxygen vacancies and their relative concentrations at the surface and the core of the nanocrystal, which could be controlled by post-synthesis drying and thermal treatments.

  6. Poly (vinylidene fluoride-trifluoroethylene)/barium titanate nanocomposite for ferroelectric nonvolatile memory devices

    International Nuclear Information System (INIS)

    Valiyaneerilakkal, Uvais; Varghese, Soney

    2013-01-01

    The effect of barium titanate (BaTiO 3 ) nanoparticles (particle size <100 nm) on the ferroelectric properties of poly (vinylidenefluoride-trifluoroethylene) P(VDF-TrFE) copolymer has been studied. Different concentrations of nanoparticles were added to P(VDF-TrFE) using probe sonication, and uniform thin films were made. Polarisation - Electric field (P-E) hysteresis analysis shows an increase in remnant polarization (P r ) and decrease in coercive voltage (V c ). Piezo-response force microscopy analysis shows the switching capability of the polymer composite. The topography and surface roughness was studied using atomic force microscopy. It has been observed that this nanocomposite can be used for the fabrication of non-volatile ferroelectric memory devices.

  7. Poly (vinylidene fluoride-trifluoroethylene/barium titanate nanocomposite for ferroelectric nonvolatile memory devices

    Directory of Open Access Journals (Sweden)

    Uvais Valiyaneerilakkal

    2013-04-01

    Full Text Available The effect of barium titanate (BaTiO3 nanoparticles (particle size <100nm on the ferroelectric properties of poly (vinylidenefluoride-trifluoroethylene P(VDF-TrFE copolymer has been studied. Different concentrations of nanoparticles were added to P(VDF-TrFE using probe sonication, and uniform thin films were made. Polarisation - Electric field (P-E hysteresis analysis shows an increase in remnant polarization (Pr and decrease in coercive voltage (Vc. Piezo-response force microscopy analysis shows the switching capability of the polymer composite. The topography and surface roughness was studied using atomic force microscopy. It has been observed that this nanocomposite can be used for the fabrication of non-volatile ferroelectric memory devices.

  8. Study of a Flexible Low Profile Tunable Dipole Antenna Using Barium Strontium Titanate Varactors

    Science.gov (United States)

    Cure, David; Weller, Thomas; Miranda, Felix A.

    2014-01-01

    In this paper a flexible low profile dipole antenna using a frequency selective surface (FSS) with interdigital barium strontium titanate (BST) varactor-tuned unit cells is presented. The varactor chips were placed only along one dimension of the FSS to avoid the use of vias and simplify the DC bias network. The antenna uses overlapping metallic plates that resemble fish scales as a ground plane to improve the flexibility of the multi-material stack structure. The measured data of the antenna demonstrate tunability from 2.42 GHz to 2.66 GHz and 1.3 dB gain drop when using overlapping metallic plates instead of continuous ground plane. The total antenna thickness is approximately lambda/24.

  9. Poly(vinylidene-trifluoroethylene)/barium titanate composite for in vivo support of bone formation.

    Science.gov (United States)

    Lopes, Helena B; Santos, Thiago de S; de Oliveira, Fabiola S; Freitas, Gileade P; de Almeida, Adriana Lg; Gimenes, Rossano; Rosa, Adalberto L; Beloti, Marcio M

    2014-07-01

    In this study, we evaluated the effect of poly(vinylidene fluoride-trifluoroethylene)/barium titanate (P(VDF-TrFE)/BT) membrane on in vivo bone formation. Rat calvarial bone defects were implanted with P(VDF-TrFE)/BT and polytetrafluoroethylene (PTFE) membranes, and at 4 and 8 weeks, histomorphometric and gene expression analyses were performed. A higher amount of bone formation was noticed on P(VDF-TrFE)/BT compared with PTFE. The gene expression of RUNX2, bone sialoprotein, osteocalcin, receptor activator of nuclear factor-kappa B ligand, and osteoprotegerin indicates that P(VDF-TrFE)/BT favored the osteoblast differentiation compared with PTFE. These results evidenced the benefits of using P(VDF-TrFE)/BT to promote new bone formation, which may represent a promising alternative to be employed in guided bone regeneration. © The Author(s) 2013 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  10. Bioconjugation of barium titanate nanocrystals with immunoglobulin G antibody for second harmonic radiation imaging probes.

    Science.gov (United States)

    Hsieh, Chia-Lung; Grange, Rachel; Pu, Ye; Psaltis, Demetri

    2010-03-01

    The second harmonic generation (SHG) active nanocrystals have been demonstrated as attractive imaging probes in nonlinear microscopy due to their coherent, non-bleaching and non-blinking signals with a broad flexibility in the choice of excitation wavelength. For the use of these nanocrystals as biomarkers, it is essential to prepare a chemical interface for specific labeling. We developed a specific labeling scheme for barium titanate (BaTiO3) nanocrystals which we use as second harmonic radiation imaging probes. The specificity was achieved by covalently coupling antibodies onto the nanocrystals. We demonstrate highly specific labeling of the nanocrystal conjugates in an antibody microarray and also the membrane proteins of live biological cells in vitro. The development of surface functionalization and bioconjugation of SHG active nanocrystals provides the opportunities of applying them to biological studies. Copyright (c) 2009 Elsevier Ltd. All rights reserved.

  11. Nucleation in the presence of long-range interactions. [performed on ferroelectric barium titanate

    Science.gov (United States)

    Chandra, P.

    1989-01-01

    Unlike droplet nucleation near a liquid-gas critical point, the decay of metastable phases in crystalline materials is strongly affected by the presence of long-range forces. Field quench experiments performed on the ferroelectric barium titanate indicate that nucleation in this material is markedly different from that observed in liquids. In this paper, a theory for nucleation at a first-order phase transition in which the mediating forces are long range is presented. It is found that the long-range force induces cooperative nucleation and growth processes, and that this feedback mechanism produces a well-defined delay time with a sharp onset in the transformation to the stable phase. Closed-form expressions for the characteristic onset time and width of the transition are developed, in good agreement with numerical and experimental results.

  12. Defect controlled room temperature ferromagnetism in Co-doped barium titanate nanocrystals.

    Science.gov (United States)

    Ray, Sugata; Kolen'ko, Yury V; Kovnir, Kirill A; Lebedev, Oleg I; Turner, Stuart; Chakraborty, Tanushree; Erni, Rolf; Watanabe, Tomoaki; Van Tendeloo, Gustaaf; Yoshimura, Masahiro; Itoh, Mitsuru

    2012-01-20

    Defect mediated high temperature ferromagnetism in oxide nanocrystallites is the central feature of this work. Here, we report the development of room temperature ferromagnetism in nanosized Co-doped barium titanate particles with a size of around 14 nm, synthesized by a solvothermal drying method. A combination of x-ray diffraction with state-of-the-art electron microscopy techniques confirms the intrinsic doping of Co into BaTiO3. The development of the room temperature ferromagnetism was tracked down to the different donor defects, namely hydroxyl groups at the oxygen site (OH·(O) and oxygen vacancies (V··(O), and their relative concentrations at the surface and the core of the nanocrystal, which could be controlled by post-synthesis drying and thermal treatments.

  13. Barium strontium titanate (BST) thin film analysis on different layer and annealing temperature

    Science.gov (United States)

    Teh, Y. C.; Ong, N. R.; Sauli, Z.; Alcain, J. B.; Retnasamy, V.

    2017-09-01

    Barium Strontium Titanate (BST) thin film has been prepared by using sol-gel method. The samples are prepared with 2 different deposition layers (1 layer and 4 layer) and annealing temperature (600°C and 800°C) with Ba0.5Sr0.5TiO3 solution. Physical and electrical characterization of all the samples is done. The results showed that the grain size and surface roughness of the samples increased as the deposition layer and annealing temperature increased. In addition, the dielectric constant of the samples also increased as the deposition layer and annealing temperature increased. Thus, the physical and electrical characteristics of the thin films are related one to another.

  14. Structural and Mössbauer investigation on barium titanate-cobalt ferrite composites

    Science.gov (United States)

    Leonel, Liliam V.; Silva, Juliana B.; Albuquerque, Adriana S.; Ardisson, José D.; Macedo, Waldemar A. A.; Mohallem, Nelcy D. S.

    2012-11-01

    Perovskite and spinels oxides have received renewed attention due to the possibility of combining both structures in di-phase composites to obtain multifunctional materials. In this work, barium titanate (perovskite)-cobalt ferrite (spinel) composite powders with different microstructures were obtained from thermal treatment of amorphous precursors at 500-1100 °C. The precursors were prepared by combining coprecipitation and sol-gel routes. Lyophilization of ferrite prior to mixing was used as a strategy to control interphase reaction. Mössbauer spectroscopy showed that the dispersion of coprecipitated ferrite in a viscous BaTiO3 precursor gel resulted in superparamagnetic behavior and reduction of the local magnetic field of site [B].

  15. Electrical Properties of Thin-Film Capacitors Fabricated Using High Temperature Sputtered Modified Barium Titanate.

    Science.gov (United States)

    Reynolds, Glyn J; Kratzer, Martin; Dubs, Martin; Felzer, Heinz; Mamazza, Robert

    2012-04-13

    Simple thin-film capacitor stacks were fabricated from sputter-deposited doped barium titanate dielectric films with sputtered Pt and/or Ni electrodes and characterized electrically. Here, we report small signal, low frequency capacitance and parallel resistance data measured as a function of applied DC bias, polarization versus applied electric field strength and DC load/unload experiments. These capacitors exhibited significant leakage (in the range 8-210 μA/cm²) and dielectric loss. Measured breakdown strength for the sputtered doped barium titanate films was in the range 200 kV/cm -2 MV/cm. For all devices tested, we observed clear evidence for dielectric saturation at applied electric field strengths above 100 kV/cm: saturated polarization was in the range 8-15 μC/cm². When cycled under DC conditions, the maximum energy density measured for any of the capacitors tested here was ~4.7 × 10 -2 W-h/liter based on the volume of the dielectric material only. This corresponds to a specific energy of ~8 × 10 -3 W-h/kg, again calculated on a dielectric-only basis. These results are compared to those reported by other authors and a simple theoretical treatment provided that quantifies the maximum energy that can be stored in these and similar devices as a function of dielectric strength and saturation polarization. Finally, a predictive model is developed to provide guidance on how to tailor the relative permittivities of high-k dielectrics in order to optimize their energy storage capacities.

  16. Electrical Properties of Thin-Film Capacitors Fabricated Using High Temperature Sputtered Modified Barium Titanate

    Directory of Open Access Journals (Sweden)

    Robert Mamazza

    2012-04-01

    Full Text Available Simple thin-film capacitor stacks were fabricated from sputter-deposited doped barium titanate dielectric films with sputtered Pt and/or Ni electrodes and characterized electrically. Here, we report small signal, low frequency capacitance and parallel resistance data measured as a function of applied DC bias, polarization versus applied electric field strength and DC load/unload experiments. These capacitors exhibited significant leakage (in the range 8–210 μA/cm2 and dielectric loss. Measured breakdown strength for the sputtered doped barium titanate films was in the range 200 kV/cm −2 MV/cm. For all devices tested, we observed clear evidence for dielectric saturation at applied electric field strengths above 100 kV/cm: saturated polarization was in the range 8–15 μC/cm2. When cycled under DC conditions, the maximum energy density measured for any of the capacitors tested here was ~4.7 × 10−2 W-h/liter based on the volume of the dielectric material only. This corresponds to a specific energy of ~8 × 10−3 W-h/kg, again calculated on a dielectric-only basis. These results are compared to those reported by other authors and a simple theoretical treatment provided that quantifies the maximum energy that can be stored in these and similar devices as a function of dielectric strength and saturation polarization. Finally, a predictive model is developed to provide guidance on how to tailor the relative permittivities of high-k dielectrics in order to optimize their energy storage capacities.

  17. Synthesis of nanoparticles of barium strontium titanate using hydrothermal microwave method

    International Nuclear Information System (INIS)

    Silva, R.A.; Souza, A.E.; Teixeira, S.R.; Moreira, M.L.; Volanti, D.P.; Longo, E.

    2009-01-01

    Nanoparticles of barium strontium titanate Ba x Sr 1 - x TiO 3 (BST) had been prepared, with x = 0.5, using the hydrothermal method attended by microwaves (HTMW). A solution was prepared using deionized water, barium chloride (BaCl 2 .2H 2 O), strontium chloride (SrCl 2 .6H 2 O), titanium (IV) isopropoxide (C 12 H28O 4 Ti) and potassium hydroxide (KOH). Afterward the solution was heated to 140 deg C in a microwave oven, at a heating rate of 140 deg C/min, and maintained at this temperature for 40 min, under a pressure of 3 to 4 bar. X-ray diffraction (DRX) and field emission scanning electron microscopy (FE-SEM) had been used in the particles characterization. DRX was used to identify the crystallized phases and the images taken from (FE-SEM) show that the material has a wide particle-size distribution with most of them between 10 and 30 nm. (author)

  18. Structural and optical properties of Er3+/Yb3+ doped barium titanate phosphor prepared by co-precipitation method.

    Science.gov (United States)

    Mahata, Manoj Kumar; Kumar, Kaushal; Rai, Vineet Kumar

    2014-04-24

    In the present work we have synthesized the Er(3+)/Yb(3+) codoped barium titanate phosphor via co-precipitation method and studied its upconversion emission properties. The prepared BaTiO3 powder was found in cubic phase as a major component and having good crystallinity revealed by the XRD analysis. Optical band gap of the cubic barium titanate was calculated using the diffuse reflectance absorption spectrum. Good green upconversion emission is observed from the samples when excited by 980 nm diode laser. The variation in upconversion emission intensity is studied with the increase in excitation power as well as temperature of the sample. It is found that the emission bands centred at 524 and 548 nm are thermally coupled and can act as a temperature sensor in the 300-480 K temperature range. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Chemical preparation of ferroelectric mesoporous barium titanate thin films: drastic enhancement of Curie temperature induced by mesopore-derived strain.

    Science.gov (United States)

    Suzuki, Norihiro; Jiang, Xiangfen; Salunkhe, Rahul R; Osada, Minoru; Yamauchi, Yusuke

    2014-09-01

    Mesoporous barium titanate (BT) thin films are synthesized by a surfactant-assisted sol-gel method. The obtained mesoporous BT thin films show enhanced ferroelectricity due to the effective strains induced by mesopores. The Curie temperature (T(c)) of the mesoporous BT reaches approximately 470 °C. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Barium Titanate Photonic Crystal Electro-Optic Modulators for Telecommunication and Data Network Applications

    Science.gov (United States)

    Girouard, Peter D.

    The microwave, optical, and electro-optic properties of epitaxial barium titanate thin films grown on (100) MgO substrates and photonic crystal electro-optic modulators fabricated on these films were investigated to demonstrate the applicability of these devices for telecommunication and data networks. The electrical and electro-optical properties were characterized up to modulation frequencies of 50 GHz, and the optical properties of photonic crystal waveguides were determined for wavelengths spanning the optical C band between 1500 and 1580 nm. Microwave scattering parameters were measured on coplanar stripline devices with electrode gap spacings between 5 and 12 mum on barium titanate films with thicknesses between 230 and 680 nm. The microwave index and device characteristic impedance were obtained from the measurements. Larger (lower) microwave indices (impedances) were obtained for devices with narrower electrode gap spacings and on thicker films. Thinner film devices have both lower index mismatch between the co-propagating microwave and optical signals and lower impedance mismatch to a 50O system, resulting in a larger predicted electro-optical 3 dB bandwidth. This was experimentally verified with electro-optical frequency response measurements. These observations were applied to demonstrate a record high 28 GHz electro-optic bandwidth measured for a BaTiO3 conventional ridge waveguide modulator having 1mm long electrodes and 12 mum gap spacing on a 260nm thick film. The half-wave voltage and electro-optic coefficients of barium titanate modulators were measured for films having thicknesses between 260 and 500 nm. The half-wave voltage was directly measured at low frequencies using a polarizer-sample-compensator-analyzer setup by over-driving waveguide integrated modulators beyond their linear response regime. Effective in-device electro-optic coefficients were obtained from the measured half-wave voltages. The effective electro-optic coefficients were

  1. Residual ferroelectricity, piezoelectricity, and flexoelectricity in barium strontium titanate tunable dielectrics

    Science.gov (United States)

    Garten, Lauren M.

    response in these materials. Residual ferroelectricity is observed in barium strontium titanate ceramics 30°C above the global phase transition temperature, in the same temperature range in which anomalously large flexoelectric coefficients are reported. The application of a strain gradient in this temperature range was shown to lead to strain gradient-induced poling, or flexoelectric poling, enhancing the flexoelectric response. Flexoelectric poling was observed by the development of a remanent polarization in flexoelectric measurements upon the removal of the applied strain gradient. Additionally, an induced d33 piezoelectric response was observed in samples after the removal of the applied strain gradient, indicating that the polarization was realigned during flexoelectric measurements. Flexoelectric poling lead to the production of an internal bias of 9 kV/m. It is concluded that residual ferroelectric response considerably enhances the observed flexoelectric response. In order to investigate the effects of dc electric field induced piezoelectricity, metrology was designed, developed and calibrated for the measurement of the e31,f piezoelectric coefficient as a function of applied electric field and strain. This allowed for direct measurements of the field-induced piezoelectric response for Ba0.7Sr0.3TiO3 (70:30) and Ba 0.6Sr0.4TiO3 (60:40) thin films on MgO and silicon. The relative dielectric tunabilities for the 70:30 and 60:40 composition on MgO were 83% and 70% respectively, with a dielectric loss of 0.011 and 0.004 at 100 kHz respectively. A linear increase in induced piezoelectricity with field to --3.0 C/m2 and --1.5 C/m2 at 110 kV/cm was observed in 60:40 BST on MgO and 70:30 BST on Si. Large and hysteretic piezoelectric and tuning responses were observed in the 70:30 BST thin films on MgO. This was consistent with the irreversible Rayleigh behavior, indicating a ferroelectric contribution to the piezoelectric and dielectric response 40°C above the global

  2. Barium titanate nanoparticles and hypergravity stimulation improve differentiation of mesenchymal stem cells into osteoblasts

    Directory of Open Access Journals (Sweden)

    Rocca A

    2015-01-01

    Full Text Available Antonella Rocca,1,2 Attilio Marino,1,2 Veronica Rocca,3 Stefania Moscato,4 Giuseppe de Vito,5,6 Vincenzo Piazza,5 Barbara Mazzolai,1 Virgilio Mattoli,1 Thu Jennifer Ngo-Anh,7 Gianni Ciofani1 1Istituto Italiano di Tecnologia, Center for Micro-BioRobotics @SSSA, Pontedera, Italy, 2Scuola Superiore Sant’Anna, The BioRobotics Institute, Pontedera, Italy, 3Università di Pisa, Dipartimento di Ingegneria dell’Informazione, Pisa, Italy, 4Università di Pisa, Dipartimento di Medicina Clinica e Sperimentale, Pisa, Italy, 5Istituto Italiano di Tecnologia, Center for Nanotechnology Innovation @NEST, Pisa, Italy, 6Scuola Normale Superiore, NEST, Pisa, Italy, 7Directorate of Human Spaceflight and Operations, European Space Agency, Noordwijk, the Netherlands Background: Enhancement of the osteogenic potential of mesenchymal stem cells (MSCs is highly desirable in the field of bone regeneration. This paper proposes a new approach for the improvement of osteogenesis combining hypergravity with osteoinductive nanoparticles (NPs.Materials and methods: In this study, we aimed to investigate the combined effects of hypergravity and barium titanate NPs (BTNPs on the osteogenic differentiation of rat MSCs, and the hypergravity effects on NP internalization. To obtain the hypergravity condition, we used a large-diameter centrifuge in the presence of a BTNP-doped culture medium. We analyzed cell morphology and NP internalization with immunofluorescent staining and coherent anti-Stokes Raman scattering, respectively. Moreover, cell differentiation was evaluated both at the gene level with quantitative real-time reverse-transcription polymerase chain reaction and at the protein level with Western blotting.Results: Following a 20 g treatment, we found alterations in cytoskeleton conformation, cellular shape and morphology, as well as a significant increment of expression of osteoblastic markers both at the gene and protein levels, jointly pointing to a substantial

  3. Preparation of meta-stable phases of barium titanate by Sol-hydrothermal method

    Directory of Open Access Journals (Sweden)

    Mahalakshmi Selvaraj

    2015-11-01

    Full Text Available Two low-cost chemical methods of sol–gel and the hydrothermal process have been strategically combined to fabricate barium titanate (BaTiO3 nanopowders. This method was tested for various synthesis temperatures (100 °C to 250 °C employing barium dichloride (BaCl2 and titanium tetrachloride (TiCl4 as precursors and sodium hydroxide (NaOH as mineralizer for synthesis of BaTiO3 nanopowders. The as-prepared BaTiO3 powders were investigated for structural characteristics using x-ray diffraction (XRD, scanning electron microscopy (SEM and transmission electron microscopy (TEM. The overall analysis indicates that the hydrothermal conditions create a gentle environment to promote the formation of crystalline phase directly from amorphous phase at the very low processing temperatures investigated. XRD analysis showed phase transitions from cubic - tetragonal - orthorhombic - rhombohedral with increasing synthesis temperature and calculated grain sizes were 34 – 38 nm (using the Scherrer formula. SEM and TEM analysis verified that the BaTiO3 nanopowders synthesized by this method were spherical in shape and about 114 - 170 nm in size. The particle distribution in both SEM and TEM shows that as the reaction temperature increases from 100 °C to 250 °C, the particles agglomerate. Selective area electron diffraction (SAED shows that the particles are crystalline in nature. The study shows that choosing suitable precursor and optimizing pressure and temperature; different meta-stable (ferroelectric phases of undoped BaTiO3 nanopowders can be stabilized by the sol-hydrothermal method.

  4. Elaboration and characterization of doped barium titanate films for gas sensing

    Energy Technology Data Exchange (ETDEWEB)

    Romh, M. A. El, E-mail: Mohamad.romh@univ-littoral.fr; Fasquelle, D., E-mail: Mohamad.romh@univ-littoral.fr; Mascot, M. [Unité de Dynamique et Structure des Matériaux Moléculaires (UDSMM), Université du Littoral Côte d' Opale (ULCO), BP717, 62228 Calais (France); Députier, S. [UMR CNRS no. 6226 ISCR, Université de Rennes 1, Equipe Chimie du Solide et Matériaux (CSM), CS 74205, 35042 RENNES Cedex (France)

    2014-11-05

    Barium titanate (BaTiO{sub 3}) thick films were prepared from commercial powder to develop and optimize the film elaboration. Then, BaTiO{sub 3} was doped by strontium and iron to increase the conductivity by a double substitution on site A and B of the perovskite structure in view to develop semiconductor gas sensors. Film inks were prepared by mixing BT and BSTF powder with an organic vehicle, using a ratio of 50:50; 60:40, respectively and deposited on alumina substrates. The BT and BSTF films were sintered at 1100°C for 2h. The structural and physical properties of the films have been studied by using X-ray diffraction (XRD) and scanning electron microscope (SEM). The dielectric measurements showed a huge increase in the a.c. conductivity for the BSTF films, by a factor of 10000 at low frequency, when the temperature ranges from 25°C to 500°C.

  5. Damage accumulation and recovery in gold-ion-irradiated barium titanate

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, W.; Weber, W.J. E-mail: bill.weber@pnl.gov; Thevuthasan, S

    2001-04-01

    Single-crystal barium titanate (BaTiO{sub 3}) wafers were irradiated 60 deg. off the surface normal at 170 and 300 K using 1.0 MeV Au{sup 2+} ions over a fluence range from 0.03 to 0.19 ions/nm{sup 2}. Disorder on both the Ba and Ti sublattices has been studied in situ using Rutherford backscattering spectrometry along the <1 1 0> axial direction. At these irradiation temperatures, the temperature dependence of disordering is small. The dose for amorphization under these conditions is on the order of 0.5 dpa, which is 50% of that required to amorphize SrTiO{sub 3} under similar conditions. At low damage levels, recovery of disorder is observed at room temperature, suggesting at least one lower temperature recovery stage. For more highly damaged states, two distinct recovery stages have been identified between 420 and 570 K and between 720 and 870 K. The recovery stage between 420 and 570 K is associated with the critical temperature for full amorphization ({approx}550 K) in BaTiO{sub 3}. The higher temperature recovery stage is most likely associated with epitaxial recrystallization.

  6. Damage Accumulation and Recovery in Gold-Ion-Irradiated Barium Titanate

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Weilin; Weber, William J.; Thevuthasan, Suntharampillai

    2001-06-04

    Single-crystal barium titanate (BaTiO) wafers were irradiated 60? off the surface normal at 170 and 300 K using 1.0 MeV Au ions over a fluence range from 0.03 to 0.19 ions/nm. Disorder on both the Ba and Ti sublattices has been studied in situ using Rutherford backscattering spectrometry along the <110> axial direction. At these irradiation temperatures, the temperature dependence of disordering is small. The dose for amorphization under these conditions is on the order of 0.5 dpa, which is 50% of that required to amorphize SrTiO under similar conditions. At low damage levels, recovery of disorder is observed at room temperature, suggesting at least one lower temperature recovery stage. For more highly damaged states, two distinct recovery stages have been identified between 420 and 570 K and between 720 and 870 K. The recovery stage between 420 and 570 K is associated with the critical temperature for full amorphization ({approx}550 K) in BaTiO. The higher temperature recovery stage is most likely associated with epitaxial recrystallization.

  7. Barium titanate nanoparticles and hypergravity stimulation improve differentiation of mesenchymal stem cells into osteoblasts.

    Science.gov (United States)

    Rocca, Antonella; Marino, Attilio; Rocca, Veronica; Moscato, Stefania; de Vito, Giuseppe; Piazza, Vincenzo; Mazzolai, Barbara; Mattoli, Virgilio; Ngo-Anh, Thu Jennifer; Ciofani, Gianni

    2015-01-01

    Enhancement of the osteogenic potential of mesenchymal stem cells (MSCs) is highly desirable in the field of bone regeneration. This paper proposes a new approach for the improvement of osteogenesis combining hypergravity with osteoinductive nanoparticles (NPs). In this study, we aimed to investigate the combined effects of hypergravity and barium titanate NPs (BTNPs) on the osteogenic differentiation of rat MSCs, and the hypergravity effects on NP internalization. To obtain the hypergravity condition, we used a large-diameter centrifuge in the presence of a BTNP-doped culture medium. We analyzed cell morphology and NP internalization with immunofluorescent staining and coherent anti-Stokes Raman scattering, respectively. Moreover, cell differentiation was evaluated both at the gene level with quantitative real-time reverse-transcription polymerase chain reaction and at the protein level with Western blotting. Following a 20 g treatment, we found alterations in cytoskeleton conformation, cellular shape and morphology, as well as a significant increment of expression of osteoblastic markers both at the gene and protein levels, jointly pointing to a substantial increment of NP uptake. Taken together, our findings suggest a synergistic effect of hypergravity and BTNPs in the enhancement of the osteogenic differentiation of MSCs. The obtained results could become useful in the design of new approaches in bone-tissue engineering, as well as for in vitro drug-delivery strategies where an increment of nanocarrier internalization could result in a higher drug uptake by cell and/or tissue constructs.

  8. Size-dependent ecotoxicity of barium titanate particles: the case of Chlorella vulgaris green algae.

    Science.gov (United States)

    Polonini, Hudson C; Brandão, Humberto M; Raposo, Nádia R B; Brandão, Marcos Antônio F; Mouton, Ludovic; Couté, Alain; Yéprémian, Claude; Sivry, Yann; Brayner, Roberta

    2015-05-01

    Studies have been demonstrating that smaller particles can lead to unexpected and diverse ecotoxicological effects when compared to those caused by the bulk material. In this study, the chemical composition, size and shape, state of dispersion, and surface's charge, area and physicochemistry of micro (BT MP) and nano barium titanate (BT NP) were determined. Green algae Chlorella vulgaris grown in Bold's Basal (BB) medium or Seine River water (SRW) was used as biological indicator to assess their aquatic toxicology. Responses such as growth inhibition, cell viability, superoxide dismutase (SOD) activity, adenosine-5-triphosphate (ATP) content and photosynthetic activity were evaluated. Tetragonal BT (~170 nm, 3.24 m(2) g(-1) surface area) and cubic BT (~60 nm, 16.60 m(2) g(-1)) particles were negative, poorly dispersed, and readily aggregated. BT has a statistically significant effect on C. vulgaris growth since the lower concentration tested (1 ppm), what seems to be mediated by induced oxidative stress caused by the particles (increased SOD activity and decreased photosynthetic efficiency and intracellular ATP content). The toxic effects were more pronounced when the algae was grown in SRW. Size does not seem to be an issue influencing the toxicity in BT particles toxicity since micro- and nano-particles produced significant effects on algae growth.

  9. Correlations and local order parameter in the paraelectric phase of barium titanate.

    Science.gov (United States)

    Geneste, Grégory

    2011-03-30

    General features of the order parameter distribution in barium titanate in its paraelectric phase and in its ferroelectric phases (tetragonal and orthorhombic) are presented. The density of probability of the polarization [Formula: see text], defined by an average of the local order parameters over regions of various sizes and shapes (L(x) × L(y) × L(z)), is examined by molecular dynamics simulations using a first-principles derived effective Hamiltonian. The free energies [Formula: see text] associated with these probabilities are computed by thermodynamic integration. The evolution of these quantities are explained through the computation of pair correlations, which are found, as stated in several previous works, very anisotropic, 'needle-like', with longitudinal correlations ([Formula: see text]) having much longer range than transverse ones ([Formula: see text]). The correlations explain why the density of probability of the order parameter evolves from a multiple-peaked distribution with maxima along [111] (in the single cell), along [100] for small needle-like regions, towards a single-peaked distribution for larger regions. A useful expression in which the shape-dependence of the free energy is manifest is provided.

  10. Barium Titanate Nanoparticles Formed by Chlorine-Free Ambient Condition Sol Process Using Tetrabutylammonium Hydroxide

    Directory of Open Access Journals (Sweden)

    Wooje Han

    2016-01-01

    Full Text Available Barium titanate (BaTiO3: BTO nanoparticles (NPs were synthesized by chlorine-free ambient condition sol (ACS process using heat reflux at low temperature of 90°C. The size distribution and morphology of BTO NPs were investigated by varying the concentration of tetrabutylammonium hydroxide (TBAH. The crystalline size of BTO NPs was decreased with increasing the amount of TBAH capping agent (average size changes from 54.3 to 38.7 nm for 0 to 0.5 M TBAH in X-ray diffraction measurement. The particle size of BTO NPs was principally controlled by a synthetic control of butyl chain of TBAH and also a steric effect of excess amount of TBAH. The dielectric constant of BTO NPs was decreased from 152 to 144 at 1 MHz after an adoption of TBAH capping agent with almost uniform dielectric loss (<0.027. But the dielectric constant of BTO NPs synthesized with various molar ratio of TBAH (0.1, 0.3, and 0.5 did not show a distinguished decrease. At the particle size range in this experiment, the dielectric behavior of BTO NPs was found to be mainly dependent on the TBAH ligands at BTO NPs formed during capping process, not on the size of BTO NPs.

  11. Surface functionalization of barium titanate SHG nanoprobes for in vivo imaging in zebrafish.

    Science.gov (United States)

    Čulić-Viskota, Jelena; Dempsey, William P; Fraser, Scott E; Pantazis, Periklis

    2012-09-01

    To address the need for a bright, photostable labeling tool that allows long-term in vivo imaging in whole organisms, we recently introduced second harmonic generating (SHG) nanoprobes. Here we present a protocol for the preparation and use of a particular SHG nanoprobe label, barium titanate (BT), for in vivo imaging in living zebrafish embryos. Chemical treatment of the BT nanoparticles results in surface coating with amine-terminal groups, which act as a platform for a variety of chemical modifications for biological applications. Here we describe cross-linking of BT to a biotin-linked moiety using click chemistry methods and coating of BT with nonreactive poly(ethylene glycol) (PEG). We also provide details for injecting PEG-coated SHG nanoprobes into zygote-stage zebrafish embryos, and in vivo imaging of SHG nanoprobes during gastrulation and segmentation. Implementing the PROCEDURE requires a basic understanding of laser-scanning microscopy, experience with handling zebrafish embryos and chemistry laboratory experience. Functionalization of the SHG nanoprobes takes ∼3 d, whereas zebrafish preparation, injection and imaging setup should take approximately 2-4 h.

  12. Formation of barium strontium titanate thin films via electrophoretic deposition process.

    Science.gov (United States)

    Wang, Hong-Wen; Cheng, Pei-Chi; Liang, Cheng-Feng; Chang, Yu-Shan

    2008-12-01

    Synthesis of crystalline barium stronium titanate (Ba(0.6)Sr(0.4)TiO(3)) nanoparticles and subsequent formation of thin films have been carried out. The crystalline products were confirmed by X-ray diffractometry. Uniform Ba(0.6)Sr(0.4)TiO(3) thin films were formed by using electrophoretic deposition method (EPD) under a 0.3 to 5 V dc bias for 10 min to 1 h. Ba(0.6)Sr(0.4)TiO(3) nanoparticles having an average crystallite size of 20 to 50 nm, and Ba(0.6)Sr(0.4)TiO(3) thin films with thickness of 150 nm to 4 mum were obtained. A scanning electron microscope (SEM) and transmission electron microscope (TEM) were used to characterize the morphologies of nanoparticles and thin films. The results show that the EPD process route is a rapid, cost-effective alternative for forming Ba(0.6)Sr(0.4)TiO(3) thin films.

  13. The permittivity and refractive index measurements of doped barium titanate (BT-BCN)

    Science.gov (United States)

    Meeker, Michael A.; Kundu, Souvik; Maurya, Deepam; Kang, Min-Gyu; Sosa, Alejandro; Mudiyanselage, Rathsara R. H. H.; Clavel, Michael; Gollapudi, Sreenivasulu; Hudait, Mantu K.; Priya, Shashank; Khodaparast, Giti A.

    2017-11-01

    While piezoelectric- ferroelectric materials offer great potential for nonvolatile random access memory, most commonly implemented ferroelectrics contain lead which imposes a challenge in meeting environmental regulations. One promising candidate for lead-free, ferroelectric material based memory is (1 - x) BaTiO3 - xBa(Cu1 / 3 Nb2 / 3) O3 (BT-BCN), x = 0.025 . The samples studied here were grown on a Si substrate with an HfO2 buffer layer, thereby preventing the interdiffusion of BT-BTCN into Si. This study provides further insight into the physical behavior of BT-BCN that will strengthen the foundation for developing switching devices. The sample thicknesses ranged from 1.5 to 120 nm, and piezoelectric force microscopy was employed in order to understand the local ferroelectric behaviors. Dielectric constant as a function of frequency demonstrated enhanced frequency dispersion indicating the polar nature of the composition. The relative permittivity was found to change significantly with varying bias voltage and exhibited a tunability of 82%. The difference in the peak position during up and down sweeps is due to the presence of the spontaneous polarization. Furthermore, reflectometry was performed to determine the refractive index of samples with differing thicknesses. Our results demonstrate that refractive indices are similar to that of barium titanate. This is a promising result indicating that improved ferroelectric properties are obtained without compromising the optical properties.

  14. Aligned porous barium titanate/hydroxyapatite composites with high piezoelectric coefficients for bone tissue engineering.

    Science.gov (United States)

    Zhang, Yan; Chen, Liangjian; Zeng, Jing; Zhou, Kechao; Zhang, Dou

    2014-06-01

    It was proposed that the piezoelectric effect played an important physiological role in bone growth, remodelling and fracture healing. An aligned porous piezoelectric composite scaffold was fabricated by freeze casting hydroxyapatite/barium titanate (HA/BT) suspensions. The highest compressive strength and lowest porosity of 14.5MPa and 57.4% with the best parallelism of the pore channels were achieved in the HA10/BT90 composite. HA30/BT70 and HA10/BT90 composites exhibited piezoelectric coefficient d33 of 1.2 and 2.8pC/N, respectively, both of which were higher than the piezoelectric coefficient of natural bone. Increase of the solid loading of the suspension and solidification velocity led to the improvement of piezoelectric coefficient d33. Meanwhile, double-templates resulted in the coexistence of lamellar pores and aligned macro-pores, exhibiting the ability to produce an oriented long-range ordered architecture. The manipulation flexibility of this method indicated the potential for customized needs in the application of bone substitute. An MTT assay indicated that the obtained scaffolds had no cytotoxic effects on L929 cells. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Monolithic Mid-Infrared Integrated Photonics Using Silicon-on-Epitaxial Barium Titanate Thin Films.

    Science.gov (United States)

    Jin, Tiening; Li, Leigang; Zhang, Bruce; Lin, Hao-Yu Greg; Wang, Haiyan; Lin, Pao Tai

    2017-07-05

    Broadband mid-infrared (mid-IR) photonic circuits that integrate silicon waveguides and epitaxial barium titanate (BTO) thin films are demonstrated using the complementary metal-oxide-semiconductor process. The epitaxial BTO thin films are grown on lanthanum aluminate (LAO) substrates by the pulsed laser deposition technique, wherein a broad infrared transmittance between λ = 2.5 and 7 μm is observed. The optical waveguiding direction is defined by the high-refractive-index amorphous Si (a-Si) ridge structure developed on the BTO layer. Our waveguides show a sharp fundamental mode over the broad mid-IR spectrum, whereas its optical field distribution between the a-Si and BTO layers can be modified by varying the height of the a-Si ridge. With the advantages of broad mid-IR transparency and the intrinsic electro-optic properties, our monolithic Si on a ferroelectric BTO platform will enable tunable mid-IR microphotonics that are desired for high-speed optical logic gates and chip-scale biochemical sensors.

  16. Epitaxial growth of barium titanate thin films on germanium via atomic layer deposition

    Science.gov (United States)

    Lin, Edward L.; Posadas, Agham B.; Wu, Hsin Wei; Smith, David J.; Demkov, Alexander A.; Ekerdt, John G.

    2017-10-01

    Barium titanate BaTiO3 (BTO) thin films were epitaxially grown at 225 °C on 2 × 1-reconstructed Ge(001) surfaces via atomic layer deposition (ALD). Approximately 2 nm of BTO film was grown directly on Ge(001) as an amorphous film. Electron diffraction confirmed the epitaxy of the BTO films after post-deposition annealing at 650 °C. Additional BTO layers grown on the crystalline BTO/Ge(001) film were crystalline as-deposited. X-ray diffraction indicated that the epitaxial BTO films had a c-axis out-of-plane orientation, and the abrupt BTO/Ge interface was preserved with no sign of any interfacial germanium oxide. Scanning transmission electron microscopy provided evidence of Ba atoms occupying the troughs of the dimer rows of the 2 × 1-reconstructed Ge(001) surface, as well as preservation of the 2 × 1-reconstructed Ge(001) surface. This study presents a low-temperature process to fabricate BTO/Ge heterostructures.

  17. Enhancement of piezoelectric properties for [poly (vinylidene fluoride)/barium zirconate titanate] nanocomposites

    Science.gov (United States)

    Hemeda, O. M.; Tawfik, A.; El-Shahawy, M. M.; Darwish, K. A.

    2017-08-01

    Poly (vinylidene fluoride) / barium zirconate titanate nanocomposite samples with the formula [ x (PVDF) / (1 - x) BZT] (where x = zero, 0.2, 0.4, 0.6, 0.8 and 1) are prepared using the hot pressing method. The BZT is prepared using the tartrate precursor method. The properties of these nanocomposites are characterized by X-ray diffraction (XRD), scan electron microscope (SEM), transmission electron microscope (TEM) and Fourier transformed infrared (FTIR) at room temperature. The XRD patterns indicate that the average crystallite size ranges from 7.5 to 23.8nm. The grain size is estimated from SEM micrograph and lies between 263 and 186nm, whereas the average crystallite size has a distribution between 14 and 70nm from TEM images. The FTIR spectra illustrate the absence of any absorption band related to the (γ) phase, but the absorption bands characteristic for (α), and (β) phases of PVDF are observed. The fraction of the (β) phase of PVDF increases by increasing the BZT content, which is very useful in industrial applications, such as sensors, actuators and transducers. The high value of the piezoelectric coefficient d_{33} is measured for the PVDF/BZT nanocomposites.

  18. Studies on electrophoretically deposited nanostructured barium titanate systems and carrier transport phenomena

    Science.gov (United States)

    Borah, Manjit; Mohanta, Dambarudhar

    2016-06-01

    We report on the development of nanostructured barium titanate (BaTiO3, BT) films on ~200-μm-thick Ag substrates by employing a cathodic electrophoretic deposition (EPD) technique, where solid-state-derived BT nanoparticles are used as the starting material. Structural, morphological and compositional analyses of the as-synthesized BT nanoparticles and films were performed by X-ray diffraction, electron microscopy and energy-dispersive spectroscopy studies. The synthesized nano-BT system has an average crystallite size of ~8.1 nm and a tetragonality ( c/ a) value ~1.003. To reveal current transport mechanism, the BT films possessing microporous structures and surrounded by homogeneously grown islands were assessed in a metal-insulator-metal (MIM) conformation. The forward current conduction was observed to be purely thermionic up to respective voltages of ~1.4 and 2.2 V as for the fresh and 3-day aged samples. On the other hand, direct tunneling (DT)-mediated Ohmic feature was witnessed at a comparatively higher voltage, beyond which Fowler-Nordheim tunneling (FN) dominates in the respective MIM junctions. The magnitude of current accompanied by FN process was observed to be stronger in reverse biasing than that of forward biasing case. The use of microporous BT films can offer new insights as regards regulated tunneling events meant for miniaturized nanoelectronic elements/components.

  19. Low temperature fabrication of barium titanate hybrid films and their dielectric properties

    International Nuclear Information System (INIS)

    Kobayashi, Yoshio; Saito, Hirobumi; Kinoshita, Takafumi; Nagao, Daisuke; Konno, Mikio

    2011-01-01

    A method for incorporating BT nano-crystalline into barium titanate (BT) films is proposed for a low temperature fabrication of high dielectric constant films. BT nanoparticles were synthesized by hydrolysis of a BT complex alkoxide in 2-methoxyethanol (ME)/ethanol cosolvent. As the ME volume fraction in the cosolvent (ME fraction) increased from 0 to 100%, the particle and crystal sizes tended to increase from 13.4 to 30.2 nm and from 15.8 to 31.4 nm, respectively, and the particle dispersion in the solution became more improved. The BT particles were mixed with BT complex alkoxide dissolved in an ME/ethanol cosolvent for preparing a precursor solution that was then spin-coated on a Pt substrate and dried at 150 o C. The dielectric constant of the spin-coated BT hybrid film increased with an increase in the volume fraction of the BT particles in the film. The dissipation factor of the hybrid film tended to decrease with an increase in the ME fraction in the precursor solution. The hybrid film fabricated at a BT fraction of 30% and an ME fraction of 25% attained a dielectric constant as high as 94.5 with a surface roughness of 14.0 nm and a dissipation factor of 0.11.

  20. Measuring the flexoelectric coefficient of bulk barium titanate from a shock wave experiment

    Science.gov (United States)

    Hu, Taotao; Deng, Qian; Liang, Xu; Shen, Shengping

    2017-08-01

    In this paper, a phenomenon of polarization introduced by shock waves is experimentally studied. Although this phenomenon has been reported previously in the community of physics, this is the first time to link it to flexoelectricity, the coupling between electric polarization and strain gradients in dielectrics. As the shock waves propagate in a dielectric material, electric polarization is thought to be induced by the strain gradient at the shock front. First, we control the first-order hydrogen gas gun to impact and generate shock waves in unpolarized bulk barium titanate (BT) samples. Then, a high-precision oscilloscope is used to measure the voltage generated by the flexoelectric effect. Based on experimental results, strain elastic wave theory, and flexoelectric theory, a longitudinal flexoelectric coefficient of the bulk BT sample is calculated to be μ 11 = 17.33 × 10 - 6 C/m, which is in accord with the published transverse flexoelectric coefficient. This method effectively suppresses the majority of drawbacks in the quasi-static and low frequency dynamic techniques and provides more reliable results of flexoelectric behaviors.

  1. Damage Accumulation and Recovery in Gold-Ion-Irradiated Barium Titanate

    International Nuclear Information System (INIS)

    Jiang, Weilin; Weber, William J.; Thevuthasan, Suntharampillai

    2000-01-01

    Single-crystal barium titanate (BaTiO3) wafers were irradiated 60? off the surface normal at 170 and 300 K using 1.0 MeV Au2+ ions over a fluence range from 0.03 to 0.19 ions/nm2. Disorder on both the Ba and Ti sublattices has been studied in situ using Rutherford backscattering spectrometry along the axial direction. At these irradiation temperatures, the temperature dependence of disordering is small. The dose for amorphization under these conditions is on the order of 0.5 dpa, which is 50% of that required to amorphize SrTiO3 under similar conditions. At low damage levels, recovery of disorder is observed at room temperature, suggesting at least one lower temperature recovery stage. For more highly damaged states, two distinct recovery stages have been identified between 420 and 570 K and between 720 and 870 K. The recovery stage between 420 and 570 K is associated with the critical temperature for full amorphization (∼550 K) in BaTiO3. The higher temperature recovery stage is most likely associated with epitaxial recrystallization

  2. Assessment of full ceramic solid oxide fuel cells based on modified strontium titanates

    DEFF Research Database (Denmark)

    Holtappels, Peter; Ramos, Tania; Sudireddy, Bhaskar Reddy

    2014-01-01

    stimulated the development for full ceramic anodes based on strontium titanates. Furthermore, the Ni-cermet is primarily a hydrogen oxidation electrode and efficiency losses might occur when operating on carbon containing fuels. In the European project SCOTAS-SOFC full ceramic cells comprising CGO...

