WorldWideScience

Sample records for banded iron formation

  1. Banded Iron Formations

    DEFF Research Database (Denmark)

    Posth, Nicole R; Konhauser, Kurt O; Kappler, Andreas

    2011-01-01

    Sedimentary deposits of alternating iron-rich (20–40% Fe) and iron-poor, siliceous (40–50% SiO2) mineral layers that primarily precipitated throughout much of the late Archean (2.7–2.5 Ga) and Paleoproterozoic (2.5– 1.8 Ga), but then remerged in the Neoproterozoic (0.8 Ga)....

  2. Banded Iron Formations

    DEFF Research Database (Denmark)

    Posth, Nicole R; Konhauser, Kurt O; Kappler, Andreas

    2011-01-01

    Sedimentary deposits of alternating iron-rich (20–40% Fe) and iron-poor, siliceous (40–50% SiO2) mineral layers that primarily precipitated throughout much of the late Archean (2.7–2.5 Ga) and Paleoproterozoic (2.5– 1.8 Ga), but then remerged in the Neoproterozoic (0.8 Ga).......Sedimentary deposits of alternating iron-rich (20–40% Fe) and iron-poor, siliceous (40–50% SiO2) mineral layers that primarily precipitated throughout much of the late Archean (2.7–2.5 Ga) and Paleoproterozoic (2.5– 1.8 Ga), but then remerged in the Neoproterozoic (0.8 Ga)....

  3. Mineralogy and geochemistry of banded iron formation and iron ...

    Indian Academy of Sciences (India)

    The geological complexities of banded iron formation (BIF) and associated iron ores of Jilling–. Langalata iron ore deposits, Singhbhum–North Orissa Craton, belonging to Iron Ore Group (IOG) eastern India have been studied in detail along with the geochemical evaluation of different iron ores. The geochemical and ...

  4. Mineralogy and geochemistry of banded iron formation and iron ...

    Indian Academy of Sciences (India)

    The geological complexities of banded iron formation (BIF) and associated iron ores of Jilling–Langalata iron ore deposits, Singhbhum–North Orissa Craton, belonging to Iron Ore Group (IOG) eastern India have been studied in detail along with the geochemical evaluation of different iron ores. The geochemical and ...

  5. Simulating Precambrian banded iron formation diagenesis

    DEFF Research Database (Denmark)

    Posth, Nicole R.; K??hler, Inga; D. Swanner, Elizabeth

    2013-01-01

    Post-depositional diagenetic alteration makes the accurate interpretation of key precipitation processes in ancient sediments, such as Precambrian banded iron formations (BIFs), difficult. While microorganisms are proposed as key contributors to BIF deposition, the diagenetic transformation...

  6. Microbiological processes in banded iron formation deposition

    DEFF Research Database (Denmark)

    Posth, Nicole R.; Konhauser, Kurt O.; Kappler, Andreas

    2013-01-01

    Banded iron formations have been studied for decades, particularly regarding their potential as archives of the Precambrian environment. In spite of this effort, the mechanism of their deposition and, specifically, the role that microbes played in the precipitation of banded iron formation minerals......, remains unresolved. Evidence of an anoxic Earth with only localized oxic areas until the Great Oxidation Event ca 2·45 to 2·32 Ga makes the investigation of O2-independent mechanisms for banded iron formation deposition relevant. Recent studies have explored the long-standing proposition that Archean...... banded iron formations may have been formed, and diagenetically modified, by anaerobic microbial metabolisms. These efforts encompass a wide array of approaches including isotope, ecophysiological and phylogeny studies, molecular and mineral marker analysis, and sedimentological reconstructions. Herein...

  7. Chemostratigraphy of Neoproterozoic Banded Iron Formation (BIF)

    DEFF Research Database (Denmark)

    Gaucher, Claudio; Sial, Alcides N.; Frei, Robert

    2015-01-01

    Neoproterozoic banded iron formations (BIFs) are not restricted to the middle Cryogenian, c. 715 Ma glaciation, occurring in Tonian, Cryogenian, and Ediacaran successions. Many Neoproterozoic BIFs were deposited in glacially influenced settings, such as the Rapitan Group (Canada), Jacadigo Group (W...... for the study of BIFs include rare earth element distribution, especially Eu and Ce normalized concentrations, iron speciation, and Nd and Cr isotopes (δ53Cr). Whereas Rapitan type BIFs exhibit no Eu or Ce anomalies, the Algoma-type Neoproterozoic BIFs show both. Positive δ53Cr values characterize glacially...

  8. Geochemistry of some banded iron-formations of the archean ...

    Indian Academy of Sciences (India)

    Banded iron-formations (BIF) form an important part of the Archean supracrustal belts of the. Jharkhand–Orissa region, India. Major, trace and REE chemistry of the banded iron-formation of the Gandhamardan, Deo Nala, Gorumahisani and Noamundi sections of the Jharkhand–Orissa region are utilized to explore the ...

  9. Geochemistry of some banded iron-formations of the archean ...

    Indian Academy of Sciences (India)

    Banded iron-formations (BIF) form an important part of the Archean supracrustal belts of the Jharkhand–Orissa region, India. Major, trace and REE chemistry of the banded iron-formation of the Gandhamardan, Deo Nala, Gorumahisani and Noamundi sections of the Jharkhand–Orissa region are utilized to explore the ...

  10. Fossilized iron bacteria reveal a pathway to the biological origin of banded iron formation.

    Science.gov (United States)

    Chi Fru, Ernest; Ivarsson, Magnus; Kilias, Stephanos P; Bengtson, Stefan; Belivanova, Veneta; Marone, Federica; Fortin, Danielle; Broman, Curt; Stampanoni, Marco

    2013-01-01

    Debates on the formation of banded iron formations in ancient ferruginous oceans are dominated by a dichotomy between abiotic and biotic iron cycling. This is fuelled by difficulties in unravelling the exact processes involved in their formation. Here we provide fossil environmental evidence for anoxygenic photoferrotrophic deposition of analogue banded iron rocks in shallow marine waters associated with an Early Quaternary hydrothermal vent field on Milos Island, Greece. Trace metal, major and rare earth elemental compositions suggest that the deposited rocks closely resemble banded iron formations of Precambrian origin. Well-preserved microbial fossils in combination with chemical data imply that band formation was linked to periodic massive encrustation of anoxygenic phototrophic biofilms by iron oxyhydroxide alternating with abiotic silica precipitation. The data implicate cyclic anoxygenic photoferrotrophy and their fossilization mechanisms in the construction of microskeletal fabrics that result in the formation of characteristic banded iron formation bands of varying silica and iron oxide ratios.

  11. The geochemistry of banded iron formations in the sukumaland ...

    African Journals Online (AJOL)

    The geochemistry of banded iron formations in the sukumaland greenstone belt of Geita, northern Tanzania: evidence for mixing of hydrothermal and clastic ... the hydrothermal deposits have been contaminated, by up to 20% by weight, with detrital material having a composition similar to modern deep-sea pelagic clays.

  12. Mineralogy and geochemistry of banded iron formation and iron ...

    Indian Academy of Sciences (India)

    comparison with Krivoi Rog of Ukraine, and Nimba. Range, Liberia; Ore Geol. Rev. 9 311–324. Ghosh G and Mukhopadhyay J 2007 Reappraisal of the structure of the Western Iron Ore Group, Singhbhum craton, eastern India: Implications for the exploration of BIF-hosted iron ore deposits; Gondwana Res. 12. 525–532.

  13. Trace-Element Analyses of Carbonate Minerals in the Gunflint Banded Iron Formation

    Science.gov (United States)

    Pun, Aurora; Papike, James J.; Shearer, C. K.

    2002-01-01

    We report on the petrography, mineralogy and trace-element abundances of individual carbonate grains in the Early Proterozoic Gunflint BIF (Banded Iron Formation). Trace-element data may be used as environmental recorders of the fluid evolution from which the various carbonate phases precipitated. Additional information is contained in the original extended abstract.

  14. Mesoarchean Banded Iron Formation sequences in Dixon Island-Cleaverville Formation, Pilbara Australia: Oxygenic signal from DXCL project

    Science.gov (United States)

    Kiyokawa, S.; Ito, T.; Ikehara, M.; Yamaguchi, K. E.; Naraoka, H.; Onoue, T.; Horie, K.; Sakamoto, R.; Aihara, Y.; Miki, T.

    2013-12-01

    The 3.2-3.1 Ga Dixon island-Cleaverville formations are well-preserved Banded Iron Formation (BIF) within hydrothermal oceanic sequence at oceanic island arc setting (Kiyokawa et al., 2002, 2006, 2012). The stratigraphy of the Dixon Island (3195+15Ma) -Cleaverville (3108+13Ma) formations shows the well preserved environmental condition at the Mesoarchean ocean floor. The stratigraphy of these formations are formed about volcano-sedimentary sequences with hydrothermal chert, black shale and banded iron formation to the top. Based on the scientific drilling of DXCL project at 2007 and 2011, detail lithology between BIF sequence was clearly understood. Four drilling holes had been done at coastal sites; the Dixon Island Formation is DX site (100m) and the Cleaverville Formation is CL2 (40m), CL1 (60m) and CL3 (200m) sites and from stratigraphic bottom to top. Coarsening and thickening upward black shale-BIF sequences are well preserved of the stratigraphy form the core samples. The Dixon Island Formation consists komatiite-rhyolite sequences with many hydrothermal veins and very fine laminated cherty rocks above them. The Cleaverville Formation contains black shale, fragments-bearing pyroclastic beds, white chert, greenish shale and BIF. The CL3 core, which drilled through BIF, shows siderite-chert beds above black shale identified before magnetite lamination bed. U-Pb SHRIMP data of the tuff in lower Dixon Island Formation is 3195+15 Ma and the pyroclastic sequence below the Cleaverville BIF is 3108+13 Ma. Sedimentation rate of these sequence is 2-8 cm/ 1000year. The hole section of the organic carbon rich black shales below BIF are similar amount of organic content and 13C isotope (around -30per mill). There are very weak sulfur MIF signal (less 0.2%) in these black shale sequence. Our result show that thick organic rich sediments may be triggered to form iron rich siderite and magnetite iron beds. The stratigraphy in this sequence quite resemble to other Iron

  15. Magnetite: What it reveals about the origin of the banded iron formations. [Abstract only

    Science.gov (United States)

    Schwartz, D. E.; Mancinelli, R. L.; White, M. R.

