WorldWideScience

Sample records for barium nitrides

  1. Barium

    International Nuclear Information System (INIS)

    Present article is devoted to barium content in fluoride. In order to obtain the comprehensive view on barium distribution in fluorite 303 mono mineral fractions of various geologic deposits and ores of Kazakhstan, Uzbekistan, Tajikistan and some geologic deposits of Russia were analyzed. The barium content in fluorite of geologic deposits of various mineralogical and genetic type was defined. The basic statistical estimation of barium distribution in fluorite were evaluated.

  2. Metal substitution effect on superconductivity in barium intercalated ternary metal nitride chlorides

    International Nuclear Information System (INIS)

    We systematically studied barium cointercalated ternary metal nitride chloride superconductors of Ba0.8(NH3) yZr1−xHf xNCl (x=0,0.25,0.5,0.75,1). X-ray diffraction and Raman spectra measurements show a systematical evolution of lattice constants and lattice dynamics upon Hf replacement for Zr. The superconducting transition temperature (Tc) increases monotonically from 11.7 K to 20.2 K with increasing the hafnium content in metal-nitrogen bilayers from 0 to 1. The upper critical field Hc2(0) for Ba0.8(NH3) yHfNCl is estimated to be about 13.2 T. Accompanied by the remarkably increased Tc, the highest energy phonon mode coupled most strongly with electronic system shows a moderate hardening with Hf substitution for Zr. This result suggests the reinforcement of pairing interaction with Hf substitution arises mainly from the evolution of electronic structure of metal d-band rather than from phonon modes. (paper)

  3. Cobalt phosphate-modified barium-doped tantalum nitride nanorod photoanode with 1.5% solar energy conversion efficiency

    KAUST Repository

    Li, Yanbo

    2013-10-03

    Spurred by the decreased availability of fossil fuels and global warming, the idea of converting solar energy into clean fuels has been widely recognized. Hydrogen produced by photoelectrochemical water splitting using sunlight could provide a carbon dioxide lean fuel as an alternative to fossil fuels. A major challenge in photoelectrochemical water splitting is to develop an efficient photoanode that can stably oxidize water into oxygen. Here we report an efficient and stable photoanode that couples an active barium-doped tantalum nitride nanostructure with a stable cobalt phosphate co-catalyst. The effect of barium doping on the photoelectrochemical activity of the photoanode is investigated. The photoanode yields a maximum solar energy conversion efficiency of 1.5%, which is more than three times higher than that of state-of-the-art single-photon photoanodes. Further, stoichiometric oxygen and hydrogen are stably produced on the photoanode and the counter electrode with Faraday efficiency of almost unity for 100 min. © 2013 Macmillan Publishers Limited. All rights reserved.

  4. Variation of crystallinity and stoichiometry in films of gallium oxide, gallium nitride and barium zirconate prepared by means of PLD

    International Nuclear Information System (INIS)

    Pulsed Laser Deposition (PLD) is an ablation technique for thin film preparation of many materials. The film properties can be well controlled by the process parameters. Therefore, in many cases a given material can be deposited with different properties by changing one or more process parameters. In this thesis thin films of gallium oxide, gallium nitride and barium zirconate were deposited with a large variation in structure and stoichiometry by means of Pulsed Laser Deposition. The characterization of the film crystallinity, phase purity and short range structural order was completed by means of X-ray diffraction and X-ray absorption spectroscopy. The stoichiometry was investigated using electron probe microanalysis. For analyzing the correlation between the structure and stoichiometry with the optical and electrical properties, optical absorption and electrical conductivity measurements were carried out. The investigation of all three material systems showed that very unique properties can be realized when combining an amorphous structure and a non-stoichiometric composition. For example, in amorphous and oxygen deficient gallium oxide an insulator-metal-transition can be induced by partial crystallization of the as prepared phase accomplished by annealing at about 400 C in argon atmosphere (as shown in literature). Furthermore, amorphous and highly non-stoichiometric barium zirconate has the ability to split water molecules to hydrogen and oxygen at room temperature. A detailed analysis of both phenomena has been performed by means of photoemission and transmission electron microscopy in the case of gallium oxide and via X-ray absorption spectroscopy and gas chromatography in the case of barium zirconate.

  5. Barium enema

    Science.gov (United States)

    Barium enema is a special x-ray of the large intestine, which includes the colon and rectum. ... to a bag that holds a liquid containing barium sulfate. This is a contrast material that highlights ...

  6. Barium Sulfate

    Science.gov (United States)

    Barium sulfate is used to help doctors examine the esophagus (tube that connects the mouth and stomach), ... dimensional pictures of the inside of the body). Barium sulfate is in a class of medications called ...

  7. Variation of crystallinity and stoichiometry in films of gallium oxide, gallium nitride and barium zirconate prepared by means of PLD; Variation von Kristallinitaet und Stoechiometrie in mittels PLD hergestellten Schichten aus Galliumoxid, Galliumnitrid und Bariumzirkonat

    Energy Technology Data Exchange (ETDEWEB)

    Brendt, Jochen

    2011-08-05

    Pulsed Laser Deposition (PLD) is an ablation technique for thin film preparation of many materials. The film properties can be well controlled by the process parameters. Therefore, in many cases a given material can be deposited with different properties by changing one or more process parameters. In this thesis thin films of gallium oxide, gallium nitride and barium zirconate were deposited with a large variation in structure and stoichiometry by means of Pulsed Laser Deposition. The characterization of the film crystallinity, phase purity and short range structural order was completed by means of X-ray diffraction and X-ray absorption spectroscopy. The stoichiometry was investigated using electron probe microanalysis. For analyzing the correlation between the structure and stoichiometry with the optical and electrical properties, optical absorption and electrical conductivity measurements were carried out. The investigation of all three material systems showed that very unique properties can be realized when combining an amorphous structure and a non-stoichiometric composition. For example, in amorphous and oxygen deficient gallium oxide an insulator-metal-transition can be induced by partial crystallization of the as prepared phase accomplished by annealing at about 400 C in argon atmosphere (as shown in literature). Furthermore, amorphous and highly non-stoichiometric barium zirconate has the ability to split water molecules to hydrogen and oxygen at room temperature. A detailed analysis of both phenomena has been performed by means of photoemission and transmission electron microscopy in the case of gallium oxide and via X-ray absorption spectroscopy and gas chromatography in the case of barium zirconate.

  8. Composite of Barium Aluminosilicate Reinforced in situ with Silicon Nitride%原位生长β-Si3N4增强BAS基体复合材料

    Institute of Scientific and Technical Information of China (English)

    顾建成; 吴建生; 曹光宇; 周玉; 雷廷权

    2001-01-01

    BAS glass-ceramic powders were prepared by sol-gel processing. The procedure of transformation of BAS was investigated by DTA and XRD. Effects of additional Li2O with NH4F on transformation from H→M of Barium aluminosilicate were also studied. No evidence is found that the addition of BAS or Si3N4 can influence the transformation from α-Si3N4→β-Si3N4 or from H→M of Barium aluminosilicate. The results show that the flexural strength and fracture toughness value of the BAS glass-ceramic matrix composites can be effectively improved by in situ rod-like silicon nitride. The main toughening mechanism is crack deflection, pull-out and bridging. The increased value of flexural strength is contributed to the load transition effect from matrix to rod-like silicon nitride.%用溶胶-凝胶法合成化学定比BAS(BaO-Al2O3-2SiO2)粉末,并用差热分析和XRD法分析基相变过程、氧化锂对BAS相变过程影响、晶种对BAS相变过程的影响,考察了BAS对氮化硅相变的影响以及加入晶种后对氮化硅相变的影响.用热压氮气保护法制备了自生β-Si3N4增强BAS的复合材料,并比较了其力学性能与BAS的力学性能.结果表明,纯BAS相变产物是六方相,氧化锂与氟化物的加入,促进了BAS单斜相的形成,BAS单斜晶种能有效地促进BAS单斜相的形成;BAS能够促进氮化硅由α-Si3N4→β-Si3N4的相变,β-Si3N4能有效地提高BAS微晶玻璃的强度和断裂韧性,分析了增强和增韧机理.

  9. Barium Sulfate

    Science.gov (United States)

    ... using x-rays or computed tomography (CAT scan, CT scan; a type of body scan that uses ... be clearly seen by x-ray examination or CT scan. ... more times before an x-ray examination or CT scan.If you are using a barium sulfate ...

  10. BARIUM RECOVERY PROCESS

    Science.gov (United States)

    Blanco, R.E.

    1959-07-21

    A method of separating barium from nuclear fission products is described. In accordance with the invention, barium may be recovered from an acidic solution of neutron-irradiated fissionable material by carrying ihe barium cut of solution as a sulfate with lead as a carrier and then dissolving the barium-containing precipitate in an aqueous solution of an aliphatic diamine chelating reagent. The barium values together with certain other metallic values present in the diamine solution are then absorbed onto a cation exchange resin and the barium is selectively eluted from the resin bed with concentrated nitric acid.

  11. Barium enema (image)

    Science.gov (United States)

    A barium enema is performed to examine the walls of the colon. During the procedure, a well lubricated enema tube is inserted gently into the rectum. The barium, a radiopaque (shows up on X-ray) contrast ...

  12. Radioisotope analyzer of barium

    International Nuclear Information System (INIS)

    Principle of operation and construction of radioisotope barium sulphate analyzer type MZB-2 for fast determination of barium sulphate content in barite ores and enrichment products are described. The gauge equipped with Am-241 and a scintillation detector enables measurement of barium sulphate content in prepared samples of barite ores in the range 60% - 100% with the accuracy of 1%. The gauge is used in laboratories of barite mine and ore processing plant. 2 refs., 2 figs., 1 tab. (author)

  13. Tailored Barium Swallow Study

    Science.gov (United States)

    ... View Denver Pollen Count You are here: Programs & Services > Tests We Offer > Imaging Tests Tailored Barium Swallow Study The TBS is a special study that is completed in radiology. The test evaluates the mouth and the throat ...

  14. Lower GI Series (Barium Enema)

    Science.gov (United States)

    ... barium into a bedpan or nearby toilet. A health care professional may give you an enema to flush out the rest of the barium. An x-ray technician and a radiologist perform a lower gastrointestinal (GI) series at a ...

  15. Observed Barium Emission Rates

    Science.gov (United States)

    Stenbaek-Nielsen, H. C.; Wescott, E. M.; Hallinan, T. J.

    1993-01-01

    The barium releases from the CRRES satellite have provided an opportunity for verifying theoretically calculated barium ion and neutral emission rates. Spectra of the five Caribbean releases in the summer of 1991 were taken with a spectrograph on board a U.S. Air Force jet aircraft. Because the line of sight release densities are not known, only relative rates could be obtained. The observed relative rates agree well with the theoretically calculated rates and, together with other observations, confirm the earlier detailed theoretical emission rates. The calculated emission rates can thus with good accuracy be used with photometric observations. It has been postulated that charge exchange between neutral barium and oxygen ions represents a significant source for ionization. If so. it should be associated with emissions at 4957.15 A and 5013.00 A, but these emissions were not detected.

  16. New barium tantalum sulphides

    International Nuclear Information System (INIS)

    The authors discuss a new barium tantalum sulphide, Ba3Ta2S8, prepared by sulphurization of a mixture of BaCO3 and Ta2O5. The electron and powder X-ray diffraction patterns of the compound are indexed on the basis of a monoclinic cell with lattice constants. A structure model is proposed. The refinement based on the powder X-ray diffraction intensities is performed

  17. Barium calcium hydroxyapatite solid solutions

    International Nuclear Information System (INIS)

    The replacement of calcium by barium in the hydroxyapatite structure by solid-state reaction at different temperatures and by precipitation from an aqueous system has been investigated by X-ray diffraction and i.r. absorption analyses. The products obtained by solid-state reaction at 1200 deg C are solid solutions over the range of barium concentration 60 to 100 atom %. The lattice dimensions and the i.r. frequencies of the solid solutions vary linearly with the atom % of barium. Only small amounts of barium can be incorporated in hydroxyapatite by precipitation from the aqueous system. (author)

  18. Barium zirconate base ceramics

    International Nuclear Information System (INIS)

    The chemical corrosion at high temperatures is a serious problem in the refractory materials field, leading to degradation and bath contamination by elements of the refractory. The main objective of this work was to search for ceramics that could present higher resistance to chemical attack by aggressive molten oxides. The general behaviour of a ceramic material based on barium zirconate (Ba Zr O3) with the addition of different amounts of liquid phase former was investigated. The densification behaviour occurred during different heat treatments, as well as the microstructure development, as a function of the additives and their reactions with the main phase, were observed and are discussed. (author)

  19. MR Colonography with fecal tagging: Barium vs. barium ferumoxsil

    DEFF Research Database (Denmark)

    Achiam, M.P.; Chabanova, E.; Logager, V.B.; Thomsen, H.S.; Rosenberg, J.

    2008-01-01

    . Materials and Methods. Twenty patients referred to CC underwent dark lumen MRC prior to the colonoscopy. Two groups of patients received two different oral contrast agents (barium sulfate and barium sulfate/ferumoxsil) as a laxative-free fecal tagging prior to the MRC. After MRC, the contrast agent was...... rated qualitatively (with the standard method using contrast-to-wall ratio) and subjectively (using a visual analog scale [VAS]) by three different blinded observers. Results. Evaluated both qualitatively and subjectively, the tagging efficiency of barium sulfate/ferumoxsil was significantly better (P...... <.05) than barium sulfate alone. The VAS method for evaluating the tagging efficiency of contrast agents showed a high correlation (observer 11, r = 0.91) to the standard method using contrast-to-wall ratio and also a high interclass correlation (observer 11 and III = 0.89/0.85). MRC found I of 22 (5...

  20. Doped barium titanate nanoparticles

    Indian Academy of Sciences (India)

    T K Kundu; A Jana; P Barik

    2008-06-01

    We have synthesized nickel (Ni) and iron (Fe) ion doped BaTiO3 nanoparticles through a chemical route using polyvinyl alcohol (PVA). The concentration of dopant varies from 0 to 2 mole% in the specimens. The results from X-ray diffractograms and transmission electron micrographs show that the particle diameters in the specimen lie in the range 24–40 nm. It is seen that the dielectric permittivity in doped specimens is enhanced by an order of magnitude compared to undoped barium titanate ceramics. The dielectric permittivity shows maxima at 0.3 mole% doping of Fe ion and 0.6 mole% of Ni ion. The unusual dielectric behaviour of the specimens is explained in terms of the change in crystalline structure of the specimens.

  1. New barium tantalum sulphides

    International Nuclear Information System (INIS)

    A new barium tantalum sulphide has been synthesized by the reaction of CS2 with a mixture of BaCO3 and Ta2O5. The chemical analysis of the compound was performed for 3 components (Ba, Ta and S), and the chemical composition was found to be BaTa2S5. The powder X-ray diffraction peaks were indexable on the basis of a hexagonal cell with lattices constants of a=3.32A, c=25.13A. However, the electron diffraction measurements show that the structure is more complex than that observed by powder X-ray diffraction. The compound indicates metallic behavior and Pauli paramagnetism

  2. Abundance analysis of barium and mild barium stars

    CERN Document Server

    Smiljanic, R; Silva, L

    2007-01-01

    High signal to noise, high resolution spectra were obtained for a sample of normal, mild barium, and barium giants. Atmospheric parameters were determined from the FeI and FeII lines. Abundances for Na, Mg, Al, Si, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Sr, Y, Zr, Ba, La, Ce, Nd, Sm, Eu, and Gd, were determined from equivalent widths and model atmospheres in a differential analysis, with the red giant Eps Vir as the standard star. The different levels of s-process overabundances of barium and mild barium stars were earlier suggested to be related to the stellar metallicity. Contrary to this suggestion, we found in this work no evidence for barium and mild barium to have a different range in metallicity. However, comparing the ratio of abundances of heavy to light s-process elements, we found some evidence that they do not share the same neutron exposure parameter. The exact mechanism controlling this difference is still not clear. As a by-product of this analysis we identify two normal red giants misclass...

  3. Barium aluminate cement: its application

    International Nuclear Information System (INIS)

    The technology of manufacturing barium aluminate cement from barium sulfate and alumina, using a rotary kiln for firing the clinker is described. The method of granulation of the homogenized charge was used. Conditions of using the ''to mud'' method in industry were indicated. The physical and chemical properties of barium aluminate cement are determined and the quality of several batches of cement prepared on a semi-industrial scale and their suitability for making highly refractory concretes are tested. The optimal composition of the concretes is determined as a function of the mixing water and barium aluminate cement contents. Several experimental batches of concretes were used in the linings of furnaces in the steel industry. The suitability of these cements for use in fields other than steelmaking is examined. It is established that calcium aluminate cement has certain limited applications

  4. Discovery of the Barium Isotopes

    OpenAIRE

    SHORE, A.; A. Fritsch; Ginepro, J. Q.; Heim, M.; Schuh, A.; Thoennessen, M

    2009-01-01

    Thirty-eight barium isotopes have so far been observed; the discovery of these isotopes is discussed. For each isotope a brief summary of the first refereed publication, including the production and identification method, is presented.

  5. Barium light source method and apparatus

    Science.gov (United States)

    Curry, John J. (Inventor); MacDonagh-Dumler, Jeffrey (Inventor); Anderson, Heidi M. (Inventor); Lawler, James E. (Inventor)

    2002-01-01

    Visible light emission is obtained from a plasma containing elemental barium including neutral barium atoms and barium ion species. Neutral barium provides a strong green light emission in the center of the visible spectrum with a highly efficient conversion of electrical energy into visible light. By the selective excitation of barium ionic species, emission of visible light at longer and shorter wavelengths can be obtained simultaneously with the green emission from neutral barium, effectively providing light that is visually perceived as white. A discharge vessel contains the elemental barium and a buffer gas fill therein, and a discharge inducer is utilized to induce a desired discharge temperature and barium vapor pressure therein to produce from the barium vapor a visible light emission. The discharge can be induced utilizing a glow discharge between electrodes in the discharge vessel as well as by inductively or capacitively coupling RF energy into the plasma within the discharge vessel.

  6. The problem of the barium stars

    Science.gov (United States)

    Bohm-Vitense, E.; Nemec, J.; Proffitt, C.

    1984-01-01

    Ultraviolet observations of barium stars and other cool stars with peculiar element abundances are reported. Those observations attempted to find hot white dwarf companions. Among six real barium stars studied, only Zeta Cap was found to have a white dwarf companion. Among seven mild, or marginal, barium stars studied, at least three were found to have hot subluminous companions. It is likely that all of them have white dwarf companions.

  7. Radioisotope barium sulphate gauge MZB-2

    International Nuclear Information System (INIS)

    A method and the gauge for measuring content of barium sulphate are described. The gauge is intended for fast determination of barium sulphate in barite ore and in output products of the enrichment process. The measuring range 60-100% of BaSO4, accuracy ±1% and measuring time 60 s were reached. The barium sulphate gauge is used in barite mine ''Boguszow'' in Poland. (author)

  8. ONE CASE REPORT OF ACUTE POISONING BY BARIUM CARBONATE

    Institute of Scientific and Technical Information of China (English)

    GE Qin-min; BIAN Fan; WANG Shu-yun; SHEN Sheng-hui

    2009-01-01

    @@ Most barium poisoning cases were caused by oral intake by mistake. Recent years, barium carbonate poisoning has been rare to be reported. Here we reported a case of acute barium carbonate toxication taken orally on purpose.

  9. Barium Depletion in Hollow Cathode Emitters

    Science.gov (United States)

    Polk, James E.; Capece, Angela M.; Mikellides, Ioannis G.; Katz, Ira

    2009-01-01

    The effect of tungsten erosion, transport and redeposition on the operation of dispenser hollow cathodes was investigated in detailed examinations of the discharge cathode inserts from an 8200 hour and a 30,352 hour ion engine wear test. Erosion and subsequent re-deposition of tungsten in the electron emission zone at the downstream end of the insert reduces the porosity of the tungsten matrix, preventing the ow of barium from the interior. This inhibits the interfacial reactions of the barium-calcium-aluminate impregnant with the tungsten in the pores. A numerical model of barium transport in the internal xenon discharge plasma shows that the barium required to reduce the work function in the emission zone can be supplied from upstream through the gas phase. Barium that flows out of the pores of the tungsten insert is rapidly ionized in the xenon discharge and pushed back to the emitter surface by the electric field and drag from the xenon ion flow. This barium ion flux is sufficient to maintain a barium surface coverage at the downstream end greater than 0.6, even if local barium production at that point is inhibited by tungsten deposits. The model also shows that the neutral barium pressure exceeds the equilibrium vapor pressure of the impregnant decomposition reaction over much of the insert length, so the reactions are suppressed. Only a small region upstream of the zone blocked by tungsten deposits is active and supplies the required barium. These results indicate that hollow cathode failure models based on barium depletion rates in vacuum dispenser cathodes are very conservative.

  10. Processing science of barium titanate

    Science.gov (United States)

    Aygun, Seymen Murat

    Barium titanate and barium strontium titanate thin films were deposited on base metal foils via chemical solution deposition and radio frequency magnetron sputtering. The films were processed at elevated temperatures for densification and crystallization. Two unifying research goals underpin all experiments: (1) To improve our fundamental understanding of complex oxide processing science, and (2) to translate those improvements into materials with superior structural and electrical properties. The relationships linking dielectric response, grain size, and thermal budget for sputtered barium strontium titanate were illustrated. (Ba 0.6Sr0.4)TiO3 films were sputtered on nickel foils at temperatures ranging between 100-400°C. After the top electrode deposition, the films were co-fired at 900°C for densification and crystallization. The dielectric properties were observed to improve with increasing sputter temperature reaching a permittivity of 1800, a tunability of 10:1, and a loss tangent of less than 0.015 for the sample sputtered at 400°C. The data can be understood using a brick wall model incorporating a high permittivity grain interior with low permittivity grain boundary. However, this high permittivity value was achieved at a grain size of 80 nm, which is typically associated with strong suppression of the dielectric response. These results clearly show that conventional models that parameterize permittivity with crystal diameter or film thickness alone are insufficiently sophisticated. Better models are needed that incorporate the influence of microstructure and crystal structure. This thesis next explores the ability to tune microstructure and properties of chemically solution deposited BaTiO3 thin films by modulation of heat treatment thermal profiles and firing atmosphere composition. Barium titanate films were deposited on copper foils using hybrid-chelate chemistries. An in-situ gas analysis process was developed to probe the organic removal and the

  11. Barium methylphosphonates: synthesis, characterization and mutual interconversions

    Czech Academy of Sciences Publication Activity Database

    Beneš, L.; Melánová, Klára; Svoboda, Jan; Zima, Vítězslav

    Strasbourg: University of Strasbourg, Francie, 2015. P64. [ISIC18 International Symposium on Intercalation Compounds. 31.05.2015-04.06.2015, Strasbourg] R&D Projects: GA ČR(CZ) GA14-13368S Institutional support: RVO:61389013 Keywords : hydrates of barium methylphosphonate * barium hydrogen methylphosphonate * powder X-ray diffraction Subject RIV: CA - Inorganic Chemistry

  12. A new double contrast barium enema

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jun Sang; Cho, Won Sik; Lee, Sung Woo; Lee, Mun Gyu; Jeon, Jeong Dong; Jaun, Woo Ki; Han, Chung Yul [Inje College Paik Hospital, Pusan (Korea, Republic of)

    1987-12-15

    A new technic of the barium enema was proposed for the better colonic double contrast study with the average 204ml of 50w/v% barium, applied to 109 serial patients. The barium was introduced to sigmoid colon, and then pushed to a mid transverse colon by the air insufflation through an enema syringe, a new device. An advance to cecum is accomplished by the air insufflation and/or the position change of the patient. The barium transfer method was developed for the best spot film exposure, through colon, by the position change of the patient, the tilting of the x-ray table and the air insufflation with the enema syringe. The mean angle of the x-ray table tilted was -10 .deg. at the beginning the barium enema till the barium sent past the splenic flexure, -15 . deg. for the best lateral view of rectum and -18 .deg. for the bet prone PA view of rectosigmoid colon. This was a simple, better and economic double contrast barium enema for the cooperative patients.

  13. Synthesis of barium titanium oxide from barium sulphate and anatase. Study of equimolar mixtures under different atmospheres

    International Nuclear Information System (INIS)

    To enable the ceramization of a barium sulphate-rich radioactive waste the synthesis of barium titanium oxide is studied by using anatase and barium sulphate. As a function of the calcination atmosphere, helium (or air) and Ar/H2, two reactions are studied. A mechanism of barium titanium oxide synthesis in helium (or in air) is proposed

  14. Double contrast barium meal and acetylcysteine

    International Nuclear Information System (INIS)

    In a prospective double blind study, acetylcysteine, a local and systemic respiratory tract mucolytic agent, or a placebo, were given to 100 patients prior to a double contrast barium meal to decrease the gastric mucus viscosity and to make the mucus layer thinner, in order to permit barium to outline the furrows surrounding the areae gastricae instead of the overlying thick mucus. However, acetylcysteine failed to improve either visualization of the areae gastricae or the general quality of the double contrast barium meal. (orig.)

  15. Barium adsorption on the (110) and (111) molybdenum faces

    Energy Technology Data Exchange (ETDEWEB)

    Azizov, U.V.; Sabirov, S.T.; Dzhalilov, S.T. (Tashkentskij Gosudarstvennyj Univ. (USSR))

    1982-07-01

    Barium adsorption on Mo faces (110) and (111) was investigated by thermoemission and Cs surface ionization methods to obtain a more broad representation of barium adsorption at higher temperatures of cathode. Experiments show that the substrate temperature increase at a constant barium concentration results in the formation of small barium islands. At that, barium is under similar energy conditions in the small islands formed on the face (110) independent of relative areas of the islands.

  16. Molybdenum nitride nanotubes

    International Nuclear Information System (INIS)

    Molybdenum nitride nanotubes were prepared by depositing nitride film on anodized aluminum oxide (AAO) template by atomic layer deposition and then etching away the template with sodium hydroxide solution. The effect of deposition parameters on film growth and the properties of the nanotubes was investigated. The maximum depth of intrusion of the molybdenum nitride film into the AAO pores was found to be 20 μm, achieved with 7-second precursor pulses. Precursor diffusion into the AAO pores dominated over the intrusion. Three different architectures of molybdenum nitride nanotubes were isolated. Separated nanotubes were found when the template was etched in an ultrasonic bath, while bundling dominated when template etching was conducted without ultrasound. When the nitride-coated AAO template was mounted onto a steel plate before etching the nanotubes remained on the surface with the tips strongly intertwined

  17. Vertical coupling of laser glass microspheres to buried silicon nitride ellipses and waveguides

    OpenAIRE

    Navarro-Urrios, Daniel; Ramirez, Joan Manel; Capuj, Nestor E.; Berencen, Yonder; Garrido, Blas; Tredicucci, Alessandro

    2015-01-01

    We demonstrate the integration of Nd3+ doped Barium-Titanium-Silicate microsphere lasers with a Silicon Nitride photonic platform. Devices with two different geometrical configurations for extracting the laser light to buried waveguides have been fabricated and characterized. The first configuration relies on a standard coupling scheme, where the microspheres are placed over strip waveguides. The second is based on a buried elliptical geometry whose working principle is that of an elliptical ...

  18. Nitrogen Availability Of Nitriding Atmosphere In Controlled Gas Nitriding Processes

    OpenAIRE

    Michalski J; Burdyński K.; Wach P.; Łataś Z.

    2015-01-01

    Parameters which characterize the nitriding atmosphere in the gas nitriding process of steel are: the nitriding potential KN, ammonia dissociation rate α and nitrogen availabilitymN2. The article discusses the possibilities of utilization of the nitriding atmosphere’s nitrogen availability in the design of gas nitriding processes of alloyed steels in atmospheres derived from raw ammonia, raw ammonia diluted with pre-dissociated ammonia, with nitrogen, as well as with both nitrogen and pre-dis...

  19. Barium Isotopes in Single Presolar Grains

    Science.gov (United States)

    Pellin, M. J.; Davis, A. M.; Savina, M. R.; Kashiv, Y.; Clayton, R. N.; Lewis, R. S.; Amari, S.

    2001-01-01

    Barium isotopic compositions of single presolar grains were measured by laser ablation laser resonant ionization mass spectrometry and the implications of the data for stellar processes are discussed. Additional information is contained in the original extended abstract.

  20. An experimental study on barium peritonitis in rats

    International Nuclear Information System (INIS)

    Barium sulfate is universally used contrast media in gastrointestinal roentgenology, and spillage of barium into peritoneal cavity can occur. The references on effect of barium sulfate in the peritoneal cavity have been scattered and the results are varied. In 80 rats, body weight of 130 gm to 150 gm, sterile pure barium, sterile commercial barium, intestinal content, and mixed pure barium and intestinal content were experimentally injected into the peritoneal cavity. Consecutive weekly laparotomy and microscopic examination were done for 4 weeks. The results are as followings: 1. Mind inflammatory reaction and mild adhesion after sterile pure barium injection. 2. Mild inflammatory reaction and moderate adhesion after sterile commercial barium injection. 3. Acute peritonitis and abscess formation after intestinal content injection. 4. High mortality due to severe acute peritonitis, and severe adhesion in survivors after injection of both pure barium and intestinal content.

  1. Bacterial Reduction Of Barium Sulphate By Sulphate-Reducing Bacteria

    Directory of Open Access Journals (Sweden)

    Luptáková Alena

    2015-12-01

    Full Text Available Acid mine drainage (AMD is a worldwide problem leading to contamination of water sources. AMD are characterized by low pH and high content of heavy metals and sulphates. The barium salts application presents one of the methods for the sulphates removing from AMD. Barium chloride, barium hydroxide and barium sulphide are used for the sulphates precipitation in the form of barium sulphate. Because of high investment costs of barium salts, barium sulphide is recycled from barium sulphate precipitates. It can be recycled by thermic or bacterial reduction of barium sulphate. The aim of our study was to verify experimentally the possibility of the bacterial transformation of BaSO4 to BaS by sulphate-reducing bacteria. Applied BaSO4 came from experiments of sulphates removal from Smolnik AMD using BaCl2.

  2. Venous barium embolization, a rare, potentially fatal complication of barium enema: 2 case reports

    International Nuclear Information System (INIS)

    Venous embolization of barium has been recognized for 4 decades as one of the most dreaded complications of barium enema. Fortunately, the condition is extremely rare. In this report, the radiographic findings in 2 cases of venous embolization (one involving the portal vein and one systematic) are described, and ways to decrease the risk of this complication are discussed. (author)

  3. Thermochemical hydrogen production via a cycle using barium and sulfur - Reaction between barium sulfide and water

    Science.gov (United States)

    Ota, K.; Conger, W. L.

    1977-01-01

    The reaction between barium sulfide and water, a reaction found in several sulfur based thermochemical cycles, was investigated kinetically at 653-866 C. Gaseous products were hydrogen and hydrogen sulfide. The rate determining step for hydrogen formation was a surface reaction between barium sulfide and water. An expression was derived for the rate of hydrogen formation.

  4. Synthesis of barium mercaptides and application of antimony/barium mercaptides

    Institute of Scientific and Technical Information of China (English)

    瞿龙; 张露露; 舒万艮

    2001-01-01

    Mercaptoacetic acid, isooctyl thioglycolate and barium hydroxide used as start materials, barium bis (2-ethylhexyl thioglycolate) (Ba(2EHTG)2), barium thioglycolate (Ba(TG)) and barium bisthioglycolate (Ba(TG)2) were synthesized. Their optimum synthetic techniques were discussed, and some physicochemical data were reported. Infrared spectroscopy and elemental analysis methods were used to identify the structures. They were put into PVC plastic products together with antimony tris (2-ethylhexyl thioglycolate) (Sb(2EHTG)3) under the suitable compounding, and their heat stability to PVC was studied. It is shown that these barium mercaptides have remarkable synergisms with antimony mercaptides and the long-term stabilizing effect of organoantimony stabilizer can be effectively improved, reducing the amount of antimony compounds so as to avoid the decrease of its stabilizing effect.

  5. Chemical abundances and kinematics of barium stars

    Science.gov (United States)

    de Castro, D. B.; Pereira, C. B.; Roig, F.; Jilinski, E.; Drake, N. A.; Chavero, C.; Silva, J. V. Sales

    2016-04-01

    In this paper we present an homogeneous analysis of photospheric abundances based on high-resolution spectroscopy of a sample of 182 barium stars and candidates. We determined atmospheric parameters, spectroscopic distances, stellar masses, ages, luminosities and scale height, radial velocities, abundances of the Na, Al, alpha-elements, iron-peak elements, and s-process elements Y, Zr, La, Ce, and Nd. We employed the local-thermodynamic-equilibrium model atmospheres of Kurucz and the spectral analysis code MOOG. We found that the metallicities, the temperatures and the surface gravities for barium stars can not be represented by a single gaussian distribution. The abundances of alpha-elements and iron peak elements are similar to those of field giants with the same metallicity. Sodium presents some degree of enrichment in more evolved stars that could be attributed to the NeNa cycle. As expected, the barium stars show overabundance of the elements created by the s-process. By measuring the mean heavy-element abundance pattern as given by the ratio [s/Fe], we found that the barium stars present several degrees of enrichment. We also obtained the [hs/ls] ratio by measuring the photospheric abundances of the Ba-peak and the Zr-peak elements. Our results indicated that the [s/Fe] and the [hs/ls] ratios are strongly anti-correlated with the metallicity. Our kinematical analysis showed that 90% of the barium stars belong to the thin disk population. Based on their luminosities, none of the barium stars are luminous enough to be an AGB star, nor to become self-enriched in the s-process elements. Finally, we determined that the barium stars also follow an age-metallicity relation.

  6. Chemical abundances and kinematics of barium stars

    Science.gov (United States)

    de Castro, D. B.; Pereira, C. B.; Roig, F.; Jilinski, E.; Drake, N. A.; Chavero, C.; Sales Silva, J. V.

    2016-07-01

    In this paper, we present an homogeneous analysis of photospheric abundances based on high-resolution spectroscopy of a sample of 182 barium stars and candidates. We determined atmospheric parameters, spectroscopic distances, stellar masses, ages, luminosities and scaleheight, radial velocities, abundances of the Na, Al, α-elements, iron-peak elements, and s-process elements Y, Zr, La, Ce, and Nd. We employed the local thermodynamic equilibrium model atmospheres of Kurucz and the spectral analysis code MOOG. We found that the metallicities, the temperatures and the surface gravities for barium stars cannot be represented by a single Gaussian distribution. The abundances of α-elements and iron peak elements are similar to those of field giants with the same metallicity. Sodium presents some degree of enrichment in more evolved stars that could be attributed to the NeNa cycle. As expected, the barium stars show overabundance of the elements created by the s-process. By measuring the mean heavy-element abundance pattern as given by the ratio [s/Fe], we found that the barium stars present several degrees of enrichment. We also obtained the [hs/ls] ratio by measuring the photospheric abundances of the Ba-peak and the Zr-peak elements. Our results indicated that the [s/Fe] and the [hs/ls] ratios are strongly anticorrelated with the metallicity. Our kinematical analysis showed that 90 per cent of the barium stars belong to the thin disc population. Based on their luminosities, none of the barium stars are luminous enough to be an asymptotic giant branch star, nor to become self-enriched in the s-process elements. Finally, we determined that the barium stars also follow an age-metallicity relation.

  7. Boron nitride composites

    Energy Technology Data Exchange (ETDEWEB)

    Kuntz, Joshua D.; Ellsworth, German F.; Swenson, Fritz J.; Allen, Patrick G.

    2016-02-16

    According to one embodiment, a composite product includes hexagonal boron nitride (hBN), and a plurality of cubic boron nitride (cBN) particles, wherein the plurality of cBN particles are dispersed in a matrix of the hBN. According to another embodiment, a composite product includes a plurality of cBN particles, and one or more borate-containing binders.

  8. Nitrogen Availability Of Nitriding Atmosphere In Controlled Gas Nitriding Processes

    Directory of Open Access Journals (Sweden)

    Michalski J.

    2015-06-01

    Full Text Available Parameters which characterize the nitriding atmosphere in the gas nitriding process of steel are: the nitriding potential KN, ammonia dissociation rate α and nitrogen availabilitymN2. The article discusses the possibilities of utilization of the nitriding atmosphere’s nitrogen availability in the design of gas nitriding processes of alloyed steels in atmospheres derived from raw ammonia, raw ammonia diluted with pre-dissociated ammonia, with nitrogen, as well as with both nitrogen and pre-dissociated ammonia. The nitriding processes were accomplished in four series. The parameters selected in the particular processes were: process temperature (T, time (t, value of nitriding potential (KN, corresponding to known dissociation rate of the ammonia which dissociates during the nitriding process (α. Variable parameters were: nitrogen availability (mN2, composition of the ingoing atmosphere and flow rate of the ingoing atmosphere (FIn.

  9. Abnormal Nitride Morphologies upon Nitriding Iron-Based Substrates

    Science.gov (United States)

    Meka, Sai Ramudu; Mittemeijer, Eric Jan

    2013-06-01

    Nitriding of iron-based components is a very well-known surface engineering method for bringing about great improvement of the mechanical and chemical properties. An overview is presented of the strikingly different nitride morphologies developing upon nitriding iron-based alloy substrates. Observed abnormal morphologies are the result of intricate interplay of the thermodynamic and kinetic constraints for the nucleation and growth of both alloying element nitride particles in the matrix and iron nitrides at the surface of the substrate. Alloying elements having strong Me-N interaction, such as Cr, V, and Ti, precipitate instantaneously as internal Me-nitrides, thus allowing the subsequent nucleation and growth of "normal" layer-type iron nitride. Alloying elements having weak Me-N interaction, such as Al, Si, and Mo, and simultaneously having low solubility in iron nitride, obstruct/delay the nucleation and growth of iron nitrides at the surface, thus leading to very high nitrogen supersaturation over an extended depth range from the surface. Eventually, the nucleation and growth of "abnormal" plate-type iron nitride occurs across the depth range of high nitrogen supersaturation. On this basis, strategies can be devised for tuned development of specific nitride morphologies at the surface of nitrided components.

  10. Properties of minor actinide nitrides

    International Nuclear Information System (INIS)

    The present status of the research on properties of minor actinide nitrides for the development of an advanced nuclear fuel cycle based on nitride fuel and pyrochemical reprocessing is described. Some thermal stabilities of Am-based nitrides such as AmN and (Am, Zr)N were mainly investigated. Stabilization effect of ZrN was cleary confirmed for the vaporization and hydrolytic behaviors. New experimental equipments for measuring thermal properties of minor actinide nitrides were also introduced. (author)

  11. Metal Nitrides for Plasmonic Applications

    DEFF Research Database (Denmark)

    Naik, Gururaj V.; Schroeder, Jeremy; Guler, Urcan;

    2012-01-01

    Metal nitrides as alternatives to metals such as gold could offer many advantages when used as plasmonic material. We show that transition metal nitrides can replace metals providing equally good optical performance for many plasmonic applications.......Metal nitrides as alternatives to metals such as gold could offer many advantages when used as plasmonic material. We show that transition metal nitrides can replace metals providing equally good optical performance for many plasmonic applications....

  12. 40 CFR 721.10011 - Barium calcium manganese strontium oxide.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Barium calcium manganese strontium... Specific Chemical Substances § 721.10011 Barium calcium manganese strontium oxide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as barium...

  13. Coprecipitation of iron and silver with barium fluoride

    International Nuclear Information System (INIS)

    Distribution of trace contaminants of iron and silver at coprecipitation of barium fluoride is studied in present work. It is defined that iron almost completely coprecipitated with barium fluoride in wide range of ph 5.5-12. Silver coprecipitated with barium fluoride in ph range 4-7. The value of coprecipitation varies from 94% to 100%.

  14. Recrystallization of 223Ra with barium sulfate

    International Nuclear Information System (INIS)

    In this work, the kinetics of barium sulfate recrystallization has been studied in acidic 0.01 mol dm-3 sodium sulfate solution using 223Ra and 133Ba tracers at very low total radium concentration, i.e. less than 10-13 mol dm-3. It was found that the system follows the homogeneous recrystallization model and that recrystallization rates, inferred by the decrease of 223Ra and 133Ba in the aqueous solution, are fast. Therefore, even at very low concentrations, below the solubility limit, radium will be retained by barium sulfate-a mineral present in the deep underground repository. (author)

  15. Printed Barium Strontium Titanate capacitors on silicon

    International Nuclear Information System (INIS)

    In this paper, we show that Barium Strontium Titanate (BST) films can be prepared by inkjet printing of sol–gel precursors on platinized silicon substrate. Moreover, a functional variable capacitor working in the GHz range has been made without any lithography or etching steps. Finally, this technology requires 40 times less precursors than the standard sol–gel spin-coating technique. - Highlights: • Inkjet printing of Barium Strontium Titanate films • Deposition on silicon substrate • Inkjet printed silver top electrode • First ever BST films thinner than 1 μm RF functional variable capacitor that has required no lithography

  16. Printed Barium Strontium Titanate capacitors on silicon

    Energy Technology Data Exchange (ETDEWEB)

    Sette, Daniele [Univ. Grenoble Alpes, F-38000 Grenoble (France); CEA, LETI, MINATEC Campus, F-38054 Grenoble (France); Luxembourg Institute of Science and Technology LIST, Materials Research and Technology Department, L-4422 Belvaux (Luxembourg); Kovacova, Veronika [Univ. Grenoble Alpes, F-38000 Grenoble (France); CEA, LETI, MINATEC Campus, F-38054 Grenoble (France); Defay, Emmanuel, E-mail: emmanuel.defay@list.lu [Univ. Grenoble Alpes, F-38000 Grenoble (France); CEA, LETI, MINATEC Campus, F-38054 Grenoble (France); Luxembourg Institute of Science and Technology LIST, Materials Research and Technology Department, L-4422 Belvaux (Luxembourg)

    2015-08-31

    In this paper, we show that Barium Strontium Titanate (BST) films can be prepared by inkjet printing of sol–gel precursors on platinized silicon substrate. Moreover, a functional variable capacitor working in the GHz range has been made without any lithography or etching steps. Finally, this technology requires 40 times less precursors than the standard sol–gel spin-coating technique. - Highlights: • Inkjet printing of Barium Strontium Titanate films • Deposition on silicon substrate • Inkjet printed silver top electrode • First ever BST films thinner than 1 μm RF functional variable capacitor that has required no lithography.

  17. Enterogastroesophageal reflux during barium enema: Report of a case

    International Nuclear Information System (INIS)

    Enterogastric reflux during barium enema examination has been ascribed to various causes including incompetence of the ilepcecal valve, shunt, fistula, excessive barium etc. Recently we have encountered a case of complete enterogastroesphageal regurgitation during barium enema examination performed for the reduction of the ileocolic intuosusception in 6 months old baby. The regurgitation occurred only in the first of two barium enema examinations conducted at one month interval for recurring intussusception. The barium-saline solution used in the present study was not more than 350 ml in quantity. No organic or physical causes of such a complete regurgitation could be determined

  18. 75 FR 19657 - Barium Chloride From China

    Science.gov (United States)

    2010-04-15

    ... Commission found that the domestic interested party group response to its notice of institution (74 FR 31757... COMMISSION Barium Chloride From China AGENCY: United States International Trade Commission. ACTION: Notice of Commission determination to conduct a full five-year review concerning the antidumping duty order on...

  19. Impurities in barium titanate posistor ceramics

    Czech Academy of Sciences Publication Activity Database

    Korniyenko, S. M.; Bykov, I. P.; Glinchuk, M. J.; Laguta, V. V.; Belous, A. G.; Jastrabík, Lubomír

    2000-01-01

    Roč. 239, - (2000), s. 1209-1218. ISSN 0015-0193 Institutional research plan: CEZ:AV0Z1010914 Keywords : barium titanate phase transition * ESR * positive temperature coefficient of resistivity Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.547, year: 2000

  20. 75 FR 20625 - Barium Chloride From China

    Science.gov (United States)

    2010-04-20

    ... established a schedule for the conduct of this review (74 FR 62587, November 30, 2010). Subsequently, counsel... From the Federal Register Online via the Government Publishing Office INTERNATIONAL TRADE COMMISSION Barium Chloride From China AGENCY: United States International Trade Commission. ACTION:...

  1. Thermal decomposition of barium valerate in argon

    DEFF Research Database (Denmark)

    Torres, P.; Norby, Poul; Grivel, Jean-Claude

    2015-01-01

    The thermal decomposition of barium valerate (Ba(C4H9CO2)(2)/Ba-pentanoate) was studied in argon by means of thermogravimetry, differential thermal analysis, IR-spectroscopy, X-ray diffraction and hot-stage optical microscopy. Melting takes place in two different steps, at 200 degrees C and 280...

  2. Sintering silicon nitride

    Science.gov (United States)

    Bansal, Narottam P. (Inventor); Levine, Stanley R. (Inventor); Sanders, William A. (Inventor)

    1993-01-01

    Oxides having a composition of (Ba(1-x)Sr(x))O-Al2O3-2SiO2 are used as sintering aids for producing an improved silicon nitride ceramic material. The x must be greater than 0 to insure the formation of the stable monoclinic celsian glass phase.

  3. Hot pressing aluminum nitride

    International Nuclear Information System (INIS)

    Experiment was performed on the hot pressing of aluminum nitride, using three kinds of powder which are: a) made by electric arc method, b) made by nitrifying aluminum metal powder, and c) made from alumina and carbon in nitrogen atmosphere. The content of oxygen of these powders was analyzed by activation analysis using high energy neutron irradiation. The density of hot pressed samples was classified into two groups. The high density group contained oxygen more than 3 wt. %, and the low density group contained about 0.5 wt %. Typical density vs. temperature curves have a bending point near 1,5500C, and the sample contains iron impurity of 0.5 wt. %. Needle crystals were found to grow near 1,5500C by VLS mechanism, and molten iron acts a main part of mechanism as a liquid phase. According to the above-mentioned curve, the iron impurity in aluminum nitride prevents densification. The iron impurity accelerates crystal growth. Advance of densification may be expected by adding iron impurity, but in real case, the densification is delayed. Densification and crystal growth are greatly accelerated by oxygen impurity. In conclusion, more efforts must be made for the purification of aluminum nitride. In the present stage, the most pure nitride powder contains about 0.1 wt. % of oxygen, as compared with good silicon carbide crystals containing only 10-5 wt. % of nitrogen. (Iwakiri, K.)

  4. Barium carbonate as an agent to improve the electrical properties of neodymium-barium-copper system at high temperature

    International Nuclear Information System (INIS)

    Specialized ceramics are manufactured under special conditions and contain specific elements. They possess unique electrical and thermal properties and are frequently used by the electronics industry. Ceramics containing neodymium-barium-copper (NBC) exhibit high conductivities at low temperatures. NBC-based ceramics are typically combined with oxides, i.e., NBCo produced from neodymium oxide, barium oxide and copper oxide. This study presents NBC ceramics that were produced with barium carbonate, copper oxide and neodymium oxide (NBCa) as starting materials. These ceramics have good electrical conductivities at room temperature. Their conductivities are temperature dependent and related to the starting amount of barium carbonate (w%). - Highlights: • The new crystalline structure were obtained due presence of the barium carbonate. • The NBCa compound has excellent electrical conductivity at room temperature. • The grain crystalline morphology was modified by presence of the barium carbonate. • New Phases α and β were introduced by carbonate barium in the NBC compound

  5. Barium carbonate as an agent to improve the electrical properties of neodymium-barium-copper system at high temperature

    Energy Technology Data Exchange (ETDEWEB)

    Fernandes, J.P. [Post-Graduate Program in Chemical Engineering, Universidade Federal de Santa Catarina (UFSC), Florianópolis, SC, 88040-900 (Brazil); Duarte, G.W. [Post-Graduate Program in Chemical Engineering, Universidade Federal de Santa Catarina (UFSC), Florianópolis, SC, 88040-900 (Brazil); Research Group in Technology and Information, Centro Universitário Barriga Verde (UNIBAVE), Santa Catarina, SC (Brazil); Caldart, C. [Post-Graduate Program in Science and Materials Engineering, Universidade do Extremo Sul Catarinense (UNESC), Criciúma, SC, 88806-000 (Brazil); Kniess, C.T. [Post-Graduate Program in Professional Master in Management, Universidade Nove de Julho, São Paulo, SP (Brazil); Montedo, O.R.K.; Rocha, M.R. [Post-Graduate Program in Science and Materials Engineering, Universidade do Extremo Sul Catarinense (UNESC), Criciúma, SC, 88806-000 (Brazil); Riella, H.G. [Post-Graduate Program in Chemical Engineering, Universidade Federal de Santa Catarina (UFSC), Florianópolis, SC, 88040-900 (Brazil); Fiori, M.A., E-mail: fiori@unochapeco.edu.br [Post-Graduate Program in Environmental Science, Universidade Comunitária da Região de Chapecó (UNOCHAPECÓ), Chapecó, SC, 89809-000 (Brazil); Post-Graduate Program in Technology and Management of the Innovation, Universidade Comunitária da Região de Chapecó (UNOCHAPECÓ), Chapecó, SC, 89809-000 (Brazil)

    2015-11-15

    Specialized ceramics are manufactured under special conditions and contain specific elements. They possess unique electrical and thermal properties and are frequently used by the electronics industry. Ceramics containing neodymium-barium-copper (NBC) exhibit high conductivities at low temperatures. NBC-based ceramics are typically combined with oxides, i.e., NBCo produced from neodymium oxide, barium oxide and copper oxide. This study presents NBC ceramics that were produced with barium carbonate, copper oxide and neodymium oxide (NBCa) as starting materials. These ceramics have good electrical conductivities at room temperature. Their conductivities are temperature dependent and related to the starting amount of barium carbonate (w%). - Highlights: • The new crystalline structure were obtained due presence of the barium carbonate. • The NBCa compound has excellent electrical conductivity at room temperature. • The grain crystalline morphology was modified by presence of the barium carbonate. • New Phases α and β were introduced by carbonate barium in the NBC compound.

  6. Fluorescent lighting with aluminum nitride phosphors

    Energy Technology Data Exchange (ETDEWEB)

    Cherepy, Nerine J.; Payne, Stephen A.; Seeley, Zachary M.; Srivastava, Alok M.

    2016-05-10

    A fluorescent lamp includes a glass envelope; at least two electrodes connected to the glass envelope; mercury vapor and an inert gas within the glass envelope; and a phosphor within the glass envelope, wherein the phosphor blend includes aluminum nitride. The phosphor may be a wurtzite (hexagonal) crystalline structure Al.sub.(1-x)M.sub.xN phosphor, where M may be drawn from beryllium, magnesium, calcium, strontium, barium, zinc, scandium, yttrium, lanthanum, cerium, praseodymium, europium, gadolinium, terbium, ytterbium, bismuth, manganese, silicon, germanium, tin, boron, or gallium is synthesized to include dopants to control its luminescence under ultraviolet excitation. The disclosed Al.sub.(1-x)M.sub.xN:Mn phosphor provides bright orange-red emission, comparable in efficiency and spectrum to that of the standard orange-red phosphor used in fluorescent lighting, Y.sub.2O.sub.3:Eu. Furthermore, it offers excellent lumen maintenance in a fluorescent lamp, and does not utilize "critical rare earths," minimizing sensitivity to fluctuating market prices for the rare earth elements.

  7. Contact damage of silicon nitride whisker-silicon nitride composites

    International Nuclear Information System (INIS)

    The influence of β-silicon nitride whiskers content on Hertzian contact damage in silicon nitride matrix prepared by tape casting and gas pressure sintering (GPS) is discussed. Hertzian indentations with different loads were applied to follow the evolution of damage in these whisker-reinforced composites. The morphology of contact damage was investigated by using optical microscopy, as well as electron microscopy. With increasing β-silicon nitride whiskers content in α-silicon nitride, the porosity of materials increased and the micro structure of matrix became finer. With decreasing grain size, the subsurface contact damage increased by increasing crack length. The samples with 2 mass % β-silicon nitride addition had showed shallow ring crack and quasi-plastic deformation. On the other hand, for sample with 10 mass % β-silicon nitride whisker added sample and coarse microstructures subsurface deformation was not observed. Copyright (2002) AD-TECH - International Foundation for the Advancement of Technology Ltd

  8. Radioactive Barium Ion Trap Based on Metal-Organic Framework for Efficient and Irreversible Removal of Barium from Nuclear Wastewater.

    Science.gov (United States)

    Peng, Yaguang; Huang, Hongliang; Liu, Dahuan; Zhong, Chongli

    2016-04-01

    Highly efficient and irreversible capture of radioactive barium from aqueous media remains a serious task for nuclear waste disposal and environmental protection. To address this task, here we propose a concept of barium ion trap based on metal-organic framework (MOF) with a strong barium-chelating group (sulfate and sulfonic acid group) in the pore structures of MOFs. The functionalized MOF-based ion traps can remove >90% of the barium within the first 5 min, and the removal efficiency reaches 99% after equilibrium. Remarkably, the sulfate-group-functionalized ion trap demonstrates a high barium uptake capacity of 131.1 mg g(-1), which surpasses most of the reported sorbents and can selectively capture barium from nuclear wastewater, whereas the sulfonic-acid-group-functionalized ion trap exhibits ultrafast kinetics with a kinetic rate constant k2 of 27.77 g mg(-1) min(-1), which is 1-3 orders of magnitude higher than existing sorbents. Both of the two MOF-based ion traps can capture barium irreversibly. Our work proposes a new strategy to design barium adsorbent materials and provides a new perspective for removing radioactive barium and other radionuclides from nuclear wastewater for environment remediation. Besides, the concrete mechanisms of barium-sorbent interactions are also demonstrated in this contribution. PMID:26999358

  9. Prospects for Barium Tagging in Gaseous Xenon

    International Nuclear Information System (INIS)

    Tagging events with the coincident detection of a barium ion would greatly reduce the background for a neutrino-less double beta decay search in xenon. This paper describes progress towards realizing this goal. It outlines a source that can produce large quantities of Ba++ in gas, shows that this can be extracted to vacuum, and demonstrates a mechanism by which the Ba++ can be efficiently converted to Ba+ as required for laser identification.

  10. Production of translationally cold barium monohalide ions

    OpenAIRE

    DePalatis, M. V.; Chapman, M.S.

    2013-01-01

    We have produced sympathetically cooled barium monohalide ions BaX$^+$ (X = F, Cl, Br) by reacting trapped, laser cooled Ba$^+$ ions with room temperature gas phase neutral halogen-containing molecules. Reaction rates for two of these (SF$_6$ and CH$_3$Cl) have been measured and are in agreement with classical models. BaX$^+$ ions are promising candidates for cooling to the rovibrational ground state, and our method presents a straightforward way to produce these polar molecular ions.

  11. Chemical abundances and kinematics of barium stars

    CERN Document Server

    de Castro, D B; Roig, F; Jilinski, E; Drake, N A; Chavero, C; Silva, J V Sales

    2016-01-01

    In this paper we present an homogeneous analysis of photospheric abundances based on high-resolution spectroscopy of a sample of 182 barium stars and candidates. We determined atmospheric parameters, spectroscopic distances, stellar masses, ages, luminosities and scale height, radial velocities, abundances of the Na, Al, $alpha$-elements, iron-peak elements, and s-process elements Y, Zr, La, Ce, and Nd. We employed the local-thermodynamic-equilibrium model atmospheres of Kurucz and the spectral analysis code {\\sc moog}. We found that the metallicities, the temperatures and the surface gravities for barium stars can not be represented by a single gaussian distribution. The abundances of $alpha$-elements and iron peak elements are similar to those of field giants with the same metallicity. Sodium presents some degree of enrichment in more evolved stars that could be attributed to the NeNa cycle. As expected, the barium stars show overabundance of the elements created by the s-process. By measuring the mean heav...

  12. Barium hexaferrite nanoparticles: Synthesis and magnetic properties

    Energy Technology Data Exchange (ETDEWEB)

    Martirosyan, K.S., E-mail: karen.martirosyan@utb.edu [Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX 77204 (United States); Texas Center for Superconductivity, University of Houston, Houston, TX 77204 (United States); Department of Electrical and Computer Engineering, University of Houston, Houston, TX 77204 (United States); Galstyan, E. [Texas Center for Superconductivity, University of Houston, Houston, TX 77204 (United States); Hossain, S.M.; Wang Yiju [Department of Electrical and Computer Engineering, University of Houston, Houston, TX 77204 (United States); Litvinov, D. [Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX 77204 (United States); Texas Center for Superconductivity, University of Houston, Houston, TX 77204 (United States); Department of Electrical and Computer Engineering, University of Houston, Houston, TX 77204 (United States)

    2011-01-15

    Carbon combustion synthesis is applied to rapid and energy efficient fabrication of crystalline barium hexaferrite nanoparticles with the average particle size of 50-100 nm. In this method, the exothermic oxidation of carbon nanoparticles with an average size of 5 nm with a surface area of 80 m{sup 2}/g generates a self-propagating thermal wave with maximum temperatures of up to 1000 deg. C. The thermal front rapidly propagates through the mixture of solid reactants converting it to the hexagonal barium ferrite. Carbon is not incorporated in the product and is emitted from the reaction zone as a gaseous CO{sub 2}. The activation energy for carbon combustion synthesis of BaFe{sub 12}O{sub 19} was estimated to be 98 kJ/mol. A complete conversion to hexagonal barium ferrite is obtained for carbon concentration exceeding 11 wt.%. The magnetic properties H{sub c}{approx}3000 Oe and M{sub s}{approx}50.3 emu/g of the compact sintered ferrites compare well with those produced by other synthesis methods.

  13. Barium hexaferrite nanoparticles: Synthesis and magnetic properties

    International Nuclear Information System (INIS)

    Carbon combustion synthesis is applied to rapid and energy efficient fabrication of crystalline barium hexaferrite nanoparticles with the average particle size of 50-100 nm. In this method, the exothermic oxidation of carbon nanoparticles with an average size of 5 nm with a surface area of 80 m2/g generates a self-propagating thermal wave with maximum temperatures of up to 1000 deg. C. The thermal front rapidly propagates through the mixture of solid reactants converting it to the hexagonal barium ferrite. Carbon is not incorporated in the product and is emitted from the reaction zone as a gaseous CO2. The activation energy for carbon combustion synthesis of BaFe12O19 was estimated to be 98 kJ/mol. A complete conversion to hexagonal barium ferrite is obtained for carbon concentration exceeding 11 wt.%. The magnetic properties Hc∼3000 Oe and Ms∼50.3 emu/g of the compact sintered ferrites compare well with those produced by other synthesis methods.

  14. Lanthanide doped strontium-barium cesium halide scintillators

    Science.gov (United States)

    Bizarri, Gregory; Bourret-Courchesne, Edith; Derenzo, Stephen E.; Borade, Ramesh B.; Gundiah, Gautam; Yan, Zewu; Hanrahan, Stephen M.; Chaudhry, Anurag; Canning, Andrew

    2015-06-09

    The present invention provides for a composition comprising an inorganic scintillator comprising an optionally lanthanide-doped strontium-barium, optionally cesium, halide, useful for detecting nuclear material.