  3. Low-sintering condenser materials on the basis of barium titanate; Niedrig-sinternde Kondensatorwerkstoffe auf der Basis von Bariumtitanat

    Energy Technology Data Exchange (ETDEWEB)

    Naghib zadeh, Hamid

    2010-07-01

    The main objective of this work was the development of new barium titanate capacitor materials, which fully densified at a sintering temperature of 900 C and exhibit a high and almost temperature-independent dielectric constant as well as low dielectric loss. In order to decrease the sintering temperature of barium titanate from ca. 1300 C to 900 C, addition of various types of sintering aids have been tested. Li-containing sintering additives show the best result concerning densification and dielectric properties. By addition of 2 to 3 wt% (SrO-B{sub 2}O{sub 3}-Li{sub 2}O) -, (ZnO-B{sub 2}O{sub 3}-Li{sub 2}O) - or (LiF-SrCO{sub 3})-additive combinations to commercially available barium titanate powder 95 % of the theoretical density was achieved after sintering at 900 C. The sintered capacitor materials with the above mentioned additive combinations possess high dielectric constants from 1800 to 3590. It is well known that for a high temperature stability of dielectric constant the formation of core-shell structure in a fine-grained microstructure is required (average grain size < 1 {mu}m). For BaTiO{sub 3} samples contained 2 wt% LiF-SrCO{sub 3} is temperature coefficient of capacitance (TCC) relatively low. The TCC in temperature range between 0 C and 80 C is less than {+-} 15%. The formation of the core-shell structure in a fine-grained microstructure of this sample, which is required to have low TCC, was detected by TEM / EDX analyses. The significantly higher TCC for the BaTiO{sub 3} samples contained 3 wt% SrO-B{sub 2}O{sub 3}-Li{sub 2}O is due to the strong grain growth during sintering. To reduce the TCC in this sample Nb{sub 2}O{sub 5}-Co{sub 2}O{sub 3} was added. By addition of 1.5 wt% Nb{sub 2}O{sub 5}-Co{sub 2}O{sub 3} the temperature stability of the dielectric constant could be significantly improved as a result of the grain growth inhibition and the core-shell formation during sintering. For BaTiO{sub 3} samples contained ZnO-B{sub 2}O{sub 3}-Li

  4. Improved polymer nanocomposite dielectric breakdown performance through barium titanate to epoxy interface control

    International Nuclear Information System (INIS)

    Siddabattuni, Sasidhar; Schuman, Thomas P.; Dogan, Fatih

    2011-01-01

    Highlights: → A covalent filler-matrix interface improves the dielectric properties of a polymer-particle nanocomposite dielectric. → A covalent interface reduced the polymer free volume around the nanoparticles as assessed through T g measurements. → Composite T g was raised and breakdown strength improved for nanocomposites with a covalent polymer-particle interface. → A larger Maxwell-Wagner (MW) relaxation correlated with reduced breakdown strengths and energy storage densities. → The MW relaxation could be considered a dielectric defect regarding breakdown strength and energy storage density. - Abstract: A composite approach to dielectric design has the potential to provide improved permittivity as well as high breakdown strength and thus afford greater electrical energy storage density. Interfacial coupling is an effective approach to improve the polymer-particle composite dielectric film resistance to charge flow and dielectric breakdown. A bi-functional interfacial coupling agent added to the inorganic oxide particles' surface assists dispersion into the thermosetting epoxy polymer matrix and upon composite cure reacts covalently with the polymer matrix. The composite then retains the glass transition temperature of pure polymer, provides a reduced Maxwell-Wagner relaxation of the polymer-particle composite, and attains a reduced sensitivity to dielectric breakdown compared to particle epoxy composites that lack interfacial coupling between the composite filler and polymer matrix. Besides an improved permittivity, the breakdown strength and thus energy density of a covalent interface nanoparticle barium titanate in epoxy composite dielectric film, at a 5 vol.% particle concentration, was significantly improved compared to a pure polymer dielectric film. The interfacially bonded, dielectric composite film had a permittivity ∼6.3 and at a 30 μm thickness achieved a calculated energy density of 4.6 J/cm 3 .

  5. Calorimetric study of phase transitions in ocylcyanobiphenyl-barium titanate nanoparticle dispersions.

    Science.gov (United States)

    Sigdel, Krishna P; Iannacchione, Germano S

    2013-11-28

    High-resolution ac-calorimetry is reported on the weakly first-order isotropic to nematic (I-N) and the continuous nematic to smectic-A (N-SmA) phase transitions in the liquid crystal octylcyanobiphenyl (8CB) doped with a ferroelectric nanoparticle barium titanate, BaTiO3 (BT). Measurements were performed as a function of BT concentration and over a wide temperature range well above and below the two transitions. From the thermal scans of all samples (having BT mass fraction φ(m) = 0.001 to 0.014 and pure 8CB), both the I-N and the N-SmA transitions evolve in character. Specifically, there appears an unusual change of the I-N specific heat peak shape on heating as φ(m) increases. Both the transitions shift to lower temperature at a different rate for φ(m)φ(m)(c). The effective transition enthalpies are essentially constant and similar to that seen in the bulk. Using a simple geometric model, the mean distance between the BT particles at the cross-over φ(m)(c) is found to be x(c)~3 μm, which is consistent with an estimated surface extrapolation length b for the nematic director. This suggests that the low φ(m) regime is dominated by an impurity/disorder effect while for φ(m)>φ(m)(c) the mean distance is small enough for the LC to mediate coupling between the BT ferroelectric nanoparticles.

  6. Worm structure piezoelectric energy harvester using ionotropic gelation of barium titanate-calcium alginate composite

    International Nuclear Information System (INIS)

    Alluri, Nagamalleswara Rao; Selvarajan, Sophia; Chandrasekhar, Arunkumar; Saravanakumar, Balasubramaniam; Lee, Gae Myoung; Jeong, Ji Hyun; Kim, Sang-Jae

    2017-01-01

    A laterally aligned flexible composite linear worm-based piezoelectric energy harvester made up of piezoelectric barium titanate nanoparticles and a three dimensional gel network of calcium alginate biopolymer was aimed to harness the low frequency mechanical energy. It is highly desirable to fabricate innovative micro/nanostructures for high performance energy harvesting beyond the conventional thin films, and small scale fabrication of nanowires (or rods). The open circuit voltage of a single composite worm-based energy harvester (diameter ≈ 550 μm, length ≈ 2.5 cm) increases up to 5 times by increasing the frequency of mechanical load (11 N) from 3 to 20 Hz. Similarly, 1.5 times voltage increment was observed by increasing the length of the composite worm from 1.5 to 3.5 cm upon the bio-mechanical hand force. The energy harvester can function as an efficient portable/wearable self-powered device due to its good flexibility, and multiple lengths of composite linear worms can be utilized to drive low-power electronic devices. In this work, the composite worms were prepared by an ionotropic gelation approach, which is eco-friendly, non-toxic, having low processing temperature/time, and potential for cost-effective, large-scale fabrication, making it suitable for low frequency based self-powered devices. - Highlights: • Portable energy harvester was developed using composite linear worm structure. • Real time power generating shoe insole was demonstrated by two energy harvesters. • Energy harvested from the applied mechanical load, air and human body motions. • The relation between composite worm length and generated energy was identified. • Eco-friendly, Mass production of worms developed by ionotropic gelation method.

  7. Structural and optical properties of barium titanate modified bismuth borate glasses

    Science.gov (United States)

    Singh, Lakhwant; Thakur, Vanita; Punia, R.; Kundu, R. S.; Singh, Anupinder

    2014-11-01

    Glass samples with composition (70B2O3-29Bi2O3-1Dy2O3) modified with Barium titanate (BT), where BT is added in different successive weight percents, have been synthesized by conventional melt quenching technique. X-ray diffraction studies were performed in order to confirm the amorphous nature of the samples. The density of the samples has been found to decrease with an increase in the BT content, whereas an opposite trend has been observed in the molar volume. The analysis of FTIR and Raman spectra of the samples depicts that the glass network is built up of mainly BiO6, BiO3, BO3 and BO4 units. Its detailed analysis also revealed that the glass structure depends upon the amount of BT in the glass matrix and hence it acts as a modifier in the glass network. Introduction of BT into the glass matrix leads to the conversion of BO3 trigonal units into BO4 tetrahedral units, which results in a decrease in the degree of disorder in the glass network and makes the glass system more stable. The values of Urbach energy obtained for the prepared samples also confirmed the decrease in disorder in the glass network. The optical absorption measurements carried out for well-polished samples show a decrease in optical band gap energy with an increase in BT content whereas the molar refractivity shows the reverse trend. The Hydrogenic excitonic model applied to the studied glasses suggested that the present glass system favors direct transitions. The metallization criterion of the presently studied samples suggests that the prepared glasses may be potential candidates for nonlinear optical applications.

  8. Improved polymer nanocomposite dielectric breakdown performance through barium titanate to epoxy interface control

    Energy Technology Data Exchange (ETDEWEB)

    Siddabattuni, Sasidhar [Missouri University of Science and Technology (formerly the University of Missouri-Rolla), Chemistry Department, 400W. 11th Street, Rolla, MO 65409 (United States); Schuman, Thomas P., E-mail: tschuman@mst.edu [Missouri University of Science and Technology (formerly the University of Missouri-Rolla), Chemistry Department, 400W. 11th Street, Rolla, MO 65409 (United States); Dogan, Fatih [Missouri University of Science and Technology, Materials Science and Engineering Department, 1400N. Bishop Avenue, Rolla, MO 65409 (United States)

    2011-11-15

    Highlights: > A covalent filler-matrix interface improves the dielectric properties of a polymer-particle nanocomposite dielectric. > A covalent interface reduced the polymer free volume around the nanoparticles as assessed through T{sub g} measurements. > Composite T{sub g} was raised and breakdown strength improved for nanocomposites with a covalent polymer-particle interface. > A larger Maxwell-Wagner (MW) relaxation correlated with reduced breakdown strengths and energy storage densities. > The MW relaxation could be considered a dielectric defect regarding breakdown strength and energy storage density. - Abstract: A composite approach to dielectric design has the potential to provide improved permittivity as well as high breakdown strength and thus afford greater electrical energy storage density. Interfacial coupling is an effective approach to improve the polymer-particle composite dielectric film resistance to charge flow and dielectric breakdown. A bi-functional interfacial coupling agent added to the inorganic oxide particles' surface assists dispersion into the thermosetting epoxy polymer matrix and upon composite cure reacts covalently with the polymer matrix. The composite then retains the glass transition temperature of pure polymer, provides a reduced Maxwell-Wagner relaxation of the polymer-particle composite, and attains a reduced sensitivity to dielectric breakdown compared to particle epoxy composites that lack interfacial coupling between the composite filler and polymer matrix. Besides an improved permittivity, the breakdown strength and thus energy density of a covalent interface nanoparticle barium titanate in epoxy composite dielectric film, at a 5 vol.% particle concentration, was significantly improved compared to a pure polymer dielectric film. The interfacially bonded, dielectric composite film had a permittivity {approx}6.3 and at a 30 {mu}m thickness achieved a calculated energy density of 4.6 J/cm{sup 3}.

  9. Degradation in lead zirconate titanate piezoelectric ceramics by high power resonant driving

    International Nuclear Information System (INIS)

    Chen, W.P.; Chong, C.P.; Chan, H.L.W.; Liu, P.C.K.

    2003-01-01

    Lead zirconate titanate (PZT) piezoelectric ceramics were driven in a resonant mode at various power levels. The stability of the PZT piezoelectric ceramics is found to depend greatly on the driving power level. At low driving power, the ceramics are very stable and the properties remain unchanged after continuous vibration for long periods of time. When the driving power is relatively high, however, an obvious temperature rise is observed in the ceramics during vibration and serious degradation occurs to the properties of the ceramics after some periods of continuous vibration. As the properties of the degraded ceramics are restored after an ageing process, it is proposed that high power resonant driving causes a de-ageing effect on PZT piezoelectric ceramics, which leads to degradation. The heat generated in PZT ceramics by driving with relatively high power is proved to play a vital role in the de-ageing effect

  10. Preparation and properties of yttria doped tetragonal zirconia polycrystal/Sr-doped barium hexaferrite ceramic composites

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Shanshan; Zhang, Chao; Guo, Ruisong, E-mail: rsguo@tju.edu.cn; Liu, Lan; Yang, Yuexia; Li, Kehang

    2015-03-15

    Highlights: • The 3Y-TZP/Sr-doped barium ferrite composites were prepared. • The saturation magnetization was improved by 15% with Sr-doping. • The dispersion coefficient p could reflect the microscopic lattice variation. • The composite with x = 0.5 had the maximum fracture toughness of 8.3 MPa m{sup 1/2}. - Abstract: The effects of substitution of Ba{sup 2+} by Sr{sup 2+} on the magnetic property of barium ferrite and addition barium ferrite secondary phase to the 3 mol% yttria-doped tetragonal zirconia polycrystal (3Y-TZP) matrix on the mechanical property of composites were investigated. The Sr-doped barium ferrite (Ba{sub 1−x}Sr{sub x}Fe{sub 12}O{sub 19}, x = 0, 0.25, 0.50 and 0.75) was synthesized by solid-state reaction in advance. Then 3Y-TZP/20 wt% Sr-doped barium ferrite composites were prepared by means of conventional ceramic method. It was found that a moderate amount of Sr added to barium ferrite could boost the saturation magnetization by 15% compared with the composites without Sr-doping. Besides, the composite with x = 0.50 possessed the best mechanical properties, such as 11.5 GPa for Vickers hardness and 8.3 MPa m{sup 1/2} for fracture toughness, respectively. It was demonstrated that magnetic and mechanical properties of the composites could be harmonized by the incorporation of barium ferrite secondary phase.

  11. Barium titanate microparticles as potential carrier platform for lanthanide radionuclides for their use in the treatment of arthritis.

    Science.gov (United States)

    Chakraborty, Sudipta; Vimalnath, K V; Sharma, Jyothi; Shetty, Priyalata; Sarma, H D; Chakravarty, Rubel; Prakash, Deep; Sinha, P K; Dash, Ashutosh

    2018-02-12

    Since the inception of radiation synovectomy, a host of radioactive colloids and microparticles incorporating suitable therapeutic radionuclides have been proposed for the treatment of arthritis. The present article reports the synthesis and evaluation of barium titanate microparticles as an innovative and effective carrier platform for lanthanide radionuclides in the preparation of therapeutic agents for treatment of arthritis. The material was synthesized by mechanochemical route and characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), surface area and particle size distribution analyses. Loading of lanthanide radionuclides ( 166 Ho, 153 Sm, 177 Lu and 169 Er) on the microparticles was achieved in high yield (> 95%) resulting in the formulation of loaded particulates with excellent radiochemical purities (> 99%). Radiolanthanide-loaded microparticles exhibited excellent in vitro stability in human serum. In vitro DTPA challenge study indicated fairly strong chemical association of lanthanides with barium titanate microparticles. Long-term biodistribution studies carried out after administration of 177 Lu-loaded microparticles into one of the knee joints of normal Wistar rats revealed near-complete retention of the formulation (> 96% of the administered radioactivity) within the joint cavity even 14 d post-administration. The excellent localization of the loaded microparticles was further confirmed by sequential whole-body radio-luminescence imaging studies carried out using 166 Ho-loaded microparticles. This article is protected by copyright. All rights reserved.

  12. Barium halide nanocrystals in fluorozirconate based glass ceramics for scintillation application

    Energy Technology Data Exchange (ETDEWEB)

    Selling, J.

    2007-07-01

    Europium (Eu)-activated barium halide nanocrystals in fluorozirconate based glass ceramics represent a promising class of Xray scintillators. The scintillation in these glass ceramics is mainly caused by the emission of divalent Eu incorporated in hexagonal BaCl{sub 2} nanocrystals which are formed in the glass matrix upon appropriate annealing. Experiments with cerium (Ce)-activated fluorozironate glass ceramics showed that Ce is an interesting alternative. In order to get a better understanding of the scintillation mechanism in Eu- or Ce-activated barium halide nanocrystals, an investigation of the processes in the corresponding bulk material is essential. The objective of this thesis is the investigation of undoped, Eu-, and Ce-doped barium halides by X-ray excited luminescence (XL), pulse height, and scintillation decay spectra. That will help to figure out which of these crystals has the most promising scintillation properties and would be the best nanoparticles for the glass ceramics. Furthermore, alternative dopants like samarium (Sm) and manganese (Mn) were also investigated. Besides the above-mentioned optical investigation electron paramagnetic resonance (EPR) and Moessbauer measurements were carried out in order to complete the picture of Eu-doped barium halides. The EPR data of Eu-doped BaI{sub 2} is anticipated to yield more information about the crystal field and crystal structure that will help to understand the charge carrier process during the scintillation process. The main focus of the Moessbauer investigations was set on the Eu-doped fluorochlorozirconate glass ceramics. The results of this investigation should help to improve the glass ceramics. The Eu{sup 2+}/Eu{sup 3+} ratio in the glass ceramics should be determined and optimize favor of the Eu{sup 2+}. We also want to distinguish between Eu{sup 2+} in the glass matrix and Eu{sup 2+} in the nanocrystals. For a better understanding of Moessbauer spectroscopy on Eu also measurements on Eu in a

  13. Characterization of barium titanate powder doped with sodium and potassium ions by using Rietveld refining; Caracterizacao do po de titanato de bario dopado com ions sodio e potasio com o refinamento de Rietveld

    Energy Technology Data Exchange (ETDEWEB)

    Andrade, M.C.; Assis, J.T.; Pereira, F.R., E-mail: mcalixto@iprj.uerj.b [Universidade do Estado do Rio de Janeiro (IPRJ/UERJ), Nova Friburgo, RJ (Brazil). Instituto Politecnico; Araujo, J.C. [Universidade do Estado do Rio de Janeiro (FFP/UERJ), Sao Goncalo, RJ (Brazil). Fac. de Formacao de Professores; Moreira, E.L.; Moraes, V.C.A.; Lopes, A.R. [Centro Brasileiro de Pesquisas Fisicas (CBPF/MCT), Rio de Janeiro, RJ (Brazil)

    2009-07-01

    A solid-reaction synthesis of doped barium titanate was done by employing barium carbonates, sodium, potassium and titanium oxides with classic procedures. Rietveld refining of X ray diffraction data of perovskite samples with tetragonal symmetry was applying and show good agreement. Besides, the treatment performed from 600 deg C produces nanocrystals of barium titanate with average size of 33 nm. The presence of endothermic peaks related to BaTiO{sub 3} formation at relatively low temperatures was determined by thermal analysis. A pseudo-Voigt Thompson-Cox-Hastings function was used to fit the standard samples of barium titanate. The Rietveld method has showed be efficient to detect the influences of temperature and doping on barium titanate microstructures. (author)

  14. Multicomponent doped barium strontium titanate thin films for tunable microwave applications

    Science.gov (United States)

    Alema, Fikadu Legesse

    In recent years there has been enormous progress in the development of barium strontium titanate (BST) films for tunable microwave applications. However, the properties of BST films still remain inferior compared to bulk materials, limiting their use for microwave technology. Understanding the film/substrate mismatch, microstructure, and stoichiometry of BST films and finding the necessary remedies are vital. In this work, BST films were deposited via radio frequency magnetron sputtering method and characterized both analytically and electrically with the aim of optimizing their properties. The stoichiometry, crystal structure, and phase purity of the films were studied by varying the oxygen partial pressure (OPP) and total gas pressure (TGP) in the chamber. A better stoichiometric match between film and target was achieved when the TGP is high (> 30 mTorr). However, the O2/Ar ratio should be adjusted as exceeding a threshold of 2 mTorr in OPP facilitates the formation of secondary phases. The growth of crystalline film on platinized substrates was achieved only with a lower temperature grown buffer layer, which acts as a seed layer by crystallizing when the temperature increases. Concurrent Mg/Nb doping has significantly improved the properties of BST thin films. The doped film has shown an average tunability of 53%, which is only ˜8 % lower than the value for the undoped film. This drop is associated with the Mg ions whose detrimental effects are partially compensated by Nb ions. Conversely, the doping has reduced the dielectric loss by ˜40 % leading to a higher figure of merit. Moreover, the two dopants ensure a charge neutrality condition which resulted in significant leakage current reduction. The presence of large amounts of empty shallow traps related to Nb Ti localize the free carriers injected from the contacts; thus increase the device control voltage substantially (>10 V). A combinatorial thin film synthesis method based on co-sputtering of two BST

  15. Impedance spectroscopy and mechanical response of porous nanophase hydroxyapatite-barium titanate composite.

    Science.gov (United States)

    Dubey, Ashutosh Kumar; Kakimoto, Ken-ichi

    2016-06-01

    The present study aims to develop the porous nanophase hydroxyapatite (HA)-barium titanate (BT) composite with reasonable mechanical and electrical properties as an electrically-active prosthetic orthopedic implant alternate. The porous samples (densification ~40-70%) with varying amounts of BT (0, 25, 35 and 100 vol.%) in HA were synthesized using optimal spark plasma sintering conditions, which revealed the thermochemical stability between both the phases. The reasonably good combination of functional properties such as compressive [(236.00 ± 44.90)MPa] and flexural [(56.18 ± 5.82) MPa] strengths, AC conductivity [7.62 × 10(-9)(ohm-cm)(-1) at 10 kHz] and relative permittivity [15.20 at 10 kHz] have been achieved with nanostructured HA-25 vol.% BT composite as far as significant sample porosity (~30%) is concerned. Detailed impedance spectroscopic analysis was performed to reveal the electrical microstructure of developed porous samples. The resistance and capacitance values (at 500 °C) of grain (RG, CG) and grain boundary (RGB, CGB) for the porous HA-25 vol.% BT composite are (1.3 × 10(7) ohm, 3.1 × 10(-11)F) and (1.6 × 10(7) ohm, 5.9 × 10(-10)F), respectively. Almost similar value of activation energy (~1-1.5 eV) for grain and grain boundary has been observed for all the samples. The mechanism of conduction is found to be same for porous monolithic HA as well as composite samples. Relaxation spectroscopic analyses suggest that both the localized as well as long range charge carrier translocations are responsible for conduction in these samples. The degree of polarization of porous samples has been assessed by measuring thermally stimulated depolarization current of the poled samples. The depolarization current is observed to depend on the heating rate. The maximum current density, measured for HA-25 vol.% BT sample at a heating rate of 1 °C/min is 2.7 nA/cm(2). Formation of oxygen vacancies due to the reduced atmosphere sintering contribute to the space

  16. Ecotoxicological studies of micro- and nanosized barium titanate on aquatic photosynthetic microorganisms.

    Science.gov (United States)

    Polonini, Hudson C; Brandão, Humberto M; Raposo, Nádia R B; Mouton, Ludovic; Yéprémian, Claude; Couté, Alain; Brayner, Roberta

    2014-09-01

    The interaction between live organisms and micro- or nanosized materials has become a current focus in toxicology. As nanosized barium titanate has gained momentum lately in the medical field, the aims of the present work are: (i) to assess BT toxicity and its mechanisms on the aquatic environment, using two photosynthetic organisms (Anabaena flos-aquae, a colonial cyanobacteria, and Euglena gracilis, a flagellated euglenoid); (ii) to study and correlate the physicochemical properties of BT with its toxic profile; (iii) to compare the BT behavior (and Ba(2+) released ions) and the toxic profile in synthetic (Bold's Basal, BB, or Mineral Medium, MM) and natural culture media (Seine River Water, SRW); and (iv) to address whether size (micro, BT MP, or nano, BT NP) is an issue in BT particles toxicity. Responses such as growth inhibition, cell viability, superoxide dismutase (SOD) activity, adenosine-5-triphosphate (ATP) content and photosynthetic efficiency were evaluated. The main conclusions are: (i) BT have statistically significant toxic effects on E. gracilis growth and viability even in small concentrations (1μgmL(-1)), for both media and since the first 24 h; on the contrary of on A. flos-aquae, to whom the effects were noticeable only for the higher concentrations (after 96 h: ≥75 μg mL(-1) for BT NP and =100 μg mL(-1) for BT MP, in BB; and ≥75 μg mL(-1) for both materials in SRW), in spite of the viability being affected in all concentrations; (ii) the BT behaviors in synthetic and natural culture media were slightly different, being the toxic effects more pronounced when grown in SRW - in this case, a worse physiological state of the organisms in SRW can occur and account for the lower resistance, probably linked to a paucity of nutrients or even a synergistic effect with a contaminant from the river; and (iii) the effects seem to be mediated by induced stress without a direct contact in A. flos-aquae and by direct endocytosis in E. gracilis, but in

  17. Influence of high temperature processing of sol-gel derived barium titanate thin films deposited on platinum and strontium ruthenate coated silicon wafers

    NARCIS (Netherlands)

    Stawski, Tomasz; Vijselaar, Wouter Jan, Cornelis; Göbel, Ole; Veldhuis, Sjoerd; Smith, B.F.; Blank, David H.A.; ten Elshof, Johan E.

    2012-01-01

    Thin films of barium titanate (BTO) of 200 nm thickness, derived from an alkoxide¿carboxylate sol¿gel process, were deposited on Pt/Ti and SrRuO3/ZrO2¿8%Y2O3 coated Si wafers. Films with a dense columnar microstructure were obtained by repeated deposition of thin amorphous layers from

  18. Full Ceramic Fuel Cells Based on Strontium Titanate Anodes, An Approach Towards More Robust SOFCs

    DEFF Research Database (Denmark)

    Holtappels, Peter; Irvine, J.T.S.; Iwanschitz, B.

    2013-01-01

    The persistent problems with Ni-YSZ cermet based SOFCs, with respect to redox stability and tolerance towards sulfur has stimulated the development of a full ceramic cell based on strontium titanate(ST)- based anodes and anode support materials, within the EU FCH JU project SCOTAS-SOFC. Three...

  19. Scandium doped Strontium Titanate Ceramics: Structure, Microstructure, and Dielectric Properties

    Directory of Open Access Journals (Sweden)

    Tkach, Alexander

    2008-08-01

    Full Text Available Sc-doped strontium titanate (ST ceramics were synthesised by solid state reaction, according to the composition Sr1-1.5xScxTiO3 with x = 0-0.01. Structural properties and microstructure development was examined by XRD and SEM. The dielectric properties were evaluated as a function of the temperature and frequency in the radio frequency range. Lattice parameter, density and grain size, were found to decrease slightly with increasing Sc content. The dielectric permittivity and losses decrease also. Sc-doping has only a weak effect on the quantum paraelectric behaviour of ST and no dielectric anomaly was observed, what is probably related to the limited solubility of Sc on the Sr site of the perovskite lattice of ST.

    Se sintetizaron materiales cerámicos de titanato de estroncio dopado con escandio mediante reacción en estado sólido De acuerdo a la composición Sr1-1.5xScxTiO3 con x= 0-0.1. Las propiedades estructurales y el desarrollo microestructural se estudiaron mediante XRD y SEM. La propiedades dieléctricas se estudiaron como función de la temperatura y de la frecuencia en el rango de la frecuencias de radio. Se observó que los parámetros de red, la densidad y el tamaño del grano disminuyen ligeramente con el contenido en Sc. La permitividad dieléctrica y las perdidas también disminuyen. El dopado con Sc tiene un efecto muy ligero sobre el comportamiento paraeléctrico cuántico del titanato de estroncio y no se observó anomalías dioeléctricas , lo que está probablemente relacionado con la baja solubilidad del Sc en posiciones del Sr en la estructura tipo perovskita del titanato de estroncio.

  20. An approach to analyzing synthesis, structure and properties of bismuth titanate ceramics

    Directory of Open Access Journals (Sweden)

    Lazarević Z.

    2005-01-01

    Full Text Available The family of bismuth titanate, Bi4Ti3O12 (BIT layered-structured ferroelectrics materials is attractive from the viewpoint of their application as electronic materials such as dielectrics, piezoelectrics and pyroelectrics, because they are characterized by good stability of piezoelectric properties, a high Curie temperature and a good resistance vs temperature. Bismuth titanate (Bi4Ti3O12 powders can be prepared using different methods, depending if the creation will be film coating or ceramics. The structure and properties of bismuth titanate materials show a significance dependence on the applied synthesis method. In this review paper, we made an attempt to give an approach to analyzing the structure, synthesis methods and properties of bismuth titanate ferroelectrics materials. .

  1. Electrical characterization of strontium titanate borosilicate glass ceramics system with bismuth oxide addition using impedance spectroscopy

    International Nuclear Information System (INIS)

    Thakur, O.P.; Kumar, Devendra; Parkash, Om; Pandey, Lakshman

    2003-01-01

    The ac electrical data, measured in the frequency range 0.1 kHz-1 MHz, were used to study the electrical response of strontium titanate borosilicate glass ceramic system with bismuth oxide addition. Complex plane plots from these electrical data for various glass ceramic samples reveal contributions from simultaneously operating polarization mechanisms to overall dielectric behavior. The complex modulus (M * ) representation of electrical data for various glass ceramic samples were found to be more informative. Equivalent circuit models, which represent the electrical behavior of glass ceramic samples, were determined using complex non-linear least square (CNLS) fitting. An attempt has been made to understand the dielectric behavior of various glass ceramics in terms of contributions arising from different polarization processes occurring at glassy matrix, crystalline phases, glass to crystal interface region and blocking electrodes. Glass ceramics containing SrTiO 3 and TiO 2 (rutile) phases show thermally stable dielectric behavior

  2. Synthesis and properties of nickel-doped nanocrystalline barium hexaferrite ceramic materials

    Science.gov (United States)

    Waqar, Moaz; Rafiq, Muhammad Asif; Mirza, Talha Ahmed; Khalid, Fazal Ahmad; Khaliq, Abdul; Anwar, Muhammad Sabieh; Saleem, Murtaza

    2018-04-01

    M-type barium hexaferrite ceramics have emerged as important materials both for technological and commercial applications. However, limited work has been reported regarding the investigation of nanocrystalline Ni-doped barium hexaferrites. In this study, nanocrystalline barium hexaferrite ceramics with the composition BaFe12- x Ni x O19 (where x = 0, 0.3 and 0.5) were synthesized by sol-gel method and characterized using X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, vibrating sample magnetometer and precision impedance analyzer. All the synthesized samples had single magnetoplumbite phase having space group P63/mmc showing the successful substitution of Ni in BaFe12O19 without the formation of any impurity phase. Average grain size of undoped samples was around 120 nm which increased slightly with the addition of Ni. Saturation magnetization ( M s) and remnant magnetization ( M r) increased with the addition of Ni, however, coercivity ( H c) decreased with the increase in Ni from x = 0 to x = 0.5. Real and imaginary parts of permittivity decreased with the increasing frequency and increased with Ni content. Dielectric loss and conductivity showed slight variation with the increase in Ni concentration.

  3. Molecular structures of (3-aminopropyl)trialkoxysilane on hydroxylated barium titanate nanoparticle surfaces induced by different solvents and their effect on electrical properties of barium titanate based polymer nanocomposites

    International Nuclear Information System (INIS)

    Fan, Yanyan; Wang, Guanyao; Huang, Xingyi; Bu, Jing; Sun, Xiaojin; Jiang, Pingkai

    2016-01-01

    Graphical abstract: - Highlights: • The silanization on the surface of hydroxylated barium titanate nanoparticles was introduced by using two kinds of trialkoxysilanes with different solvents (toluene and ethanol), respectively. • Solvents have more remarkable impact on the dielectric properties of the subsequent BT/PVDF nanocomposites than the types of silanes. • The solvents used for BT nanoparticle surface modification exhibit a significant effect on the breakdown strength of the nanocomposites. - Abstract: Surface modification of nanoparticles by grafting silane coupling agents has proven to be a significant approach to improve the interfacial compatibility between inorganic filler and polymer matrix. However, the impact of grafted silane molecular structure after the nanoparticle surface modification, induced by the utilized solvents and the silane alkoxy groups, on the electrical properties of the corresponding nanocomposites, has been seldom investigated. Herein, the silanization on the surface of hydroxylated barium titanate (BT-OH) nanoparticles was introduced by using two kinds of trialkoxysilane, 3-aminopropyltriethoxysilane (AMEO) and 3-aminopropyltrimethoxysilane (AMMO), with different solvents (toluene and ethanol), respectively. Solid-state 13 C, 29 Si nuclear magnetic resonance (NMR) spectroscopy and high-resolution X-ray photoelectron spectroscopy (XPS) were employed to validate the structure differences of alkoxysilane attachment to the nanoparticles. The effect of alkoxysilane structure attached to the nanoparticle surface on the dielectric properties of the BT based poly(vinylidene fluoride) (PVDF) nanocomposites were investigated. The results reveal that the solvents used for BT nanoparticle surface modification exhibit a significant effect on the breakdown strength of the nanocomposites. Nevertheless, the alkoxy groups of silane show a marginal influence on the dielectric properties of the nanocomposites. These research results provide

  4. EXAFS and XANES analysis of plutonium and cerium edges from titanate ceramics for fissile materials disposal

    International Nuclear Information System (INIS)

    Fortner, J. A.; Kropf, A. J.; Bakel, A. J.; Hash, M. C.; Aase, S. B.; Buck, E. C.; Chamerlain, D. B.

    1999-01-01

    We report x-ray absorption near edge structure (XANES) and extended x-ray absorption fine structure (EXAFS) spectra from the plutonium L III edge and XANES from the cerium L II edge in prototype titanate ceramic hosts. The titanate ceramics studied are based upon the hafnium-pyrochlore and zirconolite mineral structures and will serve as an immobilization host for surplus fissile materials, containing as much as 10 weight % fissile plutonium and 20 weight % (natural or depleted) uranium. Three ceramic formulations were studied: one employed cerium as a ''surrogate'' element, replacing both plutonium and uranium in the ceramic matrix, another formulation contained plutonium in a ''baseline'' ceramic formulation, and a third contained plutonium in a formulation representing a high-impurity plutonium stream. The cerium XANES from the surrogate ceramic clearly indicates a mixed III-IV oxidation state for the cerium. In contrast, XANES analysis of the two plutonium-bearing ceramics shows that the plutonium is present almost entirely as Pu(IV) and occupies the calcium site in the zirconolite and pyrochlore phases. The plutonium EXAFS real-space structure shows a strong second-shell peak, clearly distinct from that of PuO 2 , with remarkably little difference in the plutonium crystal chemistry indicated between the baseline and high-impurity formulations

  5. A theoretical investigation of the influence of the surface effect on the ferroelectric property of strained barium titanate film

    Science.gov (United States)

    Fang, Chao; Liu, Wei Hua

    2017-07-01

    The influence of the surface effect on the ferroelectric property of strained barium titanate film has been investigated. In this study, based on time-dependent Ginsburg-Landau-Devonshire thermodynamic theory, the surface effects have been simulated by introducing a surface constant, which leads to the strained BaTiO3 film consisting of inner tetragonal core and gradient lattice strain layer. Further, surface effects produce a depolarization field which has a dominant effect on the ferroelectric properties of the films. The spontaneous polarization, dielectric properties and ferroelectric hysteresis loop of BaTiO3 film are calculated under different boundary conditions. Theoretical and experimental results for strained BaTiO3 film are compared and discussed.

  6. Coating barium titanate nanoparticles with polyethylenimine improves cellular uptake and allows for coupled imaging and gene delivery.

    Science.gov (United States)

    Dempsey, Christopher; Lee, Isac; Cowan, Katie R; Suh, Junghae

    2013-12-01

    Barium titanate nanoparticles (BT NP) belong to a class of second harmonic generating (SHG) nanoprobes that have recently demonstrated promise in biological imaging. Unfortunately, BT NPs display low cellular uptake efficiencies, which may be a problem if cellular internalization is desired or required for a particular application. To overcome this issue, while concomitantly developing a particle platform that can also deliver nucleic acids into cells, we coated the BT NPs with the cationic polymer polyethylenimine (PEI)-one of the most effective nonviral gene delivery agents. Coating of BT with PEI yielded complexes with positive zeta potentials and resulted in an 8-fold increase in cellular uptake of the BT NPs. Importantly, we were able to achieve high levels of gene delivery with the BT-PEI/DNA complexes, supporting further efforts to generate BT platforms for coupled imaging and gene therapy. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Initial stages of the growth of barium strontium titanate films on a semi-isolating silicon carbide substrate

    Science.gov (United States)

    Tumarkin, A. V.; Serenkov, I. T.; Sakharov, V. I.; Razumov, S. V.; Odinets, A. A.; Zlygostov, M. V.; Sapego, E. N.; Afrosimov, V. V.

    2017-12-01

    The initial stages of the growth of ferroelectric barium strontium titanate films on single-crystal silicon carbide substrates have been studied for the first time. The choice of a substrate with high thermal conductivity has been due to the possibility of applying these structures in powerful microwave devices. The temperature ranges separating the mechanism of the surface diffusion of deposited atoms from the diffusion via a gaseous phase during the growth of multicomponent films have been determined. The studies show that the mass transfer by means of surface diffusion leads to the formation of small-height nuclei that cover a large area of the substrate, whereas the mass transfer via a gaseous phase leads to the formation of a "columnar" islandtype structure with small percentage of covering the substrate and larger island heights.

  8. Preparation and Sound Absorption Properties of a Barium Titanate/Nitrile Butadiene Rubber–Polyurethane Foam Composite with Multilayered Structure

    Directory of Open Access Journals (Sweden)

    Xueliang Jiang

    2018-03-01

    Full Text Available Barium titanate/nitrile butadiene rubber (BT/NBR and polyurethane (PU foam were combined to prepare a sound-absorbing material with an alternating multilayered structure. The effects of the cell size of PU foam and the alternating unit number on the sound absorption property of the material were investigated. The results show that the sound absorption efficiency at a low frequency increased when decreasing the cell size of PU foam layer. With the increasing of the alternating unit number, the material shows the sound absorption effect in a wider bandwidth of frequency. The BT/NBR-PU foam composites with alternating multilayered structure have an excellent sound absorption property at low frequency due to the organic combination of airflow resistivity, resonance absorption, and interface dissipation.

  9. Preparation and Sound Absorption Properties of a Barium Titanate/Nitrile Butadiene Rubber-Polyurethane Foam Composite with Multilayered Structure.

    Science.gov (United States)

    Jiang, Xueliang; Yang, Zhen; Wang, Zhijie; Zhang, Fuqing; You, Feng; Yao, Chu

    2018-03-22

    Barium titanate/nitrile butadiene rubber (BT/NBR) and polyurethane (PU) foam were combined to prepare a sound-absorbing material with an alternating multilayered structure. The effects of the cell size of PU foam and the alternating unit number on the sound absorption property of the material were investigated. The results show that the sound absorption efficiency at a low frequency increased when decreasing the cell size of PU foam layer. With the increasing of the alternating unit number, the material shows the sound absorption effect in a wider bandwidth of frequency. The BT/NBR-PU foam composites with alternating multilayered structure have an excellent sound absorption property at low frequency due to the organic combination of airflow resistivity, resonance absorption, and interface dissipation.

  10. Studies of ferroelectric and dielectric properties of pure and doped barium titanate prepared by sol-gel method

    Energy Technology Data Exchange (ETDEWEB)

    Bisen, Supriya; Mishra, Ashutosh; Jarabana, Kanaka M. [School of Physics, Vigyan Bhawan, Devi Ahilya University, Khandwa Road Indore-452001 (India)

    2016-05-23

    In this work, Barium Titanate (BaTiO{sub 3}) powders were synthesized via Sol-Gel auto combustion method using citric acid as a chelating agent. We study the behavior of ferroelectric and dielectric properties of pure and doped BaTiO{sub 3} on different concentration. To understand the phase and structure of the powder calcined at 900°C were characterized by X-ray Diffraction shows that tetragonal phase is dominant for pure and doped BTO and data fitted by Rietveld Refinement. Electric and Dielectric properties were characterized by P-E Hysteresis and Dielectric measurement. In P-E measurement ferroelectric loop tracer applied for different voltage. The temperature dependant dielectric constant behavior was observed as a function of frequency recorded on hp-Hewlett Packard 4192A, LF impedance, 5Hz-13Hz analyzer.

  11. Structural and microstructural study of gamma ray-irradiated co-doped barium titanate (Ba0.88Ca0.12Ti0.975Sn0.025O3

    Directory of Open Access Journals (Sweden)

    Umaru Ahmadu

    2016-06-01

    Full Text Available Barium calcium stannate titanate (Ba0.88Ca0.12Ti0.975Sn0.025O3 ceramics, synthesized by solid state reaction method and sintered at 1100 °C/3 h, were exposed to gamma radiation dose of up to 1 kGy using a Cs-137 irradiation source at a dose rate of 100.46 Gv/h. Structural analysis of the ceramics indicated a tetragonal perovskite crystalline structure for both pristine and irradiated ceramics with a minor secondary phase. However, slight changes of the lattice parameters and average crystallite size were observed for the irradiated samples. The lattice aspect ratio of the tetragonal phase (c/a for the pristine ceramics was 1.0022 which decreased by 0.22% at maximum irradiation dose. Irradiation also causes some microstructural changes and slight decrease in grain size. Energy dispersive spectroscopic investigation of the Ba0.88Ca0.12Ti0.975Sn0.025O3 showed small variation in its chemical composition as gamma radiation dose is increased.

  12. Structural, topographical and electrical properties of cerium doped strontium barium niobate (Ce:SBN60) ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Raj, S. Gokul [Department of Physics, C. Kandaswami Naidu College For Men (CKNC), Annanagar, Chennai-600102 (India); Mathivanan, V.; Mohan, R. [Department of Physics, Presidency College, Chennai – 600005 (India); Kumar, G. Ramesh, E-mail: rameshvandhai@gmail.com; Yathavan, S. [Department of Physics, University College of Engineering Arni, Anna University Chennai, Arni-632317 (India)

    2016-05-06

    Tungsten bronze type cerium doped strontium barium niobate (Ce:SBN - Sr{sub 0.6}B{sub 0.4}Nb{sub 2}O{sub 6}) ceramics were synthesized by solid state process. Cerium was used as dopant to improve its electrical properties. Influence of Ce{sup +} ions on the photoluminescence properties was investigated in detail. The grain size topographical behavior of SBN powders and their associated abnormal grain growth (AGG) were completely analyzed through SEM studies. Finally dielectric, measurement discusses about the broad phase transition observed due to cerium dopant The results were discussed in detail.

  13. Impedance Spectroscopy Study of the Electrical Properties of Cation-Substituted Barium Hexaaluminate Ceramics

    Science.gov (United States)

    Belyaev, B. A.; Drokin, N. A.; Poluboyarov, V. A.

    2018-02-01

    We report on the behavior of frequency and temperature dependences of the impedance of a measuring cell in the form of a parallel-plate capacitor filled with barium hexaaluminate ceramics with four aluminum cations replaced by iron (BaO · 2Fe2O3 · 4Al2O3). The measurements have been performed in the frequency range of 0.5-108 Hz at temperatures of 20-375°C. A technique for determining the electrical properties of the investigated ceramics is proposed, which is based on an equivalent electric circuit allowing the recorded impedance spectra to be approximated with sufficiently high accuracy. The established spectral features are indicative of the presence of two electric relaxation times different from each other by three orders of magnitude. This fact is explained by the difference between the charge transport processes in the bulk of crystallites and thin intercrystallite spacers, for which the charge activation energies have been determined.

  14. Adsorption of water-soluble polymers onto barium titanate and its effects on colloidal stability

    OpenAIRE

    Laat, de, A.W.M.

    1995-01-01

    Ceramic products are usually made from powders which are processed into a green body, with a shape dictated by the final product. Organic binders are used to give the green product sufficient mechanical strength. A sintering process at high temperature converts the green body into the final ceramic product. In electronic ceramics, a high density and a homogeneous microstructure are required to obtain high quality products. For that purpose solid state sintering, in which no liquid phase is pr...

  15. Evolution of transverse piezoelectric response of lead zirconate titanate ceramics under hydrostatic pressure

    International Nuclear Information System (INIS)

    Li Fei; Xu Zhuo; Wei Xiaoyong; Gao Junjie; Zhang, Chonghui; Yao Xi; Jin Li

    2009-01-01

    The piezoelectric properties of 31-mode resonators of lead zirconate titanate ceramics under hydrostatic pressure from 0.1 to 325 MPa were evaluated by a fitting method, in which mechanical loss was taken into account. Our results based on the fitting method showed a hydrostatic pressure independent tendency of the piezoelectric coefficient and the electromechanical coupling factor because the adopted PZT ceramic can be considered as a linear system in our experiment, while two misleading tendencies of piezoelectric coefficient were obtained based on the resonance method when ignoring the contribution of the mechanical loss. (fast track communication)

  16. Potential of energy harvesting in barium titanate based laminates from room temperature to cryogenic/high temperatures: measurements and linking phase field and finite element simulations

    Science.gov (United States)

    Narita, Fumio; Fox, Marina; Mori, Kotaro; Takeuchi, Hiroki; Kobayashi, Takuya; Omote, Kenji

    2017-11-01

    This paper studies the energy harvesting characteristics of piezoelectric laminates consisting of barium titanate (BaTiO3) and copper (Cu) from room temperature to cryogenic/high temperatures both experimentally and numerically. First, the output voltages of the piezoelectric BaTiO3/Cu laminates were measured from room temperature to a cryogenic temperature (77 K). The output power was evaluated for various values of load resistance. The results showed that the maximum output power density is approximately 2240 nW cm‑3. The output voltages of the BaTiO3/Cu laminates were also measured from room temperature to a higher temperature (333 K). To discuss the output voltages of the BaTiO3/Cu laminates due to temperature changes, phase field and finite element simulations were combined. A phase field model for grain growth was used to generate grain structures. The phase field model was then employed for BaTiO3 polycrystals, coupled with the time-dependent Ginzburg–Landau theory and the oxygen vacancies diffusion, to calculate the temperature-dependent piezoelectric coefficient and permittivity. Using these properties, the output voltages of the BaTiO3/Cu laminates from room temperature to both 77 K and 333 K were analyzed by three dimensional finite element methods, and the results are presented for several grain sizes and oxygen vacancy densities. It was found that electricity in the BaTiO3 ceramic layer is generated not only through the piezoelectric effect caused by a thermally induced bending stress but also by the temperature dependence of the BaTiO3 piezoelectric coefficient and permittivity.

  17. Adsorption of water-soluble polymers onto barium titanate and its effects on colloidal stability

    NARCIS (Netherlands)

    Laat, de A.W.M.

    1995-01-01

    Ceramic products are usually made from powders which are processed into a green body, with a shape dictated by the final product. Organic binders are used to give the green product sufficient mechanical strength. A sintering process at high temperature converts the green body into the final ceramic

  18. Direct laser processing of bulk lead zirconate titanate ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Bernard, Sheldon A.; Balla, Vamsi Krishna; Bose, Susmita [W.M. Keck Biomedical Materials Research Laboratory, School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164 (United States); Bandyopadhyay, Amit, E-mail: amitband@wsu.edu [W.M. Keck Biomedical Materials Research Laboratory, School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164 (United States)

    2010-08-15

    Laser Engineered Net Shaping (LENS{sup TM}) has been used to fabricate dense, net shape melt-cast structures of lead zirconate titanate (PZT), in a single step, directly on a metallic substrate by complete melting and resolidification of PZT powders. From our results, it appears that reasonable dielectric properties can be obtained in LENS{sup TM} processed PZT structures without post-fabrication heat treatments. Our results also demonstrate potential application of LENS{sup TM} towards direct fabrication of PZT based embedded sensors and transducers on structural components.

  19. Understanding Microstructural Properties of Perovskite Ceramics through Their Wet-Chemical Synthesis

    NARCIS (Netherlands)

    Stawski, Tomasz

    2011-01-01

    This thesis comprises of seven full research chapters on the morphology, properties and processing of sol-gel precursor systems of barium titanate and lead zirconate titanate thin films and powders. In all the considered problems, the synthesis leading to nano-sized perovskite ceramics constitutes

  20. Influence of porosity on the mechanical properties of lead zirconate--titanate ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Biswas, D.R.