    1994-01-01

    Magnetite, Fe3O4 is produced abiotically and biotically. Abiotically, magnetite is a late magmatic mineral and forms as a consequence of the cooling of iron rich magma. Biotically, magnetite is produced by several organisms, including magnetotactic bacteria. Hematite, Fe2O3, is also produced abiotically and biotically. Abiotically, hematite rarely occurs as a primary mineral in igneous rocks, but is common as an alteration product, fumarole deposit, and in some metamorphosed Fe-rich rocks. Biotically, hematite is produced by several types of microorganisms. Biologically-produced magnetite and hematite are formed under the control of the host organism, and consequently, have characteristics not found in abiotically produced magnetite and hematite crystals. To determine if the magnetite and hematite in the Banded Iron Formation was biologically or abiotically produced, the characteristics of biologically-produced magnetite and hematite (concentrated from Aquaspirillum magnetotacticum) and abiotically-produced magnetite and hematite obtained from Wards Scientific Supply Company, were compared with characteristics of magnetite and hematite concentrated from the Gunflint Banded Iron Formation (Ontario, Canada) using thermal and crystallographic analytical techniques. Whole rock analysis of the Gunflint Banded Iron Formation by x-ray diffraction (XRD) and differential thermal analysis (DTA) revealed the presence of quartz, hematite, siderite and dolomite as the major minerals, and magnetite, greenalite, pyrite, pyrrhotite and apatite as the minor minerals. Analysis of a crude magnetic fraction of the Gunflint showed the minerals quartz, hematite, siderite, dolomite, and magnetite. Analysis of the crude magnetic fraction from Aquaspirillum magnetotacticum revealed organic compounds plus hematite and magnetite. The mineral identification and particle size distribution data obtained from the DTA along with XRD data indicate that the magnetite and hematite from the Gunflint

  16. Spectral characteristics of banded iron formations in Singhbhum craton, eastern India: Implications for hematite deposits on Mars

    Directory of Open Access Journals (Sweden)

    Mahima Singh

    2016-11-01

    Full Text Available Banded iron formations (BIFs are major rock units having hematite layers intermittent with silica rich layers and formed by sedimentary processes during late Archean to mid Proterozoic time. In terrestrial environment, hematite deposits are mainly found associated with banded iron formations. The BIFs in Lake Superior (Canada and Carajas (Brazil have been studied by planetary scientists to trace the evolution of hematite deposits on Mars. Hematite deposits are extensively identified in Meridiani region on Mars. Many hypotheses have been proposed to decipher the mechanism for the formation of these deposits. On the basis of geomorphological and mineralogical studies, aqueous environment of deposition is found to be the most supportive mechanism for its secondary iron rich deposits. In the present study, we examined the spectral characteristics of banded iron formations of Joda and Daitari located in Singhbhum craton in eastern India to check its potentiality as an analog to the aqueous/marine environment on Mars. The prominent banding feature of banded iron formations is in the range of few millimeters to few centimeters in thickness. Fe rich bands are darker (gray in color compared to the light reddish jaspilitic chert bands. Thin quartz veins (<4 mm are occasionally observed in the hand-specimens of banded iron formations. Spectral investigations have been conducted in VIS/NIR region of electromagnetic spectrum in the laboratory conditions. Optimum absorption bands identified include 0.65, 0.86, 1.4 and 1.9 μm, in which 0.56 and 0.86 μm absorption bands are due to ferric iron and 1.4 and 1.9 μm bands are due to OH/H2O. To validate the mineralogical results obtained from VIS/NIR spectral radiometry, laser Raman and Fourier transform infrared spectroscopic techniques were utilized and the results were found to be similar. Goethite-hematite association in banded iron formation in Singhbhum craton suggests dehydration activity, which has

  17. Testing Timescales for Rhythms Recorded in the 2.5 Ga Banded Iron Formation of the Dales Gorge Member (Brockman Iron Formation, Hamersley Group, Australia)

    Science.gov (United States)

    Hinnov, L. A.; de Oliveira Carvalho Rodrigues, P.; Franco, D.

    2017-12-01

    The classic, Superior-type banded iron formation (BIF) of the Precambrian Dales Gorge Member (DGM) of the Brockman Iron Formation, Hamersley Basin, Western Australia consists of a succession of micro- (millimeter-scale) and meso- (centimeter to decimeter-scale) bands of primarily iron-silica chemical sediment alternations, separated into macro- (meter to decameter-scale) bands by shales (1). Here, we present a time-frequency analysis of a gray-scale scan of the DGM "type section core" Hole 47A with small contributions from Hole EC10 (1) to provide a comprehensive characterization of banding patterns and periodicity throughout the 140 m section. SHRIMP zircon ages (2) indicate that the DGM was deposited over approximately 30 myr during the Archean-Proterozoic transition just prior to the Great Oxidation Event. This suggests that the banding patterns recorded Milankovitch cycles, although with orbital-rotational parameters significantly different from present-day due to Earth's tidal dissipation and chaotic episodes in the Solar System since 2.5 Ga. Banding patterns change systematically within the formation in response to slowly varying environmental conditions, which have been interpreted previously to be related to sea level change and basin evolution (3). Researchers, including (2), have questioned the 30 myr duration, suggesting instead that the micro-bands may be annual in scale. This would indicate a much shorter duration of less than 150 kyr for the DGM. In an attempt to determine whether Milankovitch cycles could have generated the meso-band patterns, we present detailed studies of BIF0 and BIF12, which typify the marked changes in meso-banding along the section. Objective procedures are also applied, including ASM (4) and TIMEOPT (5) to test for a range of potential alternative timescales assuming orbital-rotational parameter values modeled for 2.5 Ga. References: (1) Trendall, A.K., Blockley, J.G., GSWA Ann. Rep. 1967, 48, 1968; (2) Trendall, A.K., et al

  18. Petrology and geochemistry of REE-rich Mafé banded iron formations (Bafia group, Cameroon)

    Science.gov (United States)

    Nkoumbou, Charles; Gentry, Fuh Calistus; Tchakounte Numbem, Jacqueline; Belle Ekwe Lobé, Yolande Vanessa; Nwagoum Keyamfé, Christin Steve

    2017-07-01

    Archaean-Paleoproterozoic foliated amphibole-gneisses and migmatites interstratified with amphibolites, pyroxeno-amphibolites and REE-rich banded-iron formations outcrop at Mafé, Ndikinimeki area. The foliation is nearly vertical due to tight folds. Flat-lying quartz-rich mica schists and quartzites, likely of Pan-African age, partly cover the formations. Among the Mafé BIFs, the oxide BIF facies shows white layers of quartz and black layers of magnetite and accessory hematite, whereas the silicate BIF facies is made up of thin discontinuous quartz layers alternating with larger garnet (almandine-spessartine) + chamosite + ilmenite ± Fe-talc layers. REE-rich oxide BIFs compositions are close to the East Pacific Rise (EPR) hydrothermal deposit; silicate BIFs plot midway between EPR and the associated amphibolite, accounting for a contamination by volcanic materials, in addition to the hydrothermal influence during their oceanic deposition. The association of an oceanic setting with alkaline and tholeiitic magmatism is typical of the Algoma-type BIF deposit. The REE-rich BIFs indices recorded at Mafé are interpreted as resulting from an Archaean-Paleoproterozoic mineralization.

  19. Micro-scale characterization of iron ores from a banded iron formation in Yishui county, western Shandong province of North China Craton

    Science.gov (United States)

    Moon, I.; Lee, I.; Yang, X.

    2016-12-01

    Banded iron formations (BIFs) are widely distributed in North China Craton (NCC). Yishui BIF is located in Yishui county, western Shandong Province of NCC and is categorized as Algoma-type. The origin of iron and silica of BIFs in this region have been studied extensively for decades. The trace elemental concentrations of magnetite and hematite in iron ores from Yishui BIF are focused in this study to better understand the origins of BIF. To discuss micro-structural signatures of iron ores, X-ray diffraction (XRD), Raman spectrometer, electron microprobe (EPMA) and laser ablation inductively-coupled plasma mass spectrometer (LA-ICP-MS) were utilized. Overall geochemical data represents abundance of trace elements, oxygen fugacity (fO2) condition during the formation of iron oxides, depositional environment of Yishui BIF, implying the involvement of volcanic eruption and hydrothermal exhalation during the chemical deposition.

  20. Field investigation and spectral characterization of Banded Iron Formation, Odisha, India: Implications to hydration processes on Mars

    Science.gov (United States)

    Singh, M.; Singhal, J.; Rajesh, V. J.

    2015-10-01

    Banded iron formations are major rock units having hematite layers intermittent with silica rich layers and formed mainly by the sedimentary processes during Late-Archaean to Mid-Proterozoic time period. They found their significance as a major iron-ore deposits and the first terrestrial rock bodies with existing life signatures on Earth. Here, we propose Odisha BIFs as a probable analogue site to the martian layered hematite deposit and its implications in inferring the sedimentary processes,hydration and astrobiological activities on Mars. Hyperspectral analysis identifies the optimum bands for the identification of similar type of deposits on Mars. Odisha BIFs have been found well comparable with the existing analogue sites of Lake Superior and Carajas Formation, Brazil.

  1. Ni Isotope Signatures in Banded Iron Formations Before, During, and After the Great Oxidation Event

    Science.gov (United States)

    Wasylenki, L.; Wang, S.

    2016-12-01

    We have measured the Ni isotope compositions of banded iron formations (BIF) in an effort to test the hypothesis of Konhauser et al. that a decrease in supply of Ni to the Late Archean oceans may have triggered a decline in methanogen productivity [1,2]. These microorganisms are critically dependent on Ni, and their decline may have triggered a drop in atmospheric CH4 that allowed the first sustained rise of free O2 in the atmosphere at 2.4 Ga. While simultaneously considering other processes that may have controlled the Ni isotope composition of Precambrian seawater, and in turn the BIF, we are looking for a shift in δ60/58Ni over time that correlates with the decrease in BIF Ni/Fe ratios documented previously [1,2] and that possibly reflects a dramatic change in methanogen Ni status over that same time interval (2.7-2.4 Ga). Our preliminary results indicate that the ocean's Ni isotope composition has varied considerably over geologic time. Using results from an accompanying experimental study of Ni fractionation during incorporation into ferric oxyhydroxides/oxides, we can reconstruct the Ni isotope compositions of seawater from which BIF precipitated. We observe that Precambrian seawater was generally considerably enriched in light isotopes of Ni relative to modern seawater. So far we observe the widest range of δ60/58Ni values in those BIF samples aged 2.7-2.4 Ga, implying significant changes in the controls on δ60/58Ni in the Late Archean Eon and possibly much greater sensitivity of the biogeochemical cycle of Ni to perturbations in Ni sources, such as oxidative weathering of sulfides, input/output fluxes, or biological uptake. [1] Konhauser et al. (2009) Nature 458,750; [2] Konhauser et al. (2015) Astrobiology 15,804.