  15. Spasmolytic effect of peppermint oil in barium during double-contrast barium enema compared with Buscopan

    Energy Technology Data Exchange (ETDEWEB)

    Asao, T.; Kuwano, H.; Ide, M.; Hirayama, I.; Nakamura, J.-I.; Fujita, K.-I.; Horiuti, R

    2003-04-01

    AIM: To evaluate the efficacy of peppermint oil in barium as a spasmolytic agent during a double-contrast barium enema (DCBE). MATERIALS AND METHODS: A total of 383 DCBEs with positive results from occult blood tests were assessed. Patients were assigned to one of four groups: peppermint in barium (n=91), peppermint in tube (n=90), Buscopan (n=105), or no treatment (n=97). After a screening sigmoidoscopy, the DCBEs were performed using air as a distending gas. In the Buscopan group, the DCBE was performed with an intramuscular injection of 20 mg Buscopan at the start of the examination. Patients in the no-treatment group underwent DCBE without any spasmolytic agent. A peppermint oil preparation (30 ml) was mixed in the barium solution for patients in the peppermint-in-barium group, and the same dose of peppermint oil was included in the enema tube in the peppermint-in-tube group. The presence of spasm on a series of spot films was evaluated without information about the type of spasmolytic agent used. RESULTS: The percentage of patients in the four groups (no treatment, Buscopan, peppermint in tube, and peppermint in barium) with absence of spasm in the entire colon on the series of spot films was 13.4, 38.1, 41.8, and 37.8%, respectively. In the group using peppermint oil or Buscopan, the rate of patients with non-spasm examination was higher than that in no-treatment group (p<0.0005). Peppermint oil had the same spasmolytic effect as the systemic administration of Buscopan in the transverse and descending colon. Peppermint oil had a stronger effect in the caecum and the ascending colon than a Buscopan injection (p<0.005). There was no advantage to placing peppermint oil in the enema tube over mixing it in the barium solution. A total of 157 polyps were found during the DCBE procedures, and no differences were observed in the number of lesions among the four groups. Peppermint oil did not impair image quality. CONCLUSION: Barium solution mixed with peppermint oil

  16. Optical characterization of gallium nitride

    NARCIS (Netherlands)

    Kirilyuk, Victoria

    2002-01-01

    Group III-nitrides have been considered a promising system for semiconductor devices since a few decades, first for blue- and UV-light emitting diodes, later also for high-frequency/high-power applications. Due to the lack of native substrates, heteroepitaxially grown III-nitride layers are usually

  17. Glow-discharge nitriding of gears

    International Nuclear Information System (INIS)

    The method of glow-discharge nitriding of gear parts made of 30Kh2NMFA steel is introduced. The diffusion saturation is carried out in the atmosphere of dissociated ammonia at the temperature of 520-540 deg C and 200-800 Pa pressure for 16-40 h depending on the required thickness of the nitrided layer (0.2-0.5 mm). The structure of the nitrided metal is a layer of nitride compounds of the Fe4N type and diffusion zone enriched with nitrides. Glow-discharge nitrided parts with 600-650 HV strength retain certain wear resistance and fatigue strength as compared with gas nitriding

  18. Barium enema findings of milk allergy in infants

    International Nuclear Information System (INIS)

    We wanted to evaluate the barium enema findings of milk allergy in infants. Retrospective evaluation of the plain abdominal radiography and barium enema findings was performed in fifteen young infants suffering with milk allergy. The presence of gaseous distension, rectal gas, paralytic ileus and mechanical obstruction was evaluated on the plain radiography. The presence of spasm, a transitional zone, a reversed rectosigmoid index and mucosal irregularity was analyzed on the barium enema; the presence of barium retention was also evaluated on 24-hour-delayed plain radiography. Paralytic ileus was the most common finding on the plain radiography (93%). On the barium enema, continuous spasm of the colon, ranging from the rectum to the descending colon, was revealed in ten infants (67%). A transitional zone was observed in one infant and a reversed rectosigmoid index was revealed in four. Mucosal irregularity was observed in two infants. Barium retention was demonstrated in 11 of fifteen cases: throughout the entire colon (n = 3), from the rectum to the descending colon (n = 7), and up to the transverse colon (n = 1). The most common barium enema finding of milk allergy in infants was spasm of the distal colon. The other findings were a transitional zone, a reversed rectosigmoid index, mucosal irregularity and barium retention

  19. Synthesis of double perxenate of lanthanum and barium

    International Nuclear Information System (INIS)

    Synthesis of double perxenate of lanthanum and barium on the basis of sodium perxenate and lanthanum and barium acetates, is described. The obtained compound is characterized by means of element analysis, x-ray-electron-, IR- and RS-spectroscopy. Its thermal stability and water solubility are determined

  20. BARIUM IN TEETH AS INDICATOR OF BODY BURDEN

    Science.gov (United States)

    A study was conducted to determine the biological availability of naturally occurring barium in a municipal drinking water by the analysis of barium in deciduous teeth of children. The grade school children of two Illinois towns were chosen for the study. The towns were chosen ba...

  1. Colour centres in barium hexaaluminate (phase I)

    International Nuclear Information System (INIS)

    Colour centres produced by X-ray irradiation of barium hexaaluminate (phase I) with β-alumina structure are studied by electron paramagnetic resonance, optical absorption, and thermally stimulated luminescence. It is shown that in addition to the F+ centres characteristic of β-alumina phases, this compound presents other colour centres such as F, O-, and possibly V-type centres. The stability of these defects is investigated by means of thermal bleaching experiments and thermally stimulated luminescence. An alternative model to the generally accepted one is proposed, for the F+ centres, together with a mechanism of defect formation. (author)

  2. Short-cavity squeezing in barium

    Science.gov (United States)

    Hope, D. M.; Bachor, H-A.; Manson, P. J.; Mcclelland, D. E.

    1992-01-01

    Broadband phase sensitive noise and squeezing were experimentally observed in a system of barium atoms interacting with a single mode of a short optical cavity. Squeezing of 13 +/- 3 percent was observed. A maximum possible squeezing of 45 +/- 8 percent could be inferred for out experimental conditions, after correction for measured loss factors. Noise reductions below the quantum limit were found over a range of detection frequencies 60-170 MHz and were best for high cavity transmission and large optical depths. The amount of squeezing observed is consistent with theoretical predictions from a full quantum statistical model of the system.

  3. Duodenal diverticula demonstrated by barium examination

    Energy Technology Data Exchange (ETDEWEB)

    Christiansen, T.; Thommesen, P.

    An investigation for biliary tract calculi and food-stimulated gastro-oesophageal reflux was carried out in 37 patients with duodenal diverticula demonstrated by barium examination. Sixty per cent of the diverticula were located in the descending part of the duodenum. Biliary tract calculi were demonstrated in 38 per cent and food-stimulated gastro-oesophageal reflux in 81 per cent of the patients. The detection of a duodenal diverticulum should result in a supplementary investigation for gallstones and gastrooesophageal reflux and its sequelae.

  4. Barium dithionate as an EPR dosemeter.

    Science.gov (United States)

    Baran, M P; Bugay, O A; Kolesnik, S P; Maksimenko, V M; Teslenko, V V; Petrenko, T L; Desrosiers, M F

    2006-01-01

    Electron paramagnetic resonance (EPR) dosimetry is growing in popularity and this success has encouraged the search for other dosimetric materials. Previous studies of gamma-irradiated barium dithionate (BaS(2)O(6) x 2H(2)O) have shown promise for its use as a radiation dosemeter. This work studies in greater detail several essential attributes of the system. Special attention has been directed to the study of EPR response dependences on microwave power, irradiation temperature, minimum detectable dose and post-irradiation stability. PMID:16565205

  5. Scattering lengths of calcium and barium isotopes

    OpenAIRE

    Dammalapati, U.; Willmann, L.; Knoop, S.

    2011-01-01

    We have calculated the s-wave scattering length of all the even isotopes of calcium (Ca) and barium (Ba), in order to investigate the prospect of Bose-Einstein condensation (BEC). For Ca we have used an accurate molecular potential based on detailed spectroscopic data. Our calculations show that Ca does not provide other isotopes alternative to the recently Bose condensed 40Ca that suffers strong losses because of a very large scattering length. For Ba we show by using a model potential that ...

  6. Barium cardiotoxicity: Relationship between ultrastructural damage and mechanical effects.

    Science.gov (United States)

    Delfino, G; Amerini, S; Mugelli, A

    1988-01-01

    The ultrastructural damage in guinea-pig ventricular strips caused by barium was analysed. At a concentration of 1 mmol/litre, barium chloride caused a dramatic increase in the developed tension associated with the onset of automaticity. The ultrastructural analysis demonstrated that barium caused notable and consistent alterations which affected most myocyte components. Various degenerative aspects were observed in mitochondria and in the contractile apparatus. Glycogen deposits were completely depleted. Preparations driven at 4 Hz (i.e. the rate of spontaneous firing of barium-treated preparations) showed moderate ultrastructural alterations, thus demonstrating that the increase in the rate of beating is not the only determinant of the observed damage. These results suggest that the myocardial toxicity of barium is due not only to the well-known modifications in membrane permeability, but possibly also to alterations in cell function. PMID:20702358

  7. Barium and radium migration in unconsolidated Canadian geological materials

    International Nuclear Information System (INIS)

    This report describes the results of laboratory studies on the distribution coefficients of radium and barium in samples of unconsolidated geologic materials. Graphs of Ksub(d) versus solution concentration for the respective elements showed constant Ksub(d) values in the low concentration range suggesting that, at low concentrations, a distribution coefficient is a valid means of representing the geochemical reactions of both barium and radium. The Ksub(d) values for barium range between 60 and 3500 ml/g. The values appear to be influenced by the amount of barium occurring naturally in the soil materials and thus there is little possiblility of using barium as an analog of radium in laboratory experiments. The Ksub(d) values of radium vary from 50 to 1000 ml/g indicating that a wide range of geological materials have a substantial capacity to retard the migration of radium

  8. Electrospun Gallium Nitride Nanofibers

    International Nuclear Information System (INIS)

    The high thermal conductivity and wide bandgap of gallium nitride (GaN) are desirable characteristics in optoelectronics and sensing applications. In comparison to thin films and powders, in the nanofiber morphology the sensitivity of GaN is expected to increase as the exposed area (proportional to the length) increases. In this work we present electrospinning as a novel technique in the fabrication of GaN nanofibers. Electrospinning, invented in the 1930s, is a simple, inexpensive, and rapid technique to produce microscopically long ultrafine fibers. GaN nanofibers are produced using gallium nitrate and dimethyl-acetamide as precursors. After electrospinning, thermal decomposition under an inert atmosphere is used to pyrolyze the polymer. To complete the preparation, the nanofibers are sintered in a tube furnace under a NH3 flow. Both scanning electron microscopy and profilometry show that the process produces continuous and uniform fibers with diameters ranging from 20 to a few hundred nanometers, and lengths of up to a few centimeters. X-ray diffraction (XRD) analysis shows the development of GaN nanofibers with hexagonal wurtzite structure. Future work includes additional characterization using transmission electron microscopy and XRD to understand the role of precursors and nitridation in nanofiber synthesis, and the use of single nanofibers for the construction of optical and gas sensing devices.

  9. The Novel Formation of Barium Titanate Nanodendrites

    Directory of Open Access Journals (Sweden)

    Chien-Jung Huang

    2014-01-01

    Full Text Available The barium titanate (BaTiO3 nanoparticles with novel dendrite-like structures have been successfully fabricated via a simple coprecipitation method, the so-called BaTiO3 nanodendrites (BTNDs. This method was remarkable, fast, simple, and scalable. The growth solution is prepared by barium chloride (BaCl2, titanium tetrachloride (TiCl4, and oxalic acid. The shape and size of BaTiO3 depend on the amount of added BaCl2 solvent. To investigate the influence of amount of BaCl2 on BTNDs, the amount of BaCl2 was varied in the range from 3 to 6 mL. The role of BaCl2 is found to have remarkable influence on the morphology, crystallite size, and formation of dendrite-like structures. The thickness and length of the central stem of BTND were ~300 nm and ~20 μm, respectively. The branchings were found to occur at irregular intervals along the main stem. Besides, the formation mechanism of BTND is proposed and discussed.

  10. High resolution studies of barium Rydberg states

    International Nuclear Information System (INIS)

    The subtle structure of Rydberg states of barium with orbital angular momentum 0, 1, 2 and 3 is investigated. Some aspects of atomic theory for a configuration with two valence electrons are reviewed. The Multi Channel Quantum Defect Theory (MQDT) is concisely introduced as a convenient way to describe interactions between Rydberg series. Three high-resolution UV studies are presented. The first two, presenting results on a transition in indium and europium serve as an illustration of the frequency doubling technique. The third study is of hyperfine structure and isotope shifts in low-lying p states in Sr and Ba. An extensive study of the 6snp and 6snf Rydberg states of barium is presented with particular emphasis on the 6snf states. It is shown that the level structure cannot be fully explained with the model introduced earlier. Rather an effective two-body spin-orbit interaction has to be introduced to account for the observed splittings, illustrating that high resolution studies on Rydberg states offer an unique opportunity to determine the importance of such effects. Finally, the 6sns and 6snd series are considered. The hyperfine induced isotope shift in the simple excitation spectra to 6sns 1S0 is discussed and attention is paid to series perturbers. It is shown that level mixing parameters can easily be extracted from the experimental data. (Auth.)

  11. NANOSCALE BARIUM HYDROSILICATES: CHOOSING THE SYNTHESIS TECHNOLOGY

    Directory of Open Access Journals (Sweden)

    GRISHINA Anna Nikolaevna

    2013-08-01

    Full Text Available Cement concretes are the most used materials in modern civil engineering. Due to that such materials draw great attention both in the Russian Federation and abroad. The possibility to enhance the manufacturability and operational properties of concretes results in significant reduction of overall operating costs. Many enhancement methods have been elaborated. Among them there is one based on introduction of calcium hydrosilicates into construction composition. The authors set up a hypothesis that similarity between properties and structures of different hydrosilicates (for example, alkaline earth metals and metals of the second group will provide similar increased operational characteristics. The specialists of Research and Educational Center «Nanotechnology» are developing cement composites nanomodification methods which include introduction of nanodimensional barium hydrosilicates particles. The synthesis of barium hydrosilicates particles can be done with the use of many technologies, different by energy consumption or performing complexity. Taking into account both these factors, one can assume that low-temperature sol-gel synthesis from diluted water solutions is the proper technology. The present paper shows that this assumption is correct. The selection of certain technology is made by the means of multiobjective optimization, which is in turn is performed by the means of linear scalarization. This method, while not always giving the Pareto optimal solutions, can be easily implemented. The particle size distribution is taken into consideration during selection of objectives and weights. It is shown that selected technology allows manufacturing nanoparticles with median size about 30 nm.

  12. Coprecipitation of europium with barium sulphate

    International Nuclear Information System (INIS)

    The distribution behaviour of the trivalent europium ion at a micro-component scale, between barium sulphate and aqueous solution, was studied at ambient temperature. Experiments were carried out using radioactive tracers. Results indicate an enrichment of the micro component in the solid phase relative to the solution. The effects of the concentrations of the micro and macro-elements on the coprecipitation have been examined. Europium distribution coefficient DEu increases from 1.1 ± 0.2 to 3.2 ± 0.4 when initial europium concentration decreases from more than 17 x 10-5 to 1.4 x 10-5 M, in sulphuric media with SO42- in excess or CBa2+/CSO42- Eu. The coprecipitation of europium with barium sulphate as a heterovalent solid-solution is described by heterogeneous model obeying the Doerner and Hoskins logarithmic partition law. The weaker partition coefficients lower than unity (λ = 0.25 when CEu(III) ∼ 1.4 x 10-5 M and λ = 0.13 when CBa2+/CSO42- -5 ≤ CEu(III) = 153.5 x 10-5 M) lead to crystals increasingly enriched in the trace element. (orig.)

  13. Photon attenuation characteristics of barium enriched cement

    International Nuclear Information System (INIS)

    Nuclear radiations are widely used in several applications of nuclear sciences, medicine and industry. In the design and construction of installations housing high intensity radioactive sources and other radiation generating equipment, a variety of shielding materials are used to minimise the exposure to the individuals. Among the materials used, lead is best known for radiation shielding due to its high density and atomic number. However, in construction of radiation facilities, lead in the form of bricks or slabs cannot be substituted for cement as building material. As an alternative, barium enriched cement, which apart from better compressive strength, smoother surface finish and high abrasive resistance, offers adequate shielding to gamma radiations. In the present work, attenuation properties of commercial as well as barium enriched cements have been studied and compared with that of lead for photons of 662 and 1250 keV emitted from 137Cs and 60Co, respectively. Although photon attenuation data can be obtained by mixture rule theoretically, it is necessary to determine this data experimentally before use

  14. Nitride fuel development in Japan

    International Nuclear Information System (INIS)

    Nitride fuel for ADS has been developed by Japan Atomic Energy Agency (JAEA) under a double strata fuel cycle concept. In this case the nitride fuel contains MA elements as a principal component and is diluted by inert materials in place of U, which is totally different from the fuel for power reactors. So the fuel fabrication manner, fuel properties and irradiation behaviour have to be investigated in detail as well as the treatment of spent fuel. Through the experimental R&D, technical feasibility of nitride fuel cycle for the transmutation of MA will be demonstrated

  15. Nitriding iron at lower temperatures.

    Science.gov (United States)

    Tong, W P; Tao, N R; Wang, Z B; Lu, J; Lu, K

    2003-01-31

    The microstructure in the surface layer of a pure iron plate was refined at the nanometer scale by means of a surface mechanical attrition treatment that generates repetitive severe plastic deformation of the surface layer. The subsequent nitriding kinetics of the treated iron with the nanostructured surface layer were greatly enhanced, so that the nitriding temperature could be as low as 300 degrees C, which is much lower than conventional nitriding temperatures (above 500 degrees C). This enhanced processing method demonstrates the technological significance of nanomaterials in improving traditional processing techniques and provides a new approach for selective surface reactions in solids. PMID:12560546

  16. Study of the Active Screen Plasma Nitriding

    Institute of Scientific and Technical Information of China (English)

    Zhao Cheng; C. X. Li; H. Dong; T. Bell

    2004-01-01

    Active screen plasma nitriding (ASPN) is a novel nitriding process, which overcomes many of the practical problems associated with the conventional DC plasma nitriding (DCPN). Experimental results showed that the metallurgical characteristics and hardening effect of 722M24 steel nitrided by ASPN at both floating potential and anodic (zero) potential were similar to those nitrided by DCPN. XRD and high-resolution SEM analysis indicated that iron nitride particles with sizes in sub-micron scale were deposited on the specimen surface in AS plasma nitriding. These indicate that the neutral iron nitride particles, which are sputtered from the active screen and transferred through plasma to specimen surface, are considered to be the dominant nitrogen carder in ASPN. The OES results show that NH could not be a critical species in plasma nitriding.

  17. Do all barium stars have a white dwarf companion?

    Science.gov (United States)

    Dominy, J. F.; Lambert, D. L.

    1983-01-01

    International Ultraviolet Explorer short-wavelength, low-dispersion spectra were analyzed for four barium, two mild barium, and one R-type carbon star in order to test the hypothesis that the barium and related giants are produced by mass transfer from a companion now present as a white dwarf. An earlier tentative identification of a white dwarf companion to the mild barium star Zeta Cyg is confirmed. For the other stars, no ultraviolet excess attributable to a white dwarf is seen. Limits are set on the bolometric magnitude and age of a possible white dwarf companion. Since the barium stars do not have obvious progenitors among main-sequence and subgiant stars, mass transfer must be presumed to occur when the mass-gaining star is already on the giant branch. This restriction, and the white dwarf's minimum age, which is greater than 8 x 10 to the 8th yr, determined for several stars, effectively eliminates the hypothesis that mass transfer from an asymptotic giant branch star creates a barium star. Speculations are presented on alternative methods of producing a barium star in a binary system.

  18. Reaction-bonded silicon nitride

    International Nuclear Information System (INIS)

    Reaction-bonded silicon nitride (RBSN) has been characterized. The oxidation behaviour in air up to 15000C and 3000 h and the effects of static and cyclic oxidation on room-temperature strength have been studied. (orig./IHOE)

  19. Designed microstructures in textured barium hexaferrite

    Science.gov (United States)

    Hovis, David Brian

    It is a fundamental principle of materials science that the microstructure of a material defines its properties and ultimately its performance for a given application. A prime example of this can be found in the large conch shell Strombus gigas, which has an intricate microstructure extending across five distinct length scales. This microstructure gives extraordinary damage tolerance to the shell. The structure of Strombus gigas cannot be replicated in a modern engineering ceramic with any existing processing technique, so new processing techniques must be developed to apply this structure to a model material. Barium hexaferrite was chosen as a model material to create microstructures reminiscent of Strombus gigas and evaluate its structure-property relations. This work describes novel processing methods to produce textured barium hexaferrite with no coupling between the sample geometry and the texture direction. This technique, combining magnetic field-assisted gelcasting with templated grain growth, also allows multilayer samples to be fabricated with different texture directions in adjacent layers. The effects of adding either B2O3 or excess BaCO 3 on the densification and grain growth of barium hexaferrite was studied. The texture produced using this technique was assessed using orientation imaging microscopy (OIM) at Oak Ridge National Laboratory. These measurements showed peak textures as high as 60 MRD and sharp interfaces between layers cast with different texture directions. The effect of oxygen on the quality of gelcasting is also discussed, and it is shown that with proper mold design, it is possible to gelcast multiple layers with differing texture directions without delamination. Monolithic and multilayer samples were produced and tested in four point bending to measure the strength and work of fracture. Modulus measurements, made with the ultrasonic pulse-echo technique, show clear signs of microcracking in both the isotropic and textured samples

  20. Boron nitride converted carbon fiber

    Energy Technology Data Exchange (ETDEWEB)

    Rousseas, Michael; Mickelson, William; Zettl, Alexander K.

    2016-04-05

    This disclosure provides systems, methods, and apparatus related to boron nitride converted carbon fiber. In one aspect, a method may include the operations of providing boron oxide and carbon fiber, heating the boron oxide to melt the boron oxide and heating the carbon fiber, mixing a nitrogen-containing gas with boron oxide vapor from molten boron oxide, and converting at least a portion of the carbon fiber to boron nitride.

  1. Chemical composition of Eu2+ luminescence in the barium hexaaluminates

    International Nuclear Information System (INIS)

    This paper consists of two parts. In the first part the chemical composition of two kinds of barium hexaaluminate (one poor and one rich in barium) is explained using the local electroneutrality concept. In the second part a reinvestigation of the Eu2+ luminescence in these compounds is reported. The emission spectrum of each of the two compounds shows a blue and a green emission bank. The blue emission bank is ascribed to Eu2+ ions at barium sites, whereas the green emission band is identified with Eu2+ ions incorporated at aluminum sites within spinel blocks of the structure

  2. Magic Wavelength of an Optical Clock Transition of Barium

    International Nuclear Information System (INIS)

    Similar to most of the other alkaline earth elements, barium atoms can be candidates for optical clocks, thus the magic wavelength for an optical lattice is important for the clock transition. We calculate the magic wavelength of a possible clock transition between 6s21S0 and 6s5d3 D2 states of barium atoms. Our theoretical result shows that there are three magic wavelengths 615.9nm, 641.2nm and 678.8nm for a linearly polarized optical lattice laser for barium. (atomic and molecular physics)

  3. A novel barium polymeric membrane sensor for selective determination of barium and sulphate ions based on the complex ion associate barium(II)-Rose Bengal as neutral ionophore

    Energy Technology Data Exchange (ETDEWEB)

    Othman, A.M. [Genetic Engineering and Biotechnology Research Institute (GEBRI), Minufiya University, Sadat City (Egypt); El-Shahawi, M.S. [Chemistry Department, Faculty of Science at Damiatta, Mansoura University, Damiatta, Dumyat 34517 (Egypt)]. E-mail: mohammad_el_shahawi@yahoo.co.uk; Abdel-Azeem, M. [Chemistry Department, Faculty of Science at Damiatta, Mansoura University, Damiatta, Dumyat 34517 (Egypt)

    2006-01-12

    A simple, long life, rapid response and sensitive barium(II)-PVC membrane sensor that typically follows Nernstian behavior has been developed for the assay of barium(II) ions. The developed sensor has been made by incorporating the complex ion associate of barium(II)-Rose Bengal (Ba-RB) as an ionophore into a plasticized PVC matrix. The sensor is stable and exhibited fast potential response of 20 s and gave a good linear response with a Nernstian slope of 28.5 {+-} 0.4 mV/decade of activity within the concentration range 5 x 10{sup -5} to 10{sup -1} M over a wide range of pH 4.5-10.0 for barium(II) ions. The developed sensor showed comparatively good selectivity for barium(II) ions with respect to other alkali, alkaline earth, transition and heavy metal ions. The plasticizer o-nitrophenyloctyl ether controlled significantly the calibration slope and the lifetime of the fabricated sensor. The proposed sensor was used successfully for the analysis of barium(II) ions in wastewater samples and in lithophone pigment with excellent recovery percentages in the range 98.9-99.8 {+-} 1.6%. The determination of sulphate in fresh and potable water samples with the developed sensor has been also achieved successfully. The described sensor provides a reliable means with good correlation with the data obtained by atomic absorption spectrometry (AAS) and other spectrophotometric methods for the analysis of trace amounts of barium(II) and/or sulphate ions in different matrices.

  4. A novel barium polymeric membrane sensor for selective determination of barium and sulphate ions based on the complex ion associate barium(II)-Rose Bengal as neutral ionophore

    International Nuclear Information System (INIS)

    A simple, long life, rapid response and sensitive barium(II)-PVC membrane sensor that typically follows Nernstian behavior has been developed for the assay of barium(II) ions. The developed sensor has been made by incorporating the complex ion associate of barium(II)-Rose Bengal (Ba-RB) as an ionophore into a plasticized PVC matrix. The sensor is stable and exhibited fast potential response of 20 s and gave a good linear response with a Nernstian slope of 28.5 ± 0.4 mV/decade of activity within the concentration range 5 x 10-5 to 10-1 M over a wide range of pH 4.5-10.0 for barium(II) ions. The developed sensor showed comparatively good selectivity for barium(II) ions with respect to other alkali, alkaline earth, transition and heavy metal ions. The plasticizer o-nitrophenyloctyl ether controlled significantly the calibration slope and the lifetime of the fabricated sensor. The proposed sensor was used successfully for the analysis of barium(II) ions in wastewater samples and in lithophone pigment with excellent recovery percentages in the range 98.9-99.8 ± 1.6%. The determination of sulphate in fresh and potable water samples with the developed sensor has been also achieved successfully. The described sensor provides a reliable means with good correlation with the data obtained by atomic absorption spectrometry (AAS) and other spectrophotometric methods for the analysis of trace amounts of barium(II) and/or sulphate ions in different matrices

  5. Theoretical isotope shifts in neutral barium

    CERN Document Server

    Nazé, Cédric; Godefroid, Michel

    2015-01-01

    The present work deals with a set of problems in isotope shifts of neutral barium spectral lines. Some well known transitions ($6s^2~^1S_0-6s6p~^{1,3}P^o_1$ and $6s^2~^1S_0-6p^2~^3P_0$) are first investigated. Values of the changes in the nuclear mean-square charge radius are deduced from the available experimental isotope shifts using our ab initio electronic factors. The three sets $\\{ \\delta\\langle r^2\\rangle^{A,A'}\\} $ obtained from these lines are consistent with each other. The combination of the available nuclear mean-square radii with our electronic factors for the $6s5d~^3D_{1,2} -6s6p~^{1}P^o_1$ transitions produces isotope shift values in conflict with the laser spectroscopy measurements of Dammalapati et al. (Eur. Phys. J. D 53, 1 (2009)).

  6. Chemical abundance analysis of 19 barium stars

    CERN Document Server

    Yang, G C; Spite, M; Chen, Y Q; Zhao, G; Zhang, B; Liu, G Q; Liu, Y J; Liu, N; Deng, L C; Spite, F; Hill, V; Zhang, C X

    2016-01-01

    We aim at deriving accurate atmospheric parameters and chemical abundances of 19 barium (Ba) stars, including both strong and mild Ba stars, based on the high signal-to-noise ratio and high resolution Echelle spectra obtained from the 2.16 m telescope at Xinglong station of National Astronomical Observatories, Chinese Academy of Sciences. The chemical abundances of the sample stars were obtained from an LTE, plane-parallel and line-blanketed atmospheric model by inputting the atmospheric parameters (effective temperatures, surface gravities, metallicity and microturbulent velocity) and equivalent widths of stellar absorption lines. These samples of Ba stars are giants indicated by atmospheric parameters, metallicities and kinematic analysis about UVW velocity. Chemical abundances of 17 elements were obtained for these Ba stars. Their light elements (O, Na, Mg, Al, Si, Ca, Sc, Ti, V, Cr, Mn and Ni) are similar to the solar abundances. Our samples of Ba stars show obvious overabundances of neutron-capture (n-ca...

  7. Analysis of europium doped luminescent barium thioaluminate

    Institute of Scientific and Technical Information of China (English)

    张东璞; 喻志农; 薛唯; 章婷; 丁瞾; 王武育

    2010-01-01

    Europium-doped barium thioaluminate sputtering target was synthesized by powder sintering method and thin film was deposited by radio frequency(RF) sputtering.X-ray diffractometer(XRD) pattern indicated that the main compound of the target was BaAl4S7.Oxygen was the main impurity which led to the formation of BaAl2O4.It was shown that both BaAl4S7 and BaAl2S4 were contained in the as-grown thin films and a 471.7 nm emission peak in the PL spectra appeared due to a combination of BaAl4S7:Eu2+ and BaAl2S4:Eu2...

  8. Barium hexaferrite ferrofluids - preparation and physical properties

    Science.gov (United States)

    Müller, R.; Hiergeist, R.; Steinmetz, H.; Ayoub, N.; Fujisaki, M.; Schüppel, W.

    1999-07-01

    Barium hexaferrite BaFe 12-2 xTi xCo xO 19 ferrofluids have been prepared for the first time using oleic acid as surfactant and Isopar M ® as carrier liquid. The initial susceptibility versus temperature for zero-field cooling of the ferrofluid was obtained by a vibrating sample magnetometer. TEM pictures of the fluid show isolated particles and only small agglomerates and a mean particle diameter of approx. 8 nm. Numerical calculations of the magneto-viscous effect, based on the local-equilibrium magnetic state model, clearly show the benefit for Ba-ferrite ferrofluids resulting from the high uniaxial anisotropy compared to magnetite ferrofluids. Rheological measurements were performed with a rotational-type viscometer with magnetic field perpendicular to the hydrodynamic vortex axis.

  9. Radar absorption properties of doped barium hexaferrite

    International Nuclear Information System (INIS)

    Full text: Since the 1950s, it has been known that barium hexaferrite exhibits a ferrimagnetic resonance at about 48 GHz. Early research was directed at finding dopants that would increase this frequency to enable the preparation of lossless waveguide components. However, more recent efforts have explored the potential of doped barium hexaferrite as a radar absorbing material in the low GHz frequency range. In particular, Nedkov et al demonstrated that partial substitution of the iron with cobalt-titanium, to give Ba(Co0.5Ti0.5)xFe11.9-xMn0.1O19 with x = 1.6, could reduce the ferrimagnetic resonance frequency to 15 GHz. The small amount of manganese was included 'to improve the dielectric properties' of the material. In this work we increased the doping to x = 2.2 to arrive at a resonance frequency of just 1.35 GHz, which lies within the operational frequency range of typical airborne early warning and control (AEWAC) radar systems. An increase in the resonance signal at this concentration is believed to be associated with the onset of a switch from axial to planar magnetocrystalline anisotropy, as reported by Kreisel et al . It is uncertain why our resonance frequency for x = 2.2 is significantly lower than the value of 2.56 GHz reported elsewhere for a Mn-free specimen with x = 2.6. Chromium was also tested as a new dopant material but proved unsuccessful in reducing the resonant frequency below 40 GHz, the upper limit of the microwave network analyser that was employed. All specimens were prepared using solid state reaction of stoichiometric amounts of oxides and carbonates, and characterised using x-ray powder diffraction and 57Fe Moessbauer spectroscopy

  10. The Karlsruhe 4π barium fluoride detector

    International Nuclear Information System (INIS)

    A new experimental approach has been implemented for accurate measurements of neutron capture cross sections in the energy range from 5 to 200 keV. The Karlsruhe 4π Barium Fluoride Detector consists of 42 crystals shaped as hexagonal and pentagonal truncated pyramids forming a spherical shell with 10 cm inner radius and 15 cm thickness. All crystals are supplied with reflector and photomultiplier, thus representing independent gamma-ray detectors. Each detector module covers the same solid angle with respect to a gamma-ray source located in the centre. The energy resolution of the 4π detector is 14% at 662 keV and 7% at 2.5 MeV gamma-ray energy, the overall time reslution is 500 ps and the peak efficiency 90% at 1 MeV. The detector allows to register capture cascades with 95% probability above a threshold energy of 2.5 MeV in the sum energy spectrum. Neutrons are produced via the 7Li(p,n)7Be reaction using the pulsed proton beam of a Van de Graaff accelerator. The neutron spectrum can be taylored according to the experimental requirements in an energy range from 5 to 200 keV by choosing appropriate proton energies. A collimated neutron beam is passing through the detector and hits the sample in the centre. The energy of captured neutrons is determined via time of flight, the primary flight path being 77 cm. The combination of short primary flight path, a 10 cm inner radius of the spherical BaF2 shell, and the low capture cross section of barium allows to discriminate background due to capture of sample scattered neutrons in the scintillator by time of flight, leaving part of the neutron energy range completely undisturbed. (orig./HSI)

  11. Upper gastrointestinal barium evaluation of duodenal pathology: A pictorial review

    Institute of Scientific and Technical Information of China (English)

    Pankaj; Gupta; Uma; Debi; Saroj; Kant; Sinha; Kaushal; Kishor

    2014-01-01

    Like other parts of the gastrointestinal tract(GIT), duodenum is subject to a variety of lesions both congenital and acquired. However, unlike other parts of the GIT viz. esophagus, rest of the small intestine and large intestine, barium evaluation of duodenal lesions is technically more challenging and hence not frequently reported. With significant advances in computed tomography technology, a thorough evaluation including intraluminal, mural and extramural is feasible in a single non-invasive examination. Notwithstanding, barium evaluation still remains the initial and sometimes the only imaging study in several parts of the world. Hence,a thorough acquaintance with the morphology of various duodenal lesions on upper gastrointestinal barium examination is essential in guiding further evaluation. We reviewed our experience with various common and uncommon barium findings in duodenal abnormalities.

  12. Liquid-phase-deposited barium titanate thin films on silicon

    International Nuclear Information System (INIS)

    Using a mixture of hexafluorotitanic acid, barium nitrate and boric acid, high refractive index (1.54) barium titanate films can be deposited on silicon substrates. The deposited barium titanate films have featureless surfaces. The deposition temperature is near room temperature (800C). However, there are many fluorine and silicon incorporations in the films. The refractive index of the as-deposited film is 1.54. By current-voltage measurement, the leakage current of the as-deposited film with a thickness of 1000 A is about 9.48x10-7 A cm-2 at the electrical field intensity of 0.3 MV cm-1. By capacitance-voltage measurement, the effective oxide charge of the liquid-phase-deposited barium titanate film is 3.06x1011 cm-2 and the static dielectric constant is about 22. (author)

  13. Synthesis, photoluminescence and magnetic properties of barium vanadate nanoflowers

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Jing [Department of Applied Physics, Chongqing University, 174 Shapingba Street, Chongqing 400044 (China); Chongqing University of Science and Technology, Chongqing 401331 (China); Hu, Chenguo, E-mail: hucg@cqu.edu.cn [Department of Applied Physics, Chongqing University, 174 Shapingba Street, Chongqing 400044 (China); Xi, Yi [Department of Applied Physics, Chongqing University, 174 Shapingba Street, Chongqing 400044 (China); Peng, Chen [School of Physical Science and Technology, Southwest University, Chongqing 400715 (China); Wan, Buyong; He, Xiaoshan [Department of Applied Physics, Chongqing University, 174 Shapingba Street, Chongqing 400044 (China)

    2011-06-15

    Graphical abstract: The flower-shaped barium vanadate was obtained for the first time. The photoluminescence and magnetic properties of the barium vanadate nanoflowers were investigated at room temperature. Research highlights: {yields} In the paper, the flower-shaped barium vanadate were obtained for the first time. The CHM method used here is new and simple for preparation of barium vanadate. {yields} The photoluminescence and magnetic properties of the barium vanadate nanoflowers were investigated at room temperature. The strong bluish-green emission was observed. {yields} The ferromagnetic behavior of the barium vanadate nanoflowers was found with saturation magnetization of about 83.50 x 10{sup -3} emu/g, coercivity of 18.89 Oe and remnant magnetization of 4.63 x 10{sup -3} emu/g. {yields} The mechanisms of PL and magnetic property of barium vanadate nanoflowers have been discussed. -- Abstract: The flower-shaped barium vanadate has been obtained by the composite hydroxide mediated (CHM) method from V{sub 2}O{sub 5} and BaCl{sub 2} at 200 {sup o}C for 13 h. XRD and XPS spectrum of the as-synthesized sample indicate it is hexagonal Ba{sub 3}V{sub 2}O{sub 8} with small amount of Ba{sub 3}VO{sub 4.8} coexistence. Scan electron microscope and transmission electron microscope display that the flower-shaped crystals are composed of nanosheets with thickness of {approx}20 nm. The UV-visible spectrum shows that the barium vanadate sample has two optical gaps (3.85 eV and 3.12 eV). Photoluminescence spectrum of the barium vanadate flowers exhibits a visible light emission centered at 492 and 525 nm which might be attributed to VO{sub 4} tetrahedron with T{sub d} symmetry in Ba{sub 3}V{sub 2}O{sub 8}. The ferromagnetic behavior of the barium vanadate nanoflowers has been found with saturation magnetization of about 83.50 x 10{sup -3} emu/g, coercivity of 18.89 Oe and remnant magnetization of 4.63 x 10{sup -3} emu/g, which is mainly due to the presence of a non

  14. Lifetime Measurement for 6snp Rydberg States of Barium

    Institute of Scientific and Technical Information of China (English)

    SHEN Li; WANG Lei; YANG Hai-Feng; LIU Xiao-Jun; LIU Hong-Ping

    2011-01-01

    @@ We present a simple and efficient method for measuring the atomic lifetimes in order of tens of microseconds and demonstrate it in the lifetime determination of barium Rydberg states.This method extracts the lifetime information from the time-of-flight spectrum directly, which is much more efficient than other methods such as the time-delayed field ionization and the traditional laser induced fluorescence.The lifetimes determined with our method for barium Rydberg 6snp(n=37-59)series are well coincident with the values deduced from the absolute oscillator strengths of barium which were given in the literature [J.Phys.B 14(1981)4489, 29(1996)655]on experiments.%We present a simple and efficient method for measuring the atomic lifetimes in order of tens of microseconds and demonstrate it in the lifetime determination of barium Rydberg states. This method extracts the lifetime information from the time-of-flight spectrum directly, which is much more efficient than other methods such as the time-delayed field ionization and the traditional laser induced fluorescence. The lifetimes determined with our method for barium Rydberg 6snp (n=37-59) series are well coincident with the values deduced from the absolute oscillator strengths of barium which were given in the literature [J. Phys. B 14 (1981) 4489, 29 (1996) 655] onexperiments.

  15. Cathodic Cage Plasma Nitriding: An Innovative Technique

    OpenAIRE

    de Sousa, R. R. M.; de Araújo, F. O.; da Costa, J. A. P.; A. de S. Brandim; de Brito, R. A.; Alves, C

    2012-01-01

    Cylindrical samples of AISI 1020, AISI 316, and AISI 420 steels, with different heights, were simultaneously treated by a new technique of ionic nitriding, entitled cathodic cage plasma nitriding (CCPN), in order to evaluate the efficiency of this technique to produce nitrided layers with better properties compared with those obtained using conventional ionic nitriding technique. This method is able to eliminate the edge effect in the samples, promoting a better uniformity of temperature, and...

  16. Corrosion of plasma nitrided austenitic stainless steels

    International Nuclear Information System (INIS)

    The corrosion behaviour of plasma nitrided austenitic stainless steel grades AISI 304, 316 and 321 was studied at various temperatures. Certain plasma nitriding cycles included a post-oxidation treatment. The corrosion rates were measured using linear polarisation technique. Results showed that corrosion rate increased with the plasma nitriding temperature. Minimum deterioration occurred at 653K. (author). 2 tabs., 4 figs., 10 refs

  17. Ion nitridation - physical and technological aspects

    International Nuclear Information System (INIS)

    Ion nitridation, is a technique which allows the formation of a controlled thickness of nitrides in the surface of the material, using this material as the cathode in a low pressure glow discharge, which presents many advantages over the conventional method. A brief review of the ion nitriding technique, the physical fenomena involved, and we discuss technological aspects of this method, are presented. (Author)

  18. Electrooptic and piezoelectric measurements in photorefractive barium titanate and strontium barium niobate

    International Nuclear Information System (INIS)

    The authors measured the low-frequency (''unclamped'') electrooptic and piezoelectric coefficients in undoped BaTiO/sub 3/ and Sr/sub x/Ba/sub 1-x/Nb/sub 2/O/sub 6/ (chi - 0.61) crystals using interferometric techniques. The contribution of the piezoelectric effect to the Pockels measurement is discussed. For an applied ac electric field in the range 0.1-200 V/cm, the electrooptic and piezoelectric effects are linear in the magnitude of of the applied field and independent of its frequency in the range of 10 Hz-100 kHz. The unclamped electrooptic coefficients of poled BaTiO/sub 3/ single crystals are r/sub 13/ = 19.5 +- 1 pm/V and r/sub 33/ = 97 +- 7 pm/V, and for strontium barium niobate are r/sub 13/ = 47 +- 5 pm/V and r/sub 33/ = 235 +- 21 pm/V, all measured at a wavelength of 514.5 nm and at T = 230C. For the barium titanate samples the measured Pockels coefficient r/sub c/ identical to r/sub 33/ - (n/sub 1//n/sub 3/)/sup 3/r/sub 13/ = 79 +- 6 pm/V in good agreement with the value r/sub c/ = 76 +- 7 pm/V computed from the above values of r/sub 13/ and r/sub 33/, where n/sub 1/ and n/sub 3/ are the ordinary and extraordinary indexes of refraction, respectively. The measured piezoelectric coefficient is d/sub 23/ = +28.7 +- 2 pm/V for barium titanate, and is d/sub 23/ = +24.6 +- 2 pm/V for strontium barium niobate. They also measured the photoreflective coupling of two optical beams in the crystals, and they show that the dependence of the coupling strength on beam polarization is in fair agreement with the measured values of the Pockels coefficients

  19. III-Nitride nanowire optoelectronics

    Science.gov (United States)

    Zhao, Songrui; Nguyen, Hieu P. T.; Kibria, Md. G.; Mi, Zetian

    2015-11-01

    Group-III nitride nanowire structures, including GaN, InN, AlN and their alloys, have been intensively studied in the past decade. Unique to this material system is that its energy bandgap can be tuned from the deep ultraviolet (~6.2 eV for AlN) to the near infrared (~0.65 eV for InN). In this article, we provide an overview on the recent progress made in III-nitride nanowire optoelectronic devices, including light emitting diodes, lasers, photodetectors, single photon sources, intraband devices, solar cells, and artificial photosynthesis. The present challenges and future prospects of III-nitride nanowire optoelectronic devices are also discussed.

  20. Mathematical Modelling of Nitride Layer Growth of Low Temperature Gas and Plasma Nitriding of AISI 316L

    Directory of Open Access Journals (Sweden)

    Triwiyanto A.

    2014-07-01

    Full Text Available This paper present mathematical model which developed to predict the nitrided layer thickness (case depth of gas nitrided and plasma nitrided austenitic stainless steel according to Fick’s first law for pure iron by adapting and manipulating the Hosseini’s model to fit the diffusion mechanism where nitrided structure formed by nitrided AISI 316L austenitic stainless steel. The mathematical model later tested against various actual gas nitriding and plasma nitriding experimental results with varying nitriding temperature and nitriding duration to see whether the model managed to successfully predict the nitrided layer thickness. This model predicted the coexistence of ε-Fe2-3N and γ΄-Fe4N under the present nitriding process parameters. After the validation process, it is proven that the mathematical model managed to predict the nitrided layer growth of the gas nitrided and plasma nitrided of AISI 316L SS up to high degree of accuracy.

  1. Magnetoresistance studies on barium doped nanocrystalline manganite

    International Nuclear Information System (INIS)

    An energetically attractive, simple, fast and a novel low temperature (300 deg. C) solution combustion route for the synthesis of crystalline and homogeneous nanoparticles of lanthanum barium manganese oxide La0.9Ba0.1MnO3+δ (LBMO) is reported. Formation and homogeneity of the solid solutions have been confirmed by powder X-ray diffraction (PXRD) and energy dispersive X-ray analysis (EDS) respectively. The Rietveld analysis shows both as-formed as well as calcined samples are in cubic phase with space group pm3m. The microstructure and agglomerated particle size of the compounds are examined by scanning electron microscope. Infrared spectroscopy revealed that both Mn-O-Mn bending mode and Mn-O stretching mode are influenced by calcination temperature. The magnetoresistance measurement on sintered LBMO pellet exhibits a broad metal-insulator transition (TM-I) at around 228 K. At 1 T applied magnetic field, LBMO shows magnetoresistance (MR) of 10%, whereas for 4 and 7 T, the negative magnetoresistance values are in the range 51 and 59% respectively at TM-I. The experimental resistivity data of the present investigation are fitted to a simple empirical equation in order to understand conduction mechanism in this compound

  2. Optical properties of calcium barium niobate

    International Nuclear Information System (INIS)

    We report on optical measurements on the novel tungsten bronze type calcium barium niobate. [001]-oriented transparent and colorless single crystals were grown by the Czochralski method with dimensions of 12 mm in diameter and about 80 mm in length. With its relatively high Curie temperature of about 538 K for the congruently melting composition of 28.1 mole% calcium and its high nonlinear coefficients, CBN is a promising material for future applications. Recent experiments revealed, that the application of an external electric field of several kV/cm to CBN at room temperature leads to an increasing opacity of the sample. This might be a drawback considering the future usability of CBN in optical systems. We present investigations on the transmittance behaviour of CBN under external electric fields, demonstrating the erasement of the clouding without affecting the polarization. Experiments have been performed at temperatures ranging from room temperature to approximately 480 K. When heating up the sample, its colorless appearance changes to a light yellow, which can be attributed to a shift of the band edge to longer wavelengths with increasing temperature. To further investigate the transmittance properties of CBN, measurements of the band edge under various temperatures up to the ferroelectric phase transition have been performed.

  3. Leachability of barium-radium sulphate sludges

    International Nuclear Information System (INIS)

    This paper presents results from the first phase of a research program designed to examine the leachability of radium-226 from barium-radium sulphate sludges. Batch leaching tests were performed. Results showed that liquid:solid contact time was relatively unimportant; radium in the sludge was stable in the presence of deionized water with a slight increase in the amount leached per gram of sludge occurring at higher liquid:solid ratios. Not unexpectedly, low and high values of leachant pH increased radium leaching. Both monovalent and divalent salt solutions also increased leaching; however, dissolved radium-226 activity levels in the leachate decreased as leachant molarity increased. For divalent salts this can be explained by the common ion effect; for monovalent salts it is opposite to results expected from solubility considerations. The interpretation of all results is complicated by the fact that in most tests, the amount of radium-226 present in the leachate was lower than the calculated contribution from the mother liquour present with the sludge. This apparent ability of the sludge to absorb radium from solution may be related to dissolution and reprecipitation of the sludge during the leaching tests

  4. Chemical compositions of four barium stars

    CERN Document Server

    Liang, Y C; Chen, Y Q; Qiu, H M; Zhang, B

    2003-01-01

    Chemical compositions of four barium stars HD 26886, HD 27271, HD 50082 and HD 98839 are studied based on high resolution, high signal-to-noise Echelle spectra. Results show that all of them are disk stars. Their \\alpha and iron peak elements are similar to the solar abundances. The neutron-capture process elements are overabundant relative to the Solar. The heavy-element abundances of the strong Ba star HD 50082 are higher than those of other three mild Ba stars. Its mass is 1.32Msun (+0.28,-0.22Msun), and is consistent with the average mass of strong Ba stars (1.5Msun). For mild Ba star HD 27271 and HD 26886, the derived masses are 1.90Msun (+0.25,-0.20Msun) and 2.78Msun (+0.75,-0.78M_sun), respectively, which are consistent with the average mass of mild Ba stars. We also calculate the theoretical abundances of Ba stars by combining the AGB stars nucleosynthesis and wind accretion formation scenario of Ba binary systems. The comparisons between the observed abundance patterns of the sample stars with the th...

  5. The diagnostic value of barium enema in acute appendicitis

    International Nuclear Information System (INIS)

    Acute appendicitis is the most common acute surgical condition of the abdomen. When the clinical presentation is atypical, barium enema has proven to be safe and useful in confirming the diagnosis and reducing the negative surgical exploration. However, the performance of barium enema in acute appendicitis has known contraindication primarily because of fear of leakage by perforation of the inflamed appendix. This study using barium enema as a diagnostic aid in acute appendicitis with atypical clinical presentation was performed to further support the previously noted efficacy and safety of this procedure. The results were as followings: 1. In case of acute appendicitis with atypical clinical presentation, the use of barium enema as a diagnostic aid increased the accuracy of diagnosis and decreased the negative surgical exploration. In women between 11 to 50 years old age, especially, it played important role differentiating appendicitis from nonsurgical acute abdomen. 2. The results of the study were 92.31% in sensitivity, 7.69% in false positive, 6.9% in false negative, and 10.26% in negative appendectomy. 3. None of case of leakage of barium by perforation of the inflamed appendix was noted, therefore, barium enema was thought to be safe as a diagnostic aid in acute appendicitis. 4. A simple partial or non filling of appendix without other associated positive finding could not exclude appendicitis, therefore, close clinical observation was necessary. 5. The positive findings of barium enema and their sensitivity were as followings: 1. Non filling of appendix: 90% 2. Partial filling of appendix: 91.7% 3. Displacement or a local impression on terminal ileum: 100%

  6. Mathematical Modelling of Nitride Layer Growth of Low Temperature Gas and Plasma Nitriding of AISI 316L

    OpenAIRE

    Triwiyanto A.; Zainuddin A.; Abidin K.A.Z; Billah M.A; Hussain P.

    2014-01-01

    This paper present mathematical model which developed to predict the nitrided layer thickness (case depth) of gas nitrided and plasma nitrided austenitic stainless steel according to Fick’s first law for pure iron by adapting and manipulating the Hosseini’s model to fit the diffusion mechanism where nitrided structure formed by nitrided AISI 316L austenitic stainless steel. The mathematical model later tested against various actual gas nitriding and plasma nitriding experimental results with ...

  7. Synthesis of chromium nitride powder by carbo-thermal nitriding

    International Nuclear Information System (INIS)

    Fine chromium nitride powders were synthesized by carbo-thermal nitriding from Cr2O3 and carbon black. Thermal nitriding reaction of Cr2O3 and carbon black mixture was investigated by TG-DTA. The products were identified by XRD. Cr3C2 and Cr2 (CN) were formed in the early stage of the reaction, but finally they changed into Cr2N and CrN. Lab-scale syntheses of Cr2N and CrN were carried out using an electric tube furnace. Cr2N was synthesized by firing the mixed powder at 1393 K for 1 hr under nitrogen and hydrogen mixed gas flow, whereas CrN was synthesized by sequentially nitriding of Cr2N at 1173 K. The both synthesized powders showed homogeneous morphology with narrow particle size distribution and average size of about 1 μm. Cr2N and CrN contained 11 and 20 % of nitrogen respectively, sub percents of oxygen and carbon. (author)

  8. Hydrodenitrogenation of pyridine over transition metal nitrides

    Energy Technology Data Exchange (ETDEWEB)

    Milad, I.K.; Smith, K.J. [British Columbia Univ., Vancouver, BC (Canada). Dept. of Chemical Engineering

    1997-11-01

    The use of transition metal nitrides (TMN) as catalysts for hydrodenitrogenation (HDN) was discussed. A study was conducted in which a series of unsupported and supported Mo, Fe, W, Co, Nb, Cr, V and Ti nitrides were examined as catalysts for the HDN of pyridine at atmospheric pressure and 350 degrees C. The catalysts were prepared by temperature programmed nitridation of the metal oxide with NH{sub 3}. It was shown that a single nitride phase was present in each of the catalysts. The Mo nitride showed the greatest activity per gram of catalyst. Co and Fe nitrides showed the highest activities per surface area of the unsupported catalyst. Metal nitrides with lower heats of formation showed higher HDN activity. 1 tab.

  9. Homogeneous dispersion of gallium nitride nanoparticles in a boron nitride matrix by nitridation with urea.

    Science.gov (United States)

    Kusunose, Takafumi; Sekino, Tohru; Ando, Yoichi

    2010-07-01

    A Gallium Nitride (GaN) dispersed boron nitride (BN) nanocomposite powder was synthesized by heating a mixture of gallium nitrate, boric acid, and urea in a hydrogen atmosphere. Before heat treatment, crystalline phases of urea, boric acid, and gallium nitrate were recognized, but an amorphous material was produced by heat treatment at 400 degrees C, and then was transformed into GaN and turbostratic BN (t-BN) by further heat treatment at 800 degrees C. TEM obsevations of this composite powder revealed that single nanosized GaN particles were homogeneously dispersed in a BN matrix. Homogeneous dispersion of GaN nanoparticles was thought to be attained by simultaneously nitriding gallium nitrate and boric acid to GaN and BN with urea. PMID:21128417

  10. Preparation of barium hexaferrite powders using oxidized steel scales waste

    Science.gov (United States)

    Septiani, Ardita; Idayanti, Novrita; Kristiantoro, Tony

    2016-02-01

    Research on preparation of barium hexaferrite powders has been done using Hot Strip Mill scales as raw materials. Hot Strip Mill scales are oxidized steel scales waste from steel industrial process. The method used for preparing the barium hexaferrite powders was solid state reaction method. Oxidized steel scales were milled using ball mill for 10 hours, then screened through a 250 mesh sieve to obtain powders with maximum size of 63 µm. Powders were roasted at 600°C temperature for 4 hours to obtain hematite (Fe2O3) phase. Roasted powders were then mixed with barium carbonate, and were subsequently milled for 16 hours. After mixing, powders were calcined with an increasing rate of 10°C/min and maintained at 1100°C for 3 hours. Calcination process was performed to acquire barium hexaferrite phase. X-ray Diffraction (XRD) characterization in conjunction with RIR analysis showed that 85 wt. % of barium hexaferrite is formed. The magnetic properties of powders were characterized using Permagraph. It is found the value of remanent induction is 1.09 kG, coercivity of 2.043 kOe, and the maximum energy product of 0.25 MGOe.

  11. Barium Depletion in the NSTAR Discharge Cathode After 30,000 Hours of Operation

    Science.gov (United States)

    Polk, James E.; Capece, Angela M.; Mikellides, Ioannis G.; Katz, Ira

    2010-01-01

    Dispenser hollow cathodes rely on a consumable supply of barium released by impregnant materials in the pores of a tungsten matrix to maintain a low work function surface. Examinations of cathode inserts from long duration ion engine tests show deposits of tungsten at the downstream end that appear to block the flow of barium from the interior. In addition, a numerical model of barium transport in the insert plasma indicates that the barium partial pressure in the insert may exceed the equilibrium vapor pressure of the dominant barium-producing reaction, and it was postulated previously that this would suppress barium loss in the upstream part of the insert. New measurements of the depth of barium depletion from a cathode insert operated for 30,352 hours reveal that barium loss is confined to a narrow region near the downstream end, confirming this hypothesis.

  12. Studies of hexacelsian and celsian barium aluminosilicates

    Science.gov (United States)

    Lee, Kuo-Tong

    1998-09-01

    The first part of this work (chapter 3) describes the reaction paths leading to the formation of BaAlsb2Sisb2Osb8 (BAS) from a mixture of gamma-BaCOsb3,\\ alpha-Alsb2Osb3, and amorphous SiOsb2 powders. Heat treatments conducted from 600 to 1200sp°C in air were used to transform the powder mixtures into hexacelsian BAS. The phase evolution to BAS was examined by x-ray diffraction. Several experiments were designed to microscopically reproduce the solid-solid interfaces expected during the synthesis of BAS and enabled the author to describe the different stages of the reaction. There exist two reaction paths in formation of BAS in this study: (1) formation of a series of barium silicates leading to BaO*2SiOsb2 (BSsb2) which then reacts with Alsb2Osb3 to form BAS and (2) formation of BaO*Alsb2Osb3 (BA) which then reacts with SiOsb2 to form BAS. The kinetics of the latter is slower than that of the former because the reaction between BaO*Alsb2Osb3 and SiOsb2 to form BAS includes a bond breaking process. The second part (chapter 4) of this research was undertaken to study the role of additives on the kinetics of the transformation of hexacelsian to celsian. Pre-synthesized hexacelsian powders doped with various additives were heated at temperatures ranging from 850 to 1400sp°C for 4 hrs. Semi-quantitative analysis of XRD was used to determine the extent of the hexacelsian-to-celsian transformation. This work was extended further to investigate the mechanisms involved in the transformation. Defect structures developed in the additive-containing celsian provide insights about the sites occupied by the cations added. Experimental results indicate that the doping of ˜0.99A cations in promoting the conversion of hexacelsian to celsian is by forming an interstitial solid solution in hexacelsian and ˜0.66A cations form a substitutional solid solution. In a kinetic study on the CaO- or MgO-enhanced transformation, values of rate constant, k, and Avlami constant, n, at

  13. Occupational doses in pediatric barium meal procedures

    International Nuclear Information System (INIS)

    Ionizing radiation has become an indispensable tool when it comes to diagnosis and therapy. However, its use should happen in a rational manner, taking into account the risks to which the staff is being exposed. Barium meal (BM), or upper gastrointestinal (GI) studies, using fluoroscopy, are widely used for gastroesophageal reflux disease diagnostic in children and professionals are required to stay inside the examination room to position and immobilize pediatric patients during the procedure. Therefore, it is very important that proffessionals strictly follow the technical standards of radiation protection. According to the ICRP and the NCRP recommendations, the annual limit equivalent doses for eyes, thyroid and hands are, espectively, 20 mSv, 150 mSv and 500 mSv. Based on those data, the aim of the current study is to estimate the annual equivalent dose for eyes, thyroid and hands of professionals who perform BM procedures in children. This was done using properly package LiF:Mg,Cu,P thermoluminescent dosimeters in 37 procedures; 2 pairs were positioned near each staff´s eye, 2 pairs on each professional´s neck (on and under the lead protector) and 2 pairs on both staff´s hands. The range of the estimative annual equivalent doses, for eyes, thyroid and hands, are, respectively: 14 – 36 mSv, 7 – 22 mSv and 14 – 58 mSv. Only the closest staff to the patient exceeded the annual equivalent doses in the eyes (around 80% higher than the limit set by ICRP). However, the results from this study, for hands and thyroid, compared to similar studies, show higher values. Therefore, the optimization implementation is necessary, so that the radiation levels can be reduced. (authors)

  14. Method for the extraction chromatographic separation of barium from other elements with dibenzo-18-crown-6

    International Nuclear Information System (INIS)

    A method has been developed for the extraction chromatographic separation of barium from 0.01 M picric acid solution with dibenzo-18-crown-6 coated on hydrophobic silica gel as the stationary phase. Various mineral acids can be used as stripping agents. Barium was separated from other elements by selective extraction and the separation of barium from alkali and alkaline earth metals, uranium, thorium and lead was achieved. The method was applied to the determination of barium in real samples. (author)

  15. Electron microscopy of barium bismuth titanate multilayer ceramics

    International Nuclear Information System (INIS)

    For a number of years bismuth containing compounds have been used with pre-calcined barium titanate to reduce the sintering temperature of the capacitor formulations. As reported earlier the backscattered electron (BSE) SEM micrographs of the bismuth containing barium titanate ceramic reveal that the grains having an average size of 1.2μm consist of a two phase structure consisting of relatively pure barium titanate grain cores surrounded by bismuth rich grain shells. The TEM and STEM studies along with the EDS analyses show that the bismuth concentration increases sharply as one steps towards the grain boundary with a maximum bismuth content at the grain boundary. It is the purpose of this work to investigate the distribution of bismuth in these formulations including the bismuth content, if any, at the ceramic metal interface as affected by the sintering temperature. The subsequent effect on the electrical resistivity of these ceramics in the multilayer configuration is reported

  16. Economically dissolving barium sulfate scale with a chelating agent

    Energy Technology Data Exchange (ETDEWEB)

    Richardson, E.A.; Scheuerman, R.E.

    1977-06-21

    A composition is described for dissolving a barium sulfate scale from a subterranean or other relatively remote location into which fluid can be flowed. Fluid is flow-flowed into the remote location so that a stream of fluid contacts and flows along the surface of the scale. The composition and flow rate of the fluid are adjusted so that (1) the scale is contacted by a stream of aqueous solution in which each portion contains enough dissolved aminopolyacetic acid salt chelating agent to dissolve barium sulfate, and (2) substantially all upstream portions of the scale are contacted by a succession of portions of the aqueous liquid which are substantially unsaturated with respect to dissolved barium-chelant complex. (5 claims)

  17. Barium titanate thick films prepared by screen printing technique

    Directory of Open Access Journals (Sweden)

    Mirjana M. Vijatović

    2010-06-01

    Full Text Available The barium titanate (BaTiO3 thick films were prepared by screen printing technique using powders obtained by soft chemical route, modified Pechini process. Three different barium titanate powders were prepared: i pure, ii doped with lanthanum and iii doped with antimony. Pastes for screen printing were prepared using previously obtained powders. The thick films were deposited onto Al2O3 substrates and fired at 850°C together with electrode material (silver/palladium in the moving belt furnace in the air atmosphere. Measurements of thickness and roughness of barium titanate thick films were performed. The electrical properties of thick films such as dielectric constant, dielectric losses, Curie temperature, hysteresis loop were reported. The influence of different factors on electrical properties values was analyzed.