    1976-09-01

    Niobium doped lead zirconate-titanate (PNZT) was used to investigate the effect of porosity on the mechanical properties of a polycrystalline ceramic. Spherical and acicular pores (25 to 150 ..mu..m) were introduced by using organic materials and the grain size (2 to 5 ..mu..m) was constant throughout the study. The very fine pores (2 to 3 ..mu..m) were formed by varying the sintering conditions and the grain size was comparable to the pore size. The fracture strength of the ceramic was measured by simple 4-point bending. A sonic resonance technique was used to measure the elastic modulus and the double torsion method was used to measure the fracture toughness of the ceramic. The effect of porosity on the fracture strength was predicted quite well by Weibull's probabilistic approach. The elastic modulus showed a linear relationship with increase in porosity (110 to 150 ..mu..m) and showed a higher value for PNZT-fine pore (2 to 3 ..mu..m) ceramics at same volume percent porosity. A decrease in fracture toughness with increase in porosity (110 to 150 ..mu..m) was also observed. It has been found that the fine pores in PNZT polycrystalline ceramic gave higher strength, elastic modulus and fracture toughness compared to the PNZT-large pore ceramics at equivalent porosities. Fracture surface analysis by scanning electron microscopy showed that the fracture origin was at the tensile surface, at the edges of the specimen and just underneath the tensile surface.

  1. Origin of thermally stable ferroelectricity in a porous barium titanate thin film synthesized through block copolymer templating

    Directory of Open Access Journals (Sweden)

    Norihiro Suzuki

    2017-07-01

    Full Text Available A porous barium titanate (BaTiO3 thin film was chemically synthesized using a surfactant-assisted sol-gel method in which micelles of amphipathic diblock copolymers served as structure-directing agents. In the Raman spectrum of the porous BaTiO3 thin film, a peak corresponding to the ferroelectric tetragonal phase was observed at around 710 cm−1, and it remained stable at much higher temperature than the Curie temperature of bulk single-crystal BaTiO3 (∼130 °C. Measurements revealed that the ferroelectricity of the BaTiO3 thin film has high thermal stability. By analyzing high-resolution transmission electron microscope images of the BaTiO3 thin film by the fast Fourier transform mapping method, the spatial distribution of stress in the BaTiO3 framework was clearly visualized. Careful analysis also indicated that the porosity in the BaTiO3 thin film introduced anisotropic compressive stress, which deformed the crystals. The resulting elongated unit cell caused further displacement of the Ti4+ cation from the center of the lattice. This displacement increased the electric dipole moment of the BaTiO3 thin film, effectively enhancing its ferro(piezoelectricity.

  2. A promising lightweight multicomponent microwave absorber based on doped barium hexaferrite/calcium titanate/multiwalled carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Afghahi, Seyyed Salman Seyyed [Imam Hossein University, Department of Materials Science and Engineering (Iran, Islamic Republic of); Jafarian, Mojtaba, E-mail: m.jafarian@srbiau.ac.ir [Islamic Azad University, Young Researchers and Elite Club, Science and Research Branch (Iran, Islamic Republic of); Atassi, Yomen [Higher Institute for Applied Sciences and Technology, Department of Applied Physics (Syrian Arab Republic)

    2016-07-15

    We present the design of a microwave absorber in the X band based on ternary nanocomposite of doped barium hexaferrite (Ba-M)/calcium titanate (CTO)/multiwall carbon nanotubes (MWCNTs) in epoxy matrix. The hydrothermal method has been used to synthesize Ba-M and CTO nanopowder. The phase identification has been investigated using XRD patterns. Scanning electron microscope, transmission electron microscope, vibrating sample magnetometer, and vector network analyzer are used to analyze the morphology of the different components and the magnetic, electromagnetic, and microwave absorption properties of the final composite absorbers, respectively. As far as we know, the design of this type of multicomponent microwave absorber has not been investigated before. The results reveal that the combination of these three components with their different loss mechanisms has a synergistic effect that enhances the attenuation properties of the final composite. The absorber of only 2.5-mm thickness and 35 wt% of loading ratio exhibits a minimum reflection loss of −43 dB at 10.2 GHz with a bandwidth of 3.6 GHz, while the corresponding absorber based on pure (Ba-M) shows a minimum reflection loss of −34 dB at 9.8 GHz with a bandwidth of 0.256 GHz and a thickness of 4 mm.Graphical Abstract.

  3. Rhodium-doped barium titanate perovskite as a stable p-type semiconductor photocatalyst for hydrogen evolution under visible light.

    Science.gov (United States)

    Maeda, Kazuhiko

    2014-02-12

    Rhodium-doped barium titanate (BaTiO3:Rh) powder was prepared by the polymerized complex (PC) method, and the photocatalytic activity for H2 evolution from water was examined. BaTiO3 is a wide-gap n-type semiconductor having a band gap of 3.0 eV. Doping Rh species into the lattice of BaTiO3 resulted in the formation of new absorption bands in visible light region. Upon visible light (λ > 420 nm), BaTiO3:Rh modified with nanoparticulate Pt as a water reduction promoter was capable of producing H2 from water containing an electron donor such as methanol and iodide. The best material prepared by the PC method exhibited higher activity than that made by a conventional solid-state reaction method. Visible-light-driven Z-scheme water splitting was also accomplished using Pt/BaTiO3:Rh as a building block for H2 evolution in combination with PtOx-loaded WO3 as an O2 evolution photocatalyst in the presence of an IO3(-)/I(-) shuttle redox mediator. Photoelectrochemical analysis indicated that a porous BaTiO3:Rh electrode exhibited cathodic photoresponse due to water reduction in a neutral aqueous Na2SO4 solution upon visible light.

  4. Structural and electrical properties of barium titanate (BaTiO3 thin films obtained by spray pyrolysis method

    Directory of Open Access Journals (Sweden)

    Kumbhar S.S.

    2015-12-01

    Full Text Available Barium titanate (BaTiO3 thin films have been prepared using the spray pyrolysis method. The films were deposited onto a glass substrate at varying substrate temperature ranging from 250 to 350 °C with the interval of 50 °C. The structural, morphological, electrical and dielectric properties of the deposited films have been studied. The X-ray diffraction pattern confirmed the polycrystalline nature of the films with a cubic crystal structure. X-ray photoelectron spectroscopy (XPS showed a good agreement of the thin films stoichiometry with BaTiO3. A presence of Ba, Ti and O in the BaTiO3 thin films was observed by energy dispersive X-ray analysis. The scanning electron microscopy (SEM showed the heterogeneous distribution of cubical grains all over the substrate. The grain size decreased with an increase in substrate temperature. The dielectric constant and dielectric loss showed the dispersion behaviour as a function of frequency, measured in the frequency range of 20 Hz to 1 MHz. The AC conductivity (σac measurement showed the linear nature of obtained films, which confirms conduction mechanism due to small polarons. Impedance spectroscopy has been used to study the electrical behaviour of BaTiO3 ferroelectric thin films. The ferroelectric hysteresis loop has been recorded at room temperature.

  5. Simulations of high permittivity materials for 7 T neuroimaging and evaluation of a new barium titanate-based dielectric.

    Science.gov (United States)

    Teeuwisse, W M; Brink, W M; Haines, K N; Webb, A G

    2012-04-01

    High permittivity "dielectric pads" have been shown to increase image quality at high magnetic fields in regions of low radiofrequency transmit efficiency. This article presents a series of electromagnetic simulations to determine the effects of pad size and geometry, relative permittivity value, as well as thickness on the transmit radiofrequency fields for neuroimaging at 7 T. For a 5-mm thick pad, there is virtually no effect on the transmit field for relative permittivity values lower than ∼90. Significant improvements are found for values between 90 and ∼180. If the relative permittivity is increased above ∼180 then areas of very low transmit efficiency are produced. For a 1-cm thick pad, the corresponding numbers are ∼60 and ∼120, respectively. Based upon the findings, a new material (barium titanate, relative permittivity ∼150) is used to produce thin (∼5 mm) dielectric pads which can easily be placed within a standard receive head array. Experimental measurements of transmit sensitivities, as well as acquisition of T(2) - and T 2*-weighted images show the promise of this approach. Copyright © 2012 Wiley Periodicals, Inc.

  6. Application of Photoreactive Barium Titanate (BaTiO₃) Beam Fanning to the Photothermal Mirror Technique: An Experimental Analysis.

    Science.gov (United States)

    Zanuto, Vitor Santaella; Capeloto, Otávio Augusto; Lukasievicz, Gustavo Vinicius Bassi; Herculano, Leandro Silva; Malacarne, Luis Carlos; Astrath, Nelson Guilherme Castelli; Bialkowski, Stephen Edward

    2015-07-01

    An adaptive spatial filter is used as an optical novelty filter to detect photothermal mirror (PM) signals in high absorbing materials using continuous wave laser excitation. The optical novelty filter uses an optical beam-fanning limiter based on single domain barium titanate (BaTiO3), cut and poled 45° relative to the c-axis. The optical novelty filter approach relaxes the requirement for high sample surface smoothness because the effect aperture adapts to the surface, reducing the stationary background from the optical signal and provides a means of developing the photothermal mirror signal. Time-dependent probe laser phase shifts due to photothermal surface deformation pass through the optical novelty filter and are detected as an intensity increase over the stationary or "mundane" signal. Experimental studies are performed using four well-characterized metals using both the conventional photothermal mirror and optical novelty filter apparatuses in order to understand the complicated signal behavior. Signal behavior is analyzed in different excitation intervals using pseudo-chopped sample excitation with different duty cycles. Optical novelty filter signals show fast response for changes in the spatial beam profile followed by long relaxation time. Reasons for the optical novelty filter response are described.

  7. Tunable Dielectric Properties of Poly(vinylidenefluoride-co-hexafluoropropylene) Films with Embedded Fluorinated Barium Strontium Titanate Nanoparticles.

    Science.gov (United States)

    Han, Wooje; Kim, Taehee; Yoo, Byungwook; Park, Hyung-Ho

    2018-03-06

    Fluoropolymer nanocomposites of poly(vinylidene fluoride-co-hexafluoropropylene) (PVdF-HFP) were prepared using fluorinated barium strontium titanate (Ba 1-x Sr x TiO 3 , BSTO) nanoparticles (NPs) by low-temperature synthesis using a modified liquid-solid solution process. The exact stoichiometry of as-synthesized BSTO NPs was confirmed by X-ray diffraction analysis along with lattice parameter calculations. The synthesized BSTO NPs were fluorinated using 2,2,2-trifluoroacetic acid as a fluorous ligand. The BSTO NPs showed high solubility in the fluorous system (polymer and solvent) on account of their modified surface. The root-mean-square roughness of the fluorinated BSTO/PVdF-HFP nanocomposite was 76 times lower than that of the nonfluorinated BSTO/PVdF-HFP nanocomposite. The dielectric constant of the fluorinated BSTO/PVdF-HFP nanocomposite exhibited Curie temperature behavior. The dielectric constant of the nanocomposite predicted using the modified Kerner model at room temperature agreed well with the experimental values.

  8. Structure and Rheology of Poloxamine T1107 and Its Nanocomposite Hydrogels with Cyclodextrin-Modified Barium Titanate Nanoparticles.

    Science.gov (United States)

    Serra-Gómez, Rafael; Dreiss, Cécile A; González-Benito, Javier; González-Gaitano, Gustavo

    2016-06-28

    We report the preparation of a nanocomposite hydrogel based on a poloxamine gel matrix (Tetronic T1107) and cyclodextrin (CD)-modified barium titanate (BT) nanoparticles. The micellization and sol-gel behavior of pH-responsive block copolymer T1107 were fully characterized by small-angle neutron scattering (SANS), dynamic light scattering (DLS), and Fourier transform infrared attenuated total reflectance (FTIR-ATR) spectroscopy as a function of concentration, pH and temperature. SANS results reveal that spherical micelles in the low concentration regime present a dehydrated core and highly hydrated shell, with a small aggregation number and size, highly dependent on the degree of protonation of the central amine spacer. At high concentration, T1107 undergoes a sol-gel transition, which is inhibited at acidic pH. Nanocomposites were prepared by incorporating CD-modified BT of two different sizes (50 and 200 nm) in concentrated polymer solutions. Rheological measurements show a broadening of the gel region, as well as an improvement of the mechanical properties, as assessed by the shear elastic modulus, G' (up to 200% increase). Initial cytocompatibility studies of the nanocomposites show that the materials are nontoxic with viabilities over 70% for NIH3T3 fibroblast cell lines. Overall, the combination of Tetronics and modified BaTiO3 provides easily customizable systems with promising applications as soft piezoelectric materials.

  9. Ferroelectric barium titanate nanocubes as capacitive building blocks for energy storage applications.

    Science.gov (United States)

    Parizi, Saman Salemizadeh; Mellinger, Axel; Caruntu, Gabriel

    2014-10-22

    Highly uniform polymer-ceramic nanocomposite films with high energy density values were fabricated by exploiting the unique ability of monodomain, nonaggregated BaTiO3 colloidal nanocrystals to function as capacitive building blocks when dispersed into a weakly interacting dielectric matrix. Monodisperse, surface-functionalized ferroelectric 15 nm BaTiO3 nanoparticles have been selectively incorporated with a high packing density into poly(vinylidene fluoride-co-hexafluoropropene) (P(VDF-HFP)) leading to the formation of biphasic BaTiO3-P(VDF-HFP) nanocomposite films. A systematic investigation of the electrical properties of the nanocomposites by electrostatic force microscopy and conventional dielectric measurements reveals that polymer-ceramic film capacitor structures exhibit a ferroelectric relaxor-type behavior with an increased intrinsic energy density. The composite containing 7% BaTiO3 nanocrystals displays a high permittivity (ε = 21) and a relatively high energy density (E = 4.66 J/cm(3)) at 150 MV/m, which is 166% higher than that of the neat polymer and exceeds the values reported in the literature for polymer-ceramic nanocomposites containing a similar amount of nanoparticle fillers. The easy processing and electrical properties of the polymer-ceramic nanocomposites make them suitable for implementation in pulse power capacitors, high power systems and other energy storage applications.

  10. Molten salt synthesis of lead lanthanum zirconate titanate ceramic powders

    International Nuclear Information System (INIS)

    Cai Zongying; Xing Xianran; Li Lu; Xu Yeming

    2008-01-01

    Lead lanthanum zirconate titanate (Pb 0.95 La 0.03 )(Zr 0.52 Ti 0.48 )O 3 (PLZT) was synthesized by one step molten salt method with the starting materials of PbC 2 O 4 , La 2 O 3 , ZrO(NO 3 ) 2 .2H 2 O and TiO 2 in the NaCl-KCl eutectic mixtures in the temperature range of 700-1000 deg. C. The single phase of (Pb 0.95 La 0.03 )(Zr 0.52 Ti 0.48 )O 3 powders was prepared at a temperature as low as 850 deg. C for 5 h. The effects of process parameters, such as soaking temperature and time, salt species, and the amount of flux with respect to the starting materials were investigated. The growth process of the PLZT particles in the molten salt undergoes a transition from a diffusion controlled mechanism to an interfacial reaction controlled mechanism at 900 deg. C

  11. Structural Characteristics & Dielectric Properties of Tantalum Oxide Doped Barium Titanate Based Materials

    Directory of Open Access Journals (Sweden)

    Rubayyat Mahbub

    2012-11-01

    Full Text Available In this research, the causal relationship between the dielectric properties and the structural characteristics of 0.5 & 1.0 mol% Ta2O5 doped BaTiO3 based ceramic materials were investigated under different sintering conditions. Dielectric properties and microstructure of BaTio3 ceramics were significantly influenced by the addition of a small amount of Ta2O5. Dielectric properties were investigated by measuring the dielectric constant (k as a function of temperature and frequency. Percent theoretical density (%TD above 90% was achieved for 0.5 and 1.0 mol% Ta2O5 doped BaTiO3. It was observed that the grain size decreased markedly above a doping concentration of 0·5 mol% Ta2O5. Although fine grain size down to 200-300nm was attained, grain sizes in the range of 1-1.8µm showed the most alluring properties. The fine-grain quality and high density of the Ta2O5 doped BaTiO3 ceramic resulted in tenfold increase of dielectric constant. Stable value of dielectric constant as high as 13000-14000 was found in the temperature range of  55 to 80°C, for 1.0 mol% Ta2O5 doped samples with corresponding shift of Curie point to ~82°C. Experiments divulged that incorporation of a proper content of Ta2O5 in BaTiO3 could control the grain growth, shift the Curie temperature and hence significantly improve the dielectric property of the BaTiO3 ceramics.

  12. STRUCTURAL CHARACTERISTICS & DIELECTRIC PROPERTIES OF TANTALUM OXIDE DOPED BARIUM TITANATE BASED MATERIALS

    Directory of Open Access Journals (Sweden)

    Md. Fakhrul Islam

    2013-01-01

    Full Text Available In this research, the causal relationship between the dielectric properties and the structural characteristics of 0.5 & 1.0 mole % Ta2O5 doped BaTiO3 based ceramic materials were investigated under different sintering conditions. Dielectric properties and microstructure of BaTio3 ceramics were significantly influenced by the addition of a small amount of Ta2O5. Dielectric properties were investigated by measuring the dielectric constant (k as a function of temperature and frequency. Percent theoretical density (%TD above 90 % was achieved for 0.5 and 1.0 mole %Ta2O5 doped BaTiO3. It was observed that the grain size decreased markedly above a doping concentration of 0.5 mole % Ta2O5. Although fine grain size down to 200 - 300 nm was attained, grain sizes in the range of 1-1.8µm showed the most alluring properties. The fine-grain quality and high density of the Ta2O5 doped BaTiO3 ceramic resulted in tenfold increase of dielectric constant. Stable value of dielectric constant as high as 13000 - 14000 was found in the temperature range of 55 to 80 °C, for 1.0 mole % Ta2O5 doped samples with corresponding shift of Curie point to ~82 °C. Experiments divulged that incorporation of a proper content of Ta2O5 in BaTiO3 could control the grain growth, shift the Curie temperature and hence significantly improve the dielectric property of the BaTiO3 ceramics.

  13. Interdependence of phase chemistry, microstructure and oxygen fugacity in titanate nuclear waste ceramics

    International Nuclear Information System (INIS)

    Bukyx, W.J.; Levins, D.M.; Smith, K.L.; Stevens, G.T.; Watson, K.G.; Smart, R.St.C.; Weedon, D.; White, T.J.

    1989-01-01

    Titanate ceramic waste forms were prepared using several combinations of calcination atmosphere (N 2 , N 2 -3.5% H 2 , H 2 ) and metallic buffer (Ni, Fe, Ti, Al) to examine the dependence of microstructure and durability upon oxygen activity. It was found that the microstructures and phase assemblages were mostly insensitive to the fabrication method, although in detail some systematic changes were recognized. The correlation between aqueous durability and oxygen fugacity was not straightforward due to density variations in the hot-pressed ceramics. These fluctuations in density dominated the dissolution characteristics of the waste forms and sometimes obscured the more subtle changes associated with redox potential. It is concluded that although the best durability is achieved at lower fugacities (i.e. Ti metal buffer and H 2 calcination atmosphere), a satisfactory product can be produced using any of the preparative routes examined providing the material is near theoretical density. 25 refs., 15 figs., 6 tabs

  14. Novel design of highly [110]-oriented barium titanate nanorod array and its application in nanocomposite capacitors.

    Science.gov (United States)

    Yao, Lingmin; Pan, Zhongbin; Zhai, Jiwei; Chen, Haydn H D

    2017-03-23

    Nanocomposites in capacitors combining highly aligned one dimension ferroelectric nanowires with polymer would be more desirable for achieving higher energy density. However, the synthesis of the well-isolated ferroelectric oxide nanorod arrays with a high orientation has been rather scant, especially using glass-made substrates. In this study, a novel design that is capable of fabricating a highly [110]-oriented BaTiO 3 (BT) nanorod array was proposed first, using a three-step hydrothermal reaction on glass-made substrates. The details for controlling the dispersion of the nanorod array, the orientation and the aspect ratio are also discussed. It is found that the alkaline treatment of the TiO 2 (TO) nanorod array, rather than the completing transformation into sodium titanate, favors the transformation of the TO into the BT nanorod array, as well as protecting the glass-made substrate. The dispersity of the nanorod array can be controlled by the introduction of a glycol ether-deionized water mixed solvent and soluble salts. Moreover, the orientation of the nanorod arrays could be tuned by the ionic strength of the solution. This novel BT nanorod array was used as a filler in a nanocomposite capacitor, demonstrating that a large energy density (11.82 J cm -3 ) can be achieved even at a low applied electric field (3200 kV cm -1 ), which opens us a new application in nanocomposite capacitors.

  15. Enhanced dielectric properties of poly(vinylidene fluoride) composites filled with nano iron oxide-deposited barium titanate hybrid particles.

    Science.gov (United States)

    Zhang, Changhai; Chi, Qingguo; Dong, Jiufeng; Cui, Yang; Wang, Xuan; Liu, Lizhu; Lei, Qingquan

    2016-09-16

    We report enhancement of the dielectric permittivity of poly(vinylidene fluoride) (PVDF) generated by depositing magnetic iron oxide (Fe3O4) nanoparticles on the surface of barium titanate (BT) to fabricate BT-Fe3O4/PVDF composites. This process introduced an external magnetic field and the influences of external magnetic field on dielectric properties of composites were investigated systematically. The composites subjected to magnetic field treatment for 30 min at 60 °C exhibited the largest dielectric permittivity (385 at 100 Hz) when the BT-Fe3O4 concentration is approximately 33 vol.%. The BT-Fe3O4 suppressed the formation of a conducting path in the composite and induced low dielectric loss (0.3) and low conductivity (4.12 × 10(-9) S/cm) in the composite. Series-parallel model suggested that the enhanced dielectric permittivity of BT-Fe3O4/PVDF composites should arise from the ultrahigh permittivity of BT-Fe3O4 hybrid particles. However, the experimental results of the BT-Fe3O4/PVDF composites treated by magnetic field agree with percolation theory, which indicates that the enhanced dielectric properties of the BT-Fe3O4/PVDF composites originate from the interfacial polarization induced by the external magnetic field. This work provides a simple and effective way for preparing nanocomposites with enhanced dielectric properties for use in the electronics industry.

  16. Response of human alveolar bone-derived cells to a novel poly(vinylidene fluoride-trifluoroethylene)/barium titanate membrane.

    Science.gov (United States)

    Teixeira, L N; Crippa, G E; Gimenes, R; Zaghete, M A; de Oliveira, P T; Rosa, A L; Beloti, M M

    2011-01-01

    This study investigated the response of human alveolar bone-derived cells to a novel poly(vinylidene fluoride-trifluoroethylene)/barium titanate (P(VDF-TrFE)/BT) membrane. Osteoblastic cells were cultured in osteogenic conditions either on P(VDF-TrFE)/BT or polytetrafluoroethylene (PTFE) for up to 14 days. At 7 and 14 days, the mRNA expression of Runt-related transcription factor 2 (RUNX2), Type I collagen (COL I), Osteopontin (OPN), Alkaline phosphatase (ALP), Bone sialoprotein (BSP), and Osteocalcin (OC), key markers of the osteoblastic phenotype, and of Bcl2-associated X protein (Bax), B-cell CLL/lymphoma 2 (Bcl-2), and Survivin (SUR), associated with the control of the apoptotic cell death, was assayed by real-time PCR. In situ ALP activity was qualitatively evaluated by means of Fast red staining. Surface characterization was also qualitatively and quantitatively assayed in terms of topography, roughness, and wettability. Cells grown on P(VDF-TrFE)/BT exhibited a significantly higher mRNA expression for all markers compared to the ones on PTFE, except for Bcl-2, which was not detected for both groups. Additionally, Fast red staining was noticeably stronger in cultures on P(VDF-TrFE)/BT at 7 and 14 days. At micron- and submicron scale, SEM images and roughness analysis revealed that PTFE and P(VDF-TrFE)/BT exhibited a smooth topography and a similar roughness, respectively. PTFE membrane displayed higher contact angles compared with P(VDF-TrFE)/BT, as indicated by wettability assay. The novel P(VDF-TrFE)/BT membrane supports the acquisition of the osteoblastic phenotype in vitro, while up-regulating the expression of apoptotic markers. Further in vivo experiments should be carried out to confirm the capacity of P(VDF-TrFE)/BT membrane in promoting bone formation in guided bone regeneration.

  17. Effect of sulfur hexafluoride gas and post-annealing treatment for inductively coupled plasma etched barium titanate thin films.

    Science.gov (United States)

    Wang, Cong; Li, Yang; Yao, Zhao; Kim, Hong-Ki; Kim, Hyung-Jun; Kim, Nam-Young

    2014-01-01

    Aerosol deposition- (AD) derived barium titanate (BTO) micropatterns are etched via SF6/O2/Ar plasmas using inductively coupled plasma (ICP) etching technology. The reaction mechanisms of the sulfur hexafluoride on BTO thin films and the effects of annealing treatment are verified through X-ray photoelectron spectroscopy (XPS) analysis, which confirms the accumulation of reaction products on the etched surface due to the low volatility of the reaction products, such as Ba and Ti fluorides, and these residues could be completely removed by the post-annealing treatment. The exact peak positions and chemicals shifts of Ba 3d, Ti 2p, O 1 s, and F 1 s are deduced by fitting the XPS narrow-scan spectra on as-deposited, etched, and post-annealed BTO surfaces. Compared to the as-deposited BTOs, the etched Ba 3d 5/2 , Ba 3d 3/2 , Ti 2p 3/2 , Ti 2p 1/2 , and O 1 s peaks shift towards higher binding energy regions by amounts of 0.55, 0.45, 0.4, 0.35, and 0.85 eV, respectively. A comparison of the as-deposited film with the post-annealed film after etching revealed that there are no significant differences in the fitted XPS narrow-scan spectra except for the slight chemical shift in the O 1 s peak due to the oxygen vacancy compensation in O2-excessive atmosphere. It is inferred that the electrical properties of the etched BTO film can be restored by post-annealing treatment after the etching process. Moreover, the relative permittivity and loss tangent of the post-annealed BTO thin films are remarkably improved by 232% and 2,695%, respectively.

  18. Shallow-trap-induced positive absorptive two-beam coupling 'gain' and light-induced transparency in nominally undoped barium titanate

    Science.gov (United States)

    Garrett, M. H.; Tayebati, P.; Chang, J. Y.; Jenssen, H. P.; Warde, C.

    1992-01-01

    The asymmetry of beam coupling with respect to the orientation of the polar axis in a nominally undoped barium titanate crystal is used to determine the electro-optic and absorptive 'gain' in the usual beam-coupling geometry. For small grating wave vectors, the electrooptic coupling vanishes but the absorptive coupling remains finite and positive. Positive absorptive coupling at small grating wave vectors is correlated with the light-induced transparency of the crystal described herein. The intensity and grating wave vector dependence of the electrooptic and absorptive coupling, and the light-induced transparency are consistent with a model incorporating deep and shallow levels.

  19. Preparation, characterization and in vitro testing of poly(lactic-co-glycolic) acid/barium titanate nanoparticle composites for enhanced cellular proliferation.

    Science.gov (United States)

    Ciofani, Gianni; Ricotti, Leonardo; Mattoli, Virgilio

    2011-04-01

    The recent advancements in tissue engineering and, more in general, in cell-based applications, has led to an ever increasing interest toward new materials for sustained cell proliferation and differentiation. Here, the preparation and the characterization of scaffolds based on poly(lactic-co-glycolic) acid / barium titanate nanoparticle composites are presented. In vitro testing on H9C2 cell line demonstrates how the presence of the nanoparticles positively affects both the proliferation and the differentiation of this muscle-like cell line. Finally, the possibility to obtain porous scaffold and, therefore, an actual 3D culture system, is introduced.

  20. Structure and properties of sodium bismuth titanate ferroelectric ceramics

    Science.gov (United States)

    Aksel, Elena

    Piezoelectric materials are commonly used in sensor and actuator technologies due to their unique ability to couple electrical and mechanical displacements. Applications of piezoelectric materials range from diesel engine fuel injectors, sonar, ultrasound, and nanopositioners in scanning microscopes. Changing environmental regulations and policies have led to a recent surge in the research of lead-free piezoelectric materials. One such system currently under investigation is sodium bismuth titanate (Na0.5Bi0.5 TiO3) or NBT. It has recently been investigated with the addition of chemical modifiers as well as part of various solid solutions with other compounds. However, research into the structure and properties of NBT is still in its infancy. The aim of this dissertation was to develop a comprehensive understanding of the crystal structure and property relationships in NBT. First, the formation of the NBT phase during solid state processing was examined using in situ X-ray diffraction. It was determined that NBT forms through a particle conversion mechanism of the Bi2O 3 particle. The average and local room temperature structure of calcined and sintered NBT were examined using both high resolution synchrotron X-ray diffraction and neutron diffraction techniques. It was determined that the room temperature average structure of this material is best modeled using the monoclinic Cc space group rather than the previously accepted rhombohedral R3c space group. A combined high resolution XRD and neutron diffraction Rietveld refinement provided refined lattice parameters, atomic positions, and displacement parameters. The departure of the local structure of NBT from the average structure was examined through the Pair Distribution Function analysis. It was determined that Na+ and Bi3+, which share the A-site, have differing bonding environments with their surrounding O2- ions. In order to understand the origin of the piezoelectric depolarization behavior of NBT, crystal

  1. Structure and chemical durability of barium borosilicate glass–ceramics containing zirconolite and titanite crystalline phases

    International Nuclear Information System (INIS)

    Li, Huidong; Wu, Lang; Xu, Dong; Wang, Xin; Teng, Yuancheng; Li, Yuxiang

    2015-01-01

    In order to increase the solubility of actinides in the glass matrix, the effects of CaO, TiO 2 , and ZrSiO 4 addition (abbreviated as CTZ, in the mole ratio of 2:2:1) on crystalline phases, microstructure, and chemical durability of barium borosilicate glass–ceramics were investigated. The results show that the samples possess both zirconolite-2M and titanite phase when the CTZ content is greater than or equal to 45 wt.%. For the glass–ceramics with 45 wt.% CTZ (CTZ-45), only zirconolite-2M phase is observed after annealing at 680–740 °C for 2 h. The CTZ-45 possess zirconolite-2M and titanite phases after annealing at 700 °C first, and then annealing at 900–1050 °C for 2 h. Furthermore, the zirconolite-2M and titanite grains show a strip and brick shape, respectively. The CTZ-45 annealing at 950 °C shows the lower normalized leaching rates of B, Na and Nd when compared to that of CTZ-0 and CTZ-55. - Highlights: • CaO, TiO 2 , ZrSiO 4 (CTZ) as nucleating agents were added to barium borosilicate glass. • The samples with 45–55 wt% CTZ possess CaZrTi 2 O 7 -2M and CaTiSiO 5 crystalline phases. • CTZ-45 (45wt% CTZ) possesses only CaZrTi 2 O 7 -2M phase after annealing at 680–740 °C. • CTZ-45 possesses CaZrTi 2 O 7 -2M and CaTiSiO 5 phases after annealing at 900–1050 °C. • CTZ-45 annealing at 950 °C shows the lower leaching rates of B, Na and Nd than CTZ-0 and CTZ-55.

  2. Investigation of the additive induced doping effects in gelcast soft lead zirconate titanate ceramics

    International Nuclear Information System (INIS)

    Guo Dong; Cai Kai; Li Longtu; Gui Zhilun

    2009-01-01

    Due to the high sensitivity of the electrical properties of electronic ceramics to various factors, knowledge about the possible influence of the processing procedure on their electrical performance is critical for applying a new technique to the fabrication of the materials. In this study, various electrical parameters, complex impedance spectra, ferroelectric hysteresis loops, and microstructures of soft lead zirconate titanate (PZT) ceramics formed by the gelcasting technique from suspensions with various dispersants were investigated in comparison with those of the conventional dry pressed ones. We found that the sodium ion, which is the main cation in many commercial surfactants, exhibited obvious hard doping effects; thus causing deteriorated performance of the gelcast PZT ceramics. While a certain impurity ion introduced by a dispersant was also found to induce soft doping characteristics and improve the electrical performance of the materials. The results suggest that the doping effects of the metal ions or impurities introduced by the dispersants, or other additives, should be generally considered for applying a wet processing technique to forming multicomponent electronic ceramics.

  3. Determination of temperature dependence of piezoelectric coefficients matrix of lead zirconate titanate ceramics by quasi-static and resonance method

    International Nuclear Information System (INIS)

    Li Fei; Xu Zhuo; Wei Xiaoyong; Yao Xi

    2009-01-01

    The piezoelectric coefficients (d 33 , -d 31 , d 15 , g 33 , -g 31 , g 15 ) of soft and hard lead zirconate titanate ceramics were measured by the quasi-static and resonance methods, at temperatures from 20 to 300 0 C. The results showed that the piezoelectric coefficients d 33 , -d 31 and d 15 obtained by these two methods increased with increasing temperature for both hard and soft PZT ceramics, while the piezoelectric coefficients g 33 , -g 31 and g 15 decreased with increasing temperature for both hard and soft PZT ceramics. In this paper, the observed results were also discussed in terms of intrinsic and extrinsic contributions to piezoelectric response.

  4. Cyclodextrin-grafted barium titanate nanoparticles for improved dispersion and stabilization in water-based systems

    Science.gov (United States)

    Serra-Gómez, R.; Martinez-Tarifa, J. M.; González-Benito, J.; González-Gaitano, G.

    2016-01-01

    Ceramic nanoparticles with piezoelectric properties, such as BaTiO3 (BT), constitute a promising approach in the fields of nanocomposite materials and biomaterials. In the latter case, to be successful in their preparation, the drawback of their fast aggregation and practically null stability in water has to be overcome. The objective of this investigation has been the surface functionalization of BaTiO3 nanoparticles with cyclodextrins (CDs) as a way to break the aggregation and improve the stability of the nanoparticles in water solution, preventing and minimizing their fast precipitation. As a secondary goal, we have achieved extra-functionality of the nanoparticles, bestowed from the hydrophobic cavity of the macrocycle, which is able to lodge guest molecules that can form inclusion complexes with the oligosaccharide. The nanoparticle functionalization has been fully tracked and characterized, and the cytotoxicity of the modified nanoparticles with fibroblasts and pre-osteoblasts cell lines has been assessed with excellent results in a wide range of concentrations. The modified nanoparticles were found to be suitable for the easy preparation of nanocomposite hydrogels, via dispersion in hydrophilic polymers of typical use in biomedical applications (PEG, Pluronics, and PEO), and further processed in the form of films via water casting, showing very good results in terms of homogeneity in the dispersion of the filler. Likewise, as examples of application and with the aim of exploring a different range of nanocomposites, rhodamine B was included in the macrocycles as a model molecule, and films prepared from a thermoplastic matrix (EVA) via high-energy ball milling have been tested by impedance spectroscopy to discuss their dielectric properties, which indicated that even small modifications in the surface of the nanoparticles generate a different kind of interaction with the polymeric matrix. The CD-modified nanoparticles are thus suitable for easy preparation

  5. Cyclodextrin-grafted barium titanate nanoparticles for improved dispersion and stabilization in water-based systems

    Energy Technology Data Exchange (ETDEWEB)

    Serra-Gómez, R. [Universidad de Navarra, Departamento de Química y Edafología (Spain); Martinez-Tarifa, J. M. [Universidad Carlos III de Madrid, Departamento de Ingeniería Eléctrica (Spain); González-Benito, J. [Universidad Carlos III de Madrid, Departamento de Ciencia e Ingeniería de Materiales e Ingeniería Química, IQMAAB (Spain); González-Gaitano, G., E-mail: gaitano@unav.es [Universidad de Navarra, Departamento de Química y Edafología (Spain)

    2016-01-15

    Ceramic nanoparticles with piezoelectric properties, such as BaTiO{sub 3} (BT), constitute a promising approach in the fields of nanocomposite materials and biomaterials. In the latter case, to be successful in their preparation, the drawback of their fast aggregation and practically null stability in water has to be overcome. The objective of this investigation has been the surface functionalization of BaTiO{sub 3} nanoparticles with cyclodextrins (CDs) as a way to break the aggregation and improve the stability of the nanoparticles in water solution, preventing and minimizing their fast precipitation. As a secondary goal, we have achieved extra-functionality of the nanoparticles, bestowed from the hydrophobic cavity of the macrocycle, which is able to lodge guest molecules that can form inclusion complexes with the oligosaccharide. The nanoparticle functionalization has been fully tracked and characterized, and the cytotoxicity of the modified nanoparticles with fibroblasts and pre-osteoblasts cell lines has been assessed with excellent results in a wide range of concentrations. The modified nanoparticles were found to be suitable for the easy preparation of nanocomposite hydrogels, via dispersion in hydrophilic polymers of typical use in biomedical applications (PEG, Pluronics, and PEO), and further processed in the form of films via water casting, showing very good results in terms of homogeneity in the dispersion of the filler. Likewise, as examples of application and with the aim of exploring a different range of nanocomposites, rhodamine B was included in the macrocycles as a model molecule, and films prepared from a thermoplastic matrix (EVA) via high-energy ball milling have been tested by impedance spectroscopy to discuss their dielectric properties, which indicated that even small modifications in the surface of the nanoparticles generate a different kind of interaction with the polymeric matrix. The CD-modified nanoparticles are thus suitable for easy

  6. Elution of lead from lead zirconate titanate ceramics to acid rain

    Science.gov (United States)

    Tsurumi, Takaaki; Takezawa, Shuhei; Hoshina, Takuya; Takeda, Hiroaki

    2017-10-01

    The amount of lead that eluted from lead zirconate titanate (PZT) ceramics to artificial acid rain was evaluated. Four kinds of PZT ceramics, namely, pure PZT at MPB composition, CuO-added PZT, PZT with 10 mol % substitution of Ba for Pb, and CuO-added PZT with 10 mol % substitution of Ba for Pb, were used as samples of the elution test. These PZT ceramics of 8 mm2 and 1.1-1.2 mm thickness were suspended in 300 ml of H2SO4 solution of pH 4.0. The concentration of lead eluted from PZT was in the range from 0.2 to 0.8 ppm. It was found that both liquid phase formation by the addition of CuO and the substitution of Ba for Pb were effective to reduce the amount of lead that eluted. By fitting the leaching out curve with a classical equation, a master curve assuming no sampling effect was obtained. The lead concentration evaluated from the amount of lead that eluted from a commercial PZT plate to H2SO4 solution of pH 5.3 was almost the same as the limit in city water. It is concluded that PZT is not harmful to health and the environment and the amount of lead that eluted from PZT can be controlled by modifying PZT composition.

  7. Growth and characterization of multiferroic barium titanate-cobalt ferrite thin film nanostructures

    Science.gov (United States)

    Zheng, Haimei

    Multiferroic materials which display simultaneous ferroelectricity and magnetism have been stimulating significant interest both from the basic science and application point of view. It was proposed that composites with one piezoelectric phase and one magnetostrictive phase can be magnetoelectrically coupled via a stress mediation. The coexistence of magnetic and electric subsystems as well as the magnetoelectric effect of the material allows an additional degree of freedom in the design of actuators, transducers, and storage devices. Previous work on such materials has been focused on bulk ceramics. In the present work, we created vertically aligned multiferroic BaTiO 3-CoFe2O4 thin film nanostructures using pulsed laser deposition. Spinel CoFe2O4 and perovskite BaTiO 3 spontaneously separated during the film growth. CoFe2O 4 forms nano-pillar arrays embedded in a BaTiO3 matrix, which show three-dimensional heteroepitaxy. CoFe2O4 pillars have uniform size and spacing. As the growth temperature increases the lateral size of the pillars also increases. The size of the CoFe2O 4 pillars as a function of growth temperature at a constant growth rate follows an Arrhenius behaviour. The formation of the BaTiO3-CoFe 2O4 nanostructures is a process directed by both thermodynamic equilibrium and kinetic diffusion. Lattice mismatch strain, interface energy, elastic moduli and molar ratio of the two phases, etc., are considered to play important roles in the growth dynamics leading to the nanoscale pattern formation of BaTiO3-CoFe2O4 nanostructures. Magnetic measurements exhibit that all the films have a large uniaxial magnetic anisotropy with an easy axis normal to the film plane. It was calculated that stress anisotropy is the main contribution to the anisotropy field. We measured the ferroelectric and piezoelectric properties of the films, which correspond to the present of BaTiO3 phase. The system shows a strong coupling of the two order parameters of polarization and

  8. Direct probing of semiconductor barium titanate via electrostatic force microscopy Sondagem direta de titanato de bário semicondutorpor meio de microscopia de força eletrostática

    Directory of Open Access Journals (Sweden)

    S. M. Gheno

    2007-06-01

    Full Text Available Electrostatic force microscopy (EFM was used to directly probe surface potential in doped barium titanate semiconducting ceramics. EFM measurements were performed using noncontact scans at a constant tip-sample separation of 75 nm with varied bias voltages applied to the sample. The applied voltage was mapped up to 10 V and the distribution of potential across the sample showed changes in regions that matched the grain boundaries, displaying a constant barrier width of 145.2 nm.A microscopia de força eletrostática (EFM foi usada para sondagem direta do potencial na superfície do titanato de bário dopado, o qual é cerâmica semicondutora. As medidas de EFM foram realizadas no modo não contato, mantendo a distância ponta-amostra de 75 nm constante, mas variando a voltagem bias aplicada à amostra de zero a 10 V. A distribuição do potencial na amostra mostrou mudanças em regiões próximas ao contorno de grão, exibindo largura de barreira constante de 145,2 nm.

  9. Proton Incorporation and Protonic Conduction in Rare Earth Substituted Barium Cerate Ceramics.

    Science.gov (United States)

    Buchanan, Richard M.

    Perovskite-type oxides, particularly rare-earth -substituted barium cerates, are generally recognized as potentially important high-temperature proton conductors. However, considerable literature debate exists regarding such vital issues as the effect of various substituents on proton conduction, details of the proton transport mechanism, and the role of grain boundaries. In this work, conductivity measurements (via impedance spectroscopy) unequivocally indicate protonic conduction in Nd-, Gd-, and Yb-substituted BaCeO_3 , as shown by decreased conductivity following dehydration and by a large hydrogen/deuterium isotope effect. However, combined TGA/conductivity measurements, performed from 100-900^circC, show a pronounced, distinctive oxygen partial pressure dependence in only the Nd-substituted samples. The traditional defect chemistry model explains these trends only when the uncommon Nd(IV) oxidation state is included. A model of the relevant electronic band structure is presented, and the rationale for the existence of Nd(IV) in BaCeO_3 is discussed, including ionization potentials and ionic radii. In calculating the low energy proton diffusion path, the inclusion of partial covalency in static lattice simulations yields results more consistent with experiment. Long -range proton transport requires three separate steps: inter -oxygen hopping, and two distinct hydroxyl reorientations. The previously observed reverse correlation of activation energy with lattice parameter suggests reorientation as rate-limiting. The non-classical isotope effect and other experimental anomalies are resolvable by semi-classical models, although proton tunneling appears to be insignificant. An observed drop in activation energy near 300^circ C supports the concept of a low collision energy exchange. XPS indicates a continuous Ba-rich grain boundary phase in these materials. Thin films grown by solid-source MOCVD have bulk protonic conductivity comparable to ceramics, but, as

  10. Study of the effect of ionizing radiation on composites of wood flour in polypropylene matrix using barium titanate as coupling agent

    International Nuclear Information System (INIS)

    Ulloa, Maritza Eliza Perez

    2007-01-01

    The purpose of this work was to study the effects of ionizing radiation on the properties of wood flour composites in polypropylene matrix, using barium titanate as a coupling agent and the reactive monomer tripropylene glycol diacrylate (TPDGA). An electron accelerator was used in the study as the radiation source. The physical properties of virgin compounds and of the polypropylene/wood flour composite, with and without barium titanate and TPDGA addition, were investigated. The composites were developed from the load treatment, which first consisted of incorporating additives to the wood flour reinforcement and after that, the fusion process of polypropylene and composite mixing in a 'calander'. Subsequently, the samples to be irradiated and submitted to thermal and mechanical assays were molded by injection. The mechanical properties (hardness, impact resistance and molten fluidity index (MFI)), as well as the thermal properties (HDT and Vicat) of the composites were determined. The investigated compositions consisted of polypropylene/wood flour, polypropylene/wood flour with barium titanate and polypropylene/wood flour with barium titanate and TPDGA, using different wood flour concentrations of 10 por cent, 15 por cent and 20 por cent in the polypropylene matrix. The samples were separated in groups and irradiated to doses of 10 kGy and 20 kGy in the samples of the essays of traction. Besides these doses, it was also used doses of 15 kGy and 25 kGy to be observed the behavior of the sample of the sample due to the increase of the radiation. These doses were chosen to show that with low doses the composite material presents reticulation, what represents a viable commercial option. There was a reduction of the flow rate for the composites containing wood flour, being this reduction more effective in the presence of TiBa. The superficial treatment using TPDGA monomer influence in the composite samples because it acted as a plastic additive becoming the sample

  11. Tungsten Bronze Barium Neodymium Titanate (Ba(6-3n)Nd(8+2n)Ti(18)O(54)): An Intrinsic Nanostructured Material and Its Defect Distribution.

    Science.gov (United States)

    Azough, Feridoon; Cernik, Robert Joseph; Schaffer, Bernhard; Kepaptsoglou, Demie; Ramasse, Quentin Mathieu; Bigatti, Marco; Ali, Amir; MacLaren, Ian; Barthel, Juri; Molinari, Marco; Baran, Jakub Dominik; Parker, Stephen Charles; Freer, Robert

    2016-04-04

    We investigated the structure of the tungsten bronze barium neodymium titanates Ba(6-3n)Nd(8+2n)Ti(18)O(54), which are exploited as microwave dielectric ceramics. They form a complex nanostructure, which resembles a nanofilm with stacking layers of ∼12 Å thickness. The synthesized samples of Ba(6-3n)Nd(8+2n)Ti(18)O(54) (n = 0, 0.3, 0.4, 0.5) are characterized by pentagonal and tetragonal columns, where the A cations are distributed in three symmetrically inequivalent sites. Synchrotron X-ray diffraction and electron energy loss spectroscopy allowed for quantitative analysis of the site occupancy, which determines the defect distribution. This is corroborated by density functional theory calculations. Pentagonal columns are dominated by Ba, and tetragonal columns are dominated by Nd, although specific Nd sites exhibit significant concentrations of Ba. The data indicated significant elongation of the Ba columns in the pentagonal positions and of the Nd columns in tetragonal positions involving a zigzag arrangement of atoms along the b lattice direction. We found that the preferred Ba substitution occurs at Nd[3]/[4] followed by Nd[2] and Nd[1]/[5] sites, which is significantly different to that proposed in earlier studies. Our results on the Ba(6-3n)Nd(8+2n)Ti(18)O(54) "perovskite" superstructure and its defect distribution are particularly valuable in those applications where the optimization of material properties of oxides is imperative; these include not only microwave ceramics but also thermoelectric materials, where the nanostructure and the distribution of the dopants will reduce the thermal conductivity.