  2. Source heterogeneity for the major components of ~3.7 Ga banded iron formations (Isua Greenstone Belt, Western Greenland)

    DEFF Research Database (Denmark)

    Frei, Robert; Polat, Ali

    2006-01-01

    We report trace element, samarium (Sm)-neodymium (Nd) and lead (Pb) isotopic data for individual micro-and mesobands of the Earth's oldest Banded Iron Formation (BIF) from the  3.7-3.8 Ga Isua Greenstone Belt (IGB, West Greenland) in an attempt to contribute to the characterization of the deposit......We report trace element, samarium (Sm)-neodymium (Nd) and lead (Pb) isotopic data for individual micro-and mesobands of the Earth's oldest Banded Iron Formation (BIF) from the  3.7-3.8 Ga Isua Greenstone Belt (IGB, West Greenland) in an attempt to contribute to the characterization......-Nd isotopic relations on a layer-by-layer basis point to two REE sources controlling the back-arc basin depositional environment of the BIF, one being seafloor-vented hydrothermal fluids (eNd (3.7 Ga)   + 3.1), the other being ambient surface seawater which reached its composition by erosion of parts...... of the protocrustal landmass (eNd(3.7 Ga)   + 1.6). The validity of two different and periodically interacting water masses (an essentially two-component mixing system) in the deposition of alternating iron- and silica-rich layers is also reflected by systematic trends in germanium (Ge)/silicon (Si) ratios...

  3. Petrography and geochemistry of the Dales Gorge banded iron formation: Paragenetic sequence, source and implications for palaeo-ocean chemistry

    DEFF Research Database (Denmark)

    Pecoits, E.; Gingras, M. K.; Barley, M. E.

    2009-01-01

    Banded iron formations (BIFs) have long been considered marine chemical precipitates or, as more recently proposed, the result of episodic density flows. In this study, we examined the mineralogy, petrography and chemistry of the Dales Gorge BIF to evaluate the validity of these models. Microbands...... provenance. Nonetheless, when all the lithologies (i.e., source rocks, S and BIF macrobands) are evaluated together, continuous geochemical trends can be observed. This suggests that at least part of the precursor material of BIF macrobands was sourced from the same material that gave origin to the S...

  4. Updating the Geologic Barcodes for South China: Discovery of Late Archean Banded Iron Formations in the Yangtze Craton.

    Science.gov (United States)

    Ye, Hui; Wu, Chang-Zhi; Yang, Tao; Santosh, M; Yao, Xi-Zhu; Gao, Bing-Fei; Wang, Xiao-Lei; Li, Weiqiang

    2017-11-08

    Banded iron formations (BIFs) in Archean cratons provide important "geologic barcodes" for the global correlation of Precambrian sedimentary records. Here we report the first finding of late Archean BIFs from the Yangtze Craton, one of largest Precambrian blocks in East Asia with an evolutionary history of over 3.3 Ga. The Yingshan iron deposit at the northeastern margin of the Yangtze Craton, displays typical features of BIF, including: (i) alternating Si-rich and Fe-rich bands at sub-mm to meter scales; (ii) high SiO 2  + Fe 2 O 3total contents (average 90.6 wt.%) and Fe/Ti ratios (average 489); (iii) relative enrichment of heavy rare earth elements and positive Eu anomalies (average 1.42); (iv) and sedimentary Fe isotope compositions (δ 56 Fe IRMM-014 as low as -0.36‰). The depositional age of the BIF is constrained at ~2464 ± 24 Ma based on U-Pb dating of zircon grains from a migmatite sample of a volcanic protolith that conformably overlied the Yingshan BIF. The BIF was intruded by Neoproterozoic (805.9 ± 4.7 Ma) granitoids that are unique in the Yangtze Craton but absent in the North China Craton to the north. The discovery of the Yingshan BIF provides new constraints for the tectonic evolution of the Yangtze Craton and has important implications in the reconstruction of Pre-Nuna/Columbia supercontinent configurations.

  5. Chemical fingerprint of iron oxides related to iron enrichment of banded iron formation from the Cauê Formation - Esperança Deposit, Quadrilátero Ferrífero, Brazil: a laser ablation ICP-MS study

    Directory of Open Access Journals (Sweden)

    Lucilia Aparecida Ramos de Oliveira

    Full Text Available Chemical signatures of iron oxides from dolomitic itabirite and high-grade iron ore from the Esperança deposit, located in the Quadrilátero Ferrífero, indicate that polycyclic processes involving changing of chemical and redox conditions are responsible for the iron enrichment on Cauê Formation from Minas Supergroup. Variations of Mn, Mg and Sr content in different generations of iron oxides from dolomitic itabirite, high-grade iron ore and syn-mineralization quartz-carbonate-hematite veins denote the close relationship between high-grade iron ore formation and carbonate alteration. This indicates that dolomitic itabirite is the main precursor of the iron ore in that deposit. Long-lasting percolation of hydrothermal fluids and shifts in the redox conditions have contributed to changes in the Y/Ho ratio, light/heavy rare earth elements ratio and Ce anomaly with successive iron oxide generations (martite-granular hematite, as well as lower abundance of trace elements including rare earth elements in the younger specularite generations.

  6. Crystallographic Fabrics, Grain Boundary Microstructure and Shape Preferred Orientation of Deformed Banded Iron Formations and their Significance for Deformation Interpretation

    Science.gov (United States)

    Ávila, Carlos Fernando; Graça, Leonardo; Lagoeiro, Leonardo; Ferreira, Filippe

    2016-04-01

    The characterization of grain boundaries and shapes along with crystallographic preferred orientations (CPOs) are a key aspect of investigations of rock microstructures for their correlation with deformation mechanisms. Rapid developments have occurred in the studying rock microstructures due to recent improvements in analytical techniques such as Electron Backscatter Diffraction (EBSD). EBSD technique allows quick automated microtextural characteritzation. The deformed banded iron formations (BIFs) occurring in the Quadrilátero Ferrífero (QF) province in Brazil have been studied extensively with EBSD. All studies have focused mainly in CPOs. The general agreement is that dislocation creep was the dominant process of deformation, for the strong c-axis fabric of hematite crystals. This idea is substantiated by viscoplastic self-consistent models for deformation of hematite. However there are limitations to analyzing natural CPOs alone, or those generated by deformation models. The strong c-axis fabric could be taken as equally powerful an evidence for other known deformation mechanisms. Some grain boundary types in BIFs of the QF are irregular and comprise equant grains in granoblastic texture (Figure 1a). CPOs for this kind are strong and consistent with a predominance of dislocation creep. Others are very regular and long parallel to basal planes of hematites forming large elongated crystals (lepidoblastic texture, Figure 1b). Such crystals are called specularite, and their formation has been previously attributed to dislocation creep. This is erroneous because of the high strains which would be required. Their shape must be due to anisotropic grain growth. Other types lie between the above end-textures. Both types of grain shape microstructures have the same core deformation mechanism. Describing their genetic differences is crucial, since specularite owe its shape to anisotropic grain growth. It is not possible yet to confirm that dislocation creep was the

  7. Phosphogenesis in the 2460 and 2728 million-year-old banded iron formations as evidence for biological cycling of phosphate in the early biosphere.

    Science.gov (United States)

    Li, Yi-Liang; Sun, Si; Chan, Lung S

    2012-01-01

    The banded iron formation deposited during the first 2 billion years of Earth's history holds the key to understanding the interplay between the geosphere and the early biosphere at large geological timescales. The earliest ore-scale phosphorite depositions formed almost at ∼2.0-2.2 billion years ago bear evidence for the earliest bloom of aerobic life. The cycling of nutrient phosphorus and how it constrained primary productivity in the anaerobic world of Archean-Palaeoproterozoic eons are still open questions. The controversy centers about whether the precipitation of ultrafine ferric oxyhydroxide due to the microbial Fe(II) oxidation in oceans earlier than 1.9 billion years substantially sequestrated phosphate, and whether this process significantly limited the primary productivity of the early biosphere. In this study, we report apatite radial flowers of a few micrometers in the 2728 million-year-old Abitibi banded iron formation and the 2460 million-year-old Kuruman banded iron formation and their similarities to those in the 535 million-year-old Lower Cambrian phosphorite. The lithology of the 535 Million-year-old phosphorite as a biosignature bears abundant biomarkers that reveal the possible similar biogeochemical cycling of phosphorus in the Later Archean and Palaeoproterozoic oceans. These apatite radial flowers represent the primary precipitation of phosphate derived from the phytoplankton blooms in the euphotic zones of Neoarchean and Palaoeproterozoic oceans. The unbiased distributions of the apatite radial flowers within sub-millimeter bands do not support the idea of an Archean Crisis of Phosphate. This is the first report of the microbial mediated mineralization of phosphorus before the Great Oxidation Event when the whole biosphere was still dominated by anaerobic microorganisms.

  8. Geochemical evolution of the banded iron formations of the Voronezh Crystalline Massif in the early Precambrian: Sources of matter and geochronological constraints

    Science.gov (United States)

    Savko, K. A.; Bazikov, N. S.; Artemenko, G. V.

    2015-09-01

    The banded iron formations (BIFs) of the Voronezh Crystalline Massif occur at three stratigraphic levels: Mesoarchean, Neoarchean, and Paleoproterozoic. In comparison with Paleoproterozoic BIFs, the Archean BIFs are enriched in TiO2, Al2O3, Cr, Ni, and REEs. All the BIFs are characterized by positive Eu anomalies, absence of Ce anomalies, and predominance of HREEs over LREEs. The Paleoproterozoic BIFs show no evidence of clastic or hydrothermal contamination. The low Ni/Fe ratios indicate that the BIFs are younger than 2.7 Ga and their formation was followed by a sharp drop of the level of the mantle Ni supply. On the other hand, very low (<1 ppm) U contents indicate the upper age of iron accumulation—no later than the Great Oxidation Event of ~2.47 Ga.

  9. Nanophase Iron Oxides as an Ultraviolet Sunscreen for Ancient Photosynthetic Microbes: A Possible Link Between Early Organisms, Banded-Iron Formations, and the Oxygenation of the Atmosphere

    Science.gov (United States)

    Bishop, Janice L.; Rothschild, Lynn J.; Rothschild, Lynn J.; Rogoff, Dana A.

