WorldWideScience

Sample records for barium copper oxide

  1. Barium carbonate as an agent to improve the electrical properties of neodymium-barium-copper system at high temperature

    Energy Technology Data Exchange (ETDEWEB)

    Fernandes, J.P. [Post-Graduate Program in Chemical Engineering, Universidade Federal de Santa Catarina (UFSC), Florianópolis, SC, 88040-900 (Brazil); Duarte, G.W. [Post-Graduate Program in Chemical Engineering, Universidade Federal de Santa Catarina (UFSC), Florianópolis, SC, 88040-900 (Brazil); Research Group in Technology and Information, Centro Universitário Barriga Verde (UNIBAVE), Santa Catarina, SC (Brazil); Caldart, C. [Post-Graduate Program in Science and Materials Engineering, Universidade do Extremo Sul Catarinense (UNESC), Criciúma, SC, 88806-000 (Brazil); Kniess, C.T. [Post-Graduate Program in Professional Master in Management, Universidade Nove de Julho, São Paulo, SP (Brazil); Montedo, O.R.K.; Rocha, M.R. [Post-Graduate Program in Science and Materials Engineering, Universidade do Extremo Sul Catarinense (UNESC), Criciúma, SC, 88806-000 (Brazil); Riella, H.G. [Post-Graduate Program in Chemical Engineering, Universidade Federal de Santa Catarina (UFSC), Florianópolis, SC, 88040-900 (Brazil); Fiori, M.A., E-mail: fiori@unochapeco.edu.br [Post-Graduate Program in Environmental Science, Universidade Comunitária da Região de Chapecó (UNOCHAPECÓ), Chapecó, SC, 89809-000 (Brazil); Post-Graduate Program in Technology and Management of the Innovation, Universidade Comunitária da Região de Chapecó (UNOCHAPECÓ), Chapecó, SC, 89809-000 (Brazil)

    2015-11-15

    Specialized ceramics are manufactured under special conditions and contain specific elements. They possess unique electrical and thermal properties and are frequently used by the electronics industry. Ceramics containing neodymium-barium-copper (NBC) exhibit high conductivities at low temperatures. NBC-based ceramics are typically combined with oxides, i.e., NBCo produced from neodymium oxide, barium oxide and copper oxide. This study presents NBC ceramics that were produced with barium carbonate, copper oxide and neodymium oxide (NBCa) as starting materials. These ceramics have good electrical conductivities at room temperature. Their conductivities are temperature dependent and related to the starting amount of barium carbonate (w%). - Highlights: • The new crystalline structure were obtained due presence of the barium carbonate. • The NBCa compound has excellent electrical conductivity at room temperature. • The grain crystalline morphology was modified by presence of the barium carbonate. • New Phases α and β were introduced by carbonate barium in the NBC compound.

  2. Analysis of Yttrium-Barium-Copper-Oxide by x ray diffraction and mechanical characterization

    Science.gov (United States)

    Arsenovic, Petar

    1992-01-01

    The efforts in developing high-temperature superconductor (HTSC) YBa2Cu3O7 electrical leads are to benefit future NASA missions that will carry payloads with sensitive instruments operating at cryogenic temperatures. Present-day leads made of copper or magnesium are responsible for as much as 50 percent of the parasitic heat load on cryogenic systems. A reduction of this load could be achieved by replacing the conventional materials with HTSC ceramic electrical leads. Superconductor quality has become a concern in the industry, as has the development of effective evaluation methods. The factors that need to be examined for these materials include material purity, mechanical properties, and superconducting ability below the critical temperature. We applied several methods to study these factors: thermogravimetric analysis, x-ray diffraction, tensile testing, and laser-generated ultrasound. Our objectives were to determine the average tensile strength and Young's modulus of the HTSC material and to compare them to those values for copper and manganin.

  3. On barium oxide solubility in barium-containing chloride melts

    Energy Technology Data Exchange (ETDEWEB)

    Nikolaeva, Elena V.; Zakiryanova, Irina D.; Bovet, Andrey L.; Korzun, Iraida V. [Ural Federal Univ., Yekaterinburg (Russian Federation). Inst. of High Temperature Electrochemistry

    2016-11-01

    Oxide solubility in chloride melts depends on temperature and composition of molten solvent. The solubility of barium oxide in the solvents with barium chloride content is essentially higher than that in molten alkali chlorides. Spectral data demonstrate the existence of oxychloride ionic groupings in such melts. This work presents the results of the BaO solubility in two molten BaCl{sub 2}-NaCl systems with different barium chloride content. The received data together with earlier published results revealed the main regularities of BaO solubility in molten BaO-BaCl{sub 2}-MCl systems.

  4. Property and microstructural nonuniformity in the yttrium-barium-copper-oxide superconductor determined from electrical, magnetic, and ultrasonic measurements. Ph.D. Thesis - Case Western Reserve Univ.

    Science.gov (United States)

    Roth, Don J.

    1991-01-01

    The purpose of this dissertation was the following: (1) to characterize the effect of pore fraction on a comprehensive set of electrical and magnetic properties for the yttrium-barium-copper-oxide (YBCO) high temperature ceramic superconductor; and (2) to determine the viability of using a room-temperature, nondestructive characterization method to aid in the prediction of superconducting (cryogenic) properties. The latter involved correlating ultrasonic velocity measurements at room temperature with property-affecting pore fraction and oxygen content variations. The use of ultrasonic velocity for estimating pore fraction in YBCO is presented, and other polycrystalline materials are reviewed, modeled, and statistically analyzed. This provides the basis for using ultrasonic velocity to interrogate microstructure. The effect of pore fraction (0.10-0.25) on superconductor properties of YBCO samples was characterized. Spatial (within-sample) variations in microstructure and superconductor properties were investigated, and the effect of oxygen content on elastic behavior was examined. Experimental methods used included a.c. susceptibility, electrical, and ultrasonic velocity measurements. Superconductor properties measured included transition temperature, magnetic transition width, transport and magnetic critical current density, magnetic shielding, a.c. loss, and sharpness of the voltage-current characteristics. An ultrasonic velocity image constructed from measurements at 1mm increments across a YBCO sample revealed microstructural variations that correlated with variations in magnetic shielding and a.c. loss behavior. Destructive examination using quantitative image analysis revealed pore fraction to be the varying microstructural feature.

  5. Semifluorinated Alkylphosphonic Acids Form High-Quality Self-Assembled Monolayers on Ag-Coated Yttrium Barium Copper Oxide Tapes and Enable Filamentization of the Tapes by Microcontact Printing.

    Science.gov (United States)

    Park, Chul Soon; Lee, Han Ju; Lee, Dahye; Jamison, Andrew C; Galstyan, Eduard; Zagozdzon-Wosik, Wanda; Freyhardt, Herbert C; Jacobson, Allan J; Lee, T Randall

    2016-08-30

    A custom-designed semifluorinated phosphonic acid, (9,9,10,10,11,11,12,12,13,13,14,14,15,15,16,16,16-heptadecafluorohexadecyl)phosphonic acid (F8H8PA), and a normal hexadecylphosphonic acid (H16PA) were synthesized and used to generate self-assembled monolayers (SAMs) on commercially available yttrium barium copper oxide (YBCO) tapes. In this study, we wished to evaluate the effectiveness of these monolayer films as coatings for selectively etching YBCO. Initial films formed by solution deposition and manual stamping using a non-patterned polydimethylsiloxane stamp allowed for a comparison of the film-formation characteristics. The resulting monolayers were characterized by X-ray photoelectron spectroscopy (XPS), contact angle goniometry, and polarization modulation infrared reflection absorption spectroscopy (PM-IRRAS). To prepare line-patterned (filamentized) YBCO tapes, standard microcontact printing (μ-CP) procedures were used. The stamped patterns on the YBCO tapes were characterized by scanning electron microscopy (SEM) before and after etching to confirm the effectiveness of the patterning process on the YBCO surface and energy-dispersive X-ray spectroscopy (EDX) to obtain the atomic composition of the exposed interface.

  6. Barium oxide, calcium oxide, magnesia, and alkali oxide free glass

    Science.gov (United States)

    Lu, Peizhen Kathy; Mahapatra, Manoj Kumar

    2013-09-24

    A glass composition consisting essentially of about 10-45 mole percent of SrO; about 35-75 mole percent SiO.sub.2; one or more compounds from the group of compounds consisting of La.sub.2O.sub.3, Al.sub.2O.sub.3, B.sub.2O.sub.3, and Ni; the La.sub.2O.sub.3 less than about 20 mole percent; the Al.sub.2O.sub.3 less than about 25 mole percent; the B.sub.2O.sub.3 less than about 15 mole percent; and the Ni less than about 5 mole percent. Preferably, the glass is substantially free of barium oxide, calcium oxide, magnesia, and alkali oxide. Preferably, the glass is used as a seal in a solid oxide fuel/electrolyzer cell (SOFC) stack. The SOFC stack comprises a plurality of SOFCs connected by one or more interconnect and manifold materials and sealed by the glass. Preferably, each SOFC comprises an anode, a cathode, and a solid electrolyte.

  7. Combustion Synthesis of Yttrium BARIUM(2) COPPER(3) OXYGEN(6+X) Superconductor.

    Science.gov (United States)

    Lin, Sy-Chyi

    YBa_2Cu_3 O_{rm 6 + x} was produced from copper, barium peroxide, and yttrium oxide by Self-propagating High-temperature Synthesis (SHS) and thermal explosion methods. The SHS process was conducted in two modes: a horizontal combustion and a vertical combustion. The influence of copper particle size on the stability of the reaction front was studied. In contrast to previous studies, a stable reaction front could be maintained even when relatively large copper particles (smaller than 325 mesh) were used. In the horizontal SHS process, large diameter pellets (larger than 22 mm in diameter) enabled stable combustion at room temperature. Elevated ambient temperatures (400 {~} 500^circ C) were needed to stabilize the combustion front movement in small diameter pellets. The product had an average concentration of 84 wt% YBa_2Cu _3O_{rm 6 + x}. In the vertical SHS process, with the aid of a booster, the combustion front moved more rapidly and smoothly than that in the horizontal SHS process and gave a product concentration of about 90 wt% YBa _2Cu_3O_ {rm 6 + x}. High quality product (above 95 wt% YBa_2Cu_3 O_{rm 6 + x}) may be obtained by sintering/calcining the SHS product in an oxygen atmosphere. Three different sintering/calcining processes were studied and the required temperature and the time for each process were determined. The temperature at the center of the pellet in a vertical SHS was measured by thermocouples. The pellet temperature rise is a two step process. The first temperature rise is caused by the oxidation of the copper and the second is caused by the reaction between yttrium oxide and barium cuprate. A reaction mechanism is proposed to explain this behavior. A thermal explosion process was conducted in a continuous rotary kiln. In this mode a pellet was introduced suddenly into a heated rotary kiln causing it to be combusted. After the combustion, the pellet was sintered at 900 to 980 ^circC and a product containing about 95 wt% YBa_2Cu_3 O_{rm 6 + x

  8. Excitation energies of barium oxide bands measured in flames

    NARCIS (Netherlands)

    Hurk, J. van der; Hollander, Tj.; Alkemade, C.T.J.

    1975-01-01

    Experiments are described that yield additional information about the excitation energy of visible barium oxide bands appearing in flames. Excitation energy differences are derived directly from the ratios of thermal band intensities as a function of temperature and agree with the value calculated f

  9. Persistent-current switch for pancake coils of rare earth-barium-copper-oxide high-temperature superconductor: Design and test results of a double-pancake coil operated in liquid nitrogen (77-65 K) and in solid nitrogen (60-57 K)

    Science.gov (United States)

    Qu, Timing; Michael, Philip C.; Voccio, John; Bascuñán, Juan; Hahn, Seungyong; Iwasa, Yukikazu

    2016-08-01

    We present design and test results of a superconducting persistent current switch (PCS) for pancake coils of rare-earth-barium-copper-oxide, REBCO, high-temperature superconductor (HTS). Here, a REBCO double-pancake (DP) coil, 152-mm ID, 168-mm OD, 12-mm high, was wound with a no-insulation technique. We converted a ˜10-cm long section in the outermost layer of each pancake to a PCS. The DP coil was operated in liquid nitrogen (77-65 K) and in solid nitrogen (60-57 K). Over the operating temperature ranges of this experiment, the normal-state PCS enabled the DP coil to be energized; thereupon, the PCS resumed the superconducting state and the DP coil field decayed with a time constant of 100 h, which would have been nearly infinite, i.e., persistent-mode operation, were the joint across the coil terminals superconducting.

  10. Oxidation Mechanism of Copper Selenide

    Science.gov (United States)

    Taskinen, Pekka; Patana, Sonja; Kobylin, Petri; Latostenmaa, Petri

    2014-09-01

    The oxidation mechanism of copper selenide was investigated at deselenization temperatures of copper refining anode slimes. The isothermal roasting of synthetic, massive copper selenide in flowing oxygen and oxygen - 20% sulfur dioxide mixtures at 450-550 °C indicate that in both atmospheres the mass of Cu2Se increases as a function of time, due to formation of copper selenite as an intermediate product. Copper selenide oxidises to copper oxides without formation of thick copper selenite scales, and a significant fraction of selenium is vaporized as SeO2(g). The oxidation product scales on Cu2Se are porous which allows transport of atmospheric oxygen to the reaction zone and selenium dioxide vapor to the surrounding gas. Predominance area diagrams of the copper-selenium system, constructed for selenium roasting conditions, indicate that the stable phase of copper in a selenium roaster gas with SO2 is the sulfate CuSO4. The cuprous oxide formed in decomposition of Cu2Se is further sulfated to CuSO4.

  11. Handling of Copper and Copper Oxide Nanoparticles by Astrocytes.

    Science.gov (United States)

    Bulcke, Felix; Dringen, Ralf

    2016-02-01

    Copper is an essential trace element for many important cellular functions. However, excess of copper can impair cellular functions by copper-induced oxidative stress. In brain, astrocytes are considered to play a prominent role in the copper homeostasis. In this short review we summarise the current knowledge on the molecular mechanisms which are involved in the handling of copper by astrocytes. Cultured astrocytes efficiently take up copper ions predominantly by the copper transporter Ctr1 and the divalent metal transporter DMT1. In addition, copper oxide nanoparticles are rapidly accumulated by astrocytes via endocytosis. Cultured astrocytes tolerate moderate increases in intracellular copper contents very well. However, if a given threshold of cellular copper content is exceeded after exposure to copper, accelerated production of reactive oxygen species and compromised cell viability are observed. Upon exposure to sub-toxic concentrations of copper ions or copper oxide nanoparticles, astrocytes increase their copper storage capacity by upregulating the cellular contents of glutathione and metallothioneins. In addition, cultured astrocytes have the capacity to export copper ions which is likely to involve the copper ATPase 7A. The ability of astrocytes to efficiently accumulate, store and export copper ions suggests that astrocytes have a key role in the distribution of copper in brain. Impairment of this astrocytic function may be involved in diseases which are connected with disturbances in brain copper metabolism.

  12. Simulation Synthesis of Ancient Chinese Artificial Barium Copper Silicate Pigments%中国古代人造硅酸铜钡颜料模拟制备研究

    Institute of Scientific and Technical Information of China (English)

    张治国; 马清林; 梅建军; 海因茨·贝克[德

    2012-01-01

    中国古代人造硅酸铜钡颜料主要包括三种,紫色的中国紫(BaCuSi2O6)、浅蓝色的中国蓝(BaCuShO10)和蓝色的中国深蓝(BaCu2Si2O7),这三种颜料在战国晚期至东汉晚期的中国大量使用。本文在对大量古代硅酸铜钡颜料样品分析研究的基础上,探讨了该类颜料的原料、烧制温度以及坩埚对模拟制备的影响。用石英粉作为硅源,铜绿和氧化铜作为铜源,硫酸钡、碳酸钡和氧化钡作为钡源,氧化铅作为铅源,模拟制备出了三种古代人造硅酸铜钡颜料,即中国紫(BaCuSi2O7)、中国蓝(BaCuShO10)和中国深蓝(BaCu2Si2O7)。%Ancient Chinese barium copper silicate pigments mainly comprise Chinese Purple (BaCuSi2O6), Chinese Blue (BaCuSi4O10) and Chinese Dark Blue (BaCu2Si2O7). They were widely used from the late Warring States period to the late Eastern Han Dynasty. Based on the analysis of large amounts of samples, this paper discusses the raw materials, firing temperature and crucible' s influence on the synthesis. The three pigments - BaeuSi2O6, BaCuSi4O10 and BaCu2Si2O7 - have been simulated by using quartz powder as silicon source, malachite and copper oxide as copper source, barium sulfate, barium carbonate and barium oxide as barium source, and lead oxide as lead source.

  13. Catastrophic Oxidation of Copper: A Brief Review

    Science.gov (United States)

    Belousov, V. V.; Klimashin, A. A.

    2012-10-01

    A brief review of the current understanding of copper accelerated oxidation in the presence of low-melting oxides (Bi2O3, MoO3, and V2O5) is given. Special attention is paid to the kinetics, thermodynamics, and mechanisms of accelerated oxidation of copper. The mechanisms of two stages (fast and superfast) of the copper accelerated oxidation are considered. It is shown that the fast oxidation of copper occurs by a diffusion mechanism. Oxygen diffusion along the liquid channels in the oxide scale is the rate-limiting step in the overall mechanism. The superfast oxidation of copper occurs by a fluxing mechanism. Realization of the particular mechanism depends on the mass ratio of low-melting oxide to the metal. The mass ratios of low-melting oxide to the metal and the oxygen partial pressures for superfast oxidation of copper are established. A model of the fast oxidation of copper is discussed.

  14. Growth and characterization of barium oxide nanoclusters on YSZ(111)

    Energy Technology Data Exchange (ETDEWEB)

    Nachimuthu, Ponnusamy; Kim, Yong Joo; Kuchibhatla, Satyanarayana V N T; Yu, Zhongqing; Jiang, Weilin; Engelhard, Mark H.; Shutthanandan, V.; Szanyi, Janos; Thevuthasan, Suntharampillai

    2009-08-13

    Barium oxide (BaO) was grown on YSZ(111) substrate by oxygen-plasma-assisted molecular beam epitaxy (OPA-MBE). In-situ reflection high-energy electron diffraction, ex-situ x-ray diffraction, atomic force microscopy and x-ray photoelectron spectroscopy have confirmed that the BaO grows as clusters on YSZ(111). During and following the growth under UHV conditions, BaO remains in single phase. When exposed to ambient conditions, the clusters transformed to BaCO3 and/or Ba(OH)2 H2O. However, in a few attempts of BaO growth, XRD results show a fairly single phase cubic BaO with a lattice constant of 0.5418(1) nm. XPS results show that exposing BaO clusters to ambient conditions results in the formation BaCO3 on the surface and partly Ba(OH)2 throughout in the bulk. Based on the observations, it is concluded that the BaO nanoclusters grown on YSZ(111) are highly reactive in ambient conditions. The variation in the reactivity of BaO between different attempts of the growth is attributed to the cluster size.

  15. Fabrication and Characterization of Metallic Copper and Copper Oxide Nanoflowers

    Directory of Open Access Journals (Sweden)

    *H. S. Virk

    2011-12-01

    Full Text Available Copper nanoflowers have been fabricated using two different techniques; electro-deposition of copper in polymer and anodic alumina templates, and cytyltrimethal ammonium bromide (CTAB-assisted hydrothermal method. Scanning Electron Microscope (SEM images record some interesting morphologies of metallic copper nanoflowers. Field Emission Scanning Electron Microscope (FESEM has been used to determine morphology and composition of copper oxide nanoflowers. X-ray diffraction (XRD pattern reveals the monoclinic phase of CuO in the crystallographic structure of copper oxide nanoflowers. There is an element of random artistic design of nature, rather than science, in exotic patterns of nanoflowers fabricated in our laboratory.

  16. Synthesis and characterization of nickel oxide doped barium strontium titanate ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Banerjee, M. [Dept. of Electrical Engineering, Bengal Institute of Technology Kolkata (India); Mukherjee, S. [Dept. of Metallurgical Engineering, Jadavpur University, Kolkata (India); Maitra, S. [Govt. College of Engg. and Ceramic Technology, Kolkata (India)

    2012-01-15

    Barium strontium titanate (BST) ceramics (Ba{sub 0.6}Sr{sub 0.4})TiO{sub 3} were synthesized by solid state sintering using barium carbonate, strontium carbonate and rutile as the precursor materials. The samples were doped with nickel oxide in different proportions. Different phases present in the sintered samples were determined from X-ray diffraction investigation and the distribution of different phases in the microstructure was assessed from scanning electron microscopy study. It was observed that the dielectric properties of BST were modified significantly with nickel oxide doping. These ceramics held promise for applications in tuned circuits. (author)

  17. Theory of Copper Oxide Superconductors

    CERN Document Server

    Kamimura, Hiroshi; Shunichi Matsuno; Tsuyoshi Hamada

    2005-01-01

    This is an advanced textbook for graduate students and researchers wishing to learn about high temperature superconductivity in copper oxides, in particular the Kamimura-Suwa (K-S) model. Because a number of models have been proposed since the discovery of high temperature superconductivity by Bednorz and Müller in 1986, the book first explains briefly the historical development that led to the K-S model. It then focuses on the physical background necessary to understand the K-S model and on the basic principles behind various physical phenomena such as electronic structures, electrical, thermal and optical properties, and the mechanism of high temperature superconductivity.

  18. Barium hexaferrite/graphene oxide: controlled synthesis and characterization and investigation of its magnetic properties

    Science.gov (United States)

    Maddahfar, Mahnaz; Ramezani, Majid; Mostafa Hosseinpour-Mashkani, S.

    2016-08-01

    In the present study, barium hexaferrite nanocrystals (BaFe12O19) were successfully synthesized through the two-step sol-gel method in an aqueous solution in the presence of barium nitrate and iron (III) nitrate. Besides, the effect of the molar ratio of graphene oxide on the particle size and magnetic properties of final product was investigated. In this research, glucose plays a role as capping and chelating agent in the synthesis of BaFe12O19/graphene oxide. Moreover, it was found that the size, morphology, and magnetic properties of the final products could be greatly influenced by the molar ratio of graphene oxide. BaFe12O19/graphene oxide was characterized by using X-ray diffraction, scanning electron microscope, Fourier transform infrared spectroscopy, vibrating sample magnetometer, and energy-dispersive spectrometry.

  19. [Copper in methane oxidation: a review].

    Science.gov (United States)

    Su, Yao; Kong, Jiao-Yan; Zhang, Xuan; Xia, Fang-Fang; He, Ruo

    2014-04-01

    Methane bio-oxidation plays an important role in the global methane balance and warming mitigation, while copper has a crucial function in methane bio-oxidation. On one side, copper is known to be a key factor in regulating the expression of the genes encoding the two forms of methane monooxygenases (MMOs) and is the essential metal element of the particulate methane monooxygenase (pMMO). On the other side, the content and fractionation of copper in the environment have great effects on the distribution of methanotrophs and their metabolic capability of methane and non-methane organic compounds, as well as on the copper-specific uptake systems in methanotrophs. Thus, it is meaningful to know the role of copper in methane bio-oxidation for comprehensive understanding of this process and is valuable for guiding the application of methanotrophs in greenhouse gas removal and pollution remediation. In this paper, the roles of copper in methane oxidation were reviewed, including the effect of copper on methanotrophic community structure and activity, the expression and activity of MMOs as well as the copper uptake systems in methanotrophs. The future studies of copper and methane oxidation were also discussed.

  20. Discovery and Understanding of the Ambient-Condition Degradation of Doped Barium Cerate Proton-Conducting Perovskite Oxide in Solid Oxide Fuel Cells

    NARCIS (Netherlands)

    Yan, N.; Zeng, Y.; Shalchi, B; Wang, W.; Gao, T; Rothenberg, G.; Luo, J.L.

    2015-01-01

    Proton-conducting perovskite oxides such as doped barium cerate and barium zirconate are promising electrolytes for solid oxide fuel cells (SOFCs). Here we report that the typical high performance proton conductor, BaZr0.1Ce0.7Y0.2O3±δ (BZCY), is prone to physical, chemical and thereby electrochemic

  1. Synthesis of copper/copper oxide nanoparticles by solution plasma

    Science.gov (United States)

    Saito, Genki; Hosokai, Sou; Tsubota, Masakatsu; Akiyama, Tomohiro

    2011-07-01

    This paper describes the synthesis of copper/copper oxide nanoparticles via a solution plasma, in which the effect of the electrolyte and electrolysis time on the morphology of the products was mainly examined. In the experiments, a copper wire as a cathode was immersed in an electrolysis solution of a K2CO3 with the concentration from 0.001 to 0.50 M or a citrate buffer (pH = 4.8), and was melted by the local-concentration of current. The results demonstrated that by using the K2CO3 solution, we obtained CuO nanoflowers with many sharp nanorods, the size of which decreased with decreasing the concentration of the solution. Spherical particles of copper with/without pores formed when the citrate buffer was used. The pores in the copper nanoparticles appeared when the applied voltage changed from 105 V to 130 V, due to the dissolution of Cu2O.

  2. Electrochromism in copper oxide thin films

    Energy Technology Data Exchange (ETDEWEB)

    Richardson, T.J.; Slack, J.L.; Rubin, M.D.

    2000-08-15

    Transparent thin films of copper(I) oxide prepared on conductive SnO2:F glass substrates by anodic oxidation of sputtered copper films or by direct electrodeposition of Cu2O transformed reversibly to opaque metallic copper films when reduced in alkaline electrolyte. In addition, the same Cu2O films transform reversibly to black copper(II) oxide when cycled at more anodic potentials. Copper oxide-to-copper switching covered a large dynamic range, from 85% and 10% photopic transmittance, with a coloration efficiency of about 32 cm2/C. Gradual deterioration of the switching range occurred over 20 to 100 cycles. This is tentatively ascribed to coarsening of the film and contact degradation caused by the 65% volume change on conversion of Cu to Cu2O. Switching between the two copper oxides (which have similar volumes) was more stable and more efficient (CE = 60 cm2/C), but covered a smaller transmittance range (60% to 44% T). Due to their large electrochemical storage capacity and tolerance for alkaline electrolytes, these cathodically coloring films may be useful as counter electrodes for anodically coloring electrode films such as nickel oxide or metal hydrides.

  3. Effects of Dysprosium Oxide Doping on Microstructure and Properties of Barium Titanate Ceramic

    Institute of Scientific and Technical Information of China (English)

    Pu Yongping; Ren Huijun; Chen Wei; Chen Shoutian

    2005-01-01

    Different amounts of dysprosium oxide were incorporated into barium titanate powders synthesized by hydrothermal method. Relations of substitution behaviors and lattice parameters with solid-solubility were studied. Furthermore, the influences of dysprosium oxide doping fraction on grain size and dielectric properties of barium titanate ceramic, including dielectric constant and breakdown electric field strength, were investigated via scanning electron microscope, X-ray diffraction and electric property tester. The results show that dysprosium oxide can restrain abnormal grain growth during sintering and that fine-grained and high density of barium titanate ceramic can result in excellent dielectric properties. As mass fraction of dysprosium oxide is 0.6%, the lattice parameters of grain increase to the maximum because of the lowest vacancy concentration. The electric property parameters are cited as following: dielectric constant (25 ℃) reaches 4100, the change in relative dielectric constant with temperature is -10% to 10% within the range of -15~100 ℃, breakdown electric field strength (alternating current) achieves 3.2 kV·mm-1, which can be used in manufacturing high voltage ceramic capacitors.

  4. Smelting Oxidation Desulfurization of Copper Slags

    Institute of Scientific and Technical Information of China (English)

    LI Lei; HU Jian-hang; WANG Hua

    2012-01-01

    According to the mechanism of sulfur removal easily through oxidation, the process of smelting oxidation desulfurization of copper slags is studied, which supplies a new thinking for obtaining the molten iron of lower sulfur content by smelting reduction of copper slags. Special attention is given to the effects of the holding temperature, the holding time and CaF2, CaO addition amounts on the desulfurization rate of copper slags. The results indicate that the rate of copper slags smelting oxidation desulfurization depends on the matte mass transfer rate through the slag phase. After the oxidation treatment, sulfur of copper slags can be removed as SO2 efficiently. Amount of Ca2+ of copper slags affects the desulfurization rate greatly, and the slag desulfurization rate is reduced by adding a certain amount of CaF2 and CaO. Compared with CaF2, CaO is negative to slags sulfur removal with equal Ca2+ addition. Under the air flow of 0.3 U/min, the sulfur content of copper slags can be reduced to 0. 004 67% in the condition of the holding time of 3 min and the holding temperature of 1 500 ℃. The sulfur content of molten iron is reduced to 0. 000 8 % in the smelting reduction of treated slags, and the problem of high sulfur content of molten iron obtained by smelting reduction with copper slag has been successively solved.

  5. Identification of the man-made barium copper silicate pigments among some ancient Chinese artifacts through spectroscopic analysis.

    Science.gov (United States)

    Li, Q H; Yang, J C; Li, L; Dong, J Q; Zhao, H X; Liu, S

    2015-03-05

    This article describes the complementary application of non-invasive micro-Raman spectroscopy and energy dispersive X-ray fluorescence spectrometry to the characterization of some ancient Chinese silicate artifacts. A total of 28 samples dated from fourth century BC to third century AD were analyzed. The results of chemical analysis showed that the vitreous PbO-BaO-SiO2 material was used to sinter these silicate artifacts. The barium copper silicate pigments including BaCuSi4O10, BaCuSi2O6 and BaCu2Si2O7 were widely identified from colorful areas of the samples by Raman spectroscopy. In addition, other crystalline phases such as Fe2O3, BaSi2O5, BaSO4, PbCO3 and quartz were also identified. The present study provides very valuable information to trace the technical evolution of man-made barium copper silicate pigments and their close relationship with the making of ancient PbO-BaO-SiO2 glaze and glass.

  6. The Revovery of Copper and Cobalt from Oxidized Copper Ore and Converter Slag

    OpenAIRE

    ZİYADANOĞULLARI, Berrin; ZİYADANOĞULLARI, Recep

    1999-01-01

    The aim of this study was to develop a method for obtaining copper and cobalt from oxidized copper ore and converter slag. In order to convert the copper and cobalt into sulfate compounds the main step was to roast the samples obtained by sulfurization and transfer the samples into solution. First the oxidized copper ore was roasted, followed by the mixture of converter slag and oxidized copper ore. Since the levels of copper and cobalt were low, the sulfurization process was carri...

  7. Effects of copper(II) and copper oxides on THMs formation in copper pipe.

    Science.gov (United States)

    Li, Bo; Qu, Jiuhui; Liu, Huijuan; Hu, Chengzhi

    2007-08-01

    Little is known about how the growth of trihalomethanes (THMs) in drinking water is affected in copper pipe. The formation of THMs and chlorine consumption in copper pipe under stagnant flow conditions were investigated. Experiments for the same water held in glass bottles were performed for comparison. Results showed that although THMs levels firstly increased in the presence of chlorine in copper pipe, faster decay of chlorine as compared to the glass bottle affected the rate of THMs formation. The analysis of water phase was supplemented by surface analysis of corrosion scales using X-ray photoelectron spectroscopy (XPS), scanning electron microscope (SEM) and energy dispersive spectroscopy (EDX). The results showed the scales on the pipe surface mainly consisted of Cu(2)O, CuO and Cu(OH)(2) or CuCO(3). Designed experiments confirmed that the fast depletion of chlorine in copper pipe was mainly due to effect of Cu(2)O, CuO in corrosion scales on copper pipe. Although copper(II) and copper oxides showed effect on THMs formation, the rapid consumption of chlorine due to copper oxide made THM levels lower than that in glass bottles after 4h. The transformations of CF, DCBM and CDBM to BF were accelerated in the presence of copper(II), cupric oxide and cuprous oxide. The effect of pH on THMs formation was influenced by effect of pH on corrosion of copper pipe. When pH was below 7, THMs levels in copper pipe was higher as compared to glass bottle, but lower when pH was above 7.

  8. Dielectric properties of barium strontium titanate / non ferroelectric oxide ceramic composites

    Energy Technology Data Exchange (ETDEWEB)

    Nenez, S. [THALES, Domaine de Corbeville, Orsay (France); Univ. de Bourgogne, Lab. de Recherche sur la Reactivite des Solides, Dijon (France); Morell, A.; Pate, M.; Ganne, J.P. [THALES, Domaine de Corbeville, Orsay (France); Maglione, M. [Inst. de Chimie de la Matiere Condensee de Bordeaux - CNRS, Pessac (France); Niepce, J.C. [Univ. de Bourgogne, Lab. de Recherche sur la Reactivite des Solides, Dijon (France)

    2002-07-01

    Barium strontium titanate ceramics present high dielectric permittivity and tunability. In order to reduce their permittivity and loss tangent while keeping tunability, various composites of barium strontium titanate oxide Ba{sub 0.6}Sr{sub 0.4}TiO{sub 3} combined with non-ferroelectric oxides such as magnesium titanate MgTiO{sub 3} or magnesia MgO were investigated. The Ba-Sr oxide powder was mixed with 20, 40 or 60 wt% of the non-ferroelectric oxide (NFO). The paper discusses the processing and the material characterisations by X-ray diffraction and SEM. A secondary phase BaMg{sub 6}Ti{sub 6}O{sub 19} was detected only in the composites synthesised with MgTiO{sub 3}. The microstructure and the dielectric characteristics are presented and discussed. A correlation between the microstructure of the composites, including secondary phase and the dielectric properties is proposed. (orig.)

  9. Copper Oxide Nanoparticles Synthesis by Electrochemical Method

    Directory of Open Access Journals (Sweden)

    Nitin DIGHORE

    2016-05-01

    Full Text Available Copper oxide nanoparticles were prepared by electrochemical reduction method which is environmental benign. Tetra ethyl ammonium bromide (TEAB, tetra propyl ammonium bromide (TPAB, tetra butyl ammonium bromide (TBAB were used as stabilizing agent in an organic medium viz. tetra hydro furan (THF and acetonitrile (ACN in 4:1 ratio by optimizing current density. The reduction process takes place under atmospheric condition over a period of 2 h. Such nanoparticles were prepared using simple electrolysis cell in which the sacrificial anode was a commercially available copper metal sheet and platinum (inert sheet acted as a cathode. The stabilizers were used to control the size of a nanoparticles. The synthesized copper oxide nanoparticles were characterized by using UV-Visible, FT-IR, XRD, SEM-EDS and TEM analysis techniques.DOI: http://dx.doi.org/10.5755/j01.ms.22.2.7501

  10. Antistatic Polycarbonate/Copper Oxide Composite

    Science.gov (United States)

    Kovich, Michael; Rowland, George R., Jr.

    2003-01-01

    A composite material consisting of polycarbonate filled with copper oxide has been found to be suitable as an antistatic material. This material was developed to satisfy a requirement for an antistatic material that has a mass density less than that of aluminum and that exhibits an acceptably low level of outgassing in a vacuum.

  11. Reduction reaction analysis of nanoparticle copper oxide for copper direct bonding using formic acid

    Science.gov (United States)

    Fujino, Masahisa; Akaike, Masatake; Matsuoka, Naoya; Suga, Tadatomo

    2017-04-01

    Copper direct bonding is required for electronics devices, especially power devices, and copper direct bonding using formic acid is expected to lower the bonding temperature. In this research, we analyzed the reduction reaction of copper oxide using formic acid with a Pt catalyst by electron spin resonance analysis and thermal gravimetry analysis. It was found that formic acid was decomposed and radicals were generated under 200 °C. The amount of radicals generated was increased by adding the Pt catalyst. Because of these radicals, both copper(I) oxide and copper(II) oxide start to be decomposed below 200 °C, and the reduction of copper oxide is accelerated by reactants such as H2 and CO from the decomposition of formic acid above 200 °C. The Pt catalyst also accelerates the reaction of copper oxide reduction. Herewith, it is considered that the copper surface can be controlled more precisely by using formic acid to induce direct bonding.

  12. Introducing Barium in Transition Metal Oxide Frameworks: Impact upon Superconductivity, Magnetism, Multiferroism and Oxygen Diffusion and Storage.

    Science.gov (United States)

    Raveau, Bernard

    2016-11-25

    The role of barium in the structural chemistry of some transition metal oxides of the series "Cu, Mn, Fe,Co" is reviewed, based on its size effect and its particular chemical bonding. Its impact upon various properties, superconductivity, magnetism, multiferroism, oxygen storage is emphasized.

  13. Multi-parameter sensing using high-k oxide of barium strontium titanate

    Energy Technology Data Exchange (ETDEWEB)

    Huck, Christina; Poghossian, Arshak; Baecker, Matthias; Schoening, Michael J. [Institute of Nano- and Biotechnologies (INB), FH Aachen, 52428, Juelich (Germany); Peter Gruenberg Institute (PGI-8), Forschungszentrum Juelich GmbH, 52525, Juelich (Germany); Reisert, Steffen; Kramer, Friederike [Institute of Nano- and Biotechnologies (INB), FH Aachen, 52428, Juelich (Germany); Begoyan, Vardges K.; Buniatyan, Vahe V. [Department of Microelectronics and Biomedical Devices, State Engineering University of Armenia, 0009, Yerevan (Armenia)

    2015-06-15

    High-k perovskite oxide of barium strontium titanate (BST) represents a very attractive multi-functional transducer material for the development of (bio-)chemical sensors. In this work, a Si-based sensor chip containing Pt interdigitated electrodes covered with a thin BST layer (485 nm) has been developed for multi-parameter chemical sensing. The chip has been applied for the contactless measurement of the electrolyte conductivity, the detection of adsorbed charged macromolecules (positively charged polyelectrolytes of polyethylenimine) and the concentration of hydrogen peroxide (H{sub 2}O{sub 2}) vapor. The experimental results of functional testing of individual sensors are presented. The mechanism of the BST sensitivity to charged polyelectrolytes and H{sub 2}O{sub 2} vapor has been proposed and discussed. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  14. Role of barium nitrate on the sulfur fixation of calcium oxide`

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    In this paper, the effect of Ba(NO3)2 on the efficiency of sulfur fixation of calcium oxide during coal combustion was studied. The results showed that addition of barium nitrate to the CaO can enhance the sulfur removal rate of CaO significantly. The X-ray diffraction spectrum of residual ash of coal added some sulfur fixative expressed that Ba2+ can form a compound of Ba-Al-Si-O which encloses the CaSO4 to prevent it's decomposition, so Ba2+ can improve the action of sulfur fixation of CaO. The combustion character os the original coal and original coal added sulfur fixative was researched with thermal-gravity analyzer and the results expressed that adding some sulfur fixative to the coal will make the combustion character of coal change little.

  15. Biogenic nanoparticles: copper, copper oxides, copper sulphides, complex copper nanostructures and their applications.

    Science.gov (United States)

    Rubilar, Olga; Rai, Mahendra; Tortella, Gonzalo; Diez, Maria Cristina; Seabra, Amedea B; Durán, Nelson

    2013-09-01

    Copper nanoparticles have been the focus of intensive study due to their potential applications in diverse fields including biomedicine, electronics, and optics. Copper-based nanostructured materials have been used in conductive films, lubrification, nanofluids, catalysis, and also as potent antimicrobial agent. The biogenic synthesis of metallic nanostructured nanoparticles is considered to be a green and eco-friendly technology since neither harmful chemicals nor high temperatures are involved in the process. The present review discusses the synthesis of copper nanostructured nanoparticles by bacteria, fungi, and plant extracts, showing that biogenic synthesis is an economically feasible, simple and non-polluting process. Applications for biogenic copper nanoparticles are also discussed.

  16. Development of highly faceted reduced graphene oxide-coated copper oxide and copper nanoparticles on a copper foil surface

    Directory of Open Access Journals (Sweden)

    Rebeca Ortega-Amaya

    2016-07-01

    Full Text Available This work describes the formation of reduced graphene oxide-coated copper oxide and copper nanoparticles (rGO-Cu2ONPs, rGO-CuNPs on the surface of a copper foil supporting graphene oxide (GO at annealing temperatures of 200–1000 °C, under an Ar atmosphere. These hybrid nanostructures were developed from bare copper oxide nanoparticles which grew at an annealing temperature of 80 °C under nitrogen flux. The predominant phase as well as the particle size and shape strongly depend on the process temperature. Characterization with transmission electron microscopy and scanning electron microscopy indicates that Cu or Cu2O nanoparticles take rGO sheets from the rGO network to form core–shell Cu–rGO or Cu2O–rGO nanostructures. It is noted that such ones increase in size from 5 to 800 nm as the annealing temperature increases in the 200–1000 °C range. At 1000 °C, Cu nanoparticles develop a highly faceted morphology, displaying arm-like carbon nanorods that originate from different facets of the copper crystal structure.

  17. Development of highly faceted reduced graphene oxide-coated copper oxide and copper nanoparticles on a copper foil surface

    Science.gov (United States)

    Matsumoto, Yasuhiro; Espinoza-Rivas, Andrés M; Pérez-Guzmán, Manuel A; Ortega-López, Mauricio

    2016-01-01

    Summary This work describes the formation of reduced graphene oxide-coated copper oxide and copper nanoparticles (rGO-Cu2ONPs, rGO-CuNPs) on the surface of a copper foil supporting graphene oxide (GO) at annealing temperatures of 200–1000 °C, under an Ar atmosphere. These hybrid nanostructures were developed from bare copper oxide nanoparticles which grew at an annealing temperature of 80 °C under nitrogen flux. The predominant phase as well as the particle size and shape strongly depend on the process temperature. Characterization with transmission electron microscopy and scanning electron microscopy indicates that Cu or Cu2O nanoparticles take rGO sheets from the rGO network to form core–shell Cu–rGO or Cu2O–rGO nanostructures. It is noted that such ones increase in size from 5 to 800 nm as the annealing temperature increases in the 200–1000 °C range. At 1000 °C, Cu nanoparticles develop a highly faceted morphology, displaying arm-like carbon nanorods that originate from different facets of the copper crystal structure. PMID:27547618

  18. Promotion of Water-mediated Carbon Removal by Nanostructured Barium Oxide/nickel Interfaces

    Energy Technology Data Exchange (ETDEWEB)

    L Yang; Y Choi; W Qin; H Chen; K Blinn; M Liu; P Liu; J Bai; T Tyson; M Liu

    2011-12-31

    The existing Ni-yttria-stabilized zirconia anodes in solid oxide fuel cells (SOFCs) perform poorly in carbon-containing fuels because of coking and deactivation at desired operating temperatures. Here we report a new anode with nanostructured barium oxide/nickel (BaO/Ni) interfaces for low-cost SOFCs, demonstrating high power density and stability in C{sub 3}H{sub 8}, CO and gasified carbon fuels at 750 C. Synchrotron-based X-ray analyses and microscopy reveal that nanosized BaO islands grow on the Ni surface, creating numerous nanostructured BaO/Ni interfaces that readily adsorb water and facilitate water-mediated carbon removal reactions. Density functional theory calculations predict that the dissociated OH from H2O on BaO reacts with C on Ni near the BaO/Ni interface to produce CO and H species, which are then electrochemically oxidized at the triple-phase boundaries of the anode. This anode offers potential for ushering in a new generation of SOFCs for efficient, low-emission conversion of readily available fuels to electricity.

  19. Concentrations of strontium, barium, cadmium, copper, zinc, manganese, chromium, antimony, selenium and lead in the equine liver and kidneys.

    Science.gov (United States)

    Paßlack, Nadine; Mainzer, Barbara; Lahrssen-Wiederholt, Monika; Schafft, Helmut; Palavinskas, Richard; Breithaupt, Angele; Neumann, Konrad; Zentek, Jürgen

    2014-01-01

    The concentrations of specific elements in the equine liver and kidneys are of practical relevance since horses are not only food-producing animals, but also partially serve as an indicator for the environmental pollution, as the basic feed includes plants like grass, grain and fruits. In this study, the concentrations of strontium (Sr), barium (Ba), cadmium (Cd), copper (Cu), zinc (Zn), manganese (Mn), chromium (Cr), antimony (Sb), selenium (Se) and lead (Pb) were measured in the liver, renal cortex and renal medulla of 21 horses (8 male; 13 female; aged between 5 months-28 years), using inductively coupled plasma mass spectrometry. Comparable Cu and Zn concentrations were detected in the liver and renal cortex, while approximately 50% lower concentrations were measured in the renal medulla. The lowest Sr, Cd and Se, but the highest Mn, Sb and Pb concentrations were measured in the liver. The Ba concentrations were comparable in the renal cortex and medulla, but lower in the liver of the horses. Gender-related differences were observed for Cd, Mn and Cr, with higher Cd concentrations in the liver, but lower Mn concentrations in the renal cortex and lower Cr concentrations in the renal medulla of female horses. Age-related differences were detected for most measured elements, however, the animal number per age-group was only low. In conclusion, the present study provides important reference data for the storage of Sr, Ba, Cd, Cu, Zn, Mn, Cr, Sb, Se and Pb in the liver and kidneys of horses, which are of practical relevance for an evaluation of the exposure of horses to these elements, either via feed or the environment.

  20. Molecular responses of mouse macrophages to copper and copper oxide nanoparticles inferred from proteomic analyses.

    Science.gov (United States)

    Triboulet, Sarah; Aude-Garcia, Catherine; Carrière, Marie; Diemer, Hélène; Proamer, Fabienne; Habert, Aurélie; Chevallet, Mireille; Collin-Faure, Véronique; Strub, Jean-Marc; Hanau, Daniel; Van Dorsselaer, Alain; Herlin-Boime, Nathalie; Rabilloud, Thierry

    2013-11-01

    The molecular responses of macrophages to copper-based nanoparticles have been investigated via a combination of proteomic and biochemical approaches, using the RAW264.7 cell line as a model. Both metallic copper and copper oxide nanoparticles have been tested, with copper ion and zirconium oxide nanoparticles used as controls. Proteomic analysis highlighted changes in proteins implicated in oxidative stress responses (superoxide dismutases and peroxiredoxins), glutathione biosynthesis, the actomyosin cytoskeleton, and mitochondrial proteins (especially oxidative phosphorylation complex subunits). Validation studies employing functional analyses showed that the increases in glutathione biosynthesis and in mitochondrial complexes observed in the proteomic screen were critical to cell survival upon stress with copper-based nanoparticles; pharmacological inhibition of these two pathways enhanced cell vulnerability to copper-based nanoparticles, but not to copper ions. Furthermore, functional analyses using primary macrophages derived from bone marrow showed a decrease in reduced glutathione levels, a decrease in the mitochondrial transmembrane potential, and inhibition of phagocytosis and of lipopolysaccharide-induced nitric oxide production. However, only a fraction of these effects could be obtained with copper ions. In conclusion, this study showed that macrophage functions are significantly altered by copper-based nanoparticles. Also highlighted are the cellular pathways modulated by cells for survival and the exemplified cross-toxicities that can occur between copper-based nanoparticles and pharmacological agents.

  1. Molecular Responses of Mouse Macrophages to Copper and Copper Oxide Nanoparticles Inferred from Proteomic Analyses*

    Science.gov (United States)

    Triboulet, Sarah; Aude-Garcia, Catherine; Carrière, Marie; Diemer, Hélène; Proamer, Fabienne; Habert, Aurélie; Chevallet, Mireille; Collin-Faure, Véronique; Strub, Jean-Marc; Hanau, Daniel; Van Dorsselaer, Alain; Herlin-Boime, Nathalie; Rabilloud, Thierry

    2013-01-01

    The molecular responses of macrophages to copper-based nanoparticles have been investigated via a combination of proteomic and biochemical approaches, using the RAW264.7 cell line as a model. Both metallic copper and copper oxide nanoparticles have been tested, with copper ion and zirconium oxide nanoparticles used as controls. Proteomic analysis highlighted changes in proteins implicated in oxidative stress responses (superoxide dismutases and peroxiredoxins), glutathione biosynthesis, the actomyosin cytoskeleton, and mitochondrial proteins (especially oxidative phosphorylation complex subunits). Validation studies employing functional analyses showed that the increases in glutathione biosynthesis and in mitochondrial complexes observed in the proteomic screen were critical to cell survival upon stress with copper-based nanoparticles; pharmacological inhibition of these two pathways enhanced cell vulnerability to copper-based nanoparticles, but not to copper ions. Furthermore, functional analyses using primary macrophages derived from bone marrow showed a decrease in reduced glutathione levels, a decrease in the mitochondrial transmembrane potential, and inhibition of phagocytosis and of lipopolysaccharide-induced nitric oxide production. However, only a fraction of these effects could be obtained with copper ions. In conclusion, this study showed that macrophage functions are significantly altered by copper-based nanoparticles. Also highlighted are the cellular pathways modulated by cells for survival and the exemplified cross-toxicities that can occur between copper-based nanoparticles and pharmacological agents. PMID:23882024

  2. Fracture toughness for copper oxide superconductors

    Science.gov (United States)

    Goretta, Kenneth C.; Kullberg, Marc L.

    1993-01-01

    An oxide-based strengthening and toughening agent, such as tetragonal Zro.sub.2 particles, has been added to copper oxide superconductors, such as superconducting YBa.sub.2 Cu.sub.3 O.sub.x (123) to improve its fracture toughness (K.sub.IC). A sol-gel coating which is non-reactive with the superconductor, such as Y.sub.2 BaCuO.sub.5 (211) on the ZrO.sub.2 particles minimized the deleterious reactions between the superconductor and the toughening agent dispersed therethrough. Addition of 20 mole percent ZrO.sub.2 coated with 211 yielded a 123 composite with a K.sub.IC of 4.5 MPa(m).sup.0.5.

  3. Enhanced performance of thermal-assisted electron field emission based on barium oxide nanowire

    Science.gov (United States)

    Cui, Yunkang; Chen, Jing; Zhang, Yuning; Zhang, Xiaobing; Lei, Wei; Di, Yunsong; Zhang, Zichen

    2017-02-01

    In this paper, thermal-assisted field emission properties of barium oxide (BaO) nanowire synthesized by a chemical bath deposition method were investigated. The morphology and composition of BaO nanowire were characterized by field emission scanning electron microscopy (FESEM), high resolution transmission electron microscopy (HRTEM), selected area electron diffraction (SED), X-ray diffraction (XRD), and energy dispersive X-ray spectrometer (EDX) respectively. The turn-on field, threshold field and the emission current density could be affected relatively due to the thermal-assisted effect when the electric field was applied, in the meanwhile, the turn-on field for BaO nanowire was measured to be decreased from 1.12 V/μm to 0.66 V/μm when the temperature was raised from 293 K to 593 K, whereas for the threshold field was found to decrease from 3.64 V/μm to 2.12 V/μm. The improved performance was demonstrated due to the reduced work function of the BaO nanowire as the agitation temperature increasing, leading to the higher probability of electrons tunneling through the energy barrier and enhancement of the field emission properties of BaO emitters.

  4. Role of copper oxides in contact killing of bacteria.

    Science.gov (United States)

    Hans, Michael; Erbe, Andreas; Mathews, Salima; Chen, Ying; Solioz, Marc; Mücklich, Frank

    2013-12-31

    The potential of metallic copper as an intrinsically antibacterial material is gaining increasing attention in the face of growing antibiotics resistance of bacteria. However, the mechanism of the so-called "contact killing" of bacteria by copper surfaces is poorly understood and requires further investigation. In particular, the influences of bacteria-metal interaction, media composition, and copper surface chemistry on contact killing are not fully understood. In this study, copper oxide formation on copper during standard antimicrobial testing was measured in situ by spectroscopic ellipsometry. In parallel, contact killing under these conditions was assessed with bacteria in phosphate buffered saline (PBS) or Tris-Cl. For comparison, defined Cu2O and CuO layers were thermally generated and characterized by grazing incidence X-ray diffraction. The antibacterial properties of these copper oxides were tested under the conditions used above. Finally, copper ion release was recorded for both buffer systems by inductively coupled plasma atomic absorption spectroscopy, and exposed copper samples were analyzed for topographical surface alterations. It was found that there was a fairly even growth of CuO under wet plating conditions, reaching 4-10 nm in 300 min, but no measurable Cu2O was formed during this time. CuO was found to significantly inhibit contact killing, compared to pure copper. In contrast, thermally generated Cu2O was essentially as effective in contact killing as pure copper. Copper ion release from the different surfaces roughly correlated with their antibacterial efficacy and was highest for pure copper, followed by Cu2O and CuO. Tris-Cl induced a 10-50-fold faster copper ion release compared to PBS. Since the Cu2O that primarily forms on copper under ambient conditions is as active in contact killing as pure copper, antimicrobial objects will retain their antimicrobial properties even after oxide formation.

  5. Understanding the superconductivity in copper oxides

    CERN Document Server

    2016-01-01

    The aim of this book is to clarify the situation by adopting a very different approach from the above electronic/magnetic models, where explicitly local dynamical distortions are considered. These are distinctly different from conventional phonons which are a property of the infinite translational invariant symmetric lattice. The local dynamical distortions are shown to account for bulk properties and provide consistent and quantitative agreement with experimental data together with explicit predictions. Selected published experimental and theoretical papers are presented which support the above arguments, but have been ignored on purpose by the originators of the RVB/t-J bubble. To summarize the scope of this book, comprising nine chapters, it is shown, that the phenomenon of HTS in copper oxides is much better understood than publically claimed by RVB/t-J followers. Using the words of B. Laughlin, the presence of the antiferromagnetism in HTS masks the underlying physics where vibronic bipolarons with spin...

  6. Comparison of the Oxidation Rates of Some New Copper Alloys

    Science.gov (United States)

    Ogbuji, Linus U. J. Thomas; Humphrey, Donald L.

    2002-01-01

    Copper alloys were studied for oxidation resistance and mechanisms between 550 and 700 C, in reduced-oxygen environments expected in rocket engines, and their oxidation behaviors compared to that of pure copper. They included two dispersion-strengthened alloys (precipitation-strengthened and oxide-dispersion strengthened, respectively) and one solution-strengthened alloy. In all cases the main reaction was oxidation of Cu into Cu2O and CuO. The dispersion-strengthened alloys were superior to both Cu and the solution-strengthened alloy in oxidation resistance. However, factors retarding oxidation rates seemed to be different for the two dispersion-strengthened alloys.

  7. Bioavailable copper modulates oxidative phosphorylation and growth of tumors.

    Science.gov (United States)

    Ishida, Seiko; Andreux, Pénélope; Poitry-Yamate, Carole; Auwerx, Johan; Hanahan, Douglas

    2013-11-26

    Copper is an essential trace element, the imbalances of which are associated with various pathological conditions, including cancer, albeit via largely undefined molecular and cellular mechanisms. Here we provide evidence that levels of bioavailable copper modulate tumor growth. Chronic exposure to elevated levels of copper in drinking water, corresponding to the maximum allowed in public water supplies, stimulated proliferation of cancer cells and de novo pancreatic tumor growth in mice. Conversely, reducing systemic copper levels with a chelating drug, clinically used to treat copper disorders, impaired both. Under such copper limitation, tumors displayed decreased activity of the copper-binding mitochondrial enzyme cytochrome c oxidase and reduced ATP levels, despite enhanced glycolysis, which was not accompanied by increased invasiveness of tumors. The antiproliferative effect of copper chelation was enhanced when combined with inhibitors of glycolysis. Interestingly, larger tumors contained less copper than smaller tumors and exhibited comparatively lower activity of cytochrome c oxidase and increased glucose uptake. These results establish copper as a tumor promoter and reveal that varying levels of copper serves to regulate oxidative phosphorylation in rapidly proliferating cancer cells inside solid tumors. Thus, activation of glycolysis in tumors may in part reflect insufficient copper bioavailability in the tumor microenvironment.

  8. Strain-induced orientation of copper oxide nanoislands through decomposition of pre-organized copper nitrate

    Institute of Scientific and Technical Information of China (English)

    谷俐; 陈树大; 赵惠明

    2004-01-01

    By the decomposition of copper nitrate at 400 ℃, oriented islands of copperoxide crystals were successfully fabricated on the amorphous glass surface. X-ray diffraction (XRD), atom force microscope (AFM), and Xray photoelectron spectroscopy (XPS) confirm the presence of copper oxide islands. The formation of oriented island structures is attributed to the following reasons: 1) the mismatch between the glass substrate and the copper oxide crystals during the relaxation of thermal expansion leads to the formation of islands; 2) the preorganized copper nitrate particles in the voids of colloidal crystals determine their ordered spatial distribution; 3) the strain of the glass substrate developing during calcination provides the driven energy for the orientation of copper oxide crystals along the same direction.

  9. Oxidation Potentials in Matte Smelting of Copper and Nickel

    Science.gov (United States)

    Matousek, Jan W.

    2014-09-01

    The oxidation potential, given as the base-ten logarithm of the oxygen partial pressure in bars and the temperature [log pO2/ T, °C], defines the state of oxidation of pyrometallurgical extraction and refining processes. This property varies from copper making, [-6/1150]; to lead/zinc smelting, [-10/1200]; to iron smelting, [-13/1600]. The current article extends the analysis to the smelting of copper and nickel/copper sulfide concentrates to produce mattes of the type Cu(Ni)FeS(O) and iron silicate slags, FeOxSiO2—with oxidation potentials of [-7.5/1250].

  10. Kinetics and mechanisms of reactions between H2O2 and copper and copper oxides.

    Science.gov (United States)

    Björkbacka, Åsa; Yang, Miao; Gasparrini, Claudia; Leygraf, Christofer; Jonsson, Mats

    2015-09-28

    One of the main challenges for the nuclear power industry today is the disposal of spent nuclear fuel. One of the most developed methods for its long term storage is the Swedish KBS-3 concept where the spent fuel is sealed inside copper canisters and placed 500 meters down in the bedrock. Gamma radiation will penetrate the canisters and be absorbed by groundwater thereby creating oxidative radiolysis products such as hydrogen peroxide (H2O2) and hydroxyl radicals (HO˙). Both H2O2 and HO˙ are able to initiate corrosion of the copper canisters. In this work the kinetics and mechanism of reactions between the stable radiolysis product, H2O2, and copper and copper oxides were studied. Also the dissolution of copper into solution after reaction with H2O2 was monitored by ICP-OES. The experiments show that both H2O2 and HO˙ are present in the systems with copper and copper oxides. Nevertheless, these species do not appear to influence the dissolution of copper to the same extent as observed in recent studies in irradiated systems. This strongly suggests that aqueous radiolysis can only account for a very minor part of the observed radiation induced corrosion of copper.

  11. Electrical Characterization of Spherical Copper Oxide Memristive Array Sensors

    Science.gov (United States)

    2014-03-27

    running, dinner-table debate etiquette, sailing, electric guitar, and the Seattle bus system, but only earned his Bachelor of Science in Electrical ... ELECTRICAL CHARACTERIZATION OF SPHERICAL COPPER OXIDE MEMRISTIVE ARRAY SENSORS THESIS James P. Orta, Second Lieutenant, USAF AFIT-ENP-14-M-40...not subject to copyright protection in the United States. AFIT-ENP-14-M-40 ELECTRICAL CHARACTERIZATION OF SPHERICAL COPPER OXIDE MEMRISTIVE ARRAY

  12. Unsupported single-atom-thick copper oxide monolayers

    Science.gov (United States)

    Yin, Kuibo; Zhang, Yu-Yang; Zhou, Yilong; Sun, Litao; Chisholm, Matthew F.; Pantelides, Sokrates T.; Zhou, Wu

    2017-03-01

    Oxide monolayers may present unique opportunities because of the great diversity of properties of these materials in bulk form. However, reports on oxide monolayers are still limited. Here we report the formation of single-atom-thick copper oxide layers with a square lattice both in graphene pores and on graphene substrates using aberration-corrected scanning transmission electron microscopy. First-principles calculations find that CuO is energetically stable and its calculated lattice spacing matches well with the measured value. Furthermore, free-standing copper oxide monolayers are predicted to be semiconductors with band gaps ∼3 eV. The new wide-bandgap single-atom-thick copper oxide monolayers usher a new frontier to study the highly diverse family of two-dimensional oxides and explore their properties and their potential for new applications.

  13. Extracting copper from copper oxide ore by a zwitterionic reagent and dissolution kinetics

    Institute of Scientific and Technical Information of China (English)

    Jiu-shuai Deng; Shu-ming Wen; Jian-ying Deng; Dan-dan Wu

    2015-01-01

    Sulfamic acid (SA), which possesses a zwitterionic structure, was applied as a leaching reagent for the first time for extracting copper from copper oxide ore. The effects of reaction time, temperature, particle size, reagent concentration, and stirring speed on this leach-ing were studied. The dissolution kinetics of malachite was illustrated with a three-dimensional diffusion model. A novel leaching effect of SA on malachite was eventually demonstrated. The leaching rate increased with decreasing particle size and increasing concentration, reac-tion temperature and stirring speed. The activation energy for SA leaching malachite was 33.23 kJ/mol. Furthermore, the effectiveness of SA as a new reagent for extracting copper from copper oxide ore was confirmed by experiment. This approach may provide a solution suitable for subsequent electrowinning. In addition, results reported herein may provide basic data that enable the leaching of other carbonate miner-als of copper, zinc, cobalt and so on in an SA system.

  14. Mechanism of copper selenide growth on copper-oxide selenium system

    Science.gov (United States)

    Ishikawa, Y.; Kido, O.; Kimura, Y.; Kurumada, M.; Suzuki, H.; Saito, Y.; Kaito, C.

    2004-01-01

    Transmission electron microscopy was used to study spontaneous copper selenide formation on Cu particles covered with an oxide layer. Even if the copper particle surface was covered with a Cu 2O layer, selenides were formed by diffusion through the metal oxide layer. For a particle size less than 50 nm, selenide was formed in Cu particles by the diffusion of Se atoms passing through the Cu 2O layer. For particles larger than 100 nm in size, selenide was formed in Se film. It was also found that the thickness of the Cu 2O layer on the surface of Cu particle accelerated diffusion of Se atoms to the copper particle.

  15. Modeling the ignition of a copper oxide aluminum thermite

    Science.gov (United States)

    Lee, Kibaek; Stewart, D. Scott; Clemenson, Michael; Glumac, Nick; Murzyn, Christopher

    2017-01-01

    An experimental "striker confinement" shock compression experiment was developed in the Glumac-group at the University of Illinois to study ignition and reaction in composite reactive materials. These include thermitic and intermetallic reactive powders. Sample of materials such as a thermite mixture of copper oxide and aluminum powders are initially compressed to about 80 percent full density. Two RP-80 detonators simultaneously push steel bars into the reactive material and the resulting compression causes shock compaction of the material and rapid heating. At that point one observes significant reaction and propagation of fronts. But the fronts are peculiar in that they are comprised of reactive events that can be traced to the reaction of the initially separated reactants of copper oxide and aluminum that react at their mutual interfaces, that nominally make copper liquid and aluminum oxide products. We discuss our model of the ignition of the copper oxide aluminum thermite in the context of the striker experiment and how a Gibbs formulation model [1], that includes multi-components for liquid and solid phases of aluminum, copper oxide, copper and aluminum oxide, can predict the events observed at the particle scale in the experiments.

  16. The Absorption of Benzotriazole on Copper and Cuprous Oxide

    Science.gov (United States)

    1988-07-01

    Cornell University, Ithaca INY, 14853 Copper surfaces are commonly treated with benzotriazole ( BTA ), 1. to inhibit cor- rosion. H1+ is thought to be...00 00 SIOFFICE OF NAVAL RESEARCH Contract N00014-82-K-0576 Technical Report No. 38 THE ADSORPTION OF BENZOTRIAZOLE ON COPPER AND CUPROUS OXIDE by M... Benzotriazole on Copper and Cuprous Oxide 12 7- `SONAL AUTHOR(S) M. C. Zonnevylle and R. Hoffmann 13a TYPE OF REPORT 13b TIME COVERED 14 DATE OF REPORT (Year

  17. Anticancer activity of Ficus religiosa engineered copper oxide nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Sankar, Renu; Maheswari, Ramasamy; Karthik, Selvaraju [Department of Biochemistry, School of Life Sciences, Bharathidasan University, Tiruchirappalli 620 024, Tamilnadu (India); Shivashangari, Kanchi Subramanian, E-mail: shivashangari@gmail.com [Regional Forensic Science Laboratory, Tiruchirapalli, Tamilnadu (India); Ravikumar, Vilwanathan, E-mail: ravikumarbdu@gmail.com [Department of Biochemistry, School of Life Sciences, Bharathidasan University, Tiruchirappalli 620 024, Tamilnadu (India)

    2014-11-01

    The design, synthesis, characterization and application of biologically synthesized nanomaterials have become a vital branch of nanotechnology. There is a budding need to develop a method for environmentally benign metal nanoparticle synthesis, that do not use toxic chemicals in the synthesis protocols to avoid adverse effects in medical applications. Here, it is a report on an eco-friendly process for rapid synthesis of copper oxide nanoparticles using Ficus religiosa leaf extract as reducing and protecting agent. The synthesized copper oxide nanoparticles were confirmed by UV–vis spectrophotometer, absorbance peaks at 285 nm. The copper oxide nanoparticles were analyzed with field emission-scanning electron microscope (FE-SEM), Fourier transform infrared (FT-IR) spectroscopy, dynamic light scattering (DLS) and X-ray diffraction (XRD) spectrum. The FE-SEM and DLS analyses exposed that copper oxide nanoparticles are spherical in shape with an average particle size of 577 nm. FT-IR spectral analysis elucidates the occurrence of biomolecules required for the reduction of copper oxide ions. Zeta potential studies showed that the surface charge of the formed nanoparticles was highly negative. The XRD pattern revealed that synthesized nanoparticles are crystalline in nature. Further, biological activities of the synthesized nanoparticles were confirmed based on its stable anti-cancer effects. The apoptotic effect of copper oxide nanoparticles is mediated by the generation of reactive oxygen species (ROS) involving the disruption of mitochondrial membrane potential (Δψm) in A549 cells. The observed characteristics and results obtained in our in vitro assays suggest that the copper nanoparticles might be a potential anticancer agent. - Highlights: • Biogenic synthesis of copper oxide nanoparticles by leaf extract of Ficus religiosa • Characterized via UV–vis, FT-IR, DLS, FE-SEM with EDAX and XRD • Protein may act as an encapsulating, reducing and stabilizing

  18. Comparative proteomic analysis of the molecular responses of mouse macrophages to titanium dioxide and copper oxide nanoparticles unravels some toxic mechanisms for copper oxide nanoparticles in macrophages.

    Science.gov (United States)

    Triboulet, Sarah; Aude-Garcia, Catherine; Armand, Lucie; Collin-Faure, Véronique; Chevallet, Mireille; Diemer, Hélène; Gerdil, Adèle; Proamer, Fabienne; Strub, Jean-Marc; Habert, Aurélie; Herlin, Nathalie; Van Dorsselaer, Alain; Carrière, Marie; Rabilloud, Thierry

    2015-01-01

    Titanium dioxide and copper oxide nanoparticles are more and more widely used because of their catalytic properties, of their light absorbing properties (titanium dioxide) or of their biocidal properties (copper oxide), increasing the risk of adverse health effects. In this frame, the responses of mouse macrophages were studied. Both proteomic and targeted analyses were performed to investigate several parameters, such as phagocytic capacity, cytokine release, copper release, and response at sub toxic doses. Besides titanium dioxide and copper oxide nanoparticles, copper ions were used as controls. We also showed that the overall copper release in the cell does not explain per se the toxicity observed with copper oxide nanoparticles. In addition, both copper ion and copper oxide nanoparticles, but not titanium oxide, induced DNA strands breaks in macrophages. As to functional responses, the phagocytic capacity was not hampered by any of the treatments at non-toxic doses, while copper ion decreased the lipopolysaccharide-induced cytokine and nitric oxide productions. The proteomic analyses highlighted very few changes induced by titanium dioxide nanoparticles, but an induction of heme oxygenase, an increase of glutathione synthesis and a decrease of tetrahydrobiopterin in response to copper oxide nanoparticles. Subsequent targeted analyses demonstrated that the increase in glutathione biosynthesis and the induction of heme oxygenase (e.g. by lovastatin/monacolin K) are critical for macrophages to survive a copper challenge, and that the intermediates of the catecholamine pathway induce a strong cross toxicity with copper oxide nanoparticles and copper ions.

  19. Comparative proteomic analysis of the molecular responses of mouse macrophages to titanium dioxide and copper oxide nanoparticles unravels some toxic mechanisms for copper oxide nanoparticles in macrophages.

    Directory of Open Access Journals (Sweden)

    Sarah Triboulet

    Full Text Available Titanium dioxide and copper oxide nanoparticles are more and more widely used because of their catalytic properties, of their light absorbing properties (titanium dioxide or of their biocidal properties (copper oxide, increasing the risk of adverse health effects. In this frame, the responses of mouse macrophages were studied. Both proteomic and targeted analyses were performed to investigate several parameters, such as phagocytic capacity, cytokine release, copper release, and response at sub toxic doses. Besides titanium dioxide and copper oxide nanoparticles, copper ions were used as controls. We also showed that the overall copper release in the cell does not explain per se the toxicity observed with copper oxide nanoparticles. In addition, both copper ion and copper oxide nanoparticles, but not titanium oxide, induced DNA strands breaks in macrophages. As to functional responses, the phagocytic capacity was not hampered by any of the treatments at non-toxic doses, while copper ion decreased the lipopolysaccharide-induced cytokine and nitric oxide productions. The proteomic analyses highlighted very few changes induced by titanium dioxide nanoparticles, but an induction of heme oxygenase, an increase of glutathione synthesis and a decrease of tetrahydrobiopterin in response to copper oxide nanoparticles. Subsequent targeted analyses demonstrated that the increase in glutathione biosynthesis and the induction of heme oxygenase (e.g. by lovastatin/monacolin K are critical for macrophages to survive a copper challenge, and that the intermediates of the catecholamine pathway induce a strong cross toxicity with copper oxide nanoparticles and copper ions.

  20. Comparative Proteomic Analysis of the Molecular Responses of Mouse Macrophages to Titanium Dioxide and Copper Oxide Nanoparticles Unravels Some Toxic Mechanisms for Copper Oxide Nanoparticles in Macrophages

    Science.gov (United States)

    Triboulet, Sarah; Aude-Garcia, Catherine; Armand, Lucie; Collin-Faure, Véronique; Chevallet, Mireille; Diemer, Hélène; Gerdil, Adèle; Proamer, Fabienne; Strub, Jean-Marc; Habert, Aurélie; Herlin, Nathalie; Van Dorsselaer, Alain; Carrière, Marie; Rabilloud, Thierry

    2015-01-01

    Titanium dioxide and copper oxide nanoparticles are more and more widely used because of their catalytic properties, of their light absorbing properties (titanium dioxide) or of their biocidal properties (copper oxide), increasing the risk of adverse health effects. In this frame, the responses of mouse macrophages were studied. Both proteomic and targeted analyses were performed to investigate several parameters, such as phagocytic capacity, cytokine release, copper release, and response at sub toxic doses. Besides titanium dioxide and copper oxide nanoparticles, copper ions were used as controls. We also showed that the overall copper release in the cell does not explain per se the toxicity observed with copper oxide nanoparticles. In addition, both copper ion and copper oxide nanoparticles, but not titanium oxide, induced DNA strands breaks in macrophages. As to functional responses, the phagocytic capacity was not hampered by any of the treatments at non-toxic doses, while copper ion decreased the lipopolysaccharide-induced cytokine and nitric oxide productions. The proteomic analyses highlighted very few changes induced by titanium dioxide nanoparticles, but an induction of heme oxygenase, an increase of glutathione synthesis and a decrease of tetrahydrobiopterin in response to copper oxide nanoparticles. Subsequent targeted analyses demonstrated that the increase in glutathione biosynthesis and the induction of heme oxygenase (e.g. by lovastatin/monacolin K) are critical for macrophages to survive a copper challenge, and that the intermediates of the catecholamine pathway induce a strong cross toxicity with copper oxide nanoparticles and copper ions. PMID:25902355

  1. Cobalt promoted copper manganese oxide catalysts for ambient temperature carbon monoxide oxidation.

    Science.gov (United States)

    Jones, Christopher; Taylor, Stuart H; Burrows, Andrew; Crudace, Mandy J; Kiely, Christopher J; Hutchings, Graham J

    2008-04-14

    Low levels of cobalt doping (1 wt%) of copper manganese oxide enhances its activity for carbon monoxide oxidation under ambient conditions and the doped catalyst can display higher activity than current commercial catalysts.

  2. Denitrifying kinetics and nitrous oxide emission under different copper concentrations.

    Science.gov (United States)

    Wu, Guangxue; Zhai, Xiaofeng; Jiang, Chengai; Guan, Yuntao

    2014-01-01

    Denitrifying activities and nitrous oxide (N2O) emission during denitrification can be affected by copper concentrations. Different denitrifiers were acclimated in sequencing batch reactors with acetate or methanol as the electron donor and nitrate as the electron acceptor. The effect of copper concentrations on the denitrifying activity and N2O emission for the acclimated denitrifiers was examined in batch experiments. Denitrifying activities of the acclimated denitrifiers declined with increasing copper concentrations, and the copper concentration exhibited a higher effect on denitrifiers acclimated with acetate than those acclimated with methanol. Compared with the control without the addition of copper, at the copper concentration of 1 mg/L, the acetate utilization rate reduced by 89% for acetate-acclimated denitrifiers, while the methanol utilization rate only reduced by 15% for methanol-acclimated denitrifiers. Copper also had different effects on N2O emission during denitrification carried out by various types of denitrifiers. For the acetate-acclimated denitrifiers, N2O emission initially increased and then decreased with increasing copper concentrations, while for the methanol-acclimated denitrifiers, N2O emission decreased with increasing copper concentrations.

  3. Vibronic dispersion in the copper oxide superconductors

    Science.gov (United States)

    Goodenough, J. B.; Zhou, J.-S.

    1994-02-01

    Attempts to describe the normal-state electronic behavior of the copper oxide superconductors have been unable to reconcile the following observations: (i) a well-defined Fermi surface with a locus predicted by band theory, but having charge carriers of a sign predicted for a Mott-Hubbard splitting of the band; (ii) a change in sign of the carriers to that predicted by band theory, but without a significant change in the locus of the Fermi surface, on overdoping beyond the narrow superconductive compositional range; (iii) a remarkable stability of the narrow range of superconductive charge-carrier concentrations in the CuO2 sheets even in the presence of charge transfer from nonsuperconductive intergrowth layers; (iv) a dramatic sensitivity of the Néel temperature of the parent compound to oxidation of the CuO2 sheets, but the persistence of antiferromagnetic spin fluctuations into the superconductive compositions; and (v) unusual transport properties that cannot be treated within the Migdal approximation and are insensitive to high magnetic fields. To address this impasse, we propose a phenomenological polaron model based on the observation that the system must accommodate to the coexistence of ``ionic'' and ``covalent'' Cu-O bonding having different equilibrium Cu-O bond lengths. We designate this entity a correlation polaron. Covalent Cu-O bonding with molecular-orbital formation occurs within the polaron, which moves in a background of ionic Cu-O bonding. Vibronic coupling at the ``avoided crossover'' from ionic to covalent bonding allows diffusional motion of uncoupled polarons without any motional enthalpy in the mobility. At temperatures T>Tl>~300 K the polarons are uncoupled and move randomly; in the narrow superconductive compositional range they condense below Tl to form a distinguishable thermodynamic phase consisting of extended vibronic states. In this ``polaron liquid,'' a distinction between bonding and antibonding states within the polarons opens a

  4. Copper oxide as a high temperature battery cathode material

    Science.gov (United States)

    Ritchie, A. G.; Mullins, A. P.

    1994-10-01

    Copper oxide has been tested as a cathode material for high temperature primary reserve thermal batteries in single cells at 530 to 600 C and at current densities of 0.1 to 0.25 A cm(exp -2) using lithium-aluminium alloy anodes and lithium fluoride-lithium chloride-lithium bromide molten salt electrolytes. Initial on-load voltages were around 2.3 V, falling to 1.5 V after about 0.5 F mol(exp -1) had been withdrawn. Lithium copper oxide, LiCu2O2, and cuprous oxide, Cu2O, were identified as discharge products.

  5. Preparation and characterization of copper-doped cobalt oxide electrodes.

    Science.gov (United States)

    Rosa-Toro, A La; Berenguer, R; Quijada, C; Montilla, F; Morallón, E; Vazquez, J L

    2006-11-30

    Cobalt oxide (Co3O4) and copper-doped cobalt oxide (CuxCo(3-x)O4) films have been prepared onto titanium support by the thermal decomposition method. The electrodes have been characterized by different techniques such as cyclic voltammetry, scanning electron microscopy, X-ray diffraction, and X-ray photoelectron spectroscopy (XPS). The effect on the electrochemical and crystallographic properties and surface morphology of the amount of copper in the oxide layer has been analyzed. The XPS spectra correspond to a characteristic monophasic Cu-Co spinel oxides when x is below 1. However, when the copper content exceeds that for the stoichiometric CuCo2O4 spinel, a new CuO phase segregates at the surface. The analysis of the surface cation distribution indicates that Cu(II) has preference for octahedral sites.