  12. Grain size and boundary-related effects on the properties of nanocrystalline barium titanate ceramics

    Czech Academy of Sciences Publication Activity Database

    Buscaglia, V.; Buscaglia, M. T.; Viviani, M.; Mitoseriu, L.; Nanni, P.; Trefiletti, V.; Piaggio, P.; Gregora, Ivan; Ostapchuk, Tetyana; Pokorný, Jan; Petzelt, Jan

    2006-01-01

    Roč. 26, - (2006), s. 2889-2898 ISSN 0955-2219 R&D Projects: GA MŠk OC 525.20 Institutional research plan: CEZ:AV0Z10100520 Keywords : grain size * grain boundaries * spectroscopy * dielectric properties * BaTiO 3 Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.576, year: 2006

  13. Synthesis, Microstructure and the Crystalline Structure of the Barium Titanate Ceramics Doped with Lanthanum

    Directory of Open Access Journals (Sweden)

    Wodecka-Duś B.

    2013-12-01

    Full Text Available W prezentowanej pracy przeprowadzono badania ceramiki BaTiO3 i Ba1-xLąxTi1-x/4O3 (BLT dla koncentracji z prze- działu 0,001< x <0,004 (0,l-0,4mol.% La. Ceramikę BLT wytworzono z mieszaniny prostych tlenków La203, TiOi i BaCOj (wszystkie o czystości 99,9+%, Aldrich Chemical Co. Proszki ceramiczne otrzymano metodą konwencjonalną w stanie stałym (metodą MOM i poddano badaniu mikrostruktury i struktury krystalicznej. Mieszaniny proszków poddano analizie termicznej. Wyniki analizy termicznej określiły optymalną temperaturę syntezy oraz procesy zachodzące podczas ogrzewania proszków. Następnie proszki formowano w dyski pod ciśnieniem 300MPa w matrycach ze stali nierdzewnej o średnicy 10 mm. Syntezę przeprowadzono w Ts =950°C t =2godz. Ostatnim krokiem technologii było bezciśnieniowe spiekanie metodą swobodnego spiekania w T = 1350^ przez / =2 godziny. Morfologię otrzymanego materiału ceramicznego obserwowano metodą skaningowej mikroskopii elektronowej. Ceramikę BLT badano również pod względem składu chemicznego metodą EDS. Analizę strukturalną przeprowadzono metodą dyfrakcji rentgenowskiej. Badania mikrostruktury i struktury krystalicznej ceramiki przeprowadzono w temperaturze pokojowej. Badania EDS potwierdziły zachowanie stechiometrii otrzymanych próbek według wzoru chemicznego. Rentgenowska analiza dyfrakcyjna potwierdziły wytworzenie pożądanej struktury krystalicznej zarówno czystej ceramiki BaTiOj jak i z domieszką Lau. Otrzymana ceramika wykazuje strukturę typu perowskitu A BO? o symetrii tetragonalnej P4 mm. Stwierdzono, że wraz ze wzrostem stężenia La3* w BaTiOj następuje zmniejszenie wielkości ziam krystalicznych, zmniejszenie średniego wymiaru krystalitów, zmniejszenie objętości komórki elementarnej oraz wzrost obliczonej rentgenowskiej gęstości.

  14. High Gain and High Directive of Antenna Arrays Utilizing Dielectric Layer on Bismuth Titanate Ceramics

    Directory of Open Access Journals (Sweden)

    F. H. Wee

    2012-01-01

    Full Text Available A high gain and high directive microstrip patch array antenna formed from dielectric layer stacked on bismuth titanate (BiT ceramics have been investigated, fabricated, and measured. The antennas are designed and constructed with a combination of two-, four-, and six-BiT elements in an array form application on microwave substrate. For gain and directivity enhancement, a layer of dielectric was stacked on the BiT antenna array. We measured the gain and directivity of BiT array antennas with and without the dielectric layer and found that the gain of BiT array antenna with the dielectric layer was enhanced by about 1.4 dBi of directivity and 1.3 dB of gain over the one without the dielectric layer at 2.3 GHz. The impedance bandwidth of the BiT array antenna both with and without the dielectric layer is about 500 MHz and 350 MHz, respectively, which is suitable for the application of the WiMAX 2.3 GHz system. The utilization of BiT ceramics that covers about 90% of antenna led to high radiation efficiency, and small-size antennas were produced. In order to validate the proposed design, theoretical and measured results are provided and discussed.

  15. Doped barium titanate nanoparticles

    Indian Academy of Sciences (India)

    We have synthesized nickel (Ni) and iron (Fe) ion doped BaTiO3 nanoparticles through a chemical route using polyvinyl alcohol (PVA). The concentration of dopant varies from 0 to 2 mole% in the specimens. The results from X-ray diffractograms and transmission electron micrographs show that the particle diameters in the ...

  16. Doped barium titanate nanoparticles

    Indian Academy of Sciences (India)

    Wintec

    Abstract. We have synthesized nickel (Ni) and iron (Fe) ion doped BaTiO3 nanoparticles through a chemical route using polyvinyl alcohol (PVA). The concentration of dopant varies from 0 to 2 mole% in the specimens. The results from X-ray diffractograms and transmission electron micrographs show that the particle ...

  17. Studies on the effects of titanate and silane coupling agents on the performance of poly (methyl methacrylate)/barium titanate denture base nanocomposites.

    Science.gov (United States)

    Elshereksi, Nidal W; Ghazali, Mariyam J; Muchtar, Andanastuti; Azhari, Che H

    2017-01-01

    This study aimed to fabricate and characterise silanated and titanated nanobarium titanate (NBT) filled poly(methyl methacrylate) (PMMA) denture base composites and to evaluate the behaviour of a titanate coupling agent (TCA) as an alternative coupling agent to silane. The effect of filler surface modification on fracture toughness was also studied. Silanated, titanated and pure NBT at 5% were incorporated in PMMA matrix. Neat PMMA matrix served as a control. NBT was sonicated in MMA prior to mixing with the PMMA. Curing was carried out using a water bath at 75°C for 1.5h and then at 100°C for 30min. NBT was characterised via Fourier transform-infrared spectroscopy (FTIR), Transmission Electron Microscopy (TEM) and Brunauer-Emmett-Teller (BET) analysis before and after surface modification. The porosity and fracture toughness of the PMMA nanocomposites (n=6, for each formulation and test) were also evaluated. NBT was successfully functionalised by the coupling agents. The TCA exhibited the lowest percentage of porosity (0.09%), whereas silane revealed 0.53% porosity. Statistically significant differences in fracture toughness were observed among the fracture toughness values of the tested samples (pPMMA composites. Thus, TCA seemed to be more effective than silane. Minimising the porosity level could have the potential to reduce fungus growth on denture base resin to be hygienically accepTable Such enhancements obtained with Ti-NBT could lead to promotion of the composites' longevity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Synthesis of nanoparticles of barium strontium titanate using hydrothermal microwave method; Sintese de nanoparticulas de titanato de bario estroncio utilizando o metodo hidrotermal assistido por microondas

    Energy Technology Data Exchange (ETDEWEB)

    Silva, R.A.; Souza, A.E.; Teixeira, S.R. [Universidade Estadual Paulista (DFQB/FCT/UNESP), Presidente Prudente, SP (Brazil). Fac. de Ciencia e Tecnologia. Dept. de Fisica, Quimica e Biologia; Moreira, M.L.; Volanti, D.P. [Universidade Federal de Sao Carlos (LiEC/UFSCAR), SP (Brazil). Lab. Interdisciplinar de Eletroquimica e Ceramica; Longo, E. [Universidade Estadual Paulista (UNESP/LiEC), Araraquara, SP (Brazil). Lab. Interdisciplinar de Eletroquimica e Ceramica

    2009-07-01

    Nanoparticles of barium strontium titanate Ba{sub x}Sr{sub 1}-{sub x}TiO{sub 3} (BST) had been prepared, with x = 0.5, using the hydrothermal method attended by microwaves (HTMW). A solution was prepared using deionized water, barium chloride (BaCl{sub 2}.2H{sub 2}O), strontium chloride (SrCl{sub 2}.6H{sub 2}O), titanium (IV) isopropoxide (C{sub 12}H28O{sub 4}Ti) and potassium hydroxide (KOH). Afterward the solution was heated to 140 deg C in a microwave oven, at a heating rate of 140 deg C/min, and maintained at this temperature for 40 min, under a pressure of 3 to 4 bar. X-ray diffraction (DRX) and field emission scanning electron microscopy (FE-SEM) had been used in the particles characterization. DRX was used to identify the crystallized phases and the images taken from (FE-SEM) show that the material has a wide particle-size distribution with most of them between 10 and 30 nm. (author)

  19. Síntese e caracterização da cerâmica PZT dopada com íons bário Synthesis and characterization of barium-doped PZT ceramics

    Directory of Open Access Journals (Sweden)

    G. Gasparotto

    2003-04-01

    Full Text Available Pós de titanato zirconato de chumbo (PZT puros e dopados com bário foram obtidos pelo método de precursores poliméricos, conformados uniaxialmente, na forma de cilindros, utilizando 15 MPa, e prensados isostaticamente à 210MPa. Com o objetivo de estudar o comportamento de sinterização os compactos foram divididos em dois lotes. Sendo um sinterizado em um forno acoplado a um dilatômetro até a temperatura de 1300 °C e o outro sinterizado em forno tipo mufla, em sistema fechado, na temperatura de 1100 °C por 4 horas. Verificou-se que a adição do íon bário influencia na cinética de sinterização, na densificação final, na microestrutura e nas propriedades elétricas da cerâmica. A adição de bário aumenta a concentração da fase tetragonal no PZT, em função da substituição do chumbo por bário na rede perovskita. As amostras dopadas com concentrações maiores que 5,0 mol % em bário apresentaram segregação de PbO no contorno de grão, inibindo seu crescimento.Pure and barium doped lead zirconate titanate powders were obtained by the polymeric precursor method, uniaxially conformed in cylinders form using 15 MPa and pressing isostatically at 210 MPa. In order to study the sintering behaviour, the compacts were divided in two parts. One part was sintered in a dilatometer furnace till 1300 °C and the other one sintered in muffle furnace in the temperature of 1100 °C for 4 hours. It was verified that the addition of barium influences on the sintering kinetics, on the final density, microstructure and electric properties of the ceramics. The addition of barium increases the concentration of the tetragonal phase of PZT due to the substitution of lead by barium in the perovskite lattice. The samples doped with barium concentrations higher than 5.0 mol % leads to the segregation of PbO in the grain boundary, inhibiting grain growth.

  20. Damping behavior and acoustic performance of polyurethane/lead zirconate titanate ceramic composites

    International Nuclear Information System (INIS)

    Zhang, C.H.; Hu, Z.; Gao, G.; Zhao, S.; Huang, Y.D.

    2013-01-01

    Highlights: ► 0–3 Type PU-based PZT composites are chosen as sound absorption media. ► The damping loss peaks of PU/PZT composites move towards higher temperature. ► The damping temperature ranges of PU/PZT composites become broaden. ► Sound absorption coefficients of composites are greatly increased at low frequencies. - Abstract: 0–3 Type PU-based lead zirconate titanate ceramic (PZT) composites are prepared by in situ polymerization method, this PU/PZT composite material has excellent sound absorption property at low frequencies because of damping property and piezoelectric property. The dispersion of PZT particles in PU matrix, dielectric loss tangent (tan δ), dynamic storage modulus (E′), dynamic loss modulus (E″), and the acoustic absorption coefficient (α) of PU/PZT composites are studied by scanning electron microscopy (SEM), dynamic mechanical analysis (DMA) and two-microphone impedance tube, respectively. The results indicate that the modified PZT particles dispersed well in PU matrix with the content of 30 wt%; the tan δ, E′ and E″ are 0.62, 3.75 GPa and 6.05 GPa, respectively, when the composite with 30 wt% of polarizing PZT; the acoustic absorption coefficient is found to increase with an increase of PZT content, and the average acoustic absorption coefficient is 0.32 at low frequencies from 125 to 500 Hz

  1. Characterization of dense lead lanthanum titanate ceramics prepared from powders synthesized by the oxidant peroxo method

    International Nuclear Information System (INIS)

    Pinto, Alexandre H.; Souza, Flavio L.; Chiquito, Adenilson J.; Longo, Elson; Leite, Edson R.; Camargo, Emerson R.

    2010-01-01

    Nanosized powders of lead lanthanum titanate (Pb 1-x La x TiO 3 ) were synthesized by means of the oxidant-peroxo method (OPM). Lanthanum was added from 5 to 30% in mol through the dissolution of lanthanum oxide in nitric acid, followed by the addition of lead nitrate to prepare a solution of lead and lanthanum nitrates, which was dripped into an aqueous solution of titanium peroxo complexes, forming a reactive amorphous precipitate that could be crystallized by heat treatment. Crystallized powders were characterized by FT-Raman spectroscopy and X-ray powder diffraction, showing that tetragonal perovskite structure is obtained for samples up to 25% of lanthanum and cubic perovskite for samples with 30% of lanthanum. Powders containing 25 and 30% in mol of lanthanum were calcined at 700 deg. C for 2 h, and in order to determine the relative dielectric permittivity and the phase transition behaviour from ferroelectric-to-paraelectric, ceramic pellets were prepared and sintered at 1100 or 1150 deg. C for 2 h and subjected to electrical characterization. It was possible to observe that sample containing 25% in mol of La presented a normal behaviour for the phase transition, whereas the sample containing 30% in mol of La presented a diffuse phase transition and relaxor behaviour.

  2. Growth behaviour of twisted ribbons of barium carbonate/silica self-assembled ceramics

    International Nuclear Information System (INIS)

    Garcia-Ruiz, J.M.; Moreno, A.

    1997-01-01

    Twisted ribbons of self-assembled crystal aggregates of barium carbonate, in the presence of silicate ions at pH 9.5 grow at constant rate between 20 and 50 mu m/min. The morphological behaviour depends on temperature, while it was demonstrated to be independent of the viscosity of the growth environment. (Author) 7 refs

  3. Indentation Behavior and Mechanical Properties of Tungsten/Chromium co-Doped Bismuth Titanate Ceramics Sintered at Different Temperatures.

    Science.gov (United States)

    Xie, Shaoxiong; Xu, Jiageng; Chen, Yu; Tan, Zhi; Nie, Rui; Wang, Qingyuan; Zhu, Jianguo

    2018-03-27

    A sort of tungsten/chromium(W/Cr) co-doped bismuth titanate (BIT) ceramics (Bi₄Ti 2.95 W 0.05 O 12.05 + 0.2 wt % Cr₂O₃, abbreviate to BTWC) are ordinarily sintered between 1050 and 1150 °C, and the indentation behavior and mechanical properties of ceramics sintered at different temperatures have been investigated by both nanoindentation and microindentation technology. Firstly, more or less Bi₂Ti₂O₇ grains as the second phase were found in BTWC ceramics, and the grain size of ceramics increased with increase of sintering temperatures. A nanoindentation test for BTWC ceramics reveals that the testing hardness of ceramics decreased with increase of sintering temperatures, which could be explained by the Hall-Petch equation, and the true hardness could be calculated according to the pressure-state-response (PSR) model considering the indentation size effect, where the value of hardness depends on the magnitude of load. While, under the application of microsized Vickers, the sample sintered at a lower temperature (1050 °C) gained four linearly propagating cracks, however, they were observed to shorten in the sample sintered at a higher temperature (1125 °C). Moreover, both the crack deflection and the crack branching existed in the latter. The hardness and the fracture toughness of BTWC ceramics presented a contrary variational tendency with increase of sintering temperatures. A high sintering tends to get a lower hardness and a higher fracture toughness, which could be attributed to the easier plastic deformation and the stronger crack inhibition of coarse grains, respectively, as well as the toughening effect coming from the second phase.

  4. Fabrication of Crack-Free Barium Titanate Thin Film with High Dielectric Constant Using Sub-Micrometric Scale Layer-by-Layer E-Jet Deposition.

    Science.gov (United States)

    Liang, Junsheng; Li, Pengfei; Wang, Dazhi; Fang, Xu; Ding, Jiahong; Wu, Junxiong; Tang, Chang

    2016-01-19

    Dense and crack-free barium titanate (BaTiO₃, BTO) thin films with a thickness of less than 4 μm were prepared by using sub-micrometric scale, layer-by-layer electrohydrodynamic jet (E-jet) deposition of the suspension ink which is composed of BTO nanopowder and BTO sol. Impacts of the jet height and line-to-line pitch of the deposition on the micro-structure of BTO thin films were investigated. Results show that crack-free BTO thin films can be prepared with 4 mm jet height and 300 μm line-to-line pitch in this work. Dielectric constant of the prepared BTO thin film was recorded as high as 2940 at 1 kHz at room temperature. Meanwhile, low dissipation factor of the BTO thin film of about 8.6% at 1 kHz was also obtained. The layer-by-layer E-jet deposition technique developed in this work has been proved to be a cost-effective, flexible and easy to control approach for the preparation of high-quality solid thin film.

  5. Ferroelectric/Dielectric Double Gate Insulator Spin-Coated Using Barium Titanate Nanocrystals for an Indium Oxide Nanocrystal-Based Thin-Film Transistor.

    Science.gov (United States)

    Pham, Hien Thu; Yang, Jin Ho; Lee, Don-Sung; Lee, Byoung Hun; Jeong, Hyun-Dam

    2016-03-23

    Barium titanate nanocrystals (BT NCs) were prepared under solvothermal conditions at 200 °C for 24 h. The shape of the BT NCs was tuned from nanodot to nanocube upon changing the polarity of the alcohol solvent, varying the nanosize in the range of 14-22 nm. Oleic acid-passivated NCs showed good solubility in a nonpolar solvent. The effect of size and shape of the BT NCs on the ferroelectric properties was also studied. The maximum polarization value of 7.2 μC/cm(2) was obtained for the BT-5 NC thin film. Dielectric measurements of the films showed comparable dielectric constant values of BT NCs over 1-100 kHz without significant loss. Furthermore, the bottom gate In2O3 NC thin film transistors exhibited outstanding device performance with a field-effect mobility of 11.1 cm(2) V(-1) s(-1) at a low applied gate voltage with BT-5 NC/SiO2 as the gate dielectric. The low-density trapped state was observed at the interface between the In2O3 NC semiconductor and the BT-5 NCs/SiO2 dielectric film. Furthermore, compensation of the applied gate field by an electric dipole-induced dipole field within the BT-5 NC film was also observed.

  6. Investigation of the effects of misfit strain on barium strontium titanate thin films deposited on base metal substrates by a modified phenomenological model

    Science.gov (United States)

    Dong, Hanting; Li, Hongfang; Chen, Jianguo; Jin, Dengren; Cheng, Jinrong

    2017-10-01

    The Landau-Devonshire phenomenological model, which has been utilized to investigate epitaxial barium strontium titanate (BST) thin films, was modified to investigate the effects of misfit strain on the dielectric properties of polycrystalline BST thin films deposited on base metal substrates. The modification considers the relaxation of lattice misfit stress resulting from the formation of in-plane misfit dislocations. The modified lattice misfit strain was calculated by referring to the ferroelectric critical grain size. Moreover, the misfit strain and dielectric properties of BST thin films with different structures and substrates were investigated by the models. It was found that the measured dielectric constant and tunability of BST thin films on different metal substrates overall agreed with the computed data. In addition, the good agreement was also observed for sandwich-like structural BST thin films deposited on LNO buffered stainless steel plates. Our results indicated that the modified L-D models might be utilized to predict dielectric properties of polycrystalline BST thin films for varied substrates and multilayer structures.

  7. Fabrication of Crack-Free Barium Titanate Thin Film with High Dielectric Constant Using Sub-Micrometric Scale Layer-by-Layer E-Jet Deposition

    Directory of Open Access Journals (Sweden)

    Junsheng Liang

    2016-01-01

    Full Text Available Dense and crack-free barium titanate (BaTiO3, BTO thin films with a thickness of less than 4 μm were prepared by using sub-micrometric scale, layer-by-layer electrohydrodynamic jet (E-jet deposition of the suspension ink which is composed of BTO nanopowder and BTO sol. Impacts of the jet height and line-to-line pitch of the deposition on the micro-structure of BTO thin films were investigated. Results show that crack-free BTO thin films can be prepared with 4 mm jet height and 300 μm line-to-line pitch in this work. Dielectric constant of the prepared BTO thin film was recorded as high as 2940 at 1 kHz at room temperature. Meanwhile, low dissipation factor of the BTO thin film of about 8.6% at 1 kHz was also obtained. The layer-by-layer E-jet deposition technique developed in this work has been proved to be a cost-effective, flexible and easy to control approach for the preparation of high-quality solid thin film.

  8. Improvement in crystallization and electrical properties of barium strontium titanate thin films by gold doping using metal-organic deposition method

    International Nuclear Information System (INIS)

    Wang, H.-W.; Nien, S.-W.; Lee, K.-C.; Wu, M.-C.

    2005-01-01

    The effect of gold (Au) on the crystallization, dielectric constant and leakage current density of barium strontium titanate (BST) thin films was investigated. BST thin films with various gold concentrations were prepared via a metal-organic deposition process. The X-ray diffraction shows enhanced crystallization as well as expanded lattice constants for the gold-doped BST films. Thermal analysis reveals that the gold dopant induces more complete decomposition of precursor for the doped films than those of undoped ones. The leakage current density of BST films is greatly reduced by the gold dopant over a range of biases (1-5 V). The distribution of gold was confirmed by electron energy loss spectroscopy and found to be inside the BST grains, not in the grain-boundaries. Gold acted as a catalyst, inducing the nucleation of crystallites and improving the crystallinity of the structure. Its addition is shown to be associated to the improvement of the electrical properties of BST films

  9. Preparation of Parium Titanates With Different Particle Size Distribution Using Modified Pechini Method

    Directory of Open Access Journals (Sweden)

    Ahmed Jaafer Abed AL-Jabar

    2017-03-01

    Full Text Available Barium titanates is one of the most important ceramics that are widely used in the electronic industry because of its high dielectric constant, its ferroelectricity, and its piezoelectric properties. In the current study, five different batches of barium titanate powders were prepared by modifiedpechini method using the barium chloride and the titanium chloride as a starting materials in order to obtain different particle size distributions.SEM, TGA, DTA, XRD, FTIR, and other techniques have been used to characterize the prepared samples.XRD results suggested that the synthesized BaTiO3has a tetragonal phase.SEM images of the prepared samples reveala polyhedron shapes, on average, also it show that there are markedinfluence of the reactant concentration on the average size of the grains,where the samples prepared from higher solution concentration tend to possess larger grain size compared to that prepared from low concentration.

  10. Neutron activation determination of oxygen in ceramic materials on the basis of yttrium, barium and copper

    International Nuclear Information System (INIS)

    Goldshtein, M.M.; Yudelevich, I.G.

    1991-01-01

    A procedure of determining oxygen in superconducting materials on the basis of yttrium, barium and copper oxides with the application of 14 MeV-neutron activation was developed. The method is based on determining the relation between oxygen and yttrium in the compounds investigated. In order to minimize systematic errors, expressions accounting for spectrometer dead time under conditions of varying component activity are proposed. The procedure ensures determination of the relation between oxygen and yttrium with a relative error of 0.4% with NAA using a neutron generator. (author) 4 refs.; 1 fig

  11. Dielectric properties of Ga{sub 2}O{sub 3}-doped barium iron niobate ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Sanjoom, Kachaporn [Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai, 50200 (Thailand); Thailand Center of Excellence in Physics, Commission on Higher Education, 328 Sri Ayutthaya Road, Bangkok, 10400 (Thailand); Pengpat, Kamonpan; Eitssayeam, Sukum; Tunkasiri, Tawee [Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai, 50200 (Thailand); Materials Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai, 50200 (Thailand); Rujijanagul, Gobwute [Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai, 50200 (Thailand); Materials Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai, 50200 (Thailand); Thailand Center of Excellence in Physics, Commission on Higher Education, 328 Sri Ayutthaya Road, Bangkok, 10400 (Thailand)

    2014-08-15

    Ga-doped BaFe{sub 0.5}Nb{sub 0.5}O{sub 3} (Ba(Fe{sub 1-x}Ga{sub x}){sub 0.5}Nb{sub 0.5}O{sub 3}) ceramics were fabricated and their properties were investigated. All ceramics showed perovskite structure with cubic symmetry and the solubility of Ga in BFN ceramics had a limit at x = 0.2. Examination of the dielectric spectra indicated that all ceramic samples presented high dielectric constants that were frequency dependent. The x = 0.2 ceramic showed a very high dielectric constant (ε{sub r} > 240 000 at 1 kHz) while the x = 0.4 sample exhibited high thermal stability of dielectric constant with low loss tangent from room temperature (RT) to 100 C with ε{sub r} > 28 000 (at 1 kHz) when compared to other samples. By using a complex impedance analysis technique, bulk grain, grain boundary, and electrode response were found to affect the dielectric behavior that could be related to the Maxwell-Wagner polarization mechanism. (copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  12. Significantly Enhanced Breakdown Strength and Energy Density in Sandwich-Structured Barium Titanate/Poly(vinylidene fluoride) Nanocomposites.

    Science.gov (United States)

    Wang, Yifei; Cui, Jin; Yuan, Qibin; Niu, Yujuan; Bai, Yuanyuan; Wang, Hong

    2015-11-01

    Sandwich-structured BaTiO3 /poly(vinylidene fluoride) (PVDF) nanocomposites are successfully prepared by the solution-casting method layer by layer. They possess both high breakdown strength and large dielectric polarization simultaneously. An ultra-high energy-storage density of 18.8 J cm(-3) can be achieved by adjusting the volume fraction of ceramic fillers: this is almost three times larger than that of pure PVDF. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Participation of MicroRNA-34a and RANKL on bone repair induced by poly(vinylidene-trifluoroethylene)/barium titanate membrane.

    Science.gov (United States)

    Lopes, Helena B; Ferraz, Emanuela P; Almeida, Adriana L G; Florio, Pedro; Gimenes, Rossano; Rosa, Adalberto L; Beloti, Marcio M

    2016-09-01

    The poly(vinylidene-trifluoroethylene)/barium titanate (PVDF) membrane enhances in vitro osteoblast differentiation and in vivo bone repair. Here, we hypothesized that this higher bone repair could be also due to bone resorption inhibition mediated by a microRNA (miR)/RANKL circuit. To test our hypothesis, the large-scale miR expression of bone tissue grown on PVDF and polytetrafluoroethylene (PTFE) membranes was evaluated to identify potential RANKL-targeted miRs modulated by PVDF. The animal model used was rat calvarial defects implanted with either PVDF or PTFE. At 4 and 8 weeks, the bone tissue grown on membranes was submitted to a large-scale analysis of miRs by microarray. The expression of miR-34a and some of its targets, including RANKL, were evaluated by real-time polimerase chain reaction and osteoclast activity was detected by tartrate-resistant acid phosphatase (TRAP) staining. Among more than 250 miRs, twelve, including miR-34a, were simultaneously higher expressed (≥2 fold) at 4 and 8 weeks on PVDF. The higher expression of miR-34a was concomitant with a reduced expression of all its evaluated targets, including RANKL. Additionally, more TRAP-positive cells were observed in bone tissue grown on PTFE compared with PVDF in both time points. In conclusion, our results suggest that the higher bone formation induced by PVDF could be, at least in part, triggered by a miR-34a increase and RANKL decrease, which may inhibit osteoclast differentiation and activity, and bone resorption.

  14. Poly(Vinylidene Fluoride-Trifluorethylene)/barium titanate membrane promotes de novo bone formation and may modulate gene expression in osteoporotic rat model.

    Science.gov (United States)

    Scalize, Priscilla Hakime; Bombonato-Prado, Karina F; de Sousa, Luiz Gustavo; Rosa, Adalberto Luiz; Beloti, Marcio Mateus; Semprini, Marisa; Gimenes, Rossano; de Almeida, Adriana L G; de Oliveira, Fabíola Singaretti; Hallak Regalo, Simone Cecilio; Siessere, Selma

    2016-12-01

    Osteoporosis is a chronic disease that impairs proper bone remodeling. Guided bone regeneration is a surgical technique that improves bone defect in a particular region through new bone formation, using barrier materials (e.g. membranes) to protect the space adjacent to the bone defect. The polytetrafluorethylene membrane is widely used in guided bone regeneration, however, new membranes are being investigated. The purpose of this study was to evaluate the effect of P(VDFTrFE)/BT [poly(vinylidene fluoride-trifluoroethylene)/barium titanate] membrane on in vivo bone formation. Twenty-three Wistar rats were submitted to bilateral ovariectomy. Five animals were subjected to sham surgery. After 150 days, bone defects were created and filled with P(VDF-TrFE)/BT membrane or PTFE membrane (except for the sham and OVX groups). After 4 weeks, the animals were euthanized and calvaria samples were subjected to histomorphometric and computed microtomography analysis (microCT), besides real time polymerase chain reaction (real time PCR) to evaluate gene expression. The histomorphometric analysis showed that the animals that received the P(VDF-TrFE)/BT membrane presented morphometric parameters similar or even better compared to the animals that received the PTFE membrane. The comparison between groups showed that gene expression of RUNX2, BSP, OPN, OSX and RANKL were lower on P(VDF-TrFE)/BT membrane; the gene expression of ALP, OC, RANK and CTSK were similar and the gene expression of OPG, CALCR and MMP9 were higher when compared to PTFE. The results showed that the P(VDF-TrFE)/BT membrane favors bone formation, and therefore, may be considered a promising biomaterial to support bone repair in a situation of osteoporosis.

  15. Large dielectric constant and high thermal conductivity in poly(vinylidene fluoride)/barium titanate/silicon carbide three-phase nanocomposites.

    Science.gov (United States)

    Li, Yong; Huang, Xingyi; Hu, Zhiwei; Jiang, Pingkai; Li, Shengtao; Tanaka, Toshikatsu

    2011-11-01

    Dielectric polymer composites with high dielectric constants and high thermal conductivity have many potential applications in modern electronic and electrical industry. In this study, three-phase composites comprising poly(vinylidene fluoride) (PVDF), barium titanate (BT) nanoparticles, and β-silicon carbide (β-SiC) whiskers were prepared. The superiority of this method is that, when compared with the two-phase PVDF/BT composites, three-phase composites not only show significantly increased dielectric constants but also have higher thermal conductivity. Our results show that the addition of 17.5 vol % β-SiC whiskers increases the dielectric constants of PVDF/BT nanocomposites from 39 to 325 at 1000 Hz, while the addition of 20.0 vol % β-SiC whiskers increases the thermal conductivity of PVDF/BT nanocomposites from 1.05 to 1.68 W m(-1) K(-1) at 25 °C. PVDF/β-SiC composites were also prepared for comparative research. It was found that PVDF/BT/β-SiC composites show much higher dielectric constants in comparison with the PVDF/β-SiC composites within 17.5 vol % β-SiC. The PVDF/β-SiC composites show dielectric constants comparable to those of the three-phase composites only when the β-SiC volume fraction is 20.0%, whereas the dielectric loss of the PVDF/β-SiC composites was much higher than that of the three-phase composites. The frequency dependence of the dielectric property for the composites was investigated by using broad-band (10(-2)-10(6) Hz) dielectric spectroscopy.

  16. Effect of the Modifier Structure on the Performance of Barium Titanate/Poly(vinylidene fluoride) Nanocomposites for Energy Storage Applications.

    Science.gov (United States)

    Niu, Yujuan; Bai, Yuanyuan; Yu, Ke; Wang, Yifei; Xiang, Feng; Wang, Hong

    2015-11-04

    Surface modification on ceramic fillers is of interest to help improve their compatibility in ceramic/polymer nanocomposites and, if possible, to control the influence of modifiers on the performance of the nanocomposites. In this paper, four kinds of small-molecule modifiers were chosen to treat the surface of BT nanoparticles, and the PVDF-based nanocomposites filled with the modified BT nanoparticles were prepared. The influences of modifiers on compatibility, permittivity, breakdown strength and polarization have been systematically investigated in order to identify the optimal surface modifier to enhance the energy density of the nanocomposites. Due to different structures (including type, number, and position of functional groups in molecules), the modifiers show different effects on the permittivity of the nanocomposites, while the breakdown strengths are all significantly improved. Consequently, the discharged energy densities of nanocomposites modified by 2,3,4,5-tetrafluorobenzoic acid and phthalic acid increase 35.7% and 37.7%, respectively, compared to BT/PVDF, indicating their potential as high energy density capacitors.

  17. Enhanced proton conductivity of yttrium-doped barium zirconate with sinterability in protonic ceramic fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Park, Ka-Young; Seo, Yongho; Kim, Ki Buem [HMC & Green Energy Research Institute, Department of Nanotechnology and Advanced Materials Engineering, Sejong University, Seoul 143-747 (Korea, Republic of); Song, Sun-Ju [Department of Materials Science and Engineering, Chonnam National University, Gwangju 550-749 (Korea, Republic of); Park, Byoungnam [Department of Materials Science and Engineering, Hongik University, Seoul 121-791 (Korea, Republic of); Park, Jun-Young, E-mail: jyoung@sejong.ac.kr [HMC & Green Energy Research Institute, Department of Nanotechnology and Advanced Materials Engineering, Sejong University, Seoul 143-747 (Korea, Republic of)

    2015-08-05

    Highlights: • Report effects of ceramic processing methods on the electrical conductivity of BZY. • Present effects of sintering aids on the conductivity and density of BZY. • CuO is the most effective sintering aid for the BZY. • Polymer gelation is the most effective method in terms of conductivity of BZY. • Grain boundary conductivity of the polymer gelation BZY is higher than others. - Abstract: In this study, we report the effects of various ceramic processing methods with different sintering aids on the relative density, crystallinity, microstructure, and electrical conductivity of proton conducting BaZr{sub 0.85}Y{sub 0.15}O{sub 3−δ} (BZY) pellets in details. First, the BZY ceramic pellets are fabricated by the solid-state reactive sintering by adding diverse sintering aids including CuO, NiO, ZnO, SnO, MgO, and Al{sub 2}O{sub 3}. Among these, CuO is found to be the most effective sintering aid in terms of the sintering temperature and total conductivity. However, transition metals as sintering aids have detrimental effects on the electrical conductivity of the BZY electrolytes. Second, the BZY electrolytes have been synthesized by four different methods: the solid-state, combustion, hydrothermal, and polymer gelation methods. The BZY pellets synthesized by the polymer gelation method exhibit dense microstructure with a high relative density of 95.3%. Moreover, the electrical conductivity of the BZY pellets synthesized by the polymer gelation method is higher than those prepared by the solid-state methods under the same test conditions: 1.28 × 10{sup −2} S cm{sup −1} (by the polymer gelation method) vs. 0.53 × 10{sup −2} S cm{sup −1} by the solid-state method at 600 °C in wet 5% H{sub 2} in Ar.

  18. Enhanced proton conductivity of yttrium-doped barium zirconate with sinterability in protonic ceramic fuel cells

    International Nuclear Information System (INIS)

    Park, Ka-Young; Seo, Yongho; Kim, Ki Buem; Song, Sun-Ju; Park, Byoungnam; Park, Jun-Young

    2015-01-01

    Highlights: • Report effects of ceramic processing methods on the electrical conductivity of BZY. • Present effects of sintering aids on the conductivity and density of BZY. • CuO is the most effective sintering aid for the BZY. • Polymer gelation is the most effective method in terms of conductivity of BZY. • Grain boundary conductivity of the polymer gelation BZY is higher than others. - Abstract: In this study, we report the effects of various ceramic processing methods with different sintering aids on the relative density, crystallinity, microstructure, and electrical conductivity of proton conducting BaZr 0.85 Y 0.15 O 3−δ (BZY) pellets in details. First, the BZY ceramic pellets are fabricated by the solid-state reactive sintering by adding diverse sintering aids including CuO, NiO, ZnO, SnO, MgO, and Al 2 O 3 . Among these, CuO is found to be the most effective sintering aid in terms of the sintering temperature and total conductivity. However, transition metals as sintering aids have detrimental effects on the electrical conductivity of the BZY electrolytes. Second, the BZY electrolytes have been synthesized by four different methods: the solid-state, combustion, hydrothermal, and polymer gelation methods. The BZY pellets synthesized by the polymer gelation method exhibit dense microstructure with a high relative density of 95.3%. Moreover, the electrical conductivity of the BZY pellets synthesized by the polymer gelation method is higher than those prepared by the solid-state methods under the same test conditions: 1.28 × 10 −2 S cm −1 (by the polymer gelation method) vs. 0.53 × 10 −2 S cm −1 by the solid-state method at 600 °C in wet 5% H 2 in Ar

  19. Effect of millimeter-wave irradiation on cation interdiffusion in the calcium titanate/strontium titanate ceramic couple

    International Nuclear Information System (INIS)

    Kishimoto, Akira; Kamakura, Yukari; Teranishi, Takashi; Hayashi, Hidetaka

    2013-01-01

    Interdiffusion between the perovskite CaTiO 3 and SrTiO 3 diffusion couple was investigated in an annealing method using 24-GHz MMW irradiation as the heating source. Interdiffusion was enhanced by MMW irradiation, and the apparent activation energy for interdiffusion decreased 54%, compared with conventional furnace heating. The intrinsic diffusions for both Ca 2+ and Sr 2+ were also enhanced, although their relative degrees of enhancement differed, partly as a result of differences in MMW absorptivity between the two ceramics. The observed isothermal diffusion enhancement could be ascribed to a nonthermal effect, apart from the differential degree of enhancement between the transport species. - Highlights: ► Interdiffusion was enhanced by MMW (millimeter-wave) irradiation. ► At the same time the apparent activation energy decreased. ► The enhancement degrees were different between the transport species. ► The observed diffusion enhancement can be ascribed to a nonthermal effect. ► MMW irradiation could be an effective means of preparing novel complex oxides

  20. In situ neutron diffraction studies of a commercial, soft lead zirconate titanate ceramic: Response to electric fields and mechanical stress

    Energy Technology Data Exchange (ETDEWEB)

    Pramanick, Abhijit [University of Florida; Prewitt, Anderson [University of Florida; Cottrell, Michelle [University of Florida; Lee, Wayne [ITT Corporation Acoustic Sensors; Studer, Andrew J. [Bragg Institute, ANSTO; An, Ke [ORNL; Hubbard, Camden R [ORNL; Jones, Jacob [University of Florida

    2010-01-01

    Structural changes in commercial lead zirconate titanate (PZT) ceramics (EC-65) under the application of electric fields and mechanical stress were measured using neutron diffraction instruments at the Australian Nuclear Science and Technology Organisation (ANSTO) and the Oak Ridge National Laboratory (ORNL). The structural changes during electric-field application were measured on the WOMBAT beamline at ANSTO and include non-180{sup o} domain switching, lattice strains and field-induced phase transformations. Using time-resolved data acquisition capabilities, lattice strains were measured under cyclic electric fields at times as short as 30 {mu}s. Structural changes including the (002) and (200) lattice strains and non-180{sup o} domain switching were measured during uniaxial mechanical compression on the NRSF2 instrument at ORNL. Contraction of the crystallographic polarization axis, (002), and reorientation of non-180{sup o} domains occur at lowest stresses, followed by (200) elastic strains at higher stresses.

  1. Dielectric properties of bismuth titanate ceramics containing SiO2 and Nd2O3 as additives

    Directory of Open Access Journals (Sweden)

    Stanislav S. Slavov

    2012-09-01

    Full Text Available Bismuth-titanate ceramics containing SiO2 and Nd2O3 as additives are synthesized by melt quenching method in the system Bi2O3-TiO2-Nd2O3-SiO2 in the temperature range of 1250–1500 °C. The phase composition of the obtained materials is determined by X-ray diffraction analysis and energy dispersive spectroscopy. Using scanning electron microscopy different microstructures are observed in the samples depending on the composition. Different values of conductivity, dielectric losses and relative permittivity are obtained depending on the composition. It is established that all investigated samples are dielectric materials with conductivity between 10^-9 and 10^-13 (Ω·cm^-1 at room temperature, dielectric permittivity from 1000 to 3000 and dielectric losses tgδ between 0.0002 and 0.1.

  2. Radioluminescence and photoluminescence characterization of Eu and Tb doped barium stannate phosphor ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Ayvacıklı, M. [Celal Bayar University, Faculty of Arts and Sciences, Department of Physics, 45010 Muradiye, Manisa (Turkey); Canimoglu, A., E-mail: canimoglu@hotmail.com [Niğde University, Faculty of Arts and Sciences, Department of Physics, Niğde (Turkey); Karabulut, Y. [Celal Bayar University, Faculty of Arts and Sciences, Department of Physics, 45010 Muradiye, Manisa (Turkey); Kotan, Z. [Ege University, Institute of Nuclear Sciences, 35100 Bornova, İzmir (Turkey); Herval, L.K.S.; Godoy, M.P.F. de; Galvão Gobato, Y. [Departmento de Física, UniversidadeFederal de São Carlos, 13565-905 São Carlos, SP (Brazil); Henini, M. [School of Physics and Astronomy, Nottingham Nanotechnology and Nanoscience Center, University of Nottingham, Nottingham NG7 2RD (United Kingdom); Can, N., E-mail: cannurdogan@yahoo.com [Celal Bayar University, Faculty of Arts and Sciences, Department of Physics, 45010 Muradiye, Manisa (Turkey)

    2014-03-25

    In this paper, we report on structural and optical properties of terbium and europium doped barium stannate phosphors (BaSnO{sub 3}) synthesised by conventional solid state reaction method. We have studied those materials by using X-ray diffraction (XRD), radioluminescence (RL) and photoluminescence (PL) techniques. XRD patterns confirm that the BaSnO{sub 3} sintered at 1400 °C exhibit orthorhombic structure and that the Tb{sup 3+} and Eu{sup 3+} substitution of Ba{sup 2+} does not change the structure of the BaSnO{sub 3} host. The optical emission spectrum is characterized a broad band centered at 897 nm (1.38 eV), with a high-energy tail approximately 750 nm from the host lattice. Other emission signals that are characteristic of the 3 + oxidation state of rare earth elements were generated by Eu and Tb doping. Luminescence measurements show that the series of emission states {sup 5}D{sub 4} → {sup 7}F{sub 6}, {sup 5}D{sub 4} → {sup 7}F{sub 5}, {sup 5}D{sub 4} → {sup 7}F{sub 4} and {sup 5}D{sub 4} → {sup 7}F{sub 3} corresponding to the typical 4f → 4f infra-configuration forbidden transitions of Tb{sup 3+} are appeared and the major emission peak at 540 nm is due to {sup 5}D{sub 4} → {sup 7}F{sub 5} transitions of Tb{sup 3+}. On the other hand, the emission spectrum of Eu doped BaSnO{sub 3} phosphor exhibits a series of emission bands, which are attributed to the {sup 5}D{sub 0} → {sup 7}F{sub j} (j = 0–4) transitions of Eu{sup 3+} ions. The dominant emission of Eu{sup 3+} corresponding to the electric dipole transition {sup 5}D{sub 0} → {sup 7}F{sub 2} is located at 613 nm. The sharp emission properties exhibited demonstrate that the BaSnO{sub 3} is a suitable host for rare-earth ion doped phosphor material. This work clearly confirms the unusual near infrared (NIR) PL discovered by H. Mizoguchi et al. in BaSnO{sub 3} at room temperature.

  3. Investigation of chemically modified barium titanate beads as surface-enhanced Raman scattering (SERS) active substrates for the detection of benzene thiol, 1,2-benzene dithiol, and rhodamine 6G.

    Science.gov (United States)

    Onuegbu, Jonathan; Fu, Anqie; Glembocki, Orest; Pokes, Shaka; Alexson, Dimitri; Hosten, Charles M

    2011-08-01

    SERS active surfaces were prepared by depositing silver films using Tollen's reaction on to barium titanate beads. The SERS activity of the resulting surfaces was probed using two thiols (benzene thiol and 1,2-benzene dithiol) and rhodamine 6G. The intensity of the SERS signal for the three analytes was investigated as a function of silver deposition time. The results indicate that the SERS intensity increased with increasing thickness of the silver film until a maximum signal intensity was achieved; additional silver deposition resulted in a decrease in the SERS intensity for all of the studied molecules. SEM measurement of the Ag coated barium titanate beads, as a function of silver deposition time, indicate that maximum SERS intensity corresponded with the formation of atomic scale islands of silver nanoparticles. Complete silver coverage of the beads resulted in a decreased SERS signal and the most intense SERS signals were observed at deposition times of 30 min for the thiols and 20 min for rhodamine 6G. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. Enhanced electrocaloric analysis and energy-storage performance of lanthanum modified lead titanate ceramics for potential solid-state refrigeration applications.

    Science.gov (United States)

    Zhang, Tian-Fu; Huang, Xian-Xiong; Tang, Xin-Gui; Jiang, Yan-Ping; Liu, Qiu-Xiang; Lu, Biao; Lu, Sheng-Guo

    2018-01-10

    The unique properties and great variety of relaxer ferroelectrics make them highly attractive in energy-storage and solid-state refrigeration technologies. In this work, lanthanum modified lead titanate ceramics are prepared and studied. The giant electrocaloric effect in lanthanum modified lead titanate ceramics is revealed for the first time. Large refrigeration efficiency (27.4) and high adiabatic temperature change (1.67 K) are achieved by indirect analysis. Direct measurements of electrocaloric effect show that reversible adiabatic temperature change is also about 1.67 K, which exceeds many electrocaloric effect values in current direct measured electrocaloric studies. Both theoretical calculated and direct measured electrocaloric effects are in good agreements in high temperatures. Temperature and electric field related energy storage properties are also analyzed, maximum energy-storage density and energy-storage efficiency are about 0.31 J/cm 3 and 91.2%, respectively.

  5. In vitro biocompatibility of poly(vinylidene fluoride-trifluoroethylene)/barium titanate composite using cultures of human periodontal ligament fibroblasts and keratinocytes.

    Science.gov (United States)

    Teixeira, L N; Crippa, G E; Trabuco, A C; Gimenes, R; Zaghete, M A; Palioto, D B; de Oliveira, P T; Rosa, A L; Beloti, M M

    2010-03-01

    The aim of this work was to evaluate the biocompatibility of poly(vinylidene fluoride-trifluoroethylene)/barium titanate (P(VDF-TrFE)/BT) membrane to be used in guided tissue regeneration (GTR). Fibroblasts from human periodontal ligament (hPDLF) and keratinocytes (SCC9) were plated on P(VDF-TrFE)/BT and polytetrafluorethylene membranes at a cell density of 20,000 cells well(-1) and cultured for up to 21 days. Cell morphology, adhesion and proliferation were evaluated in hPDLF and keratinocytes, while total protein content and alkaline phosphatase (ALP) activity were assayed only for hPDLF. Using a higher cell density, real-time polymerase chain reaction (PCR) was performed to assess the expression of typical genes of hPDLF, such as periostin, PDLs17, S100A4 and fibromodulin, and key phenotypic markers of keratinocytes, including involucrin, keratins 1, 10 and 14. Expression of the apoptotic genes bax, bcl-2 and survivin was evaluated for both cultures. hPDLF adhered and spread more on P(VDF-TrFE)/BT, whereas keratinocytes showed a round shape on both membranes. hPDLF adhesion was greater on P(VDF-TrFE)/BT at 2 and 4h, while keratinocyte adhesion was similar for both membranes. Whereas proliferation was significantly higher for hPDLF on P(VDF-TrFE)/BT at days 1 and 7, no signs of keratinocyte proliferation could be noticed for both membranes. Total protein content was greater on P(VDF-TrFE)/BT at 7, 14 and 21 days, and higher levels of ALP activity were observed on P(VDF-TrFE)/BT at 21 days. Real-time PCR revealed higher expression of phenotypic markers of hPDLF and keratinocytes as well as greater expression of apoptotic genes in cultures grown on P(VDF-TrFE)/BT. These results indicate that, by favoring hPDLF adhesion, spreading, proliferation and typical mRNA expression, P(VDF-TrFE)/BT membrane should be considered an advantageous alternative for GTR. Copyright 2009 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  6. Barite (Barium)

    Science.gov (United States)

    Johnson, Craig A.; Piatak, Nadine M.; Miller, M. Michael; Schulz, Klaus J.; DeYoung,, John H.; Seal, Robert R.; Bradley, Dwight C.