  18. Radiation dose in mass screening for gastric cancer with high-concentration barium sulphate compared with moderate-concentration barium sulphate

    International Nuclear Information System (INIS)

    Full text: Recently, high-concentration barium sulfate has been developed and is used in many medical facilities. This study compared radiation dose using high-concentration and moderate-concentration barium sulfate. The dose was evaluated with an experimental method using a gastric phantom and with a clinical examination. In the former, the dose and X-ray tube load were measured on the phantom with two concentrations of barium sulfate. In the latter, the fluoroscopic dose-area product (DAP), the radiographic DAP and their sum, the total DAP, were investigated in 150 subjects (112 males, 38 females) treated with both concentrations of barium sulfate. The effective dose was calculated by the software of PCXMC in every case. The results of the experimental evaluation indicated that the effective dose and X-ray tube load were greater with high-concentration barium sulfate than with moderate-concentration barium sulfate (p < 0.05). The results of the clinical evaluation indicated that the fluoroscopic DAP was greater with moderate-concentration barium sulfate than with high-concentration barium sulfate (p < 0.05), but the radiographic DAP was quite the reverse, so the total DAP and effective dose were almost same with both concentrations of barium sulfate. We conclude that high-concentration barium sulfate does not increase radiation dose in mass screening for gastric cancer.

  19. Reaction sintering of a zirconia-containing barium feldspar ceramic

    International Nuclear Information System (INIS)

    Zircon (ZrSiO4) is a natural mineral resource known to react with certain oxides to produce a dispersion of zirconia particles within ceramic or glass-ceramic matrices. Barium aluminosilicates, particularly the celsian polymorphs of BaO- Al2O3 2SiO2 display oxidation resistance and refractory characteristics commensurate with the properties required of high temperature materials. Such properties, coupled with the high melting point of ZrO2 (2680 deg C), suggest that barium aluminosilicates and zirconia are an ideal combination from which to fabricate high temperature materials. A recent study has indicated that a barium aluminosilicate containing up to 40mol% ZrO2 can be prepared via a sol-gel process. However, the desire to utilise a natural resource in the form of zircon in the present work has led to the choice of reaction sintering as an alternative processing route. The current work was undertaken to investigate the possibility of forming a zirconia-containing barium feldspar composite material using the reaction sintering of zircon and assuming the following stoichiometric reaction: 2ZrSiO4 + BaCO3 + Al2O3 → 2ZrO2 + BaO-Al2O3-2SiO2 + CO2 ↑. The reaction sintering of zircon with alumina and barium carbonate produces a composite material comprising distributed ZrO2 in a continous barium feldspar matrix. Yttria added during processing allows a significant fraction of the ZrO2 to be retained as tetragonal phase to room temperature and thus the potential for a measure of transformation toughening

  20. Reaction sintering of a zirconia-containing barium feldspar ceramic

    Energy Technology Data Exchange (ETDEWEB)

    Nordmann, A.; Cheng, Y-B.; Muddle, B. C. [Monash Univ., Clayton, VIC (Australia). Dept. of Materials Engineering

    1996-12-31

    Zircon (ZrSiO{sub 4}) is a natural mineral resource known to react with certain oxides to produce a dispersion of zirconia particles within ceramic or glass-ceramic matrices. Barium aluminosilicates, particularly the celsian polymorphs of BaO- Al{sub 2}O{sub 3} 2SiO{sub 2} display oxidation resistance and refractory characteristics commensurate with the properties required of high temperature materials. Such properties, coupled with the high melting point of ZrO{sub 2} (2680 deg C), suggest that barium aluminosilicates and zirconia are an ideal combination from which to fabricate high temperature materials. A recent study has indicated that a barium aluminosilicate containing up to 40mol% ZrO{sub 2} can be prepared via a sol-gel process. However, the desire to utilise a natural resource in the form of zircon in the present work has led to the choice of reaction sintering as an alternative processing route. The current work was undertaken to investigate the possibility of forming a zirconia-containing barium feldspar composite material using the reaction sintering of zircon and assuming the following stoichiometric reaction: 2ZrSiO{sub 4} + BaCO{sub 3} + Al{sub 2}O{sub 3} {yields} 2ZrO{sub 2} + BaO-Al{sub 2}O{sub 3}-2SiO{sub 2} + CO{sub 2} {up_arrow}. The reaction sintering of zircon with alumina and barium carbonate produces a composite material comprising distributed ZrO{sub 2} in a continous barium feldspar matrix. Yttria added during processing allows a significant fraction of the ZrO{sub 2} to be retained as tetragonal phase to room temperature and thus the potential for a measure of transformation toughening. 14 refs., 2 tabs., 6 figs.

  1. Compact pulse forming line using barium titanate ceramic material

    Science.gov (United States)

    Kumar Sharma, Surender; Deb, P.; Shukla, R.; Prabaharan, T.; Shyam, A.

    2011-11-01

    Ceramic material has very high relative permittivity, so compact pulse forming line can be made using these materials. Barium titanate (BaTiO3) has a relative permittivity of 1200 so it is used for making compact pulse forming line (PFL). Barium titanate also has piezoelectric effects so it cracks during high voltages discharges due to stresses developed in it. Barium titanate is mixed with rubber which absorbs the piezoelectric stresses when the PFL is charged and regain its original shape after the discharge. A composite mixture of barium titanate with the neoprene rubber is prepared. The relative permittivity of the composite mixture is measured to be 85. A coaxial pulse forming line of inner diameter 120 mm, outer diameter 240 mm, and length 350 mm is made and the composite mixture of barium titanate and neoprene rubber is filled between the inner and outer cylinders. The PFL is charged up to 120 kV and discharged into 5 Ω load. The voltage pulse of 70 kV, 21 ns is measured across the load. The conventional PFL is made up of oil or plastics dielectrics with the relative permittivity of 2-10 [D. R. Linde, CRC Handbook of Chemistry and Physics, 90th ed. (CRC, 2009); Xia et al., Rev. Sci. Instrum. 79, 086113 (2008); Yang et al., Rev. Sci. Instrum. 81, 43303 (2010)], which increases the length of PFL. We have reported the compactness in length achieved due to increase in relative permittivity of composite mixture by adding barium titanate in neoprene rubber.

  2. Compact pulse forming line using barium titanate ceramic material.

    Science.gov (United States)

    Kumar Sharma, Surender; Deb, P; Shukla, R; Prabaharan, T; Shyam, A

    2011-11-01

    Ceramic material has very high relative permittivity, so compact pulse forming line can be made using these materials. Barium titanate (BaTiO(3)) has a relative permittivity of 1200 so it is used for making compact pulse forming line (PFL). Barium titanate also has piezoelectric effects so it cracks during high voltages discharges due to stresses developed in it. Barium titanate is mixed with rubber which absorbs the piezoelectric stresses when the PFL is charged and regain its original shape after the discharge. A composite mixture of barium titanate with the neoprene rubber is prepared. The relative permittivity of the composite mixture is measured to be 85. A coaxial pulse forming line of inner diameter 120 mm, outer diameter 240 mm, and length 350 mm is made and the composite mixture of barium titanate and neoprene rubber is filled between the inner and outer cylinders. The PFL is charged up to 120 kV and discharged into 5 Ω load. The voltage pulse of 70 kV, 21 ns is measured across the load. The conventional PFL is made up of oil or plastics dielectrics with the relative permittivity of 2-10 [D. R. Linde, CRC Handbook of Chemistry and Physics, 90th ed. (CRC, 2009); Xia et al., Rev. Sci. Instrum. 79, 086113 (2008); Yang et al., Rev. Sci. Instrum. 81, 43303 (2010)], which increases the length of PFL. We have reported the compactness in length achieved due to increase in relative permittivity of composite mixture by adding barium titanate in neoprene rubber. PMID:22129008

  3. 49 CFR 173.182 - Barium azide-50 percent or more water wet.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Barium azide-50 percent or more water wet. 173.182 Section 173.182 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS... Class 1 and Class 7 § 173.182 Barium azide—50 percent or more water wet. Barium azide—50 percent or...

  4. 21 CFR 201.304 - Tannic acid and barium enema preparations.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 4 2010-04-01 2010-04-01 false Tannic acid and barium enema preparations. 201.304... Tannic acid and barium enema preparations. (a) It has become a widespread practice for tannic acid to be added to barium enemas to improve X-ray pictures. Tannic acid is capable of causing diminished...

  5. 40 CFR 721.10010 - Barium manganese oxide (BaMnO3).

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Barium manganese oxide (BaMnO3). 721... Substances § 721.10010 Barium manganese oxide (BaMnO3). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as barium manganese oxide (BaMnO3) (PMN...

  6. The adhesiometer: a simple device to measure adherence of barium sulfate to intestinal mucosa.

    Science.gov (United States)

    Salomonowitz, E; Frick, M P; Cragg, A H; Lund, G

    1984-04-01

    A simple, inexpensive device assessing barium sulfate adherence to alimentary tract mucosa was tested in an animal study using pigs and dogs. Interaction of gastric, intestinal, and colonic mucosal lining with three different barium preparations was studied. In both pigs and dogs, barium adherence to gastric mucosa was significantly stronger when compared with colonic mucosa. PMID:6608230

  7. Esophageal intramural pseudodiverticulosis characterized by barium esophagography: a case report

    LENUS (Irish Health Repository)

    O'Connor, Owen J

    2010-05-21

    Abstract Introduction Esophageal intramural pseudodiverticulosis is a rare condition characterized by the dilatation of the submucosal glands. Case presentation We present a case of esophageal intramural pseudodiverticulosis in a 72-year-old Caucasian man who presented with dysphagia and with a background history of alcohol abuse. An upper gastrointestinal endoscopy of our patient showed an esophageal stricture with abnormal mucosal appearances, but no malignant cells were seen at biopsy. Appearances on a barium esophagram were pathognomonic for esophageal intramural pseudodiverticulosis. Conclusion We demonstrate the enduring usefulness of barium esophagography in the characterization of abnormal mucosal appearances at endoscopy.

  8. Kinetics of thermal decomposition of barium zirconyl oxalate

    International Nuclear Information System (INIS)

    Kinetics of the thermal decomposition of anhydrous barium zirconyl oxalate and a carbonate intermediate have been studied. Decomposition of the anhydrous oxalate, though it could be explained based on a contracting-cube model, is quite complex. Kinetics of decomposition of the intermediate carbonate Ba2Zr2O5CO3 is greatly influenced by thermal effects during its formation. (α-t) curves are sigmoidal and obey a power law equation followed by first order decay. Presence of carbon in the vacuum-prepared carbonate has a strong deactivating effect. Decomposition of the carbonate is accompanied by growth in particle size of the product barium zirconate. (Author)

  9. Photoionization and Photoelectric Loading of Barium Ion Traps

    CERN Document Server

    Steele, A V; Churchill, L R; Griffin, P F

    2007-01-01

    Simple and effective techniques for loading barium ions into linear Paul traps are demonstrated. Two-step photoionization of neutral barium is achieved using a weak intercombination line (6s2 1S0 6s6p 3P1, 791 nm) followed by excitation above the ionization threshold using a nitrogen gas laser (337 nm). Isotopic selectivity is achieved by using a near Doppler-free geometry for excitation of the triplet 6s6p 3P1 state. Additionally, we report a particularly simple and efficient trap loading technique that employs an in-expensive UV epoxy curing lamp to generate photoelectrons.

  10. Photoionization and Photoelectric Loading of Barium Ion Traps

    OpenAIRE

    Steele, A. V.; Churchill, L. R.; Griffin, P. F.; Chapman, M. S.

    2007-01-01

    Simple and effective techniques for loading barium ions into linear Paul traps are demonstrated. Two-step photoionization of neutral barium is achieved using a weak intercombination line (6s2 1S0 6s6p 3P1, 791 nm) followed by excitation above the ionization threshold using a nitrogen gas laser (337 nm). Isotopic selectivity is achieved by using a near Doppler-free geometry for excitation of the triplet 6s6p 3P1 state. Additionally, we report a particularly simple and efficient trap loading t...

  11. Equations of state for barium in high-pressure phases

    International Nuclear Information System (INIS)

    The universal equation of state with an arbitrary reference point presented by the author (Fang Zheng-Hua 1998 Phys. Rev. B 50 16 238) is applied successfully to the analysis of the experimental compression data of barium in different structural phases (I, II, and V). The comparison given in this paper shows that this equation suits for the isothermal compression behaviour of barium in the high-pressure phases (II and V) better than the Birch-Murnaghan equation. The applicability of equations of state for solids in high-pressure phases is also discussed. (author)

  12. Internal nitride formation during gas-phase thermal nitridation of titanium

    OpenAIRE

    Ajikumar, PK; M. Kamruddin; Shankar, P; Gouda, Ramakrishna; Balamurugan, AK; Nithya, R.; Tyagi, AK; Jayaram, V; Biswas, SK; Raj, Baldev

    2009-01-01

    Titanium nitride surface layers were prepared by gas-phase thermal nitridation of pure titanium in an ammonia atmosphere at 1373 K for different times. In addition to the surface nitride layer, nitride/hydride formation was observed in the bulk of the specimen. The cross-section of the specimen was characterized by various techniques such as optical microscopy, scanning electron microscopy, energy dispersive X-ray spectroscopy, secondary ion mass spectrometry and nanomechanical testing, ...

  13. PLASMA NITRIDING FOR IMPROVING WEAR RESISTANCE OF CABLE BOLT

    OpenAIRE

    SHAOQING NIU; SHUANGSUO YANG; YI LI

    2013-01-01

    In order to improve the wear resistance of the cable bolt and increase its life-time during operation, plasma nitriding was employed to obtain a protective nitriding layer on its surface. The microstructure, phase constitution, microhardness and wear resistance of the nitriding layer were investigated. It was shown that continuous and dense nitriding layers were formed on the surface of the samples. The microhardness of the nitrided sample was enhanced by the formation of nitriding layer, whi...

  14. Chemical abundance analysis of 19 barium stars

    Science.gov (United States)

    Yang, Guo-Chao; Liang, Yan-Chun; Spite, Monique; Chen, Yu-Qin; Zhao, Gang; Zhang, Bo; Liu, Guo-Qing; Liu, Yu-Juan; Liu, Nian; Deng, Li-Cai; Spite, Francois; Hill, Vanessa; Zhang, Cai-Xia

    2016-01-01

    We aim at deriving accurate atmospheric parameters and chemical abundances of 19 barium (Ba) stars, including both strong and mild Ba stars, based on the high signal-to-noise ratio and high resolution Echelle spectra obtained from the 2.16 m telescope at Xinglong station of National Astronomical Observatories, Chinese Academy of Sciences. The chemical abundances of the sample stars were obtained from an LTE, plane-parallel and line-blanketed atmospheric model by inputting the atmospheric parameters (effective temperatures Teff, surface gravities log g, metallicity [Fe/H] and microturbulence velocity ξt) and equivalent widths of stellar absorption lines. These samples of Ba stars are giants as indicated by atmospheric parameters, metallicities and kinematic analysis about UVW velocity. Chemical abundances of 17 elements were obtained for these Ba stars. Their Na, Al, α- and iron-peak elements (O, Na, Mg, Al, Si, Ca, Sc, Ti, V, Cr, Mn, Ni) are similar to the solar abundances. Our samples of Ba stars show obvious overabundances of neutron-capture (n-capture) process elements relative to the Sun. Their median abundances of [Ba/Fe], [La/Fe] and [Eu/Fe] are 0.54, 0.65 and 0.40, respectively. The Y I and Zr I abundances are lower than Ba, La and Eu, but higher than the α- and iron-peak elements for the strong Ba stars and similar to the iron-peak elements for the mild stars. There exists a positive correlation between Ba intensity and [Ba/Fe]. For the n-capture elements (Y, Zr, Ba, La), there is an anti-correlation between their [X/Fe] and [Fe/H]. We identify nine of our sample stars as strong Ba stars with [Ba/Fe] >0.6 where seven of them have Ba intensity Ba=2-5, one has Ba=1.5 and another one has Ba=1.0. The remaining ten stars are classified as mild Ba stars with 0.17<[Ba/Fe] <0.54.

  15. Vertical coupling of laser glass microspheres to buried silicon nitride ellipses and waveguides

    CERN Document Server

    Navarro-Urrios, Daniel; Capuj, Nestor E; Berencen, Yonder; Garrido, Blas; Tredicucci, Alessandro

    2015-01-01

    We demonstrate the integration of Nd3+ doped Barium-Titanium-Silicate microsphere lasers with a Silicon Nitride photonic platform. Devices with two different geometrical configurations for extracting the laser light to buried waveguides have been fabricated and characterized. The first configuration relies on a standard coupling scheme, where the microspheres are placed over strip waveguides. The second is based on a buried elliptical geometry whose working principle is that of an elliptical mirror. In the latter case, the input of a strip waveguide is placed on one focus of the ellipse, while a lasing microsphere is placed on top of the other focus. The fabricated elliptical geometry (ellipticity=0.9) presents a light collecting capacity that is 50% greater than that of the standard waveguide coupling configuration and could be further improved by increasing the ellipticity. Moreover, since the dimensions of the spheres are much smaller than those of the ellipses, surface planarization is not required. On th...

  16. Silicon nitride-fabrication, forming and properties

    International Nuclear Information System (INIS)

    This article, which is a literature survey of the recent years, includes description of several methods for the formation of silicone nitride, and five methods of forming: Reaction-bonded silicon nitride, sintering, hot pressing, hot isostatic pressing and chemical vapour deposition. Herein are also included data about mechanical and physical properties of silicon nitride and the relationship between the forming method and the properties. (author)

  17. Property database of TRU nitride fuel

    OpenAIRE

    西 剛史; 荒井 康夫; 高野 公秀; 倉田 正輝

    2014-01-01

    The purpose of this study is to prepare a property database of nitride fuel needed for the fuel design of accelerator-driven system (ADS) for transmutation of minor actinide (MA). Nitride fuel of ADS is characterized by high content of Pu and MA as principal components, and addition of a diluent material such as ZrN. Experimental data or evaluated values from the raw data on properties Pu and MA nitrides, and nitride solid solutions containing ZrN are collected and summarized, which cover the...

  18. Plasmonic titanium nitride nanostructures for perfect absorbers

    DEFF Research Database (Denmark)

    Guler, Urcan; Li, Wen-Wei; Kinsey, Nathaniel; Naik, Gururaj V.; Boltasseva, Alexandra; Guan, Jianguo; Kildishev, Alexander V.; Shalaev, Vladimir M.

    2013-01-01

    We propose a metamaterial based perfect absorber in the visible region, and investigate the performance of titanium nitride as an alternative plasmonic material. Numerical and experimental results reveal that titanium nitride performs better than gold as a plasmonic absorbing material.Renewable E......We propose a metamaterial based perfect absorber in the visible region, and investigate the performance of titanium nitride as an alternative plasmonic material. Numerical and experimental results reveal that titanium nitride performs better than gold as a plasmonic absorbing material...

  19. III-nitride blue microdisplays

    International Nuclear Information System (INIS)

    Prototype blue microdisplays have been fabricated from InGaN/GaN quantum wells. The device has a dimension of 0.5x0.5mm2 and consists of 10x10 pixels 12 μm in diameter. Emission properties such as electroluminescence spectra, output power versus forward current (L--I) characteristic, viewing angle, and uniformity have been measured. Due to the unique properties of III-nitride wide-band-gap semiconductors, microdisplays fabricated from III nitrides can potentially provide unsurpassed performance, including high-brightness/resolution/contrast, high-temperature/high-power operation, high shock resistance, wide viewing angles, full-color spectrum capability, long life, high speed, and low-power consumption, thus providing an enhancement and benefit to the present capabilities of miniature display systems

  20. BARIUM AND RADIUM REMOVAL FROM GROUNDWATER BY ION EXCHANGE

    Science.gov (United States)

    The primary objective of this study was to determine the applicability of weak acid exchange resin in the hydrogen form for removal of hardness, barium and radium from groundwater. Weak acid resin in the hydrogen form eliminates the addition of sodium to drinking water. The capac...

  1. PROPOSED ORAL REFERENCE DOSE (RFD) FOR BARIUM AND COMPOUNDS

    Science.gov (United States)

    The Integrated Risk Information System (IRIS) is a database of EPA's consensus opinion of the human health effects that may result from exposure to various substances found in the environment. A Toxicological Review and IRIS Summary were prepared for barium and compounds in 1998 ...

  2. Barium titanate inverted opals-synthesis, characterization, and optical properties

    Energy Technology Data Exchange (ETDEWEB)

    Soten, I.; Miguez, H.; Yang, S.M.; Petrov, S.; Coombs, N.; Tetreault, N.; Ozin, G.A. [Toronto Univ., ON (Canada). Dept. of Chemistry; Matsuura, N.; Ruda, H.E. [Toronto Univ., ON (Canada). Dept. of Metallurgy and Materials Science

    2002-01-01

    The engineering of cubic or tetragonal polymorphs of nanocrystalline barium titanate inverted opals has been achieved by thermally induced transformations. Optical characterization demonstrated photonic crystal behavior of the opals. The tuning of the ferroelectric-paraelectric transition around the Curie temperature is shown in this paper. (orig.)

  3. Nanocrystals formation on Ho3+ doped strontium barium niobate glass

    International Nuclear Information System (INIS)

    The study of two different methods to obtain strontium barium niobate nanocrystals immersed in a glass matrix has been carried out. Ho2O3-doped SrO-BaO-Nb2O5-B2O3 glasses were fabricated using the melt quenching method. Glass ceramic samples were obtained from the precursor glass by thermal treatment in a furnace and by laser irradiation. These glass ceramic samples are formed by a glassy phase and a crystalline phase of strontium barium niobate nanocrystals. This structure was confirmed by X-ray diffraction and Atomic Force Microscope images. The incorporation of Ho3+ ions in the strontium barium niobate nanocrystals were corroborated by optical measurements, which produced an increment in the luminescence intensity compared to the precursor glass. - Research Highlights: →Ho doped strontium barium niobate nanocrystals have been obtained. →XRD, AFM and optical measurements corroborate the formation of SBN. →A laser irradiation technique has been carried out successfully.

  4. Removal of barium and radium from groundwater. Environmental research brief

    International Nuclear Information System (INIS)

    A research project was undertaken to investigate processes for removing barium and radium from drinking water. Special emphasis was placed on ion exchange processes that can be used without adding large concentrations of sodium to the water. The wastes from radium and barium removal processes were also characterized, and processes suitable for treatment of ion-exchange brines were evaluated. The report discusses two ion-exchange processes that can be used for barium and radium removal accompanied by either partial or no hardness removal. The calcium-form, strong-acid ion-exchange resin can be used for barium and radium removal without significant change in hardness or the concentration of other salts. This resin can be regenerated with CaC12 brine. The radium-selective complexer (RSC) will remove radium without altering hardness or other salt concentration. The capacity of this resin for waters with low total dissolved solids (TDS) (<1000 to 2000 mg/L TDS) is in excess of 30,000 pCi/dry g; however, if the TDS is increased to about 40,000 mg/L, the capacity drops to 200 to 300 pCi/dry g. Thus using this resin to remove radium from spent brine does not appear feasible

  5. CNO and F abundances in the barium star HD 123396

    CERN Document Server

    Alves-Brito, Alan; Yong, David; Meléndez, Jorge; Vásquez, Sergio

    2011-01-01

    [Abridged] Barium stars are moderately rare chemically peculiar objects which are believed to be the result of the pollution of an otherwise normal star by material from an evolved companion on the asymptotic giant branch (AGB). We aim to derive carbon, nitrogen, oxygen, and fluorine abundances for the first time from infrared spectra of the barium red giant star HD 123396 to quantitatively test AGB nucleosynthesis models for producing barium stars via mass accretion. High-resolution and high S/N infrared spectra were obtained using the Phoenix spectrograph mounted at the Gemini South telescope. The abundances were obtained through spectrum synthesis of individual atomic and molecular lines, using the MOOG stellar line analysis program together with Kurucz's stellar atmosphere models. The analysis was classical, using 1D stellar models and spectral synthesis under the assumption of local thermodynamic equilibrium. We confirm that HD 123396 is a metal-deficient barium star ([Fe/H] = -1.05), with A(C) = 7.88, A...

  6. Ultra-low temperature processing of barium tellurate dielectrics

    Science.gov (United States)

    Kwon, Do-Kyun

    Ceramics, metals and polymers have unique electrical properties that are combined for electronic devices and systems. It necessitates lower processing temperatures for ceramics to be compatible with metal and polymer systems. In this thesis, the synthesis, crystal structure, and dielectric properties of barium tellurate are studied for temperatures between 500 and 900°C. Barium tellurate dielectric ceramics (BaTe4O9, BaTe 2O5, BaTe2O6, BaTeO3, BaTeO 4, and Ba2TeO5) are extensively investigated as new LTCC (Low-Temperature Cofired Ceramics) dielectric systems integrated with low resistivity metal electrodes such as silver and aluminum for microwave application. Studies on the phase formation and crystal structure through thermal analyses (Differential Scanning Calorimetry and Thermogravimetric Analysis, DSC-TGA) and X-ray diffraction phase analysis attest that barium tellurates are formed in the temperature range of 500 ˜ 900°C, through the sequential phase formations from Te-rich to Ba-rich phases. The oxygen coordination of the tellurium ion progresses from TeO4 to TeO6 via TeO 3+1 and TeO3 with increasing barium content as confirmed by structural analysis using infrared spectroscopy. High density barium tellurate ceramics are achieved at temperatures as low as 550°C, which provides the potential to be co-fired with low-melting aluminum metal electrodes in LTCC processing. Dielectric permittivity, loss, and temperature stability of barium tellurate dielectric ceramics were measured from 100 Hz to 13 GHz. Barium tellurate ceramics exhibit excellent microwave dielectric properties with intermediate dielectric permittivities and high quality factors (Q). The dielectric properties at microwave frequencies are epsilonr = 17.5, Qxf = 54700 GHz, TCf = -90 ppm/°C for BaTe4O9, epsilonr = 21, Qxf = 50300 GHz, TCf = -51 ppm/°C for BaTe2O6, epsilonr = 10, Qxf = 34000 GHz, TCf = -54 ppm/°C for BaTeO3, and epsilonr = 17, Qx f = 49600 GHz, TCf = -124 ppm/°C for Ba 2TeO5

  7. Nucleation of iron nitrides during gaseous nitriding of iron; the effect of a preoxidation treatment

    DEFF Research Database (Denmark)

    Friehling, Peter B.; Poulsen, Finn Willy; Somers, Marcel A.J.

    2001-01-01

    grains. On prolonged nitriding, immediate nucleation at the surface of iron grains becomes possible. Calculated incubation times for the nucleation of gamma'-Fe4N1-x during nitriding are generally longer than those observed experimentally in the present work. The incubation time is reduced dramatically......The nucleation of iron nitrides during gaseous nitriding has been investigated using light microscopy and X-ray diffraction. Initially, the nucleation of gamma'-Fe4N1-x on a pure iron surface starts at grain boundaries meeting the surface, from where the nitride grains grow laterally into the iron...

  8. Microstructure analysis of the iron nitride thin films nitrided on the surface of machinery component materials

    International Nuclear Information System (INIS)

    On this study the ion nitriding process of the machinery component materials, which consist of the piston pen and the piston rings, have been conducted. Ion nitriding of the machinery component materials was performed for some variation of nitriding temperature, nitriding time and pressure of nitrogen gas using DC glow discharge. The optimum hardness of the piston pen samples was obtained at the nitriding temperature of 100°C, the nitriding time of 3 hours and the nitrogen gas pressure of 1.6 mbar, and the hardness value increased approximately six times compared with the non nitrided samples; while the hardness value of the piston ring was increase approximately 2.6 time at the temperature nitriding of 100°C, the nitriding time of 3 hours and the nitrogen gas pressure of 1.2 mbar. To observe the micro-structure and elemental composition of iron nitride thin films formed on the surface of the samples was used SEM-EDAX, and the phase structure of iron nitride thin films was observed by using XRD. Based on the observations was known that a compound layer formed on the surface of samples containing different nitrogen and form the phase structure of γ-Fe4N, ε-Fe3N and ζ-Fe2N that have a very good mechanical properties. (author)

  9. Ion-beam nitriding of steels

    Science.gov (United States)

    Salik, Joshua (Inventor); Hubbell, Theodore E. (Inventor)

    1987-01-01

    A surface of a steel substrate is nitrided without external heating by exposing it to a beam of nitrogen ions under low pressure, a pressure much lower than that employed for ion-nitriding. An ion source is used instead of a glow discharge. Both of these features reduce the introduction of impurities into the substrate surface.

  10. Synthesis of ternary nitrides by mechanochemical alloying

    DEFF Research Database (Denmark)

    Jacobsen, C.J.H.; Zhu, J.J.; Lindelov, H.; Jiang, Jianzhong

    2002-01-01

    nitrides by mechanochemical alloying of a binary transition metal nitride (MxN) with an elemental transition metal. In this way, we have been able to prepare Fe3Mo3N and Co3Mo3N by ball-milling of Mo2N with Fe and Co, respectively. The transformation sequence from the starting materials ( the binary...

  11. High hardness of alloyed ferrite after nitriding

    International Nuclear Information System (INIS)

    Detailed layer-by layer structure and phase analyses of the diffusion layer of nitrided binary alloys of iron with aluminium, chromium, vanadium and titanium have been carried out by means of a complex technique. Transition d-metals (chromium, vanadium and titanium) raise to a greater degree the solubility of nitrogen in the α solid solution, sharply increases the hardness of ferrite and decrease the depth of the layer. Nitrided binary alloys of iron with chromium, vanadium and titanium are strengthened through precipitation from the nitrogen-saturated α-solid solution of nitrides of alloying elements TiN, VN and CrN of a structure B1. A maximum hardness of ferrite alloyed by chromium, vanadium and titanium is observed after nitriding at 550 deg C when the precipitated special nitrides are fully coherent with the α matrix

  12. Cathodic Cage Plasma Nitriding: An Innovative Technique

    Directory of Open Access Journals (Sweden)

    R. R. M. de Sousa

    2012-01-01

    Full Text Available Cylindrical samples of AISI 1020, AISI 316, and AISI 420 steels, with different heights, were simultaneously treated by a new technique of ionic nitriding, entitled cathodic cage plasma nitriding (CCPN, in order to evaluate the efficiency of this technique to produce nitrided layers with better properties compared with those obtained using conventional ionic nitriding technique. This method is able to eliminate the edge effect in the samples, promoting a better uniformity of temperature, and consequently, a smaller variation of the thickness/height relation can be obtained. The compound layers were characterized by X-ray diffraction, optical microscopy, and microhardness test profile. The results were compared with the properties of samples obtained with the conventional nitriding, for the three steel types. It was verified that samples treated by CCPN process presented, at the same temperature, a better uniformity in the thickness and absence of the edge effect.

  13. III-nitride semiconductor materials

    CERN Document Server

    Feng, Zhe Chuan

    2006-01-01

    III-Nitride semiconductor materials - (Al, In, Ga)N - are excellent wide band gap semiconductors very suitable for modern electronic and optoelectronic applications. Remarkable breakthroughs have been achieved recently, and current knowledge and data published have to be modified and upgraded. This book presents the new developments and achievements in the field. Written by renowned experts, the review chapters in this book cover the most important topics and achievements in recent years, discuss progress made by different groups, and suggest future directions. Each chapter also describes the

  14. Electron spectroscopy of dilute nitrides

    International Nuclear Information System (INIS)

    The application of electron spectroscopies in dilute nitride semiconductor research for both chemical analysis and the determination of electronic and lattice vibrational properties is described. X-ray photoelectron spectroscopy of the nitrogen bonding configurations in dilute InNxSb1-x and InNxAs1-x alloys is presented. High resolution electron-energy-loss spectroscopy (HREELS) of the plasmon excitations in InNxSb1-x is shown to provide information on the electronic properties of the material, before and after annealing. HREELS is also used to investigate the GaN-like phonon modes in GaNxAs1-x alloys

  15. Surface analysis in steel nitrides by using Moessbauer spectroscopy

    International Nuclear Information System (INIS)

    The formation of iron nitride layer at low temperatures, 600-700 K, by Moessbauer spectroscopy is studied. These layers were obtained basically through two different processes: ion nitriding and ammonia gas nitriding. A preliminary study about post-discharge nitriding was made using discharge in hollow cathode as well as microwave excitation. The assembly of these chambers is also described. The analysis of the nitrided samples was done by CEMS and CXMS, aided by optical microscopy, and the CEMS and CXMS detectors were constructed by ourselves. We also made a brief study about these detectors, testing as acetone as the mixture 80% He+10% C H4 as detection gases for the use of CEMS. The surface analysis of the samples showed that in the ammonia gas process nitriding the nitrided layer starts by the superficial formation of an iron nitride rich nitrogen. By thermal evolution this nitride promotes the diffusion of nitrogen and the formation of other more stable nitrides. (author)

  16. Surface studies of barium and barium oxide on tungsten and its application to understanding the mechanism of operation of an impregnated tungsten cathode

    Science.gov (United States)

    Forman, R.

    1976-01-01

    Surface studies have been made of multilayer and monolayer films of barium and barium oxide on a tungsten substrate. The purpose of the investigation was to synthesize the surface conditions that exist on an activated impregnated tungsten cathode and obtain a better understanding of the mechanism of operation of such cathodes. The techniques employed in these measurements were Auger spectroscopy and work-function measurements. The results of this study show that the surface of an impregnated cathode is identical to that observed for a synthesized monolayer or partial monolayer of barium on oxidized tungsten by evaluating Auger spectra and work-function measurements. Data obtained from desorption studies of barium monolayers on a tungsten substrate in conjunction with Auger and work-function results have been interpreted to show that throughout most of its life an impreganated cathode has a partial monolayer, rather than a monolayer, of barium on its surface.

  17. Design, testing, fabrication and launch support of a liquid chemical barium release payload (utilizing the liquid fluorine-barium salt/hydrazine system)

    Science.gov (United States)

    Stokes, C. S.; Smith, E. W.; Murphy, W. J.

    1972-01-01

    A payload was designed which included a cryogenic oxidizer tank, a fuel tank, and burner section. Release of 30 lb of chemicals was planned to occur in 2 seconds at the optimum oxidizer to fuel ratio. The chemicals consisted of 17 lb of liquid fluorine oxidizer and 13 lb of hydrazine-barium salt fuel mixture. The fuel mixture was 17% barium chloride, 16% barium nitrate, and 67% hydrazine, and contained 2.6 lb of available barium. Two significant problem areas were resolved during the program: explosive valve development and burner operation. The release payload was flight tested, from Wallops Island, Virginia. The release took place at an altitude of approximately 260 km. The release produced a luminous cloud which expanded very rapidly, disappearing to the human eye in about 20 seconds. Barium ion concentration slowly increased over a wide area of sky until measurements were discontinued at sunrise (about 30 minutes).

  18. Electromagnetic properties of photodefinable barium ferrite polymer composites

    Directory of Open Access Journals (Sweden)

    Olusegun Sholiyi

    2014-07-01

    Full Text Available This article reports the magnetic and microwave properties of a Barium ferrite powder suspended in a polymer matrix. The sizes for Barium hexaferrite powder are 3–6 μm for coarse and 0.8–1.0 μm for the fine powder. Ratios 1:1 and 3:1 (by mass of ferrite to SU8 samples were characterized and analyzed for predicting the necessary combinations of these powders with SU8 2000 Negative photoresist. The magnetization properties of these materials were equally determined and were analyzed using Vibrating Sample Magnetometer (VSM. The Thru, Reflect, Line (TRL calibration technique was employed in determining complex relative permittivity and permeability of the powders and composites with SU8 between 26.5 and 40 GHz.

  19. Barium titanate nanoparticles: promising multitasking vectors in nanomedicine

    Science.gov (United States)

    Graziana Genchi, Giada; Marino, Attilio; Rocca, Antonella; Mattoli, Virgilio; Ciofani, Gianni

    2016-06-01

    Ceramic materials based on perovskite-like oxides have traditionally been the object of intense interest for their applicability in electrical and electronic devices. Due to its high dielectric constant and piezoelectric features, barium titanate (BaTiO3) is probably one of the most studied compounds of this family. Recently, an increasing number of studies have been focused on the exploitation of barium titanate nanoparticles (BTNPs) in the biomedical field, owing to the high biocompatibility of BTNPs and their peculiar non-linear optical properties that have encouraged their use as nanocarriers for drug delivery and as label-free imaging probes. In this review, we summarize all the recent findings about these ‘smart’ nanoparticles, including the latest, most promising potential as nanotransducers for cell stimulation.

  20. HYBRID AND CHARACTERISTIC OF POLYANILINE- BARIUM TITANATE NANOCOMPOSITE PARTICLES

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Polyaniline-barium titanate (PAn-BaTiO3) ultrafine composite particles were prepared by the oxidative polymerization of aniline with H2O2 while barium titanate nanoparticles were synthesized with a sol-gel method. The infrared spectrogram shows that the polymerization of PAn in the hybrid process of PAn-BaTiO3 is similar with the polymeric process of pure aniline, and there is interaction of PAn and BaTiO3 in the PAn-BaTiO3. SEM and TEM results show that the average diameter of the composite particles is 1.50 μm and the diameters of BaTiO3 nanoparticles are 5-15 nm in the composite particle. The electrical conductivity of the ultrafine composite particles is transformable from 100 to 10-11S/cm by equilibrium doping or dedoping method using various concentration of HCl or NaOH solutions.

  1. Thermophysical properties of americium-containing barium plutonate

    International Nuclear Information System (INIS)

    Polycrystalline specimens of americium-containing barium plutonate have been prepared by mixing the appropriate amounts of (Pu0.91Am0.09)O2 and BaCO3 powders followed by reacting and sintering at 1600 K under the flowing gas atmosphere of dry-air. The sintered specimens had a single phase of orthorhombic perovskite structure and were crack-free. Elastic moduli were determined from longitudinal and shear sound velocities. Debye temperature was also determined from sound velocities and lattice parameter measurements. Thermal conductivity was calculated from measured density at room temperature, literature values of heat capacity and thermal diffusivity measured by laser flash method in vacuum. Thermal conductivity of americium-containing barium plutonate was roughly independent of temperature and registered almost the same magnitude as that of BaPuO3 and BaUO3. (author)

  2. Barium titanate nanoparticles: promising multitasking vectors in nanomedicine.

    Science.gov (United States)

    Genchi, Giada Graziana; Marino, Attilio; Rocca, Antonella; Mattoli, Virgilio; Ciofani, Gianni

    2016-06-10

    Ceramic materials based on perovskite-like oxides have traditionally been the object of intense interest for their applicability in electrical and electronic devices. Due to its high dielectric constant and piezoelectric features, barium titanate (BaTiO3) is probably one of the most studied compounds of this family. Recently, an increasing number of studies have been focused on the exploitation of barium titanate nanoparticles (BTNPs) in the biomedical field, owing to the high biocompatibility of BTNPs and their peculiar non-linear optical properties that have encouraged their use as nanocarriers for drug delivery and as label-free imaging probes. In this review, we summarize all the recent findings about these 'smart' nanoparticles, including the latest, most promising potential as nanotransducers for cell stimulation. PMID:27145888

  3. Barium ferrite powders prepared by milling and annealing

    Directory of Open Access Journals (Sweden)

    R. Nowosielski

    2007-05-01

    Full Text Available Purpose: Microstructure and magnetic properties analysis of barium ferrite powder obtained by milling and heat treatment.Design/methodology/approach: The milling process was carried out in a vibratory mill, which generated vibrations of the balls and milled material inside the container during which their collisions occur. After milling process the powders were annealed in electric chamber furnace. The X-ray diffraction methods were used for qualitative phase analysis of studied powder samples. The distribution of powder particles was determined by a laser particle analyzer. The magnetic hysteresis loops of examined powder material were measured by resonance vibrating sample magnetometer (R-VSM.Findings: The milling process of iron oxide and barium carbonate mixture causes decrease of the crystallite size of involved phases. The X-ray investigations of tested mixture milled for 30 hours and annealed at 950 °C enabled the identification of hard magnetic BaFe12O19 phase and also the presence of Fe2O3 phase in examined material. The Fe2O3 phase is a rest of BaCO3 dissociation in the presence of Fe2O3, which forms a compound of BaFe12O19. The best coercive force (HC for mixture of powders annealed at 950 °C for 10, 20 and 30 hours is 349 kA/m, 366 kA/m and 364 kA/m, respectively. The arithmetic mean of diameter of Fe2O3 and BaCO3 mixture powders after 30 hours of milling is about 6.0 μm.Practical implications: The barium ferrite powder obtained by milling and annealing can be suitable components to produce sintered and elastic magnets with polymer matrix.Originality/value: The results of tested barium ferrite investigations by different methods confirm their utility in the microstructure and magnetic properties analysis of powder materials.

  4. Barium borohydride chlorides: synthesis, crystal structures and thermal properties.

    Science.gov (United States)

    Grube, Elisabeth; Olesen, Cathrine H; Ravnsbæk, Dorthe B; Jensen, Torben R

    2016-05-10

    Here we report the synthesis, mechanism of formation, characterization and thermal decomposition of new barium borohydride chlorides prepared by mechanochemistry and thermal treatment of MBH4-BaCl2, M = Li, Na or K in ratios 1 : 1 and 1 : 2. Initially, orthorhombic barium chloride, o-BaCl2 transforms into o-Ba(BH4)xCl2-x, x ∼ 0.15. Excess LiBH4 leads to continued anion substitution and a phase transformation into hexagonal barium borohydride chloride h-Ba(BH4)xCl2-x, which accommodates higher amounts of borohydride, possibly x ∼ 0.85 and resembles h-BaCl2. Thus, two solid solutions are in equilibrium during mechano-chemical treatment of LiBH4-BaCl2 (1 : 1) whereas LiBH4-BaCl2 (2 : 1) converts to h-Ba(BH4)0.85Cl1.15. Upon thermal treatment at T > ∼200 °C, h-Ba(BH4)0.85Cl1.15 transforms into another orthorhombic barium borohydride chloride compound, o-Ba(BH4)0.85Cl1.15, which is structurally similar to o-BaBr2. The samples with M = Na and K have lower reactivity and form o-Ba(BH4)xCl2-x, x ∼ 0.1 and a solid solution of sodium chloride dissolved in solid sodium borohydride, Na(BH4)1-xClx, x = 0.07. The new compounds and reaction mechanisms are investigated by in situ synchrotron radiation powder X-ray diffraction (SR-PXD), Fourier transform infrared spectroscopy (FT-IR) and simultaneous thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), mass spectroscopy (MS) and temperature programmed photographic analysis (TPPA). PMID:27109871

  5. Thermoelectric power of barium up to 8 GPa

    Energy Technology Data Exchange (ETDEWEB)

    Ramani, G.; Divakar, C.; Singh, A.K.

    1987-01-15

    The present measurements indicate that the thermoelectric power (TEP) of barium at room temperature and pressure is 15 ..mu..V K/sup -1/, and decreases with increasing pressure, reaching about 4 ..mu..V K/sup -1/ just before the bcc..-->..hcp transition. The TEP shows a discontinuous increase at the bcc..-->..hcp transition beyond which it continues to decrease with increasing pressure.

  6. Effect of Silver Coating on Barium Titanium Oxide Nanoparticle Toxicity

    OpenAIRE

    Obregon, Isidro D.; Betts-Obregon, Brandi S.; Yust, Brian; Pedraza, Francisco; Ortiz, Alexandra; Sardar, Dhiraj; Tsin, Andrew T.

    2013-01-01

    Nanoparticles are presently being studied for optical and biomedical applications such as medical imaging and drug delivery. Nanoparticles impact the cellular environment due to many variables such as size, shape, and composition. How these factors affect cell viability is not fully understood. The purpose of this study is to test the toxicity effects of silver coating (Ag@) Barium Titanium Oxide (BaTiO3) nanoparticles on Rhesus Monkey Retinal Endothelial cells (RhREC’s) in culture. The addit...

  7. Microstructure and magnetic properties of commercial barium ferrite powders

    Directory of Open Access Journals (Sweden)

    R. Nowosielski

    2007-01-01

    Full Text Available Purpose: Microstructural and magnetic properties analysis of commercial barium ferrite powder BaFe12O19.Design/methodology/approach: The X-ray diffraction methods were utilized not only for qualitative andquantitative phase analysis of studied powder sample, but also for the determination of lattice parameters, crystallitesize and the lattice distortion. The Rietveld method was used in the verification of the qualitative phase compositionand in the determination of phase abundance. Hill and Howard procedure was applied for quantitative phaseanalysis. The parameters of the individual diffraction line profiles were determined by PRO-FIT Toraya procedure.The morphology of barium ferrite powders was analyzed using the scanning electron miroscopy (SEM method.The distribution of powder particles was determined by a laser particle analyzer. Moreover, the magnetic hysteresisloop of examined powder material were measured by resonance vibrating sample magnetometer (R-VSM.Findings: The X-ray diffraction analysis revealed the presence of hexagonal BaFe12O19 and rhombohedralFe2O3 phases in examined powder samples. The barium ferrite phase appeared to be the main component of thesamples (97.8 wt.%. The crystallite size of BaFe12O19 phase is above 100 nm. The size of studied powders isin the range from 0.2 μm to 40.5 μm. The arithmetic mean diameter of BaFe12O19 powders population is 10.335μm. The SEM images showed irregular shape and size of powder particles. The coercive force (HC obtainedfrom hysteresis loop has a value about 159 kA/m.Practical implications: Structure analysis of commercial barium ferrite powder is helpful to prepare thismaterial by laboratory methods.Originality/value: The obtained results of investigations by different methods of structure characterizationconfirm their utility in the microstructure analysis of powder materials.

  8. Dielectric Properties of Barium Titanate Prepared by Spark Plasma Sintering

    Czech Academy of Sciences Publication Activity Database

    Ctibor, Pavel; Sedláček, J.; Dopita, M.; Pala, Zdeněk

    Bratislava: Slovak Expert Group of Solid State Chemistry and Physics , 2011 - (Koman, M.; Mikloš, D.), s. 68-69 ISBN 978-80-8134-002-4. [Joint Seminar – Development of materials science in research and education (DMRSE)/21.th./. Kežmarské Žlaby (SK), 29.08.2011-02.09.2011] Institutional research plan: CEZ:AV0Z20430508 Keywords : spark plasma sintering * barium titanate * dielectric properties Subject RIV: JK - Corrosion ; Surface Treatment of Materials

  9. Preparation and Characterization of Nano-particle Substituted Barium Hexaferrite

    OpenAIRE

    Atassi, Yomen; Darwich, Iyad Seyd; Tally, Mohammad

    2014-01-01

    High density magnetic recording requires high coercivity magnetic media and small particle size. Barium hexaferrite has been considered as a leading candidate material because of its chemical stability, fairly large crystal anisotropy and suitable magnetic characteristics. In this work, we present the preparation of the hexagonal ferrite BaFe12O19 and one of its derivative; the Zn-Sn substituted hexaferrite by the chemical co-precipitation method. The main advantage of this method on the conv...

  10. Microwave-hydrothermal synthesis of barium strontium titanate nanoparticles

    International Nuclear Information System (INIS)

    Research highlights: → Barium strontium titanate nanoparticles were obtained by the Hydrothemal microwave technique (HTMW) → This is a genuine technique to obtain nanoparticles at low temperature and short times → Barium strontium titanate free of carbonates with tetragonal structure was grown at 130 oC. - Abstract: Hydrothermal-microwave method (HTMW) was used to synthesize crystalline barium strontium titanate (Ba0.8Sr0.2TiO3) nanoparticles (BST) in the temperature range of 100-130 oC. The crystallization of BST with tetragonal structure was reached at all the synthesis temperatures along with the formation of BaCO3 as a minor impurity at lower syntheses temperatures. Typical FT-IR spectra for tetragonal (BST) nanoparticles presented well defined bands, indicating a substantial short-range order in the system. TG-DTA analyses confirmed the presence of lattice OH- groups, commonly found in materials obtained by HTMW process. FE/SEM revealed that lower syntheses temperatures led to a morphology that consisted of uniform grains while higher syntheses temperature consisted of big grains isolated and embedded in a matrix of small grains. TEM has shown BST nanoparticles with diameters between 40 and 80 nm. These results show that the HTMW synthesis route is rapid, cost effective, and could serve as an alternative to obtain BST nanoparticles.

  11. Preparation of Nanoparticles of Barium Ferrite from Precipitation in Microemulsions

    International Nuclear Information System (INIS)

    Magnetic nanoparticles of barium ferrite (BaFe12O19) have been synthesized using a microemulsion mediated process. The aqueous cores of water-in-oil microemulsions were used as constrained microreactors for the precipitation of precursor carbonate and hydroxide particles. These precursors were then calcined at 925 deg. C for 12 h, during which time they were transformed to the hexagonal ferrite. The pH of reaction was varied between 5 and 12, and it was found that the fraction of non-magnetic hematite (α-Fe2O3) in the particles varied with the pH of reaction, thus affecting the magnetic properties of the particles. The same precursor particles were also prepared by bulk co-precipitation reaction for comparison. It was found that the microemulsion derived nanoparticles of barium ferrite had both higher intrinsic coercivity (Hc) and saturation magnetization (σs) than the particles derived from bulk co-precipitation. Particles were analyzed by electron microscopy, X-ray diffraction, differential thermal analysis (DTA), thermogravimetric analysis (TGA) and vibrating sample magnetometry (VSM). The best barium ferrite particles produced by the microemulsion synthesis method yielded an intrinsic coercivity of 4310 Oe and a saturation magnetization of 60.48 emu/g

  12. Role of hexadecapole interaction in proton rich barium isotopes

    International Nuclear Information System (INIS)

    From the systematic analysis of the experimental data on proton rich barium isotopes, it is observed that nuclei in the region z ≥ 50 and N≤82 are the transitional nuclei as they show a shape transition from spherical to deformed shape. An interesting feature of the observed yrast spectra in barium isotopic mass chain is the systematic variation of E2+, E4+ and E6+ excitation energy states from 120Ba to 136Ba. It is observed that these states follow a systematic decreasing trend as move away from 136Ba towards 120Ba. The isotopes 120-128Ba can be taken to be quasi-deformed nuclei having E4+/E2+ ratio larger than 2.7. Based on the systematics of low-lying states and the experimental data of quadrupole moments and B(E2) transition probabilities, the stable barium isotopes range from the approximately spherical 138Ba to l30Ba which is close to the deformed 120-128Ba isotopes. The purpose of the paper is to determine the importance of octupole-octupole and hexadecapole- hexadecapole parts of the two body interaction in reproducing the observed nuclear structure properties of 120-136Ba isotopes

  13. CT and barium features of gastrointestinal and peritoneal tuberculosis

    Directory of Open Access Journals (Sweden)

    Makanjuola Dorothy

    1997-01-01

    Full Text Available The radiological features in barium gastrointestinal studies and computed tomographic (CT examinations of 22 consecutive cases of proven peritoneal and/or intestinal tuberculosis were analyzed in order to highlight the radiological features which could provide ready identification of the disease. There were 15 cases of intestinal tuberculosis and 7 cases of peritoneal tuberculosis and 3 patients had both. The commonest location of intestinal tuberculosis was the ileocecal region (N=10 which occurred in association with colonic or ilea] disease. Bowel wall thickening in CT was largely asymmetrical but minimal and symmetrical wall thickening occurred with peritonitis. Luminal narrowing with or without mucosal tethering were seen in both CT and Barium studies. Peritoneal TB had either high density ascites with smudge or nodular omental surface with a thickened omental lining. Also detected was fibrinous dry peritonitis with thickened mesenteric tissue. Lymphadenopathy in the peripancreatic, mesenteric or paracaval were common to both intestinal or peritoneal tuberculosis (21 out of 22. Fifty percent of the patients showed some lymph nodes with necrotic centers. The differential diagnosis included malignant peritonitis and intestinal or mesenteric carcinoid. The study shows that a combination of barium gastrointestinal study and computed tomography can provide distinct features which could strongly suggest the diagnosis of intestinal or peritoneal tuberculosis.

  14. Scanning electron and tunneling microscopy of palladium-barium emitters

    International Nuclear Information System (INIS)

    The results of study of metal-alloyed palladium-barium emitters' of modern very high frequency high-powered electronic vacuum tubes by scanning electron microscopy (SEM) and scanning tunneling microscopy/spectroscopy (STM/STS) are presented. Since the Pd/Ba foil surface is fairly smooth and is not oxidized in air STM/STS investigations are carried out in air in normal laboratory environment. SEM and STM images show that the emitter surface has a complex porous structure. The cathode surface study by STS in tunneling gap modulation mode allowed to take a map of phase distribution with various work function values and high lateral resolution. Obtained images demonstrate the presence of three phases on the Pd/Ba emitter surface, viz. barium-oxygen compounds, intermetallic, and palladium. As it is seen from presented STS image the phase with a low work function value (barium oxides) is concentrated along boundaries of the substance inclusions with work function corresponding to the intemetallic compound Pd5Ba. This supports the model of low work function areas obtained via Ba segregation from the intermetallic compound and oxidation. The presented methods may be used in the Pd/Ba cathode manufacturing process for increasing the yield of electronic devices in microwave tube production and optimize the emitters' characteristics

  15. Early colon cancer : findings on double contrast barium enema

    International Nuclear Information System (INIS)

    The purpose of this study is to describe the radiologic findings of early colon cancer on double-contrast barium enema. We retrospectively reviewed the double-contrast barium enemas of eight patients (M:F = 6:2; mean age : 67 yrs; range : 48-77 yrs) who were pathologically proven to be early colon cancer. The location, size and gross morphology of lesions was evaluated using double-contrast barium enema, while depth of invasion, degree of differentiation, precancerous lesions and lymph node metastasis were evaluated histopathologically. Early colon cancer was found in the rectum (n=4), sigmoid colon (n=3) and ascending colon (n=1). The size of mass ranged from 2.3 ∼ 8.3 (mean, 4.6) cm. And the polypoid type was most common (n=7); this was subdivided into sessile (Is, n=5), semipedunculated (Isp, n=1) and pedunculated type (Ip, n=1). Another mass was a sessile polypoid combined with a flat depressed lesion. In eight cases, four cancers were confined to the mucosa, while the remaining four had infiltrated the submucosa. Most cancers arose from villous and villotubular adenoma. All cases were well-differentiated adenocarcinoma and no metastasis to lymph nodes had occurred. In early colon cancer, lesions were mainly polypoid and large. Most arose from villous and villotubular adenoma. (author). 19 refs., 1 tab., 3 figs

  16. Electrospun Gallium Nitride Nanofibers (abstract)

    Science.gov (United States)

    Meléndez, Anamaris; Morales, Kristle; Ramos, Idalia; Campo, Eva; Santiago, Jorge J.

    2009-04-01

    The high thermal conductivity and wide bandgap of gallium nitride (GaN) are desirable characteristics in optoelectronics and sensing applications. In comparison to thin films and powders, in the nanofiber morphology the sensitivity of GaN is expected to increase as the exposed area (proportional to the length) increases. In this work we present electrospinning as a novel technique in the fabrication of GaN nanofibers. Electrospinning, invented in the 1930s, is a simple, inexpensive, and rapid technique to produce microscopically long ultrafine fibers. GaN nanofibers are produced using gallium nitrate and dimethyl-acetamide as precursors. After electrospinning, thermal decomposition under an inert atmosphere is used to pyrolyze the polymer. To complete the preparation, the nanofibers are sintered in a tube furnace under a NH3 flow. Both scanning electron microscopy and profilometry show that the process produces continuous and uniform fibers with diameters ranging from 20 to a few hundred nanometers, and lengths of up to a few centimeters. X-ray diffraction (XRD) analysis shows the development of GaN nanofibers with hexagonal wurtzite structure. Future work includes additional characterization using transmission electron microscopy and XRD to understand the role of precursors and nitridation in nanofiber synthesis, and the use of single nanofibers for the construction of optical and gas sensing devices.

  17. Wear behaviour of plasma nitrided tool steels

    Energy Technology Data Exchange (ETDEWEB)

    Devi, M.U. [Tata Iron and Steel Co. Ltd., Jamshedpur (India). Research and Development Div.; Chakraborty, T.K. [Wire Rod Mill, Tata Iron and Steel Co. Ltd., Jamshedpur (India); Mohanty, O.N. [Research and Development Division, Tata Iron and Steel Co. Ltd., Jamshedpur (India)

    1999-09-01

    Plasma nitriding of three grades of tool steels, namely H13, D2 and a special purpose proprietary tool steel, referred to as L7', has been explored in an effort to enhance the working life of roll entry (RE) guides in wire rod rolling mill that are subjected to a complex wear mode including impact, sliding and rolling. In the case of H13 and D2 steels, plasma nitriding is found to improve the life of guide rolls by two to three times depending upon the type of tool steel. The working life of the guide rolls made from L7' steel, however, was observed to be lower after plasma nitriding due to softening of the substrate at plasma nitriding temperature. The cross-section normal to wear scar and the surface of worn-out rolls were characterised by scanning electron microscopy (SEM) to understand the wear mechanisms. The SEM examination of worn-out surfaces revealed signatures for the adhesion, abrasion, delamination and tribochemical (oxidative) modes of wear. In the case of rolls without plasma nitriding, adhesion was one of the important causes of wear in all the tool steels. Delamination wear occurred in H13 steel and both delamination and microcutting modes of wear contributed to the overall damage in D2 steel rolls. L7' steel showed breaking of surface oxide film, indicating tribochemical wear. Plasma nitriding decreased the adhesive wear substantially. Delamination was found to be the primary mode of wear in nitrided H13 steel rolls. Abrasive wear contributed to damage in nitrided D2 steel rolls. Severe roll damage occurred in L7' steel, primarily by microcutting, due to softening during plasma nitriding. The working life of the rolls has been deliberated upon in the light of wear mechanisms observed in the different tool steels. (orig.)

  18. Simplified assessment of segmental gastrointestinal transit time with orally small amount of barium

    International Nuclear Information System (INIS)

    Objective: To determine the effectiveness and advantage of small amount of barium in the measurement of gastrointestinal transmission function in comparison with radio-opaque pallets. Methods: Protocal 1: 8 healthy volunteers (male 6, female 2) with average age 40 ± 6.1 were subjected to the examination of radio-opaque pellets and small amount of barium with the interval of 1 week. Protocol 2: 30 healthy volunteers in group 1 (male 8, female 22) with average age 42.5 ± 8.1 and 50 patients with chronic functional constipation in group 2 (male 11, female 39) with average age 45.7 ± 7.8 were subjected to the small amount of barium examination. The small amount of barium was made by 30 g barium dissolved in 200 ml breakfast. After taking breakfast which contains barium, objectives were followed with abdominal X-ray at 4, 8, 12, 24, 48, 72, 96 h until the barium was evacuated totally. Results: Small amount of barium presented actual chyme or stool transit. The transit time of radio-opaque pallets through the whole gastrointestinal tract was significantly shorter than that of barium (37 ± 8 h vs. 47 ± 10 h, P < 0.05) in healthy people. The transit times of barium in constipation patients were markedly prolonged in colon (61.1 ± 22 vs. 37.3 ± 11, P < 0.01) and rectum (10.8 ± 3.7 vs. 2.3 ± 0.8 h, P < 0.01) compared with unconstipated volunteers. Transit times in individual gastrointestinal segments were also recorded by using small amount of barium, which allowed identifying the subtypes of constipation. Conclusion: The small amount barium examination is a convenient and low cost method to provide the most useful and reliable information on the transmission function of different gastrointestinal segments and able to classify the subtypes of slow transit constipation

  19. Friction Characteristics of Nitrided Layers on AISI 430 Ferritic Stainless Steel Obtained by Various Nitriding Processes

    Directory of Open Access Journals (Sweden)

    Hakan AYDIN

    2013-03-01

    Full Text Available The influence of plasma, gas and salt-bath nitriding techniques on the friction coefficient of AISI 430 ferritic stainless steel was studied in this paper. Samples were plasma nitrided in 80 % N2 + 20 % H2 atmosphere at 450 °C and 520 °C for 8 h at a pressure of 2 mbar, gas nitrided in NH3 and CO2 atmosphere at 570 °C for 13 h and salt-bath nitrided in a cyanide-cyanate salt-bath at 570 °C for 1.5 h. Characterisation of nitrided layers on the ferritic stainless steel was carried out by means of microstructure, microhardness, surface roughness and friction coefficient measurements. Friction characteristics of the nitrided layers on the 430 steel were investigated using a ball-on-disc friction-wear tester with a WC-Co ball as the counter-body under dry sliding conditions. Analysis of wear tracks was carried out by scanning electron microscopy. Maximum hardness and maximum case depth were achieved on the plasma nitrided sample at 520 ºC for 8 h. The plasma and salt-bath nitriding techniques significantly decreased the average surface roughness of the 430 ferritic stainless steel. The friction test results showed that the salt-bath nitrided layer had better friction-reducing ability than the other nitrided layers under dry sliding conditions. Furthermore, the friction characteristic of the plasma nitrided layer at 520 ºC was better than that of the plasma nitrided layer at 450 °C.DOI: http://dx.doi.org/10.5755/j01.ms.19.1.3819

  20. Low temperature anodic bonding to silicon nitride

    DEFF Research Database (Denmark)

    Weichel, Steen; Reus, Roger De; Bouaidat, Salim;

    2000-01-01

    Low-temperature anodic bonding to stoichiometric silicon nitride surfaces has been performed in the temperature range from 3508C to 4008C. It is shown that the bonding is improved considerably if the nitride surfaces are either oxidized or exposed to an oxygen plasma prior to the bonding. Both bulk...... and thin-film glasses were used in the bonding experiments. Bond quality was evaluated using a tensile test on structured dies. The effect of oxygen-based pre-treatments of the nitride surface on the bond quality has been evaluated. Bond strengths up to 35 Nrmm2 and yields up to 100% were obtained....