  6. MECHANISM OF THE OXIDATION OF HEMOGLOBIN BY COPPER (II COMPLXES

    Directory of Open Access Journals (Sweden)

    M. BAYATI

    1994-07-01

    Full Text Available An outer sphere electron transfer mechanism by which human hemoglobin reduces the complexes of copper(II and, in turn, is oxidized to methemoglobin has been characterized. We have found that the rate of oxidation of hemoglobin is a function of pH, temperature, concentration of copper(II, and the environment of the hemoglobin. Prior to oxidation, copper(II complex binds to specific sites on the surface of the protein by losing one or more of its ligands, forming a ternary complex. This process is followed by electron transfer between the Cu(II and Fe(H with the Cu(II-deoxyhemoglobin being the active intermediate. The dominant factors which govern the rate of oxidation of hemoglobin by coppcr(I I complexes seem to be the stability constant of the Cu(II complexes and the overall redox potential of the ternary complex.

  7. Anticancer activity of Ficus religiosa engineered copper oxide nanoparticles.

    Science.gov (United States)

    Sankar, Renu; Maheswari, Ramasamy; Karthik, Selvaraju; Shivashangari, Kanchi Subramanian; Ravikumar, Vilwanathan

    2014-11-01

    The design, synthesis, characterization and application of biologically synthesized nanomaterials have become a vital branch of nanotechnology. There is a budding need to develop a method for environmentally benign metal nanoparticle synthesis, that do not use toxic chemicals in the synthesis protocols to avoid adverse effects in medical applications. Here, it is a report on an eco-friendly process for rapid synthesis of copper oxide nanoparticles using Ficus religiosa leaf extract as reducing and protecting agent. The synthesized copper oxide nanoparticles were confirmed by UV-vis spectrophotometer, absorbance peaks at 285 nm. The copper oxide nanoparticles were analyzed with field emission-scanning electron microscope (FE-SEM), Fourier transform infrared (FT-IR) spectroscopy, dynamic light scattering (DLS) and X-ray diffraction (XRD) spectrum. The FE-SEM and DLS analyses exposed that copper oxide nanoparticles are spherical in shape with an average particle size of 577 nm. FT-IR spectral analysis elucidates the occurrence of biomolecules required for the reduction of copper oxide ions. Zeta potential studies showed that the surface charge of the formed nanoparticles was highly negative. The XRD pattern revealed that synthesized nanoparticles are crystalline in nature. Further, biological activities of the synthesized nanoparticles were confirmed based on its stable anti-cancer effects. The apoptotic effect of copper oxide nanoparticles is mediated by the generation of reactive oxygen species (ROS) involving the disruption of mitochondrial membrane potential (Δψm) in A549 cells. The observed characteristics and results obtained in our in vitro assays suggest that the copper nanoparticles might be a potential anticancer agent.

  8. Comparative effects of dissolved copper and copper oxide nanoparticle exposure to the sea anemone, Exaiptasia pallida

    Energy Technology Data Exchange (ETDEWEB)

    Siddiqui, Samreen; Goddard, Russell H.; Bielmyer-Fraser, Gretchen K., E-mail: gkbielmyer@valdosta.edu

    2015-03-15

    Highlights: • Differences between CuO NP and CuCl{sub 2} exposure were characterized. • Copper accumulation in E. pallida was concentration-dependent. • E. pallida exposed to CuCl{sub 2} accumulated higher copper tissue burdens. • The oxidative stress response was greater in E. pallida exposed to CuO NP. • Both forms of copper inhibited CA activity in E. pallida. - Abstract: Increasing use of metal oxide nanoparticles (NP) by various industries has resulted in substantial output of these NP into aquatic systems. At elevated concentrations, NP may interact with and potentially affect aquatic organisms. Environmental implications of increased NP use are largely unknown, particularly in marine systems. This research investigated and compared the effects of copper oxide (CuO) NP and dissolved copper, as copper chloride (CuCl{sub 2}), on the sea anemone, Exaiptasia pallida. Sea anemones were collected over 21 days and tissue copper accumulation and activities of the enzymes: catalase, glutathione peroxidase, glutathione reductase, and carbonic anhydrase were quantified. The size and shape of CuO NP were observed using a ecanning electron microscope (SEM) and the presence of copper was confirmed by using Oxford energy dispersive spectroscopy systems (EDS/EDX). E. pallida accumulated copper in their tissues in a concentration- and time-dependent manner, with the animals exposed to CuCl{sub 2} accumulating higher tissue copper burdens than those exposed to CuO NP. As a consequence of increased copper exposure, as CuO NP or CuCl{sub 2}, anemones increased activities of all of the antioxidant enzymes measured to some degree, and decreased the activity of carbonic anhydrase. Anemones exposed to CuO NP generally had higher anti-oxidant enzyme activities than those exposed to the same concentrations of CuCl{sub 2}. This study is useful in discerning differences between CuO NP and dissolved copper exposure and the findings have implications for exposure of aquatic

  9. Quantum Magnetic Excitations from Stripes in Copper-Oxide Superconductors

    OpenAIRE

    Tranquada, J. M.; Woo, H.; Perring, T. G.; Goka, H; Gu, G. D.; Xu, G; Fujita, M.; Yamada, K.

    2004-01-01

    In the copper-oxide parent compounds of the high-transition-temperature superconductors, the valence electrons are localized, one per copper site, due to strong intraatomic Coulomb repulsion. A symptom of the localization is antiferromagnetism, where the spins of localized electrons alternate between up and down. The superconductivity appears when mobile 'holes' are doped into this insulating state, and it coexists with antiferromagnetic fluctuations. In one approach to the coexistence, the h...

  10. Experimental Viscosity Measurements for Copper Oxide Nanoparticle Suspensions

    Institute of Scientific and Technical Information of China (English)

    李俊明; 李泽梁; 王补宣

    2002-01-01

    The viscosity of water with copper oxide nanoparticle suspensions was measured using capillary viscometers. The mass fractions of copper oxide nanoparticles in the experiment, w, varied between 0.02 and 0.10, and the temperature range was 30℃ to 80℃. The experimental results show that the temperature was the major factor affecting the viscosity of the nanoparticle suspensions, while the effect of the mass fraction on the viscosity was not so obvious as that of the temperature for the mass fractions chosen in the experiment. The effect of the capillary tube size on the viscosity was also found to be relatively important at higher mass fractions.

  11. Copper oxide resistive switching memory for e-textile

    Directory of Open Access Journals (Sweden)

    Jin-Woo Han

    2011-09-01

    Full Text Available A resistive switching memory suitable for integration into textiles is demonstrated on a copper wire network. Starting from copper wires, a Cu/CuxO/Pt sandwich structure is fabricated. The active oxide film is produced by simple thermal oxidation of Cu in atmospheric ambient. The devices display a resistance switching ratio of 102 between the high and low resistance states. The memory states are reversible and retained over 107 seconds, with the states remaining nondestructive after multiple read operations. The presented device on the wire network can potentially offer a memory for integration into smart textile.

  12. Copper oxide resistive switching memory for e-textile

    Science.gov (United States)

    Han, Jin-Woo; Meyyappan, M.

    2011-09-01

    A resistive switching memory suitable for integration into textiles is demonstrated on a copper wire network. Starting from copper wires, a Cu/CuxO/Pt sandwich structure is fabricated. The active oxide film is produced by simple thermal oxidation of Cu in atmospheric ambient. The devices display a resistance switching ratio of 102 between the high and low resistance states. The memory states are reversible and retained over 107 seconds, with the states remaining nondestructive after multiple read operations. The presented device on the wire network can potentially offer a memory for integration into smart textile.

  13. Formation and characterization of infrared absorbing copper oxide surfaces

    Science.gov (United States)

    Arslan, Burcu; Demirci, Gökhan; Erdoğan, Metehan; Karakaya, İshak

    2017-04-01

    Copper oxide formation has been investigated to combine the advantages of producing different size and shapes of coatings that possess good light absorbing properties. An aqueous blackening solution was investigated and optimum composition was found as 2.5 M NaOH and 0.225 M NaClO to form velvet copper oxide films. A two-step oxidation mechanism was proposed for the blackening process by carefully examining the experimental results. Formation of Cu2O was observed until the entire copper surface was covered at first. In the second step, Cu2O surface was further oxidized to CuO until the whole Cu2O surface was covered by CuO. Therefore, blackened copper surfaces consisted of Cu2O/CuO duplex oxides. Characterization of the coatings were performed in terms of microstructure, phase analysis, chemical state, infrared specular and total reflectivity by SEM, XRD, XPS, FTIR and UV-vis spectrophotometry, respectively.

  14. Copper oxide transistor on copper wire for e-textile

    Science.gov (United States)

    Han, Jin-Woo; Meyyappan, M.

    2011-05-01

    A Cu2O-based field effect transistor was fabricated on Cu wire. Thermal oxidation of Cu forms Cu-Cu2O core-shell structure, where the metal-semiconductor Schottky junction was used as a gate barrier with Pt Ohmic contacts for source and drain. The device was coated with polydimethylsiloxane (PDMS) to protect from contamination and demonstrated as a humidity sensor. The cylindrical structure of the Cu wire and the transistor function enable embedding of simple circuits into textile which can potentially offer smart textile for wearable computing, environmental sensing, and monitoring of human vital signs.

  15. A hybrid water-splitting cycle using copper sulfate and mixed copper oxides

    Science.gov (United States)

    Schreiber, J. D.; Remick, R. J.; Foh, S. E.; Mazumder, M. M.

    1980-01-01

    The Institute of Gas Technology has derived and developed a hybrid thermochemical water-splitting cycle based on mixed copper oxides and copper sulfate. Similar to other metal oxide-metal sulfate cycles that use a metal oxide to 'concentrate' electrolytically produced sulfuric acid, this cycle offers the advantage of producing oxygen (to be vented) and sulfur dioxide (to be recycled) in separate steps, thereby eliminating the need of another step to separate these gases. The conceptual process flow-sheet efficiency of the cycle promises to exceed 50%. It has been completely demonstrated in the laboratory with recycled materials. Research in the electrochemical oxidation of sulfur dioxide to produce sulfuric acid and hydrogen performed at IGT indicates that the cell performance goals of 200 mA/sq cm at 0.5 V will be attainable using relatively inexpensive electrode materials.

  16. Biodynamics of copper oxide nanoparticles and copper ions in an oligochaete, Part I

    DEFF Research Database (Denmark)

    Ramskov, Tina; Thit, Amalie; Croteau, Marie-Noelle

    2015-01-01

    Copper oxide (CuO) nanoparticles (NPs) are widely used, and likely released into the aquatic environment. Both aqueous (i.e., dissolved Cu) and particulate Cu can be taken up by organisms. However, how exposure routes influence the bioavailability and subsequent toxicity of Cu remains largely...

  17. Oxidative alkoxylation of phosphine in alcohol solutions of copper halides

    Science.gov (United States)

    Polimbetova, G. S.; Borangazieva, A. K.; Ibraimova, Zh. U.; Bugubaeva, G. O.; Keynbay, S.

    2016-08-01

    The phosphine oxidation reaction with oxygen in alcohol solutions of copper (I, II) halides is studied. Kinetic parameters, intermediates, and by-products are studied by means of NMR 31P-, IR-, UV-, and ESR- spectroscopy; and by magnetic susceptibility, redox potentiometry, gas chromatography, and elemental analysis. A reaction mechanism is proposed, and the optimum conditions are found for the reaction of oxidative alkoxylation phosphine.

  18. The Audio Frequency Conductance Study of Some Metal Succinate Salts in Aqueous Medium at Different Temperatures (Part I: Magnesium, Manganese (II, Barium and Copper Succinates

    Directory of Open Access Journals (Sweden)

    Kosrat N. Kaka

    2013-01-01

    Full Text Available The audio electrical conductances of aqueous solutions of magnesium, manganese II, barium, and copper succinates have been measured at various temperatures in the range of 298.15 K to 313.15 K, using an audio frequency conductance bridge. The evaluation of conductance data was carried out by minimisation technique using the theoretical equations of the complete and modified forms of Pitts (P and Fuoss-Hsia (F-H, each a three-parameter equation, association constant (KA, molar conductance (Λm, and distance parameter (a. Quantitative results showed that these salts do not behave as “strong” electrolytes, and that their dissociations are far from complete. The abnormally low conductances of these electrolytes are not due to the presence of electrically neutral molecules but to the ion-pair formation. The Walden product values, as well as the standard thermodynamics functions (ΔH∘, ΔG∘, ΔS∘ for the association reaction at the four temperatures studied, have been evaluated.

  19. Electrical conduction in composites containing copper core-copper oxide shell nanostructure in silica gel

    Indian Academy of Sciences (India)

    D Das; T K Kundu; M K Dey; S Chakraborty; D Chakravorty

    2003-10-01

    Composites of nanometre-sized copper core-copper oxide shell with diameters in the range 6.1 to 7.3 nm dispersed in a silica gel were synthesised by a technique comprising reduction followed by oxidation of a suitably chosen precursor gel. The hot pressed gel powders mixed with nanometre-sized copper particles dispersed in silica gel showed electrical resistivities several orders of magnitude lower than that of the precursor gel. Electrical resistivities of the different specimens were measured over the temperature range 30 to 300°C. Activation energies for the coreshell nanostructured composites were found to be a fraction of that of the precursor gel. Such dramatic changes are ascribed to the presence of an interfacial amorphous phase. The resistivity variation as a function of temperature was analysed on the basis of Mott’s small polaron hopping conduction model. The effective dielectric constant of the interfacial phase as extracted from the data analysis was found to be much higher than that of the precursor glass. This has been explained as arising from the generation of very high pressure at the interface due to the oxidation step to which the copper nanoparticles are subjected.

  20. Processing science of barium titanate

    Science.gov (United States)

    Aygun, Seymen Murat

    Barium titanate and barium strontium titanate thin films were deposited on base metal foils via chemical solution deposition and radio frequency magnetron sputtering. The films were processed at elevated temperatures for densification and crystallization. Two unifying research goals underpin all experiments: (1) To improve our fundamental understanding of complex oxide processing science, and (2) to translate those improvements into materials with superior structural and electrical properties. The relationships linking dielectric response, grain size, and thermal budget for sputtered barium strontium titanate were illustrated. (Ba 0.6Sr0.4)TiO3 films were sputtered on nickel foils at temperatures ranging between 100-400°C. After the top electrode deposition, the films were co-fired at 900°C for densification and crystallization. The dielectric properties were observed to improve with increasing sputter temperature reaching a permittivity of 1800, a tunability of 10:1, and a loss tangent of less than 0.015 for the sample sputtered at 400°C. The data can be understood using a brick wall model incorporating a high permittivity grain interior with low permittivity grain boundary. However, this high permittivity value was achieved at a grain size of 80 nm, which is typically associated with strong suppression of the dielectric response. These results clearly show that conventional models that parameterize permittivity with crystal diameter or film thickness alone are insufficiently sophisticated. Better models are needed that incorporate the influence of microstructure and crystal structure. This thesis next explores the ability to tune microstructure and properties of chemically solution deposited BaTiO3 thin films by modulation of heat treatment thermal profiles and firing atmosphere composition. Barium titanate films were deposited on copper foils using hybrid-chelate chemistries. An in-situ gas analysis process was developed to probe the organic removal and the

  1. Bioleaching of copper oxide ore by P seudomonas aeruginosa

    Institute of Scientific and Technical Information of China (English)

    MA Shabani; M Irannajad; AR Azadmehr; M Meshkini

    2013-01-01

    Bioleaching is an environmentally friendly method for extraction of metal from ores. In this study, bioleaching of copper oxide ore by Pseudomonas aeruginosa was investigated. Pseudomonas aeruginosa is a heterotrophic bacterium that can produce various organic acids in an appropriate culture medium, and these acids can operate as leaching agents. The parameters, such as particle size, glucose percentage in the culture medium, bioleaching time, and solid/liquid ratio were optimized. Optimum bioleaching conditions were found as follows: particle size of 150-177 μm, glucose percentage of 6%, bioleaching time of 8 d, and solid/liquid ratio of 1:80. Under these conditions, 53%of copper was extracted.

  2. Structural and surface changes of copper modified manganese oxides

    Energy Technology Data Exchange (ETDEWEB)

    Gac, Wojciech, E-mail: wojciech.gac@umcs.lublin.pl; Słowik, Grzegorz; Zawadzki, Witold

    2016-05-01

    Highlights: • Formation of MnO with regular rippled-like surface patterns. • Synthesis of copper nanorods supported on MnO nanoparticles. • Hydrogen production in steam methanol reforming over supported copper nanorods. - Abstract: The structural and surface properties of manganese and copper–manganese oxides were investigated. The oxides were prepared by the redox-precipitation method. X-ray diffraction and electron microscopy studies evidenced transformation of cryptomelane-type nanoparticles with 1-D channel structure into the large MnO crystallites with regular rippled-like surface patterns under reduction conditions. The development of Cu/CuO nanorods from strongly dispersed species was evidenced. Coper-modified manganese oxides showed good catalytic performance in methanol steam reforming reaction for hydrogen production. Low selectivity to CO was observed in the wide range of temperatures.

  3. Microstructure and Mechanical Properties of Graphene Oxide/Copper Composites

    Directory of Open Access Journals (Sweden)

    HONG Qi-hu

    2016-09-01

    Full Text Available Graphene oxide/copper (GO/Cu composites were successfully synthesized through the ball milling and vacuum hot press sintering process. The morphologies of the mixture powders, and the microstructure and mechanical properties of GO/Cu composites were investigated by OM, SEM, XRD, hardness tester and electronic universal testing machine, respectively. The results show that the GO/Cu composites are compact. Graphene oxide with flake morphology is uniformly dispersed and well consolidated with copper matrix. When the mass fraction of graphene oxide is 0.5%, the microhardness and compress strength at RT reach up to 63HV and 276MPa, increased by 8.6% and 28%, respectively. The strengthening mechanism is load transfer effect, dislocation strengthening and fine crystal reinforcing.

  4. Formation of copper oxychloride and reactive oxygen species as causes of uterine injury during copper oxidation of Cu-IUD.

    Science.gov (United States)

    Beltran-Garcia, M J; Espinosa, A; Herrera, N; Perez-Zapata, A J; Beltran-Garcia, C; Ogura, T

    2000-02-01

    The lining of the uterus and cervix might be injured by a variety of oxidation products of Cu in a Cu-IUD, including cuprous ions, dissolved and precipitated cupric ions, and reactive oxygen species such as superoxide radicals, hydrogen peroxide, and hydroxyl radicals. In this study, the human amnious WISH cell line was employed as a model of uterine cells in the presence of copper. The cell viability was decreased by elemental copper, which was alleviated up to 70% by the addition of catalase. The addition of copper oxychloride caused cell death in a dose-dependent manner. Hydroxyl radicals in the presence of copper were determined by the formation of malondialdehyde. Soluble cuprous chloride complexes are formed in the uterus by slowly entering oxygen. The complexes are partly oxidized to insoluble copper oxychloride. which damages the endometrium. Unoxidized cuprous ions migrate to the oxygen-rich cervix and are oxidized to copper oxychloride, causing cervix damage.

  5. Dry air effects on the copper oxides sensitive layers formation for ethanol vapor detection

    Energy Technology Data Exchange (ETDEWEB)

    Labidi, A., E-mail: Ahmed_laabidi@yahoo.fr [URPSC (UR 99/13-18) Unite de Recherche de Physique des Semiconducteurs et Capteurs, IPEST, Universite de Carthage, BP 51, La Marsa 2070, Tunis (Tunisia); Bejaoui, A.; Ouali, H. [URPSC (UR 99/13-18) Unite de Recherche de Physique des Semiconducteurs et Capteurs, IPEST, Universite de Carthage, BP 51, La Marsa 2070, Tunis (Tunisia); Akkari, F. Chaffar [Laboratoire de Photovoltaique et Materiaux Semi-conducteurs, ENIT, Universite de Tunis el Manar, BP 37, Le belvedere 1002, Tunis (Tunisia); Hajjaji, A.; Gaidi, M. [Laboratoire de Photovoltaique, Centre de Recherches et de technologies de l' energie, Technopole de Borj-Cedria, BP 95, 2050 Hammam-Lif (Tunisia); Kanzari, M. [Laboratoire de Photovoltaique et Materiaux Semi-conducteurs, ENIT, Universite de Tunis el Manar, BP 37, Le belvedere 1002, Tunis (Tunisia); Bessais, B. [Laboratoire de Photovoltaique, Centre de Recherches et de technologies de l' energie, Technopole de Borj-Cedria, BP 95, 2050 Hammam-Lif (Tunisia); Maaref, M. [URPSC (UR 99/13-18) Unite de Recherche de Physique des Semiconducteurs et Capteurs, IPEST, Universite de Carthage, BP 51, La Marsa 2070, Tunis (Tunisia)

    2011-09-15

    The copper oxide films have been deposited by thermal evaporation and annealed under ambient air and dry air respectively, at different temperatures. The structural characteristics of the films were investigated by X-ray diffraction. They showed the presences of two hydroxy-carbonate minerals of copper for annealing temperatures below 250 deg. C. Above this temperature the conductivity measurements during the annealing process, show a transition phase from metallic copper to copper oxides. The copper oxides sensitivity toward ethanol were performed using conductivity measurements at the working temperature of 200 deg. C. A decrease of conductivity was observed under ethanol vapor, showing the p-type semi-conducting characters of obtained copper oxide films. It was found that the sensing properties of copper oxide toward ethanol depend mainly on the annealing conditions. The best responses were obtained with copper layers annealed under dry air.

  6. Oxidation Behavior of GRCop-84 Copper Alloy Assessed

    Science.gov (United States)

    Thomas-Ogbuji, Linus U.

    2002-01-01

    NASA's goal of safe, affordable space transportation calls for increased reliability and lifetimes of launch vehicles, and significant reductions of launch costs. The areas targeted for enhanced performance in the next generation of reusable launch vehicles include combustion chambers and nozzle ramps; therefore, the search is on for suitable liner materials for these components. GRCop-84 (Cu-8Cr-4Nb), an advanced copper alloy developed at the NASA Glenn Research Center in conjunction with Case Western Reserve University, is a candidate. The current liner of the Space Shuttle Main Engine is another copper alloy, NARloy-Z (Cu-3Ag-0.1Zr). It provides a benchmark against which to compare the properties of candidate successors. The thermomechanical properties of GRCop-84 have been shown to be superior, and its physical properties comparable, to those of NARloy-Z. However, environmental durability issues control longevity in this application: because copper oxide scales are not highly protective, most copper alloys are quickly consumed in oxygen environments at elevated temperatures. In consequence, NARloy-Z and most other copper alloys are prone to blanching, a degradation process that occurs through cycles of oxidation-reduction as the oxide is repeatedly formed and removed because of microscale fluctuations in the oxygen-hydrogen fuel systems of rocket engines. The Space Shuttle Main Engine lining typically degraded by blanching-induced hot spots that lead to surface roughening, pore formation, and coolant leakage. Therefore, resistance to oxidation and blanching are key requirements for second-generation reusable launch vehicle liners. The rocket engine ambient includes H2 (fuel) and H2O (combustion product) and is, hence, under reduced oxygen partial pressures. Accordingly, our studies were expanded to include oxygen partial pressures as low as 322 parts per million (ppm) at the temperatures likely to be experienced in service. A comparison of 10-hr weight gains of

  7. Contact resistance and normal zone formation in coated yttrium barium copper oxide superconductors

    Science.gov (United States)

    Duckworth, Robert Calvin

    2001-11-01

    This project presents a systematic study of contact resistance and normal zone formation in silver coated YBa2CU3Ox (YBCO) superconductors. A unique opportunity exists in YBCO superconductors because of the ability to use oxygen annealing to influence the interfacial properties and the planar geometry of this type of superconductor to characterize the contact resistance between the silver and YBCO. The interface represents a region that current must cross when normal zones form in the superconductor and a high contact resistance could impede the current transfer or produce excess Joule heating that would result in premature quench or damage of the sample. While it has been shown in single-crystalline YBCO processing methods that the contact resistance of the silver/YBCO interface can be influenced by post-process oxygen annealing, this has not previously been confirmed for high-density films, nor for samples with complete layers of silver deposited on top of the YBCO. Both the influence of contact resistance and the knowledge of normal zone formation on conductor sized samples is essential for their successful implementation into superconducting applications such as transmission lines and magnets. While normal zone formation and propagation have been studied in other high temperature superconductors, the amount of information with respect to YBCO has been very limited. This study establishes that the processing method for the YBCO does not affect the contact resistance and mirrors the dependence of contact resistance on oxygen annealing temperature observed in earlier work. It has also been experimentally confirmed that the current transfer length provides an effective representation of the contact resistance when compared to more direct measurements using the traditional four-wire method. Finally for samples with low contact resistance, a combination of experiments and modeling demonstrate an accurate understanding of the key role of silver thickness and substrate thickness on the stability of silver-coated YBCO Rolling Assisted Bi-Axially Textured Substrates conductors. Both the experimental measurements and the one-dimensional model show that increasing the silver thickness results in an increased thermal runaway current; that is, the current above which normal zones continue to grow due to insufficient local cooling.

  8. Superconductivity at 52.5 K in the lanthanum-barium-copper-oxide system

    Science.gov (United States)

    Chu, C. W.; Hor, P. H.; Meng, R. L.; Gao, L.; Huang, Z. J.

    1987-01-01

    The electrical properties of the (La/0/9/Ba/0.1/)CuO/4-y/ system are examined under ambient and hydrostatic pressures. The resistance, ac magnetic susceptibility, and superconductivity onset, midpoint, and intercept temperatures are measured. It is observed that at ambient pressure the resistance decreases with temperature decreases, and the ac susceptibility shows diamagnetic shifts starting at about 32 K. Under hydrostatic pressure a superconducting transition with an onset temperature of 52.5 K is observed, and the resistance increases at lower temperatures. The data reveal that the electrical properties of the La-Ba-Cu-O system are dependent on samples and preparation conditions. Various causes for the high temperature superconductivity of the system are proposed.

  9. Scanning Hall Probe Microscopy of Magnetic Vortices inVery Underdoped yttrium-barium-copper-oxide

    Energy Technology Data Exchange (ETDEWEB)

    Guikema, Janice Wynn; /SLAC, SSRL

    2005-12-02

    Since their discovery by Bednorz and Mueller (1986), high-temperature cuprate superconductors have been the subject of intense experimental research and theoretical work. Despite this large-scale effort, agreement on the mechanism of high-T{sub c} has not been reached. Many theories make their strongest predictions for underdoped superconductors with very low superfluid density n{sub s}/m*. For this dissertation I implemented a scanning Hall probe microscope and used it to study magnetic vortices in newly available single crystals of very underdoped YBa{sub 2}Cu{sub 3}O{sub 6+x} (Liang et al. 1998, 2002). These studies have disproved a promising theory of spin-charge separation, measured the apparent vortex size (an upper bound on the penetration depth {lambda}{sub ab}), and revealed an intriguing phenomenon of ''split'' vortices. Scanning Hall probe microscopy is a non-invasive and direct method for magnetic field imaging. It is one of the few techniques capable of submicron spatial resolution coupled with sub-{Phi}{sub 0} (flux quantum) sensitivity, and it operates over a wide temperature range. Chapter 2 introduces the variable temperature scanning microscope and discusses the scanning Hall probe set-up and scanner characterizations. Chapter 3 details my fabrication of submicron GaAs/AlGaAs Hall probes and discusses noise studies for a range of probe sizes, which suggest that sub-100 nm probes could be made without compromising flux sensitivity. The subsequent chapters detail scanning Hall probe (and SQUID) microscopy studies of very underdoped YBa{sub 2}Cu{sub 3}O{sub 6+x} crystals with T{sub c} {le} 15 K. Chapter 4 describes two experimental tests for visons, essential excitations of a spin-charge separation theory proposed by Senthil and Fisher (2000, 2001b). We searched for predicted hc/e vortices (Wynn et al. 2001) and a vortex memory effect (Bonn et al. 2001) with null results, placing upper bounds on the vison energy inconsistent with the theory. Chapter 5 discusses imaging of isolated vortices as a function of T{sub c}. Vortex images were fit with theoretical magnetic field profiles in order to extract the apparent vortex size. The data for the lowest T{sub c}'s (5 and 6.5 K) show some inhomogeneity and suggest that {lambda}{sub ab} might be larger than predicted by the T{sub c} {proportional_to} n{sub s}(0)/m* relation first suggested by results of Uemura et al. (1989) for underdoped cuprates. Finally, Chapter 6 examines observations of apparent ''partial vortices'' in the crystals. My studies of these features indicate that they are likely split pancake vortex stacks. Qualitatively, these split stacks reveal information about pinning and anisotropy in the samples. Collectively these magnetic imaging studies deepen our knowledge of cuprate superconductivity, especially in the important regime of low superfluid density.

  10. Highly-textured thallium-barium-calcium-copper-oxide polycrystalline superconducting films on silver substrates

    Energy Technology Data Exchange (ETDEWEB)

    Arendt, P.; Elliott, N.; Cooke, D.W.; Dye, R.; Gray, E.; Hubbard, K.; Martin, J.; Reeves, G.; Brown, D.; Klapetzky, A.

    1990-01-01

    Thick (8 to 10 {mu}m) Ba--Ca--Cu--O films have been rf magnetron sputtered onto Ag alloy (Consil 995) substrates. The films were given a post-deposition anneal in an over pressure of Tl in order to form the superconducting phases. Annealing protocols were done which result in predominantly the 1212 and 2212 phases. The substrate orientation was varied to determine its effect on film orientation. Material properties of the films were characterized by x-ray diffraction (XRD), ion beam backscattering spectroscopy, energy dispersive x-ray analysis (EDAX), and scanning electron microscopy (SEM). Electrical characterization of the films was done using dynamic impedance (DI) at 10 kHz and rf surface resistance (R{sub s}) at 18 GHz in a TE{sub 011} fundamental mode cavity. 19 refs., 7 figs.

  11. Experimental study of yttrium barium copper oxide superconducting tape’s critical current under twisting moment

    Indian Academy of Sciences (India)

    Ziauddin Khan; Ananya Kundu; Subrata Pradhan

    2013-10-01

    Critical current (c) characteristics of 2G YBCO superconducting tape under the influence of twisting moment was experimentally investigated at varying current ramp rates in the self-field. Under a uniform twist, the degradation in the current-carrying capacity of YBCO tape up to 30% was observed at 77 K. The degradation is largely attributed to the shear stress and torsional shear strain resulting from the twisting. The superconductor to resistive transition index, , is also found to behave in an identical manner with increase in the twisting. Finite element analysis (FEA) of the tape in the experimental configuration with twisting moment being applied on to it has been carried out in COMSOL. The torsional strain calculated analytically as per the experimental configuration matches closely with that of FEA results, which shows that the critical current degradation is a function of strain.

  12. Controlled Growth of Copper Oxide Nano-Wires through Direct Oxidation

    Science.gov (United States)

    Hilman, Joann; Neupane, Ravi; Yost, Andrew J.; Chien, Teyu

    Copper oxides, both Cu2O and CuO, have many applications in solar cells, sensors, and nano-electronics. The properties of the copper oxides are further influenced by the dimension of the materials, especially when made in nanoscale. In particular, the properties of the copper oxide nanowires could be tuned by their structures, lengths, and widths. While several methods have been reported to grow nanowires, direct oxidation is arguably the most economical one. This research examines the effects of oxidization duration and temperature in dry air environment on the development of copper oxide nanowires in order to achieve cost effective controllable growth. Using the direct oxidation method in dry air we have demonstrated growth of CuO nano-wires at temperatures as low as 300 °C and as short as 1hr. Furthermore we have observed that the lengths and diameters of the CuO NWs can be controlled by the duration and temperature of the oxidation process. WY NASA Space Grant Consortium.

  13. Bond-length fluctuations in the copper oxide superconductors

    CERN Document Server

    Goodenough, J B

    2003-01-01

    Superconductivity in the copper oxides occurs at a crossover from localized to itinerant electronic behaviour, a transition that is first order. A spinodal phase segregation is normally accomplished by atomic diffusion; but where it occurs at too low a temperature for atomic diffusion, it may be realized by cooperative atomic displacements. Locally cooperative, fluctuating atomic displacements may stabilize a distinguishable phase lying between a localized-electron phase and a Fermi-liquid phase; this intermediate phase exhibits quantum-critical-point behaviour with strong electron-lattice interactions making charge transport vibronic. Ordering of the bond-length fluctuations at lower temperatures would normally stabilize a charge-density wave (CDW), which suppresses superconductivity. It is argued that in the copper oxide superconductors, crossover occurs at an optimal doping concentration for the formation of ordered two-electron/two-hole bosonic bags of spin S = 0 in a matrix of localized spins; the correl...

  14. Evaluation of Radiation Dose Reduction during CT Scans Using Oxide Bismuth and Nano-Barium Sulfate Shields

    CERN Document Server

    Seoung, Youl-Hun

    2015-01-01

    The purpose of the present study was to evaluate radiation dose reduction and image quality during CT scanning by using a new dose reduction fiber sheet (DRFS) with commercially available bismuth shields. These DRFS were composed of nano-barium sulfate (BaSO4), filling the gaps left by the large oxide bismuth (Bi2O3) particle sizes. The radiation dose was measured five times at directionss of 12 o'clock from the center of the polymethyl methacrylate (PMMA) head phantom to calculate an average value using a CT ionization chamber. The image quality measured CT transverse images of the PMMA head phantom depending on X-ray tube voltages and the type of shielding. Two regions of interest in CT transverse images were chosen from the right and left areas under the surface of the PMMA head phantom and from ion chamber holes located at directions of 12 o'clock from the center of the PMMA head phantom. The results of this study showed that the new DRFS shields could reduce dosages to 15.61%, 23.05%, and 22.71% more in ...

  15. Size-Controlled Synthesis of Copper Oxide Particles on Reduced Graphene Oxide for Lithium-Ion Battery Anode Applications.

    Science.gov (United States)

    Jang, Haneul; Kim, Kyungbae; Chang, Hyejung; Kim, Jae-Hun; Choi, Hyunjoo

    2015-11-01

    Copper oxide/reduced graphene oxide (rGO) hybrids have been successfully synthesized by attaching copper ions onto the functional groups of GO by means of a solution process, which causes precipitation and agglomeration of copper oxides during subsequent thermal reduction of the GO. The resulting copper oxide/rGO hybrid exhibited improved electrochemical performance compared to monolithic CuO, which is presumed to be due to rGO acting as a mechanical support that buffers the volume change in copper oxides that occurs as a result of the conversion reaction during charge/discharge cycling. Furthermore, it was found that the size of the copper oxide particles can be optimized by adjusting the annealing time, with a hybrid annealed for 30 min achieving a reversible capacity of 544 mA h g(-1) and an initial coulombic efficiency of 62.7%.

  16. Oxidation Prevention Properties of Reduced Graphene Oxide Mixed with 1-Octanethiol-Coated Copper Nanopowder Composites

    Directory of Open Access Journals (Sweden)

    Danee Cho

    2016-01-01

    Full Text Available 1-Octanethiol-coated Cu nanoparticles were mixed with reduced graphene oxide (rGO to fabricate Cu nanoinks with enhanced oxidation prevention. Graphene oxide (GO was synthesized using modified Hummer’s method and rGO was reduced from GO using hydrazine hydrate. Copper nanoinks were fabricated with varying concentrations of rGO (Cu : rGO ratios of 100 : 1, 500 : 1, and 1000 : 1 wt.%. The coating layers on the copper nanoparticles and rGO were observed using transmission electron microscopy and characterized by X-ray photoemission spectroscopy, X-ray diffraction, and Raman spectroscopy. It was observed that surface roughness increased as the concentration of rGO in Cu patterns increased, and an optimized Cu : rGO weight ratio of 1,000 : 1 was established. After sintering, the electrical properties and corrosion resistance of copper patterns both with and without rGO were measured and monitored for 200 days. The copper pattern with rGO (Cu : rGO = 1,000 : 1 was found to maintain its initial resistivity (1.63 × 10−7 Ω·m for 150 days. Corrosion tests were conducted to confirm the oxidation prohibition of rGO. The resistance polarization (Rp of the copper pattern was measured to be 1.5 times higher than that of the copper pattern without rGO. Thus, rGO was shown to prevent oxidation and improve the conductivity of copper patterns.

  17. Highly efficient visible light mediated azo dye degradation through barium titanate decorated reduced graphene oxide sheets

    Science.gov (United States)

    Rastogi, Monisha; Kushwaha, H. S.; Vaish, Rahul

    2016-03-01

    This study investigates BaTiO3 decorated reduced graphene oxide sheets as a potential visible light active catalyst for dye degradation (Rhodamine B). The composites were prepared through conventional hydrothermal synthesis technique using hydrazine as a reducing agent. A number of techniques have been employed to affirm the morphology, composition and photocatalytic properties of the composites; these include UV-visible spectrophotoscopy that assisted in quantifying the concentration difference of Rhodamine B. The phase homogeneity of the composites was examined through x-ray powder diffraction (XRD) and high resolution transmission electron microscopy (HRTEM) was employed to confirm the orientation of the BaTiO3 particles over the reduced graphene oxide sheets. Photoluminescence (PL) emission spectra assisted in determining the surface structure and excited state of the catalyst. Fourier transformed-infrared (FTIR) spectra investigated the vibrations and adsorption peak of the composites, thereby ascertaining the formation of reduced graphene oxide. In addition, diffuse reflectance spectroscopy (DRS) demonstrated an enhanced absorption in the visible region. The experimental investigations revealed that graphene oxide acted as charge collector and simultaneously facilitated surface adsorption and photo-sensitization. It could be deduced that BaTiO3-reduced graphene oxide composites are of significant interest the field of water purification through solar photocatalysis. [Figure not available: see fulltext.

  18. Quantum magnetic excitations from stripes in copper oxide superconductors.

    Science.gov (United States)

    Tranquada, J M; Woo, H; Perring, T G; Goka, H; Gu, G D; Xu, G; Fujita, M; Yamada, K

    2004-06-03

    In the copper oxide parent compounds of the high-transition-temperature superconductors the valence electrons are localized--one per copper site--by strong intra-atomic Coulomb repulsion. A symptom of this localization is antiferromagnetism, where the spins of localized electrons alternate between up and down. Superconductivity appears when mobile 'holes' are doped into this insulating state, and it coexists with antiferromagnetic fluctuations. In one approach to describing the coexistence, the holes are believed to self-organize into 'stripes' that alternate with antiferromagnetic (insulating) regions within copper oxide planes, which would necessitate an unconventional mechanism of superconductivity. There is an apparent problem with this picture, however: measurements of magnetic excitations in superconducting YBa2Cu3O6+x near optimum doping are incompatible with the naive expectations for a material with stripes. Here we report neutron scattering measurements on stripe-ordered La1.875Ba0.125CuO4. We show that the measured excitations are, surprisingly, quite similar to those in YBa2Cu3O6+x (refs 9, 10) (that is, the predicted spectrum of magnetic excitations is wrong). We find instead that the observed spectrum can be understood within a stripe model by taking account of quantum excitations. Our results support the concept that stripe correlations are essential to high-transition-temperature superconductivity.

  19. Quantum magnetic excitations from stripes in copper oxide superconductors

    Science.gov (United States)

    Tranquada, J. M.; Woo, H.; Perring, T. G.; Goka, H.; Gu, G. D.; Xu, G.; Fujita, M.; Yamada, K.

    2004-06-01

    In the copper oxide parent compounds of the high-transition-temperature superconductors the valence electrons are localized-one per copper site-by strong intra-atomic Coulomb repulsion. A symptom of this localization is antiferromagnetism, where the spins of localized electrons alternate between up and down. Superconductivity appears when mobile `holes' are doped into this insulating state, and it coexists with antiferromagnetic fluctuations. In one approach to describing the coexistence, the holes are believed to self-organize into `stripes' that alternate with antiferromagnetic (insulating) regions within copper oxide planes, which would necessitate an unconventional mechanism of superconductivity. There is an apparent problem with this picture, however: measurements of magnetic excitations in superconducting YBa2Cu3O6+x near optimum doping are incompatible with the naive expectations for a material with stripes. Here we report neutron scattering measurements on stripe-ordered La1.875Ba0.125CuO4. We show that the measured excitations are, surprisingly, quite similar to those in YBa2Cu3O6+x (refs 9, 10) (that is, the predicted spectrum of magnetic excitations is wrong). We find instead that the observed spectrum can be understood within a stripe model by taking account of quantum excitations. Our results support the concept that stripe correlations are essential to high-transition-temperature superconductivity.

  20. Atomic resolution imaging and spectroscopy of barium atoms and functional groups on graphene oxide

    Energy Technology Data Exchange (ETDEWEB)

    Boothroyd, C.B., E-mail: ChrisBoothroyd@cantab.net [Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons and Peter Grünberg Institute, Forschungszentrum Jülich, D-52425 Jülich (Germany); Moreno, M.S. [Centro Atómico Bariloche, 8400 – San Carlos de Bariloche (Argentina); Duchamp, M.; Kovács, A. [Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons and Peter Grünberg Institute, Forschungszentrum Jülich, D-52425 Jülich (Germany); Monge, N.; Morales, G.M.; Barbero, C.A. [Department of Chemistry, Universidad Nacional de Río Cuarto, X5804BYA Río Cuarto (Argentina); Dunin-Borkowski, R.E. [Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons and Peter Grünberg Institute, Forschungszentrum Jülich, D-52425 Jülich (Germany)

    2014-10-15

    We present an atomic resolution transmission electron microscopy (TEM) and scanning TEM (STEM) study of the local structure and composition of graphene oxide modified with Ba{sup 2+}. In our experiments, which are carried out at 80 kV, the acquisition of contamination-free high-resolution STEM images is only possible while heating the sample above 400 °C using a highly stable heating holder. Ba atoms are identified spectroscopically in electron energy-loss spectrum images taken at 800 °C and are associated with bright contrast in high-angle annular dark-field STEM images. The spectrum images also show that Ca and O occur together and that Ba is not associated with a significant concentration of O. The electron dose used for spectrum imaging results in beam damage to the specimen, even at elevated temperature. It is also possible to identify Ba atoms in high-resolution TEM images acquired using shorter exposure times at room temperature, thereby allowing the structure of graphene oxide to be studied using complementary TEM and STEM techniques over a wide range of temperatures. - Highlights: • Graphene oxide modified with Ba{sup 2+} was imaged using TEM and STEM at 80 kV. • High-resolution images and spectra were obtained only by heating above 400 °C. • Elemental maps show the distribution of C, Ba, O and Ca on the graphene oxide. • Single Ba atoms were identified in STEM HAADF and HRTEM images.

  1. Properties of Copper Doped Neodymium Nickelate Oxide as Cathode Material for Solid Oxide Fuel Cells

    OpenAIRE

    Lee Kyoung-Jin; Choe Yeong-Ju; Hwang Hae-Jin

    2016-01-01

    Mixed ionic and electronic conducting K2NiF4-type oxide, Nd2Ni1-xCuxO4+δ (x=0~1) powders were synthesized by solid state reaction technique and solid oxide fuel cells consisting of a Nd2Ni1-xCuxO4+δ cathode, a Ni-YSZ anode and ScSZ as an electrolyte were fabricated. The effect of copper substitution for nickel on the electrical and electrochemical properties was examined. Small amount of copper doping (x=0.2) resulted in the increased electrical conductivity and decreased polarization resista...

  2. Effective phototransformation in a heterostructure based on copper(I) oxide and cadmium tin oxide

    Science.gov (United States)

    Shelovanova, G. N.; Patrusheva, T. N.

    2017-02-01

    We present a heterostructure consisting of anodic copper oxide Cu2O on a copper substrate and a transparent Cd-Sn-O conducting film for use in solar cells. Focusing on simplicity and the availability of film fabrication techniques, we chose anodic oxidation for forming the Cu2O film and the extraction-pyrolysis technique for forming the transparent Cd-Sn-O conducting layer. We demonstrate the possibility of considerable enhancement of the phototransformation efficiency in the Cu-Cu2O/Cd-Sn-O structure over this parameter in the Cu-Cu2O structure.

  3. Extraordinary Spin-Wave Thermal Conductivity in Low-Dimensional Copper Oxides

    Science.gov (United States)

    2015-01-23

    Low-Dimensional Copper Oxides Sb. GRANT NUMBER Sc. PROGRAM ELEMENT NUMBER 611102 6. AUTHORS Sd. PROJECT NUMBER David Cahill Se. TASK NUMBER Sf...TDTR) to advance understanding of the1mal transp01i in low dimensional copper - oxides that display extraordina1y thennal transp01i by the1mal...by ANSI Std. Z39.18 ABSTRACT Final Report: Extraoridinary Spin-Wave Thermal Conductivity in Low-Dimensional Copper Oxides Report Title We applied

  4. Facile Synthesis of Copper Oxide Nanoparticles via Electrospinning

    Directory of Open Access Journals (Sweden)

    Abdullah Khalil

    2014-01-01

    Full Text Available A novel approach for synthesizing copper oxide (CuO nanoparticles (NPs through electrospinning is reported. The approach is based on producing rough and discontinuous electrospun nanofibers from a precursor based on copper acetate salt and polyvinyl alcohol (PVA polymer. Selectively removing the polymeric phase from the fibers produced highly rough CuO nanofibers, which were composed of NPs that are weakly held together in a one-dimensional (1D manner. Sonication in a suitable liquid under controlled conditions completely disintegrated the nanofibers into NPs, resulting in the formation of uniform CuO NPs suspension. Aberration corrected high resolution transmission electron microscope (HRTEM showed that the obtained NPs are highly crystalline and nearly sphere-like with a diameter of 30 to 70 nm. Thus, electrospinning, which is a low cost and industrially scalable technique, can also be employed for economic and large scale synthesis of NPs.

  5. On the Electric Field Gradient at Copper Nuclei in Oxides

    Science.gov (United States)

    Shimizu, Tadashi

    1993-02-01

    A useful interpretation is presented of the material dependence of Cu electric field gradient (EFG) in a great variety of insulating and superconducting copper oxides. The present study is concerned only with copper sites in nearly tetragonal symmetry and in stoichiometric compositions. The experimental data of Cu EFGs have been analyzed in terms of ionic picture. The analysis has revealed for the first time a systematic correlation between the observed Cu EFG and the ionic contribution to the EFG. By using the correlation, we have extracted empirical values of the Sternheimer antishielding factor γ∞ and the hyperfine constant for Cu2+ and Cu1+ ions. Those values are somewhat different from the traditional ones of the results of unrestricted Hartree-Fock (UHF) calculations for free ions.

  6. Selective oxidation of alcohols over copper zirconium phosphate

    Institute of Scientific and Technical Information of China (English)

    Abdol R.Hajipour; Hirbod Karimi

    2014-01-01

    The catalytic activity of copper zirconium phosphate (ZPCu) in the selective oxidation of alcohols to their corresponding ketones or aldehydes, using H2O2 as an oxidizing agent, was studied. The oxida-tion reaction was performed without any organic solvent, phase-transfer catalyst, or additive. Steric factors associated with the substrates influenced the reaction. The catalyst was characterized using X-ray diffraction, inductively coupled plasma atomic emission spectroscopy, energy-dispersive X-ray spectroscopy, and scanning electron microscopy. It was shown that the interlayer distance increased from 0.74 to 0.80 nm and the crystallinity was reduced after Cu2+intercalation into the layers. This catalyst can be recovered and reused three times without significant loss of activity and selectivity.

  7. Enhanced dielectric properties of poly(vinylidene fluoride) composites filled with nano iron oxide-deposited barium titanate hybrid particles

    Science.gov (United States)

    Zhang, Changhai; Chi, Qingguo; Dong, Jiufeng; Cui, Yang; Wang, Xuan; Liu, Lizhu; Lei, Qingquan

    2016-09-01

    We report enhancement of the dielectric permittivity of poly(vinylidene fluoride) (PVDF) generated by depositing magnetic iron oxide (Fe3O4) nanoparticles on the surface of barium titanate (BT) to fabricate BT–Fe3O4/PVDF composites. This process introduced an external magnetic field and the influences of external magnetic field on dielectric properties of composites were investigated systematically. The composites subjected to magnetic field treatment for 30 min at 60 °C exhibited the largest dielectric permittivity (385 at 100 Hz) when the BT–Fe3O4 concentration is approximately 33 vol.%. The BT–Fe3O4 suppressed the formation of a conducting path in the composite and induced low dielectric loss (0.3) and low conductivity (4.12 × 10‑9 S/cm) in the composite. Series-parallel model suggested that the enhanced dielectric permittivity of BT–Fe3O4/PVDF composites should arise from the ultrahigh permittivity of BT–Fe3O4 hybrid particles. However, the experimental results of the BT–Fe3O4/PVDF composites treated by magnetic field agree with percolation theory, which indicates that the enhanced dielectric properties of the BT–Fe3O4/PVDF composites originate from the interfacial polarization induced by the external magnetic field. This work provides a simple and effective way for preparing nanocomposites with enhanced dielectric properties for use in the electronics industry.

  8. An alkali-free barium borosilicate viscous sealing glass for solid oxide fuel cells

    Science.gov (United States)

    Hsu, Jen-Hsien; Kim, Cheol-Woon; Brow, Richard K.; Szabo, Joe; Crouch, Ray; Baird, Rob

    2014-12-01

    An alkali-free, alkaline earth borosilicate glass (designated G102) has been developed as a viscous sealant for use with solid oxide fuel cells (SOFCs). The glass possesses the requisite viscosity, electrical resistivity, and thermal and chemical stability under SOFC operating conditions to act as a reliable sealant. Sandwich seals between aluminized stainless steel and a YSZ/NiO-YSZ bilayer survived 148 thermal cycles (800 °C to room temperature) in both oxidizing and reducing atmospheres at a differential pressure of ∼3.4 kPa (0.5 psi) without failure. For sandwich seals that were held at 800 °C for up to 2280 h in air, G102 resisted crystallization, there were limited interactions at the G102/YSZ interface, but BaAl2Si2O8 crystals formed at the glass/metal interface because of the reaction between the glass and the aluminized steel. Sandwich seals that were intentionally cracked by thermal shock resealed to became hermetic upon reheating to temperatures as low as 744 °C.

  9. Investigation of the interaction of copper(II) oxide and electron beam irradiation crosslinkable polyethylene

    Energy Technology Data Exchange (ETDEWEB)

    Bee, Soo-Tueen, E-mail: direct.beest@gmail.com [Department of Chemical Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Jalan Sungai Long, Bandar Sungai Long, Cheras, 43000 Kajang, Selangor (Malaysia); Sin, Lee Tin, E-mail: direct.tinsin@gmail.com [Department of Chemical Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Jalan Sungai Long, Bandar Sungai Long, Cheras, 43000 Kajang, Selangor (Malaysia); Ratnam, C.T. [Radiation Processing Technology Division, Malaysian Nuclear Agency, Bangi, 43000 Kajang, Selangor (Malaysia); Haraveen, K.J.S.; Tee, Tiam-Ting [Department of Chemical Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Jalan Sungai Long, Bandar Sungai Long, Cheras, 43000 Kajang, Selangor (Malaysia); Rahmat, A.R. [Department of Polymer Engineering, Faculty of Chemical Engineering, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor (Malaysia)

    2015-10-01

    In this study, the effects of electron beam irradiation on the properties of copper(II) oxide when added to low-density polyethylene (LDPE) blends were investigated. It was found that the addition of low loading level of copper(II) oxide (⩽2 phr) to LDPE results in significantly poorer gel content and hot set results. However, the incorporation of higher loading level of copper(II) oxide (⩾3 phr) could slightly increase the degree of crosslinking in all irradiated LDPE composites. This is due to the fact that higher amounts of copper(II) oxide could slightly induce the formation of free radicals in LDPE matrix. Besides, increasing irradiation doses was also found to gradually increase the gel content of LDPE composites by generating higher amounts of free radicals. As a consequence, these higher amounts of free radicals released in the LDPE matrix could significantly increase the degree of crosslinking. The addition of copper(II) oxide could reduce the tensile strength and fracture strain (elongation at break) of LDPE composites because of poorer interfacial adhesion effect between copper(II) oxide particles and LDPE matrix. Meanwhile, increasing irradiation doses on all copper(II) oxide added LDPE composites could marginally increase the tensile strength. In addition, increasing irradiation dose could enhance the thermal stability of LDPE composites by increasing the decomposition temperature. The oxidation induction time (OIT) analysis showed that, because of the crosslinking network in the copper(II) oxide added LDPE composites, oxidation reaction is much delayed.

  10. Fracture toughness of oxide-dispersion strengthened copper

    Energy Technology Data Exchange (ETDEWEB)

    Alexander, D.J. [Oak Ridge National Lab., TN (United States)

    1996-10-01

    The fracture toughness of an oxide-dispersion strengthened copper alloy AL-15 has been examined at room temperature and 250{degrees}C, in air and in vacuum (< 10{sup {minus}6} torr). Increasing test temperature causes a significant decrease in the fracture toughness of this material, in either air or vacuum environments. In addition, specimens oriented in the T-L orientation (crack growth parallel to the extrusion direction) show significantly lower toughness than those in the L-T orientation (crack growth perpendicular to the extrusion direction).

  11. Incommensurate Magnetic Fluctuations in the Underdoped Copper Oxide Materials

    Institute of Scientific and Technical Information of China (English)

    YUAN Feng; FENG Shi-Ping; CHEN Wei-Yeu

    2001-01-01

    The doping dependence of magnetic fluctuations in the underdoped copper oxide materials are studied within the t-J model. It is shown that away from the half-filling, the magnetic Bragg peaks from the dynamical spin structure factor spectrum S(k, ω) are incommensurate with the lattice. Although the incommensurability δ(x) is almost energy-independent, the dynamical spin susceptibility x〃(k,ω) at the incommensurate wave vectors is changed dramatically with energies, which is consistent with the experiments.``

  12. The removal of hydrogen sulfide from gas streams using an aqueous metal sulfate absorbent : Part II. the regeneration of copper sulfide to copper oxide - An experimental study

    NARCIS (Netherlands)

    Ter Maat, H.; Hogendoorn, J. A.; Versteeg, G. F.

    2005-01-01

    Aim of this study was to investigate the possibilities for a selective and efficient method to convert copper(II) sulfide (CuS) into copper(II) oxide (CuO). The oxidation of copper sulfide has been studied experimentally using a thermogravimetric analyzer (TGA) at temperatures ranging from 450 to 75

  13. Neutral Barium Cloud Evolution at Different Altitudes

    Institute of Scientific and Technical Information of China (English)

    李磊; 徐荣栏

    2002-01-01

    Considering the joint effects of diffusion, collision, oxidation and photoionization, we study the evolution of the barium cloud at different altitudes in the space plasma active experiment. The results present the variation of the loss rate, number density distribution and brightness of the barium cloud over the range from 120 to 260km.This can be divided into oxidation, oxidation plus photoionization and photoionization regions.

  14. Sealing Glass of Barium-Calcium-Aluminosilicate System for Solid Oxide Fuel Cells

    Institute of Scientific and Technical Information of China (English)

    Piao Jinhua; Sun Kening; Zhang Naiqing; Chen Xinbing; Zhou Derui

    2007-01-01

    Glass-ceramic materials were developed as a sealant in the solid oxide fuel cell (SOFC) in the temperature range of 800~850 ℃. The glass materials were based on the glass and glass-ceramic in the BaO-CaO-Al2O3-SiO2-La2O3-B2O3 system. The thermal expansion coefficient (TEC) decreased with lower Ba2+ content and higher Ca2+ content, but the glass transition temperature and crystallization temperature increased greatly with an increase in Ca2+ content and a decrease in Ba2+ content, when the other components in the sealant were invariable. The TEC of the sealant with Ba2+ content of 25.4% was 10.8×10-6 K-1 (temperature range from 25 to 850 ℃), and its softening temperature was 950 ℃. The TEC of the sealant accorded well with that of La0.9Sr0.1Ga0.8Mg0.2O3-б(LSGM) with a mismatch of only 3%. The sealant had superior stability and compatibility with the LSGM electrolyte during the process of operation in SOFC. The weight loss of the sealant with Ba2+ content of 25.4% was approximately zero after heat-treated at 800 ℃ for 500 h in H2 and O2 atmosphere, respectively.

  15. Dielectric Properties of Reduced Graphene Oxide/Copper Phthalocyanine Nanocomposites Fabricated Through π- π Interaction

    Science.gov (United States)

    Wang, Zicheng; Wei, Renbo; Liu, Xiaobo

    2017-01-01

    Reduced graphene oxide/copper phthalocyanine nanocomposites are successfully prepared through a simple and effective two-step method, involving preferential reduction of graphene oxide and followed by self-assembly with copper phthalocyanine. The results of photographs, ultraviolet visible, x-ray diffraction, x-ray photoelectron spectroscopy, and scanning electron microscopy show that the in situ blending method can effectively facilitate graphene sheets to disperse homogenously in the copper phthalocyanine matrix through π- π interactions. As a result, the reduction of graphene oxide and restoration of the sp 2 carbon sites in graphene can enhance the dielectric properties and alternating current conductivity of copper phthalocyanine effectively.

  16. Controlled electromigration and oxidation of free-standing copper wires

    Science.gov (United States)

    Hauser, J. S.; Schwichtenberg, J.; Marz, M.; Sürgers, C.; Seiler, A.; Gerhards, U.; Messerschmidt, F.; Hensel, A.; Dittmeyer, R.; Löhneysen, H. v.; Hoffmann-Vogel, R.

    2016-12-01

    We have studied controlled electromigration (EM) in free-standing copper wires. Besides electrical characterization by voltage-current measurements, structural analyses have been performed by means of scanning electron microscopy and cross-sectional microprobe measurements. We have found that oxidation during the EM in air stabilizes the free-standing wire against uncontrolled blowing, making it possible to thin the conductive part of the wire down to a conductance of a few conductance quanta G_0=2e^2{/}h. The decisive influence of oxidation by air on the EM process was confirmed by control experiments performed under ultra-high vacuum conditions. In line with these findings, free-standing Au wires were difficult to thin down reproducibly to a conductance of a few G_0. Estimates of the local temperature in the free-standing wire are obtained from finite element method calculations.

  17. Copper on activated carbon for catalytic wet air oxidation

    Directory of Open Access Journals (Sweden)

    Nora Dolores Martínez

    2009-03-01

    Full Text Available Textile industry is an important source of water contamination. Some of the organic contaminants cannot be eliminated by nature in a reasonable period. Heterogeneous catalytic wet air oxidation is one of the most effective methods to purify wastewater with organic contaminants. In this work, catalysts based on copper supported on activated carbon were synthesized. The activated carbons were obtained from industrial wastes (apricot core and grape stalk of San Juan, Argentina. These were impregnated with a copper salt and thermically treated in an inert atmosphere. Analysis of specific surface, pore volume, p zc, acidity, basicity and XRD patterns were made in order to characterize the catalysts. The catalytic activity was tested in the oxidation of methylene blue (MB and polyvinyl alcohol (PVA in aqueous phase with pure oxygen. Reaction tests were carried out in a Parr batch reactor at different temperatures, with a 0.2 MPa partial pressure of oxygen. The amount of unconverted organics was measured by spectrophotometry. Higher temperatures were necessary for the degradation of PVA compared to those for methylene blue.

  18. Flotation of cobalt bearing minerals from a mixed copper-cobalt oxidized ore

    OpenAIRE

    2012-01-01

    M.Tech. (Extraction Metallurgy) The techniques for the flotation of mixed copper and cobalt bearing oxide ores using the sulphidization method in order to recover the oxidized copper and cobalt bearing minerals have been well documented by previous researchers. These processes have been successfully implemented in many of the metallurgical plant operations in the Democratic Republic of Congo (DRC). The mixed copper and cobalt oxidised ores from this region present significant chal-lenges t...

  19. Oxidation kinetics of nanoscale copper films studied by terahertz transmission spectroscopy

    NARCIS (Netherlands)

    Ramanandan, G.K.P.; Ramakrishnan, G.; Planken, P.C.M.

    2012-01-01

    Terahertz (THz) transmission spectroscopy is used to measure the oxidation kinetics of copper thin films evaporated on silicon substrates. The transmission of broadband THz pulses from 1 to 7 THz through the copper film is measured while it gets oxidized at an elevated temperature in ambient air. Th

  20. Copper-catalyzed oxidative alkynylation of diaryl imines with terminal alkynes: a facile synthesis of ynimines.

    Science.gov (United States)

    Laouiti, Anouar; Rammah, Mohamed M; Rammah, Mohamed B; Marrot, Jérome; Couty, François; Evano, Gwilherm

    2012-01-06

    An efficient copper-mediated method for the oxidative alkynylation of diaryl imines with terminal alkynes is reported. This reaction provides the first catalytic and general synthesis of ynimines and allows for an easy preparation of these useful building blocks. An improved copper-catalyzed oxidative dimerization of imines to azines and the synthesis of dienes and azadienes from ynimines are also described.

  1. Biogenic copper oxide nanoparticles synthesis using Tabernaemontana divaricate leaf extract and its antibacterial activity against urinary tract pathogen.

    Science.gov (United States)

    Sivaraj, Rajeshwari; Rahman, Pattanathu K S M; Rajiv, P; Salam, Hasna Abdul; Venckatesh, R

    2014-12-10

    This investigation explains the biosynthesis and characterization of copper oxide nanoparticles from an Indian medicinal plant by an eco-friendly method. The main objective of this study is to synthesize copper oxide nanoparticles from Tabernaemontana divaricate leaves through a green chemistry approach. Highly stable, spherical copper oxide nanoparticles were synthesized by using 50% concentration of Tabernaemontana leaf extract. Formation of copper oxide nanoparticles have been characterized by UV-Vis absorption spectroscopy, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM) with energy dispersive X-ray analysis (EDX) and transmission electron microscopy (TEM) analysis. All the analyses revealed that copper oxide nanoparticles were 48±4nm in size. Functional groups and chemical composition of copper oxide were also confirmed. Antimicrobial activity of biogenic copper oxide nanoparticles were investigated and maximum zone of inhibition was found in 50μg/ml copper oxide nanoparticles against urinary tract pathogen (Escherichia coli).

  2. Developing mononuclear copper-active-oxygen complexes relevant to reactive intermediates of biological oxidation reactions.

    Science.gov (United States)

    Itoh, Shinobu

    2015-07-21

    Active-oxygen species generated on a copper complex play vital roles in several biological and chemical oxidation reactions. Recent attention has been focused on the reactive intermediates generated at the mononuclear copper active sites of copper monooxygenases such as dopamine β-monooxygenase (DβM), tyramine β-monooxygenase (TβM), peptidylglycine-α-hydroxylating monooxygenase (PHM), and polysaccharide monooxygenases (PMO). In a simple model system, reaction of O2 and a reduced copper(I) complex affords a mononuclear copper(II)-superoxide complex or a copper(III)-peroxide complex, and subsequent H(•) or e(-)/H(+) transfer, which gives a copper(II)-hydroperoxide complex. A more reactive species such as a copper(II)-oxyl radical type species could be generated via O-O bond cleavage of the peroxide complex. However, little had been explored about the chemical properties and reactivity of the mononuclear copper-active-oxygen complexes due to the lack of appropriate model compounds. Thus, a great deal of effort has recently been made to develop efficient ligands that can stabilize such reactive active-oxygen complexes in synthetic modeling studies. In this Account, I describe our recent achievements of the development of a mononuclear copper(II)-(end-on)superoxide complex using a simple tridentate ligand consisting of an eight-membered cyclic diamine with a pyridylethyl donor group. The superoxide complex exhibits a similar structure (four-coordinate tetrahedral geometry) and reactivity (aliphatic hydroxylation) to those of a proposed reactive intermediate of copper monooxygenases. Systematic studies based on the crystal structures of copper(I) and copper(II) complexes of the related tridentate supporting ligands have indicated that the rigid eight-membered cyclic diamine framework is crucial for controlling the geometry and the redox potential, which are prerequisites for the generation of such a unique mononuclear copper(II)-(end-on)superoxide complex

  3. Synthesis of copper hydroxide branched nanocages and their transformation to copper oxide

    KAUST Repository

    LaGrow, Alec P.

    2014-08-21

    Copper oxide nanostructures have been explored in the literature for their great promise in the areas of energy storage and catalysis, which can be controlled based on their shape. Herein we describe the synthesis of complex branched nanocages of copper hydroxide with an alternating stacked morphology. The size of the nanocages\\' core and the length of the branches can be controlled by the temperature and ratio of surfactant used, varying the length from 85 to 232 nm long, and varying the core size from 240 to 19 nm. The nanostructures\\' unique morphology forms by controlling the growth of an initial spherical seed, and the crystallization of the anisotropic arms. The Cu(OH)2 nanostructures can be converted to polycrystalline CuO branched nanocages and Cu2O nanoframes. We show that the branched nanocage morphology of CuO has markedly superior catalytic properties to previous reports with CuO nanomaterials, resulting in a rapid and efficient catalyst for C-S coupling. © 2014 American Chemical Society.

  4. Electrosynthesized polytyramine-copper oxalate nanocomposite on copper electrode for electrocatalytic oxidation of methanol in alkaline medium

    Institute of Scientific and Technical Information of China (English)

    Robab Abbasi a; Khalil Farhadi a; Sepideh Banisaeid a; Nader Nowroozi Pesyan a; Arezu Jamali a; Fatemeh Rahmani b

    2014-01-01

    A polytyramine-copper oxalate nanocomposite modified copper (PTCOxNMC) electrode prepared by electropolymerization was examined for electrocatalytic activity towards the oxidation of meth-anol in alkaline solution using cyclic voltammetry and impedance spectroscopy. The prepared PTCOxNMC electrode showed a significantly high response for adsorbed methanol oxidation. The effects of various parameters such as potential scan rate and methanol concentration on the elec-trocatalytic oxidation at the surface of the PTCOxNMC electrode were investigated. Spectrometry techniques such as Fourier transform infrared spectroscopy and scanning electron microscopy were used to determine the surface physical characteristics of the modified electrode and revealed that the polytyramine-copper oxalate nanocomposite particles were highly dispersed on the surface of the copper electrode with a narrow size up to 40 nm. The very high current density obtained for the catalytic oxidation may have resulted from the high electrode surface area caused by modifica-tion with the poly-tyramine-copper oxalate nanocomposite.

  5. Copper oxide assisted cysteine hierarchical structures for immunosensor application

    Energy Technology Data Exchange (ETDEWEB)

    Pandey, Chandra Mouli [Biomedical Instrumentation Section, CSIR-National Physical Laboratory, New Delhi 110012 (India); Department of Chemistry, Faculty of Science, Banaras Hindu University, Varanasi 221005 (India); Sumana, Gajjala, E-mail: sumanagajjala@gmail.com [Biomedical Instrumentation Section, CSIR-National Physical Laboratory, New Delhi 110012 (India); Tiwari, Ida [Department of Chemistry, Faculty of Science, Banaras Hindu University, Varanasi 221005 (India)

    2014-09-08

    The present work describes the promising electrochemical immunosensing strategy based on copper (II) assisted hierarchical cysteine structures (CuCys) varying from star to flower like morphology. The CuCys having average size of 10 μm have been synthesised using L-Cysteine as initial precursor in presence of copper oxide under environmentally friendly conditions in aqueous medium. To delineate the synthesis mechanism, detailed structural investigations have been carried out using characterization techniques such as X-ray diffraction, transmission electron microscopy, and Fourier transform infrared spectroscopy. The electrochemical behaviour of self-assembled CuCys on gold electrode shows surface controlled electrode reaction with an apparent electron transfer rate constant of 3.38 × 10{sup −4 }cm s{sup −1}. This innovative platform has been utilized to fabricate an immunosensor by covalently immobilizing monoclonal antibodies specific for Escherichia coli O157:H7 (E. coli). Under the optimal conditions, the fabricated immunosensor is found to be sensitive and specific for the detection of E. coli with a detection limit of 10 cfu/ml.

  6. Selective oxidation of benzylic alcohols using copper-manganese mixed oxide nanoparticles as catalyst

    Directory of Open Access Journals (Sweden)

    Roushown Ali

    2015-07-01

    Full Text Available The catalytic activity of copper-manganese (CuMn2 mixed oxide nanoparticles (Cu/Mn = 1:2 has been studied for the selective oxidation of benzylic alcohols to the corresponding aldehydes using molecular oxygen as an oxidizing agent. The CuMn2 mixed oxide showed excellent catalytic activity for the oxidation of benzylic alcohols to the corresponding aldehydes with high selectivity (>99%. The complete conversion (100% of all the benzylic alcohols to the corresponding aldehydes is achieved within a short reaction period at 102 °C. The catalytic performance is obtained to be dependent on the electronic and steric effects of the substituents present on the phenyl ring. Electron withdrawing and bulky groups attached to the phenyl ring required longer reaction time for a complete conversion of the benzylic alcohols.

  7. Potentiating effect of ecofriendly synthesis of copper oxide nanoparticles using brown alga: antimicrobial and anticancer activities

    Indian Academy of Sciences (India)

    SRI VISHNU PRIYA RAMASWAMY; S NARENDHRAN; RAJESHWARI SIVARAJ

    2016-04-01

    This study reports the in vitro antimicrobial and anticancer activities of biologically synthesized copper nanoparticles. The antimicrobial activity of green synthesized copper oxide nanoparticles was assessed by well diffusion method. The anticancer activity of brown algae-mediated copper oxide nanoparticles was determined by MTT assay against the cell line (MCF-7). Maximum activity was observed with Pseudomonas aeruginosa and Aspergillus niger. Effective growth inhibition of cells was observed to be more than 93% in antibacterial activity. Thus, the results of the present study indicates that biologically synthesized copper nanoparticles can be used for several diseases, however, it necessitates clinical studies to ascertain their potential as antimicrobial and anticancer agents.

  8. Influence of Copper Oxidation State on the Bonding and Electronic Structure of Cobalt-Copper Complexes

    Energy Technology Data Exchange (ETDEWEB)

    Eisenhart, Reed J.; Carlson, Rebecca K.; Clouston, Laura J.; Young, Jr., Victor G.; Chen, Yu-Sheng; Bill, Eckhard; Gagliardi, Laura; Lu, Connie C. (UC); (UMM); (MXPL)

    2016-03-04

    Heterobimetallic complexes that pair cobalt and copper were synthesized and characterized by a suite of physical methods, including X-ray diffraction, X-ray anomalous scattering, cyclic voltammetry, magnetometry, electronic absorption spectroscopy, electron paramagnetic resonance, and quantum chemical methods. Both Cu(II) and Cu(I) reagents were independently added to a Co(II) metalloligand to provide (py3tren)CoCuCl (1-Cl) and (py3tren)CoCu(CH3CN) (2-CH3CN), respectively, where py3tren is the triply deprotonated form of N,N,N-tris(2-(2-pyridylamino)ethyl)amine. Complex 2-CH3CN can lose the acetonitrile ligand to generate a coordination polymer consistent with the formula “(py3tren)CoCu” (2). One-electron chemical oxidation of 2-CH3CN with AgOTf generated (py3tren)CoCuOTf (1-OTf). The Cu(II)/Cu(I) redox couple for 1-OTf and 2-CH3CN is reversible at -0.56 and -0.33 V vs Fc+/Fc, respectively. The copper oxidation state impacts the electronic structure of the heterobimetallic core, as well as the nature of the Co–Cu interaction. Quantum chemical calculations showed modest electron delocalization in the (CoCu)+4 state via a Co–Cu σ bond that is weakened by partial population of the Co–Cu σ antibonding orbital. By contrast, no covalent Co–Cu bonding is predicted for the (CoCu)+3 analogue, and the d-electrons are fully localized at individual metals.

  9. Oxide nucleation on thin films of copper during in situ oxidation in an electron microscope

    Science.gov (United States)

    Heinemann, K.; Rao, D. B.; Douglass, D. L.

    1975-01-01

    Single-crystal copper thin films were oxidized at an isothermal temperature of 425 C and at an oxygen partial pressure of 0.005 torr. Specimens were prepared by epitaxial vapor deposition onto polished faces of rocksalt and were mounted in a hot stage inside the ultrahigh-vacuum chamber of a high-resolution electron microscope. An induction period of roughly 30 min was established which was independent of the film thickness but depended strongly on the oxygen partial pressure and to exposure to oxygen prior to oxidation. Neither stacking faults nor dislocations were found to be associated with the Cu2O nucleation sites. The experimental data, including results from oxygen dissolution experiments and from repetitive oxidation-reduction-oxidation sequences, fit well into the framework of an oxidation process involving the formation of a surface charge layer, oxygen saturation of the metal with formation of a supersaturated zone near the surface, and nucleation followed by surface diffusion of oxygen and bulk diffusion of copper for lateral and vertical oxide growth, respectively.

  10. Sputtered (barium(x), strontium(1-x))titanate, BST, thin films on flexible copper foils for use as a non-linear dielectric

    Science.gov (United States)

    Laughlin, Brian James

    Ferroelectric thin film dielectrics have a non-linear DC bias dependent permittivity and can be used as the dielectric between metal electrodes to make tunable Metal-Insulator-Metal (MIM) capacitors. Varactors can be used to change the resonance frequency of a circuit allowing high speed frequency switching intra- and inter-band. 2-D geometric arrays of circuitry, where resonant frequency is independently controlled by tunable elements in each section of the array, allow electromagnetic radiation to be focused and the wave front spatial trajectory controlled. BST thin films varactors allow large DC fields to be applied with modest voltages providing large tunabilities. If ferroelectric thin film based devices are to complement or supplant semiconductor varactors as tunable elements then devices must be synthesized using a low cost processing techniques. The Film on Foil process methodology for depositing BST thin films on copper foil substrates was used to create BST/Cu specimens. Sputtering conditions were determined via BST deposition on platinized silicon. Sputtered BST thin films were synthesized on Cu foil substrates and densified using high T, controlled pO2 anneals. XRD showed the absence of Cu2O in as-deposited, post crystallization annealed, and post "re-ox" annealed state. Data showed a polycrystalline BST microstructure with a 55--80 nm grain size and no copper oxidation. HRTEM imaging qualitatively showed evidence of an abrupt BST/Cu interface free from oxide formation. Dielectric properties of Cu/BST/Pt MIM devices were measured as a function of DC bias, frequency, and temperature. A permittivity of 725 was observed with tunability >3:1 while zero bias tan delta of 0.02 saturating to tan delta 3:1 was maintained. These results provide a route for creating temperature stable capacitors using a BST/Cu embodiment. An effort to reduce surface roughness of copper foil substrates adversely impacted BST film integrity by impairing adhesion. XPS analysis of

  11. DNA Oxidation Profiles of Copper Phenanthrene Chemical Nucleases

    Science.gov (United States)

    Molphy, Zara; Slator, Creina; Chatgilialoglu, Chryssostomos; Kellett, Andrew

    2015-04-01

    The deleterious effects of metal-catalyzed reactive oxygen species (ROS) in biological systems can be seen in a wide variety of pathological conditions including cancer, cardiovascular disease, ageing, and neurodegenerative disorder. On the other hand however, targeted ROS production in the vicinity of nucleic acids - as demonstrated by metal-activated bleomycin - has paved the way for ROS-active chemotherapeutic drug development. Herein we report mechanistic investigations into the oxidative nuclease activity and redox properties of copper(II) developmental therapeutics [Cu(DPQ)(phen)]2+ (Cu-DPQ-Phen), [Cu(DPPZ)(phen)]2+ (Cu-DPPZ-Phen), and [{Cu(phen)2}2(μ-terph)](terph) (Cu-Terph), with results being compared directly to Sigman’s reagent [Cu(phen)2]2+ throughout (phen = 1,10-phenanthroline; DPQ = dipyridoquinoxaline; DPPZ = dipyridophenazine). Oxidative DNA damage was identified at the minor groove through use of surface bound recognition elements of methyl green, netropsin, and [Co(NH3)6]Cl3 that functioned to control complex accessibility at selected regions. ROS-specific scavengers and stabilisers were employed to identify the cleavage process, the results of which infer hydrogen peroxide produced metal-hydroxo or free hydroxyl radicals (•OH) as the predominant species. The extent of DNA damage owing to these radicals was then quantified through 8-oxo-2'-deoxyguanosine (8-oxo-dG) lesion detection under ELISA protocol with the overall trend following Cu-DPQ-Phen > Cu-Terph > Cu-Phen > Cu-DPPZ. Finally, the effects of oxidative damage on DNA replication processes were investigated using the polymerase chain reaction (PCR) where amplification of 120 base pair DNA sequences of varying base content were inhibited - particularly along A-T rich chains - through oxidative damage of the template strands.