    2006-01-01

    We propose that nanophase iron oxide-bearing materials provided important niches for ancient photosynthetic microbes on the early Earth that ultimately led to the oxygenation of the Earth s atmosphere and the formation of iron oxide deposits. Atmospheric oxygen and ozone attenuate UV radiation on the Earth today providing substantial protection for photosynthetic organisms. With ultraviolet radiation fluxes likely to have been even higher on the early Earth than today, accessing solar radiation was particularly risky for early organisms. Yet, we know that photosynthesis arose then and played a critical role in subsequent evolution. Of primary importance was protection at approx.250-290 nm, where peak nucleic acid (approx.260 nm) and protein (approx.280 nm) absorptions occur. Nanophase ferric oxide/oxyhydroxide minerals absorb, and thus block, the lethal UV radiation, while transmitting light through much of the visible and near-infrared regions of interest to photosynthesis (400 to 1100 nm). Further, they were available in early environments, and are synthesized by many organisms. Based on ferric oxide/oxyhydroxide spectral properties, likely geologic processes, and the results of experiments with the photosynthetic organisms, Euglena sp. and Chlumydomonus reinhardtii, we propose a scenario where photosynthesis, and ultimately the oxygenation of the atmosphere, depended on the protection of early microbes by nanophase ferric oxides/oxyhydroxides. The results of this study are also applicable to other potentially habitable iron-bearing planetary bodies because of the evolutionary pressure to utilize solar radiation when available as an energy source.

  10. Idetification of the chemical sedimentary protolish of the early Paleoproterozoic banded iron formation from Wuyang area, in the southern margin of the North China Craton

    Science.gov (United States)

    Lan, C.; Zhao, T.

    2016-12-01

    The Paleoproterozoic banded iron formation (BIF) from Wuyang area in the southern margin of the North China Craton (NCC) were metamorphosed under granulite facies, and are characterized with an assemblage of clinopyroxene, magnetite and orthopyroxene. Two types of iron ores can be identified on the basis of macro- and micro-textures: banded quartz-clinopyroxene (±othopyroxene) -magnetite ores and massive clinopyroxene-magnetite ores. Two-pyroxene geothermometry indicates that the primary counterparts of these ores have undergone metamorphism with a peak temperature of about 762±9°. Both the banded and massive ores have also similarly BIF-like REE+Y features, and thus are proposed to have all formed from chemical sediments. Similarly, clinopyroxenes from both types have BIF-like rare earth element compositions and are rich in Fe (16-23 wt.% FeOtotoal), further suggesting that they are primary Fe-Mg-Ca-rich chemical sediments during metamorphism. Slight enrichments of TiO2, Al2O3, Zr, Hf, Ta and Th of the Wuyang IF suggest relatively low detritus input. The massive ore have magnetite containing V, Cr and Ti much higher than those of the banded ores, suggesting that they may have undergone stronger secondary alteration possibly related to the intrusion of nearby pyroxenite plutons. Different ores have seawater-like REE+Y patterns with LREE depletions and positive anomalies of La, Eu, and Y, showing that granulite facies metamorphism did not essentially modify the primary compositions of the Wuyang IF deposited from paleo-seawater. Our results suggest less than 0.1% contribution from high-temperature hydrothermal fluids.

  11. Anoxygenic growth of cyanobacteria on Fe(II) and their associated biosignatures: Implications for biotic contributions to Precambrian Banded Iron Formations

    Science.gov (United States)

    Parenteau, M.; Jahnke, L. L.; Cady, S. L.; Pierson, B.

    2011-12-01

    Banded Iron Formations (BIFs) are widespread Precambrian sedimentary deposits that accumulated in deep ocean basins or shallow platformal areas with inputs of reduced iron (Fe(II)) and silica from deep ocean hydrothermal activity. There is debate as to whether abiotic or biotic mechanisms were responsible for the oxidation of aqueous Fe(II) and the subsequent accumulation of ferric iron (Fe(III)) mineral assemblages in BIFs. Biotic Fe(II) oxidation could have occurred indirectly as a result of the photosynthetic production of oxygen by cyanobacteria, or could have been directly mediated by anoxygenic phototrophs or chemolithotrophs. The anoxygenic use of Fe(II) as an electron donor for photosynthesis has also been hypothesized in cyanobacteria, representing another biotic mechanism by which Fe(II) could be oxidized in BIFs. This type of photoferrotrophic metabolism may also represent a key step in the evolution of oxygenic photosynthesis. Members of our group have speculated that an intermediate reductant such as Fe(II) could have acted as a transitional electron donor before water. The widespread abundance of Fe(II) in Archean and Neoproterozoic ferruginous oceans would have made it particularly suitable as an electron donor for photosynthesis. We have been searching for modern descendants of such an ancestral "missing link" cyanobacterium in the phototrophic mats at Chocolate Pots, a hot spring in Yellowstone National Park with a constant outflow of anoxic Fe(II)-rich thermal water. Our physiological ecology study of the Synechococcus-Chloroflexi mat using C-14 bicarbonate uptake and autoradiography experiments revealed that the cyanobacteria grow anoxygenically using Fe(II) as an electron donor for photosynthesis in situ. An initial set of similar experiments substituting C-13 bicarbonate as the tracer was used to characterize labeling of the community lipid biomarker signature and confirm the C-14 results. Under light conditions with and without Fe(II), the C

  12. Rainy Periods and Bottom Water Stagnation Initiating Brine Accumulation and Metal Concentrations, 2. Precambrian Gold-Uranium Ore Beds and Banded Iron Formations

    Science.gov (United States)

    Rossignol-Strick, Martine

    1987-08-01

    I previously suggested that heavy runoff during the 12,500-7000 years B.P. tropical pluvial period generated bottom water quiescence and reducing conditions making possible sapropel formation, accumulation of brine originating at the sea bottom, and long-term preservation of hydrothermal sulfides in the Red Sea Deeps. I hypothesized the same process to account for two Precambrian strata-bound ores. In the Upper Witwatersrand paleoplacers, South Africa, gold and uranium eroded by running water from upstream greenstones, reached highest concentrations in association with organic matter in carbonaceous seams, and deposited in the distal end of fluvial fans during transgressive phases. I propose that the deep waters over these fans became anoxic when large, sudden floods stratified the water column. The organic matter thus locally preserved concentrated gold and uranium from the partial dissolution of the detrital metallic grains. In the Hamersley basin of Western Australia, banded iron formations (BIF) of the Dales Gorge Member are a major source of iron ore. Regularly fluctuating environmental conditions are shown by repetitious BIF and black shale macrobands. I propose that they were deposited in a confined, silled, deep basin connected with the open ocean. Before initiation of the lowest BIF deposition the active regional thermohaline circulation flushing the deep waters under a rather arid climate diluted and oxidized the Fe2+-rich hydrothermal effluents exhaling from the basin floor. Then, during a strong wet period, heavy runoff scavenging volcanoclastics from the land surface lowered the basin surface water salinity and prevented deepwater renewal. The hydrothermal effluents began to accumulate and progressively concentrated in the quiescent and progressively oxygen-depleted deep water. During this wet initial phase, the massive black, organic-rich pyritic shale at the top of the Mount McRae Shale Member was deposited immediately and conformably underlying the

  13. Seeing through the magnetite: Reassessing Eoarchean atmosphere composition from Isua (Greenland ≥3.7 Ga banded iron formations

    Directory of Open Access Journals (Sweden)

    Allen P. Nutman

    2017-11-01

    Full Text Available Estimates of early atmosphere compositions from metamorphosed banded iron formations (BIFs including the well-studied ≥3.7 BIFs of the Isua supracrustal belt (Greenland are dependent on knowledge of primary versus secondary Fe-mineralogical assemblages. Using new observations from locally well preserved domains, we interpret that a previously assumed primary redox indicator mineral, magnetite, is secondary after sedimentary Fe-clays (probably greenalite ± carbonates. Within ∼3.7 Ga Isua BIF, pre-tectonic nodules of quartz + Fe-rich amphibole ± calcite reside in a fine-grained (≤100 μm quartz + magnetite matrix. We interpret the Isua nodule amphibole as the metamorphosed equivalent of primary Fe-rich clays, armoured from diagenetic oxidative reactions by early silica concretion. Additionally, in another low strain lacunae, ∼3.76 Ga BIF layering is not solid magnetite but instead fine-grained magnetite + quartz aggregates. These magnetite + quartz aggregates are interpreted as the metamorphosed equivalent of Fe-clay-rich layers that were oxidised during diagenesis, because they were not armoured by early silicification. In almost all Isua BIF exposures, this evidence has been destroyed by strong ductile deformation. The Fe-clays likely formed by abiotic reactions between aqueous Fe2+ and silica. These clays along with silica ± carbonate were deposited below an oceanic Fe-chemocline as the sedimentary precursors of BIF. Breakdown of the clays on the sea floor may have been by anaerobic oxidation of Fe2+, a mechanism compatible with iron isotopic data previously published on these rocks. The new determinations of the primary redox-sensitive Fe-mineralogy of BIF significantly revise estimates of early Earth atmospheric oxygen and CO2 content, with formation of protolith Fe-rich clays and carbonates compatible with an anoxic Eoarchean atmosphere with much higher CO2 levels than previously estimated for Isua and in the

  14. Thyroid Hormone-Dependent Formation of a Subcortical Band Heterotopia (SBH) in the Neonatal Brain is not Exacerbated Under Conditions of Low Dietary Iron

    Science.gov (United States)

    Thyroid hormones (TH) are critical for brain development. Modest TH insufficiency in pregnant rats induced by propylthiouracil (PTU) results in formation of a structural abnormality, a subcortical band heterotopia (SBH), in brains of offspring. PTU reduces TH by inhibiting the s...

  15. Characterization and component tracing of Banded Iron Formations deposited during the ~2.7 Ga superplume event: An example from the Tati Greenstone Belt, Northeastern Botswana

    Science.gov (United States)

    Døssing, L. N.; Frei, R.; Stendal, H.; Mapeo, R. B.