  1. Atomic Resolution Microscopy of Nitrides in Steel

    DEFF Research Database (Denmark)

    Danielsen, Hilmar Kjartansson

    2014-01-01

    MN and CrMN type nitride precipitates in 12%Cr steels have been investigated using atomic resolution microscopy. The MN type nitrides were observed to transform into CrMN both by composition and crystallography as Cr diffuses from the matrix into the MN precipitates. Thus a change from one precip...... layer between the crystalline nitride and ferrite matrix. Usually precipitates are described as having (semi) coherent or incoherent interfaces, but in this case it is more energetically favourable to create an amorphous layer instead of the incoherent interface....

  2. Barium and Tc-poor S stars: Binary masqueraders among carbon stars

    OpenAIRE

    Jorissen, A; Van Eck, S.

    1997-01-01

    The current understanding of the origin of barium and S stars is reviewed, based on new orbital elements and binary frequencies. The following questions are addressed: (i) Is binarity a necessary condition to produce a barium star? (ii) What is the mass transfer mode (wind accretion or RLOF?) responsible for their formation? (iii) Do barium stars form as dwarfs or as giants? (iv) Do barium stars evolve into Tc-poor S stars? (v) What is the relative frequency of Tc-rich and Tc-poor S stars?

  3. Mechanism of action of barium ion on rat aortic smooth muscle.

    Science.gov (United States)

    Hansen, T R; Dineen, D X; Petrak, R

    1984-03-01

    The mechanism of action of barium ion on the aortic smooth muscle of the normal rat was investigated using in vitro calcium-depleted aortic strips. Aortic strips were depleted of calcium by repeated exposure to norepinephrine in a calcium-free bathing solution. Although calcium depletion abrogated the response of strips to catecholamines and depolarizing agents, the response to barium chloride remained quantitatively intact. The calcium influx blocker D 600 prevented the contractile response to barium but not to catecholamines, whereas phentolamine prevented the response to catecholamines but not barium. The strip response to barium was depressed by a twofold increase in extracellular magnesium concentration whether the strip was intact or calcium depleted. Although increased concentrations of calcium in the extracellular medium inhibited the contractile response to potassium ion, increases in barium merely potentiated the potassium contracture. These findings indicate that barium produces its contractile effect on vascular smooth muscle by a direct intracellular interaction with the contractile or regulatory proteins. Barium enters these cells via calcium influx channels and is probably not sequestered in a physiologically releasable pool. Unlike calcium, barium does not stabilize the smooth muscle sarcolemma when present in high concentration. PMID:6703038

  4. Barium can replace calcium in calmodulin-dependent contractions of skinned renal arteries of the rabbit.

    Science.gov (United States)

    Kreye, V A; Hofmann, F; Mühleisen, M

    1986-03-01

    Renal arteries of the rabbit were chemically skinned using Triton X-100. In EGTA-buffered solutions containing calmodulin and ATP, small strips of the skinned preparations were found to develop contractile force which was dependent on the concentrations of either free calcium or of free barium. However, a 220 times greater concentration of barium than of calcium was necessary for comparable effects. Quantitatively, the response to barium was dependent on the concentration of calmodulin added to the test solutions. The contractile effect of barium was partly antagonized by the calmodulin antagonist, trifluoperazine. PMID:3960707

  5. High Resolution Computed Tomography Appearences of late sequelae of Barium Aspiration in an asymptomatic young child

    International Nuclear Information System (INIS)

    Barium aspiration is a well-known complication of upper gastro-intestinal studies. Consequences of aspiration are generally insignificant and leave no permanent changes in the lung parenchyma. However, large quantities of high density barium, if aspirated, lead to silent interstitial changes and fibrosis. High-resolution computed tomography HRCT appearances of lung changes have been demonstrated in adults; few such reports are available in the pediatric literature. We report a case of a child who aspirated barium 3 months before this presentation. The HRCT appearances of barium aspiration are presented with a review of the literature. (author)

  6. Plasma nitriding of AISI 52100 ball bearing steel and effect of heat treatment on nitrided layer

    Indian Academy of Sciences (India)

    Ravindra Kumar; J Alphonsa; Ram Prakash; K S Boob; J Ghanshyam; P A Rayjada; P M Raole; S Mukherjee

    2011-02-01

    In this paper an effort has been made to plasma nitride the ball bearing steel AISI 52100. The difficulty with this specific steel is that its tempering temperature (∼170–200°C) is much lower than the standard processing temperature (∼460–580°C) needed for the plasma nitriding treatment. To understand the mechanism, effect of heat treatment on the nitrided layer steel is investigated. Experiments are performed on three different types of ball bearing races i.e. annealed, quenched and quench-tempered samples. Different gas compositions and process temperatures are maintained while nitriding these samples. In the quenched and quench-tempered samples, the surface hardness has decreased after plasma nitriding process. Plasma nitriding of annealed sample with argon and nitrogen gas mixture gives higher hardness in comparison to the hydrogen–nitrogen gas mixture. It is reported that the later heat treatment of the plasma nitrided annealed sample has shown improvement in the hardness of this steel. X-ray diffraction analysis shows that the dominant phases in the plasma nitrided annealed sample are (Fe2−3N) and (Fe4N), whereas in the plasma nitrided annealed sample with later heat treatment only -Fe peak occurs.

  7. Internal nitride formation during gas-phase thermal nitridation of titanium

    International Nuclear Information System (INIS)

    Titanium nitride surface layers were prepared by gas-phase thermal nitridation of pure titanium in an ammonia atmosphere at 1373 K for different times. In addition to the surface nitride layer, nitride/hydride formation was observed in the bulk of the specimen. The cross-section of the specimen was characterized by various techniques such as optical microscopy, scanning electron microscopy, energy dispersive X-ray spectroscopy, secondary ion mass spectrometry and nanomechanical testing, and the mechanism of formation of these phases is discussed.

  8. Nitriding of Aluminum Extrusion Die: Effect of Die Geometry

    Science.gov (United States)

    Akhtar, S. S.; Arif, A. F. M.; Yilbas, B. S.

    2010-04-01

    Nitriding of complex-shaped extrusion dies may result in non-uniform nitride layers and hence a required hardness may not be achieved in some regions of the bearing area. The present study is carried out to assess the effect of extrusion die profile on the characteristics and growth behavior of nitride layers so that the critical die design feature can be identified to enhance the uniformity of the nitride layer. For this purpose, AISI H13 steel samples have been manufactured with profiles similar to those of hot extrusion dies. The samples were then gas nitrided under controlled nitriding potential. The uniformity and depth of nitride layers have been investigated in terms of compound layer and total nitride case depth for selected die features. The results of this study indicated the need to include the effect of profile on the nitride layer for the optimal die design with improved service life.

  9. Solubility and stability of barium arsenate and barium hydrogen arsenate at 25oC

    International Nuclear Information System (INIS)

    The inconsistency among current thermodynamic data of Ba3(AsO4)2(c) and BaHAsO4.H2O(c) led the authors to obtain independent solubility data of barium arsenate by both precipitation and dissolution experiments. Low and neutral pH (3.63-7.43) favored the formation of BaHAsO4.H2O(c). Both BaHAsO4.H2O(c) and Ba3(AsO4)2(c) formed at the neutral pH conditions (7.47, 7.66), whereas Ba3(AsO4)2(c) was the only solid phase precipitated at high pH (13.03, 13.10). The Ba3(AsO4)2(c) precipitate acquired at 50oC appeared as small leafy crystal, while the Ba3(AsO4)2(c) solid precipitated at 25oC comprised granular aggregate with some smaller crystal clusters. XRD and SEM analyses of Ba3(AsO4)2(c) and BaHAsO4.H2O(c) indicated that the solids were indistinguishable before and after the dissolution experiments. In the present work, the solubility products (Ksp) for Ba3(AsO4)2(c) and BaHAsO4.H2O(c) were determined to be 10-23.53(10-23.01 to 10-24.00) and 10-5.60(10-5.23 to 10-5.89), respectively. ΔGfo for Ba3(AsO4)2(c) and BaHAsO4.H2O(c) were calculated to be -3113.40 and -1544.47kJ/mol, respectively. There was no difference between the solubility products of the leafy and the granular Ba3(AsO4)2(c) solids

  10. Method of nitriding refractory metal articles

    Science.gov (United States)

    Tiegs, Terry N.; Holcombe, Cressie E.; Dykes, Norman L.; Omatete, Ogbemi O.; Young, Albert C.

    1994-01-01

    A method of nitriding a refractory-nitride forming metal or metalloid articles and composite articles. A consolidated metal or metalloid article or composite is placed inside a microwave oven and nitrogen containing gas is introduced into the microwave oven. The metal or metalloid article or composite is heated to a temperature sufficient to react the metal or metalloid with the nitrogen by applying a microwave energy within the microwave oven. The metal or metalloid article or composite is maintained at that temperature for a period of time sufficient to convert the article of metal or metalloid or composite to an article or composite of refractory nitride. In addition, a method of applying a coating, such as a coating of an oxide, a carbide, or a carbo-nitride, to an article of metal or metalloid by microwave heating.

  11. ALUMINUM NITRIDE AS A HIGH TEMPERATURE TRANSDUCER

    International Nuclear Information System (INIS)

    The high temperature capabilities of bulk single crystal aluminum nitride are investigated experimentally. Temperatures in excess of 1100 deg. Celsius are obtained and held for eight hours. Variation in the performance of single crystal samples is demonstrated.

  12. Titanium nitride nanoparticles for therapeutic applications

    DEFF Research Database (Denmark)

    Guler, Urcan; Kildishev, Alexander V.; Boltasseva, Alexandra;

    2014-01-01

    Titanium nitride nanoparticles exhibit plasmonic resonances in the biological transparency window where high absorption efficiencies can be obtained with small dimensions. Both lithographic and colloidal samples are examined from the perspective of nanoparticle thermal therapy. © 2014 OSA....

  13. The Nitrogen-Nitride Anode.

    Energy Technology Data Exchange (ETDEWEB)

    Delnick, Frank M.

    2014-10-01

    Nitrogen gas N 2 can be reduced to nitride N -3 in molten LiCl-KCl eutectic salt electrolyte. However, the direct oxidation of N -3 back to N 2 is kinetically slow and only occurs at high overvoltage. The overvoltage for N -3 oxidation can be eliminated by coordinating the N -3 with BN to form the dinitridoborate (BN 2 -3 ) anion which forms a 1-D conjugated linear inorganic polymer with -Li-N-B-N- repeating units. This polymer precipitates out of solution as Li 3 BN 2 which becomes a metallic conductor upon delithiation. Li 3 BN 2 is oxidized to Li + + N 2 + BN at about the N 2 /N -3 redox potential with very little overvoltage. In this report we evaluate the N 2 /N -3 redox couple as a battery anode for energy storage.

  14. Nitrogen-rich transition metal nitrides

    OpenAIRE

    Salamat, Ashkan; Hector, Andrew L.; Kroll, Peter; McMillan, Paul F.

    2013-01-01

    The solid state chemistry leading to the synthesis and characterization of metal nitrides with N:M ratios >1 is summarized. Studies of these compounds represent an emerging area of research. Most transition metal nitrides have much lower nitrogen contents, and they often form with non- or sub-stoichiometric compositions. These materials are typically metallic with often superconducting properties, and they provide highly refractory, high hardness materials with many technological applications...

  15. Progress in molecular uranium-nitride chemistry

    OpenAIRE

    King, David M.; Liddle, Stephen T

    2014-01-01

    The coordination, organometallic, and materials chemistry of uranium nitride has long been an important facet of actinide chemistry. Following matrix isolation experiments and computational characterisation, molecular, solution-based uranium chemistry has developed significantly in the last decade or so culminating most recently in the isolation of the first examples of long-sought terminal uranium nitride linkages. Herein, the field is reviewed with an emphasis on well-defined molecular spec...

  16. Surface modification of titanium by plasma nitriding

    OpenAIRE

    Myriam Pereira Kapczinski; Carlos Gil; Eder Julio Kinast; Carlos Alberto dos Santos

    2003-01-01

    A systematic investigation was undertaken on commercially pure titanium submitted to plasma nitriding. Thirteen different sets of operational parameters (nitriding time, sample temperature and plasma atmosphere) were used. Surface analyses were performed using X-ray diffraction, nuclear reaction and scanning electron microscopy. Wear tests were done with stainless steel Gracey scaler, sonic apparatus and pin-on-disc machine. The obtained results indicate that the tribological performance can ...

  17. Plasma nitriding of Al 99.5

    OpenAIRE

    Chen, H. -Y; Stock, H.-R.; Mayr, P.

    1993-01-01

    Aluminium nitride (AlN) is a very interesting ceramic because of its combination of properties such as high thermal stability, high hardness and an unusual combination of high thermal and low electrical conductivity. But it is very difficulty to obtain an AlN layer on the aluminium substrates by thermochemical nitriding process. Since a thin film of aluminium oxide existing on the surface of every aluminium substrate prevents the nitrogen atoms from diffusing into the aluminium lattice. Howev...

  18. Aluminum Nitride Sensors for Harsh Environments

    OpenAIRE

    Goericke, Fabian Thomas

    2013-01-01

    Harsh environment applications include high temperature, pressure and mechanical shock. Aluminum nitride is a strong ceramic material with very good high temperature survivability. It also has piezoelectric properties that can be used for sensing applications and it can be deposited with good control as thin polycrystalline film for the fabrication of micro-electromechanical systems. In this dissertation, optimized deposition parameters for aluminum nitride films and characterization techniqu...

  19. Innovative boron nitride-doped propellants

    OpenAIRE

    Thelma Manning; Richard Field; Kenneth Klingaman; Michael Fair; John Bolognini; Robin Crownover; Carlton P. Adam; Viral Panchal; Eugene Rozumov; Henry Grau; Paul Matter; Michael Beachy; Christopher Holt; Samuel Sopok

    2016-01-01

    The U.S. military has a need for more powerful propellants with balanced/stoichiometric amounts of fuel and oxidants. However, balanced and more powerful propellants lead to accelerated gun barrel erosion and markedly shortened useful barrel life. Boron nitride (BN) is an interesting potential additive for propellants that could reduce gun wear effects in advanced propellants (US patent pending 2015-026P). Hexagonal boron nitride is a good lubricant that can provide wear resistance and lower ...

  20. Tungsten and barium transport in the internal plasma of hollow cathodes

    Science.gov (United States)

    Polk, James E.; Mikellides, Ioannis G.; Katz, Ira; Capece, Angela M.

    2009-06-01

    The effect of tungsten erosion, transport, and redeposition on the operation of dispenser hollow cathodes was investigated in detailed examinations of the discharge cathode inserts from 8200 h and 30 352 h ion engine wear tests. Erosion and subsequent redeposition of tungsten in the electron emission zone at the downstream end of the insert reduce the porosity of the tungsten matrix, preventing the flow of barium from the interior. This inhibits the interfacial reactions of the barium-calcium-aluminate impregnant with the tungsten in the pores. A numerical model of barium transport in the internal xenon discharge plasma shows that the barium required to reduce the work function in the emission zone can be supplied from upstream through the gas phase. Barium that flows out of the pores of the tungsten insert is rapidly ionized in the xenon discharge and pushed back to the emitter surface by the electric field and drag from the xenon ion flow. This barium ion flux is sufficient to maintain a barium surface coverage at the downstream end greater than 0.6, even if local barium production at that point is inhibited by tungsten deposits. The model also shows that the neutral barium pressure exceeds the equilibrium vapor pressure of the impregnant decomposition reaction over much of the insert length, so the reactions are suppressed. Only a small region upstream of the zone blocked by tungsten deposits is active and supplies the required barium. These results indicate that hollow cathode failure models based on barium depletion rates in vacuum dispenser cathodes are very conservative.

  1. Nucleation of iron nitrides during gaseous nitriding of iron; the effect of a preoxidation treatment

    DEFF Research Database (Denmark)

    Friehling, Peter B.; Poulsen, Finn Willy; Somers, Marcel A.J.

    2001-01-01

    grains. On prolonged nitriding, immediate nucleation at the surface of iron grains becomes possible. Calculated incubation times for the nucleation of gamma'-Fe4N1-x during nitriding are generally longer than those observed experimentally in the present work. The incubation time is reduced dramatically...

  2. Microstructural characterization of an AISI-SAE 4140 steel without nitridation and nitrided

    International Nuclear Information System (INIS)

    It was micro structurally characterized an AISI-SAE 4140 steel before and after of nitridation through the nitridation process by plasma post-unloading microwaves through Optical microscopy (OM), Scanning electron microscopy (SEM) by means of secondary electrons and retrodispersed, X-ray diffraction (XRD), Energy dispersion spectra (EDS) and mapping of elements. (Author)

  3. Anion and cation diffusion in barium titanate and strontium titanate

    International Nuclear Information System (INIS)

    Perovskite oxides show various interesting properties providing several technical applications. In many cases the defect chemistry is the key to understand and influence the material's properties. In this work the defect chemistry of barium titanate and strontium titanate is analysed by anion and cation diffusion experiments and subsequent time-of-flight secondary ion mass spectrometry (ToF-SIMS). The reoxidation equation for barium titanate used in multi-layer ceramic capacitors (MLCCs) is found out by a combination of different isotope exchange experiments and the analysis of the resulting tracer diffusion profiles. It is shown that the incorporation of oxygen from water vapour is faster by orders of magnitude than from molecular oxygen. Chemical analysis shows the samples contain various dopants leading to a complex defect chemistry. Dysprosium is the most important dopant, acting partially as a donor and partially as an acceptor in this effectively acceptor-doped material. TEM and EELS analysis show the inhomogeneous distribution of Dy in a core-shell microstructure. The oxygen partial pressure and temperature dependence of the oxygen tracer diffusion coefficients is analysed and explained by the complex defect chemistry of Dy-doped barium titanate. Additional fast diffusion profiles are attributed to fast diffusion along grain boundaries. In addition to the barium titanate ceramics from an important technical application, oxygen diffusion in cubic, nominally undoped BaTiO3 single crystals has been studied by means of 18O2/16O2 isotope exchange annealing and subsequent determination of the isotope profiles in the solid by ToF-SIMS. It is shown that a correct description of the diffusion profiles requires the analysis of the diffusion through the surface space-charge into the material's bulk. Surface exchange coefficients, space-charge potentials and bulk diffusion coefficients are analysed as a function of oxygen partial pressure and temperature. The data

  4. Microstructure of polymer composite with barium ferrite powder

    Directory of Open Access Journals (Sweden)

    R. Nowosielski

    2008-12-01

    Full Text Available Purpose: The aim of the paper is the microstructure characterization of commercial BaFe12O19 powder and its composite material in polymer matrix; XRD (X-Ray Diffraction and SEM (Scanning Electron Microscopy methods were applied.Design/methodology/approach: The Rietveld method appeared to be very useful in the verification of the qualitative phase composition and in the determination of phase abundance. Hill and Howard procedure was applied for quantitative phase analysis. The parameters of the individual diffraction line profiles were determined by PRO-FIT Toraya procedure. The morphology of barium ferrite powders and a fracture surface of the examined composite material was analyzed using the scanning electron microscope.Findings: The X-ray diffraction analysis enabled the identification of BaFe12O19 and Fe2O3 phases in examined material. Basing on Rietveld and Toraya methods the determination of lattice parameters, crystallite size and the lattice distortion was performed. Distribution of powders of barium ferrite in polymer matrix is irregular and powder particles are of irregular shapes and different sizes.Research limitations/implications: Maked researches are limited only to characterization the microstructure of commercial material, because obtained results will be helpful to prepare barium ferrite powders by mechanical alloying and subsequent annealing in the future. As prepared BaFe12O19 powders will be used as the starting material for magnets bonded with polymer material.Originality/value: The obtained results of investigations by different methods of structure analysis confirm their useful in the microstructure analysis of powder materials.

  5. Synthesis of Vanadium Nitride by a One Step Method

    Institute of Scientific and Technical Information of China (English)

    Sansan YU; Nianxin FU; Feng GAO; Zhitong SUI

    2007-01-01

    Vanadium nitrides were prepared via one step method of carbothermal reduction and nitridation of vanadium trioxide. Thermalgravimetric analysis (TGA) and X-ray diffraction were used to determine the reaction paths of vanadium carbide, namely the following sequential reaction: V2O3→V8C7 in higher temperature stage, the rule of vanadium nitride synthesized was established, and defined conditions of temperature for the production of the carbides and nitrides were determined. Vanadium oxycarbide may consist in the front process of carbothermal reduction of vanadium trioxide. In one step method for vanadium nitride by carbothermal reduction and nitridation of vanadium trioxide, the nitridation process is simultaneous with the carbothermal reduction. A one-step mechanism of the carbothermal reduction with simultaneous nitridation leaded to a lower terminal temperature in nitridation process for vanadium nitride produced, compared with that of carbothermal reduction process without nitridation. The grain size and shape of vanadium nitride were uniform, and had the shape of a cube. The one step method combined vacuum carborization and nitridation (namely two step method) into one process. It simplified the technological process and decreased the costs.

  6. 75 FR 36629 - Barium Chloride From the People's Republic of China: Continuation of Antidumping Duty Order

    Science.gov (United States)

    2010-06-28

    ... Barium Chloride From China, 75 FR 33824 (June 15, 2010), and Barium Chloride from China (Inv. No. 731-TA... Five-year (``Sunset'') Review, 74 FR 31412 (July 1, 2009). As a result of its review, the Department... China: Final Results of Expedited Third Sunset Review of Antidumping Duty Order, 74 FR 55814 (October...

  7. New efficient catalyst for ammonia synthesis: barium-promoted cobalt on carbon

    DEFF Research Database (Denmark)

    Hagen, Stefan; Barfod, Rasmus; Fehrmann, Rasmus; Jacobsen, Claus J.H.; Teunissen, Herman T; Ståhl, Kenny; Chorkendorff, Ib

    2002-01-01

    Barium-promoted cobalt catalysts supported on carbon exhibit higher ammonia activities at synthesis temperatures than the commercial, multipromoted iron catalyst and also a lower ammonia......Barium-promoted cobalt catalysts supported on carbon exhibit higher ammonia activities at synthesis temperatures than the commercial, multipromoted iron catalyst and also a lower ammonia...

  8. LACK OF EFFECT OF DRINKING WATER BARIUM ON CARDIOVASCULAR RISK FACTORS

    Science.gov (United States)

    Higher cardiovascular mortality has been associated in a single epidemiological study with higher levels of barium in drinking water. he purpose of this study was to determine whether drinking water barium at levels found in some U.S. communities alters the known risk factors for...

  9. Acute respiratory failure caused by aspiration of high density barium: A case report

    International Nuclear Information System (INIS)

    Accidental aspiration of barium contrast medium during the upper gastrointestinal study can occur in patients with swallowing disorder, especially in the elderly patients. We experienced a case of respiratory failure followed by death within a few hours in 85 year-old patient after barium aspiration

  10. Growth of epitaxial iron nitride ultrathin film on zinc-blende gallium nitride

    International Nuclear Information System (INIS)

    The authors report the growth of iron nitride on zinc-blende gallium nitride using molecular beam epitaxy. First, zinc-blende GaN is grown on a magnesium oxide substrate having (001) orientation; second, an ultrathin layer of FeN is grown on top of the GaN layer. In situ reflection high-energy electron diffraction is used to monitor the surface during growth, and a well-defined epitaxial relationship is observed. Cross-sectional transmission electron microscopy is used to reveal the epitaxial continuity at the gallium nitride-iron nitride interface. Surface morphology of the iron nitride, similar to yet different from that of the GaN substrate, can be described as plateau valley. The FeN chemical stoichiometry is probed using both bulk and surface sensitive methods, and the magnetic properties of the sample are revealed.

  11. Interaction between hydrogen and a nitrided layer

    Directory of Open Access Journals (Sweden)

    J. Ćwiek

    2011-07-01

    Full Text Available Purpose: of this paper is to reveal the influence of nitrided layer on 34CrAlNi7-10 steel to its susceptibility to hydrogen degradation. Investigation was carried out with the use of slow strain tensile rate test (SSRT.Design/methodology/approach: Nitriding was done in the nitrogen-hydrogen (or argon gas atmospheres with various hydrogen content, i. e. 0%, 30%, and 70%, at the glow discharge at temperature 560°C for 6 hrs. In order to estimate the degree of hydrogen degradation SSRT test was conducted on round smooth specimens 4 mm in diameter. Tests were performed at ambient temperature either in dry air or in 0.005 M H2SO4 solution. The applied strain rate was 10-6 s-1. Tests in acid solution were conducted under cathodic polarization with constant current densities: 0.1; 1; 5 and 10 mA/cm2. Fracture surfaces after SSRT test were examined with scanning electron microscope (SEM to reveal a mode and mechanism of cracking.Findings: Plasma nitrided layers are effective barriers to hydrogen entry into structural steel which decreases susceptibility of steel to hydrogen degradation. Hydrogen is mainly accumulated in a compact nitrides zone. Evidences of no increase in brittleness of nitrided layers with absorbed hydrogen were observed.Research limitations/implications: There is no possibility to perform direct observations of exact mechanism of hydrogen-assisted cracking so far. Further research should be taken to reveal the exact mechanism of increased plasticity of nitrided layer with absorbed hydrogen.Practical implications: Plasma nitrided layers are effective barriers to hydrogen entry into structural steel utilized in aggressive environments, which could be potential sources of hydrogen charging of exploited steels.Originality/value: Plasma assisted nitriding provides the formation of thin compact nitride zone which protects high-strength steels against corrosion and hydrogen degradation. Evidences of no increase in brittleness of nitrided

  12. Medical radiation shielding effect by composition of barium compounds

    International Nuclear Information System (INIS)

    Highlight: ► Radiation shielding sheet was manufactured using BaSO4 and a combination of tourmaline, tungsten, silicon and rubber polymer. ► The particle packing of barium tends to be related to the tensile strength. ► The tensile strength was most excellent in the sheets containing rubber. ► The shielding ability of the tungsten and silicon combination with BaSO4 was the same as that of a 0.3 mm lead equivalent. - Abstract: Shielding aprons were manufactured from barium sulfate as a potential substitute for the lead aprons used most commonly for medical radiation shielding. Six types of radiation shielding sheets made from a combination of tungsten, molybdenum, rubber and silicon with a barium sulfate base were manufactured, and their transmission doses were compared with those of a lead standard. In the process of producing the radiation shielding sheets, the particle packing and porosity of the materials, appropriate weight-average molecular weight to number-average molecular weight ratio and tensile strength were investigated to determine the optimal mixing process. The transmission dose was measured by applying a lead equivalent test method () of X-ray protective supplies in the Korea Industrial Standard. The transmission doses of the lead standard with a thickness of 0.05, 0.1, 0.15, 0.2, 0.25, 0.3 and 0.35 mm, as well as the six types of radiation shielding sheet were obtained at a tube voltage of 50, 80, 100, 120 and 150 kVp. According to the results, the combination of barium, tungsten, molybdenum and silicon recorded a dose of a 0.3 mm lead equivalent and its particle packing and porosity were 28–36% and 12–22%, respectively. Nevertheless, satisfactory shielding ability could be obtained with a porosity >20% and particle packing of 30%. Therefore, it is a potential replacement for lead sheet and can be considered a proper medical radiation shielding sheet with good economic feasibility.

  13. Enhanced flexoelectricity through residual ferroelectricity in barium strontium titanate

    International Nuclear Information System (INIS)

    Residual ferroelectricity is observed in barium strontium titanate ceramics over 30 °C above the global phase transition temperature, in the same temperature range in which anomalously large flexoelectric coefficients are reported. The application of a strain gradient leads to strain gradient-induced poling or flexoelectric poling. This was observed by the development of a remanent polarization in flexoelectric measurements, an induced d33 piezoelectric response even after the strain gradient was removed, and the production of an internal bias of 9 kV m−1. It is concluded that residual ferroelectric response considerably enhances the observed flexoelectric response

  14. Strain engineered barium strontium titanate for tunable thin film resonators

    Energy Technology Data Exchange (ETDEWEB)

    Khassaf, H.; Khakpash, N. [Department of Materials Science and Engineering and Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269 (United States); Sun, F. [Department of Physics, University of Connecticut, Storrs, Connecticut 06269 (United States); Sbrockey, N. M.; Tompa, G. S. [Structured Materials Industries, Inc., Piscataway, New Jersey 08854 (United States); Kalkur, T. S. [Department of Electrical and Computer Engineering, University of Colorado at Colorado Springs, Colorado Springs, Colorado 80918 (United States); Alpay, S. P., E-mail: p.alpay@ims.uconn.edu [Department of Materials Science and Engineering and Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269 (United States); Department of Physics, University of Connecticut, Storrs, Connecticut 06269 (United States)

    2014-05-19

    Piezoelectric properties of epitaxial (001) barium strontium titanate (BST) films are computed as functions of composition, misfit strain, and temperature using a non-linear thermodynamic model. Results show that through adjusting in-plane strains, a highly adaptive rhombohedral ferroelectric phase can be stabilized at room temperature with outstanding piezoelectric response exceeding those of lead based piezoceramics. Furthermore, by adjusting the composition and the in-plane misfit, an electrically tunable piezoelectric response can be obtained in the paraelectric state. These findings indicate that strain engineered BST films can be utilized in the development of electrically tunable and switchable surface and bulk acoustic wave resonators.

  15. Heterometallic β-diketonates containing barium and rare earth elements

    International Nuclear Information System (INIS)

    Potentiality of formation of heterobimetallic complexes of the composition Ba[LnLn] (Ln = La, Er; L - hexafluoroacetylacetonate, pivaloyltrifluoroacetonate-(Pta), dipivaloylmethanate-anion, is studied by mass spectrometry (MALDI-MS) method. The compounds prepared are characterized by the methods of element analysis. IR spectroscopy of gaseous phase, thermal analysis in vacuum. Compound Ba[La(Pta)5] features increased thermal stability compared with Ba(Pta)2 and La(Pta)3 and it can be offered for practical use as barium and lanthanum source in preparation of oxide films

  16. Barium strontium titanate powders prepared by spray pyrolysis

    International Nuclear Information System (INIS)

    Ultasonic spray pyrolysis (SP) has been investigated for the production of the barium strontium titanate (BST) powders from the polymeric precursors. The processing parameters, such as flux of aerosol and temperature profile inside the furnace, were optimized to obtain single phase BST. The powders were characterized by the methods of X-ray diffraction analysis, SEM, EDS and TEM. The obtained powders were submicronic, consisting of spherical, polycrystalline particles, with internal nanocrystalline structure. Crystallite size of 10 nm, calculated using Rietveld refinement, is in a good agreement with results of HRTEM

  17. Mechanism of thermoluminescence in europium-doped barium fluorochloride

    International Nuclear Information System (INIS)

    The paper concerns the optical properties of europium-doped barium fluorochloride. Thermoluminescence (TL) and emission studies have been carried out with this material and the results are reported. The irradiation was by γ-rays from a 60Co source, the dose rate being 5000rad min-1. Glow curves of γ-irradiated BaFCl:Eu2+ are presented, along with the glow curves resolved into component peaks. TL emission spectra of BaFCl:Eu2+ at room temperature, 345K, 395K and 500K are also described. (U.K.)

  18. The Kerr nonlinearity of the beta-barium borate crystal

    OpenAIRE

    Bache, Morten; Guo, Hairun; Zhou, Binbin; Zeng, Xianglong

    2013-01-01

    A popular crystal for ultrafast cascading experiments is beta-barium-borate (β-BaB2O4, BBO). It has a decent quadratic nonlinear coefficient, and because the crystal is anisotropie it can be birefringence phase-matched for type I (oo → e) second-harmonic generation (SHG). For femtosecond experiments BBO is popular because of low dispersion and a high damage threshold. The main attractive property of ultrafast cascading is that the induced cascading nonlinearity nI 2, casc can be negative, i.e...

  19. K-shell fluorescence yields of barium and lanthanum

    International Nuclear Information System (INIS)

    K-shell fluorescence yields for barium and lanthanum have been measured adopting simple 2π geometrical configuration and employing a weak 57Co radioactive source. A scintillation spectrometer with an NaI(Tl) detector of dimensions 44.5 mm diameterx50 mm thickness was employed for the detection and measurement of radiation. The results obtained are in good agreement with the best-fitted values of and also with the other experimental values, indicating that our simple method can be extended to determine fluorescence parameters of high Z materials.

  20. Colloidal stability of aqueous suspensions of barium zirconate

    OpenAIRE

    Boschini, Frédéric; Rulmont, André; Cloots, Rudi; Moreno, R.

    2005-01-01

    In this article, the colloidal behaviour of aqueous suspensions of barium zirconate is investigated. The variation of zeta-potential as a consequence of changing the pH and the concentration of an anionic polyelectrolyte is studied, the isoelectric point occurring at pH 5.3. The IEP shifts down on calcining the powder and also when anionic polyelectrolytes are added. Rheological studies have been made on suspensions prepared to a solids loading of 27 vol.% (72 wt.%). Optimum dispersing condit...

  1. Experiences with Cascara-Salax preparating children for barium enema

    International Nuclear Information System (INIS)

    30 children prepared for barium enema using Cascara-Salax are reported on. The results are: 1. A satisfactory preparation is possible in out-patient children older than ten years. 2. For children aged 6 to 10 years only the half dose early in the afternoon before the X-ray examination is necessary. 3. In most cases the colon is completely clear, if not, the X-ray study is generally not influenced by rests of stool. 4. It should be considered that other - and often unreliable - cleaning manoevers aren't necessary, the Cascara-Salax - method ist time - saving and side-effects are not of value. (orig.)

  2. Bis(chlorido)(dimethyl­sulfoxide-κO)barium(II)

    OpenAIRE

    Gschwind, Fabienne; Jansen, Martin

    2012-01-01

    The title compound, [BaCl2(C2H6SO)], forms a Ba6Cl9 cluster in which the BaCl2 units are connected via dimethyl­sulfoxide (DMSO) and chloride bridges. The central Cl atom of the Ba6Cl9 cluster is located on a threefold inversion axis and is coordinated octa­hedrally to six barium cations. In the crystal, the clusters are arranged in rows, which are inter­connected by the DMSO mol­ecules, forming a three-dimensional network.

  3. Magnetic and structural investigations on barium hexaferrite ferrofluids

    Science.gov (United States)

    Müller, R.; Hiergeist, R.; Gawalek, W.; Hoell, A.; Wiedenmann, A.

    2002-11-01

    Barium hexaferrite BaFe 12-2 xTi xCo xO 19 ferrofluids have been prepared using oleic acid as surfactant and Isopar M ® or dodecane as carrier liquid. The ferrite particles were prepared by glass crystallization. Hysteresis parameters, the initial susceptibility versus temperature and the magnetic particle size were obtained by VSM. Ferrofluids with a partly deuterated carrier liquid were investigated by small angle neutron scattering (SANS). SANS curves lead to a bimodal size distribution consisting of single magnetic particles with an organic shell and aggregated particles with an incomplete organic layer.

  4. Radium and barium in the Amazon River system

    International Nuclear Information System (INIS)

    Data for 226Ra and 228Ra in the Amazon River system show that the activity of each radium isotope is strongly correlated with barium concentrations. Two trends are apparent, one for rivers which drain shield areas and another for all other rivers. These data suggest that there has been extensive fractionation of U, Th, and Ba during weathering in the Amazon basin. The 226Ra data fit a flux model for the major ions indicating that 226Ra behaves conservatively along the main channel of the Amazon River

  5. A comparison study between diagnostic value of sonography and Barium swallow in gasteroesophageal reflux in pediatrics

    Directory of Open Access Journals (Sweden)

    Fallahi G

    2001-10-01

    Full Text Available One of the common problems in children and specially in infants is gasteroesophageal reflux (G.E.R. Present study was performed to compare diagnostic value of lower esophageal sonography with barium swallow. This study was conducted on 50 patients 1 month to 15 years age in center of pediatric clinic of Tehran, during the years 1999-2000. Patients suspected to have G.E.R studied with lower esophageal sonography and barium swallow and at the end, their results were compared with esophageal PH monitoring as a standard test. In this study sensevity of sonography was 90 percent against 50 percent for barium swallow but specifity of two test was the same 35 percent. We can concluded that sonography is a non invasive, low cost, with less side effects than barium swallow. We recommend sonography in place of barium swallow in diagnosis of G.E.R.

  6. A Comparison between the Diagnostic Value of Sonography vs. Barium Swallow In Gastroesdophageal Reflux in Children

    Directory of Open Access Journals (Sweden)

    F. Zandie

    2003-06-01

    Full Text Available Background: One of the common problems in children, especially infants, is gastroesophageal reflux (GER. Objectives:This study was performed to compare the diagnostic value of lower esophageal sonography with that of barium swallow. Patients and method: Our trial was a triple-blind, performed on 50 patients of 1 month to 15 years of age. The patients suspicious of having GER were evaluated by sonography and barium swallow. Esophageal pH monitoring was the standard test, and both the ultrasound and barium swallow were compared to it. Results: The results showed that sonography was 90% sensitive, vs. 50% for barium swallow. Both tests had the same specificity equal to 35%. Conclusion: We concluded that sonography was a better test than barium swallows, for evaluation of suspected patients with GER, and screening of the infants.

  7. Barium sulfate suspension as a negative oral contrast agent for MR imaging

    International Nuclear Information System (INIS)

    Proton spectroscopy with linewidth measurements and MR imaging were performed on various commercially available barium sulfate suspensions as well as inorganic sulfates and barium salts. Approximately 500 mL of 20%, 40%, 60%, and 70% wt/wt single-contrast oral barium sulfate suspensions were administered to four normal volunteers, and MR imaging was performed with both a 1.5-T and a 0.15-T MR imager. As much as 80% of the small bowel and the entire colon were well visualized with the 60% or 70% wt/wt single-contrast barium sulfate suspensions. The authors conclude that barium sulfate suspensions are useful as oral MR contrast agents

  8. Anion and cation diffusion in barium titanate and strontium titanate; Anionen- und Kationendiffusion in Barium- und Strontiumtitanat

    Energy Technology Data Exchange (ETDEWEB)

    Kessel, Markus Franz

    2012-12-19

    Perovskite oxides show various interesting properties providing several technical applications. In many cases the defect chemistry is the key to understand and influence the material's properties. In this work the defect chemistry of barium titanate and strontium titanate is analysed by anion and cation diffusion experiments and subsequent time-of-flight secondary ion mass spectrometry (ToF-SIMS). The reoxidation equation for barium titanate used in multi-layer ceramic capacitors (MLCCs) is found out by a combination of different isotope exchange experiments and the analysis of the resulting tracer diffusion profiles. It is shown that the incorporation of oxygen from water vapour is faster by orders of magnitude than from molecular oxygen. Chemical analysis shows the samples contain various dopants leading to a complex defect chemistry. Dysprosium is the most important dopant, acting partially as a donor and partially as an acceptor in this effectively acceptor-doped material. TEM and EELS analysis show the inhomogeneous distribution of Dy in a core-shell microstructure. The oxygen partial pressure and temperature dependence of the oxygen tracer diffusion coefficients is analysed and explained by the complex defect chemistry of Dy-doped barium titanate. Additional fast diffusion profiles are attributed to fast diffusion along grain boundaries. In addition to the barium titanate ceramics from an important technical application, oxygen diffusion in cubic, nominally undoped BaTiO{sub 3} single crystals has been studied by means of {sup 18}O{sub 2}/{sup 16}O{sub 2} isotope exchange annealing and subsequent determination of the isotope profiles in the solid by ToF-SIMS. It is shown that a correct description of the diffusion profiles requires the analysis of the diffusion through the surface space-charge into the material's bulk. Surface exchange coefficients, space-charge potentials and bulk diffusion coefficients are analysed as a function of oxygen partial

  9. New amorphous interface for precipitate nitrides in steel

    DEFF Research Database (Denmark)

    Danielsen, Hilmar Kjartansson; Kadkhodazadeh, Shima; Grumsen, Flemming Bjerg; Somers, Marcel A. J.

    2014-01-01

    According to classical theories precipitate interfaces are described by their degree of coherency with the matrix, which affects their strengthening contribution. Investigations of nitride precipitate interfaces in 12% Cr steels with transmission electron microscopy have shown the nitrides to be...

  10. Tungsten and Barium Transport in the Internal Plasma of Hollow Cathodes

    Science.gov (United States)

    Polk, James E.; Mikellides, Ioannis G.; Katz, Ira; Capece, Angela M.

    2008-01-01

    The effect of tungsten erosion, transport and redeposition on the operation of dispenser hollow cathodes was investigated in detailed examinations of the discharge cathode inserts from an 8200 hour and a 30,352 hour ion engine wear test. Erosion and subsequent re-deposition of tungsten in the electron emission zone at the downstream end of the insert reduces the porosity of the tungsten matrix, preventing the flow of barium from the interior. This inhibits the interfacial reactions of the barium-calcium-aluminate impregnant with the tungsten in the pores. A numerical model of barium transport in the internal xenon discharge plasma shows that the barium required to reduce the work function in the emission zone can be supplied from upstream through the gas phase. Barium that flows out of the pores of the tungsten insert is rapidly ionized in the xenon discharge and pushedback to the emitter surface by the electric field and drag from the xenon ion flow. Thisbarium ion flux is sufficient to maintain a barium surface coverage at the downstream endgreater than 0.6, even if local barium production at that point is inhibited by tungsten deposits. The model also shows that the neutral barium pressure exceeds the equilibrium vapor pressure of the impregnant decomposition reaction over much of the insert length,so the reactions are suppressed. Only a small region upstream of the zone blocked by tungsten deposits is active and supplies the required barium. These results indicate that hollowcathode failure models based on barium depletion rates in vacuum dispenser cathodes are very conservative.

  11. Nitriding and Nitrocarburizing; Current Status and Future Challenges

    DEFF Research Database (Denmark)

    Somers, Marcel A. J.

    This contribution addresses the current understanding of gaseous nitriding and nitrocarburizing. Aspects of thermodynamics, kinetics and microstructure development in iron and heat treatable steel will be explained. In these materials the nitrided/ nitrocarburized case can be subdivided in a...... compound layer consisting of iron (carbo-)nitrides and a diffusion zone, consisting of a dispersion of alloying element nitrides in ferrite. The compound layer provides beneficial tribological and corrosion performance, while the diffusion zone is responsible for improved fatigue performance. Furthermore...

  12. Nitriding and Nitrocarburizing; Current Status and Future Challenges

    OpenAIRE

    Somers, Marcel A.J.

    2013-01-01

    This contribution addresses the current understanding of gaseous nitriding and nitrocarburizing. Aspects of thermodynamics, kinetics and microstructure development in iron and heat treatable steel will be explained. In these materials the nitrided/ nitrocarburized case can be subdivided in a compound layer consisting of iron (carbo-)nitrides and a diffusion zone, consisting of a dispersion of alloying element nitrides in ferrite. The compound layer provides beneficial tribological and corrosi...

  13. Advancing liquid metal reactor technology with nitride fuels

    International Nuclear Information System (INIS)

    A review of the use of nitride fuels in liquid metal fast reactors is presented. Past studies indicate that both uranium nitride and uranium/plutonium nitride possess characteristics that may offer enhanced performance, particularly in the area of passive safety. To further quantify these effects, the analysis of a mixed-nitride fuel system utilizing the geometry and power level of the US Advanced Liquid Metal Reactor as a reference is described. 18 refs., 2 figs., 2 tabs

  14. Diffusion kinetics of nitrogen in tantalum during plasma-nitriding

    Institute of Scientific and Technical Information of China (English)

    张德元; 林勤; 曾卫军; 李放; 许兰萍; 付青峰

    2001-01-01

    The activation energies of nitrogen in tantalum on plasma nitriding conditions were calculated according to the experimental data of hardness of plasma-nitriding of tantalum vs time and temperature. The activation energy calculated is 148.873±0.390  kJ/mol. The depth increasing of nitriding layer with time follows square root relation. The nitriding process of tantalum is controlled by diffusion of nitrogen atoms in tantalum solid solution.

  15. Ruthenium and hafnium abundances in giant and dwarf barium stars

    CERN Document Server

    Allen, D M

    2007-01-01

    We present abundances for Ru and Hf, compare them to abundances of other heavy elements, and discuss the problems found in determining Ru and Hf abundances with laboratory gf-values in the spectra of barium stars. We determined Ru and Hf abundances in a sample of giant and dwarf barium stars, by the spectral synthesis of two RuI (4080.574A and 4757.856A) and two HfII (4080.437A and 4093.155A) transitions. The stellar spectra were observed with FEROS/ESO, and the stellar atmospheric parameters lie in the range 4300 < Teff/K < 6500, -1.2 < [Fe/H] <= 0 and 1.4 <= log g < 4.6. The HfII 4080A and the RuI 4758A observed transitions result in a unreasonably high solar abundance, given certain known uncertainties, when fitted with laboratory gf-values. For these two transitions we determined empirical gf-values by fitting the observed line profiles of the spectra of the Sun and Arcturus. For the sample stars, this procedure resulted in a good agreement of Ru and Hf abundances given by the two availa...

  16. Study of barium bismuth titanate prepared by mechanochemical synthesis

    Directory of Open Access Journals (Sweden)

    Lazarević Z.Ž.

    2009-01-01

    Full Text Available Barium-bismuth titanate, BaBi4Ti4O15 (BBT, a member of Aurivillius bismuth-based layer-structure perovskites, was prepared from stoichiometric amounts of barium titanate and bismuth titanate obtained via mechanochemical synthesis. Mechanochemical synthesis was performed in air atmosphere in a planetary ball mill. The reaction mechanism of BaBi4Ti4O15 and the preparation and characteristics of BBT ceramic powders were studied using XRD, Raman spectroscopy, particle analysis and SEM. The Bi-layered perovskite structure of BaBi4Ti4O15 ceramic forms at 1100 °C for 4 h without a pre-calcination step. The microstructure of BaBi4Ti4O15 exhibits plate-like grains typical for the Bi-layered structured material and spherical and polygonal grains. The Ba2+ addition leads to changes in the microstructure development, particularly in the change of the average grain size.

  17. Materials Synthesis Of Barium Hexa ferrite Used Local Natural Resources

    International Nuclear Information System (INIS)

    The magnetic materials of barium hexa ferrites, Ba O.6Fe2O3 successfully synthesized by powder metallurgy method used local natural resources from materials waste of steel fabrication (HSM, CRM), waste of polymer fabrication (LK) as well as iron sands (PBA). These waste as well as iron sands were the main resources of iron oxide, Fe2O3. The barium oxide used in this experiments are from BaCO3 product of Merck, and BaCO4 which is commercially available in the market as barite. Phase identification by x-ray diffraction technique show the synthesized magnetic materials are agreed with the available commercial product, (SUMI). The energy product maximum (BH)max measured by vibrating sample magnetometer (VSM) for the samples used HSM-, CRM- and BaCO3 as basic materials are 1.141 MGOe and 1.136 MGOe while SUMI is 1.142 MGOe. However for the samples made from LK-, PBA- used of BaCO3 or CRM- with barite, the energy product maximum (BH)max are relatively lower than commercial product

  18. Brillouin function characteristics for La-Co substituted barium hexaferrites

    International Nuclear Information System (INIS)

    La-Co substituted barium hexaferrites with the chemical formula of Ba1−xLaxFe12−xCoxO19 (x = 0.0, 0.1, 0.3, and 0.5), prepared by a conventional ceramic method, were systematically investigated by Raman spectra, X-ray photoelectron spectroscopy, Rietveld refinement of X-ray diffraction patterns, and vibrating sample magnetometer. The result manifests that all the compounds are crystallized in magnetoplumbite hexagonal structure. Trivalent cobalt ions prevailingly occupy the 2a, 4f1, and 12k sites. According to Néel model of collinear-spin ferrimagnetism, the molecular-field coefficients ωbf2, ωkf1, ωaf1, ωkf2, and ωbk of La-Co substituted barium hexaferrites have been calculated using the nonlinear fitting method, and the magnetic moment of five sublattices (2a, 2b, 4f1, 4f2, and 12k) versus temperature T has been also investigated. The fitting results are coincided well with the experimental data. Moreover, with the increase of La-Co substitution amount x, the molecular-field coefficients ωbf2 and ωaf1 decrease constantly, while the molecular-field coefficients ωkf1, ωkf2, and ωbk show a slight change

  19. Thermal expansion behaviour of barium and strontium zirconium phosphates

    Indian Academy of Sciences (India)

    P Srikari Tantri; K Geetha; A M Umarji; Sheela K Ramasesha

    2000-12-01

    Ba1.5–SrZr4P5SiO24 compounds with = 0, 0.25, 0.5, 0.75, 1.0, 1.25 and 1.5, belonging to the low thermal expansion NZP family were synthesized by the solid state reaction method. The XRD pattern could be completely indexed with respect to R$\\bar{3}$ space group indicating the ordering of vacancy at the divalent cation octahedral sites. The microstructure and bulk thermal expansion coefficient from room temperature to 800°C of the sintered samples have been studied. All the samples show very low coefficient of thermal expansion (CTE), with = 0 samples showing negative expansion. A small substitution of strontium in the pure barium compound changes the sign of CTE. Similarly, = 1.5 sample (pure strontium) shows a positive CTE and a small substitution of barium changes its sign. = 1.0 and 1.25 samples have almost constant CTE over the entire temperature range. The low thermal expansion of these samples can be attributed to the ordering of the ions in the crystal structure of these materials.

  20. Microstructure of composite material with powders of barium ferrite

    Directory of Open Access Journals (Sweden)

    R. Nowosielski

    2006-04-01

    Full Text Available Purpose: The aim of the present work is the microstructure characterization of commercial powder BaFe12O19 (as-prepared and composite material with BaFe12O19 powders and polymer matrix, using XRD (X-Ray Diffraction and SEM (Scanning Electron Microscopy methods.Design/methodology/approach: The morphology of barium ferrite powders and a fracture surface of the examined composite material was realized by using the scanning electron microscope. The methods of X-ray diffraction were used for the qualitative phase analysis. The parameters of diffraction line profiles were determined by PRO-FIT Toraya procedure.Findings: The X-ray diffraction analysis permitted on identification the BaFe12O19 and Fe2O3 phases in an examined material. Basing on Toraya method is determination of: lattice parameters, crystallite size (D and the lattice distortion (. Distribution of powders of barium ferrite in polymer matrix is irregular and powder particles have irregular shapes and dimensions.Research limitations/implications: For future research the X-ray analysis should be performed by the Rietveld method, which allows to characterization the microstructure of tested material and verification of its qualitative phase composition.Originality/value: The applied Toraya method of structure analysis appeared to be very useful in the microstructure analysis.

  1. Redox processes in highly yttrium-doped barium titanate

    International Nuclear Information System (INIS)

    The changes of microstructure occurring during oxidation of the reduced form of yttrium-doped barium titanate (Ba1-xYx?Ti1-x4+Tix3+O3) have been studied. Samples were sintered under reduction conditions at PO2=10-4Pa and oxidized by annealing at high temperatures (1150 and 1350 deg. C) in air. Depending on yttrium concentration, the oxidation of the reduced form of the yttrium-doped BaTiO3 caused precipitation of the phase Ba6Ti17O40 or the phases Ba6Ti17O40 and Y2Ti2O7. The precipitates had well-defined orientational relationships with the perovskite matrix. Oxidation of the reduced form of doped barium titanate results in formation of the phase Ba1-xYx?Ti1-x/44+(VTi-bar )x/4O3 responsible for increase in the resistance of outer grain layers, which lie between grain boundaries and grain

  2. The Kerr nonlinearity of the beta-barium borate crystal

    DEFF Research Database (Denmark)

    Bache, Morten; Guo, Hairun; Zhou, Binbin;

    2013-01-01

    A popular crystal for ultrafast cascading experiments is beta-barium-borate (β-BaB2O4, BBO). It has a decent quadratic nonlinear coefficient, and because the crystal is anisotropie it can be birefringence phase-matched for type I (oo → e) second-harmonic generation (SHG). For femtosecond experime......A popular crystal for ultrafast cascading experiments is beta-barium-borate (β-BaB2O4, BBO). It has a decent quadratic nonlinear coefficient, and because the crystal is anisotropie it can be birefringence phase-matched for type I (oo → e) second-harmonic generation (SHG). For femtosecond...... experiments BBO is popular because of low dispersion and a high damage threshold. The main attractive property of ultrafast cascading is that the induced cascading nonlinearity nI 2, casc can be negative, i.e. generate a self-defocusing Kerr-like nonlinearity. However, the material Kerr nonlinearity nI 2......, Kerr is self-focusing and competes with the cascading nonlinearity. Therefore, precise knowledge of its strength is crucial. We perform an experiment measuring the main c ü tensor component, and together with literature experimental data [1], we propose a cu value composed of 14 different data points...

  3. Liquid-Phase Processing of Barium Titanate Thin Films

    Science.gov (United States)

    Harris, David Thomas

    Processing of thin films introduces strict limits on the thermal budget due to substrate stability and thermal expansion mismatch stresses. Barium titanate serves as a model system for the difficulty in producing high quality thin films because of sensitivity to stress, scale, and crystal quality. Thermal budget restriction leads to reduced crystal quality, density, and grain growth, depressing ferroelectric and nonlinear dielectric properties. Processing of barium titanate is typically performed at temperatures hundreds of degrees above compatibility with metalized substrates. In particular integration with silicon and other low thermal expansion substrates is desirable for reductions in costs and wider availability of technologies. In bulk metal and ceramic systems, sintering behavior has been encouraged by the addition of a liquid forming second phase, improving kinetics and promoting densification and grain growth at lower temperatures. This approach is also widespread in the multilayer ceramic capacitor industry. However only limited exploration of flux processing with refractory thin films has been performed despite offering improved dielectric properties for barium titanate films at lower temperatures. This dissertation explores physical vapor deposition of barium titanate thin films with addition of liquid forming fluxes. Flux systems studied include BaO-B2O3, Bi2O3-BaB2O 4, BaO-V2O5, CuO-BaO-B2O3, and BaO-B2O3 modified by Al, Si, V, and Li. Additions of BaO-B2O3 leads to densification and an increase in average grain size from 50 nm to over 300 nm after annealing at 900 °C. The ability to tune permittivity of the material improved from 20% to 70%. Development of high quality films enables engineering of ferroelectric phase stability using residual thermal expansion mismatch in polycrystalline films. The observed shifts to TC match thermodynamic calculations, expected strain from the thermal expansion coefficients, as well as x-ray diffract measurements

  4. Ion nitriding in 316=L stainless steel

    International Nuclear Information System (INIS)

    Ion nitriding is a glow discharge process that is used to induce surface modification in metals. It has been applied to 316-L austenitic stainless steel looking for similar benefits already obtained in other steels. An austenitic stainless steel was selected because is not hardenable by heat treatment and is not easy to nitride by gas nitriding. The samples were plastically deformed to 10, 20, 40, 50 AND 70% of their original thickness in order to obtain bulk hardening and to observe nitrogen penetration dependence on it. The results were: an increase of one to two rockwell hardness number (except in 70% deformed sample because of its thickness); an increase of even several hundreds per cent in microhardness knoop number in nitrided surface. The later surely modifies waste resistance which would be worth to quantify in further studies. Microhardness measured in an internal transversal face to nitrided surface had a gradual diminish in its value with depth. Auger microanalysis showed a higher relative concentration rate CN/CFe near the surface giving evidence of nitrogen presence till 250 microns deep. The color metallography etchant used, produced faster corrosion in nitrited regions. Therefore, corrosion studies have to be done before using ion nitrited 316-L under these chemicals. (Author)

  5. Innovative boron nitride-doped propellants

    Directory of Open Access Journals (Sweden)

    Thelma Manning

    2016-04-01

    Full Text Available The U.S. military has a need for more powerful propellants with balanced/stoichiometric amounts of fuel and oxidants. However, balanced and more powerful propellants lead to accelerated gun barrel erosion and markedly shortened useful barrel life. Boron nitride (BN is an interesting potential additive for propellants that could reduce gun wear effects in advanced propellants (US patent pending 2015-026P. Hexagonal boron nitride is a good lubricant that can provide wear resistance and lower flame temperatures for gun barrels. Further, boron can dope steel, which drastically improves its strength and wear resistance, and can block the formation of softer carbides. A scalable synthesis method for producing boron nitride nano-particles that can be readily dispersed into propellants has been developed. Even dispersion of the nano-particles in a double-base propellant has been demonstrated using a solvent-based processing approach. Stability of a composite propellant with the BN additive was verified. In this paper, results from propellant testing of boron nitride nano-composite propellants are presented, including closed bomb and wear and erosion testing. Detailed characterization of the erosion tester substrates before and after firing was obtained by electron microscopy, inductively coupled plasma and x-ray photoelectron spectroscopy. This promising boron nitride additive shows the ability to improve gun wear and erosion resistance without any destabilizing effects to the propellant. Potential applications could include less erosive propellants in propellant ammunition for large, medium and small diameter fire arms.

  6. Transition Metal Nitrides: A First Principles Study

    Science.gov (United States)

    Pathak, Ashish; Singh, A. K.

    2016-04-01

    The present work describes the structural stability and electronic and mechanical properties of transition metal nitrides (TmNs: B1 cubic structure (cF8, Fm ‾ overline 3 m)) using first principles density functional theory (DFT) within generalized gradient approximation (GGA). The lattice constant of TmNs increases with increasing the atomic radii of the transition metals. Stability of the TmNs decreases from IVB to VIB groups due to increase in formation energy/atom. The bonding characteristics of these nitrides have been explained based on electronic density of states and charge density. All the TmNs satisfy Born stability criteria in terms of elastic constants except CrN and MoN that do not exist in equilibrium binary phase diagrams. The groups IVB and V-VIB nitrides are associated with brittle and ductile behaviour based on G/B ratios, respectively. The estimated melting temperatures of these nitrides exhibit reasonably good agreement with calculated with B than those of the C11 for all nitrides.

  7. Innovative boron nitride-doped propellants

    Institute of Scientific and Technical Information of China (English)

    Thelma MANNING; Henry GRAU; Paul MATTER; Michael BEACHY; Christopher HOLT; Samuel SOPOK; Richard FIELD; Kenneth KLINGAMAN; Michael FAIR; John BOLOGNINI; Robin CROWNOVER; Carlton P. ADAM; Viral PANCHAL; Eugene ROZUMOV

    2016-01-01

    The U.S. military has a need for more powerful propellants with balanced/stoichiometric amounts of fuel and oxidants. However, balanced and more powerful propellants lead to accelerated gun barrel erosion and markedly shortened useful barrel life. Boron nitride (BN) is an interesting potential additive for propellants that could reduce gun wear effects in advanced propellants (US patent pending 2015-026P). Hexagonal boron nitride is a good lubricant that can provide wear resistance and lower flame temperatures for gun barrels. Further, boron can dope steel, which drastically improves its strength and wear resistance, and can block the formation of softer carbides. A scalable synthesis method for producing boron nitride nano-particles that can be readily dispersed into propellants has been developed. Even dispersion of the nano-particles in a double-base propellant has been demonstrated using a solvent-based processing approach. Stability of a composite propellant with the BN additive was verified. In this paper, results from propellant testing of boron nitride nano-composite propellants are presented, including closed bomb and wear and erosion testing. Detailed characterization of the erosion tester substrates before and after firing was obtained by electron microscopy, inductively coupled plasma and x-ray photoelectron spectroscopy. This promising boron nitride additive shows the ability to improve gun wear and erosion resistance without any destabilizing effects to the propellant. Potential applications could include less erosive propellants in propellant ammunition for large, medium and small diameter fire arms.

  8. Ceramics based on titanium nitride and silicon nitride sintered by SPS-method

    Science.gov (United States)

    Sivkov, A. A.; Gerasimov, D. Yu; Evdokimov, A. A.