  12. DNA Oxidation Profiles of Copper Phenanthrene Chemical Nucleases

    Directory of Open Access Journals (Sweden)

    Zara eMolphy

    2015-04-01

    Full Text Available The deleterious effects of metal-catalyzed reactive oxygen species (ROS in biological systems can be seen in a wide variety of pathological conditions including cancer, cardiovascular disease, ageing, and neurodegenerative disorder. On the other hand however, targeted ROS production in the vicinity of nucleic acids – as demonstrated by metal-activated bleomycin – has paved the way for ROS-active chemotherapeutic drug development. Herein we report mechanistic investigations into the oxidative nuclease activity and redox properties of copper(II developmental therapeutics [Cu(DPQ(phen]2+ (Cu-DPQ-Phen, [Cu(DPPZ(phen]2+ (Cu-DPPZ-Phen, and [{Cu(phen2}2(μ-terph](terph (Cu-Terph, with results being compared directly to Sigman’s reagent [Cu(phen2]2+ throughout (phen = 1,10-phenanthroline; DPQ = dipyridoquinoxaline; DPPZ = dipyridophenazine. Oxidative DNA damage was identified at the minor groove through use of surface bound recognition elements of methyl green, netropsin, and [Co(NH36]Cl3 that functioned to control complex accessibility at selected regions. ROS-specific scavengers and stabilisers were employed to identify the cleavage process, the results of which infer hydrogen peroxide produced metal-hydroxo or free hydroxyl radicals (•OH as the predominant species. The extent of DNA damage owing to these radicals was then quantified through 8-oxo-2'-deoxyguanosine (8-oxo-dG lesion detection under ELISA protocol with the overall trend following Cu-DPQ-Phen > Cu-Terph > Cu-Phen > Cu-DPPZ. Finally, the effects of oxidative damage on DNA replication processes were investigated using the polymerase chain reaction (PCR where amplification of 120 base pair DNA sequences of varying base content were inhibited – particularly along A-T rich chains – through oxidative damage of the template strands.

  13. Copper-Aβ Peptides and Oxidation of Catecholic Substrates: Reactivity and Endogenous Peptide Damage.

    Science.gov (United States)

    Pirota, Valentina; Dell'Acqua, Simone; Monzani, Enrico; Nicolis, Stefania; Casella, Luigi

    2016-11-14

    The oxidative reactivity of copper complexes with Aβ peptides 1-16 and 1-28 (Aβ16 and Aβ28) against dopamine and related catechols under physiological conditions has been investigated in parallel with the competitive oxidative modification undergone by the peptides. It was found that both Aβ16 and Aβ28 markedly increase the oxidative reactivity of copper(II) towards the catechol compounds, up to a molar ratio of about 4:1 of peptide/copper(II). Copper redox cycling during the catalytic activity induces the competitive modification of the peptide at selected amino acid residues. The main modifications consist of oxidation of His13/14 to 2-oxohistidine and Phe19/20 to ortho-tyrosine, and the formation of a covalent His6-catechol adduct. Competition by the endogenous peptide is rather efficient, as approximately one peptide molecule is oxidized every 10 molecules of 4-methylcatechol.

  14. Mechanistic studies of copper(II)-mediated oxidation of vic-dioxime to furoxan

    Indian Academy of Sciences (India)

    Oindrila Das; Tapan Kanti Paine

    2012-11-01

    The oxidation of vic-dioximes to furoxans by copper(II) perchlorate in acetonitrile as the oxidant has been discussed. This method was found to be applicable for a broad range of vic-dioximes. Copper complexes of 1,10-phenanthroline derived furoxans were isolated by oxidation of the corresponding copper(II) complexes of 1,10-phenanthroline based dioximes. In exploring the mechanism of copper(II)-mediated oxidative cyclization of vic-dioxime, a transient blue species was observed in the reaction pathway. Based on the spectroscopic signatures and reactivity patterns, the intermediate was proposed to be a dioximatecopper(II)-dinitrosoalkene complex. These results along with the role of metal ion and solvent in the oxidative transformation reaction are discussed in this review.

  15. Anti-Proliferative Effect of Copper Oxide Nanorods Against Human Cervical Carcinoma Cells.

    Science.gov (United States)

    Pandurangan, Muthuraman; Nagajyothi, P C; Shim, Jaesool; Kim, Doo Hwan

    2016-09-01

    Metal oxide nanoparticles have been widely investigated for its use in the pharmacological field. The present study was aimed to investigate the cytotoxicity of copper oxide nanorods in human cervical carcinoma cells. The effect of copper oxide nanorods on cell viability was determined by sulforhodamine-B (SRB) assay. The fluorescence and confocal microscopy analyzes showed the cell rounding and nuclear fragmentation following exposure of copper oxide nanorods. Reactive oxygen species (ROS) was increased and could initiate membrane lipid peroxidation, which in turn regulate cytokinetic movements of cells. The messenger RNA (mRNA) expression of p53 and caspase 3 was increased, which further confirms the occurrence of apoptosis at the transcriptional level. Furthermore, caspase-3 enzyme activity was increased, which also confirms the occurrence of apoptosis in tumor cells at the translational level. Taking all our experimental results together, it may suggest that the copper oxide nanorods could be a potential anti-tumor agent to inhibit cancer cell proliferation.

  16. Copper-resistant bacteria reduces oxidative stress and uptake of copper in lentil plants: potential for bacterial bioremediation.

    Science.gov (United States)

    Islam, Faisal; Yasmeen, Tahira; Ali, Qasim; Mubin, Muhammad; Ali, Shafaqat; Arif, Muhammad Saleem; Hussain, Sabir; Riaz, Muhammad; Abbas, Farhat

    2016-01-01

    For effective microbe-assisted bioremediation, metal-resistant plant growth-promoting bacteria (PGPB) must facilitate plant growth by restricting excess metal uptake in plants, leading to prevent its bio-amplification in the ecosystem. The aims of our study were to isolate and characterize copper (Cu)-resistant PGPB from waste water receiving contaminated soil. In addition, we investigated the phytotoxic effect of copper on the lentil plants inoculated with copper-resistant bacteria Providencia vermicola, grown in copper-contaminated soil. Copper-resistant P. vermicola showed multiple plant growth promoting characteristics, when used as a seed inoculant. It protected the lentil plants from copper toxicity with a considerable increase in root and shoot length, plant dry weight and leaf area. A notable increase in different gas exchange characteristics such as A, E, C i , g s , and A/E, as well as increase in N and P accumulation were also recorded in inoculated plants as compared to un-inoculated copper stressed plants. In addition, leaf chlorophyll content, root nodulation, number of pods, 1,000 seed weight were also higher in inoculated plants as compared with non-inoculated ones. Anti-oxidative defense mechanism improved significantly via elevated expression of reactive oxygen species -scavenging enzymes including ascorbate peroxidase, superoxide dismutase, catalase, and guaiacol peroxidase with alternate decrease in malondialdehyde and H2O2 contents, reduced electrolyte leakage, proline, and total phenolic contents suggesting that inoculation of P. vermicola triggered heavy metals stress-related defense pathways under copper stress. Overall, the results demonstrated that the P. vermicola seed inoculation confer heavy metal stress tolerance in lentil plant which can be used as a potent biotechnological tool to cope with the problems of copper pollution in crop plants for better yield.

  17. The copper recovery from cupric oxide catalysts by plasma reduction process

    Energy Technology Data Exchange (ETDEWEB)

    Imris, I.; Klenovcanova, A. [Technical Univ. of Kosice, Kosice (Slovakia). Dept. of Power Engineering

    2007-07-01

    A plasma reduction process was used to recover copper from cupric oxide catalysts. Two types of plasma reduction smelting tests were conducted to verify the thermodynamic calculations. The plasma reactor consisted of a cylindrical steel shell lined with a castable alumina and a graphite crucible. Cupric oxide catalyst ESM 461 was mixed with stoichiometric amounts of carbon reductant and a 10 per cent addition of calcium oxide flux. Results of the experimental tests and the thermodynamic analysis showed that the copper can be extracted from cupric oxide using the plasma reduction process. Copper recovery was limited by physico-chemical copper losses. Copper oxide solubility was relatively high, so that copper recovery was low in their first series of plasma tests. The addition of calcium oxide flux improved copper recovery rates when dicalcium silicate was formed in the slag. The offgas samples indicated that concentrations of carbon monoxide (CO) in the gas phase was very high. It was concluded that the process is both commercially feasible and does not produce liquid or solid wastes. 7 refs., 2 tabs., 4 figs.

  18. Extraction of copper from an oxidized (lateritic) ore using bacterially catalysed reductive dissolution.

    Science.gov (United States)

    Nancucheo, Ivan; Grail, Barry M; Hilario, Felipe; du Plessis, Chris; Johnson, D Barrie

    2014-01-01

    An oxidized lateritic ore which contained 0.8 % (by weight) copper was bioleached in pH- and temperature-controlled stirred reactors under acidic reducing conditions using pure and mixed cultures of the acidophilic chemolithotrophic bacterium Acidithiobacillus ferrooxidans. Sulfur was provided as the electron donor for the bacteria, and ferric iron present in goethite (the major ferric iron mineral present in the ore) acted as electron acceptor. Significantly more copper was leached by bacterially catalysed reductive dissolution of the laterite than in aerobic cultures or in sterile anoxic reactors, with up to 78 % of the copper present in the ore being extracted. This included copper that was leached from acid-labile minerals (chiefly copper silicates) and that which was associated with ferric iron minerals in the lateritic ore. In the anaerobic bioreactors, soluble iron in the leach liquors was present as iron (II) and copper as copper (I), but both metals were rapidly oxidized (to iron (III) and copper (II)) when the reactors were aerated. The number of bacteria added to the reactors had a critical role in dictating the rate and yield of copper solubilised from the ore. This work has provided further evidence that reductive bioprocessing, a recently described approach for extracting base metals from oxidized deposits, has the potential to greatly extend the range of metal ores that can be biomined.

  19. COPPER AND COPPER-CONTAINING PESTICIDES: METABOLISM, TOXICITY AND OXIDATIVE STRESS

    Directory of Open Access Journals (Sweden)

    Viktor Husak

    2015-05-01

    Full Text Available The purpose of this paper is to provide a brief review of the current knowledge regarding metabolism and toxicity of copper and copper-based pesticides in living organisms. Copper is an essential trace element in all living organisms (bacteria, fungi, plants, and animals, because it participates in different metabolic processes and maintain functions of organisms. The transport and metabolism of copper in living organisms is currently the subject of many studies. Copper is absorbed, transported, distributed, stored, and excreted in the body via the complex of homeostatic processes, which provide organisms with a needed constant level of this micronutrient and avoid excessive amounts. Many aspects of copper homeostasis were studied at the molecular level. Copper based-pesticides, in particularly fungicides, bacteriocides and herbicides, are widely used in agricultural practice throughout the world. Copper is an integral part of antioxidant enzymes, particularly copper-zinc superoxide dismutase (Cu,Zn-SOD, and plays prominent roles in iron homeostasis. On the other hand, excess of copper in organism has deleterious effect, because it stimulates free radical production in the cell, induces lipid peroxidation, and disturbs the total antioxidant capacity of the body. The mechanisms of copper toxicity are discussed in this review also.

  20. Literature review on the properties of cuprous oxide Cu{sub 2}O and the process of copper oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Korzhavyi, P. A.; Johansson, B. (Department of Materials Science and Engineering, Royal Institute of Technology, Stockholm (Sweden))

    2011-10-15

    The purpose of the present review is to provide a reference guide to the most recent data on the properties of copper(I) oxide as well as on the atomic processes involved in the initial stages of oxidation of copper. The data on the structure of surfaces, as obtained from atomic-resolution microscopy studies (for example, STM) or from first-principles calculations, are reviewed. Information of this kind may be useful for understanding the atomic mechanisms of corrosion and stress-corrosion cracking of copper

  1. Direct 2-acetoxylation of quinoline N-oxides via copper catalyzed C-H bond activation.

    Science.gov (United States)

    Chen, Xuan; Zhu, Chongwei; Cui, Xiuling; Wu, Yangjie

    2013-08-07

    An efficient and direct 2-acetoxylation of quinoline N-oxides via copper(I) catalyzed C-H bond activation has been developed. This transformation was achieved using TBHP as an oxidant in the cross-dehydrogenative coupling (CDC) reaction of quinoline N-oxides with aldehydes, and provided a practical pathway to 2-acyloxyl quinolines.

  2. The Synthesis of Highly Aligned Cupric Oxide Nanowires by Heating Copper Foil

    Directory of Open Access Journals (Sweden)

    Jianbo Liang

    2011-01-01

    Full Text Available We have investigated the effects of grain size and orientation of copper substrates for the growth of cupric oxide nanowires by thermal oxidation method. Long, less-roughness, high-density, and aligned cupric oxide nanowires have been synthesized by heating (200 oriented copper foils with small grain size in air gas. Long and aligned nanowires of diameter around 80 nm can only be formed within a short temperature range from 400 to 700°C. On the other hand, uniform, smooth-surface, and aligned nanowires were not formed in the case of larger crystallite size of copper foils with (111 and (200 orientation. Smaller grain size of copper foil with (200 orientation is favorable for the growth of highly aligned, smooth surface, and larger-diameter nanowires by thermal oxidation method.

  3. Graphene oxide supported copper oxide nanoneedles: An efficient hybrid material for removal of toxic azo dyes

    Science.gov (United States)

    Rajesh, Rajendiran; Iyer, Sahithya S.; Ezhilan, Jayabal; Kumar, S. Senthil; Venkatesan, Rengarajan

    2016-09-01

    Herein, we report a simple, one step synthesis of hybrid copper oxide nanoneedles on graphene oxide sheets (GO-CuONNs) through sonochemical method. The present method affords a facile mean for controlling effective concentration of the active CuO nanoneedles on the graphene oxide sheets, and also offers the necessary stability to the resulting GO-CuONNs structure for adsorption transformations.Furthermore, this hybrid GO-CuONNs is successfully employed in the removal of a series of hazardous ionic organic dyes namely coomassie brilliant blue, methylene blue, congo red and amidoblack 10B. Through careful investigation of the material, we found that the synergetic effect between CuONNs and GO play a significant role in the adsorption of all the dyes studied. The prepared hybrid material contains both hydrophobic and hydrophilic environment which is expected to enhance the electrostatic interaction between the adsorbent and the dye molecules, consequently favouring the adsorption process.

  4. Effect of barium doping on the physical properties of zinc oxide nanoparticles elaborated via sonochemical synthesis method

    Indian Academy of Sciences (India)

    N’KONOU KEKELI; HARIS MUTHIAH; LARE YENDOUBÉ; BANETO MAZABALO; NAPO KOSSI

    2016-07-01

    The aim of this work is to study the effect of barium (Ba) doping on the optical, morphological and structural properties of ZnO nanoparticles. Undoped and Ba-doped ZnO have been successfully synthesized via sonochemical method using zinc nitrate, hexamethylenetetramine (HMT) and barium chloride as startingmaterials. The structural characterization by XRD and FTIR shows that ZnO nanoparticles are polycrystalline with a standard hexagonal ZnO wurtzite crystal structure. Decrease in lattice parameters from diffraction data shows the presence of Ba$^{2+}$ in the ZnO crystal lattice. The morphology of the ZnO nanoparticles has been determined by scanning electron microscopy (SEM). Incorporation of Ba was confirmed from the elemental analysis using EDX. Optical analysis depicted that all samples exhibit an average optical transparency over 80%, in the visible range. Room-temperature photoluminescence (PL) spectra detected a strong ultraviolet emission at 330 nmand two weak emission bands were observed near 417 and 560 nm. Raman spectroscopy analysis of Ba-doped samples reveals the successful doping of Ba ions in the host ZnO.

  5. Thin films of copper oxide and copper grown by atomic layer deposition for applications in metallization systems of microelectronic devices

    Energy Technology Data Exchange (ETDEWEB)

    Waechtler, Thomas

    2010-05-25

    Copper-based multi-level metallization systems in today's ultralarge-scale integrated electronic circuits require the fabrication of diffusion barriers and conductive seed layers for the electrochemical metal deposition. Such films of only several nanometers in thickness have to be deposited void-free and conformal in patterned dielectrics. The envisaged further reduction of the geometric dimensions of the interconnect system calls for coating techniques that circumvent the drawbacks of the well-established physical vapor deposition. The atomic layer deposition method (ALD) allows depositing films on the nanometer scale conformally both on three-dimensional objects as well as on large-area substrates. The present work therefore is concerned with the development of an ALD process to grow copper oxide films based on the metal-organic precursor bis(trin- butylphosphane)copper(I)acetylacetonate [({sup n}Bu{sub 3}P){sub 2}Cu(acac)]. This liquid, non-fluorinated {beta}-diketonate is brought to react with a mixture of water vapor and oxygen at temperatures from 100 to 160 C. Typical ALD-like growth behavior arises between 100 and 130 C, depending on the respective substrate used. On tantalum nitride and silicon dioxide substrates, smooth films and selfsaturating film growth, typical for ALD, are obtained. On ruthenium substrates, positive deposition results are obtained as well. However, a considerable intermixing of the ALD copper oxide with the underlying films takes place. Tantalum substrates lead to a fast self-decomposition of the copper precursor. As a consequence, isolated nuclei or larger particles are always obtained together with continuous films. The copper oxide films grown by ALD can be reduced to copper by vapor-phase processes. If formic acid is used as the reducing agent, these processes can already be carried out at similar temperatures as the ALD, so that agglomeration of the films is largely avoided. Also for an integration with subsequent

  6. Acute toxicity of copper oxide nanoparticles to Daphnia magna under different test conditions

    DEFF Research Database (Denmark)

    Thit, Amalie; Huggins, Krista; Selck, Henriette;

    2016-01-01

    The acute toxicity of monodispersed 6 nm and <100 nm poly-dispersed copper oxide nanoparticles toward Daphnia magna was assessed using 48 h immobilization tests. CuSO4 was used as a reference. Four different exposure conditions were tested, to study whether the toxicity of the nanoparticle suspen...... model MINTEQ. These findings show that the acute toxicity of copper oxide nanoparticles is governed by test water composition and the chemical species Cu2+....

  7. Stable Copper-Nitrosyl Formation By Nitrite Reductase in Either Oxidation State

    Energy Technology Data Exchange (ETDEWEB)

    Tocheva, E.I.; Rosell, F.I.; Mauk, A.G.; Murphy, M.E.P.

    2009-06-04

    Nitrite reductase (NiR) is an enzyme that uses type 1 and type 2 copper sites to reduce nitrite to nitric oxide during bacterial denitrification. A copper-nitrosyl intermediate is a proposed, yet poorly characterized feature of the NiR catalytic cycle. This intermediate is formally described as Cu(I)-NO{sup +} and is proposed to be formed at the type 2 copper site after nitrite binding and electron transfer from the type 1 copper site. In this study, copper-nitrosyl complexes were formed by prolonged exposure of exogenous NO to crystals of wild-type and two variant forms of NiR from Alcaligenes faecalis (AfNiR), and the structures were determined to 1.8 {angstrom} or better resolution. Exposing oxidized wild-type crystals to NO results in the reverse reaction and formation of nitrite that remains bound at the active site. In a type 1 copper site mutant (H145A) that is incapable of electron transfer to the type 2 site, the reverse reaction is not observed. Instead, in both oxidized and reduced H145A crystals, NO is observed bound in a side-on manner to the type 2 copper. In AfNiR, Asp98 forms hydrogen bonds to both substrate and product bound to the type 2 Cu. In the D98N variant, NO is bound side-on but is more disordered when observed for the wild-type enzyme. The solution EPR spectra of the crystallographically characterized NiR-NO complexes indicate the presence of an oxidized type 2 copper site and thus are interpreted as resulting from stable copper-nitrosyls and formally assigned as Cu(II)-NO{sup -}. A reaction scheme in which a second NO molecule is oxidized to nitrite can account for the formation of a CuD-NO{sup -} species after exposure of the oxidized H145A variant to NO gas.

  8. In situ deposits of copper and copper oxide containing condensation polyimide films

    Science.gov (United States)

    Porta, G. M.; Taylor, L. T.

    1987-01-01

    Novel copper-polyimide composites have been synthesized via simultaneous thermal decomposition of solid solutions of bis (trifluoroacetylacetonato) copper (II) and thermal cyclodehydration of polyimide acid. In contrast to conventional filled polymer composites which are prepared by dispersion of particles or fibers in a polymer matrix this study has yielded in general uniform Cu or CuO dispersions of very small particle size that reside near the film surface that was exposed to the atmosphere during curing. The nature of the copper deposit, the thickness of the copper deposit, and the polyimide overlayer which bonds the copper to the polymer substrate depend on the curing atmosphere used. A variety of analytical surface methods along with thermogravimetric analysis and variable temperature (surface and volume) electrical resistivity measurements have been used to characterize these thin, flexible copper doped polyimide films.

  9. Thin copper oxide films prepared by ion beam sputtering with subsequent thermal oxidation: Application in chemiresistors

    Science.gov (United States)

    Horak, P.; Bejsovec, V.; Vacik, J.; Lavrentiev, V.; Vrnata, M.; Kormunda, M.; Danis, S.

    2016-12-01

    Copper oxide films were prepared by thermal oxidation of thin Cu films deposited on substrates by ion beam sputtering. The subsequent oxidation was achieved in the temperature range of 200 °C-600 °C with time of treatment from 1 to 7 h (with a 1-h step) in a furnace open to air. At temperatures 250 °C-600 °C, the dominant phase formed was CuO, while at 200 °C mainly the Cu2O phase was identified. However, the oxidation at 200 °C led to a more complicated composition - in the depth Cu2O phase was observed, though in the near-surface layer the CuO dominant phase was found with a significant presence of Cu(OH)2. A limited amount of Cu2O was also found in samples annealed at 600 °C. The sheet resistance RS of the as-deposited Cu sample was 2.22 Ω/□, after gradual annealing RS was measured in the range 2.64 MΩ/□-2.45 GΩ/□. The highest RS values were obtained after annealing at 300 °C and 350 °C, respectively. Oxygen depth distribution was studied using the 16O(α,α) nuclear reaction with the resonance at energy 3032 keV. It was confirmed that the higher oxidation degree of copper is located in the near-surface region. Preliminary tests of the copper oxide films as an active layer of a chemiresistor were also performed. Hydrogen and methanol vapours, with a concentration of 1000 ppm, were detected by the sensor at an operating temperature of 300 °C and 350 °C, respectively. The response of the sensors, pointed at the p-type conductivity, was improved by the addition of thin Pd or Au catalytic films to the oxidic film surface. Pd-covered films showed an increased response to hydrogen at 300 °C, while Au-covered films were more sensitive to methanol vapours at 350 °C.

  10. Humidity and temperature sensing properties of copper oxide-Si-adhesive nanocomposite.

    Science.gov (United States)

    Khan, Sher Bahadar; Chani, Muhammad Tariq Saeed; Karimov, Kh S; Asiri, Abdullah M; Bashir, Mehran; Tariq, Rana

    2014-03-01

    Smart and professional humidity and temperature sensors have been fabricated by utilizing copper oxide-Si-adhesive composite and pure copper oxide nanosheets. Copper oxide nanosheets are synthesized by low temperature stirring method and characterized by field emission scanning electron microscopy, which reveals that synthesized product is composed of randomly oriented nanosheets, which are grown in high density with an average thickness of~80±10 nm. X-ray diffraction confirms that the grown nanosheets consist of well crystalline monoclinic CuO. X-ray photoelectron spectroscopy and Fourier transform infrared (FTIR) spectroscopy also confirm that the synthesized nanomaterial is pure CuO without any impurity. The fabricated sensors exhibit good temperature sensitivity of -4.0%/°C and -5.2%/°C and humidity sensitivity of -2.9%/%RH and -4.88%/%RH, respectively for copper oxide-Si-adhesive composite and pure copper oxide nanosheets. The average initial resistance of the sensors is equal to 250 MΩ and 55 MΩ for the composite and pure copper oxide based sensors, respectively.

  11. Growth inhibition of bloom forming cyanobacterium Microcystis aeruginosa by green route fabricated copper oxide nanoparticles.

    Science.gov (United States)

    Sankar, Renu; Prasath, Barathan Balaji; Nandakumar, Ravichandran; Santhanam, Perumal; Shivashangari, Kanchi Subramanian; Ravikumar, Vilwanathan

    2014-12-01

    The cyanobacterium Microcystis aeruginosa can potentially proliferate in a wide range of freshwater bionetworks and create extensive secondary metabolites which are harmful to human and animal health. The M. aeruginosa release toxic microcystins that can create a wide range of health-related issues to aquatic animals and humans. It is essential to eliminate them from the ecosystem with convenient method. It has been reported that engineered metal nanoparticles are potentially toxic to pathogenic organisms. In the present study, we examined the growth inhibition effect of green synthesized copper oxide nanoparticles against M. aeruginosa. The green synthesized copper oxide nanoparticles exhibit an excitation of surface plasmon resonance (SPR) at 270 nm confirmed using UV-visible spectrophotometer. The dynamic light scattering (DLS) analysis revealed that synthesized nanoparticles are colloidal in nature and having a particle size of 551 nm with high stability at -26.6 mV. The scanning electron microscopy (SEM) analysis shows that copper oxide nanoparticles are spherical, rod and irregular in shape, and consistently distributed throughout the solution. The elemental copper and oxide peak were confirmed using energy dispersive x-ray analysis (EDAX). Fourier-transform infrared (FT-IR) spectroscopy indicates the presence of functional groups which is mandatory for the reduction of copper ions. Besides, green synthesized copper oxide nanoparticles shows growth inhibition against M. aeruginosa. The inhibition efficiency was 31.8 % at lower concentration and 89.7 % at higher concentration of copper oxide nanoparticles, respectively. The chlorophyll (a and b) and carotenoid content of M. aeruginosa declined in dose-dependent manner with respect to induction of copper oxide nanoparticles. Furthermore, we analyzed the mechanism behind the cytotoxicity of M. aeruginosa induced by copper oxide nanoparticles through evaluating membrane integrity, reactive oxygen species (ROS

  12. Charge stripes and spin correlations in copper-oxide superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Tranquada, J.M.

    1997-05-01

    To obtain superconductivity in a layered copper-oxide compound, it is necessary to introduce charge carriers into the antiferromagnetic CuO{sub 2} planes. Recent neutron diffraction studies of the system La{sub 1.6-x}Nd{sub 0.4}Sr{sub x}CuO{sub 4} provide evidence that the dopant-induced holes choose to segregate into periodically-spaced stripes which separate antiferromagnetic domains, in a manner similar to that found in hole-doped La{sub 2}NiO{sub 4}. The charge and spin stripe modulations are identified by the appearance of scattering at incommensurate positions. In the Nd-doped system, elastic scattering is observed, corresponding to static stripes. In pure La{sub 2-x}Sr{sub x}CuO{sub 4}, the magnetic scattering that is observed is purely inelastic. Where samples with and without Nd, but with the same Sr concentration, have been measured, the incommensurate (IC) splittings of the magnetic signal are found to be essentially identical. It has been proposed that the spin correlations in the two systems are fundamentally the same, thus implying similar charge correlations. The static nature of the stripes in the Nd-doped system is attributed to pinning of the otherwise dynamic correlations by a special distortion of the lattice. That distortion is driven by purely ionic interactions and is stabilized by the smaller ionic radius of the substituted Nd.

  13. Freshwater Sediment Characterization Factors of Copper Oxide Nanoparticles

    Science.gov (United States)

    Pu, Yubing; Laratte, Bertrand; Ionescu, Rodica Elena

    2017-01-01

    Wide use of engineered nanoparticles (ENPs) is likely to result in the eventually accumulation of ENPs in sediment. The benthic organisms living in sediments may suffer relatively high toxic effects of ENPs. This study has selected copper oxide nanoparticles (nano-CuO) as a research object. To consider the impacts of spatial heterogeneity on ENPs toxicity, the characterization factor (CF) derived from life cycle assessment (LCA) methodology is used as an indicator in this study. A nano-specific fate model has been used to calculate the freshwater sediment fate factor (FF) of nano-CuO. A literature survey of the nano-CuO toxicology values has been performed to calculate the effect factor (EF). Seventeen freshwater sediment CFs of nano-CuO are proposed as recommended values for subcontinental regions. The region most likely to be affected by nano-CuO is northern Australia (CF of 21.01·103 CTUe, comparative toxic units) and the least likely is northern Europe and northern Canada (CF of 8.55·103 CTUe). These sediment CFs for nano-CuO could be used in the future when evaluating the ecosystem impacts of products containing nano-CuO by LCA method.

  14. Temperature dependent rheological property of copper oxide nanoparticles suspension (nanofluid).

    Science.gov (United States)

    Kulkarni, Devdatta P; Das, Debendra K; Chukwu, Godwin A

    2006-04-01

    A nanofluid is the dispersion of metallic solid particles of nanometer size in a base fluid such as water or ethylene glycol. The presence of these nanoparticles affects the physical properties of a nanofluid via various factors including shear stress, particle loading, and temperature. In this paper the rheological behavior of copper oxide (CuO) nanoparticles of 29 nm average diameter dispersed in deionized (DI) water is investigated over a range of volumetric solids concentrations of 5 to 15% and various temperatures varying from 278-323 degrees K. These experiments showed that these nanofluids exhibited time-independent pseudoplastic and shear-thinning behavior. The suspension viscosities of nanofluids decrease exponentially with respect to the shear rate. Suspension viscosity follows the correlation in the form ln(mus) = A(1/T)-B, where constants A and B are the functions of volumetric concentrations. The calculated viscosities from the developed correlations and experimental values were found to be within +/- 10% of their values.

  15. Copper Oxide Nanoparticles for Advanced Refrigerant Thermophysical Properties: Mathematical Modeling

    Directory of Open Access Journals (Sweden)

    S. A. Fadhilah

    2014-01-01

    Full Text Available In modern days, refrigeration systems are important for industrial and domestic applications. The systems consume more electricity as compared to other appliances. The refrigeration systems have been investigated thoroughly in many ways to reduce the energy consumption. Hence, nanorefrigerant which is one kind of nanofluids has been introduced as a superior properties refrigerant that increased the heat transfer rate in the refrigeration system. Many types of materials could be used as the nanoparticles to be suspended into the conventional refrigerants. In this study, the effect of the suspended copper oxide (CuO nanoparticles into the 1,1,1,2-tetrafluoroethane, R-134a is investigated by using mathematical modeling. The investigation includes the thermal conductivity, dynamic viscosity, and heat transfer rate of the nanorefrigerant in a tube of evaporator. The results show enhanced thermophysical properties of nanorefrigerant compared to the conventional refrigerant. These advanced thermophysical properties increased the heat transfer rate in the tube. The nanorefrigerant could be a potential working fluid to be used in the refrigeration system to increase the heat transfer characteristics and save the energy usage.

  16. Copper-assisted shape control in colloidal synthesis of indium oxide nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Selishcheva, Elena; Parisi, Juergen; Kolny-Olesiak, Joanna, E-mail: joanna.kolny@uni-oldenburg.de [University of Oldenburg, Energy and Semiconductor Research Laboratory, Institute of Physics (Germany)

    2012-02-15

    Indium oxide is an important n-type transparent semiconductor, finding application in solar cells, sensors, and optoelectronic devices. We present here a novel non-injection synthesis route for the preparation of colloidal indium oxide nanocrystals by using oleylamine (OLA) as ligand and as solvent. Indium oxide with cubic crystallographic structure is formed in a reaction between indium acetate and OLA, the latter is converted to oleylamide during the synthesis. The shape of the nanocrystals can be influenced by the addition of copper ions. When only indium (III) acetate is used as precursor flower-shaped indium oxide nanoparticles are obtained. Addition of copper salts such as copper (I) acetate, copper (II) acetate, copper (II) acetylacetonate, or copper (I) chloride, under otherwise identical reaction conditions changes the shape of nanoparticles to quasi-spherical or elongated. The anions, except for chloride, do not influence the shape of the resulting nanocrystals. This finding suggests that adsorption of copper ions on the In{sub 2}O{sub 3} surface during the nanoparticles growth is responsible for shape control, whereas changes in the reactivity of the In cations caused by the presence of different anions play a secondary role. X-ray diffraction, transmission electron microscopy, nuclear magnetic resonance, energy dispersive X-ray analysis, and UV-Vis-absorption spectroscopy are used to characterize the samples.

  17. Effect of copper doping on the crystal structure and morphology of 1D nanostructured manganese oxides.

    Science.gov (United States)

    Lee, Sun Hee; Park, Dae Hoon; Hwang, Seong-Ju; Choy, Jin-Ho

    2007-11-01

    We have tried to control the aspect ratio and physicochemical properties of 1D nanostructured manganese oxides through copper doping. Copper-doped manganese oxide nanostructures have been synthesized by one-pot hydrothermal treatment for the mixed solution of permanganate anions and copper cations. According to powder X-ray diffraction and electron microscopic analyses, all the present materials commonly crystallize with alpha-MnO2-type structure but their aspect ratio decreases significantly with increasing the content of copper. Such a variation of crystallite dimension is attributable to the limitation of crystal growth by the incorporation of copper ions. X-ray absorption spectroscopic studies at Mn K- and Cu K-edges clearly demonstrate that the average oxidation state of manganese ions is increased by the substitution of divalent copper ions. Electrochemical measurements reveal the improvement of the electrode performance of nanostructured manganate upon copper doping, which can be interpreted as a result of the decrease of aspect ratio and the increase of Mn valence state. From the present experimental findings, it becomes certain that the present Cu doping method can provide an effective way of controlling the crystal dimension and electrochemical property of 1D nanostructured manganese oxide.

  18. Nitrogen substituent polarity influences dithiocarbamate-mediated lipid oxidation, nerve copper accumulation, and myelin injury.

    Science.gov (United States)

    Valentine, Holly L; Viquez, Olga M; Amarnath, Kalyani; Amarnath, Venkataraman; Zyskowski, Justin; Kassa, Endalkachew N; Valentine, William M

    2009-01-01

    Dithiocarbamates have a wide spectrum of applications in industry, agriculture, and medicine, with new applications being investigated. Past studies have suggested that the neurotoxicity of some dithiocarbamates may result from copper accumulation, protein oxidative damage, and lipid oxidation. The polarity of a dithiocarbamate's nitrogen substituents influences the lipophilicity of the copper complexes that it generates and thus potentially determines its ability to promote copper accumulation within nerve and induce myelin injury. In the current study, a series of dithiocarbamate-copper complexes differing in their lipophilicity were evaluated for their relative abilities to promote lipid peroxidation determined by malondialdehyde levels generated in an ethyl arachidonate oil-in-water emulsion. In a second component of this study, rats were exposed to either N,N-diethyldithiocarbamate or sarcosine dithiocarbamate; both generated dithiocarbamate-copper complexes that were lipid- and water-soluble, respectively. Following the exposures, brain, tibial nerve, spinal cord, and liver tissue copper levels were measured by inductively coupled mass spectroscopy to assess the relative abilities of these two dithiocarbamates to promote copper accumulation. Peripheral nerve injury was evaluated using grip strengths, nerve conduction velocities, and morphologic changes at the light microscope level. Additionally, the protein expression levels of glutathione transferase alpha and heme-oxygenase-1 in nerve were determined, and the quantity of protein carbonyls was measured to assess levels of oxidative stress and injury. The data provided evidence that dithiocarbamate-copper complexes are redox active and that the ability of dithiocarbamate complexes to promote lipid peroxidation is correlated to the lipophilicity of the complex. Consistent with neurotoxicity requiring the formation of a lipid-soluble copper complex, significant increases in copper accumulation, oxidative

  19. In Situ Study of Thermal Stability of Copper Oxide Nanowires at Anaerobic Environment

    Directory of Open Access Journals (Sweden)

    Lihui Zhang

    2014-01-01

    Full Text Available Many metal oxides with promising electrochemical properties were developed recently. Before those metal oxides realize the use as an anode in lithium ion batteries, their thermal stability at anaerobic environment inside batteries should be clearly understood for safety. In this study, copper oxide nanowires were investigated as an example. Several kinds of in situ experiment methods including in situ optical microscopy, in situ Raman spectrum, and in situ transmission electron microscopy were adopted to fully investigate their thermal stability at anaerobic environment. Copper oxide nanowires begin to transform as copper(I oxide at about 250°C and finish at about 400°C. The phase transformation proceeds with a homogeneous nucleation.

  20. Oxidative damage induced by copper in mouse primary hepatocytes by single-cell analysis.

    Science.gov (United States)

    Jing, Mingyang; Liu, Yang; Song, Wei; Yan, Yunxing; Yan, Wenbao; Liu, Rutao

    2016-01-01

    Copper can disturb the intracellular redox balance, induce oxidative stress, and subsequently cause irreversible damage, leading to a variety of diseases. In the present study, mouse primary hepatocytes were chosen to elucidate the in vitro oxidative damage of short-term copper exposure (10-200 μM) by single-cell analysis. We evaluated the toxicity of copper by reactive oxygen species (ROS), glutathione (GSH), and oxidative DNA damage at the single-cell level. Oxidative damage induced by copper was verified by the morphological changes, persistent elevations of excessive ROS and malondialdehyde (MDA), a decrease in GSH level, and the oxidative DNA damage. Furthermore, the average ROS generation, GSH consumption, and the indicators in DNA damage did not significantly change at relatively low concentrations (10 or 50 μM), but we can find the alterations of parameters in some single cells clearly. Emphasis on the analysis of single cells is conducive to gain a better understanding on the toxicity of copper. This study will also complement studies on the environmental risk assessment of copper pollution.

  1. Characterization of Copper Oxide Nanoparticles Fabricated by the Sol-Gel Method

    Science.gov (United States)

    Kayani, Zohra Nazir; Umer, Maryam; Riaz, Saira; Naseem, Shahzad

    2015-10-01

    Copper oxide nanoparticles were successfully prepared by a sol-gel technique. An aqueous solution of copper nitrate Cu(NO3)2 and acetic acid was used as precursor. On addition of sodium hydroxide (NaOH) a precipitate of copper oxide was immediately formed. The copper oxide nanoparticles were characterized by use of x-ray diffractometry (XRD), thermogravimetric analysis (TGA), differential thermal analysis, differential scanning calorimetry, Fourier-transform infrared spectroscopy (FTIR), vibrating sample magnetometry, and scanning electron microscopy (SEM). The XRD pattern contained sharp peaks of copper oxide nanoparticles with mixed cuprite and tenorite phases. Use of the Debye-Scherer equation showed that the crystallite size of the copper oxide nanoparticles increased with increasing annealing temperature. FTIR spectra revealed vibration of the CuO band at 473 cm-1; a band at 624 cm-1 was attributed to Cu2O. Maximum coercivity and saturation magnetization of the nanoparticles were 276 Oe and 0.034 emu/g, respectively. SEM micrographs of the nanoparticles revealed the presence of spherical nanoparticles of the tenorite phase whereas the cuprite phase was in the form of a compact deposit.

  2. High catalytic activity of oriented 2.0.0 copper(I) oxide grown on graphene film

    Science.gov (United States)

    Primo, Ana; Esteve-Adell, Ivan; Blandez, Juan F.; Dhakshinamoorthy, Amarajothi; Álvaro, Mercedes; Candu, Natalia; Coman, Simona M.; Parvulescu, Vasile I.; García, Hermenegildo

    2015-10-01

    Metal oxide nanoparticles supported on graphene exhibit high catalytic activity for oxidation, reduction and coupling reactions. Here we show that pyrolysis at 900 °C under inert atmosphere of copper(II) nitrate embedded in chitosan films affords 1.1.1 facet-oriented copper nanoplatelets supported on few-layered graphene. Oriented (1.1.1) copper nanoplatelets on graphene undergo spontaneous oxidation to render oriented (2.0.0) copper(I) oxide nanoplatelets on few-layered graphene. These films containing oriented copper(I) oxide exhibit as catalyst turnover numbers that can be three orders of magnitude higher for the Ullmann-type coupling, dehydrogenative coupling of dimethylphenylsilane with n-butanol and C-N cross-coupling than those of analogous unoriented graphene-supported copper(I) oxide nanoplatelets.

  3. Copper-mediated oxidative degradation of catecholamines and oxidative damage of protein

    Energy Technology Data Exchange (ETDEWEB)

    Goncalves, P.R.; Harria, M.I.N.; Felix, J.M.; Hoffmann, M.E. [Universidade Estadual de Campinas, SP (Brazil). Inst. de Biologia

    1997-12-31

    Full text. Degradative oxidation of catecholamines has been a matter of large interest in recent years due to the evidences associating their autoxidation with the etiology of neurotoxic and cardiotoxic processes. In this work we present data on the degradative oxidation of catecholamines of physiological importance: isoproterenol (IP), epinephrine (EP), norepinephrine (NEP), deoxyepinephrine (DEP) and dopamine (DA). The degradative oxidation of the catecholamines was followed by measurement of spectral changes and oxygen consumption by neutral aqueous solutions. The data show that Cu{sup 2+} strongly accelerated the rate of catecholamine oxidation, following the decreasing order; EP>DEP>IP>NEP>DA. The production of superoxide anion radical during catecholamine oxidation was very slow, even in the presence of Cu{sup 2+}. The ability of IP to induce damages on bovine serum albumin (BSA) was determined by measuring the formation of carbonyl-groups in the protein, detected by reduction with tritiated Na BH{sub 4}. The incubation of BSA with IP (50-500{mu}M), in the presence of 100{mu}M Cu{sup 2+} leaded to an increased and dose dependent {sup 3} H-incorporation by the oxidized protein. The production of oxidative damage by IP/Cu{sup 2+} was accompanied by marked BSA fragmentation, detected by SDS-polyacrylamide gel dependent (25-400{mu}M IP) des appearance of the original BSA band and appearance of smaller fragments spread in the gel, when incubation has been done in the presence of 100{mu}M Cu{sup 2+}. These results suggest that copper-catalysed oxidative degradation of proteins induced by catecholamines might be critically involved in the toxic action of these molecules

  4. Increased sensitivity of apolipoprotein E knockout mice to copper-induced oxidative injury to the liver.

    Science.gov (United States)

    Chen, Yuan; Li, Bin; Zhao, Ran-ran; Zhang, Hui-feng; Zhen, Chao; Guo, Li

    2015-04-10

    Apolipoprotein E (ApoE) genotypes are related to clinical presentations in patients with Wilson's disease, indicating that ApoE may play an important role in the disease. However, our understanding of the role of ApoE in Wilson's disease is limited. High copper concentration in Wilson's disease induces excessive generation of free oxygen radicals. Meanwhile, ApoE proteins possess antioxidant effects. We therefore determined whether copper-induced oxidative damage differ in the liver of wild-type and ApoE knockout (ApoE(-/-)) mice. Both wild-type and ApoE(-/-) mice were intragastrically administered with 0.2 mL of copper sulfate pentahydrate (200 mg/kg; a total dose of 4 mg/d) or the same volume of saline daily for 12 weeks, respectively. Copper and oxidative stress markers in the liver tissue and in the serum were assessed. Our results showed that, compared with the wild-type mice administered with copper, TBARS as a marker of lipid peroxidation, the expression of oxygenase-1 (HO-1), NAD(P)H dehydrogenase, and quinone 1 (NQO1) significantly increased in the ApoE(-/-) mice administered with copper, meanwhile superoxide dismutase (SOD) activity significantly decreased. Thus, it is concluded that ApoE may protect the liver from copper-induced oxidative damage in Wilson's disease.

  5. Copper ferrite nanoparticle-induced cytotoxicity and oxidative stress in human breast cancer MCF-7 cells.

    Science.gov (United States)

    Ahamed, Maqusood; Akhtar, Mohd Javed; Alhadlaq, Hisham A; Alshamsan, Aws

    2016-06-01

    Copper ferrite (CuFe2O4) nanoparticles (NPs) are important magnetic materials currently under research due to their applicability in nanomedicine. However, information concerning the biological interaction of copper ferrite NPs is largely lacking. In this study, we investigated the cellular response of copper ferrite NPs in human breast cancer (MCF-7) cells. Copper ferrite NPs were prepared by co-precipitation technique with the thermal effect. Prepared NPs were characterized by X-ray diffraction (XRD), field emission transmission electron microscopy (FETEM) and dynamic light scattering (DLS). Characterization data showed that copper ferrite NPs were crystalline, spherical with smooth surfaces and average diameter of 15nm. Biochemical studies showed that copper ferrite NPs induce cell viability reduction and membrane damage in MCF-7 cells and degree of induction was dose- and time-dependent. High SubG1 cell population during cell cycle progression and MMP loss with a concomitant up-regulation of caspase-3 and caspase-9 genes suggested that copper ferrite NP-induced cell death through mitochondrial pathway. Copper ferrite NP was also found to induce oxidative stress in MCF-7 cells as indicated by reactive oxygen species (ROS) generation and glutathione depletion. Cytotoxicity due to copper ferrite NPs exposure was effectively abrogated by N-acetyl-cysteine (ROS scavenger) suggesting that oxidative stress could be the plausible mechanism of copper ferrite NPs toxicity. Further studies are underway to explore the toxicity mechanisms of copper ferrite NPs in different types of human cells. This study warrants further generation of extensive biointeraction data before their application in nanomedicine.

  6. Negative lattice expansion from the superconductivity--antiferromagnetism crossover in ruthenium copper oxides.

    Science.gov (United States)

    McLaughlin, A C; Sher, F; Attfield, J P

    2005-08-11

    The mechanism of high-transition-temperature (high-T(c)) superconductivity in doped copper oxides is an enduring problem. Antiferromagnetism is established as the competing order, but the relationship between the two states in the intervening 'pseudogap' regime has become a central puzzle. The role of the crystal lattice, which is important in conventional superconductors, also remains unclear. Here we report an anomalous increase of the distance between copper oxide planes on cooling, which results in negative thermal volume expansion, for layered ruthenium copper oxides that have been doped to the boundary of antiferromagnetism and superconductivity. We propose that a crossover between these states is driven by spin ordering in the ruthenium oxide layers, revealing a novel mechanism for negative lattice expansion in solids. The differences in volume and lattice strain between the distinct superconducting and antiferromagnetic states can account for the phase segregation phenomena found extensively in low-doped copper oxides, and show that Cooper pair formation is coupled to the lattice. Unusually large variations of resistivity with magnetic field are found in these ruthenium copper oxides at low temperatures through coupling between the ordered Ru and Cu spins.

  7. Enhancement of leaching copper by electro-oxidation from metal powders of waste printed circuit board.

    Science.gov (United States)

    Ping, Zhu; ZeYun, Fan; Jie, Lin; Qiang, Liu; Guangren, Qian; Ming, Zhou

    2009-07-30

    Oxidation leaching copper from metal powders of waste printed circuit boards (PCBs) was conducted at room temperature in sulfuric acid solution. The result showed that the copper in metal powders was oxidized by Cu(2+) to form CuCl(2)(-) in the presence of chloride ion without electrochemical oxidation. Then, CuCl(2)(-) was oxidized into CuSO(4) by oxygen derived from the air insufflated into leaching solution. The leaching rate of copper reached 100%. The whole reaction took 5.5h because it was limited by the low solubility of the air in water. In the electro-oxidation conditions, the chloride ion was electro-oxidized into ClO(-), which oxidized CuCl(2)(-) into CuSO(4) and ClO(-) was reduced into Cl(-) itself again at the same time. Since Cl(-) was recycled in the solution not only as a complexing agent but also as an oxidant, which made the reaction speed up to 3.5h to reach 100% leaching rate. Leaching solution was concentrated to crystallize CuSO(4).5H(2)O, and crystal liquor was reused to leach copper from metal powders.

  8. Directing-group-assisted copper-catalyzed oxidative esterification of phenols with aldehydes.

    Science.gov (United States)

    Zheng, Yong; Song, Wei-Bin; Xuan, Li-Jiang

    2015-11-28

    A directing-group-assisted copper-catalyzed oxidative esterification of phenols with aldehydes using TBHP as an oxidant was described. This methodology which showed the advantages of base, ligand free, short routes and functional group tolerance could be used as an alternative protocol for the classical esterification reactions.

  9. Direct chemical vapour deposited grapheme synthesis on silicon oxide by controlled copper dewettting

    NARCIS (Netherlands)

    Beld, van den Wesley T.E.; Berg, van den Albert; Eijkel, Jan C.T.

    2015-01-01

    In this paper we present a novel method for direct uniform graphene synthesis onto silicon oxide in a controlled manner. On a grooved silicon oxide wafer is copper deposited under a slight angle and subsequently the substrate is treated by a typical graphene synthesis process. During this process di

  10. Selective leaching process for the recovery of copper and zinc oxide from copper-containing dust.

    Science.gov (United States)

    Wu, Jun-Yi; Chang, Fang-Chih; Wang, H Paul; Tsai, Ming-Jer; Ko, Chun-Han; Chen, Chih-Cheng

    2015-01-01

    The purpose of this study was to develop a resource recovery procedure for recovering copper and zinc from dust produced by copper smelting furnaces during the manufacturing of copper-alloy wires. The concentrations of copper in copper-containing dust do not meet the regulation standards defined by the Taiwan Environmental Protection Administration; therefore, such waste is classified as hazardous. In this study, the percentages of zinc and copper in the dust samples were approximately 38.4% and 2.6%, respectively. To reduce environmental damage and recover metal resources for industrial reuse, acid leaching was used to recover metals from these inorganic wastes. In the first stage, 2 N of sulphuric acid was used to leach the dust, with pH values controlled at 2.0-3.0, and a solid-to-liquid ratio of 1:10. The results indicated that zinc extraction efficiency was higher than 95%. A selective acid leaching process was then used to recover the copper content of the residue after filtration. In the second stage, an additional 1 N of sulphuric acid was added to the suspension in the selective leaching process, and the pH value was controlled at 1.5-2.0. The reagent sodium hydroxide (2 N) was used as leachate at a pH greater than 7. A zinc hydroxide compound formed during the process and was recovered after drying. The yields for zinc and copper were 86.9-93.5% and 97.0-98.9%, respectively.

  11. Significant performance enhancement of yttrium-doped barium cerate proton conductor as electrolyte for solid oxide fuel cells through a Pd ingress-egress approach

    Science.gov (United States)

    Liu, Yu; Ran, Ran; Li, Sidian; Jiao, Yong; Tade, Moses O.; Shao, Zongping

    2014-07-01

    Proton-conducting perovskite oxides are excellent electrolyte materials for SOFCs that may improve power density at reduced temperatures and increase fuel efficiency, thus encouraging the widespread implementation of this attractive technology. The main challenges in the application of these oxides in SOFCs are difficult sintering and insufficient conductivity in real cells. In this study, we propose a novel method to significantly enhance the performance of a yttrium-doped barium cerate proton conductor as an electrolyte for SOFCs through a Pd ingress-egress approach to the development of BaCe0.8Y0.1Pd0.1O3-δ (BCYP10). The capability of the Pd egress from the BCYP10 perovskite lattice is demonstrated by H2-TPR, XRD, EDX mapping of STEM and XPS. Significant improvement in the sinterability is observed after the introduction of Pd due to the increased ionic conductivity and the sintering aid effect of egressed Pd. The formation of a B-site cation defect structure after Pd egress and the consequent modification of perovskite grain boundaries with Pd nanoparticles leads to a proton conductivity of BCYP10 that is approximately 3 times higher than that of BCY under a reducing atmosphere. A single cell with a thin film BCYP10 electrolyte reaches a peak power density as high as 645 mA cm-2 at 700 °C.

  12. Green synthesis of colloidal copper oxide nanoparticles using Carica papaya and its application in photocatalytic dye degradation

    Science.gov (United States)

    Sankar, Renu; Manikandan, Perumal; Malarvizhi, Viswanathan; Fathima, Tajudeennasrin; Shivashangari, Kanchi Subramanian; Ravikumar, Vilwanathan

    2014-03-01

    Copper oxide (CuO) nanoparticles were synthesized by treating 5 mM cupric sulphate with Carica papaya leaves extract. The kinetics of the reaction was studied using UV-visible spectrophotometry. An intense surface Plasmon resonance between 250-300 nm in the UV-vis spectrum clearly reveals the formation of copper oxide nanoparticles. The results of scanning electron microscopy (SEM) and dynamic light scattering (DLS) exhibited that the green synthesized copper oxide nanoparticles are rod in shape and having a mean particle size of 140 nm, further negative zeta potential disclose its stability at -28.9 mV. The Fourier-transform infrared (FTIR) spectroscopy results examined the occurrence of bioactive functional groups required for the reduction of copper ions. X-ray diffraction (XRD) spectra confirmed the copper oxide nanoparticles crystalline nature. Furthermore, colloidal copper oxide nanoparticles effectively degrade the Coomassie brilliant blue R-250 dye beneath the sunlight.

  13. Green synthesis of colloidal copper oxide nanoparticles using Carica papaya and its application in photocatalytic dye degradation.

    Science.gov (United States)

    Sankar, Renu; Manikandan, Perumal; Malarvizhi, Viswanathan; Fathima, Tajudeennasrin; Shivashangari, Kanchi Subramanian; Ravikumar, Vilwanathan

    2014-01-01

    Copper oxide (CuO) nanoparticles were synthesized by treating 5 mM cupric sulphate with Carica papaya leaves extract. The kinetics of the reaction was studied using UV-visible spectrophotometry. An intense surface Plasmon resonance between 250-300 nm in the UV-vis spectrum clearly reveals the formation of copper oxide nanoparticles. The results of scanning electron microscopy (SEM) and dynamic light scattering (DLS) exhibited that the green synthesized copper oxide nanoparticles are rod in shape and having a mean particle size of 140 nm, further negative zeta potential disclose its stability at -28.9 mV. The Fourier-transform infrared (FTIR) spectroscopy results examined the occurrence of bioactive functional groups required for the reduction of copper ions. X-ray diffraction (XRD) spectra confirmed the copper oxide nanoparticles crystalline nature. Furthermore, colloidal copper oxide nanoparticles effectively degrade the Coomassie brilliant blue R-250 dye beneath the sunlight.

  14. Copper recovery and cyanide oxidation by electrowinning from a spent copper-cyanide electroplating electrolyte.

    Science.gov (United States)

    Dutra, A J B; Rocha, G P; Pombo, F R

    2008-04-01

    Copper-cyanide bleed streams arise from contaminated baths from industrial electroplating processes due to the buildup of impurities during continuous operation. These streams present an elevated concentration of carbonate, cyanide and copper, constituting a heavy hazard, which has to be treated for cyanide destruction and heavy metals removal, according to the local environmental laws. In the Brazilian Mint, bleed streams are treated with sodium hypochlorite, to destroy cyanide and precipitate copper hydroxide, a solid hazardous waste that has to be disposed properly in a landfill or treated for metal recovery. In this paper, a laboratory-scale electrolytic cell was developed to remove the copper from the bleed stream of the electroplating unit of the Brazilian Mint, permitting its reutilization in the plant and decreasing the amount of sludge to waste. Under favorable conditions copper recoveries around 99.9% were achieved, with an energy consumption of about 11 kWh/kg, after a 5-h electrolysis of a bath containing copper and total cyanide concentrations of 26 and 27 g/L, respectively. Additionally, a substantial reduction of the cyanide concentration was also achieved, decreasing the pollution load and final treatment costs.

  15. Size-selective synthesis of immobilized copper oxide nanoclusters on silica

    Energy Technology Data Exchange (ETDEWEB)

    Lomnicki, Slawo M., E-mail: slomni1@lsu.edu [Louisiana State University, Department of Chemistry, 232 Choppin Hall, Baton Rouge, LA 70803-1804 (United States); Wu, Hongyi; Osborne, Scott N.; Pruett, Jeff M.; McCarley, Robin L.; Poliakoff, Erwin; Dellinger, Barry [Louisiana State University, Department of Chemistry, 232 Choppin Hall, Baton Rouge, LA 70803-1804 (United States)

    2010-11-25

    We report a straightforward route for preparing bulk quantities of size-controlled and low size dispersity copper oxide nanoclusters on amorphous silica. Adsorption of the copper-dendrimer complex on the silica surface minimizes aggregation, which results in previously unachieved low size dispersity of the nanoclusters. Copper oxide nanoclusters with mean diameters of 1-5 nm with size dispersities of only 8-15% were prepared by calcination of silica impregnated with Cu(II)-poly(propylene imine) dendrimer complexes of varying stoichiometry. The size and size distribution of the copper oxide nanoparticles are tunably controlled by the ratio of the Cu(II) to the terminal primary amines in the copper-dendrimer complex, DAB-Am{sub n}-Cu(II){sub x}, the surface coverage of the DAB-Am{sub n}-Cu(II){sub x}, and the impregnation procedure. This method is anticipated to be useful in the preparation of other metal oxide nanoparticles, e.g., Ni and Fe, and with other oxide substrates.

  16. Size-selective synthesis of immobilized copper oxide nanoclusters on silica.

    Science.gov (United States)

    Lomnicki, Slawo M; Wu, Hongyi; Osborne, Scott N; Pruett, Jeff M; McCarley, Robin L; Poliakoff, Erwin; Dellinger, Barry

    2010-11-25

    We report a straightforward route for preparing bulk quantities of size-controlled and low size dispersity copper oxide nanoclusters on amorphous silica. Adsorption of the copper-dendrimer complex on the silica surface minimizes aggregation, which results in previously unachieved low size dispersity of the nanoclusters. Copper oxide nanoclusters with mean diameters of 1-5 nm with size dispersities of only 8-15% were prepared by calcination of silica impregnated with Cu(II)-poly(propylene imine) dendrimer complexes of varying stoichiometry. The size and size distribution of the copper oxide nanoparticles are tunably controlled by the ratio of the Cu(II) to the terminal primary amines in the copper-dendrimer complex, DAB-Am n -Cu(II) x , the surface coverage of the DAB-Am n -Cu(II) x , and the impregnation procedure. This method is anticipated to be useful in the preparation of other metal oxide nanoparticles, e.g., Ni and Fe, and with other oxide substrates.

  17. Link between spin fluctuations and electron pairing in copper oxide superconductors.

    Science.gov (United States)

    Jin, K; Butch, N P; Kirshenbaum, K; Paglione, J; Greene, R L

    2011-08-03

    Although it is generally accepted that superconductivity is unconventional in the high-transition-temperature copper oxides, the relative importance of phenomena such as spin and charge (stripe) order, superconductivity fluctuations, proximity to a Mott insulator, a pseudogap phase and quantum criticality are still a matter of debate. In electron-doped copper oxides, the absence of an anomalous pseudogap phase in the underdoped region of the phase diagram and weaker electron correlations suggest that Mott physics and other unidentified competing orders are less relevant and that antiferromagnetic spin fluctuations are the dominant feature. Here we report a study of magnetotransport in thin films of the electron-doped copper oxide La(2 - x)Ce(x)CuO(4). We show that a scattering rate that is linearly dependent on temperature--a key feature of the anomalous normal state properties of the copper oxides--is correlated with the electron pairing. We also show that an envelope of such scattering surrounds the superconducting phase, surviving to zero temperature when superconductivity is suppressed by magnetic fields. Comparison with similar behaviour found in organic superconductors strongly suggests that the linear dependence on temperature of the resistivity in the electron-doped copper oxides is caused by spin-fluctuation scattering.

  18. Direct palladium/copper oxidative cross-coupling of α-methylstyrene with acrylates

    Institute of Scientific and Technical Information of China (English)

    AL-MAKSOUD; Walid; DJAKOVITCH; Laurent; JAHJAH; Mohamad; PINEL; Catherine

    2010-01-01

    Fully palladium/copper catalytic oxidative cross-coupling of acrylates with α-methylstyrene was performed in a DMSO/AcOH(1:1) mixture at 60℃ in the air.This improves previous procedures which employed stoichiometric amounts of copper and oxygen.Thus various acrylates were effectively coupled to α-methylstyrene giving the expected compounds in moderate to good yields(44%-65%) as a mixture of E and Z isomers.

  19. A kinetic study of the copper-catalysed oxidative coupling of 2,6-dimethylphenol. The role of copper, base and phenol concentrations

    NARCIS (Netherlands)

    Baesjou, PJ; Driessen, WL; Challa, G; Reedijk, J

    1998-01-01

    The influence of varying concentrations and ratios of phenol, base and copper on the copper/N-methylimidazole catalysed oxidative coupling of 2,6-dimethylphenol (DMP) has been studied. The reaction obeys simple Michaelis-Menten kinetics with respect to the phenol. The amount of DPQ formed during the

  20. Concentrations of strontium, barium, cadmium, copper, zinc, manganese, chromium, antimony, selenium, and lead in the liver and kidneys of dogs according to age, gender, and the occurrence of chronic kidney disease.

    Science.gov (United States)

    Passlack, Nadine; Mainzer, Barbara; Lahrssen-Wiederholt, Monika; Schafft, Helmut; Palavinskas, Richard; Breithaupt, Angele; Zentek, Jürgen

    2015-01-01

    This study was conducted to measure the concentrations of strontium (Sr), barium (Ba), cadmium (Cd), copper (Cu), zinc (Zn), manganese (Mn), chromium (Cr), antimony (Sb), selenium (Se), and lead (Pb) in canine liver, renal cortex, and renal medulla, and the association of these concentrations with age, gender, and occurrence of chronic kidney disease (CKD). Tissues from 50 dogs were analyzed using inductively coupled plasma mass spectrometry. Cu, Zn, and Mn levels were highest in the liver followed by the renal cortex and renal medulla. The highest Sr, Cd, and Se concentrations were measured in the renal cortex while lower levels were found in the renal medulla and liver. Female dogs had higher tissue concentrations of Sr (liver and renal medulla), Cd (liver), Zn (liver and renal cortex), Cr (liver, renal cortex, and renal medulla), and Pb (liver) than male animals. Except for Mn and Sb, age-dependent variations were observed for all element concentrations in the canine tissues. Hepatic Cd and Cr concentrations were higher in dogs with CKD. In conclusion, the present results provide new knowledge about the storage of specific elements in canine liver and kidneys, and can be considered important reference data for diagnostic methods and further investigations.

  1. In vitro toxicological assessment of iron oxide, aluminium oxide and copper nanoparticles in prokaryotic and eukaryotic cell types.

    Science.gov (United States)

    Sadiq, Rakhshinda; Khan, Qaiser Mahmood; Mobeen, Ameena; Hashmat, Amer Jamal

    2015-04-01

    Metallic nanoparticles (NPs) have a variety of applications in different industries including pharmaceutical industry where these NPs are used mainly for image analysis and drug delivery. The increasing interest in nanotechnology is largely associated with undefined risks to the human health and to the environment. Therefore, in the present study cytotoxic and genotoxic effects of iron oxide, aluminium oxide and copper nanoparticles were evaluated using most commonly used assays i.e. Ames assay, in vitro cytotoxicity assay, micronucleus assay and comet assay. Cytotoxicity to bacterial cells was assessed in terms of colony forming units by using Escherichia coli (gram negative) and Bacillus subtilis (gram positive). Ames assay was carried out using two bacterial strains of Salmonella typhimurium TA98 and TA100. Genotoxicity of these NPs was evaluated following exposure to monkey kidney cell line, CHS-20. No cytotoxic and genotoxic effects were observed for iron oxide, and aluminium oxide NPs. Copper NPs were found mutagenic in TA98 and in TA100 and also found cytotoxic in dose dependent manner. Copper NPs induced significant (p Copper NPs also induced DNA strand breaks at 10 µg/mL and oxidative DNA damage at 5 and 10 µg/mL. We consider these findings very useful in evaluating the genotoxic potential of NPs especially because of their increasing applications in human health and environment with limited knowledge of their toxicity and genotoxicity.

  2. Novel Carbon Dioxide Microsensor Based on Tin Oxide Nanomaterial Doped With Copper Oxide

    Science.gov (United States)

    Xu, Jennifer C.; Hunter, Gary W.; Lukco, Dorothy; Liu, Chung-Chiun; Ward, Benjamin J.

    2008-01-01

    Carbon dioxide (CO2) is one of the major indicators of fire and therefore its measurement is very important for low-false-alarm fire detection and emissions monitoring. However, only a limited number of CO2 sensing materials exist due to the high chemical stability of CO2. In this work, a novel CO2 microsensor based on nanocrystalline tin oxide (SnO2) doped with copper oxide (CuO) has been successfully demonstrated. The CuO-SnO2 based CO2 microsensors are fabricated by means of microelectromechanical systems (MEMS) technology and sol-gel nanomaterial-synthesis processes. At a doping level of CuO: SnO2 = 1:8 (molar ratio), the resistance of the sensor has a linear response to CO2 concentrations for the range of 1 to 4 percent CO2 in air at 450 C. This approach has demonstrated the use of SnO2, typically used for the detection of reducing gases, in the detection of an oxidizing gas.

  3. Catalytic wet oxidation of thiocyanate with homogeneous copper(II) sulphate catalyst.

    Science.gov (United States)

    Collado, Sergio; Laca, Adriana; Díaz, Mario

    2010-05-15

    The wet oxidation of thiocyanate has been investigated in a semi-batch reactor at temperatures between 423 and 473 K and pressures between 6.1 x 10(3) and 1.0 x 10(4)kPa in the presence of copper(II) sulphate as catalyst. The effects of copper concentration, initial thiocyanate concentration, pressure and temperature on the reaction rate were analyzed and the main products of reaction were identified. A kinetic model for the Cu-catalyzed reaction is here proposed, including temperature, oxygen concentration, and the reduction of Cu(2+) to Cu(+) that gives an accurate prediction of the oxidation process under the assayed conditions. A mechanistic model based on the formation of a transition complex between a copper cation and two thiocyanate anions has been proposed for the catalytic wet oxidation.

  4. Catalytic wet oxidation of thiocyanate with homogeneous copper(II) sulphate catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Collado, Sergio; Laca, Adriana [Department of Chemical Engineering and Environmental Technology, University of Oviedo, c/ Julian Claveria s/n, E-33071, Oviedo (Spain); Diaz, Mario, E-mail: mariodiaz@uniovi.es [Department of Chemical Engineering and Environmental Technology, University of Oviedo, c/ Julian Claveria s/n, E-33071, Oviedo (Spain)

    2010-05-15

    The wet oxidation of thiocyanate has been investigated in a semi-batch reactor at temperatures between 423 and 473 K and pressures between 6.1 x 10{sup 3} and 1.0 x 10{sup 4} kPa in the presence of copper(II) sulphate as catalyst. The effects of copper concentration, initial thiocyanate concentration, pressure and temperature on the reaction rate were analyzed and the main products of reaction were identified. A kinetic model for the Cu-catalyzed reaction is here proposed, including temperature, oxygen concentration, and the reduction of Cu{sup 2+} to Cu{sup +} that gives an accurate prediction of the oxidation process under the assayed conditions. A mechanistic model based on the formation of a transition complex between a copper cation and two thiocyanate anions has been proposed for the catalytic wet oxidation.

  5. Effect of copper loading on copper-ceria catalysts performance in CO selective oxidation for fuel cell applications

    Energy Technology Data Exchange (ETDEWEB)

    Ayastuy, J.L.; Gurbani, A.; Gonzalez-Marcos, M.P.; Gutierrez-Ortiz, M.A. [Departamento de Ingenieria Quimica, Facultad de Ciencia y Tecnologia, Universidad del Pais Vasco/EHU, E-48080 Bilbao (Spain); Unidad Asociada ' ' Tecnologias Quimicas para la Sostenibilidad Ambiental' ' , CSIC-UPV/EHU (Spain)

    2010-02-15

    Copper-ceria catalysts with three different Cu loadings (1, 7 and 15 wt%) were prepared by incipient wet impregnation, dried at 120 C and calcined in air at 500 C. The as-prepared catalysts were characterized by XRD, BET, Diffuse Reflectance Spectroscopy (DRS-UV-visible), Raman spectroscopy, CO and H{sub 2}-TPR, CO-TPR, CO-TPD and Oxygen Storage Capacity (OSC) measurements (with CO and O{sub 2} concentration step-changes). The results indicated a good dispersion of copper for catalysts with 1 and 7 wt% Cu; however, bulk CuO was present for catalyst with 15 wt% Cu loading. Catalyst with 7 wt% Cu was observed to have very high capacity to release lattice oxygen to oxidize CO at low temperature. Activity results for CO oxidation in the absence and in the presence of 60% H{sub 2}, demonstrated a very similar performance for catalysts with 7 and 15 wt% Cu (both with T{sub 100} = 112 C), and much better than that of catalyst loaded with 1 wt% Cu. Catalyst with 7 wt% of copper shows very high activity (100% in a wide temperature window) and selectivity (higher than 85%), which makes an attractive for its use in purification of hydrogen for fuel cell applications. The presence of a mixture of CO{sub 2} and H{sub 2}O inhibited catalyst activity, with CuO/CeO{sub 2} catalyst with 7 wt% Cu exhibiting the best performance in the overall reaction temperature range. This could be attributed to the presence of highly disperse copper, only part of it in deep interaction with ceria. The effect of O{sub 2}/CO ratio ({lambda}) and the potential reversibility of the inhibitory effect of CO{sub 2} and H{sub 2}O were also investigated. (author)

  6. Oxidation of aromatic alcohols on zeolite-encapsulated copper amino acid complexes

    Energy Technology Data Exchange (ETDEWEB)

    Ernst, S.; Teixeira Florencio, J.M. [Kaiserslautern Univ. (Germany). Dept. of Chemistry, Chemical Technology

    1998-12-31

    Copper complexes of the amino acids histidine, arginine and lysine have been introduced into the supercages of zeolite Y and, for the first time, into the large intracrystalline cavities of zeolites EMT and MCM-22. The resulting host/guest compounds are characterized by X-ray powder diffraction, UV/VIS-spectroscopy in the diffuse reflectance mode and by catalytic tests in the liquid-phase oxidation of aromatic alcohols (viz. benzyl alcohol, 2- and 3-methylbenzyl alcohol and 2,5-dimethylbenzyl alcohol) with tertiary-butylhydroperoxide as oxidant. It was observed that intracrystalline copper-amino acid complexes possess remarkable catalytic activity, yielding the corresponding aromatic aldehydes and acids. (orig.)

  7. Photocurrent enhancement of d.c. sputtered copper oxide thin films

    Indian Academy of Sciences (India)

    P Samarasekara; M A K Mallika Arachchi; A S Abeydeera; C A N Fernando; A S Disanayake; R M G Rajapakse

    2005-08-01

    Copper oxide (CuO) thin films with photocurrent as high as 25 Α/cm2 were deposited on conductive glass substrates using d.c. reactive sputtering. This was the highest reported photocurrent for sputtered -type copper oxide measured in the electrolyte KI. The photocurrent drastically increased up to 25 Α/cm2 as the sputtering pressure and the substrate temperature were increased up to 8.5 mbar and 192°C, respectively. All the synthesized films contained single phase of CuO in this range of pressure and substrate temperature. Variation of the photocurrent, photovoltage, structure and absorbance with deposition conditions were studied in detail.

  8. A novel anti-influenza copper oxide containing respiratory face mask.

    Directory of Open Access Journals (Sweden)

    Gadi Borkow

    Full Text Available BACKGROUND: Protective respiratory face masks protect the nose and mouth of the wearer from vapor drops carrying viruses or other infectious pathogens. However, incorrect use and disposal may actually increase the risk of pathogen transmission, rather than reduce it, especially when masks are used by non-professionals such as the lay public. Copper oxide displays potent antiviral properties. A platform technology has been developed that permanently introduces copper oxide into polymeric materials, conferring them with potent biocidal properties. METHODOLOGY/PRINCIPAL FINDINGS: We demonstrate that impregnation of copper oxide into respiratory protective face masks endows them with potent biocidal properties in addition to their inherent filtration properties. Both control and copper oxide impregnated masks filtered above 99.85% of aerosolized viruses when challenged with 5.66+/-0.51 and 6.17+/-0.37 log(10TCID(50 of human influenza A virus (H1N1 and avian influenza virus (H9N2, respectively, under simulated breathing conditions (28.3 L/min. Importantly, no infectious human influenza A viral titers were recovered from the copper oxide containing masks within 30 minutes (< or = 0.88 log(10TCID(50, while 4.67+/-1.35 log(10TCID(50 were recovered from the control masks. Similarly, the infectious avian influenza titers recovered from the copper oxide containing masks were < or = 0.97+/-0.01 log(10TCID(50 and from the control masks 5.03+/-0.54 log(10TCID(50. The copper oxide containing masks successfully passed Bacterial Filtration Efficacy, Differential Pressure, Latex Particle Challenge, and Resistance to Penetration by Synthetic Blood tests designed to test the filtration properties of face masks in accordance with the European EN 14683:2005 and NIOSH N95 standards. CONCLUSIONS/SIGNIFICANCE: Impregnation of copper oxide into respiratory protective face masks endows them with potent anti-influenza biocidal properties without altering their physical

  9. Fabrication and characterization of copper oxide (CuO)–gold (Au)–titania (TiO{sub 2}) and copper oxide (CuO)–gold (Au)–indium tin oxide (ITO) nanowire heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Chopra, Nitin, E-mail: nchopra@eng.ua.edu [Metallurgical and Materials Engineering, Center for Materials for Information Technology (MINT), Box 870202, The University of Alabama, Tuscaloosa, AL 35487 (United States); Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL 35487 (United States); Shi, Wenwu [Metallurgical and Materials Engineering, Center for Materials for Information Technology (MINT), Box 870202, The University of Alabama, Tuscaloosa, AL 35487 (United States); Lattner, Andrew [NSF-REH, Northridge High School, Tuscaloosa, AL 35487 (United States)

    2014-10-15

    Nanoscale heterostructures composed of standing copper oxide nanowires decorated with Au nanoparticles and shells of titania and indium tin oxide were fabricated. The fabrication process involved surfactant-free and wet-chemical nucleation of gold nanoparticles on copper oxide nanowires followed by a line-of-sight sputtering of titania or indium tin oxide. The heterostructures were characterized using high resolution electron microscopy, diffraction, and energy dispersive spectroscopy. The interfaces, morphologies, crystallinity, phases, and chemical compositions were analyzed. The process of direct nucleation of gold nanoparticles on copper oxide nanoparticles resulted in low energy interface with aligned lattice for both the components. Coatings of polycrystalline titania or amorphous indium tin oxide were deposited on standing copper oxide nanowire–gold nanoparticle heterostructures. Self-shadowing effect due to standing nanowire heterostructures was observed for line-of-sight sputter deposition of titania or indium tin oxide coatings. Finally, the heterostructures were studied using Raman spectroscopy and ultraviolet–visible spectroscopy, including band gap energy analysis. Tailing in the band gap energy at longer wavelengths (or lower energies) was observed for the nanowire heterostructures. - Highlights: • Heterostructures comprised of CuO nanowires coated with Au nanoparticles. • Au nanoparticles exhibited nearly flat and low energy interface with nanowire. • Heterostructures were further sputter-coated with oxide shell of TiO{sub 2} or ITO. • The process resulted in coating of polycrystalline TiO{sub 2} and amorphous ITO shell.

  10. Barium periostitis: an intraoral complication following barium swallow.

    Science.gov (United States)

    Stanton, David C; Seeger, Douglas; Robinson, Brian T

    2007-05-01

    Barium is used with great frequency for various gastrointestinal radiographic studies. Complications arising from the use of barium are uncommon and can range from peritonitis, pneumonitis, vascular intravasation, allergic reactions, and even "barium appendicitis." We report a case of an unusual complication, periostitis, from the use of barium in a 46-year-old male.

  11. The effect of copper deficiency on fetal growth and liver anti-oxidant capacity in the Cohen diabetic rat model

    Energy Technology Data Exchange (ETDEWEB)

    Ergaz, Zivanit, E-mail: zivanit@hadassah.org.il [Hebrew University Hadassah Medical School, Jerusalem (Israel); Shoshani-Dror, Dana [Hebrew University Hadassah Medical School, Jerusalem (Israel); Guillemin, Claire [Department of Pharmacology and Therapeutics, McGill University, Montreal (Canada); Neeman-azulay, Meytal; Fudim, Liza [Hebrew University Hadassah Medical School, Jerusalem (Israel); Weksler-Zangen, Sarah [Diabetes Research Unit, Hebrew University Hadassah Medical School and Hospital, Jerusalem (Israel); Stodgell, Christopher J.; Miller, Richard K. [Department of Obstetrics and Gynecology, University of Rochester, Rochester, MN (United States); Ornoy, Asher [Hebrew University Hadassah Medical School, Jerusalem (Israel)

    2012-12-01

    High sucrose low copper diet induces fetal growth restriction in the three strains of the Cohen diabetic rats: an inbred copper deficient resistant (CDr), an inbred copper deficient sensitive (CDs that become diabetic on high sucrose low copper diet -HSD) and an outbred Wistar derived Sabra rats. Although those growth restricted fetuses also exhibit increased oxidative stress, antioxidants do not restore normal growth. In the present study, we evaluated the role of copper deficiency in the HSD induced fetal growth restriction by adding to the drinking water of the rats 1 ppm or 2 ppm of copper throughout their pregnancy. Fetal and placental growth in correlation with fetal liver copper content and anti-oxidant capacity was evaluated on day 21 of pregnancy. HSD compared to regular chow induced fetal growth restriction, which was most significant in the Cohen diabetic sensitive animals. The addition of 1 ppm and 2 ppm copper to the drinking water normalized fetal growth in a dose dependent manner and reduced the degree of hyperglycemia in the diabetes sensitive rats. The CDs fetuses responded to the HSD with lower catalase like activity, and less reduced superoxide dismutase levels compared to the Sabra strain, and had high malondialdehyde levels even when fed regular chow. Immunostaining was higher for nitrotyrosine among the CDr and higher for hypoxia factor 1 α among the CDs. We conclude that in our model of dietary-induced fetal growth restriction, copper deficiency plays a major etiologic role in the decrease of fetal growth and anti-oxidant capacity. -- Highlights: ► High sucrose low copper diet restricted fetal growth in the Cohen diabetic rat model ► Maternal copper blood levels directly correlated with fetal liver copper content ► Copper supplementation decreased embryonic resorption in the inbred strains ► Copper supplementation reduced hyperglycemia in the sucrose sensitive inbred strain ► Copper supplementation alleviated growth restriction and

  12. Electro-magnetic properties and engineering applications of single-domain high temperature superconductor yttrium barium copper oxide

    Science.gov (United States)

    Qu, Dehui

    High temperature superconductors (HTS) exhibit a commonly known Meissner effect, which can cause a unusually strong magnetic repulsion. Using this effect, magnetic bearings have been constructed with 1000 times less friction than that of conventional bearings. The commercialization of the flywheel energy storage device (FESD) could mean cost-savings for the electric power industry. For instance, using a flywheel device, the energy can be generated most efficiently at a steady rate, and meet the high demand in peak daytime hours. Since the magnetic levitation using HTS involves very little friction, only about 0.1 percent of stored energy is lost per hour making electricity consumption most economic. As FESD is to be commercialized in the future, need for more expensive fossil fuel generating plants would be reduced or eliminated. In magnetic levitation using an anisotropic HTS such as YBa2Cu 3Ox, it has been reported that the levitation force is determined by sample geometry and flux pinning strength. Previous studies on critical current density and flux creep have indicated that crystal orientation should have a significant effect on levitation force due to superconducting anisotropy. The underline mechanisms governing the levitation force associated with superconducting anisotropy have not, however, been identified. Finding the crystal orientation dependence of the levitation force is not only of great interest to fundamental studies, but also important for industrial applications. For instance, the levitation force has been found to be one of the key parameters influencing the energy loss in flywheel energy storage. Enhancement of the levitation force has been the main goal in HTS materials development for magnetic bearings. The study of the relationship between levitation force and various materials parameters including crystal orientation, flux pinning strength, and geometry provide valuable information in further optimizing the materials performance in industrial applications. In this dissertation, we report levitation force values of single-domain samples of various orientations. The samples are sectioned from one large single-domain material processed using the seeded melt growth (SMG) method. We also discuss the possible physical mechanism responsible for the levitation behavior observed. (Abstract shortened by UMI.)