    2008-12-01

    Major and trace element, samarium (Sm)-neodymium (Nd) and lead (Pb) isotopic analyses of individual mesobands of five Banded Iron Formations (BIFs) and associated metavolcanic and metasedimentary rocks from the Neoarchean Tati Greenstone Belt (TGB, Northeastern Botswana) were conducted in order to characterize and determine the source(s) and depositional environment(s) of these chemical sediments and to compare their features with other Archean BIFs. Rare earth element (REE)-yttrium (Y) patterns of individual BIF mesobands from the TGB show features characteristic of other Archean BIFs; these are (relative to Post Archean Australian Shale (PAAS) normalization), LREE depletions relative to MREE and HREE, positive lanthanum La/La*PAAS, europium Eu/Eu*PAAS, and Y/holmium (Ho) ratios. The TGB BIFs also lack defined cerium Ce/Ce*PAAS anomalies. Generally, the REY patterns are similar to modern seawater and together with low concentrations of high-field strength elements these features are indicative of an essentially detritus-free precipitation. Uranogenic Pb isotope data for the BIFs define individual correlation lines with slopes corresponding to apparent ages of ~2.7 Ga, interpreted as closely reflecting the depositional time frames. An exception to this are the BIFs at Mupane mine in the central part of the TGB which exhibit disturbed U-Pb isotope systematics. They indicate a pronounced resetting around 2.0 Ga. This is also reflected by Pb isotope data of gold-bearing sulfides and Pb-stepwise leaching (PbSL) data of garnets from associated metasedimentary rocks at this location. The garnet PbSL data define a correlation line in uranogenic Pb isotope space with a slope corresponding to an apparent age of 1976±88 Ma. This age is interpreted as a metamorphic age that can be correlated with ~2.0 Ga tectono- metamorphic events within the adjacent Limpopo orogenic belt, and which apparently have, also affected parts of the adjacent Zimbabwe craton to the north. Elevated

  16. Methodology for determination of trace elements in mineral phases of iron banded formation by LA-ICP-MS; Metodologia de determinacao de elementos-traco em fases minerais de formacoes ferriferas bandadas por LA-ICP-MS

    Energy Technology Data Exchange (ETDEWEB)

    Sousa, Denise V.M. de; Nalini Junior, Herminio A.; Sampaio, Geraldo M.S.; Abreu, Adriana T. de; Lana, Cristiano de C., E-mail: deniseversiane2@yahoo.com.br, E-mail: nalini@degeo.ufop.br, E-mail: geraldomssampaio@gmail.com, E-mail: adrianatropia@gmail.com, E-mail: cristianodeclana@gmail.com [Universidade Federal de Ouro Preto (DEGEO/UFOP), Ouro Preto, MG (Brazil). Departamento de Geologia

    2015-07-01

    The study of the chemical composition of mineral phases of iron formation (FF), especially of trace elements, is an important tool in the understanding of the genesis of these rocks and the contribution of the phases in the composition of whole rock. Low mass fraction of such elements in the mineral phases present in this rock type requires a suitable analytical procedure. The laser ablation technique coupled with ICP-MS (LA-ICP-MS) has been widely used for determination of trace elements in geological samples. Thus, the aim of this study is to develop calibration curves for determination of trace elements (Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu) in mineral phases of banded iron formations by LA-ICP-MS. Several certified reference materials (CRM) were used for calibrate the equipment. The analytical conditions were checked by CRM NIST SRM 614. The results were satisfactory, since the curves showed good linearity coefficients, good accuracy and precision of results. (author)

  17. The F'derik-Zouerate iron district: Mesoarchean and Paleoproterozoic iron formation of the Tiris Complex, Islamic Republic of Mauritania

    Science.gov (United States)

    Taylor, Cliff D.; Finn, Carol A.; Anderson, Eric D.; Bradley, Dwight C.; Joud, Mohamed; Taleb Mohamed, Ahmed; Horton, John D.; Johnson, Craig A.; Bouabdellah, Mohammed; Slack, John F.

    2016-01-01

    High-grade hematitic iron ores (of HIF, containing 60-65 wt%Fe) have been mined in Mauritania since 1952 from Superior-type iron deposits of the F'derik-Zouerate district.  Depletion of the high-grade ores in recent years has resulted in new exploration projects focused on lower-grade magnetite ores occurring in Algoma-type banded iron formation (of BIF, containing ca. 35 wt% Fe).  Mauritania is the seventeenth largest iron producer in the world and currently has about 1.1 Gt of crude iron ore reserves. 

  18. Iron and Acinetobacter baumannii Biofilm Formation

    Directory of Open Access Journals (Sweden)

    Valentina Gentile

    2014-08-01

    Full Text Available Acinetobacter baumannii is an emerging nosocomial pathogen, responsible for infection outbreaks worldwide. The pathogenicity of this bacterium is mainly due to its multidrug-resistance and ability to form biofilm on abiotic surfaces, which facilitate long-term persistence in the hospital setting. Given the crucial role of iron in A. baumannii nutrition and pathogenicity, iron metabolism has been considered as a possible target for chelation-based antibacterial chemotherapy. In this study, we investigated the effect of iron restriction on A. baumannii growth and biofilm formation using different iron chelators and culture conditions. We report substantial inter-strain variability and growth medium-dependence for biofilm formation by A. baumannii isolates from veterinary and clinical sources. Neither planktonic nor biofilm growth of A. baumannii was affected by exogenous chelators. Biofilm formation was either stimulated by iron or not responsive to iron in the majority of isolates tested, indicating that iron starvation is not sensed as an overall biofilm-inducing stimulus by A. baumannii. The impressive iron withholding capacity of this bacterium should be taken into account for future development of chelation-based antimicrobial and anti-biofilm therapies.

  19. Graphite Formation in Cast Iron

    Science.gov (United States)

    Stefanescu, D. M.

    1985-01-01

    In the first phase of the project it was proven that by changing the ratio between the thermal gradient and the growth rate for commercial cast iron samples solidifying in a Bridgman type furnace, it is possible to produce all types of graphite structures, from flake to spheroidal, and all types of matrices, from ferritic to white at a certain given level of cerium. KC-135 flight experiments have shown that in a low-gravity environment, no flotation occurs even in spheroidal graphite cast irons with carbon equivalent as high as 5%, while extensive graphite flotation occurred in both flake and spheroidal graphite cast irons, in high carbon samples solidified in a high gravity environment. This opens the way for production of iron-carbon composite materials, with high carbon content (e.g., 10%) in a low gravity environment. By using KC-135 flights, the influence of some basic elements on the solidification of cast iron will be studied. The mechanism of flake to spheroidal graphite transition will be studied, by using quenching experiments at both low and one gravity for different G/R ratios.

  20. Iron Isotope Constraints on Planetesimal Core Formation

    Science.gov (United States)

    Jordan, M.; Young, E. D.

    2016-12-01

    The prevalence of iron in both planetary cores and silicate mantles renders the element a valuable tool for understanding core formation. Magmatic iron meteorites exhibit an enrichment in 57Fe/54Fe relative to chondrites and HED meteorites. This is suggestive of heavy Fe partitioning into the cores of differentiated bodies. If iron isotope fractionation accompanies core formation, we can elucidate details about the history of accretion for planetary bodies as well as their compositions and relative core sizes. The equilibrium 57Fe/54Fe between metal and silicate is necessary for understanding observed iron isotope compositions and placing constraints on core formation. We measure this fractionation in two Aubrite meteorites, Norton County and Mount Egerton, which have known temperatures of equilibration and equilibrated silicon isotopes. Iron was purified using ion-exchange chromatography. Data were collected on a ThermoFinnigan NeptuneTM multiple-collector inductively coupled plasma-source mass spectrometer (MC-ICP-MS) run in wet plasma mode. The measured fractionation Δ57Femetal-silicate is 0.08‰ ± 0.039 (2 SE) for Norton County and 0.09‰ ± 0.019 (2 SE) for Mount Egerton, indicating that the heavy isotopes of Fe partition into the metallic phase. These rocks are in isotopic equilibrium at a temperature of 1130 K and 1200 K ± 80 K, respectively. The concentration of the heavy isotopes of iron in the metallic phase is consistent with recent experimental studies. Using our measured metal-silicate Fe isotope fractionation and the resulting temperature calibration, while taking into account impurities in the metallic phase and temperatures of equilibration, determine that core formation could explain the observed difference between magmatic iron meteorites and chondrites if parent bodies have small cores. In order to verify that Rayleigh distillation during fractional crystallization was not a cause of iron isotope fractionation in iron meteorites, we measured

  1. Formation of protein-coated iron minerals.

    Science.gov (United States)

    Lewin, Allison; Moore, Geoffrey R; Le Brun, Nick E

    2005-11-21

    The ability of iron to cycle between Fe(2+) and Fe(3+) forms has led to the evolution, in different forms, of several iron-containing protein cofactors that are essential for a wide variety of cellular processes, to the extent that virtually all cells require iron for survival and prosperity. The redox properties of iron, however, also mean that this metal is potentially highly toxic and this, coupled with the extreme insolubility of Fe(3+), presents the cell with the significant problem of how to maintain this essential metal in a safe and bioavailable form. This has been overcome through the evolution of proteins capable of reversibly storing iron in the form of a Fe(3+) mineral. For several decades the ferritins have been synonymous with the function of iron storage. Within this family are subfamilies of mammalian, plant and bacterial ferritins which are all composed of 24 subunits assembled to form an essentially spherical protein with a central cavity in which the mineral is laid down. In the past few years it has become clear that other proteins, belonging to the family of DNA-binding proteins from starved cells (the Dps family), which are oligomers of 12 subunits, and to the frataxin family, which may contain up to 48 subunits, are also able to lay down a Fe(3+) mineral core. Here we present an overview of the formation of protein-coated iron minerals, with particular emphasis on the structures of the protein coats and the mechanisms by which they promote core formation. We show on the one hand that significant mechanistic similarities exist between structurally dissimilar proteins, while on the other that relatively small structural differences between otherwise similar proteins result in quite dramatic mechanistic differences.

  2. Formation of Degenerate Band Gaps in Layered Systems

    Directory of Open Access Journals (Sweden)

    Alexey P. Vinogradov

    2012-06-01

    Full Text Available In the review, peculiarities of spectra of one-dimensional photonic crystals made of anisotropic and/or magnetooptic materials are considered. The attention is focused on band gaps of a special type—the so called degenerate band gaps which are degenerate with respect to polarization. Mechanisms of formation and properties of these band gaps are analyzed. Peculiarities of spectra of photonic crystals that arise due to the linkage between band gaps are discussed. Particularly, it is shown that formation of a frozen mode is caused by linkage between Brillouin and degenerate band gaps. Also, existence of the optical Borrmann effect at the boundaries of degenerate band gaps and optical Tamm states at the frequencies of degenerate band gaps are analyzed.

  3. Geology of the Biwabik Iron Formation and Duluth Complex.

    Science.gov (United States)

    Jirsa, Mark A; Miller, James D; Morey, G B

    2008-10-01

    The Biwabik Iron Formation is a approximately 1.9 billion year-old sequence of iron-rich sedimentary rocks that was metamorphosed at its eastern-most extent by approximately 1.1 billion year-old intrusions of the Duluth Complex. The metamorphic recrystallization of iron-formation locally produced iron-rich amphiboles and other fibrous iron-silicate minerals. The presence of these minerals in iron-formation along the eastern part of what is known as the Mesabi Iron Range, and their potential liberation by iron mining has raised environmental health concerns. We describe here the geologic setting and mineralogic composition of the Biwabik Iron Formation in and adjacent to the contact metamorphic aureole of the Duluth Complex. The effects of metamorphism are most pronounced within a few kilometers of the contact, and decrease progressively away from it. The contact aureole has been divided into four metamorphic zones-each characterized by the composition and crystal structure of the metamorphic minerals it contains. The recrystallization of iron-formation to iron-rich amphibole minerals (grunerite and cummingtonite) and iron-pyroxene minerals (hedenbergite and ferrohypersthene) is best developed in zones that are most proximal to the Duluth Complex contact.