    2017-12-19

    Barite (barium sulfate, BaSO4) is vital to the oil and gas industry because it is a key constituent of the mud used to drill oil and gas wells. Elemental barium is an additive in optical glass, ceramic glazes, and other products. Within the United States, barite is produced mainly from mines in Nevada. Imports in 2011 (the latest year for which complete data were available) accounted for 78 percent of domestic consumption and came mostly from China.Barite deposits can be divided into the following four main types: bedded-sedimentary; bedded-volcanic; vein, cavity-fill, and metasomatic; and residual. Bedded-sedimentary deposits, which are found in sedimentary rocks with characteristics of high biological productivity during sediment accumulation, are the major sources of barite production and account for the majority of reserves, both in the United States and worldwide. In 2013, China and India were the leading producers of barite, and they have large identified resources that position them to be significant producers for the foreseeable future. The potential for undiscovered barite resources in the United States and in many other countries is considerable, however. The expected tight supply and rising costs in the coming years will likely be met by increased production from such countries as Kazakhstan, Mexico, Morocco, and Vietnam.Barium has limited mobility in the environment and exposed barium in the vicinity of barite mines poses minimal risk to human or ecosystem health. Of greater concern is the potential for acidic metal-bearing drainage at sites where the barite ores or waste rocks contain abundant sulfide minerals. This risk is lessened naturally if the host rocks at the site are acid-neutralizing, and the risk can also be lessened by engineering measures.

  7. Development of Advanced Materials for Electro-Ceramic Application Final Report CRADA No. TC-1331-96

    Energy Technology Data Exchange (ETDEWEB)

    Caplan, M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Olstad, R. [General Atomics, San Diego, CA (United States); McMillan, L. [Symetrix International, Inc., Colorado Springs, CO (United States); Tulupov, A. [Soliton-NTT, Moscow (Russia)

    2017-10-19

    The goal of this project was to further develop and characterize the electrochemical methods originating in Russia for producing ultra high purity organometallic compounds utilized as precursors in the production of high quality electro-ceramic materials. Symetrix planned to use electro-ceramic materials with high dielectric constant for microelectronic memory circuit applications. General Atomics planned to use the barium titanate type ceramics with low loss tangent for producing a high power ferroelectric tuner used to match radio frequency power into their Dill-D fusion machine. Phase I of the project was scheduled to have a large number of organometallic (alkoxides) chemical samples produced using various methods. These would be analyzed by LLNL, Soliton and Symetrix independently to determine the level of chemical impurities thus verifying each other's analysis. The goal was to demonstrate a cost-effective production method, which could be implemented in a large commercial facility to produce high purity organometallic compounds. In addition, various compositions of barium-strontium-titanate ceramics were to be produced and analyzed in order to develop an electroceramic capacitor material having the desired characteristics with respect to dielectric constant, loss tangent, temperature characteristics and non-linear behavior under applied voltage. Upon optimizing the barium titanate material, 50 capacitor preforms would be produced from this material demonstrating the ability to produce, in quantity, the pills ultimately required for the ferroelectric tuner (approx 2000-3000 ceramic pills).

  8. High energy storage density performance of Ba, Sr-modified lead lanthanum zirconate titanate stannate antiferroelectric ceramics

    International Nuclear Information System (INIS)

    Wang, Jinfei; Yang, Tongqing; Chen, Shengchen; Li, Gang

    2013-01-01

    Graphical abstract: Polarization hysteresis (P–E) loops of the (Pb 0.85 Ba 0.08 Sr 0.03 La 0.03 ) (Zr 0.74 Sn 0.22 Ti 0.04 ) samples: (a) measured at different applied electric-field and (b) measured at different temperatures is shown. It is typical antiferroelectrics whose remnant polarization is zero. As the remnant polarization of AFE is small and the ceramics are accompanied by the formation of the anti-parallel domain structure, energy stored in PLZST can be effectively released. Thus we calculated the energy density from the P–E loop and obtained the power density was up to 1.2 J/cm 3 at 55 °C, and at 45 °C the energy density was ∼1.24 J/cm 3 . As usual, for bulk ceramics, the switching between the AFE and FE states occurs at lower field. This value is much higher than that reported previously for the PLZT bulk ceramic (0.4 J/cm 3 ). - Highlights: • Ba 2+ , Sr 2+ co-doping caused the T c of PLZST moved to the lower temperature (T c ≈ 40 °C). • The ΔE was so smaller, E AF ≈ 90 kV/cm and E FA ≈ 85 kV/cm. • Ba, Sr co-doped PLZST ceramic exhibited slanted P–E loops with a large breakdown field (100 kV/cm). • A high energy density was up to 1.2 J/cm 3 . - Abstract: (Pb 0.85 Ba 0.08 Sr 0.03 La 0.03 )(Zr 0.74 Sn 0.22 Ti 0.04 ) (Ba, Sr co-doped PLZST) co-doping antiferroelectric (AFE) ceramics with orthorhombic perovskite structure were prepared by the traditional solid state reaction process. It was observed that the doping of barium and strontium caused the Curie temperature of PLZST move to the lower temperature (T c ≈ 40 °C). Ba, Sr co-doped PLZST AFE ceramics exhibited excellent electrical properties, the AFE to ferroelectric (FE) transition occurred at field E AF ≈ 90 kV/cm, and the transition from FE to AFE occurred at E FA ≈ 85 kV/cm. The maximum relative permittivity was about 4800, occurring at a field near the AFE to FE transition point, with a dielectric loss of 0.006. The samples exhibited small ΔE and slanted hysteresis

  9. Effect of rare earth substitution on properties of barium strontium titanate ceramic and its multiferroic composite with nickel cobalt ferrite

    International Nuclear Information System (INIS)

    Pahuja, Poonam; Kotnala, R.K.; Tandon, R.P.

    2014-01-01

    Highlights: • Rare earth ions Dy 3+ , Gd 3+ and Sm 3+ have been substituted in Ba 0.95 Sr 0.05 TiO 3 (BST). • Ni 0.8 Co 0.2 Fe 2 O 4 has been used as ferrimagnetic phase to obtain composites. • Substitution of these ions increases dielectric constant of BST and composites. • Magnetoelectric coefficient of composites increases on substitution of these ions. - Abstract: Effect of substitution of rare earth ions (Dy 3+ , Gd 3+ and Sm 3+ ) on various properties of Ba 0.95 Sr 0.05 TiO 3 (BST) i.e. the composition Ba 0.95−1.5x Sr 0.05 R x TiO 3 (where x = 0.00, 0.01, 0.02, 0.03 and R are rare earths Dy, Gd, Sm) and that of their multiferroic composite with Ni 0.8 Co 0.2 Fe 2 O 4 (NCF) has been studied. Shifting of peaks corresponding to different compositions in the X-ray diffraction pattern confirmed the substitution of rare earth ions at both Ba 2+ and Ti 4+ sites in BST. It is clear from scanning electron microscopy (SEM) images that rare earth substitution in BST increases its grain size in both pure and composite samples. Substitution of rare earth ions results in increase in value of dielectric constant of pure and composite samples. Sm substitution in BST significantly decreases its Curie temperature. Dy substituted pure and composite samples possess superior ferroelectric properties as confirmed by polarization vs electric field (P–E) loops. Composite samples containing Dy, Gd and Sm substituted BST as ferroelectric phase possess lower values of remanent and saturation magnetizations in comparison to composite sample containing pure BST as ferroelectric phase (BSTC). Rare earth substituted composite samples possess higher value of magnetoelectric coefficient as compared to that for BSTC

  10. Effect of Fe{sup 3+} substitution on structural, optical and magnetic properties of barium titanate ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Dang, N.V.; Dung, N.T. [Department of Physics and Technology, Thai Nguyen University of Science, Thai Nguyen City (Viet Nam); Phong, P.T., E-mail: ptphong.nh@khanhhoa.edu.vn [Department of Natural Sciences, Nha Trang Pedagogic College, 1- Nguyen Chanh Street, Nha Trang City, Khanh Hoa Province (Viet Nam); Department of Advanced Materials Chemistry, Dongguk University-Gyeongju, 707 Suckjang-dong, Gyeongju-Si, Gyeongbuk 780-714 (Korea, Republic of); Lee, In-Ja, E-mail: lij@dongguk.ac.kr [Department of Advanced Materials Chemistry, Dongguk University-Gyeongju, 707 Suckjang-dong, Gyeongju-Si, Gyeongbuk 780-714 (Korea, Republic of)

    2015-01-15

    Multiferroic BaTi{sub 1−x}Fe{sub x}O{sub 3} (0≤x≤0.12) materials were synthesized using the solid-state reaction method. The influence of Fe on the crystalline structure, the electronic structure, the optical properties and the magnetic property of BaTi{sub 1−x}Fe{sub x}O{sub 3} samples were investigated. The obtained X-ray diffraction patterns, Raman and UV–vis spectra showed that the structure of the material sensitively depends on Fe dopant content, x, and transforms gradually from the tetragonal (P4mm) phase to the hexagonal (P6{sub 3}/mmc) one with increasing x. The photoluminescence emission of BaTi{sub 1−x}Fe{sub x}O{sub 3} was attributed to structural disorder. All of the samples exhibit both ferroelectricity and ferromagnetism at room temperature. The relaxor like behavior was observed for all samples. The magnetization at a magnetic field of 1 T abnormally depends on x, increases up to 0.1 then decreases monotonously afterward. This anomaly in the magnetic behavior can be explained in terms of the changes in the oxidation state of ions such as the Fe{sup 3+}-to-Fe{sup 4+} and/or Ti{sup 4+}-to-Ti{sup 3+} change induced by oxygen vacancies. The substitution of Fe into Ti sites also causes the changes in the conductivity of the material and impurity (acceptor) levels in the band gap, which can be evident from the absorption spectra, and time-dependent leakage current measured at room temperature.

  11. Structural and electrical properties of Barium Titanate (BaTiO3) and Neodymium doped BaTiO3 (Ba0.995Nd0.005TiO3)

    Science.gov (United States)

    Sulong, Tuan Amirah Tuan; Aina Maulat Osman, Rozana; Sobri Idris, Mohd; Azhar Zahid Jamal, Zul

    2017-11-01

    Barium titanate (BaTiO3) and Neodymium (Nd) doped BaTiO3 with composition Ba0.995Nd0.005TiO3 were prepared using conventional solid state reaction method to study the dielectric properties of materials. Pure phase samples were found at final heating temperature of 1400°C for overnight. X-ray diffraction analysis reveals the changes in the lattice parameter and unit cell volume of the pure perovskite tetragonal structure with space group (P4mm). Electrical analysis is carried out to investigate the dielectric properties, conductivity behaviour and dielectric loss of BaTiO3 and Ba0.995Nd0.005TiO3. Ba0.995Nd0.005TiO3 have a broaden dielectric peaks with high permittivity of 8000 and reasonably low loss tan δ which is about 0.004 (1 kHz).

  12. Preparation and Characterization of Nano-structured Ceramic Powders Synthesized by Emulsion Combustion Method

    International Nuclear Information System (INIS)

    Takatori, Kazumasa; Tani, Takao; Watanabe, Naoyoshi; Kamiya, Nobuo

    1999-01-01

    The emulsion combustion method (ECM), a novel powder production process, was originally developed to synthesize nano-structured metal-oxide powders. Metal ions in the aqueous droplets were rapidly oxidized by the combustion of the surrounding flammable liquid. The ECM achieved a small reaction field and a short reaction period to fabricate the submicron-sized hollow ceramic particles with extremely thin wall and chemically homogeneous ceramic powder. Alumina, zirconia, zirconia-ceria solid solutions and barium titanate were synthesized by the ECM process. Alumina and zirconia powders were characterized to be metastable in crystalline phase and hollow structure. The wall thickness of alumina was about 10 nm. The zirconia-ceria powders were found to be single-phase solid solutions for a wide composition range. These powders were characterized as equiaxed-shape, submicron-sized chemically homogeneous materials. The powder formation mechanism was investigated through the synthesis of barium titanate powder with different metal sources

  13. Dielectric behaviour of (Ba0.77Ca0.23(Ti0.98Dy0.02O3 ceramics

    Directory of Open Access Journals (Sweden)

    Abdul Moquim

    2015-06-01

    Full Text Available In this study, BaTiO3 is modified with Ca2+ and in addition doped with Dy3+ at the B site lattice. The main idea is to search for new lead-free ferroelectric material and improve their properties. For this purpose, the barium calcium titanate (BCT as a host and the rare earth element Dy3+ as an activator were used to fabricate a multifunctional material. The obtained ceramics was found to be homogeneous, dense and a single phase material with no evidence of secondary phases. The dielectric study showed that TC increases with the addition of dopants and the obtained ceramics behaves like a relaxor ferroelectric. Some important structural parameters and dielectric properties of dysprosium modified barium (calcium titanate ceramics are presented.

  14. Crystalline phase, microstructure, and aqueous stability of zirconolite-barium borosilicate glass-ceramics for immobilization of simulated sulfate bearing high-level liquid waste

    Science.gov (United States)

    Wu, Lang; Xiao, Jizong; Wang, Xin; Teng, Yuancheng; Li, Yuxiang; Liao, Qilong

    2018-01-01

    The crystalline phase, microstructure, and aqueous stability of zirconolite-barium borosilicate glass-ceramics with different content (0-30 wt %) of simulated sulfate bearing high-level liquid waste (HLLW) were evaluated. The sulfate phase segregation in vitrification process was also investigated. The results show that the glass-ceramics with 0-20 wt% of HLLW possess mainly zirconolite phase along with a small amount baddeleyite phase. The amount of perovskite crystals increases while the amount of zirconolite crystals decreases when the HLLW content increases from 20 to 30 wt%. For the samples with 20-30 wt% HLLW, yellow phase was observed during the vitrification process and it disappeared after melting at 1150 °C for 2 h. The viscosity of the sample with 16 wt% HLLW (HLLW-16) is about 27 dPa·s at 1150 °C. The addition of a certain amount (≤20 wt %) of HLLW has no significant change on the aqueous stability of glass-ceramic waste forms. After 28 days, the 90 °C PCT-type normalized leaching rates of Na, B, Si, and La of the sample HLLW-16 are 7.23 × 10-3, 1.57 × 10-3, 8.06 × 10-4, and 1.23 × 10-4 g·m-2·d-1, respectively.

  15. Luminescence studies of perovskite structured titanates: A review

    Science.gov (United States)

    Nag Bhargavi, G.; Khare, Ayush

    2015-06-01

    Apart from widely known dielectric and ferroelectric properties, the perovskite type materials also constitute a class of materials, which are recently investigated for their optical properties. These materials are being used for fabrication of various microelectronics and optoelectronic devices. Photoluminescence (PL), mechanoluminescence (ML) and thermoluminescence (TL) are such phenomena offering numerous applications in different fields like electro-optics, flat panel displays, LED technology, sensors, dynamic visualization etc. This paper briefly reviews the status and new progress in luminescence studies of ferroelectric materials like barium titanate (BT), barium zirconate titanate (BZT), calcium titanate (CT), calcium zirconate titanate (CZT), lead titanate (PT), lead zirconate titanate (PZT), etc., prepared through various methods.

  16. Pressure slip casting and cold isostatic pressing of aluminum titanate green ceramics: A comparative evaluation

    Directory of Open Access Journals (Sweden)

    Ramanathan Papitha

    2013-12-01

    Full Text Available Aluminum titanate (Al2TiO5 green bodies were prepared from mixture of titania and alumina powders with different particle sizes by conventional slip casting (CSC, pressure slip casting (PSC and cold isostatic pressing (CIP. Precursor-powder mixtures were evaluated with respect to the powder properties, flow behaviours and shaping parameters. Green densities were measured and correlated with the fractographs. A substantial increase in green densities up to 60 %TD (theoretical density of 4.02 g/cm3, calculated based on rule of mixtures is observed with the application of 2–3 MPa pressure with PSC. While particle size distribution and solid loading are the most influential parameters in the case of CSC, with PSC pressure also plays a key role in achieving the higher green densities. Being a dry process, high pressure of > 100 MPa for CIP is essential to achieve densities in the range of 60–65 %TD. Slip pressurization under PSC conditions facilitate the rearrangement of particles through rolling, twisting and interlocking unlike CIP processing where pressure is needed to overcome the inter-particle friction.

  17. Structural and ferroelectrical properties of bismuth titanate ceramic powders prepared by mechanically assisted synthesis

    Directory of Open Access Journals (Sweden)

    Lazarević Z.Ž.

    2007-01-01

    Full Text Available Nanosized bismuth titanate, Bi4Ti3O12, was prepared via a high-energy ball milling process through mechanically assisted synthesis directly from the oxide mixture of Bi2O3 and TiO2. The Bi4Ti3O12 phase started to form after 1 h of milling. With increasing the milling time from 3 to 12 h, the particle size of formed Bi4Ti3O12 did not reduce significantly. The grain size was less than 16 nm and showed a strong tendency to agglomeration. The nucleation and phase formation of Bi4Ti3O12, crystal structure, microstructure, powder grain size and specific surface area were followed by XRD, Rietveld refinement analysis, SEM and the BET specific surface area measurements. Raman spectroscopy was used to explain the structural properties of Bi4Ti3O12 powder, prepared by mechanically assisted synthesis. Reduction in grain size with the increase of milling time was also noted (change in the position and relative intensity, which indicated changes in the structure, caused by nanodimension grains. The sample milled for 12 h and subsequently sintered at 1000°C for 24 h exhibited a hysteresis loop, confirming that the synthesized material possesses ferroelectric properties. .

  18. Thermal properties and dynamic mechanical properties of ceramic fillers filled epoxy composites

    Science.gov (United States)

    Saidina, D. S.; Mariatti, M.; Juliewatty, J.

    2015-07-01

    This present study is aimed to enhance the thermal and dynamic mechanical properties of ceramic fillers such as Calcium Copper Titanate, CaCu3Ti4O12 (CCTO) and Barium Titanate (BaTiO3) filled epoxy thin film composites. As can be seen from the results, 20 vol% BaTiO3/epoxy thin film composite showed the lowest coefficient of thermal expansion (CTE) value, the highest decomposition temperature (T5 and Tonset) and weight of residue among the composites as the filler has low CTE value, distributed homogeneously throughout the composite and less voids can be seen between epoxy resin and BaTiO3 filler.

  19. Dielectric relaxation and conductivity behavior in modified lead titanate ferroelectric ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Pelaiz-Barranco, A; Gonzalez Abreu, Y [Facultad de Fisica-Instituto de Ciencia y TecnologIa de Materiales, Universidad de La Habana. San Lazaro y L, Vedado. La Habana 10400 (Cuba); Lopez-Noda, R [Departamento de Fisica Aplicada, Instituto de Cibernetica, Matematica y Fisica, ICIMAF, CITMA 15 no. 551, Vedado. La Habana 10400 (Cuba)], E-mail: pelaiz@fisica.uh.cu

    2008-12-17

    The frequency and temperature dielectric response and the electrical conductivity behavior around the ferroelectric-paraelectric phase transition temperature are studied in the ferroelectric ceramic system (Pb{sub 0.88}Sm{sub 0.08})(Ti{sub 1-x}Mn{sub x})O{sub 3}, with x = 0,1,3 at.%. The contribution of the conductive processes to the dielectric relaxation for the studied frequency range is discussed considering the oxygen vacancies as the most mobile ionic defects in perovskites, whose concentration seems to increase with the manganese content. The relaxation processes below the transition temperature are associated with the decay of the polarization in the oxygen-defect-related dipoles due to their hopping conduction. Above the ferroelectric-paraelectric phase transition temperature, the electrical conduction is governed by the thermal excitation of carriers from oxygen vacancies; the relaxation processes are associated with ionic dipoles distorted by the oxygen vacancies.

  20. Synthesis and characterization of barium titanate, doped with europium and neodymium; Sintese e caracterizacao de titanato de bario, dopados com europio e neodimio

    Energy Technology Data Exchange (ETDEWEB)

    Sousa, Fernanda L.C.; Cabral, Alciney M.; Silva, Ademir O.; Oliveiro, Joao B.L., E-mail: nanda_louise@yahoo.com.br [Universidade Federal do Rio Grande do Norte (UFRN), Natal (Brazil). Instituto de Quimica

    2013-07-01

    This work aims at synthesize and characterize mixed oxides in Barium Titanium matrix in doping with Neodymium and Europium analyzing thermogravimetric curves, characteristic bands at infrared region of the polymer complex, which are intermediates to mixed oxides, and identify the formation thereof, and the crystallinity using XRD analysis.

  1. Barium carbonate as an agent to improve the electrical properties of neodymium-barium-copper system at high temperature

    International Nuclear Information System (INIS)

    Fernandes, J.P.; Duarte, G.W.; Caldart, C.; Kniess, C.T.; Montedo, O.R.K.; Rocha, M.R.; Riella, H.G.; Fiori, M.A.

    2015-01-01

    Specialized ceramics are manufactured under special conditions and contain specific elements. They possess unique electrical and thermal properties and are frequently used by the electronics industry. Ceramics containing neodymium-barium-copper (NBC) exhibit high conductivities at low temperatures. NBC-based ceramics are typically combined with oxides, i.e., NBCo produced from neodymium oxide, barium oxide and copper oxide. This study presents NBC ceramics that were produced with barium carbonate, copper oxide and neodymium oxide (NBCa) as starting materials. These ceramics have good electrical conductivities at room temperature. Their conductivities are temperature dependent and related to the starting amount of barium carbonate (w%). - Highlights: • The new crystalline structure were obtained due presence of the barium carbonate. • The NBCa compound has excellent electrical conductivity at room temperature. • The grain crystalline morphology was modified by presence of the barium carbonate. • New Phases α and β were introduced by carbonate barium in the NBC compound

  2. Sound velocity variation as function of polarization state in Lead Zirconate Titanate (PZT) Ceramics

    International Nuclear Information System (INIS)

    Essolaani, W; Farhat, N

    2012-01-01

    There are several ultrasonic techniques to measure the sound velocity, for example, the pulse-echo method. In such method, the size of transducer used to measure the sound velocity must be in the same order of the sample size. If not, the incompatibility of sizes becomes an error source of the sound velocity measurement. In this work, the Laser Induced Pressure Pulse (LIPP) method is used as ultrasonic method. This method has been very useful for studying the spatial distribution of charges and polarization in dielectrics. We take advantage of the fact that the method allows the sound velocity measurement, to study its variation as function of polarization state in (PZT) ceramics. In a sample with a known thickness e, the sound velocity ν is deduced from the measurement of the transit time T. The sound velocity depends on the elastic constants which in turn they depend on poling conditions. Thus, the variation of the sound velocity is related to the direction and the amplitude of the polarization.

  3. Kiln furniture for sintering electronic ceramics. Ceramics shosei jigu (doguzai) ni tsuite

    Energy Technology Data Exchange (ETDEWEB)

    Fushimi, T.; Shibata, S. (Toshiba Ceramics Co. Ltd., Tokyo (Japan))

    1994-05-01

    This paper summarizes refractory jigs used in manufacturing electronic ceramics. Jigs used vary with types of sintering kilns. Sintering kilns include pusher kiln, trolley kiln, roller hearth kiln, batch kiln, and HIP. The paper describes jigs by electronic ceramics materials. Ferrites are sintered in a pusher kiln, where such jigs are used as a base plate, stanchions, shelf plates, saggers, and a setter. Jigs that contact with ferrite are demanded not to give such adverse effects to materials to be sintered as crystal growth. Soft ferrites of Mn/Zn and Ni/Zn systems use jigs of pure alumina and zirconia nature, while large-size soft ferrites use setters with rough surface. A barium titanate system as a ceramic dielectric uses a zirconia jig, and materials containing Pb and Bi such as for varistors use magnesia and spinel jigs. Alumina porcelain substrates use mullite or high-alumina pusher kilns and alumina jigs. 4 refs., 1 fig., 4 tabs.

  4. Structural and electrical properties of Barium Titanate (BaTiO3 and Neodymium doped BaTiO3 (Ba0.995Nd0.005TiO3

    Directory of Open Access Journals (Sweden)

    Tuan Sulong Tuan Amirah

    2017-01-01

    Full Text Available Barium titanate (BaTiO3 and Neodymium (Nd doped BaTiO3 with composition Ba0.995Nd0.005TiO3 were prepared using conventional solid state reaction method to study the dielectric properties of materials. Pure phase samples were found at final heating temperature of 1400°C for overnight. X-ray diffraction analysis reveals the changes in the lattice parameter and unit cell volume of the pure perovskite tetragonal structure with space group (P4mm. Electrical analysis is carried out to investigate the dielectric properties, conductivity behaviour and dielectric loss of BaTiO3 and Ba0.995Nd0.005TiO3. Ba0.995Nd0.005TiO3 have a broaden dielectric peaks with high permittivity of 8000 and reasonably low loss tan δ which is about 0.004 (1 kHz.

  5. Neutron studies of rare earth-modified zirconia catalysts and yttrium-doped barium cerate proton-conducting ceramic membranes

    International Nuclear Information System (INIS)

    Loong, Chun-Keung; Ozawa, Masakuni; Takeuchi, Ken; Ui, Koichi; Koura, Nobuyuki

    2006-01-01

    The techniques of neutron scattering were applied to characterize two rare-earth containing ceramic systems: oxide-based automotive three-way catalysts and proton-conducting cerate-perovskite-based hydrogen-separation membranes. High-surface-area zirconias are widely used as catalytic support of noble metals in automotive three-way catalytic converters for exhaust gas treatment. Doping these oxides with rare-earth elements provides an important means in tailoring their properties for better catalytic performance. We have carried out in situ small-to-wide angle neutron diffraction at high temperatures and under controlled atmospheres to study the sintering behavior and the Ce 3+ ↔ Ce 4+ redox process in Ce x Zr 1-x O 2-δ solid solutions dispersed with Pt nanoparticles. We found substantial effects due to RE-doping on the nature of aggregation of nanoparticles, defect formation, crystal phase transformation, and metal-support interaction. Y-doped BaCeO 3 exhibits significant proton conductivity under a hydrogen-containing atmosphere at high temperatures. This system has high potential for applications as fuel-cell electrolytes, gas sensors, and ceramic membranes for hydrogen separation. We have performed in situ neutron diffraction to obtain information regarding the crystal phase evolution that permits dissolution of hydrogen and proton migration through the lattice. Neutron quasielastic- and inelastic-scattering experiments were carried out to investigate the proton dynamics from local vibrations to long-range diffusion

  6. Composite reinforced alumina ceramics with titan and lantana for use in coating storage tanks and transport of crude oil

    International Nuclear Information System (INIS)

    Mendes, C.E.; Rego, S.A.B.C.; Oliveira, J.C.S.; Ferreira, R.A. Sanguinetti; Yadava, Y.P.

    2011-01-01

    The objective of this work is to use ceramics to improve the performance of the tanks that store and transport crude oil and which use metallic materials for their manufacture. These tanks in contact with crude oil undergo a process of degradation on their surfaces, since crude oil is a highly corrosive substance. And in turn ceramic materials have good stability in hostile environments. However, they are inherently fragile for display little plastic deformation. Therefore, the choice of a ceramic composite alumina-titania-lantana has high mechanical strength and high toughness which were produced by thermo-mechanical processing. These composites were sintered at 1350 ° C for 36 hours, and it was held Vickers hardness testing and microstructural characterization to assess their surfaces before and after the attack by crude to use such material as ceramic coating. These results will be presented at the congress. (author)

  7. Electrical Properties Of Indium And Yttrium-Doped Barium Cerate-Based Compounds For Use As Ceramic Fuel Cell Electrolytes

    Directory of Open Access Journals (Sweden)

    Gawel R.

    2015-06-01

    Full Text Available The aim of this work is to compare the electrical properties of BaCe0.85Y0.15O3−δ (BCY15, BaCe0.70In0.30O3−δ (BCI30 and a composite material consisting of 30%vol. BCY15 and 70%vol. Ce0.85Y0.15O2−δ (YDC15. BCY15 and YDC15 were synthesized by co-precipitation, whereas BCI30 was obtained using the solid-state reaction method. Pellets were initially formed from powders at 5 MPa, after which they were isostatically pressed at 250 MPa and sintered at 1500°C. Electrochemical impedance spectroscopy (EIS was used to determine the electrical properties of the samples in both air (pO2 = 0.021 MPa and Ar-5%H2 atmospheres. In the temperature range 200-400°C in air atmosphere the highest conductivity values were determined for BCY15 (5,22·10−5 − 2.74·10−3 S/cm. On the other hand, the electrical conductivity values obtained for Y70B30 in both atmospheres between 200 and 550°C are in the order of magnitude of 10−7 − 10−3 S/cm. Consequently, it can be concluded that the compounds exhibit significant H+ and O2− electrical conductivity at temperatures above 500°C, which indicates the possibility for their potential use as ceramic fuel cell electrolytes.

  8. Specific Features of the Structure and the Dielectric Properties of Sodium-Bismuth Titanate-Based Ceramics

    Science.gov (United States)

    Politova, E. D.; Golubko, N. V.; Kaleva, G. M.; Mosunov, A. V.; Sadovskaya, N. V.; Bel'kova, D. A.; Stefanovich, S. Yu.

    2018-03-01

    The phase formation, specific features, and the dielectric properties of the ceramics of compositions from the region of morphotropic interface in the (Na0.5Bi0.5)TiO3-BaTiO3 system modified by Bi(Mg0.5Ti0.5)O3 and also low-melting additions KCl, NaCl-LiF, CuO, and MnO2 that favor the control of the stoichiometry and the properties of the ceramics have been studied. The ceramics are characterized by ferroelectric phase transitions that are observed as jumps at temperatures near 400 K and maxima at T m 600 K in the temperature dependences of the dielectric permittivity. The phase transitions at 400 K demonstrate the relaxor behavior indicating the existence of polar domains in the nonpolar matrix. An increase in the content of Bi(Mg0.5Ti0.5)O3 favor a decrease in the electrical conductivity and dielectric losses of the samples, and the relative dielectric permittivity at room temperature ɛrt is retained quite high, achieving the highest values ɛrt = 1080-1350 in the ceramics modified with KCl.

  9. Synthesis, microstructural and electrical characterization of ceramic compounds based on strontium and calcium titanates and iron-oxide

    International Nuclear Information System (INIS)

    Carmo, Joao Roberto do

    2011-01-01

    Ca x Sr 1-x Ti 1-y Fe y O 3- δ, X = 0, 0.5 and 1.0, y = 0 and 0.35, ceramic compounds were synthesized by reactive solid state synthesis of CaCO 3 , SrCO 3 , TiO 2 and Fe 2 O 3 , and by the polymeric precursor technique. The ceramic powders were evaluated by thermogravimetry and differential thermal analysis, X-ray diffraction and scanning electron microscopy. Sintered ceramic pellets were analyzed by X-ray diffraction, scanning electron microscopy, scanning probe microscopy and impedance spectroscopy. The electromotive force resulting from the exposing the pellets to partial pressure de oxygen in the ∼50 ppm in the 600-1100 ℃ range was monitored using an experimental setup consisting of an oxygen electrochemical pump with yttria-stabilized zirconia transducer and sensor. Rietveld analysis of the X-ray data allowed for determining the crystalline structures: cubic perovskite (y = 0) and orthorhombic perovskite (y ≠ 0). The electrical conductivity was determined by the two probe impedance spectroscopy measurements in the 5 Hz-13 MHz frequency range from room temperature to approximately 200 ℃. The deconvolution of the [-Z ( ω) x Z'(ω)] impedance diagrams in the 300 < T(K) < 500 range shows two semicircles due to intragranular (bulk) and intergranular (grain boundary) contributions to the electrical resistivity. Sintered pellets using powders prepared by the ceramic route present higher inter- and intragranular resistivity values than pellets prepared with chemically synthesized powders. The emf signal under exposure oxygen shows that these compounds may be used in oxygen sensing devices in the 600 - 1100 ℃ range. Scanning probe microscopy topographic analysis of the polished and thermally etched surfaces of the pellets gave details of grain morphology, showing that pellets prepared with powders synthesized by the chemical route are less porous than the ones obtained by the ceramic route. These results are in agreement with the impedance spectroscopy

  10. High energy storage density over a broad temperature range in sodium bismuth titanate-based lead-free ceramics.

    Science.gov (United States)

    Yang, Haibo; Yan, Fei; Lin, Ying; Wang, Tong; Wang, Fen

    2017-08-18

    A series of (1-x)Bi 0.48 La 0.02 Na 0.48 Li 0.02 Ti 0.98 Zr 0.02 O 3 -xNa 0.73 Bi 0.09 NbO 3 ((1-x)LLBNTZ-xNBN) (x = 0-0.14) ceramics were designed and fabricated using the conventional solid-state sintering method. The phase structure, microstructure, dielectric, ferroelectric and energy storage properties of the ceramics were systematically investigated. The results indicate that the addition of Na 0.73 Bi 0.09 NbO 3 (NBN) could decrease the remnant polarization (P r ) and improve the temperature stability of dielectric constant obviously. The working temperature range satisfying TCC 150  °C  ≤±15% of this work spans over 400 °C with the compositions of x ≥ 0.06. The maximum energy storage density can be obtained for the sample with x = 0.10 at room temperature, with an energy storage density of 2.04 J/cm 3 at 178 kV/cm. In addition, the (1-x)LLBNTZ-xNBN ceramics exhibit excellent energy storage properties over a wide temperature range from room temperature to 90 °C. The values of energy storage density and energy storage efficiency is 0.91 J/cm 3 and 79.51%, respectively, for the 0.90LLBNTZ-0.10NBN ceramic at the condition of 100 kV/cm and 90 °C. It can be concluded that the (1-x)LLBNTZ-xNBN ceramics are promising lead-free candidate materials for energy storage devices over a broad temperature range.

  11. One-Step Synthesis of Hollow Titanate (Sr/Ba Ceramic Fibers for Detoxification of Nerve Agents

    Directory of Open Access Journals (Sweden)

    Satya R. Agarwal

    2012-01-01

    Full Text Available Poly(vinyl pyrrolidone(PVP/(strontium/barium acetate/titanium isopropoxide composite fibers were prepared by electrospinning technique via sol-gel process. Diameters of fibers prepared by calcinations of PVP composite fibers were 80–140 nm (solid and 1.2-2.2 μm (hollow fibers prepared by core-shell method. These fibers were characterized using scanning electron microscope (SEM, X-ray diffraction (XRD, and transmission electron microscope (TEM analytical techniques. XRD results showed better crystalline nature of the materials when calcined at higher temperatures. SEM and TEM results clearly showed the formation of hollow submicrometer tubes. The surface area of the samples determined by BET analysis indicated that hollow fibers have ~20% higher surface area than solid fibers. The UV studies indicate better detoxification properties of the hollow fibers compared to solid fibers.

  12. The influences of mole composition of strontium (x) on properties of barium strontium titanate (Ba{sub 1−x}Sr{sub x}TiO{sub 3}) prepared by solid state reaction method

    Energy Technology Data Exchange (ETDEWEB)

    Sandi, Dianisa Khoirum; Supriyanto, Agus; Iriani, Yofentina, E-mail: yopen-2005@yahoo.com [Physics Department, Faculty of Mathematics and Natural Science, Sebelas Maret University (Indonesia); Jamaluddin, Anif [Physics Department, Faculty of Teacher Training and Education, Sebelas Maret University (Indonesia)

    2016-02-08

    Barium Strontium Titanate (Ba{sub 1-x}Sr{sub x}TiO{sub 3}) or BST was prepared by solid state reaction method. Raw materials are BaCO{sub 3}, SrCO{sub 3}, and TiO{sub 2}. Those materials are mixed for 8 h, pressed, and sintered at temperature 1200°C for 2 h. Mole composition of Sr (x) was varied to study its influences on structural, morphological, and electrical properties of BST. Variation of (x) are x = 0; x = 0.1; and x = 0.5. XRD patterns showed a single phase of BST, which mean that mixture of raw materials was homogenous. Crystal structure was influenced by x. BaTiO{sub 3} and Ba{sub 0.9}Ti{sub 0.1}TiO{sub 3} have tetragonal crystal structure, while Ba{sub 0.5}Sr{sub 0.5}TiO{sub 3} is cubic. The diffraction angle shifted to right side (angle larger) as the increases of x. Crystalline size of BaTiO{sub 3}, Ba{sub 0.9}Sr{sub 0.1}TiO{sub 3}, and Ba{sub 0.5}Sr{sub 0.5}TiO{sub 3} are 38.13 nm; 38.62 nm; and 37.13 nm, respectively. SEM images showed that there are still of pores which were influenced by x. Ba{sub 0.9}Sr{sub 0.1}TiO{sub 3} has densest surface (pores are few and small in size). Sawyer Tower circuit showed that BaTiO{sub 3} and Ba{sub 0.9}Sr{sub 0.1} TiO{sub 3} is ferroelectric, while Ba{sub 0.5}Sr{sub 0.5}TiO{sub 3} is paraelectric. The dielectric constants of BaTiO{sub 3}, Ba{sub 0.9}Sr{sub 0.1}TiO{sub 3} and Ba{sub 0.5}Sr{sub 0.5}TiO{sub 3} at frequency of 1 KHz are 156; 196; and 83, respectively. Ba{sub 0.9}Sr{sub 0.1}TiO{sub 3} has relatively highest dielectric constant. It is considered that Ba{sub 0.9}Sr{sub 0.1}TiO{sub 3} has densest surface.

  13. Influence of nanogold additives on phase formation, microstructure and dielectric properties of perovskite BaTiO3 ceramics

    Science.gov (United States)

    Nonkumwong, Jeeranan; Ananta, Supon; Srisombat, Laongnuan

    2015-06-01

    The formation of perovskite phase, microstructure and dielectric properties of nanogold-modified barium titanate (BaTiO3) ceramics was examined as a function of gold nanoparticle contents by employing a combination of X-ray diffraction, scanning electron microscopy, energy-dispersive X-ray, Archimedes principle and dielectric measurement techniques. These ceramics were fabricated from a simple mixed-oxide method. The amount of gold nanoparticles was found to be one of the key factors controlling densification, grain growth and dielectric response in BaTiO3 ceramics. It was found that under suitable amount of nanogold addition (4 mol%), highly dense perovskite BaTiO3 ceramics with homogeneous microstructures of refined grains (~0.5-3.1 μm) and excellence dielectric properties can be produced.

  14. Studies of phase transition and impedance behavior of Ba(Zr, TiO3 ceramics

    Directory of Open Access Journals (Sweden)

    P. Sateesh

    2015-03-01

    Full Text Available Ceramic samples of Barium Zirconium Titanate (BaZrxTi1-xO3 (BZT were synthesized by conventional solid-state reaction method with different concentrations of x(= 0.05 (BZT1, 0.10 (BZT2, 0.15 (BZT3, 0.20 (BZT4, 0.25 (BZT5, 0.30 (BZT6. Phase confirmation of the samples was done by X-ray diffraction (XRD technique. All the compositions are in cubic structure. XRD pattern was recorded for samples sintered at different sintering temperatures. Lattice parameters increased with addition of Zr+4. Doping with Zr+4 into Barium titanate resulted in interesting changes of electrical properties (dielectric, impedance and ferroelectiricity. The strong influence of Zr doping on the phase transition characteristics of the BZT ceramics was studied from the dielectric response of the samples. Diffusivity of phase transition of the BZT ceramic samples increase with Zr+4 concentration, indicating changes from normal to diffuse transition to relaxor phase transition behavior. Impedance spectroscopy reveals the presence of temperature-dependent grain, grain boundary effects. Polarization–Electricfield (PE loop measurements are also done on the samples.

  15. Study of the effect of ionizing radiation on composites of wood flour in polypropylene matrix using barium titanate as coupling agent; Estudo do efeito da radiacao ionizante em compositos de polipropileno/po de madeira usando titanato de bario como agente de acoplagem

    Energy Technology Data Exchange (ETDEWEB)

    Ulloa, Maritza Eliza Perez

    2007-07-01

    The purpose of this work was to study the effects of ionizing radiation on the properties of wood flour composites in polypropylene matrix, using barium titanate as a coupling agent and the reactive monomer tripropylene glycol diacrylate (TPDGA). An electron accelerator was used in the study as the radiation source. The physical properties of virgin compounds and of the polypropylene/wood flour composite, with and without barium titanate and TPDGA addition, were investigated. The composites were developed from the load treatment, which first consisted of incorporating additives to the wood flour reinforcement and after that, the fusion process of polypropylene and composite mixing in a 'calander'. Subsequently, the samples to be irradiated and submitted to thermal and mechanical assays were molded by injection. The mechanical properties (hardness, impact resistance and molten fluidity index (MFI)), as well as the thermal properties (HDT and Vicat) of the composites were determined. The investigated compositions consisted of polypropylene/wood flour, polypropylene/wood flour with barium titanate and polypropylene/wood flour with barium titanate and TPDGA, using different wood flour concentrations of 10 por cent, 15 por cent and 20 por cent in the polypropylene matrix. The samples were separated in groups and irradiated to doses of 10 kGy and 20 kGy in the samples of the essays of traction. Besides these doses, it was also used doses of 15 kGy and 25 kGy to be observed the behavior of the sample of the sample due to the increase of the radiation. These doses were chosen to show that with low doses the composite material presents reticulation, what represents a viable commercial option. There was a reduction of the flow rate for the composites containing wood flour, being this reduction more effective in the presence of TiBa. The superficial treatment using TPDGA monomer influence in the composite samples because it acted as a plastic additive becoming the

  16. Barium Sulfate

    Science.gov (United States)

    ... uses a computer to put together x-ray images to create cross-sectional or three dimensional pictures of the inside of the body). Barium sulfate is in a class of medications called radiopaque contrast media. It works by coating the esophagus, stomach, or ...

  17. Description of tritium release from lithium titanate at constant temperature

    Energy Technology Data Exchange (ETDEWEB)

    Pena, L.; Lagos, S.; Jimenez, J.; Saravia, E. [Comision Chilena de Energia Nuclear, Santiago (Chile)

    1998-03-01

    Lithium Titanate Ceramics have been prepared by the solid-state route, pebbles and pellets were fabricated by extrusion and their microstructure was characterized in our laboratories. The ceramic material was irradiated in the La Reina Reactor, RECH-1. A study of post-irradiation annealing test, was performed measuring Tritium release from the Lithium Titanate at constant temperature. The Bertone`s method modified by R. Verrall is used to determine the parameters of Tritium release from Lithium Titanate. (author)

  18. Reduction of anti-ferroelectric temperature region in NBT-BT ceramics using 100 MeV O{sup 7+} ion irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Shanmuga Sundari, S. [Crystal Growth Centre, Anna University, Chennai 600025 (India); Murugan, Ramaswamy [Department of Physics, Pondicherry University, Pondicherry 605014 (India); Asokan, K. [Inter University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi 110067 (India); Dhanasekaran, R., E-mail: rdcgc@yahoo.com [Crystal Growth Centre, Anna University, Chennai 600025 (India)

    2014-01-01

    NBT-BT (sodium bismuth titanate-barium titanate) lead-free ceramics were prepared via the conventional solid-state reaction method in the Morphotropic Phase Boundary (MPB) composition. The prepared ceramics were irradiated with 100 MeV O{sup 7+} ions using four different fluences of 5 × 10{sup 11}, 1 × 10{sup 12}, 5 × 10{sup 12} and 1 × 10{sup 13} ions/cm{sup 2}. The dielectric constants of the pristine and irradiated samples were determined from 300 to 623 K for a broad range of frequencies from 20 Hz to 2 MHz. Irradiation with oxygen ions decreased the anti-ferroelectric temperature region present in the samples. The structural stability of the samples against the irradiation was investigated via XRD and Raman spectroscopy before and after the irradiation.

  19. Electrical characterization of zirconium substituted barium titanate ...

    Indian Academy of Sciences (India)

    This paper reports complex impedance analysis of polycrystalline complex perovskite structured BaZr0.025Ti0.975O3 prepared by solid state reaction method. XRD analysis reveals the formation of single phase perovskite structure. SEM has been used to investigate grain morphology of the material. Impedance plots have ...

  20. Oxygen diffusion in single crystal barium titanate.

    Science.gov (United States)

    Kessel, Markus; De Souza, Roger A; Martin, Manfred

    2015-05-21

    Oxygen diffusion in cubic, nominally undoped, (100) oriented BaTiO3 single crystals has been studied by means of (18)O2/(16)O2 isotope exchange annealing and subsequent determination of the isotope profiles in the solid by time-of-flight secondary ion mass spectrometry (ToF-SIMS). Experiments were carried out as a function of temperature 973 < T/K < 1173, at an oxygen activity of aO2 = 0.200, and as a function of oxygen activity 0.009 < aO2 < 0.900 at T = 1073 K. The oxygen isotope profiles comprise two parts: slow diffusion through a space-charge zone at the surface depleted of oxygen vacancies followed by faster diffusion in a homogeneous bulk phase. The entire isotope profile can be described by a single solution to the diffusion equation involving only three fitting parameters: the surface exchange coefficient ks*, the space-charge potential Φ0 and the bulk diffusion coefficient D*(∞). Analysis of the temperature and oxygen activity dependencies of D*(∞) and Φ0 yields a consistent picture of both the bulk and the interfacial defect chemistry of BaTiO3. Values of the oxygen vacancy diffusion coefficient DV extracted from measured D*(∞) data are compared with literature data; consequently a global expression for the vacancy diffusivity in BaTiO3 for the temperature range 466 < T/K < 1273 is obtained, with an activation enthalpy of vacancy migration, ΔHmig,V = (0.70 ± 0.04) eV.

  1. Characterization and properties of barium bismuth titanate

    Directory of Open Access Journals (Sweden)

    Jelena D. Bobić

    2009-06-01

    Full Text Available BaBi4Ti4O15 (BBiT was prepared from stoichiometric amounts of BaTiO3 (BT and Bi4Ti3O12 (BIT obtained via mechanochemical synthesis. Mechanochemical synthesis was performed in air atmosphere in a planetary ball mill. BBiTceramics were sintered at 1100°C, 1110°C and 1120°C for 1 h without pre-calcination step. The formation of phase and crystal structure of BT, BIT and BBiT were verified using X-ray analysis. The morphology of obtained powders and microstructure were examined using scanning electron microscopy. The electrical properties of sintered samples were carried out and BBiT shows behaviour typical for relaxor ferroelectrics and dielectric constant at room temperature is approximately 93.