  13. The low magnetic field properties of superconducting bulk yttrium barium copper oxide - Sintered versus partially melted material

    Science.gov (United States)

    Hein, R. A.; Hojaji, H.; Barkatt, A.; Shafii, H.; Michael, K. A.; Thorpe, A. N.; Ware, M. F.; Alterescu, S.

    1989-01-01

    A comparison of the low magnetic field properties of sintered (990 C) and partially melted samples (1050 C) has been performed. Changes in the microstructure produced by recrystallization from the melt result in a significant increase in flux pinning at 77 K. Low-frequency (10-100 Hz), low-ac magnetic-field (0.01-9.0 Oe) ac susceptibility data show that gross changes in the loss component accompany the observed changes in microstructure. The effects of applied dc magnetic fields (10-220 Oe) on the ac responses of these microstructures have also been probed.

  14. Synthesis and characterization of Eichhornia-mediated copper oxide nanoparticles and assessing their antifungal activity against plant pathogens

    Indian Academy of Sciences (India)

    P VANATHI; P RAJIV; RAJESHWARI SIVARAJ

    2016-09-01

    In this paper, we report the biosynthesis and characterization of copper oxide nanoparticles from an aquatic noxious weed, Eichhornia crassipes by green chemistry approach. The aim of this work is to synthesize copper oxide nanoparticles by simple, cost-effective and ecofriendly method as an alternative to other available techniques. The synthesized copper oxide nanoparticles were characterized by UV–visible spectroscopy, Fourier transform infrared spectroscopy (FTIR), Field emission scanning electron microscopy (FESEM) and Energy dispersive X-ray spectroscopy (EDX) analyses. The synthesized particles were highly stable, spherical in shape with an average diameter of $28\\pm 4$ nm. The synthesized nanoparticles were then explored to antifungal activity against plant pathogens. Highest zone of inhibition were observed in 100 $\\mu$g ml$^{−1}$ of Eichhornia-mediated copper oxide nanoparticle against Fusarium culmorum and Aspergillus niger. This Eichhornia-mediated copper oxide nanoparticles wereproved to be good antifungal agents against plant fungal pathogens.

  15. Graphene oxide alleviates the ecotoxicity of copper on the freshwater microalga Scenedesmus obliquus.

    Science.gov (United States)

    Hu, Changwei; Hu, Naitao; Li, Xiuling; Zhao, Yongjun

    2016-10-01

    The extensive industrial application of graphene oxide (GO), has increased its exposure risk to various aquatic organisms and its potential to affect the toxicity of other environmental pollutants. In this study, we investigated the combined toxicity of GO and copper on the freshwater microalga Scenedesmus obliquus, using the MIXTOX model. The effects of low concentration (1mg/L) exposure to GO were investigated with environmentally relevant concentrations of copper by using a 12-d subacute toxicity test, with pre- and post-GO treatment. Results showed that there were significant antagonistic effects between GO and copper on S. obliquus, and GO was found to reduce ecotoxicity of copper even at low and environmentally relevant concentrations (1mg/L).

  16. Elevated copper and oxidative stress in cancer cells as a target for cancer treatment.

    Science.gov (United States)

    Gupte, Anshul; Mumper, Russell J

    2009-02-01

    As we gain a better understanding of the factors affecting cancer etiology, we can design improved treatment strategies. Over the past three to four decades, there have been numerous successful efforts in recognizing important cellular proteins essential in cancer growth and therefore these proteins have been targeted for cancer treatment. However, studies have shown that targeting one or two proteins in the complex cancer cascade may not be sufficient in controlling and/or inhibiting cancer growth. Therefore, there is a need to examine features which are potentially involved in multiple facets of cancer development. In this review we discuss the targeting of the elevated copper (both in serum and tumor) and oxidative stress levels in cancer with the aid of a copper chelator d-penicillamine (d-pen) for potential cancer treatment. Numerous studies in the literature have reported that both the serum and tumor copper levels are elevated in a variety of malignancies, including both solid tumor and blood cancer. Further, the elevated copper levels have been shown to be directly correlated to cancer progression. Enhanced levels of intrinsic oxidative stress has been shown in variety of tumors, possibly due to the combination of factors such as elevated active metabolism, mitochondrial mutation, cytokines, and inflammation. The cancer cells under sustained ROS stress tend to heavily utilize adaptation mechanisms and may exhaust cellular ROS-buffering capacity. Therefore, the elevated copper levels and increased oxidative stress in cancer cells provide for a prospect of selective cancer treatment.

  17. Copper-cerium oxides supported on carbon nanomaterial for preferential oxidation of carbon monoxide

    Institute of Scientific and Technical Information of China (English)

    高美怡; 江楠; 赵宇宏; 徐长进; 苏海全; 曾尚红

    2016-01-01

    The CuxO-CeO2/Fe@CNSs, CuxO-CeO2/MWCNTs-Co and CuxO-CeO2/MWCNTs-Ni catalysts were prepared by the im-pregnation method and characterized by transmission electron microscopy, scanning electron microscopy, X-ray powder diffrac-tion, H2-temperature programmed reduction and N2 adsorption-desorption techniques. It was found that the Fe nanoparticles were encapsulated into the multi-layered carbon nanospheres (CNSs). However, the multi-wall carbon nanotubes (MWCNTS) were generated on the Co/Al2O3 and Ni/Al2O3 precursor. The addition of carbon nanomaterial as supports could improve structural properties and low-temperature activity of the CuO-CeO2 catalyst, and save the used amount of metal catalysts in the temperature range with high selectivity for CO oxidation. The copper-cerium oxides supported on carbon nanomaterial had good resistence to H2O and CO2.

  18. Effects of copper-oxide nanoparticles, dissolved copper and ultraviolet radiation on copper bioaccumulation, photosynthesis and oxidative stress in the aquatic macrophyte Elodea nuttallii.

    Science.gov (United States)

    Regier, Nicole; Cosio, Claudia; von Moos, Nadia; Slaveykova, Vera I

    2015-06-01

    In this study, the uptake and sub-toxic effects of CuO nanoparticles (CuO-NPs), dissolved Cu(II) alone or in combination with UV radiation on the aquatic macrophyte Elodea nuttallii were studied. Emphasis was on Cu accumulation, growth, photosynthesis and the oxidative stress related enzymes peroxidase (POD) and superoxide dismutase (SOD). The results showed stronger Cu accumulation in plants exposed to 10 mg L(-1) CuO-NPs, corresponding to 1.4-2 mg L(-1) dissolved Cu(II), than to 256 μg L(-1) Cu(II). However, the ratio between the accumulated Cu and dissolved Cu in CuO treatments was lower than in Cu(II) treatments. Additional UV exposure increased accumulation in both treatments, with the effect being stronger for Cu accumulation from CuO-NPs than for dissolved Cu(II). Photosynthetic capacity was strongly reduced by UV treatment, whereas remained unaffected by Cu(II) or CuO-NP treatments. Similarly, the increase of SOD activity was more pronounced in the UV treatments. On the other hand, POD activity enhancement was strongest in the plants exposed to CuO-NPs for 24 h. Expression of the copper transporter COPT1 as revealed by RT-qPCR was inhibited by Cu(II) and CuO-NP treatment, limiting the uptake of excess Cu into the cells. Overall, the combined exposure of E. nuttallii to UV radiation with CuO-NPs or Cu(II) has a higher impact than exposure to CuO-NPs or Cu(II) alone. The results imply that heavy pollution of natural water with CuO-NPs or dissolved Cu might have stronger effects in combination with natural UV irradiation on organisms in situ.

  19. Examining mechanism of toxicity of copper oxide nanoparticles to Saccharomyces cerevisiae and Caenorhabditis elegans

    Science.gov (United States)

    Mashock, Michael J.

    Copper oxide nanoparticles (CuO NPs) are an up and coming technology increasingly being used in industrial and consumer applications and thus may pose risk to humans and the environment. In the present study, the toxic effects of CuO NPs were studied with two model organisms Saccharomyces cerevisiae and Caenorhabditis elegans. The role of released Cu ions during dissolution of CuO NPs in growth media were studied with freshly suspended, aged NPs, and the released Cu 2+ fraction. Exposures to the different Cu treatments showed significant inhibition of S. cerevisiae cellular metabolic activity. Inhibition from the NPs was inversely proportional to size and was not fully explained by the released Cu ions. S. cerevisiae cultures grown under respiring conditions demonstrated greater metabolic sensitivity when exposed to CuO NPs compared to cultures undergoing fermentation. The cellular response to both CuO NPs and released Cu ions on gene expression was analyzed via microarray analysis after an acute exposure. It was observed that both copper exposures resulted in an increase in carbohydrate storage, a decrease in protein production, protein misfolding, increased membrane permeability, and cell cycle arrest. Cells exposed to NPs up-regulated genes related to oxidative phosphorylation but also may be inducing cell cycle arrest by a different mechanism than that observed with released Cu ions. The effect of CuO NPs on C. elegans was examined by using several toxicological endpoints. The CuO NPs displayed a more inhibitory effect, compared to copper sulfate, on nematode reproduction, feeding, and development. We investigated the effects of copper oxide nanoparticles and copper sulfate on neuronal health, a known tissue vulnerable to heavy metal toxicity. In transgenic C. eleganswith neurons expressing a green fluorescent protein reporter, neuronal degeneration was observed in up to 10% of the population after copper oxide nanoparticle exposure. Additionally, nematode

  20. Cellular membrane accommodation of copper-induced oxidative conditions in the coral Seriatopora caliendrum

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Chuan-Ho, E-mail: chtang@nmmba.gov.tw [Institute of Marine Biodiversity and Evolutionary Biology, National Dong Hwa University, Pingtung, Taiwan, ROC (China); National Museum of Marine Biology and Aquarium, Pingtung, Taiwan, ROC (China); Lin, Ching-Yu [Institute of Environmental Health, National Taiwan University, Taipei City, Taiwan, ROC (China); Lee, Shu-Hui [Center of General Education, National Kaohsiung Marine University, Kaohsiung, Taiwan, ROC (China); Wang, Wei-Hsien [National Museum of Marine Biology and Aquarium, Pingtung, Taiwan, ROC (China); Department of Marine Biotechnology and Resources and Asia-Pacific Ocean Research Center, National Sun Yat-sen University, Kaohsiung, Taiwan, ROC (China)

    2014-03-01

    Highlights: • Coral cells alter membrane lipid to accommodate copper-induce oxidative conditions • Coral membrane repair occur due to lipid alterations • Zooxanthellae release results from membrane repair by symbiosome fusion • Copper-induced lipid alterations perturb membrane-related functions in coral cells • Copper chronic effect on coral fitness are related to long-term membrane perturbation - Abstract: Oxidative stress has been associated with copper-induced toxicity in scleractinian corals. To gain insight into the accommodation of the cellular membrane to oxidative conditions, a pocilloporid coral, Seriatopora caliendrum, was exposed to copper at distinct, environmentally relevant dose for various lengths of time. Glycerophosphocholine profiling of the response of the coral to copper exposure was characterized using a validated method. The results indicate that coral lipid metabolism is programmed to induce membrane alterations in response to the cellular deterioration that occurs during the copper exposure period. Decreasing lyso-phosphatidylcholines and exchanging polyunsaturated phosphatidylcholines for polyunsaturated plasmanylcholines were the initial actions taken to prevent membrane permeabilization. To relax/resist the resulting membrane strain caused by cell/organelle swelling, the coral cells inversely exchanged polyunsaturated plasmanylcholines for polyunsaturated phosphatidylcholines and further increased the levels of monounsaturated glycerophosphocholines. At the same time, the levels of saturated phosphatidylcholines were also increased to increase membrane rigidity and protect against oxidative attack. Interestingly, such alterations in lipid metabolism were also required for membrane fusion to repair the deteriorated membranes by repopulating them with proximal lipid reservoirs, similar to symbiosome membranes. Additionally, increasing saturated and monounsaturated plasmanylcholines and inhibiting the suppression of saturated lyso

  1. An easily sintered, chemically stable, barium zirconate-based proton conductor for high-performance proton-conducting solid oxide fuel cells

    KAUST Repository

    Sun, Wenping

    2014-07-25

    Yttrium and indium co-doped barium zirconate is investigated to develop a chemically stable and sintering active proton conductor for solid oxide fuel cells (SOFCs). BaZr0.8Y0.2-xInxO3- δ possesses a pure cubic perovskite structure. The sintering activity of BaZr0.8Y0.2-xInxO3- δ increases significantly with In concentration. BaZr0.8Y0.15In0.05O3- δ (BZYI5) exhibits the highest total electrical conductivity among the sintered oxides. BZYI5 also retains high chemical stability against CO2, vapor, and reduction of H2. The good sintering activity, high conductivity, and chemical stability of BZYI5 facilitate the fabrication of durable SOFCs based on a highly conductive BZYI5 electrolyte film by cost-effective ceramic processes. Fully dense BZYI5 electrolyte film is successfully prepared on the anode substrate by a facile drop-coating technique followed by co-firing at 1400 °C for 5 h in air. The BZYI5 film exhibits one of the highest conductivity among the BaZrO3-based electrolyte films with various sintering aids. BZYI5-based single cells output very encouraging and by far the highest peak power density for BaZrO3-based proton-conducting SOFCs, reaching as high as 379 mW cm-2 at 700 °C. The results demonstrate that Y and In co-doping is an effective strategy for exploring sintering active and chemically stable BaZrO3-based proton conductors for high performance proton-conducting SOFCs. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Enhanced antibacterial activity of copper/copper oxide nanowires prepared by pulsed laser ablation in water medium

    Science.gov (United States)

    Swarnkar, R. K.; Pandey, J. K.; Soumya, K. K.; Dwivedi, P.; Sundaram, S.; Prasad, Sanjay; Gopal, R.

    2016-07-01

    Copper/copper oxide nanowires (NWs) are well known for its antibacterial activity against various pathogens. In the present study, we have shown the enhanced antibacterial activity of the NWs against gram-negative bacterial strains ( Escherichia coli, Pseudomonas aeruginosa and Salmonella typhi) and gram-positive bacterial strains ( Bacillus subtilis and Staphylococcus aureus). The increase in the activity is because of the shape and size of the colloidal NWs which were prepared at room temperature in a one-step process by pulsed laser ablation of copper metal target. The purity, shape and size of the colloidal NWs were well characterized by UV-visible absorption spectroscopy and transmission electron microscopy (TEM). The NWs were of diameters in the range of 15-30 nm and lengths ranging from 200 to 600 nm. The dose-dependent antibacterial activity of these NWs was found to be more effective against gram-negative bacteria compared to gram-positive bacteria. As gram-negative bacteria have thinner layer of cell wall made up of peptidoglycan possibly which makes them more susceptible to Cu/Cu2O NWs, Cu/Cu2O NWs can be a potent candidate to be used as bactericidal or as growth inhibitor.

  3. Low-temperature atomic layer deposition of copper(II) oxide thin films

    Energy Technology Data Exchange (ETDEWEB)

    Iivonen, Tomi, E-mail: tomi.iivonen@helsinki.fi; Hämäläinen, Jani; Mattinen, Miika; Popov, Georgi; Leskelä, Markku [Laboratory of Inorganic Chemistry, Department of Chemistry, University of Helsinki, P.O. Box 55, FI-00014 Helsinki (Finland); Marchand, Benoît; Mizohata, Kenichiro [Division of Materials Physics, Department of Physics, University of Helsinki, P.O. Box 43, FI-00014 Helsinki (Finland); Kim, Jiyeon; Fischer, Roland A. [Chair of Inorganic Chemistry II, Ruhr-University Bochum, Universitätsstrasse 150, 44780 Bochum (Germany)

    2016-01-15

    Copper(II) oxide thin films were grown by atomic layer deposition (ALD) using bis-(dimethylamino-2-propoxide)copper [Cu(dmap){sub 2}] and ozone in a temperature window of 80–140 °C. A thorough characterization of the films was performed using x-ray diffraction, x-ray reflectivity, UV‐Vis spectrophotometry, atomic force microscopy, field emission scanning electron microscopy, x-ray photoelectron spectroscopy, and time-of-flight elastic recoil detection analysis techniques. The process was found to produce polycrystalline copper(II) oxide films with a growth rate of 0.2–0.3 Å per cycle. Impurity content in the films was relatively small for a low temperature ALD process.

  4. The mitochondrial permeability transition, and oxidative and nitrosative stress in the mechanism of copper toxicity in cultured neurons and astrocytes.

    Science.gov (United States)

    Reddy, Pichili V B; Rao, Kakulavarapu V Rama; Norenberg, Michael D

    2008-08-01

    Copper is an essential element and an integral component of various enzymes. However, excess copper is neurotoxic and has been implicated in the pathogenesis of Wilson's disease, Alzheimer's disease, prion conditions, and other disorders. Although mechanisms of copper neurotoxicity are not fully understood, copper is known to cause oxidative stress and mitochondrial dysfunction. As oxidative stress is an important factor in the induction of the mitochondrial permeability transition (mPT), we determined whether mPT plays a role in copper-induced neural cell injury. Cultured astrocytes and neurons were treated with 20 microM copper and mPT was measured by changes in the cyclosporin A (CsA)-sensitive inner mitochondrial membrane potential (Delta Psi m), employing the potentiometric dye TMRE. In astrocytes, copper caused a 36% decrease in the Delta Psi m at 12 h, which decreased further to 48% by 24 h and remained at that level for at least 72 h. Cobalt quenching of calcein fluorescence as a measure of mPT similarly displayed a 45% decrease at 24 h. Pretreatment with antioxidants significantly blocked the copper-induced mPT by 48-75%. Copper (24 h) also caused a 30% reduction in ATP in astrocytes, which was completely blocked by CsA. Copper caused death (42%) in astrocytes by 48 h, which was reduced by antioxidants (35-60%) and CsA (41%). In contrast to astrocytes, copper did not induce mPT in neurons. Instead, it caused early and extensive death with a concomitant reduction (63%) in ATP by 14 h. Neuronal death was prevented by antioxidants and nitric oxide synthase inhibitors but not by CsA. Copper increased protein tyrosine nitration in both astrocytes and neurons. These studies indicate that mPT, and oxidative and nitrosative stress represent major factors in copper-induced toxicity in astrocytes, whereas oxidative and nitrosative stress appears to play a major role in neuronal injury.

  5. The acute toxicity of iron and copper: biomolecule oxidation and oxidative damage in rat liver.

    Science.gov (United States)

    Boveris, Alberto; Musacco-Sebio, Rosario; Ferrarotti, Nidia; Saporito-Magriñá, Christian; Torti, Horacio; Massot, Francisco; Repetto, Marisa G

    2012-11-01

    The transition metals iron (Fe) and copper (Cu) are needed at low levels for normal health and at higher levels they become toxic for humans and animals. The acute liver toxicity of Fe and Cu was studied in Sprague Dawley male rats (200 g) that received ip 0-60 mg/kg FeCl(2) or 0-30 mg/kg CuSO(4). Dose and time-responses were determined for spontaneous in situ liver chemiluminescence, phospholipid lipoperoxidation, protein oxidation and lipid soluble antioxidants. The doses linearly defined the tissue content of both metals. Liver chemiluminescence increased 4 times and 2 times after Fe and Cu overloads, with half maximal responses at contents (C(50%)) of 110 μgFe/g and 42 μgCu/g liver, and with half maximal time responses (t(1/2)) of 4h for both metals. Phospholipid peroxidation increased 4 and 1.8 times with C(50%) of 118 μg Fe/g and 45 μg Cu/g and with t(1/2) of 7h and 8h. Protein oxidation increased 1.6 times for Fe with C(50%) at 113 μg Fe/g and 1.2 times for Cu with 50 μg Cu/g and t(1/2) of 4h and 5h respectively. The accumulation of Fe and Cu in liver enhanced the rate of free radical reactions and produced oxidative damage. A similar free radical-mediated process, through the formation HO(•) and RO(•) by a Fenton-like homolytic scission of H(2)O(2) and ROOH, seems to operate as the chemical mechanism for the liver toxicity of both metals.

  6. Efficacy of copper oxide wire particles against gastrointestinal nematodes in sheep and goats

    Science.gov (United States)

    Economic sheep and goat production in the USA is severely limited by gastrointestinal nematode (GIN) parasitism, particularly by Haemonchus contortus, a highly pathogenic blood-feeder. Copper oxide wire particles (COWP) have anti-parasitic properties in the diet of small ruminants, but efficacy of ...

  7. [Simultaneous determination of europium and copper in rare earth oxide by use AAS-PLS method].

    Science.gov (United States)

    Zhong, M; Qiu, X; Mo, C; Zheng, Y

    1999-02-01

    Partial least squares regression was used to compensate for spectral "overlap" interference of Eu 324. 753 nm with Cu 324.754 nm in atomic absorption spectrometry. We could only use the copper element hollow-cathode lamp to simultaneous determine Eu and Cu in synthetic samples and rare earth oxide, and obtained satisfactory results.

  8. Laser forming of structures of zinc oxide on a surface of products from copper alloys

    Science.gov (United States)

    Abramov, D. V.; Gorudko, T. N.; Koblov, A. N.; Nogtev, D. S.; Novikova, O. A.

    Laser formation of a protective zinc oxide layer on a surface of products from copper alloys is present. This layer is formed with using of carbon nanotubes. Destructions of the basic material are avoided or minimized at laser nanostructuring of product surfaces. Such laser processing can be made repeatedly. Offered covering have self-clearing and water-repellent properties.

  9. Experimental Consequences of Mottness in High-Temperature Copper-Oxide Superconductors

    Science.gov (United States)

    Chakraborty, Shiladitya

    2009-01-01

    It has been more than two decades since the copper-oxide high temperature superconductors were discovered. However, building a satisfactory theoretical framework to study these compounds still remains one of the major challenges in condensed matter physics. In addition to the mechanism of superconductivity, understanding the properties of the…

  10. Electron microscopic study on pyrolysis of CCA (chromium, copper and arsenic oxide)-treated wood

    NARCIS (Netherlands)

    Hata, T.; Bronsveld, P.M; Vystavel, T.; Kooi, B.J.; de Hosson, J.T.M.; Kakitani, T.; Otono, A.; Imamura, Y.

    2003-01-01

    The effectiveness of pyrolysis as a possible technique for disposing of CCA (chromium, copper and arsenic oxide)-treated wood was studied. A CCA-treated sample given an extra heat treatment at 450 degreesC for 10 min was thoroughly investigated in order to establish the details of the reaction in wh

  11. An infrared spectroscopic study of the adsorption of carbon monoxide on silica-supported copper oxide

    NARCIS (Netherlands)

    Jong, K.P. de; Geus, John W.; Joziasse, J.

    1980-01-01

    Adsorption of carbon monoxide at room temperature (0.1–50 Torr) on silica-supported copper oxide was studied by infrared spectroscopy. Catalysts were prepared by deposition-precipitation or impregnation. After calcination two types of adsorbed CO were identified showing absorption bands at 2136 ± 3

  12. Copper(II)-catalyzed electrophilic amination of quinoline N-oxides with O-benzoyl hydroxylamines.

    Science.gov (United States)

    Li, Gang; Jia, Chunqi; Sun, Kai; Lv, Yunhe; Zhao, Feng; Zhou, Kexiao; Wu, Hankui

    2015-03-21

    Copper acetate-catalyzed C-H bond functionalization amination of quinoline N-oxides was achieved using O-benzoyl hydroxylamine as an electrophilic amination reagent, thereby affording the desired products in moderate to excellent yields. Electrophilic amination can also be performed in good yield on a gram scale.

  13. Effect of copper dosing on sulfide inhibited reduction of nitric and nitrous oxide

    NARCIS (Netherlands)

    Manconi, I.; Maas, van der P.M.F.; Lens, P.N.L.

    2006-01-01

    The stimulating effect of copper addition on the reduction rate of nitrous oxide (N2O) to dinitrogen (N2) in the presence of sulfide was investigated in batch experiments (pH 7.0; 55 °C). N2O was dosed either directly as a gas to the headspace of the bottles or formed as intermediate during the deni

  14. A novel copper-catalyzed reductive coupling of N-tosylhydrazones with H-phosphorus oxides.

    Science.gov (United States)

    Wu, Lei; Zhang, Xio; Chen, Qing-Qing; Zhou, An-Kun

    2012-10-21

    We report here a novel C(sp(3))-P bonds formation via copper-catalyzed reductive coupling of N-tosylhydrazones with H-phosphorus oxides. A variety of aliphatic and aromatic substrates bearing electron-rich and electron-deficient substituents affords phosphine oxide derivatives with moderate to good yields. This work suggests a new transformation of aldehydes/ketones via N-tosylhydrazones to organophosphorus compounds.

  15. Exogenous Nitric Oxide Involved in Subcellular Distribution and Chemical Forms of Cu2+Under Copper Stress in Tomato Seedlings

    Institute of Scientific and Technical Information of China (English)

    DONG Yu-xiu; WANG Xiu-feng; CUI Xiu-min

    2013-01-01

    Nitric oxide (NO), a bioactive signaling molecule, serves as an antioxidant and anti-stress agent under abiotic stress. A hydroponics experiment was conducted to investigate the effects of sodium nitroprusside (SNP), a NO donor, on tomato seedlings exposed to 50 µmol L-1 CuCl2. The results show that copper is primarily stored in the soluble cell sap fraction in the roots, especially after treatment with Cu+SNP treatment, which accounted for 66.2%of the total copper content. The copper concentration gradually decreased from the roots to the leaves. In the leaves, exogenous NO induces the storage of excess copper in the cell walls. Copper stress decreases the proportion of copper integrated with pectates and proteins, but exogenous NO remarkably reverses this trend. The alleviating effect of NO is blocked by hemoglobin. Thus, exogenous NO is likely involved in the regulation of the subcellular copper concentrations and its chemical forms under copper stress. Although exogenous NO inhibited the absorption and transport of excess copper to some extent, the copper accumulation in tomato seedlings signiifcantly increased under copper stress. The use of exogenous NO to enhance copper tolerance in some plants is a promising method for copper remediation.

  16. Acute and sub-lethal exposure to copper oxide nanoparticles causes oxidative stress and teratogenicity in zebrafish embryos.

    Science.gov (United States)

    Ganesan, Santhanamari; Anaimalai Thirumurthi, Naveenkumar; Raghunath, Azhwar; Vijayakumar, Savitha; Perumal, Ekambaram

    2016-04-01

    Nano-copper oxides are a versatile inorganic material. As a result of their versatility, the immense applications and usage end up in the environment causing a concern for the lifespan of various beings. The ambiguities surround globally on the toxic effects of copper oxide nanoparticles (CuO-NPs). Hence, the present study endeavored to study the sub-lethal acute exposure effects on the developing zebrafish embryos. The 48 hpf LC50 value was about 64 ppm. Therefore, we have chosen the sub-lethal dose of 40 and 60 ppm for the study. Accumulation of CuO-NPs was evidenced from the SEM-EDS and AAS analyzes. The alterations in the AChE and Na(+)/K(+)-ATPase activities disrupted the development process. An increment in the levels of oxidants with a concomitant decrease in the antioxidant enzymes confirmed the induction of oxidative stress. Oxidative stress triggered apoptosis in the exposed embryos. Developmental anomalies were observed with CuO-NPs exposure in addition to oxidative stress in the developing embryos. Decreased heart rate and hatching delay hindered the normal developmental processes. Our work has offered valuable data on the connection between oxidative stress and teratogenicity leading to lethality caused by CuO-NPs. A further molecular mechanism unraveling the uncharted connection between oxidative stress and teratogenicity will aid in the safe use of CuO-NPs.

  17. Biosynthesis and characterization of Acalypha indica mediated copper oxide nanoparticles and evaluation of its antimicrobial and anticancer activity

    Science.gov (United States)

    Sivaraj, Rajeshwari; Rahman, Pattanathu K. S. M.; Rajiv, P.; Narendhran, S.; Venckatesh, R.

    2014-08-01

    Copper oxide nanoparticles were synthesized by biological method using aqueous extract of Acalypha indica leaf and characterized by UV-visible spectroscopy, XRD, FT-IR, SEM TEM and EDX analysis. The synthesised particles were highly stable, spherical and particle size was in the range of 26-30 nm. The antimicrobial activity of A.indica mediated copper oxide nanoparticles was tested against selected pathogens. Copper oxide nanoparticles showed efficient antibacterial and antifungal effect against Escherichia coli, Pseudomonas fluorescens and Candida albicans. The cytotoxicity activity of A.indica mediated copper nanoparticles was evaluated by MTT assay against MCF-7 breast cancer cell lines and confirmed that copper oxide nanoparticles have cytotoxicity activity.

  18. Cisplatin inhibits the formation of a reactive intermediate during copper-catalyzed oxidation of amyloid β peptide.

    Science.gov (United States)

    Walke, Gulshan R; Rapole, Srikanth; Kulkarni, Prasad P

    2014-10-06

    Cisplatin was studied for its effect on the copper-catalyzed oxidation of amyloid β (Aβ) peptide. The interaction of cisplatin with Aβ1-16 in the presence of Cu(II) was investigated using cyclic voltammetry and mass spectrometry. The positive shift in the E1/2 value of Aβ1-16-Cu(II) suggests that the interaction of cisplatin alters the copper-binding properties of Aβ1-16. The mass spectrometry data show complete inhibition of copper-catalyzed decarboxylation/deamination of the Asp1 residue of Aβ1-16, while there is a significant decrease in copper-catalyzed oxidation of Aβ1-16 in the presence of cisplatin. Overall, our results provide a novel mode by which cisplatin inhibits copper-catalyzed oxidation of Aβ. These findings may lead to the design of better platinum complexes to treat oxidative stress in Alzheimer's disease and other related neurological disorders.

  19. Biosynthesis and characterization of Acalypha indica mediated copper oxide nanoparticles and evaluation of its antimicrobial and anticancer activity.

    Science.gov (United States)

    Sivaraj, Rajeshwari; Rahman, Pattanathu K S M; Rajiv, P; Narendhran, S; Venckatesh, R

    2014-08-14

    Copper oxide nanoparticles were synthesized by biological method using aqueous extract of Acalypha indica leaf and characterized by UV-visible spectroscopy, XRD, FT-IR, SEM TEM and EDX analysis. The synthesised particles were highly stable, spherical and particle size was in the range of 26-30 nm. The antimicrobial activity of A.indica mediated copper oxide nanoparticles was tested against selected pathogens. Copper oxide nanoparticles showed efficient antibacterial and antifungal effect against Escherichia coli, Pseudomonas fluorescens and Candida albicans. The cytotoxicity activity of A.indica mediated copper nanoparticles was evaluated by MTT assay against MCF-7 breast cancer cell lines and confirmed that copper oxide nanoparticles have cytotoxicity activity.

  20. Selective Electrocatalytic Activity of Ligand Stabilized Copper Oxide Nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Kauffman, Douglas R; Ohodnicki, Paul R; Kail, Brian W; Matranga, Christopher

    2011-01-01

    Ligand stabilization can influence the surface chemistry of Cu oxide nanoparticles (NPs) and provide unique product distributions for electrocatalytic methanol (MeOH) oxidation and CO{sub 2} reduction reactions. Oleic acid (OA) stabilized Cu{sub 2}O and CuO NPs promote the MeOH oxidation reaction with 88% and 99.97% selective HCOH formation, respectively. Alternatively, CO{sub 2} is the only reaction product detected for bulk Cu oxides and Cu oxide NPs with no ligands or weakly interacting ligands. We also demonstrate that OA stabilized Cu oxide NPs can reduce CO{sub 2} into CO with a {approx}1.7-fold increase in CO/H{sub 2} production ratios compared to bulk Cu oxides. The OA stabilized Cu oxide NPs also show 7.6 and 9.1-fold increases in CO/H{sub 2} production ratios compared to weakly stabilized and non-stabilized Cu oxide NPs, respectively. Our data illustrates that the presence and type of surface ligand can substantially influence the catalytic product selectivity of Cu oxide NPs.

  1. Generation of oxidant response to copper and iron nanoparticles and salts: Stimulation by ascorbate.

    Science.gov (United States)

    Rice, Robert H; Vidrio, Edgar A; Kumfer, Benjamin M; Qin, Qin; Willits, Neil H; Kennedy, Ian M; Anastasio, Cort

    2009-10-30

    The present work describes a two-stage approach to analyzing combustion-generated samples for their potential to produce oxidant stress. This approach is illustrated with the two commonly encountered transition metals, copper and iron. First, their abilities to generate hydroxyl radical were measured in a cell-free, phosphate-buffered saline solution containing ascorbate and/or citrate. Second, their abilities to induce heme oxygenase-1 in cultured human epidermal keratinocytes were assessed in cell culture. Combustion-generated copper oxide nanoparticles were active in both assays and were found to be soluble in culture medium. Depletion of glutathione in the cells or loading the cells with ascorbate greatly increased heme oxygenase-1 induction in the presence of copper. By contrast, iron oxide nanoparticles were active in the phosphate-buffered saline but not in cell culture, and they aggregated in culture medium. Soluble salts of copper and iron exhibited the same contrast in activities as the respective combustion-generated particles. The results suggest that the capability of combustion-generated environmental samples to produce oxidant stress can be screened effectively in a two step process, first in phosphate-buffered saline with ascorbate and subsequently in epithelial cell culture for those exhibiting activity initially. The results also point to an unanticipated interaction in cells of oxidant stress-generating metals with an antioxidant (ascorbate) that is usually missing in culture medium formulations. Thus, ascorbate supplementation of cultured human cells is likely to improve their ability to model the in vivo effects of particulate matter containing copper and other redox-active metals.

  2. Conclusion on the peer review of the pesticide risk assessment of confirmatory data submitted for the active substance Copper (I, copper (II variants namely copper hydroxide, copper oxychloride, tribasic copper sulfate, copper (I oxide, Bordeaux mixture

    Directory of Open Access Journals (Sweden)

    European Food Safety Authority

    2013-06-01

    Full Text Available The conclusions of the European Food Safety Authority (EFSA following the peer review of the initial risk assessment carried out by the competent authority of the rapporteur Member State France, for the pesticide active substance copper (I, copper (II variants (formerly referred to as copper compounds are reported. The context of the peer review was that requested by the European Commission following the submission and evaluation of confirmatory environmental fate and behaviour and ecotoxicology data. The conclusions were reached on the basis of the evaluation of the representative uses of copper (I, copper (II variants as a fungicide/bactericide on grapes and tomatoes. The reliable endpoints concluded as being appropriate for use in regulatory risk assessment, derived from the available studies and literature in the dossier peer reviewed, are presented. Concerns are identified.

  3. Penicillamine Increases Free Copper and Enhances Oxidative Stress in the Brain of Toxic Milk Mice

    Science.gov (United States)

    Lin, Xiao-Pu; Zhang, Wei; Li, Fu-Rong; Liang, Xiu-Ling; Li, Xun-Hua

    2012-01-01

    Wilson disease (WD) is characterized by the accumulation of copper arising from a mutation in the ATP7B gene. Penicillamine (PA) makes 10–50% of the patients with neurologic symptoms neurologically worse at the early stage of administration. The aim of this study was to determine how the copper metabolism changes and whether the change impairs the brain of toxic milk (tx) mice, an animal model of WD, during the PA administration. The free copper and protein-bound copper concentrations in the serum, cortex and basal ganglia of tx mice with PA administration for 3 days, 10 days and 14 days, respectively, were investigated. The expression of copper transporters, ATP7A and CTR1,was analyzed by real-time quantitative PCR, immunofluorescence and Western blot. Then SOD, MDA and GSH/GSSG were detected to determine whether the oxidative stress changed correspondingly. The results revealed the elevated free copper concentrations in the serum and brain, and declined protein-bound copper concentrations in the brain of tx mice during PA administration. Meanwhile, transiently increased expression of ATP7A and CTR1 was observed generally in the brain parenchyma by immunofluorescence, real-time quantitative PCR and Western blot. Additionally, ATP7A and CTR1 were observed to locate mainly at Golgi apparatus and cellular membrane respectively. Intense staining of ATP7A in the choroid plexus was found in tx mice on the 3rd and 10th day of PA treatment, but rare staining of ATP7A and CTR1 in the blood-brain barrier (BBB). Decreased GSH/GSSG and increased MDA concentrations were also viewed in the cortex and basal ganglia. Our results suggested the elevated free copper concentrations in the brain might lead to the enhanced oxidative stress during PA administration. The increased free copper in the brain might come from the copper mobilized from brain parenchyma cells but not from the serum according to the ATP7A and CTR1 expression analysis. PMID:22629446

  4. Copper Oxidation through Nucleation Sites of Chemical Vapor Deposited Graphene

    DEFF Research Database (Denmark)

    Luo, Birong; Whelan, Patrick Rebsdorf; Shivayogimath, Abhay

    2016-01-01

    We investigate the nucleation defect-triggered oxidation of Cu covered by CVD graphene during postannealing in air. The results reveal that different growth conditions may induce imperfect nucleation of graphene, and cause creation of defects near the nucleation point such as pin holes...... and amorphous carbon. These defects would serve as a pathway for the diffusion of 02 during thermal annealing, allowing oxidation of Cu to progress gradually from the nucleation center toward the growth edge. The oxidation process follows the graphene morphology closely; the shape of the oxidized area of Cu has...... a striking resemblance to that of the graphene flakes. Our work demonstrates that inferior graphene nucleation in CVD processes can compromise the oxidation resistance of a graphene-coated Cu substrate, and indirectly reveal the structure and integrity of graphene, which is of fundamental importance...

  5. Evidence for stripe correlations of spins and holes in copper oxide superconductors

    Science.gov (United States)

    Tranquada, J. M.; Sternlieb, B. J.; Axe, J. D.; Nakamura, Y.; Uchida, S.

    1995-06-01

    ONE of the long-standing mysteries associated with the high-temperature copper oxide superconductors concerns the anomalous suppression1 of superconductivity in La2-xBaxCuO4 (and certain related compounds) when the hole concentration x is near ⅛. Here we examine the possibility that this effect is related to dynamical two-dimensional spin correlations, incommensurate with the crystal lattice, that have been observed in La2-xSrxCuO4 by neutron scattering2 4. A possible explanation for the incommensurability involves a coupled, dynamical modulation of spin and charge in which antiferromagnetic 'stripes' of copper spins are separated by periodically spaced domain walls to which the holes segregate5 9. An ordered stripe phase of this type has recently been observed in hole-doped La2NiO4 (refs 10 12). We present evidence from neutron diffraction that in the copper oxide material La1.6-xNd0.4SrxCuO4, with x = 0.12, a static analogue of the dynamical stripe phase is present, and is associated with an anomalous suppression of superconductivity13,14. Our results thus provide an explanation of the '⅛' conundrum, and also support the suggestion15 that spatial modulations of spin and charge density are related to superconductivity in the copper oxides.

  6. Study on catalytic oxidation of planar binuclear copper phthalocyanine on 2-mercaptoethanol

    Institute of Scientific and Technical Information of China (English)

    CHEN Wenxing; WEI Lili; WANG Jinqian; YAO Yuyuan; L(U) Shenshui; CHEN Shiliang

    2006-01-01

    Mononuclear copper phthalocyanine (CuPc) and binuclear copper phthalocyanine (Cu2Pc2) were synthesized by the phenylanhydride-urea route, and their catalytic oxidation activity on 2-mercaptoethanol was studied. Based on the experimental results, a catalytic mechanism of Cu2Pc2 on 2-mercaptoethanol has been proposed. Furthermore, the effects of pH, Cu2Pc2 concentration, and temperature on the catalytic oxidation activity were evaluated. The results showed that CuPc has no catalytic activity, while Cu2Pc2 has high catalytic oxidation activity towards 2-mercaptoethanol with the optimal activity at pH 11. The reaction can further be enhanced by increasing Cu2Pc2 concentration and temperature, due to its endothermic characteristics.

  7. Copper oxide nanowires as better performance electrode material for supercapacitor application

    Science.gov (United States)

    Yar, A.; Dennis, J. O.; Mohamed, N. M.; Mian, M. U.; Irshad, M. I.; Mumtaz, A.

    2016-11-01

    Supercapacitors are highly attractive energy storage devices which are capable of delivering high power, with fast charging and long cycle life. Carbon based material rely on physical charging with less capacitance while metal oxide store charge by fast redox reaction with increased capacitance. Among metal oxide, copper oxide compounds are widely use in the form of nano and micro structures with no definite control over structure. In this work we utilized the well-controlled structure copper wires, originated from AAO template. Such well controlled structure offer better capacitance values due to easily excess of ions to the surface of wires. Performance of material was check in 3 M of potassium hydroxide (KOH). Specific capacitance (Cs) was calculated by using cyclic voltammetry (CV) and Charge discharge (CDC) test. The capacitance calculate on base on CV at 25 mV/s was 101.37 F/g while CDC showed the capacitance of 90 F/g at 2 A/g.

  8. Virgin olive oil blended polyurethane micro/nanofibers ornamented with copper oxide nanocrystals for biomedical applications

    Directory of Open Access Journals (Sweden)

    Amna T

    2014-02-01

    Full Text Available Touseef Amna,1 M Shamshi Hassan,2 Jieun Yang,1 Myung-Seob Khil,2 Ki-Duk Song,3 Jae-Don Oh,3 Inho Hwang1 1Department of Animal Sciences and Biotechnology, 2Department of Organic Materials and Fiber Engineering, Chonbuk National University, Jeonju, South Korea; 3Genomic Informatics Center, Hankyong National University, Anseong, South Korea Abstract: Recently, substantial interest has been generated in using electrospun biomimetic nanofibers of hybrids, particularly organic/inorganic, to engineer different tissues. The present work, for the first time, introduced a unique natural and synthetic hybrid micronanofiber wound dressing, composed of virgin olive oil/copper oxide nanocrystals and polyurethane (PU, developed via facile electrospinning. The as-spun organic/inorganic hybrid micronanofibers were characterized by scanning electron microscopy (SEM, energy dispersive X-ray analysis, X-ray diffraction, electron probe microanalysis, and transmission electron microscopy. The interaction of cells with scaffold was studied by culturing NIH 3T3 fibroblasts on an as-spun hybrid micronanofibrous mat, and viability, proliferation, and growth were assessed. The 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide assay results and SEM observation showed that the hybrid micronanofibrous scaffold was noncytotoxic to fibroblast cell culture and was found to benefit cell attachment and proliferation. Hence our results suggest the potential utilization of as-spun micronanoscaffolds for tissue engineering. Copper oxide–olive oil/PU wound dressing may exert its positive beneficial effects at every stage during wound-healing progression, and these micronanofibers may serve diverse biomedical applications, such as tissue regeneration, damaged skin treatment, wound healing applications, etc. Conclusively, the fabricated olive oil–copper oxide/PU micronanofibers combine the benefits of virgin olive oil and copper oxide, and therefore hold great promise for

  9. Oxidation kinetics of thin copper films and wetting behaviour of copper and Organic Solderability Preservatives (OSP) with lead-free solder

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez, Mauricio, E-mail: mauricio.ramirez2@de.bosch.com [Robert Bosch GmbH, Robert-Bosch-Strasse 2, 71701 Schwieberdingen (Germany); Chair for Surface Science and Corrosion, University of Erlangen-Nuremberg, Martensstrasse 7, 91058 Erlangen (Germany); Henneken, Lothar [Robert Bosch GmbH, Robert-Bosch-Strasse 2, 71701 Schwieberdingen (Germany); Virtanen, Sannakaisa [Chair for Surface Science and Corrosion, University of Erlangen-Nuremberg, Martensstrasse 7, 91058 Erlangen (Germany)

    2011-05-15

    The oxide formation on thin copper films deposited on Si wafer was studied by XPS, SEM and Sequential Electrochemical Reduction Analysis SERA. The surfaces were oxidized in air with a reflow oven as used in electronic assembly at temperatures of 100 deg. C, 155 deg. C, 200 deg. C, 230 deg. C and 260 deg. C. The SERA analyses detected only the formation of Cu{sub 2}O but the XPS analysis done for the calibration of the SERA equipment proved also the presence of a CuO layer smaller than 2 nm above the Cu{sub 2}O oxide. The oxide growth follows a power-law dependence on time within this temperature range and an activation energy of 33.1 kJ/mol was obtained. The wettability of these surfaces was also determined by measuring the contact angle between solder and copper substrate after the soldering process. A correlation between oxide thickness and wetting angle was established. It was found that the wetting is acceptable only when the oxide thickness is smaller than 16 nm. An activation energy of 27 kJ/mol was acquired for the spreading of lead free solder on oxidized copper surfaces. From wetting tests on copper surfaces protected by Organic Solderability Preservatives (OSP), it was possible to calculate the activation energy for the thermal decomposition of these protective layers.

  10. Generation of fast propagating combustion and shock waves with copper oxide/aluminum nanothermite composites

    Science.gov (United States)

    Apperson, S.; Shende, R. V.; Subramanian, S.; Tappmeyer, D.; Gangopadhyay, S.; Chen, Z.; Gangopadhyay, K.; Redner, P.; Nicholich, S.; Kapoor, D.

    2007-12-01

    Nanothermite composites containing metallic fuel and inorganic oxidizer are gaining importance due to their outstanding combustion characteristics. In this paper, the combustion behaviors of copper oxide/aluminum nanothermites are discussed. CuO nanorods were synthesized using the surfactant-templating method, then mixed or self-assembled with Al nanoparticles. This nanoscale mixing resulted in a large interfacial contact area between fuel and oxidizer. As a result, the reaction of the low density nanothermite composite leads to a fast propagating combustion, generating shock waves with Mach numbers up to 3.

  11. A biomimetic copper water oxidation catalyst with low overpotential.

    Science.gov (United States)

    Zhang, Teng; Wang, Cheng; Liu, Shubin; Wang, Jin-Liang; Lin, Wenbin

    2014-01-08

    Simply mixing a Cu(II) salt and 6,6'-dihydroxy-2,2'-bipyridine (H2L) in a basic aqueous solution afforded a highly active water oxidation catalyst (WOC). Cyclic voltammetry of the solution at pH = 12-14 shows irreversible catalytic current with an onset potential of ~0.8 V versus NHE. Catalytic oxygen evolution takes place in controlled potential electrolysis at a relatively low overpotential of 640 mV. Experimental and computational studies suggest that the L ligand participates in electron transfer processes to facilitate the oxidation of the Cu center to lead to an active WOC with low overpotential, akin to the use of the tyrosine radical by Photosystem II to oxidize the CaMn4 center for water oxidation.

  12. Identification of Active Phase for Selective Oxidation of Benzyl Alcohol with Molecular Oxygen Catalyzed by Copper-Manganese Oxide Nanoparticles

    Directory of Open Access Journals (Sweden)

    Roushown Ali

    2013-01-01

    Full Text Available Catalytic activity of copper-manganese mixed oxide nanoparticles (Cu/Mn = 1 : 2 prepared by coprecipitation method has been studied for selective oxidation of benzyl alcohol using molecular oxygen as an oxidizing agent. The copper-manganese (CuMn2 oxide catalyst exhibited high specific activity of 15.04 mmolg−1 h−1 in oxidation of benzyl alcohol in toluene as solvent. A 100% conversion of the benzyl alcohol was achieved with >99% selectivity to benzaldehyde within a short reaction period at 102°C. It was found that the catalytic performance is dependent on calcination temperature, and best activity was obtained for the catalyst calcined at 300°C. The high catalytic performance of the catalyst can be attributed to the formation of active MnO2 phase or absence of less active Mn2O3 phase in the mixed CuMn2 oxide. The catalyst has been characterized by powder X-ray diffraction (XRD, thermogravimetric analysis (TGA, scanning electron microscopy (SEM, transmission electron microscopy (TEM, Brunauer Emmett-Teller (BET surface area measurement, and Fourier transform infrared (FT-IR spectroscopies.

  13. Controlled fabrication of photoactive copper oxide-cobalt oxide nanowire heterostructures for efficient phenol photodegradation.

    Science.gov (United States)

    Shi, Wenwu; Chopra, Nitin

    2012-10-24

    Fabrication of oxide nanowire heterostructures with controlled morphology, interface, and phase purity is critical for high-efficiency and low-cost photocatalysis. Here, we have studied the formation of copper oxide-cobalt nanowire heterostructures by sputtering and subsequent air annealing to result in cobalt oxide (Co(3)O(4))-coated CuO nanowires. This approach allowed fabrication of standing nanowire heterostructures with tunable compositions and morphologies. The vertically standing CuO nanowires were synthesized in a thermal growth method. The shell growth kinetics of Co and Co(3)O(4) on CuO nanowires, morphological evolution of the shell, and nanowire self-shadowing effects were found to be strongly dependent on sputtering duration, air-annealing conditions, and alignment of CuO nanowires. Finite element method (FEM) analysis indicated that alignment and stiffness of CuO-Co nanowire heterostructures greatly influenced the nanomechanical aspects such as von Mises equivalent stress distribution and bending of nanowire heterostructures during the Co deposition process. This fundamental knowledge was critical for the morphological control of Co and Co(3)O(4) on CuO nanowires with desired interfaces and a uniform coating. Band gap energies and phenol photodegradation capability of CuO-Co(3)O(4) nanowire heterostructures were studied as a function of Co(3)O(4) morphology. Multiple absorption edges and band gap tailings were observed for these heterostructures, indicating photoactivity from visible to UV range. A polycrystalline Co(3)O(4) shell on CuO nanowires showed the best photodegradation performance (efficiency ~50-90%) in a low-powered UV or visible light illumination with a sacrificial agent (H(2)O(2)). An anomalously high efficiency (~67.5%) observed under visible light without sacrificial agent for CuO nanowires coated with thin (∼5.6 nm) Co(3)O(4) shell and nanoparticles was especially interesting. Such photoactive heterostructures demonstrate unique

  14. Variation of crystallinity and stoichiometry in films of gallium oxide, gallium nitride and barium zirconate prepared by means of PLD; Variation von Kristallinitaet und Stoechiometrie in mittels PLD hergestellten Schichten aus Galliumoxid, Galliumnitrid und Bariumzirkonat

    Energy Technology Data Exchange (ETDEWEB)

    Brendt, Jochen

    2011-08-05

    Pulsed Laser Deposition (PLD) is an ablation technique for thin film preparation of many materials. The film properties can be well controlled by the process parameters. Therefore, in many cases a given material can be deposited with different properties by changing one or more process parameters. In this thesis thin films of gallium oxide, gallium nitride and barium zirconate were deposited with a large variation in structure and stoichiometry by means of Pulsed Laser Deposition. The characterization of the film crystallinity, phase purity and short range structural order was completed by means of X-ray diffraction and X-ray absorption spectroscopy. The stoichiometry was investigated using electron probe microanalysis. For analyzing the correlation between the structure and stoichiometry with the optical and electrical properties, optical absorption and electrical conductivity measurements were carried out. The investigation of all three material systems showed that very unique properties can be realized when combining an amorphous structure and a non-stoichiometric composition. For example, in amorphous and oxygen deficient gallium oxide an insulator-metal-transition can be induced by partial crystallization of the as prepared phase accomplished by annealing at about 400 C in argon atmosphere (as shown in literature). Furthermore, amorphous and highly non-stoichiometric barium zirconate has the ability to split water molecules to hydrogen and oxygen at room temperature. A detailed analysis of both phenomena has been performed by means of photoemission and transmission electron microscopy in the case of gallium oxide and via X-ray absorption spectroscopy and gas chromatography in the case of barium zirconate.

  15. Oxidative damage of copper chloride overload to the cultured rat astrocytes.

    Science.gov (United States)

    Hu, Hao-Lu; Ni, Xiu-Shi; Duff-Canning, Sarah; Wang, Xiao-Ping

    2016-01-01

    Disorders of copper metabolism are associated with neurological dysfunction including Wilson's disease (WD). WD is a autosomal recessive disorder caused by mutations in the ATP7B gene resulting in the inability of the hepatocytes to remove excess copper. Gradual copper accumulation causes damage to liver, brain and other organs manifesting in liver disease, neurological and psychiatric symptoms. Also scond copper-neurometaboic disorder: Menkes disease charaterized with mutated ATP7A gene, is ralated with abnormally neuroal transmission and synaptogenesis. Parkinson's disease and Alzheimer's disease both are refered to some degree of copper/iron metabolism changes. The precise mechanisms by which excess copper causes neurological damage remain to be elucidated. In this study, we aimed to investigate the influence of excessive amounts of Cu(2+) on the oxidative damage response and survival of primary astrocytes from newborn rats. Primary cultured rat astrocytes were divided into three groups: 30 μmol/L CuCl2, 100 μmol/L CuCl2 and control. At 12, 24, 48, 96 and 120 hours of CuCl2 intervention, cell viability, intracellular reduced glutathione level and glutathion reductase activity, and nitric oxide secretion were determined. It was found that 30 μmol/L CuCl2 might stimulate the exaltation and the compensatory proliferation of astrocytes. The survival rate of astrocytes in the 100 μmol/L CuCl2 group was significantly decreased relative to the 30 μmol/L CuCl2 group. At 24 hours of CuCl2 intervention, intracellular reduced glutathione level and glutathion reductase activity were significantly decreased in the 100 μmol/L CuCl2 group compared to the control group. At 120 hours of CuCl2 intervention, nitric oxide secretion in the 100 μmol/L CuCl2 group was significantly greater than in the control group. Under pathological conditions, excessive amounts of Cu(2+) greatly damaged the growth and proliferation of astrocytes, reduced the anti-oxidative capacity of

  16. Comparison of antioxidative and chelating effects of daidzein and daidzin on protein oxidative modification by copper in vitro.

    Science.gov (United States)

    Toda, S; Shirataki, Y

    2001-01-01

    Daidzein and its glycoside daidzin are isoflavones. Their antioxidative effects were compared in vitro. Although both compounds inhibited protein oxidative modification by copper, the inhibitory effect of daidzein was stronger than that of daidzin. Because daidzein showed a greater affinity for Cu2+, the antioxidant effect of these isoflavones may be dependent on their respective copper-chelating abilities.

  17. Valence State of Active Copper in CuOx/CeO2 Catalysts for CO Oxidation

    Institute of Scientific and Technical Information of China (English)

    Zeng Shanghong; Bai Xue; Wang Xiaoyan; Yu Wenguo; Liu Yuan

    2006-01-01

    CuOx/CeO2 catalysts were prepared by adsorption-impregnation method.CO conversion was tested over the catalysts pretreated under different conditions for preferential CO oxidation in H2, and the catalysts were characterized with X-ray photoelectron spectroscopy and temperature programmed reduction.Experimental results show that there are two kinds of copper, which are Cu+ and Cu2+ in calcined CuOx/CeO2.Among them, the Cu+ is the key active component for CO oxidation.The main reason is as follows: CO is activated by copper for CO oxidation over CuOx/CeO2, while CO can not be activated by Cu2+.Only when Cu2+ is reduced to Cu+ or Cu0, the copper may be active for CO oxidation, moreover, the experimental results show that the reduction of Cu2+ does not lead to an increase of catalytic activity.So the active species is Cu+ in CuOx/CeO2 catalysts.

  18. Examination of the Oxidation Protection of Zinc Coatings Formed on Copper Alloys and Steel Substrates

    Science.gov (United States)

    Papazoglou, M.; Chaliampalias, D.; Vourlias, G.; Pavlidou, E.; Stergioudis, G.; Skolianos, S.

    2010-01-01

    The exposure of metallic components at aggressive high temperature environments, usually limit their usage at similar application because they suffer from severe oxidation attack. Copper alloys are used in a wide range of high-quality indoor and outdoor applications, statue parts, art hardware, high strength and high thermal conductivity applications. On the other hand, steel is commonly used as mechanical part of industrial set outs or in the construction sector due to its high mechanical properties. The aim of the present work is the examination of the oxidation resistance of pack cementation zinc coatings deposited on copper, leaded brass and steel substrates at elevated temperature conditions. Furthermore, an effort made to make a long-term evaluation of the coated samples durability. The oxidation results showed that bare substrates appear to have undergone severe damage comparing with the coated ones. Furthermore, the mass gain of the uncoated samples was higher than this of the zinc covered ones. Particularly zinc coated brass was found to be more resistant to oxidation conditions in which it was exposed as it has the lower mass gain as compared to the bare substrates and zinc coated copper. Zinc coated steel was also proved to be more resistive than the uncoated steel.

  19. Effects of sputtering power on properties of copper oxides thin films deposited on glass substrates

    Energy Technology Data Exchange (ETDEWEB)

    Ooi, P. K.; Ng, S. S.; Abdullah, M. J. [Nano-Optoelectronics Research and Technology Laboratory, School of Physics, Universiti Sains Malaysia, 11800 Penang (Malaysia)

    2015-04-24

    Copper oxides are deposited by radio frequency sputtering using copper target in the mixture of argon and oxygen gasses. The structural and optical properties of the copper oxides deposited at different sputtering powers have been investigated. All the films are single phase polycrystalline. At low RF power (100 W), the film is monoclinic structure of cupric oxide (CuO). Meanwhile, the films are cubic structure of cuprous oxide (Cu2O) at higher RF power. Field emission scanning electron microscopy images show the films have different morphologies with small grain size and consist of a lot of voids. The analysis of energy dispersive X-ray spectroscopy shows that the ratio of Cu to O is increased as the RF power increased. From the ultraviolet–visible spectroscopy, the films have a broad absorption edge in the range of 300–500 nm. The band gap of the films grown at RF power of 100 W, and 120 W and above, were 1.18 eV and 2.16 eV, respectively.

  20. Optimum conditions for fabricating superhydrophobic surface on copper plates via controlled surface oxidation and dehydration processes

    Science.gov (United States)

    Zhang, Yan; Li, Wen; Ma, Fumin; Yu, Zhanlong; Ruan, Min; Ding, Yigang; Deng, Xiangyi

    2013-09-01

    The superhydrophobic surfaces on copper substrate were fabricated by direct oxidation and dehydration processes, and the reaction and modification conditions were optimized. Firstly, the oxidation conditions including the concentrations of K2S2O8 and NaOH, the oxidation time were studied. It is found that the superhydrophobicity would be better if the copper plates were oxidized in 0.06 M K2S2O8 and 3.0 M NaOH solution at 65 °C for 35 min. Then, the modification conditions including modifier concentration and modification time were investigated. The results showed that 5 wt% lauric acid and 1 h modification time were suitable modification conditions for preparing copper-based superhydrophobic surfaces. The surface fabricated under optimized conditions displayed excellent superhydrophobicity of high water contact angle of 161.1° and a low contact angle hysteresis of 2.5°. The surface microstructure and composition of the superhydrophobic surfaces were also characterized by SEM and FT-IR. It is found that the highly concentrated micro/nanostructured sheets and the low surface energy materials on the surface should be responsible for the high superhydrophobicity.

  1. Nitric oxide generation from heme/copper assembly mediated nitrite reductase activity.

    Science.gov (United States)

    Hematian, Shabnam; Siegler, Maxime A; Karlin, Kenneth D

    2014-06-01

    Nitric oxide (NO) as a cellular signaling molecule and vasodilator regulates a range of physiological and pathological processes. Nitrite (NO2 (-)) is recycled in vivo to generate nitric oxide, particularly in physiologic hypoxia and ischemia. The cytochrome c oxidase binuclear heme a 3/CuB active site is one entity known to be responsible for conversion of cellular nitrite to nitric oxide. We recently reported that a partially reduced heme/copper assembly reduces nitrite ion, producing nitric oxide; the heme serves as the reductant and the cupric ion provides a Lewis acid interaction with nitrite, facilitating nitrite (N-O) bond cleavage (Hematian et al., J. Am. Chem. Soc. 134:18912-18915, 2012). To further investigate this nitrite reductase chemistry, copper(II)-nitrito complexes with tridentate and tetradentate ligands were used in this study, where either O,O'-bidentate or O-unidentate modes of nitrite binding to the cupric center are present. To study the role of the reducing ability of the ferrous heme center, two different tetraarylporphyrinate-iron(II) complexes, one with electron-donating para-methoxy peripheral substituents and the other with electron-withdrawing 2,6-difluorophenyl substituents, were used. The results show that differing modes of nitrite coordination to the copper(II) ion lead to differing kinetic behavior. Here, also, the ferrous heme is in all cases the source of the reducing equivalent required to convert nitrite to nitric oxide, but the reduction ability of the heme center does not play a key role in the observed overall reaction rate. On the basis of our observations, reaction mechanisms are proposed and discussed in terms of heme/copper heterobinuclear structures.

  2. Copper-sulfenate complex from oxidation of a cavity mutant of Pseudomonas aeruginosa azurin.

    Science.gov (United States)

    Sieracki, Nathan A; Tian, Shiliang; Hadt, Ryan G; Zhang, Jun-Long; Woertink, Julia S; Nilges, Mark J; Sun, Furong; Solomon, Edward I; Lu, Yi

    2014-01-21

    Metal-sulfenate centers are known to play important roles in biology and yet only limited examples are known due to their instability and high reactivity. Herein we report a copper-sulfenate complex characterized in a protein environment, formed at the active site of a cavity mutant of an electron transfer protein, type 1 blue copper azurin. Reaction of hydrogen peroxide with Cu(I)-M121G azurin resulted in a species with strong visible absorptions at 350 and 452 nm and a relatively low electron paramagnetic resonance gz value of 2.169 in comparison with other normal type 2 copper centers. The presence of a side-on copper-sulfenate species is supported by resonance Raman spectroscopy, electrospray mass spectrometry using isotopically enriched hydrogen peroxide, and density functional theory calculations correlated to the experimental data. In contrast, the reaction with Cu(II)-M121G or Zn(II)-M121G azurin under the same conditions did not result in Cys oxidation or copper-sulfenate formation. Structural and computational studies strongly suggest that the secondary coordination sphere noncovalent interactions are critical in stabilizing this highly reactive species, which can further react with oxygen to form a sulfinate and then a sulfonate species, as demonstrated by mass spectrometry. Engineering the electron transfer protein azurin into an active copper enzyme that forms a copper-sulfenate center and demonstrating the importance of noncovalent secondary sphere interactions in stabilizing it constitute important contributions toward the understanding of metal-sulfenate species in biological systems.

  3. Effect of loading content of copper oxides on performance of Mn-Cu mixed oxide catalysts for catalytic combustion of benzene

    Institute of Scientific and Technical Information of China (English)

    CAO Hongyan; LI Xiaoshuang; CHEN Yaoqiang; GONG Maochu; WANG Jianli

    2012-01-01

    A series of Mn-Cu mixed oxide catalysts were prepared by precipitation method.The catalysts were characterized by N2 adsorption-desorption,H2-TPR and XPS.When the loading ratio of manganese oxides to copper oxides was 8:2 or 7:3,the catalysts possessed better catalytic activity,and benzene was converted completely at 558 K.Results of H2-TPR showed that the loading of a small amount of copper oxides decreased the reduction temperature of catalysts.Results of XPS showed that the loading of a small amount of copper oxides increased the proportion of manganese and defective oxygen on the surface of catalysts,and stabilized manganese at higher oxidation state.And the catalyst with the loading ratio 7:3 was a little worse than 8:2,since the interaction between manganese oxides and copper oxides is too strong,copper oxides migrate to the surface of catalysts and manganese oxides in excess are immerged.

  4. [Copper leaching in catalytic wet oxidation of phenol with Cu-containing spinel].

    Science.gov (United States)

    Xu, Ai-hua; He, Song-bo; Yang, Min; Du, Hong-zhang; Sun, Cheng-lin

    2008-09-01

    The Cu0.10, Zn0.90 Al1.90 Fe0.10 O4 spinel type catalyst prepared by sol-gel method was tested for catalytic wet air oxidation of phenol. The performances of Cu0.10 Zn0.90 Al1.90 Fe0.10 O4 catalyst in TPR experiment, the influence of phenol as reducer, reaction temperature and phenol-to-catalyst mass ratio on copper leaching were checked respectively. According to the experimental results, it is suggested that the reduced active species can not be easily re-oxidized under low reaction temperature and high phenol-to-catalyst mass ratio are the main reasons for copper leaching. Under high enough reaction temperature and low phenol-to-catalyst mass ratio, the copper leaching reduces remarkably. At 190 degrees C in the presence of 100 mL aqueous solution of 4.29 g x L(-1) of phenol and 2.5 g catalyst, the copper leaching was only 0.96 mg x L(-1) after 2 h of reaction.

  5. Aluminum/Copper Oxide/Copper Memristive Devices: Fabrication, Characterization, and Modeling

    Science.gov (United States)

    McDonald, Nathan R.

    Memristive devices have become very popular in recent years due to their potential to dramatically alter logic processing in CMOS circuitry. Memristive devices function as electrical potentiometers, allowing for such diverse applications as memory storage, multi-state logic, and reconfigurable logic gates. This research covered the fabrication, characterization, and modeling of Al/CuxO/Cu memristive devices created by depositing Al top electrodes atop a CuxO film grown using plasma oxidation to grow the oxide on a Cu wafer. Power settings of the plasma oxidation system were shown to control the grown oxide thickness and oxygen concentration, which subsequently affected memristive device behaviors. These memristive devices demonstrated complete nonpolar behavior and could be switched either in a vertical (Al/Cu xO/Cu) or lateral (Al/CuxO/Cu/CuxO/Al) manner. The switching mechanism of these devices was shown to be filamentary in nature. Physical and empirical models of these devices were created for MATLAB, HSPICE, & Verilog A environments. While the physical model proved of limited practical consequence, the robust empirical model allows for rapid prototyping of CMOS-memristor circuitry.

  6. Facile synthesis of flower like copper oxide and their application to hydrogen peroxide and nitrite sensing

    Directory of Open Access Journals (Sweden)

    Zhang Li

    2011-12-01

    Full Text Available Abstract Background The detection of hydrogen peroxide (H2O2 and nitrite ion (NO2- is of great important in various fields including clinic, food, pharmaceutical and environmental analyses. Compared with many methods that have been developed for the determination of them, the electrochemical detection method has attracted much attention. In recent years, with the development of nanotechnology, many kinds of micro/nano-scale materials have been used in the construction of electrochemical biosensors because of their unique and particular properties. Among these catalysts, copper oxide (CuO, as a well known p-type semiconductor, has gained increasing attention not only for its unique properties but also for its applications in many fields such as gas sensors, photocatalyst and electrochemistry sensors. Continuing our previous investigations on transition-metal oxide including cuprous oxide and α-Fe2O3 modified electrode, in the present paper we examine the electrochemical and electrocatalytical behavior of flower like copper oxide modified glass carbon electrodes (CuO/GCE. Results Flower like copper oxide (CuO composed of many nanoflake was synthesized by a simple hydrothermal reaction and characterized using field-emission scanning electron microscopy (FE-SEM and X-ray diffraction (XRD. CuO modified glass carbon electrode (CuO/GCE was fabricated and characterized electrochemically. A highly sensitive method for the rapid amperometric detection of hydrogen peroxide (H2O2 and nitrite (NO2- was reported. Conclusions Due to the large specific surface area and inner characteristic of the flower like CuO, the resulting electrode show excellent electrocatalytic reduction for H2O2 and oxidation of NO2-. Its sensitivity, low detection limit, fast response time and simplicity are satisfactory. Furthermore, this synthetic approach can also be applied for the synthesis of other inorganic oxides with improved performances and they can also be extended to

  7. Comparative time-courses of copper-ion-mediated protein and lipid oxidation in low-density lipoprotein

    DEFF Research Database (Denmark)

    Knott, Heather M; Baoutina, Anna; Davies, Michael Jonathan;

    2002-01-01

    Free radicals damage both lipids and proteins and evidence has accumulated for the presence of both oxidised lipids and proteins in aged tissue samples as well as those from a variety of pathologies including atherosclerosis, diabetes, and Parkinson's disease. Oxidation of the protein and lipid......-courses of lipid and protein oxidation during copper-ion-mediated oxidation of low-density lipoprotein. We show that there is an early, lipid-mediated loss of 40-50% of the Trp residues of the apoB100 protein. There is no comparable loss over an identical period during the copper-ion-mediated oxidation of lipid......-free BSA. Concomitant with Trp loss, the antioxidant alpha-tocopherol is consumed with subsequent extensive lipid peroxidation. Further changes to the protein, including the copper-ion-dependent 3.5-fold increase in 3,4-dihydroxyphenylalanine and the copper-ion-independent 3-5-fold increase in o...

  8. Preparation of Dispersion-Hardened Copper by Internal Oxidation

    DEFF Research Database (Denmark)

    Brøndsted, Povl; Sørensen, Ole Toft

    1978-01-01

    Internal oxidation experiments in CO2/CO atmospheres on Cu-Al alloys for preparation of dispersion-hardened Cu are described. The oxygen pressures of the atmospheres used in the experiments were controlled with a solid electrolyte oxygen cell based on ZrO2 (CaO). The particle size distributions...

  9. Oxidation Kinetics of Copper: An Experiment in Solid State Chemistry.

    Science.gov (United States)

    Ebisuzaki, Y.; Sanborn, W. B.

    1985-01-01

    Oxidation kinetics in metals and the role defects play in diffusion-controlled reactions are discussed as background for a junior/senior-level experiment in the physical or inorganic chemistry laboratory. Procedures used and typical data obtained are provided for the experiment. (JN)

  10. A comparison of copper and acid site zeolites for the production of nitric oxide for biomedical applications.

    Science.gov (United States)

    Russell, Samantha E; González Carballo, Juan María; Orellana-Tavra, Claudia; Fairen-Jimenez, David; Morris, Russell E

    2017-03-21

    Copper-exchanged and acidic zeolites are shown to produce nitric oxide (NO) from a nitrite source in biologically active (nanomolar) concentrations. Four zeolites were studied; mordenite, ferrierite, ZSM-5 and SSZ-13, which had varying pore size, channel systems and Si/Al ratios. ZSM-5 and SSZ-13 produced the highest amounts of NO in both the copper and acid form. The high activity and regeneration of the copper active sites makes them good candidates for long-term NO production. Initial cytotoxicity tests have shown at least one of the copper zeolites (Cu-SSZ-13) to be biocompatible, highlighting the potential usage within biomedical applications.

  11. Real-time oxide evolution of copper protected by graphene and boron nitride barriers

    DEFF Research Database (Denmark)

    Galbiati, Miriam; Stoot, Adam Carsten; Mackenzie, David

    2017-01-01

    Applying protective or barrier layers to isolate a target item from the environment is a common approach to prevent or delay its degradation. The impermeability of two-dimensional materials such as graphene and hexagonal boron nitride (hBN) has generated a great deal of interest in corrosion...... and material science. Owing to their different electronic properties (graphene is a semimetal, whereas hBN is a wide-bandgap insulator), their protection behaviour is distinctly different. Here we investigate the performance of graphene and hBN as barrier coatings applied on copper substrates through a real......-time study in two different oxidative conditions. Our findings show that the evolution of the copper oxidation is remarkably different for the two coating materials....

  12. Influence of oxygen partial pressure on the metastable copper oxide thin films

    Science.gov (United States)

    Geçici, Birol; Korkmaz, Şadan; Özen, Soner; Şenay, Volkan; Pat, Suat

    2016-12-01

    Paramelaconite (Cu4O3) is a metastable copper oxide. Metastable copper oxide thin films were deposited on glass substrates by reactive RF magnetron sputtering in argon (Ar) and oxygen (O2) gas mixture atmospheres. Ar/O2 gas ratios in the sputtering ambient were chosen as 1/1 and 1/9. The surface and optical properties were determined by X-ray diffractometer (XRD), atomic force microscope (AFM) and UV-Vis spectrophotometer. The XRD patterns of the samples exhibited single strong diffraction peaks at 35.39∘ and 35.49∘, corresponding to the (202) peak of Cu4O3. The mean thickness values were measured as 100 nm and 80 nm for the films deposited at 1/1 and 1/9 Ar/O2 gas ratios, respectively. The samples showed low transmittance and high absorbance in the high frequency region.

  13. Fabrication of copper oxide-coated hollow waveguides for CO2 laser radiation.

    Science.gov (United States)

    Matsuura, Y; Miura, D; Miyagi, M

    1999-03-20

    Hollow fibers for transmitting CO(2) laser light were fabricated by the chemical vapor deposition (CVD) method. A dielectric film of copper oxide (Cu(2)O) was deposited upon the inside of a Ag-coated glass capillary by use of a metal acetylacetonate as the precursor. The waveguide, which was coated with Cu(2)O and had a bore diameter of 700 microm, showed a loss of 0.9 dB/m for CO(2) laser light. The Cu(2)O film deposited by CVD had high chemical and heat resistivity. Therefore a hollow fiber coated with copper oxide is suitable for high-power laser applications in a severe environment.

  14. Real-time oxide evolution of copper protected by graphene and boron nitride barriers

    Science.gov (United States)

    Galbiati, M.; Stoot, A. C.; MacKenzie, D. M. A.; Bøggild, P.; Camilli, L.

    2017-01-01

    Applying protective or barrier layers to isolate a target item from the environment is a common approach to prevent or delay its degradation. The impermeability of two-dimensional materials such as graphene and hexagonal boron nitride (hBN) has generated a great deal of interest in corrosion and material science. Owing to their different electronic properties (graphene is a semimetal, whereas hBN is a wide-bandgap insulator), their protection behaviour is distinctly different. Here we investigate the performance of graphene and hBN as barrier coatings applied on copper substrates through a real-time study in two different oxidative conditions. Our findings show that the evolution of the copper oxidation is remarkably different for the two coating materials.

  15. Increasing Thermal Conductivity of a Heat Exchanger Using Copper Oxide Nano Fluids & Ethylene Glycol

    Directory of Open Access Journals (Sweden)

    B. Meganathan M.E

    2016-04-01

    Full Text Available A Nano fluid is the evolving concept which is very rarely used in the many core industries. Nano fluids have found a great application in heat exchangers by increasing the thermal conductivity. We have aimed to increasing the heat transfer co-efficient by using copper oxide Nano fluid. The Nano particles are formed by using precipitation method and their fluids are formed by adding surfactants to the base fluid. The comparative study on the Heat exchanger is made by using the CuO Nano Fluid and Hot water. The analysis and the results shows that the overall heat transfer rate increases when subjected to Nano Fluids. The ethylene glycol fluid used along with copper oxide Nano fluid will offer resistance to fouling.

  16. The effect of HDL-bound and free PON1 on copper-induced LDL oxidation.

    Science.gov (United States)

    Bayrak, Ahmet; Bayrak, Tülin; Bodur, Ebru; Kılınç, Kamer; Demirpençe, Ediz

    2016-09-25

    Oxidative modification of LDL plays an important role in the development of atherosclerosis. High-density lipoprotein (HDL) confers protection against atherosclerosis and the antioxidative properties of paraoxonase 1 (PON1) has been suggested to contribute to this effect of HDL. The PON1 exist in two major polymorphic forms (Q and R), which regulate the concentration and activity of the enzyme and alter its ability to prevent lipid oxidation. However, the association of Q192R polymorphism with PON1's capacity to protect against LDL lipoperoxidation is controversial. The aim of this study was to evaluate the effects of the purified PON1 Q192R and the partially purified HDL-bound PON1 Q192R isoenzymes (HDL-PON1 Q192R) on LDL oxidation, with respect to their arylesterase/homocysteine thiolactonase (HTLase) activities. Cupric ion-induced LDL oxidation was reduced up to 48% by purified PON1 Q192, but only 33% by an equivalent activity of PON1 R192. HDL-PON1 Q192 isoenzyme caused a 65% reduction, whereas HDL-PON1 R192 isoenzyme caused only 46% reduction in copper ion-induced LDL oxidation. These findings reflect the fact that PON1 Q and PON1 R allozymes may have different protective characteristics against LDL oxidation. The protection against LDL oxidation provided by HDL-PON1 Q192R isoenzymes is more prominent than the purified soluble enzymes. Inhibition of the Ca(+2)-dependent PON1 Q192R arylesterase/HTLase by the metal chelator EDTA, did not alter PON1's ability to inhibit LDL oxidation. These studies indicate that the active site involvement of the purified enzyme is not similar to the HDL-bound one, in terms of both PON1 arylesterase/HTLase activity and the protection of LDL from copper ion-induced oxidation. Moreover, PON1's ability to protect LDL from oxidation does not seem to require calcium.