  4. Geology of the Biwabik Iron Formation and Duluth Complex

    Science.gov (United States)

    Jirsa, M.A.; Miller, J.D.; Morey, G.B.

    2008-01-01

    The Biwabik Iron Formation is a ???1.9 billion year-old sequence of iron-rich sedimentary rocks that was metamorphosed at its eastern-most extent by ???1.1 billion year-old intrusions of the Duluth Complex. The metamorphic recrystallization of iron-formation locally produced iron-rich amphiboles and other fibrous iron-silicate minerals. The presence of these minerals in iron-formation along the eastern part of what is known as the Mesabi Iron Range, and their potential liberation by iron mining has raised environmental health concerns. We describe here the geologic setting and mineralogic composition of the Biwabik Iron Formation in and adjacent to the contact metamorphic aureole of the Duluth Complex. The effects of metamorphism are most pronounced within a few kilometers of the contact, and decrease progressively away from it. The contact aureole has been divided into four metamorphic zones-each characterized by the composition and crystal structure of the metamorphic minerals it contains. The recrystallization of iron-formation to iron-rich amphibole minerals (grunerite and cummingtonite) and iron-pyroxene minerals (hedenbergite and ferrohypersthene) is best developed in zones that are most proximal to the Duluth Complex contact. ?? 2007 Elsevier Inc. All rights reserved.

  5. An iron shuttle for deepwater silica in Late Archean and early Paleoproterozoic iron formation

    OpenAIRE

    Fischer, Woodward W.; Knoll, Andrew H.

    2009-01-01

    Iron formations are typically thinly bedded or laminated sedimentary rocks containing 15% or more of iron and a large proportion of silica (commonly > 40%). In the ca. 2590-2460 Ma Campbellrand-Kuruman Complex, Transvaal Supergroup, South Africa, iron formation occurs as a sediment-starved deepwater facies distal to carbonates and shales. Iron minerals, primarily siderite, define the lamination. The silica primarily occurs as thin beds and nodules of diagenetic chert (now microcrystalline qua...

  6. Formation of iron sulphide in solar nebula

    Science.gov (United States)

    Kerridge, J. F.

    1976-01-01

    Noting that the iron sulfide in the Orgueil carbonaceous meteorite is an Fe-deficient monosulfide (pyrrhotite), it is suggested that such mineral chemistry is inconsistent with equilibrium condensation of the solar nebula and that the course of condensation may have been modified by kinetic effects. The effect of Ni on the reaction between Fe and S to produce FeS is examined, and possible reasons are considered for the fact that the cited meteorite differs in both crystal structure and Ni content from the predictions of equilibrium condensation. It is proposed that sulfide formation in the solar nebula may have been inhibited by sluggish diffusion, so that sulfur began to react with previously condensed troilite to form pyrrhotite. On this basis, observations of the Orgueil sulfides are shown to suggest that the course of solar-system condensation was modified by kinetic effects below about 700 K and that equilibrium may not have been achieved.

  7. Bacterial iron reduction and biogenic mineral formation for the stabilisation of corroded iron objects

    OpenAIRE

    Kooli, Wafa M.; Comensoli, Lucrezia; Maillard, Julien; Albini, Monica; Gelb, Arnaud; Junier, Pilar; Joseph, Edith

    2018-01-01

    Exploiting bacterial metabolism for the stabilisation of corroded iron artefacts is a promising alternative to conventional conservation-restoration methods. Bacterial iron reduction coupled to biogenic mineral formation has been shown to promote the conversion of reactive into stable corrosion products that are integrated into the natural corrosion layer of the object. However, in order to stabilise iron corrosion, the formation of specific biogenic minerals is essential. In this study, we u...

  8. On the formation of iron(III) oxides via oxidation of iron(II)

    Energy Technology Data Exchange (ETDEWEB)

    Bongiovanni, R.; Pelizzetti, E. [Torino Univ. (Italy). Dipt. di Chimica Analitica; Borgarello, E. [Eniricerche SpA, Milan (Italy); Meisel, D. [Argonne National Lab., IL (United States)

    1994-09-01

    Formation of iron oxides in aqueous salt solutions is reviewed. The discussion is focused on the oxidation of iron(II) and the following hydrolysis process that leads to the formation of a solid phase from homogeneous solutions. Results from our own studies on the kinetics of the oxidation reactions and the ensuing growth processes are presented.

  9. Oxygen in the Martian atmosphere: Regulation of PO2 by the deposition of iron formations on Mars

    Science.gov (United States)

    Burns, Roger G.

    1992-01-01

    During Earth's early history, and prior to the evolution of its present day oxygenated atmosphere, extensive iron rich siliceous sedimentary rocks were deposited, consisting of alternating layers of silica (chert) and iron oxide minerals (hematite and magnetite). The banding in iron formations recorded changes of atmosphere-hydrosphere interactions near sea level in the ancient ocean, which induced the oxidation of dissolved ferrous iron, precipitation of insoluble ferric oxides and silica, and regulation of oxygen in Earth's early atmosphere. Similarities between the Archean Earth and the composition of the present day atmosphere on Mars, together with the pervasive presence of ferric oxides in the Martian regolith suggest that iron formation might also have been deposited on Mars and influenced the oxygen content of the Martian atmosphere. Such a possibility is discussed here with a view to assessing whether the oxygen content of the Martian atmosphere has been regulated by the chemical precipitation of iron formations on Mars.

  10. Strong impact of impurity bands on domain formation in superlattices

    DEFF Research Database (Denmark)

    Wacker, Andreas; Jauho, Antti-Pekka

    1998-01-01

    The formation of electric field domains in doped semiconductor superlattices is described within a microscopic model. Due to the presence of impurity bands in low-doped samples the current-voltage characteristic is essentially different compared to medium-doped samples. (C) 1998 Published by Else...... by Elsevier Science B.V. All rights reserved.......The formation of electric field domains in doped semiconductor superlattices is described within a microscopic model. Due to the presence of impurity bands in low-doped samples the current-voltage characteristic is essentially different compared to medium-doped samples. (C) 1998 Published...

  11. Bacterial iron reduction and biogenic mineral formation for the stabilisation of corroded iron objects.

    Science.gov (United States)

    Kooli, Wafa M; Comensoli, Lucrezia; Maillard, Julien; Albini, Monica; Gelb, Arnaud; Junier, Pilar; Joseph, Edith

    2018-01-15

    Exploiting bacterial metabolism for the stabilisation of corroded iron artefacts is a promising alternative to conventional conservation-restoration methods. Bacterial iron reduction coupled to biogenic mineral formation has been shown to promote the conversion of reactive into stable corrosion products that are integrated into the natural corrosion layer of the object. However, in order to stabilise iron corrosion, the formation of specific biogenic minerals is essential. In this study, we used the facultative anaerobe Shewanella loihica for the production of stable biogenic iron minerals under controlled chemical conditions. The biogenic formation of crystalline iron phosphates was observed after iron reduction in a solution containing Fe(III) citrate. When the same biological treatment was applied on corroded iron plates, a layer composed of iron phosphates and iron carbonates was formed. Surface and cross-section analyses demonstrated that these two stable corrosion products replaced 81% of the reactive corrosion layer after two weeks of treatment. Such results demonstrate the potential of a biological treatment in the development of a stabilisation method to preserve corroded iron objects.

  12. Experimental study of shear bands formation in a granular material

    Directory of Open Access Journals (Sweden)

    Nguyen Thai Binh

    2017-01-01

    Full Text Available We present an experimental investigation of the formation of shear bands in a granular sample submitted to a biaxial test. Our principal result is the direct observation of the bifurcation at the origin of the localization process in the material. At the bifurcation, the shear band is spatially extended: we observe a breaking of symmetry without any sudden localization of the deformation in a narrow band. Our work thus allows to clearly distinguish different phenomena: bifurcation which is a ponctual event which occurs before the peak, localization which is a process that covers a range of deformation of several percents during which the peak occurs and finally stationary shear bands which are well-defined permanent structures that can be observed at the end of the localization process, after the peak.

  13. Amorphous iron phase formation in swift heavy ion irradiated electrodeposited iron thin films

    Energy Technology Data Exchange (ETDEWEB)

    Kuzmann, E. [Research Group for Nuclear Methods in Structural Chemistry, Department of Nulear Chemistry, Hungarian Academy of Sciences, Eoetvoes University, Budapest (Hungary)]. E-mail: kuzmann@ludens.elte.hu; Stichleutner, S. [Research Group for Nuclear Methods in Structural Chemistry, Department of Nulear Chemistry, Hungarian Academy of Sciences, Eoetvoes University, Budapest (Hungary); Havancsak, K. [Department of Solid State Physics, Eoetvoes University, Budapest (Hungary); El-Sharif, M.R. [Glasgow Caledonian University, Glasgow Scotland (United Kingdom); Chisholm, C.U. [Glasgow Caledonian University, Glasgow Scotland (United Kingdom); Doyle, O. [Glasgow Caledonian University, Glasgow Scotland (United Kingdom); Skuratov, V. [Joint Institute for Nuclear Research, Dubna (Russian Federation); Kellner, K. [Johannes Kepler University Linz (Austria); Dora, Gy. [Research Group for Nuclear Methods in Structural Chemistry, Department of Nulear Chemistry, Hungarian Academy of Sciences, Eoetvoes University, Budapest (Hungary); Homonnay, Z. [Research Group for Nuclear Methods in Structural Chemistry, Department of Nulear Chemistry, Hungarian Academy of Sciences, Eoetvoes University, Budapest (Hungary); Vertes, A. [Research Group for Nuclear Methods in Structural Chemistry, Department of Nulear Chemistry, Hungarian Academy of Sciences, Eoetvoes University, Budapest (Hungary)

    2006-07-15

    {sup 57}Fe conversion electron Moessbauer spectroscopy, SEM, EDAX, XRD and AFM measurements were used to study the radiation effect of 246 MeV Kr ions on electrochemically deposited {sup 57}Fe thin films. Amorphous iron phase formation has been shown to occur for the first time in electrodeposited iron thin films due to the irradiation with swift heavy ions.