    2015-10-01

    The dependences of the microstructure and physical and mechanical properties of ceramic mixtures Si3N4/TiN in the full range of mass ratios of the components. Was also investigated directly, and the process of sintering occurring during a physical or chemical processes, in particular, has been obtained and the hardness of the material density on the ratio of the conductive titanium nitride phase and a silicon nitride insulating phase with values above and below the percolation threshold. Also obtained was pure ceramics based on titanium nitride with high physical-mechanical characteristics (H = 21.5 GPa).

  9. Microstructural characterization of nitrided Timetal 834.

    Science.gov (United States)

    Moskalewicz, T; Grogger, W; Czyrska-Filemonowicz, A

    2006-09-01

    The microstructure of Timetal 834, in as-received condition and after nitriding under glow discharge has been examined by light microscopy and analytical transmission electorn microscopy (TEM) methods (SAED, EDS, EELS and EFTEM). The microstructure of the as-received alloy consists of the alpha phase and a small amount of the beta phase. Silicide precipitates (Zr5Si4) are present both inside the grains and at the grain boundaries. TEM investigations of cross-sectional thin foils allow for detailed analysis of the nitrided layer microstructure. It was found that the nitrided layer exhibits a graded character with continuously varying nitrogen content. The outermost sublayer consists of nanocrystals of delta-TiN. The following sublayers consist mainly of delta'-Ti2N and epsilon-Ti2N grains. The last sublayer, closest to the substrate, is identified as a nitrogen-rich alpha(N) solid solution containing up to 14 at% of nitrogen. PMID:17059528

  10. Thermodynamics, kinetics and process control of nitriding

    DEFF Research Database (Denmark)

    Mittemeijer, Eric J.; Somers, Marcel A. J.

    1997-01-01

    As a prerequisite for the predictability of properties obtained by a nitriding treatment of iron based workpieces, the relation between the process parameters and the composition and structure of the surface layer produced must be known. At present, even the description of thermodynamic equilibrium...... 10th Congress of the International Federation for Heat Treatment and Surface Engineering held in Brighton, UK on 1-5 September 1996. (C) 1997 The Institute of Materials....... for, the nitriding result is determined largely by kinetics. Nitriding kinetics are shown to be characterised by local near equilibria and stationary states at surfaces and interfaces, and the diffusion coefficient of nitrogen in the various phases, for which new data are presented. The necessary...

  11. Preparation and properties of yttria doped tetragonal zirconia polycrystal/Sr-doped barium hexaferrite ceramic composites

    International Nuclear Information System (INIS)

    Highlights: • The 3Y-TZP/Sr-doped barium ferrite composites were prepared. • The saturation magnetization was improved by 15% with Sr-doping. • The dispersion coefficient p could reflect the microscopic lattice variation. • The composite with x = 0.5 had the maximum fracture toughness of 8.3 MPa m1/2. - Abstract: The effects of substitution of Ba2+ by Sr2+ on the magnetic property of barium ferrite and addition barium ferrite secondary phase to the 3 mol% yttria-doped tetragonal zirconia polycrystal (3Y-TZP) matrix on the mechanical property of composites were investigated. The Sr-doped barium ferrite (Ba1−xSrxFe12O19, x = 0, 0.25, 0.50 and 0.75) was synthesized by solid-state reaction in advance. Then 3Y-TZP/20 wt% Sr-doped barium ferrite composites were prepared by means of conventional ceramic method. It was found that a moderate amount of Sr added to barium ferrite could boost the saturation magnetization by 15% compared with the composites without Sr-doping. Besides, the composite with x = 0.50 possessed the best mechanical properties, such as 11.5 GPa for Vickers hardness and 8.3 MPa m1/2 for fracture toughness, respectively. It was demonstrated that magnetic and mechanical properties of the composites could be harmonized by the incorporation of barium ferrite secondary phase

  12. Bio-based barium alginate film: Preparation, flame retardancy and thermal degradation behavior.

    Science.gov (United States)

    Liu, Yun; Zhang, Chuan-Jie; Zhao, Jin-Chao; Guo, Yi; Zhu, Ping; Wang, De-Yi

    2016-03-30

    A bio-based barium alginate film was prepared via a facile ionic exchange and casting approach. Its flammability, thermal degradation and pyrolysis behaviors, thermal degradation mechanism were studied systemically by limiting oxygen index (LOI), vertical burning (UL-94), microscale combustion calorimetry (MCC), thermogravimetric analysis (TGA) coupled with Fourier transform infrared analysis (FTIR) and pyrolysis-gas chromatography-mass spectrometry (Py-GC-MS). It showed that barium alginate film had much higher LOI value (52.0%) than that of sodium alginate film (24.5%). Moreover, barium alginate film passed the UL-94 V-0 rating, while the sodium alginate film showed no classification. Importantly, peak of heat release rate (PHRR) of barium alginate film in MCC test was much lower than that of sodium alginate film, suggested that introduction of barium ion into alginate film significantly decreased release of combustible gases. TG-FTIR and Py-GC-MS results indicated that barium alginate produced much less flammable products than that of sodium alginate in whole thermal degradation procedure. Finally, a possible degradation mechanism of barium alginate had been proposed. PMID:26794953

  13. Nitride Fuel Development at the INL

    International Nuclear Information System (INIS)

    A new method for fabricating nitride-based fuels for nuclear applications is under development at the Idaho National Laboratory (INL). A primary objective of this research is the development of a process that could be operated as an automated or semi-automated technique reducing costs, worker doses, and eventually improving the final product form. To achieve these goals the fabrication process utilizes a new cryo-forming technique to produce microspheres formed from sub-micron oxide powder to improve material handling issues, yield rapid kinetics for conversion to nitrides, and reduced material impurity levels within the nitride compounds. The microspheres are converted to a nitride form within a high temperature particle fluidizing bed using a carbothermic process that utilizes a hydrocarbon-hydrogen-nitrogen gas mixture. A new monitor and control system using differential pressure changes in the fluidizing gas allows for real-time monitoring and control of the spouted bed reactor during conversion. This monitor and control system can provide real-time data that is used to control the gas flow rates, temperatures, and gas composition to optimize the fluidization of the particle bed. The small size (0.5 (micro)m) of the oxide powders in the microspheres dramatically increases the kinetics of the conversion process yielding reduced process times and temperatures. Initial studies using surrogate ZrO2 powder have yielded conversion efficiencies of 90-95% nitride formation with only small levels of oxide and carbide contaminants present. Further studies are being conducted to determine optimal gas mixture ratios, process time, and temperature range for providing complete conversion to a nitride form

  14. Nitride Fuel Development at the INL

    Energy Technology Data Exchange (ETDEWEB)

    W.E. Windes

    2007-06-01

    A new method for fabricating nitride-based fuels for nuclear applications is under development at the Idaho National Laboratory (INL). A primary objective of this research is the development of a process that could be operated as an automated or semi-automated technique reducing costs, worker doses, and eventually improving the final product form. To achieve these goals the fabrication process utilizes a new cryo-forming technique to produce microspheres formed from sub-micron oxide powder to improve material handling issues, yield rapid kinetics for conversion to nitrides, and reduced material impurity levels within the nitride compounds. The microspheres are converted to a nitride form within a high temperature particle fluidizing bed using a carbothermic process that utilizes a hydrocarbon – hydrogen - nitrogen gas mixture. A new monitor and control system using differential pressure changes in the fluidizing gas allows for real-time monitoring and control of the spouted bed reactor during conversion. This monitor and control system can provide real-time data that is used to control the gas flow rates, temperatures, and gas composition to optimize the fluidization of the particle bed. The small size (0.5 µm) of the oxide powders in the microspheres dramatically increases the kinetics of the conversion process yielding reduced process times and temperatures. Initial studies using surrogate ZrO2 powder have yielded conversion efficiencies of 90 -95 % nitride formation with only small levels of oxide and carbide contaminants present. Further studies are being conducted to determine optimal gas mixture ratios, process time, and temperature range for providing complete conversion to a nitride form.

  15. Precipitate-Accommodated Plasma Nitriding for Aluminum Alloys

    Institute of Scientific and Technical Information of China (English)

    Patama Visittipitukul; Tatsuhiko Aizawa; Hideyuki Kuwahara

    2004-01-01

    Reliable surface treatment has been explored to improve the strength and wear resistance of aluminum alloy parts in automotives. Long duration time as well as long pre-sputtering time are required for plasma nitriding of aluminum or its alloys only with the thickness of a few micrometers. New plasma inner nitriding is proposed to realize the fast-rate nitriding of aluminum alloys. Al-6Cu alloy is employed as a targeting material in order to demonstrate the effectiveness of this plasma nitriding. Mechanism of fast-rate nitriding process is discussed with consideration of the role of Al2Cu precipitates.

  16. The Moessbauer investigation in iron nitride/expanded graphite

    International Nuclear Information System (INIS)

    We successfully prepared the composites possessed high magnetic properties and shielding effectiveness (SE) in RF band with the methods of loading iron nitride nanoparticles on expanded graphite (EG) by the gaseous reduction and nitridation. XRD measurement shows that the ferric phases changed in different nitridation temperature. The phase components of nanoparticles were analyzed in detail by the measurement of 57Fe Moessbauer spectra. The result shows that as the temperature increased, the Fe particles were gradually nitride until completely before 400℃ and the γ'-Fe4N was gradually converted to ε-FexN (2nitride after 400℃. (authors)

  17. Barium titanate core – gold shell nanoparticles for hyperthermia treatments

    Directory of Open Access Journals (Sweden)

    FarrokhTakin E

    2013-06-01

    Full Text Available Elmira FarrokhTakin,1,2 Gianni Ciofani,1 Gian Luigi Puleo,1 Giuseppe de Vito,3,4 Carlo Filippeschi,1 Barbara Mazzolai,1 Vincenzo Piazza,3 Virgilio Mattoli1 1Center for Micro-BioRobotics @SSSA, Fondazione Istituto Italiano di Tecnologia, Pontedera, Pisa, Italy; 2The Biorobotics Institute, Scuola Superiore Sant'Anna, Pontedera, Pisa, Italy; 3Center for Nanotechnology Innovation @NEST, Fondazione Istituto Italiano di Tecnologia, Pisa, Italy; 4NEST, Scuola Normale Superiore, Pisa, Italy Abstract: The development of new tools and devices to aid in treating cancer is a hot topic in biomedical research. The practice of using heat (hyperthermia to treat cancerous lesions has a long history dating back to ancient Greece. With deeper knowledge of the factors that cause cancer and the transmissive window of cells and tissues in the near-infrared region of the electromagnetic spectrum, hyperthermia applications have been able to incorporate the use of lasers. Photothermal therapy has been introduced as a selective and noninvasive treatment for cancer, in which exogenous photothermal agents are exploited to achieve the selective destruction of cancer cells. In this manuscript, we propose applications of barium titanate core–gold shell nanoparticles for hyperthermia treatment against cancer cells. We explored the effect of increasing concentrations of these nanoshells (0–100 µg/mL on human neuroblastoma SH-SY5Y cells, testing the internalization and intrinsic toxicity and validating the hyperthermic functionality of the particles through near infrared (NIR laser-induced thermoablation experiments. No significant changes were observed in cell viability up to nanoparticle concentrations of 50 µg/mL. Experiments upon stimulation with an NIR laser revealed the ability of the nanoshells to destroy human neuroblastoma cells. On the basis of these findings, barium titanate core–gold shell nanoparticles resulted in being suitable for hyperthermia treatment

  18. Wideband and enhanced microwave absorption performance of doped barium ferrite

    International Nuclear Information System (INIS)

    To achieve stronger microwave attenuation and larger bandwidth in electromagnetic absorber, the nickel ions (Ni2+) and manganese ions (Mn2+) were employed to partially replace the cobalt ions (Co2+) in BaCoTiFe10O19, and the doped barium hexaferrite (Ba(MnNi)0.2Co0.6TiFe10O19 and Ba(MnNi)0.25Co0.5TiFe10O19) powders were synthesized via the sol–gel combustion method. Subsequently, the microwave absorbing composites were prepared by mixing the ferrite powders with the paraffin. The X-ray diffraction (XRD) patterns of the doped ferrites confirmed the formation of the M-type barium ferrite, and no other types of barium ferrite could be found. Based on the electromagnetic parameters measured by the vector net-analyzer, it was found that the composite (Ba(MnNi)0.2Co0.6TiFe10O19) possessed a minimum reflection loss of −52.8 dB at 13.4 GHz with a matching thickness of 1.8 mm and the bandwidth below −15 dB was 5.8 GHz. Moreover, the maximum attenuation of Ba(MnNi)0.25Co0.5TiFe10O19 could reach −69 dB when its thickness was 1.8 mm, and also the bandwidth less than −20 dB was ranging from 13.2 GHz to 18 GHz. Thus, Ba(MnNi)0.2Co0.6TiFe10O19 and Ba(MnNi)0.25Co0.5TiFe10O19 could be the good microwave absorbers, which have great potentials to be applied in the high frequency fields of the microwave absorbing materials. - Highlights: • The Co was first time substituted by Mn–Ni in ferrites. • The substituted ferrites had good microwave absorption. • The doped ferrites had broad bandwidth and low reflection loss

  19. Wideband and enhanced microwave absorption performance of doped barium ferrite

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Pingyuan; Xiong, Kun [State Key Laboratory Cultivation Base for Nonmetal Composites and Functional Materials, School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang 621010 (China); Ju, Kui [Guizhou Institute of Metallurgy and Chemical Engineering, Guiyang 550002 (China); Li, Shengnan [State Key Laboratory Cultivation Base for Nonmetal Composites and Functional Materials, School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang 621010 (China); Xu, Guangliang, E-mail: xuguangliang@swust.edu.cn [State Key Laboratory Cultivation Base for Nonmetal Composites and Functional Materials, School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang 621010 (China)

    2015-07-01

    To achieve stronger microwave attenuation and larger bandwidth in electromagnetic absorber, the nickel ions (Ni{sup 2+}) and manganese ions (Mn{sup 2+}) were employed to partially replace the cobalt ions (Co{sup 2+}) in BaCoTiFe{sub 10}O{sub 19}, and the doped barium hexaferrite (Ba(MnNi){sub 0.2}Co{sub 0.6}TiFe{sub 10}O{sub 19} and Ba(MnNi){sub 0.25}Co{sub 0.5}TiFe{sub 10}O{sub 19}) powders were synthesized via the sol–gel combustion method. Subsequently, the microwave absorbing composites were prepared by mixing the ferrite powders with the paraffin. The X-ray diffraction (XRD) patterns of the doped ferrites confirmed the formation of the M-type barium ferrite, and no other types of barium ferrite could be found. Based on the electromagnetic parameters measured by the vector net-analyzer, it was found that the composite (Ba(MnNi){sub 0.2}Co{sub 0.6}TiFe{sub 10}O{sub 19}) possessed a minimum reflection loss of −52.8 dB at 13.4 GHz with a matching thickness of 1.8 mm and the bandwidth below −15 dB was 5.8 GHz. Moreover, the maximum attenuation of Ba(MnNi){sub 0.25}Co{sub 0.5}TiFe{sub 10}O{sub 19} could reach −69 dB when its thickness was 1.8 mm, and also the bandwidth less than −20 dB was ranging from 13.2 GHz to 18 GHz. Thus, Ba(MnNi){sub 0.2}Co{sub 0.6}TiFe{sub 10}O{sub 19} and Ba(MnNi){sub 0.25}Co{sub 0.5}TiFe{sub 10}O{sub 19} could be the good microwave absorbers, which have great potentials to be applied in the high frequency fields of the microwave absorbing materials. - Highlights: • The Co was first time substituted by Mn–Ni in ferrites. • The substituted ferrites had good microwave absorption. • The doped ferrites had broad bandwidth and low reflection loss.

  20. Alkaline Capacitors Based on Nitride Nanoparticles

    Science.gov (United States)

    Aldissi, Matt

    2003-01-01

    High-energy-density alkaline electrochemical capacitors based on electrodes made of transition-metal nitride nanoparticles are undergoing development. Transition- metal nitrides (in particular, Fe3N and TiN) offer a desirable combination of high electrical conductivity and electrochemical stability in aqueous alkaline electrolytes like KOH. The high energy densities of these capacitors are attributable mainly to their high capacitance densities, which, in turn, are attributable mainly to the large specific surface areas of the electrode nanoparticles. Capacitors of this type could be useful as energy-storage components in such diverse equipment as digital communication systems, implanted medical devices, computers, portable consumer electronic devices, and electric vehicles.

  1. Local heating with titanium nitride nanoparticles

    DEFF Research Database (Denmark)

    Guler, Urcan; Ndukaife, Justus C.; Naik, Gururaj V.;

    2013-01-01

    We investigate the feasibility of titanium nitride (TiN) nanoparticles as local heat sources in the near infrared region, focusing on biological window. Experiments and simulations provide promising results for TiN, which is known to be bio-compatible.......We investigate the feasibility of titanium nitride (TiN) nanoparticles as local heat sources in the near infrared region, focusing on biological window. Experiments and simulations provide promising results for TiN, which is known to be bio-compatible....

  2. Thermodynamics, kinetics and process control of nitriding

    DEFF Research Database (Denmark)

    Mittemeijer, Eric J.; Somers, Marcel A. J.

    1999-01-01

    As a prerequisite for predictability of properties obtained by a nitriding treatment of iron-based workpieces, the relation between the process parameters and the composition and structure of the surface layer produced must be known. At present (even) the description of thermodynamic equilibrium of...... pure iron-nitrogen phases has not been achieved fully. It has been shown that taking into account ordering of nitrogen in the epsilon and gamma' iron-nitride phases, leads to an improved understanding of the Fe-N phase diagram. Although thermodynamics indicate the state the system strives for, the...

  3. Four Terminal Gallium Nitride MOSFETs

    Science.gov (United States)

    Veety, Matthew Thomas

    All reported gallium nitride (GaN) transistors to date have been three-terminal devices with source, drain, and gate electrodes. In the case of GaN MOSFETs, this leaves the bulk of the device at a floating potential which can impact device threshold voltage. In more traditional silicon-based MOSFET fabrication a bulk contact can be made on the back side of the silicon wafer. For GaN grown on sapphire substrates, however, this is not possible and an alternate, front-side bulk contact must be investigated. GaN is a III-V, wide band gap semiconductor that as promising material parameters for use in high frequency and high power applications. Possible applications are in the 1 to 10 GHz frequency band and power inverters for next generation grid solid state transformers and inverters. GaN has seen significant academic and commercial research for use in Heterojunction Field Effect Transistors (HFETs). These devices however are depletion-mode, meaning the device is considered "on" at zero gate bias. A MOSFET structure allows for enhancement mode operation, which is normally off. This mode is preferrable in high power applications as the device has lower off-state power consumption and is easier to implement in circuits. Proper surface passivation of seminconductor surface interface states is an important processing step for any device. Preliminary research on surface treatments using GaN wet etches and depletion-mode GaN devices utilizing this process are discussed. Devices pretreated with potassium pursulfate prior to gate dielectric deposition show significant device improvements. This process can be applied to any current GaN FET. Enhancement-mode GaN MOSFETs were fabricated on magnesium doped p-type Wurtzite gallium nitride grown by Metal Organic Chemical Vapor Deposition (MOCVD) on c-plane sapphire substrates. Devices utilized ion implant source and drain which was activated under NH3 overpressure in MOCVD. Also, devices were fabricated with a SiO2 gate dielectric

  4. Boron Nitride Nanotubes for Spintronics

    Directory of Open Access Journals (Sweden)

    Kamal B. Dhungana

    2014-09-01

    Full Text Available With the end of Moore’s law in sight, researchers are in search of an alternative approach to manipulate information. Spintronics or spin-based electronics, which uses the spin state of electrons to store, process and communicate information, offers exciting opportunities to sustain the current growth in the information industry. For example, the discovery of the giant magneto resistance (GMR effect, which provides the foundation behind modern high density data storage devices, is an important success story of spintronics; GMR-based sensors have wide applications, ranging from automotive industry to biology. In recent years, with the tremendous progress in nanotechnology, spintronics has crossed the boundary of conventional, all metallic, solid state multi-layered structures to reach a new frontier, where nanostructures provide a pathway for the spin-carriers. Different materials such as organic and inorganic nanostructures are explored for possible applications in spintronics. In this short review, we focus on the boron nitride nanotube (BNNT, which has recently been explored for possible applications in spintronics. Unlike many organic materials, BNNTs offer higher thermal stability and higher resistance to oxidation. It has been reported that the metal-free fluorinated BNNT exhibits long range ferromagnetic spin ordering, which is stable at a temperature much higher than room temperature. Due to their large band gap, BNNTs are also explored as a tunnel magneto resistance device. In addition, the F-BNNT has recently been predicted as an ideal spin-filter. The purpose of this review is to highlight these recent progresses so that a concerted effort by both experimentalists and theorists can be carried out in the future to realize the true potential of BNNT-based spintronics.

  5. Silicon nitride for photovoltaic application

    Directory of Open Access Journals (Sweden)

    M. Lipiński

    2010-12-01

    Full Text Available Purpose: of this paper is to present the research results of silicon nitride SiNx films used for industrial silicon solar cells and for third generation solar cells.Design/methodology/approach: The SiNx films were deposited using RF- and LF-PECVD methods. The optical and structural properties were investigated by spectroscopic ellipsometry, XPS, FTIR spectroscopy and X-Ray reflectometry. The passivation properties were investigated by carriers lifetime measurements using a photoconductance decay (PCD technique. For the photovoltaics of third generation the multilayer structures of SiNx were deposited and annealed in order to obtain the silicon quantum superlattices. These structure were characterized by high-resolution TEM, GI-XRD, photoluminescence, Raman and SPV spectroscopy.Findings: It is shown that the layers deposited by LF PECVD have more profitable optical and electrical properties for industrial silicon solar cells than those deposited by RF PECVD. The other finding is that multi-layer structure of SiNx annealed at high temperature shows the properties of the new semiconductor with the gap energy broader then the gap of the silicon.Research limitations/implications: The maximal density of SiNx layers is equal to 2.6 g/cm3. It is too low to obtain high efficiency mc-Si cells. The deposition process should be further optimized. The other limitation is obtaining a regular structure of quantum superlattice composed of quantum dots with defined diameter and density which is a very difficult technological task. This work should be continued in the future.Practical implications: The results of SiNx investigation can be used to increase the efficiency of mc-Si solar cells. The results of multilayer SiNx investigations may be applied to a solar cells based on silicon QDs superlatice.

  6. Synthesis and Characterization of Barium-Vanadium Oxide Nanocomposite Using a Facile thermolysis Approach

    OpenAIRE

    Niloufar Akbarzadeh-T; Leila Amiri-O

    2015-01-01

    In this investigation, we report synthesis of new cationic-anionic Barium-Vanadium complex with 2, 6- pyridinedicarboxylic acid ligand. This compound [Ba(H2O)8][VO2(dipic)]2(1) has been characterized using elemental analyses, FT-IR, UV–Vis and Cyclic voltammetry (CV) techniques. Also in this study we report facile synthesis of Barium-Vanadium Oxide nanoparticle under thermal decomposition, using precursor complex (1). Characterization of Barium-Vanadium Oxide nanocomposites was carried out by...

  7. Barium ferrite nanoparticles prepared by self-propagating low-temperature combustion method and its characterization

    Indian Academy of Sciences (India)

    P M Prithviraj Swamy; S Basavaraja; Vijayanand Havanoor; N V Srinivas Rao; R Nijagunappa; A Venkataraman

    2011-12-01

    The barium ferrite particles were prepared using a self-propagating low-temperature combustion method using polyethylene glycol (PEG) as a fuel. The process was investigated with simultaneous thermogravimetric-differential thermal analysis (TG–DTA). The crystalline structure, morphology and the magnetic properties of the barium ferrite particles were studied by means of X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and SQUID susceptometer. The results show that the ignition temperature of PEG is lower compared with other combustion methods and gives nanocrystalline barium ferrite.

  8. A Comparative Study on Magnetostructural Properties of Barium Hexaferrite Powders Prepared by Polyethylene Glycol

    Directory of Open Access Journals (Sweden)

    Zehra Durmus

    2014-01-01

    Full Text Available Nanocrystalline particles of barium hexaferrite were synthesized by a sol-gel combustion route using nitrate-citrate gels prepared from metal nitrates and citric acid solutions with Fe/Ba molar ratio 12. The present paper aims to study the effect of addition of polyethylene glycol (PEG solutions with different molecular weights (MW: 400, 2000, and 10.000 g/mol on magnetostructural properties of barium hexaferrite. The formation of the barium hexaferrite was inspected using X-ray diffraction (XRD analysis, Fourier transform infrared (FT-IR analysis, thermogravimetric (TGA analysis, scanning electron microscopy (SEM analysis and vibrating sample magnetometer (VSM analysis for magnetic measurements.

  9. Microscopic insight into nuclear structure properties of proton-rich barium isotopes

    International Nuclear Information System (INIS)

    Variation after projection (VAP) calculations with Hartree-Bogoliubov (HB) Ansatz have been carried out for A=120-136 barium isotopes. In this framework, the yrast spectra with Jmaxπ=10+, B(E2) transition probabilities, quadrupole (β2) and hexadecapole (β4) deformation parameters for even-even barium isotopes have been obtained. The results of the calculation give an indication that it is important to include the hexadecapole-hexadecapole component of the two-body interaction for obtaining various nuclear structure quantities in these barium isotopes. (author)

  10. Orbital elements of barium stars formed through a wind accretion scenario

    CERN Document Server

    Liu, J H; Liang, Y C; Peng, Q H

    2000-01-01

    Taking the total angular momentum conservation in place of the tangential momentum conservation, and considering the square and higher power terms of orbital eccentricity e, the changes of orbital elements of binaries are calculated for wind accretion scenario. These new equations are used to quantitatively explain the observed (e,logP) properties of normal G, K giants and barium stars. Our results reflect the evolution from G, K giant binaries to barium binaries, moreover, the barium stars with longer orbital periods P>1600 days may be formed by accreting part of the ejecta from the intrinsic AGB stars through wind accretion scenario.

  11. The high-temperature sulphation behavior of barium-based sorbents during coal combustion

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, J.; Li, N.; Zhou, J.; Cao, X.; Liu, J.; Zhao, X.; Cen, K.

    2000-07-01

    In order to promote the sulfur removal efficiency during coal combustion, the high-temperature sulfation behavior of barium-based sorbents was studied. The sulfation product BaSO{sub 4} which did not decompose until 1,580 C had much better thermal stability than CaSO{sub 4} which rapidly decomposed at about 1,300 C. The desulfurization effect of barium salt Ba{sup 2+} was much better than calcium salt Ca{sup 2+} during coal combustion at about 1,200{approximately}1,300 C. The sulfur removal efficiency of barium-based sorbents could achieve 35.5% in industrial grate furnace.

  12. Application of barium fluoride for sulfur selective extraction at X-ray spectroscopic analysis of steel

    International Nuclear Information System (INIS)

    In order to increase the sensitivity of X-ray spectroscopic identification of sulphur in steels the application of barium fluoride for selective extraction of sulphate ions was proposed by authors of present work. The influence of concentration of sulphate ions, iron, nickel, chromium and titanium cations as well as acidity of solutions on the coefficient of distribution of sulphate ions in the system barium fluoride-water was studied. The distribution coefficients were calculated, the completeness of extraction was calculated as well. It is defined that sulphate ions from solutions containing cations of heavy metals and other anions can be extracted by means of barium fluoride.

  13. Optimization of processing temperature in the nitridation process for the synthesis of iron nitride nanoparticles

    International Nuclear Information System (INIS)

    We have demonstrated an effective strategy on the nitridation process to synthesize ε-Fe3N nanoparticles (NPs) from the zero valent iron NPs as a starting material. The transformation of iron into iron nitride phase was systematically studied by performing the nitridation process at different processing temperatures. The phase, crystal structure was analyzed by XRD. Morphology and size of the ZVINPs and ε-Fe3N NPs were analyzed by field emission scanning electron microscope. Further, their room temperature magnetic properties were studied by using vibrating sample magnetometer and it revealed that the magnetic property of ε-Fe3N is associated with ratio of Fe-N in the iron nitride system

  14. Study of the nitrides formation in the ionic nitriding process of zircaloy-2 zirconium alloy

    International Nuclear Information System (INIS)

    Zircaloy and Zr-Sn alloys are used in nuclear techniques because they show a very low effective absorption section for neutrons and a high corrosion resistance. This paper shows that by ionic nitriding of Zircaloy type alloys, a structure is obtained that enhances the wear resistance. From the study of the N2/H2 ratio on the nitride quantity formed by ion nitriding of Zircaloy-2 alloy, it can be concluded that the gaseous mixtures with high nitrogen and hydrogen content used in discharge are not favourable in the nitride forming process. The optimum ratio is 1/1. The ZrN superficial layer hardness was checked according to the exposure time and to the layer thickness. (J.S.). 6 refs., 4 figs., 2 tabs

  15. Optimization of processing temperature in the nitridation process for the synthesis of iron nitride nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Rohith Vinod, K.; Sakar, M.; Balakumar, S., E-mail: balasuga@yahoo.com [National Centre for Nanoscience and Nanotechnology, University of Madras, Chennai-600025 (India); Saravanan, P. [Defence Metallurgical Research Laboratory, Hyderabad-500058 (India)

    2015-06-24

    We have demonstrated an effective strategy on the nitridation process to synthesize ε-Fe{sub 3}N nanoparticles (NPs) from the zero valent iron NPs as a starting material. The transformation of iron into iron nitride phase was systematically studied by performing the nitridation process at different processing temperatures. The phase, crystal structure was analyzed by XRD. Morphology and size of the ZVINPs and ε-Fe{sub 3}N NPs were analyzed by field emission scanning electron microscope. Further, their room temperature magnetic properties were studied by using vibrating sample magnetometer and it revealed that the magnetic property of ε-Fe{sub 3}N is associated with ratio of Fe-N in the iron nitride system.

  16. Characterization and properties of highly adhesive titanium nitride and tungsten nitride thin films

    International Nuclear Information System (INIS)

    The paper presents results on the physical characteristics and mechanical properties of titanium nitride (TiN) and tungsten nitride (W2N) thin films grown by reactive DC magnetron sputtering. The films were deposited in a system with several magnetron modules of different sputtering materials suitable for deposition of single-layer metal nitride films and multilayer nitride coatings. The deposition conditions were optimized to obtain films with the highest adhesion to substrates of machine steel and sintered hard alloy. The adhesion of the films was measured in dependence on two principal process parameters: the nitrogen partial pressure in the magnetron discharge gas mixture of nitrogen and argon and the substrate temperature. The composition of the TiN films was determined by Auger electron spectroscopy. The microstructure and the crystallization trend of the films were studied by transmission electron microscopy and selected area electron diffraction. The hardness of the films was examined using standard measuring methods

  17. Solvothermal synthesis and Curie temperature of monodispersed barium titanate nanoparticles

    International Nuclear Information System (INIS)

    Barium titanate (BaTiO3) nanoparticles with various particle sizes were prepared by a solvothermal method. X-ray powder diffraction (XRPD) patterns show that the as-prepared powders are of pure perovskite BaTiO3. Scanning electron microscopy (SEM) reveals that all the particles of BaTiO3 with different sizes are dispersed homogenously and have uniform size. The room temperature and in situ high temperature XRD analyses indicate that both the proportion of the tetragonal phase and the Curie temperature of BaTiO3 increase with increasing particles size. The effects of the reaction parameters, such as the concentration of reactants, the polarity of solvent, the reaction temperature and the amount of surfactant, on the size, morphology and uniformity of BaTiO3 nanoparticles are studied in detail.

  18. Infrared Spectroscopic Characterization of Calcium and Barium Hydrazone Complexes

    Directory of Open Access Journals (Sweden)

    *A. Adeniyi

    2013-06-01

    Full Text Available Hydrazones have attracted considerable interest on account of their biological activities. Introduction of calcium and barium metal ions into m- and p-nitrobenzoic hydrazones is expected to modify these biological properties for enhanced activity and versatility. The ligands were synthesized from the parent acids. The complexes have been characterized using C, H and N microanalyses and IR spectrometry. The IR spectral data of the ligands and complexes revealed bonding via the C=O and C=N groups. The suggested metal to ligand stoichiometries are: [M (m-NBHx]Cl2.yH2O, x, y = 1 and 4 for M = Ca; x, y = 2 and 3 for M = Ba respectively. [M(p-NBHx]Cl2.yH2O, x, y = 1 and 12 for M = Ca; x, y = 1 and 3 for M = Ba respectively. The structural deductions are tentative pending future X-ray structural studies.

  19. Preparation and Characterization of Nano-particle Substituted Barium Hexaferrite

    CERN Document Server

    Atassi, Yomen; Tally, Mohammad

    2014-01-01

    High density magnetic recording requires high coercivity magnetic media and small particle size. Barium hexaferrite has been considered as a leading candidate material because of its chemical stability, fairly large crystal anisotropy and suitable magnetic characteristics. In this work, we present the preparation of the hexagonal ferrite BaFe12O19 and one of its derivative; the Zn-Sn substituted hexaferrite by the chemical co-precipitation method. The main advantage of this method on the conventional glass-ceramic one, resides in providing a small enough particle size for magnetic recording. We demonstrate using the X-ray diffraction patterns that the particle size decreases when substituting the hexaferrite by the Zn-Sn combination. This may improve the magnetic properties of the hexaferrite as a medium for HD magnetic recording

  20. Synthesis and optical study of barium magnesium aluminate blue phosphors

    International Nuclear Information System (INIS)

    Europium doped barium magnesium aluminate (BaMgAl10O17:Eu2+) phosphor was prepared via solution combustion method at 550°C using urea as a fuel. Morphological and optical properties of the prepared sample was studied by X-ray diffraction (XRD), Transmission electron microscopy (TEM) and Photoluminescence spectroscopy (PL). XRD result showed the formation of pure phase BaMgAl10O17(JCPDS 26-0163) along with an additional phase BaAl2O4(JCPDS 01-082-1350). TEM image indicated the formation of faceted particles with average particle size 40 nm. From PL spectra, a broad emission band obtained at about 450 nm attributes to 4f6 5d → 4f7 transition of Eu2+ which lies in the blue region of the visible spectrum

  1. Conoscopic study of strontium-barium niobate single crystals

    International Nuclear Information System (INIS)

    Optically transparent single crystals of strontium-barium niobate, SrxBa1-xNb2O6, of different compositions (x = 0.26...0.7) were examined with the aid of conoscopic light interference figures. A regular change of the isochrome concentric ring number and diameters consistent with the temperature variation of the value of birefringence is demonstrated by direct observations of polar cuts of optically uniaxial samples. Anomalous violations of the conventional (uniaxial) interference patterns occur occasionaly in some samples being indicative of the existence of biaxial trait in their behaviour even though no voltage is applied. These features may depend on annealing treatments at elevated temperatures. The results of the study show that conoscopic images may serve as a sensitive indicator of the structural state of SBN crystals related to the effects of stress–induced change of optical anisotropy and temperature dependent birefringence parameters

  2. Pulsating aurora induced by upper atmospheric barium releases

    Science.gov (United States)

    Deehr, C.; Romick, G.

    1977-01-01

    The paper reports the apparent generation of pulsating aurora by explosive releases of barium vapor near 250 km altitude. This effect occurred only when the explosions were in the path of precipitating electrons associated with the visible aurora. Each explosive charge was a standard 1.5 kg thermite mixture of Ba and CuO with an excess of Ba metal which was vaporized and dispersed by the thermite explosion. Traces of Sr, Na, and Li were added to some of the charges, and monitoring was achieved by ground-based spectrophotometric observations. On March 28, 1976, an increase in emission at 5577 A and at 4278 A was observed in association with the first two bursts, these emissions pulsating with roughly a 10 sec period for approximately 60 to 100 sec after the burst.

  3. Behaviour of barium and strontium oxides in liquid nitrogen tetroxide

    International Nuclear Information System (INIS)

    Chemical transformations of barium and strontium oxides (MeO, MeO2) in liquid nitrogen tetroxide are considered in the temperature range of 290-493 K. The data on IR and Raman spectra of the reaction products in the region of 2500-600 cm-1 are presented. No formation of nitrosonium complexes of the type NO[Me(NOsub(3))sub(n)]sub(m) and adducts of the type Me(NO3)2xmN2O4 is detected. It has been established that MeO2 possess a higher reactivity in liquid nitrogen tetroxide than MeO. Using the methods of vibrational spectroscopy the bands, characteristic of MeO2 are signled out in MeO samples being in contact with nitrogen tetroxide

  4. Stark effect in Rydberg states of helium and barium

    International Nuclear Information System (INIS)

    This thesis, which deals with the effect of an electric field up to moderate field strengths on atoms with two valence electrons outside closed shells, in casu helium and barium, contains chapter in which the linear Stark effect in the 1 snp 1,3p Rydberg states of helium (n around 40) has been studied in a CW laser-atomic beam experiment. The evolution of the angular momentum manifolds into the n-mixing regime was followed and avoided level crossings were observed. Stark manifolds were also calculated by diagonalization of the complete energy matrix in the presence of an electric field. It turned out to be necessary to include up to five n-values in the calculations already at moderate values of the field to reproduce the data within the experimental accuracy (a few MHz), especially in the regime of the avoided crossings. (author). 147 refs.; 30 figs.; 8 tabs

  5. Small polarons and point defects in barium cerate

    Science.gov (United States)

    Swift, Michael; Janotti, Anderson; Van de Walle, Chris G.

    2015-12-01

    Barium cerate (BaCeO3) is a well-known ionic conductor of both hydrogen and oxygen. In applications, it is frequently doped (for instance with Y) to increase stability and promote diffusion. However, the effects of doping and native defects are not fully understood. Computational studies have been stymied by the nature of the conduction band, which is made up of cerium 4 f states. These states present a challenge to ab initio techniques based on density functional theory within the standard approximations for exchange and correlation. Using a hybrid functional, we investigate the effects of hydrogen impurities and native defects on the electrical and optical properties of BaCeO3. We discuss the tendency of excess electrons or holes to localize in the form of small polarons. We also explore the interactions of polarons with hydrogen impurities and oxygen vacancies, and their impact on luminescence properties.

  6. Nonlinear optical properties of calcium barium niobate epitaxial thin films.

    Science.gov (United States)

    Bancelin, Stéphane; Vigne, Sébastien; Hossain, Nadir; Chaker, Mohammed; Légaré, François

    2016-07-25

    We investigate the potential of epitaxial calcium barium niobate (CBN) thin film grown by pulsed laser deposition for optical frequency conversion. Using second harmonic generation (SHG), we analyze the polarization response of the generated signal to determine the ratios d15 / d32 and d33 / d32 of the three independent components of the second-order nonlinear susceptibility tensor in CBN thin film. In addition, a detailed comparison to the signal intensity obtained in a y-cut quartz allows us to measure the absolute value of these components in CBN thin film: d15 = 5 ± 2 pm / V, d32 = 3.1 ± 0.6 pm / V and d33 = 9 ± 2 pm / V. PMID:27464195

  7. Barium titanate nanocomposite capacitor FY09 year end report.

    Energy Technology Data Exchange (ETDEWEB)

    Stevens, Tyler E.; DiAntonio, Christopher Brian; Yang, Pin; Chavez, Tom P.; Winter, Michael R.; Monson, Todd C.; Roesler, Alexander William; Fellows, Benjamin D.

    2009-11-01

    This late start RTBF project started the development of barium titanate (BTO)/glass nanocomposite capacitors for future and emerging energy storage applications. The long term goal of this work is to decrease the size, weight, and cost of ceramic capacitors while increasing their reliability. Ceramic-based nanocomposites have the potential to yield materials with enhanced permittivity, breakdown strength (BDS), and reduced strain, which can increase the energy density of capacitors and increase their shot life. Composites of BTO in glass will limit grain growth during device fabrication (preserving nanoparticle grain size and enhanced properties), resulting in devices with improved density, permittivity, BDS, and shot life. BTO will eliminate the issues associated with Pb toxicity and volatility as well as the variation in energy storage vs. temperature of PZT based devices. During the last six months of FY09 this work focused on developing syntheses for BTO nanoparticles and firing profiles for sintering BTO/glass composite capacitors.

  8. Ultrasonic de-agglomeration of barium titanate powder.

    Science.gov (United States)

    Marković, S; Mitrić, M; Starcević, G; Uskoković, D

    2008-01-01

    BaTiO3 (BT) powder, with average particle size of 1.4 microm, was synthesized by solid-state reaction. A high-intensity ultrasound irradiation (ultrasonication) was used to de-agglomerate micro-sized powder to nano-sized one. The crystal structure, crystallite size, morphology, particle size, particle size distribution, and specific surface area of the BT powder de-agglomerated for different ultrasonication times (0, 10, 60, and 180 min) were determined. It was found that the particles size of the BT powder was influenced by ultrasonic treatment, while its tetragonal structure was maintained. Therefore, ultrasonic irradiation can be proposed as an environmental-friendly, economical, and effective tool for the de-agglomeration of barium titanate powders. PMID:17845864

  9. Synthesis and optical study of barium magnesium aluminate blue phosphors

    Energy Technology Data Exchange (ETDEWEB)

    Jeet, Suninder, E-mail: suninder.jeet@thapar.edu; Pandey, O. P., E-mail: oppandey@thapar.edu [School of Physics and Materials Science, Thapar University, Patiala (147003), Punjab (India); Sharma, Manoj, E-mail: manojnarad@sggswu.org [Department of Nanotechnology, Sri Guru Granth Sahib World University, Fatehgarh Sahib(146406), Punjab (India)

    2015-05-15

    Europium doped barium magnesium aluminate (BaMgAl{sub 10}O{sub 17}:Eu{sup 2+}) phosphor was prepared via solution combustion method at 550°C using urea as a fuel. Morphological and optical properties of the prepared sample was studied by X-ray diffraction (XRD), Transmission electron microscopy (TEM) and Photoluminescence spectroscopy (PL). XRD result showed the formation of pure phase BaMgAl{sub 10}O{sub 17}(JCPDS 26-0163) along with an additional phase BaAl{sub 2}O{sub 4}(JCPDS 01-082-1350). TEM image indicated the formation of faceted particles with average particle size 40 nm. From PL spectra, a broad emission band obtained at about 450 nm attributes to 4f{sup 6} 5d → 4f{sup 7} transition of Eu{sup 2+} which lies in the blue region of the visible spectrum.

  10. Bronchography in dogs. Comparative study with two barium sulphate solutions

    International Nuclear Information System (INIS)

    Two solutions of barium sulphate, 60 and 30% w/v, were compared with the ''overflow'' Bronchographic method. Two groups of eight healthy adult does of both sexes, weighing 7 to 18 kg were used for the study. The dogs were anaesthetised with thiopentone sodium 2% (20 mg/kg iv). After intubation, each dog received contrast medium by a catheter connected to a syringe, in a 9 mi dose. Two series of two x-rays plates were taken in left lateral recumbent, 3 and 6 min after administering the contrast medium and in ventrodorsal projection, 30 sec. later. The x-ray plates obtained were analysed and compared intra and inter group considering the advance speed of the contrast medium, the radiographic density and outlines. Adverse reactions were controlled

  11. Barium depletion study on impregnated cathodes and lifetime prediction

    Science.gov (United States)

    Roquais, J. M.; Poret, F.; le Doze, R.; Ricaud, J. L.; Monterrin, A.; Steinbrunn, A.

    2003-06-01

    In the thermionic cathodes used in cathode ray-tubes (CRTs), barium is the key element for the electronic emission. In the case of the dispenser cathodes made of a porous tungsten pellet impregnated with Ba, Ca aluminates, the evaporation of Ba determines the cathode lifetime with respect to emission performance in the CRT. The Ba evaporation results in progressive depletion of the impregnating material inside the pellet. In the present work, the Ba depletion with time has been extensively characterized over a large range of cathode temperature. Calculations using the depletion data allowed modeling of the depletion as a function of key parameters. The link between measured depletion and emission in tubes has been established, from which an end-of-life criterion was deduced. Taking modeling into account, predicting accelerated life-tests were performed using high-density maximum emission current (MIK).

  12. Barium depletion study on impregnated cathodes and lifetime prediction

    International Nuclear Information System (INIS)

    In the thermionic cathodes used in cathode ray-tubes (CRTs), barium is the key element for the electronic emission. In the case of the dispenser cathodes made of a porous tungsten pellet impregnated with Ba, Ca aluminates, the evaporation of Ba determines the cathode lifetime with respect to emission performance in the CRT. The Ba evaporation results in progressive depletion of the impregnating material inside the pellet. In the present work, the Ba depletion with time has been extensively characterized over a large range of cathode temperature. Calculations using the depletion data allowed modeling of the depletion as a function of key parameters. The link between measured depletion and emission in tubes has been established, from which an end-of-life criterion was deduced. Taking modeling into account, predicting accelerated life-tests were performed using high-density maximum emission current (MIK)

  13. Structural and functional characterization of barium zirconium titanate / epoxy composites

    Directory of Open Access Journals (Sweden)

    Filiberto González Garcia

    2011-12-01

    Full Text Available The dielectric behavior of composite materials (barium zirconium titanate / epoxy system was analyzed as a function of ceramic concentration. Structure and morphologic behavior of the composites was investigated by X-ray Diffraction (XRD, Fourier transformed infrared spectroscopy (FT-IR, Raman spectroscopy, field emission scanning electron microscopy (FE-SEM and transmission electron microscopy (TEM analyses. Composites were prepared by mixing the components and pouring them into suitable moulds. It was demonstrated that the amount of inorganic phase affects the morphology of the presented composites. XRD revealed the presence of a single phase while Raman scattering confirmed structural transitions as a function of ceramic concentration. Changes in the ceramic concentration affected Raman modes and the distribution of particles along into in epoxy matrix. Dielectric permittivity and dielectric losses were influenced by filler concentration.

  14. Gamma radiation induced darkening in barium gallo-germanate glass.

    Science.gov (United States)

    Chen, Xiaodong; Heng, Xiaobo; Tang, Guowu; Zhu, Tingting; Sun, Min; Shan, Xiujie; Wen, Xin; Guo, Jingyuan; Qian, Qi; Yang, Zhongmin

    2016-05-01

    Barium gallo-germanate (BGG) glass is an important glass matrix material used for mid-infrared transmission and mid-infrared fiber laser. In this study, we investigated the γ-ray irradiation induced darkening effect of BGG glass. Optical transmittance spectra, electron paramagnetic resonance (EPR) and thermoluminescence (TL) spectra were employed to investigate the γ-ray irradiation induced defects. Two kinds of Ge-related defects in the irradiated BGG glass, named Ge-related non-bridging oxygen hole center (Ge-NBOHC) and Ge-related electron centers (GEC), were verified. In addition, the absorption bands of the two defects have been separated and the peak absorptivity of Ge-NBOHC and GEC defects is at 375 nm and 315 nm, respectively. PMID:27137531

  15. Effect of Nb on barium titanate prepared from citrate solutions

    Directory of Open Access Journals (Sweden)

    Stojanović Biljana D.

    2002-01-01

    Full Text Available The influence of the addition of dopants on the microstructure development and electrical properties of BaTiO3 doped with 0.2, 0.4, 0.6, 0.8 mol% of Nb and 0.01 mol% of Mn based compounds was studied. Doped barium titanate was prepared using the polymeric precursor method from citrate solutions. The powders calcined at 700°C for 4 hours were analysed by infrared (IR spectroscopy to verify the presence of carbonates, and by X-ray diffraction (XRD for phase formation. The phase composition, microstructure and dielectric properties show a strong dependence on the amount of added niobium.

  16. Ionoluminescence of trivalent rare-earth-doped strontium barium niobate

    Energy Technology Data Exchange (ETDEWEB)

    Calvo del Castillo, H. [Departamento de Geologia y Geoquimica, Universidad Autonoma de Madrid, Modulo C-VI, Campus de Cantoblanco, 28049 Cantoblanco, Madrid (Spain); Universidad Nacional Automoma de Mexico, Instituto de Fisica, 04510 Ciudad Universitaria, Mexico D.F. (Mexico); Ruvalcaba, J.L. [Universidad Nacional Automoma de Mexico, Instituto de Fisica, 04510 Ciudad Universitaria, Mexico D.F. (Mexico); Bettinelli, M.; Speghini, A. [Dipartimento Scientifico e Tecnologico, Universita di Verona and INSTM, UdR Verona, Ca Vignal, Strada Le Grazie 15, I-37134 Verona (Italy); Barboza Flores, M. [Centro de Investigacion en Fisica, Universidad de Sonora, Hermosillo, Sonora (Mexico); Calderon, T. [Departamento de Geologia y Geoquimica, Universidad Autonoma de Madrid, Modulo C-VI, Campus de Cantoblanco, 28049 Cantoblanco, Madrid (Spain)], E-mail: tomas.calderon@uam.es; Jaque, D.; Garcia Sole, J. [Departamento de Fisica de Materiales, Universidad Autonoma de Madrid, 28049 Cantoblanco, Madrid (Spain)

    2008-05-15

    Ionoluminescence spectra for different rare-earth ion (Pr{sup 3+} and Eu{sup 3+})-activated Sr{sub x}Ba{sub 1-x}Nb{sub 2}O{sub 6} strontium barium niobate crystals (x=0.33 and 0.60) have been induced with a 3 MeV proton beam for a variety of beam current intensities (45, 40 and 20 nA). The proton-beam induced luminescent spectra have shown features associated with the presence of the rare-earth ion and some spectral features mostly related to the host crystal, which appear only for high beam current intensities. We have compared the ionoluminescence results to those obtained under UV light excitation (photoluminescence technique) where a direct excitation of the band gap would occur.

  17. Microwave absorption properties of barium titanate/epoxide resin composites

    International Nuclear Information System (INIS)

    Nano-barium titanate (BT) was prepared by a sol-gel method. The prepared powders were characterized by x-ray powder diffraction and transmission electron microscopy. The complex relative dielectric permittivity (ε = ε' - jε-prime) and magnetic permeability (μ = μ' - jμ-prime) of the BT powders were measured in the frequency range 8 ∼ 18 GHz. The BT/epoxide resin (EP) composite with different volume contents was investigated. The effects of thickness on the BT/EP composite were studied. It was found that an optimum thickness and contents of the absorber can yield the maximum reflection loss which could be obtained over a broad frequency region in the X and Ku bands. Our results indicate that BT could be a promising microwave absorption material

  18. Study on a flexoelectric microphone using barium strontium titanate

    Science.gov (United States)

    Kwon, S. R.; Huang, W. B.; Zhang, S. J.; Yuan, F. G.; Jiang, X. N.

    2016-04-01

    In this study, a flexoelectric microphone was, for the first time, designed and fabricated in a bridge structure using barium strontium titanate (Ba0.65Sr0.35TiO3) ceramic and tested afterwards. The prototyped flexoelectric microphone consists of a 1.5 mm  ×  768 μm  ×  50 μm BST bridge structure and a silicon substrate with a cavity. The sensitivity and resonance frequency were designed to be 0.92 pC/Pa and 98.67 kHz, respectively. The signal to noise ratio was measured to be 74 dB. The results demonstrate that the flexoelectric microphone possesses high sensitivity and a wide working frequency range simultaneously, suggesting that flexoelectricity could be an excellent alternative sensing mechanism for microphone applications.

  19. Enthalpy of formation of (In, Gd)-doped barium cerate

    International Nuclear Information System (INIS)

    Highlights: • BaCe0.7Gd0.2In0.1O2.85 was prepared by solid-state reaction. • The standard formation enthalpy was determined. • The stabilization energy (ΔstH°) was calculated. • ΔstH° of BaCe0.7Gd0.2In0.1O2.85 is higher than BaCe0.7Nd0.2In0.1O2.85 and BaCeO3. - Abstract: Solution enthalpies of barium cerate doped by gadolinium and indium and a mixture of BaCl2 + 0.7CeCl3 + 2GdCl3 + 0.1InCl3 have been measured in 1 mol dm−3 HCl with 0.1 mol dm−3 KI. For the first time the standard molar formation enthalpy of BaCe0.7Gd0.2In0.1O2.85 has been determined by solution calorimetry as follows: ΔfH° (298.15 K) = −1615.84 ± 9.01 kJ mol−1. The stabilization energy for above-mentioned compound has been calculated as well. It has been shown that barium cerate doped gadolinium and indium has higher stabilization energy than BaCe0.7Nd0.2In0.1O2.85 and BaCeO3. The reaction enthalpy with CO2 interaction has been calculated for BaCe0.7Gd0.2In0.1O2.85

  20. Brillouin function characteristics for La-Co substituted barium hexaferrites

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Chuanjian, E-mail: wcjuestc2005@gmail.com, E-mail: ksun@uestc.edu.cn; Yu, Zhong; Sun, Ke, E-mail: wcjuestc2005@gmail.com, E-mail: ksun@uestc.edu.cn; Guo, Rongdi; Jiang, Xiaona; Lan, Zhongwen [State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054 (China); Yang, Yan [Department of Communication and Engineering, Chengdu Technological University, Chengdu 611730 (China)

    2015-09-14

    La-Co substituted barium hexaferrites with the chemical formula of Ba{sub 1−x}La{sub x}Fe{sub 12−x}Co{sub x}O{sub 19} (x = 0.0, 0.1, 0.3, and 0.5), prepared by a conventional ceramic method, were systematically investigated by Raman spectra, X-ray photoelectron spectroscopy, Rietveld refinement of X-ray diffraction patterns, and vibrating sample magnetometer. The result manifests that all the compounds are crystallized in magnetoplumbite hexagonal structure. Trivalent cobalt ions prevailingly occupy the 2a, 4f{sub 1}, and 12k sites. According to Néel model of collinear-spin ferrimagnetism, the molecular-field coefficients ω{sub bf2}, ω{sub kf1}, ω{sub af1}, ω{sub kf2}, and ω{sub bk} of La-Co substituted barium hexaferrites have been calculated using the nonlinear fitting method, and the magnetic moment of five sublattices (2a, 2b, 4f{sub 1}, 4f{sub 2}, and 12k) versus temperature T has been also investigated. The fitting results are coincided well with the experimental data. Moreover, with the increase of La-Co substitution amount x, the molecular-field coefficients ω{sub bf2} and ω{sub af1} decrease constantly, while the molecular-field coefficients ω{sub kf1}, ω{sub kf2}, and ω{sub bk} show a slight change.

  1. Styrene Aziridination by Iron(IV) Nitrides.

    Science.gov (United States)

    Muñoz, Salvador B; Lee, Wei-Tsung; Dickie, Diane A; Scepaniak, Jeremiah J; Subedi, Deepak; Pink, Maren; Johnson, Michael D; Smith, Jeremy M

    2015-09-01

    Thermolysis of the iron(IV) nitride complex [PhB(tBuIm)3Fe≡N] with styrene leads to formation of the high-spin iron(II) aziridino complex [PhB(tBuIm)3Fe-N(CH2CHPh)]. Similar aziridination occurs with both electron-rich and electron-poor styrenes, while bulky styrenes hinder the reaction. The aziridino complex [PhB(tBuIm)3Fe-N(CH2CHPh)] acts as a nitride synthon, reacting with electron-poor styrenes to generate their corresponding aziridino complexes, that is, aziridine cross-metathesis. Reaction of [PhB(tBuIm)3Fe-N(CH2CHPh)] with Me3SiCl releases the N-functionalized aziridine Me3SiN(CH2CHPh) while simultaneously generating [PhB(tBuIm)3FeCl]. This closes a synthetic cycle for styrene azirdination by a nitride complex. While the less hindered iron(IV) nitride complex [PhB(MesIm)3Fe≡N] reacts with styrenes below room temperature, only bulky styrenes lead to tractable aziridino products. PMID:26179563

  2. Boron nitride nanosheets reinforced glass matrix composites

    Czech Academy of Sciences Publication Activity Database

    Saggar, Richa; Porwal, H.; Tatarko, P.; Dlouhý, Ivo; Reece, M. J.

    2015-01-01

    Roč. 114, SEP (2015), S26-S32. ISSN 1743-6753 R&D Projects: GA MŠk(CZ) 7AMB14SK155 EU Projects: European Commission(XE) 264526 Institutional support: RVO:68081723 Keywords : Boron nitride nanosheets * Borosilicate glass * Mechanical properties Subject RIV: JL - Materials Fatigue, Friction Mechanics Impact factor: 1.163, year: 2014

  3. Gallium nitride junction field-effect transistor

    Science.gov (United States)

    Zolper, John C.; Shul, Randy J.

    1999-01-01

    An all-ion implanted gallium-nitride (GaN) junction field-effect transistor (JFET) and method of making the same. Also disclosed are various ion implants, both n- and p-type, together with or without phosphorous co-implantation, in selected III-V semiconductor materials.

  4. Gallium Nitride Crystals: Novel Supercapacitor Electrode Materials.

    Science.gov (United States)

    Wang, Shouzhi; Zhang, Lei; Sun, Changlong; Shao, Yongliang; Wu, Yongzhong; Lv, Jiaxin; Hao, Xiaopeng

    2016-05-01

    A type of single-crystal gallium nitride mesoporous membrane is fabricated and its supercapacitor properties are demonstrated for the first time. The supercapacitors exhibit high-rate capability, stable cycling life at high rates, and ultrahigh power density. This study may expand the range of crystals as high-performance electrode materials in the field of energy storage. PMID:27007502

  5. Residual Stress Induced by Nitriding and Nitrocarburizing

    DEFF Research Database (Denmark)

    Somers, Marcel A.J.

    2005-01-01

    The present chapter is devoted to the various mechanisms involved in the buildup and relief of residual stress in nitrided and nitrocarburized cases. The work presented is an overview of model studies on iron and iron-based alloys. Subdivision is made between the compound (or white) layer...

  6. Sensitivity of single contrast barium enema with regard to colorectal disease as diagnosed by colonoscopy

    International Nuclear Information System (INIS)

    The results of single contrast barium enema were retrospectively correlated with colonoscopically diagnosed colorectal disease in 54 patients (75 lesions). Altogether 66 lesions (88%) were correctly diagnosed. The sensitivity of barium enema for polyps was 81% (26/32). There were three perceptive errors and three polyps 5 mm or less in size were not demonstrated by barium enema. Twenty-nine cases of inflammatory disorders were all correctly diagnosed. One of 12 malignancies was missed by perceptive error. In two cases with vascular malformations the barium enema was normal. 4/9 (44%) of missed lesions were perceptive errors and could have been probably avoided by a second independent reading of films. (orig.)

  7. How changes in a radiologist's technique can reduce patient dose in barium enema studies

    International Nuclear Information System (INIS)

    Changes in a radiologist's technique, especially utilising digital technology, can lead to substantial dose savings in barium enema examinations. Data will be provided showing a 20% saving with only minimal change in technique. (author)

  8. Ammonothermal Growth of Gallium Nitride

    Science.gov (United States)

    Pimputkar, Siddha

    Bulk, single crystal Gallium Nitride (GaN) crystals are essential for enabling high performance electronic and optoelectronic devices by providing arbitrarily oriented, high quality, large, single crystal GaN substrates. Methods of producing single crystals of sufficient size and quality at a rate that would enable successful commercialization has been a major focus for research groups and companies worldwide. Recent advances have demonstrated remarkable improvements, though high cost and lack of high volume production remain key challenges. Major investments in bulk GaN growth were made at UCSB with particular focus on the ammonothermal method. The existing lab was upgraded and a new facility was designed and built with improved experimental setups for ammonothermal growth of GaN. The facilities can simultaneously operate up to 15 reactors of differing designs and capabilities with the ability to grow crystals up to 2 inches in diameter. A novel in-situ technique was devised to investigate the growth chemistry which occurs at typical operating conditions of 3,000 atm and 600 °C. Improvements in ammonothermal GaN include improved growth rates for c-plane by a factor of four to 344 μm/day with an overall record growth rate of 544 μm/day achieved for the (112¯2) plane. Crystal qualities comparable to that of the seed crystal were achieved. Impurity concentrations for transition metals were consistently reduced by a factor of 100 to concentrations below 1017 atoms/cm3. Optical transparency was improved by significantly reducing the yellow coloration typically seen for ammonothermal GaN. Single crystal GaN was successfully grown on large seeds and a 1 inch x ½ inch x ½ inch GaN crystal was demonstrated. To better understand the growth chemistry, models were created for the decomposition of ammonia under growth conditions, with initial experiments performed using the designed in-situ setup to verify the model's accuracy. To investigate the surface morphology and

  9. Metal surface nitriding by laser induced plasma

    Science.gov (United States)

    Thomann, A. L.; Boulmer-Leborgne, C.; Andreazza-Vignolle, C.; Andreazza, P.; Hermann, J.; Blondiaux, G.