  17. Thermal chemistry of copper acetamidinate atomic layer deposition precursors on silicon oxide surfaces studied by XPS

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Yunxi; Zaera, Francisco, E-mail: zaera@ucr.edu [Department of Chemistry, University of California, Riverside, California 92521 (United States)

    2016-01-15

    The thermal surface chemistry of copper(I)-N,N′-di-sec-butylacetamidinate, [Cu({sup s}Bu-amd)]{sub 2}, a metalorganic complex recently proposed for the chemical-based deposition of copper films, has been characterized on SiO{sub 2} films under ultrahigh vacuum conditions by x-ray photoelectron spectroscopy (XPS). Initial adsorption at cryogenic temperatures results in the oxidation of the copper centers with Cu 2p{sub 3/2} XPS binding energies close to those seen for a +2 oxidation state, an observation that the authors interpret as the result of the additional coordination of oxygen atoms from the surface to the Cu atoms of the molecular acetamidinate dimer. Either heating to 300 K or dosing the precursor directly at that temperature leads to the loss of one of its two ligands, presumably via hydrogenation/protonation with a hydrogen/proton from a silanol group, or following a similar reaction on a defect site. By approximately 500 K the Cu 2p{sub 3/2}, C 1s, and N 1s XPS data suggest that the remaining acetamidinate ligand is displaced from the copper center and bonds to the silicon oxide directly, after which temperatures above 900 K need to be reached to promote further (and only partial) decomposition of those organic moieties. It was also shown that the uptake of the Cu precursor is self-limiting at either 300 or 500 K, although the initial chemistry is somewhat different at the two temperatures, and that the nature of the substrate also defines reactivity, with the thin native silicon oxide layer always present on Si(100) surfaces being less reactive than thicker films grown by evaporation, presumably because of the lower density of surface nucleation sites.

  18. Analysis of peel strength of consisting of an aluminum sheet, anodic aluminum oxide and a copper foil laminate composite

    Science.gov (United States)

    Shin, Hyeong-Won; Lee, Hyo-Soo; Jung, Seung-Boo

    2017-01-01

    Laminate composites consisting of an aluminum sheet, anodic aluminum oxide, and copper foil have been used as heat-spreader materials for high-power light-emitting diodes (LEDs). These composites are comparable to the conventional structure comprising an aluminum sheet, epoxy adhesives, and copper foil. The peel strength between the copper foil and anodic aluminum oxide should be more than 1.0 kgf/cm in order to be applied in high-power LED products. We investigated the effect of the anodic aluminum oxide morphology and heat-treatment conditions on the peel strength of the composites. We formed an anodic aluminum oxide layer on a 99.999% pure aluminum sheet using electrochemical anodization. A Ti/Cu seed layer was formed using the sputtering direct bonding copper process in order to form a copper circuit layer on the anodic aluminum oxide layer by electroplating. The developed heat spreader, composed of an aluminum layer, anodic aluminum oxide, and a copper circuit layer, showed peel strengths ranging from 1.05 to 3.45 kgf/cm, which is very suitable for high-power LED applications.

  19. Placental oxidative stress and decreased global DNA methylation are corrected by copper in the Cohen diabetic rat

    Energy Technology Data Exchange (ETDEWEB)

    Ergaz, Zivanit, E-mail: zivanit@hadassah.org.il [Hebrew University Hadassah Medical School, Jerusalem (Israel); Guillemin, Claire [Department of Pharmacology and Therapeutics, McGill University, Montreal (Canada); Neeman-azulay, Meytal; Weinstein-Fudim, Liza [Hebrew University Hadassah Medical School, Jerusalem (Israel); Stodgell, Christopher J.; Miller, Richard K. [Department of Obstetrics and Gynecology, University of Rochester, Rochester (United States); Szyf, Moshe [Department of Pharmacology and Therapeutics, McGill University, Montreal (Canada); Ornoy, Asher [Hebrew University Hadassah Medical School, Jerusalem (Israel)

    2014-05-01

    Fetal Growth Restriction (FGR) is a leading cause for long term morbidity. The Cohen diabetic sensitive rats (CDs), originating from Wistar, develop overt diabetes when fed high sucrose low copper diet (HSD) while the original outbred Sabra strain do not. HSD induced FGR and fetal oxidative stress, more prominent in the CDs, that was alleviated more effectively by copper than by the anti-oxidant vitamins C and E. Our aim was to evaluate the impact of copper or the anti-oxidant Tempol on placental size, protein content, oxidative stress, apoptosis and total DNA methylation. Animals were mated following one month of HSD or regular chow diet and supplemented throughout pregnancy with either 0, 1 or 2 ppm of copper sulfate or Tempol in their drinking water. Placental weight on the 21st day of pregnancy decreased in dams fed HSD and improved upon copper supplementation. Placental/fetal weight ratio increased among the CDs. Protein content decreased in Sabra but increased in CDs fed HSD. Oxidative stress biochemical markers improved upon copper supplementation; immunohistochemistry for oxidative stress markers was similar between strains and diets. Caspase 3 was positive in more placentae of dams fed HSD than those fed RD. Placental global DNA methylation was decreased only among the CDs dams fed HSD. We conclude that FGR in this model is associated with smaller placentae, reduced DNA placental methylation, and increased oxidative stress that normalized with copper supplementation. DNA hypomethylation makes our model a unique method for investigating genes associated with growth, oxidative stress, hypoxia and copper. - Highlights: • Sensitive Cohen diabetic rats (CDs) had small placentae and growth restricted fetuses. • CDs dams fed high sucrose low copper diet had placental global DNA hypomethylation. • Caspase 3 was positive in more placentae of dams fed HSD than those fed RD. • Oxidative stress parameters improved by Tempol and resolved by copper

  20. Dependency of the band gap of electrodeposited Copper oxide thin films on the concentration of copper sulfate (CuSO4.5H2O) and pH in bath solution for photovoltaic applications

    KAUST Repository

    Islam, Md. Anisul

    2016-03-10

    In this study, Copper oxide thin films were deposited on copper plate by electrodeposition process in an electrolytic bath containing CuSO4.5H2O, 3M lactic acid and NaOH. Copper oxide films were electrodeposited at different pH and different concentration of CuSO4.5H2O and the optical band gap was determined from their absorption spectrum which was obtained from UV-Vis absorption spectroscopy. It was found that copper oxide films which were deposited at low concentration of CuSO4.5H2O have higher band gap than those deposited at higher bath concentration. The band gap of copper oxide films also significantly changes with pH of the bath solution. It was also observed that with the increase of the pH of bath solution band gap of copper oxide film decreased. © 2015 IEEE.

  1. Fabrication of copper-ceria hybrid composite electrode for electrocatalytic oxidation of methanol

    Institute of Scientific and Technical Information of China (English)

    LI Jing; LI Lijun; YU Yuting; GAO Yanfang; LIU Jinrong

    2013-01-01

    Copper-ceria hybrid composite electrode prepared by electrochemical co-deposition was examined for their redox process and electrocatalytic activities towards the oxidation of methanol.The structure and morphology of electrodes were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM),respectively.XRD pattern of the copper-ceria hybrid composite electrode exhibited some diffraction peaks of CeO2 and SEM micrograph showed that it was composed of grains and flakes.The energy dispersive spectroscopy (EDS) spectrum of this area also showed the presence of cerium.Cyclic voltammetry,CO stripping and chronoamperometry were performed to characterize electrocatalytic property of the prepared samples.In cyclic voltammetry studies and chronoamperometry,copper-ceria hybrid composite electrode towards oxidation of methanol showed a significantly higher response and long term stability.CO stripping results indicated the facile removal of intermediate poisoning species CO in the presence of CeO2,which was helpful for CO and methanol electro-oxidation.

  2. Microbial Ecology Assessment of Mixed Copper Oxide/Sulfide Dump Leach Operation

    Energy Technology Data Exchange (ETDEWEB)

    Bruhn, D F; Thompson, D N; Noah, K S

    1999-06-01

    Microbial consortia composed of complex mixtures of autotrophic and heterotrophic bacteria are responsible for the dissolution of metals from sulfide minerals. Thus, an efficient copper bioleaching operation depends on the microbial ecology of the system. A microbial ecology study of a mixed oxide/sulfide copper leaching operation was conducted using an "overlay" plating technique to differentiate and identify various bacterial consortium members of the genera Thiobacillus, Leptospirillum, Ferromicrobium, and Acidiphilium. Two temperatures (30C and 45C) were used to select for mesophilic and moderately thermophilic bacteria. Cell numbers varied from 0-106 cells/g dry ore, depending on the sample location and depth. After acid curing for oxide leaching, no viable bacteria were recovered, although inoculation of cells from raffinate re-established a microbial population after three months. Due to the low pH of the operation, very few non-iron-oxidizing acidophilic heterotrophs were recovered. Moderate thermophiles were isolated from the ore samples. Pregnant liquor solutions (PLS) and raffinate both contained a diversity of bacteria. In addition, an intermittently applied waste stream that contained high levels of arsenic and fluoride was tested for toxicity. Twenty vol% waste stream in PLS killed 100% of the cells in 48 hours, indicating substantial toxicity and/or growth inhibition. The data indicate that bacteria populations can recover after acid curing, and that application of the waste stream to the dump should be avoided. Monitoring the microbial ecology of the leaching operation provided significant information that improved copper recovery.

  3. Development of regenerable sorbents for the Copper Oxide Bed Regenerable Absorber (COBRA) process

    Energy Technology Data Exchange (ETDEWEB)

    Abbasian, J.; Slimane, R.B. [Inst. of Gas Technology, Des Plaines, IL (United States); Carty, R.H. [Illinois Clean Coal Inst., Carterville, IL (United States)

    1999-07-01

    In the clean air act amendments (CAAA) of 1990, legislation was introduced requiring electric utilities to adopt available technology for removal of pollutant gases (mainly SO{sub 2} and NO{sub x}) and particulates from coal combustion flue gases so that the increased use of coal is done in an environmentally acceptable manner. The copper oxide process has been selected as one of the most promising emerging technologies for SO{sub 2} and NO{sub x} removal from flue gases in the Combustion 2000 program of the U.S. Department of Energy. In particular, the development of the Copper Oxide Bed Regenerable Absorber (COBRA) process, which is based on moving-bed cross-flow reactor design for the combined removal of SO{sub 2}, NO{sub x}, and particulates, has been pursued in conjunction with the use of Illinois coal. This ongoing study has been directed towards the evaluation of the ALCOA copper oxide sorbent currently being utilized in the demonstration of the COBRA process, to identify areas of improvement, and to develop and implement a strategy for preparing improved sorbents. The targeted areas of sorbent improvement include higher reactivity, higher theoretical sulfur capacity, lower regeneration temperature, and better attrition resistance. In this paper, the results obtained to-date from tests carried out for the evaluation of the commercial sorbent for SO2 removal from simulated flue gases, its regenerability, and its effectiveness with repeated use are presented and discussed. (orig.)

  4. Efficient Copper-bisisoquinoline-based Catalysts for Selective Aerobic Oxidation of Alcohols to Aldehydes and Ketones

    Directory of Open Access Journals (Sweden)

    Zaher M. A. Judeh

    2007-06-01

    Full Text Available The selective oxidation of alcohols with molecular oxygen was efficientlycompleted in high conversion and selectivity using copper-bisisoquinoline-based catalystsunder mild reaction condition. The effects of various parameters such as reactiontemperature, reaction time, oxidant, ligands, etc, were studied. Solvent effect has been aswell studied in ionic liquids [bmim]PF6, [omim]BF4 and [hmim]BF4, comparing totraditional volatile organic solvent. The use of ionic liquids was found to enhance thecatalytic properties of the catalysts used.

  5. ESR, zero-field splitting, and magnetic exchange of exchange-coupled copper(II)-copper(II) pairs in copper(II) tetraphenylporphyrin N-oxide.

    Science.gov (United States)

    Yang, Fuh-An; Guo, Chih-Wei; Chen, Yao-Jung; Chen, Jyh-Horung; Wang, Shin-Shin; Tung, Jo-Yu; Hwang, Lian-Pin; Elango, Shanmugam

    2007-01-22

    The crystal structures of the dimer form of copper(II) tetraphenylporphyrin N-oxide, [Cu(tpp-N-O)]2 (3-dimer), and zinc(II) tetraphenylporphyrin N-oxide, [Zn(tpp-N-O)]2 (4-dimer), were established. The geometry at the copper ion in 3-dimer is essentially square-pyramidal with one oxygen bridge [O(1A)] occupying the apical site, giving a much larger Cu-O bond distance compared to those at the basal plane. The respective Cu...Cu distance and Cu-O-Cu angle in the core of 3-dimer are 3.987(4) A and 148.1(3) degrees. The Zn(1) atom in 4-dimer has a distorted square-pyramidal [4 + 1] coordination geometry that gives a tau-value of 0.19. The respective Zn...Zn distance and Zn-O-Zn angle in the dimeric unit of 4-dimer are 4.025(3) A and 148.1(2) degrees. The 3-dimer displays axial X-band electron paramagnetic resonance spectral features (Es = 0) in the powder state at 4 K, giving g parallel = 2.51 (A(parallel,s) = (9.6 +/- 0.2) x 10-3 cm(-1)) and g(perpendicular) = 2.11 and in the same powder state at 293 K giving Ds = 0.0731 cm(-1) (as derived from DeltaMs = 1 lines) or 0.0743 cm(-1) (as derived from the DeltaMs = 2 lines). In addition, 3-dimer displays a DeltaMs = 2 transition at g = 4.17 indicating the presence of spin-exchange coupling. The anisotropic exchange interaction (Ds(ex)= 0.132 cm(-1)) gives the main contribution to Ds in 3-dimer. The theoretical fit of the susceptibility and effective magnetic moment data of 3-dimer in the temperature range of 5-300 K gives 2J = 68 cm(-1), g = 2.01, p = 0.06, and a temperature-independent paramagnetism of 10(-6) cm3 mol(-1). This magnetic susceptibility data indicates that the copper(II) ions in 3-dimer are coupled in a ferromagnetic manner with the ground-spin triplet stabilized by 68 cm(-1) with regard to the singlet.

  6. Influence of thermal annealing on microstructural, morphological, optical properties and surface electronic structure of copper oxide thin films

    Energy Technology Data Exchange (ETDEWEB)

    Akgul, Funda Aksoy, E-mail: fundaaksoy01@gmail.com [Department of Physics, Nigde University, 51240 Nigde (Turkey); Center for Solar Energy Research and Applications, Middle East Technical University, 06800 Ankara (Turkey); Akgul, Guvenc, E-mail: guvencakgul@gmail.com [Bor Vocational School, Nigde University, 51700 Nigde (Turkey); Center for Solar Energy Research and Applications, Middle East Technical University, 06800 Ankara (Turkey); Yildirim, Nurcan [Department of Physics Engineering, Ankara University, 06100 Ankara (Turkey); Department of Metallurgical and Materials Engineering, Middle East Technical University, 06800 Ankara (Turkey); Unalan, Husnu Emrah [Department of Metallurgical and Materials Engineering, Middle East Technical University, 06800 Ankara (Turkey); Center for Solar Energy Research and Applications, Middle East Technical University, 06800 Ankara (Turkey); Turan, Rasit [Department of Physics, Middle East Technical University, 06800 Ankara (Turkey); Center for Solar Energy Research and Applications, Middle East Technical University, 06800 Ankara (Turkey)

    2014-10-15

    In this study, effect of the post-deposition thermal annealing on copper oxide thin films has been systemically investigated. The copper oxide thin films were chemically deposited on glass substrates by spin-coating. Samples were annealed in air at atmospheric pressure and at different temperatures ranging from 200 to 600°C. The microstructural, morphological, optical properties and surface electronic structure of the thin films have been studied by diagnostic techniques such as X-ray diffraction (XRD), Raman spectroscopy, ultraviolet–visible (UV–VIS) absorption spectroscopy, field emission scanning electron microscopy (FESEM), atomic force microscopy (AFM), and X-ray photoelectron spectroscopy (XPS). The thickness of the films was about 520 nm. Crystallinity and grain size was found to improve with annealing temperature. The optical bandgap of the samples was found to be in between 1.93 and 2.08 eV. Cupric oxide (CuO), cuprous oxide (Cu{sub 2}O) and copper hydroxide (Cu(OH){sub 2}) phases were observed on the surface of as-deposited and 600 °C annealed thin films and relative concentrations of these three phases were found to depend on annealing temperature. A complete characterization reported herein allowed us to better understand the surface properties of copper oxide thin films which could then be used as active layers in optoelectronic devices such as solar cells and photodetectors. - Highlights: • Effect of post-deposition annealing on copper oxide thin films was investigated. • Structural, optical, and electronic properties of the thin films were determined. • Oxidation states of copper oxide thin films were confirmed by XPS analysis. • Mixed phases of CuO and Cu{sub 2}O were found to coexist in copper oxide thin films.

  7. Oxidative damage to rat brain in iron and copper overloads.

    Science.gov (United States)

    Musacco-Sebio, Rosario; Ferrarotti, Nidia; Saporito-Magriñá, Christian; Semprine, Jimena; Fuda, Julián; Torti, Horacio; Boveris, Alberto; Repetto, Marisa G

    2014-08-01

    This study reports on the acute brain toxicity of Fe and Cu in male Sprague-Dawley rats (200 g) that received 0 to 60 mg kg(-1) (ip) FeCl2 or CuSO4. Brain metal contents and time-responses were determined for rat survival, in situ brain chemiluminescence and phospholipid and protein oxidation products. Metal doses hyperbolically defined brain metal content. Rat survival was 91% and 60% after Fe and Cu overloads. Brain metal content increased from 35 to 114 μg of Fe per g and from 3.6 to 34 μg of Cu per g. Brain chemiluminescence (10 cps cm(-2)) increased 3 and 2 times after Fe and Cu overloads, with half maximal responses (C50) of 38 μg of Fe per g of brain and 15 μg of Cu per g of brain, and with half time responses (t1/2) of 12 h for Fe and 20 h for Cu. Phospholipid peroxidation increased by 56% and 31% with C50 of 40 μg of Fe per g and 20 μg of Cu per g and with t1/2 of 9 h and 14 h. Protein oxidation increased by 45% for Fe with a C50 of 40 μg of Fe per g and 18% for Cu with a C50 of 10 μg of Cu per g and a t1/2 of 12 h for both metals. Fe and Cu brain toxicities are likely mediated by Haber-Weiss type HO˙ formation with subsequent oxidative damage.

  8. Effects of oxidation on redox and cytotoxic properties of copper complex of Aβ1-16 peptide.

    Science.gov (United States)

    Ramteke, S N; Walke, G R; Joshi, B N; Rapole, S; Kulkarni, P P

    2014-12-01

    The effect of oxidation on redox and cytotoxic properties of copper complex of amyloid beta (Aβ) peptide was studied by gamma radiolysis. The oxidation of Aβ1-16 and Aβ1-16/Cu(II) complex was carried out using hydroxyl ((•)OH) radicals produced by gamma radiolysis and the products were analyzed using mass spectrometry. The presence of Cu(II) was found to enhance the oxidation of Aβ1-16 peptide. The oxidation of residues Asp1, His6, and His13 was enhanced due to their involvement in copper binding. The oxidation of His residues of Aβ1-16 peptide, which are chiefly responsible for copper binding, resulted in altered redox properties and subsequently in higher cytotoxicity of the Aβ1-16 peptide in SH-SY5Y cells.

  9. Auger electron spectroscopy study of initial stages of oxidation in a copper - 19.6-atomic-percent-aluminum alloy

    Science.gov (United States)

    Ferrante, J.

    1973-01-01

    Auger electron spectroscopy was used to examine the initial stages of oxidation of a polycrystalline copper - 19.6 a/o-aluminum alloy. The growth of the 55-eV aluminum oxide peak and the decay of the 59-, 62-, and 937-eV copper peaks were examined as functions of temperature, exposure, and pressure. Pressures ranged from 1x10 to the minus 7th power to 0.0005 torr of O2. Temperatures ranged from room temperature to 700 C. A completely aluminum oxide surface layer was obtained in all cases. Complete disappearance of the underlying 937-eV copper peak was obtained by heating at 700 C in O2 at 0.0005 torr for 1 hr. Temperature studies indicated that thermally activated diffusion was important to the oxidation studies. The initial stages of oxidation followed a logarithmic growth curve.

  10. Biosynthesis, characterization and antimicrobial activity of copper oxide nanoparticles (CONPs) produced using brown alga extract ( Bifurcaria bifurcata)

    Science.gov (United States)

    Abboud, Y.; Saffaj, T.; Chagraoui, A.; El Bouari, A.; Brouzi, K.; Tanane, O.; Ihssane, B.

    2014-06-01

    Recently, biosynthesis of nanoparticles has attracted scientists' attention because of the necessity to develop new clean, cost-effective and efficient synthesis techniques. In particular, metal oxide nanoparticles are receiving increasing attention in a large variety of applications. However, up to now, the reports on the biopreparation and characterization of nanocrystalline copper oxide are relatively few compared to some other metal oxides. In this paper, we report for the first time the use of brown alga ( Bifurcaria bifurcata) in the biosynthesis of copper oxide nanoparticles of dimensions 5-45 nm. The synthesized nanomaterial is characterized by UV-visible absorption spectroscopy and Fourier transform infrared spectrum analysis. X-ray diffraction confirms the formation and the crystalline nature of copper oxide nanomaterial. Further, these nanoparticles were found to exhibit high antibacterial activity against two different strains of bacteria Enterobacter aerogenes (Gram negative) and Staphylococcus aureus (Gram positive).

  11. A comparison of the kinetics of low-density lipoprotein oxidation initiated by copper or by azobis (2-amidinopropane).

    Science.gov (United States)

    Thomas, M J; Chen, Q; Franklin, C; Rudel, L L

    1997-01-01

    This article describes the kinetics of low density lipoprotein (LDL) oxidation catalyzed by azobis (2-amidinopropane) dihydrochloride, ABAP, or by copper. The LDLs were isolated from nonhuman primates fed diets enriched in one of three types of fatty acids: saturated fatty acids, monounsaturated fatty acids, predominantly, oleic acid, or polyunsaturated fatty acids, predominantly linoleic acid. Oxidation was followed by monitoring the formation of conjugated diene hydroperoxides from polyunsaturated fatty acids (PUFA). For both copper and ABAP-initiated oxidation, the rate of LDL oxidation depended on the concentrations of initiator, PUFA, and LDL. Except for the dependence on PUFA concentration the rate of LDL oxidation was not directly influenced by the fatty acid composition of the LDL particle. The two initiators had very different dependence on initiator concentration. Because LDL particles are essentially small, lipid-rich droplets, the kinetic descriptions of LDL oxidation assumed: (1), that there was only one chain per particle, and (2) that the radical chain was terminated when a second radical either entered or was formed in the particle. When two LDL samples having very different lag times were mixed, the oxidation profile was bimodal. This finding demonstrated that the oxidation of native LDL particles was independent of the oxidation state of the other native LDL particles in solution, i.e., LDL particles do not rapidly exchange radicals, for example, hydroperoxyl radicals. Oxidation initiated by ABAP was proportional to [ABAP]0.5, suggesting that hydroperoxyl radical recombination between the lipid hydroperoxyl radical and the ABAP-hydroperoxyl radical was the chain-terminating step. The reciprocal of the rate of copper oxidation was linearly related to the reciprocal copper concentration, demonstrating that the binding of copper to LDL was necessary to initiate oxidation. This binding constant showed considerable variability among LDL samples. The

  12. Refractory oxides containing aluminium and barium Oxidos refratários contendo alumínio e bário

    Directory of Open Access Journals (Sweden)

    T. J. Davies

    1998-10-01

    Full Text Available Oxides containing aluminium and barium, optionally with chromium, are refractory with several possible industrial uses. A gel precursor of an oxide having the formula BaO.n(Al2xCr2yO3, where 1Oxidos contendo alumínio e bário, opcionalmente com crômio, são refratários com vários possíveis usos industriais. Foi preparado um gel precursor de um óxido de formula BaO.n(Al2xCr2yO3, com 1

  13. Strengthening effect of reduced graphene oxide in steel clad copper rod

    Science.gov (United States)

    Gao, Haitao; Liu, Xianghua; Ai, Zhengrong; Zhang, Shilong; Liu, Lizhong

    2016-11-01

    Reduced graphene oxide has been extensively used as reinforcing agent owing to their high mechanical properties. In this work, an attempt is made to synthesize steel clad copper rod reinforced with reduced graphene oxide (RGO) by the combination of powder-in-tube and intermediate annealing (IA). Experiments show that the Fe/RGO/Cu composites manifest better mechanical properties than Fe/Cu composites. In the process of groove rolling, RGO acts as effective binder, which can greatly improve the adhesive strength of copper scrap and two metals. Moreover, the strengthening effect of RGO is tightly related to its dispersion state. The RGO diffuses much more uniformly on the metallic substrate under the IA temperature of 1100 °C than 800 °C, which can be characterized by less deformation twins appearing at the interface of core copper and the formation of Fe-RGO-Cu transition belt at the bonding interface. In this case, the peak hardness, tensile strength and shear strength of Fe/RGO/Cu composites are 52 HV, 125 and 41 MPa higher than those of the Fe/Cu composites, respectively. The difference of strengthening effect and mechanisms of RGO under 800 and 1100 °C of IA are systematically discussed by referring to experimental results.

  14. Static electricity powered copper oxide nanowire microbicidal electroporation for water disinfection.

    Science.gov (United States)

    Liu, Chong; Xie, Xing; Zhao, Wenting; Yao, Jie; Kong, Desheng; Boehm, Alexandria B; Cui, Yi

    2014-10-08

    Safe water scarcity occurs mostly in developing regions that also suffer from energy shortages and infrastructure deficiencies. Low-cost and energy-efficient water disinfection methods have the potential to make great impacts on people in these regions. At the present time, most water disinfection methods being promoted to households in developing countries are aqueous chemical-reaction-based or filtration-based. Incorporating nanomaterials into these existing disinfection methods could improve the performance; however, the high cost of material synthesis and recovery as well as fouling and slow treatment speed is still limiting their application. Here, we demonstrate a novel flow device that enables fast water disinfection using one-dimensional copper oxide nanowire (CuONW) assisted electroporation powered by static electricity. Electroporation relies on a strong electric field to break down microorganism membranes and only consumes a very small amount of energy. Static electricity as the power source can be generated by an individual person's motion in a facile and low-cost manner, which ensures its application anywhere in the world. The CuONWs used were synthesized through a scalable one-step air oxidation of low-cost copper mesh. With a single filtration, we achieved complete disinfection of bacteria and viruses in both raw tap and lake water with a high flow rate of 3000 L/(h·m(2)), equivalent to only 1 s of contact time. Copper leaching from the nanowire mesh was minimal.

  15. A structure study of copper oxide for monolayer dispersion of anatase supported

    Institute of Scientific and Technical Information of China (English)

    Fen-LanZi; Xiao-haiCai; 等

    2001-01-01

    The monolayer dispersion of copper oxide on the surface of anatase and its effect on the properties have been studied by X-ray photoelectron spectroscopy(XPS) and X-ray extended absorption fine structure(EXAFS).XPS results give an utmost dispersion capacity of 7.2mg/gTiO2.Strong interactions between copper oxide and anatase can be seen from EXAFS results.The structure of the supported CuO species is strongly dependent on the amount of CuO loading.When the content of CuO loading is below the utmost dispersion capacity,the surface of CuO/TiO2 is dominated by the highly dispersed CuO species having no-Cu-O-Cu-chains,The copper ion is located in an octahedral coordination environment,and the Cu-O-coordination distance is much longer than that in pure crystalline CuO,when CuO loading is exceeds the utmost dispersion capacity,crystalline CuO is formed on the surface of CuO/TiO2,From the result of the sturcture study,it is Cu-O octahedral Coordination and coordination distance change in comparation with pure crystalline Cuo on the surface CuO/TiO2 that have catalytic activity.

  16. Catalytic activity of copper (II) oxide prepared via ultrasound assisted Fenton-like reaction.

    Science.gov (United States)

    Angı, Arzu; Sanlı, Deniz; Erkey, Can; Birer, Özgür

    2014-03-01

    Copper (II) oxide nanoparticles were synthesized in an ultrasound assisted Fenton-like aqueous reaction between copper (II) cations and hydrogen peroxide. The reactions were initiated with the degradation of hydrogen peroxide by ultrasound induced cavitations at 0 °C or 5 °C and subsequent generation of the OH radical. The radical was converted into hydroxide anion in Fenton-like reactions and copper hydroxides were readily converted to oxides without the need of post annealing or aging of the samples. The products were characterized with X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), and Brunauer-Emmett-Teller (BET) surface area analysis. Catalytic activity of the nanoparticles for the hydrogen peroxide assisted degradation of polycyclic aromatic hydrocarbons in the dark was tested by UV-visible spectroscopy with methylene blue as the model compound. The rate of the reaction was first order, however the rate constants changed after the initial hour. Initial rate constants as high as 0.030 min(-1) were associated with the high values of surface area, i.e. 70 m(2)/g. Annealing of the products at 150 °C under vacuum resulted in the decrease of the catalytic activity, underlying the significance of the cavitation induced surface defects in the catalytic process.

  17. Selective catalytic oxidation of ammonia over copper-cerium composite catalyst.

    Science.gov (United States)

    Lou, Jie-Chung; Hung, Chang-Mao; Yang, Sheng-Fu

    2004-01-01

    This work considers the oxidation of ammonia (NH3) by selective catalytic oxidation (SCO) over a copper (Cu)-cerium (Ce) composite catalyst at temperatures between 150 and 400 degrees C. A Cu-Ce composite catalyst was prepared by coprecipitation of copper nitrate and cerium nitrate at various molar concentrations. This study also considers how the concentration of influent NH3 (500-1000 ppm), the space velocity (72,000-110,000 hr(-1)), the relative humidity (12-18%) and the concentration of oxygen (4-20%) affect the operational stability and the capacity for removing NH3. The effects of the O2 and NH3 content of the carrier gas on the catalyst's reaction rate also are considered. The experimental results show that the extent of conversion of NH3 by SCO in the presence of the Cu-Ce composite catalyst was a function of the molar ratio. The NH3 was removed by oxidation in the absence of Cu-Ce composite catalyst, and approximately 99.2% NH3 reduction was achieved during catalytic oxidation over the Cu-Ce (6:4, molar/molar) catalyst at 400 degrees C with an O2 content of 4%. Moreover, the effect of the initial concentration and reaction temperature on the removal of NH3 in the gaseous phase was also monitored at a gas hourly space velocity of less than 92,000 hr(-1).

  18. Strengthening mechanism of steels treated by barium-bearing alloys

    Institute of Scientific and Technical Information of China (English)

    Zhouhua Jiang; Yang Liu

    2008-01-01

    The deoxidation, desulfurization, dephosphorization, microstructure, and mechanical properties of steels treated by barium-bearing alloys were investigated in laboratory and by industrial tests. The results show that barium takes part in the deoxidation reaction at the beginning of the experiments, generating oxide and sulfide compound inclusions, which easily float up from the molten steel, leading to the rapid reduction of total oxygen content to a very low level. The desulfurization and dephosphorization capabilities of calcium-bearing alloys increase with the addition of barium. The results of OM and SEM observations and mechanical property tests show that the structure of the steel treated by barium-bearing alloys is refined remarkably, the iamellar thickness of pearlitic structure decreases, and the pearlitic morphology shows clustering distribution. Less barium exists in steel substrate and the enrichment of barium-bearing precipitated phase mostly occurs in grain boundary and phase boundary, which can prevent the movement of grain boundary and dislocation during the heat treatment and the deformation processes. Therefore, the strength and toughness of barium-treated steels are improved by the effect of grain-boundary strengthening and nail-prick dislocation.

  19. Plasma Deposition and Characterization of Copper-doped Cobalt Oxide Nanocatalysts

    Directory of Open Access Journals (Sweden)

    Jacek TYCZKOWSKI

    2013-09-01

    Full Text Available A series of pure and copper-doped cobalt oxide films was prepared by plasma-enhanced metalorganic chemical vapor deposition (PEMOCVD. The effect of Cu-doping on the chemical structure and morphology of the deposited films was investigated. Raman and FTIR spectroscopies were used to characterize the chemical structure and morphology of the produced films. The bulk composition and homogeneity of the samples were investigated by energy dispersive X-ray microanalysis (EDX, and X-ray photoelectron spectroscopy (XPS was employed to assess the surface chemical composition of pure and doped materials. The obtained results permit to affirm that the PEMOCVD technique is a simple, versatile and efficient method for providing homogeneous layers of cobalt oxides with a different content of copper. It has been found that pure cobalt oxide films mainly contain Co3O4 in the form of nanoclusters whereas the films doped with Cu are much more complex, and CoOx (also Co3O4, mixed Co-Cu oxides and CuOx nanoclusters are detected in them. Preliminary catalytical tests show that Cu-doped cobalt oxide films allow to initiate catalytic combustion of n-hexane at a lower temperature compared to the pure cobalt oxide (Co3O4 films. From what has been stated above, the plasma-deposited thin films of Cu-doped cobalt oxides pave the way towards a new class of nanomaterials with interesting catalytic properties. DOI: http://dx.doi.org/10.5755/j01.ms.19.3.2320

  20. Methanol oxidation at platinized copper particles prepared by galvanic replacement

    Directory of Open Access Journals (Sweden)

    Ioanna Mintsouli

    2016-04-01

    Full Text Available Bimetallic Pt-Cu particles have been prepared by galvanic replacement of Cu precursor nanoparticles, upon the treatment of the latter with a chloro-platinate acidic solution. The resulting particles, typically a few tens of nm large, were supported on high surface area carbon (Vulcan® XC–72R, Cabot and tested as electrodes. Surface electrochemistry in deaerated acid solutions was similar to that of pure Pt, indicating the existence of a Pt shell (hence the particles are denoted as Pt(Cu. Pt(Cu/C supported catalysts exhibit superior carbon monoxide and methanol oxidation activity with respect to their Pt/C analogues when compared on a per electroactive surface area basis, due to the modification of Pt activity by Cu residing in the particle core. However, as a result of large particle size and agglomeration phenomena, Pt(Cu/C are still inferior to Pt/C when compared on a mass specific activity basis.

  1. Design, testing, fabrication and launch support of a liquid chemical barium release payload (utilizing the liquid fluorine-barium salt/hydrazine system)

    Science.gov (United States)

    Stokes, C. S.; Smith, E. W.; Murphy, W. J.

    1972-01-01

    A payload was designed which included a cryogenic oxidizer tank, a fuel tank, and burner section. Release of 30 lb of chemicals was planned to occur in 2 seconds at the optimum oxidizer to fuel ratio. The chemicals consisted of 17 lb of liquid fluorine oxidizer and 13 lb of hydrazine-barium salt fuel mixture. The fuel mixture was 17% barium chloride, 16% barium nitrate, and 67% hydrazine, and contained 2.6 lb of available barium. Two significant problem areas were resolved during the program: explosive valve development and burner operation. The release payload was flight tested, from Wallops Island, Virginia. The release took place at an altitude of approximately 260 km. The release produced a luminous cloud which expanded very rapidly, disappearing to the human eye in about 20 seconds. Barium ion concentration slowly increased over a wide area of sky until measurements were discontinued at sunrise (about 30 minutes).

  2. Effect of doping rare earth oxide on performance of copper-manganese catalysts for water-gas shift reaction

    Institute of Scientific and Technical Information of China (English)

    何润霞; 姜浩强; 武芳; 智科端; 王娜; 周晨亮; 刘全生

    2014-01-01

    Rare earth-doped copper-manganese mixed oxide catalysts were prepared by coprecipitation and mechanical mixing using copper sulfate, manganese sulfate, and rare-earth oxides REO (REO indicates La2O3, CeO2, Y2O3, or Pr6O11) as raw materials. The samples were characterized by X-ray diffraction (XRD), temperature-programmed reduction (TPR), temperature-programmed reduc-tion of oxidized surfaces (s-TPR), and temperature-programmed desorption (TPD). Catalytic activities were tested for a water-gas shift reaction. Doping rare earth oxides did not alter the crystal structure of the original copper-manganese mixed oxides but changed the interplanar spacing, adsorption performance and reaction performance. Doping with La2O3 enhanced the activity and stability of Cu-Mn mixed oxides because of high copper distribution and fine reduction. Doping with CeO2 and Y2O3 also decreased the reduc-tion temperatures of the samples to different degrees while improving the dispersion of Cu on the surface, thus, catalytic activity was better than that of undoped Cu-Mn sample. The Pr6O11-doped sample was difficult to reduce, the dispersion of surface coppers was lowered, resulting in poor activity.

  3. Fracton pairing mechanism for unconventional superconductors: Self-assembling organic polymers and copper-oxide compounds

    DEFF Research Database (Denmark)

    Milovanov, A.V.; Juul Rasmussen, J.

    2002-01-01

    150 K. We suggest that the marginal ingredient of the high-temperature superconducting phase is provided by fracton coupled holes that condensate in the conducting copper-oxygen planes owing to the intrinsic field-effect-transistor configuration of the cuprate compounds. For the gate......Self-assembling organic polymers and copper-oxide compounds are two classes of unconventional superconductors, whose challenging behavior does not comply with the traditional picture of Bardeen-Cooper-Schrieffer (BCS) superconductivity in regular crystals. In this paper, we propose a theoretical...... model that accounts for the basic superconducting properties of either class of the unconventional materials. These properties are considered as interconnected manifestations of the same phenomenon: We argue that superconductivity occurs in both cases because the charge carriers (i.e., electrons...

  4. Induction of oxidative DNA damage by mesalamine in the presence of copper: a potential mechanism for mesalamine anticancer activity.

    Science.gov (United States)

    Zimmerman, Ryan P; Jia, Zhenquan; Zhu, Hong; Vandjelovic, Nathan; Misra, Hara P; Wang, Jianmin; Li, Yunbo

    2011-02-27

    Mesalamine is the first line pharmacologic intervention for patients with ulcerative colitis, and recent epidemiologic studies have demonstrated a protective association between therapeutic use of the drug and colorectal carcinoma. However, the mechanism by which this protection is afforded has yet to be elucidated. Because copper is found at higher than normal concentrations in neoplastic cell nuclei and is known to interact with phenolic compounds to generate reactive oxygen species, we investigated whether the reaction of mesalamine/copper was able to induce oxidative DNA strand breaks in φX-174 RF I plasmid DNA, and the various components of the mechanism by which the reaction occurred. Plasmid DNA strand breaks were induced by pharmacologically relevant concentrations of mesalamine in the presence of a micromolar concentration of Cu(II), and damage was inhibited by bathocuproinedisulfonic acid (BCS) and catalase. Further, we showed that the reaction of copper with mesalamine consumed molecular oxygen, which was inhibited by BCS. Electron paramagnetic resonance spectral analysis of the reaction of copper/mesalamine indicated the presence of the hydroxyl radical, which was inhibited by both BCS and catalase. This study demonstrates for the first time that through a copper-redox cycling mechanism, the copper-mediated oxidation of mesalamine is a pro-oxidant interaction that generates hydroxyl radicals which may participate in oxidative DNA damage. These results demonstrate a potential mechanism of the anticancer effects of mesalamine in patients with ulcerative colitis.

  5. Spherulitic copper-copper oxide nanostructure-based highly sensitive nonenzymatic glucose sensor.

    Science.gov (United States)

    Das, Gautam; Tran, Thao Quynh Ngan; Yoon, Hyon Hee

    2015-01-01

    In this work, three different spherulitic nanostructures Cu-CuOA, Cu-CuOB, and Cu-CuOC were synthesized in water-in-oil microemulsions by varying the surfactant concentration (30 mM, 40 mM, and 50 mM, respectively). The structural and morphological characteristics of the Cu-CuO nanostructures were investigated by ultraviolet-visible (UV-vis) spectroscopy, X-ray diffraction, scanning electron microscopy, and high-resolution transmission electron microscopy techniques. The synthesized nanostructures were deposited on multiwalled carbon nanotube (MWCNT)-modified indium tin oxide (ITO) electrodes to fabricate a nonenzymatic highly sensitive amperometric glucose sensor. The performance of the ITO/MWCNT/Cu-CuO electrodes in the glucose assay was examined by cyclic voltammetry and chronoamperometric studies. The sensitivity of the sensor varied with the spherulite type; Cu-CuOA, Cu-CuOB, and Cu-CuOC exhibited a sensitivity of 1,229, 3,012, and 3,642 µA mM(-1)·cm(-2), respectively. Moreover, the linear range is dependent on the structure types: 0.023-0.29 mM, 0.07-0.8 mM, and 0.023-0.34 mM for Cu-CuOA, Cu-CuOB, and Cu-CuOC, respectively. An excellent response time of 3 seconds and a low detection limit of 2 µM were observed for Cu-CuOB at an applied potential of +0.34 V. In addition, this electrode was found to be resistant to interference by common interfering agents such as urea, cystamine, L-ascorbic acid, and creatinine. The high performance of the Cu-CuO spherulites with nanowire-to-nanorod outgrowths was primarily due to the high surface area and stability, and good three-dimensional structure. Furthermore, the ITO/MWCNT/Cu-CuOB electrode applied to real urine and serum sample showed satisfactory performance.

  6. Behavior of Aqueous Electrolytes in Steam Cycles - The Final Report on the Solubility and Volatility of copper(I) and Copper(II) Oxides

    Energy Technology Data Exchange (ETDEWEB)

    Palmer, Donald [ORNL; Benezeth, Pascale [Laboratoire des Mecanismes et Transferts en Geologie, Toulouse, France; Simonson, J Michael {Mike} [ORNL

    2004-05-01

    Measurements were completed on the solubility of cupric and cuprous oxides in liquid water and steam at controlled pH conditions from 25 to 400 C (77 to 752 F). The results of this study have been combined with those reported from this laboratory in two previous EPRI reports to provide a complete description of the solubility of these oxides and the speciation of copper dissolved in liquid water and steam as a function of oxidation state, temperature, pH, and in the case of steam, pressure. These constitute the first set of reliable data for cuprous oxide solubility over this range of conditions. For the more intensively studied CuO case, agreement was found between our results and those of previous studies of its solubility in steam, whereas only partial agreement was evident for its solubility in liquid water. For both oxides this disagreement often amounted to orders of magnitude. The solubility of cuprous oxide is somewhat lower than that of CuO at ambient conditions, except as very high pH. However, by 350 C (662 F), Cu{sub 2}O is the more soluble phase. At 100 C (212 F) and above, the logarithm of the solubility of both phases decreases linearly with increasing pH to a minimum value then sharply increases linearly with pH. In other words, above 100 C the solubility of both oxides become highly pH dependent. In fact at constant pH during startup, very high copper concentrations can be reached in the boiler water, more than an order of magnitude above those at ambient or operating temperatures. The enhancing effect of added ammonia on the solubility of both oxides is most significant at low temperatures and is much greater for cuprous oxide. Consequently, the mobility of copper is affected significantly under AVT startup conditions. The oxidation of copper metal and presumably cuprous oxide by addition of air-saturated makeup water can lead to much higher copper concentrations than equilibrium with cupric oxide would allow, but the presence of both copper metal

  7. Catalytic properties and activity of copper and silver containing Al-pillared bentonite for CO oxidation

    Science.gov (United States)

    Basoglu, Funda Turgut; Balci, Suna

    2016-02-01

    Al-pillared bentonite (Al-PB) using bentonite obtained from the Middle Anatolia region (Hançılı) was synthesized, and Cu@Al-PB and Ag@Al-PB were obtained after the second metal impregnation step. Cu/AlPB prepared using a hydrothermal method was obtained with a Cu/(Cu + Al) mole ratio of 0.05. The SEM/EDS, scanning electron microscopy/energy dispersive X-ray spectroscopy analyses indicated that the impregnation method resulted in a higher copper loading in the structure. Based on the XPS, X-ray photoelectron spectroscopy analysis, the aluminum in all of the samples was in the Al2O3 form with 2s and 2p3 orbitals. Although no copper peaks were observed for Cu/Al-PB, the 2p3 and 2p1 orbitals of copper as well as the 3d3 and 3d5 orbitals of silver were observed in the copper or silver impregnated samples, respectively. Metal incorporation resulted in an increase especially in the strength of the Brønsted acid peaks in the FTIR, Fourier transform infrared spectra. The intensity of the peaks corresponding to the Brønsted sites did not change substantially as pyridine desorption temperature increased. The impregnated samples created a decrease in the 50% conversion temperature for carbon monoxide oxidation. Cu@Al-PB, which was calcined at 500 °C, gave a carbon monoxide conversion that was as high as 100% at approximately 200 °C and maintained its activity to 500 °C. In the impregnated samples, the reaction may use the surface oxygen provided by the metal oxide.

  8. High efficiency pollutant removal with the Moving-Bed Copper Oxide Process

    Energy Technology Data Exchange (ETDEWEB)

    Pennline, H.W.; Hoffman, J.S.; Yeh, J.T. [Dept. of Energy, Pittsburgh, PA (United States). Pittsburgh Energy Technology Center; Resnik, K.P.; Vore, P.A. [Gilbert Commonwealth, Inc., Pittsburgh, PA (United States)

    1995-12-31

    Dry, regenerable flue gas cleanup techniques that use a sorbent can have various advantages, such as simultaneous removal of pollutants, production of a salable by-product, and low costs when compared to commercially available scrubbing technology. Due to the temperature of reaction, the placement of the process into an advanced power system could actually increase the thermal efficiency of the plant. One such technique, the Moving-Bed Copper Oxide Process, is capable of simultaneously removing sulfur oxides and nitric oxides within the reactor system. A parametric study of the process was conducted on a life-cycle test system. All process steps, including absorption and regeneration, were integrated into this life-cycle test system so that continuous, long-term operation of the total process cold be experimentally evaluated. The effects of absorption temperature, sorbent and gas residence times, and inlet SO{sub 2} and NO{sub x} concentration on removal efficiencies and overall operational performance are discussed.

  9. Catalytic wet peroxide oxidation of azo dye (Direct Blue 15) using solvothermally synthesized copper hydroxide nitrate as catalyst.

    Science.gov (United States)

    Zhan, Yuzhong; Zhou, Xiang; Fu, Bei; Chen, Yiliang

    2011-03-15

    Copper hydroxide nitrate (Cu(2)(OH)(3)NO(3)) was synthesized solvothermally in anhydrous ethanol and characterized by XRD, FTIR, TG-DTA and SEM. The peroxide degradation of an azo dye (Direct Blue 15) on this material was evaluated by examining catalyst loading, initial pH, hydrogen peroxide dosage, initial dye concentration and temperature. The leaching of Cu from the copper hydroxide nitrate during the reaction was also measured. The copper hydroxide nitrate synthesized solvothermally, which was of a novel spherical morphology with complex secondary structures and contained high-dispersed Cu(2)O impurity, showed good performance for oxidation degradation of the azo dye, especially high catalytic activity, high utilization of hydrogen peroxide and a wide pH range, whereas the copper hydroxide nitrate synthesized by the direct reaction of copper nitrate and sodium hydroxide showed low catalytic activity.

  10. Copper-induced oxidative stress and responses of antioxidants and phytochelatins in Hydrilla verticillata (L.f.) Royle.

    Science.gov (United States)

    Srivastava, Sudhakar; Mishra, Seema; Tripathi, Rudra D; Dwivedi, Sanjay; Gupta, Dharmendra K

    2006-12-30

    Copper, though essential, is potentially toxic heavy metal at supraoptimal level and has widespread contamination. The present investigation was carried out to study the responses induced by lower as well as higher doses of copper (0.1-25 microM) in an aquatic macrophyte, Hydrilla verticillata (L.f.) Royle for a period of 1-7 days. The plants accumulated copper in high amount with a maximum of 770 microg g(-1) dw on day 7 at 25 microM. Biomass and photosynthetic pigments showed less alteration up to 1 microM while at higher concentrations, significant decline occurred. Malondialdehyde (MDA) content and electrical conductivity (EC) also showed sharp increase at higher concentrations indicating oxidative stress. In response to copper exposure, plants showed significant induction of proteins and enzymes like superoxide dismutase (SOD), ascorbate peroxidase (APX), guaiacol peroxidase (GPX), catalase (CAT) and glutathione reductase (GR), however, only up to moderate exposures. Total non-protein thiols (NP-SH) and cysteine levels increased significantly up to 5 microM copper exposure while at 25 microM, their level declined drastically. Reduced glutathione (GSH) showed decrease at all concentrations while oxidized glutathione (GSSG) simultaneously increased. Phytochelatins (PCs) were also induced significantly at studied concentrations of 1 and 5 microM on day 4 in comparison to control. However, copper chelation depicted by PC-SH to copper ratio was found to be low (6.5% at 1 microM and 2.4% at 5 microM) suggesting that PCs play only a part in integrated mechanisms of copper homeostasis and detoxification. Tolerant response of plants to moderate copper exposures and high accumulation potential warrants their suitability for remediation of moderately copper polluted water bodies.

  11. Controlling barium sulfate

    Energy Technology Data Exchange (ETDEWEB)

    Greenley, R.

    Even though for several years success has been realized in controlling barium sulfate scale deposition in relatively shallow, low pressure oil wells--by squeezing an organic phosphonate scale inhibitor into the producing zone--barium sulfate scale depositon in deep, high pressure/high temperature wells usually meant an expensive workover operation. A case history of a deep (16,000 ft) well in St. Mary Parish, Louisiana, and the scale inhibitor squeeze operation are described. Based on the successful results obtained in treating this well, a generalized treating procedure for combating downhole scale deposition in high pressure/high temperature gas wells is presented. Formation squeezing with such an inhibitor represents a significant breakthrough for the oil and gas industry.

  12. Hybrid transparent conductive electrodes with copper nanowires embedded in a zinc oxide matrix and protected by reduced graphene oxide platelets

    Science.gov (United States)

    Zhu, Zhaozhao; Mankowski, Trent; Balakrishnan, Kaushik; Shikoh, Ali Sehpar; Touati, Farid; Benammar, Mohieddine A.; Mansuripur, Masud; Falco, Charles M.

    2016-02-01

    Transparent conductive electrodes (TCE) were fabricated by combining three emerging nano-materials: copper nanowires (CuNWs), zinc oxide (ZnO) nano-particulate thin films, and reduced graphene oxide (rGO) platelets. Whereas CuNWs are responsible for essentially all of the electrical conductivity of our thin-film TCEs, the ZnO matrix embeds and strengthens the CuNW network in its adhesion to the substrate, while the rGO platelets provide a protective overcoat for the composite electrode, thereby improving its stability in hot and humid environments. Our CuNW/ZnO/rGO hybrid electrodes deposited on glass substrates have low sheet resistance (Rs ˜ 20 Ω/sq) and fairly high optical transmittance (T550 ˜ 79%). In addition, our hybrid TCEs are mechanically strong and able to withstand multiple scotch-tape peel tests. Finally, these TCEs can be fabricated on rigid glass as well as flexible plastic substrates.

  13. A room temperature nitric oxide gas sensor based on a copper-ion-doped polyaniline/tungsten oxide nanocomposite.

    Science.gov (United States)

    Wang, Shih-Han; Shen, Chi-Yen; Su, Jian-Ming; Chang, Shiang-Wen

    2015-03-24

    The parts-per-billion-level nitric oxide (NO) gas sensing capability of a copper-ion-doped polyaniline/tungsten oxide nanocomposite (Cu(2+)/PANI/WO3) film coated on a Rayleigh surface acoustic wave device was investigated. The sensor developed in this study was sensitive to NO gas at room temperature in dry nitrogen. The surface morphology, dopant distribution, and electric properties were characterized using scanning electron microscopy, energy-dispersive X-ray spectroscopy mapping, and Hall effect measurements, respectively. The Cu(2+)/PANI/WO3 film exhibited high NO gas sensitivity and selectivity as well as long-term stability. At 1 ppb of NO, a signal with a frequency shift of 4.3 ppm and a signal-to-noise ratio of 17 was observed. The sensor exhibited distinct selectivity toward NO gas with no substantial response to O2, NH3 and CO2 gases.

  14. Microbial Ecology Assessment of Mixed Copper Oxide/Sulfide Dump Leach Operation

    Energy Technology Data Exchange (ETDEWEB)

    Bruhn, Debby Fox; Thompson, David Neal; Noah, Karl Scott

    1999-06-01

    Microbial consortia composed of complex mixtures of autotrophic and heterotrophic bacteria are responsible for the dissolution of metals from sulfide minerals. Thus, an efficient copper bioleaching operation depends on the microbial ecology of the system. A microbial ecology study of a mixed oxide/sulfide copper leaching operation was conducted using an "overlay" plating technique to differentiate and identify various bacterial consortium members of the genera Thiobacillus, “Leptospirillum”, “Ferromicrobium”, and Acidiphilium. Two temperatures (30°C and 45°C) were used to select for mesophilic and moderately thermophilic bacteria. Cell numbers varied from 0-106 cells/g dry ore, depending on the sample location and depth. After acid curing for oxide leaching, no viable bacteria were recovered, although inoculation of cells from raffinate re-established a microbial population after three months. Due to low the pH of the operation, very few non-iron-oxidizing acidophilic heterotrophs were recovered. Moderate thermophiles were isolated from the ore samples. Pregnant liquor solutions (PLS) and raffinate both contained a diversity of bacteria. In addition, an intermittently applied waste stream that contained high levels of arsenic and fluoride was tested for toxicity. Twenty vol% waste stream in PLS killed 100% of the cells in 48 hours, indicating substantial toxicity and/or growth inhibition. The data indicate that bacteria populations can recover after acid curing, and that application of the waste stream to the dump should be avoided. Monitoring the microbial ecology of the leaching operation provided significant information that improved copper recovery.

  15. Ion-beam-induced modifications in the structural and electrical properties of copper oxide selenite nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Rana, Pallavi, E-mail: prana.phy@gmail.com; Chauhan, R.P.

    2015-04-15

    Highlights: •Nanowires were synthesized via template-assisted electrodeposition method. •Copper oxide selenite nanowires were irradiated with 160 MeV, Ni{sup +12} ion beam. •XRD confirmed no change in phase of irradiated nanowires. •Electrical resistivity of nanowires was found to decrease with the ion fluence. -- Abstract: Irradiation with swift heavy ions (SHIs) with energy in the MeV range is a unique tool for engineering the properties of materials. In this context, the objective of the present work is to study the conduction of charge carriers in pre- and post-ion-irradiated semiconducting nanowires. Copper oxide selenite nanowires were synthesized using a template-assisted electrodeposition technique from an aqueous solution of 0.8 M CuSO{sub 4}·5H{sub 2}O and 8 mM SeO{sub 2}. The synthesized nanowires were observed to have a monoclinic structure with linear I–V characteristics (IVC). The effect of irradiation with 160 MeV Ni{sup +12} ions on the properties of the copper oxide selenite nanowires was investigated for fluences varying from 10{sup 11} to 10{sup 13} ions/cm{sup 2}. XRD spectra confirmed no change in the phase of the swift-heavy-ion-irradiated nanowires, but a modification in the orientation of the planes was observed that depended on the ion fluence. The electrical resistivity of the semiconducting nanowires also varied with the ion fluence. Simultaneous irradiation-induced modifications to the electro-chemical potential gradient and the granular properties of the material may have been the origin of the alteration in the structural and electrical properties of the nanowires.

  16. Effect of Nano-Al₂O₃ on the Toxicity and Oxidative Stress of Copper towards Scenedesmus obliquus.

    Science.gov (United States)

    Li, Xiaomin; Zhou, Suyang; Fan, Wenhong

    2016-06-09

    Nano-Al₂O₃ has been widely used in various industries; unfortunately, it can be released into the aquatic environment. Although nano-Al₂O₃ is believed to be of low toxicity, it can interact with other pollutants in water, such as heavy metals. However, the interactions between nano-Al₂O₃ and heavy metals as well as the effect of nano-Al₂O₃ on the toxicity of the metals have been rarely investigated. The current study investigated copper toxicity in the presence of nano-Al₂O₃ towards Scenedesmus obliquus. Superoxide dismutase activity and concentration of glutathione and malondialdehyde in cells were determined in order to quantify oxidative stress in this study. Results showed that the presence of nano-Al₂O₃ reduced the toxicity of Cu towards S. obliquus. The existence of nano-Al₂O₃ decreased the growth inhibition of S. obliquus. The accumulation of copper and the level of oxidative stress in algae were reduced in the presence of nano-Al₂O₃. Furthermore, lower copper accumulation was the main factor that mitigated copper toxicity with the addition of nano-Al₂O₃. The decreased copper uptake could be attributed to the adsorption of copper onto nanoparticles and the subsequent decrease of available copper in water.

  17. XPS and GDOES Characterization of Porous Coating Enriched with Copper and Calcium Obtained on Tantalum via Plasma Electrolytic Oxidation

    Directory of Open Access Journals (Sweden)

    Krzysztof Rokosz

    2016-01-01

    Full Text Available XPS and GDOES characterizations of porous coatings on tantalum after Plasma Electrolytic Oxidation (PEO at 450 V for 3 minutes in electrolyte containing concentrated (85% phosphoric acid with calcium nitrate and copper (II nitrate are described. Based on the obtained data, it may be concluded that the PEO coating consists of tantalum (Ta5+, calcium (Ca2+, copper (Cu2+  and Cu+, and phosphates (PO43-. It has to be pointed out that copper and calcium are distributed throughout the volume. The authors also propose a new model of PEO, based on the derivative of GDOES signals with sputtering time.

  18. Copper Phthalocyanine Catalysis to Oxidation of Adrenaline by Oxygen and Its Application in Adrenaline Detection

    Institute of Scientific and Technical Information of China (English)

    HUANG Jun; LI Mingtian; TANG Yan; FANG Hua; DING Liyun

    2008-01-01

    The oxidation of adrenaline by dioxygen using copper phthalocyanine (CuPc) as the catalyzer was studied. CuPc has the optimal catalytic pH of 8.0 and the optimal catalytic temperature of 55 ℃. It also has good storage and operation stability. The fiber optic adrenaline biosensor based on CuPc catalysis and fluorescence quenching was fabricated and studied. This sensor has the detection range of 7.0×10-5 -1.5×10-4 mol/L, the response time of 4 min, good reproducibility and stability.

  19. From quantum matter to high-temperature superconductivity in copper oxides.

    Science.gov (United States)

    Keimer, B; Kivelson, S A; Norman, M R; Uchida, S; Zaanen, J

    2015-02-12

    The discovery of high-temperature superconductivity in the copper oxides in 1986 triggered a huge amount of innovative scientific inquiry. In the almost three decades since, much has been learned about the novel forms of quantum matter that are exhibited in these strongly correlated electron systems. A qualitative understanding of the nature of the superconducting state itself has been achieved. However, unresolved issues include the astonishing complexity of the phase diagram, the unprecedented prominence of various forms of collective fluctuations, and the simplicity and insensitivity to material details of the 'normal' state at elevated temperatures.

  20. Reduction of Copper Oxide by Formic Acid an ab-initio study

    CERN Document Server

    Schmeißer, Martin

    2012-01-01

    Four cluster models for a copper(I)oxide (111) surface have been designed, of which three were studied with respect to their applicability in density functional calculations in the general gradient approximation. Formic acid adsorption on these systems was modelled and yielded four different adsorption structures, of which two were found to have a high adsorption energy. The energetically most favourable adsorption structure was further investigated with respect to its decomposition and a few reactions with adsorbed H and OH species using synchronous transit methods to estimate reaction barriers and single point energy calculations for the reaction energy.

  1. A Nanoarchitecture Based on Silver and Copper Oxide with an Exceptional Response in the Chlorine-Promoted Epoxidation of Ethylene.

    Science.gov (United States)

    Ramirez, Adrian; Hueso, Jose L; Suarez, Hugo; Mallada, Reyes; Ibarra, Alfonso; Irusta, Silvia; Santamaria, Jesus

    2016-09-05

    The selective oxidation of ethylene to ethylene epoxide is highly challenging as a result of competing reaction pathways leading to the deep oxidation of both ethylene and ethylene oxide. Herein we present a novel catalyst based on silver and copper oxide with an excellent response in the selective oxidation pathway towards ethylene epoxide. The catalyst is composed of different silver nanostructures dispersed on a tubular copper oxide matrix. This type of hybrid nanoarchitecture seems to facilitate the accommodation of chlorine promoters, leading to high yields at low reaction temperatures. The stability after the addition of chlorine promoters implies a substantial improvement over the industrial practice: a single pretreatment step at ambient pressure suffices in contrast with the common practice of continuously feeding organochlorinated precursors during the reaction.

  2. Resveratrol mobilizes endogenous copper in human peripheral lymphocytes leading to oxidative DNA breakage: a putative mechanism for chemoprevention of cancer.

    Science.gov (United States)

    Hadi, S M; Ullah, M F; Azmi, A S; Ahmad, A; Shamim, U; Zubair, H; Khan, H Y

    2010-06-01

    Plant polyphenols are important components of human diet, and a number of them are considered to possess chemopreventive and therapeutic properties against cancer. They are recognized as naturally occurring anti-oxidants but also act as pro-oxidants catalyzing DNA degradation in the presence of metal ions such as copper. The plant polyphenol resveratrol confers resistance to plants against fungal agents and has been implicated as a cancer chemopreventive agent. Of particular interest is the observation that resveratrol has been found to induce apoptosis in cancer cell lines but not in normal cells. Over the last few years, we have shown that resveratrol is capable of causing DNA breakage in cells such as human lymphocytes. Such cellular DNA breakage is inhibited by copper specific chelators but not by iron and zinc chelating agents. Similar results are obtained by using permeabilized cells or with isolated nuclei, indicating that chromatin-bound copper is mobilized in this reaction. It is well established that tissue, cellular and serum copper levels are considerably elevated in various malignancies. Therefore, cancer cells may be more subject to electron transfer between copper ions and resveratrol to generate reactive oxygen species responsible for DNA cleavage. The results are in support of our hypothesis that anti-cancer mechanism of plant polyphenols involves mobilization of endogenous copper and the consequent pro-oxidant action. Such a mechanism better explains the anti-cancer effects of resveratrol, as it accounts for the preferential cytotoxicity towards cancer cells.

  3. Manganese-II oxidation and Copper-II resistance in endospore forming Firmicutes isolated from uncontaminated environmental sites

    Directory of Open Access Journals (Sweden)

    Cristina Dorador

    2016-04-01

    Full Text Available The accumulation of metals in natural environments is a growing concern of modern societies since they constitute persistent, non-degradable contaminants. Microorganisms are involved in redox processes and participate to the biogeochemical cycling of metals. Some endospore-forming Firmicutes (EFF are known to oxidize and reduce specific metals and have been isolated from metal-contaminated sites. However, whether EFF isolated from uncontaminated sites have the same capabilities has not been thoroughly studied. In this study, we measured manganese oxidation and copper resistance of aerobic EFF from uncontaminated sites. For the purposes of this study we have sampled 22 natural habitats and isolated 109 EFF strains. Manganese oxidation and copper resistance were evaluated by growth tests as well as by molecular biology. Overall, manganese oxidation and tolerance to over 2 mM copper was widespread among the isolates (more than 44% of the isolates exhibited Mn (II-oxidizing activity through visible Birnessite formation and 9.1% tolerate over 2 mM copper. The co-occurrence of these properties in the isolates was also studied. Manganese oxidation and tolerance to copper were not consistently found among phylogenetically related isolates. Additional analysis correlating the physicochemical parameters measured on the sampling sites and the metabolic capabilities of the isolates showed a positive correlation between in situ alkaline conditions and the ability of the strains to perform manganese oxidation. Likewise, a negative correlation between temperature in the habitat and copper tolerance of the strains was observed. Our results lead to the conclusion that metal tolerance is a wide spread phenomenon in unrelated aerobic EFF from natural uncontaminated environments.

  4. Silica-Copper Oxide Composite Thin Films as Solar Selective Coatings Prepared by Dipping Sol Gel

    Directory of Open Access Journals (Sweden)

    E. Barrera-Calva

    2008-01-01

    Full Text Available Silica-copper oxide (silica-CuO composite thin films were prepared by a dipping sol-gel route using ethanolic solutions comprised TEOS and a copper-propionate complex. Sols with different TEOS/Cu-propionate (Si/Cu molar ratios were prepared and applied on stainless steel substrates using dipping process. During the annealing process, copper-propionate complexes developed into particulate polycrystalline CuO dispersed in a partially crystallized silica matrix, as indicated by the X-ray diffraction (XRD and X-ray photoelectron spectroscopy (XPS analyses. The gel thermal analysis revealed that the prepared material might be stable up to 400°C. The silica-CuO/stainless steel system was characterized as a selective absorber surface and its solar selectivity parameters, absorptance (α, and emittance (ε were evaluated from UV-NIR reflectance data. The solar parameters of such a system were mostly affected by the thickness and phase composition of the SiO2-CuO film. Interestingly, the best solar parameters (α = 0.92 and ε = 0.2 were associated to the thinnest films, which comprised a CuO-Cu2O mixture immersed in the silica matrix, as indicated by XPS.

  5. Copper-substituted perovskite compositions for solid oxide fuel cell cathodes and oxygen reduction electrodes in other electrochemical devices

    Science.gov (United States)

    Rieke, Peter C.; Coffey, Gregory W.; Pederson, Larry R.; Marina, Olga A.; Hardy, John S.; Singh, Prabhaker; Thomsen, Edwin C.

    2010-07-20

    The present invention provides novel compositions that find advantageous use in making electrodes for electrochemical cells. Also provided are electrochemical devices that include active oxygen reduction electrodes, such as solid oxide fuel cells, sensors, pumps and the like. The compositions comprises a copper-substituted ferrite perovskite material. The invention also provides novel methods for making and using the electrode compositions and solid oxide fuel cells and solid oxide fuel cell assemblies having cathodes comprising the compositions.

  6. Evaluation of copper slag to catalyze advanced oxidation processes for the removal of phenol in water

    Energy Technology Data Exchange (ETDEWEB)

    Huanosta-Gutierrez, T. [Instituto de Ingenieria, Coordinacion de Ingenieria Ambiental, Universidad Nacional Autonoma de Mexico, Cd. Universitaria, Coyoacan 04510, Mexico, D.F. (Mexico); Dantas, Renato F., E-mail: falcao@angel.qui.ub.es [Departament d' Enginyeria Quimica, Universitat de Barcelona, Marti i Franques 1, 08028 Barcelona (Spain); Ramirez-Zamora, R.M. [Instituto de Ingenieria, Coordinacion de Ingenieria Ambiental, Universidad Nacional Autonoma de Mexico, Cd. Universitaria, Coyoacan 04510, Mexico, D.F. (Mexico); Esplugas, S. [Departament d' Enginyeria Quimica, Universitat de Barcelona, Marti i Franques 1, 08028 Barcelona (Spain)

    2012-04-30

    Highlights: Black-Right-Pointing-Pointer We evaluate the use of an industrial residue (copper slag) as catalyst in water treatment. Black-Right-Pointing-Pointer The copper slag was effective to remove organic pollutants (phenol) from water. Black-Right-Pointing-Pointer During experimentation, Cu and Fe leaching were not higher than the acceptable levels. Black-Right-Pointing-Pointer Slag/H{sub 2}O{sub 2}/UV and slag/H{sub 2}O{sub 2} treatments promoted biodegradability increment of the contaminated water. Black-Right-Pointing-Pointer The control of the reaction time would minimize the environmental impact of the produced effluents in terms of acute toxicity. - Abstract: The aim of this work was to evaluate the use of copper slag to catalyze phenol degradation in water by advanced oxidation processes (AOPs). Copper slag was tested in combination with H{sub 2}O{sub 2} (slag/H{sub 2}O{sub 2}) and H{sub 2}O{sub 2}/UV (slag/H{sub 2}O{sub 2}/UV). The studied methods promoted the complete photocatalytic degradation of phenol. Besides, they were able to reduce about 50% the TOC content in the samples. Slag/H{sub 2}O{sub 2}/UV and slag/H{sub 2}O{sub 2} treatments have favored biodegradability increment along the reaction time. Nevertheless, the irradiated method achieved higher values of the biodegradability indicator (BOD{sub 5}/TOC). The toxicity assessment indicated the formation of more toxic compounds in both treatments. However, the control of the reaction time would minimize the environmental impact of the effluents.

  7. Site-specific indolation of proline-based peptides via copper(II)-catalyzed oxidative coupling of tertiary amine N-oxides.

    Science.gov (United States)

    Wu, Xiaowei; Zhang, Dengyou; Zhou, Shengbin; Gao, Feng; Liu, Hong

    2015-08-14

    The first site-specific and purely chemical method for modifying proline-based peptides was developed via a convenient, copper-catalyzed oxidative coupling of tertiary amine N-oxides with indoles. This novel approach features high regioselectivity and diastereoselectivity, mild conditions, and compatibility with various functional groups. In addition, a simplified process was realized in one pot and two steps via in situ oxidative coupling of tertiary amine and indoles.

  8. Copper-catalyzed decarboxylative C-P cross-coupling of alkynyl acids with H-phosphine oxides: a facile and selective synthesis of (E)-1-alkenylphosphine oxides.

    Science.gov (United States)

    Hu, Gaobo; Gao, Yuxing; Zhao, Yufen

    2014-09-05

    A novel and efficient copper-catalyzed decarboxylative cross-coupling of alkynyl acids for the stereoselective synthesis of E-alkenylphosphine oxides has been developed. In the presence of 10 mol % of CuCl without added ligand, base, and additive, various alkynyl acids reacted with H-phosphine oxides to afford E-alkenylphosphine oxides with operational simplicity, broad substrate scope, and the stereoselectivity for E-isomers.

  9. Oxidation resistance of iron and copper foils coated with reduced graphene oxide multilayers.

    Science.gov (United States)

    Kang, Dongwoo; Kwon, Jee Youn; Cho, Hyun; Sim, Jae-Hyoung; Hwang, Hyun Sick; Kim, Chul Su; Kim, Yong Jung; Ruoff, Rodney S; Shin, Hyeon Suk

    2012-09-25

    Protecting the surface of metals such as Fe and Cu from oxidizing is of great importance due to their widespread use. Here, oxidation resistance of Fe and Cu foils was achieved by coating them with reduced graphene oxide (rG-O) sheets. The rG-O-coated Fe and Cu foils were prepared by transferring rG-O multilayers from a SiO(2) substrate onto them. The oxidation resistance of these rG-O-coated metal foils was investigated by Raman spectroscopy, optical microscopy, and scanning electron microscopy after heat treatment at 200 °C in air for 2 h. The bare metal surfaces were severely oxidized, but the rG-O-coated metal surfaces were protected from oxidation. This simple solution process using rG-O is one advantage of the present study.

  10. Dependence Properties of Sol-Gel Derived CuO@SiO2 Nanostructure to Diverse Concentrations of Copper Oxide

    Directory of Open Access Journals (Sweden)

    V. Homaunmir

    2013-01-01

    Full Text Available Various concentrations of copper oxide were embedded into silica matrix of xerogel forms using copper source Cu(NO32·3H2O. The xerogel samples were prepared by hydrolysis and condensation of tetraethyl orthosilicate (TEOS with determination of new molar ratios of the components by the sol-gel method. In this paper, three samples of copper oxide were doped into silica matrices using different concentrations. We obtained 10, 20, and 30 wt.% of copper oxide in silica matrices labeled as A, B, and C, respectively. The absorption and transmittance spectra of the gel matrices were treated at different concentrations by Uv-vis spectrophotometer. Quantities of water and transparency in the silica network change the spectral characteristics of Cu2+ ions in the host silica. Absorption spectra of the samples heated to higher concentration complete the conversion of Cu2+ ions to Cu+ ions. The effects of concentration of copper oxide were characterized by X-ray diffraction (XRD patterns, and the transmission electron microscope (TEM micrographs. Also, textural properties of samples were studied by surface area analysis (BET method at different concentrations.

  11. Effect of ac electrodeposition conditions on the growth of high aspect ratio copper nanowires in porous aluminum oxide templates.

    Science.gov (United States)

    Gerein, Nathan J; Haber, Joel A

    2005-09-22

    The effect of several deposition parameters on the uniformity of copper electrodeposition through the alumina barrier layer into porous aluminum oxide templates grown in sulfuric or oxalic acid was systematically investigated. A fractional factorial design of experiment was conducted to find suitable deposition conditions among the variables: frequency, voltage, pulsed or continuous deposition, electrolyte concentration, and barrier layer thinning voltage. Continuous ac sine wave deposition conditions yielded excellent uniformity of pore-filling but damaged the porous aluminum oxide templates when deposition was continued to grow bulk copper on the surface. Pulsed electrodeposition yielded comparable uniformity of pore-filling and no damage to the porous aluminum oxide templates, even when bulk copper was deposited on them. Further optimization of pulsed deposition conditions was accomplished by comparing square and sine waveforms and pulse polarity. Pulsed square waveforms produced better pore-filling than pulsed sine waveforms. For sine wave depositions, the oxidative/reductive pulse polarity was more efficient than the commonly used reductive/oxidative pulse polarity. For square wave depositions into sulfuric acid grown pores, the reductive/oxidative pulse polarity produces more uniform pore-filling, likely as a result of enhanced resonant tunneling through the barrier layer and reoxidation of copper in faster filling pores.

  12. Effects of oxidation on copper-binding properties of Aβ1-16 peptide: a pulse radiolysis study.

    Science.gov (United States)

    Ramteke, S N; Ginotra, Y P; Walke, G R; Joshi, B N; Kumbhar, A S; Rapole, S; Kulkarni, P P

    2013-12-01

    The reaction of hydroxyl radicals ((•)OH) with Aβ1-16 peptide was carried out using pulse radiolysis to understand the effect of oxidation of peptide on its copper-binding properties. This reaction produced oxidized, dimeric and trimeric Aβ1-16 peptide species. The formation of these products was established with the help of fluorescence spectroscopy and mass spectrometry. The mass spectral data indicate that the major site of oxidation is at His6, while the site for dimerization is at Tyr10. Diethyl pyrocarbonate-treated Aβ1-16 peptide did not produce any trimeric species upon oxidation with (•)OH. The quantitative chemical modification studies indicated that one of the three histidine residues is covalently modified during pulse radiolysis. The copper-binding studies of the oxidized peptide revealed that it has similar copper-binding properties as the unoxidized peptide. Further, the cytotoxicity studies point out that both oxidized and unoxidized Aβ1-16 peptide are equally efficient in producing free radicals in presence of copper and ascorbate that resulted in comparable cell death.

  13. Catalytic reduction of nitric oxide with carbon monoxide on copper-cobalt oxides supported on nano-titanium dioxide.

    Science.gov (United States)

    Chen, Xia; Zhang, Junfeng; Huang, Yan; Tong, Zhiquan; Huang, Ming

    2009-01-01

    A series of copper-cobalt oxides supported on nano-titanium dioxide were prepared for the reduction of nitric oxide with carbon monoxide and characterized using techniques such as XRD, BET and TPR. Catalyst CuCoOx/TiO2 with Cu/Co molar ratio of 1/2, Cu-Co total loading of 30% at the calcination temperature of 350 degrees C formed CuCo2O4 spinel and had the highest activity. NO conversion reached 98.9% at 200 degrees C. Mechanism of the reduction was also investigated, N2O was mainly yielded below 100 degrees C, while N2 was produced instead at higher temperature. O2 was supposed to accelerate the reaction between NOx and CO for its oxidation of NO to give more easily reduced NO2, but the oxidation of CO by O2 to CO2 decreased the speed of the reaction greatly. Either SO2 or H2O had no adverse impact on the activity of NO reduction; however, in the presence of both SO2 and H2O, the catalyst deactivated quickly.

  14. Biodynamics of copper oxide nanoparticles and copper ions in an oligochaete - Part II: Subcellular distribution following sediment exposure

    Science.gov (United States)

    Thit, Amalie; Ramskov, Tina; Croteau, Marie-Noele; Selck, Henriette

    2016-01-01

    The use and likely incidental release of metal nanoparticles (NPs) is steadily increasing. Despite the increasing amount of published literature on metal NP toxicity in the aquatic environment, very little is known about the biological fate of NPs after sediment exposures. Here, we compare the bioavailability and subcellular distribution of copper oxide (CuO) NPs and aqueous Cu (Cu-Aq) in the sediment-dwelling worm Lumbriculus variegatus. Ten days (d) sediment exposure resulted in marginal Cu bioaccumulation in L. variegatus for both forms of Cu. Bioaccumulation was detected because isotopically enriched 65Cu was used as a tracer. Neither burrowing behavior or survival was affected by the exposure. Once incorporated into tissue, Cu loss was negligible over 10 d of elimination in clean sediment (Cu elimination rate constants were not different from zero). With the exception of day 10, differences in bioaccumulation and subcellular distribution between Cu forms were either not detectable or marginal. After 10 d of exposure to Cu-Aq, the accumulated Cu was primarily partitioned in the subcellular fraction containing metallothionein-like proteins (MTLP, ≈40%) and cellular debris (CD, ≈30%). Cu concentrations in these fractions were significantly higher than in controls. For worms exposed to CuO NPs for 10 d, most of the accumulated Cu was partitioned in the CD fraction (≈40%), which was the only subcellular fraction where the Cu concentration was significantly higher than for the control group. Our results indicate that L. variegatus handle the two Cu forms differently. However, longer-term exposures are suggested in order to clearly highlight differences in the subcellular distribution of these two Cu forms.