  14. Graphite formation in cast iron, phase 2

    Science.gov (United States)

    Stefanescu, D. M.; Fiske, M. R.

    1985-01-01

    Several types of cast irons are directionally solidified aboard the KC-135 aircraft. Also, control samples are run on Earth for comparison. Some of these samples are unusable because of various mechanical problems; the analysis and the interpretation of results on the samples that are run successfully is discussed.

  15. Involvement of membrane potential in alkaline band formation by internodal cells of Chara corallina.

    Science.gov (United States)

    Shimmen, Teruo; Wakabayashi, Akiko

    2008-10-01

    Internodal cells of Chara corallina form alkaline bands on their surface upon illumination via photosynthesis. In the present study, the effect of KCl on alkaline band formation was analyzed. When the extracellular KCl concentration was increased, alkaline band formation was extensively inhibited. Electrophysiological analysis unequivocally showed the need for inner negative membrane potential for alkaline band formation.

  16. Analyzing Shear Band Formation with High Resolution X-ray

    Energy Technology Data Exchange (ETDEWEB)

    Pagan, Darren C.; Obstalecki, Mark; Park, Jun-Sang; Miller, Matthew P.

    2018-04-01

    Localization of crystallographic slip into shear bands during uniaxial compression of a copper single crystal is studied using very far-field high-energy diffraction microscopy (vff-HEDM). Diffracted intensity was collected in-situ as the crystal deformed using a unique mobile detector stage that provided access to multiple diffraction peaks with high-angular resolution. From the diffraction data, single crystal orientation pole figures (SCPFs) were generated and are used to track the evolution of the distribution of lattice orientation that develops as slip localizes. To aid the identification of 'signatures' of shear band formation and analyze the SCPF data, a model of slip-driven lattice reorientation within shear bands is introduced. Confidence is built in conclusions drawn from the SCPF data about the character of internal slip localization through comparisons with strain fields on the sample surface measured simultaneously using digital image correlation. From the diffraction data, we find that the active slip direction and slip plane are not directly aligned with the orientation of the shear bands that formed. In fact, by extracting the underlying slip system activity from the SCPF data, we show that intersecting shear bands measured on the surface of the sample arise from slip primarily on the same underlying single slip system. These new vff-HEDM results raise significant questions on the use of surface measurements for slip system activity estimation. (C) 2018 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  17. Sensitivity of gap symmetry to an incipient band: Application to iron based superconductors

    Science.gov (United States)

    Mishra, Vivek; Scalapino, Douglas; Maier, Thomas

    Observation of high temperature superconductivity in iron-based superconductors with a submerged hole band has attracted wide interest. A spin fluctuation mediated pairing mechanism has been proposed as a possible explanation for the high transition temperatures observed in these systems. Here we discuss the importance of the submerged band in the context of the gap symmetry. We show that the incipient band can lead to an attractive pairing interaction and thus have significant effects on the pairing symmetry. We propose a framework to include the effect of the incipient band in the standard multi-orbital spin-fluctuation theories which are widely used for studying various iron-based superconductors. Research sponsored by the Laboratory Directed Research and Development Program of Oak Ridge National Laboratory, managed by UT-Battelle, LLC, for the U. S. Department of Energy.

  18. Overview of the mineralogy of the Biwabik Iron Formation, Mesabi Iron Range, northern Minnesota.

    Science.gov (United States)

    McSwiggen, Peter L; Morey, G B

    2008-10-01

    The mineralogy of the Biwabik Iron Formation changes dramatically from west to east as the formation nears the basal contact of the Duluth Complex. This reflects a contact metamorphism that took place with the emplacement of the igneous Duluth Complex at temperatures as high as 1200 degrees C. However, the mineralogy of the Biwabik Iron Formation also varies vertically through the stratigraphy of the unit. This variability in both the vertical and horizontal dimensions makes it difficult to predict exact horizons where specific minerals will occur. The iron-formation has been subdivided into four broad stratigraphic units (lower cherty, lower slaty, upper cherty, and upper slaty) and into four lateral mineralogical zones (1-4). Zone 1, the westernmost zone, is characterized by quartz, magnetite, hematite, carbonates, talc, chamosite, greenalite, minnesotaite, and stilpnomelane. The silicate mineralogy in Zone 2 of the Biwabik Iron Formation changes very little. However, the minerals begin to change dramatically in Zone 3. Most significantly, Zone 3 is characterized by the appearance of grunerite in both a tabular form and a fibrous form. In Zone 4, the original silicate minerals have completely reacted, and a new suite of minerals occupies the iron-formation. These include grunerite, hornblende, hedenbergite, ferrohypersthene (ferrosilite), and fayalite.

  19. Formation and Reactivity of Biogenic Iron Minerals

    International Nuclear Information System (INIS)

    Ferris, F. Grant

    2002-01-01

    Dissimilatory iron-reducing bacteria (DIRB) play an important role in regulating the aqueous geochemistry of iron and other metals in anaerobic, non-sulfidogenic groundwater environments; however, little work has directly assessed the cell surface electrochemistry of DIRB, or the nature of the interfacial environment around individual cells. The electrochemical properties of particulate solids are often inferred from titrations in which net surface charge is determined, assuming electroneutrality, as the difference between known added amounts of acid and base and measured proton concentration. The resultant titration curve can then be fit to a speciation model for the system to determine pKa values and site densities of reactive surface sites. Moreover, with the development of non-contact electrostatic force microscopy (EFM), it is now possible to directly inspect and quantify charge development on surfaces. A combination of acid-base titrations and EFM are being used to assess the electrochemical surface properties of the groundwater DIRB, Shewanella putrefaciens. The pKa spectra and EFM data show together that a high degree of electrochemical heterogeneity exists within the cell wall and at the cell surface of S. putrefaciens. Recognition of variations in the nature and spatial distribution of reactive sites that contribute to charge development on these bacteria implies further that the cell surface of these Fe(III)-reducing bacteria functions as a highly differentiated interfacial system capable of supporting multiple intermolecular interactions with both solutes and solids. These include surface complexation reactions involving dissolved metals, as well as adherence to mineral substrates such as hydrous ferric oxide through longer-range electrostatic interactions, and surface precipitation of secondary reduced-iron minerals

  20. Petrogenesis, detrital zircon SHRIMP U-Pb geochronology, and tectonic implications of the Upper Paleoproterozoic Seosan iron formation, western Gyeonggi Massif, Korea

    Science.gov (United States)

    Kim, Chang Seong; Jang, Yirang; Samuel, Vinod O.; Kwon, Sanghoon; Park, Jung-Woo; Yi, Keewook; Choi, Seon-Gyu

    2018-05-01

    This study involves investigations on the Upper Paleoproterozoic iron formation (viz., Seosan iron formation) from the Seosan Group, Gyeonggi Massif of the southwestern Korean Peninsula. It occurs as thin banded layers within meta-arkosic sandstone, formed by alternating processes of chemical (hydrothermal) and detrital depositions under a shallow marine environment. It mainly consists of alternating layers of iron oxides, mostly hematite, and quartz. Minor amounts of magnetite surrounded by muscovite, clinopyroxene and amphibole indicate hydrothermal alteration since its formation. Meta-arkosic sandstone is composed of recrystallized or porphyroclastic quartz and microcline, with small amounts of hematite and pyrite clusters. The Seosan iron formation has high contents of total Fe2O3 and SiO2 with positive Eu anomalies similar to those of other Precambrian banded iron formations, and its formation is clearly related to hydrothermal alteration since its deposition. Detrital zircon SHRIMP U-Pb geochronology data from a meta-arkosic sandstone (SN-1) and an iron formation (SN-2) show mainly two age groups of ca. 2.5 Ga and ca. 1.9-1.75 Ga. This together with intrusion age of the granite gneiss (ca. 1.70-1.65 Ga) clearly indicate that the iron formations were deposited during the Upper Paleoproterozoic. The dominant Paleoproterozoic detrital zircon bimodal age peaks preserved in the Seosan iron formation compare well with those from the South China Craton sedimentary basins, reflecting global tectonic events related to the Columbia supercontinent in East Asia.

  1. CORRELATION OF GALLSTONE FORMATION WITH SERUM IRON LEVELS

    Directory of Open Access Journals (Sweden)

    Rohini Bipin Bhadre

    2016-07-01

    Full Text Available INTRODUCTION Gallstones are one of the most common problem associated with the gallbladder, affecting millions of people throughout the world. Bile is excreted from liver and gallbladder into Duodenum for digestion. After digestion, if the gallbladder is not emptied out completely, the Bile Juice that remains in the gallbladder can become too concentrated with cholesterol leading to gallstone formation. Cholesterol and calcium bilirubinate are the two main substances involved in gallstone formation. Gallstones derived from bile consists of mixture of cholesterol, bilirubin with or without calcium. Based on their chemical composition, gallstones found in the gallbladder are classified as cholesterol, pigmented or mixed stones. Iron deficiency has been shown to alter the activity of several hepatic enzymes, leading to increased gallbladder bile cholesterol saturation and promotion of cholesterol crystal formation. AIMS & OBJECTIVE Attempt to establish a correlation with gallstones and decreased serum iron levels. MATERIAL & METHODS This study was a prospective cohort study which included 100 consecutive patients with imaging studies suggestive of Cholelithiasis. The Gallstone surgically removed was crushed with mortar and pestle and then analysed for cholesterol, calcium, phosphate and bilirubin (pigment. Serum samples were analysed for Cholesterol, iron and iron binding capacity. RESULTS 86% patients had increased cholesterol levels (p=0.04 and 93% had decreased serum Iron levels (p=0.96. The most common type of gallstone was found to be Cholesterol type of gallstone followed by Mixed and Pigment gallstones. CONCLUSION Serum cholesterol levels were found to be raised in majority of the patients and serum iron was found to be low in these majority of the patients indicating iron deficiency may play a role in gallstone formation.