  2. Electrical characterization of zirconium substituted barium titanate ...

    Indian Academy of Sciences (India)

    Nyquist (Cole–Cole) plots show both inter and intra grain boundary ... talline solids in a wide range of frequencies and temperature. ... measurements were carried out using a precision. LCR meter (HP 4284A) at an oscillation amplitude of 1 V. Impedance measurements were carried out in the tempera- ture range of 300.

  3. Incipient ferroelectric to a possible ferroelectric transition in Te4+ doped calcium copper titanate (CaCu3Ti4O12 ceramics at low temperature as evidenced by Raman and dielectric spectroscopy

    Directory of Open Access Journals (Sweden)

    Nabadyuti Barman

    2017-03-01

    Full Text Available Partial replacement of Ti4+ by Te4+ ions in calcium copper titanate lattice improved its dielectric behaviour mostly due to cubic-to-tetragonal structural transformation and associated distortion in TiO6 octahedra. The relative permittivity values (23–30 x 103 of Te4+ doped ceramics is more than thrice that of un-doped ceramics (8 x 103 at 1 kHz. A decreasing trend in relative permittivity with increasing temperature (50–300 K is observed for all the samples. Barrett’s formula, as a signature of incipient ferroelectricity, is invoked to rationalize the relative permittivity variation as a function of temperature. A systematic investigation supported by temperature dependent Raman studies reveal a possible ferroelectric transition in Te4+ doped ceramic samples below 120 K. The possible ferroelectric transition is attributed to the interactions between quasi-local vibrations associated with the micro-clusters comprising TiO6 and TeO6 structural units and indirect dipole-dipole interactions of off-center B–cations (Ti4+ and Te4+ in double perovskite lattice.

  4. Characterization and microstructure of porous lead zirconate titanate ...

    Indian Academy of Sciences (India)

    Unknown

    Porous lead zirconate titanate (PZT) ceramics are widely used because of their low acoustic im- pedance, high figure of merit and high ... made by combining a PZT ceramic with a passive polymer or air phase. These materials greatly ... study of optimization of processing parameters and novel porous ceramics structures ...

  5. Investigation of La3+ Doping Effect on Piezoelectric Coefficients of BLT Ceramics

    Directory of Open Access Journals (Sweden)

    Wodecka-Dus B.

    2017-06-01

    Full Text Available Effects of La3+ admixture in barium lanthanum titanate (BLT ceramics system with colossal permittivity on performance of prospective piezoelectric cold plasma application were studied. Usage of cold atmospheric pressure plasma appears promising in terms of industrial and healthcare applications. Performed investigation provide consistent evaluation of doping lanthanum amount on piezoelectric coefficients values with simultaneous capability of charge accumulation for effective plasma generation. Modification of ferroelectric materials with heterovalent ions, however with the lower radii than the original atoms, significantly affects their domain mobility and consequently electromechanical properties. To determine the piezoelectric coefficients, the resonance-antiresonance method was implemented, and values of piezoelectric and dielectric parameters were recorded. Finally the results indicated that addition of 0.4 mol.% of La3+ ions to the ceramic structure maximally increased the values of piezoelectric coefficient to d33 = 20 pC/N and to huge dielectric constant to ε33T = 29277.

  6. Temperature dependence on the electrical properties of Ba(Ti{sub 0.90}Zr{sub 0.10})O{sub 3}:2V ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Moura, F. [Laboratorio Interdisciplinar em Ceramica (LIEC), Departamento de Fisico-Quimica, Instituto de Quimica, UNESP, CEP 14800-900, Araraquara, SP (Brazil); Simoes, A.Z., E-mail: alezipo@yahoo.com [Universidade Federal de Itajuba-Unifei - Campus Itabira, Rua Sao Paulo 377, Bairro: Amazonas, CEP 35900-37, Itabira, MG (Brazil); Paskocimas, C.A.; Zaghete, M.A.; Varela, J.A.; Longo, E. [Laboratorio Interdisciplinar em Ceramica (LIEC), Departamento de Fisico-Quimica, Instituto de Quimica, UNESP, CEP 14800-900, Araraquara, SP (Brazil)

    2010-10-01

    Barium zirconium titanate ferroelectric ceramics modified with vanadium Ba(Ti{sub 0.90}Zr{sub 0.10}V{sub 0.02})O{sub 3} (BZT:2V) were prepared from powders synthesized using the mixed oxide method. The effect of temperature on the structural and electrical properties of BZT:2V ceramics was investigated. X-ray diffraction data evidenced no secondary phases. As temperature decreases, the maximum dielectric permittivity decreased. The fine-grained sample showed a 'relaxor-like' ferroelectric behavior. The dielectric permittivity reaches a maximum value ({epsilon}{sub m} {approx} 16,000 at 1 kHz) for the BZT:2V ceramics sintered at 1623 K for 4 h. Remnant polarization (P{sub r}) and coercive field were also temperature dependent.

  7. Varistor property of SnO{sub 2}.CoO.Ta{sub 2}O{sub 5} ceramic modified by barium and strontium

    Energy Technology Data Exchange (ETDEWEB)

    Dhage, S.R. [School of Environmental and Chemical Engineering, Chonbuk National University, Jeonju 561-756 (Korea, Republic of)], E-mail: sanjay.dhage@gmail.com; Ravi, V. [Physical and Materials Chemistry Division, National Chemical Laboratory, Pune 411008 (India)], E-mail: r.venkat@ncl.res.in; Yang, O.B. [School of Environmental and Chemical Engineering, Chonbuk National University, Jeonju 561-756 (Korea, Republic of)

    2008-10-20

    The influence of an alkali earth (Ba/Sr) element in small quantities (<1 at.%) on non-linear electrical properties of 98.5% SnO{sub 2} + 1% CoO + 0.5% Ta{sub 2}O{sub 5} (all in at.%) varistor system has been investigated. The non-linear coefficient increases from 33 to 52 whereas breakdown field strength varies 5025-6050 V cm{sup -1} for the barium-doped samples. In case of strontium-doped specimens moderate increase in non-linear coefficient but significant increase in breakdown field is observed. It is proposed that due to ionic size misfit, Ba and Sr segregates to grain boundaries thereby modifying their barrier properties. The contribution from grain boundary phase to the electrical property is confirmed by the impedance analysis.

  8. BARIUM RECOVERY PROCESS

    Science.gov (United States)

    Blanco, R.E.

    1959-07-21

    A method of separating barium from nuclear fission products is described. In accordance with the invention, barium may be recovered from an acidic solution of neutron-irradiated fissionable material by carrying ihe barium cut of solution as a sulfate with lead as a carrier and then dissolving the barium-containing precipitate in an aqueous solution of an aliphatic diamine chelating reagent. The barium values together with certain other metallic values present in the diamine solution are then absorbed onto a cation exchange resin and the barium is selectively eluted from the resin bed with concentrated nitric acid.

  9. THE APPLICATION OF STEREOLOGY METHOD FOR ESTIMATING THE NUMBER OF 3D BaTiO3 – CERAMIC GRAINS CONTACT SURFACES

    Directory of Open Access Journals (Sweden)

    Vojislav V Mitić

    2011-05-01

    Full Text Available Methods of stereological study are of great importance for structural research of electronic ceramic materials including BaTiO3-ceramic materials. The broad application of ceramics, based on barium-titanate, in advanced electronics nowadays demands a constant research of its structure, that through the correlation structureproperties, a fundamental in the basic materials properties prognosis triad (technology-structure-properties, leads to further prognosis and properties design of these ceramics. Microstructure properties of BaTiO3- ceramic material, expressed in grains' boundary contact, are of basic importance for electric properties of this material, particularly the capacity. In this paper, a significant step towards establishing control under capacitive properties of BaTiO3-ceramics is being done by estimating the number of grains contact surfaces. Defining an efficient stereology method for estimating the number of BaTiO3-ceramic grains contact surfaces, we have started from a mathematical model of mutual grains distribution in the prescribed volume of BaTiO3-ceramic sample. Since the real microstructure morphology of BaTiO3-ceramics is in some way disordered, spherical shaped grains, using computer-modelling methods, are approximated by polyhedra with a great number of small convex polygons. By dividing the volume of BaTiO3-ceramic sample with the definite number of parallel planes, according to a given pace, into the intersection plane a certain number of grains contact surfaces are identified. According to quantitative estimation of 2D stereological parameters the modelled 3D internal microstructure is obtained. Experiments were made by using the scanning electronic microscopy (SEM method with the ceramic samples prepared under pressing pressures up to 150 MPa and sintering temperature up to 1370°C while the obtained microphotographs were used as a base of confirming the validity of presented stereology method. This paper, by applying

  10. Permeability analysis for thermal binder removal from green ceramic bodies

    Science.gov (United States)

    Yun, Jeong Woo

    2007-12-01

    The permeability of unlaminated and laminated green tapes was determined as a function of binder content for binder removed by air oxidation. The tapes are comprised of barium titanate as the dielectric, and polyvinyl butyral and dioctyl phthalate as the main compoents of the binder mixture. The flow in porous media through the tapes was analyzed in terms of models for describing Knudsen, slip, and Poiseuille flow mechanisms. The characteristic pore size was determined to be 0.5-2 mum and thus Poiseuille flow was the dominant transport mechanism contributing to the flux. The permeability was then determined from Darcy's law for flow in porous media. The permeability was also determined from micro-structural attributes in terms of the specific surface, the pore fraction, and terms to account for tortuosity and constrictions. The permeability and adhesion strength of laminated green ceramic tapes were determined as a function of lamination conditions of time, temperature, and pressure.

  11. Barium enema (image)

    Science.gov (United States)

    A barium enema is performed to examine the walls of the colon. During the procedure, a well lubricated enema tube is inserted gently into the rectum. The barium, a radiopaque (shows up on X-ray) contrast ...

  12. Ceria and strontium titanate based electrodes

    DEFF Research Database (Denmark)

    2010-01-01

    A ceramic anode structure obtainable by a process comprising the steps of: (a) providing a slurry by dispersing a powder of an electronically conductive phase and by adding a binder to the dispersion, in which said powder is selected from the group consisting of niobium-doped strontium titanate......, vanadium-doped strontium titanate, tantalum-doped strontium titanate, and mixtures thereof, (b) sintering the slurry of step (a), (c) providing a precursor solution of ceria, said solution containing a solvent and a surfactant, (d) impregnating the resulting sintered structure of step (b...

  13. Esophagram (Barium Swallow Study)

    Science.gov (United States)

    ... drink 1 to 2 cups of barium. The barium is a contrast material that makes liquids show up on the ... MRI Intravenous Contrast Information MRI with or without Contrast Small Bowel Follow Through (SBFT) Tailored Barium Swallow Study The Upper GI Study (GI Series) ...

  14. DIELECTRIC AND PYROELECTRIC PROPERTIES OF THE COMPOSITES OF FERROELECTRIC CERAMIC AND POLY(VINYL CHLORIDE

    Directory of Open Access Journals (Sweden)

    M.Olszowy

    2003-01-01

    Full Text Available The dielectric and pyroelectric properties of lead zirconate titanate/poly(vinyl chloride [PZT/PVC] and barium titanate/poly(vinyl chloride [BaTiO3/ PVC] composites were studied. Flexible composites were fabricated in the thin films form (200-400 μm by hot-pressed method. Powders of PZT or BaTiO3 in the shape of ≤ 75 μm ceramics particles were dispersed in a PVC matrix, providing composites with 0-3} connectivity. Distribution of the ceramic particles in the polymer phase was examined by scanning electron microscopy. The analysis of the thermally stimulated currents (TSC have also been done. The changes of dielectric and pyroelectric data on composites with different contents of ceramics up to 40% volume were investigated. The dielectric constants were measured in the frequency range from 600 Hz to 6 MHz at room temperature. The pyroelectric coefficient for BaTiO3/PVC composite at 343 K is about 35 μC/m2K which is higher than that of β-PVDF (10 μC/m2 K.

  15. Time-resolved X-ray absorption spectroscopy for the study of solid state reactions: synthesis of nanocrystalline barium titanate and thermal decomposition of ammonium hexachlorometallate compounds; Zeitaufgeloeste Roentgenabsorptionspektroskopie zur Untersuchung von Festkoerperreaktionen: Synthese von nanokristallinem Bariumtitanat und thermische Zersetzung von Ammoniumhexachlorometallat-Verbindungen

    Energy Technology Data Exchange (ETDEWEB)

    Rumpf, H.

    2001-07-01

    This report presents investigations on the mechanism of two different types of solid-state reactions: At first, barium titanate nanopowders were prepared through a combined polymerization and pyrolysis of a metallo-organic precursor. The mean particle size d{sub m} could be adjusted by choosing appropriate reaction temperatures and tempering atmospheres. In the present in situ study of this particular solid-phase reaction, X-ray absorption near edge structure (XANES) spectroscopy at the Ti K and Ba L{sub 3}-edges was applied in the preparation route of BaTiO{sub 3} nanopowders. A pronounced distortion of the lattice symmetry was found to occur in very fine BaTiO{sub 3} nanopowders (d{sub m} < 20 nm). Secondly, in situ XANES investigations were carried out at the Cl K, Pd L{sub 3}, Rh L{sub 3}, and Pt L{sub 3}-edges to study the mechanism of the thermal decomposition of ammonium hexachlorometallates. The results exceed structural information obtained by in situ X-ray diffraction methods and thermal analysis. Feff8 multiple scattering simulations have been carried out to disclose new intermediate phases of unknown reference compounds. (orig.)

  16. Synthesis of BaTiO3 powder from barium titanyl oxalate (BTO ...

    Indian Academy of Sciences (India)

    Unknown

    Abstract. Cubic barium titanate (BaTiO3) powder was synthesized by heating barium titanyl oxalate hydrate,. BaTiO(C2O4)2⋅4H2O (BTO) precursor in microwave heating system in air at 500°C. Heating BTO in micro- wave above 600°C yielded tetragonal form of BaTiO3. Experiments repeated in silicon carbide furnace ...

  17. Characterization and microstructure of porous lead zirconate titanate ...

    Indian Academy of Sciences (India)

    Porous lead zirconate titanate (PZT) ceramics are widely used because of their low acoustic impedance, high figure of merit and high hydrostatic sensitivity. In the present work, porous PZT ceramics were fabricated by incorporating polyethylene oxide (PEO) as pore-forming agent. Both PZT powder and PEO were mixed ...

  18. Effect of the coverage level of carboxylic acids as a modifier for barium titanate nanoparticles on the performance of poly(vinylidene fluoride)-based nanocomposites for energy storage applications.

    Science.gov (United States)

    Niu, Yujuan; Xiang, Feng; Wang, Yifei; Chen, Jie; Wang, Hong

    2018-02-28

    Surface modification on nanoparticle fillers with organic groups is important to improve the performance of ceramic/polymer nanocomposites. Due to the small coverage level of carboxylic acids on the nanoparticle surface, studies on the use of carboxylic acids as a surface modifier for ceramic nanoparticles have been rarely reported. However, there is no study that proves that a small amount of modifier on the surface of nanoparticles cannot adequately improve the dispersion as well as the compatibility of nanoparticles with the matrix. Herein, we used three carboxylic acids to treat the surface of BaTiO 3 (BT) nanoparticles and adjusted the coverage level of the modifiers on the surface of BT nanoparticles through different ways. The nanocomposite films synthesized from the modified BT nanoparticles dispersed in the poly(vinylidene fluoride) (PVDF) polymer matrix were analyzed by dielectric spectroscopy, breakdown strength, leakage currents, and D-E loop measurements. The results show that the molecule dipole moment and polarizability of the modifier greatly influence the permittivity of the nanocomposites as the surface coverage level of the modifiers increases. Due to many influential factors, changes in the breakdown strength of the nanocomposites show diversity for three modifiers as the modifier content increases. For the nanocomposites applied in energy storage, the optimal content of the modifier on the surface of the nanoparticles needs to be determined by combining various properties of the nanocomposites.

  19. Tailored Barium Swallow Study

    Science.gov (United States)

    ... Different textures of food are often given. The barium is a contrast material that makes the food and liquid show ... MRI Intravenous Contrast Information MRI with or without Contrast Small Bowel Follow Through (SBFT) Tailored Barium Swallow Study The Upper GI Study (GI Series) ...

  20. Parameter Optimization in the Synthesis of BZT Ceramics to Achieve Good Dielectric Properties

    Directory of Open Access Journals (Sweden)

    A. Frattini

    2013-01-01

    Full Text Available The powder synthesis of barium zirconate titanate (BZT (BaZrTiO3 from the mechanochemical activation of BaCO3, ZrO2, and TiO2 was studied. The grinding effect, by using a planetary ball milling, on the crystallization temperature of BZT powders was analyzed. X-ray diffractometry, differential thermal analysis, thermogravimetric analysis, and scanning electronic microscopy (SEM were used as characterization methods. The crystallization behavior of powders activated by high-energy grinding and the effect of grinding time on the BZT crystallization were analyzed. After grinding by 4 h, the BaZr(0.05Ti(0.95O3 sample was almost fully crystallized at . The results of dielectric and ferroelectric properties show that high-energy ball milling is a practical and promising way to prepare BZT ceramics.

  1. Modified titanate perovskites in photocatalytic water splitting

    Energy Technology Data Exchange (ETDEWEB)

    Wlodarczak, M.; Ludwiczak, M.; Laniecki, M. [A. Mickiewicz Univ. (Poland)

    2010-07-01

    Received materials have structure of perovskite, what was shown by XRD diffraction patterns. Perovskite structure is present in all samples with strontium, barium and one sample with calcium. Moreover, received barium and strontium titanate are very similar to pattern materials. XRD results show, that temperature 500 C is too low to create perovskite structure in CaTiO{sub 3}. However, it is high enough in case of SrTiO{sub 3} and BaTiO{sub 3}. One regularity is obvious, surface area increases for samples calcined in lower temperature. There is a connection between surface area and dispersion of platinum. Both of them reach the greatest value to the calcium titanate. Catalytic activity was shown by all of received samples. Measurable values were received to samples calcined in 700 C. Calcium titanate had the best catalytic activity, both an amount of hydrogen and a ratio of hydrogen to platinum. There is one regularity to all samples, the ration of hydrogen to platinum increase when amount of platinum decrease. (orig.)

  2. Aspiration of Barium Contrast

    OpenAIRE

    Fuentes Santos, Cristina; Steen, Bárbara

    2014-01-01

    The aspiration of barium contrast is a rare complication that may occur during studies of the digestive tract. Barium is an inert material that can cause anywhere from an asymptomatic mechanical obstruction to serious symptoms of respiratory distress that can result in patient death. We present the case of a 79-year-old male patient in whom we observed the presence of contrast medium residue in the lung parenchyma as an incidental finding during hospitalization. When the patient’s medical fil...

  3. Effect of dielectrophoretic structuring on piezoelectric and pyroelectric properties of lead titanate-epoxy composites

    NARCIS (Netherlands)

    Khanbareh, H.; Zwaag, S. van der; Groen, W.A.

    2014-01-01

    Functional granular composites of lead titanate particles in an epoxy matrix prepared by dielectrophoresis show enhanced dielectric, piezoelectric and pyroelectric properties compared to 0-3 composites for different ceramic volume content from 10% to 50%. Two structuring parameters, the

  4. Titan Aerial Daughtercraft

    Data.gov (United States)

    National Aeronautics and Space Administration — Saturn's giant moon Titan has become one of the most fascinating bodies in the Solar System. Titan is the richest laboratory in the solar system for studying...

  5. Titan Aerial Daughtercraft Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Saturn's giant moon Titan has become one of the most fascinating bodies in the Solar System. Titan is the richest laboratory in the solar system for studying...

  6. Modeling and minimization of barium sulfate scale

    Science.gov (United States)

    Alan W. Rudie; Peter W. Hart

    2006-01-01

    The majority of the barium present in the pulping process exits the digester as barium carbonate. Barium carbonate dissolves in the bleach plant when the pH drops below 7 and, if barium and sulfate concentrations are too high, begins to precipitate as barium sulfate. Barium is difficult to control because a mill cannot avoid this carbonate-to-sulfate transition using...

  7. Ceramic piezoelectric materials

    International Nuclear Information System (INIS)

    Kaszuwara, W.

    2004-01-01

    Ceramic piezoelectric materials conert reversibility electric energy into mechanical energy. In the presence of electric field piezoelectric materials exhibit deformations up to 0.15% (for single crystals up to 1.7%). The deformation energy is in the range of 10 2 - 10 3 J/m 3 and working frequency can reach 10 5 Hz. Ceramic piezoelectric materials find applications in many modern disciplines such as: automatics, micromanipulation, measuring techniques, medical diagnostics and many others. Among the variety of ceramic piezoelectric materials the most important appear to be ferroelectric materials such as lead zirconate titanate so called PZT ceramics. Ceramic piezoelectric materials can be processed by methods widely applied for standard ceramics, i.e. starting from simple precursors e.g. oxides. Application of sol-gel method has also been reported. Substantial drawback for many applications of piezoelectric ceramics is their brittleness, thus much effort is currently being put in the development of piezoelectric composite materials. Other important research directions in the field of ceramic piezoelectric materials composite development of lead free materials, which can exhibit properties similar to the PZT ceramics. Among other directions one has to state processing of single crystals and materials having texture or gradient structure. (author)

  8. Process for making a ceramic composition for immobilization of actinides

    Science.gov (United States)

    Ebbinghaus, Bartley B.; Van Konynenburg, Richard A.; Vance, Eric R.; Stewart, Martin W.; Walls, Philip A.; Brummond, William Allen; Armantrout, Guy A.; Herman, Connie Cicero; Hobson, Beverly F.; Herman, David Thomas; Curtis, Paul G.; Farmer, Joseph

    2001-01-01

    Disclosed is a process for making a ceramic composition for the immobilization of actinides, particularly uranium and plutonium. The ceramic is a titanate material comprising pyrochlore, brannerite and rutile. The process comprises oxidizing the actinides, milling the oxides to a powder, blending them with ceramic precursors, cold pressing the blend and sintering the pressed material.

  9. Observed Barium Emission Rates

    Science.gov (United States)

    Stenbaek-Nielsen, H. C.; Wescott, E. M.; Hallinan, T. J.

    1993-01-01

    The barium releases from the CRRES satellite have provided an opportunity for verifying theoretically calculated barium ion and neutral emission rates. Spectra of the five Caribbean releases in the summer of 1991 were taken with a spectrograph on board a U.S. Air Force jet aircraft. Because the line of sight release densities are not known, only relative rates could be obtained. The observed relative rates agree well with the theoretically calculated rates and, together with other observations, confirm the earlier detailed theoretical emission rates. The calculated emission rates can thus with good accuracy be used with photometric observations. It has been postulated that charge exchange between neutral barium and oxygen ions represents a significant source for ionization. If so. it should be associated with emissions at 4957.15 A and 5013.00 A, but these emissions were not detected.

  10. Aspiration of Barium Contrast

    Directory of Open Access Journals (Sweden)

    Cristina Fuentes Santos

    2014-01-01

    Full Text Available The aspiration of barium contrast is a rare complication that may occur during studies of the digestive tract. Barium is an inert material that can cause anywhere from an asymptomatic mechanical obstruction to serious symptoms of respiratory distress that can result in patient death. We present the case of a 79-year-old male patient in whom we observed the presence of contrast medium residue in the lung parenchyma as an incidental finding during hospitalization. When the patient’s medical file was reviewed, images were found of a barium swallow study that the patient had undergone months earlier, and we were able to observe the exact moment of the aspiration of the contrast material. The patient had been asymptomatic since the test.

  11. Ceramic fiber-reinforced monoclinic celsian phase glass-ceramic matrix composite material

    Science.gov (United States)

    Bansal, Narottam P. (Inventor); Dicarlo, James A. (Inventor)

    1994-01-01

    A hyridopolysilazane-derived ceramic fiber reinforced monoclinic celsian phase barium aluminum silicate glass-ceramic matrix composite material is prepared by ball-milling an aqueous slurry of BAS glass powder and fine monoclinic celsian seeds. The fibers improve the mechanical strength and fracture toughness and with the matrix provide superior dielectric properties.

  12. Predicting the effective response of bulk polycrystalline ferroelectric ceramics via improved spectral phase field methods

    Science.gov (United States)

    Vidyasagar, A.; Tan, W. L.; Kochmann, D. M.

    2017-09-01

    Understanding the electromechanical response of bulk polycrystalline ferroelectric ceramics requires scale-bridging approaches. Recent advances in fast numerical methods to compute the homogenized mechanical response of materials with heterogeneous microstructure have enabled the solution of hitherto intractable systems. In particular, the use of a Fourier-based spectral method as opposed to the traditional finite element method has gained significant interest in the homogenization of periodic microstructures. Here, we solve the periodic, electro-mechanically-coupled boundary value problem at the mesoscale of polycrystalline ferroelectrics in order to extract the effective response of barium titanate (BaTiO3) and lead zirconate titanate (PZT) under applied electric fields. Results include the effective electric hysteresis and the associated butterfly curve of strain vs. electric field for mean stress-free electric loading. Computational predictions of the 3D polycrystalline response show convincing agreement with our experimental electric cycling and strain hysteresis data for PZT-5A. In addition to microstructure-dependent effective physics, we also show how finite-difference-based approximations in the spectral solution scheme significantly reduce instability and ringing phenomena associated with spectral techniques and lead to spatial convergence with h-refinement, which have been major challenges when modeling high-contrast systems such as polycrystals.

  13. Recent developments in piezoelectric ceramic materials and deterioration of their properties

    International Nuclear Information System (INIS)

    Pasha, R.A.; Khan, M.Z.

    2006-01-01

    There has been growing interest in recent years in piezoelectric ceramic materials because of their excellent dielectric, sensing, actuating and efficient process control applications. Lead Zirconate Titanate (PZT), Barium Titanate (BaTi O/sub 3/) and Lead Metaniobate (PbNb/sub 2/ O/sub 6/) and PVDF Polymers and generally favored as smart sensing materials. These materials are being used in critical engineering systems and smart structure. Fatigue failure due to electrical and thermal shocking is a major issue in degradation of these materials. Lot of work has been done in this area but still various issues need to investigate. Recent developments and current issues in piezoelectric materials and deterioration of their properties in different working conditions are discussed. The development of Finite Element codes incorporating smart material element has provided an opportunity to solve some practical problems. The new piezoelectric finite element capability available in some commercial package like ANSYS makes it convenient to perform static dynamic and thermal analysis for the fully coupled piezoelectric and structural response. Researchers have a great scope to uncover the various properties of these smart materials in different environmental conditions. In present work an overall review of the title is presented. (author)

  14. Piezoelectric Ceramics Characterization

    National Research Council Canada - National Science Library

    Jordan, T

    2001-01-01

    ... the behavior of a piezoelectric material. We have attempted to cover the most common measurement methods as well as introduce parameters of interest. Excellent sources for more in-depth coverage of specific topics can be found in the bibliography. In most cases, we refer to lead zirconate titanate (PZT) to illustrate some of the concepts since it is the most widely used and studied piezoelectric ceramic to date.

  15. Magnetoelectric effect in cobalt ferrite–barium titanate composites ...

    Indian Academy of Sciences (India)

    relaxation process and resistivity of the materials. However, the conductivity behavior in. CoFe2O4–BaTiO3 composites has not been studied. In this paper we report the dc electrical conductivity and thermoelectric power (TEP) as a function of temperature for this system. Dielectric behavior is also studied to understand the ...

  16. Barium Titanate Film Interfaces for Hybrid Composite Energy Harvesters.

    Science.gov (United States)

    Bowland, Christopher C; Malakooti, Mohammad H; Sodano, Henry A

    2017-02-01

    Energy harvesting utilizing piezoelectric materials has become an attractive approach for converting mechanical energy into electrical power for low-power electronics. Structural composites are ideally suited for energy scavenging due to the large amount of mechanical energy they are subjected to. Here, a multifunctional composite with embedded sensing and energy harvesting is developed by integrating an active interface into carbon fiber reinforced polymer composites. By modifying the composite matrix, both rigid and flexible multifunctional composites are fabricated. Through electromechanical testing of a cantilever beam of the rigid composite, it reveals a power density of 217 pW/cc from only 1 g root-mean-square acceleration when excited at its resonant frequency of 47 Hz. Electromechanical sensor testing of the flexible multifunctional composite reveals an average voltage generation of 23.5 mV/g at its resonant frequency of 96 Hz. This research introduces a route for integrating nonstructural functionality into structural fiber composites by utilizing BaTiO 3 coated woven carbon fiber fabrics with power scavenging and passive sensing capabilities.

  17. Magnetoelectric effect in cobalt ferrite–barium titanate composites ...

    Indian Academy of Sciences (India)

    tion is discussed on the basis of small polaron hopping model. The static value of magnetoelectric conversion factor has been studied as a function of magnetic field. Keywords. X-ray diffraction; CoFe2O4–BaTiO3, dielectric constant; ac conductivity; hopping model; magnetoelectric effect. PACS Nos 61.10.-I; 77.84.Lf; 77.84.

  18. Ferroelastic domain walls in barium titanate - quantitative phenomenological model

    Czech Academy of Sciences Publication Activity Database

    Hlinka, Jiří; Márton, Pavel

    2009-01-01

    Roč. 101, č. 1 (2009), s. 50-62 ISSN 1058-4587 R&D Projects: GA ČR GA202/06/0411; GA ČR(CZ) GD202/05/H003; GA AV ČR 1ET300100401 Institutional research plan: CEZ:AV0Z10100520 Keywords : ferroelectric and ferroelastic domains * BaTiO 3 * Ginzburg-Landau theory Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.329, year: 2009

  19. Mobility of ferroelastic domain walls in barium titanate

    Czech Academy of Sciences Publication Activity Database

    Hlinka, Jiří

    2007-01-01

    Roč. 349, - (2007), s. 49-54 ISSN 0015-0193 R&D Projects: GA ČR GA202/06/0411 Institutional research plan: CEZ:AV0Z10100520 Keywords : ferroelectric and ferroelastic domains * BaTiO 3 * Ginzburg-Landau theory * mobility Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.427, year: 2007

  20. Scaling issues in ferroelectric barium strontium titanate tunable planar capacitors.

    Science.gov (United States)

    Lam, Peter G; Haridasan, Vrinda; Feng, Zhiping; Steer, Michael B; Kingon, Angus I; Maria, Jon-Paul

    2012-02-01

    We report on the geometric limits associated with tunability of interdigitated capacitors, specifically regarding the impact of a parasitic non-tunable component that necessarily accompanies a ferroelectric surface capacitor, and can dominate the voltage-dependent response as capacitor dimensions are reduced to achieve the small capacitance values required for impedance matching in the X band. We present a case study of simple gap capacitors prepared and characterized as a function of gap width (i.e., the distance between electrodes) and gap length (i.e., the edge-to-edge gap distance). Our series of measurements reveals that for gap widths in the micrometer range, as gap lengths are reduced to meet sub-picofarad capacitance values, the non-tunable parasitic elements limit the effective tunability. These experimental measurements are supported by a companion set of microwave models that clarify the existence of parallel parasitic elements.

  1. Room-temperature synthetic pathways to barium titanate nanocrystals.

    Science.gov (United States)

    Beier, Christopher W; Cuevas, Marie A; Brutchey, Richard L

    2008-12-01

    Novel room-temperature pathways to BaTiO(3) nanocrystals have been recently developed, which stand in contrast to traditional high-temperature methods. Peptide-assisted, bio-facilitated routes have been developed for low-temperature nanocrystal growth, in addition to two low-temperature routes completely independent of biomolecules. These innovative methods lay the groundwork for the facile production of nanoscale BaTiO(3) in economical and energy-efficient ways.

  2. Tunable pyroelectric properties of barium strontium titanate thin films.

    Science.gov (United States)

    Shirokov, V B; Razumnaya, A G; Yuzyuk, Yu I

    2017-05-10

    We studied the influence of the induced strain and applied electric field on the ground state of ferroelectric Ba 0.7 Sr 0.3 TiO 3 thin films, deposited on the cubic (0 0 1) substrate. The dependence of the pyroelectric coefficient on the applied field is calculated for the different values of the induced strain. We found that tuning of the misfit strain in the film under the dielectric bolometer mode by the proper selection of substrate makes it possible to create the structures with very large values of the pyroelectric coefficient.

  3. Improved flexoelectricity in PVDF/barium strontium titanate (BST) nanocomposites

    Science.gov (United States)

    Hu, Xinping; Zhou, Yang; Liu, Jie; Chu, Baojin

    2018-04-01

    The flexoelectric effect of polymers is normally much weaker than that of ferroelectric oxides. In order to improve the flexoelectric response of the poly(vinylidene fluoride) (PVDF) ferroelectric polymer, PVDF/Ba0.67Si0.33TiO3 (BST) nanocomposites were fabricated. BST nanofibers were prepared by the electrospinning method, and the fibers were further surface modified with H2O2 to achieve a stronger interfacial interaction between the fibers and polymer matrix. Due to the high dielectric properties and strong flexoelectric effect of the BST, both dielectric constant and flexoelectric response of the composite with 25 vol. % surface modified BST are 3-4 times higher than those of PVDF. The dependence of the dielectric constant and the flexoelectric coefficient on the composition of the nanocomposites can be fitted by the empirical Yamada model, and the dielectric constant and the flexoelectric coefficient are correlated by a linear relationship. This study provides an approach to enhance the flexoelectric response of PVDF-based polymers.

  4. The flexoelectricity of barium and strontium titanates from first principles.

    Science.gov (United States)

    Hong, Jiawang; Catalan, G; Scott, J F; Artacho, E

    2010-03-24

    We present ab initio calculations of the longitudinal flexoelectricity for BaTiO(3) and SrTiO(3) using a direct approach. The calculated value for SrTiO(3) agrees with recently reported measurements. For BaTiO(3), however, the theoretical values are smaller than the measured ones; possible reasons for the discrepancy are discussed.

  5. The flexoelectricity of barium and strontium titanates from first principles

    International Nuclear Information System (INIS)

    Hong Jiawang; Catalan, G; Scott, J F; Artacho, E

    2010-01-01

    We present ab initio calculations of the longitudinal flexoelectricity for BaTiO 3 and SrTiO 3 using a direct approach. The calculated value for SrTiO 3 agrees with recently reported measurements. For BaTiO 3 , however, the theoretical values are smaller than the measured ones; possible reasons for the discrepancy are discussed. (fast track communication)

  6. The flexoelectricity of barium and strontium titanates from first principles

    Energy Technology Data Exchange (ETDEWEB)

    Hong Jiawang; Catalan, G; Scott, J F; Artacho, E [Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge (United Kingdom)

    2010-03-24

    We present ab initio calculations of the longitudinal flexoelectricity for BaTiO{sub 3} and SrTiO{sub 3} using a direct approach. The calculated value for SrTiO{sub 3} agrees with recently reported measurements. For BaTiO{sub 3}, however, the theoretical values are smaller than the measured ones; possible reasons for the discrepancy are discussed. (fast track communication)

  7. Polarization rotation and the electrocaloric effect in barium titanate

    Science.gov (United States)

    Wu, H. H.; Cohen, R. E.

    2017-12-01

    We study the electrocaloric effect in the classic ferroelectric BaTiO3 through a series of phase transitions driven by applied electric field and temperature. We find both negative and positive electrocaloric effects, with the negative electrocaloric effect, where temperature decreases with applied field, in monoclinic phases. Macroscopic polarization rotation is evident through the monoclinic and orthorhombic phases under applied field, and is responsible for the negative electrocaloric effect.

  8. IR study of Pb–Sr titanate borosilicate glasses

    Indian Academy of Sciences (India)

    Administrator

    IR study of Pb–Sr titanate borosilicate glasses. C R GAUTAM*, DEVENDRA KUMAR. † and OM PARKASH. †. Department of Physics, University of Lucknow, Lucknow 226 007, India. †. Department of Ceramic Engineering, Institute of Technology, Banaras Hindu University, Varanasi 221 005, India. MS received 3 January ...

  9. Synthesis and characterization of ceramic powders of pure and doped with trivalent erbium barium tungstate; Sintese e caracterizacao de pos ceramicos de tungstato de bario puro e dopado com erbio trivalente

    Energy Technology Data Exchange (ETDEWEB)

    Sousa, R.B. de; Nascimento, V.A. do; Matos, J. M.E. de; Santos, M.R.M.C., E-mail: ricardo@ufpi.edu.br [Universidade Federal do Piaui (UFPI), Teresina, PI (Brazil). Centro de Ciencias da Natureza. Laboratorio Interdisciplinar de Materiais Avancados

    2014-07-01

    This research proposes the synthesis and characterization of pure and doped with Er{sup 3+} (1 and 2 %) barium tungstate powders prepared by the coprecipitation method. In order to characterize the obtained powders were used X-Ray Diffractometry, Raman Spectroscopy and Fourier Transform Infrared Spectroscopy. According to the standard XRD spectra, the crystals exhibited the presence of tetragonal scheelite structure without the presence of secondary phases. Raman spectra showed the presence of eleven vibrational modes and two modes were observed in the infrared spectra. The synthesized oxides showed good crystallinity and structurally ordered at short and long-range. (author)

  10. Design and Construction of Capacitors with the Use of Nano-Barium Titanate’s (BaTiO3 Composite Materials

    Directory of Open Access Journals (Sweden)

    P. N. Nikolarakis

    2018-01-01

    Full Text Available The basic idea of this work, from the beginning of the laboratory work till now, is to develop innovative polymer composite materials using nanoparticles that can polarize in such a way that electrical energy can be stored. A number of thermosetting polymers have been laboratory-polymerized and then mixed with barium titanate nanoparticles, in order to develop new polymer nanocomposites. Barium titanate is a well-known dielectric material, which is used in sensors and actuators as it is a piezoelectric and ferroelectric material. In this work, we examine the storage capability between different types of such composites by creating passive filters.

  11. Dielectric behaviour of Pb-substituted BZT ceramics

    Indian Academy of Sciences (India)

    Administrator

    content. Tetragonality (c/a) and Curie temperature (Tc) increase with increase in lead content x. Dielectric properties were studied as a function of temperature and frequencies. Keywords. BZT; dielectric properties; XRD; transition temperature; tetragonality. 1. Introduction. Among all the ferroelectric materials, barium titanate.

  12. Lower GI Series (Barium Enema)

    Science.gov (United States)

    ... single-contrast lower GI series, which uses only barium a double-contrast or air-contrast lower GI series, which uses ... to evenly coat the large intestine with the barium. If you are having a double-contrast lower GI series, the radiologist will inject air ...

  13. Barium toxicosis in a dog.

    Science.gov (United States)

    Adam, Fiona H; Noble, Peter J M; Swift, Simon T; Higgins, Brent M; Sieniawska, Christine E

    2010-09-01

    A 2-year-old 14.9-kg (32.8-lb) neutered female Shetland Sheepdog was admitted to the University of Liverpool Small Animal Teaching Hospital for evaluation of acute collapse. At admission, the dog was tachypneic and had reduced limb reflexes and muscle tone in all limbs consistent with diffuse lower motor neuron dysfunction. The dog was severely hypokalemic (1.7 mEq/L; reference range, 3.5 to 5.8 mEq/L). Clinical status of the dog deteriorated; there was muscle twitching, flaccid paralysis, and respiratory failure, which was considered a result of respiratory muscle weakness. Ventricular arrhythmias and severe acidemia (pH, 7.18; reference range, 7.35 to 7.45) developed. Intoxication was suspected, and plasma and urine samples submitted for barium analysis had barium concentrations comparable with those reported in humans with barium toxicosis. Analysis of barium concentrations in 5 control dogs supported the diagnosis of barium toxicosis in the dog. Fluids and potassium supplementation were administered IV. The dog recovered rapidly. Electrolyte concentrations measured after recovery were consistently unremarkable. Quantification of plasma barium concentration 56 days after the presumed episode of intoxication revealed a large decrease; however, the plasma barium concentration remained elevated, compared with that in control dogs. To our knowledge, this case represented the first description of barium toxicosis in the veterinary literature. Barium toxicosis can cause life-threatening hypokalemia; however, prompt supportive treatment can yield excellent outcomes. Barium toxicosis is a rare but important differential diagnosis in animals with hypokalemia and appropriate clinical signs.

  14. Laser irradiation in Nd3+ doped strontium barium niobate glass

    International Nuclear Information System (INIS)

    Haro-Gonzalez, P.; Martin, I. R.; Arbelo-Jorge, E.; Gonzalez-Perez, S.; Caceres, J. M.; Nunez, P.

    2008-01-01

    A local nanocrystalline formation in a neodymium doped strontium barium niobate (SBN) glass has been obtained under argon laser irradiation. The intense emission around 880 nm, originated from the 4 F 3/2 ( 4 F 5/2 ) thermalized level when the glass structure changes to a glass ceramic structure due to the irradiation of the laser beam, has been studied. The intensities and lifetimes change from this level inside and outside the irradiated area made by the laser excitation. They have been analyzed and demonstrated that the desvitrification process has been successfully achieved. These results confirm that nanocrystals of SBN have been created by the laser action confirming that the transition from glass to glass ceramic has been completed. These results are in agreement with the emission properties of nanocrystals of the bulk glass ceramic sample. The present study also suggests that the SBN nanocrystal has a potential application as temperature detector

  15. Titan's organic chemistry

    Science.gov (United States)

    Sagan, C.; Thompson, W. R.; Khare, B. N.

    1985-01-01

    Voyager discovered nine simple organic molecules in the atmosphere of Titan. Complex organic solids, called tholins, produced by irradiation of the simulated Titanian atmosphere, are consistent with measured properties of Titan from ultraviolet to microwave frequencies and are the likely main constituents of the observed red aerosols. The tholins contain many of the organic building blocks central to life on earth. At least 100-m, and possibly kms thicknesses of complex organics have been produced on Titan during the age of the solar system, and may exist today as submarine deposits beneath an extensive ocean of simple hydrocarbons.

  16. On barium oxide solubility in barium-containing chloride melts

    Energy Technology Data Exchange (ETDEWEB)

    Nikolaeva, Elena V.; Zakiryanova, Irina D.; Bovet, Andrey L.; Korzun, Iraida V. [Ural Federal Univ., Yekaterinburg (Russian Federation). Inst. of High Temperature Electrochemistry

    2016-11-01

    Oxide solubility in chloride melts depends on temperature and composition of molten solvent. The solubility of barium oxide in the solvents with barium chloride content is essentially higher than that in molten alkali chlorides. Spectral data demonstrate the existence of oxychloride ionic groupings in such melts. This work presents the results of the BaO solubility in two molten BaCl{sub 2}-NaCl systems with different barium chloride content. The received data together with earlier published results revealed the main regularities of BaO solubility in molten BaO-BaCl{sub 2}-MCl systems.

  17. Microwave processing for ceramic materials in microsystem technology

    International Nuclear Information System (INIS)

    Rhee, S.

    2002-11-01

    In this study, the applicability of microwaves for sintering of monolithic ceramics and ceramic microcomponents was investigated. Experiments with 2.45 GHz and 30 GHz microwaves were conducted and contrasted to conventional thermal processing. The advantages and disadvantages of microwave processing were then assessed. Nanoscale zirconia and sub-micron lead-zirconate-titanate electroceramics were selected for the evaluation. (orig.)

  18. Titan's Lower Atmosphere

    Science.gov (United States)

    Griffith, Caitlin Ann

    2007-09-01

    Saturn's largest moon, Titan, sports an atmosphere 10 times thicker than Earth's. Like Earth, the moon's atmosphere is N2 based and possesses a rich organic chemistry. In addition, similar to the terrestrial hydrological cycle, Titan has a methane cycle, with methane clouds, rain and seas. Presently, there is a revolution in our understanding of the moon, as data flows in and is analyzed from the NASA and ESA Cassini-Huygens mission. For example, seas were detected only this year. Here I will discuss the evolution of our understanding of Titan's atmosphere, its composition, chemistry, dynamics and origin. Current open questions will also be presented. Studies of Titan's atmosphere began and evolved to the present state in less time than that of a single scientist's career. This short interlude of activity demonstrates the rigors of the scientific method, and raises enticing questions about the workings and evolution of an atmosphere.

  19. MR Colonography with fecal tagging: Barium vs. barium ferumoxsil

    DEFF Research Database (Denmark)

    Achiam, M.P.; Chabanova, E.; Logager, V.B.

    2008-01-01

    and Methods. Twenty patients referred to CC underwent dark lumen MRC prior to the colonoscopy. Two groups of patients received two different oral contrast agents (barium sulfate and barium sulfate/ferumoxsil) as a laxative-free fecal tagging prior to the MRC. After MRC, the contrast agent was rated...... qualitatively (with the standard method using contrast-to-wall ratio) and subjectively (using a visual analog scale [VAS]) by three different blinded observers. Results. Evaluated both qualitatively and subjectively, the tagging efficiency of barium sulfate/ferumoxsil was significantly better (P ... barium sulfate alone. The VAS method for evaluating the tagging efficiency of contrast agents showed a high correlation (observer 11, r = 0.91) to the standard method using contrast-to-wall ratio and also a high interclass correlation (observer 11 and III = 0.89/0.85). MRC found I of 22 (5%) polyps

  20. Clash of the Titans

    Science.gov (United States)

    Subramaniam, Karthigeyan

    2010-01-01

    WebQuests and the 5E learning cycle are titans of the science classroom. These popular inquiry-based strategies are most often used as separate entities, but the author has discovered that using a combined WebQuest and 5E learning cycle format taps into the inherent power and potential of both strategies. In the lesson, "Clash of the Titans,"…

  1. Titan's Ammonia Feature

    Science.gov (United States)

    Smythe, W.; Nelson, R.; Boryta, M.; Choukroun, M.

    2011-01-01

    NH3 has long been considered an important component in the formation and evolution of the outer planet satellites. NH3 is particularly important for Titan, since it may serve as the reservoir for atmospheric nitrogen. A brightening seen on Titan starting in 2004 may arise from a transient low-lying fog or surface coating of ammonia. The spectral shape suggests the ammonia is anhydrous, a molecule that hydrates quickly in the presence of water.

  2. The TITAN reversed-field-pinch fusion reactor study

    International Nuclear Information System (INIS)

    1990-01-01

    This report discusses the following topics: overview of titan-2 design; titan-2 fusion-power-core engineering; titan-2 divertor engineering; titan-2 tritium systems; titan-2 safety design and radioactive-waste disposal; and titan-2 maintenance procedures

  3. The TITAN reversed-field-pinch fusion reactor study

    Energy Technology Data Exchange (ETDEWEB)

    1990-01-01

    This report discusses the following topics: overview of titan-2 design; titan-2 fusion-power-core engineering; titan-2 divertor engineering; titan-2 tritium systems; titan-2 safety design and radioactive-waste disposal; and titan-2 maintenance procedures.

  4. Attainment of barium hexaferrite nanoparticles by a Pechini Method

    International Nuclear Information System (INIS)

    Galvao, S.B.; Timoteo, Jr.J.F.; Melo, G.M.; Souto, K.K.O.; Florioto, N.T.; Paskocimas, C.A.