    1996-10-01

    We study a nitriding technique of metals by means of laser induced plasma. The synthesized layers are composed of a nitrogen concentration gradient over several μm depth, and are expected to be useful for tribological applications with no adhesion problem. The nitriding method is tested on the synthesis of titanium nitride which is a well-known compound, obtained at present by many deposition and diffusion techniques. In the method of interest, a laser beam is focused on a titanium target in a nitrogen atmosphere, leading to the creation of a plasma over the metal surface. In order to understand the layer formation, it is necessary to characterize the plasma as well as the surface that it has been in contact with. Progressive nitrogen incorporation in the titanium lattice and TiN synthesis are studied by characterizing samples prepared with increasing laser shot number (100-4000). The role of the laser wavelength is also inspected by comparing layers obtained with two kinds of pulsed lasers: a transversal-excited-atmospheric-pressure-CO2 laser (λ=10.6 μm) and a XeCl excimer laser (λ=308 nm). Simulations of the target temperature rise under laser irradiation are performed, which evidence differences in the initial laser/material interaction (material heated thickness, heating time duration, etc.) depending on the laser features (wavelength and pulse time duration). Results from plasma characterization also point out that the plasma composition and propagation mode depend on the laser wavelength. Correlation of these results with those obtained from layer analyses shows at first the important role played by the plasma in the nitrogen incorporation. Its presence is necessary and allows N2 dissociation and a better energy coupling with the target. Second, it appears that the nitrogen diffusion governs the nitriding process. The study of the metal nitriding efficiency, depending on the laser used, allows us to explain the differences observed in the layer features

  10. Barium isotopes in Allende meteorite - Evidence against an extinct superheavy element

    Science.gov (United States)

    Lewis, R. S.; Anders, E.; Shimamura, T.; Lugmair, G. W.

    1983-01-01

    Carbon and chromite fractions from the Allende meteorite that contain isotopically anomalous xenon-131 to xenon-136 (carbonaceous chondrite fission or CCF xenon) at up to 5 x 10 to the 11th atoms per gram show no detectable isotopic anomalies in barium-130 to barium-138. This rules out the possibility that the CCF xenon was formed by in situ fission of an extinct superheavy element. Apparently the CCF xenon and its carbonaceous carrier are relics from stellar nucleosynthesis.

  11. Calorimetric study of interaction of barium hydroxide with diluted solutions of hydrofluoric acid

    International Nuclear Information System (INIS)

    Present article is devoted to calorimetric study of interaction of barium hydroxide with diluted solutions of hydrofluoric acid. The calorimetric study of interaction of barium hydroxide with diluted solutions of hydrofluoric acid was carried out in order to determine the thermal effects of reactions. The results of interaction of Ba(OH)4·8H2O with 5, 10, and 20% solution of hydrofluoric acid were considered.

  12. Comparison of barium swallow and ultrasound in diagnosis of gastro-oesophageal reflux in children.

    OpenAIRE

    Naik, D R; Bolia, A; Moore, D. J.

    1985-01-01

    Fifty one infants and older children with suspected gastro-oesophageal reflux entered a study comparing the diagnostic accuracy of a standard barium swallow examination with that of ultrasound scanning. All children were examined by both techniques. In 40 cases there was unequivocal agreement between the examinations. Of the remaining patients, four had definite reflux by ultrasonic criteria but showed no evidence of reflux on barium swallow examination, four had positive findings on ultrasou...

  13. Whipple's disease demonstrated by double contrast small bowel enema with barium and methylcellulose

    International Nuclear Information System (INIS)

    The radiologic findings on small bowel enema examination using barium and methylcellulose (SBE+Ba+MC) in a patient with Whipple's disease before and after treatment are described. The changes on SBE+Ba+MC corresponded well to the clinical and morphologic picture. The advantages of this double contrast technique compared to the enteroclysis with barium alone are demonstrated. The SBE+Ba+MC is a good method to demonstrate the manifestations of Whipple's disease involving the small bowel and the mesentery. (orig.)

  14. Impact of Biofield Treatment on Atomic and Structural Characteristics of Barium Titanate Powder

    OpenAIRE

    Trivedi, Mahendra; Nayak, Gopal

    2015-01-01

    Barium titanate, perovskite structure is known for its high dielectric constant and piezoelectric properties, which makes it interesting material for fabricating capacitors, transducer, actuator, and sensors. The perovskite crystal structure and lattice vibrations play a crucial role in its piezoelectric and ferroelectric behavior. In the present study, the barium titanate powder was subjected to biofield treatment. Further, the control and treated samples were characterized using X-ray diffr...

  15. Kinetics of barium sulphate reaction crystallization in crystallizers with internal circulation

    OpenAIRE

    Koralewska, J.; Piotrowski, K; B. Wierzbowska; A. Matynia

    2008-01-01

    Kinetic calculation results describing the observed nucleation and growth rates of barium sulphate crystals precipitated in an integrated reaction-crystallization process in a barium sulphate-ammonium chloride-water system are presented and analyzed. The scope of experiments included two continuous model DTM-type crystallizers (Draft Tube Magma) with internal circulation of the suspension forced by a liquid jet-pump device responsible for stable and intensive enough ascending/descending flow ...

  16. Anti corrosion layer for stainless steel in molten carbonate fuel cell - comprises phase vapour deposition of titanium nitride, aluminium nitride or chromium nitride layer then oxidising layer in molten carbonate electrolyte

    DEFF Research Database (Denmark)

    2000-01-01

    Forming an anticorrosion protective layer on a stainless steel surface used in a molten carbonate fuel cell (MCFC) - comprises the phase vapour deposition (PVD) of a layer comprising at least one of titanium nitride, aluminium nitride or chromium nitride and then forming a protective layer in situ...... by replacement of the nitride ions with oxide ions in the molten carbonate electrolyte....

  17. Vertical coupling of laser glass microspheres to buried silicon nitride ellipses and waveguides

    International Nuclear Information System (INIS)

    We demonstrate the integration of Nd3+ doped barium-titanium-silicate microsphere lasers with a silicon nitride photonic platform. Devices with two different geometrical configurations for extracting the laser light to buried waveguides have been fabricated and characterized. The first configuration relies on a standard coupling scheme, where the microspheres are placed over strip waveguides. The second is based on a buried elliptical geometry whose working principle is that of an elliptical mirror. In the latter case, the input of a strip waveguide is placed on one focus of the ellipse, while a lasing microsphere is placed on top of the other focus. The fabricated elliptical geometry (ellipticity = 0.9) presents a light collecting capacity that is 50% greater than that of the standard waveguide coupling configuration and could be further improved by increasing the ellipticity. Moreover, since the dimensions of the spheres are much smaller than those of the ellipses, surface planarization is not required. On the contrary, we show that the absence of a planarization step strongly damages the microsphere lasing performance in the standard configuration

  18. Vertical coupling of laser glass microspheres to buried silicon nitride ellipses and waveguides

    Science.gov (United States)

    Navarro-Urrios, D.; Ramírez, J. M.; Capuj, N. E.; Berencén, Y.; Garrido, B.; Tredicucci, A.

    2015-09-01

    We demonstrate the integration of Nd3+ doped barium-titanium-silicate microsphere lasers with a silicon nitride photonic platform. Devices with two different geometrical configurations for extracting the laser light to buried waveguides have been fabricated and characterized. The first configuration relies on a standard coupling scheme, where the microspheres are placed over strip waveguides. The second is based on a buried elliptical geometry whose working principle is that of an elliptical mirror. In the latter case, the input of a strip waveguide is placed on one focus of the ellipse, while a lasing microsphere is placed on top of the other focus. The fabricated elliptical geometry (ellipticity = 0.9) presents a light collecting capacity that is 50% greater than that of the standard waveguide coupling configuration and could be further improved by increasing the ellipticity. Moreover, since the dimensions of the spheres are much smaller than those of the ellipses, surface planarization is not required. On the contrary, we show that the absence of a planarization step strongly damages the microsphere lasing performance in the standard configuration.

  19. Vertical coupling of laser glass microspheres to buried silicon nitride ellipses and waveguides

    Energy Technology Data Exchange (ETDEWEB)

    Navarro-Urrios, D., E-mail: daniel.navarrourrios@nano.cnr.it [NEST, Istituto Nanoscienze—CNR and Scuola Normale Superiore, Piazza San Silvestro 12, Pisa I-56127 (Italy); Ramírez, J. M.; Berencén, Y.; Garrido, B. [Departament d' Electrònica, Universitat de Barcelona, Barcelona 08028 (Spain); Capuj, N. E. [Depto. Física, Universidad de la Laguna, 38206, La Laguna (Spain); Tredicucci, A. [NEST, Istituto Nanoscienze and Dipartimento di Fisica, Università di Pisa, Largo Pontecorvo 3, Pisa I-56127 (Italy)

    2015-09-07

    We demonstrate the integration of Nd{sup 3+} doped barium-titanium-silicate microsphere lasers with a silicon nitride photonic platform. Devices with two different geometrical configurations for extracting the laser light to buried waveguides have been fabricated and characterized. The first configuration relies on a standard coupling scheme, where the microspheres are placed over strip waveguides. The second is based on a buried elliptical geometry whose working principle is that of an elliptical mirror. In the latter case, the input of a strip waveguide is placed on one focus of the ellipse, while a lasing microsphere is placed on top of the other focus. The fabricated elliptical geometry (ellipticity = 0.9) presents a light collecting capacity that is 50% greater than that of the standard waveguide coupling configuration and could be further improved by increasing the ellipticity. Moreover, since the dimensions of the spheres are much smaller than those of the ellipses, surface planarization is not required. On the contrary, we show that the absence of a planarization step strongly damages the microsphere lasing performance in the standard configuration.

  20. Nitriding of Co–Cr–Mo alloy in nitrogen

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Ning, E-mail: ningtang@imr.tohoku.ac.jp; Li, Yunping, E-mail: lyping@imr.tohoku.ac.jp; Koizumi, Yuichiro; Chiba, Akihiko, E-mail: a.chiba@imr.tohoku.ac.jp

    2014-06-01

    Using the results of a thermodynamic analysis, a Co–Cr–Mo alloy was successfully nitrided in nitrogen at temperatures of 1073–1473 K. The near-surface microstructure of the treated Co–Cr–Mo alloy was characterized using X-ray diffraction, field-emission scanning electron microscopy, electron probe micro-analyzer, and transmission electron microscopy equipped with energy-dispersive X-ray spectroscopy. The results indicated that the highest nitriding efficiency was achieved at the treatment temperature of 1273 K, with the size and coverage of the nitride particles on sample's surface increasing with an increase in the treatment duration. After nitriding at 1273 K for 2 h, numerous nitride particles, consisting of an outer Cr{sub 2}N layer and an inner π phase layer, were formed on top of the nitrogen-containing γ phase, and some π phase also precipitated in the alloy matrix at the sub-surface level. - Highlights: • A Co–Cr–Mo alloy was successfully nitrided in nitrogen at 1073–1473 K. • The highest nitriding efficiency of the Co–Cr–Mo alloy was achieved at 1273 K. • Numerous nitride particles formed on sample's surface during nitriding at 1273 K. • The nitride particles consist of an outer Cr{sub 2}N layer and an inner π phase layer.

  1. The impact of digital imaging on patient doses during barium studies

    International Nuclear Information System (INIS)

    Barium studies performed on 10 digital and four non-digital fluoroscopic systems were monitored with dose-area product meters as part of a Regional Patient Dosimetry Audit programme. The data have been collected using a computer to read and reset the dose-area product meter and also to collect patient and examination details. A comparison of dose-area product measurements from digital and non-digital fluoroscopy units on over 10 000 barium studies is presented. The data have been corrected according to patient size. The mean size corrected dose-area product for a barium meal examination was found to be 7.62 Gy cm-2 for a digital set compared with 15.45 Gy cm-2 for a non-digital set with 2462 and 1308 patients included in each measurement series, respectively. Dose-area products were also a factor of approximately two lower for barium enema, barium swallow and barium follow-through examinations performed on digital systems. (author)

  2. Preparation of porous nano barium ferrite and its adsorption properties on uranium

    International Nuclear Information System (INIS)

    The porous nano barium ferrite was made of Fe(NO3)3 and Ba(NO3)2 as raw materials, CTAB as surfactant by method of sol-gel and self-propagating combustion. The composition, morphology and magnetic properties of nano-rod barium ferrite were characterized by XRD, SEM and vibrating sample magnetometer. The adsorption properties of porous nano barium ferrite on uranium were studied with static adsorption and the effects of pH, adsorption temperature and oscillation time on adsorption properties were discussed. The results indicate that the average particle size of porous nano barium ferrite is 45-65 nm, the saturation magnetization and coercivity are 62.83 emu/g and 5481.0 Oe, respectively. Under the condition of the porous nano barium ferrite amount of 0.02 g, pH of 6, adsorption temperature of 25℃ and oscillation time of 30 min, the adsorption capacity of uranium on the porous nano barium ferrite reaches 921 μg/g. (authors)

  3. Comparison of Calcium and Barium Microcapsules as Scaffolds in the Development of Artificial Dermal Papillae.

    Science.gov (United States)

    Liu, Yang; Lin, Changmin; Zeng, Yang; Li, Haihong; Cai, Bozhi; Huang, Keng; Yuan, Yanping; Li, Yu

    2016-01-01

    This study aimed to develop and evaluate barium and calcium microcapsules as candidates for scaffolding in artificial dermal papilla. Dermal papilla cells (DPCs) were isolated and cultured by one-step collagenase treatment. The DPC-Ba and DPC-Ca microcapsules were prepared by using a specially designed, high-voltage, electric-field droplet generator. Selected microcapsules were assessed for long-term inductive properties with xenotransplantation into Sprague-Dawley rat ears. Both barium and calcium microcapsules maintained xenogenic dermal papilla cells in an immunoisolated environment and induced the formation of hair follicle structures. Calcium microcapsules showed better biocompatibility, permeability, and cell viability in comparison with barium microcapsules. Before 18 weeks, calcium microcapsules gathered together, with no substantial immune response. After 32 weeks, some microcapsules were near inflammatory cells and wrapped with fiber. A few large hair follicles were found. Control samples showed no marked changes at the implantation site. Barium microcapsules were superior to calcium microcapsules in structural and mechanical stability. The cells encapsulated in hydrogel barium microcapsules exhibited higher short-term viability. This study established a model to culture DPCs in 3D culture conditions. Barium microcapsules may be useful in short-term transplantation study. Calcium microcapsules may provide an effective scaffold for the development of artificial dermal papilla. PMID:27123456

  4. Virtual colonoscopy with electron beam CT: correlation with barium enema, colonoscopy and pathology

    International Nuclear Information System (INIS)

    To perform virtual colonoscopy using electron beam tomography(EBT) in patients in whom a colonic mass was present, and to compare the results with those obtained using barium enema, colonoscopy and gross pathologic specimens. Materials and Methods : Ten patients in whom colonic masses were diagnosed by either barium enema or colonoscopy were involved in this study. There were nine cases of adenocarcinoma and one of tubulovillous adenoma. Using EBT preoperative abdominopelvic CT scans were performed. Axial scans were then three-dimensionally reconstructed to produce virtual colonoscopic images and were compared with barium enema, colonoscopy and gross pathologic specimens. Virtual colonoscopic images of the masses were classified as either 1)polyploid, 2)sessile,3)fungating, or 4)annular constrictive. We also determined whether ulcers were present within the lesions and whether there was obstruction. Results : After virtual colonoscopy, two lesions were classified as polyploid, one as sessile, five as fungating and two as annular constrictive. Virtual colonoscopic images showed good correlation with the findings of barium enema, colonoscopy and gross pathologic specimens. Three of six ulcerative lesions were observed on colonoscopy; in seven adenocarcinomas with partial or total luminal obstruction, virtual colonoscopy visualized the colon beyond the obstructed sites. In one case, barium contrast failed to pass through the obstructed portion and in six cases, the colonoscope similarly failed. Conclusion : Virtual colonoscopies correlated well with barium enema, colonoscopy and gross pathologic specimens. They provide three dimensional images of colonic masses and are helpful for the evaluation of obstructive lesions

  5. Barium swallow study in routine clinical practice: a prospective study in patients with chronic cough

    Directory of Open Access Journals (Sweden)

    Carlos Shuler Nin

    2013-12-01

    Full Text Available OBJECTIVE: To assess the routine use of barium swallow study in patients with chronic cough.METHODS: Between October of 2011 and March of 2012, 95 consecutive patients submitted to chest X-ray due to chronic cough (duration > 8 weeks were included in the study. For study purposes, additional images were obtained immediately after the oral administration of 5 mL of a 5% barium sulfate suspension. Two radiologists systematically evaluated all of the images in order to identify any pathological changes. Fisher's exact test and the chi-square test for categorical data were used in the comparisons.RESULTS: The images taken immediately after barium swallow revealed significant pathological conditions that were potentially related to chronic cough in 12 (12.6% of the 95 patients. These conditions, which included diaphragmatic hiatal hernia, esophageal neoplasm, achalasia, esophageal diverticulum, and abnormal esophageal dilatation, were not detected on the images taken without contrast. After appropriate treatment, the symptoms disappeared in 11 (91.6% of the patients, whereas the treatment was ineffective in 1 (8.4%. We observed no complications related to barium swallow, such as contrast aspiration.CONCLUSIONS: Barium swallow improved the detection of significant radiographic findings related to chronic cough in 11.5% of patients. These initial findings suggest that the routine use of barium swallow can significantly increase the sensitivity of chest X-rays in the detection of chronic cough-related etiologies.

  6. Characteristics of the nitrided layer formed on AISI 304 austenitic stainless steel by high temperature nitriding assisted hollow cathode discharge

    International Nuclear Information System (INIS)

    Highlights: • AISI 304 austenite steel was nitrided at high temperatures in short time. • It could critically reduce time compared with low temperature nitriding. • The nitrided layer was mainly composed of nitrogen expanded austenite. • It could improve pitting corrosion resistance in NaCl solution. - Abstract: A series of experiments have been conducted on AISI 304 stainless steel using a hollow cathode discharge assisted plasma nitriding apparatus. Specimens were nitrided at high temperatures (520–560 °C) in order to produce nitrogen expanded austenite phase within a short time. The nitrided specimen was characterized by scanning electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, potentiodynamic polarization and microhardness tester. The corrosion properties of nitrided samples were evaluated using anodic polarization tests in 3.5% NaCl solution. The nitrided layer was shown to consist of nitrogen expanded austenite and possibly a small amount of CrN precipitates and iron nitrides. The results indicated that rapid nitriding assisted hollow cathode discharge not only increased the surface hardness but also improved the corrosion resistance of the untreated substrate

  7. Excess Barium as a Paleoproductivity Proxy: A Reevaluation

    Science.gov (United States)

    Eagle, M.; Paytan, A.

    2001-12-01

    Marine barite may serve as a proxy to reconstruct past export production (Dymond, 1992). In most studies sedimentary barite accumulation is not measured directly, instead a parameter termed excess barium (Baexs), also referred to as biogenic barium, is used to estimate the barite content. Baexs is defined as the total Ba concentration in the sediment minus the Ba associated with terrigenous material. Baexs is calculated by normalization to a constant Ba/Al ratio, typically the average shale ratio. This application assumes that (1) all the Ba besides the fraction associated with terrigenous Al is in the form of barite (the phase related to productivity) (2) the Ba/Alshale is constant in space and time (3) all of the Al is associated with terrigenous matter. If these assumptions are invalidated however, this approach lead to significant errors in calculating export production rates. To test the validity of the use of Baexs as a proxy for barite we compared the Baexs in a wide range of core top sediments from different oceanic settings to the barite content in the same cores. We found that Baexs frequently overestimated the Ba fraction associated with barite and in several cases significant Baexs was measured in the cores where no barite was observed. We have also used a sequential leaching protocol (Collier and Edmond 1984) to determine Ba association with organic matter, carbonates, Fe-Mn hydroxides and silicates. While terrigenous Ba remains an important fraction, in our samples 25-95% of non-barite Ba was derived from other fractions, with Fe-Mn oxides contributing the most Ba. In addition we found that the Ba/Al ratio in the silicate fraction of our samples varied considerably from site to site. The above results suggest that at least two of the underlying assumptions for employing Baexs to reconstruct paleoproductivity are not always valid and previously published data from (Murray and Leinen 1993) indicate that the third assumption may also not hold in every

  8. Monte Carlo estimation for pediatric barium meal procedures

    International Nuclear Information System (INIS)

    Fluoroscopic barium meal (BM) series involve an X-ray examination of the esophagus, stomach, and duodenum, by the use of a contrast media – the barium sulfate (BaSO4). They are widely used to observe digestive functions or to diagnose abnormalities such as ulcers; tumors; inflammation of the esophagus, stomach, and duodenum; malrotations; vascular rings; and gastroesophageal reflux disease (a common ailment in children). However, this procedure uses long fluoroscopy times and multiple radiographies, resulting in high effective doses to pediatric patients, whose radiosensitivity and life expectancy are higher than in adults. Based on those data, the aims of the current study are to: determine the PK,A (kerma-area product) values, on the patient chest area, and the effective doses to 5 and 10 years old children. Thirty-seven different pediatric patients were studied and stratified into two group sizes: 5 and 10 years old. For each procedure, the following data was recorded: sex, age and upper chest thickness, from the patients; technical parameters of the procedure (kV, fluoroscopy time and number of radiographies); distances (focus-detector and focus-table) and field size on the examination table. Three pairs of LiF:Mg,Ti thermoluminescent dosimeters were positioned at the center of the child´s sternum. After that, upper chest thickness was subtracted from focus-table distance, so focus-patient distance was obtained. Using the field size on the table and applying similar triangles concepts, the field size on the patient was measured, which was multiplied by the mean kerma (from the dosimeters), so that PK,A could be determined. To estimate the effective dose, PK,A and technical parameters of the procedure (kV, total filtration, focus-detector distance and field size on the patient) were written in a Monte Carlo software simulation. The results of PK,A and effective doses were higher than studies used for comparison, which shows the importance of an optimization

  9. Low-temperature nitridation of Fe nanoparticles precursor.

    Science.gov (United States)

    Huang, H; Lu, B; Lei, J P; Dong, X L

    2009-12-01

    Nitridation of Fe nanoparticle precursor was performed in a NH3 atmosphere at the temperatures of 473 K and 673 K for one hour. Fe nanoparticles precursor had a typical spherical shape with iron oxides shell and alpha-Fe core, which was obtained by an arc-discharge method. Up to date, the nitriding temperature of 473 K in present work was the lowest by thermal ammonolysis method because of the characteristics of the nano-sized particles. The resultant product after nitridation was a mixture of iron-nitrides (gamma'-Fe4N and epsilon-Fe3N) nanoparticles with homogeneous dispersion. The nitriding mechanism, oxidizing behaviors and magnetic properties of iron-nitride nanoparticles were measured and discussed. PMID:19908793

  10. An assessment of the thermodynamic properties of uranium nitride, plutonium nitride and uranium-plutonium mixed nitride

    International Nuclear Information System (INIS)

    Thermodynamic properties such as vapour pressures, heat capacities and enthalpies of formation for UN(s), PuN(s) and (U, Pu)N(s) are critically evaluated. The equations of the vapour pressures and the heat capacities for the three nitrides are assessed. Thermal functions, and thermodynamic functions for the formation of UN(s), PuN(s) and (U, Pu)N(s), are calculated

  11. Fabrication and characterization of hexagonal boron nitride powder by spray drying and calcining-nitriding technology

    International Nuclear Information System (INIS)

    Hexagonal boron nitride (hBN) powder was fabricated prepared by the spray drying and calcining-nitriding technology. The effects of nitrided temperature on the phases, morphology and particle size distribution of hBN powder, were investigated. The synthesized powders were characterized by X-ray diffraction (XRD), field emission scanning electron microscope (FESEM), Fourier transformed infrared spectrum, ultraviolet-visible (UV-vis) spectrum and photoluminescence (PL) spectrum. UV-vis spectrum revealed that the product had one obvious band gap (4.7 eV) and PL spectrum showed that it had a visible emission at 457 nm (λex=230 nm). FESEM image indicated that the particle size of the synthesized hBN was mainly in the range of 0.5-1.5 μm in diameter, and 50-150 nm in thickness. The high-energy ball-milling process following 900 deg. C calcining process was very helpful to obtain fully crystallized hBN at lower temperature. - Graphical abstract: hBN powder was fabricated prepared by spray drying and calcining-nitriding technology. The results indicated that spray drying and calcining-nitriding technology assisted with high-energy ball-milling process following calcined process was a hopeful way to manufacture hBN powder with high crystallinity in industrial scale

  12. Preparation and study of the nitrides and mixed carbide-nitrides of uranium and of plutonium

    International Nuclear Information System (INIS)

    A detailed description is given of a simple method for preparing uranium and plutonium nitrides by the direct action of nitrogen under pressure at moderate temperatures (about 400 C) on the partially hydrogenated bulk metal. It is shown that there is complete miscibility between the UN and PuN phases. The variations in the reticular parameters of the samples as a function of temperature and in the presence of oxide have been used to detect and evaluate the solubility of oxygen in the different phases. A study has been made of the sintering of these nitrides as a function of the preparation conditions with or without sintering additives. A favorable but non-reproducible, effect has been found for traces of oxide. The best results were obtained for pure UN at 1600 C (96 per cent theoretical density) on condition that a well defined powder, was used. The criterion used is the integral width of the X-ray diffraction lines. The compounds UN and PuN are completely miscible with the corresponding carbides. This makes it possible to prepare carbide-nitrides of the general formula (U,Pu) (C,N) by solid-phase diffusion, at around 1400 C. The sintering of these carbide-nitrides is similar to that of the carbides if the nitrogen content is low; in particular, nickel is an efficient sintering agent. For high contents, the sintering is similar to that of pure nitrides. (author)

  13. Nitride semiconductors studied by atom probe tomography and correlative techniques

    OpenAIRE

    Bennett, Samantha

    2011-01-01

    Optoelectronic devices fabricated from nitride semiconductors include blue and green light emitting diodes (LEDs) and laser diodes (LDs). To design efficient devices, the structure and composition of the constituent materials must be well-characterised. Traditional microscopy techniques used to examine nitride semiconductors include transmission electron microscopy (TEM), and atomic force microscopy (AFM). This thesis describes the study of nitride semiconductor materials using these tradi...

  14. Intragranular Chromium Nitride Precipitates in Duplex and Superduplex Stainless Steel

    OpenAIRE

    Iversen, Torunn Hjulstad

    2012-01-01

    Intragranular chromium nitrides is a phenomenon with detrimental effects on material properties in superduplex stainless steels which have not received much attention. Precipitation of nitrides occurs when the ferritic phase becomes supersaturated with nitrogen and there is insufficient time during cooling for diffusion of nitrogen into austenite. Heat treatment was carried out at between 1060◦C and 1160◦C to study the materials susceptibility to nitride precipitation with...

  15. Research and development of nitride fuel cycle for TRU burning

    Energy Technology Data Exchange (ETDEWEB)

    Susuki, Y.; Ogawa, T.; Osugi, T.; Arai, Y.; Mukaiyama, T. [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan)

    1997-07-01

    The present status of the research and development of nitride fuel cycle for burning transuranium elements in actinide burner reactors and fast reactors at JAERI is described, especially focusing on the progress in the recent two years. The research and development cover fuel fabrication technology, property measurements such as thermal conductivity, basic irradiation tests at Japan Materials Testing Reactors(JMTR), electrorefining of actinide nitrides in fused salts, and the evaluation of mass balance in the reprocessing process of nitride fuel. (authors)

  16. Application Of Active Screen Method For Ion Nitriding Efficiency Improvement

    OpenAIRE

    Ogórek M.; Frączek T.; Skuza Z.

    2015-01-01

    Paper presents the research of austenitic steel AISI 304 after ion nitriding at 400°C and at t =4h, for the two different variants of samples distribution in the working plasma reactive chamber tube. In order to assess the effectiveness of ion nitriding variants emission spectroscopy – GDOES, surface hardness tests, microstructure research (LM) of nitrided layers were made. It has been found that the use of active screens increases the surface layer thickness and depth of nitrogen diffusion i...

  17. Plasma nitriding of AISI 304L and AISI 316L stainless steels: effect of time in the formation of S phase and the chromium nitrides

    International Nuclear Information System (INIS)

    Plasma nitriding can improve hardness and wear resistance of austenitic stainless steels without losses in corrosion resistance. This fact relies on a nitrided layer constituted only by S phase, without chromium nitrides precipitation. In this work, the effect of nitriding time on phases formed on nitrided layer was investigated in two austenitic stainless steels: AISI 304L e AISI 316L. The samples were nitrided at 420 deg C, using a mixture of 60 % N2 and 40% H2, during 5, 7 and 9 hours. It was noted that chromium nitrides were formed on samples of AISI 304L, nitrided for 7 e 9 hours, while all nitrided samples of AISI 316L showed only formation of S phase. The nitrided layers were characterized using optical microscope and x-ray diffraction. (author)

  18. Investigation into some tribological properties of plasma nitrided hot-worked tool steel AISI H11

    Energy Technology Data Exchange (ETDEWEB)

    Yilbas, B.S.; Sahin, A.Z.; Said, S.A.M.; Nickel, J.; Coban, A. [King Fahd Univ. of Petroleum and Minerals, Dhahran (Saudi Arabia). Dept. of Mechanical Engineering

    1996-04-01

    Interest in the tribological properties of plasma nitriding has increased substantially over the past years because plasma nitriding provides a high nitride depth and improved hard facing. The present study examines the tribological properties of AISI H11 plasma nitrided, hot-worked steel. Different nitriding temperatures and durations were considered. Characterization of the composite structures was investigated with wear tests, x-ray diffraction (XRD) analysis, scanning electron microscopy (SEM), and microhardness tests. The depth profile of the nitrided zone was measured using the nuclear reaction analysis (NRA) technique. Plasma nitriding affected the microhardness, wear properties, and morphology considerably. Increase in process temperature increased the nitride zone depth.

  19. Heterostructure field effect transistors based on nitride interfaces

    International Nuclear Information System (INIS)

    A key property of the nitrides is the fact that they possess large spontaneous and piezoelectric polarization fields that allow a significant tailoring of the carrier dynamics and optical properties of nitride devices. In this paper, based on first-principles calculations of structural and electronic properties of bulk nitrides and their heterostructure, we investigate the potential of this novel material class for modern device applications by performing self-consistent Monte Carlo simulations. Our studies reveal that the nitride based electronic devices have characteristics that predispose them for high power and high frequency applications. We demonstrate also that transistor characteristics are favourably influenced by the internal polarization induced electric fields. (author)

  20. Heterostructure field effect transistors based on nitride interfaces

    Science.gov (United States)

    Majewski, J. A.; Zandler, G.; Vogl, P.

    2002-04-01

    A key property of the nitrides is the fact that they possess large spontaneous and piezoelectric polarization fields that allow a significant tailoring of the carrier dynamics and optical properties of nitride devices. In this paper, based on first-principles calculations of structural and electronic properties of bulk nitrides and their heterostructure, we investigate the potential of this novel material class for modern device applications by performing self-consistent Monte Carlo simulations. Our studies reveal that the nitride based electronic devices have characteristics that predispose them for high power and high frequency applications. We demonstrate also that transistor characteristics are favourably influenced by the internal polarization induced electric fields.

  1. Heterostructure field effect transistors based on nitride interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Majewski, J.A.; Zandler, G.; Vogl, P. [Physics Department and Walter Schottky Institute, Technische Universitaet Muenchen, Garching (Germany)

    2002-05-03

    A key property of the nitrides is the fact that they possess large spontaneous and piezoelectric polarization fields that allow a significant tailoring of the carrier dynamics and optical properties of nitride devices. In this paper, based on first-principles calculations of structural and electronic properties of bulk nitrides and their heterostructure, we investigate the potential of this novel material class for modern device applications by performing self-consistent Monte Carlo simulations. Our studies reveal that the nitride based electronic devices have characteristics that predispose them for high power and high frequency applications. We demonstrate also that transistor characteristics are favourably influenced by the internal polarization induced electric fields. (author)

  2. Review of actinide nitride properties with focus on safety aspects

    International Nuclear Information System (INIS)

    This report provides a review of the potential advantages of using actinide nitrides as fuels and/or targets for nuclear waste transmutation. Then a summary of available properties of actinide nitrides is given. Results from irradiation experiments are reviewed and safety relevant aspects of nitride fuels are discussed, including design basis accidents (transients) and severe (core disruptive) accidents. Anyway, as rather few safety studies are currently available and as many basic physical data are still missing for some actinide nitrides, complementary studies are proposed. (author)

  3. Review of actinide nitride properties with focus on safety aspects

    Energy Technology Data Exchange (ETDEWEB)

    Albiol, Thierry [CEA Cadarache, St Paul Lez Durance Cedex (France); Arai, Yasuo [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2001-12-01

    This report provides a review of the potential advantages of using actinide nitrides as fuels and/or targets for nuclear waste transmutation. Then a summary of available properties of actinide nitrides is given. Results from irradiation experiments are reviewed and safety relevant aspects of nitride fuels are discussed, including design basis accidents (transients) and severe (core disruptive) accidents. Anyway, as rather few safety studies are currently available and as many basic physical data are still missing for some actinide nitrides, complementary studies are proposed. (author)

  4. Quantum chemistry and atomistic simulations of solid nitrides

    OpenAIRE

    Eck, Bernhard

    2000-01-01

    The present thesis covers, at first, the binary nitrides of the the 3d transition metals. Based on their electronic band structures and bonding analyses for the sodium chloride as well as the zinc blend structure type it is then determined why the early nitrides crystallize in the NaCl structure while Fe- and Co-nitride adopt the ZnS structure. Thereafter all stoichiometrically well-defined iron nitrides are theoretically investigated, in particular with respect to the influence of the nitrog...

  5. Development of pseudocapacitive molybdenum oxide–nitride for electrochemical capacitors

    International Nuclear Information System (INIS)

    A thin film Mo oxide–nitride pseudocapacitive electrode was synthesized by electrodeposition of Mo oxide on Ti and a subsequent low-temperature (400 °C) thermal nitridation. Two nitridation environments, N2 and NH3, were used and the results were compared. Surface analyses of these nitrided films showed partial conversion of Mo oxide to nitrides, with a lower conversion percentage being the film produced in N2. However, the electrochemical analyses showed that the surface of the N2-treated film had better pseudocapacitive behaviors and outperformed that nitrided in NH3. Cycle life of the resultant N2-treated Mo oxide–nitride was also much improved over Mo oxide. A two-electrode cell using Mo oxide–nitride electrodes was demonstrated and showed high rate performance. - Highlights: • Mo(O,N)x was developed by electrodeposition and nitridation in N2 or NH3. • N2 treated Mo(O,N)x showed a capacitive performance superior to that treated by NH3. • The promising electrochemical performance was due to the formation of γ-Mo2N

  6. EXAFS investigation of low temperature nitrided stainless steel

    DEFF Research Database (Denmark)

    Oddershede, Jette; Christiansen, Thomas; Ståhl, Kenny;

    2008-01-01

    Low temperature nitrided stainless steel AISI 316 flakes were investigated with EXAFS and X-ray diffraction analysis. The stainless steel flakes were transformed into a mixture of nitrogen expanded austenite and nitride phases. Two treatments were carried out yielding different overall nitrogen...... contents: (1) nitriding in pure NH3 and (2)nitriding in pure NH3 followed by reduction in H2. The majority of the Cr atoms in the stainless steel after treatment 1 and 2 was associated with a nitrogen–chromium bond distance comparable to that of the chemical compound CrN. The possibility of the occurrence...

  7. Investigation of surface properties of high temperature nitrided titanium alloys

    OpenAIRE

    Koyuncu, E.; F. Kahraman; Ö. Karadeniz

    2009-01-01

    Purpose: The purpose of paper is to investigate surface properties of high temperature nitrided titanium alloys.Design/methodology/approach: In this study, surface modification of Ti6Al4V titanium alloy was made at various temperatures by plasma nitriding process. Plasma nitriding treatment was performed in 80% N2-20% H2 gas mixture, for treatment times of 2-15 h at the temperatures of 700-1000°C. Surface properties of plasma nitrided Ti6Al4V alloy were examined by metallographic inspection, ...

  8. Hydrogen permeability of nitrided stainless steel

    International Nuclear Information System (INIS)

    The surface of a 316 stainless steel (316SS) specimen was nitrided by an electrochemical treatment in molten fluoride salt. Its hydrogen permeability was evaluated and compared with that of bare 316SS at temperature from 450degC to 650degC. When it was exposed to hydrogen pressure of 1.0 kPa from 450degC to 650degC, its permeability was 7.2×10-11 to 6.4×10-12 mol/sec.m.Pa1/2. The permeation flux was increased with temperature and the permeability is deviated from Sieverts' law around 450degC. It followed Sieverts' law and was similar to that of bare 316SS at elevated temperatures. This result suggested the surface nitriding increases solubility at low temperatures around 450degC. (author)

  9. Local residual stress measurements on nitride layers

    Energy Technology Data Exchange (ETDEWEB)

    Mansilla, C.; Ocelík, V.; De Hosson, J.Th.M., E-mail: j.t.m.de.hosson@rug.nl

    2015-06-11

    In this work, local stresses in different nitrided maraging steel samples of high practical interest for industrial applications were studied through the so-called micro-slit milling method using a focused ion beam. The nitrogen concentration profiles were acquired by glow discharge optical emission spectroscopy. The residual stress state was measured on the surface and also in cross-section, i.e. examining effects of the nitrogen concentration gradient. It is shown that an enhanced lateral resolution can be achieved when a novel multiple fitting approach is employed. The results presented show an overall agreement with stress profiles obtained by X-ray diffraction. Finite Element Modeling is used to explain the apparent discrepancies. A clear correlation between the residual stress and nitriding profiles has been found and the applicability of this method is shown in particular when stress gradients are present.

  10. Aluminum Reduction and Nitridation of Bauxite

    Institute of Scientific and Technical Information of China (English)

    ZHANG Zhikuan; ZHANG Dianwei; XU Enxia; HOU Xinmei; DONG Yanling

    2007-01-01

    The application of bauxite with low Al2O3 content has been studied in this paper and β-SiAlON has been obtained from two kinds of bauxites (Al203 content 68.08 mass% and 46.30 mass% respectively) by aluminum reduction and nitridation method.The sequence of reactions has been studied using thermal analysis (TG-DTA),X-ray diffraction (XRD) analysis and scanning electron microscopy (SEM) with EDS.Compared with carbon thermal reduction and nitridation of aluminosilicates employed presently,the reaction in the system of bauxite-Al-N2 occurs at lower temperature.β-SiAlON appears as one of the main products from 1573K and exists' stably in the range of the present experimental temperature.The microstructure of β-SiAlON obtained at 1773 K is short column with 5-10μm observed by SEM.

  11. Local residual stress measurements on nitride layers

    International Nuclear Information System (INIS)

    In this work, local stresses in different nitrided maraging steel samples of high practical interest for industrial applications were studied through the so-called micro-slit milling method using a focused ion beam. The nitrogen concentration profiles were acquired by glow discharge optical emission spectroscopy. The residual stress state was measured on the surface and also in cross-section, i.e. examining effects of the nitrogen concentration gradient. It is shown that an enhanced lateral resolution can be achieved when a novel multiple fitting approach is employed. The results presented show an overall agreement with stress profiles obtained by X-ray diffraction. Finite Element Modeling is used to explain the apparent discrepancies. A clear correlation between the residual stress and nitriding profiles has been found and the applicability of this method is shown in particular when stress gradients are present

  12. Atomic-layer deposition of silicon nitride

    CERN Document Server

    Yokoyama, S; Ooba, K

    1999-01-01

    Atomic-layer deposition (ALD) of silicon nitride has been investigated by means of plasma ALD in which a NH sub 3 plasma is used, catalytic ALD in which NH sub 3 is dissociated by thermal catalytic reaction on a W filament, and temperature-controlled ALD in which only a thermal reaction on the substrate is employed. The NH sub 3 and the silicon source gases (SiH sub 2 Cl sub 2 or SiCl sub 4) were alternately supplied. For all these methods, the film thickness per cycle was saturated at a certain value for a wide range of deposition conditions. In the catalytic ALD, the selective deposition of silicon nitride on hydrogen-terminated Si was achieved, but, it was limited to only a thin (2SiO (evaporative).

  13. Barium oxide, calcium oxide, magnesia, and alkali oxide free glass

    Science.gov (United States)

    Lu, Peizhen Kathy; Mahapatra, Manoj Kumar

    2013-09-24

    A glass composition consisting essentially of about 10-45 mole percent of SrO; about 35-75 mole percent SiO.sub.2; one or more compounds from the group of compounds consisting of La.sub.2O.sub.3, Al.sub.2O.sub.3, B.sub.2O.sub.3, and Ni; the La.sub.2O.sub.3 less than about 20 mole percent; the Al.sub.2O.sub.3 less than about 25 mole percent; the B.sub.2O.sub.3 less than about 15 mole percent; and the Ni less than about 5 mole percent. Preferably, the glass is substantially free of barium oxide, calcium oxide, magnesia, and alkali oxide. Preferably, the glass is used as a seal in a solid oxide fuel/electrolyzer cell (SOFC) stack. The SOFC stack comprises a plurality of SOFCs connected by one or more interconnect and manifold materials and sealed by the glass. Preferably, each SOFC comprises an anode, a cathode, and a solid electrolyte.

  14. Abundance analysis of s-process enhanced barium stars

    Science.gov (United States)

    Mahanta, Upakul; Karinkuzhi, Drisya; Goswami, Aruna; Duorah, Kalpana

    2016-08-01

    Detailed chemical composition studies of stars with enhanced abundances of neutron-capture elements can provide observational constraints for neutron-capture nucleosynthesis studies and clues for understanding their contribution to the Galactic chemical enrichment. We present abundance results from high-resolution spectral analyses of a sample of four chemically peculiar stars characterized by s-process enhancement. High-Resolution spectra (R ˜42000) of these objects spanning a wavelength range from 4000 to 6800 Å, are taken from the ELODIE archive. We have estimated the stellar atmospheric parameters, the effective temperature Teff, the surface gravity log g, and metallicity [Fe/H] from local thermodynamic equilibrium analysis using model atmospheres. We report estimates of elemental abundances for several neutron-capture elements, Sr, Y, Zr, Ba, La, Ce, Pr, Nd, Sm, Eu and Dy. While HD 49641 and HD 58368 show [Ba/Fe] ≥ 1.16 the other two objects HD 119650 and HD 191010 are found to be mild barium stars with [Ba/Fe] ˜ 0.4. The derived abundances of the elements are interpreted on the basis of existing theories for understanding their origin and evolution.

  15. Structural and magnetic properties of barium-gadolinium hexaferrites

    Energy Technology Data Exchange (ETDEWEB)

    Litsardakis, G. [Department of Electrical and Computer Engineering, Aristotle University of Thessaloniki, Thessaloniki 54124 (Greece)]. E-mail: Lits@eng.auth.gr; Manolakis, I. [Department of Electrical and Computer Engineering, Aristotle University of Thessaloniki, Thessaloniki 54124 (Greece); Serletis, C. [Department of Physics, Aristotle University of Thessaloniki, Thessaloniki 54124 (Greece); Efthimiadis, K.G. [Department of Physics, Aristotle University of Thessaloniki, Thessaloniki 54124 (Greece)

    2007-03-15

    A series of Gd-substituted M-type barium hexaferrites has been prepared by the ceramic route, according to the formula (Ba{sub 1-x}Gd{sub x})O.5.25Fe{sub 2}O{sub 3} (x=0-0.30). XRD analysis revealed that all the samples present primarily an M-type structure. Samples x=0 and x=0.05 are single-phase. Hematite (Fe{sub 2}O{sub 3}) and GdFeO{sub 3} were detected in the remaining samples. Coercivity (H{sub c}) shows remarkably high values, {approx}293kA/m for x=0.20 and 0.30 with a maximum of 322kA/m for x=0.25. Specific saturation magnetization ({sigma}{sub sat}) of the samples presents a small increase up to x=0.10. The microstructure examination indicates that Gd may act as a grain growth inhibitor.

  16. Barium from a mini r-process in supernovae

    Science.gov (United States)

    Heymann, D.

    1983-01-01

    McCulloch and Wasserburg (1978) have reported nonlinear isotopic anomalies in barium for two Ca-Al-rich inclusions of the Allende carbonaceous chondrite, known as EK-1-4-1 and C-1. In an attempt to account for these anomalies, it has been proposed that Ba from an r-process of nucleosynthesis, containing Ba-135 and Ba-137, was injected into the primeval color system but was not totally homogenized. Questions arise in connection with the relations of Xe isotopes in carbonaceous chondrites. This has prompted Heymann and Dziczkaniec (1979, 1980, 1981) to study the formation of r-Xe, r-Kr, and r-Te by the mini r-process which is thought to occur in the O, Ne-rich shells of Type II supernovae. Lee et al. (1979) have studied the formation of r-Ba, r-Nd, and r-Sm by the same process. Certain differences regarding the approaches used by Lee et al. and by Heymann and Dziczkaniec make it necessary to restudy the work of Lee et al. Attention is given to the survival probabilities of nuclear species of interest, taking into accounts the elements Cs, Ba, I, and Xe.

  17. On-line ultrasonic characterisation of barium doped lanthanum perovskites

    International Nuclear Information System (INIS)

    Perovskite manganite samples La1−xBaxMnO3 with the composition of x=0.30, 0.33 and 0.36 were prepared by employing solid state reaction technique. The X-ray diffraction (XRD) patterns confirmed the rhombhedral structure with R3c space group of the samples. The obtained energy dispersive analysis X-rays (EDX) spectra of the samples have confirmed the elemental composition of the samples. The scanning electron microscope (SEM) images of the samples were used to find out the size of the particles. In-situ ultrasonic measurements were carried out on the samples by through transmission method. The temperature dependence of the ultrasonic parameters revealed interesting features of the samples. The observed ultrasonic velocities and attenuation both in longitudinal and shear mode are related to the paramagnetic (PM) to ferromagnetic (FM) phase transition in the prepared samples. The results confirmed that an increase in the barium content in the sample leads to an increase in the phase transition temperature TC

  18. Properties of barium strontium titanate at millimeter wave frequencies

    Energy Technology Data Exchange (ETDEWEB)

    Osman, Nurul [Department of Physics, Universiti Putra Malaysia (Malaysia); Free, Charles [Department of Engineering and Design, University of Sussex (United Kingdom)

    2015-04-24

    The trend towards using higher millimetre-wave frequencies for communication systems has created a need for accurate characterization of materials to be used at these frequencies. Barium Strontium Titanate (BST) is a ferroelectric material whose permittivity is known to change as a function of applied electric field and have found varieties of application in electronic and communication field. In this work, new data on the properties of BST characterize using the free space technique at frequencies between 145 GHz and 155 GHz for both thick film and bulk samples are presented. The measurement data provided useful information on effective permittivity and loss tangent for all the BST samples. Data on the material transmission, reflection properties as well as loss will also be presented. The outcome of the work shows through practical measurement, that BST has a high permittivity with moderate losses and the results also shows that BST has suitable properties to be used as RAM for high frequency application.

  19. Properties of barium strontium titanate at millimeter wave frequencies

    International Nuclear Information System (INIS)

    The trend towards using higher millimetre-wave frequencies for communication systems has created a need for accurate characterization of materials to be used at these frequencies. Barium Strontium Titanate (BST) is a ferroelectric material whose permittivity is known to change as a function of applied electric field and have found varieties of application in electronic and communication field. In this work, new data on the properties of BST characterize using the free space technique at frequencies between 145 GHz and 155 GHz for both thick film and bulk samples are presented. The measurement data provided useful information on effective permittivity and loss tangent for all the BST samples. Data on the material transmission, reflection properties as well as loss will also be presented. The outcome of the work shows through practical measurement, that BST has a high permittivity with moderate losses and the results also shows that BST has suitable properties to be used as RAM for high frequency application

  20. Radiochemical studies of the sorption behavior of strontium and barium

    International Nuclear Information System (INIS)

    The sorption behavior strontium and barium on kaolinite, bentonite and chlorite-illite mixed clay was studied by radioanalytical techniques using the batch method. 90Sr(29.1 y) and 133Ba(10.5y) were used as radiotracers. Characterization of the solid matrices was done by FTIR and XRD spectrometers and specific surface area measurements. Synthetic groundwater was used as the aqueous phase. The variation of the distribution ratio Rd, as a function of metal ion loading was examined. The sorption isotherms were fitted to various iso term models. The sorption energies were calculated to be in the range of 8-10kJ/mol suggesting an ion exchange type of sorption mechanism. In detailed experiments, chlorite-illite mixed clay was first presatured with K+, Sr2+, Ca2+ and Al 3= ions, respectively, prior to sorption studies with Ba2+ ions. The results of Ca2+ pretreated chlorite-illite were very similar to those of natural chlorite-illite, suggesting that the Ba2+ ion exchanges primarily with the Ca2+ ion on the clay minerals. (author). 15 refs., 3 figs., 5 tabs

  1. Removal of uranyl ions from aqueous solutions using barium titanate

    International Nuclear Information System (INIS)

    Remediation of water sources contaminated with radioactive waste products is a major environmental issue that demands new and more efficient technologies. For this purpose, we report a highly efficient ion-exchange material for the removal of radioactive nuclides from aqueous solutions. The kinetic characteristics of adsorption of uranyl ions on the surface of barium titanate were investigated using a spectrophotometric method under a wide range of conditions. By controlling the pH it was possible to exert fine control over the speciation of uranium, and by optimizing the temperature and grain size of the exchanger, almost total removal was achieved in a matter of just hours. The highest efficiency (>90 % removal) was realized at high temperature (80 deg C). Moreover, the effect of competitive ion adsorption from a range of different cations and anions was quantified. Adsorption was found to follow first-order kinetics and both Freundlich and Langmuir isotherms could be applied to this system. The results of a mathematical treatment of the kinetic data combined with the observation that adsorption was independent of stirring speed and dependent on the ion-exchanger grain size, indicate that the dominant mechanism influencing adsorption is particle spreading. The adsorption behavior was not influenced by exposure to high-intensity gamma radiation, indicating potential for use of this ion-exchanger in systems containing radioactive material. These results will be of use in the development of uranium extraction systems for contaminated water sources. (author)

  2. Colonic diverticulosis: evaluation with double contrast barium enema

    International Nuclear Information System (INIS)

    To evaluate the pattern of colonic diverticulosis according to age and sex, and recent trend. The authors retrospectively reviewed 120 cases of colonic diverticulosis in 1,020 patients who had undergone a double contrast barium enema examination between January 1st, 1993, and December 31st, 1995, and analyzed the frequency, size, multiplicity and anatomical site, according to age and sex. Diverticulum size was classified into one of three groups : less than 5mm, 5-10mm, over 10mm in diameter. The overall incidence of colonic diverticulosis was 120 cases among 1,020 patients(11.8%) with an incidence 5.3 times higher in males than in females. Peak incidence was in the fifth decade, with 19 cases (15.8%) among males, and after the sixth decade, with four cases(3.3%) among females. Mean age was 57.7 years. Diverticulum size of 5-10mm in diameter was predominant (2% of cases); average diameter was 5-6mm. The incidence of colonic diverticulosis was 5.1 times more frequent in the right colon (101 cases) than in the left (20 cases). The overall incidence of colonic diverticulosis has continually increased; in addition it has also recently increased slightly in left-sided colon. This is thought to be due to various factors, both congenital and acquired, including longer life with good health care, constipation, irritable bowel syndrome, stress and the tendency of eating patterns to more closely resemble those of the west

  3. Colonic diverticulosis: evaluation with double contrast barium enema

    Energy Technology Data Exchange (ETDEWEB)

    Ko, Jae Kook; Lee, Jong Koo; Yun, Eun Joo; Moon, Hee Jung; Shin, Hyun Ja [Korea Veterans Hospital, Seoul (Korea, Republic of)

    1997-02-01

    To evaluate the pattern of colonic diverticulosis according to age and sex, and recent trend. The authors retrospectively reviewed 120 cases of colonic diverticulosis in 1,020 patients who had undergone a double contrast barium enema examination between January 1st, 1993, and December 31st, 1995, and analyzed the frequency, size, multiplicity and anatomical site, according to age and sex. Diverticulum size was classified into one of three groups : less than 5mm, 5-10mm, over 10mm in diameter. The overall incidence of colonic diverticulosis was 120 cases among 1,020 patients(11.8%) with an incidence 5.3 times higher in males than in females. Peak incidence was in the fifth decade, with 19 cases (15.8%) among males, and after the sixth decade, with four cases(3.3%) among females. Mean age was 57.7 years. Diverticulum size of 5-10mm in diameter was predominant (2% of cases); average diameter was 5-6mm. The incidence of colonic diverticulosis was 5.1 times more frequent in the right colon (101 cases) than in the left (20 cases). The overall incidence of colonic diverticulosis has continually increased; in addition it has also recently increased slightly in left-sided colon. This is thought to be due to various factors, both congenital and acquired, including longer life with good health care, constipation, irritable bowel syndrome, stress and the tendency of eating patterns to more closely resemble those of the west.

  4. Barium in landscape components of the western Transbaikal region

    Science.gov (United States)

    Kashin, V. K.

    2015-10-01

    Barium concentrations in parent materials, soils, and plants of the forest-steppe, steppe, and dry steppe landscapes of the Transbaikal region have been studied. The average concentration of this element in rocks and soils of this region exceeds its clarke by 1.8-2.1 times. A positive correlation between the contents of Ba in soils, soil-forming rocks, and plants has been found. The concentration of Ba in soils does not correlate with the soil pH and humus content. Distribution patterns of Ba in the soil profiles have been characterized. With respect to the coefficient of the biological uptake by plants, Ba is assigned to the group of low accumulation (0.55-0.65) for mineral soils and of strong accumulation (6.0) for alluvial bog soils. Average concentrations of Ba in the steppe, meadow, and cultivated vegetation of the region are 1.9-2.3 times higher in comparison with the average concentration of this element in plants of the continents. The biological migration of Ba is most active in meadow landscapes, whereas steppe landscapes are characterized by the least active biological migration of this element.

  5. Abundance analysis of s-process enhanced barium stars

    CERN Document Server

    Mahanta, Upakul; Goswami, Aruna; Duorah, Kalpana

    2016-01-01

    Detailed chemical composition studies of stars with enhanced abundances of neutron-capture elements can provide observational constraints for neutron-capture nucleosynthesis studies and clues for understanding their contribution to the Galactic chemical enrichment. We present abundance results from high-resolution spectral analyses of a sample of four chemically peculiar stars characterized by s-process enhancement. High-Resolution spectra (R ~ 42000) of these objects spanning a wavelength range from 4000 to 6800 A, are taken from the ELODIE archive. We have estimated the stellar atmospheric parameters, the effective temperature T_eff, the surface gravity log g, and metallicity [Fe/H] from local thermodynamic equilibrium analysis using model atmospheres. We report estimates of elemental abundances for several neutron-capture elements, Sr, Y, Zr, Ba, La, Ce, Pr, Nd, Sm, Eu and Dy. While HD 49641 and HD 58368 show [Ba/Fe] > 1.16 the other two objects HD 119650 and HD 191010 are found to be mild barium stars wit...

  6. On-line ultrasonic characterisation of barium doped lanthanum perovskites

    Energy Technology Data Exchange (ETDEWEB)

    Thamilmaran, P.; Arunachalam, M. [Department of Physics, Sri SRNM College, Sattur 626203, Tamil Nadu (India); Research scholars in Physics, Manonmanium Sundaranar University, Tirunelveli 627012 Tamil Nadu (India); Sankarrajan, S. [Department of Physics, Unnamalai Institute of Technology, Kovilpatti 628503, Tamil Nadu (India); Sakthipandi, K., E-mail: sakthipandi@gmail.com [Department of Physics, Sethu Institute of Technology, Kariapatti 626115, Tamil Nadu (India)

    2015-06-15

    Perovskite manganite samples La{sub 1−x}Ba{sub x}MnO{sub 3} with the composition of x=0.30, 0.33 and 0.36 were prepared by employing solid state reaction technique. The X-ray diffraction (XRD) patterns confirmed the rhombhedral structure with R3c space group of the samples. The obtained energy dispersive analysis X-rays (EDX) spectra of the samples have confirmed the elemental composition of the samples. The scanning electron microscope (SEM) images of the samples were used to find out the size of the particles. In-situ ultrasonic measurements were carried out on the samples by through transmission method. The temperature dependence of the ultrasonic parameters revealed interesting features of the samples. The observed ultrasonic velocities and attenuation both in longitudinal and shear mode are related to the paramagnetic (PM) to ferromagnetic (FM) phase transition in the prepared samples. The results confirmed that an increase in the barium content in the sample leads to an increase in the phase transition temperature T{sub C}.

  7. The thermophysical properties of calcium and barium zirconium phosphate

    Energy Technology Data Exchange (ETDEWEB)

    Gregg, Daniel J., E-mail: daniel.gregg@ansto.gov.au; Karatchevtseva, Inna; Triani, Gerry; Lumpkin, Gregory R.; Vance, Eric R.

    2013-10-15

    The thermophysical and structural properties of calcium and barium zirconium phosphate ceramics (CZP and BZP) have been investigated for their potential candidacy as actinide hosts for inert matrix fuels (IMF) in nuclear reactors. These phosphate ceramics, which can accommodate minor actinides as well as the resulting fission products, are found to be thermally stable to 1600 °C in air, however they begin to decompose in an inert atmosphere above approximately 1400 °C. The heat capacity, thermal conductivity and bulk thermal-expansion were measured from room temperature up to 1200 °C. Structural changes in this temperature region as well as the anisotropic thermal-expansion behaviour were studied using high-temperature X-ray diffraction. A phase change from R-3 to R-3c was identified for Ba{sub 0.5}Zr{sub 2}(PO{sub 4}){sub 3} near 880 °C. The thermal conductivity for these ceramics at 1000 °C was found to be 1.0 W m{sup −1} K{sup −1}, a relatively low thermal conductivity that was increased to 5.0 W m{sup −1} K{sup −1} at 1000 °C for BZP:Ni (25:75 mass ratio) cermet composites.

  8. Preparation and properties of yttria doped tetragonal zirconia polycrystal/Sr-doped barium hexaferrite ceramic composites

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Shanshan; Zhang, Chao; Guo, Ruisong, E-mail: rsguo@tju.edu.cn; Liu, Lan; Yang, Yuexia; Li, Kehang

    2015-03-15

    Highlights: • The 3Y-TZP/Sr-doped barium ferrite composites were prepared. • The saturation magnetization was improved by 15% with Sr-doping. • The dispersion coefficient p could reflect the microscopic lattice variation. • The composite with x = 0.5 had the maximum fracture toughness of 8.3 MPa m{sup 1/2}. - Abstract: The effects of substitution of Ba{sup 2+} by Sr{sup 2+} on the magnetic property of barium ferrite and addition barium ferrite secondary phase to the 3 mol% yttria-doped tetragonal zirconia polycrystal (3Y-TZP) matrix on the mechanical property of composites were investigated. The Sr-doped barium ferrite (Ba{sub 1−x}Sr{sub x}Fe{sub 12}O{sub 19}, x = 0, 0.25, 0.50 and 0.75) was synthesized by solid-state reaction in advance. Then 3Y-TZP/20 wt% Sr-doped barium ferrite composites were prepared by means of conventional ceramic method. It was found that a moderate amount of Sr added to barium ferrite could boost the saturation magnetization by 15% compared with the composites without Sr-doping. Besides, the composite with x = 0.50 possessed the best mechanical properties, such as 11.5 GPa for Vickers hardness and 8.3 MPa m{sup 1/2} for fracture toughness, respectively. It was demonstrated that magnetic and mechanical properties of the composites could be harmonized by the incorporation of barium ferrite secondary phase.