  15. Three-Dimensional Reduced Graphene Oxide Network on Copper Foam as High-performance Supercapacitor Electrodes

    DEFF Research Database (Denmark)

    Dey, Ramendra Sundar; Chi, Qijin

    - integrated supercapacitor electrode s (3DrGO@Cuf) [1] . The method involves a two - step procedure, self - assembly of graphene oxide (GO) nanosheets on Cuf and electrochemical reduction of GO into rGO. We have systematically characterized as - synthesized materials using AFM, SEM and XRD to reveal......E lectrochemically generated copper foam (Cuf) could serve as an effective template for fabrication of three - dimensional (3D) reduced graphe n e oxide (rGO) network s. Here we present a facile approach to preparation of 3D rGO network supported by Cuf a s binder - free and current collector...... knowledge, we may have achieve d the highest specific capacitance with 3DrGO@Cuf electrodes among reported pure 3D graphene materials to date (i.e. 3D graphene materials without doping additional capacitive species ) [2 , 3 ]...

  16. Characteristics of the oxygen evolution reaction on synthetic copper - cobalt - oxide electrodes for water electrolysis

    Science.gov (United States)

    Park, Yoo Sei; Park, Chan Su; Kim, Chi Ho; Kim, Yang Do; Park, Sungkyun; Lee, Jae Ho

    2016-10-01

    A nano-sized Cu0.7Co2.3O4 powder was prepared using a thermal decomposition method to achieve an efficient anode catalyst for an economical water electrolysis system for high-purity hydrogen-gas production without using a noble-metal catalyst. This study showed that the calcination temperature should be maintained under 400 °C to obtain a spinel copper - cobalt oxide structure without secondary oxide phases. The powder calcined at 250 °C showed the highest current density at the oxygen evolution reaction. This was due mainly to the increased number of available active sites and the active surface area of the powders. Further systematic analyses of the electrochemical characteristics of Cu x Co3- x O4 synthesized by using the fusion method were performed to assess it as potential anode material for use in alkaline-anion-exchange-membrane water electrolysis.

  17. Methylresorcinarene: a reaction vessel to control the coordination geometry of copper(II) in pyridine N-oxide copper(II) complexes.

    Science.gov (United States)

    Beyeh, Ngong Kodiah; Puttreddy, Rakesh

    2015-06-07

    Pyridine and 2-picolinic acid N-oxides form 2 : 2 and 2 : 1 ligand : metal (L : M) discrete L2M2 and polymeric complexes with CuCl2 and Cu(NO3)2, respectively, with copper(ii) salts. The N-oxides also form 1 : 1 host-guest complexes with methylresorcinarene. In combination, the three components form a unique 2 : 2 : 1 host-ligand-metal complex. The methylresorcinarene acts as a reaction vessel/protecting group to control the coordination of copper(ii) from cis-see-saw to trans-square planar, and from octahedral to square planar coordination geometry. These processes were studied in solution and in the solid state via(1)H NMR spectroscopy and single crystal X-ray diffraction.

  18. Electron-phonon coupling reflecting dynamic charge inhomogeneity in copper oxide superconductors.

    Science.gov (United States)

    Reznik, D; Pintschovius, L; Ito, M; Iikubo, S; Sato, M; Goka, H; Fujita, M; Yamada, K; Gu, G D; Tranquada, J M

    2006-04-27

    The attempt to understand copper oxide superconductors is complicated by the presence of multiple strong interactions in these systems. Many believe that antiferromagnetism is important for superconductivity, but there has been renewed interest in the possible role of electron-lattice coupling. The conventional superconductor MgB2 has a very strong electron-lattice coupling, involving a particular vibrational mode (phonon) that was predicted by standard theory and confirmed quantitatively by experiment. Here we present inelastic scattering measurements that show a similarly strong anomaly in the Cu-O bond-stretching phonon in the copper oxide superconductors La(2-x)Sr(x)CuO4 (with x = 0.07, 0.15). Conventional theory does not predict such behaviour. The anomaly is strongest in La(1.875)Ba(0.125)CuO4 and La(1.48)Nd(0.4)Sr(0.12)CuO4, compounds that exhibit spatially modulated charge and magnetic order, often called stripe order; it occurs at a wave vector corresponding to the charge order. These results suggest that this giant electron-phonon anomaly, which is absent in undoped and over-doped non-superconductors, is associated with charge inhomogeneity. It follows that electron-phonon coupling may be important to our understanding of superconductivity, although its contribution is likely to be indirect.

  19. Investigation of the moving-bed copper oxide process for flue gas cleanup

    Energy Technology Data Exchange (ETDEWEB)

    Pennline, H.W.; Hoffman, J.S.; Yeh, J.T. [Dept. of Energy, Pittsburgh, PA (United States). Pittsburgh Energy Technology Center; Resnik, K.P.; Vore, P.A. [Parsons Power Group, Inc., Pittsburgh, PA (United States)

    1996-12-31

    The Moving-Bed Copper Oxide Process is a dry, regenerable sorbent technique that uses supported copper oxide sorbent to simultaneously remove SO{sub 2} and NO{sub x} emissions from flue gas generated by coal combustion. The process can be integrated into the design of advanced power systems, such as the Low-Emission Boiler System (LEBS) or the High-Performance Power System (HIPPS). This flue gas cleanup technique is currently being evaluated in a life-cycle test system (LCTS) with a moving-bed flue gas contactor at DOE`s Pittsburgh Energy Technology Center. An experimental data base being established will be used to verify reported technical and economic advantages, optimize process conditions, provide scaleup information, and validate absorber and regenerator mathematical models. In this communication, the results from several process parametric test series with the LCTS are discussed. The effects of various absorber and regenerator parameters on sorbent performance (e.g., SO{sub 2} removal) were investigated. Sorbent spheres of 1/8-in diameter were used as compared to 1/16-in sized sorbent of a previous study. Also discussed are modifications to the absorber to improve the operability of the LCTS when fly ash is present during coal combustion.

  20. Steam reforming of methanol over copper loaded anodized aluminum oxide (AAO) prepared through electrodeposition

    Science.gov (United States)

    Linga Reddy, E.; Karuppiah, J.; Lee, Hyun Chan; Kim, Dong Hyun

    2014-12-01

    In order to study the steam reforming of methanol (SRM) to produce hydrogen for fuel cells, porous γ-alumina support is developed on Al substrate using anodic oxidation process and copper catalyst particles are deposited homogeneously over anodic aluminum oxide (AAO) surface by electrodeposition method. We investigated the effect of electrodeposition time and hot water treatment (HWT) on the activity of catalysts for SRM reaction in the temperature range between 160 and 360 °C. The experimental results indicate that the SRM activity, CO2 and dimethyl ether (DME) selectivity's over Cu catalysts increased as the electrodeposition time increased from 30 to 120 s, further increment in deposition time of Cu have no significant effect on it. The rates of SRM conversion are found to be higher for the catalysts made from the supports obtained after HWT, which may be due to the enhancement in the surface area of AAO support. It is found that the SRM activity and CO2 selectivity strongly depended upon the free exposed copper sites available for methanol adsorption and reaction, and DME in products is mainly observed in the reaction temperature range between 300 and 350 °C and it is higher for the catalysts with low Cu content.

  1. Structural, spectroscopic and biological investigation of copper oxides nanoparticles with various capping agents

    Energy Technology Data Exchange (ETDEWEB)

    Nowak, A., E-mail: ana.maria.nowak@gmail.com [A. Chelkowski Institute of Physics, University of Silesia, Katowice (Poland); Szade, J.; Talik, E.; Ratuszna, A. [A. Chelkowski Institute of Physics, University of Silesia, Katowice (Poland); Ostafin, M. [Agricultural University of Cracow, Department of Microbiology, Krakow (Poland); Peszke, J. [A. Chelkowski Institute of Physics, University of Silesia, Katowice (Poland)

    2014-06-01

    Powder composed of copper oxides nanoparticles with various capping agents has been synthesized and characterized with the use of X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and X-ray diffraction (XRD). Polyvinyl alcohol (PVA), glycol propylene, glycerin and glycerin plus ammonia were used as capping agents. The scanning electron microscopy (SEM) studies showed that nanoparticles form agglomerates with the size from 80 to 120 nm while particles size determined from the XRD experiment was in the range from 7 to 21 nm. XPS and XRD experiments revealed that depending on capping and reducing agents used in the synthesis nanoparticles are composed of Cu{sub 2}O, CuO or a mixture of them. The biological activity test performed for a selected sample where the capping agent was glycerin plus ammonia has shown promising killing/inhibiting behavior, very effective especially for Gram negatives bacteria. - Highlights: • We obtained copper oxide nanoparticles in a powder form. • Several capping agents were tested. • Structural and chemical tests showed that the main component were Cu{sub 2}O and CuO. • The size of nanoparticles was in the range 7–21 nm. • Nanoparticles with glycerin and ammonia capping agent showed good antibacterial properties.

  2. Catalytic Oxidation of Methane into Methanol over Copper-Exchanged Zeolites with Oxygen at Low Temperature.

    Science.gov (United States)

    Narsimhan, Karthik; Iyoki, Kenta; Dinh, Kimberly; Román-Leshkov, Yuriy

    2016-06-22

    The direct catalytic conversion of methane to liquid oxygenated compounds, such as methanol or dimethyl ether, at low temperature using molecular oxygen is a grand challenge in C-H activation that has never been met with synthetic, heterogeneous catalysts. We report the first demonstration of direct, catalytic oxidation of methane into methanol with molecular oxygen over copper-exchanged zeolites at low reaction temperatures (483-498 K). Reaction kinetics studies show sustained catalytic activity and high selectivity for a variety of commercially available zeolite topologies under mild conditions (e.g., 483 K and atmospheric pressure). Transient and steady state measurements with isotopically labeled molecules confirm catalytic turnover. The catalytic rates and apparent activation energies are affected by the zeolite topology, with caged-based zeolites (e.g., Cu-SSZ-13) showing the highest rates. Although the reaction rates are low, the discovery of catalytic sites in copper-exchanged zeolites will accelerate the development of strategies to directly oxidize methane into methanol under mild conditions.

  3. Dependence of the critical temperature in overdoped copper oxides on superfluid density

    Science.gov (United States)

    Božović, I.; He, X.; Wu, J.; Bollinger, A. T.

    2016-08-01

    The physics of underdoped copper oxide superconductors, including the pseudogap, spin and charge ordering and their relation to superconductivity, is intensely debated. The overdoped copper oxides are perceived as simpler, with strongly correlated fermion physics evolving smoothly into the conventional Bardeen-Cooper-Schrieffer behaviour. Pioneering studies on a few overdoped samples indicated that the superfluid density was much lower than expected, but this was attributed to pair-breaking, disorder and phase separation. Here we report the way in which the magnetic penetration depth and the phase stiffness depend on temperature and doping by investigating the entire overdoped side of the La2-xSrxCuO4 phase diagram. We measured the absolute values of the magnetic penetration depth and the phase stiffness to an accuracy of one per cent in thousands of samples; the large statistics reveal clear trends and intrinsic properties. The films are homogeneous; variations in the critical superconducting temperature within a film are very small (less than one kelvin). At every level of doping the phase stiffness decreases linearly with temperature. The dependence of the zero-temperature phase stiffness on the critical superconducting temperature is generally linear, but with an offset; however, close to the origin this dependence becomes parabolic. This scaling law is incompatible with the standard Bardeen-Cooper-Schrieffer description.

  4. A simple granulation technique for preparing high-porosity nano copper oxide(Ⅱ) catalyst beads

    Institute of Scientific and Technical Information of China (English)

    Seyed Javad Ahmadia; Mohammad Outokesh; Morteza Hosseinpour; Tahereh Mousavand

    2011-01-01

    A simple and efficient method was developed for fabricating spherical granules of CuO catalyst via a three-step procedure.In the first step,copper oxide nanoparticles were synthesized by hydrothermal decomposition of copper nitrate solution under supercritical condition.Then,they were immobilized in the polymeric matrix of calcium alginate,and followed by high-temperature calcination in an air stream as the third step,in which carbonaceous materials were oxidized,to result in a pebble-type catalyst of high porosity.The produced CuO nanoparticles were characterized by transmission electron microscopy (TEM) that revealed an average size of 5 nm,X-ray diffractometry (XRD),and thermo gravimetric (TG)analysis.The catalysts were further investigated by BET test for measurement of their surface area,and by temperature-programmed reduction analysis (H2-TPR) for determination of catalytic activity.The results demonstrated that immobilization of the CuO nanoparticle in the polymeric matrix of calcium alginate,followed by calcination at elevated temperatures,could result in notable mechanical strength and enhanced catalytic activity due to preservation of the high surface area,both valuable for practical applications.

  5. Temperature characterization of dielectric permittivity and AC conductivity of nano copper oxide-doped polyaniline composite

    Science.gov (United States)

    Shubha, L. N.; Madhusudana Rao, P.

    2016-06-01

    The polyaniline/copper oxide (PANI/CuO) nanocomposite was prepared by mixing solutions of polyaniline and copper oxide nanoparticles in dimethyl sulfoxide (DMSO). The synthesized polymer nanocomposites were characterized by X-ray powder diffraction (XRD), scanning electron microscope (SEM) and UV-visible spectroscopy. The characteristic peaks in XRD and UV-visible spectra confirmed the presence of CuO in the polymer structure. SEM images indicated morphological changes in the composite matrix as compared to the pristine PANI. The DC conductivity measurements were performed using two-probe method for various temperatures. AC conductivity and dielectric response of the composites were investigated in the frequency range of 102-106Hz using LCR meter. Dielectric permittivity ɛ‧(w) and dielectric loss factor ɛ‧‧(w) were investigated. It was observed that ɛ‧(w) and ɛ‧‧(w) decrease with increase in frequency at all temperatures. At a particular frequency it is observed that both ɛ‧(w) and ɛ‧‧(w) increase with increase in temperature. It was also observed that AC conductivity increased with increase in frequency and temperature.

  6. Comparison Study on the Stability of Copper Nanowires and Their Oxidation Kinetics in Gas and Liquid.

    Science.gov (United States)

    Xu, Liang; Yang, Yuan; Hu, Zeng-Wen; Yu, Shu-Hong

    2016-03-22

    The unsaturated "dangling" bonds on the surface of nanomaterials are extremely sensitive to the external environment, which gives nanomaterials a dual nature, i.e., high reactivity and poor stability. However, studies on the long-term effects of stability and reactivity of nanomaterials under practical conditions are rarely found in the literature and lag far behind other research. Furthermore, the long-term effects on the stability and reactivity of a nanomaterial without coating under practical conditions are seriously long-neglected. Herein, by choosing copper nanowire as an example, we systematically study the stability of copper nanowires (CuNWs) in the liquid and gas phase by monitoring the change of morphology, phase, and valence state of CuNWs during storage. CuNWs exhibit good dispersibility and durable chemical stability in polar organic solvents, while CuNWs stored in water or nonpolar organic solvents evolve into a mace-like structure. Additionally, fresh CuNWs are oxidized into CuO nanotubes with thin shells by heating in air. The activation energies of oxidation of CuNWs in the gas phase are determined by the Kissinger method. More importantly, the different oxidation pathways have significant effects on the final morphology, surface area, phase, optical absorption, band gap, and vibrational property of the oxidation products. Understanding the stability and reactivity of Cu nanostructures will add value to their storage and applications. This work emphasizes the significant issue on the stability of nanostructures, which should be taken into account from the viewpoint of their practical application.

  7. Copper oxide nanoparticles analysis with water as base fluid for peristaltic flow in permeable tube with heat transfer.

    Science.gov (United States)

    Akbar, Noreen Sher; Raza, M; Ellahi, R

    2016-07-01

    The peristaltic flow of a copper oxide water fluid investigates the effects of heat generation and magnetic field in permeable tube is studied. The mathematical formulation is presented, the resulting equations are solved exactly. The obtained expressions for pressure gradient, pressure rise, temperature, velocity profile are described through graphs for various pertinent parameters. It is found that pressure gradient is reduce with enhancement of particle concentration and velocity profile is upturn, beside it is observed that temperature increases as more volume fraction of copper oxide. The streamlines are drawn for some physical quantities to discuss the trapping phenomenon.

  8. Sr2(Nd, Ce)2MCu2O9, M=Al, Co, Ga. A new layered copper oxide structure type

    NARCIS (Netherlands)

    Cava, R.J.; Zandbergen, H.W.; Krajewski, J.J.; Peck Jr., W.F.; Hessen, B.; Dover, R.B. Van; Cheong, S.-W.

    1992-01-01

    A new layered copper oxide structure type is reported based on the ordered interleaving of AlO4, CoO4 or GaO4 tetrahedra between the apices of copper oxide pyramids, and an (Nd, Ce)2O2 fluorite layer between the bases of the pyramids. Despite the structural similarities to the recently reported Sr2(

  9. Oxidative weathering chemical migration under variably saturated conditions and supergene copper enrichment

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Tianfu; Pruess, K.; Brimhall, G.

    1999-04-01

    Transport of oxygen gas from the land surface through an unsaturated zone has a strong influence on oxidative weathering processes. Oxidation of sulfide minerals such as pyrite (FeS{sub 2}), one of the most common naturally occurring minerals, is the primary source of acid drainage from mines and waste rock piles. Here we present a detailed numerical model of supergene copper enrichment that involves the oxidative weathering of pyrite (FeS{sub 2}) and chalcopyrite (CuFeS{sub 2}), and acidification that causes mobilization of metals in the unsaturated zone, with subsequent formation of enriched ore deposits of chalcocite (CuS) and covellite (Cu{sub 2}S) in the reducing conditions below the water table. We examine and identify some significant conceptual and computational issues regarding the oxidative weathering processes through the modeling tool. The dissolution of gaseous oxygen induced by the oxidation reduces oxygen partial pressure, as well as the total pressure of the gas phase. As a result, the gas flow is modified, then the liquid phase flow. Results indicate that this reaction effect on the fluid flow may not be important under ambient conditions, and gas diffusion can be a more important mechanism for oxygen supply than gas or liquid advection. Acidification, mobilization of metals, and alteration of primary minerals mostly take place in unsaturated zone (oxidizing), while precipitation of secondary minerals mainly occurs in saturated zone (reducing). The water table may be considered as an interface between oxidizing and reducing zones. Moving water table due to change of infiltration results in moving oxidizing zone and redistributing aqueous chemical constitutes and secondary mineral deposits. The oxidative weathering processes are difficult to model numerically, because concentrations of redox sensitive chemical species such as O{sub 2}(aq), SO{sub 4}{sup 2-} and HS{sup -} may change over tens of orders of magnitude between oxidizing and reducing

  10. Decomposition of 2-chloroethylethylsulfide on copper oxides to detoxify polymer-based spherical activated carbons from chemical warfare agents.

    Science.gov (United States)

    Fichtner, S; Hofmann, J; Möller, A; Schrage, C; Giebelhausen, J M; Böhringer, B; Gläser, R

    2013-11-15

    For the decomposition of chemical warfare agents, a hybrid material concept was applied. This consists of a copper oxide-containing phase as a component with reactive functionality supported on polymer-based spherical activated carbon (PBSAC) as a component with adsorptive functionality. A corresponding hybrid material was prepared by impregnation of PBSAC with copper(II)nitrate and subsequent calcination at 673K. The copper phase exists predominantly as copper(I)oxide which is homogeneously distributed over the PBSAC particles. The hybrid material containing 16 wt.% copper on PBSAC is capable of self-detoxifying the mustard gas surrogate 2-chloroethylethylsulfide (CEES) at room temperature. The decomposition is related to the breakthrough behavior of the reactant CEES, which displaces the reaction product ethylvinylsulfide (EVS). This leads to a combined breakthrough of CEES and EVS. The decomposition of CEES is shown to occur catalytically over the copper-containing PBSAC material. Thus, the hybrid material can even be considered to be self-cleaning.

  11. Interfacial Cu+ promoted surface reactivity: Carbon monoxide oxidation reaction over polycrystalline copper-titania catalysts

    Science.gov (United States)

    Senanayake, Sanjaya D.; Pappoe, Naa Adokaley; Nguyen-Phan, Thuy-Duong; Luo, Si; Li, Yuanyuan; Xu, Wenqian; Liu, Zongyuan; Mudiyanselage, Kumudu; Johnston-Peck, Aaron C.; Frenkel, Anatoly I.; Heckler, Ilana; Stacchiola, Dario; Rodriguez, José A.

    2016-10-01

    We have studied the catalytic carbon monoxide (CO) oxidation (CO + 0.5O2 → CO2) reaction using a powder catalyst composed of both copper (5 wt.% loading) and titania (CuOx-TiO2). Our study was focused on revealing the role of Cu, and the interaction between Cu and TiO2, by systematic comparison between two nanocatalysts, CuOx-TiO2 and pure CuOx. We interrogated these catalysts under in situ conditions using X-ray diffraction (XRD), X-ray absorption fine structure (XAFS) and diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) to probe the structure and electronic properties of the catalyst at all stages of the reaction and simultaneously probe the surface states or intermediates of this reaction. With the aid of several ex situ characterization techniques including transmission electron microscopy (TEM), the local catalyst morphology and structure were also studied. Our results show that a CuOx-TiO2 system is more active than bulk CuOx for the CO oxidation reaction due to its lower onset temperature and better stability at higher temperatures. Our results also suggest that surface Cu+ species observed in the CuOx-TiO2 interface are likely to be a key player in the CO oxidation mechanism, while implicating that the stabilization of this species is probably associated with the oxide-oxide interface. Both in situ DRIFTS and XAFS measurements reveal that there is likely to be a Cu(Ti)-O mixed oxide at this interface. We discuss the nature of this Cu(Ti)-O interface and interpret its role on the CO oxidation reaction.

  12. Coprecipitation and redox reactions of manganese oxides with copper and nickel

    Science.gov (United States)

    Hem, J.D.; Lind, Carol J.; Roberson, C.E.

    1989-01-01

    Open-system, continuous-titration experiments have been done in which a slow flux of ???0.02 molar solution of Mn2+ chloride, nitrate, or perchlorate with Cu2+ or Ni2+ in lesser concentrations was introduced into an aerated reactor solution held at constant temperature and at constant pH by a pH-stat titrator that added dilute NaOH. The resulting mixtures of metal oxyhydroxides and their native solutions were aged for periods as long as 2 1/2 years. Fresh and aged precipitates were characterized by chemical analysis, oxidation state determinations, X-ray and electron diffraction, and electron microscopy. The precipitates can be described as mixtures of oxide and oxyhydroxide species, using concepts of equilibrium and nonequilibrium chemical thermodynamics. The metal-ion content of the aged precipitates in systems that contained copper is distributed among three principal components. One of these is a mixed oxide Cu2Mn3O8 in which all Mn is in the 4+ oxidation state. A major component in all precipitates is feitknechtite, ??MnOOH. These forms are supplemented by CuO or by birnessite or ramsdellite forms of MnO2 where stoichiometry and thermodynamic calculations predict them. In systems that contained nickel and manganese, identifiable components included ??MnOOH, Ni(OH)2, and the same two forms of MnO2. The oxidation number of the precipitated manganese increased during aging, and the pH of the supernatant solution decreased. The maximum Mn oxidation number observed was 3.55 in an Mn + Cu precipitate aged for 18 months. Concentrations of Cu2+ and Ni2+ generally decreased to values substantially below those predicted by oxide or hydroxide equilibrium. Scavenging effects of this type are common in natural aqueous systems. ?? 1989.

  13. Sonochemical fabrication of petal array-like copper/nickel oxide composite foam as a pseudocapacitive material for energy storage

    Science.gov (United States)

    Karthik, Namachivayam; Edison, Thomas Nesakumar Jebakumar Immanuel; Sethuraman, Mathur Gopalakrishnan; Lee, Yong Rok

    2017-02-01

    Copper/nickel oxide composite foam (Cu/Ni) with petal array-like textures were successfully fabricated via a facile sonochemical approach, and its applications as a pseudocapacitive material for energy storage were examined. The nickel foam was immersed into a mixture of copper chloride (CuCl2) and hydrochloric acid (HCl) and subsequently sonicated for 30 min at 60 °C. As a result of galvanic replacement, nickel was oxidized while copper was reduced, and the walls of the nickel foam were coated with copper particles. Studies using field emission scanning electron microscopy coupled with energy-dispersive X-ray spectroscopy, X-ray diffraction and X-ray photoelectron spectroscopic analyses confirmed the morphology and chemical structure of the as-obtained Cu/Ni oxide composite foam. The supercapacitive performance of the as-fabricated Cu/Ni oxide composite foam was evaluated in 2 M KOH by employing cyclic voltammetry, galvanostatic charge-discharge and electrochemical impedance spectroscopy analyses. Cyclic voltammograms revealed that the Cu/Ni oxide composite foam exhibited pseudocapacitive behavior and delivered a high specific capacitance of 1773 F g-1 at a scan rate of 5 mV s-1. This improvement may be attributed to the morphology, surface functionalization with heteroatoms, hydrogen evolution, and high conductivity, along with the low resistance due to short path lengths for electron transportation.

  14. Catalytic wet peroxide oxidation of aniline in wastewater using copper modified SBA-15 as catalyst.

    Science.gov (United States)

    Kong, Liming; Zhou, Xiang; Yao, Yuan; Jian, Panming; Diao, Guowang

    2016-01-01

    SBA-15 mesoporous molecular sieves modified with copper (Cu-SBA-15) were prepared by pH-adjusting hydrothermal method and characterized by X-ray diffraction, BET, transmission electron microscopy, UV-Vis and (29)Si MAS NMR. The pH of the synthesis gel has a significant effect on the amount and the dispersion of copper on SBA-15. The Cu-SBA-15(4.5) (where 4.5 denotes the pH value of the synthesis gel) modified with highly dispersed copper was used as catalyst for the oxidation of aniline by H2O2. The Cu-SBA-15(4.5) shows a higher catalytic activity compared to CuO on the surface of SBA-15. The influences of reaction conditions, such as initial pH of the aqueous solutions, temperature, as well as the dosages of H2O2 and catalyst were investigated. Under weakly alkaline aqueous solution conditions, the aniline conversion, the H2O2 decomposition and the total organic carbon (TOC) removal could be increased significantly compared to the acid conditions. The percentage of leaching Cu(2+) could be decreased from 45.0% to 3.66% when the initial pH of solution was increased from 5 to 10. The TOC removal could be enhanced with the increases of temperature, H2O2 and catalyst dosage, but the aniline conversion and H2O2 decomposition change slightly with further increasing dosage of catalyst and H2O2. At 343 K and pH 8.0, 100% aniline conversion and 66.9% TOC removal can be achieved under the conditions of 1.0 g/L catalyst and 0.05 mol/L H2O2 after 180 min. Although copper might be slightly leached from catalyst, the homogeneous Cu(2+) contribution to the whole catalytic activity is unimportant, and the highly dispersed copper on SBA-15 plays a dominant role.

  15. Fabrication of dendritic silver-coated copper powders by galvanic displacement reaction and their thermal stability against oxidation

    Science.gov (United States)

    Park, Yu-Seon; An, Chang Yong; Kannan, Padmanathan Karthick; Seo, Nary; Zhuo, Kai; Yoo, Tae Kyong; Chung, Chan-Hwa

    2016-12-01

    Two steps of wet chemical processes have been developed for the preparation of core-shell nanostructures of copper and silver, which is a facile and low cost method for the production of large quantity of dendritic powders. First step involves a galvanic displacement reaction with hydrogen evolution which is the motive force of spontaneous electrochemical reaction. To achieve the core-shell structure, silver has been coated on the dendritic copper using the galvanic displacement reaction. The dendritic silver-coated copper powders exhibit high surface-area, excellent conductivity, and good oxidation resistance. It has been found that silver-coated copper powders maintain the electrical conductivity even after annealing at 150 °C for several to tens of minutes, thus it is a promising material and an alternative to pure silver powders in printed electronics application.

  16. Effects of cyclodextrins on the structure of LDL and its susceptibility to copper-induced oxidation.

    Science.gov (United States)

    Ao, Meiying; Gan, Chaoye; Shao, Wenxiang; Zhou, Xing; Chen, Yong

    2016-08-25

    Cyclodextrins (CDs) have long been widely used as drug/food carriers and were recently developed as drugs for the treatment of diseases (e.g. Niemann-Pick C1 and cancers). It is unknown whether cyclodextrins may influence the structure of low-density lipoprotein (LDL), its susceptibility to oxidation, and atherogenesis. In this study, four widely used cyclodextrins including α-CD, γ-CD, and two derivatives of β-CD (HPβCD and MβCD) were recruited. Interestingly, agarose gel electrophoresis (staining lipid and protein components of LDL with Sudan Black B and Coomassie brilliant blue, respectively but simultaneously) shows that cyclodextrins at relatively high concentrations caused disappearance of the LDL band and/or appearance of an additional protein-free lipid band, implying that cyclodextrins at relatively high concentrations can induce significant electrophoresis-detectable lipid depletion of LDL. Atomic force microscopy (AFM) detected that MβCD (as a representative of cyclodextrins) induced size decrease of LDL particles in a dose-dependent manner, further confirming the lipid depletion effects of cyclodextrins. Moreover, the data from agarose gel electrophoresis, conjugated diene formation, MDA production, and amino group blockage of copper-oxidized LDL show that cyclodextrins can impair LDL susceptibility to oxidation. It implies that cyclodextrins probably help to inhibit atherogenesis by lowering LDL oxidation.

  17. Excess copper induced oxidative stress and response of antioxidants in rice.

    Science.gov (United States)

    Thounaojam, Thorny Chanu; Panda, Piyalee; Panda, P; Mazumdar, Purabi; Mazumdar, P; Kumar, Devanand; Sharma, Gauri Dutta; Sharma, G D; Sahoo, Lingaraj; Sahoo, L; Panda, Sanjib Kumar; Panda, S K

    2012-04-01

    To investigate the effects of copper (Cu), rice plant (Oryza sativa. L. var. MSE-9) was treated with different Cu concentrations (0, 10, 50 and 100 μM) for 5 days in hydroponic condition. Gradual decrease in shoot and root growth was observed with the increase of Cu concentration and duration of treatment where maximum inhibition was recorded in root growth. Cu was readily absorbed by the plant though the maximum accumulation was found in root than shoot. Hydrogen peroxide (H(2)O(2)) production and lipid peroxidation were found increased with the elevated Cu concentration indicating excess Cu induced oxidative stress. Antioxidant enzymes superoxide dismutase (SOD), guaiacol peroxidase (GPX) and ascorbate peroxidase (APX) and glutathione reductase (GR) were effectively generated at the elevated concentrations of Cu though catalase (CAT) did not show significant variation with respect to control. Ascorbate (ASH), glutathione (GSH) and proline contents were also increased in all the Cu treated plants compared with the control. SOD isoenzyme was greatly affected by higher concentration of Cu and it was consistent with the changes of the activity assayed in solution. The present study confirmed that excess Cu inhibits growth, induced oxidative stress by inducing ROS formation while the stimulated antioxidative system appears adaptive response of rice plant against Cu induced oxidative stress. Moreover proline accumulation in Cu stress plant seems to provide additional defense against the oxidative stress.

  18. A tunable amorphous p-type ternary oxide system: The highly mismatched alloy of copper tin oxide

    Energy Technology Data Exchange (ETDEWEB)

    Isherwood, Patrick J. M., E-mail: P.J.M.Isherwood@lboro.ac.uk; Walls, John M. [CREST, School of Electronic, Electrical and Systems Engineering, Loughborough University, Loughborough, Leicestershire LE11 3TU (United Kingdom); Butler, Keith T.; Walsh, Aron [Centre for Sustainable Technologies and Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY (United Kingdom)

    2015-09-14

    The approach of combining two mismatched materials to form an amorphous alloy was used to synthesise ternary oxides of CuO and SnO{sub 2}. These materials were analysed across a range of compositions, and the electronic structure was modelled using density functional theory. In contrast to the gradual reduction in optical band gap, the films show a sharp reduction in both transparency and electrical resistivity with copper contents greater than 50%. Simulations indicate that this change is caused by a transition from a dominant Sn 5s to Cu 3d contribution to the upper valence band. A corresponding decrease in energetic disorder results in increased charge percolation pathways: a “compositional mobility edge.” Contributions from Cu(II) sub band-gap states are responsible for the reduction in optical transparency.

  19. Evaluation of a commercially available molybdate formulation and zinc oxide boluses in preventing hepatic copper accumulation and thus enzootic icterus in sheep

    Directory of Open Access Journals (Sweden)

    C.J. Botha

    2001-07-01

    Full Text Available The efficacy of a molybdate formulation and a zinc oxide bolus as prophylactic agents for enzootic icterus was evaluated in sheep. Before copper loading, liver biopsies were performed on 12 male, 6-month-old, Mutton Merino sheep to determine hepatic copper (Cu and zinc (Zn concentrations. The animals were restrictively randomised according to liver copper concentrations to 3 treatment groups (n = 4 to achieve similar mean liver copper concentrations per group. All sheep received 4 m /kg of a 0.5 %aqueous solution of CuSO4·5H2O intraruminally 7 days per week for 10 weeks. On Day 0 the sheep in the Mo-group were injected subcutaneously with 42 mg molybdenum (Mo contained in a commercial molybdate formulation. The animals in the Zn-group each received a zinc oxide bolus, containing 43 g zinc oxide, via a rumen cannula. Treatment was repeated on Day 42. Four animals served as untreated controls. Urinary copper excretion, plasma copper concentration, haematocrit and glutamate dehydrogenase (GLDH activity were determined throughout the trial. The animals were sacrificed after 10 weeks and liver samples were submitted for histopathological examination. Liver and kidney copper and zinc concentrations were determined. Neither the molybdate treatment nor the zinc oxide boluses prevented hepatic copper accumulation. The urinary copper excretion, plasma copper concentration, haematocrit and GLDH activity were not significantly different (P > 0.05 from the controls.

  20. Effects of copper oxide nanoparticles on developing zebrafish embryos and larvae

    Directory of Open Access Journals (Sweden)

    Sun Y

    2016-03-01

    Full Text Available Yan Sun, Gong Zhang, Zizi He, Yajie Wang, Jianlin Cui, Yuhao Li Department of Pathology, Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, Nankai University School of Medicine, Tianjin, People’s Republic of China Abstract: Copper oxide nanoparticles (CuO NPs are used for a variety of purposes in a wide range of commercially available products. Some CuO NPs probably end up in the aquatic systems, thus raising concerns about aqueous exposure toxicity, and the impact of CuO NPs on liver development and neuronal differentiation remains unclear. In this study, particles were characterized using Fourier transform infrared spectra, scanning electron microscopy, and transmission electron microscopy. Zebrafish embryos were continuously exposed to CuO NPs from 4 hours postfertilization at concentrations of 50, 25, 12.5, 6.25, or 1 mg/L. The expression of gstp1 and cyp1a was examined by quantitative reverse transcription polymerase chain reaction. The expression of tumor necrosis factor alpha and superoxide dismutase 1 was examined by quantitative reverse transcription polymerase chain reaction and Western blotting. Liver development and retinal neurodifferentiation were analyzed by whole-mount in situ hybridization, hematoxylin–eosin staining, and immunohistochemistry, and a behavioral test was performed to track the movement of larvae. We show that exposure of CuO NPs at low doses has little effect on embryonic development. However, exposure to CuO NPs at concentrations of 12.5 mg/L or higher leads to abnormal phenotypes and induces an inflammatory response in a dose-dependent pattern. Moreover, exposure to CuO NPs at high doses results in an underdeveloped liver and a delay in retinal neurodifferentiation accompanied by reduced locomotor ability. Our data demonstrate that short-term exposure to CuO NPs at high doses shows hepatotoxicity and neurotoxicity in zebrafish embryos and larvae. Keywords: copper oxide nanoparticles

  1. Effects of oxidizing medium on the composition, morphology and optical properties of copper oxide nanoparticles produced by pulsed laser ablation

    Energy Technology Data Exchange (ETDEWEB)

    Gondal, M.A., E-mail: magondal@kfupm.edu.sa [Laser Research Laboratory, Physics Department and Center of Excellence in Nanotechnology (CENT), King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Qahtan, Talal F.; Dastageer, M.A. [Laser Research Laboratory, Physics Department and Center of Excellence in Nanotechnology (CENT), King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Saleh, Tawfik A. [Chemistry Department, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Maganda, Yasin W. [Laser Research Laboratory, Physics Department and Center of Excellence in Nanotechnology (CENT), King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Anjum, D.H. [Nanofabrication, Imaging and Characterization Core Lab, King Abdullah University of Science and Technology (KAUST), Thuwal 23599-6900 (Saudi Arabia)

    2013-12-01

    Pulsed laser ablation in liquid (PLAL) with 532 nm wavelength laser with 5 ns pulse duration is used to produce the nanostructure copper oxide and the effects of oxidizing media (deionized water and hydrogen peroxide) on the composition, morphology and optical properties of the product materials produced by PLAL were studied. XRD and TEM studies indicate that in the absence of hydrogen peroxide, the product material is in two phases (Cu/Cu{sub 2}O) with the spherical nanoparticle structure, whereas in the presence of hydrogen peroxide in the liquid medium, the product material revealed other two phases (Cu/CuO) with nanorod-like structure. The optical studies revealed a considerable red shift (3.34–2.5 eV) in the band gap energy in the case of hydrogen peroxide in the liquid medium in PLAL synthesis compared to the one in the absence of it. Also the product material in the presence of hydrogen peroxide in the liquid medium showed a reduced photoluminescence intensity indicating the reduced electron–hole recombination rate. The red shift in the band gap energy and the reduced electron–hole recombination rate make the product material an ideal photocatalyst to harvest solar radiation for various applications. The most relevant signals on the FTIR spectrum for the samples are the absorption bands in the region between 450 and 700 cm{sup −1} which are the characteristics bands of copper-oxygen bonds. The reported laser ablation approach for the synthesis of Cu{sub 2}O and CuO nanoparticles has the advantages of being clean method with controlled particle properties.

  2. [Inhibitory action of divalent copper compounds on cumene hydroperoxide oxidative demethylation of N,N-dimethylaniline by cytochrome P-450].

    Science.gov (United States)

    Kurchenko, V P; Usanov, S A; Metelitsa, D I

    1980-07-01

    The inhibitory action of divalent copper compounds on hydroperoxide-dependent oxidative demethylation of N,N-demethylaniline involving rabbit liver microsomes and highly purified cytochrome P-450 has been studied. CuCl2 is a non-competitive inhibitor, whereas copper tyrosine and lysine complexes are characterized by a mixed type inhibition. The inhibitory action of copper complexes is based on a decrease of cumene hydroperoxide concentration. The reaction results in formation of RO and RO2 radicals destroying cytochrome P-450 CuCl2 (0,001 M) also destroys cytochrome P-450 in the absence of cumene hydroperoxide; the destruction process is characterized by two phases with different rate constants. The nature of the inhibitory action of CuCl2 on N,N-demethylaniline oxidation by hydroperoxides is discussed.

  3. Comparison of Preparation Methods of Copper Based PGMFree Diesel-Soot Oxidation Catalysts

    Directory of Open Access Journals (Sweden)

    R. Prasad

    2011-05-01

    Full Text Available CuO-CeO2 systems have been proposed as a promising catalyst for low temperature diesel-soot oxidation. CuO-CeO2 catalysts prepared by various methods were examined for air oxidation of the soot in a semi batch tubular flow reactor. The air oxidation of soot was carried out under tight contact with soot/catalyst ratio of 1/10. Air flow rate was 150 ml/min, soot-catalyst mixture was 110 mg, heating rate was 5 0C/min. Prepared catalysts were calcined at 500 0C and their stability was examined by further heating to 800 0C for 4 hours. It was found that the selectivity of all the catalysts was nearly 100% to CO2 production. It was observed that the activity and stability of the catalysts greatly influenced by the preparation methods. The strong interaction between CuO and CeO2 is closely related to the preparation route that plays a crucial role in the soot oxidation over the CuO-CeO2 catalysts. The ranking order of the preparation methods of the catalysts in the soot oxidation performance is as follows: sol-gel > urea nitrate combustion > Urea gelation method > thermal decomposition > co-precipitation. Copyright © 2011 BCREC UNDIP. All rights reserved.(Received: 27th June 2010, Revised: 7th August 2010; Accepted: 13rd October 2010[How to Cite: R. Prasad, V.R. Bella. (2011. Comparison of Preparation Methods of Copper Based PGMFree Diesel-Soot Oxidation Catalysts. Bulletin of Chemical Reaction Engineering and Catalysis, 6(1: 15-21. doi:10.9767/bcrec.6.1.822.15-21][How to Link / DOI: http://dx.doi.org/10.9767/bcrec.6.1.822.15-21 || or local: http://ejournal.undip.ac.id/index.php/bcrec/article/view/822 | View in 

  4. Development of improved sorbents for the moving-bed copper oxide process

    Energy Technology Data Exchange (ETDEWEB)

    Abbasian, J.; Slimane, R.B.; Carty, R.H.; Cengiz, P.A.; Khalili, N.R.

    1999-07-01

    In the Clean Air Act Amendments (CAAA) of 1990, legislation was introduced requiring electric utilities to adopt available technology for removal of pollutant gases (mainly SO{sub 2} and NO{sub x}) and particulates from coal combustion flue gases so that the increased use of coal is done in an environmentally acceptable manner. The threat from the damaging effects of gaseous pollutants is more of a concern in the state of Illinois where over 90% of the high-sulfur coal mined is consumed by electric utilities that are based on pulverized coal combustion, but only a very small fraction is currently equipped with Flue Gas Desulfurization (FGD) processes. The copper oxide process has been selected as one of the most promising emerging technologies for SO{sub 2} and NO{sub x} removal from flue gases in the Combustion 2000 program of the US Department of Energy. In particular, the development of the Copper Oxide Bed Regenerable Absorber (COBRA) process, which is based on moving-bed cross-flow reactor design for the combined removal of SO{sub 2}, NO{sub x} and particulates, has been pursued in conjunction with the use of Illinois coal. Given the strict limits on SO{sub 2} emissions (1.2 lbs of SO{sub 2} per million Btu by the year 2000), the high sulfur content of Illinois coal, and the growing concern with the disposal of solid residues from conventional FGD processes, the pursuit of the COBRA technology to meet CAAA emission standards represents a strategic choice for the Illinois coal research and development program. This Study has been directed towards the evaluation of the commodity copper oxide sorbent currently being utilized in the demonstration of the COBRA process, to identify areas of improvement, and to develop and implement a strategy for preparing improved sorbents. In this paper, the results obtained to-date from tests carried out for the evaluation of the commercial sorbent for SO{sub 2} removal, its regenerability, and its effectiveness with repeated use

  5. Copper-sulfenate complex from oxidation of a cavity mutant of Pseudomonas aeruginosa azurin

    Energy Technology Data Exchange (ETDEWEB)

    Sieracki, Nathan A.; Tian, Shiliang; Hadt, Ryan G.; Zhang, Jun-Long; Woertink, Julia S.; Nilges, Mark J.; Sun, Furong; Solomon, Edward I.; Lu, Yi [Stanford; (UIUC); (Peking)

    2014-08-25

    Metal–sulfenate centers are known to play important roles in biology and yet only limited examples are known due to their instability and high reactivity. Herein we report a copper–sulfenate complex characterized in a protein environment, formed at the active site of a cavity mutant of an electron transfer protein, type 1 blue copper azurin. Reaction of hydrogen peroxide with Cu(I)–M121G azurin resulted in a species with strong visible absorptions at 350 and 452 nm and a relatively low electron paramagnetic resonance gz value of 2.169 in comparison with other normal type 2 copper centers. The presence of a side-on copper–sulfenate species is supported by resonance Raman spectroscopy, electrospray mass spectrometry using isotopically enriched hydrogen peroxide, and density functional theory calculations correlated to the experimental data. In contrast, the reaction with Cu(II)–M121G or Zn(II)–M121G azurin under the same conditions did not result in Cys oxidation or copper–sulfenate formation. Structural and computational studies strongly suggest that the secondary coordination sphere noncovalent interactions are critical in stabilizing this highly reactive species, which can further react with oxygen to form a sulfinate and then a sulfonate species, as demonstrated by mass spectrometry. Engineering the electron transfer protein azurin into an active copper enzyme that forms a copper–sulfenate center and demonstrating the importance of noncovalent secondary sphere interactions in stabilizing it constitute important contributions toward the understanding of metal–sulfenate species in biological systems.

  6. Subchronic toxicity of copper oxide nanoparticles and its attenuation with the help of a combination of bioprotectors.

    Science.gov (United States)

    Privalova, Larisa I; Katsnelson, Boris A; Loginova, Nadezhda V; Gurvich, Vladimir B; Shur, Vladimir Y; Valamina, Irene E; Makeyev, Oleg H; Sutunkova, Marina P; Minigalieva, Ilzira A; Kireyeva, Ekaterina P; Rusakov, Vadim O; Tyurnina, Anastasia E; Kozin, Roman V; Meshtcheryakova, Ekaterina Y; Korotkov, Artem V; Shuman, Eugene A; Zvereva, Anastasia E; Kostykova, Svetlana V

    2014-07-14

    In the copper metallurgy workplace air is polluted with condensation aerosols, which a significant fraction of is presented by copper oxide particlescopper oxide particles with mean (±SD) diameter 20±10 nm was prepared by laser ablation of pure copper in water. It was being injected intraperitoneally to rats at a dose of 10 mg/kg (0.5 mg per mL of deionized water) three times a week up to 19 injections. In parallel, another group of rats was so injected with the same suspension against the background of oral administration of a "bio-protective complex" (BPC) comprising pectin, a multivitamin-multimineral preparation, some amino acids and fish oil rich in ω-3 PUFA. After the termination of injections, many functional and biochemical indices for the organism's status, as well as pathological changes of liver, spleen, kidneys, and brain microscopic structure were evaluated for signs of toxicity. In the same organs we have measured accumulation of copper while their cells were used for performing the Random Amplification of Polymorphic DNA (RAPD) test for DNA fragmentation. The same features were assessed in control rats infected intraperitoneally with water with or without administration of the BPC. The copper oxide nanoparticles proved adversely bio-active in all respects considered in this study, their active in vivo solubilization in biological fluids playing presumably an important role in both toxicokinetics and toxicodynamics. The BPC proposed and tested by us attenuated systemic and target organs toxicity, as well as genotoxicity of this substance. Judging by experimental data obtained in this investigation, occupational exposures to nano-scale copper oxide particles can present a significant health risk while the further search for its management with the help of innocuous bioprotectors seems to be justified.

  7. Organ burden and pulmonary toxicity of nano-sized copper (II) oxide particles after short-term inhalation exposure

    NARCIS (Netherlands)

    Gosens, Ilse; Cassee, Flemming R; Zanella, Michela; Manodori, Laura; Brunelli, Andrea; Costa, Anna Luisa; Bokkers, Bas G H; de Jong, Wim H; Brown, David; Hristozov, Danail; Stone, Vicki

    2016-01-01

    INTRODUCTION: Increased use of nanomaterials has raised concerns about the potential for undesirable human health and environmental effects. Releases into the air may occur and, therefore, the inhalation route is of specific interest. Here we tested copper oxide nanoparticles (CuO NPs) after repeate

  8. Acetaldehyde as an Intermediate in the Electroreduction of Carbon Monoxide to Ethanol on Oxide-Derived Copper

    DEFF Research Database (Denmark)

    Bertheussen, Erlend; Verdaguer Casadevall, Arnau; Ravasio, Davide

    2016-01-01

    Oxide-derived copper (OD-Cu) electrodes exhibit unprecedented CO reduction performance towards liquid fuels, producing ethanol and acetate with >50 % Faradaic efficiency at −0.3 V (vs. RHE). By using static headspace-gas chromatography for liquid phase analysis, we identify acetaldehyde as a mino...

  9. Particulate Formation from a Copper Oxide-Based Oxygen Carrier in Chemical Looping Combustion for CO2 Capture

    Science.gov (United States)

    Attrition behavior and particle loss of a copper oxide-based oxygen carrier from a methane chemical looping combustion (CLC) process was investigated in a fluidized bed reactor. The aerodynamic diameters of most elutriated particulates, after passing through a horizontal settling...

  10. An unexpected copper(II)-catalyzed three-component reaction of quinazoline 3-oxide, alkylidenecyclopropane, and water.

    Science.gov (United States)

    An, Yuanyuan; Zheng, Danqing; Wu, Jie

    2014-08-21

    An unexpected copper(II)-catalyzed three-component reaction of quinazoline-3-oxide, alkylidenecyclopropane and water under mild conditions is reported. This transformation including [3+2] cycloaddition and intramolecular rearrangement leads to N-(2-(5-oxa-6-azaspiro[2.4]hept-6-en-7-yl)phenyl)formamides in good yields.

  11. Selective copper(II acetate and potassium iodide catalyzed oxidation of aminals to dihydroquinazoline and quinazolinone alkaloids

    Directory of Open Access Journals (Sweden)

    Matthew T. Richers

    2013-06-01

    Full Text Available Copper(II acetate/acetic acid/O2 and potassium iodide/tert-butylhydroperoxide systems are shown to affect the selective oxidation of ring-fused aminals to dihydroquinazolines and quinazolinones, respectively. These methods enable the facile preparation of a number of quinazoline alkaloid natural products and their analogues.

  12. Copper-catalyzed direct amination of quinoline N-oxides via C-H bond activation under mild conditions.

    Science.gov (United States)

    Zhu, Chongwei; Yi, Meiling; Wei, Donghui; Chen, Xuan; Wu, Yangjie; Cui, Xiuling

    2014-04-04

    A highly efficient and concise one-pot strategy for the direct amination of quinoline N-oxides via copper-catalyzed dehydrogenative C-N coupling has been developed. The desired products were obtained in good to excellent yields for 22 examples starting from the parent aliphatic amines. This methodology provides a practical pathway to 2-aminoquinolines and features a simple system, high efficiency, environmental friendliness, low reaction temperature, and ligand, additives, base, and external oxidant free conditions.

  13. Effect that the relative abundance of copper oxide and zinc oxide corrosion has on the visualization of fingerprints formed from fingerprint sweat corrosion of brass.

    Science.gov (United States)

    Bond, John W

    2011-07-01

    From an examination of the fingerprint sweat corrosion of 40 different individuals on α phase brass, we show that an increase in visualization can be achieved by applying a negative potential to the brass followed by the introduction of a conducting powder. Previously, this technique has been demonstrated only for a positive applied potential and a corrosion product that was dominated by p-type copper (I) oxide. X-ray photoelectron and Auger electron spectroscopic analyses of the surface of the corroded brass show that an increase in visualization with a negative applied potential corresponds with an increase in the concentration of n-type zinc oxide relative to p-type copper (I) oxide with the Cu:Zn ratio zinc oxide/brass rectifying Schottky barrier are fulfilled.

  14. Photoelectrochemical and electrocatalytic properties of thermally oxidized copper oxide for efficient solar fuel production

    KAUST Repository

    Garcia Esparza, Angel T.

    2014-01-01

    We report the use of a facile and highly scalable synthesis process to control growth products of earth-abundant Cu-based oxides and their application in relevant photoelectrochemical and electrochemical solar fuel generation systems. Characterization of the synthesized Cu(I)/Cu(II) oxides indicates that their surface morphology and chemical composition can be simply tuned by varying two synthesis parameters (time and temperature). UV-Vis spectroscopy and impedance spectroscopy studies are performed to estimate the band structures and electronic properties of these p-type semiconductor materials. Photoelectrodes made of Cu oxides possess favorable energy band structures for production of hydrogen from water; the position of their conduction band is ≈1 V more negative than the water-reduction potential. High acceptor concentrations on the order of 1018-1019 cm-3 are obtained, producing large electric fields at the semiconductor-electrolyte interface and thereby enhancing charge separation. The highly crystalline pristine samples used as photocathodes in photoelectrochemical cells exhibit high photocurrents under AM 1.5G simulated illumination. When the samples are electrochemically reduced under galvanostatic conditions, the co-existence of the oxide with metallic Cu on the surface seems to function as an effective catalyst for the selective electrochemical reduction of CO2. © the Partner Organisations 2014.

  15. A dinuclear copper(II) electrocatalyst both water reduction and oxidation

    Science.gov (United States)

    Zhou, Ling-Ling; Fang, Ting; Cao, Jie-Ping; Zhu, Zhi-Hong; Su, Xiao-Ting; Zhan, Shu-Zhong

    2015-01-01

    Splitting water is a key challenge in the production of chemical fuels from electricity. Although several catalysts have been developed for these reactions, substantial challenges remain towards the ultimate goal of an efficient, inexpensive and robust electrocatalyst. Until now, there is as yet no report on both water oxidation and reduction by identical catalyst. Reported here is the first soluble copper-based catalyst, Cu(Me2oxpn)Cu(OH)2] 1 (Me2oxpn: N,N‧-bis(2,2‧-dimethyl-3-aminopropyl)oxamido) for both electrolytic water oxidation and reduction. Water oxidation occurs at an overpotential of 636 mV vs SHE to give O2 with a turnover frequency (TOF) of ∼2.14 s-1. Electrochemical studies also indicate that 1 is a soluble molecular species, that is among the most rapid homogeneous water reduction catalysts, with a TOF of 654 mol of hydrogen per mole of catalyst per hour at an overpotential of 789 mV vs SHE (pH 7.0). Sustained water reduction catalysis occurs at glassy carbon (GC) to give H2 over a 32 h electrolysis period with 95% Faradaic yield and no observable decomposition of the catalyst.

  16. Physical and electrical properties of copper oxide doped bismuth borate glasses

    Science.gov (United States)

    Dhiman, R. L.; Kundu, Virender Singh; Arora, Susheel; Maan, A. S.

    2013-06-01

    The role of CuO on the physical and electrical properties in x CuO.(25-x)Bi2O3.75B2O3;(5≤x≤20) glass system has been investigated. The glasses were prepared by normal melt quench technique. The density and molar volume of the glasses decreases with increase in CuO (mol %). The dc conductivity was measured in the temperature range 413-513 K. The conduction mechanism in these glasses was discussed in terms of small polaron hopping (SPH) theory proposed by Mott. The activation energy is found to decrease with increasing copper oxide content. The dc conductivity increases with increase in CuO content and ranging from 6.02×10-12 (Ωm)-1 to 1.096×10-10 (Ωm)-1 at 450K.

  17. Piper betle-mediated synthesis, characterization, antibacterial and rat splenocyte cytotoxic effects of copper oxide nanoparticles.

    Science.gov (United States)

    Praburaman, Loganathan; Jang, Jum-Suk; Muthusamy, Govarthanan; Arumugam, Sengottaiyan; Manoharan, Koildhasan; Cho, Kwang-Min; Min, Cho; Kamala-Kannan, Seralathan; Byung-Taek, Oh

    2016-09-01

    The study reports a simple, inexpensive, and eco-friendly synthesis of copper oxide nanoparticles (CuONPs) using Piper betle leaf extract. Formation of CuONPs was confirmed by UV-visible spectroscopy at 280 nm. Transmission electron microscopy (TEM) images showed that the CuONPs were spherical, with an average size of 50-100 nm. The scanning electron microscopy (SEM)-energy dispersive spectroscopy (EDS) peak was observed approximately at 1 and 8 keV. The X-ray diffraction (XRD) studies indicated that the particles were crystalline in nature. CuONPs effectively inhibited the growth of phytopathogens Ralstonia solanacearum and Xanthomonas axonopodis. The cytotoxic effect of the synthesized CuONPs was analyzed using rat splenocytes. The cell viability was decreased to 94% at 300 μg/mL.

  18. Structures and photovoltaic properties of copper oxides/fullerene solar cells

    Science.gov (United States)

    Oku, Takeo; Motoyoshi, Ryosuke; Fujimoto, Kazuya; Akiyama, Tsuyoshi; Jeyadevan, Balachandran; Cuya, John

    2011-11-01

    Copper oxide (CuOx) thin films were produced by spin-coating and electrodeposition methods, and their microstructures and photovoltaic properties were investigated. Thin film solar cells based on the Cu2O/C60 and CuO/C60 heterojunction or bulk heterojunction structures were fabricated on F-doped or In-doped SnO2, which showed photovoltaic activity under air mass 1.5 simulated sunlight conditions. Microstructures of the CuOx thin films were examined by X-ray diffraction and transmission electron microscopy, which indicated the presence of Cu2O and CuO nanoparticles. The energy levels of the present solar cells were also discussed.

  19. A new rapid chemical route to prepare reduced graphene oxide using copper metal nanoparticles.

    Science.gov (United States)

    Wu, Tao; Gao, Jianping; Xu, Xiaoyang; Wang, Wei; Gao, Chunjuan; Qiu, Haixia

    2013-05-31

    Copper metal nanoparticles were used as a reducing agent to reduce graphene oxide (GO). The reaction was complete in about 10 min and did not involve the use of any toxic reagents or acids that are typically used in the reduction of GO by Zn and Fe powders. The high reduction activity of the Cu nanoparticles, compared to Cu powder, may be the result of the formation of Cu₂O nanoparticles. The effect of the mass ratio of the metal to GO for this reduction was also investigated. The reduction of the GO was verified by ultraviolet-visible absorption spectroscopy, x-ray diffraction, thermogravimetric analysis, Raman spectroscopy, x-ray photoelectron spectroscopy and transmission electron microscopy. After reduction, Cu₂O supported on reduced GO was formed and showed superior catalytic ability for the degradation of a model dye pollutant, methylene blue.

  20. Direct Growth of Copper Oxide Films on Ti Substrate for Nonenzymatic Glucose Sensors

    Directory of Open Access Journals (Sweden)

    Xiaoxu Ji

    2014-01-01

    Full Text Available Copper oxide (CuO films directly grown on Ti substrate have been successfully prepared via a hydrothermal method and used to construct an amperometric nonenzymatic glucose sensor. XRD and SEM were used to characterize the samples. The electrochemical performances of the electrode for detection of glucose were investigated by cyclic voltammetry and chronoamperometry. The CuO films based glucose sensors exhibit enhanced electrocatalytic properties which show very high sensitivity (726.9 μA mM−1 cm−2, low detection limit (2 μM, and fast response (2 s. In addition, reproducibility and long-term stability have been observed. Low cost, convenience, and biocompatibility make the CuO films directly grown on Ti substrate electrodes a promising platform for amperometric nonenzymatic glucose sensor.

  1. Biokinetics of different-shaped copper oxide nanoparticles in the freshwater gastropod, Potamopyrgus antipodarum

    DEFF Research Database (Denmark)

    Ramskov, Tina; Croteau, Marie-Noelle; Forbes, Valery E;

    2015-01-01

    to the sediment-dwelling gastropod, Potamopyrgus antipodarum. The influence of Cu added as CuCl2 (i.e., aqueous Cu treatment) was also examined. Exposure to sediment mixed with aqueous Cu or with different-shaped CuO NPs at an average measured exposure concentration of 207 μg Cu per g dry weight sediment for 14...... particle size, although NP size does not always predict effects. In contrast, not much is known about the influence of particle shape on bioaccumulation and toxicity. Here, we examined the influence of copper oxide (CuO) NP shape (rods, spheres, and platelets) on their bioaccumulation kinetics and toxicity...... days did not significantly affect snail mortality. However, growth decreased for snails exposed to sediment amended with CuO NP spheres and platelets. P. antipodarum accumulated Cu from all Cu forms/shapes in significant amounts compared to control snails. In addition, once accumulated, Cu...

  2. SILAC-based quantitative proteomic analysis of human lung cell response to copper oxide nanoparticles.

    Science.gov (United States)

    Edelmann, Mariola J; Shack, Leslie A; Naske, Caitlin D; Walters, Keisha B; Nanduri, Bindu

    2014-01-01

    Copper (II) oxide (CuO) nanoparticles (NP) are widely used in industry and medicine. In our study we evaluated the response of BEAS-2B human lung cells to CuO NP, using Stable isotope labeling by amino acids in cell culture (SILAC)-based proteomics and phosphoproteomics. Pathway modeling of the protein differential expression showed that CuO NP affect proteins relevant in cellular function and maintenance, protein synthesis, cell death and survival, cell cycle and cell morphology. Some of the signaling pathways represented by BEAS-2B proteins responsive to the NP included mTOR signaling, protein ubiquitination pathway, actin cytoskeleton signaling and epithelial adherens junction signaling. Follow-up experiments showed that CuO NP altered actin cytoskeleton, protein phosphorylation and protein ubiquitination level.

  3. SILAC-based quantitative proteomic analysis of human lung cell response to copper oxide nanoparticles.

    Directory of Open Access Journals (Sweden)

    Mariola J Edelmann

    Full Text Available Copper (II oxide (CuO nanoparticles (NP are widely used in industry and medicine. In our study we evaluated the response of BEAS-2B human lung cells to CuO NP, using Stable isotope labeling by amino acids in cell culture (SILAC-based proteomics and phosphoproteomics. Pathway modeling of the protein differential expression showed that CuO NP affect proteins relevant in cellular function and maintenance, protein synthesis, cell death and survival, cell cycle and cell morphology. Some of the signaling pathways represented by BEAS-2B proteins responsive to the NP included mTOR signaling, protein ubiquitination pathway, actin cytoskeleton signaling and epithelial adherens junction signaling. Follow-up experiments showed that CuO NP altered actin cytoskeleton, protein phosphorylation and protein ubiquitination level.

  4. Copper:molybdenum sub-oxide blend as transparent conductive electrode (TCE) indium free

    Science.gov (United States)

    Hssein, Mehdi; Cattin, Linda; Morsli, Mustapha; Addou, Mohammed; Bernède, Jean-Christian

    2016-05-01

    Oxide/metal/oxide structures have been shown to be promising alternatives to ITO. In such structures, in order to decrease the high light reflection of the metal film it is embedded between two metal oxides dielectric. MoO3-x is often used as oxide due to its capacity to be a performing anode buffer layer in organic solar cells, while silver is the metal the most often used [1]. Some attempts to use cheaper metal such as copper have been done. However it was shown that Cu diffuses strongly into MoO3-x [2]. Here we used this property to grow simple new transparent conductive oxide (TCE), i.e., Cu: MoO3-x blend. After the deposition of a thin Cu layer, a film of MoO3-x is deposited by sublimation. An XPS study shows more than 50% of Cu is present at the surface of the structure. In order to limit the Cu diffusion an ultra-thin Al layer is deposited onto MoO3-x. Then, in order to obtain a good hole collecting contact with the electron donor of the organic solar cells, a second MoO3-x layer is deposited. After optimization of the thickness of the different layers, the optimum structure is as follow: Cu (12 nm) : MoO3-x (20 nm)/Al (0.5 nm)/ MoO3-x (10 nm). The sheet resistance of this structure is Rsq = 5.2 Ω/sq. and its transmittance is Tmax = 65%. The factor of merit ϕM = T10/Rsq. = 2.41 × 10-3 Ω-1, which made this new TCE promising as anode in organic solar cells. Contribution to the topical issue "Materials for Energy Harvesting, Conversion and Storage (ICOME 2015) - Elected submissions", edited by Jean-Michel Nunzi, Rachid Bennacer and Mohammed El Ganaoui

  5. Effect of the addition of rare earths on the activity of alumina supported copper cobaltite in CO oxidation, CH4 oxidation and NO decomposition

    Institute of Scientific and Technical Information of China (English)

    B Ivanov; I Spassova; M Milanova; G Tyuliev; M Khristova

    2015-01-01

    The effect of the addition of small amounts of rare earths (Ln=La, Ce, Nd and Gd) to alumina supported copper-cobalt spinel oxide on the catalysts efficiency in CO and CH4 oxidation and in NO decomposition was investigated. Samples of Ln/CuCo/Al catalyst were prepared and characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), atomic absorption spectroscopy (AAS), scanning electron microscopy-energy dispersive spectroscopy (SEM-EDS), H2-temperature-programmed reduc-tion (H2-TPR), electron paramagnetic resonance (EPR) spectroscopy and low temperature nitrogen adsorption. The results showed that the addition of rare earths changed the surface state of the alumina supported copper-cobalt spinel catalyst. As a result, partial re-duction of copper species was observed as well as migration of these species between the surface and the bulk. The Ln/CuCo/Al catalysts behaved differently in oxidation and reduction processes. In oxidation processes where oxide structure was important, Ce/CuCo/Al and Nd/CuCo/Al were the most active catalysts. The catalyst Ce/CuCo/Al was the most active in the oxidation reactions because of the availability and favorable surface distribution of the redox couples Cu+/Cu2+ and Ce3+/Ce4+. In NO decompostion, Ln-modified catalysts significantly improved the selectivity of the process to N2.

  6. MR Colonography with fecal tagging: Barium vs. barium ferumoxsil

    DEFF Research Database (Denmark)

    Achiam, M.P.; Chabanova, E.; Logager, V.B.;

    2008-01-01

    and Methods. Twenty patients referred to CC underwent dark lumen MRC prior to the colonoscopy. Two groups of patients received two different oral contrast agents (barium sulfate and barium sulfate/ferumoxsil) as a laxative-free fecal tagging prior to the MRC. After MRC, the contrast agent was rated...... qualitatively (with the standard method using contrast-to-wall ratio) and subjectively (using a visual analog scale [VAS]) by three different blinded observers. Results. Evaluated both qualitatively and subjectively, the tagging efficiency of barium sulfate/ferumoxsil was significantly better (P ... barium sulfate alone. The VAS method for evaluating the tagging efficiency of contrast agents showed a high correlation (observer 11, r = 0.91) to the standard method using contrast-to-wall ratio and also a high interclass correlation (observer 11 and III = 0.89/0.85). MRC found I of 22 (5%) polyps

  7. Doped barium titanate nanoparticles

    Indian Academy of Sciences (India)

    T K Kundu; A Jana; P Barik

    2008-06-01

    We have synthesized nickel (Ni) and iron (Fe) ion doped BaTiO3 nanoparticles through a chemical route using polyvinyl alcohol (PVA). The concentration of dopant varies from 0 to 2 mole% in the specimens. The results from X-ray diffractograms and transmission electron micrographs show that the particle diameters in the specimen lie in the range 24–40 nm. It is seen that the dielectric permittivity in doped specimens is enhanced by an order of magnitude compared to undoped barium titanate ceramics. The dielectric permittivity shows maxima at 0.3 mole% doping of Fe ion and 0.6 mole% of Ni ion. The unusual dielectric behaviour of the specimens is explained in terms of the change in crystalline structure of the specimens.

  8. An integrated method incorporating sulfur-oxidizing bacteria and electrokinetics to enhance removal of copper from contaminated soil

    Energy Technology Data Exchange (ETDEWEB)

    Maini, G.; Sharman, A.K.; Sunderland, G.; Knowles, C.J.; Jackman, S.A.

    2000-03-15

    The combination of bioleaching and electrokinetics for the remediation of metal contaminated land has been investigated. In bioleaching, bacteria convert reduced sulfur compounds to sulfuric acid, acidifying soil and mobilizing metal ions. In electrokinetics, DC current acidifies soil, and mobilized metals are transported to the cathode by electromigration. When bioleaching was applied to silt soil artificially contaminated with seven metals and amended with sulfur, bacterial activity was partially inhibited and limited acidification occurred. Electrokinetic treatment of silt soil contaminated solely with 1000 mg/kg copper nitrate showed 89% removal of copper from the soil within 15 days. To combine bioleaching and electrokinetics sequentially, preliminary partial acidification was performed by amending copper-contaminated soil with sulfur (to 5% w/w) and incubating at constant moisture (30% w/w) and temperature (20 C) for 90 days. Indigenous sulfur oxidizing bacteria partially acidified the soil from pH 8.1 to 5.4. This soil was then treated by electrokinetics yielding 86% copper removal in 16 days. In the combined process, electrokinetics stimulated sulfur oxidation, by removing inhibitory factors, yielding a 5.1-fold increase in soil sulfate concentration. Preacidification by sulfur-oxidizing bacteria increased the cost-effectiveness of the electrokinetic treatment by reducing the power requirement by 66%.

  9. Performance of supported catalysts based on a new copper vanadate-type precursor for catalytic oxidation of toluene

    Energy Technology Data Exchange (ETDEWEB)

    Palacio, L.A. [Grupo Catalizadores y Adsorbentes, Universidad de Antioquia, A.A. 1226 - Medellin (Colombia); Silva, E.R.; Catalao, R. [IBB-Institute for Biotechnology and Bioengineering, Instituto Superior Tecnico, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); Silva, J.M. [IBB-Institute for Biotechnology and Bioengineering, Instituto Superior Tecnico, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); Instituto Superior Engenharia de Lisboa, Departamento de Engenharia Quimica. Av. Cons. Emidio Navarro, 1959-007 Lisboa (Portugal); Hoyos, D.A. [Grupo Catalizadores y Adsorbentes, Universidad de Antioquia, A.A. 1226 - Medellin (Colombia); Ribeiro, F.R. [IBB-Institute for Biotechnology and Bioengineering, Instituto Superior Tecnico, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); Ribeiro, M.F. [IBB-Institute for Biotechnology and Bioengineering, Instituto Superior Tecnico, Av. Rovisco Pais, 1049-001 Lisboa (Portugal)], E-mail: filipa.ribeiro@ist.utl.pt

    2008-05-01

    A new copper vanadate precursor with the formula NH{sub 4}[Cu{sub 2.5}V{sub 2}O{sub 7}(OH){sub 2}].H{sub 2}O was synthesized and deposited on two different supports, ZSM-5 and amorphous SiO{sub 2}, by a hydrothermal method or by mechanical mixture. The catalytic behaviour was evaluated in the total oxidation of toluene and the characterization was performed by H{sub 2}-temperature-programmed reduction (H{sub 2}-TPR), thermogravimetric analysis, elemental analysis, UV-vis diffuse reflectance spectroscopy and X-ray diffraction. It was found that the copper vanadate phase comprises two mixed oxides, one of them crystalline, the Ziesite phase, and the other one amorphous. The supported catalysts presented a content of copper vanadate phase of about 9-11 wt.%. The copper vanadate deposited on ZSM-5 by the hydrothermal method evidences the best performance in the oxidation of toluene. This behaviour can be associated with the smaller size and higher dispersion of the particles on the support, which was confirmed by their better reducibility and higher band gap energy value compared with the other series of studied catalysts.

  10. Preparation of copper (I) oxide nanohexagon decorated reduced graphene oxide nanocomposite and its application in electrochemical sensing of dopamine

    Energy Technology Data Exchange (ETDEWEB)

    Sivasubramanian, R., E-mail: rss@psgias.ac.in; Biji, P.

    2016-08-15

    Highlights: • Cu{sub 2}O nanohexagon–reduced graphene oxide (rGO) nanocomposite has been prepared by in-situ reduction method. • The rGO-Cu{sub 2}O/GCE exhibited excellent catalytic properties for dopamine due to the synergistic action of the nanocomposite. • The proposed sensor is highly selective toward dopamine in the presence of ascorbic acid and uric acid. - Graphical Abstract: - Abstract: An electrochemical sensor using copper (I) oxide nanostructure decorated reduced graphene oxide (rGO) nanocomposite has been proposed for selective detection of dopamine. The rGO–Cu{sub 2}O nanocomposite was synthesized by in-situ chemical reduction method and was characterized using Transmission Electron Microscope (TEM), Energy Dispersive X-ray (EDX) analysis, X-ray Diffraction (XRD) patterns, Fourier Transform Infrared (FTIR), UV–vis and Raman Spectroscopy, respectively. From Cyclic Voltammetric (CV) studies, it was inferred that rGO–Cu{sub 2}O/GCE exhibits excellent electrocatalytic activity toward dopamine, which is attributed to the enhanced conductivity as well as the synergistic effect of the nanocomposite. The sensing was carried out using Differential Pulse Voltammetry (DPV) wherefrom a Limit of Detection (LOD) of 50 nM with a linear range from 10 µM to 900 µM was estimated. The effect of potential interfering agents such as Uric Acid (UA), Ascorbic Acid (AA), glucose, K{sup +}, Na{sup +}, Cl{sup −}, and SO{sub 4}{sup −} ions toward sensing were investigated. The performance of the sensor toward the estimation of dopamine in human blood and urine samples were analyzed. The facile method for the preparation of a nanocomposite in conjunction with the low detection limit and the wide linear range for dopamine sensing is the advantage of this present study.

  11. Evaluation of oxidative events and copper accumulatıon in oral tissues of patients wıth Wilson's disease: three case report.

    Science.gov (United States)

    Ozturk, Mustafa; Karacelebi, Ezgi; Gungor, Kahraman; Coskun, Sule; Boysan, Esma

    2015-01-01

    Wilson's disease (WD), also known as hepatolenticular degeneration, was first described in 1912 by Kinnear Wilson. It is an autosomal recessive disorder caused by mutations in the ATP7B gene, a membrane-bound copper transporting ATPase. The disorder is caused by impairment of the copper transporting ATPase, ATP7B, in the liver, which disturbs copper transport, excretion into the bile, and incorporation into apoceruloplasmin. WD is an inherited copper metabolism disorder with pathological copper accumulation in many tissues, but especially in brain and liver. We conducted this study because copper accumulation in oral tissues in patients with WD have not been studied before. We think that copper accumulation and differences of oxidative events in oral tissues can cause tendency to periodontal diseases.

  12. Effect of Oxide Coating on Performance of Copper-Zinc Oxide-Based Catalyst for Methanol Synthesis via Hydrogenation of Carbon Dioxide

    Directory of Open Access Journals (Sweden)

    Tetsuo Umegaki

    2015-11-01

    Full Text Available The effect of oxide coating on the activity of a copper-zinc oxide–based catalyst for methanol synthesis via the hydrogenation of carbon dioxide was investigated. A commercial catalyst was coated with various oxides by a sol-gel method. The influence of the types of promoters used in the sol-gel reaction was investigated. Temperature-programmed reduction-thermogravimetric analysis revealed that the reduction peak assigned to the copper species in the oxide-coated catalysts prepared using ammonia shifts to lower temperatures than that of the pristine catalyst; in contrast, the reduction peak shifts to higher temperatures for the catalysts prepared using L(+-arginine. These observations indicated that the copper species were weakly bonded with the oxide and were easily reduced by using ammonia. The catalysts prepared using ammonia show higher CO2 conversion than the catalysts prepared using L(+-arginine. Among the catalysts prepared using ammonia, the silica-coated catalyst displayed a high activity at high temperatures, while the zirconia-coated catalyst and titania-coated catalyst had high activity at low temperatures. At high temperature the conversion over the silica-coated catalyst does not significantly change with reaction temperature, while the conversion over the zirconia-coated catalyst and titania-coated catalyst decreases with reaction time. From the results of FTIR, the durability depends on hydrophilicity of the oxides.

  13. Effect of native oxide layers on copper thin-film tensile properties: A reactive molecular dynamics study

    Energy Technology Data Exchange (ETDEWEB)

    Skarlinski, Michael D., E-mail: michael.skarlinski@rochester.edu [Materials Science Program, University of Rochester, Rochester, New York 14627 (United States); Quesnel, David J. [Materials Science Program, University of Rochester, Rochester, New York 14627 (United States); Department of Mechanical Engineering, University of Rochester, Rochester, New York 14627 (United States)

    2015-12-21

    Metal-oxide layers are likely to be present on metallic nano-structures due to either environmental exposure during use, or high temperature processing techniques such as annealing. It is well known that nano-structured metals have vastly different mechanical properties from bulk metals; however, difficulties in modeling the transition between metallic and ionic bonding have prevented the computational investigation of the effects of oxide surface layers. Newly developed charge-optimized many body [Liang et al., Mater. Sci. Eng., R 74, 255 (2013)] potentials are used to perform fully reactive molecular dynamics simulations which elucidate the effects that metal-oxide layers have on the mechanical properties of a copper thin-film. Simulated tensile tests are performed on thin-films while using different strain-rates, temperatures, and oxide thicknesses to evaluate changes in yield stress, modulus, and failure mechanisms. Findings indicate that copper-thin film mechanical properties are strongly affected by native oxide layers. The formed oxide layers have an amorphous structure with lower Cu-O bond-densities than bulk CuO, and a mixture of Cu{sub 2}O and CuO charge character. It is found that oxidation will cause modifications to the strain response of the elastic modulii, producing a stiffened modulii at low temperatures (<75 K) and low strain values (<5%), and a softened modulii at higher temperatures. While under strain, structural reorganization within the oxide layers facilitates brittle yielding through nucleation of defects across the oxide/metal interface. The oxide-free copper thin-film yielding mechanism is found to be a tensile-axis reorientation and grain creation. The oxide layers change the observed yielding mechanism, allowing for the inner copper thin-film to sustain an FCC-to-BCC transition during yielding. The mechanical properties are fit to a thermodynamic model based on classical nucleation theory. The fit implies that the oxidation of the

  14. Non-Enzymatic Glucose Sensing Using Carbon Quantum Dots Decorated with Copper Oxide Nanoparticles

    Directory of Open Access Journals (Sweden)

    Houcem Maaoui

    2016-10-01

    Full Text Available Perturbations in glucose homeostasis is critical for human health, as hyperglycemia (defining diabetes leads to premature death caused by macrovascular and microvascular complications. However, the simple and accurate detection of glucose in the blood at low cost remains a challenging task, although it is of great importance for the diagnosis and therapy of diabetic patients. In this work, carbon quantum dots decorated with copper oxide nanostructures (CQDs/Cu2O are prepared by a simple hydrothermal approach, and their potential for electrochemical non-enzymatic glucose sensing is evaluated. The proposed sensor exhibits excellent electrocatalytic activity towards glucose oxidation in alkaline solutions. The glucose sensor is characterized by a wide concentration range from 6 µM to 6 mM, a sensitivity of 2.9 ± 0.2 µA·µM−1·cm−2, and a detection limit of 6 µM at a signal-to-noise ratio S/N = 3. The sensors are successfully applied for glucose determination in human serum samples, demonstrating that the CQDs/Cu2O-based glucose sensor satisfies the requirements of complex sample detection with adapted potential for therapeutic diagnostics.