    2009-01-01

    The barium hexaferrites (BaFe 12 O 19 ) are used as a compound of materials applied in electronic devices, as medical devices, satellites, dada servers systems, wireless systems and others. The general properties are strongly related to the microstructure and morphology, and the particles size decrease results in advantages to the majority applications, mainly the high-tech thumbnail devices. These magnetic ceramic materials, with perovskite structure, are traditionally prepared my conventional oxide mixture synthesis. In this work was studied the nanoparticle synthesis of BaFe 12 O 19 by the precursors polymeric method (Pechini), using as precursors the barium carbonate and the iron nitrate, under different thermal treatment conditions. The samples were characterized by XRD, SEM, BET, DTA and TGA. The results presented the attainment of a monophasic powder with particles size around 100 nm. (author)

  5. Void species determination of Ba 1- xCa xTiO 3 ceramics with FSDP-related XRD

    Science.gov (United States)

    Panigrahi, M. R.; Panigrahi, S.

    2010-07-01

    Void species nanostructure is studied in Ba 1- xCa xTiO 3 ceramics using X-ray diffraction with respect to first sharp diffraction peak (FSDP-related XRD). The FSDP parameters such as the interlayer separation, quasi-periodic in nature with an effective periodicity R, correlation length L, over which such periodicity is maintained, of atomic-density fluctuations, regardless of the precise atomic origin of such fluctuations, were calculated using general expressions. Void-based model may be a very useful experimental tool to study the above nanostructural peculiarities in crystalline solids. The present work is aimed to clarify methodological possibilities of this approach with calcium-modified barium titanate ceramics for the first time. In this paper we have reported for the first time, the effect of doping concentration of calcium on BaTiO 3 on different parameters like structural correlation length, periodicity, nano-void diameter, the first coordination sphere radius, the magnitude of scattering vector, etc.

  6. Statistical properties of barium stars

    International Nuclear Information System (INIS)

    Hakkila, J.E.

    1986-01-01

    Barium stars are G- and K-giant stars with atmospheric excesses of s-process elements, and a broadband spectral depression in the blue portion of the spectrum. The strength of the λ4554 Ball line is used as a classification parameter known as the Barium Intensity. They have a mean absolute magnitude of 1.0 and a dispersion of 1.2 magnitudes (assuming a Gaussian distribution in absolute magnitude) as measured from secular and statistical parallaxes. These stars apparently belong to a young-disk population from analyses of both the solar reflex motion and their residual velocity distribution, which implies that they have an upper mass limit of around three solar masses. There is no apparent correlation of barium intensity with either luminosity or kinematic properties. The barium stars appear to be preferentially distributed in the direction of the local spiral arm, but show no preference to associate with or avoid the direction of the galactic center. They do not appear related to either the carbon or S-stars because of these tendencies and because of the stellar population to which each type of star belongs. The distribution in absolute magnitude combined with star count analyses implies that these stars are slightly less numerous than previously believed. Barium stars show infrared excesses that correlate with their barium intensities

  7. Barium light source method and apparatus

    Science.gov (United States)

    Curry, John J. (Inventor); MacDonagh-Dumler, Jeffrey (Inventor); Anderson, Heidi M. (Inventor); Lawler, James E. (Inventor)

    2002-01-01

    Visible light emission is obtained from a plasma containing elemental barium including neutral barium atoms and barium ion species. Neutral barium provides a strong green light emission in the center of the visible spectrum with a highly efficient conversion of electrical energy into visible light. By the selective excitation of barium ionic species, emission of visible light at longer and shorter wavelengths can be obtained simultaneously with the green emission from neutral barium, effectively providing light that is visually perceived as white. A discharge vessel contains the elemental barium and a buffer gas fill therein, and a discharge inducer is utilized to induce a desired discharge temperature and barium vapor pressure therein to produce from the barium vapor a visible light emission. The discharge can be induced utilizing a glow discharge between electrodes in the discharge vessel as well as by inductively or capacitively coupling RF energy into the plasma within the discharge vessel.

  8. Bismuth Sodium Titanate Based Materials for Piezoelectric Actuators

    Science.gov (United States)

    Reichmann, Klaus; Feteira, Antonio; Li, Ming

    2015-01-01

    The ban of lead in many electronic products and the expectation that, sooner or later, this ban will include the currently exempt piezoelectric ceramics based on Lead-Zirconate-Titanate has motivated many research groups to look for lead-free substitutes. After a short overview on different classes of lead-free piezoelectric ceramics with large strain, this review will focus on Bismuth-Sodium-Titanate and its solid solutions. These compounds exhibit extraordinarily high strain, due to a field induced phase transition, which makes them attractive for actuator applications. The structural features of these materials and the origin of the field-induced strain will be revised. Technologies for texturing, which increases the useable strain, will be introduced. Finally, the features that are relevant for the application of these materials in a multilayer design will be summarized. PMID:28793724

  9. Bismuth Sodium Titanate Based Materials for Piezoelectric Actuators

    Directory of Open Access Journals (Sweden)

    Klaus Reichmann

    2015-12-01

    Full Text Available The ban of lead in many electronic products and the expectation that, sooner or later, this ban will include the currently exempt piezoelectric ceramics based on Lead-Zirconate-Titanate has motivated many research groups to look for lead-free substitutes. After a short overview on different classes of lead-free piezoelectric ceramics with large strain, this review will focus on Bismuth-Sodium-Titanate and its solid solutions. These compounds exhibit extraordinarily high strain, due to a field induced phase transition, which makes them attractive for actuator applications. The structural features of these materials and the origin of the field-induced strain will be revised. Technologies for texturing, which increases the useable strain, will be introduced. Finally, the features that are relevant for the application of these materials in a multilayer design will be summarized.

  10. Bismuth Sodium Titanate Based Materials for Piezoelectric Actuators.

    Science.gov (United States)

    Reichmann, Klaus; Feteira, Antonio; Li, Ming

    2015-12-04

    The ban of lead in many electronic products and the expectation that, sooner or later, this ban will include the currently exempt piezoelectric ceramics based on Lead-Zirconate-Titanate has motivated many research groups to look for lead-free substitutes. After a short overview on different classes of lead-free piezoelectric ceramics with large strain, this review will focus on Bismuth-Sodium-Titanate and its solid solutions. These compounds exhibit extraordinarily high strain, due to a field induced phase transition, which makes them attractive for actuator applications. The structural features of these materials and the origin of the field-induced strain will be revised. Technologies for texturing, which increases the useable strain, will be introduced. Finally, the features that are relevant for the application of these materials in a multilayer design will be summarized.

  11. Synthesis and characterisation of novel low temperature ceramic and its implementation as substrate in dual segment CDRA

    Science.gov (United States)

    Kumari, Preeti; Tripathi, Pankaj; Sahu, Bhagirath; Singh, S. P.; Parkash, Om; Kumar, Devendra

    2018-02-01

    Li2O-(2-3x)MgO-(x)Al2O3-P2O5 (LMAP) (x = 0.00-0.08) ceramic system was prepared through solid state synthesis route at different sintering temperatures (800-925 °C). A small addition of Al2O3 (x = 0.02) in LMAP ceramics lowers the sintering temperature by more than 100 °C with good relative density of 94.13%. The sintered samples were characterized in terms of density, apparent porosity, water absorption, crystal structure, micro-structure and microwave dielectric properties. Silver compatibility test is also performed for its use as electrode material in low temperature co-fired ceramic (LTCC) application. To check the performance of the prepared LTCC as substrate, a microstrip-fed aperture-coupled dual segment cylindrical dielectric resonator antenna (DS-CDRA) is designed using LMAP (x = 0.02) ceramic as substrate material and Barium Strontium Titanate with 10 wt% of PbO-BaO-B2O3-SiO2 glass (BSTG) and Teflon as the components of resonating material. The simulation study of the DS-CDRA is performed using the Ansys High Frequency Structure Simulator (HFSS) software. A conductive coating of silver is used on the substrate. The simulated and measured -10 dB reflection coefficient bandwidths of 910 MHz (9.07-9.98 GHz at resonant frequency of 9.49 GHz) and 1080 MHz (8.68-9.76 GHz at resonant frequency of 9.36 GHz), respectively are achieved. The measured results of the fabricated antenna are found in good agreement with the simulation results. The prepared material can find potential applications in radar and radio navigation as well as radio astronomy and military satellite communication.

  12. Nanofunctionalized zirconia and barium sulfate particles as bone cement additives

    Directory of Open Access Journals (Sweden)

    Riaz Gillani

    2009-12-01

    Full Text Available Riaz Gillani1, Batur Ercan1, Alex Qiao3, Thomas J Webster1,21Division of Engineering, 2Department of Orthopaedics, Brown University, Providence, RI, USA; 3G3 Technology Innovations, LLC, Pittsford, NY, USAAbstract: Zirconia (ZrO2 and barium sulfate (BaSO4 particles were introduced into a methyl methacrylate monomer (MMA solution with polymethyl methacrylate (PMMA beads during polymerization to develop the following novel bone cements: bone cements with unfunctionalized ZrO2 micron particles, bone cements with unfunctionalized ZrO2 nanoparticles, bone cements with ZrO2 nanoparticles functionalized with 3-(trimethoxysilylpropyl methacrylate (TMS, bone cements with unfunctionalized BaSO4 micron particles, bone cements with unfunctionalized BaSO4 nanoparticles, and bone cements with BaSO4 nanoparticles functionalized with TMS. Results demonstrated that in vitro osteoblast (bone-forming cell densities were greater on bone cements containing BaSO4 ceramic particles after four hours compared to control unmodified bone cements. Osteoblast densities were also greater on bone cements containing all of the ceramic particles after 24 hours compared to unmodified bone cements, particularly those bone cements containing nanofunctionalized ceramic particles. Bone cements containing ceramic particles demonstrated significantly altered mechanical properties; specifically, under tensile loading, plain bone cements and bone cements containing unfunctionalized ceramic particles exhibited brittle failure modes whereas bone cements containing nanofunctionalized ceramic particles exhibited plastic failure modes. Finally, all bone cements containing ceramic particles possessed greater radio-opacity than unmodified bone cements. In summary, the results of this study demonstrated a positive impact on the properties of traditional bone cements for orthopedic applications with the addition of unfunctionalized and TMS functionalized ceramic nanoparticles

  13. Early History of Titan

    Science.gov (United States)

    Castillo-Rogez, J. C.; Matson, D. L.; Johnson, T. V.; Atreya, S.; Lunine, J. I.

    2007-05-01

    We revisit models for the early history of Titan. Our models start a few My after the production of calcium- aluminum inclusions (CAIs), consistent with the dates required by our thermophysical-dynamical modeling of Saturn's medium-sized satellites. Depending on the time of formation with respect to CAIs, the accretion time scale, and the available accretional energy, models of Titan's interior after accretion are partially to fully differentiated. At one extreme of the models, Titan accretes incorporating a minimal amount of heat. This results in a relatively cold core that, over the long term, heats up and overturns, consistent with previous models of Titan. At the other extreme, accretional heat and heat fom the decay of short-lived radiogenic isotopes results in quick and complete differentiation. In this model there is no core overturn, and conditions soon develop for silicate serpentinization, and hydrothermal activity starts. We identify the periods during which conditions are suitable for hydrothermal geochemistry leading to the production of molecular nitrogen from ammonia decomposition and methane from the Fischer-Tropsch reaction. Key questions include the availability of suitable metal catalysts and/or clay minerals, storage of the reactants and products in the interior of Titan, and mechanisms by which they are released to the atmosphere. Acknowledgements: This work was carried out at the Jet Propulsion Laboratory-California Institute of Technology, under contract to NASA.

  14. Titan Orbiter Aerorover Mission

    Science.gov (United States)

    Sittler Jr., E. C.; Acuna, M.; Burchell, M. J.; Coates, A.; Farrell, W.; Flasar, M.; Goldstein, B. E.; Gorevan, S.; Hartle, R. E.; Johnson, W. T. K.

    2001-01-01

    We propose a combined Titan orbiter and Titan Aerorover mission with an emphasis on both in situ and remote sensing measurements of Titan's surface, atmosphere, ionosphere, and magnetospheric interaction. The biological aspect of the Titan environment will be emphasized by the mission (i.e., search for organic materials which may include simple organics to 'amono' analogues of amino acids and possibly more complex, lightening detection and infrared, ultraviolet, and charged particle interactions with Titan's surface and atmosphere). An international mission is assumed to control costs. NASA will provide the orbiter, launch vehicle, DSN coverage and operations, while international partners will provide the Aerorover and up to 30% of the cost for the scientific instruments through collaborative efforts. To further reduce costs we propose a single PI for orbiter science instruments and a single PI for Aerorover science instruments. This approach will provide single command/data and power interface between spacecraft and orbiter instruments that will have redundant central DPU and power converter for their instruments. A similar approach could be used for the Aerorover. The mission profile will be constructed to minimize conflicts between Aerorover science, orbiter radar science, orbiter radio science, orbiter imaging science, and orbiter fields and particles (FP) science. Additional information is contained in the original extended abstract.

  15. Titan Polar Landscape Evolution

    Science.gov (United States)

    Moore, Jeffrey M.

    2016-01-01

    With the ongoing Cassini-era observations and studies of Titan it is clear that the intensity and distribution of surface processes (particularly fluvial erosion by methane and Aeolian transport) has changed through time. Currently however, alternate hypotheses substantially differ among specific scenarios with respect to the effects of atmospheric evolution, seasonal changes, and endogenic processes. We have studied the evolution of Titan's polar region through a combination of analysis of imaging, elevation data, and geomorphic mapping, spatially explicit simulations of landform evolution, and quantitative comparison of the simulated landscapes with corresponding Titan morphology. We have quantitatively evaluated alternate scenarios for the landform evolution of Titan's polar terrain. The investigations have been guided by recent geomorphic mapping and topographic characterization of the polar regions that are used to frame hypotheses of process interactions, which have been evaluated using simulation modeling. Topographic information about Titan's polar region is be based on SAR-Topography and altimetry archived on PDS, SAR-based stereo radar-grammetry, radar-sounding lake depth measurements, and superposition relationships between geomorphologic map units, which we will use to create a generalized topographic map.

  16. Hybrid n-Alkylamine Intercalated Layered Titanates for Solid Lubrication.

    Science.gov (United States)

    Gonzalez Rodriguez, Pablo; Yuan, Huiyu; van den Nieuwenhuizen, Karin J H; Lette, Walter; Schipper, Dik J; Ten Elshof, Johan E

    2016-10-26

    The intercalation of different primary n-alkylamines in the structure of a layered titanate of the lepidocrocite type (H 1.07 Ti 1.73 O 4 ) for application in high-temperature solid lubrication is reported. The intercalation process of the amines was explored by means of in situ small-angle X-ray scattering (SAXS), with variations in alkyl chain length (3-12 carbon atoms) and the amine/titanate ratio. The intercalation process was found to be completed within 5 min after mixing of the precursors in water at 80 °C. The topotactic transformation of the layered titanate is driven by an acid-base reaction. The thermal degradation of the modified titanates was investigated by thermogravimetric analysis (TGA), and the chemical changes were investigated by temperature-dependent infrared spectroscopy (DRIFTS). The coefficient of friction of the lubricants was assessed by means of high-temperature pin-on-disc experiments up to 580 °C. The intercalation of amine rendered a deformable layered ceramic upon heating. It was found that the hydrocarbon chain length exerts an influence on the mechanical properties of the titanates, resulting in lower friction forces for lubricants with longer intercalated amine molecules. Films of solid lubricants with longer amine chain lengths showed coefficients of friction as low as 0.01, lower than that of the state-of-the-art material graphite.

  17. Study on electrical properties of Ni-doped SrTiO3 ceramics using ...

    Indian Academy of Sciences (India)

    Unknown

    Ni doped SrTiO3; impedance spectroscopy; grain; grain boundary; acceptor. 1. Introduction. In commercial multilayer ceramic capacitors (MLCs), perovskite structure titanate are frequently used as high permittivity dielectrics. Alkaline earth titanates like BaTiO3,. SrTiO3 etc are widely used in microelectronic devices.

  18. The tides of Titan.

    Science.gov (United States)

    Iess, Luciano; Jacobson, Robert A; Ducci, Marco; Stevenson, David J; Lunine, Jonathan I; Armstrong, John W; Asmar, Sami W; Racioppa, Paolo; Rappaport, Nicole J; Tortora, Paolo

    2012-07-27

    We have detected in Cassini spacecraft data the signature of the periodic tidal stresses within Titan, driven by the eccentricity (e = 0.028) of its 16-day orbit around Saturn. Precise measurements of the acceleration of Cassini during six close flybys between 2006 and 2011 have revealed that Titan responds to the variable tidal field exerted by Saturn with periodic changes of its quadrupole gravity, at about 4% of the static value. Two independent determinations of the corresponding degree-2 Love number yield k(2) = 0.589 ± 0.150 and k(2) = 0.637 ± 0.224 (2σ). Such a large response to the tidal field requires that Titan's interior be deformable over time scales of the orbital period, in a way that is consistent with a global ocean at depth.

  19. Low-Temperature Sintering of Ba0.5Sr0.5TiO3-SrMoO4 Dielectric Tunable Composite Ceramics for LTCC Applications

    Science.gov (United States)

    Tang, Linjiang; Wang, Jinwen; Zhai, Jiwei

    2013-08-01

    A sintering-aid system using melting of B-Li glass for barium strontium titanate (BST)-based compositions to be used in low-temperature cofired ceramic (LTCC) layers is introduced. The effects of the sintering aid on the microstructure, dielectric properties, and application in LTCC were investigated. The composition Ba0.5Sr0.5TiO3-SrMoO4 with 3 wt.% B-Li glass sintered at 950°C exhibits optimized dielectric properties, including low dielectric constant (368), low dielectric loss (0.007), and moderate tunability (13%, 60 kV/cm) at 10 kHz. At 1.44 GHz, it possesses a dielectric constant of 218 and Q value of 230. LTCC multilayer ceramic capacitors fabricated by the tape-casting process have steady relative tunability of 12% at 300 V, suggesting that BST50-SrMoO4-B-Li glass composite ceramic is a promising candidate for electrically tunable LTCC microwave device applications.

  20. Impact craters on Titan

    Science.gov (United States)

    Wood, Charles A.; Lorenz, Ralph; Kirk, Randy; Lopes, Rosaly; Mitchell, Karl; Stofan, Ellen; ,

    2010-01-01

    Five certain impact craters and 44 additional nearly certain and probable ones have been identified on the 22% of Titan's surface imaged by Cassini's high-resolution radar through December 2007. The certain craters have morphologies similar to impact craters on rocky planets, as well as two with radar bright, jagged rims. The less certain craters often appear to be eroded versions of the certain ones. Titan's craters are modified by a variety of processes including fluvial erosion, mass wasting, burial by dunes and submergence in seas, but there is no compelling evidence of isostatic adjustments as on other icy moons, nor draping by thick atmospheric deposits. The paucity of craters implies that Titan's surface is quite young, but the modeled age depends on which published crater production rate is assumed. Using the model of Artemieva and Lunine (2005) suggests that craters with diameters smaller than about 35 km are younger than 200 million years old, and larger craters are older. Craters are not distributed uniformly; Xanadu has a crater density 2-9 times greater than the rest of Titan, and the density on equatorial dune areas is much lower than average. There is a small excess of craters on the leading hemisphere, and craters are deficient in the north polar region compared to the rest of the world. The youthful age of Titan overall, and the various erosional states of its likely impact craters, demonstrate that dynamic processes have destroyed most of the early history of the moon, and that multiple processes continue to strongly modify its surface. The existence of 24 possible impact craters with diameters less than 20 km appears consistent with the Ivanov, Basilevsky and Neukum (1997) model of the effectiveness of Titan's atmosphere in destroying most but not all small projectiles.

  1. Diurnal variations of Titan

    Science.gov (United States)

    Cui, J.; Galand, M.; Yelle, R. V.; Vuitton, V.; Wahlund, J.-E.; Lavvas, P. P.; Mueller-Wodarg, I. C. F.; Kasprzak, W. T.; Waite, J. H.

    2009-04-01

    We present our analysis of the diurnal variations of Titan's ionosphere (between 1,000 and 1,400 km) based on a sample of Ion Neutral Mass Spectrometer (INMS) measurements in the Open Source Ion (OSI) mode obtained from 8 close encounters of the Cassini spacecraft with Titan. Though there is an overall ion depletion well beyond the terminator, the ion content on Titan's nightside is still appreciable, with a density plateau of ~700 cm-3 below ~1,300 km. Such a plateau is associated with the combination of distinct diurnal variations of light and heavy ions. Light ions (e.g. CH5+, HCNH+, C2H5+) show strong diurnal variation, with clear bite-outs in their nightside distributions. In contrast, heavy ions (e.g. c-C3H3+, C2H3CNH+, C6H7+) present modest diurnal variation, with significant densities observed on the nightside. We propose that the distinctions between light and heavy ions are associated with their different chemical loss pathways, with the former primarily through "fast" ion-neutral chemistry and the latter through "slow" electron dissociative recombination. The INMS data suggest day-to-night transport as an important source of ions on Titan's nightside, to be distinguished from the conventional scenario of auroral ionization by magnetospheric particles as the only ionizing source on the nightside. This is supported by the strong correlation between the observed night-to-day ion density ratios and the associated ion lifetimes. We construct a time-dependent ion chemistry model to investigate the effects of day-to-night transport on the ionospheric structures of Titan. The predicted diurnal variation has similar general characteristics to those observed, with some apparent discrepancies which could be reconciled by imposing fast horizontal thermal winds in Titan's upper atmosphere.

  2. Portfolio: Ceramics.

    Science.gov (United States)

    Hardy, Jane; And Others

    1982-01-01

    Describes eight art activities using ceramics. Elementary students created ceramic tiles to depict ancient Egyptian and medieval European art, made ceramic cookie stamps, traced bisque plates on sketch paper, constructed clay room-tableaus, and designed clay relief masks. Secondary students pit-fired ceramic pots and designed ceramic Victorian…

  3. Study of the rheological properties of casting slips obtained from titanium oxide and bariun titanate in order to obtain pieces by means of casting in plaster moulds

    International Nuclear Information System (INIS)

    Amarante Junior, A.

    1986-01-01

    The behaviour of titanium-oxide (TiO 2 ) and barium titanate used in slip casting with plaster moulds is studied. Some data in several tests, as well as materials and methods applied are presented. (M.J.C.) [pt

  4. 75 FR 19657 - Barium Chloride From China

    Science.gov (United States)

    2010-04-15

    ... No: 2010-8568] INTERNATIONAL TRADE COMMISSION [Investigation No. 731-TA-149 (Third Review)] Barium... determination to conduct a full five-year review concerning the antidumping duty order on barium chloride from... antidumping duty order on barium chloride from China would be likely to lead to continuation or recurrence of...

  5. 75 FR 33824 - Barium Chloride From China

    Science.gov (United States)

    2010-06-15

    ... COMMISSION Barium Chloride From China Determination On the basis of the record\\1\\ developed in the subject... order on barium chloride from China would be likely to lead to continuation or recurrence of material... Barium Chloride from China: Investigation No. 731-TA-149 (Third Review). By order of the Commission...

  6. Titan's icy scar

    Science.gov (United States)

    Griffith, C. A.; Penteado, P. F.; Turner, J. D.; Neish, C. D.; Mitri, G.; Montiel, M. J.; Schoenfeld, A.; Lopes, R. M. C.

    2017-09-01

    We conduct a Principal Components Analysis (PCA) of Cassini/VIMS [1] infrared spectral windows to identify and quantify weak surface features, with no assumptions on the haze and surface characteris- tics. This study maps the organic sediments, supplied by past atmospheres, as well as ice-rich regions that constitute Titan's bedrock.

  7. Weather on Titan

    Science.gov (United States)

    Griffith, C. A.; Hall, J. L.; Geballe, T. R.

    2000-10-01

    Titan's atmosphere potentially sports a cycle similar to the hydrologic one on Earth with clouds, rain and seas, but with methane playing the terrestrial role of water. Over the past ten years many independent efforts indicated no strong evidence for cloudiness until some unique spectra were analyzed in 1998 (Griffith et al.). These surprising observations displayed enhanced fluxes of 14-200% on two nights at precisely the wavelengths (windows) that sense Titan's lower altitude where clouds might reside. The morphology of these enhancements in all 4 windows observed indicate that clouds covered ~6-9% of Titan's surface and existed at ~15 km altitude. Here I discuss new observations recorded in 1999 aimed to further characterize Titan's clouds. While we find no evidence for a massive cloud system similar to the one observed previously, 1%-4% fluctuations in flux occur daily. These modulations, similar in wavelength and morphology to the more pronounced ones observed earlier, suggest the presence of clouds covering evolutions. Their short lives point to the presence of rain. C. A. Griffith and J. L. Hall are supported by the NASA Planetary Astronomy Program NAG5-6790.

  8. Microcracking in ceramics and acoustic emission

    International Nuclear Information System (INIS)

    Subbarao, E.C.

    1991-01-01

    One of the limitations in the use of ceramics in critical applications is due to the presence of microcracks, which may arise from differential thermal expansion and phase changes, among others. Acoustic emission signals occur when there are abrupt microdeformations in a material and thus offer a convenient means of non-destructive detection of microcracking. Examples of a study of acoustic emission from microcracking due to anisotropic thermal expansion in low thermal expansion single phase ceramics such as niobia and sodium zirconium phosphate ceramics and due to phase changes in zirconia and superconducting YBa 2 Cu 3 Osub(7-x) ceramics are presented, together with the case of lead titanate ceramics, which exhibits both a phase change (paraelectric to ferroelectric) and an anisotropic thermal expansion. The role of grain size on the extent of microcracking is illustrated in the case of niobia ceramics. Some indirect evidence of healing of microcracks on heating niobia and lead titanate ceramics is presented from the acoustic emission results. (author). 69 refs., 9 figs

  9. Void species determination of Ba{sub 1-x}Ca{sub x}TiO{sub 3} ceramics with FSDP-related XRD

    Energy Technology Data Exchange (ETDEWEB)

    Panigrahi, M.R., E-mail: manash_123india@yahoo.co.i [Department of Physics, National Institute of Technology, Rourkela 769008, Orissa (India); Panigrahi, S. [Department of Physics, National Institute of Technology, Rourkela 769008, Orissa (India)

    2010-07-01

    Void species nanostructure is studied in Ba{sub 1-x}Ca{sub x}TiO{sub 3} ceramics using X-ray diffraction with respect to first sharp diffraction peak (FSDP-related XRD). The FSDP parameters such as the interlayer separation, quasi-periodic in nature with an effective periodicity R, correlation length L, over which such periodicity is maintained, of atomic-density fluctuations, regardless of the precise atomic origin of such fluctuations, were calculated using general expressions. Void-based model may be a very useful experimental tool to study the above nanostructural peculiarities in crystalline solids. The present work is aimed to clarify methodological possibilities of this approach with calcium-modified barium titanate ceramics for the first time. In this paper we have reported for the first time, the effect of doping concentration of calcium on BaTiO{sub 3} on different parameters like structural correlation length, periodicity, nano-void diameter, the first coordination sphere radius, the magnitude of scattering vector, etc.

  10. Organic chemistry on Titan

    Science.gov (United States)

    Chang, S.; Scattergood, T.; Aronowitz, S.; Flores, J.

    1979-01-01

    Features taken from various models of Titan's atmosphere are combined in a working composite model that provides environmental constraints within which different pathways for organic chemical synthesis are determined. Experimental results and theoretical modeling suggest that the organic chemistry of the satellite is dominated by two processes: photochemistry and energetic particle bombardment. Photochemical reactions of CH4 in the upper atmosphere can account for the presence of C2 hydrocarbons. Reactions initiated at various levels of the atmosphere by cosmic rays, Saturn 'wind', and solar wind particle bombardment of a CH4-N2 atmospheric mixture can account for the UV-visible absorbing stratospheric haze, the reddish appearance of the satellite, and some of the C2 hydrocarbons. In the lower atmosphere photochemical processes will be important if surface temperatures are sufficiently high for gaseous NH3 to exist. It is concluded that the surface of Titan may contain ancient or recent organic matter (or both) produced in the atmosphere.

  11. Changes on Titan's surface

    Science.gov (United States)

    Solomonidou, A.; Lopes, R. M. C.; Coustenis, A.; Malaska, M. J.; Sotin, C.; Rodriguez, S.; Janssen, M. A.; Drossart, P.; Lawrence, K. J.; Matsoukas, C. K.; Hirtzig, M.; Le Mouelic, S.; Jaumann, R.; Brown, R. H.; Bratsolis, E.

    2015-12-01

    Cassini's Visual and Infrared Mapping Spectrometer (VIMS) and the Titan Radar Mapper have investigated Titan's surface since 2004, unveiling a complex, dynamic and Earth-like surface. Understanding the distribution and interplay of geologic processes is important for constraining models of its interior, surface-atmospheric interactions, and climate evolution. We focus on understanding the origin of the major geomorphological units identified by Lopes et al. (2010, 2015) [1,2], Malaska et al. (2015) [3] and regions we studied in Solomonidou et al. (2014; 2015) [4,5]. Here, we investigate the nature of: Undifferentiated Plains, Hummocky/Mountainous terrains, candidate cryovolcanic sites, Labyrinth, and Dunes in terms of surface albedo behavior and spectral evolution with time to identify possible changes. Using a radiative transfer code, we find that temporal variations of surface albedo occur for some areas. Tui Regio and Sotra Patera, both candidate cryovolcanic regions, change with time, becoming darker and brighter respectively in surface albedo. In contrast, we find that the Undifferentiated Plains and the suggested evaporitic areas [6] in the equatorial regions do not present any significant changes. We are able to report the differences and similarities among the various regions and provide constraints on their chemical composition and specific processes of origin. Our results support the hypothesis that both endogenic and exogenic processes have played important roles in shaping Titan's geologic evolution. Such a variety of geologic processes and their relationship to the methane cycle make Titan important for astrobiology and habitability studies and particularly significant in solar system studies. [1] Lopes, R.M.C., et al.: Icarus, 205, 540-588, 2010; [2] Lopes, R.M.C., et al.: JGR, 118, 416-435, 2013; [3] Malaska, M., et al : Icarus, submitted, 2015;[4] Solomonidou et al.: JGR, 119, 1729-1747, 2014; [5] Solomonidou, A., et al.: In press, 2015; [6] Barnes

  12. Landscape Evolution of Titan

    Science.gov (United States)

    Moore, Jeffrey

    2012-01-01

    Titan may have acquired its massive atmosphere relatively recently in solar system history. The warming sun may have been key to generating Titan's atmosphere over time, starting from a thin atmosphere with condensed surface volatiles like Triton, with increased luminosity releasing methane, and then large amounts of nitrogen (perhaps suddenly), into the atmosphere. This thick atmosphere, initially with much more methane than at present, resulted in global fluvial erosion that has over time retreated towards the poles with the removal of methane from the atmosphere. Basement rock, as manifested by bright, rough, ridges, scarps, crenulated blocks, or aligned massifs, mostly appears within 30 degrees of the equator. This landscape was intensely eroded by fluvial processes as evidenced by numerous valley systems, fan-like depositional features and regularly-spaced ridges (crenulated terrain). Much of this bedrock landscape, however, is mantled by dunes, suggesting that fluvial erosion no longer dominates in equatorial regions. High midlatitude regions on Titan exhibit dissected sedimentary plains at a number of localities, suggesting deposition (perhaps by sediment eroded from equatorial regions) followed by erosion. The polar regions are mainly dominated by deposits of fluvial and lacustrine sediment. Fluvial processes are active in polar areas as evidenced by alkane lakes and occasional cloud cover.

  13. Cerium-modified Aurivillius-type sodium lanthanum bismuth titanate with enhanced piezoactivities

    International Nuclear Information System (INIS)

    Wang Chunming; Zhao Liang; Wang Jinfeng; Zheng Limei; Du Juan; Zhao Minglei; Wang Chunlei

    2009-01-01

    The electrical, piezoelectric and dielectric properties of cerium-modified Aurivillius-type sodium lanthanum bismuth titanate (Na 0.5 La 0.5 Bi 4 Ti 4 O 15 , NLBT) ceramics were investigated. It was found the piezoelectric activities of NLBT ceramics were significantly improved by cerium modification. The piezoelectric coefficient d 33 and Curie temperature T c for the 0.50 wt.% cerium-modified NLBT were found to be 29 pC/N and 573 deg. C, respectively. The reasons for piezoelectric activities improvement by cerium modification were given. A small dielectric abnormity was observed in NLBT ceramics, which can be suppressed by cerium modification.

  14. Titan after Cassini Huygens

    Science.gov (United States)

    Beauchamp, P. M.; Lunine, J.; Lebreton, J.; Coustenis, A.; Matson, D.; Reh, K.; Erd, C.

    2008-12-01

    In 2005, the Huygens Probe gave us a snapshot of a world tantalizingly like our own, yet frozen in its evolution on the threshold of life. The descent under parachute, like that of Huygens in 2005, is happening again, but this time in the Saturn-cast twilight of winter in Titan's northern reaches. With a pop, the parachute is released, and then a muffled splash signals the beginning of the first floating exploration of an extraterrestrial sea-this one not of water but of liquid hydrocarbons. Meanwhile, thousands of miles away, a hot air balloon, a "montgolfiere," cruises 6 miles above sunnier terrain, imaging vistas of dunes, river channels, mountains and valleys carved in water ice, and probing the subsurface for vast quantities of "missing" methane and ethane that might be hidden within a porous icy crust. Balloon and floater return their data to a Titan Orbiter equipped to strip away Titan's mysteries with imaging, radar profiling, and atmospheric sampling, much more powerful and more complete than Cassini was capable of. This spacecraft, preparing to enter a circular orbit around Saturn's cloud-shrouded giant moon, has just completed a series of flybys of Enceladus, a tiny but active world with plumes that blow water and organics from the interior into space. Specialized instruments on the orbiter were able to analyze these plumes directly during the flybys. Titan and Enceladus could hardly seem more different, and yet they are linked by their origin in the Saturn system, by a magnetosphere that sweeps up mass and delivers energy, and by the possibility that one or both worlds harbor life. It is the goal of the NASA/ESA Titan Saturn System Mission (TSSM) to explore and investigate these exotic and inviting worlds, to understand their natures and assess the possibilities of habitability in this system so distant from our home world. Orbiting, landing, and ballooning at Titan represent a new and exciting approach to planetary exploration. The TSSM mission

  15. Materials and Concepts for Full Ceramic SOFCs with Focus on Carbon Containing Fuels

    DEFF Research Database (Denmark)

    Holtappels, Peter; Sudireddy, Bhaskar Reddy; Veltzé, Sune

    stimulated the development for full ceramic anodes based on strontium titanates. Furthermore, the Ni-cermet is primarily a hydrogen oxidation electrode and efficiency losses might occur when operating on carbon containing fuels. In a recent European project full ceramic cells comprising CGO/Ni infiltrated Nb...

  16. Piezoelectric Ceramics

    International Nuclear Information System (INIS)

    Park, Chang Yeop

    1987-03-01

    This book tells of piezoelectric ceramics on BaTiO 3 Pb(Zr, Ti)O 3 , properties of piezoelectric ceramics, measurement method of piezoelectric ceramics, manufacturing method of piezoelectric ceramics, property of PbZrO 3 -PbTiO 3 , transparent ceramics like electro-optics effect, electro-optics ceramics, application of a producer of high voltage, application of ultrasonic generator, ZnO piezoelectric film and its application such as property of ZnO, piezoelectric of ZnO film, manufacturing method of ZnO.

  17. Barium aspiration and alveolarisation of barium in an infant: A case report and review of management

    Directory of Open Access Journals (Sweden)

    Alan F. Isles

    2014-05-01

    Full Text Available We describe a case of bilateral inhalation and alveolarisation of barium in an infant following a barium swallow for investigation of dusky spells associated with feeds. A bronchoscopy subsequently revealed the presence of a mid-tracheal tracheo-oesophageal cleft. We review the literature on barium aspiration, its consequences and make recommendations for management.

  18. Acetylene on Titan

    Science.gov (United States)

    Singh, Sandeep; McCord, Thomas B.; Combe, Jean-Philippe; Rodriguez, Sebastien; Cornet, Thomas; Le Mouélic, Stéphane; Clark, Roger Nelson; Maltagliati, Luca; Chevrier, Vincent

    2016-10-01

    Saturn's moon Titan possesses a thick atmosphere that is mainly composed of N2 (98%), CH4 (2 % overall, but 4.9% close to the surface) and less than 1% of minor species, mostly hydrocarbons [1]. A dissociation of N2 and CH4 forms complex hydrocarbons in the atmsophere and acetylene (C2H2) and ethane (C2H6) are produced most abundently. Since years, C2H2 has been speculated to exist on the surface of Titan based on its high production rate in the stratosphere predicted by photochemical models [2,3] and from its detection as trace gas sublimated/evaporated from the surface after the landing of the Huygens probe by the Gas Chromatograph Mass Spectrometer (GCMS) [1]. Here we show evidence of acetylene (C2H2) on the surface of Titan by detecting absorption bands at 1.55 µm and 4.93 µm using Cassini Visual and Infrared Mapping Spectrometer (VIMS) [4] at equatorial areas of eastern Shangri-La, and Fensal-Aztlan/Quivira.An anti-correlation of absorption band strength with albedo indicates greater concentrations of C2H2 in the dark terrains, such as sand dunes and near the Huygens landing site. The specific location of the C2H2 detections suggests that C2H2 is mobilized by surface processes, such as surface weathering by liquids through dissolution/evaporation processes.References:[1]Niemann et al., Nature 438, 779-784 (2005).[2]Lavvas et al., Planetary and Space Science 56, 67 - 99 (2008).[3]Lavvas et al., Planetary and Space Science 56, 27 - 66 (2008).[4] Brown et al., The Cassini-Huygens Mission 111-168 (Springer, 2004).

  19. The Tides of Titan

    Science.gov (United States)

    Iess, L.; Jacobson, R.; Ducci, M.; Stevenson, D. J.; Lunine, J. I.; Armstrong, J. W.; Asmar, S.; Racioppa, P.; Rappaport, N. J.; Tortora, P.

    2012-12-01

    Titan has long been thought to host a subsurface water ocean. A liquid water or water-ammonia layer underneath the outer icy shell was invoked to explain the Voyager and Cassini observations of abundant methane (an easily dissociated species) in the atmosphere of the satellite. Given the paucity of surface hydrocarbon reservoirs, the atmospheric methane must be supplied by the interior, and an ocean can both provide a large storage volume and facilitate the outgassing from the deeper layers of the satellite to the surface. Huygens probe observations of a Schumann-like resonance point to the presence of an electrically conductive layer at a depth of 50-100 km, which has been interpreted to be the top of an ammonia-doped ocean [1]. Cassini gravity observations provide stronger evidence of the existence of such subsurface ocean. By combining precise measurements of the spacecraft range rate during six flybys, suitably distributed along Titan's orbit (three near pericenter, two near apocenter one near quadrature), we have been able to determine the k2 Love number to be k2 = 0.589±0.150 and k2 = 0.637±0.224 in two independent so-lutions (quoted uncertainties are 2-sigma) [2]. Such a large value indicates that Titan is highly deformable over time scales of days, as one would expect if a global ocean were hidden beneath the outer icy shell. The inclusion of time-variable gravity in the solution provided also a more reliable estimate of the static field, including an updated long-wavelength geoid. We discuss the methods adopted in our solutions and some implications of our results for the interior structure of Titan, and outline the expected improvements from the additional gravity flybys before the end of mission in 2017. [1] C. Beghin, C. Sotin, M. Hamelin, Comptes Rendue Geoscience, 342, 425 (2010). [2] L. Iess, R.A. Jacobson, M. Ducci, D.J. Stevenson, J.I. Lunine, J.W. Armstrong, S.W. Asmar, P. Racioppa, N.J. Rappaport, P. Tortora, Science, 337, 457 (2012).

  20. Titan Airship Surveyor

    Science.gov (United States)

    Kerzhanovich, V.; Yavrouian, A.; Cutts, J.; Colozza, A.; Fairbrother, D.

    2001-01-01

    Saturn's moon Titan is considered to be one of the prime candidates for studying prebiotic materials - the substances that precede the formation of life but have disappeared from the Earth as a result of the evolution of life. A unique combination of a dense, predominantly nitrogen, atmosphere (more than four times that of the Earth), low gravity (six times less than on the Earth) and small temperature variations makes Titan the almost ideal planet for studies with lighter-than-air aerial platforms (aerobots). Moreover, since methane clouds and photochemical haze obscure the surface, low-altitude aerial platforms are the only practical means that can provide global mapping of the Titan surface at visible and infrared wavelengths. One major challenge in Titan exploration is the extremely cold atmosphere (approx. 90 K). However, current material technology the capability to operate aerobots at these very low temperatures. A second challenge is the remoteness from the Sun (10 AU) that makes the nuclear (radioisotopic) energy the only practical source of power. A third challenge is remoteness from the Earth (approx. 10 AU, two-way light-time approx. 160 min) which imposes restrictions on data rates and makes impractical any meaningful real-time control. A small-size airship (approx. 25 cu m) can carry a payload approximately 100 kg. A Stirling engine coupled to a radioisotope heat source would be the prime choice for producing both mechanical and electrical power for sensing, control, and communications. The cold atmospheric temperature makes Stirling machines especially effective. With the radioisotope power source the airship may fly with speed approximately 5 m/s for a year or more providing an excellent platform for in situ atmosphere measurements and a high-resolution remote sensing with unlimited access on a global scale. In a station-keeping mode the airship can be used for in situ studies on the surface by winching down an instrument package. Floating above the

  1. On Ceramics.

    Science.gov (United States)

    School Arts, 1982

    1982-01-01

    Presents four ceramics activities for secondary-level art classes. Included are directions for primitive kiln construction and glaze making. Two ceramics design activities are described in which students make bizarrely-shaped lidded jars, feet, and footwear. (AM)

  2. Barium Depletion in Hollow Cathode Emitters

    Science.gov (United States)

    Polk, James E.; Capece, Angela M.; Mikellides, Ioannis G.; Katz, Ira

    2009-01-01

    The effect of tungsten erosion, transport and redeposition on the operation of dispenser hollow cathodes was investigated in detailed examinations of the discharge cathode inserts from an 8200 hour and a 30,352 hour ion engine wear test. Erosion and subsequent re-deposition of tungsten in the electron emission zone at the downstream end of the insert reduces the porosity of the tungsten matrix, preventing the ow of barium from the interior. This inhibits the interfacial reactions of the barium-calcium-aluminate impregnant with the tungsten in the pores. A numerical model of barium transport in the internal xenon discharge plasma shows that the barium required to reduce the work function in the emission zone can be supplied from upstream through the gas phase. Barium that flows out of the pores of the tungsten insert is rapidly ionized in the xenon discharge and pushed back to the emitter surface by the electric field and drag from the xenon ion flow. This barium ion flux is sufficient to maintain a barium surface coverage at the downstream end greater than 0.6, even if local barium production at that point is inhibited by tungsten deposits. The model also shows that the neutral barium pressure exceeds the equilibrium vapor pressure of the impregnant decomposition reaction over much of the insert length, so the reactions are suppressed. Only a small region upstream of the zone blocked by tungsten deposits is active and supplies the required barium. These results indicate that hollow cathode failure models based on barium depletion rates in vacuum dispenser cathodes are very conservative.

  3. Co-Extrusion of Piezoelectric Ceramic Fibres

    OpenAIRE

    Ismael Michen, Marina

    2010-01-01

    The present work successfully developed a methodology for fabricating lead zirconate titanate [PZT] thin solid- and hollow-fibres by the thermoplastic co-extrusion process. The whole process chain, that includes: a) compounding, involving the mixing of ceramic powder with a thermoplastic binder, b) rheological characterizations, c) preform composite fabrication followed by co-extrusion, d) debinding and, finally, e) sintering of the body to near ...

  4. Processing and optimization of functional ceramic coatings and inorganic nanomaterials

    Science.gov (United States)

    Nyutu, Edward Kennedy G.

    effects on the synthesis of nanocrystalline tetragonal barium titanate. The effects of microwave frequency (fixed and variable), microwave bandwidths sweep time, and aging time on the microstructure, particle sizes, phase purity, surface areas, and porosities of the as-prepared BaTiO3 were systematically investigated. The final part of the research involves a new rapid and facile synthetic route to prepare size-tunable, ultranarrow, high surface area OMS-2 nanomaterials via open-vessel microwave-assisted refluxing preparations without employing templates or surfactants. The particle size control is achieved by varying the concentration or type of non-aqueous co-solvent. The structural, textural, and catalytic application properties of the prepared nanomaterials are investigated.

  5. Scaling up aqueous processing of A-site deficient strontium titanate for SOFC anode supports

    DEFF Research Database (Denmark)

    Verbraeken, Maarten C.; Sudireddy, Bhaskar Reddy; Vasechko, Viacheslav

    2017-01-01

    All ceramic anode supported half cells of technically relevant scale were fabricated in this study, using a novel strontium titanate anode material. The use of this material would be highly advantageous in solid oxide fuel cells due to its redox tolerance and resistance to coking and sulphur......, electrical and mechanical properties of anode supports and half cells will be discussed. The use of two different commercial titanate powders with nominal identical, but in reality different stoichiometries, strongly affect electrical and mechanical properties. Careful consideration of such variations...

  6. Advanced Ceramics

    International Nuclear Information System (INIS)

    1989-01-01

    The First Florida-Brazil Seminar on Materials and the Second State Meeting about new materials in Rio de Janeiro State show the specific technical contribution in advanced ceramic sector. The others main topics discussed for the development of the country are the advanced ceramic programs the market, the national technic-scientific capacitation, the advanced ceramic patents, etc. (C.G.C.) [pt

  7. Titan's Emergence from Winter

    Science.gov (United States)

    Flasar, F. Michael; Achterberg, Richard; Jennings, Donald; Schinder, Paul

    2011-01-01

    We summarize the changes in Titans thermal structure derived from Cassini CIRS and radio-occultation data during the transition from winter to early spring. Titan's surface, and middle atmosphere show noticeable seasonal change, whereas that in most of the troposphere is mated. This can be understood in terms of the relatively small radiative relaxation time in the middle atmosphere and much larger time scale in the troposphere. The surface exhibits seasonal change because the heat capacity in an annual skin depth is much smaller than that in the lowest scale height of the troposphere. Surface temperatures rise 1 K at raid and high latitudes in the winter northern hemisphere and cool in the southern hemisphere. Changes in in the middle atmosphere are more complicated. Temperatures in the middle stratosphere (approximately 1 mbar) increase by a few kelvin at mid northern latitudes, but those at high latitudes first increase as that region moves out of winter shadow, and then decrease. This probably results from the combined effect of increased solar heating as the suit moves higher in the sky and the decreased adiabatic warming as the sinking motions associated with the cross-equatorial meridional cell weaken. Consistent with this interpretation, the warm temperatures observed higher up at the winter polar stratopause cool significantly.