  9. Skylab-barium alpha and beta L = 6 field-line tracing experiments

    International Nuclear Information System (INIS)

    Events SKYLAB-BARIUM ALPHA (27 November 1973) and BETA (4 December 1973) were shaped-charge barium field-line tracing experiments near L approximately equal to 6, conducted jointly by the Los Alamos Scientific Laboratory and the University of Alaska Geophysical Institute. Image-orthicon and pulsed intensified auroral cameras provided data for triangulating the fast ion streaks. Using the POGO 10-68, epoch 1965.0, field-line model with Mead-Fairfield corrections for the outer field, the triangulated positions of the fast ion streak were projected down to the 100 km altitude northern conjugate surface. The projected positions moved toward magnetic east with a velocity of 725 m/sec for both SKYLAB-BARIUM ALPHA and BETA. Assuming only an E x B/B2 force, this drift velocity is consistent with an electric field toward magnetic south of 39 mV/m. Radiometric analysis of the filtered, intensified auroral camera records gave observed peak radiance values of about 2 x 10-11 watts/cm2-Sr in the 455.4 nm line of Ba+. The barium in the portion of the ion streak for which radiometric data were obtained had initial injection velocities of 9.5 to 13.5 km/sec in both events. This portion of the ion streak for both SKYLAB-BARIUM ALPHA and BETA contained approximately 4 x 1023 ions compared to the 6.4 x 1024 atoms contained in the barium liner. Ion inventory estimates are based on a solution of the statistical equilibrium equations. Corrections have been made in the ion inventory calculations for Doppler shifts of the solar spectrum as received in the rest frame of the high-velocity barium ions

  10. An 8-year review of barium studies in the diagnosis of gastroparesis

    International Nuclear Information System (INIS)

    Aim: To determine the utility of barium studies for diagnosing gastroparesis in patients with nausea, vomiting, or other related symptoms. Materials and methods: Radiology files revealed gastroparesis without gastric outlet obstruction on upper gastrointestinal tract barium studies in 50 patients with nausea, vomiting, and other related symptoms. Original reports and images were reviewed to determine whether gastric peristalsis was decreased/absent and to investigate gastric dilatation, fluid or debris, and delayed emptying of barium. Twenty patients (40%) had nuclear gastric emptying studies. Medical records were reviewed to determine the presentation, treatment, and course. The diagnosis of gastroparesis was considered accurate if patients with gastroparesis on barium studies responded to treatment. Results: Forty-six patients (92%) had predisposing factors for gastroparesis, including narcotics and diabetes. Forty-five patients (90%) presented with nausea or vomiting, and 40 patients (80%) had one or more other symptoms, including bloating, early satiety, postprandial fullness, and abdominal pain. Barium studies revealed decreased gastric peristalsis in 46 (92%) of the 50 patients and absent peristalsis in four (8%); 46 patients (92%) had additional findings, including gastric dilatation in 30 (60%), delayed emptying of barium in 27 (54%), debris in 28 (56%; bezoars in three), and retained fluid in 13 (26%). Thirteen (65%) of 20 patients with nuclear gastric emptying studies had delayed emptying of solids and seven (35%) had normal emptying. Thirty-five (83%) of 42 patients treated for gastroparesis had symptomatic improvement versus two (25%) of eight patients not treated. Conclusion: Patients with nausea, vomiting, or other related symptoms who have gastroparesis without gastric outlet obstruction on barium studies can be treated for this condition on the basis of the clinical and radiographic findings

  11. Obtaining of a barium compound by combustion chemistry and their evaluation as Co adsorbent

    International Nuclear Information System (INIS)

    In this work, barium carbonate synthesized by chemical combustion method using a chemical precursor prepared by the combination of barium nitrate and urea as a fuel, with a 1:1 molar ratio in aqueous solution, the chemical precursor was heated to evaporate excess water, producing a homogeneous viscous liquid, that when heated to 900 centi grades for 5 minutes an exothermic reaction was produced very quickly and abruptly, forming a white powder final product, fine porous, little spongy, dry and crystalline ready to be used as material adsorbent. Additionally, the effect of water on the synthesis by chemical combustion was studied. Simultaneously, and with the purpose of comparing the advantages and disadvantages of the method by chemical combustion, barium carbonate was synthesized by precipitation method using barium nitrate salts and sodium carbonate. Synthesized barium carbonate, was characterized by X-ray diffraction, thermal gravimetric analysis, infrared spectrometry and scanning electron microscopy. We studied the adsorption capacity of Co present in aqueous solution by static tests on materials synthesized at room temperature using the neutron activation analysis. It was found that the synthesis by chemical combustion provides an interesting alternative compared to the synthesis by precipitation because it offers simplicity of synthesis and speed to have a good adsorbent material. It was found that the barium carbonate synthesized by the chemical combustion method using in their synthesis 1.0 ml of water, was the one who achieved the maximum adsorption capacity of 95.6% compared with the barium carbonate prepared by precipitation, which reached a capacity adsorption of 51.48%. (Author)

  12. Accelerating the transit time of barium sulphate suspensions in small bowel examinations

    International Nuclear Information System (INIS)

    Purpose: To determine whether hyperosmolar and effervescent agents proven individually to accelerate transit time in the barium small bowel examination have an additive effect when combined, surpassing that of either agent alone. Materials and methods: One hundred and forty-nine patients were randomised to four groups. Three hundred milliliters of barium sulphate alone was given to the first group. Fifteen milliliters of iodinated hyperosmolar contrast agent (Gastrografin, meglumine/sodium diatrizoate, Schering) was given in addition to barium sulphate to the second group while six packets of effervescent granules (Carbex, Ferring) were added for the third group. The final group was given a combination of both additives and barium sulphate. The time taken following ingestion for the contrast column to reach the caecum, as assessed by frequent interval fluoroscopy, was recorded. A subgroup of 32 patients were selected randomly from the four groups, 8 from each and assessed for quality of examination. Statistical assessments were made using Kruskal-Wallis and Mann-Whitney tests. Results: One hundred and nineteen patients were analysed after exclusions. The addition of accelerant to barium sulphate, both individually and in combination significantly reduced the small bowel transit time (p < 0.001). No significant difference existed between the additives when used with barium alone. The combined group had significantly faster transit times compared to the hyperosmolar group (p = 0.02). Differences between combined and effervescent groups tended towards significance (p = 0.09). No significant difference existed between groups when examination quality was assessed. Conclusion: These results suggest that the addition of combined effervescent and hyperosmolar agents to the barium suspension may significantly shorten the small bowel transit time without adversely affecting examination quality. This has implications for patient acceptability of the examination as well as

  13. An 8-year review of barium studies in the diagnosis of gastroparesis

    Energy Technology Data Exchange (ETDEWEB)

    Levin, A.A. [Department of Radiology, Hospital of University of Pennsylvania, Philadelphia, PA (United States); Levine, M.S. [Department of Radiology, Hospital of University of Pennsylvania, Philadelphia, PA (United States)], E-mail: marc.levine@uphs.upenn.edu; Rubesin, S.E.; Laufer, I. [Department of Radiology, Hospital of University of Pennsylvania, Philadelphia, PA (United States)

    2008-04-15

    Aim: To determine the utility of barium studies for diagnosing gastroparesis in patients with nausea, vomiting, or other related symptoms. Materials and methods: Radiology files revealed gastroparesis without gastric outlet obstruction on upper gastrointestinal tract barium studies in 50 patients with nausea, vomiting, and other related symptoms. Original reports and images were reviewed to determine whether gastric peristalsis was decreased/absent and to investigate gastric dilatation, fluid or debris, and delayed emptying of barium. Twenty patients (40%) had nuclear gastric emptying studies. Medical records were reviewed to determine the presentation, treatment, and course. The diagnosis of gastroparesis was considered accurate if patients with gastroparesis on barium studies responded to treatment. Results: Forty-six patients (92%) had predisposing factors for gastroparesis, including narcotics and diabetes. Forty-five patients (90%) presented with nausea or vomiting, and 40 patients (80%) had one or more other symptoms, including bloating, early satiety, postprandial fullness, and abdominal pain. Barium studies revealed decreased gastric peristalsis in 46 (92%) of the 50 patients and absent peristalsis in four (8%); 46 patients (92%) had additional findings, including gastric dilatation in 30 (60%), delayed emptying of barium in 27 (54%), debris in 28 (56%; bezoars in three), and retained fluid in 13 (26%). Thirteen (65%) of 20 patients with nuclear gastric emptying studies had delayed emptying of solids and seven (35%) had normal emptying. Thirty-five (83%) of 42 patients treated for gastroparesis had symptomatic improvement versus two (25%) of eight patients not treated. Conclusion: Patients with nausea, vomiting, or other related symptoms who have gastroparesis without gastric outlet obstruction on barium studies can be treated for this condition on the basis of the clinical and radiographic findings.

  14. Magnetron sputtering of thin nitride films

    OpenAIRE

    Kola, Prashanthi V

    1995-01-01

    The objective in this investigation was to design and commission a magnetron sputter deposition system and investigate the properties of hard coatings for mechanical and biomedical applications. The deposition of titanium (Ti) and titanium nitride (TiN) was undertaken as part of the commissioning tests and further work was conducted on the effect of the deposition parameters on the properties of TiN, specifically for biocompatible applications. A thorough understanding of the deposition proce...

  15. Boron Nitride Nanosheets for Metal Protection

    OpenAIRE

    Li, Lu Hua; Xing, Tan; Chen, Ying; Jones, Rob

    2015-01-01

    Although the high impermeability of graphene makes it an excellent barrier to inhibit metal oxidation and corrosion, graphene can form a galvanic cell with the underlying metal that promotes corrosion of the metal in the long term. Boron nitride (BN) nanosheets which have a similar impermeability could be a better choice as protective barrier, because they are more thermally and chemically stable than graphene and, more importantly, do not cause galvanic corrosion due to their electrical insu...

  16. Anomalous thermal conductivity of monolayer boron nitride

    Science.gov (United States)

    Tabarraei, Alireza; Wang, Xiaonan

    2016-05-01

    In this paper, we use nonequilibrium molecular dynamics modeling to investigate the thermal properties of monolayer hexagonal boron nitride nanoribbons under uniaxial strain along their longitudinal axis. Our simulations predict that hexagonal boron nitride shows an anomalous thermal response to the applied uniaxial strain. Contrary to three dimensional materials, under uniaxial stretching, the thermal conductivity of boron nitride nanoribbons first increases rather than decreasing until it reaches its peak value and then starts decreasing. Under compressive strain, the thermal conductivity of monolayer boron nitride ribbons monolithically reduces rather than increasing. We use phonon spectrum and dispersion curves to investigate the mechanism responsible for the unexpected behavior. Our molecular dynamics modeling and density functional theory results show that application of longitudinal tensile strain leads to the reduction of the group velocities of longitudinal and transverse acoustic modes. Such a phonon softening mechanism acts to reduce the thermal conductivity of the nanoribbons. On the other hand, a significant increase in the group velocity (stiffening) of the flexural acoustic modes is observed, which counteracts the phonon softening effects of the longitudinal and transverse modes. The total thermal conductivity of the ribbons is a result of competition between these two mechanisms. At low tensile strain, the stiffening mechanism overcomes the softening mechanism which leads to an increase in the thermal conductivity. At higher tensile strain, the softening mechanism supersedes the stiffening and the thermal conductivity slightly reduces. Our simulations show that the decrease in the thermal conductivity under compressive strain is attributed to the formation of buckling defects which reduces the phonon mean free path.

  17. Sliding wear behaviour of surface nitrided zirconia

    OpenAIRE

    Valle Chiro, Jorge Antonio; Mestra Rodríguez, Álvaro Miguel; García Marro, Fernando; Anglada Gomila, Marcos Juan

    2011-01-01

    Tetragonal polycrystalline zirconia stabilised with 3% molar yttria (3Y-TZP) has found wide applications in orthopaedics and dentistry because of its excellent mechanical properties (flexural strength above 1000 MPa, fracture toughness about 5 MPa·m1/2, hardness above 12 GPa) and biocompatibility. However, 3Y-TZP has a strong drawback: poor resistance to hydrothermal ageing also referred to as low temperature degradation (LTD). Nitriding of 3Y-TZP can make the surface resistance to L...

  18. Formation and Structure of Boron Nitride Nanotubes

    Institute of Scientific and Technical Information of China (English)

    Jiang ZHANG; Zongquan LI; Jin XU

    2005-01-01

    Boron nitride (BN) nanotubes were simply synthesized by heating well-mixed boric acid, urea and iron nitrate powders at 1000℃. A small amount of BN nanowires was also obtained in the resultants. The morphological and structural characters of the BN nanostructures were studied using transmission electron microscopy. Other novel BN nanostructures, such as Y-junction nanotubes and bamboo-like nanotubes, were simultaneously observed. The growth mechanism of the BN nanotubes was discussed briefly.

  19. Thermal conductivity of nanostructured boron nitride materials.

    Science.gov (United States)

    Tang, Chengchun; Bando, Yoshio; Liu, Changhong; Fan, Shoushan; Zhang, Jun; Ding, Xiaoxia; Golberg, Dmitri

    2006-06-01

    We have measured the thermal conductivity of bulky pellets made of various boron nitride (BN)-based nanomaterials, including spherical nanoparticles, perfectly structured, bamboo-like nanotubes, and collapsed nanotubes. The thermal conductivity strongly depends on the morphology of the BN nanomaterials, especially on the surface structure. Spherical BN particles have the lowest thermal conductivity while the collapsed BN nanotubes possess the best thermoconductive properties. A model was proposed to explain the experimental observations based on the heat percolation passage considerations. PMID:16722739

  20. Nitride phosphors and solid-state lighting

    CERN Document Server

    Xie, Rong-Jun; Hirosaki, Naoto

    2011-01-01

    Introduction to Solid-State LightingBasics of Solid-State LightingBasics of White Light-Emitting Diodes (LEDs)Applications of Solid-State LightingIntroduction to LuminescenceClassification of Optical ProcessesFundamentals of LuminescenceLuminescent CentersMeasurement of LuminescenceTraditional Phosphors in White LEDsRequirements for Phosphors in White LEDsClassification of PhosphorsPhotoluminescent Properties of Traditional PhosphorsNitride Phosphors i

  1. Amorphous Carbon-Boron Nitride Nanotube Hybrids

    Science.gov (United States)

    Kim, Jae Woo (Inventor); Siochi, Emilie J. (Inventor); Wise, Kristopher E. (Inventor); Lin, Yi (Inventor); Connell, John (Inventor)

    2016-01-01

    A method for joining or repairing boron nitride nanotubes (BNNTs). In joining BNNTs, the nanotube structure is modified with amorphous carbon deposited by controlled electron beam irradiation to form well bonded hybrid a-C/BNNT structures. In repairing BNNTs, the damaged site of the nanotube structure is modified with amorphous carbon deposited by controlled electron beam irradiation to form well bonded hybrid a-C/BNNT structures at the damage site.

  2. Nitride inclusions in titanium-containing high-nitrogen steel after solid-phase nitriding

    Science.gov (United States)

    Lysenkova, E. V.; Kadach, M. V.; Butskii, E. V.; Dorofievich, I. V.; Stomakhin, A. Ya.

    2015-09-01

    The principal possibility of production of sheet titanium-containing high-nitrogen steels without extreme harmful coarse nitride inclusions and their aggregates, which are characteristic of these compositions even at a relatively low (impurity) nitrogen content, is studied. To this end, the nitrogen content in the initial metal before its solidification is limited to the calculation level at which titanium nitrides are thermally unstable. Nitrogen is introduced in metal (08Cr18Ni12Ti steel) during its chemical thermal treatment in a nitrogen atmosphere at 1200°C. The nitrogen content in the finished metal is 0.4% (at 0.31% Ti). Studies in this direction are thought to be promising, since it is evident that the production of a metal of such a composition using the standard method of nitrogen introduction (in melt) is impossible. Scanning electron microscopy shows that titanium nitride particles in the finished metal are ≤0.5 μm in size.

  3. Wetting and infiltration of nitride bonded silicon nitride by liquid silicon

    Science.gov (United States)

    Schneider, V.; Reimann, C.; Friedrich, J.

    2016-04-01

    Nitride bonded silicon nitride (NBSN) is a promising crucible material for the repeated use in the directional solidification of multicrystalline (mc) silicon ingots for photovoltaic applications. Due to wetting and infiltration, however, silicon nitride in its initial state does not offer the desired reusability. In this work the sessile drop method is used to systematically study the wetting and infiltration behavior of NBSN after applying different oxidation procedures. It is found that the wetting of the NBSN crucible by liquid silicon can be prevented by the oxidation of the geometrical surface. The infiltration of liquid silicon into the porous crucible can be suppressed by oxygen enrichment within the volume of the NBSN, i.e. at the pore walls of the crucibles. The realized reusability of the NBSN is demonstrated by reusing a NBSN crucible six times for the directional solidification of undoped multicrystalline silicon ingots.

  4. Microscopic modeling of nitride intersubband absorbance

    Science.gov (United States)

    Montano, Ines; Allerman, A. A.; Wierer, J. J.; Moseley, M.; Skogen, E. J.; Tauke-Pedretti, A.; Vawter, G. A.

    III-nitride intersubband structures have recently attracted much interest because of their potential for a wide variety of applications ranging from electro-optical modulators to terahertz quantum cascade lasers. To overcome present simulation limitations we have developed a microscopic absorbance simulator for nitride intersubband devices. Our simulator calculates the band structure of nitride intersubband systems using a fully coupled 8x8 k.p Hamiltonian and determines the material response of a single period in a density-matrix-formalism by solving the Heisenberg equation including many-body and dephasing contributions. After calculating the polarization due to intersubband transitions in a single period, the resulting absorbance of a superlattice structure including radiative coupling between the different periods is determined using a non-local Green's-function formalism. As a result our simulator allows us to predict intersubband absorbance of superlattice structures with microscopically determined lineshapes and linewidths accounting for both many-body and correlation contributions. This work is funded by Sandia National Laboratories Laboratory Directed Research and Development program. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin.

  5. Ion-nitriding of austenitic stainless steels

    International Nuclear Information System (INIS)

    Although ion-nitriding is an extensively industrialized process enabling steel surfaces to be hardened by nitrogen diffusion, with a resulting increase in wear, seizure and fatigue resistance, its direct application to stainless steels, while enhancing their mechanical properties, also causes a marked degradation in their oxidation resistance. However, by adaption of the nitriding process, it is possible to maintain the improved wear resistant properties while retaining the oxidation resistance of the stainless steel. The controlled diffusion permits the growth of a nitrogen supersaturated austenite layer on parts made of stainless steel (AISI 304L and 316L) without chromium nitride precipitation. The diffusion layer remains stable during post heat treatments up to 650 F for 5,000 hrs and maintains a hardness of 900 HV. A very low and stable friction coefficient is achieved which provides good wear resistance against stainless steels under diverse conditions. Electrochemical and chemical tests in various media confirm the preservation of the stainless steel characteristics. An example of the application of this process is the treatment of Reactor Control Rod Cluster Assemblies (RCCAs) for Pressurized Water Nuclear Reactors

  6. Fusion bonding of silicon nitride surfaces

    DEFF Research Database (Denmark)

    Reck, Kasper; Østergaard, Christian; Thomsen, Erik Vilain;

    2011-01-01

    While silicon nitride surfaces are widely used in many micro electrical mechanical system devices, e.g. for chemical passivation, electrical isolation or environmental protection, studies on fusion bonding of two silicon nitride surfaces (Si3N4–Si3N4 bonding) are very few and highly application...... specific. Often fusion bonding of silicon nitride surfaces to silicon or silicon dioxide to silicon surfaces is preferred, though Si3N4–Si3N4 bonding is indeed possible and practical for many devices as will be shown in this paper. We present an overview of existing knowledge on Si3N4–Si3N4 bonding and new...... results on bonding of thin and thick Si3N4 layers. The new results include high temperature bonding without any pretreatment, along with improved bonding ability achieved by thermal oxidation and chemical pretreatment. The bonded wafers include both unprocessed and processed wafers with a total silicon...

  7. Shock Syntheses of Novel Nitrides and Biomolecules

    Science.gov (United States)

    Sekine, Toshimori

    2013-06-01

    High-pressure spinel nitride of Si3N4 was discovered more than 10 years ago. Since then there have been many studies on the spinel nitrides and related materials including oxynitrides. We have developed shock synthesis method to investigate their structural, mechanical, chemical, physical, and optical properties. At the same time we tried to synthesize carbon nitrides from the organic substances. And later we extended to shock synthesis of ammonia through the Haber-Bosch reaction under shock in order to apply geochemical subjects related to the origin of life. The simplest amino acid of glycine, as well as animes (up to propylamine) and carboxylic acids (up to pentanoic acid), has been synthesized successfully in aqueous solutions through meteoritic impact reactions. Recently we are trying to make more complex biomolecules for implications of biomolecule formation for the origin of life through meteorite impacts on early Earth's ocean. These results of shock syntheses may imply significant contributions to materials science and Earth and planetary sciences. This research is collaborated with National Institute for Materials Science and Tohoku University.

  8. Heavy ion bombardment of silicates and nitrides

    International Nuclear Information System (INIS)

    Several silicates, including α-quartz, zirconium silicate, thorium silicate, LiAlSiO4, a silicate glass and several nitrides, α and β Si3N4, AlN, ZrN as well as Si2N2O and ThO2, have been irradiated by 1019 to 1021 Krypton (3 MeV) ions/m2. The damaged powders of original particle size less than 5 μm, have been examined by x-ray diffraction and electron microscope methods. The silicates and Si2N2O become non-crystalline by 10 x 1019 ions/m2. The particles change shape, extending and bloating under prolonged irradiations of the order of 100 x 1019 ions/m2. Silicate glass also undergoes this irradiation creep process. The nitrides and ThO2 behave quite differently and even at fluences of 200 x 1019 x ions/m-2 the powders remain crystalline, retaining relatively sharp edges to the particles without exhibiting irradiation creep. This difference in behavior can be related to the nature of the framework crystal structures, flexible for the silicates with variable bond angles, rigid for the nitrides with fixed bond angles. This may explain the behavior of radioactive minerals not found in a metamict condition. (author)

  9. Development of compound layer of iron (carbo)nitrides during nitriding of steel

    DEFF Research Database (Denmark)

    Ratajski, J.; Tacikowski, J.; Somers, Marcel A.J.

    2003-01-01

    The composition and phase constitution of a compound layer developing during gaseous nitriding was investigated at 853 K for three commercial steels (AISI 120, 4340 and 1090) and Armco iron. The compound layers were characterised by light optical microscopy, X-ray diffraction and electron probe...... microanalysis. The formation of the compound layer occurs along two distinct sequences: alpha-gamma prime-epsilon and/or alpha(theta)-epsilon2-gamma prime-epsilon1. The preferred sequence depends mainly on the chemical composition of steel and on the nitriding potential....

  10. Spectroscopic (multi-energy) CT distinguishes iodine and barium contrast material in MICE

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, N.G. [University of Otago, Department of Radiology, Christchurch (New Zealand); Butler, A.P. [University of Otago, Department of Radiology, Christchurch (New Zealand); University of Canterbury, Physics and Astronomy, Christchurch (New Zealand); Scott, N.J.A. [University of Otago, Department of Medicine, Christchurch (New Zealand); Cook, N.J. [Christchurch Hospital, Medical Physics and Bioengineering, Christchurch (New Zealand); Butzer, J.S. [Karlsruhe Institute of Technology, Physics Department, Karlsruhe (Germany); Schleich, N. [University of Canterbury, Physics and Astronomy, Christchurch (New Zealand); Christchurch Hospital, Medical Physics and Bioengineering, Christchurch (New Zealand); Firsching, M. [Friedrich Alexander University, Physics Department, Erlangen (Germany); Grasset, R.; Ruiter, N. de [University of Canterbury, Hitlab NZ, Christchurch (New Zealand); Campbell, M. [European Organisation for Nuclear Research, Physics Section, Geneva (Switzerland); Butler, P.H. [University of Canterbury, Physics and Astronomy, Christchurch (New Zealand)

    2010-09-15

    Spectral CT differs from dual-energy CT by using a conventional X-ray tube and a photon-counting detector. We wished to produce 3D spectroscopic images of mice that distinguished calcium, iodine and barium. We developed a desktop spectral CT, dubbed MARS, based around the Medipix2 photon-counting energy-discriminating detector. The single conventional X-ray tube operated at constant voltage (75 kVp) and constant current (150 {mu}A). We anaesthetised with ketamine six black mice (C57BL/6). We introduced iodinated contrast material and barium sulphate into the vascular system, alimentary tract and respiratory tract as we euthanised them. The mice were preserved in resin and imaged at four detector energy levels from 12 keV to 42 keV to include the K-edges of iodine (33.0 keV) and barium (37.4 keV). Principal component analysis was applied to reconstructed images to identify components with independent energy response, then displayed in 2D and 3D. Iodinated and barium contrast material was spectrally distinct from soft tissue and bone in all six mice. Calcium, iodine and barium were displayed as separate channels on 3D colour images at <55 {mu}m isotropic voxels. Spectral CT distinguishes contrast agents with K-edges only 4 keV apart. Multi-contrast imaging and molecular CT are potential future applications. (orig.)

  11. High pressure–low temperature phase diagram of barium: Simplicity versus complexity

    International Nuclear Information System (INIS)

    Barium holds a distinctive position among all elements studied upon densification. Indeed, it was the first example shown to violate the long-standing notion that high compression of simple metals should preserve or yield close-packed structures. From modest pressure conditions at room temperature, barium transforms at higher pressures from its simple structures to the extraordinarily complex atomic arrangements of the incommensurate and self-hosting Ba-IV phases. By a detailed mapping of the pressure/temperature structures of barium, we demonstrate the existence of another crystalline arrangement of barium, Ba-VI, at low temperature and high pressure. The simple structure of Ba-VI is unlike that of complex Ba-IV, the phase encountered in a similar pressure range at room temperature. First-principles calculations predict Ba-VI to be stable at high pressure and superconductive. The results illustrate the complexity of the low temperature-high pressure phase diagram of barium and the significant effect of temperature on structural phase transformations

  12. Radiologic diagnosis of gastro-oesophageal reflux. Comparison of barium and low-density contrast medium

    Energy Technology Data Exchange (ETDEWEB)

    Fransson, S.G.; Soekjer, H.; Johansson, K.E.; Tibbling, L.

    It has been proposed that the high density of ordinary barium suspension may complicate the radiologic diagnosis of gastro-oesophageal reflux. For this reason P-contrast was developed (Ferring AB); a contrast medium with the same density as water (1 g/cm/sup 3/). A comparison of P-contrast and barium (Mixobar Ventrikel 400 mg/ml) was performed in 82 patients. All patients were examined with both contrast media and the findings were compared with those at reflux test at manometry, endoscopy and 24-hour pH monitoring. Another 40 patients and 15 symptom-free controls were examined with two different amounts of barium, 100 ml and 200 ml, to study if the radiologic diagnosis of reflux varied with the volume of contrast medium administered. P-contrast was found to have no advantages over barium for the diagnosis of gastro-oesophageal reflux. The outcome of the radiologic examination was not influenced by the different volumes of barium used.

  13. Spectroscopic (multi-energy) CT distinguishes iodine and barium contrast material in MICE

    International Nuclear Information System (INIS)

    Spectral CT differs from dual-energy CT by using a conventional X-ray tube and a photon-counting detector. We wished to produce 3D spectroscopic images of mice that distinguished calcium, iodine and barium. We developed a desktop spectral CT, dubbed MARS, based around the Medipix2 photon-counting energy-discriminating detector. The single conventional X-ray tube operated at constant voltage (75 kVp) and constant current (150 μA). We anaesthetised with ketamine six black mice (C57BL/6). We introduced iodinated contrast material and barium sulphate into the vascular system, alimentary tract and respiratory tract as we euthanised them. The mice were preserved in resin and imaged at four detector energy levels from 12 keV to 42 keV to include the K-edges of iodine (33.0 keV) and barium (37.4 keV). Principal component analysis was applied to reconstructed images to identify components with independent energy response, then displayed in 2D and 3D. Iodinated and barium contrast material was spectrally distinct from soft tissue and bone in all six mice. Calcium, iodine and barium were displayed as separate channels on 3D colour images at <55 μm isotropic voxels. Spectral CT distinguishes contrast agents with K-edges only 4 keV apart. Multi-contrast imaging and molecular CT are potential future applications. (orig.)

  14. High pressure–low temperature phase diagram of barium: Simplicity versus complexity

    Energy Technology Data Exchange (ETDEWEB)

    Desgreniers, Serge [Laboratoire de Physique des Solides Denses, Université d' Ottawa, Ottawa, Ontario K1N 6N5 (Canada); Tse, John S., E-mail: John.Tse@usask.ca [Department of Physics and Engineering Physics, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5B2 (Canada); State Key Laboratory of Superhard Materials, Jilin University, 130012 Changchun (China); Matsuoka, Takahiro [SPring-8/JASRI, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198 (Japan); Department of Electrical, Electronic and Computer Engineering, Gifu University, 1-1 Yanagido, Gifu 501-1193 (Japan); Ohishi, Yasuo [SPring-8/JASRI, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198 (Japan); Li, Quan; Ma, Yanming [State Key Laboratory of Superhard Materials, Jilin University, 130012 Changchun (China)

    2015-11-30

    Barium holds a distinctive position among all elements studied upon densification. Indeed, it was the first example shown to violate the long-standing notion that high compression of simple metals should preserve or yield close-packed structures. From modest pressure conditions at room temperature, barium transforms at higher pressures from its simple structures to the extraordinarily complex atomic arrangements of the incommensurate and self-hosting Ba-IV phases. By a detailed mapping of the pressure/temperature structures of barium, we demonstrate the existence of another crystalline arrangement of barium, Ba-VI, at low temperature and high pressure. The simple structure of Ba-VI is unlike that of complex Ba-IV, the phase encountered in a similar pressure range at room temperature. First-principles calculations predict Ba-VI to be stable at high pressure and superconductive. The results illustrate the complexity of the low temperature-high pressure phase diagram of barium and the significant effect of temperature on structural phase transformations.

  15. High pressure-low temperature phase diagram of barium: Simplicity versus complexity

    Science.gov (United States)

    Desgreniers, Serge; Tse, John S.; Matsuoka, Takahiro; Ohishi, Yasuo; Li, Quan; Ma, Yanming

    2015-11-01

    Barium holds a distinctive position among all elements studied upon densification. Indeed, it was the first example shown to violate the long-standing notion that high compression of simple metals should preserve or yield close-packed structures. From modest pressure conditions at room temperature, barium transforms at higher pressures from its simple structures to the extraordinarily complex atomic arrangements of the incommensurate and self-hosting Ba-IV phases. By a detailed mapping of the pressure/temperature structures of barium, we demonstrate the existence of another crystalline arrangement of barium, Ba-VI, at low temperature and high pressure. The simple structure of Ba-VI is unlike that of complex Ba-IV, the phase encountered in a similar pressure range at room temperature. First-principles calculations predict Ba-VI to be stable at high pressure and superconductive. The results illustrate the complexity of the low temperature-high pressure phase diagram of barium and the significant effect of temperature on structural phase transformations.

  16. Benefits of Barium Enema in Patients with Incomplete Colonoscopy. Prospective Study of 45 Cases

    International Nuclear Information System (INIS)

    To evaluate the usefulness of barium enema in patients with incomplete colonoscopy. There was carried out a prospective 10-month study of 45 patients with incomplete colonoscopy (27 men and 18 women), who were later examined by means of barium enema (33 conventional, 12 double-contrast) in order to check for additional pathology in portions of the colon not visualized by colonoscopy. Barium enema diagnosed six possible additional lesions (13.3%) in portions of the colon not visualized by incomplete colonoscopy (four neoplasia and two non-neoplasia). Regarding the neoplasia two were true positives and two false positives. Both true positives were adenocarcinomas (one synchronous caecum, and another in splenic angle). The two false positives corresponded to fecal matter stuck to the intestinal wall. Regarding the non-neoplasia, multiple stenosis was detected in a patient with Crohn's disease and an enterocolic fistula was found in a patient with sigmoid colon neoplasia. The diagnostic yield of barium enema in the detection of additional pathology in colon portions not visualized by colonoscopy was of 9%. Barium enema following incomplete colonoscopy permits a complete colon evaluation in most cases, and it offers additional diagnostic information. (Author) 21 refs

  17. Determination of barium in surface and ground waters at Centro Experimental Aramar area

    International Nuclear Information System (INIS)

    Barium can be found in waters up to 1 mg L-1 and came from natural sources such as sedimentary rocks erosion rich in feldspar and barite. Also anthropogenic activities can release this element such as oil and gas industry, agricultural defensives, chemical industry and waste disposal. At high doses, barium can be harmful to human central nervous system and can also cause high blood pressure, heart problems, fatigue and anxiety. The water potability defined by Brazilian's Ministry of Healthy sets barium concentration up to 0.7 mg L-1 and official regulation defines the same limit of this element to superficial waters (according CONAMA resolution 357/2005) and ground waters (Sao Paulo state regulation). In this work, barium was analyzed monthly in superficial waters from 4 different sampling locations, located in a ratio of 10-km-long from Centro Experimental Aramar (CEA) at Ipanema River, during one year, in order to evaluate the river in different conditions (seasons, temperature and rain period). The ground water was collected every six months. The analytical technique applied was ICP OES and the method conditions were optimized: wavelength, linearity, signal background ratio, detection and quantification limits. Data obtained in this work will contribute to evaluate the presence of barium at CEA region and nearby in order to compare it with current Brazilian regulations. (author)

  18. Hydro-MRI with fast sequences in Crohn's disease: Comparison with barium studies

    International Nuclear Information System (INIS)

    Purpose: To compare the value of hydro-MRI with that of barium studies in patients with Crohn's disease. Materials and methods: After an oral bowel opacification using 1000 ml of a 2.5% mannitol solution, axial and coronal breathhold sequences (T2W HASTE±FS, contrast-enhanced T1W FLASH FS) were acquired in 46 patients with Crohn's disease at 1,0 T. The findings of hydro-MRI were compared with those of barium studies. Results: In the stomach and the small bowel, hydro-MRI and barium studies demonstrated similar numbers of Crohn's involvements (39 vs. 36); in the colon, hydro-MRI showed clearly more affections (23 vs. 10). Hydro-MRI showed 12.7 cm of inflamed bowel per patient, on average (barium studies: 10,4 cm; p=0,004). There was a good agreement between the two methods regarding the assessment of the extent of Crohn's disease and the severity of bowel stenoses (r=0.89 and 0.88, respectively). Conclusions: For the assessment of Crohn's disease, hydro-MRI is preferable to the barium study because of the superior imaging quality and the lack of radiation exposure. (orig.)

  19. Determination of barium in surface and ground waters at Centro Experimental Aramar area

    Energy Technology Data Exchange (ETDEWEB)

    Matoso, Erika, E-mail: ematoso@hotmail.com [Centro Tecnologico da Marinha em Sao Paulo (CEA/CTMS), Ipero, SP (Brazil). Centro Experimental Aramar; Cadore, Solange, E-mail: cadore@iqm.unicamp.br [Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Instituto de Quimica. Departamento de Quimica Analica

    2015-07-01

    Barium can be found in waters up to 1 mg L{sup -1} and came from natural sources such as sedimentary rocks erosion rich in feldspar and barite. Also anthropogenic activities can release this element such as oil and gas industry, agricultural defensives, chemical industry and waste disposal. At high doses, barium can be harmful to human central nervous system and can also cause high blood pressure, heart problems, fatigue and anxiety. The water potability defined by Brazilian's Ministry of Healthy sets barium concentration up to 0.7 mg L{sup -1} and official regulation defines the same limit of this element to superficial waters (according CONAMA resolution 357/2005) and ground waters (Sao Paulo state regulation). In this work, barium was analyzed monthly in superficial waters from 4 different sampling locations, located in a ratio of 10-km-long from Centro Experimental Aramar (CEA) at Ipanema River, during one year, in order to evaluate the river in different conditions (seasons, temperature and rain period). The ground water was collected every six months. The analytical technique applied was ICP OES and the method conditions were optimized: wavelength, linearity, signal background ratio, detection and quantification limits. Data obtained in this work will contribute to evaluate the presence of barium at CEA region and nearby in order to compare it with current Brazilian regulations. (author)

  20. FIRST DIRECT EVIDENCE THAT BARIUM DWARFS HAVE WHITE DWARF COMPANIONS

    International Nuclear Information System (INIS)

    Barium II (Ba) stars are chemically peculiar F-, G-, and K-type objects that show enhanced abundances of s-process elements. Since s-process nucleosynthesis is unlikely to take place in stars prior to the advanced asymptotic giant branch (AGB) stage, the prevailing hypothesis is that each present Ba star was contaminated by an AGB companion which is now a white dwarf (WD). Unless the initial mass ratio of such a binary was fairly close to unity, the receiving star is thus at least as likely to be a dwarf as a giant. So although most known Ba stars appear to be giants, the hypothesis requires that Ba dwarfs be comparably plentiful and moreover that they should all have WD companions. However, despite dedicated searches with the IUE satellite, no WD companions have been directly detected to date among the classical Ba dwarfs, even though some 90% of those stars are spectroscopic binaries, so the contamination hypothesis is therefore presently in some jeopardy. In this paper, we analyze recent deep, near-UV and far-UV Galaxy Evolution Explorer (GALEX) exposures of four of the brightest of the class (HD 2454, 15360, 26367, and 221531), together with archived GALEX data for two newly recognized Ba dwarfs: HD 34654 and HD 114520 (which also prove to be spectroscopic binaries). The GALEX observations of the Ba dwarfs as a group show a significant far-UV excess compared to a control sample of normal F-type dwarfs. We suggest that this ensemble far-UV excess constitutes the first direct evidence that Ba dwarfs have WD companions.

  1. Electrical properties of niobium doped barium bismuth-titanate ceramics

    International Nuclear Information System (INIS)

    Highlights: ► Pure and doped BaBi4Ti4O15 were prepared via the solid-state reaction method. ► The grain size was suppressed in Nb-doped samples. ► The diffuseness of the dielectric peak increased with dopant concentration. ► Niobium affected on relaxor behavior of barium bismuth titanate ceramics. ► The conductivity change was noticed in doped samples. -- Abstract: BaBi4Ti4–5/4xNbxO15 (BBNTx, x = 0, 0.05, 0.15, 0.30) ceramics have been prepared by solid state method. XRD data indicate the formation of single-phase-layered perovskites for all compositions. SEM micrographs suggest that the grain size decreases with Nb doping. The effect of niobium doping on the dielectric and relaxor behavior of BaBi4Ti4O15 ceramics was investigated in a wide range of temperatures (20–777 °C) and frequencies (1.21 kHz to 1 MHz). Nb doping influences Tc decrease as well as the decrease of dielectric permittivity at Curie temperature. At room temperature, undoped BaBi4Ti4O15 exhibits dielectric constant of ∼204 at 100 kHz, that slightly increases with Nb doping. The conductivity of BBNT5 ceramics is found to be lower than that of other investigated compositions. The value of activation energy of σDC was found to be 0.89 eV, 1.01 eV, 0.93 eV and 0.71 eV for BBT, BBNT5, BBNT15 and BBNT30, respectively.

  2. Electrical properties of niobium doped barium bismuth-titanate ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Bobić, J.D., E-mail: jelenabobic@yahoo.com [Institute for Multidisciplinary Researches, Belgrade University, Kneza Viseslava 1, Belgrade (Serbia); Vijatović Petrović, M.M. [Institute for Multidisciplinary Researches, Belgrade University, Kneza Viseslava 1, Belgrade (Serbia); Banys, J. [Faculty of Physics, Vilnius University, 9 Sauletekio Str., Vilnius (Lithuania); Stojanović, B.D. [Institute for Multidisciplinary Researches, Belgrade University, Kneza Viseslava 1, Belgrade (Serbia)

    2012-08-15

    Highlights: ► Pure and doped BaBi{sub 4}Ti{sub 4}O{sub 15} were prepared via the solid-state reaction method. ► The grain size was suppressed in Nb-doped samples. ► The diffuseness of the dielectric peak increased with dopant concentration. ► Niobium affected on relaxor behavior of barium bismuth titanate ceramics. ► The conductivity change was noticed in doped samples. -- Abstract: BaBi{sub 4}Ti{sub 4–5/4x}Nb{sub x}O{sub 15} (BBNTx, x = 0, 0.05, 0.15, 0.30) ceramics have been prepared by solid state method. XRD data indicate the formation of single-phase-layered perovskites for all compositions. SEM micrographs suggest that the grain size decreases with Nb doping. The effect of niobium doping on the dielectric and relaxor behavior of BaBi{sub 4}Ti{sub 4}O{sub 15} ceramics was investigated in a wide range of temperatures (20–777 °C) and frequencies (1.21 kHz to 1 MHz). Nb doping influences T{sub c} decrease as well as the decrease of dielectric permittivity at Curie temperature. At room temperature, undoped BaBi{sub 4}Ti{sub 4}O{sub 15} exhibits dielectric constant of ∼204 at 100 kHz, that slightly increases with Nb doping. The conductivity of BBNT5 ceramics is found to be lower than that of other investigated compositions. The value of activation energy of σ{sub DC} was found to be 0.89 eV, 1.01 eV, 0.93 eV and 0.71 eV for BBT, BBNT5, BBNT15 and BBNT30, respectively.

  3. EPR dosimetric properties of nano-barium sulfate

    International Nuclear Information System (INIS)

    Nano/micro BaSO4 were prepared through the co-precipitation method to measure ionizing radiation doses using electron paramagnetic resonance (EPR). The nano-BaSO4 sample was characterized using X-ray diffraction (XRD), and transmission electron microscopy (TEM) techniques. The dose response and fading properties of nano- and micro-phase BaSO4 were compared in EPR spectra. The prepared nano- and micro-BaSO4 samples have the same hole and electron centers, which may be attributed to SO4− and SO3−, respectively. The dosimetric signals for prepared nano- and micro-BaSO4 have spectroscopic splitting factor (g) with values 2.0025±0.0006 and 2.0027±0.0006, respectively. The nanocrystalline sample has a linear γ-ray dose response over the range 0.4 Gy–1 kGy. The performance parameters which including detection limit and critical level calculated from weighted and unweighted least-squares fitting. The sensitivity of nano-BaSO4 to γ-ray is one and a half times more than alanine. The lifetime and activation energy for nano-BaSO4 were estimated by conducting a thermal stability study, and were 5.7±1.1×104 years and 0.73±0.14 eV, respectively. The combined and expanded uncertainties accompanying measurements were ±3.89% and ±7.78%, respectively. - Highlights: • Preparation of nano-BaSO4 using the co-precipitation method. • Study of the dosimetric properties of nano-barium sulfate using the EPR technique. • Comparison between a new EPR dosimeter using nano-materials and standard alanine. • Calculation of the uncertainty budget for nano-BaSO4

  4. Radiation doses to children during modified barium swallow studies

    Energy Technology Data Exchange (ETDEWEB)

    Weir, Kelly A. [University of Queensland, Discipline of Paediatrics and Child Health, School of Medicine, Herston, Queensland (Australia); McMahon, Sandra M. [SpeechNet Speech Pathology Services, Brisbane (Australia); Long, Gillian; Bunch, Judith A. [Royal Children' s Hospital, Department of Medical Imaging, Herston (Australia); Pandeya, Nirmala [Queensland Institute of Medical Research, Herston (Australia); Coakley, Kerry S. [Biomedical Technology Services, Royal Brisbane and Women' s Hospital, Herston (Australia); Chang, Anne B. [Royal Children' s Hospital, Department of Respiratory Medicine, Herston (Australia)

    2007-03-15

    There are minimal data on radiation doses to infants and children undergoing a modified barium swallow (MBS) study. To document screening times, dose area product (DAP) and effective doses to children undergoing MBS and to determine factors associated with increased screening times and effective dose. Fluoroscopic data (screening time, DAP, kVp) for 90 consecutive MBS studies using pulse fluoroscopy were prospectively recorded; effective dose was calculated and data were analyzed for effects of behavior, number of swallow presentations, swallowing dysfunction and medical problems. Mean effective dose for the entire group was 0.0826 {+-} 0.0544 mSv, screening time 2.48 {+-} 0.81 min, and DAP 28.79 {+-} 41.72 cGy cm{sup 2}. Significant differences were found across three age groups ({<=}1.0, >1.0-3.0 and >3.0 years) for effective dose (mean 0.1188, 0.0651 and 0.0529 mSv, respectively; P < 0.001), but not for screening time or DAP. Effective dose was correlated with screening time (P = 0.007), DAP (P < 0.001), number of swallow presentations (P = 0.007), lower age (P = 0.017), female gender (P = 0.004), and height (P < 0.001). Screening time was correlated with total number of swallow presentations (P < 0.001) and DAP (P < 0.001). Screening times, DAP, effective dose, and child and procedural factors associated with higher effective doses are presented for children undergoing MBS studies. (orig.)

  5. Sputtered Modified Barium Titanate for Thin-Film Capacitor Applications

    Directory of Open Access Journals (Sweden)

    Robert Mamazza

    2012-04-01

    Full Text Available New apparatus and a new process for the sputter deposition of modified barium titanate thin-films were developed. Films were deposited at temperatures up to 900 °C from a Ba0.96Ca0.04Ti0.82Zr0.18O3 (BCZTO target directly onto Si, Ni and Pt surfaces and characterized by X-ray diffraction (XRD, scanning electron microscopy (SEM and X-ray photoelectron spectroscopy (XPS. Film texture and crystallinity were found to depend on both deposition temperature and substrate: above 600 °C, the as-deposited films consisted of well-facetted crystallites with the cubic perovskite structure. A strongly textured Pt (111 underlayer enhanced the (001 orientation of BCZTO films deposited at 900 °C, 10 mtorr pressure and 10% oxygen in argon. Similar films deposited onto a Pt (111 textured film at 700 °C and directly onto (100 Si wafers showed relatively larger (011 and diminished intensity (00ℓ diffraction peaks. Sputter ambients containing oxygen caused the Ni underlayers to oxidize even at 700 °C: Raising the process temperature produced more diffraction peaks of NiO with increased intensities. Thin-film capacitors were fabricated using ~500 nm thick BCZTO dielectrics and both Pt and Ni top and bottom electrodes. Small signal capacitance measurements were carried out to determine capacitance and parallel resistance at low frequencies and from these data, the relative permittivity (er and resistivity (r of the dielectric films were calculated; values ranged from ~50 to >2,000, and from ~104 to ~1010 Ω∙cm, respectively.

  6. Radiation doses to children during modified barium swallow studies

    International Nuclear Information System (INIS)

    There are minimal data on radiation doses to infants and children undergoing a modified barium swallow (MBS) study. To document screening times, dose area product (DAP) and effective doses to children undergoing MBS and to determine factors associated with increased screening times and effective dose. Fluoroscopic data (screening time, DAP, kVp) for 90 consecutive MBS studies using pulse fluoroscopy were prospectively recorded; effective dose was calculated and data were analyzed for effects of behavior, number of swallow presentations, swallowing dysfunction and medical problems. Mean effective dose for the entire group was 0.0826 ± 0.0544 mSv, screening time 2.48 ± 0.81 min, and DAP 28.79 ± 41.72 cGy cm2. Significant differences were found across three age groups (≤1.0, >1.0-3.0 and >3.0 years) for effective dose (mean 0.1188, 0.0651 and 0.0529 mSv, respectively; P < 0.001), but not for screening time or DAP. Effective dose was correlated with screening time (P 0.007), DAP (P < 0.001), number of swallow presentations (P = 0.007), lower age (P = 0.017), female gender (P = 0.004), and height (P < 0.001). Screening time was correlated with total number of swallow presentations (P < 0.001) and DAP (P < 0.001). Screening times, DAP, effective dose, and child and procedural factors associated with higher effective doses are presented for children undergoing MBS studies. (orig.)

  7. TWO BARIUM STARS IN THE OPEN CLUSTER NGC 5822

    International Nuclear Information System (INIS)

    Open clusters are very useful examples to explain the constraint of the nucleosynthesis process with the luminosities of stars because the distances of the clusters are better known than those of field stars. We carried out a detailed spectroscopic analysis to derive the chemical composition of two red giants in the young open cluster NGC 5822, NGC 5822-2, and NGC 5822-201. We obtained abundances of C, N, O, Na, Mg, Al, Ca, Si, Ti, Ni, Cr, Y, Zr, La, Ce, and Nd. The atmospheric parameters of the studied stars and their chemical abundances were determined using high-resolution optical spectroscopy. We employed the local thermodynamic equilibrium model atmospheres of Kurucz and the spectral analysis code MOOG. The abundances of the light elements were derived using the spectral synthesis technique. We found that NGC 5822-2 and -201 have, respectively, a mean overabundance of the elements created by the s-process, ''s'', with the notation [s/Fe] of 0.77 ± 0.12 and 0.83 ± 0.05. These values are higher than those for field giants of similar metallicity. We also found that NGC 5822-2 and -201 have, respectively, luminosities of 140 L☉ and 76 L☉, which are much lower than the luminosity of an asymptotic giant branch star. We conclude that NGC 5822-2 and NGC 5822-201 are two new barium stars first identified in the open cluster NGC 5822. The mass transfer hypothesis is the best scenario to explain the observed overabundances

  8. Synthesis and thermionic properties of tungsten–barium titanate composites

    International Nuclear Information System (INIS)

    Highlights: • W–BaTiO3 composites were readily synthesized using standard sintering methods. • Compositions in the range 20–80% by mass were studied. • The microstructure of the composites comprises W, BaTiO3, Ba4Ti12O27 and BaW04. • The Richardson work function was reduced from 4.5 eV for W to as little as 2.67 eV. • Post-emission surfaces were coated in a thin layer of Ba4Ti12O27 and BaW04. - Abstract: The potential of novel tungsten–barium titanate composites as thermionic emitters is explored. Composites ranging from 20% to 80% tungsten by mass were prepared by sintering in an Ar–H2 atmosphere. XRD and SEM studies indicate four major micro-constituents; W, BaTiO3, Ba4(Ti,Fe)12O27 and BaWO4. Richardson work functions (φR) and Richardson constants (AR) were determined using a Schottky diode arrangement at temperatures ranging from 1223 to 1473 K. Work functions ranged from 2.67 eV to 3.32 eV with a shallow minimum at 40% by mass W and were relatively constant (∼2.7–2.8 eV) in the range 30–70% by mass W. The decrease in work function was accompanied by a strong decrease in AR from 39.3 A cm−2 K−2 to 0.02 A cm−2 K−2 over the range 20–70% by mass W. The reduction in both φR and AR was associated with the major conversion of the surface to BaWO4 and Ba4Ti12O27 during the activation treatment before emission testing

  9. TWO BARIUM STARS IN THE OPEN CLUSTER NGC 5822

    Energy Technology Data Exchange (ETDEWEB)

    Katime Santrich, O. J.; Pereira, C. B.; De Castro, D. B., E-mail: osantrich@on.br, E-mail: claudio@on.br, E-mail: denise@on.br [Observatorio Nacional/MCT, Rua Gen. Jose Cristino, 77, 20921-400 Rio de Janeiro (Brazil)

    2013-08-01

    Open clusters are very useful examples to explain the constraint of the nucleosynthesis process with the luminosities of stars because the distances of the clusters are better known than those of field stars. We carried out a detailed spectroscopic analysis to derive the chemical composition of two red giants in the young open cluster NGC 5822, NGC 5822-2, and NGC 5822-201. We obtained abundances of C, N, O, Na, Mg, Al, Ca, Si, Ti, Ni, Cr, Y, Zr, La, Ce, and Nd. The atmospheric parameters of the studied stars and their chemical abundances were determined using high-resolution optical spectroscopy. We employed the local thermodynamic equilibrium model atmospheres of Kurucz and the spectral analysis code MOOG. The abundances of the light elements were derived using the spectral synthesis technique. We found that NGC 5822-2 and -201 have, respectively, a mean overabundance of the elements created by the s-process, ''s'', with the notation [s/Fe] of 0.77 {+-} 0.12 and 0.83 {+-} 0.05. These values are higher than those for field giants of similar metallicity. We also found that NGC 5822-2 and -201 have, respectively, luminosities of 140 L{sub Sun} and 76 L{sub Sun }, which are much lower than the luminosity of an asymptotic giant branch star. We conclude that NGC 5822-2 and NGC 5822-201 are two new barium stars first identified in the open cluster NGC 5822. The mass transfer hypothesis is the best scenario to explain the observed overabundances.

  10. Modeling the kinetics of the nitriding and nitrocarburizing of iron

    DEFF Research Database (Denmark)

    Somers, Marcel A. J.; Mittemeijer, Eric J.

    1998-01-01

    The growth kinetics of the iron-nitride compound layer during nitriding and nitrocarburizing of pure iron has been investigated for various temperatures and various combinations of imposed nitrogen and carbon activities. The results indicate that no local equilibrium occurs at the gas/solid inter...

  11. Limitations to band gap tuning in nitride semiconductor alloys

    DEFF Research Database (Denmark)

    Gorczyca, I.; Suski, T.; Christensen, Niels Egede;

    2010-01-01

    Relations between the band gaps of nitride alloys and their lattice parameters are presented and limits to tuning of the fundamental gap in nitride semiconductors are set by combining a large number of experimental data with ab initio theoretical calculations. Large band gap bowings obtained...

  12. Nitriding of super alloys for enhancing physical properties

    Science.gov (United States)

    Purohit, A.

    1984-06-25

    The invention teaches the improvement of certain super alloys by exposing the alloy to an atmosphere of elemental nitrogen at elevated temperatures in excess of 750/sup 0/C but less than 1150/sup 0/C for an extended duration, viz., by nitriding the surface of the alloy, to establish barrier nitrides of the order of 25 to 100 micrometers thickness. These barrier

  13. Hydrogen charging of plasma nitrided steel in acid solution

    Directory of Open Access Journals (Sweden)

    S. Sobieszczyk

    2006-04-01

    Full Text Available Purpose: Purpose of this paper is evaluation of susceptibility of plasma nitrided structural steel to hydrogen absorption.Design/methodology/approach: Structural steel, nitrided at glow discharge in the gas mixture of various N2, H2, Ar content was subjected to cathodic hydrogen charging in acid solution simulating the aged engine oil. The effect of the nitrided layers on the hydrogen transport and on the irreversible trapping was evaluated by the measurements of the hydrogen permeation rate and by the vacuum extraction, respectively.Findings: In the presence of the not defected compact nitride layer, no hydrogen permeation through the steel has been stated under the experimental conditions. Absorbed hydrogen was accumulated within this layer.Research limitations/implications: Further research should be taken to evaluate the influence of compact nitride zone on hydrogen degradation under tensile stress.Practical implications: Plasma nitriding treatment could improve the properties of the low-alloy high-strength structural steels exploited in aggressive environments, which is especially important in the case of possible hydrogen charging of exploited steel.Originality/value: Using the atmosphere of the higher nitrogen to hydrogen ratio at plasma assisted nitriding provides the formation of thin compact nitride zone, highly protective against corrosion and hydrogen degradation.

  14. Composition and microhardness of CAE boron nitride films

    International Nuclear Information System (INIS)

    The paper deals with boron nitride produced by cathodic arc evaporation techniques.The films were applied on titanium and cemented carbide substrates. Their characterization was carried out using X-ray diffraction and Knoop microhardness tests. Demonstrated are the high properties of two-phase films, containing β (cubic) and γ (wurtzitic) modifications of boron nitride. (author). 7 refs., 1 fig., 3 tabs

  15. Synthesis of metal-nitrides using high pressures and temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Guillaume, C; Serghiou, G [University of Edinburgh, School of Engineering and Electronics, Kings Buildings, Mayfield Road, EH9 3JL UK (United Kingdom); Morniroli, J P [Laboratoire de Metallurgie Physique et Genie des Materiaux, UMR CNRS 8517, Universite des Sciences et Technologies de Lille et Ecole Nationale Superieure de Chimie de Lille, Cite Scientifique, 59655 Villeneuve d' Ascq Cedex (France); Frost, D J [Bayerisches Geoinstitut, Universitat Bayreuth, D-95440, Bayreuth (Germany)], E-mail: george.serghiou@ed.ac.uk

    2008-07-15

    Technologically, high density nitrides are showing promise for both ceramic and electronic applications. In a laser-heated diamond cell we prepare high density metal-nitrides by reaction of the nitrogen pressure medium with an elemental substrate. Two of our objectives are to develop criteria governing whether denser than ambient nitride phases will form, and to in particular establish the parameters required for synthesis in a multianvil press using elemental starting materials. We have already synthesized transition metal nitrides in a multianvil press using elemental starting materials, including hexagonal nickel nitride and alkali rhenium nitrides. Unlike previous metals, we also report that Cu does not form a nitride after heating with NaN{sub 3} at 2000 K and 20 GPa. Notably, Cu{sub 3}N is a semiconductor exhibiting weak directional bonds, whereas the immediately adjacent lower atomic number systems are metallic interstitial nitrides. We also briefly mention our work on processing high pressure and temperature recovered reaction products with focused ion beam methods for tailored characterization using electron microscopy.

  16. Study of precipitation processes of strontium and barium nitrates in mixtures of water-with dimethylformamide and dimethylsulfoxide

    International Nuclear Information System (INIS)

    The investigation into phase equilibriums diagrams in the barium (strontium) nitrate-water-dimethylsulfoxide and barium nitrate-water dimethylformamide systems has been pursued at 298, 15 K for the estimation of outlook for use of mixed aqua-organic solvents during the production of mixture form high temperature superconductors by means of coprecipitation or crystallization. 4 refs., 3 figs., 2 tabs

  17. Spectroscopy of Ba and Ba$^+$ deposits in solid xenon for barium tagging in nEXO

    CERN Document Server

    Mong, B; Walton, T; Chambers, C; Craycraft, A; Benitez-Medina, C; Hall, K; Fairbank, W; Albert, J B; Auty, D J; Barbeau, P S; Basque, V; Beck, D; Breidenbach, M; Brunner, T; Cao, G F; Cleveland, B; Coon, M; Daniels, T; Daugherty, S J; DeVoe, R; Didberidze, T; Dilling, J; Dolinski, M J; Dunford, M; Fabris, L; Farine, J; Feldmeier, W; Fierlinger, P; Fudenberg, D; Giroux, G; Gornea, R; Graham, K; Gratta, G; Heffner, M; Hughes, M; Jiang, X S; Johnson, T N; Johnston, S; Karelin, A; Kaufman, L J; Killick, R; Koffas, T; Kravitz, S; Krucken, R; Kuchenkov, A; Kumar, K S; Leonard, D S; Licciardi, C; Lin, Y H; Ling, J; MacLellan, R; Marino, M G; Moore, D; Odian, A; Ostrovskiy, I; Piepke, A; Pocar, A; Retiere, F; Rowson, P C; Rozo, M P; Schubert, A; Sinclair, D; Smith, E; Stekhanov, V; Tarka, M; Tolba, T; Twelker, K; Vuilleumier, J -L; Walton, J; Weber, M; Wen, L J; Wichoski, U; Yang, L; Yen, Y -R; Zhao, Y B

    2014-01-01

    Progress on a method of barium tagging for the nEXO double beta decay experiment is reported. Absorption and emission spectra for deposits of barium atoms and ions in solid xenon matrices are presented. Excitation spectra for prominent emission lines, temperature dependence and bleaching of the fluorescence reveal the existence of different matrix sites. A regular series of sharp lines observed in Ba$^+$ deposits is identified with some type of barium hydride molecule. Lower limits for the fluorescence quantum efficiency of the principal Ba emission transition are reported. Under current conditions, an image of $\\le10^4$ Ba atoms can be obtained. Prospects for imaging single Ba atoms in solid xenon are discussed.

  18. Synthesis and Characterization of Barium-Vanadium Oxide Nanocomposite Using a Facile thermolysis Approach

    Directory of Open Access Journals (Sweden)

    Niloufar Akbarzadeh-T

    2015-12-01

    Full Text Available In this investigation, we report synthesis of new cationic-anionic Barium-Vanadium complex with 2, 6- pyridinedicarboxylic acid ligand. This compound [Ba(H2O8][VO2(dipic]2(1 has been characterized using elemental analyses, FT-IR, UV–Vis and Cyclic voltammetry (CV techniques. Also in this study we report facile synthesis of Barium-Vanadium Oxide nanoparticle under thermal decomposition, using precursor complex (1. Characterization of Barium-Vanadium Oxide nanocomposites was carried out by scanning electron microscopy (SEM, energy dispersive X-ray analysis (EDX, X-ray powder diffraction (XRD and Fourier transform infrared (FT-IR spectroscopy. The X-ray diffraction pattern at room temperature revealed that, highly pure and crystallized Ba3(VO42 with rhombohedral structure.

  19. CuO and Ag2O effect on electrical properties of barium vanadate glasses

    International Nuclear Information System (INIS)

    Effect of CuO on barium vanadate glass (BVG) conductivity on direct and alternating currents in the frequency range (102-104)Hz has been studied. Effect of Ag2O has been also studied for comparison, as Ag and Cu have idendical structure of external electron shells (d10, S1). CuO introduction to binary barium vanadate glasses as a modificator results in the conductivity improvement on direct and alternating currents conditioned with reducing activation energy of small radius polaron jump, apparently, owing to exchange (ferromagnetic) interaction between V(IV) and Cu(II). Jump activation energy in barium vanadate glasses with Ag2O increases and conductivity drops due to the distance increase between vanadium atoms

  20. The review of various synthesis methods of barium titanate with the enhanced dielectric properties

    Science.gov (United States)

    More, S. P.; Topare, R. J.

    2016-05-01

    The Barium Titanate is a very well known dielectric ceramic belongs to perovskite structure. It has very wide applications in the field of electronic, electro ceramic, electromechanical and electro-optical applications. Barium Titanate has very high dielectric constant as well as low dielectric loss. Substituted dielectrics are one of the most important technological compounds in modern electro ceramics. Its electrical properties can be tuned flexibly by a simple substitution technique. This has encouraged researchers to select a typical cation to be substituted at cationic sites. In the present paper, the review of various synthesis methods of Barium Titanate compound with the effect of different dopants, the grain size on the dielectric properties at various temperatures is discussed.