  15. Electrochemical oxidation of polyethylene glycol in electroplating solution using paraffin composite copper hexacyanoferrate modified (PCCHM) anode.

    Science.gov (United States)

    Bejankiwar, Rajesh S; Basu, Abir; Cementi, Max

    2004-01-01

    Electrochemical oxidation of polyethylene glycol (PEG) in an acidic (pH 0.18 to 0.42) and high ionic strength electroplating solution was investigated. The electroplating solution is a major source of wastewater in the printing wiring board industry. A paraffin composite copper hexacyanoferrate modified (PCCHM) electrode was used as the anode and a bare graphite electrode was used as the cathode. The changes in PEG and total organic carbon (TOC) concentrations during the course of the reaction were monitored. The efficiency of the PCCHM anode was compared with bare graphite anode and it was found that the former showed significant electrocatalytic property for PEG and TOC removal. Chlorides present in the solution were found to contribute significantly in the overall organic removal process. Short chain organic compounds like acetic acid, oxalic acid, formic acid and ethylene glycol formed during electrolysis were identified by HPLC method. Anode surface area and applied current density were found to influence the electro-oxidation process, in which the former was found to be dominating. Investigations of the kinetics for the present electrochemical reaction suggested that the two stage first-order kinetic model provides a much better representation of the overall mechanism of the process if compared to the generalized kinetic model.

  16. Electrochemical oxidation of polyethylene glycol in electroplating solution using paraffin composite copper hexacyanoferrate modified (PCCHM) anode

    Institute of Scientific and Technical Information of China (English)

    Rajesh S. Bejankiwar; Abir Basu; Max Cementi

    2004-01-01

    Electrochemical oxidation of polyethylene glycol(PEG) in an acidic(pH 0.18 to 0.42) and high ionic strength electroplating solution was investigated. The electroplating solution is a major source of wastewater in the printing wiring board industry. A paraffin composite copper hexacyanoferrate modified(PCCHM) electrode was used as the anode and a bare graphite electrode was used as the cathode. The changes in PEG and total organic carbon(TOC) concentrations during the course of the reaction were monitored. The efficiency of the PCCHM anode was compared with bare graphite anode and it was found that the former showed significant electrocatalytic property for PEG and TOC removal. Chlorides present in the solution were found to contribute significantly in the overall organic removal process. Short chain organic compounds like acetic acid, oxalic acid, formic acid and ethylene glycol formed during electrolysis were identified by HPLC method. Anode surface area and applied current density were found to influence the electro-oxidation process, in which the former was found to be dominating. Investigations of the kinetics for the present electrochemical reaction suggested that the two stage first-order kinetic model provides a much better representation of the overall mechanism of the process if compared to the generalized kinetic model.

  17. Contribution of redox-active iron and copper to oxidative damage in Alzheimer disease.

    Science.gov (United States)

    Castellani, Rudy J; Honda, Kazuhiro; Zhu, Xiongwei; Cash, Adam D; Nunomura, Akihiko; Perry, George; Smith, Mark A

    2004-07-01

    Metal-catalyzed hydroxyl radicals are potent mediators of cellular injury, affecting every category of macromolecule, and are central to the oxidative injury hypothesis of Alzheimer disease (AD) pathogenesis. Studies on redox-competent copper and iron indicate that redox activity in AD resides exclusively within the neuronal cytosol and that chelation with deferoxamine, DTPA, or, more recently, iodochlorhydroxyquin, removes this activity. We have also found that while proteins that accumulate in AD possess metal-binding sites, metal-associated cellular redox activity is primarily dependent on metals associated with nucleic acid, specifically cytoplasmic RNA. These findings indicate aberrations in iron homeostasis that, we suspect, arise primarily from heme, since heme oxygenase-1, an enzyme that catalyzes the conversion of heme to iron and biliverdin, is increased in AD, and mitochondria, since mitochondria turnover, mitochondrial DNA, and cytochrome C oxidative activity are all increased in AD. These findings, as well as studies demonstrating a reduction in microtubule density in AD neurons, suggest that mitochondrial dysfunction, acting in concert with cytoskeletal pathology, serves to increase redox-active heavy metals and initiates a cascade of abnormal events culminating in AD pathology.

  18. Oxidative Damage in Lymphocytes of Copper Smelter Workers Correlated to Higher Levels of Excreted Arsenic

    Directory of Open Access Journals (Sweden)

    Jorge Escobar

    2010-01-01

    Full Text Available Arsenic has been associated with multiple harmful effects at the cellular level. Indirectly these defects could be related to impairment of the integrity of the immune system, in particular in lymphoid population. To characterize the effect of Arsenic on redox status on this population, copper smelter workers and arsenic unexposed donors were recruited for this study. We analyzed urine samples and lymphocyte enriched fractions from donors to determinate arsenic levels and lymphocyte proliferation. Moreover, we studied the presence of oxidative markers MDA, vitamin E and SOD activity in donor plasma. Here we demonstrated that in human beings exposed to high arsenic concentrations, lymphocyte MDA and arsenic urinary levels showed a positive correlation with SOD activity, and a negative correlation with vitamin E serum levels. Strikingly, lymphocytes from the arsenic exposed population respond to a polyclonal stimulator, phytohemaglutinin, with higher rates of thymidine incorporation than lymphocytes of a control population. As well, similar in vitro responses to arsenic were observed using a T cell line. Our results suggest that chronic human exposure to arsenic induces oxidative damage in lymphocytes and could be considered more relevant than evaluation of T cell surveillance.

  19. Oxidative Damage in Lymphocytes of Copper Smelter Workers Correlated to Higher Levels of Excreted Arsenic

    Science.gov (United States)

    Escobar, Jorge; Varela-Nallar, Lorena; Coddou, Claudio; Nelson, Pablo; Maisey, Kevin; Valdés, Daniel; Aspee, Alexis; Espinosa, Victoria; Rozas, Carlos; Montoya, Margarita; Mandiola, Cristian; Rodríguez, Felipe E.; Acuña-Castillo, Claudio; Escobar, Alejandro; Fernández, Ricardo; Diaz, Hernán; Sandoval, Mario; Imarai, Mónica; Rios, Miguel

    2010-01-01

    Arsenic has been associated with multiple harmful effects at the cellular level. Indirectly these defects could be related to impairment of the integrity of the immune system, in particular in lymphoid population. To characterize the effect of Arsenic on redox status on this population, copper smelter workers and arsenic unexposed donors were recruited for this study. We analyzed urine samples and lymphocyte enriched fractions from donors to determinate arsenic levels and lymphocyte proliferation. Moreover, we studied the presence of oxidative markers MDA, vitamin E and SOD activity in donor plasma. Here we demonstrated that in human beings exposed to high arsenic concentrations, lymphocyte MDA and arsenic urinary levels showed a positive correlation with SOD activity, and a negative correlation with vitamin E serum levels. Strikingly, lymphocytes from the arsenic exposed population respond to a polyclonal stimulator, phytohemaglutinin, with higher rates of thymidine incorporation than lymphocytes of a control population. As well, similar in vitro responses to arsenic were observed using a T cell line. Our results suggest that chronic human exposure to arsenic induces oxidative damage in lymphocytes and could be considered more relevant than evaluation of T cell surveillance. PMID:21253489

  20. DNA cleavage system of nanosized graphene oxide sheets and copper ions.

    Science.gov (United States)

    Ren, Hongliu; Wang, Chong; Zhang, Jiali; Zhou, Xuejiao; Xu, Dafeng; Zheng, Jing; Guo, Shouwu; Zhang, Jingyan

    2010-12-28

    The exploration of efficient DNA intercalative agents (intercalators) is essential for understanding DNA scission, repair, and signal transduction. In this work, we explored systematically the graphene oxide (GO) interaction with DNA molecules using fluorescence spectroscopic (FL) and circular dichroism (CD) studies, gel electrophoresis, and DNA thermal denaturation. We demonstrated that the GO nanosheets could intercalate efficiently into DNA molecules. Significantly, we illustrated that the scission of DNA by GO sheets combining with copper ions could take place pronouncedly. The scission of DNA by the GO/Cu(2+) system is critically dependent on the concentrations of GO and Cu(2+) and their ratio. DNA cleavage ability exhibited by the GO with several other metal ions and the fact that GO/Cu(2+)-cleaved DNA fragments can be partially relegated suggest that the mechanism of DNA cleavage by the GO/metal ion system is oxidative and hydrolytic. The result reveals that the GO/Cu(2+) could be used as a DNA cleaving system that should find many practical applications in biotechnology and as therapeutic agents.

  1. Oxidative status of Matricaria chamomilla plants related to cadmium and copper uptake.

    Science.gov (United States)

    Kovácik, Jozef; Backor, Martin

    2008-08-01

    Cadmium (Cd) and copper (Cu) uptake by the plants of Matricaria chamomilla and relation to activities of guaiacol peroxidase (GPX, EC 1.11.1.7), catalase (CAT, EC 1.11.1.6) and glutathione reductase (GR, EC 1.6.4.2) up to 7 days of exposure to 3, 60 and 120 microM Cd or Cu was studied. Cd content in rosettes was ca. 10-fold higher in comparison to Cu while Cu was preferentially accumulated in the roots. In line with this observation, increase of CAT and GPX activity was similar in rosettes of Cd and Cu-treated plants, indicating non-redox active properties of Cd and low Cu accumulation. In the roots, Cu showed strong pro-oxidant effect, as judged from extreme stimulation of CAT and GPX, followed by increase of hydrogen peroxide and malondialdehyde. However, GPX seemed to be more important for alleviation of oxidative stress (ca. 93-250-fold higher activity in 120 microM Cu-treated roots). Cd had substantially lower influences and stimulated GR activity more than Cu. Activities of hydrogen peroxide-scavenging enzymes in relation to its accumulation are also discussed.

  2. Bioflotation of sulfide minerals with Acidithiobacillus ferrooxidans in relation to copper activation and surface oxidation.

    Science.gov (United States)

    Pecina-Treviño, E T; Ramos-Escobedo, G T; Gallegos-Acevedo, P M; López-Saucedo, F J; Orrantia-Borunda, E

    2012-08-24

    Surface oxidation of sulfides and copper (Cu) activation are 2 of the main processes that determine the efficiency of flotation. The present study was developed with the intention to ascertain the role of the phenomena in the biomodification of sulfides by Acidithiobacillus ferrooxidans culture (cells and growth media) and their impact in bioflotation. Surface characteristics of chalcopyrite, sphalerite, and pyrrhotite, alone and in mixtures, after interaction with A. ferrooxidans were evaluated. Chalcopyrite floatability was increased substantially by biomodification, while bacteria depressed pyrrhotite floatability, favoring separation. The results showed that elemental sulfur concentration increased because of the oxidation generated by bacterial cells, the effect is intensified by the Fe(III) left in the culture and by galvanic contact. Acidithiobacillus ferrooxidans culture affects the Cu activation of sphalerite. The implications of elemental sulfur concentration and Cu activation of sphalerite are key factors that must be considered for the future development of sulfide bioflotation processes, since the depressive effect of cells could be counteracted by elemental sulfur generation.

  3. Catalytic aerobic oxidation of phenols to ortho-quinones with air-stable copper precatalysts.

    Science.gov (United States)

    Askari, M S; Rodríguez-Solano, L A; Proppe, A; McAllister, B; Lumb, J-P; Ottenwaelder, X

    2015-07-21

    A range of air-stable copper species was examined for catalytic activity in the catalytic aerobic transformation of phenols into ortho-quinones. Efficient catalysis was obtained with commercially available copper(II) acetate. The stability of all constituents before mixing makes for a practical process that advances previously reported copper(I)-based oxygenations.

  4. Room temperature reduction of multilayer graphene oxide film on a copper substrate: Penetration and participation of coper phase in redox reactions.

    Energy Technology Data Exchange (ETDEWEB)

    Voylov, Dmitry N [ORNL; Agapov, Alexander L [ORNL; Sokolov, Alexei P [ORNL; Shulga, Y.M. [Institute of Problems of Chemical Physics, Russian Ac. Sci, Chernogolovka, Russia; Arbuzov, Artem [Institute of Problems of Chemical Physics, Russian Ac. Sci, Chernogolovka, Russia

    2014-01-01

    A self-reduction of graphene oxide (GO) at room temperature after prolonged storage on a copper substrate is evidenced by decrease of oxygen content and a dramatic, 6 orders in magnitude, increase in dc conductivity. Experiments revealed that the stored GO film contains copper hydroxide phase embedded in the reduced GO structure.

  5. Microscopic droplet formation and energy transport analysis of condensation on scalable superhydrophobic nanostructured copper oxide surfaces.

    Science.gov (United States)

    Li, GuanQiu; Alhosani, Mohamed H; Yuan, ShaoJun; Liu, HaoRan; Ghaferi, Amal Al; Zhang, TieJun

    2014-12-01

    Utilization of nanotechnologies in condensation has been recognized as one opportunity to improve the efficiency of large-scale thermal power and desalination systems. High-performance and stable dropwise condensation in widely-used copper heat exchangers is appealing for energy and water industries. In this work, a scalable and low-cost nanofabrication approach was developed to fabricate superhydrophobic copper oxide (CuO) nanoneedle surfaces to promote dropwise condensation and even jumping-droplet condensation. By conducting systematic surface characterization and in situ environmental scanning electron microscope (ESEM) condensation experiments, we were able to probe the microscopic formation physics of droplets on irregular nanostructured surfaces. At the early stages of condensation process, the interfacial surface tensions at the edge of CuO nanoneedles were found to influence both the local energy barriers for microdroplet growth and the advancing contact angles when droplets undergo depinning. Local surface roughness also has a significant impact on the volume of the condensate within the nanostructures and overall heat transfer from the vapor to substrate. Both our theoretical analysis and in situ ESEM experiments have revealed that the liquid condensate within the nanostructures determines the amount of the work of adhesion and kinetic energy associated with droplet coalescence and jumping. Local and global droplet growth models were also proposed to predict how the microdroplet morphology within nanostructures affects the heat transfer performance of early-stage condensation. Our quantitative analysis of microdroplet formation and growth within irregular nanostructures provides the insight to guide the anodization-based nanofabrication for enhancing dropwise and jumping-droplet condensation performance.

  6. Large low-symmetry polarons of the high-Tc, copper oxides: Formation, mobility and ordering

    Science.gov (United States)

    Bersuker, Gennadi I.; Goodenough, John B.

    1997-02-01

    A microscopic model of the evolution from antiferromagnetic insulator to superconductor on oxidation of the parent-phase (CuO 2) 2- sheets of a cuprate superconductor starts with the assumption that strong electron-lattice interactions are dominant and give a heterogeneous electronic distribution. Introduction of pseudo-Jahn-Teller vibronic coupling associated with the δ holes in the (CuO 2) (2-δ) - sheets is shown to stabilize, below a critical temperature Tp ≈ 850 K, large non-adiabatic polarons containing 5 to 7 copper centers; cooperative low-symmetry in-plane vibrations also stabilize an elastic attractive force between polarons that can overcome the longer-range Coulomb repulsion between polarons. Utilizing established parameters for isolated CuO 6 complexes gives a calculated polaron size of 5 to 7 copper centers, which compares with a measured mean size of 5.3 copper centers in underdoped samples 0 hopping. This type of motion, which is not described by conventional transport theories, gives a linear increase of the resistivity with temperature above a temperature Tϱ due to scattering of the polaron at its own border, which separates regions inside and outside the polaron of slightly different mean CuO bond length. At lower temperatures, the polaron mobility becomes activated, but at higher concentrations this change is obscured because the elastic interpolaron attractive force causes the polarons to condense into a “polaron liquid,” and below some critical temperature Td ≥ Tc the polarons undergo long-range ordering into one-dimensional polaronic stripes separated by stripes of the parent phase, which support antiferromagnetic spin fluctuations. The zig-zag polaron stripes consist of polaron pairs oriented alternately along [100] and [010] axes of a CuO 2 sheet. Formation of the ordered superstructure permits conduction of hole pairs without scattering from lattice vibrations provided there is also coupling in the third dimension between Cu

  7. The oxidative p-dichlorobenzene dechlorinating in the presence of copper (ΙΙ complexes and nitrogen (ΙΙ, ΙV oxides

    Directory of Open Access Journals (Sweden)

    Valentina Yemelyanova

    2012-12-01

    Full Text Available The results of dechlorination in the solution CuCl2–TBP–NaNO2–О2–Н2О kinetics research are presented in the article. All system components influence to the dechlorination process is studied and quantitatively described. The composition of copper intermediate complexes participating in reaction is studied by the instrumentality of UV-spectroscopy. Established part of binuclear copper complexes in the catalytic intermediate complex constants of formation were estimated and compared with the kinetic and spectrophotometric methods. The composition of the intermediate complexes responsible for process is defined, the mechanism scheme is offered, the p-dichlorobenzene dechlorination limiting stage including redox-disintegration of the intermediate complex consisting of dimeric complex of copper (II, I chloride, nitrogen oxide and p-dichlorobenzene is defined.

  8. Alterations in copper homeostasis and oxidative stress biomarkers in women using the intrauterine device TCu380A.

    Science.gov (United States)

    Arnal, Nathalie; de Alaniz, María J T; Marra, Carlos A

    2010-02-15

    Copper ions participate in the Häber-Weiss reaction to produce ROS, which can be toxic when in excess. The purpose of this study was to measure the copper concentration (Cu) in the plasma of women using Cu-IUDs and determine (i) the effect of Cu on oxidative stress biomarkers, (ii) the levels of copper transport proteins in the plasma and (iii) the status of some liver damage markers in relation to the length of the intrauterine device use. Thirty-nine controls and 35 T380-IUD users were recruited. Various oxidative stress biomarkers, ceruloplasmin (CRP), metallothioneins (MTs), Cu and enzyme activities involved in liver function were measured in the plasma. The Cu concentration was higher in women with IUDs, concomitantly with time-dependent increases in the main oxidative stress biomarkers (TBARS, protein carbonyls, glutathione and nitrates+nitrites), hepatic enzymes (LDH and transaminases), MTs and CRP. We concluded that the use of Cu-IUDs for more than 2 consecutive years should be avoided in order to prevent oxidative damage.

  9. Simultaneous photoreductive removal of copper (II) and selenium (IV) under visible light over spherical binary oxide photocatalyst

    Energy Technology Data Exchange (ETDEWEB)

    Aman, Noor [ACC Division, National Metallurgical Laboratory, CSIR (Council of Scientific and Industrial Research), Jamshedpur-831007 (India); Mishra, T., E-mail: drtmishra@yahoo.com [ACC Division, National Metallurgical Laboratory, CSIR (Council of Scientific and Industrial Research), Jamshedpur-831007 (India); Hait, J.; Jana, R.K. [ACC Division, National Metallurgical Laboratory, CSIR (Council of Scientific and Industrial Research), Jamshedpur-831007 (India)

    2011-02-15

    Graphical abstract: Spherical zirconia mixed titania materials can reduce 100 ppm of Cu(II) and Se(VI) mixture within 40 min of reaction under visible light. - Abstract: Waste water of copper mines and copper processing plant contains both copper and selenium ions with other contaminants. In this paper simultaneous photoreductive removal of copper (II) and selenium (IV) is studied for the first time using spherical binary oxide photocatalysts under visible light. All the synthesized materials are found to be mesoporous in nature with reasonably high surface area. Among a range of hole scavengers, only EDTA (ethylene diamine tetraacetic acid) and formic acid are found to be the most active for the reduction reaction. A comparative study is carried out using both the hole scavengers varying reaction time, concentration, pH etc. For a single contaminant, EDTA is found to be the best for Cu(II) reduction whereas formic acid is the best for Se(IV) reduction. In a mixed solution both EDTA and formic acid perform very well under visible light irradiation. Highest photocatalytic reduction in a mixed solution is observed at pH 3. Among all the synthesized materials, TiZr-10 performs as the best photocatalyst for both Cu(II) and Se(IV) reduction. However under UV light, Degussa P25 performs slightly better than TiZr-10. Present study shows that 100 ppm of mixed solution can be removed under visible light in 40 min of reaction using TiZr-10 as catalyst. Photodeposited material is found to be copper selenide rather than pure copper and selenium metal. This indicates that the waste water containing copper and selenium ions can be efficiently treated under visible or solar light.

  10. Simultaneous photoreductive removal of copper (II) and selenium (IV) under visible light over spherical binary oxide photocatalyst.

    Science.gov (United States)

    Aman, Noor; Mishra, T; Hait, J; Jana, R K

    2011-02-15

    Waste water of copper mines and copper processing plant contains both copper and selenium ions with other contaminants. In this paper simultaneous photoreductive removal of copper (II) and selenium (IV) is studied for the first time using spherical binary oxide photocatalysts under visible light. All the synthesized materials are found to be mesoporous in nature with reasonably high surface area. Among a range of hole scavengers, only EDTA (ethylene diamine tetraacetic acid) and formic acid are found to be the most active for the reduction reaction. A comparative study is carried out using both the hole scavengers varying reaction time, concentration, pH etc. For a single contaminant, EDTA is found to be the best for Cu(II) reduction whereas formic acid is the best for Se(IV) reduction. In a mixed solution both EDTA and formic acid perform very well under visible light irradiation. Highest photocatalytic reduction in a mixed solution is observed at pH 3. Among all the synthesized materials, TiZr-10 performs as the best photocatalyst for both Cu(II) and Se(IV) reduction. However under UV light, Degussa P25 performs slightly better than TiZr-10. Present study shows that 100 ppm of mixed solution can be removed under visible light in 40 min of reaction using TiZr-10 as catalyst. Photodeposited material is found to be copper selenide rather than pure copper and selenium metal. This indicates that the waste water containing copper and selenium ions can be efficiently treated under visible or solar light.

  11. Subchronic Toxicity of Copper Oxide Nanoparticles and Its Attenuation with the Help of a Combination of Bioprotectors

    Directory of Open Access Journals (Sweden)

    Larisa I. Privalova

    2014-07-01

    Full Text Available In the copper metallurgy workplace air is polluted with condensation aerosols, which a significant fraction of is presented by copper oxide particles <100 nm. In the scientific literature, there is a lack of their in vivo toxicity characterization and virtually no attempts of enhancing organism’s resistance to their impact. A stable suspension of copper oxide particles with mean (±SD diameter 20 ± 10 nm was prepared by laser ablation of pure copper in water. It was being injected intraperitoneally to rats at a dose of 10 mg/kg (0.5 mg per mL of deionized water three times a week up to 19 injections. In parallel, another group of rats was so injected with the same suspension against the background of oral administration of a “bio-protective complex” (BPC comprising pectin, a multivitamin-multimineral preparation, some amino acids and fish oil rich in ω-3 PUFA. After the termination of injections, many functional and biochemical indices for the organism’s status, as well as pathological changes of liver, spleen, kidneys, and brain microscopic structure were evaluated for signs of toxicity. In the same organs we have measured accumulation of copper while their cells were used for performing the Random Amplification of Polymorphic DNA (RAPD test for DNA fragmentation. The same features were assessed in control rats infected intraperitoneally with water with or without administration of the BPC. The copper oxide nanoparticles proved adversely bio-active in all respects considered in this study, their active in vivo solubilization in biological fluids playing presumably an important role in both toxicokinetics and toxicodynamics. The BPC proposed and tested by us attenuated systemic and target organs toxicity, as well as genotoxicity of this substance. Judging by experimental data obtained in this investigation, occupational exposures to nano-scale copper oxide particles can present a significant health risk while the further search for its

  12. Modelling combined effect of chloramine and copper on ammonia-oxidizing microbial activity using a biostability approach.

    Science.gov (United States)

    Sarker, Dipok Chandra; Sathasivan, Arumugam; Rittmann, Bruce E

    2015-11-01

    Continuous and batch laboratory experiments were used to evaluate the combined effects of copper and chloramine on ammonia oxidizing microbes present in otherwise high nitrifying water samples. The experimental data were analyzed using a biostability concept and quantified with the biostable residual concentratrion (BRC) of monochloramine, or the concentration that prevents the onset of nitrification. In the batch experiments, copper dosing ≥0.25 mg-Cu L(-1) resulted in complete inhibition of nitrification, and a lower copper dosing (0.1 mg-Cu L(-1)) delayed nitrification. The BRC was systematically lowered with the addition of copper. For example, a free-ammonium concentration of 0.1 mg-N L(-1) had a BRC of 0.73 mg-Cl2 L(-1) with no Cu, but addition of 0.1 mg-Cu L(-1) lowered the BRC to 0.16 mg-Cl2 L(-1), while addition of 0.25 mg-Cu L(-1) eliminated the need to add chloramine (BRC = 0). A non-competitive inhibition model fit the experimental data well with a copper threshold of 0.044 mg-Cu L(-1) and can be used to estimate Cu doses needed to prevent nitrification based on the chloramine concentration. Full scale systems applications need further study.

  13. In vitro toxicity of nanosized copper particles in PC12 cells induced by oxidative stress

    Energy Technology Data Exchange (ETDEWEB)

    Xu Pengjuan; Xu Jing; Liu Shichang [Nankai University, College of Medicine (China); Ren, Guogang [University of Hertfordshire, School of Aerospace Engineering (United Kingdom); Yang Zhuo, E-mail: zhuoyang@nankai.edu.cn [Nankai University, College of Medicine (China)

    2012-06-15

    Recent evidence suggests that some nanomaterials, which are widely used in many fields, have health effects. In order to investigate the cytotoxicity induced by nanosized copper particles (nano-Cu), PC12 cells, which were widely used as an in vitro model for the neuron research, were treated with different concentrations (0, 1, 10, 30, and 100 {mu}g/mL) of nano-Cu. The cell viability was determined by measurement of the reduction product of 3-(4,5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT). The oxidative stress induced by nano-Cu and its possible mechanism were studied in relation to the generation of reactive oxygen species (ROS) and the cellular activity of superoxide dismutase (SOD). Results showed that incubation of PC12 cells with increasing concentrations of nano-Cu induced a decrease of cell viability in a concentration- and time-dependent manner. In addition, flow cytometry assay using Annexin V-FITC/PI staining was used to investigate the mode of nano-Cu-induced cell death and quantified the percentage of apoptotic cells. Results showed that nano-Cu induced the significant apoptosis in PC12 cells. Meanwhile, intracellular accumulation of ROS was increased with the increased concentrations of nano-Cu and it was associated with decreased SOD activity, which was probably due to protect effects against the oxidative stress in PC12 cells. Results suggested that both excessive intracellular ROS and decreased SOD contributed to nano-Cu-induced cytotoxicity. In other words, the increasing of oxidative stress was a key mechanism in PC12 apoptosis induced by nano-Cu.

  14. Comparative toxicity of copper oxide bulk and nano particles in Nile Tilapia; Oreochromis niloticus: Biochemical and oxidative stress

    Directory of Open Access Journals (Sweden)

    Amr A. Abdel-Khalek

    2015-10-01

    Full Text Available Nile Tilapia; Oreochromis niloticus are commonly used in the assessment of aquatic environment quality and also considered as useful bio-indicators during environmental pollution monitoring. The LC50/96 h of copper oxide (bulk & nano particles [CuO (BPs & NPs] were 2205 & 150 mg/l, respectively. Two tested concentrations of CuO (BPs & NPs were selected: the first concentration was equivalent to (1/10 (220.5 & 15 mg/l, and the second was equivalent to (1/20 (110.25 & 7.5 mg/l LC50/96 h·CuO (BPs & NPs, respectively. While serum glucose, liver function tests (AST, ALT and ALP and kidney function tests (creatinine and uric acid showed a significant increase, serum total proteins, albumin, globulin and total lipids showed a significant decrease. Both liver and gill tissues of the studied fish showed a reduction in GSH content and an elevation in MDA and GPx activities. The present study also showed an elevation in liver CAT & SOD activities when exposed to both concentrations of CuO BPs and in the case of gills when exposed to both concentrations of CuO (BPs & NPs, although activity of these enzymes showed an inhibition in the liver when exposed to both concentrations of CuO NPs. The present study investigated whether CuO NPs are more toxic than CuO BPs.

  15. Effects of oxidizing medium on the composition, morphology and optical properties of copper oxide nanoparticles produced by pulsed laser ablation

    KAUST Repository

    Gondal, M. A.

    2013-12-01

    Pulsed laser ablation in liquid (PLAL) with 532 nm wavelength laser with 5 ns pulse duration is used to produce the nanostructure copper oxide and the effects of oxidizing media (deionized water and hydrogen peroxide) on the composition, morphology and optical properties of the product materials produced by PLAL were studied. XRD and TEM studies indicate that in the absence of hydrogen peroxide, the product material is in two phases (Cu/Cu2O) with the spherical nanoparticle structure, whereas in the presence of hydrogen peroxide in the liquid medium, the product material revealed other two phases (Cu/CuO) with nanorod-like structure. The optical studies revealed a considerable red shift (3.34-2.5 eV) in the band gap energy in the case of hydrogen peroxide in the liquid medium in PLAL synthesis compared to the one in the absence of it. Also the product material in the presence of hydrogen peroxide in the liquid medium showed a reduced photoluminescence intensity indicating the reduced electron-hole recombination rate. The red shift in the band gap energy and the reduced electron-hole recombination rate make the product material an ideal photocatalyst to harvest solar radiation for various applications. The most relevant signals on the FTIR spectrum for the samples are the absorption bands in the region between 450 and 700 cm-1 which are the characteristics bands of copperoxygen bonds. The reported laser ablation approach for the synthesis of Cu2O and CuO nanoparticles has the advantages of being clean method with controlled particle properties. © 2013 Elsevier B.V. All rights reserved.

  16. Impact of carbon on the surface and activity of silica-carbon supported copper catalysts for reduction of nitrogen oxides

    Science.gov (United States)

    Spassova, I.; Stoeva, N.; Nickolov, R.; Atanasova, G.; Khristova, M.

    2016-04-01

    Composite catalysts, prepared by one or more active components supported on a support are of interest because of the possible interaction between the catalytic components and the support materials. The supports of combined hydrophilic-hydrophobic type may influence how these materials maintain an active phase and as a result a possible cooperation between active components and the support material could occur and affects the catalytic behavior. Silica-carbon nanocomposites were prepared by sol-gel, using different in specific surface areas and porous texture carbon materials. Catalysts were obtained after copper deposition on these composites. The nanocomposites and the catalysts were characterized by nitrogen adsorption, TG, XRD, TEM- HRTEM, H2-TPR, and XPS. The nature of the carbon predetermines the composite's texture. The IEPs of carbon materials and silica is a force of composites formation and determines the respective distribution of the silica and carbon components on the surface of the composites. Copper deposition over the investigated silica-carbon composites leads to formation of active phases in which copper is in different oxidation states. The reduction of NO with CO proceeds by different paths on different catalysts due to the textural differences of the composites, maintaining different surface composition and oxidation states of copper.

  17. Hydrometallurgical process for the recycling of copper using anodic oxidation of cuprous ammine complexes and flow-through electrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Oishi, T.; Yaguchi, M.; Koyama, K.; Tanaka, M. [Metals Recycling Group, Research Institute for Environmental Management Technology, National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba, Ibaraki 305-8569 (Japan); Lee, J.-C. [Minerals and Materials Processing Division, Korea Institute of Geoscience and Mineral Resources (KIGAM), 30 Gajeong-dong, Yuseong-ku, Daejeon 305-350 (Korea)

    2008-01-01

    Flow-through electrolysis for copper electrowinning from cuprous ammine complex was studied in order to develop a hydrometallurgical copper recycling process using an ammoniacal chloride solution, focusing on the anodic oxidation of cuprous to cupric ammine complexes. The current efficiency of this anodic oxidation was 96% at a current density of 200 A m{sup -2} under a batch condition. In a flow-through electrolysis using a sub-liter cell and a carbon felt anode, the anodic current efficiency increased with the flow rate and was typically higher than 97%. This tendency was explained by the backward flow of the cupric ammine complex, which was formed on the anode, through the diaphragm. The anodic overpotential was lower than 0.3 V even at an apparent current density of 1500 A m{sup -2}. A similar current efficiency and overpotential were also achieved in a liter scale cell, which indicates the scale flexibility of this electrolysis. The power consumption requirements for copper electrowinning in this cell were 460 and 770 kWh t{sup -1} at the current densities of 250 and 500 A m{sup -2}, respectively, which were much lower than that of the conventional copper electrowinning despite the longer interpolar distance. (author)

  18. Preparation of nanosized barium zirconate powder by thermal decomposition of urea in an aqueous solution containing barium and zirconium, and by calcination of the precipitate

    OpenAIRE

    Boschini, Frédéric; Robertz, B.; Rulmont, André; Cloots, Rudi

    2003-01-01

    The synthesis of barium zirconate was initiated by urea induced homogeneous precipitation followed by a "low temperature" thermal treatment. The kinetic of the reaction and the optimum urea/cation ratio have been determined by means of X-ray diffraction and Inductive Coupled Plasma analyses. It has been demonstrated that an amorphous zirconium hydrated oxide starts to precipitate followed by the precipitation of barium carbonate. A calcination at 1200 degreesC during 2 h gives rise to the for...

  19. Disulfiram (DSF) acts as a copper ionophore to induce copper-dependent oxidative stress and mediate anti-tumor efficacy in inflammatory breast cancer.

    Science.gov (United States)

    Allensworth, Jennifer L; Evans, Myron K; Bertucci, François; Aldrich, Amy J; Festa, Richard A; Finetti, Pascal; Ueno, Naoto T; Safi, Rachid; McDonnell, Donald P; Thiele, Dennis J; Van Laere, Steven; Devi, Gayathri R

    2015-06-01

    Cancer cells often have increased levels of reactive oxygen species (ROS); however, acquisition of redox adaptive mechanisms allows for evasion of ROS-mediated death. Inflammatory breast cancer (IBC) is a distinct, advanced BC subtype characterized by high rates of residual disease and recurrence despite advances in multimodality treatment. Using a cellular model of IBC, we identified an oxidative stress response (OSR) signature in surviving IBC cells after administration of an acute dose of an ROS inducer. Metagene analysis of patient samples revealed significantly higher OSR scores in IBC tumor samples compared to normal or non-IBC tissues, which may contribute to the poor response of IBC tumors to common treatment strategies, which often rely heavily on ROS induction. To combat this adaptation, we utilized a potent redox modulator, the FDA-approved small molecule Disulfiram (DSF), alone and in combination with copper. DSF forms a complex with copper (DSF-Cu) increasing intracellular copper concentration both in vitro and in vivo, bypassing the need for membrane transporters. DSF-Cu antagonized NFκB signaling, aldehyde dehydrogenase activity and antioxidant levels, inducing oxidative stress-mediated apoptosis in multiple IBC cellular models. In vivo, DSF-Cu significantly inhibited tumor growth without significant toxicity, causing apoptosis only in tumor cells. These results indicate that IBC tumors are highly redox adapted, which may render them resistant to ROS-inducing therapies. DSF, through redox modulation, may be a useful approach to enhance chemo- and/or radio-sensitivity for advanced BC subtypes where therapeutic resistance is an impediment to durable responses to current standard of care.

  20. Different mechanisms between copper and iron in catecholamines-mediated oxidative DNA damage and disruption of gene expression in vitro.

    Science.gov (United States)

    Nishino, Yoshihiko; Ando, Motozumi; Makino, Rena; Ueda, Koji; Okamoto, Yoshinori; Kojima, Nakao

    2011-07-01

    Catechols produce reactive oxygen species (ROS) and induce oxidative DNA damage through reduction-oxidation reactions with metals such as copper. Here, we examined oxidative DNA damage by neurotransmitter catecholamines in the presence of copper or iron and evaluated the effects of this damage on gene expression in vitro. Dopamine induced strand breaks and base oxidation in calf thymus DNA in the presence of Cu(II) or Fe(III)-NTA (nitrilotriacetic acid). The extent of this damage was greater for Cu(II) than for Fe(III)-NTA. For the DNA damage induced by dopamine, the responsible reactive species were hydrogen peroxide and Cu(I) for Cu(II) and hydroxyl radicals and Fe(II) for Fe(III)-NTA. Cu(II) induced DNA conformational changes, but Fe(III)-NTA did not in the presence of dopamine. These differences indicate different modes of action between Cu and Fe-NTA with regard to the induction of DNA damage. Expression of the lacZ gene coded on plasmid DNA was inhibited depending on the extent of the oxidative damage and strand breaks. Endogenous catecholamines (dopamine, adrenaline, and noradrenaline) were more potent than catechols (no aminoalkyl side chains) or 3,4-dihydroxybenzylamine (aminomethyl side chain). These results suggest that the metal-mediated DNA damage induced by dopamine disrupts gene expression, and leukoaminochromes (further oxidation products of O-quinones having aminoethyl side chain) are involved in the DNA damage. These findings indicate a possibility that metal (especially iron and copper)-mediated oxidation of catecholamines plays an important role in the pathogenesis of neurodegenerative disorders including Parkinson's disease.

  1. Inhibition of pathogenic bacterial growth on excision wound by green synthesized copper oxide nanoparticles leads to accelerated wound healing activity in Wistar Albino rats.

    Science.gov (United States)

    Sankar, Renu; Baskaran, Athmanathan; Shivashangari, Kanchi Subramanian; Ravikumar, Vilwanathan

    2015-07-01

    An impaired wound healing is one of the major health related problem in diabetic and non-diabetic patients around the globe. The pathogenic bacteria play a predominant role in delayed wound healing, owing to interaction in the wound area. In our previous work we developed green chemistry mediated copper oxide nanoparticles using Ficus religiosa leaf extract. In the present study we make an attempt to evaluate the anti-bacterial, and wound healing activity of green synthesized copper oxide nanoparticles in male Wistar Albino rats. The agar well diffusion assay revealed copper oxide nanoparticles have substantial inhibition activity against human pathogenic strains such as Klebsiella pneumoniae, Shigella dysenteriae, Staphylococcus aureus, Salmonella typhimurium and Escherichia coli, which were responsible for delayed wound healing process. Furthermore, the analyses results of wound closure, histopathology and protein profiling confirmed that the F. religiosa leaf extract tailored copper oxide nanoparticles have enhanced wound healing activity in Wistar Albino rats.

  2. Nano Copper Oxide-Modified Carbon Cloth as Cathode for a Two-Chamber Microbial Fuel Cell

    Directory of Open Access Journals (Sweden)

    Feng Dong

    2016-12-01

    Full Text Available In this work, Cu2O nanoparticles were deposited on a carbon cloth cathode using a facile electrochemical method. The morphology of the modified cathode, which was characterized by scanning electron microscopy (SEM and Brunauer-Emmett-Teller (BET tests, showed that the porosity and specific surface area of the cathode improved with longer deposition times. X-ray photoelectron spectroscopy (XPS and cyclic voltammetry (CV results showed that cupric oxide and cuprous oxide coexisted on the carbon cloth, which improved the electrochemical activity of cathode. The cathode with a deposition time of 100 s showed the best performance, with a power density twice that of bare carbon cloth. Linear sweep voltammetry (LSV and electrochemical impedance spectroscopy (EIS results revealed that moderate deposition of nano copper oxide on carbon cloth could dramatically reduce the charge transfer resistance, which contributed to the enhanced electrochemical performance. The mediation mechanism of copper oxide nanocatalyst was illustrated by the fact that the recycled conversion between cupric oxide and cuprous oxide accelerated the electron transfer efficiency on the cathode.

  3. Nano Copper Oxide-Modified Carbon Cloth as Cathode for a Two-Chamber Microbial Fuel Cell

    Science.gov (United States)

    Dong, Feng; Zhang, Peng; Li, Kexun; Liu, Xianhua; Zhang, Pingping

    2016-01-01

    In this work, Cu2O nanoparticles were deposited on a carbon cloth cathode using a facile electrochemical method. The morphology of the modified cathode, which was characterized by scanning electron microscopy (SEM) and Brunauer-Emmett-Teller (BET) tests, showed that the porosity and specific surface area of the cathode improved with longer deposition times. X-ray photoelectron spectroscopy (XPS) and cyclic voltammetry (CV) results showed that cupric oxide and cuprous oxide coexisted on the carbon cloth, which improved the electrochemical activity of cathode. The cathode with a deposition time of 100 s showed the best performance, with a power density twice that of bare carbon cloth. Linear sweep voltammetry (LSV) and electrochemical impedance spectroscopy (EIS) results revealed that moderate deposition of nano copper oxide on carbon cloth could dramatically reduce the charge transfer resistance, which contributed to the enhanced electrochemical performance. The mediation mechanism of copper oxide nanocatalyst was illustrated by the fact that the recycled conversion between cupric oxide and cuprous oxide accelerated the electron transfer efficiency on the cathode.

  4. Microscopic annealing process and its impact on superconductivity in T'-structure electron-doped copper oxides.

    Science.gov (United States)

    Kang, Hye Jung; Dai, Pengcheng; Campbell, Branton J; Chupas, Peter J; Rosenkranz, Stephan; Lee, Peter L; Huang, Qingzhen; Li, Shiliang; Komiya, Seiki; Ando, Yoichi

    2007-03-01

    High-transition-temperature superconductivity arises in copper oxides when holes or electrons are doped into the CuO(2) planes of their insulating parent compounds. Whereas hole doping quickly induces metallic behaviour and superconductivity in many cuprates, electron doping alone is insufficient in materials such as R(2)CuO(4) (R is Nd, Pr, La, Ce and so on), where it is necessary to anneal an as-grown sample in a low-oxygen environment to remove a tiny amount of oxygen in order to induce superconductivity. Here we show that the microscopic process of oxygen reduction repairs Cu deficiencies in the as-grown materials and creates oxygen vacancies in the stoichiometric CuO(2) planes, effectively reducing disorder and providing itinerant carriers for superconductivity. The resolution of this long-standing materials issue suggests that the fundamental mechanism for superconductivity is the same for electron- and hole-doped copper oxides.

  5. Production of planar copper-based anode supported intermediate temperature solid oxide fuel cells cosintered at 950 °C

    Science.gov (United States)

    De Marco, Vincenzo; Grazioli, Alberto; Sglavo, Vincenzo M.

    2016-10-01

    Copper-based anode supported planar Intermediate Temperature Solid Oxide Fuel Cells are produced and characterized in the present work. The most important advancement is related to the use of copper within the anodic layer, this giving promising results for feeding Intermediate Temperature Solid Oxide Fuel Cells with carbon and sulphur containing fuels. Both anode and Li2O containing-Gadolinia Doped Ceria based electrolyte are produced by water based tape casting process. The supporting anode is coupled to the electrolyte by thermopressing, the cathode being obtained by screen printing. A 3 h isotherm at 950 °C allows to obtain the cosintering of the three layers. The electrochemical test performed on such cells reveals a 0.8 V open circuit voltage and a power density higher than 26 mW cm-2 at 650 °C.

  6. Effect of precipitating agent NaOH on the preparation of copper oxide nanostructures for electrochemical applications

    OpenAIRE

    Balasubramaniam, M.; S Balakumar

    2016-01-01

    Copper oxide (CuO) nanostructures with different concentrations of sodium hydroxide for electrochemical applications such as supercapacitors have been synthesized using a simple and low-cost precipitation method. X-ray diffraction pattern confirmed the formation of CuO nanostructures without any impurities and further confirmed its highly crystalline, single phase, monoclinic nature. UV-diffuse reflectance spectral (UVDRS) studies provided the absorption edge of the material and the estimated...

  7. Bio-inspired multinuclear copper complexes covalently immobilized on reduced graphene oxide as efficient electrocatalysts for the oxygen reduction reaction.

    Science.gov (United States)

    Xi, Yue-Ting; Wei, Ping-Jie; Wang, Ru-Chun; Liu, Jin-Gang

    2015-05-01

    Inspired by the multicopper active site of laccase, which efficiently catalyzes the oxygen reduction reaction (ORR), herein we report a novel bio-inspired ORR catalyst composed of a multinuclear copper complex that was immobilized on the surface of reduced graphene oxide (rGO) via the covalently grafted triazole-dipyridine (TADPy) dinucleating ligand. This rGO-TADPyCu catalyst exhibited high ORR activity and superior long-term stability compared to Pt/C in alkaline media.

  8. Application of Sonication and Microwave Irradiation to Boost Continuous Fabrication of the Copper(II Oxide Sub-Micron Particles

    Directory of Open Access Journals (Sweden)

    Grzegorz Dzido

    2015-03-01

    Full Text Available Viability of the continuous-flow synthesis of rhomboidal copper(II oxide (CuO micro- and nanonoparticles was demonstrated. It has been shown that ultrasonic mixing of reactants, in the stage of Cu(OH2 synthesis, followed by microwave irradiation of the resulting suspension, gives very fine particles of CuO at high yield and within minutes. Near optimal parameters for the synthesis of fine particles in the continuous reactor were determined.

  9. [Effects of exogenous nitric oxide on the subcellular distribution and chemical forms of copper in tomato seedlings under copper stress].

    Science.gov (United States)

    Jiang, Chun-Hui; Wang, Xiu-Feng; Yin, Bo; Li, Xiao-Yun; Cui, Xiu-Min

    2012-11-01

    A nutrient solution culture experiment was conducted to study the effects of exogenous NO donor (sodium nitroprusside) on the subcellular distribution and chemical form of copper (Cu) in tomato seedlings under the stress of 50 micromol x L(-1) of Cu2+ (CuCl2). Under this stress, the biomass and plant height of tomato seedlings decreased by 33.7% and 23.1%, respectively. Exogenous NO alleviated this inhibition effect significantly, but the Cu concentration and accumulation in the seedling organs still had a significant increase. Under the Cu stress, the Cu concentration and accumulation in the seedling organs were in the order of root > leaf > stem > petiole. Exogenous NO limited the absorbed Cu transferred from root to shoot, but could not remove this translocation. Exogenous NO increased the Cu concentration in vacuole and cell wall significantly, and decreased the Cu concentration in organelle, which lessened the damage of Cu on the regular metabolic balance in cytoplasm and increased the tolerance of organelle against Cu. Exogenous NO increased the acetic acid-extractable Cu (F(HAc)) in root, sodium chloride-extractable Cu (F(NaCl)) in stem, F(HAc) in petiole, and ethanol-extractable Cu (F(E)) and F(NaCl) in leaf, while decreased the concentration and distribution of water-extractable Cu (F(W)) in different organs, which efficiently reduced the bio-toxicity of excessive copper.

  10. Enhanced reactive adsorption of hydrogen sulfide on the composites of graphene/graphite oxide with copper (hydr)oxychlorides.

    Science.gov (United States)

    Mabayoje, Oluwaniyi; Seredych, Mykola; Bandosz, Teresa J

    2012-06-27

    Composites of copper (hydr)oxychlorides with graphite oxide or graphene were synthesized and used as adsorbents of hydrogen sulfide at dynamic conditions at ambient temperatures. The materials were extensively characterized before and after adsorption in order to link their performance to the surface features. X-ray diffraction, FTIR, thermal analysis, TEM, SEM/EDX, and adsorption of nitrogen were used. It was found that the composite with graphene has the most favorable surface features enhancing reactive adsorption of hydrogen sulfide. The presence of moisture in the H2S stream has a positive effect on the removal process owing to the dissociation process. H2S is retained on the surface via a direct replacement of OH groups and via acid-base reactions with the copper (hydr)oxide. Highly dispersed reduced copper species on the surface of the composite with graphene enhance activation of oxygen and cause formation of sulfites and sulfates. Higher conductivity of the graphene phase than that of graphite oxide helps in electron transfer in redox reactions.

  11. Assessing the impact of copper and zinc oxide nanoparticles on soil: a field study.

    Directory of Open Access Journals (Sweden)

    Daniel Collins

    Full Text Available It is not known if the annual production of tonnes of industrial nanoparticles (NPs has the potential to impact terrestrial microbial communities, which are so necessary for ecosystem functioning. Here, we have examined the consequences of adding zero valent copper and zinc oxide NPs to soil in pots that were then maintained under field conditions. The fate of these NPs, as well as changes in the microbial communities, was monitored over 162 days. Both NP types traveled through the soil matrix, albeit at differential rates, with Cu NPs retained in the soil matrix at a higher rate compared to ZnO NPs. Leaching of Cu and Zn ions from the parent NPs was also observed as a function of time. Analysis of microbial communities using culture-dependent and independent methods clearly indicated that Cu and ZnO NPs altered the microbial community structure. In particular, two orders of organisms found in rhizosphere, Flavobacteriales and Sphingomonadales, appeared to be particularly susceptible to the presence of NPs. Together, the migration of NPs through soil matrix and the ability of these potential pollutants to influence the composition of microbial community in this field study, cannot help but raise some environmental concerns.

  12. A kinetic study of copper(II) oxide powder reduction with hydrogen, based on thermogravimetry

    Energy Technology Data Exchange (ETDEWEB)

    Jelic, Dijana [Faculty of Medicine, Departmet of Pharmacy - Chair of Physical Chemistry, University of Banja Luka, Banja Luka, Bosnia and Herzegovina (Bosnia and Herzegowina); Tomic-Tucakovic, Biljana [Institute of General and Physical Chemistry, Studentski trg 12, 11158 Belgrade (Serbia); Mentus, Slavko, E-mail: slavko@ffh.bg.ac.rs [University of Belgrade, Faculty of Physical Chemistry, Studentski trg 12, 11185 Belgrade (Serbia)

    2011-07-10

    Highlights: {yields} The reduction of CuO by hydrogen was studied by thermogravimetry. {yields} The particle size of the samples varied inside the submicron range. {yields} The experimental data were fitted by means of a nucleation-growth model. {yields} The particle size influenced the kinetic parameters but not the reaction model. - Abstract: The reduction of powdery copper(II) oxide was carried out in a stream of gaseous mixture 25% H{sub 2} + Ar, and followed by thermogravimetry. The two samples of different history were studied: the commercial one, and that synthesized by citrate gel combustion method. The characterization of the starting materials, based on X-ray diffractometry and scanning electron microscopy, indicated equal crystal structure, but different particle size and morphology. The particle size and shape of the metallic particles obtained upon the reduction were observed by means of electron microscope. By a nonlinear regression analysis by means of a software Kinetics05, the experimental data were fitted with the nucleation-growth kinetic model, and the corresponding kinetic parameters were determined.

  13. Evolution of electronic states in n-type copper oxide superconductor via electric double layer gating.

    Science.gov (United States)

    Jin, Kui; Hu, Wei; Zhu, Beiyi; Kim, Dohun; Yuan, Jie; Sun, Yujie; Xiang, Tao; Fuhrer, Michael S; Takeuchi, Ichiro; Greene, Richard L

    2016-01-01

    The occurrence of electrons and holes in n-type copper oxides has been achieved by chemical doping, pressure, and/or deoxygenation. However, the observed electronic properties are blurred by the concomitant effects such as change of lattice structure, disorder, etc. Here, we report on successful tuning the electronic band structure of n-type Pr2-xCexCuO4 (x = 0.15) ultrathin films, via the electric double layer transistor technique. Abnormal transport properties, such as multiple sign reversals of Hall resistivity in normal and mixed states, have been revealed within an electrostatic field in range of -2 V to + 2 V, as well as varying the temperature and magnetic field. In the mixed state, the intrinsic anomalous Hall conductivity invokes the contribution of both electron and hole-bands as well as the energy dependent density of states near the Fermi level. The two-band model can also describe the normal state transport properties well, whereas the carrier concentrations of electrons and holes are always enhanced or depressed simultaneously in electric fields. This is in contrast to the scenario of Fermi surface reconstruction by antiferromagnetism, where an anti-correlation is commonly expected.

  14. Fracture toughness and fatigue crack growth of oxide dispersion strengthened copper

    Energy Technology Data Exchange (ETDEWEB)

    Alexander, D.J.; Gieseke, B.G. [Oak Ridge National Laboratory, TN (United States)

    1996-04-01

    The fracture toughness and fatigue crack growth behavior of copper dispersion strengthened with aluminum oxide (0.15 wt % Al) was examined. In the unirradiated condition, the fracture toughness was about 45 kJ/m{sup 2} (73 MPa{radical}m) at room temperature, but decreased significantly to only 3 Kj/m{sup 2} (20 MPa{radical}m), at 250{degrees}C. After irradiation at approximately 250{degrees}C to about 2.5 displacements per atom (dpa), the toughness was very low, about 1 kJ/m{sup 2} (48 MOa{radical}m), and at 250{degrees}C the toughness was very low, about 1kJ/m{sup 2} (12 mPa{radical}m). The fatigue crack growth rate of unirradiated material at room temperature is similiar to other candidate structural alloys such as V-4Cr-4Ti and 316L stainless steel. The fracture properties of this material at higher temperatures and in controlled environments need further investigation, in both irradiated and unirradiated conditions.

  15. Evaluation of Copper Oxide Nanoparticles Toxicity Using Chlorophyll a Fluorescence Imaging in Lemna gibba

    Directory of Open Access Journals (Sweden)

    François Perreault

    2010-01-01

    Full Text Available Copper oxide nanoparticles (CuO NPs, used in antifouling paints of boats, are released in the environment and can induce toxicity to aquatic organisms. In this report, we used chlorophyll a fluorescence imaging to evaluate CuO NPs toxicity in Lemna gibba. This approach allowed to evaluate the differential effect of CuO NPs on photosynthesis of whole L. gibba plants. Exposure to 0.1 to 0.4 g/L CuO NPs during 48h induced strong inhibition of photosynthetic processes resulting in a decrease of plant growth. By using fluorescence imaging, different photosynthetic parameters were evaluated simultaneously in microplate conditions. Imaging of FO fluorescence yield showed the decrease of leaf photosynthetic active surface for whole plants exposed to CuO NPs. This method showed that CuO NPs inhibited photosystem II maximal, photosystem II operational quantum yields, and photochemical quenching of fluorescence associated with electron transport. Nonphotochemical fluorescence quenching as an indicator of energy dissipation not used in photosynthesis was shown to be increased by the effect of CuO NPs. Such approach in microplate conditions provides synchronous high repetition measurements for numerous plants. This study may give a reliable methodological approach to evaluate toxicity risk of NPs in aquatic ecosystems.

  16. Nitrite Oxidation with Copper-Cobalt Nanoparticles on Carbon Nanotubes Doped Conducting Polymer PEDOT Composite.

    Science.gov (United States)

    Wang, Junjie; Xu, Guiyun; Wang, Wei; Xu, Shenghao; Luo, Xiliang

    2015-09-01

    Copper-cobalt bimetal nanoparticles (Cu-Co) have been electrochemically prepared on glassy carbon electrodes (GCEs), which were electrodeposited with conducting polymer nanocomposites of poly(3,4-ethylenedioxythiophene) (PEDOT) doped with carbon nanotubes (CNTs). Owing to their good conductivity, high mechanical strength, and large surface area, the PEDOT/CNTs composites offered excellent substrates for the electrochemical deposition of Cu-Co nanoparticles. As a result of their nanostructure and the synergic effect between Cu and Co, the Cu-Co/PEDOT/CNTs composites exhibited significantly enhanced catalytic activity towards the electrochemical oxidation of nitrite. Under optimized conditions, the nanocomposite-modified electrodes had a fast response time within 2 s and a linear range from 0.5 to 430 μm for the detection of nitrite, with a detection limit of 60 nm. Moreover, the Cu-Co/PEDOT/CNTs composites were highly stable, and the prepared nitrite sensors could retain more than 96 % of their initial response after 30 days.

  17. Copper oxide nanoparticles as contrast agents for MRI and ultrasound dual-modality imaging

    Science.gov (United States)

    Perlman, Or; Weitz, Iris S.; Azhari, Haim

    2015-08-01

    Multimodal medical imaging is gaining increased popularity in the clinic. This stems from the fact that data acquired from different physical phenomena may provide complementary information resulting in a more comprehensive picture of the pathological state. In this context, nano-sized contrast agents may augment the potential sensitivity of each imaging modality and allow targeted visualization of physiological points of interest (e.g. tumours). In this study, 7 nm copper oxide nanoparticles (CuO NPs) were synthesized and characterized. Then, in vitro and phantom specimens containing CuO NPs ranging from 2.4 to 320 μg · mL-1 were scanned, using both 9.4 T MRI and through-transmission ultrasonic imaging. The results show that the CuO NPs induce shortening of the magnetic T1 relaxation time on the one hand, and increase the speed of sound and ultrasonic attenuation coefficient on the other. Moreover, these visible changes are NP concentration-dependent. The change in the physical properties resulted in a substantial increase in the contrast-to-noise ratio (3.4-6.8 in ultrasound and 1.2-19.3 in MRI). In conclusion, CuO NPs are excellent candidates for MRI-ultrasound dual imaging contrast agents. They offer radiation-free high spatial resolution scans by MRI, and cost-effective high temporal resolution scans by ultrasound.

  18. Coexistence of Fermi arcs and Fermi pockets in a high-T(c) copper oxide superconductor.

    Science.gov (United States)

    Meng, Jianqiao; Liu, Guodong; Zhang, Wentao; Zhao, Lin; Liu, Haiyun; Jia, Xiaowen; Mu, Daixiang; Liu, Shanyu; Dong, Xiaoli; Zhang, Jun; Lu, Wei; Wang, Guiling; Zhou, Yong; Zhu, Yong; Wang, Xiaoyang; Xu, Zuyan; Chen, Chuangtian; Zhou, X J

    2009-11-19

    In the pseudogap state of the high-transition-temperature (high-T(c)) copper oxide superconductors, angle-resolved photoemission (ARPES) measurements have seen Fermi arcs-that is, open-ended gapless sections in the large Fermi surface-rather than a closed loop expected of an ordinary metal. This is all the more puzzling because Fermi pockets (small closed Fermi surface features) have been suggested by recent quantum oscillation measurements. The Fermi arcs cannot be understood in terms of existing theories, although there is a solution in the form of conventional Fermi surface pockets associated with competing order, but with a back side that is for detailed reasons invisible to photoemission probes. Here we report ARPES measurements of Bi(2)Sr(2-x)La(x)CuO(6+delta) (La-Bi2201) that reveal Fermi pockets. The charge carriers in the pockets are holes, and the pockets show an unusual dependence on doping: they exist in underdoped but not overdoped samples. A surprise is that these Fermi pockets appear to coexist with the Fermi arcs. This coexistence has not been expected theoretically.

  19. Interactions of nitric oxide with copper(II) dithiocarbamates in aqueous solution.

    Science.gov (United States)

    Díaz, Alicia; Ortiz, Mayreli; Sánchez, Ileana; Cao, Roberto; Mederos, Alfredo; Sanchiz, Joaquin; Brito, Felipe

    2003-07-01

    This is the first report on the formation of air-stable copper nitrosyl complexes. The interaction of nitric oxide, NO, with Cu(DTC)(2).3H(2)O (DTC: dithiocarbamate) and was studied in aqueous solution at pH 7.4 and 293 K. The stability constants were determined from UV-Vis data, using LETAGROP program. The high values obtained, log beta(1)=9.743(5) and log beta(2)=15.44(2) for Cu(ProDTC)(2)-NO, (ProDTC=L-prolinedithiocarbamate) and log beta(1)=8.723(5) and log beta(2)=11.45(2) for Cu(MorDTC)(2)-NO system, (MorDTC=morpholyldithiocarbamate), indicate the formation of two stable nitrosyl complexes, Cu(DTC)(2)NO and Cu(DTC)(2)(NO)(2). Coordinated NO is neither affected by the presence of air nor when the solution is purged with Ar. Cu(MorDTC)(2)NO.3H(2)O was isolated in the solid state and its nuNO (IR) band at 1682 cm(-1), but affected by temperature variations over 333 K.

  20. Functionalization of 4-aminothiophenol and 3-aminopropyltriethoxysilane with graphene oxide for potential dye and copper removal.

    Science.gov (United States)

    Chen, Dan; Zhang, Huining; Yang, Kai; Wang, Hongyu

    2016-06-05

    In this work, 4-aminothiophenol and 3-aminopropyltriethoxysilane were firstly used to functionalize graphene oxide (GO) in order to promote the sorption efficiencies of methylene blue (MB) and copper (Cu(2+)). Characterization experiments illustrated that sulfydryl group (SH) and amino group (NH2) were existed onto 4-aminothiophenol modified GO (GO-SH) and 3-aminopropyltriethoxysilane modified GO (GO-N), respectively. Adsorption isotherm results showed that the maximum adsorption capacities of MB by GO-SH and GO-N were 763.30 and 676.22mg/g, which was much higher than original GO 455.95mg/g. For Cu(2+) adsorption, the maximum adsorption capacities by GO-SH and GO-N were 99.17 and 103.28mg/g, suggesting that the engineered GO exhibited greater Cu(2+) sorption ability than original GO 32.91mg/g. Both MB and Cu(2+) removal rates increased with pH and adsorbent dosage increased, while the sorption rates weakly reduced with increasing ionic strength. The modification by SH and NH2 would not only increase the sorption sites, but also cause chelation with heavy metals, and thus improving the sorption capacities of MB and Cu(2+).

  1. Analysis on superhydrophobic silver decorated copper Oxide nanostructured thin films for SERS studies.

    Science.gov (United States)

    Jayram, Naidu Dhanpal; Aishwarya, D; Sonia, S; Mangalaraj, D; Kumar, P Suresh; Rao, G Mohan

    2016-09-01

    The present work demonstrates the superhydrophobic and Surface Enhanced Raman Spectroscopy (SERS) active substrate performance of silver coated copper oxide (Ag@CuO) nanostructured thin films prepared by the SILAR process. Super hydrophobic substrates that combine super hydrophobic condensation effect and high enhancement ability of Ag@CuO nanoflowers are investigated for SERS studies. The possible growth mechanism for the formation of nanoflower arrays from nanospindles has been discussed. Morphology and crystallinity of the Ag@CuO thin films are confirmed using FESEM and XRD. The results obtained in the present study indicate that the as-deposited hydrophobic nanospindles structure converts to super hydrophobic nanoflower arrays on annealing at 200°C. The Ag@CuO super hydrophobic nanoflowers thin film based SERS substrates show highly enhanced Raman spectra with an EF value of 2.0×10(7) for (Rhodamine 6G) R6G, allowing a detection limit from a 10(-10)molL(-1) solution. The present study may provide a new perception in fabricating efficient super hydrophobic substrates for SERS, suggesting that the fabricated substrates are promising candidates for trace analysis of R6G dye and are expected to be widely used as highly sensitive SERS active substrates for various toxic dyes in the future.

  2. High-temperature interface superconductivity between metallic and insulating copper oxides.

    Science.gov (United States)

    Gozar, A; Logvenov, G; Kourkoutis, L Fitting; Bollinger, A T; Giannuzzi, L A; Muller, D A; Bozovic, I

    2008-10-09

    The realization of high-transition-temperature (high-T(c)) superconductivity confined to nanometre-sized interfaces has been a long-standing goal because of potential applications and the opportunity to study quantum phenomena in reduced dimensions. This has been, however, a challenging target: in conventional metals, the high electron density restricts interface effects (such as carrier depletion or accumulation) to a region much narrower than the coherence length, which is the scale necessary for superconductivity to occur. By contrast, in copper oxides the carrier density is low whereas T(c) is high and the coherence length very short, which provides an opportunity-but at a price: the interface must be atomically perfect. Here we report superconductivity in bilayers consisting of an insulator (La(2)CuO(4)) and a metal (La(1.55)Sr(0.45)CuO(4)), neither of which is superconducting in isolation. In these bilayers, T(c) is either approximately 15 K or approximately 30 K, depending on the layering sequence. This highly robust phenomenon is confined within 2-3 nm of the interface. If such a bilayer is exposed to ozone, T(c) exceeds 50 K, and this enhanced superconductivity is also shown to originate from an interface layer about 1-2 unit cells thick. Enhancement of T(c) in bilayer systems was observed previously but the essential role of the interface was not recognized at the time.

  3. Competition between the pseudogap and superconductivity in the high-T(c) copper oxides.

    Science.gov (United States)

    Kondo, Takeshi; Khasanov, Rustem; Takeuchi, Tsunehiro; Schmalian, Jörg; Kaminski, Adam

    2009-01-15

    In a classical Bardeen-Cooper-Schrieffer superconductor, pairing and coherence of electrons are established simultaneously below the critical transition temperature (T(c)), giving rise to a gap in the electronic energy spectrum. In the high-T(c) copper oxide superconductors, however, a pseudogap extends above T(c). The relationship between the pseudogap and superconductivity is one of the central issues in this field. Spectral gaps arising from pairing precursors are qualitatively similar to those caused by competing electronic states, rendering a standard approach to their analysis inconclusive. The issue can be settled, however, by studying the correlation between the weights associated with the pseudogap and superconductivity spectral features. Here we report a study of two spectral weights using angle-resolved photoemission spectroscopy. The weight of the superconducting coherent peak increases away from the node following the trend of the superconducting gap, but starts to decrease in the antinodal region. This striking non-monotonicity reveals the presence of a competing state. We demonstrate a direct correlation, for different values of momenta and doping, between the loss in the low-energy spectral weight arising from the opening of the pseudogap and a decrease in the spectral weight associated with superconductivity. We therefore conclude that the pseudogap competes with the superconductivity by depleting the spectral weight available for pairing.

  4. Normal-state nodal electronic structure in underdoped high-Tc copper oxides.

    Science.gov (United States)

    Sebastian, Suchitra E; Harrison, N; Balakirev, F F; Altarawneh, M M; Goddard, P A; Liang, Ruixing; Bonn, D A; Hardy, W N; Lonzarich, G G

    2014-07-03

    An outstanding problem in the field of high-transition-temperature (high-Tc) superconductivity is the identification of the normal state out of which superconductivity emerges in the mysterious underdoped regime. The normal state uncomplicated by thermal fluctuations can be studied using applied magnetic fields that are sufficiently strong to suppress long-range superconductivity at low temperatures. Proposals in which the normal ground state is characterized by small Fermi surface pockets that exist in the absence of symmetry breaking have been superseded by models based on the existence of a superlattice that breaks the translational symmetry of the underlying lattice. Recently, a charge superlattice model that positions a small electron-like Fermi pocket in the vicinity of the nodes (where the superconducting gap is minimum) has been proposed as a replacement for the prevalent superlattice models that position the Fermi pocket in the vicinity of the pseudogap at the antinodes (where the superconducting gap is maximum). Although some ingredients of symmetry breaking have been recently revealed by crystallographic studies, their relevance to the electronic structure remains unresolved. Here we report angle-resolved quantum oscillation measurements in the underdoped copper oxide YBa2Cu3O6 + x. These measurements reveal a normal ground state comprising electron-like Fermi surface pockets located in the vicinity of the nodes, and also point to an underlying superlattice structure of low frequency and long wavelength with features in common with the charge order identified recently by complementary spectroscopic techniques.

  5. Disappearance of nodal gap across the insulator-superconductor transition in a copper-oxide superconductor.

    Science.gov (United States)

    Peng, Yingying; Meng, Jianqiao; Mou, Daixiang; He, Junfeng; Zhao, Lin; Wu, Yue; Liu, Guodong; Dong, Xiaoli; He, Shaolong; Zhang, Jun; Wang, Xiaoyang; Peng, Qinjun; Wang, Zhimin; Zhang, Shenjin; Yang, Feng; Chen, Chuangtian; Xu, Zuyan; Lee, T K; Zhou, X J

    2013-01-01

    The parent compound of the copper-oxide high-temperature superconductors is a Mott insulator. Superconductivity is realized by doping an appropriate amount of charge carriers. How a Mott insulator transforms into a superconductor is crucial in understanding the unusual physical properties of high-temperature superconductors and the superconductivity mechanism. Here we report high-resolution angle-resolved photoemission measurement on heavily underdoped Bi₂Sr₂-xLaxCuO(₆+δ) system. The electronic structure of the lightly doped samples exhibit a number of characteristics: existence of an energy gap along the nodal direction, d-wave-like anisotropic energy gap along the underlying Fermi surface, and coexistence of a coherence peak and a broad hump in the photoemission spectra. Our results reveal a clear insulator-superconductor transition at a critical doping level of ~0.10 where the nodal energy gap approaches zero, the three-dimensional antiferromagnetic order disappears, and superconductivity starts to emerge. These observations clearly signal a close connection between the nodal gap, antiferromagnetism and superconductivity.

  6. Characterisation and Optical Studies of Copper Oxide Nanostructures Doped with Lanthanum Ions

    Directory of Open Access Journals (Sweden)

    Varughese G.

    2014-12-01

    Full Text Available Copper Oxide is an extensively studied group II-VI semiconductor with optical properties. It exhibits a wide variety of morphologies in the nano regime that can be grown by tuning the growth habit of the CuO crystal. CuO nano materials with an average particle size of 15-27 nm are synthesized by chemical route. XRD, SEM, FTIR UV-Vis and EDS characterize the samples. The percentage of doping material is confirmed from the EDS spectra. The average crystal size of the prepared CuO: La nanopowder is determined by XRD. The UV absorption spectra revealed the absorption edge at wavelength 389 nm indicating the smaller size of CuO:La nano particle. The optical direct band gap energy of doped CuO nanoparticle is found to be in the range 3.149 eV. The increasing red shift with decreasing particle size suggests that the defects responsible for the intra gap states are primarily surface defect. The La doped CuO is highly effective and can significantly enhance the photo catalytic degradation.

  7. Evolution of electronic states in n-type copper oxide superconductor via electric double layer gating

    Science.gov (United States)

    Jin, Kui; Hu, Wei; Zhu, Beiyi; Kim, Dohun; Yuan, Jie; Sun, Yujie; Xiang, Tao; Fuhrer, Michael S.; Takeuchi, Ichiro; Greene, Richard. L.

    2016-01-01

    The occurrence of electrons and holes in n-type copper oxides has been achieved by chemical doping, pressure, and/or deoxygenation. However, the observed electronic properties are blurred by the concomitant effects such as change of lattice structure, disorder, etc. Here, we report on successful tuning the electronic band structure of n-type Pr2−xCexCuO4 (x = 0.15) ultrathin films, via the electric double layer transistor technique. Abnormal transport properties, such as multiple sign reversals of Hall resistivity in normal and mixed states, have been revealed within an electrostatic field in range of −2 V to + 2 V, as well as varying the temperature and magnetic field. In the mixed state, the intrinsic anomalous Hall conductivity invokes the contribution of both electron and hole-bands as well as the energy dependent density of states near the Fermi level. The two-band model can also describe the normal state transport properties well, whereas the carrier concentrations of electrons and holes are always enhanced or depressed simultaneously in electric fields. This is in contrast to the scenario of Fermi surface reconstruction by antiferromagnetism, where an anti-correlation is commonly expected. PMID:27221198

  8. Coulomb-oscillator origin of superconductivity in p-doped copper oxides

    CERN Document Server

    Bucher, Manfred

    2013-01-01

    Emergence, development and cessation of superconductivity in three representative compounds of copper oxide families---cation doped Ca_2-xNa_xCuO2Cl2 and La_2-xAe_xCuO4 (Ae = Ba, Sr), as well as oxygen enriched YBa2Cu3O_6+x ---are explained with the Coulomb-oscillator model of superconductivity. By the model, non-resistive current is carried by axial Coulomb oscillations of s electrons through neighbor nuclei---here excited 3s electrons from O^2- ions through next-nearest neighbor oxygen nuclei---if their accompanying lateral oscillation is sufficiently confined to prevent lateral overswing. Cation doping gives rise to a superlattice in the layers that sandwich each CuO2 plane. In Ca_2-xNa_xCuO2Cl2, having one CuO2 plane per unit cell, superconductivity emerges when laterally confined Coulomb oscillators start connecting along 6 x 6 superlattice domains (in units of planar lattice constants) and it peaks at 4 x 4 domains when, at doping x = 1/8, the superlattice is completed. With further doping a new, off-se...

  9. Biokinetics of different-shaped copper oxide nanoparticles in the freshwater gastropod, Potamopyrgus antipodarum

    Science.gov (United States)

    Ramskov, Tina; Croteau, Marie-Noele; Forbes, Valery E.; Selck, Henriette

    2015-01-01

    Sediment is recognized as a major environmental sink for contaminants, including engineered nanoparticles (NPs). Consequently, sediment-living organisms are likely to be exposed to NPs. There is evidence that both accumulation and toxicity of metal NPs to sediment-dwellers increase with decreasing particle size, although NP size does not always predict effects. In contrast, not much is known about the influence of particle shape on bioaccumulation and toxicity. Here, we examined the influence of copper oxide (CuO) NP shape (rods, spheres, and platelets) on their bioaccumulation kinetics and toxicity to the sediment-dwelling gastropod, Potamopyrgus antipodarum. The influence of Cu added as CuCl2 (i.e., aqueous Cu treatment) was also examined. Exposure to sediment mixed with aqueous Cu or with different-shaped CuO NPs at an average measured exposure concentration of 207 μg Cu per g dry weight sediment for 14 days did not significantly affect snail mortality. However, growth decreased for snails exposed to sediment amended with CuO NP spheres and platelets. P. antipodarum accumulated Cu from all Cu forms/shapes in significant amounts compared to control snails. In addition, once accumulated, Cu was efficiently retained (i.e., elimination rate constants were generally not significantly different from zero). Consequently, snails are likely to concentrate Cu over time, from both aqueous and NP sources, resulting in a high potential for toxicity.

  10. Uniting Superhydrophobic, Superoleophobic and Lubricant Infused Slippery Behavior on Copper Oxide Nano-structured Substrates

    Science.gov (United States)

    Ujjain, Sanjeev Kumar; Roy, Pritam Kumar; Kumar, Sumana; Singha, Subhash; Khare, Krishnacharya

    2016-10-01

    Alloys, specifically steel, are considered as the workhorse of our society and are inimitable engineering materials in the field of infrastructure, industry and possesses significant applications in our daily life. However, creating a robust synthetic metallic surface that repels various liquids has remained extremely challenging. The wettability of a solid surface is known to be governed by its geometric nano-/micro structure and the chemical composition. Here, we are demonstrating a facile and economical way to generate copper oxide micro-nano structures with spherical (0D), needle (1D) and hierarchical cauliflower (3D) morphologies on galvanized steel substrates using a simple chemical bath deposition method. These nano/micro textured steel surfaces, on subsequent coating of a low surface energy material display excellent superhydrophobic, superoleophobic and slippery behavior. Polydimethylsiloxane coated textured surfaces illustrate superhydrophobicity with water contact angle about 160°(2) and critical sliding angle ~2°. When functionalized with low-surface energy perfluoroalkylsilane, these surfaces display high repellency for low surface tension oils as well as hydrocarbons. Among them, the hierarchical cauliflower morphology exhibits re-entrant structure thereby showing the best superoleophobicity with contact angle 149° for dodecane. Once infused with a lubricant like silicone oil, they show excellent slippery behavior with low contact angle hysteresis (~ 2°) for water drops.

  11. Low adhesion, non-wetting phosphonate self-assembled monolayer films formed on copper oxide surfaces.

    Science.gov (United States)

    Hoque, E; DeRose, J A; Bhushan, B; Hipps, K W

    2009-07-01

    Self-assembled monolayer (SAM) films have been formed on oxidized copper (Cu) substrates by reaction with 1H,1H,2H,2H-perfluorodecylphosphonic acid (PFDP), octadecylphosphonic acid (ODP), decylphosphonic acid (DP), and octylphosphonic acid (OP) and then investigated by X-ray photoelectron spectroscopy (XPS), contact angle measurement (CAM), and atomic force microscopy (AFM). The presence of alkyl phosphonate molecules, PFDP, ODP, DP, and OP, on Cu were confirmed by CAM and XPS analysis. No alkyl phosphonate molecules were seen by XPS on unmodified Cu as a control. The PFDP/Cu and ODP/Cu SAMs were found to be very hydrophobic having water sessile drop static contact angles of more than 140 degrees , while DP/Cu and OP/Cu have contact angles of 119 degrees and 76 degrees , respectively. PFDP/Cu, ODP/Cu, DP/Cu, and OP/Cu SAMs were studied by friction force microscopy, a derivative of AFM, to better understand their micro/nanotribological properties. PFDP/Cu, ODP/Cu, and DP/Cu had comparable adhesive force, which is much lower than that for unmodified Cu. ODP/Cu had the lowest friction coefficient followed by PFDP/Cu, DP/Cu, and OP/Cu while unmodified Cu had the highest. XPS data gives some indication that a bidentate bond forms between the alkyl phosphonate molecules and the oxidized Cu surface. Hydrophobic phosphonate SAMs could be useful as corrosion inhibitors in micro/nanoelectronic devices and/or as promoters for anti-wetting, low adhesion surfaces.