  8. Titan's Gravitational Field

    Science.gov (United States)

    Schubert, G.; Anderson, J. D.

    2013-12-01

    Titan's gravitational field is inferred from an analysis of archived radio Doppler data for six Cassini flybys. The analysis considers each flyby separately in contrast to the approach of lumping all the data together in a massive inversion. In this way it is possible to gain an improved understanding of the character of each flyby and its usefulness in constraining the gravitational coefficient C22 . Though our analysis is not yet complete and our final determination of C22 could differ from the result we report here by 1 or 2 sigma, we find a best-fit value of C22 equal to (13.21 × 0.17) × 10-6, significantly larger than the value of 10.0 × 10-6 obtained from an inversion of the lumped Cassini data. We also find no determination of the tidal Love number k2. The larger value of C22 implies a moment of inertia factor equal to 0.3819 × 0.0020 and a less differentiated Titan than is suggested by the smaller value. The larger value of C22 is consistent with an undifferentiated model of the satellite. While it is not possible to rule out either value of C22 , we prefer the larger value because its derivation results from a more hands on analysis of the data that extracts the weak hydrostatic signal while revealing the effects of gravity anomalies and unmodeled spacecraft accelerations on each of the six flybys.

  9. The Geology of Titan

    Science.gov (United States)

    Jaumann, Ralf

    Titan, the largest and most complex satellite in the solar system exhibits an organic dominated surface chemistry and shares surface features with other large icy satellites as well as the terrestrial planets. It is subject to tidal stresses, and its surface appears to have been modified tectonically. Cassini's global observations at infrared and radar wavelengths as well as local investigations by the instruments on the Huygens probe has revealed that Titan has the largest known abundance of organic material in the solar system apart from Earth, and that its active hydrological cycle is analogous to that of Earth, but with methane replacing water. The surface of Titan exhibits morphological features of different sizes and origins created by geological processes that span the entire dynamic range of aeolian, fluvial and tectonic activities, with likely evidence that cryovolcanism might exists where liquid water, perhaps in concert with ammonia, methane and carbon dioxide, makes its way to the surface from the interior [e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18]. Extended dune fields, lakes, mountainous terrain, dendritic erosion patterns and erosional remnants indicate dynamic surface processes. Valleys, small-scale gullies and rounded cobbles require erosion by extended energetic flow of liquids. There is strong evidence that liquid hydrocarbons are ponded on the surface in lakes, predominantly, but not exclusively, at high northern latitudes. A variety of features including extensive flows and caldera-like constructs are interpreted to be cryovolcanic in origin. Chains and isolated blocks of rugged terrain rising from smoother areas are best described as mountains and might be related to tectonic processes. Impact craters form on all solid bodies in the solar system, and have been detected on Titan. But very few have been observed so they must be rapidly destroyed or buried by other geologic processes The morphologies of the impact

  10. Thermal expansion studies on dysprosium and gadolinium titanates

    International Nuclear Information System (INIS)

    Panneerselvam, G.; Antony, M.P.; Vasudeva Rao, P.R.

    2002-01-01

    Lanthanides and their oxides are considered potential candidates for the use in nuclear reactors as control rod. Dysprosium (Dy) and gadolinium (Gd) have very high absorption cross-section for neutrons. Dysprosium and gadolinium titanates were prepared by ceramic route as well as wet chemical route. The compounds were characterized chemically by using inductively coupled plasma mass spectrometric (ICPMS) technique and by x-ray diffraction (XRD) technique. Thermal expansion coefficient was measured in the temperature range 573 to 1573 K by using high temperature x-ray diffraction technique. (author)

  11. Laser cooling and trapping of barium

    NARCIS (Netherlands)

    De, Subhadeep

    2008-01-01

    Laser cooling and trapping of heavy alkaline-earth element barium have been demonstrated for the first time ever. For any possible cycling transition in barium that could provide strong cooling forces, the excited state has a very large branching probability to metastable states. Additional lasers

  12. Titan's greenhouse and antigreenhouse effects

    Science.gov (United States)

    Mckay, Christopher P.; Pollack, James B.; Courtin, Regis

    1992-01-01

    Thermal mechanisms active in Titan's atmosphere are discussed in a brief review of data obtained during the Voyager I flyby in 1980. Particular attention is given to the greenhouse effect (GHE) produced by atmospheric H2, N2, and CH4; this GHE is stronger than that on earth, with CH4 and H2 playing roles similar to those of H2O and CO2 on earth. Also active on Titan is an antigreenhouse effect, in which dark-brown and orange organic aerosols block incoming solar light while allowing IR radiation from the Titan surface to escape. The combination of GHE and anti-GHE leads to a surface temperature about 12 C higher than it would be if Titan had no atmosphere.

  13. Seasonal Changes in Titan's Meteorology

    Science.gov (United States)

    Turtle, E. P.; DelGenio, A. D.; Barbara, J. M.; Perry, J. E.; Schaller, E. L.; McEwen, A. S.; West, R. A.; Ray, T. L.

    2011-01-01

    The Cassini Imaging Science Subsystem has observed Titan for 1/4 Titan year, and we report here the first evidence of seasonal shifts in preferred locations of tropospheric methane clouds. South \\polar convective cloud activity, common in late southern summer, has become rare. North \\polar and northern mid \\latitude clouds appeared during the approach to the northern spring equinox in August 2009. Recent observations have shown extensive cloud systems at low latitudes. In contrast, southern mid \\latitude and subtropical clouds have appeared sporadically throughout the mission, exhibiting little seasonality to date. These differences in behavior suggest that Titan s clouds, and thus its general circulation, are influenced by both the rapid temperature response of a low \\thermal \\inertia surface and the much longer radiative timescale of Titan s cold thick troposphere. North \\polar clouds are often seen near lakes and seas, suggesting that local increases in methane concentration and/or lifting generated by surface roughness gradients may promote cloud formation. Citation

  14. Optical properties of Er3+-doped strontium barium niobate nanocrystals obtained by thermal treatment in glass

    International Nuclear Information System (INIS)

    Haro-Gonzalez, P.; Lahoz, F.; Gonzalez-Platas, J.; Caceres, J.M.; Gonzalez-Perez, S.; Marrero-Lopez, D.; Capuj, N.; Martin, I.R.

    2008-01-01

    Measurements of the optical properties of Er 3+ ions in strontium barium niobate glass and glass ceramics have been carried out. The glasses have been fabricated using a melt-quenching method, and the glass ceramic samples have been obtained from the glass precursor by a thermal treatment. The ceramic samples formed by a glassy phase, and a crystalline phase contains nanocrystals of Sr 1-x Ba x Nb 2 O 6 (SBN) doped with Er 3+ ions with a mean size of ∼50 nm, as confirmed with XRD. Green up-conversion emission has been obtained under excitation at 800 nm, and the temporal evolution of this emission has been reported with the purpose of determining the involved up-conversion mechanism. These optical measures have confirmed that the Er 3+ ions have been incorporated into the SBN matrix, after a thermal treatment, which produced an increment of the up-conversion efficiency

  15. Analysis of the state of poling of lead zirconate titanate (PZT) particles in a Zn-ionomer composite

    NARCIS (Netherlands)

    James, N.K.; Comyn, T.; Hall, D.; Daniel, L.; Kleppe, A.; Zwaag, S. van der; Groen, W.A.

    2016-01-01

    The poling behaviour of tetragonal lead zirconate titanate (PZT) piezoelectric ceramic particles in a weakly conductive ionomer polymer matrix is investigated using high energy synchrotron X-ray diffraction analysis. The poling efficiency, crystallographic texture and lattice strain of the PZT

  16. Life on Titan

    Science.gov (United States)

    Potashko, Oleksandr

    Volcanoes engender life on heavenly bodies; they are pacemakers of life. All planets during their period of formation pass through volcanism hence - all planets and their satellites pass through the life. Tracks of life If we want to find tracks of life - most promising places are places with volcanic activity, current or past. In the case of just-in-time volcanic activity we have 100% probability to find a life. Therefore the most perspective “search for life” are Enceladus, Io and comets, further would be Venus, Jupiter’s satellites, Saturn’s satellites and first of all - Titan. Titan has atmosphere. It might be result of high volcanic activity - from one side, from other side atmosphere is a necessary condition development life from procaryota to eucaryota. Existence of a planet means that all its elements after hydrogen formed just there inside a planet. The forming of the elements leads to the formation of mineral and organic substances and further to the organic life. Development of the life depends upon many factors, e.g. the distance from star/s. The intensity of the processes of the element formation is inversely to the distance from the star. Therefore we may suppose that the intensity of the life in Mercury was very high. Hence we may detect tracks of life in Mercury, particularly near volcanoes. The distance from the star is only one parameter and now Titan looks very active - mainly due to interior reason. Its atmosphere compounds are analogous to comet tail compounds. Their collation may lead to interesting result as progress occurs at one of them. Volcanic activity is as a source of life origin as well a reason for a death of life. It depends upon the thickness of planet crust. In the case of small thickness of a crust the probability is high that volcanoes may destroy a life on a planet - like Noachian deluge. Destroying of the life under volcano influences doesn’t lead to full dead. As result we would have periodic Noachian deluge or

  17. The TITAN reversed-field-pinch fusion reactor study

    Energy Technology Data Exchange (ETDEWEB)

    1990-01-01

    This report discusses research on the titan-1 fusion power core. The major topics covered are: titan-1 fusion-power-core engineering; titan-1 divertor engineering; titan-1 tritium systems; titan-1 safety design and radioactive-waste disposal; and titan-1 maintenance procedures.

  18. Adsorption of Pb(II) present in aqueous solution on calcium, strontium and barium hydroxy apatites

    International Nuclear Information System (INIS)

    Vilchis G, J.

    2013-01-01

    Calcium, strontium and barium hydroxy apatites were successfully synthesized by chemical precipitation method, the obtained powders were characterized by the techniques of X-ray diffraction (XRD), scanning electron microscopy (Sem), semi-quantitative elemental analysis (EDS), infrared spectroscopy (IR), and N 2 physisorption studies, complementary to these analytical techniques, was determined the surface fractal dimension (Df), and the amount of surface active sites of the materials, in order to know application as ceramic for water remediation. The ability of Pb(II) ion adsorption present in aqueous solution on the hydroxy apatites synthesized by batch type experiments was studied as a function of contact time, concentration of the adsorbate and temperature. The maximum lead adsorption efficiencies obtained were 0.31, 0.32 and 0.26 mg/g for calcium, strontium and barium hydroxy apatites respectively, achieved an equilibrium time of 20 minutes in the three solid-liquid systems studied. Experimental data were adequately adjusted at the adsorption kinetic model pseudo-second order, for the three cases. Moreover, experimental data of the strontium and calcium hydroxy apatites were adjusted to the Langmuir adsorption isotherm, indicating that the adsorption was through a monolayer, whereas barium hydroxyapatite was adjusted to the Freundlich adsorption isotherm, indicating a multilayer adsorption. The thermodynamic parameters obtained during adsorption studies as a function of temperature showed physisorption, exothermic and spontaneous processes respectively. The results showed that the calcium hydroxyapatite, strontium and barium are an alternative for the Pb(II) ion adsorption present in wastewaters. (Author)

  19. Spark Plasma Sintering of Dielectric Ceramics Zr0.8Sn0.2TiO4

    Czech Academy of Sciences Publication Activity Database

    Ctibor, P.; Kubatík, Tomáš František; Sedláček, J.; Kotlan, Jiří

    2016-01-01

    Roč. 22, č. 3 (2016), s. 435-439 ISSN 1392-1320 Institutional support: RVO:61389021 Keywords : titanates * dielectric ceramics * spark plasma sintering Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass Impact factor: 0.393, year: 2016 http://www.matsc.ktu.lt/index.php/MatSc/article/view/8767

  20. A new double contrast barium enema

    International Nuclear Information System (INIS)

    Park, Jun Sang; Cho, Won Sik; Lee, Sung Woo; Lee, Mun Gyu; Jeon, Jeong Dong; Jaun, Woo Ki; Han, Chung Yul

    1987-01-01

    A new technic of the barium enema was proposed for the better colonic double contrast study with the average 204ml of 50w/v% barium, applied to 109 serial patients. The barium was introduced to sigmoid colon, and then pushed to a mid transverse colon by the air insufflation through an enema syringe, a new device. An advance to cecum is accomplished by the air insufflation and/or the position change of the patient. The barium transfer method was developed for the best spot film exposure, through colon, by the position change of the patient, the tilting of the x-ray table and the air insufflation with the enema syringe. The mean angle of the x-ray table tilted was -10 .deg. at the beginning the barium enema till the barium sent past the splenic flexure, -15 . deg. for the best lateral view of rectum and -18 .deg. for the bet prone PA view of rectosigmoid colon. This was a simple, better and economic double contrast barium enema for the cooperative patients

  1. Effect of PVP on the synthesis of high-dispersion core–shell barium-titanate–polyvinylpyrrolidone nanoparticles

    OpenAIRE

    Jinhui Li; Koji Inukai; Yosuke Takahashi; Akihiro Tsuruta; Woosuck Shin

    2017-01-01

    Monodispersed nanoparticles consisting of barium titanate (BaTiO3, BT) as the core and polyvinylpyrrolidone (PVP) as the shell were synthesized in a PVP-assisted low-temperature process in an aqueous solution at ambient pressure. In order to clarify the mechanism of this unique BT–PVP nanoparticle growth and the origin of the dispersion, the concentration and molecular weight of PVP used in the synthesis were varied, and the size and dispersion of the resulting nanoparticles in water were inv...

  2. Ceramic joining

    Energy Technology Data Exchange (ETDEWEB)

    Loehman, R.E. [Sandia National Lab., Albuquerque, NM (United States)

    1996-04-01

    This paper describes the relation between reactions at ceramic-metal interfaces and the development of strong interfacial bonds in ceramic joining. Studies on a number of systems are described, including silicon nitrides, aluminium nitrides, mullite, and aluminium oxides. Joints can be weakened by stresses such as thermal expansion mismatch. Ceramic joining is used in a variety of applications such as solid oxide fuel cells.

  3. Double contrast barium meal and acetylcysteine

    International Nuclear Information System (INIS)

    Kinnunen, J.; Pietilae, J.; Ahovuo, J.; Mankinen, P.; Tervahartiala, P.

    1989-01-01

    In a prospective double blind study, acetylcysteine, a local and systemic respiratory tract mucolytic agent, or a placebo, were given to 100 patients prior to a double contrast barium meal to decrease the gastric mucus viscosity and to make the mucus layer thinner, in order to permit barium to outline the furrows surrounding the areae gastricae instead of the overlying thick mucus. However, acetylcysteine failed to improve either visualization of the areae gastricae or the general quality of the double contrast barium meal. (orig.)

  4. Proton conducting ceramic membranes for hydrogen separation

    Science.gov (United States)

    Elangovan, S [South Jordan, UT; Nair, Balakrishnan G [Sandy, UT; Small, Troy [Midvale, UT; Heck, Brian [Salt Lake City, UT

    2011-09-06

    A multi-phase proton conducting material comprising a proton-conducting ceramic phase and a stabilizing ceramic phase. Under the presence of a partial pressure gradient of hydrogen across the membrane or under the influence of an electrical potential, a membrane fabricated with this material selectively transports hydrogen ions through the proton conducting phase, which results in ultrahigh purity hydrogen permeation through the membrane. The stabilizing ceramic phase may be substantially structurally and chemically identical to at least one product of a reaction between the proton conducting phase and at least one expected gas under operating conditions of a membrane fabricated using the material. In a barium cerate-based proton conducting membrane, one stabilizing phase is ceria.

  5. Mapping of Titan: Results from the first Titan radar passes

    Science.gov (United States)

    Stofan, E.R.; Lunine, J.I.; Lopes, R.; Paganelli, F.; Lorenz, R.D.; Wood, C.A.; Kirk, R.; Wall, S.; Elachi, C.; Soderblom, L.A.; Ostro, S.; Janssen, M.; Radebaugh, J.; Wye, L.; Zebker, H.; Anderson, Y.; Allison, M.; Boehmer, R.; Callahan, P.; Encrenaz, P.; Flamini, E.; Francescetti, G.; Gim, Y.; Hamilton, G.; Hensley, S.; Johnson, W.T.K.; Kelleher, K.; Muhleman, D.; Picardi, G.; Posa, F.; Roth, L.; Seu, R.; Shaffer, S.; Stiles, B.; Vetrella, S.; West, R.

    2006-01-01

    The first two swaths collected by Cassini's Titan Radar Mapper were obtained in October of 2004 (Ta) and February of 2005 (T3). The Ta swath provides evidence for cryovolcanic processes, the possible occurrence of fluvial channels and lakes, and some tectonic activity. The T3 swath has extensive areas of dunes and two large impact craters. We interpret the brightness variations in much of the swaths to result from roughness variations caused by fracturing and erosion of Titan's icy surface, with additional contributions from a combination of volume scattering and compositional variations. Despite the small amount of Titan mapped to date, the significant differences between the terrains of the two swaths suggest that Titan is geologically complex. The overall scarcity of impact craters provides evidence that the surface imaged to date is relatively young, with resurfacing by cryovolcanism, fluvial erosion, aeolian erosion, and likely atmospheric deposition of materials. Future radar swaths will help to further define the nature of and extent to which internal and external processes have shaped Titan's surface. ?? 2006 Elsevier Inc. All rights reserved.

  6. Titan Montgolfiere Terrestrial Test Bed, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — With the Titan Saturn System Mission, NASA is proposing to send a Montgolfiere balloon to probe the atmosphere of Titan. To better plan this mission and create a...

  7. Titan Montgolfiere Terrestrial Test Bed, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — With the Titan Saturn System Mission, NASA is proposing to send a Montgolfiere balloon to probe the atmosphere of Titan. In order to better plan this mission and...

  8. Zirconium titanate: stability and thermal expansion; Titanato de circonio: estabilidad termodinamica y expansion termica

    Energy Technology Data Exchange (ETDEWEB)

    Lopez-Lopez, E.; Moreno, R.; Baudin, C.

    2011-07-01

    Zirconium titanate is a well known compound in the field of electro ceramics, although it has also been used in catalyst and sensors applications. The crystallographic thermal expansion anisotropy of this compound makes it a potential candidate as constituent of structural components. In general, to assure the structural integrity and microstructural homogeneity of a ceramic piece, relatively low cooling rates from the fabrication temperature are required. This requirement is essential for zirconium titanate because thermal expansion as well as phase distribution is affected by small variations in the composition and cooling rate. This work reviews the available data on the phase equilibrium relationships in the systems ZrO{sub 2}-TiO{sub 2} and ZrO{sub 2}-TiO{sub 2}-Y{sub 2}O{sub 3}. The main discrepancies as well as the possible origins of them are discussed. Additionally, the crystallographic thermal expansion data in the current literature are reviewed. (Author) 56 refs.

  9. Soft mode behavior in cubic and tetragonal BaTiO.sub.3./sub. crystals and ceramics: review on the results of dielectric spectroscopy

    Czech Academy of Sciences Publication Activity Database

    Petzelt, Jan

    2008-01-01

    Roč. 375, č. 1 (2008), s. 156-164 ISSN 0015-0193 Institutional research plan: CEZ:AV0Z10100520 Keywords : barium titanate * dielectric dispersion * soft mode * central mode * dielectric anisotropy Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.562, year: 2008

  10. Organic chemistry on Titan: Surface interactions

    Science.gov (United States)

    Thompson, W. Reid; Sagan, Carl

    1992-01-01

    The interaction of Titan's organic sediments with the surface (solubility in nonpolar fluids) is discussed. How Titan's sediments can be exposed to an aqueous medium for short, but perhaps significant, periods of time is also discussed. Interactions with hydrocarbons and with volcanic magmas are considered. The alteration of Titan's organic sediments over geologic time by the impacts of meteorites and comets is discussed.

  11. Time requirement for barium reduction in intussusception

    International Nuclear Information System (INIS)

    Hwang, Hye Eun; Kim, Seung Ho; Kang, In Young; Park, Byoung Lan; Kim, Byoung Geun

    1988-01-01

    During the period between January 1985 and December 1987, barium reduction was performed in 146 cases of intussusception who were admitted to Kwangju Christian Hospital. The results were as follows: 1. Success rate to the symptom duration is relatively constant. 2. The success rate in infants with severe dehydration was 50% but it was gradually increased in infants with moderate dehydration and in infants with mild dehydration, 83.3% and 100% respectively. 3. The success rate of 12 cases in severely dehydrated infants with positive dissection sign was 16.7%. 4. The success rate of 15 cases in moderately dehydrated infants with positive dissection sign was 66.7%. 5. The average time requirement for barium reduction was 58.3 minutes. No serious complications were noted during barium reduction, except mild vomiting. 6. With above results, it is desirable that barium reduction should be performed according to the patient's physical status and radiologic findings.

  12. Barium Isotopes in Single Presolar Grains

    Science.gov (United States)

    Pellin, M. J.; Davis, A. M.; Savina, M. R.; Kashiv, Y.; Clayton, R. N.; Lewis, R. S.; Amari, S.

    2001-01-01

    Barium isotopic compositions of single presolar grains were measured by laser ablation laser resonant ionization mass spectrometry and the implications of the data for stellar processes are discussed. Additional information is contained in the original extended abstract.

  13. Barium appendicitis after upper gastrointestinal imaging.

    Science.gov (United States)

    Novotny, Nathan M; Lillemoe, Keith D; Falimirski, Mark E

    2010-02-01

    Barium appendicitis (BA) is a rarely seen entity with fewer than 30 reports in the literature. However, it is a known complication of barium imaging. To report a case of BA in a patient whose computed tomography (CT) scan was initially read as foreign body ingestion. An 18-year-old man presented with right lower quadrant pain after upper gastrointestinal imaging 2 weeks prior. A CT scan was obtained of his abdomen and pelvis that revealed a finding that was interpreted as a foreign body at the area of the terminal ileum. A plain X-ray study of the abdomen revealed radiopaque appendicoliths. Pathology confirmed the diagnosis of barium appendicitis. BA is a rare entity and the pathogenesis is unclear. Shorter intervals between barium study and presentation with appendicitis usually correlate with fewer complications. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  14. [Ceramic posts].

    Science.gov (United States)

    Mainjot, Amélie; Legros, Caroline; Vanheusden, Alain

    2006-01-01

    As a result of ceramics and all-ceram technologies development esthetic inlay core and abutments flooded the market. Their tooth-colored appearance enhances restoration biomimetism principally on the marginal gingiva area. This article reviews indications and types of cores designed for natural teeth and implants.

  15. Characterization of BaTiO3 piezoelectric perovskite material for ...

    Indian Academy of Sciences (India)

    2017-07-28

    Jul 28, 2017 ... dilatometric curve was executed using the high temperature dilatometer to determine at which temperature barium titanate pellets and beams ... deposition on barium titanate ceramics during actuator fabrication is considered. Keywords. ... In contrast, materials with low dielectric constants are used for ...

  16. An experimental study on barium peritonitis in rats

    International Nuclear Information System (INIS)

    Kang, Heung Sik; Han, Man Chung; Kim, Chu Wan

    1985-01-01

    Barium sulfate is universally used contrast media in gastrointestinal roentgenology, and spillage of barium into peritoneal cavity can occur. The references on effect of barium sulfate in the peritoneal cavity have been scattered and the results are varied. In 80 rats, body weight of 130 gm to 150 gm, sterile pure barium, sterile commercial barium, intestinal content, and mixed pure barium and intestinal content were experimentally injected into the peritoneal cavity. Consecutive weekly laparotomy and microscopic examination were done for 4 weeks. The results are as followings: 1. Mind inflammatory reaction and mild adhesion after sterile pure barium injection. 2. Mild inflammatory reaction and moderate adhesion after sterile commercial barium injection. 3. Acute peritonitis and abscess formation after intestinal content injection. 4. High mortality due to severe acute peritonitis, and severe adhesion in survivors after injection of both pure barium and intestinal content.

  17. Bacterial Reduction Of Barium Sulphate By Sulphate-Reducing Bacteria

    Directory of Open Access Journals (Sweden)

    Luptáková Alena

    2015-12-01

    Full Text Available Acid mine drainage (AMD is a worldwide problem leading to contamination of water sources. AMD are characterized by low pH and high content of heavy metals and sulphates. The barium salts application presents one of the methods for the sulphates removing from AMD. Barium chloride, barium hydroxide and barium sulphide are used for the sulphates precipitation in the form of barium sulphate. Because of high investment costs of barium salts, barium sulphide is recycled from barium sulphate precipitates. It can be recycled by thermic or bacterial reduction of barium sulphate. The aim of our study was to verify experimentally the possibility of the bacterial transformation of BaSO4 to BaS by sulphate-reducing bacteria. Applied BaSO4 came from experiments of sulphates removal from Smolnik AMD using BaCl2.

  18. Enhancement of the piezoelectric properties of sodium lanthanum bismuth titanate (Na0.5La0.5Bi4Ti4O15) through modification with cobalt

    International Nuclear Information System (INIS)

    Wang Chunming; Wang Jinfeng; Zheng Limei; Zhao Minglei; Wang Chunlei

    2010-01-01

    The dielectric, piezoelectric, and electromechanical properties of B-site cobalt-modified sodium lanthanum bismuth titanate (Na 0.5 La 0.5 Bi 4 Ti 4 O 15 , NLBT) piezoelectric ceramics were investigated. The piezoelectric properties of NLBT ceramics can be enhanced by cobalt modifications. The NLBT ceramics modified with 0.2 wt.% cobalt trioxide (NLBT-C4) possess good piezoelectric properties, with piezoelectric coefficient d 33 of 27 pC/N, electromechanical coupling factors (k p and k t ) of 6.5% and 28.5%, and mechanical quality factor Q m (k p mode) of 3400. The Curie temperature T c of cobalt-modified NLBT ceramics was found to slightly higher than that of pure NLBT ceramics. A large dielectric abnormity in dielectric loss tan δ was observed in NLBT ceramics, which can be significantly suppressed by cobalt modification. Thermal annealing studies presented the cobalt-modified NLBT ceramics possess stable piezoelectric properties.

  19. The Effect of Firing Temperatures on Phase Evolution, Microstructure, and Electrical Properties of Ba(Zr0.05Ti0.95O3 Ceramics Prepared via Combustion Technique

    Directory of Open Access Journals (Sweden)

    Chittakorn KORNPHOM

    2014-12-01

    Full Text Available In this work, the effects of calcination temperature (900 ºC – 1200 ºC for 2 h – 6 h and sintering temperature (1350 ºC – 1550 ºC for 2 h on phase evolution, microstructure and electrical properties of barium zirconate titanate Ba(Zr0.05Ti0.95O3 (BZT ceramics fabricated through the combustion technique were investigated. Glycine was used as fuel to reduce the reaction temperature. It was found that a single perovskite phase of BZT powders was observed from the sample calcined at 925 ºC for 6 h, which was lower than the solid state reaction technique ~275 ºC. The purity phase of an orthorhombic structure was observed in all ceramic samples. The average particle size (190 nm – 420 nm and the average grain size (2.9 mm – 41.4 mm increased with increased firing temperatures. The maximum theoretical density of ~96.8 % was obtained from the sample sintered at 1450 ºC for 2 h. The dielectric constant at room temperature (Tr and the dielectric constant at Curie temperature (Tc increased with increased sintering temperatures up to 1450 ºC and decreased thereafter. The dielectric properties corresponded to the obtained densities. The remnant polarization (Pr of the BZT ceramic (using the coercive electric field of 20 kV/cm increased with increasing sintering temperature. DOI: http://dx.doi.org/10.5755/j01.ms.20.4.6436

  20. Diurnal variations of Titan's ionosphere

    Science.gov (United States)

    Cui, J.; Galand, M.; Yelle, R. V.; Vuitton, V.; Wahlund, J.-E.; Lavvas, P. P.; Müller-Wodarg, I. C. F.; Cravens, T. E.; Kasprzak, W. T.; Waite, J. H.

    2009-06-01

    We present our analysis of the diurnal variations of Titan's ionosphere (between 1000 and 1300 km) based on a sample of Ion Neutral Mass Spectrometer (INMS) measurements in the Open Source Ion (OSI) mode obtained from eight close encounters of the Cassini spacecraft with Titan. Although there is an overall ion depletion well beyond the terminator, the ion content on Titan's nightside is still appreciable, with a density plateau of ˜700 cm-3 below ˜1300 km. Such a plateau is a combined result of significant depletion of light ions and modest depletion of heavy ones on Titan's nightside. We propose that the distinctions between the diurnal variations of light and heavy ions are associated with their different chemical loss pathways, with the former primarily through “fast” ion-neutral chemistry and the latter through “slow” electron dissociative recombination. The strong correlation between the observed night-to-day ion density ratios and the associated ion lifetimes suggests a scenario in which the ions created on Titan's dayside may survive well to the nightside. The observed asymmetry between the dawn and dusk ion density profiles also supports such an interpretation. We construct a time-dependent ion chemistry model to investigate the effect of ion survival associated with solid body rotation alone as well as superrotating horizontal winds. For long-lived ions, the predicted diurnal variations have similar general characteristics to those observed. However, for short-lived ions, the model densities on the nightside are significantly lower than the observed values. This implies that electron precipitation from Saturn's magnetosphere may be an additional and important contributor to the densities of the short-lived ions observed on Titan's nightside.

  1. Sulphate removal from sodium sulphate-rich brine and recovery of barium as a barium salt mixture.

    Science.gov (United States)

    Vadapalli, Viswanath R K; Zvimba, John N; Mulopo, Jean; Motaung, Solly

    2013-01-01

    Sulphate removal from sodium sulphate-rich brine using barium hydroxide and recovery of the barium salts has been investigated. The sodium sulphate-rich brine treated with different dosages of barium hydroxide to precipitate barium sulphate showed sulphate removal from 13.5 g/L to less than 400 mg/L over 60 min using a barium to sulphate molar ratio of 1.1. The thermal conversion of precipitated barium sulphate to barium sulphide achieved a conversion yield of 85% using coal as both a reducing agent and an energy source. The recovery of a pure mixture of barium salts from barium sulphide, which involved dissolution of barium sulphide and reaction with ammonium hydroxide resulted in recovery of a mixture of barium carbonate (62%) and barium hydroxide (38%), which is a critical input raw material for barium salts based acid mine drainage (AMD) desalination technologies. Under alkaline conditions of this barium salt mixture recovery process, ammonia gas is given off, while hydrogen sulfide is retained in solution as bisulfide species, and this provides basis for ammonium hydroxide separation and recovery for reuse, with hydrogen sulfide also recoverable for further industrial applications such as sulfur production by subsequent stripping.

  2. [Ceramic brackets].

    Science.gov (United States)

    Mølsted, K

    1992-01-01

    Because of the many drawbacks of the hard and brittle material, ceramic brackets should not be used uncritically for orthodontic treatments. If ceramic brackets are used, the following guidelines should be observed: 1. If large and complicated tooth movements are involved, conventional bracket systems should be considered. 2. Occlusion on ceramic brackets is to be avoided. 3. Sharp instruments should be used with extreme care to avoid scratching the ceramic surface. Metal ligatures must not be used. 4. The length of the treatment is extended, probably because of the increased friction. 5. The problems connected with removing the brackets have not yet been solved. Be particularly careful of weakened teeth. 6. Esthetically, ceramic brackets function satisfactorily, but transparent elastic ligatures do not. They rapidly become discoloured and need frequent replacement. Nor are there as yet any "invisible arch wires", apart from some few, extremely flexible "white" arch wires. The ceramic bracket has no doubt come to stay, but there have been many difficulties in the "running-in" period, and the problems are far from solved yet. New ceramic brackets are coming onto the market all the time, and only future clinical studies can show whether they will become a genuine alternative to the conventional bracket.

  3. Oxide ceramics

    International Nuclear Information System (INIS)

    Ryshkewitch, E.; Richerson, D.W.

    1985-01-01

    The book explores single-phase ceramic oxide systems from the standpoint of physical chemistry and technology. This second edition also focuses on advances in technology since publication of the original edition. These include improvements in raw materials and forming and sintering techniques, and the major role that oxide ceramics have had in development of advanced products and processes. The text is divided into five major sections: general fundamentals of oxide ceramics, advances in aluminum oxide technology, advances in zirconia technology, and advances in beryllium oxide technology

  4. Barium nucleosynthesis in the disk

    Energy Technology Data Exchange (ETDEWEB)

    Twarog, B.A.

    1981-11-15

    The history of Ba production in the disk is discussed, particularly with regard to the apparent constancy of the production rate of Ba relative to Fe over the lifetime of the disk. An infall model of the chemical evolution of Ba/Fe within the disk is constructed under the assumption that the mass function and star formation rate are independent of time and Ba is produced as purely a secondary element. The model not only satisfies the present constraints for the disk, but produces a (Ba/H)-(Fe/H) relation which is consistent with the available observational data. It is shown that the apparent constancy of the Ba/Fe ratio is an artifact of (1) an inadequate and insufficiently accurated data sample, and (2) secondary production of Ba within the disk which is 20 to 80 times less efficient relative to Fe than the production ratio for the halo. The model predicts that stars formed during the transition period between halo and disk should show a Ba/Fe excess relative to the Sun of about a factor of 2. It is concluded that the possible sources of the Ba/Fe overproduction in the halo relative to the disk are incompatible with present theoretical limits on the mass ranges for iron and barium production by stars.

  5. Warming barium sulfate improves esophageal leak detection in pig model.

    Science.gov (United States)

    Raman, Vignesh; MacGlaflin, Caitlyn E; Moodie, Karen L; Kaiser, Larry R; Erkmen, Cherie P

    2015-12-01

    Barium esophagograms have poor sensitivity in detecting leaks. We hypothesized that heating barium would decrease viscosity, facilitate extravasation, and enhance its sensitivity in detecting esophageal leaks. We characterized the viscosity of barium at increasing temperatures. We measured the radiopacity of barium at 25°C and 50°C. We determined the smallest diameter defect in esophagus that barium can detect by perforating a porcine esophageal segment with angiocatheters of various diameters, injecting barium at 25°C, and observing extravasation of contrast. We repeated this with barium heated to 30°C, 40°C, 50°C, and 70°C. To determine the ability of barium to detect a staple line leak, we perforated a stapled esophageal segment by air insufflation, injected barium at different temperatures, and monitored extravasation. We used Visipaque, a water-soluble contrast agent, for comparison in all experiments. The viscosity of barium decreased with increasing temperature. The radiopacity of barium did not change with increasing temperature and was higher than that of Visipaque (P detectable leak decreased from 2.1 mm with barium at 25°C to 1.3 mm at 40°C and 1.1 mm with Visipaque (P leak detection increased from 0% for barium at 25°C to 80% (P = 0.02) with barium at 40°C. There was no significant difference in sensitivity between barium at 40°C and Visipaque. Barium warmed to 40°C offers the best sensitivity of esophageal leak detection without compromising radiopacity. Barium at 40°C may be the optimum choice for swallow study to detect esophageal leaks. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Organic chemistry in Titan's atmosphere

    Science.gov (United States)

    Scattergood, T.

    1982-01-01

    Laboratory photochemical simulations and other types of chemical simulations are discussed. The chemistry of methane, which is the major known constituent of Titan's atmosphere was examined with stress on what can be learned from photochemistry and particle irradiation. The composition of dust that comprises the haze layer was determined. Isotope fractionation in planetary atmospheres is also discussed.

  7. Barium ferrite nanoparticles prepared by self-propagating low ...

    Indian Academy of Sciences (India)

    Administrator

    temperature combustion method using ... talline barium ferrite. Keywords. Barium ferrite; self-propagating combustion method; magnetic property; X-ray diffraction; morphology. 1. Introduction .... known that γ-Fe2O3 is a cubic spinel, whose chemical.

  8. High-frequency dielectric properties of nanocomposite and ceramic titanates

    Czech Academy of Sciences Publication Activity Database

    Rinkevich, A.B.; Kuznetsov, E. A.; Perov, D.V.; Bovtun, Viktor; Kempa, Martin; Nuzhnyy, Dmitry; Savinov, Maxim; Samoilovich, M.I.; Klescheva, S.M.; Ryabkov, Y.I.; Tsvetkova, E.V.

    2015-01-01

    Roč. 14, č. 3 (2015), s. 585-592 ISSN 1536-125X R&D Projects: GA ČR GAP204/12/0232 Institutional support: RVO:68378271 Keywords : electromagnetic waveguide * opal matrix * transmission and reflection coefficients * microwave conductivity * dielectric spectra Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 1.702, year: 2015

  9. Tailored ceramics

    International Nuclear Information System (INIS)

    Harker, A.B.

    1988-01-01

    In polyphase tailored ceramic forms two distinct modes of radionuclide immobilization occur. At high waste loadings the radionuclides are distributed through most of the ceramic phases in dilute solid solution, as indicated schematically in this paper. However, in the case of low waste loadings, or a high loading of a waste with low radionuclide content, the ceramic can be designed with only selected phases containing the radionuclides. The remaining material forms nonradioactive phases which provide a degree of physical microstructural isolation. The research and development work with polyphase ceramic nuclear waste forms over the past ten years is discussed. It has demonstrated the critical attributes which suggest them as a waste form for future HLW disposal. From a safety standpoint, the crystalline phases in the ceramic waste forms offer the potential for demonstrable chemical durability in immobilizing the long-lived radionuclides in a geologic environment. With continued experimental research on pure phases, analysis of mineral analogue behavior in geochemical environments, and the study of radiation effects, realistic predictive models for waste form behavior over geologic time scales are feasible. The ceramic forms extend the degree of freedom for the economic optimization of the waste disposal system

  10. 40 CFR 721.10011 - Barium calcium manganese strontium oxide.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Barium calcium manganese strontium... Specific Chemical Substances § 721.10011 Barium calcium manganese strontium oxide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as barium calcium...

  11. Glass/Ceramic Composites for Sealing Solid Oxide Fuel Cells

    Science.gov (United States)

    Bansal, Narottam P.; Choi, Sung R.

    2007-01-01

    A family of glass/ceramic composite materials has been investigated for use as sealants in planar solid oxide fuel cells. These materials are modified versions of a barium calcium aluminosilicate glass developed previously for the same purpose. The composition of the glass in mole percentages is 35BaO + 15CaO + 5Al2O3 + 10B2O3 + 35SiO2. The glass seal was found to be susceptible to cracking during thermal cycling of the fuel cells. The goal in formulating the glass/ ceramic composite materials was to (1) retain the physical and chemical advantages that led to the prior selection of the barium calcium aluminosilicate glass as the sealant while (2) increasing strength and fracture toughness so as to reduce the tendency toward cracking. Each of the composite formulations consists of the glass plus either of two ceramic reinforcements in a proportion between 0 and 30 mole percent. One of the ceramic reinforcements consists of alumina platelets; the other one consists of particles of yttria-stabilized zirconia wherein the yttria content is 3 mole percent (3YSZ). In preparation for experiments, panels of the glass/ceramic composites were hot-pressed and machined into test bars.

  12. The determination of major and some minor constituents in lead zirconate-titanate compositions by x-ray fluorescence and atomic absorption spectrometry

    NARCIS (Netherlands)

    van Willigen, J.H.H.G.; Kruidhof, H.; Dahmen, E.A.M.F.

    1972-01-01

    An accurate X-ray fluorescence spectrometric method is described for the determination of lead, zirconium and titanium in lead zirconate-titanate ceramics. Careful matching of samples and standards by a borax fusion method resulted in a relative standard deviation of about 0.2% for the major

  13. Structural Ceramics Database

    Science.gov (United States)

    SRD 30 NIST Structural Ceramics Database (Web, free access)   The NIST Structural Ceramics Database (WebSCD) provides evaluated materials property data for a wide range of advanced ceramics known variously as structural ceramics, engineering ceramics, and fine ceramics.

  14. BaTiO3 FILMS DEPOSITED ONTO TiNb AND Ti SUBSTRATES - AMOUNT AND STABILITY OF BARIUM

    Directory of Open Access Journals (Sweden)

    Kamila Moriová

    2017-06-01

    Full Text Available BaTiO3 films deposited onto TiNb and Ti substrates using hydrothermal synthesis method were studied in the presented work. These films are supposed to improve properties of bone implants due to their ferroelectric behaviour, because ferroelectrics induce improved bone formation. A great question is the chemical stability of the used material. It can be crucial for its biocompatibility and possible in vivo application. We studied chemical composition of prepared samples, especially concentration of Ba and Ti and trends of these concentrations stimulated by a solution saline action. The Ba and Ti concentrations were determined by XPS under ultra - high vacuum condition. The BaTiO3 films were investigated as received after the preparation procedure as well as after a long - time treatment in solution saline. Every sample was introduced to the solution saline at first for 1 and later for 3 weeks. Ti concentration almost does not change during our experiments while a meaningful Ba decrease is observed. Nevertheless, barium release seems to slow down with respect to the time of solution saline action. Stability of barium titanate films in a period of several months and an absolute amount of the released barium will be a subject of the next research.

  15. Crystal structure transformations induced by surface stresses in BaTiO.sub.3./sub. and BaTiO.sub.3./sub.@SiO.sub.2./sub. nanoparticles and ceramics

    Czech Academy of Sciences Publication Activity Database

    Laguta, Valentyn; Elissalde, C.; Maglione, M.; Artemenko, A.M.; Chlan, V.; Štěpánková, H.; Zagorodniy, Y.

    2015-01-01

    Roč. 88, č. 8 (2015), s. 761-775 ISSN 0141-1594 R&D Projects: GA ČR GA13-11473S Institutional support: RVO:68378271 Keywords : barium titanate * nanoparticles * NMR Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.858, year: 2015

  16. Amino acidis derived from Titan tholins

    Science.gov (United States)

    Khare, Bishun N.; Sagan, Carl; Ogino, Hiroshi; Nagy, Bartholomew; Er, Cevat

    1986-01-01

    The production of amino acids by acid treatment of Titan tholin is experimentally investigated. The synthesis of Titan tholin and the derivatization of amino acids to N-trifluoroacetyl isopropyl esters are described. The gas chromatography/mass spectroscopy analysis of the Titan tholins reveals the presence of glycine, alpha and beta alainine, and aspartic acid, and the total yield of amino acids is about 0.01.

  17. Evaluation of ceramic materials to immobilize ICPP calcines

    International Nuclear Information System (INIS)

    Staples, B.A.; Cole, H.S.; Mittl, J.C.

    1982-01-01

    Various ceramic materials as well as Formula 127 glass have been developed to immobilize Idaho Chemical Processing Plant (ICPP) zirconia calcine. Tailored, titanate and matrix encapsulated ceramics were prepared by cold pressing and sintering reactants, while glass-ceramics were prepared by melting in a manner similar to that of preparing the glass. X-ray diffraction techniques were used to determine the presence of radionuclide and calcine matrix element host phases in each ceramic material. The aqueous leachability, practical loading capacity and the incorporation of waste elements into host phases was investigated and compared to those of Formula 127 glass through application of the Soxhlet and MCC-1 static leach tests. Potential process requirements for each material were evaluated based on the number of steps needed for laboratory-scale preparation. 5 figures, 4 tables

  18. Near-field terahertz imaging of ferroelectric domains in barium titanate

    Czech Academy of Sciences Publication Activity Database

    Berta, Milan; Kadlec, Filip

    2010-01-01

    Roč. 83, 10-11 (2010), 985-993 ISSN 0141-1594 R&D Projects: GA MŠk LC512 Institutional research plan: CEZ:AV0Z10100520 Keywords : singular value decomposition * domain structure imaging * near-field terahertz microscopy * subwavelength resolution Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.006, year: 2010

  19. Synthesis of barium-strontium titanate hollow tubes using Kirkendall effect

    Science.gov (United States)

    Chen, Xuncai; Im, SangHyuk; Kim, Jinsoo; Kim, Woo-Sik

    2018-02-01

    (BaSr)TiO3 hexagonal hollow tubes was fabricated by a solid-state interfacial reaction including a Kirkendall diffusion. Using a co-precipitation and sol-gel process, a core@shell structure of (BaSr)CO3@TiO2 rods were prepared, and then converted to (BaSr)TiO3 hollow tubes at 750 °C. This was a first achievement of single-phase crystal hollow tube. Here, the inner diameter and wall thickness of hollow tube were about 700 nm and 130 nm, respectively. The fabrication of (BaSr)TiO3 hollow tubes was monitored with scanning electron microscopy (SEM), energy-dispersive spectrometry (EDS), transmission electron microscopy (TEM), and X-ray diffraction (XRD) to investigate their formation mechanism. The present synthetic approach would provide a new insight into the design and fabrication of hollow architectures of many perovskite oxides.

  20. Synthesis of strontium substituted barium titanate nanoparticles by mechanical alloying and high power ultrasonication destruction

    Energy Technology Data Exchange (ETDEWEB)

    Yustanti, Erlina, E-mail: erlina.yustanti@ui.ac.id [Graduate Program of Material Science, Faculty of Mathematics and Natural Sciences University of Indonesia Jl. Salemba Raya No. 04 Jakarta 10430 (Indonesia); Department of Metallurgy, Faculty of Engineering University of Sultan AgengTirtayasa Jl. Jenderal Sudirman KM 03 Cilegon-Banten 65134 (Indonesia); Hafizah, Mas Ayu Elita, E-mail: kemasayu@yahoo.com; Manaf, Azwar, E-mail: azwar@ui.ac.id [Graduate Program of Material Science, Faculty of Mathematics and Natural Sciences University of Indonesia Jl. Salemba Raya No. 04 Jakarta 10430 (Indonesia)

    2016-04-19

    This paper reports the particle and crystallite size characterizations of mechanically alloyed Ba{sub (1-x)}Sr{sub x}TiO{sub 3} (BST) with x = 0.3 and 0.7 prepared with the assistance of a high-power sonicator. Analytical grade BaCO{sub 3}, TiO{sub 2} and SrCO{sub 3} precursors with a purity of greater than 99 wt.% were mixed and milled using a planetary ball mill to a powder weight ratio of 10:1. Powders obtained after 20 hours of milling time were then sintered at 1200°C for 4 hours to form crystalline powders.These powders were further treated ultrasonically under a fixed 6.7 gr/l particle concentration in demineralized water for 1, 3, 5, 7 hours and a fixed ultrasonic irradiation time of 1 hour to the dispersion of 6.7; 20; 33.3 gr/l concentrations. As to the results of crystallite size characterization, it is demonstrated that the mean crystallite size of BST with x = 0.3 and 0.7 undergo a slight change after the first 1 hour irradiation time and then remain almost unchanged. This was in contrary to the particle size in which the mean particle size of BST with x = 0.3 increased from 765 nm to 1405 nm after 7 hours irradiation time, while that of x = 0.7 increased from 505 nm to 1298 nm after 3 hours and then reduced back to the initial size after 7 hours ultra sonication time. The increase in particle size was due to large of cohesive forces among fine particles. It is also demonstrated that the concentration of particles in a dispersion with anionic surfactant do not effective to reduce the particle sizes ultrasonically. Nanoparticles with the mean size respectively 40 and 10 times larger than their respective crystallite size were successfully obtained respectively in x = 0.3 and x = 0.7.