  1. Plasma irregularities caused by cycloid bunching of the CRRES G-2 barium release

    Science.gov (United States)

    Bernhardt, P. A.; Huba, J. D.; Pongratz, M. B.; Simons, D. J.; Wolcott, J. H.

    1993-01-01

    The Combined Release and Radiation Effects Satellite (CRRES) spacecraft carried a number of barium thermite canisters for release into the upper atmosphere. The barium release labeled G-2 showed evidence of curved irregularities not aligned with the ambient magnetic field B. The newly discovered curved structures can be explained by a process called cycloid bunching. Cycloid bunching occurs when plasma is created by photoionization of a neutral cloud injected at high velocity perpendicular to B. If the injection velocity is much larger than the expansion speed of the cloud, the ion trail will form a cycloid that has irregularities spaced by the product of the perpendicular injection speed and the ion gyroperiod, Images of the solar-illuminated barium ions are compared with the results of a three-dimensional kinetic simulation. Cycloid bunching is shown to be responsible for the rapid generation of both curved and field-aligned irregularities in the CRRES G-2 experiment.

  2. Highly aligned arrays of high aspect ratio barium titanate nanowires via hydrothermal synthesis

    International Nuclear Information System (INIS)

    We report on the development of a hydrothermal synthesis procedure that results in the growth of highly aligned arrays of high aspect ratio barium titanate nanowires. Using a multiple step, scalable hydrothermal reaction, a textured titanium dioxide film is deposited on titanium foil upon which highly aligned nanowires are grown via homoepitaxy and converted to barium titanate. Scanning electron microscope images clearly illustrate the effect the textured film has on the degree of orientation of the nanowires. The alignment of nanowires is quantified by calculating the Herman's Orientation Factor, which reveals a 58% improvement in orientation as compared to growth in the absence of the textured film. The ferroelectric properties of barium titanate combined with the development of this scalable growth procedure provide a powerful route towards increasing the efficiency and performance of nanowire-based devices in future real-world applications such as sensing and power harvesting

  3. TiO2 ceramic varistor modified with tantalum and barium

    International Nuclear Information System (INIS)

    The non-linear current (I)-voltage (V) characteristics of titanium dioxide doped with small quantities of tantalum and barium (99.9 TiO2 + 0.1 Ta and 99.4 TiO2 + 0.1 Ta + 0.5 Ba, all are in at.%) were investigated. These samples have the non-linear coefficient (α) values of (20-30) with high breakdown voltages (E B ∼ 400-700 V mm-1). The pentavalent tantalum acts as donor and increases the electronic conductivity. The higher electrical conductivity and decrease in the breakdown field strength with barium addition is attributed to higher density. The acceptor like surface states formed by barium ions segregate to grain boundaries due size misfit to thereby modifying the electrical barrier characteristics of grain boundaries

  4. Prompt ionization in the CRIT II barium releases. [Critical Ionization Tests

    Science.gov (United States)

    Torbert, R. B.; Kletzing, C. A.; Liou, K.; Rau, D.

    1992-01-01

    Observations of electron and ion distributions inside a fast neutral barium jet in the ionosphere show significant fluxes within 4 km of release, presumably related to beam plasma instability processes involved in the Critical Ionization Velocity (CIV) effect. Electron fluxes exceeding 5 x 10 exp 12/sq cm-str-sec-keV were responsible for ionizing both the streaming barium and ambient oxygen. Resulting ion fluxes seem to be consistent with 1-2 percent ionization of the fast barium, as reported by optical observations, although the extended spatial distribution of the optically observed ions is difficult to reconcile with the in situ observations. When the perpendicular velocity of the neutrals falls below critical values, these processes shut off. Although these observations resemble the earlier Porcupine experimental results (Haerendel, 1982), theoretical understanding of the differences between these data and that of earlier negative experiments is still lacking.

  5. Improved thermal stability and wettability behavior of thermoplastic polyurethane / barium metaborate composites

    International Nuclear Information System (INIS)

    In this paper, it was targeted to the enhance thermal stability and wettability behavior of thermoplastic polyurethane (TPU) by adding barium metaborate. TPU-Barium metaborate composites were prepared by adding various proportions of barium metaborate to TPU. The chemical structures of the composites were characterised by fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) analysis. All prepared composites have extremely high Tg and thermal stability as determined from DSC and TGA analysis. All composite materials have the Tg ranging from 15 to 35 °C. The surface morphologies of the composites were investigated by a scanning electron microscopy. Mechanical properties of the samples were characterized with stress-strain test. Hydrophobicity of the samples was determined by the contact angle measurements. The obtained results proved that thermal, hydrophobic and mechanical properties were improved. (author)

  6. Unexpected finding of barium sulphate on the surface of a microspinal catheter

    International Nuclear Information System (INIS)

    During a study with a scanning electron microscope to evaluate the structure of microspinal catheter after its removal from subarachnoid space, we found an unusual case. The observation with the microscope of the tip of a catheter removed at the end of an operation for hip replacement in a old female showed the presence of grounded particles with a crystal shape covering the outer surface. Further analysis of this material with an Energy-Dispersive Spectrometer (EDS) showed that it was barium. The patient performed a large bowel barium enema 8 months earlier for a painful syndrome to the lower abdomen. Authors rule out the contamination from the skin and suggest two possible mechanisms of passage of barium from blood to cerebrospinal fluid (CSF) and so to the surface of the catheter

  7. Barium sulphate preparations for use in double contrast examination of the upper gastrointestinal tract

    International Nuclear Information System (INIS)

    Physical properties relevant to upper gastrointestinal radiology have been compared for five barium sulphate preparations and related to radiographic results. Evaluation of particles (size and stability) and whole suspension (dispersibility and fluidity) resulted in ranking of the preparations generally in accord with that based on radiological experience in double contrast examinations of the stomach. Experiments with extirpated pig stomach revealed a tendency for large particles in a low viscosity barium sulphate suspension to settle in mucosal grooves. This is believed to contribute to good radiographic definition of both the areae gastricae and small lesions. Particle size is therefore important and susceptibility to flocculation, a possible cause of random change in size during use, was assessed by measuring particle electrophoretic mobility under varying conditions; quantitative differences in suspension flow and dispersibility were also demonstrated. Fluidity and dispersibility together with rapid sedimentation of suitably sized particles resistant to flocculation underlie the successful use of low viscosity high density barium sulphate suspensions. (U.K.)

  8. Barium and strontium sulfate solid solution formation in relation to North Sea scaling problems

    International Nuclear Information System (INIS)

    This paper presents the results of laboratory experiments carried out to investigate barium sulphate and strontium sulphate solid solution formation in multi-pressure tapped cores. Two brines, one barium and strontium rich and the other sulphate rich, were mixed in a core plug. Pressure differentials were measured and the changing permeability distribution along the length of the core calculated. The morphology and chemical analysis of scaling crystals are presented based on Scanning electron Microsocpy (SEM) and Energy Dispersive X-ray Analysis (EDAX). The results show the large extent of permeability damage caused by (Ba, SR) SO/sub 4/ solid solution depositing on the rock pore surface. The rock permeability decline and morphology and size of the scaling crystals indicate the influence of the supersaturations of BaSO/sub 4/ and SrSO/sub 4/ as well as the concentration ratio of barium ions to strontium ions

  9. Use of the barium enema in the diagnosis of necrotizing enterocolitis

    Energy Technology Data Exchange (ETDEWEB)

    Uken, P.; Smith, W.; Franken, E.A.; Frey, E.; Sato, Y.; Ellerbroek, C.

    1988-01-01

    Necrotizing enterocolitis (NEC) is associated with considerable morbidity and mortality in infants. The diagnosis relies heavily upon radiographic and clinical features. Failure to accurately diagnose NEC is associated with a risk of complications and death, however overdiagnosis also causes both morbidity and mortality as well as excessive medical costs. This report documents the use of barium enema to evaluate suspected clinical or radiographic NEC in 31 premature infants with ambiguous clinical and radiographic signs. The enema was normal in 26 infants and no treatment for NEC was given. Only one of these infants developed signs of NEC subsequent to the examination. Five infants had radiographic evidence of colitis including small ulcerations, spasm, intramural extravasation of barium and mucosal irregularity. Two of the five positive cases are pathologically documented. The barium enema can represent a significant improvement in the specificity of the diagnosis of NEC. Its greatest value is in the exclusion of NEC in ambiguous cases.

  10. Improved thermal stability and wettability behavior of thermoplastic polyurethane / barium metaborate composites

    Energy Technology Data Exchange (ETDEWEB)

    Baştürka, Emre; Madakbaş, Seyfullah; Kahraman, Memet Vezir, E-mail: smadakbas@marmara.edu.tr [Department of Chemistry, Marmara University, Istanbul (Turkey)

    2016-03-15

    In this paper, it was targeted to the enhance thermal stability and wettability behavior of thermoplastic polyurethane (TPU) by adding barium metaborate. TPU-Barium metaborate composites were prepared by adding various proportions of barium metaborate to TPU. The chemical structures of the composites were characterised by fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) analysis. All prepared composites have extremely high Tg and thermal stability as determined from DSC and TGA analysis. All composite materials have the Tg ranging from 15 to 35 °C. The surface morphologies of the composites were investigated by a scanning electron microscopy. Mechanical properties of the samples were characterized with stress-strain test. Hydrophobicity of the samples was determined by the contact angle measurements. The obtained results proved that thermal, hydrophobic and mechanical properties were improved. (author)

  11. Surface characterization of a decarburized and nitrided steel.

    Science.gov (United States)

    Calliari, Irene; Dabalà, Manuele; Zanesco, Marzia; Bernardo, Enrico; Olmi, Filippo; Vagelli, Gloria

    2006-08-01

    This article describes the effects of surface controlled decarburization on the structure of a nitrided steel. Samples of quenched and tempered 40CrMo4 steel were decarburized by air heat treatment (800-900 degrees C) at different depths and submitted to gaseous nitriding. The microstructure of surface layers after decarburization and nitriding were investigated by optical (OM) and scanning electron microscopy (SEM). The nitrogen and carbon profiles in the diffusion layers were determined by a scanning electron microscope equipped with a wavelength dispersive spectrometer (EPMA-WDS). The effect of nitriding was determined by microhardness measurements. The increasing of time and temperature of decarburization slightly affect the surface hardness values, while case hardness depths decrease. In all the specimens, the nitriding depth, as determined by the WDS nitrogen profile, is larger than the one determined by the hardness profile. PMID:16842649

  12. Design of nitride semiconductors for solar energy conversion

    Energy Technology Data Exchange (ETDEWEB)

    Zakutayev, Andriy

    2016-01-01

    Nitride semiconductors are a promising class of materials for solar energy conversion applications, such as photovoltaic and photoelectrochemical cells. Nitrides can have better solar absorption and electrical transport properties than the more widely studied oxides, as well as the potential for better scalability than other pnictides or chalcogenides. In addition, nitrides are also relatively unexplored compared to other chemistries, so they provide a great opportunity for new materials discovery. This paper reviews the recent advances in the design of novel semiconducting nitrides for solar energy conversion technologies. Both binary and multinary nitrides are discussed, with a range of metal chemistries (Cu3N, ZnSnN2, Sn3N4, etc.) and crystal structures (delafossite, perovskite, spinel, etc.), including a brief overview of wurtzite III-N materials and devices. The current scientific challenges and promising future directions in the field are also highlighted.

  13. Individual-specific transgenerational marking of fish populations based on a barium dual-isotope procedure.

    Science.gov (United States)

    Huelga-Suarez, Gonzalo; Moldovan, Mariella; Garcia-Valiente, America; Garcia-Vazquez, Eva; Alonso, J Ignacio Garcia

    2012-01-01

    The present study focuses on the development and evaluation of an individual-specific transgenerational marking procedure using two enriched barium isotopes, (135)Ba and (137)Ba, mixed at a given and selectable molar ratio. The method is based on the deconvolution of the isotope patterns found in the sample into four molar contribution factors: natural xenon (Xe nat), natural barium (Ba nat), Ba135, and Ba137. The ratio of molar contributions between Ba137 and Ba135 is constant and independent of the contribution of natural barium in the sample. This procedure was tested in brown trout ( Salmo trutta ) kept in captivity. Trout were injected with three different Ba137/Ba135 isotopic signatures ca. 7 months and 7 days before spawning to compare the efficiency of the marking procedure at long and short term, respectively. The barium isotopic profiles were measured in the offspring by means of inductively coupled plasma mass spectrometry. Each of the three different isotopic signatures was unequivocally identified in the offspring in both whole eggs and larvae. For 9 month old offspring, the characteristic barium isotope signatures could also be detected in the otoliths even in the presence of a high and variable amount of barium of natural isotope abundance. In conclusion, it can be stated that the proposed dual-isotope marking is inheritable and can be detected after both long-term and short-term marking. Furthermore, the dual-isotope marking can be made individual-specific, so that it allows identification of offspring from a single individual or a group of individuals within a given fish group. PMID:22103693

  14. Preparation and characterization of ZnSn-substituted barium ferrite thin films

    International Nuclear Information System (INIS)

    The preparation of ZnSn-substituted barium ferrite films by sputtering deposition was studied. The as-sputtered films were amorphous, and annealing at a minimum of 750 oC was required to crystallize the films, based on the X-ray diffraction analysis and the magnetic measurements. Scanning electron microscopy combined with energy-dispersive X-ray spectroscopic microanalysis confirmed that the films were single phase with the composition BaZnxSnxFe12-2xO19, x=0.2-0.3, and their thicknesses were 0.4-1.0 μm when annealed at 750-900 oC. Atomic and magnetic force microscopy studies showed no significant grain growth upon annealing and that the films consisted of single-domain grains forming interaction-cluster-type domains. The natural ferromagnetic resonance frequency was determined at around 4 GHz, together with substantial magnetic losses that make these films promising candidates for microwave absorbers. - Research highlights: → ZnSn-substituted barium ferrite films can be prepared with a sputtering-deposition followed by annealing at 750-900 oC. → The ZnSn-substituted barium ferrite films consist from magnetically coupled single-domain grains. → The ZnSn-substitution in barium ferrite films reduces the ferromagnetic resonance from 48 to 4 GHz. → The ZnSn-substituted barium ferrite films show large magnetic losses at 7-15 GHz. → The ZnSn-substituted barium ferrite films are suitable for microwave absorbers.

  15. Radiofrequency cold plasma nitrided carbon steel: Microstructural and micromechanical characterizations

    International Nuclear Information System (INIS)

    Highlights: → C38 carbon steel samples were plasma nitrided using a radiofrequency (rf) nitrogen plasma discharge. → RF plasma treatment enables nitriding for non-heated substrates. → The morphological and chemical analyses show the formation of a uniform thickness on the surface of the nitrided C38 steel. → Nitrogen plasma active species diffuse into the samples and lead to the formation of FexN. → The increase in microhardness values for nitrided samples with plasma processing time is interpreted by the formation of a thicker nitrided layer on the steel surface. - Abstract: In this work, C38 carbon steel was plasma nitrided using a radiofrequency (rf) nitrogen plasma discharge on non-heated substrates. General characterizations were performed to compare the chemical compositions, the microstructures and hardness of the untreated and plasma treated surfaces. The plasma nitriding was carried out on non-heated substrates at a pressure of 16.8 Pa, using N2 gas. Surface characterizations before and after N2 plasma treatment were performed by means of the electron probe microanalysis (EPMA), X-ray photoelectron spectroscopy (XPS) and Vickers microhardness measurements. The morphological and chemical analysis showed the formation of a uniform structure on the surface of the nitrided sample with enrichment in nitrogen when compared to untreated sample. The thickness of the nitride layer formed depends on the treatment time duration and is approximately 14 μm for 10 h of plasma treatment. XPS was employed to obtain chemical-state information of the plasma nitrided steel surfaces. The micromechanical results show that the surface microhardness increases as the plasma-processing time increases to reach, 1487 HV0.005 at a plasma processing time of 8 h.

  16. A chromium nitride/carbon nitride containing graphitic carbon nanocapsule hybrid as a Pt-free electrocatalyst for oxygen reduction.

    Science.gov (United States)

    Zhao, Lu; Wang, Lei; Yu, Peng; Zhao, Dongdong; Tian, Chungui; Feng, He; Ma, Jing; Fu, Honggang

    2015-08-11

    Chromium nitride nanoparticles supported on graphitic carbon nanocapsules containing carbon nitride (CrN/GC) have been synthesized by a solvothermal-assisted ion-exchange route. As a Pt-free catalyst, the CrN/GC hybrid exhibits superior activity, stability, methanol immunity and a dominant 4-electron pathway towards oxygen reduction reaction. PMID:26145711

  17. Barium hydrogen phosphate/gelatin composites versus gelatin-free barium hydrogen phosphate: synthesis and characterization of properties.

    Science.gov (United States)

    Gashti, Mazeyar Parvinzadeh; Burgener, Matthias; Stir, Manuela; Hulliger, Jürg

    2014-10-01

    Recently, attention has been spent on crystal growth of phosphate compounds in gels for studying the mechanism of in vitro crystallization processes. Here, we present a gel-based approach for the synthesis of barium hydrogen phosphate (BHP) crystals using single and double diffusion techniques in gelatin. The composite crystals were compared with analytical grade BHP powder, single and polycrystalline BHP materials using Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), scanning pyroelectric microscopy (SPEM), optical microscopy (OM), thermal gravimetric analysis (TGA) and X-ray diffraction (XRD). FTIR spectra showed surface adsorption of gelatin molecules by using BHP stacked sheets due to CH2 stretching, CH2 bending and amide I vibrations are found in a gelatin content of about 2% determined by dissolution. SEM shows various crystal morphologies of the BHP/gelatin composites forming bundled micro-flakes to irregular bundled needles and spheres different from gel-free crystals. The variety in morphology depends on the ion concentration, pH of gel as well as the method of crystal growth. SPEM investigation of BHP/gelatin aggregates revealed polar domains showing alteration of the polarization. Moreover, BHP/gelatin composite crystals showed a higher thermal stability in comparison with analytical grade BHP or/and BHP single crystals due to strong interactions between gelatin and BHP. The XRD diffraction analysis demonstrated that the single and double diffusion techniques in gelatin led to the formation of orthorhombic BHP. This study demonstrates that gelatin is a useful high molecular weight biomacromolecule for controlling the crystallization of a composite material by producing a variety of morphological forms. PMID:24996024

  18. Magnetic properties of barium ferrite dispersed within polystyrene-butadiene-styrene block copolymers.

    Science.gov (United States)

    Chipara, M; Skomski, R; Ali, N; Hui, D; Sellmyer, D J

    2009-06-01

    Magnetic properties of nanocomposite materials obtained by dispersing barium ferrite nanoparticles within polystyrene-butadiene-styrene block copolymer, in the temperature range, 300 to 500 K are reported. The temperature dependence of the magnetization at saturation, averaged uniaxial magnetocrystalline anisotropy, and coercive field of thick films are analyzed. A "matrix effect" was noticed within the glass transition range of the hard component (polystyrene) of the polymeric matrix. The reported modifications of the magnetic properties were assigned to the competition between the magnetic and mechanical reorientation of nanoparticles within the polymeric matrix. Such modifications were not observed in barium ferrite dispersed in cement. PMID:19504902

  19. Dielectric properties of piezoelectric 3–0 composites of lithium ferrite/barium titanate

    Indian Academy of Sciences (India)

    P Sarah; S V Suryanarayana

    2003-12-01

    Piezoelectric 3–0 composite ceramics are prepared from a mixture of barium titanate and lithium ferrite phase constituents. Dielectric properties of composites are affected by a number of parameters that include electrical properties, size, shape and amount of constituent phases. The frequency dependent measurements can provide additional insight into mechanisms controlling electrical response. Frequency dependence of dielectric constant plots of lithium ferrite/barium titanate composites will be given and the relevance of trends seen in them will be discussed. Connectivity in composites developed is studied.

  20. The structural properties of barium cobalt hexaferrite powder prepared by a simple heat treatment method

    Science.gov (United States)

    Chauhan, Chetna; Jotania, Rajshree

    2016-05-01

    The W-type barium hexaferrite was prepared using a simple heat treatment method. The precursor was calcinated at 650°C for 3 hours and then slowly cooled to room temperature in order to obtain barium cobalt hexaferrite powder. The prepared powder was characterised by different experimental techniques like XRD, FTIR and SEM. The X-ray diffractogram of the sample shows W-and M phases. The particle size calculated by Debye Scherrer formula. The FTIR spectra of the sample was taken at room temperature by using KBr pallet method which confirms the formation of hexaferrite phase. The morphological study on the hexaferrite powder was carried out by SEM analysis.

  1. Growth conditions effect on growth strips in barium-strontium niobate crystals

    International Nuclear Information System (INIS)

    The growth bands appeared due to a change of the instantaneous growth rate are studied in the crystals of solid solution of barium and strontium niobates obtained by the method of Chokhral'skii. Instability of thermal conditions in the crystallization front leading to a change of the instantaneous growth rate is caused by several factors: insufficient accuracy in keeping the operating temperature, the presence of convection, displacement of crystallization front in an inhomogeneous thermal field, for instance when crystal rotates. Considered are the ways of diminiching the temperature vibrations in a melt and found are the conditions for obtaining optically homogeneous monocrystals of barium-strontium niobate

  2. Barium meal examination of infants under four months of age presenting with vomiting

    International Nuclear Information System (INIS)

    One hundred barium meal examinations performed on infants of less than 4 months of age are reviewed. All the infants presented with vomiting as a major symptom and the diagnosis remained in doubt following the initial clinical assessment. Fifty seven per cent of the examinations showed an abnormality of which 45% were throught to be significant. Hypertrophic pyloric stenosis was demonstrated in 23 infants. Other abnormalities included hiatus hernia, gastrooesophageal reflux, and duodenal abnormalities. The value of barium meal examinations in this group of infants is emphasised. (orig.)

  3. Barium meal examination of infants under four months of age presenting with vomiting

    Energy Technology Data Exchange (ETDEWEB)

    Arthur, R.J.; Ziervogel, M.A.; Azmy, A.F.

    1984-02-01

    One hundred barium meal examinations performed on infants of less than 4 months of age are reviewed. All the infants presented with vomiting as a major symptom and the diagnosis remained in doubt following the initial clinical assessment. Fifty seven per cent of the examinations showed an abnormality of which 45% were throught to be significant. Hypertrophic pyloric stenosis was demonstrated in 23 infants. Other abnormalities included hiatus hernia, gastrooesophageal reflux, and duodenal abnormalities. The value of barium meal examinations in this group of infants is emphasised.

  4. Temperature-Dependent Raman Spectra and Microstructure of Barium Metaborate Crystals and Its Melts

    Institute of Scientific and Technical Information of China (English)

    尤静林; 蒋国昌; 侯怀宇; 吴永全; 陈辉; 徐匡迪

    2002-01-01

    We have measured the Raman spectra of β- and α-barium metaborate in crystal and liquid states from room temperature to 1873K, with a semiconductor laser as the laser source, coupled with a time-resolved detection system to eliminate the dense thermal emission background when temperature was considerably high.Temperature-dependent Raman spectra can clearly indicate that the phase transformation from β- to α-barium metaborate has been completed during 1273 - 1300 K. Variations of different kinds of microstructure units with temperature are identified and discussed.

  5. Calcium barium niobate as a functional material for broadband optical frequency conversion.

    Science.gov (United States)

    Sheng, Yan; Chen, Xin; Lukasiewicz, Tadeusz; Swirkowicz, Marek; Koynov, Kaloian; Krolikowski, Wieslaw

    2014-03-15

    We demonstrate the application of as-grown calcium barium niobate (CBN) crystal with random-sized ferroelectric domains as a broadband frequency converter. The frequency conversion process is similar to broadband harmonic generation in commonly used strontium barium niobate (SBN) crystal, but results in higher conversion efficiency reflecting a larger effective nonlinear coefficient of the CBN crystal. We also analyzed the polarization properties of the emitted radiation and determined the ratio of d32 and d33 components of the second-order susceptibility tensor of the CBN crystal. PMID:24690779

  6. Chemical composition of nanomodified composite binder with nano- and microsized barium silicate

    Directory of Open Access Journals (Sweden)

    KOROLEV Evgenij Valerjevich

    2014-08-01

    Full Text Available There are several possibilities to improve cement-based binders. In particular, many properties of cement stone can be enhanced by means of micro- and nanoscale modification. In a number of previous works we had shown that application of barium hydrosilicates leads to such improvement. The present article is devoted to the investigation of the chemical composition of the cement stone which is modified by means of addition of barium hydrosilicates. The modification was performed on different scales: micro- and nanoscale; the results of simultaneous multi-scale modification are also presented. The examination was carried out with help of different modern research techniques – FT IR spectroscopy, differential thermal analysis and X-ray phase analysis. Identification of the new phases and comparative quantitative assessment of their content are performed. It is found that the use of nano- and micro-sized barium hydrosilicates as additives leads to reduction of portlandite by 27...28%; by means of multi-scale modification it is possible to reduce the content of portlandite much more (by 83.3%. Due to addition of nano- and micro-sized barium-based modifiers both the amount of calcium hydrosilicates in reaction products is enlarged, and structure of the mentioned hydrosilicates is changed (the formation of a fine-grained structure of hydration products takes place. Micro-sized barium hydrosilicates are chemically active additives and promote the formation of an additional quantity of calcium hydrosilicates of type CSH (I. The use of nanoscale barium hydrosilicates promotes the formation of CSH (I and CSH (II calcium hydrosilicates, and also both riversidite and xonotlite. As a result of simultaneous application of nano- and micro-sized barium hydrosilicates the content of CSH (II increases. This can be confirmed by means of differential thermal and X-ray analysis. The amount of CSH (I, riversidite and various tobermorites is also increases. It is

  7. Effects of oleic acid on the high threshold barium current in seabass Dicentrarchus labrax ventricular myocytes

    OpenAIRE

    Chatelier, Aurelien; Imbert, Nathalie; Zambonino, Jose-luis; McKenzie, David; Bois, P.

    2006-01-01

    The present study employed a patch clamp technique in isolated seabass ventricular myocytes to investigate the hypothesis that oleic acid (OA), a mono-unsaturated fatty acid, can exert direct effects upon whole-cell barium currents. Acute application of free OA caused a dose-dependent depression of the whole-cell barium current that was evoked by a voltage step to 0 mV from a holding potential of -80 mV. The derived 50% inhibitory concentration (IC50) was 12.49 +/- 0.27 mu mol l(-1). At a con...

  8. Synthesis, characterization and thermostability of barium β-diketonate with tetraethylenepentamine ligand

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    The metal-organic chemical vapor deposition (MOCVD) technique is a promising process for high-temperature superconductor YBa2Cu3O7-δ(YBCO) preparation. In this technique, it is a challenge to obtain barium precursors with high volatility. In addition, the purity, evaporation characteristics and thermostability of adopted precursors in the whole process would decide the quality and reproducible results of YBCO film. In the present report, the barium precursor containing 2,2,6,6-tetramethylheptane-3,5-dionate...

  9. The structural and magnetic properties of barium ferrite powders prepared by the sol-gel method

    Institute of Scientific and Technical Information of China (English)

    Li Jie; Zhang Huai-Wu; Li Yuan-Xun; Liu Ying-Li; Ma Yan-Bing

    2012-01-01

    In this paper,M-type hexagonal barium ferrite powders are synthesized using the sol-gel method.A dried precursor heated in air is analyzed in the temperature range from 50 to 1200 ℃ using thermo-gravimetric analysis and differential scanning calorimetry. The effects of the additives and the cacinating temperature on the magnetic properties are investigated,and the results show that single-phase barium ferrite powders can be formed. After heat-treating at 950 ℃ for 4h with 3 wt% additive,the coercivity and saturation magnetization are found to be 440 Oe and 57.9 emu/g,respectively.

  10. Features of Raman amplification in KGW and barium nitrate crystals at excitation by femtosecond pulses

    International Nuclear Information System (INIS)

    Measurements of Raman amplification in KGd(WO4)2 (KGW) and barium nitrate crystals at femtosecond excitation demonstrate spectral transformation of amplification band with change of pump parameters. The half-height amplification bandwidth of up to 45 nm (650 cm-1) what is 5 times larger than the pumping pulse spectral band 8.5 nm (130 cm-1) was observed for KGW crystal. Implementation of impulsive excitation for the low-frequency vibrations allows estimations of the dephasing times and linewidths for the 87 and 83 cm-1 Raman lines in KGW and barium nitrate

  11. Hydrolysis of hafnium nitrides and carbides

    International Nuclear Information System (INIS)

    Hydrolysis of Hafnium Nitrides and Carbides. The hydrolytic behavior of Hafnium mononitride and monocarbide has been studied and compared with that of Titanium and Zirconium nitrides and carbides. In the case of hydrolysis of HfN the gaseous products were H2, N2 and a small amount of NO, and the liquid product was NH3, as in the case of TiN and ZrN. In isothermal hydrolysis the principal product was NH3 at temperatures lower than 8000C, which was replaced by N2 at temperatures higher than 9000C. In this respect HfN was similar to ZrN, but not to TiN which produced mainly N2 even by hydrolysis at 8000C. The products of hydrolysis of HfC were found to be CO, CO2, H2 and a small amount of CH4 also as in the case of TiC and ZrC. In the isothermal hydrolysis of HfC it was observed that a large amount of H2 evolved at the early stage of the hydrolysis while CO2 continued to evolve with some amount of H2 even after the ceasing of CO evolution. From analysis of the hydrolytic behavior the solid residue after the hydrolysis of HfC was considered to contain some waxes (Csub(n)Hsub(m)). It was suggested that the carbide of the element of smaller atomic number (Ti) would tend to form oxygen compounds (CO, CO2) while the carbide of the element of larger atomic number (Zr, Hf) hydrogen compounds(Csub(n)Hsub(m)), since ThC and UC formed only hydrocarbons and H2 by hydrolysis. This suggestion was also valid to nitride. (auth.)

  12. Effect of Plasma Nitriding on the Performance of WC-Co Cutting Tools

    Science.gov (United States)

    Hamzaoglu, Ebru; Yilmaz, Safak; Gulmez, Turgut

    2011-04-01

    This paper presents the effect of nitriding process parameters on the cutting performance of WC-Co tools. The cutting performance was measured by CNC machining of GG25 cast iron parts. The hardness and phase composition of nitrided layer were determined for different plasma nitriding temperatures and times. The hardness of the nitrided layer increased at all plasma nitrided conditions investigated. However, the machining performance of the cutting inserts varied in the range between a 60% increase and a 40% decrease after plasma nitriding. The maximum number of machined parts was seen when the insert was nitrided at 600 °C-4 h and at 500 °C-4 h.

  13. CT-Guided Percutaneous Transthoracic Localization of Pulmonary Nodules Prior to Video-Assisted Thoracoscopic Surgery Using Barium Suspension

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Nyoung Keun; Park, Chang Min; Kang, Chang Hyun; Jeon, Yoon Kyung; Choo, Ji Yung; Lee, Hyun Ju; Goo, Jin Mo [Seoul National University College of Medicine, Seoul (Korea, Republic of)

    2012-11-15

    To describe our initial experience with CT-guided percutaneous barium marking for the localization of small pulmonary nodules prior to video-assisted thoracoscopic surgery (VATS). From October 2010 to April 2011, 10 consecutive patients (4 men and 6 women; mean age, 60 years) underwent CT-guided percutaneous barium marking for the localization of 10 small pulmonary nodules (mean size, 7.6 mm; range, 3-14 mm): 6 pure ground-glass nodules, 3 part-solid nodules, and 1 solid nodule. A 140% barium sulfate suspension (mean amount, 0.2 mL; range, 0.15-0.25 mL) was injected around the nodules with a 21-gauge needle. The technical details, surgical findings and pathologic features associated with barium localizations were evaluated. All nodules were marked within 3 mm (mean distance, 1.1 mm; range, 0-3 mm) from the barium ball (mean diameter, 9.6 mm; range, 8-16 mm) formed by the injected barium suspension. Pneumothorax occurred in two cases, for which one needed aspiration. However, there were no other complications. All barium balls were palpable during VATS and visible on intraoperative fluoroscopy, and were completely resected. Both the whitish barium balls and target nodules were identifiable in the frozen specimens. Pathology revealed one invasive adenocarcinoma, five adenocarcinoma-in-situ, two atypical adenomatous hyperplasias, and two benign lesions. In all cases, there were acute inflammations around the barium balls which did not hamper the histological diagnosis of the nodules. CT-guided percutaneous barium marking can be an effective, convenient and safe pre-operative localization procedure prior to VATS, enabling accurate resection and diagnosis of small or faint pulmonary nodules.

  14. Effects of Nitrogen Gas Ratio on Nitride Layer and Microhardness of Tool Steel(SKH51) in Plasma Nitriding

    Energy Technology Data Exchange (ETDEWEB)

    Kim, D.J.; Lee, H.R. [Institute for Advanced Engineering, Yongin (Korea); Kwak, J.G. [Korea Atomic Energy Research Institute, Taejon (Korea); Chung, U.C.; Cho, Y.R. [Pusan National University, Pusan (Korea)

    2002-06-01

    Pulsed DC-plasma nitriding has been applied to form nitride layer having only a diffusion layer. The discharge current with the variation of discharge gases is proportional to the intensity of N{sub 2}{sup +} peak in optical emission spectroscopy during the plasma nitriding. The discharge current, microhardness in surface of substrate and depth of nitride layer increased with the ratio of N{sub 2} to H{sub 2} gas in discharge gases. When the ratio of N{sub 2} to H{sub 2} is lower than 60% in the discharge gases, high microhardness value of 1100Hv nitride layer which contains no compound layer has been formed. (author). 20 refs., 6 figs., 1 tab.

  15. Ballistic thermoelectric properties in boron nitride nanoribbons

    Science.gov (United States)

    Xie, Zhong-Xiang; Tang, Li-Ming; Pan, Chang-Ning; Chen, Qiao; Chen, Ke-Qiu

    2013-10-01

    Ballistic thermoelectric properties (TPs) in boron nitride nanoribbons (BNNRs) are studied using the nonequilibrium Green's function atomistic simulation of electron and phonon transport. A comparative analysis for TPs between BNNRs and graphene nanoribbons (GNRs) is made. Results show that the TPs of BNNRs are better than those of GNRs stemming from the higher power factor and smaller thermal conductance of BNNRs. With increasing the ribbon width, the maximum value of ZT (ZTmax) of BNNRs exhibits a transformation from the monotonic decrease to nonlinear increase. We also show that the lattice defect can enhance the ZTmax of these nanoribbons strongly depending on its positions and the edge shape.

  16. Magnesium doping of boron nitride nanotubes

    Science.gov (United States)

    Legg, Robert; Jordan, Kevin

    2015-06-16

    A method to fabricate boron nitride nanotubes incorporating magnesium diboride in their structure. In a first embodiment, magnesium wire is introduced into a reaction feed bundle during a BNNT fabrication process. In a second embodiment, magnesium in powder form is mixed into a nitrogen gas flow during the BNNT fabrication process. MgB.sub.2 yarn may be used for superconducting applications and, in that capacity, has considerably less susceptibility to stress and has considerably better thermal conductivity than these conventional materials when compared to both conventional low and high temperature superconducting materials.

  17. Reactive sputter deposition of boron nitride

    International Nuclear Information System (INIS)

    The preparation of fully dense, boron targets for use in planar magnetron sources has lead to the synthesis of Boron Nitride (BN) films by reactive rf sputtering. The deposition parameters of gas pressure, flow and composition are varied along with substrate temperature and applied bias. The films are characterized for composition using Auger electron spectroscopy, for chemical bonding using Raman spectroscopy and for crystalline structure using transmission electron microscopy. The deposition conditions are established which lead to the growth of crystalline BN phases. In particular, the growth of an adherent cubic BN coating requires 400--500 C substrate heating and an applied -300 V dc bias

  18. Boron nitride nanomaterials for thermal management applications.

    Science.gov (United States)

    Meziani, Mohammed J; Song, Wei-Li; Wang, Ping; Lu, Fushen; Hou, Zhiling; Anderson, Ankoma; Maimaiti, Halidan; Sun, Ya-Ping

    2015-05-18

    Hexagonal boron nitride nanosheets (BNNs) are analogous to their two-dimensional carbon counterparts in many materials properties, in particular, ultrahigh thermal conductivity, but also offer some unique attributes, including being electrically insulating, high thermal stability, chemical and oxidation resistance, low color, and high mechanical strength. Significant recent advances in the production of BNNs, understanding of their properties, and the development of polymeric nanocomposites with BNNs for thermally conductive yet electrically insulating materials and systems are highlighted herein. Major opportunities and challenges for further studies in this rapidly advancing field are also discussed. PMID:25652360

  19. Cathodoluminescence spectra of gallium nitride nanorods

    OpenAIRE

    Tsai, Chia-Chang; Li, Guan-Hua; Lin, Yuan-Ting; Chang, Ching-Wen; Wadekar, Paritosh; Chen, Quark Yung-Sung; Rigutti, Lorenzo; Tchernycheva, Maria; Julien, François Henri; Tu, Li-Wei

    2011-01-01

    Gallium nitride [GaN] nanorods grown on a Si(111) substrate at 720°C via plasma-assisted molecular beam epitaxy were studied by field-emission electron microscopy and cathodoluminescence [CL]. The surface topography and optical properties of the GaN nanorod cluster and single GaN nanorod were measured and discussed. The defect-related CL spectra of GaN nanorods and their dependence on temperature were investigated. The CL spectra along the length of the individual GaN nanorod were also studie...

  20. Plasma-Activated Sintering of Aluminum Nitride

    Science.gov (United States)

    Hensley, J. E.; Risbud, S. H.; Groza, J. R.; Yamazaki, K.

    1993-10-01

    The use of a new plasma- activated sintering (PAS) process to densify aluminum nitride (AIN) powders to nearly full theoretical density (97 to >99%) in 5 to 10 min was investigated. The process consists of a pulse activation step, followed by sintering at 1730 to 1800 °C using resistance heating in carbon dies. Submicron size (~0.44 μm) AIN powders of low oxygen content (submicron grain structure (~0.77 μm) with no apparent pores or intergranular phases. X- ray powder diffraction revealed no secondary crystalline phases.

  1. Low-dimensional boron nitride nanomaterials

    Directory of Open Access Journals (Sweden)

    Amir Pakdel

    2012-06-01

    Full Text Available In this review, a concise research history of low-dimensional boron nitride (BN nanomaterials followed by recent developments in their synthesis, morphology, properties, and applications are presented. Seventeen years after the initial synthesis of BN nanotubes, research on BN nanomaterials has developed far enough to establish them as one of the most promising inorganic nanosystems. In this regard, it is envisaged that the unique properties of low-dimensional BN systems, such as superb mechanical stiffness, high thermal conductivity, wide optical bandgap, strong ultraviolet emission, thermal stability and chemical inertness will play a key role in prospective developments.

  2. Nitride and carbide preforms for infiltration process

    OpenAIRE

    A. Twardowska; Nowak, R; P. Kurtyka; B. Smuk; M. Podsiadło; L. Jaworska; N. Sobczak

    2007-01-01

    Purpose: Infiltration of molten metals into porous ceramic preforms is the only technique suitable for the fabrication of high volume fraction of ceramic materials in MMCs. The most popular material for porous preforms is Al2O3 because of its low cost. Infiltration process generates thermal stresses in the Al2O3 preforms. The thermal shock resistance of Al2O3 is lower than for Si3N4 or Al2O3/TiC+TiN materials. The aim of this study is to obtain the nitride and carbide base preforms material f...

  3. Ion nitriding; Proceedings of the International Conference, Cleveland, OH, Sept. 15-17, 1986

    Science.gov (United States)

    Spalvins, T. (Editor)

    1987-01-01

    The present conference discusses plasma-assisted surface coating/modification processes, the applications to date of ion nitriding, the effects of nitrogen on metal surfaces, ion nitriding mechanisms in Cr, Al and Cr + Al-containing 1040 steel, ion nitriding of Al and its alloys, life enhancement for forging dies, novel anode plasma nitriding developments, and a comparative study of the pulsed and dc ion-nitriding behavior in specimens with blind holes. Also discussed are the influence of heating method on ion nitriding, surface hardening of marage steels by ion nitriding without core hardness reduction, plasma nitriding of nodular cast iron sput gears, NbN composites for superconductors, the carburization of tungsten in a glow discharge methane plasma, economic considerations concerning plasma nitriding, and the corrosion properties obtained by ion nitriding.

  4. Behaviour of nitrided layers subjected to influence of hydrogen

    Directory of Open Access Journals (Sweden)

    J. Ćwiek

    2010-05-01

    Full Text Available Purpose: of this paper is evaluation of behaviour of plasma nitrided layers subjected to influence of internal and external hydrogen. Properties of nitrided layers like: hydrogen permeation and trapping, fracture mode, and plasticity were examined.Design/methodology/approach: Structural low-alloy steel was nitrided at glow discharge in the gas mixture of various N2, H2, and Ar content. Samples with nitrided layers were subjected to cathodic hydrogen charging in acid solution simulating the aged engine oil hydrogenating environment. The effect of the nitrided layers on the hydrogen transport and on the irreversible trapping was evaluated by the measurements of the hydrogen permeation rate and by the vacuum extraction, respectively. Surfaces with modified layers were examined with the use of a scanning electron microscope (SEM before and after hydrogen permeation tests. Slow strain rate test (SSRT on samples with and without nitrided layers was carried out in hydrogen generating environment. After SSRT fracture mode and plasticity of nitrided layers were examined with SEM.Findings: In the presence of the not defected compact nitride layer, no hydrogen permeation through the steel has been stated under the experimental conditions. Influence of hydrogen content in working atmosphere, i.e. internal hydrogen, was found. Absorbed hydrogen, i.e. external hydrogen, was accumulated within this layer.Research limitations/implications: There is no possibility to perform direct observations of exact mechanism of hydrogen-assisted cracking so far. Further research should be taken to reveal the exact mechanism of increased plasticity of nitrided layer with absorbed hydrogen.Practical implications: Plasma nitrided layers are effective barriers to hydrogen entry into structural steel utilised in aggressive environments, which is especially important in the case of possible hydrogen charging of exploited steel.Originality/value: Using the atmosphere of the higher

  5. Growth rate controlled barium partitioning in calcite and aragonite

    Science.gov (United States)

    Goetschl, Katja Elisabeth; Mavromatis, Vasileios; Baldermann, Andre; Purgstaller, Bettina; Dietzel, Martin

    2016-04-01

    The barium (Ba) content and the Ba/Ca molar ratios in biogenic and abiotic carbonates have been widely used from the scientific community as a geochemical proxy especially in marine and early diagenetic settings. The Ba content of carbonate minerals has been earlier associated to changes in oceanic circulation that may have been caused by upwelling, changes in weathering regimes and river-runoff as well as melt water discharge. The physicochemical controls of Ba ion incorporation in the two most abundant CaCO3 polymorphs found in Earth's surface environments, i.e. calcite and aragonite, have adequately been studied only for calcite. These earlier studies (i.e. [1]) suggest that at increasing growth rate, Ba partitioning in calcite is increasing as well. In contrast, to date the effect of growth rate on the partitioning of Ba in aragonite remains questionable, despite the fact that this mineral phase is the predominant carbonate-forming polymorph in shallow marine environments. To shed light on the mechanisms controlling Ba ion uptake in carbonates in this study we performed steady-state Ba co-precipitation experiments with calcite and aragonite at 25°C. The obtained results for the partitioning of Ba in calcite are in good agreement with those reported earlier by [1], whereas those for aragonite indicate a reduction of Ba partitioning at elevated aragonite growth rates, with the partitioning coefficient value between solid and fluid to be approaching the unity. This finding is good agreement with the formation of a solid solution in the aragonite-witherite system, owing to the isostructural crystallography of the two mineral phases. Moreover, our data set provides new insights that are required for reconstructing the evolution of the Ba content of pristine marine versus diagenetically altered carbonate minerals commonly occurring in marine subfloor settings, as the thermodynamically less stable aragonite will transform to calcite enriched in Ba, whilst affecting

  6. Ammonia Decomposition over Bimetallic Nitrides Supported on γ-Al2O3

    Institute of Scientific and Technical Information of China (English)

    Chun Shan LU; Xiao Nian LI; Yi Feng ZHU; Hua Zhang LIU; Chun Hui ZHOU

    2004-01-01

    A series of monometallic nitrides and bimetallic nitrides were prepared by temperature-programmed reaction with NH3. The effects of Co, Ni and Fe additives and the synergic action between Fe, Co, Ni and Mo on the ammonia decomposition activity were investigated. TPR-MS, XRD were also carried out to obtain better insight into the structure of the bimetallic nitride. The results of ammonia decomposition activity show that bimetallic nitrides are more active than monometallic nitrides or bimetallic oxides.

  7. ION NITRIDING AND THE INFLUENCE OF THE PROPERTIES OF THE STEEL

    OpenAIRE

    BAYCIK, Handan

    2002-01-01

    The nitriding performed to change the chemical composition of the surface is the method of a thermochemical surface hardening. Fine, hard nitrided case consist of two zones at the surface; The outer one white layer (compound layer), the inner one diffusion layer. The nitriding methods are determined at three groups as gas, salt and ion nitriding. Gas nitriding process is performed using ammonia. The nitrogen decompositing from the ammonia gas reacts with the iron and the alloy elements of the...

  8. Regeneration of barium carbonate from barium sulphide in a pilot-scale bubbling column reactor and utilization for acid mine drainage.

    Science.gov (United States)

    Mulopo, J; Zvimba, J N; Swanepoel, H; Bologo, L T; Maree, J

    2012-01-01

    Batch regeneration of barium carbonate (BaCO(3)) from barium sulphide (BaS) slurries by passing CO(2) gas into a pilot-scale bubbling column reactor under ambient conditions was used to assess the technical feasibility of BaCO(3) recovery in the Alkali Barium Calcium (ABC) desalination process and its use for sulphate removal from high sulphate Acid Mine Drainage (AMD). The effect of key process parameters, such as BaS slurry concentration and CO(2) flow rate on the carbonation, as well as the extent of sulphate removal from AMD using the recovered BaCO(3) were investigated. It was observed that the carbonation reaction rate for BaCO(3) regeneration in a bubbling column reactor significantly increased with increase in carbon dioxide (CO(2)) flow rate whereas the BaS slurry content within the range 5-10% slurry content did not significantly affect the carbonation rate. The CO(2) flow rate also had an impact on the BaCO(3) morphology. The BaCO(3) recovered from the pilot-scale bubbling column reactor demonstrated effective sulphate removal ability during AMD treatment compared with commercial BaCO(3). PMID:22233912

  9. Electronic structure and mechanical properties of plasma nitrided ferrous alloys

    International Nuclear Information System (INIS)

    The electronic structures of the near-surface regions of two different nitrided steels (AISI 316 and 4140) were investigated using X-ray photoelectron spectroscopy. Photoelectron groups from all main chemical elements involved were addressed for steel samples with implanted-N concentrations in the range 16-32 at.%. As the implanted-N concentrations were increased, rather contrasting behaviors were observed for the two kinds of steel. The N1s photoelectrons had spectral shifts toward lower (nitrided AISI 316) or higher (nitrided AISI 4140) binding energies, whereas the Fe2p3/2 photoelectron spectrum remains at a constant binding energy (nitrided AISI 316) or shifts toward higher binding energies (AISI 4140). These trends are discussed in terms of the metallic nitride formation and the overlapping of atomic orbitals. For nitrided AISI 316, a semi-classical approach of charge transfer between Cr and N is used to explain the experimental facts (formation of CrN), while for nitrided AISI 4140 we propose that the interaction between orbitals 4s from Fe and 2p from N promotes electrons to the conduction band increasing the electrical attraction of the N1s and Fe2p electrons in core shells (formation of FeNx). The increase in hardness of the steel upon N implantation is attributed to the localization of electrons in specific bonds, which diminishes the metallic bond character.

  10. Microstructural characterization of pulsed plasma nitrided 316L stainless steel

    International Nuclear Information System (INIS)

    Highlights: → The low temperature pulsed plasma nitrided layer of 316 SS was studied. → The plastic deformation induced in the austenite due to nitriding is characterized by EBSD at different depths (i.e., nitrogen concentration). → Nanomechanical properties of the nitride layer was investigated by nanoindentation at different depths (i.e., nitrogen concentration). → High hardness, high nitrogen concentration and high dislocation density is detected in the nitride layer. → The hardness and nitrogen concentration decreased sharply beyond the nitride layer. - Abstract: Pulsed plasma nitriding (PPN) treatment is one of the new processes to improve the surface hardness and tribology behavior of austenitic stainless steels. Through low temperature treatment (<440 deg. C), it is possible to obtain unique combinations of wear and corrosion properties. Such a combination is achieved through the formation of a so-called 'extended austenite phase'. These surface layers are often also referred to as S-phase, m-phase or γ-phase. In this work, nitrided layers on austenitic stainless steels AISI 316L (SS316L) were examined by means of a nanoindentation method at different loads. Additionally, the mechanical properties of the S-phase at different depths were studied. Electron back-scatter diffraction (EBSD) examination of the layer showed a high amount of plasticity induced in the layer during its formation. XRD results confirmed the formation of the S-phase, and no deleterious CrN phase was detected.

  11. Microstructural characterization of pulsed plasma nitrided 316L stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Asgari, M. [Norwegian University of Science and Technology, Trondheim (Norway); Barnoush, A., E-mail: a.barnoush@matsci.uni-sb.de [Saarland University, Saarbruecken (Germany); Johnsen, R. [Norwegian University of Science and Technology, Trondheim (Norway); Hoel, R. [MOTecH Plasma Company, Oslo (Norway)

    2011-11-25

    Highlights: {yields} The low temperature pulsed plasma nitrided layer of 316 SS was studied. {yields} The plastic deformation induced in the austenite due to nitriding is characterized by EBSD at different depths (i.e., nitrogen concentration). {yields} Nanomechanical properties of the nitride layer was investigated by nanoindentation at different depths (i.e., nitrogen concentration). {yields} High hardness, high nitrogen concentration and high dislocation density is detected in the nitride layer. {yields} The hardness and nitrogen concentration decreased sharply beyond the nitride layer. - Abstract: Pulsed plasma nitriding (PPN) treatment is one of the new processes to improve the surface hardness and tribology behavior of austenitic stainless steels. Through low temperature treatment (<440 deg. C), it is possible to obtain unique combinations of wear and corrosion properties. Such a combination is achieved through the formation of a so-called 'extended austenite phase'. These surface layers are often also referred to as S-phase, m-phase or {gamma}-phase. In this work, nitrided layers on austenitic stainless steels AISI 316L (SS316L) were examined by means of a nanoindentation method at different loads. Additionally, the mechanical properties of the S-phase at different depths were studied. Electron back-scatter diffraction (EBSD) examination of the layer showed a high amount of plasticity induced in the layer during its formation. XRD results confirmed the formation of the S-phase, and no deleterious CrN phase was detected.

  12. Thermal stability of laser-produced iron nitrides

    Science.gov (United States)

    Han, M.; Carpene, E.; Landry, F.; Lieb, K.-P.; Schaaf, P.

    2001-04-01

    Laser nitriding is a very efficient method to improve the mechanical properties, surface hardness, corrosion, and wear resistance of iron and steel, with the advantages of a high nitrogen concentration, fast treatment, and accurate position control, and without any undesired heating effect on the substrate. However, the stability of laser-produced iron nitrides is still under investigation. This article reports investigations of the thermal stability of these iron nitrides upon annealing treatments, which were conducted both in vacuum and air. The phase and elemental composition of the nitride layers were deduced from conversion electron Mössbauer spectroscopy, resonant nuclear reaction analysis, and grazing incidence x-ray diffraction. The surface hardness was measured by the nanoindentation method. In laser-nitrided iron, two critical temperatures are found: at 523 K the predominant iron-nitride phase changes from the γ/ɛ to the γ' phase. When the temperature exceeds 773 K, all of the nitrogen has escaped from the surface layer. For annealing in air the nitrogen escapes completely already at 673 K, where a thick oxide layer has formed. Stainless steel proved to be more stable than iron, and even up to 973 K no new phases or oxides were produced, here, also, only at 973 K the nitrogen content decreased significantly. Therefore, laser-nitrided stainless steel is well suited for applications.

  13. Characterization of plasma nitrided layers produced on sintered iron

    Directory of Open Access Journals (Sweden)

    Marcos Alves Fontes

    2014-07-01

    Full Text Available Plasma nitriding is a thermo-physical-chemical treatment process, which promotes surface hardening, caused by interstitial diffusion of atomic nitrogen into metallic alloys. In this work, this process was employed in the surface modification of a sintered ferrous alloy. Scanning electron microscopy (SEM, X-ray diffraction (XRD analyses, and wear and microhardness tests were performed on the samples submitted to ferrox treatment and plasma nitriding carried out under different conditions of time and temperature. The results showed that the nitride layer thickness is higher for all nitrided samples than for ferrox treated samples, and this layer thickness increases with nitriding time and temperature, and temperature is a more significant variable. The XRD analysis showed that the nitrided layer, for all samples, near the surface consists in a mixture of γ′-Fe4N and ɛ-Fe3N phases. Both wear resistance and microhardness increase with nitriding time and temperature, and temperature influences both the characteristics the most.

  14. Phase Transformations During the Low-Temperature Nitriding of AISI 2205 Duplex Stainless Steel

    Science.gov (United States)

    Yan, Jing; Gu, Tan; Qiu, Shaoyu; Wang, Jun; Xiong, Ji; Fan, Hongyuan

    2015-02-01

    Liquid nitriding of type AISI 2205 duplex stainless steel was conducted at 723 K (450 °C), using one type of novel low-temperature liquid chemical thermo-treatment. The transformation of the nitrided surface microstructure was systematically studied. Experimental results revealed that a nitrided layer formed on the sample surface with the thickness ranging from 3 to 28 μm, depending on nitriding time. After the 2205 duplex stainless steel was subjected to liquid nitriding 723 K (450 °C) for less than 8 hours, the pre-existing ferrite region on the surface transformed into the expanded austenite (S phase) by the infusion of nitrogen atoms, most of which stay in the interstitial sites. Generally, the dominant phase of the nitrided layer was the expanded austenite. When the nitriding time prolonged up to 16 hours, some pre-existing ferrite in expanded austenite was decomposed and ɛ-nitride precipitated subsequently. When the treatment time went up to 40 hours, large amount of ɛ-nitride and CrN precipitates were observed in the pre-existing ferritic region in the expanded austenite. Furthermore, many nitrides precipitated from the pre-austenite region. Acicular nitride was identified by transmission electron microscopy. The thickness of the nitrided layer increased with increasing nitriding time. The growth of the nitrided layer is mainly due to nitrogen diffusion in accordance with the expected parabolic rate law. Liquid nitriding effectively increased the surface hardness of 2205 duplex stainless steel by a factor of 3.

  15. Thermodynamics, kinetics and process control of nitriding

    DEFF Research Database (Denmark)

    Mittemeijer, Eric J.; Somers, Marcel A. J.

    1997-01-01

    As a prerequisite for the predictability of properties obtained by a nitriding treatment of iron based workpieces, the relation between the process parameters and the composition and structure of the surface layer produced must be known. At present, even the description of thermodynamic equilibri...... 10th Congress of the International Federation for Heat Treatment and Surface Engineering held in Brighton, UK on 1-5 September 1996. (C) 1997 The Institute of Materials.......As a prerequisite for the predictability of properties obtained by a nitriding treatment of iron based workpieces, the relation between the process parameters and the composition and structure of the surface layer produced must be known. At present, even the description of thermodynamic equilibrium...... AL Delft, The Netherlands; Professor Mittemeijer is now also at the Max Planck Institute for Metals Research, Seestrasse 92, D-70174 Stuttgart, Germany and Professor Somers is now in the Division of Metallurgy, Technical University of Denmark, Bldg 204, DK 2800, Lyngby, Denmark. Contribution to the...

  16. Spectroscopic (multi-energy) CT distinguishes iodine and barium contrast material in MICE

    CERN Document Server

    Anderson, NG; Firsching, M; de Ruiter, N; Schleich, N; Butzer, J S; Cook, N J; Grasset, R; Campbell, M; Scott, N J A; Anderson, N G

    2010-01-01

    Spectral CT differs from dual-energy CT by using a conventional X-ray tube and a photon-counting detector. We wished to produce 3D spectroscopic images of mice that distinguished calcium, iodine and barium. We developed a desktop spectral CT, dubbed MARS, based around the Medipix2 photon-counting energy-discriminating detector. The single conventional X-ray tube operated at constant voltage (75 kVp) and constant current (150 A mu A). We anaesthetised with ketamine six black mice (C57BL/6). We introduced iodinated contrast material and barium sulphate into the vascular system, alimentary tract and respiratory tract as we euthanised them. The mice were preserved in resin and imaged at four detector energy levels from 12 keV to 42 keV to include the K-edges of iodine (33.0 keV) and barium (37.4 keV). Principal component analysis was applied to reconstructed images to identify components with independent energy response, then displayed in 2D and 3D. Iodinated and barium contrast material was spectrally distinct f...

  17. The Precipitation Process of Liquid Wastes Containing Contaminant Am withBarium Sulfate

    International Nuclear Information System (INIS)

    The investigated of the reduction volume liquid wastes containing ofAmericium nuclide contaminant has been done. The reduction volume was done byadding barium sulfate coagulant. The experimental procedure that has beendone by adding regent of barium nitrate and natrium sulfate to the wasteswith its preadjusted pH, then by utilizing the jar test equipment was carriedout the fast stirring speed for 5 minutes and the gentle agitation for 30minutes, therefor its floc and supernatant will be formed. The resultedbarium sulfate floc will trap radionuclide in the wastes. The Variableinvestigated were: the concentration of barium sulfate, pH of the wastes, theflash mixing rate, the gentle agitation rate. The investigated barium sulfateconcentration variable was started from 100 ppm up to 800 ppm. Theinvestigated pH variable was started from pH 7 up to pH 13. The investigatedflash mixing rate were 75, 100, 125, 150, 175, 200, 225, 250 rpm. Theinvestigated gentle agitation variable were 20, 30, 40, 50 rpm. The bestresult which was represented by decontaminating factor (DF) was found frombarium sulfate concentration of 300 ppm and pH 11, and the flash mixing rateof 200 rpm and the gentle agitation rate of 20 rpm, with the separationefficiency = 97.2 %. (author)

  18. Barium enema findings (segmental colitis) in four neonates with bloody diarrhea - possible cow's milk allergy

    International Nuclear Information System (INIS)

    Four neonates with sudden onset of bloody diarrhea and barium enema findings suggestive of segmental colitis are reported. The infants were not very ill and in all four, the condition was self-limiting. An exact etiology for the condition was not determined but in all of the infants a possible association with cow's milk intolerance was suggested. (orig.)

  19. Study of structural, ferromagnetic and ferroelectric properties of nanostructured barium doped Bismuth Ferrite

    International Nuclear Information System (INIS)

    Nanostructured multiferroic Bi(1−x)BaxFeO3x=0.0, 0.1, 0.2 were prepared by hydrothermal technique. All samples belonged to the rhombohedrally distorted perovskite structure. The morphology of the particles changed with the doping of barium. Effect of barium doping on the dielectric constant was studied over a wide frequency range of 1000 Hz–1 MHz. The activation energy due to relaxation and due to conduction was measured from the Cole Cole plot and the AC conductivity versus frequency plot respectively. The activation energy estimated from both the studies was close to each other. The activation energy also enhanced with the increase in the barium content. The magnetization at the highest available field (∼1.6 T) increased from 0.05 emu/g for the sample with x=0.0–12 emu/g for the sample with x=0.2. The magnetic measurements show a significant increase in magnetization around 400 °C. Remnant polarization for x=0.0 was negligible and it increased to 0.06 µC/cm2 for x=0.2. - Highlights: • Bismuth Ferrite nanostructures were synthesized by the hydrothermal technique. • Barium was doped in Bismuth site. • Morphology changed with doping. • Ferromagnetic, Ferroelectric and Dielectric properties enhanced with doping. • An unreported magnetic transition due to spin canting was observed near 550 °C

  20. PROPOSED ORAL REFERENCE DOSE (RFD) FOR BARIUM AND COMPOUNDS (Final Report) 2004

    Science.gov (United States)

    This document is the final report for the 2004 external peer review of the Proposed Oral Reference Dose (RfD) for Barium and Compounds, prepared by the U.S. Environmental Protection Agency (EPA), National Center for Environmental Assessment (NCEA), for the Integrated Risk Informa...