  12. High content reduced graphene oxide reinforced copper with a bioinspired nano-laminated structure and large recoverable deformation ability

    Science.gov (United States)

    Xiong, Ding-Bang; Cao, Mu; Guo, Qiang; Tan, Zhanqiu; Fan, Genlian; Li, Zhiqiang; Zhang, Di

    2016-01-01

    By using CuO/graphene-oxide/CuO sandwich-like nanosheets as the building blocks, bulk nacre-inspired copper matrix nano-laminated composite reinforced by molecular-level dispersed and ordered reduced graphene oxide (rGO) with content as high as ∼45 vol% was fabricated via a combined process of assembly, reduction and consolidation. Thanks to nanoconfinement effect, reinforcing effect, as well as architecture effect, the nanocomposite shows increased specific strength and at least one order of magnitude greater recoverable deformation ability as compared with monolithic Cu matrix. PMID:27647264

  13. Energy-Dispersive X-Ray Spectroscopy Mapping of Porous Coatings Obtained on Titanium by Plasma Electrolytic Oxidation in a Solution Containing Concentrated Phosphoric Acid with Copper Nitrate

    Directory of Open Access Journals (Sweden)

    Rokosz K.

    2016-09-01

    Full Text Available The SEM and EDS study results of coatings obtained on titanium by Plasma Electrolytic Oxidation (PEO in the electrolytes containing of 600 g copper nitrate in 1 liter of concentrated phosphoric acid at 450 V for 1 and 3 minutes, are presented. The obtained coatings are porous and consist mainly of phosphorus within titanium and copper. It was found that the time of PEO oxidation has impact on the chemical composition of the coatings. The longer time of PEO treatment, the higher amount of copper inside coating. The PEO oxidation of titanium for 1 minute has resulted in the creation of coating, on which 3 phases where found, which contained up to 13.4 wt% (9 at% of copper inside the phosphate structure. In case of 1 minute PEO treatment of titanium, the 2 phases were found, which contained up to 13 wt% (8 at% of copper inside the phosphate structure. The copper-to-phosphorus ratios after 1 minute processing belong to the range from 0.28 by wt% (0.14 by at% to 0.47 by wt% (0.23 by at%, while after 3 minutes the same ratios belong to the range from 0.27 by wt% (0.13 by at% to 0.35 by wt% (0.17 by at%. In summary, it should be stated that the higher amounts of phosphorus and copper were recorded on titanium after PEO oxidation for 3 minutes than these after 1 minute.

  14. Search for quantum transducers between electromagnetic and gravitational radiation A measurement of an upper limit on the transducer conversion efficiency of yttrium barium copper oxide

    CERN Document Server

    Chiao, R Y; Speliotopoulos, A D

    2003-01-01

    A minimal coupling rule for the coupling of the electron spin to curved spacetime in general relativity suggests the possibility of a coupling between electromagnetic and gravitational radiation mediated by means of a quantum fluid. Thus quantum transducers between these two kinds of radiation fields might exist. We report here on the first attempt at a Hertz-type experiment, in which a high-$\\rm{T_c}$ superconductor (YBCO) was the sample material used as a possible quantum transducer to convert EM into GR microwaves, and a second piece of YBCO in a separate apparatus was used to back-convert GR into EM microwaves. An upper limit on the conversion efficiency of YBCO was measured to be $1.6\\times10^{-5}$ at liquid nitrogen temperature.

  15. Comparison between the magnetic and transport critical current densities in high critical current density melt-textured yttrium barium copper-oxide

    Science.gov (United States)

    Gao, L.; Meng, R. L.; Xue, Y. Y.; Hor, P. H.; Chu, C. W.

    1991-01-01

    Using a recently developed pulsed critical current density (Jc) measuring system, the Jc of the high-Jc melt-textured YBa2Cu3O(7-delta) (Y123) bulk samples has been determined. I-V curves with a voltage resolution of 0.5 microV were obtained, and transport Jc's along the a-b plane as high as 7.2 x 10 to the 4th A/sq cm were extracted. These results are comparable to the values obtained magnetically. On the other hand, transport Jc along the c axis were found to be two orders of magnitude smaller, even though the magnetic Jc along the c axis is only about five times smaller than Jc along the a-b plane. It is suggested that for the high-temperature superconducting materials which are highly anisotropic, caution should be taken when using the nontransport magnetic methods to determine Jc.

  16. Enhanced methylene blue oxidative removal by copper electrode-based plasma irradiation with the addition of hydrogen peroxide.

    Science.gov (United States)

    Son, Guntae; Kim, Do-Hyung; Lee, Jung Seok; Lee, Hongshin

    2016-08-01

    Submerged plasma irradiation (SPI)-based advanced oxidation processes have been studied for the oxidation of recalcitrant organic compounds because of their various physical and chemical properties. However, SPI technologies still have a few drawbacks such as relatively low efficiency for wastewater treatment and high energy consumption. In order to overcome these drawbacks, in this study, we proposed the combination of SPI and the Cu(II)-catalyzed Fenton-like system. The removal of methylene blue (MB) by the SPI system was significantly enhanced upon the addition of H2O2. The pseudo-first-order rate constants of MB removal increased with the increase of applied voltage. In addition, the optimum H2O2 dose and initial solution pH were 100 mM and 9, respectively. The reactive oxidants responsible for MB removal in copper electrode-based SPI/H2O2 systems are likely to be hydroxyl radicals (OH) or cupryl ion (Cu(III)), wherein Cu(III) is especially important. Furthermore, the copper electrode-based SPI/H2O2 system is a novel advanced oxidation process capable of oxidizing water recalcitrant and toxic organic pollutants at neutral pH.

  17. 75 FR 33824 - Barium Chloride From China

    Science.gov (United States)

    2010-06-15

    ... COMMISSION Barium Chloride From China Determination On the basis of the record\\1\\ developed in the subject... order on barium chloride from China would be likely to lead to continuation or recurrence of material... Barium Chloride from China: Investigation No. 731-TA-149 (Third Review). By order of the...

  18. 食品接触材料高分子材料中钡、钴、铜、铁、锂、锰和锌的迁移量测定%Determination of Barium, Cobalt, Copper, Iron, Lithium, Manganese, and Zinc Migration Quantity in Food Contact Polymer

    Institute of Scientific and Technical Information of China (English)

    方邢有; 路东琪; 马青; 周明辉; 郑朝辉

    2012-01-01

    Migration quantity of Barium, Cobalt, Copper, Iron, Lithium, Manganese, and Zinc was determined by inductively coupled plasma atomic emission spectrometry. The influence of analysis line, incident power, pump speed, and carrier gas pressure of ICP-AES, and matrix ion interference and coexistence were studied. The results showed that the method is simple and rapid; recovery for the elements determined is from 85.9% to 108%; and RSDs are in the range of 2.92%-6. 78%.%采用电感耦等离子体原子发射光谱仪(ICP—AES),同时测定了食品接触材料高分子材料中钡、钴、铜、铁、锂、锰和锌的迁移量,并对ICP—AES法测定时分析线的选择和入射功率、泵速、栽气压力的影响,以及基体和共存离子的干扰情况等进行了研究。研究表明,此方法简便快速,回收率为85.9%-108%,相对标准偏差为2.92%-6.78%。

  19. Influence of copper in spheres of iron and aluminum oxide; Influencia do cobre nas propriedades texturais e estruturais de esferas de oxido de ferro e aluminio

    Energy Technology Data Exchange (ETDEWEB)

    Sousa, A.F. de; Gomes, E.C.C.; Valentini, A.; Longhinotti, E., E-mail: adfrsou@hotmail.co [Universidade Federal do Ceara (UFC), Fortaleza, CE (Brazil). Dept. de Quimica Analitica e Fisico-Quimica; Sales, F.A.M. [Universidade Federal do Ceara (UFC), Fortaleza, CE (Brazil). Dept. de Fisica

    2010-07-01

    The various applications of mesoporous materials in adsorption and catalysis have driven research for new synthetic routes to improve the structural and morphological characteristics of the compounds currently available. Spherical mesoporous materials of aluminum oxide and / or iron were synthesized in proportions of 10.30 and 50%, and then impregnated with copper oxide by wet impregnation method. Supporters of spherical iron oxide and aluminum before and after impregnation with copper were characterized by XRD, SEM, chemical analysis, BET and TPR. The analysis results of XRD showed the formation of crystalline phases AB{sub 2}O{sub 4} type, the results of TPR showed a shift of the band of iron reduction with the incorporation of copper and the samples indicated a decrease in porosity, possibly due to the closure of pores with the addition of copper. (author)

  20. Characterization of hafnium oxide resistive memory layers deposited on copper by atomic layer deposition

    Energy Technology Data Exchange (ETDEWEB)

    Briggs, B.D.; Bishop, S.M. [SUNY College of Nanoscale Science and Engineering, 255 Fuller Road, Albany, NY 12203 (United States); Leedy, K.D. [Air Force Research Laboratory, 2241 Avionics Circle, Wright Patterson Air Force Base, Dayton, OH 45433 (United States); Cady, N.C., E-mail: ncady@albany.edu [SUNY College of Nanoscale Science and Engineering, 255 Fuller Road, Albany, NY 12203 (United States)

    2014-07-01

    Hafnium oxide-based resistive memory devices have been fabricated on copper bottom electrodes. The HfO{sub x} active layers in these devices were deposited by atomic layer deposition (ALD) at 250 °C with tetrakis(dimethylamido)hafnium(IV) as the metal precursor and an O{sub 2} plasma as the reactant. Depth profiles of the HfO{sub x} by X-ray photoelectron spectroscopy and secondary ion mass spectroscopy revealed a copper concentration on the order of five atomic percent throughout the HfO{sub x} film. In addition to the Cu doped HfO{sub x}, a thin layer (20 nm) of Cu{sub x}O is present at the surface. This surface layer is believed to have formed during the ALD process, and greatly complicates the analysis of the switching mechanism. The resistive memory structures fabricated from the ALD HfO{sub x} exhibited non-polar resistive switching, independent of the top metal electrode (Ni, Pt, Al, Au). Resistive switching current voltage (I–V) curves were analyzed using Schottky emission and ionic hopping models to gain insight into the physical mechanisms underpinning the device behavior. During the forming process it was determined that, at voltages in excess of 2.5 V, an ionic hopping model is in good agreement with the I–V data. The extracted ion hopping distance ∼ 4 Å was within the range of interatomic spacing of HfO{sub 2} during the forming process consistent with ionic motion of Cu{sup 2+} ions. Lastly the on state I–V data was dominated at larger voltages by Schottky emission with an estimated barrier height of ∼ 0.5 eV and a refractive index of 2.59. The consequence of the Schottky emission analysis indicates the on state resistance to be a product of a Pt/Cu{sub 2}O/Cu filament(s)/Cu{sub 2}O/Cu structure. - Highlights: • HfO{sub 2} was grown via atomic layer deposition at 250 and 100 °C on Cu substrates. • A Cu{sub 2}O surface layer and Cu doping were observed in post-deposition of HfO{sub 2}. • Resistive memory devices were fabricated and

  1. Systematic coordination chemistry and cytotoxicity of copper(II) complexes with methyl substituted 4-nitropyridine N-oxides.

    Science.gov (United States)

    Puszko, Aniela; Brzuszkiewicz, Anna; Jezierska, Julia; Adach, Anna; Wietrzyk, Joanna; Filip, Beata; Pełczynska, Marzena; Cieslak-Golonka, Maria

    2011-08-01

    Three new nitrato copper(II) complexes of dimethyl substituted 4-nitropyridine N-oxide were synthesized and characterized by elemental analysis, magnetic, spectroscopic, thermal and X-ray methods, respectively. They were isolated as trans isomers, mononuclear (μ=1.70-1.88 BM), five (1-2) and four (3) coordinate species of general formula [Cu(NO3)2(H2O)L2] where L=2,3-dimethyl-, 2,5-dimethyl-4-nitropyridine N-oxide and [Cu (NO3)2L2], L=3,5-dimethyl-4-nitropyridine N-oxide, respectively. The X-ray crystal structure of (1) (L=2,3-dimethyl-4-nitropyridine N-oxide) was determined. The organic ligands, the complexes and copper hexaqua ion as a reference were tested in vitro on the cytotoxic activity against human cancer cell lines: MCF-7 (breast), SW-707 (colon) and P-388 (murine leukemia). The complexes are relatively strong cytotoxic agents towards P-388 cell line. Comparative analysis was performed for all known copper(II) complexes containing methyl derivatives of the 4-nitropyridine N-oxide on the basis of their composition, structure and cytotoxic activities. To obtain the typical structure for these species (i.e., 4-coordinate mononuclear of the type trans-[Cu(inorganic anion)2L2]), two methyl groups must be situated on both sides of nitrogen atom(s) (i.e., NO and NO2) in the ligand. The biological activity was found to be strongly dependent upon the number of the methyl groups and the type of cell line. The best cytotoxic results were found for the complexes without substituents or with one methyl group. Generally, for all cell lines, the complexation increased cytotoxicity when compared with the free ligands.

  2. Copper(II)–imida‐salen Complexes Encapsulated into NaY Zeolite for Oxidations Reactions

    DEFF Research Database (Denmark)

    Kuźniarska‐Biernacka, Iwona; Carvalho, M. Alice; Rasmussen, Søren Birk

    2013-01-01

    heterogeneous catalysts were characterized by SEM, XRD, FTIR, EPR and Raman spectroscopy as well as by chemical analysis. The structures of the copper(II) complexes were proposed on the basis of theoretical studies (DFT). The catalytic activities of the encapsulated copper(II) complexes in NaY were compared...

  3. Copper induced oxidative stresses, antioxidant responses and phytoremediation potential of Moso bamboo (Phyllostachys pubescens)

    Science.gov (United States)

    Chen, Junren; Shafi, Mohammad; Li, Song; Wang, Ying; Wu, Jiasen; Ye, Zhengqian; Peng, Danli; Yan, Wenbo; Liu, Dan

    2015-09-01

    Moso bamboo is recognized as phytoremediation plant due to production of huge biomass and high tolerance in stressed environment. Hydroponics and pot experiments were conducted to investigate mechanism of copper tolerance and to evaluate copper accumulation capacity of Moso bamboo. In hydroponics experiment there was non significant variation in MDA contents of leaves compared with control. SOD and POD initially indicated enhancing trend with application of 5 μM Cu and then decreased consistently with application of 25 and 100 μM Cu. Application of each additional increment of copper have constantly enhanced proline contents while maximum increase of proline was observed with application of 100 μM copper. In pot experiment chlorophyll and biomass initially showed increasing tendency and decreased gradually with application of each additional increment of Cu. Normal growth of Moso bamboo was observed with application of 100 mg kg-1 copper. However, additional application of 300 or 600 mg kg-1 copper had significantly inhibited growth of Moso bamboo. The concentration of Cu in Moso bamboo has attained the levels of 340, 60, 23 mg kg-1 in roots, stems and leaves respectively. The vacuoles were the main organs which accumulated copper and reduced toxicity of copper as studied by TEM-DEX technology.

  4. Carnitine supplementation modulates high dietary copper-induced oxidative toxicity and reduced performance in laying hens.

    Science.gov (United States)

    Güçlü, Berrin Kocaoğlu; Kara, Kanber; Çakır, Latife; Çetin, Ebru; Kanbur, Murat

    2011-12-01

    This experiment was conducted to evaluate the effects of L-carnitine on performance, egg quality and certain biochemical parameters in laying hens fed a diet containing high levels of copper proteinate. Forty-eight 42-week-old laying hens were divided into four groups with four replicates. The laying hens were fed with a basal diet (control) or the basal diet supplemented with either 400 mg carnitine (Car)/kg diet, 800 mg copper proteinate (CuP)/kg diet or 400 mg carnitine + 800 mg copper (Car+CuP)/kg diet, for 6 weeks. Supplemental CuP decreased feed consumption (p supplemental CuP and Car+CuP. Supplemental CuP caused an increase in plasma malondialdehyde (p carnitine and copper combination may prevent the possible adverse effects of high dietary copper on performance and lipid peroxidation in hens.

  5. Biomimetic Modeling of Copper Complexes: A Study of Enantioselective Catalytic Oxidation on D-(+-Catechin and L-(−-Epicatechin with Copper Complexes

    Directory of Open Access Journals (Sweden)

    Francesco G. Mutti

    2008-01-01

    Full Text Available The biomimetic catalytic oxidations of the dinuclear and trinuclear copper(II complexes versus two catechols, namely, D-(+-catechin and L-(−-epicatechin to give the corresponding quinones are reported. The unstable quinones were trapped by the nucleophilic reagent, 3-methyl-2-benzothiazolinone hydrazone (MBTH, and have been calculated the molar absorptivities of the different quinones. The catalytic efficiency is moderate, as inferred by kinetic constants, but the complexes exhibit significant enantio-differentiating ability towards the catechols, albeit for the dinuclear complexes, this enantio-differentiating ability is lower. In all cases, the preferred enantiomeric substrate is D-(+-catechin to respect the other catechol, because of the spatial disposition of this substrate.

  6. Isolation of copper oxide (CuO) nanoparticles resistant Pseudomonas strains from soil and investigation on possible mechanism for resistance.

    Science.gov (United States)

    Soltani Nezhad, Shahla; Rabbani Khorasgani, Mohammad; Emtiazi, Giti; Yaghoobi, Mohammad Mehdi; Shakeri, Shahryar

    2014-03-01

    The present study deals with isolation and characterization of copper oxide nanoparticles resistant Pseudomonas strains that were isolated from the soil collected from mining and refining sites of Sarcheshmeh copper mine in the Kerman Province of Iran. The three isolates were selected based on high level of copper oxide nanoparticles (CuO NPs) resistance. The isolates were authentically identified as Pseudomonas fluorescens CuO-1, Pseudomonas fluorescens CuO-2 and Pseudomonas sp. CuO-3 by morphological, biochemical and 16S rDNA gene sequencing analysis. The growth pattern of these isolates with all the studied CuO NPs concentrations was similar to that of control (without CuO NPs) indicating that CuO NPs would not affect the growth of isolated strains. A reduction in the amount of exopolysaccharides was observed after CuO NPs-P. fluorescens CuO-1 culture supernatant interaction. The Fourier transform infrared spectroscopy (FT-IR) peaks for the exopolysaccharides extracted from the bacterial culture supernatant and the interacted CuO NPs were almost similar. The exopolysaccharide capping of the CuO NPs was confirmed by FT-IR and X-ray diffraction analysis. The study of bacterial exopolysaccharides capped CuO NPs with E. coli PTCC 1338 and S. aureus PTCC 1113 showed less toxicity compared to uncoated CuO NPs. Our study suggests that the capping of nanoparticles by bacterially produced exopolysaccharides serve as the probable mechanism of tolerance.

  7. Recovery of copper and lead from waste printed circuit boards by supercritical water oxidation combined with electrokinetic process.

    Science.gov (United States)

    Xiu, Fu-Rong; Zhang, Fu-Shen

    2009-06-15

    An effective and benign process for copper and lead recovery from waste printed circuit boards (PCBs) was developed. In the process, the PCBs was pre-treated in supercritical water, then subjected to electrokinetic (EK) process. Experimental results showed that supercritical water oxidation (SCWO) process was strong enough to decompose the organic compounds of PCBs, and XRD spectra indicated that copper and lead were oxidized into CuO, Cu(2)O and beta-PbO(2) in the process. The optimum SCWO treatment conditions were 60 min, 713 K, 30 MPa, and EK treatment time, constant current density were 11h, 20 mA cm(-2), respectively. The recovery percentages of copper and lead under optimum SCWO+EK treatment conditions were around 84.2% and 89.4%, respectively. In the optimized EK treatment, 74% of Cu was recovered as a deposit on the cathode with a purity of 97.6%, while Pb was recovered as concentrated solutions in either anode (23.1%) or cathode (66.3%) compartments but little was deposited on the electrodes. It is believed that the process is effective and practical for Cu and Pb recovery from waste electric and electronic equipments.

  8. Electrical Study of Trapped Charges in Copper-Doped Zinc Oxide Films by Scanning Probe Microscopy for Nonvolatile Memory Applications

    Science.gov (United States)

    Su, Ting; Zhang, Haifeng

    2017-01-01

    Charge trapping properties of electrons and holes in copper-doped zinc oxide (ZnO:Cu) films have been studied by scanning probe microscopy. We investigated the surface potential dependence on the voltage and duration applied to the copper-doped ZnO films by Kelvin probe force microscopy. It is found that the Fermi Level of the 8 at.% Cu-doped ZnO films shifted by 0.53 eV comparing to undoped ZnO films. This shift indicates significant change in the electronic structure and energy balance in Cu-doped ZnO films. The Fermi Level (work function) of zinc oxide films can be tuned by Cu doping, which are important for developing this functional material. In addition, Kelvin probe force microscopy measurements demonstrate that the nature of contact at Pt-coated tip/ZnO:Cu interface is changed from Schottky contact to Ohmic contact by increasing sufficient amount of Cu ions. The charge trapping property of the ZnO films enhance greatly by Cu doping (~10 at.%). The improved stable bipolar charge trapping properties indicate that copper-doped ZnO films are promising for nonvolatile memory applications. PMID:28135335

  9. Oxidation study on as-bonded intermetallic of copper wire-aluminum bond pad metallization for electronic microchip

    Energy Technology Data Exchange (ETDEWEB)

    Joseph Sahaya Anand, T., E-mail: anand@utem.edu.my [Faculty of Manufacturing Engineering, University Technical Malaysia Melaka, Hang Tuah Jaya, 76100 Durian Tunggal, Melaka (Malaysia); Yau, Chua Kok [Faculty of Manufacturing Engineering, University Technical Malaysia Melaka, Hang Tuah Jaya, 76100 Durian Tunggal, Melaka (Malaysia); University of Technical Malaysia Supported by Infineon Technology - Malaysia - Sdn. Bhd., Melaka (Malaysia); Huat, Lim Boon [Department of Innovation, Infineon Technology - Malaysia - Sdn. Bhd., FTZ Batu Berendam, 75350 Melaka (Malaysia)

    2012-10-15

    In this work, influence of Copper free air ball (FAB) oxidation towards Intermetallic Compound (IMC) at Copper wire-Aluminum bond pad metallization (Cu/Al) is studied. Samples are synthesized with different Copper FAB oxidation condition by turning Forming Gas supply ON and OFF. Studies are performed using Optical Microscope (OM), Scanning Electron Microscope (SEM), Transmission Electron Microscope (TEM) and line-scan Energy Dispersive X-ray (EDX). SEM result shows there is a cross-sectional position offset from center in sample synthesized with Forming Gas OFF. This is due to difficulty of determining the position of cross-section in manual grinding/polishing process and high occurrence rate of golf-clubbed shape of oxidized Copper ball bond. TEM inspection reveals that the Copper ball bond on sample synthesized with Forming Gas OFF is having intermediate oxidation. Besides, the presence of IMC at the bonding interface of Cu/Al for both samples is seen. TEM study shows voids form at the bonding interface of Forming Gas ON sample belongs to unbonded area; while that in Forming Gas OFF sample is due to volume shrinkage of IMC growth. Line-scan EDX shows the phases present in the interfaces of as-bonded samples are Al{sub 4}Cu{sub 9} ({approx}3 nm) for sample with Forming Gas ON and mixed CuAl and CuAl{sub 2} ({approx}15 nm) for sample with Forming Gas OFF. Thicker IMC in sample with Forming Gas OFF is due to cross-section is positioned at high stress area that is close to edge of ball bond. Mechanical ball shear test shows that shear strength of sample with Forming Gas OFF is about 19% lower than that of sample with Forming Gas ON. Interface temperature is estimated at 437 Degree-Sign C for as-bonded sample with Forming Gas ON by using empirical parabolic law of volume diffusion. -- Highlights: Black-Right-Pointing-Pointer 3 nm Al{sub 4}Cu{sub 9} are found in sample prepared with Forming Gas ON. Black-Right-Pointing-Pointer 15 nm mixed CuAl + CuAl{sub 2} are found

  10. Copper-poly(2-aminodiphenylamine) as a novel and low cost electrocatalyst for electrocatalytic oxidation of methanol in alkaline solution

    Energy Technology Data Exchange (ETDEWEB)

    Ojani, Reza, E-mail: fer-o@umz.ac.i [Electroanalytical Chemistry Research Laboratory, Faculty of Chemistry, University of Mazandaran, Babolsar (Iran, Islamic Republic of); Raoof, Jahan-Bakhsh; Ahmady-Khanghah, Yusef [Electroanalytical Chemistry Research Laboratory, Faculty of Chemistry, University of Mazandaran, Babolsar (Iran, Islamic Republic of)

    2011-03-30

    In the present work we demonstrate the carbon paste as a new electrode substrate for the electropolymerization of 2-aminodiphenylamine and fabrication of polymer film modified electrode. Then transition metal of copper is incorporated into the polymer by electrodepositing of Cu(II) from CuCl{sub 2} acidic solution using potentiostatic technique. The electrocatalytic oxidation of methanol was studies by cyclic voltammetry and chronoamperometry methods at the surface of obtained Cu/P(2ADPA)/MCPE. It has been found that in the course of an anodic potential sweep, the electro-oxidation of methanol follows the formation of Cu(III) and is catalyzed by this species through a mediated electron transfer mechanism. The obtained current density for this catalytic oxidation is very high which could be come from high surface area of caused by the P(2ADPA) modification. The effects of various parameters such as the copper loading, scan rate and methanol concentration on the electrocatalytic oxidation of methanol were also investigated at the surface of Cu/P(2ADPA)/MCPE. Finally, using a chronoamperometric method, the catalytic rate constant (k) for methanol was found to be 0.2 x 10{sup 5} cm{sup 3} mol{sup -1} s{sup -1} that the high k can be ascribed for the fast electron transfer process due to electrode modification.

  11. Underwater Superoleophobicity Induced by the Thickness of the Thermally Grown Porous Oxide Layer on C84400 Copper Alloy

    Directory of Open Access Journals (Sweden)

    Aniedi Nyong

    2014-02-01

    Full Text Available The underwater contact angle behavior on oxide layers of varying thicknesses was studied. These oxide layers were grown by thermally oxidizing C84400 copper alloys in N2-0.75 wt.% O2 and N2-5 wt.% O2 gas mixtures at 650 °C. Characterization of the oxidized specimens was effected using X-ray diffraction, scanning electron microscope (SEM and contact angle goniometer. The results from the X-ray diffraction analyses confirmed the formation of CuO, ZnO and PbO. The average sizes of the oxide granules were in the range of 70 nm to 750 nm, with the average thickness of the oxide layer increasing with the increase in the weight percent of oxygen in the N2-O2 gas mixtures. The results showed that the oxide layer growth followed the parabolic law. The underwater oil contact angles increased, due to the change in the surface morphology and porosity of the oxide layer. The small sizes and irregular packing of the oxide granules cause hierarchical rough surface layers with pores. The estimated pore sizes, in the range of 88 ± 40 to 280 ± 76, were predominant on the oxide layers of the samples processed in the N2-5 wt.% O2 gas mixture. The presence of these pores caused an increase in the porosities as the thickness of the oxide layers increased. At oxide layer thickness above 25 microns, the measured contact angle exceeded 150° as underwater superoleophobicity was recorded.

  12. Quantum chemical modeling of methanol oxidation mechanisms by methanol dehydrogenase enzyme: effect of substitution of calcium by barium in the active site.

    Science.gov (United States)

    Idupulapati, Nagesh B; Mainardi, Daniela S

    2010-02-04

    Previous experimental studies have shown that the activation energy for methanol oxidation by naturally occurring Ca(2+)-containing methanol dehydrogenase (MDH) enzyme is double the methanol activation energy by Ba(2+)-MDH. However, neither the reason for this difference nor the specific transition states and intermediates involved during the methanol oxidation by Ba(2+)-MDH have been clearly stated. Hence, an MDH active site model based on the well-documented X-ray crystallographic structure of Ca(2+)-MDH is selected, where the Ca(2+) is replaced by a Ba(2+) ion at the active site center, and the addition-elimination (A-E) and hydride-transfer (H-T) methanol oxidation mechanisms, already proposed in the literature for Ca(2+)-MDH, are tested for Ba(2+)-MDH at the BLYP/DNP theory level. Changes in the geometries and energy barriers for all the steps are identified, and qualitatively, similar (when compared to Ca(2+)-MDH) intermediates and transition states associated with each step of the mechanisms are found in the case of Ba(2+)-MDH. For both the A-E and H-T mechanisms, almost all the free-energy barriers associated with all of the steps are reduced in the presence of Ba(2+)-MDH, and they are kinetically feasible. The free energy barriers for methanol oxidation by Ba(2+)-MDH, particularly for the rate-limiting steps of both mechanisms, are almost half the corresponding barriers calculated for the case of Ca(2+)-MDH, which is in agreement with experimental observations.

  13. Indium oxide (In2O3) nanoparticles induce progressive lung injury distinct from lung injuries by copper oxide (CuO) and nickel oxide (NiO) nanoparticles.

    Science.gov (United States)

    Jeong, Jiyoung; Kim, Jeongeun; Seok, Seung Hyeok; Cho, Wan-Seob

    2016-04-01

    Indium is an essential element in the manufacture of liquid crystal displays and other electronic devices, and several forms of indium compounds have been developed, including nanopowders, films, nanowires, and indium metal complexes. Although there are several reports on lung injury caused by indium-containing compounds, the toxicity of nanoscale indium oxide (In2O3) particles has not been reported. Here, we compared lung injury induced by a single exposure to In2O3 nanoparticles (NPs) to that caused by benchmark high-toxicity nickel oxide (NiO) and copper oxide (CuO) NPs. In2O3 NPs at doses of 7.5, 30, and 90 cm(2)/rat (50, 200, and 600 µg/rat) were administered to 6-week-old female Wistar rats via pharyngeal aspiration, and lung inflammation was evaluated 1, 3, 14, and 28 days after treatment. Neutrophilic inflammation was observed on day 1 and worsened until day 28, and severe pulmonary alveolar proteinosis (PAP) was observed on post-aspiration days 14 and 28. In contrast, pharyngeal aspiration of NiO NPs showed severe neutrophilic inflammation on day 1 and lymphocytic inflammation with PAP on day 28. Pharyngeal aspiration of CuO NPs showed severe neutrophilic inflammation on day 1, but symptoms were completely resolved after 14 days and no PAP was observed. The dose of In2O3 NPs that produced progressive neutrophilic inflammation and PAP was much less than the doses of other toxic particles that produced this effect, including crystalline silica and NiO NPs. These results suggest that occupational exposure to In2O3 NPs can cause severe lung injury.

  14. Mineral Liberation of Magnetite-Precipitated Copper Slag Obtained via Molten Oxidation by Using High-Voltage Electrical Pulses

    Science.gov (United States)

    Fan, Yong; Shibata, Etsuro; Iizuka, Atsushi; Nakamura, Takashi

    2016-10-01

    Our proposed method, i.e., a controlled molten oxidation process under 1 vol pct oxygen, leads to selective precipitation of magnetite in a copper smelter slag for downstream iron separation. In the present study, the preroasted magnetite precipitated copper slag was treated via magnetite liberation, which was realized by using high-voltage electrical pulses. The mineral distribution was determined by using a laser microscope and its image analysis; and it revealed that the 100- µm under-sieve product contains approximately 70 pct of liberated mineral particles. The study affirms the positive outcome of using this new technology for comminution to obtain micrometer-scale particles that yield monominerals via selective liberation. Using magnetic separation, iron was capable of finally separating into high- and low-iron-bearing concentrate and tailing that can be used in specific applications.

  15. Hydrothermal synthesis and crystal structure of a new lithium copper bismuth oxide, LiCuBiO4

    Science.gov (United States)

    Kumada, Nobuhiro; Nakamura, Ayumi; Miura, Akira; Takei, Takahiro; Azuma, Masaki; Yamamoto, Hajime; Magome, Eisuke; Moriyoshi, Chikako; Kuroiwa, Yoshihiro

    2017-01-01

    A new lithium copper bismuth oxide, LiCuBiO4 was prepared by hydrothermal reaction using NaBiO30.1*4H2O. The crystal structural model of this compound was refined by using synchrotron X-ray powder diffraction data. This bismuthate has the LiCuSbO4 related structure with the orthorhombic cell (Space group: Pnma) of a=10.9096(9), b=5.8113(5) and c=5.0073(4) Å, and the final R-factors were Rwp=4.84 and Rp=3.58%. This compound is the first example of a lithium copper bismuthate containing Bi5+. An antiferromagnetic ordering of Cu2+ moment was observed at 6 K.

  16. Efficacy of copper oxide wire particles against gastrointestinal nematodes in sheep and goats.

    Science.gov (United States)

    Soli, F; Terrill, T H; Shaik, S A; Getz, W R; Miller, J E; Vanguru, M; Burke, J M

    2010-02-26

    Profitable sheep and goat production in the USA is severely limited by gastrointestinal nematode (GIN) parasitism, particularly by Haemonchus contortus. Copper oxide wire particles (COWP) have anti-parasitic properties in the diet of small ruminants, but efficacy of COWP may differ between sheep and goats. In a study with weaned kids (Kiko x Spanish cross, 6 months old) and lambs (Katahdin or Dorper x Blackface crosses, 5 months old), grazing the same pasture area in Central Georgia, 2g of COWP in a gel capsule was given to half the animals of each species, while the other half were given no COWP. Fecal and blood samples were taken weekly to determine GIN fecal egg counts (FEC) and blood packed cell volume (PCV). After COWP treatment, animals were grazed for 4 weeks and then slaughtered, with adult GIN recovered from the abomasum and small intestines for counting and identification to species. For both sheep and goats, COWP treatment reduced EPG (P<0.05), increased PCV (P<0.05), and lowered abomasal GIN numbers (P<0.05). For EPG, these differences were 82.5 and 90.5% for sheep and goats, respectively, 26 days after treatment, while adult H. contortus were 67.2 and 85.8% lower for COWP-treated sheep and goats, respectively. In this study, COWP treatment was equally effective against H. contortus infection in lambs and kids and appears to be an effective method of controlling H. contortus infection for up to 6 weeks in small ruminants following weaning.

  17. Influence of iron and copper oxides on polychlorinated diphenyl ether formation in heterogeneous reactions.

    Science.gov (United States)

    Liu, Wenxia; Shen, Lianfeng; Zhang, Fawen; Liu, Wenbin; Zheng, Minghui; Yang, Xitian

    2013-08-01

    Polychlorinated diphenyl ether (PCDE) has attracted great attention recently as an important type of environmental pollutant. The influence of iron and copper oxides on formation of PCDEs was investigated using laboratory-scale flow reactors under air and under nitrogen at 350 °C, a temperature corresponding to the post-combustion zone of a municipal solid waste incinerator. The results show that the 2,2',3,4,4',5,5',6-otachlorodiphenyl ether (OCDE) formed from the condensation of pentachlorophenol (PCP) and 1,2,4,5-tetrachlorobenzene (Cl4Bz) is the predominant congener formed on the SiO2/Fe2O3 surface with and without oxygen. This indicated that HCl elimination between PCP and 1,2,4,5-Cl4Bz molecules formed 2,2',3,4,4',5,5',6-OCDE in the presence of Fe2O3. On the other hand, decachlorodiphenyl ether, nonachlorodiphenyl ether, and OCDE were the dominant products on the SiO2/CuO surface without oxygen, although the 2,2',3,4,4',5,5',6-OCDE was the dominant product on the SiO2/CuO surface with oxygen. Therefore, the presence of Fe2O3 and CuO influences the formation and homologue distribution of PCDEs, which shifted towards the lower chlorinated species. Fe2O3 can promote both the condensation and dechlorination reaction without oxygen. On the contrary, with oxygen, Fe2O3 suppresses the condensation of chlorobenzene and chlorophenol to form PCDEs and polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDD/Fs). CuO can increase the formation of lower chlorinated PCDEs and PCDDs without oxygen. In conclusion, the different fly ash components have a major influence on PCDE emissions.

  18. Temperature-driven growth of reduced graphene oxide/copper nanocomposites for glucose sensing

    Science.gov (United States)

    Zhang, Qi; Wu, Zhong; Xu, Chen; Liu, Lei; Hu, Wenbin

    2016-12-01

    A one-spot method was developed for the synthesis of graphene sheet decorated with copper nanoparticles using different reduction temperatures via a molecular level mixing process. Here, we demonstrate that the reduction temperature is a crucial determinant of the properties of reduced graphene oxide (RGO)/metal composite and its electrocatalytic application in glucose sensing. To show this, we prepared a series of RGO/Cu composites at different reduction temperatures and examined the change rules of size, loading and dispersion of Cu particles, and the reduction extent of the RGO. Results showed that the Cu particle size increased with increasing reduction temperatures due to the Ostwald ripening process. Meanwhile, the Cu loading decreased with increasing reduction temperatures and the aggregation had not appeared in the high Cu loading situation. Additionally, the increasing reduction temperatures led to the decreasing concentrations of various oxygen-containing functional group of RGO with various degrees. The cyclic voltammogram showed that the RGO/metal composites fabricated under lower reduction temperatures exhibited higher electrocatalytic activity for glucose sensing, which was attributed to the higher surface area from larger loading of RGO/metal composites with smaller particle size. It can be concluded that the above factors play more significant roles in electrocatalytic efficiency than the decreased electron transfer rate between RGO and Cu within a certain range. These results highlight the importance of the reduction temperature influencing the properties of the RGO/metal composite and its application. We believe that these findings can be of great value in the further developing RGO/metal-based sensors for electrochemical detection of different analytes in emerging fields.

  19. Preparation and investigations of thermal properties of copper oxide, aluminium oxide and graphite based on new organic phase change material for thermal energy storage

    Indian Academy of Sciences (India)

    Murat Genc; Betul Inci; Zuhal Karagoz Genc; Canan Aksu Canbay; Memet Sekercı

    2015-04-01

    The effects of copper oxide, aluminium oxide and graphite on the thermal and structural properties of the organic phase change material (PCM) were investigated. Ethyl 2-(1H-benzotriazole-1-yl)acetate was selected as the pure PCM. Fourier transform infrared (FT-IR) spectroscopy, X-ray, energy dispersive X-ray (EDX) and scanning electron microscope (SEM) were used to determine the chemical structure, crystalloid phase, chemical composition and microstructure of the composites, respectively. The thermal properties were investigated by differential scanning calorimetry and thermogravimetric analyzer. The FT-IR analyses indicated that there was no chemical interaction between the pure PCM and the supporting materials such as copper oxide, aluminium oxide and graphite. The X-ray diffractograms of the samples were nearly the same, but the peak intensities changed according to the supporting materials. The SEM results showed that the C, N and O elements were well adsorbed into the porous network of the graphite, Al2O3 and CuO. According to the supporting materials, the graphite had the minimum porosity and the maximum crystallite size.

  20. Copper-induced oxidative damage, antioxidant response and genotoxicity in Lycopersicum esculentum Mill. and Cucumis sativus L.

    Science.gov (United States)

    İşeri, Özlem Darcansoy; Körpe, Didem Aksoy; Yurtcu, Erkan; Sahin, Feride Iffet; Haberal, Mehmet

    2011-09-01

    Adequate copper (Cu(2+)) concentrations are required for plants; however, at higher concentrations it can also cause multiple toxic effects. In the present study, lipid peroxidation, hydrogen peroxide levels as well as ascorbate peroxidase (APX: EC 1/11/1/11) and catalase (CAT: EC 1.11.1.6) activities were determined in Lycopersicum esculentum Mill. and Cucumis sativus L. seedlings after 7-day exposure to copper sulfate. In addition, DNA damage in these two crops was assessed by measuring micronucleus (MN) frequency and tail moments (TM) as determined by Comet assay. Inhibitory copper concentrations (EC(50): 30 and 5.5 ppm for L. esculentum and C. sativus, respectively) were determined according to dose-dependent root inhibition curves, and EC(50) and 2×EC(50) were applied. Malondialdehyde (MDA) and H(2)O(2) levels significantly increased in all groups studied. CAT activity increased in treatment groups of C. sativus. APX activity increased in L. esculentum seedlings due to 2×EC(50) treatment. Reductions in mitotic indices (MI) represented Cu(2+)dependent root growth inhibition in all treatment groups studied. According to TMs and MN frequencies, copper exposure induced significant DNA damage (p sativus roots. In conclusion, Cu(2+)induced oxidative damage, elevations in H(2)O(2) levels and alterations in APX and CAT activities, as well as significant DNA damage in nuclei of both study groups. To our knowledge, this is the first comparative and comprehensive study demonstrating the effects of copper on two different plant species at relevant cytotoxic concentrations at both biochemical and genotoxicity levels with multiple end points.

  1. Selective recovery of pure copper nanopowder from indium-tin-oxide etching wastewater by various wet chemical reduction process: Understanding their chemistry and comparisons of sustainable valorization processes.

    Science.gov (United States)

    Swain, Basudev; Mishra, Chinmayee; Hong, Hyun Seon; Cho, Sung-Soo

    2016-05-01

    Sustainable valorization processes for selective recovery of pure copper nanopowder from Indium-Tin-Oxide (ITO) etching wastewater by various wet chemical reduction processes, their chemistry has been investigated and compared. After the indium recovery by solvent extraction from ITO etching wastewater, the same is also an environmental challenge, needs to be treated before disposal. After the indium recovery, ITO etching wastewater contains 6.11kg/m(3) of copper and 1.35kg/m(3) of aluminum, pH of the solution is very low converging to 0 and contain a significant amount of chlorine in the media. In this study, pure copper nanopowder was recovered using various reducing reagents by wet chemical reduction and characterized. Different reducing agents like a metallic, an inorganic acid and an organic acid were used to understand reduction behavior of copper in the presence of aluminum in a strong chloride medium of the ITO etching wastewater. The effect of a polymer surfactant Polyvinylpyrrolidone (PVP), which was included to prevent aggregation, to provide dispersion stability and control the size of copper nanopowder was investigated and compared. The developed copper nanopowder recovery techniques are techno-economical feasible processes for commercial production of copper nanopowder in the range of 100-500nm size from the reported facilities through a one-pot synthesis. By all the process reported pure copper nanopowder can be recovered with>99% efficiency. After the copper recovery, copper concentration in the wastewater reduced to acceptable limit recommended by WHO for wastewater disposal. The process is not only beneficial for recycling of copper, but also helps to address environment challenged posed by ITO etching wastewater. From a complex wastewater, synthesis of pure copper nanopowder using various wet chemical reduction route and their comparison is the novelty of this recovery process.

  2. PdCl2-loading mesoporous copper oxide as a novel and environmentally friendly catalyst for diethyl carbonate synthesis

    Science.gov (United States)

    Zhang, Pingbo; Zhou, Yan; Fan, Mingming; Jiang, Pingping

    2015-03-01

    PdCl2-loading mesoporous copper oxide (PdCl2/mCuO) catalysts were successfully synthesized via a hard template with copper carbonate basic (Cu2(OH)2CO3), cupric nitrate (Cu(NO3)2·3H2O) and copper citrate (Cu2C6H4O7·2.5H2O) as the copper(II) precursors, respectively. Their catalytic performances were investigated in the synthesis of diethyl carbonate (DEC) by oxidative carbonylation of ethanol with CO and O2. The catalysts were characterized by TGA, XRD, nitrogen adsorption-desorption analysis and SEM with the aim of establishing their composition, morphology and structure. It was observed that the catalysts all showed a good selectivity to diethyl carbonate. However, due to a better mesoporous structure such as a bigger surface area, more uniform particle size and less agglomeration, the PdCl2/mCuO-1 catalyst prepared with Cu2(OH)2CO3 precursor showed a better catalytic activity that the conversion of EtOH was about 4.8% and the STY of DEC was 97.1 mg g-1 h-1. This was because the highly developed mesoporous structure could generate a bigger surface area, which benefited the contact between reactants and active sites, improved the conversion of ethanol, and thus enhanced the catalytic performance. Furthermore, a synthetic procedure diagram about "wet impregnation" method of mesoporous CuO prepared with Cu2(OH)2CO3 precursor was given to illustrate these results intuitively.

  3. Site-specific copper-catalyzed oxidation of α-synuclein: tightening the link between metal binding and protein oxidative damage in Parkinson's disease.

    Science.gov (United States)

    Miotto, Marco C; Rodriguez, Esaú E; Valiente-Gabioud, Ariel A; Torres-Monserrat, Valentina; Binolfi, Andrés; Quintanar, Liliana; Zweckstetter, Markus; Griesinger, Christian; Fernández, Claudio O

    2014-05-05

    Amyloid aggregation of α-synuclein (AS) has been linked to the pathological effects associated with Parkinson's disease (PD). Cu(II) binds specifically at the N-terminus of AS and triggers its aggregation. Site-specific Cu(I)-catalyzed oxidation of AS has been proposed as a plausible mechanism for metal-enhanced AS amyloid formation. In this study, Cu(I) binding to AS was probed by NMR spectroscopy, in combination with synthetic peptide models, site-directed mutagenesis, and C-terminal-truncated protein variants. Our results demonstrate that both Met residues in the motif (1)MDVFM(5) constitute key structural determinants for the high-affinity binding of Cu(I) to the N-terminal region of AS. The replacement of one Met residue by Ile causes a dramatic decrease in the binding affinity for Cu(I), whereas the removal of both Met residues results in a complete lack of binding. Moreover, these Met residues can be oxidized rapidly after air exposure of the AS-Cu(I) complex, whereas Met-116 and Met-127 in the C-terminal region remain unaffected. Met-1 displays higher susceptibility to oxidative damage compared to Met-5 because it is directly involved in both Cu(II) and Cu(I) coordination, resulting in closer exposure to the reactive oxygen species that may be generated by the redox cycling of copper. Our findings support a mechanism where the interaction of AS with copper ions leads to site-specific metal-catalyzed oxidation in the protein under physiologically relevant conditions. In light of recent biological findings, these results support a role for AS-copper interactions in neurodegeneration in PD.

  4. Magnetoelastic coupling in epitaxial cobalt ferrite/barium titanate heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Gräfe, Joachim; Welke, Martin [Wilhelm-Ostwald-Institut für Physikalische und Theoretische Chemie, Universität Leipzig, Linnéstraße 2, 04103 Leipzig (Germany); Bern, Francis; Ziese, Michael [Institut für Experimentelle Physik II, Universität Leipzig, Linnéstraße 5, 04103 Leipzig (Germany); Denecke, Reinhard, E-mail: denecke@uni-leipzig.de [Wilhelm-Ostwald-Institut für Physikalische und Theoretische Chemie, Universität Leipzig, Linnéstraße 2, 04103 Leipzig (Germany)

    2013-08-15

    Ultra-thin cobalt ferrite films have been synthesised on ferroelectric barium titanate crystals. The cobalt ferrite films exhibit a magnetic response to strain induced by structural changes in the barium titanate substrate, suggesting a pathway to multiferroic coupling. These structural changes are achieved by heating through the phase transition temperatures of barium titanate. In addition the ferromagnetic signal of the substrate itself is taken into account, addressing the influence of impurities or defects in the substrate. The cobalt ferrite/barium titanate heterostructure is a suitable oxidic platform for future magnetoelectric applications with an established ferroelectric substrate and widely tuneable magnetic properties by changing the transition metal in the ferrite film. - Highlights: ► Ultra-thin CoFe{sub 2}O{sub 4} films grown on ferroelectric BaTiO{sub 3} crystals by PLD. ► Magnetic response to structural changes of BaTiO{sub 3} at transition temperatures. ► Significant magneto-elastic coupling of in-plane magnetisation in SQUID experiments. ► Clear distinction between contribution by BaTiO{sub 3} substrate and by CoFe{sub 2}O{sub 4} film.

  5. Highly efficient aerobic oxidation of alcohols by using less-hindered nitroxyl-radical/copper catalysis: optimum catalyst combinations and their substrate scope.

    Science.gov (United States)

    Sasano, Yusuke; Kogure, Naoki; Nishiyama, Tomohiro; Nagasawa, Shota; Iwabuchi, Yoshiharu

    2015-04-01

    The oxidation of alcohols into their corresponding carbonyl compounds is one of the most fundamental transformations in organic chemistry. In our recent report, 2-azaadamantane N-oxyl (AZADO)/copper catalysis promoted the highly chemoselective aerobic oxidation of unprotected amino alcohols into amino carbonyl compounds. Herein, we investigated the extension of the promising AZADO/copper-catalyzed aerobic oxidation of alcohols to other types of alcohol. During close optimization of the reaction conditions by using various alcohols, we found that the optimum combination of nitroxyl radical, copper salt, and solution concentration was dependent on the type of substrate. Various alcohols, including highly hindered and heteroatom-rich ones, were efficiently oxidized into their corresponding carbonyl compounds under mild conditions with lower amounts of the catalysts.

  6. Characterization and Catalytic Activity for the Oxidation of Ethane and Propane on Platinum and Copper Supported on CeO2/Al2O3

    Directory of Open Access Journals (Sweden)

    Cataluña R.

    1998-01-01

    Full Text Available Ethane and propane oxidation on platinum and copper supported on Al2O3 and CeO2/Al2O3 catalysts were studied comparatively by examining reaction rates as a function of temperature. Results show that the addition of cerium oxide shifts the catalytic activity to higher temperatures. This negative influence is less pronounced in the case of supported copper samples, which on the basis of EPR and FTIR of adsorbed CO results is attributed to the low relative amount of this metal is in contact with ceria. The decrease in activity the presence of ceria might be due to changes in metal particle size or to the stabilization of the oxidized states of the metals, induced by their interactions with cerium oxide. The higher activity of platinum, in comparison with copper, is attributed to its higher reducibility along with an easier hydrocarbon activation on that metal.

  7. Zinc reduces copper toxicity induced oxidative stress by promoting antioxidant defense in freshly grown aquatic duckweed Spirodela polyrhiza L.

    Science.gov (United States)

    Upadhyay, RishiKesh; Panda, Sanjib Kumar

    2010-03-15

    The mechanism by which Zn promotes Cu toxicity in duckweed Spirodela polyrhiza L. was investigated in order to understand the possible interaction between these two metals. Cu uptake was gradually declined by Zn. The induction of oxidative stress is shown by increased levels of lipid peroxidation, total peroxide, superoxide anion and lipoxygenase activity. Zn interaction reduced the oxidative damage. However, only Zn-treated plants did not show alteration in the above observed parameters. The activities of antioxidant enzymes catalase, ascorbate peroxidase and peroxidase showed a very high increase in activity in Cu+Zn treatment as compared to Cu or Zn alone-treated plants. Thus, this study demonstrates that zinc reversed the effect of copper, combating against Cu induced oxidative damage and improvement of duckweed's growth and toxicity under natural condition.

  8. Multiple Sulfate Isotopic Evidence on the Formation of Oxide Copper Ore at Spence, Atacama Desert, Northern Chile

    Science.gov (United States)

    Sun, T.; Bao, H.; Reich, M.; Palacios, C.

    2007-12-01

    In the Atacama Desert of northern Chile, one of the world's richest metallogenic provinces, porphyry copper deposits are characterized by the unique occurrence of atacamite in their oxidized zones. The origin and formation of the oxide zone of these copper deposits is, however, controversial. It was proposed that Cl-rich deep formation water pumping-up events along faults by earthquakes, after onset of the hyperaridity, were required (Cameron et al., 2007). Their model would imply that supplies of saline deep formation water from fractures to the surface should have left behind a homogeneous or fracture-controlled salt profile from surface down to the oxide zone. While no excluding the deep formation water model in other deposit, here we propose that, in our sampling region, the alternative saline source, which is critical for atacamite formation, could be locally evaporated groundwater, Cl-rich salts leached from arid surface by meteoric water, or brines from eastern salar basins at a time when the climate in northern Chile was changing from arid to hyperarid. At this climate transition, arid- requiring minerals such as atacamite in the oxide zone were formed and, more importantly, preserved upon evaporation beneath the surface alluvial deposits. Since salt accumulation at the surface remain active during hyperarid condition, our model would predict that water-soluble salt profile from surface to the oxide zone should have a characteristic pattern: salts with an atmospheric component on the surface gradually transitioning to salts of the oxide ore zone on the bottom and a mixing zone in between. To test these two alternative models, we focus on sulfate salts, one of the common water-soluble salts in arid environments. An added advantage is that sulfate accumulated on desert surface has a secondary atmospheric component that bears a unique triple oxygen isotope signature, easily distinguishable from sulfate formed by the oxidation of sulfide minerals at the oxide

  9. Nanostructured copper, chromium, and tin oxide multicomponent materials as catalysts for methanol decomposition: 11C-radiolabeling study.

    Science.gov (United States)

    Tsoncheva, Tanya; Sarkadi-Priboczki, Eva; Dimitrov, Momtchil; Genova, Izabela

    2013-01-01

    Copper and chromium modified tin oxide nanocomposites were obtained via incipient wetness impregnation of high surface area nanosized SnO(2) with the corresponding metal acetylacetonates and their further decomposition in air. Powder X-ray diffraction (XRD), Nitrogen physisorption, UV-Vis, and Temperature-programmed reduction (TPR) with hydrogen were applied for the samples characterization. The catalytic activity of the obtained materials was tested in methanol conversion. A new approach based on the selective coverage of the surface with (11)C-methanol was used for the characterization of the catalytic sites. It was demonstrated that the products distribution could be controlled by the surface coverage with methanol and the role of different active sites was discussed. The modification of SnO(2) with copper oxide increased the activity in methanol decomposition to CO(2)via dioxymethylene intermediates, but the catalyst suffered considerable loss of activity due to the reduction transformations by the reaction medium and formation of an inactive intermetallic alloy. The modification with chromium changed the acid-basic properties of SnO(2) by the formation of Cr(2)O(3) nanoparticles as well as anchored to the support chromate species. The former particles facilitated the formation of dimethyl ether (DME), while the latter species converted methanol predominantly to hydrocarbons. The fraction of chromate species increased in Cu-Cr-Sn oxide multicomponent nanocomposites and promoted the formation of hydrocarbons over DME at low temperatures, while at higher temperatures, the activity of the copper species leading to CO(2) formation was more pronounced.

  10. Physico-chemical properties studies of Co-Cu oxide ores and their impacts on the dissolution of cobalt and copper bearing minerals

    OpenAIRE

    2013-01-01

    M.Sc. (Chemistry) Cobalt is mainly associated with copper, both in the primary ores and in the oxidation zone. In Southern Africa cobalt metal is produced as a by-product of the extraction of copper, nickel and platinum group metals. The hydrometallurgical route is commonly used, since cobalt bearing materials are acid leached prior to the clarification and impurity removal process preceding the electrowinning of the value. In order to understand the dissolution behaviour of cobalt and cop...

  11. Copper Tetrahydrosalen Complex Encapsulated in Zeolite Y:an Effective Heterogeneous Catalyst for the Oxidation of Cycloalkanes

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    A new heterogeneous catalyst, copper tetrahydrosalen complex encapsulated in zeolite Y (denoted as Cu[H4]salen/Y) has been developed with flexible ligand method, and characterized by FTIR, DR UV-Vis spectroscopy, N2 adsorption/desorption at -196℃. This catalyst behaved like a bio-mimic enzyme, and exhibited much higher activity for the oxidation of cycloalkanes than Cusalen/Y prepared with the same method. The effects of the reaction conditions on the catalytic performance were investigated.

  12. Direct electroplating of copper on tantalum from ionic liquids in high vacuum: origin of the tantalum oxide layer.

    Science.gov (United States)

    Schaltin, Stijn; D'Urzo, Lucia; Zhao, Qiang; Vantomme, André; Plank, Harald; Kothleitner, Gerald; Gspan, Christian; Binnemans, Koen; Fransaer, Jan

    2012-10-21

    In this paper, it is shown that high vacuum conditions are not sufficient to completely remove water and oxygen from the ionic liquid 1-ethyl-3-methylimidazolium chloride. Complete removal of water demands heating above 150 °C under reduced pressure, as proven by Nuclear Reaction Analysis (NRA). Dissolved oxygen gas can only be removed by the use of an oxygen scavenger such as hydroquinone, despite the fact that calculations show that oxygen should be removed completely by the applied vacuum conditions. After applying a strict drying procedure and scavenging of molecular oxygen, it was possible to deposit copper directly on tantalum without the presence of an intervening oxide layer.

  13. Multiphase enantioselective Kharasch-Sosnovsky allylic oxidation based on neoteric solvents and copper complexes of ditopic ligands.

    Science.gov (United States)

    Aldea, Luis; García, José I; Mayoral, José A

    2012-07-21

    Recoverable multiphase enantioselective catalytic systems for the Kharasch-Sosnovsky oxidation of cycloalkenes with tert-butyl peroxybenzoate are described, based on the use of [BMIM][PF(6)] and a new solvent derived from glycerol as the catalyst reservoir phases, and chiral copper complexes with different ligands from the bis(oxazoline) family. The best results are obtained with the glycerol-derived solvent and a recently described azabisoxazoline-based ditopic ligand, allowing up to four uses of the catalytic phase with good results.

  14. Environmental health hazards of e-cigarettes and their components: Oxidants and copper in e-cigarette aerosols.

    Science.gov (United States)

    Lerner, Chad A; Sundar, Isaac K; Watson, Richard M; Elder, Alison; Jones, Ryan; Done, Douglas; Kurtzman, Rachel; Ossip, Deborah J; Robinson, Risa; McIntosh, Scott; Rahman, Irfan

    2015-03-01

    To narrow the gap in our understanding of potential oxidative properties associated with Electronic Nicotine Delivery Systems (ENDS) i.e. e-cigarettes, we employed semi-quantitative methods to detect oxidant reactivity in disposable components of ENDS/e-cigarettes (batteries and cartomizers) using a fluorescein indicator. These components exhibit oxidants/reactive oxygen species reactivity similar to used conventional cigarette filters. Oxidants/reactive oxygen species reactivity in e-cigarette aerosols was also similar to oxidant reactivity in cigarette smoke. A cascade particle impactor allowed sieving of a range of particle size distributions between 0.450 and 2.02 μm in aerosols from an e-cigarette. Copper, being among these particles, is 6.1 times higher per puff than reported previously for conventional cigarette smoke. The detection of a potentially cytotoxic metal as well as oxidants from e-cigarette and its components raises concern regarding the safety of e-cigarettes use and the disposal of e-cigarette waste products into the environment.

  15. Copper oxide and zinc oxide nanomaterials act as inhibitors of multidrug resistance transport in sea urchin embryos: their role as chemosensitizers.

    Science.gov (United States)

    Wu, Bing; Torres-Duarte, Cristina; Cole, Bryan J; Cherr, Gary N

    2015-05-05

    The ability of engineered nanomaterials (NMs) to act as inhibitors of ATP-binding cassette (ABC) efflux transporters in embryos of white sea urchin (Lytechinus pictus) was studied. Nanocopper oxide (nano-CuO), nanozinc oxide (nano-ZnO), and their corresponding metal ions (CuSO4 and ZnSO4) were used as target chemicals. The results showed that nano-CuO, nano-ZnO, CuSO4, and ZnSO4, even at relatively low concentrations (0.5 ppm), significantly increased calcein-AM (CAM, an indicator of ABC transporter activity) accumulation in sea urchin embryos at different stages of development. Exposure to nano-CuO, a very low solubility NM, at increasing times after fertilization (>30 min) decreased CAM accumulation, but nano-ZnO (much more soluble NM) did not, indicating that metal ions could cross the hardened fertilization envelope, but not undissolved metal oxide NMs. Moreover, nontoxic levels (0.5 ppm) of nano-CuO and nano-ZnO significantly increased developmental toxicity of vinblastine (an established ABC transporter substrate) and functioned as chemosensitizers. The multidrug resistance associated protein (MRP, one of ABC transporters) inhibitor MK571 significantly increased copper concentrations in embryos, indicating ABC transporters are important in maintaining low intracellular copper levels. We show that low concentrations of nano-CuO and nano-ZnO can make embryos more susceptible to other contaminants, representing a potent amplification of nanomaterial-related developmental toxicity.

  16. Enhancing Sulfur Tolerance of Ni-Based Cermet Anodes of Solid Oxide Fuel Cells by Ytterbium-Doped Barium Cerate Infiltration.

    Science.gov (United States)

    Li, Meng; Hua, Bin; Luo, Jing-Li; Jiang, San Ping; Pu, Jian; Chi, Bo; Li, Jian

    2016-04-27

    Conventional anode materials for solid oxide fuel cells (SOFCs) are Ni-based cermets, which are highly susceptible to deactivation by contaminants in hydrocarbon fuels. Hydrogen sulfide is one of the commonly existed contaminants in readily available natural gas and gasification product gases of pyrolysis of biomasses. Development of sulfur tolerant anode materials is thus one of the critical challenges for commercial viability and practical application of SOFC technologies. Here we report a viable approach to enhance substantially the sulfur poisoning resistance of a Ni-gadolinia-doped ceria (Ni-GDC) anode through impregnation of proton conducting perovskite BaCe0.9Yb0.1O3-δ (BCYb). The impregnation of BCYb nanoparticles improves the electrochemical performance of the Ni-GDC anode in both H2 and H2S containing fuels. Moreover, more importantly, the enhanced stability is observed in 500 ppm of H2S/H2. The SEM and XPS analysis indicate that the infiltrated BCYb fine particles inhibit the adsorption of sulfur and facilitate sulfur removal from active sites, thus preventing the detrimental interaction between sulfur and Ni-GDC and the formation of cerium sulfide. The preliminary results of the cell with the BCYb+Ni-GDC anode in methane fuel containing 5000 ppm of H2S show the promising potential of the BCYb infiltration approach in the development of highly active and stable Ni-GDC-based anodes fed with hydrocarbon fuels containing a high concentration of sulfur compounds.

  17. Screening of transition and post-transition metals to incorporate into copper oxide and copper bismuth oxide for photoelectrochemical hydrogen evolution.

    Science.gov (United States)

    Berglund, Sean P; Lee, Heung Chan; Núñez, Paul D; Bard, Allen J; Mullins, C Buddie

    2013-04-07

    A new dispenser and scanner system is used to create and screen Bi-M-Cu oxide arrays for cathodic photoactivity, where M represents 1 of 22 different transition and post-transition metals. Over 3000 unique Bi : M : Cu atomic ratios are screened. Of the 22 metals tested, 10 show a M-Cu oxide with higher photoactivity than CuO and 10 show a Bi-M-Cu oxide with higher photoactivity than CuBi2O4. Cd, Zn, Sn, and Co produce the most photoactive M-Cu oxides, all showing a 200-300% improvement in photocurrent over CuO. Ag, Cd, and Zn produce the highest photoactivity Bi-M-Cu oxides with a 200-400% improvement over CuBi2O4. Most notable is a Bi-Ag-Cu oxide (Bi : Ag : Cu atomic ratio of 22 : 3 : 11) which shows 4 times higher photocurrent than CuBi2O4. This material is capable of evolving hydrogen under illumination in neutral electrolyte solutions at 0.6 V vs. RHE when Pt is added to the surface as an electrocatalyst.

  18. The Oxidative Coupling of 2,6-Xylenol Catalyzed by Polymeric Complexes of Copper, 1. Kinetic Study of the Catalysis by Copper(II)-Complexes of Partially Aminated Polystyrene

    NARCIS (Netherlands)

    Schouten, Arend Jan; Prak, Nanno; Challa, Ger

    1977-01-01

    The oxidative coupling reaction of 2,6-xylenol catalyzed by copper(II) complexes of chemically modified polystyrene was investigated. Under the applied reaction conditions the main reaction product was 2,6,2',6'-tetramethyl-1,1'-dioxo-4,4'-bicyclohexa-2,5-dienylidene. It was found that the polymeric

  19. In situ synthesis of Cu{sub 2}O and Cu nanoparticles during the thermal reduction of copper foil-supported graphene oxide

    Energy Technology Data Exchange (ETDEWEB)

    Ortega-Amaya, R., E-mail: ortegaa@cinvestav.mx; Matsumoto, Y. [Centro de Investigación y de Estudios Avanzados del IPN, SEES, Electrical Engineering Department (Mexico); Pérez-Guzmán, M. A. [Centro de Investigación y de Estudios Avanzados del IPN, Nanoscience and Nanotechnology Program (Mexico); Ortega-López, M. [Centro de Investigación y de Estudios Avanzados del IPN, SEES, Electrical Engineering Department (Mexico)

    2015-10-15

    This work describes a novel method to prepare reduced graphene oxide (rGO) sheets decorated with copper oxide and copper nanoparticles, by annealing copper foil-supported graphene oxide (GO) under an Ar atmosphere. The GO reduction level, the predominant Cu or Cu{sub 2}O compound, and the particle size strongly depend on the process temperature. Scanning electron microscopy and X-ray diffraction analysis revealed that rGO–Cu{sub 2}O and rGO–Cu nanocomposites developed on the Cu foil surface at the annealing temperatures of 200–600 and 800–1000 °C range, respectively. Raman spectroscopy corroborates the effective GO reduction.

  20. Effect of copper oxide on structure and physical properties of lithium lead borate glasses

    Science.gov (United States)

    Kashif, I.; Ratep, A.

    2015-09-01

    Copper-doped Lead lithium borate glass samples with the composition of (35- x) Pb3O4- xCuO-65Li2B4O7, where x = 5, 10, 15 or 20 mol%, have been prepared by melt quenching technique. Glass-forming ability, density, electrical conductivity, magnetic susceptibility and structural properties of lead lithium borate glasses have been investigated. IR spectroscopic data show that the copper ions play the role of glass modifier. Addition of CuO influences BO3 ↔ BO4 conversion. Density is expressed in terms of the structural modifications that take place in glass matrix. The increase in Tg reflects an increase in bond strength, and samples obtain more rigid glass structure. Electrical conductivity and magnetic susceptibility χ data show a variable behavior with the increase in the copper content in two valance states Cu+ and Cu+2. In addition, optical properties depend on the change of the role of copper ions in the samples' structure. Optical energy band gap E opt and Urbach energy E tail are determined. The increase in E opt and UV cutoff with an increase in CuO content is due to the decrease in non-bridging oxygen concentration. The decrease in E tail at higher concentrations is attributed to the copper ion accumulation in the interstitial positions and to the formation of orthoborate groups. These samples are suitable for the green light longpass filters.

  1. Evaluating the Metal Source(s) of Iron Oxide-Copper-Gold (IOCG) Deposits (Invited)

    Science.gov (United States)

    Simon, A. C.; Bilenker, L.; Lundstrom, C.; Reich, M.; Barra, F.; Hanchar, J. M.; Westhues, A.

    2013-12-01

    Iron oxide - copper - gold deposits (IOCG) are characterized by high modal abundances of magnetite and/or hematite, ubiquitous and variable grades of Cu and Au, and, often, economic grades of other metals including REE, U, Ag, Mo and Zn. The largest deposits contain >1 billion tonnes of iron. There seems to be a general consensus that metals in IOCG deposits were transported by, and precipitated from, aqueous fluids. However, there is a lack of agreement for the source of the metal-bearing aqueous fluid(s) as well as the source of iron and other metals (i.e., magmatic or hydrothermal, or some combination of the two). Published fluid inclusion data indicate that metal-bearing aqueous fluids were trapped over a wide range of temperatures, with homogenization temperatures between 500 and 600 °C for inclusions associated with the precipitation of iron-oxide minerals, and between 300 and 500 °C for inclusions associated with main-stage sulfides (e.g., chalcopyrite, pyrite). The high trapping temperatures for fluid inclusions and the observation that some IOCG deposits appear to be related temporally and spatially to igneous intrusions, characteristics similar to those observed for porphyry-type ore deposits, have led some authors to propose that magmatic-hydrothermal aqueous fluids are responsible for IOCG formation. Others, however, favor a genetic model that invokes large-scale circulation of basinal brines, which are heated by magmatic intrusions and subsequently leach Fe and other metals from the crust. Evidence cited for this model includes the pervasive alkali metasomatism associated with some IOCG deposits, and the depletion of Fe, Cu and Au in some deposit wall rocks. Stable isotope evidence thus far is inconclusive. Published d34S values for IOCG deposits range from -30 to +30, but generally cluster around zero per mil. d18O ranges from ~0 to +10 per mil. Chlorine isotope values for fluids in inclusions liberated from quartz, calcite and apatite are

  2. Copper Complex in Poly(vinyl chloride) as a Nitric Oxide-Generating Catalyst for the Control of Nitrifying Bacterial Biofilms.

    Science.gov (United States)

    Wonoputri, Vita; Gunawan, Cindy; Liu, Sanly; Barraud, Nicolas; Yee, Lachlan H; Lim, May; Amal, Rose

    2015-10-14

    In this study, catalytic generation of nitric oxide by a copper(II) complex embedded within a poly(vinyl chloride) matrix in the presence of nitrite (source of nitric oxide) and ascorbic acid (reducing agent) was shown to effectively control the formation and dispersion of nitrifying bacteria biofilms. Amperometric measurements indicated increased and prolonged generation of nitric oxide with the addition of the copper complex when compared to that with nitrite and ascorbic acid alone. The effectiveness of the copper complex-nitrite-ascorbic acid system for biofilm control was quantified using protein analysis, which showed enhanced biofilm suppression when the copper complex was used in comparison to that with nitrite and ascorbic acid treatment alone. Confocal laser scanning microscopy (CLSM) and LIVE/DEAD staining revealed a reduction in cell surface coverage without a loss of viability with the copper complex and up to 5 mM of nitrite and ascorbic acid, suggesting that the nitric oxide generated from the system inhibits proliferation of the cells on surfaces. Induction of nitric oxide production by the copper complex system also triggered the dispersal of pre-established biofilms. However, the addition of a high concentration of nitrite and ascorbic acid to a pre-established biofilm induced bacterial membrane damage and strongly decreased the metabolic activity of planktonic and biofilm cells, as revealed by CLSM with LIVE/DEAD staining and intracellular adenosine triphosphate measurements, respectively. This study highlights the utility of the catalytic generation of nitric oxide for the long-term suppression and removal of nitrifying bacterial biofilms.

  3. Kinetics of the oxidative hydroxylation of sodium hypophosphite in the presence of copper (II chloride modified by humic (fulvo- acid

    Directory of Open Access Journals (Sweden)

    Zhaksyntay Kairbekov

    2012-12-01

    Full Text Available It was established that in soft conditions (50-70oC, PO2 = 1 atm sodium hypophosphite effectively is oxidized by oxygen in water solutions of copper(II chloride  to give mainly a phosphorous acid. Humic (fulvo- acid was extracted from brown coal of domestic deposit Kiyakty. For determination of optimum parameters of fulvo-acid extraction the laboratory experiments were carried out using the method of experiment planning. The kinetics, the intermediate and final products, optimal conditions of new catalytic reaction of NaH2PO2 oxidation by oxygen in water solution were defined by kinetics, volumometry, redox-potentiometry and a titration.

  4. Kinetics of the oxidative hydroxylation of tetraphosphorus in the presence of copper(II chloride modified by humic (fulvo- acid

    Directory of Open Access Journals (Sweden)

    Zhaksyntay Kairbekov

    2012-12-01

    Full Text Available It was established that in mild conditions (50-70 oC, РО2= 1 atm white phosphorus effectively is oxidized by oxygen in water-toluene solutions of copper(II chloride modified by humic (fulvo- acid to give mainly phosphoric acid. Humic (fulvo- acid was extracted from brown coal of domestic deposit Kiyakty. For determination of optimum parameters of fulvo-acid extraction the laboratory experiments were carried out using the method of experiment planning. The kinetics, intermediate and final products, optimum conditions of new catalytic reaction of P4 oxidation by oxygen in water medium were defined by kinetics, volumometry, redox-potentiometry, 31Р{1Н} NMR spectroscopy and  titration. 

  5. Comparison between oxide-reduced and water-atomized copper powders used in making sintered wicks of heat pipe

    Institute of Scientific and Technical Information of China (English)

    Liu-Ho Chiu; Chang-Hui Wu; Pee-Yew Lee

    2007-01-01

    Oxide-reduced copper powder can be produced efficiently at low cost. The volume shrinkage, porosity, maximum pore size, permeability and thermal conductivity of wicks sintered from two oxide-reduced (OR) powders were compared with one from water-atomized (WA) powder. The green specimens were sintered at temperatures from 800 to 1000 ℃ in a tube furnace under a reduction stream of 10% hydrogen and 90% argon.The results show that the property variations of OR - 100 and WA wicks due to porosity changes have a similar tendency and range. Nine hundred degree celsius is a recommended sintering temperature for producing ideal wicks for use in heat pipes. A smaller maximum pore size can be obtained by increasing the green density.

  6. Preparation of 3D nanoporous copper-supported cuprous oxide for high-performance lithium ion battery anodes.

    Science.gov (United States)

    Liu, Dequan; Yang, Zhibo; Wang, Peng; Li, Fei; Wang, Desheng; He, Deyan

    2013-03-01

    Three-dimensional (3D) nanoporous architectures can provide efficient and rapid pathways for Li-ion and electron transport as well as short solid-state diffusion lengths in lithium ion batteries (LIBs). In this work, 3D nanoporous copper-supported cuprous oxide was successfully fabricated by low-cost selective etching of an electron-beam melted Cu(50)Al(50) alloy and subsequent in situ thermal oxidation. The architecture was used as an anode in lithium ion batteries. In the first cycle, the sample delivered an extremely high lithium storage capacity of about 2.35 mA h cm(-2). A high reversible capacity of 1.45 mA h cm(-2) was achieved after 120 cycles. This work develops a promising approach to building reliable 3D nanostructured electrodes for high-performance lithium ion batteries.

  7. Matrix isolation infrared spectroscopic and theoretical study of the copper (I) and silver (I) nitrous oxide complexes

    Science.gov (United States)

    Wang, Guanjun; Jin, Xi; Chen, Mohua; Zhou, Mingfei

    2006-03-01

    Copper and silver chloride-nitrous oxide complexes: ClCuNNO and ClAgNNO have been produced and trapped in solid argon by co-deposition of laser-evaporated metal chlorides with nitrous oxide in excess argon. On the basis of isotopic substituted experiments as well as theoretical calculations, infrared absorptions at 2305.8 and 1318.4 cm -1, and 2291.2 and 1325.4 cm -1 are assigned to the N-N and N-O stretching modes of the linear ClCuNNO and ClAgNNO complexes, respectively. The binding energies for the complexes with respect to MCl (M = Cu, Ag) and N 2O were computationally estimated to be 27.9 and 13.1 kcal/mol.

  8. Non-electrolytic synthesis of copper oxide/carbon nanocomposite by surface plasma in super-dehydrated ethanol

    Science.gov (United States)

    Kozak, Dmytro S.; Sergiienko, Ruslan A.; Shibata, Etsuro; Iizuka, Atsushi; Nakamura, Takashi

    2016-02-01

    Electrolytic processes are widely used to synthesize different nanomaterials and it does not depend on what kind of the method has been applied (wet-chemistry, sonochemistry, plasma chemistry, electrolysis and so on). Generally, the reactions in the electrolyte are considered to be reduction/oxidation (REDOX) reactions between chemical reagents or the deposition of matter on the electrodes, in line with Faraday’s law. Due to the presence of electroconductive additives in any electrolyte, the polarization effect of polar molecules conducting an electrical current disappears, when external high-strength electric field is induced. Because initially of the charge transfer always belongs of electroconductive additive and it does not depend on applied voltage. The polarization of ethanol molecules has been applied to conduct an electric current by surface plasma interaction for the synthesis of a copper oxide/carbon nanocomposite material.

  9. Ordered assembly of alpha-quinquethiophene on a copper oxide nanotemplate.

    Science.gov (United States)

    Cicoira, Fabio; Miwa, Jill A; Melucci, Manuela; Barbarella, Giovanna; Rosei, Federico

    2006-11-01

    The organic semiconductor alpha-quinquethiophene (T5) is used as the active layer in organic field-effect transistors. We have investigated the adsorption of T5 on the (110) surface of copper and on the CuO nanotemplate formed by the high-temperature exposure of Cu(110) to molecular oxygen. The results were obtained with high-resolution scanning tunneling microscopy (STM) under ultra-high-vacuum (UHV) conditions. The adsorption of T5 on copper is an important model system because it mimics the active-layer-electrode interface in organic devices. The molecules were observed to adsorb onto both the pristine Cu(110) surface and the CuO nanotemplate, showing a greater affinity for the pristine copper surface. Surprisingly, however, the T5 molecules assembled with a much higher degree of long-range order on the oxygen-passivated portion of the surface.

  10. Barium aspiration and alveolarisation of barium in an infant: A case report and review of management

    Directory of Open Access Journals (Sweden)

    Alan F. Isles

    2014-05-01

    Full