  2. Hydrothermal oxidation in the Biwabik Iron Formation, MN, USA

    Science.gov (United States)

    Losh, Steven; Rague, Ryan

    2018-02-01

    Precambrian iron formations throughout the world, notably in Australia, Brazil, and South Africa, show evidence of hypogene (≥ 110 °C, mostly > 250 °C) oxidation, alteration, and silica dissolution as a result of tectonic or magmatic activity. Although hydrothermal oxidation has been proposed for the prototype Lake Superior-type iron formation, the Biwabik Iron Formation in Minnesota (USA), it has not been documented there. By examining oxidized and unoxidized Biwabik Iron Formation in three mines, including material from high-angle faults that are associated with oxidation, we document an early hypogene oxidation event ( 175 °C) involving medium-salinity aqueous fluids (8.4 ± 4.9 wt% NaCl equiv) that infiltrated iron formation along high-angle faults. At the Hibbing Taconite Mine, hydrothermal fluids oxidized iron carbonates and silicates near faults, producing goethite ± quartz. In contrast with much of the oxidized iron ores on the Mesabi Range, silica was not removed but rather recrystallized during this event, perhaps lying in a rock-dominated system at low cumulative fluid flux. During the hydrothermal oxidation event in the Hibbing Taconite deposit, quartz-filled microfractures and irregular inclusions commonly formed in coarse variably oxidized magnetite, currently the ore mineral: these inclusions degrade the ore by introducing excess silica in magnetic concentrate. Hydrothermal oxidation at Hibbing Taconite Mine is overprinted by later, relatively minor supergene oxidation both along faults and near the surface, which locally dissolved quartz. At the Fayal Reserve Mine, widespread silicate and carbonate gangue dissolution and iron oxidation was followed by precipitation of pyrite, Mn-siderite, apatite, and other minerals in void spaces, which prevented post-oxidation compaction and significant volume loss in the sampled rocks. Although definitive temperature data for this assemblage are needed, the weight of evidence indicates that this

  3. Observations of the initial stages of colloidal band formation

    Science.gov (United States)

    Li, Yanrong; Tagawa, Yoshiyuki; Yee, Andrew; Yoda, Minami

    2017-11-01

    A number of studies have shown that particles suspended in a conducting fluid near a wall are subject to wall-normal repulsive ``lift'' forces, even in the absence of interparticle interactions, in a flowing suspension. Evanescent-wave visualizations have shown that colloidal particles in a dilute (volume fractions channels by a pressure gradient and an electric field when the resulting combined Poiseuille and electroosmotic (EO) flow are in opposite direction, i.e., ``counterflow,'' although the particles and channel walls both have negative zeta-potentials. Above a minimum ``threshold'' electric field magnitude |Emin | , the particles assemble into dense ``bands'' with cross-sectional dimensions of a few μm and length comparable to that of the channel (i.e., a few cm). The results suggest that the threshold field |Emin | is large enough so that there is a region of ``reverse'' flow, along the direction of the EO flow, near the wall. Visualization of a large segment of the channel (>300 hydraulic diameters) at frame rates as great as 1 kHz is used to determine banding maps for a variety of dilute colloidal suspensions and to investigate the initial stages of band formation over a wide range of flow conditions. Supported by US Army Research Office.

  4. Iron

    DEFF Research Database (Denmark)

    Hansen, Jakob Bondo; Moen, I W; Mandrup-Poulsen, T

    2014-01-01

    The interest in the role of ferrous iron in diabetes pathophysiology has been revived by recent evidence of iron as an important determinant of pancreatic islet inflammation and as a biomarker of diabetes risk and mortality. The iron metabolism in the β-cell is complex. Excess free iron is toxic......, but at the same time, iron is required for normal β-cell function and thereby glucose homeostasis. In the pathogenesis of diabetes, iron generates reactive oxygen species (ROS) by participating in the Fenton chemistry, which can induce oxidative damage and apoptosis. The aim of this review is to present...... and discuss recent evidence, suggesting that iron is a key pathogenic factor in both type 1 and type 2 diabetes with a focus on inflammatory pathways. Pro-inflammatory cytokine-induced β-cell death is not fully understood, but may include iron-induced ROS formation resulting in dedifferentiation by activation...

  5. Formation and Transformation of Iron Oxide-Kaolinite Associations in the Presence of Iron(II)

    NARCIS (Netherlands)

    Wei, S.Y.; Liu, F.; Feng, X.H.; Tan, W.F.; Koopal, L.K.

    2011-01-01

    Iron oxide-kaolinite associations are important components of tropical and subtropical soils and have significant influence on the physical and chemical properties of soils. In this study, the formation and transformation of Fe oxide-kaolinite associations as a function of pH, temperature, and time

  6. Petrography, Geochemistry and Proposed Genesis of Ordovician Oolitic Iron Formation Members of the Lashkarak Formation, Eastern Alborz

    Directory of Open Access Journals (Sweden)

    Mansoore Maghsoudloo Mahalli

    2016-07-01

    Full Text Available Introduction Oolitic iron formations are sedimentary rocks with >5 vol.% oolites and >15 wt.% iron, corresponding to 21.4 wt.% Fe2O3 (Young, 1989; Petranek and Van Houten, 1997; Mucke and Farshad, 2005. In Iran, new iron oolite-bearing members have been identified in the Lashkarak Formation (lower-middle Ordovician in the Abarsej, Dehmola and Simehkuh sections, eastern Alborz (Ghobadi Pour et al., 2011. At present, the mineralogy and geochemistry of these members are not known. Consequently, research reported here was conducted to reveal the mineralogical and geochemical characteristics of Ordovician oolitic iron formationmembers and to discuss their genesis and economic importance. Materials and Analyses Field geology and sampling was carried out to collect 25 samples from the ooliticiron formation members in the Abarsej, Dehmola and Simehkuh section in eastern Alborz. Samples were prepared for polished-thin sections (n=10, XRD analysis (n=15. Whole-rock chemical analysis (n=15 by XRF for major elements and by ICP-ES for trace elements was performed by laboratories at the SarCheshmeh copper mine complex, Kerman, Iran. One sample was analyzed by SEM at the Wales Museum, UK. Results Microscopic studies show that the oolitic iron formation members are hosted by carbonate argillite rocks. They are mainly composed of oolites rather than pisoliths (small bodies somewhat larger and more irregular than oolites, whereas oolites have mainly ellipsoidal forms and locally spherical shapes. Most (6 oolites show banding with a central core. Simple oolites without a core are scarce. Mineralogically, oolites are mainly chamositic and hematitic in composition; goethite, pyrite and glauconite occur in traces and siderite is absent. Quartz, calcite and zircon are accessory minerals which are present in the groundmass. Geochemically, TFeO % of the oolitic iron formation horizons ranges from 8 to 48 % with an average of 21%. The CaO content ranges from 2 to 37% and

  7. Structural and magnetic phase formation in nanophase brass–iron ...

    Indian Academy of Sciences (India)

    November 2005 physics pp. 847–854. Structural and magnetic phase formation in nanophase brass–iron electron compounds. A K MISHRA and C BANSAL. School of Physics, University of Hyderabad, Hyderabad 500 046, India. E-mail: cbsp@uohyd.ernet.in. Abstract. Starting with Cu0.65Zn0.35 with an e/a ratio of 1.35 we ...

  8. Structural mechanisms of formation of adiabatic shear bands

    Directory of Open Access Journals (Sweden)

    Mikhail Sokovikov

    2016-10-01

    Full Text Available The paper focuses on the experimental and theoretical study of plastic deformation instability and localization in materials subjected to dynamic loading and high-velocity perforation. We investigate the behavior of samples dynamically loaded during Hopkinson-Kolsky pressure bar tests in a regime close to simple shear conditions. Experiments were carried out using samples of a special shape and appropriate test rigging, which allowed us to realize a plane strain state. Also, the shear-compression specimens proposed in were investigated. The lateral surface of the samples was investigated in a real-time mode with the aid of a high-speed infra-red camera CEDIP Silver 450M. The temperature field distribution obtained at different time made it possible to trace the evolution of plastic strain localization. Use of a transmission electron microscope for studying the surface of samples showed that in the regions of strain localization there are parts taking the shape of bands and honeycomb structure in the deformed layer. The process of target perforation involving plug formation and ejection was investigated using a high-speed infra-red camera. A specially designed ballistic set-up for studying perforation was used to test samples in different impulse loading regimes followed by plastic flow instability and plug ejection. Changes in the velocity of the rear surface at different time of plug ejection were analyzed by Doppler interferometry techniques. The microstructure of tested samples was analyzed using an optical interferometer-profilometer and a scanning electron microscope. The subsequent processing of 3D deformation relief data enabled estimation of the distribution of plastic strain gradients at different time of plug formation and ejection. It has been found that in strain localization areas the subgrains are elongated taking the shape of bands and undergo fragmentation leading to the formation of super-microcrystalline structure, in which the

  9. Standard free energy of formation of iron iodide

    Science.gov (United States)

    Khandkar, A.; Tare, V. B.; Wagner, J. B., Jr.

    1983-01-01

    An experiment is reported where silver iodide is used to determine the standard free energy of formation of iron iodide. By using silver iodide as a solid electrolyte, a galvanic cell, Ag/AgI/Fe-FeI2, is formulated. The standard free energy of formation of AgI is known, and hence it is possible to estimate the standard free energy of formation of FeI2 by measuring the open-circuit emf of the above cell as a function of temperature. The free standard energy of formation of FeI2 determined by this method is -38784 + 24.165T cal/mol. It is estimated that the maximum error associated with this method is plus or minus 2500 cal/mol.

  10. An iron detection system determines bacterial swarming initiation and biofilm formation

    NARCIS (Netherlands)

    Lin, Chuan-Sheng; Tsai, Yu-Huan; Chang, Chih-Jung; Tseng, Shun-Fu; Wu, Tsung-Ru; Lu, Chia-Chen; Wu, Ting-Shu; Lu, Jang-Jih; Horng, Jim-Tong; Martel, Jan; Ojcius, David M.; Lai, Hsin-Chih; Young, John D.; Andrews, S. C.; Robinson, A. K.; Rodriguez-Quinones, F.; Touati, D.; Yeom, J.; Imlay, J. A.; Park, W.; Marx, J. J.; Braun, V.; Hantke, K.; Cornelis, P.; Wei, Q.; Vinckx, T.; Troxell, B.; Hassan, H. M.; Verstraeten, N.; Lewis, K.; Hall-Stoodley, L.; Costerton, J. W.; Stoodley, P.; Kearns, D. B.; Losick, R.; Butler, M. T.; Wang, Q.; Harshey, R. M.; Lai, S.; Tremblay, J.; Deziel, E.; Overhage, J.; Bains, M.; Brazas, M. D.; Hancock, R. E.; Partridge, J. D.; Kim, W.; Surette, M. G.; Givskov, M.; Rather, P. N.; Houdt, R. Van; Michiels, C. W.; Mukherjee, S.; Inoue, T.; Frye, J. G.; McClelland, M.; McCarter, L.; Silverman, M.; Matilla, M. A.; Wu, Y.; Outten, F. W.; Singh, P. K.; Parsek, M. R.; Greenberg, E. P.; Welsh, M. J.; Banin, E.; Vasil, M. L.; Wosten, M. M.; Kox, L. F.; Chamnongpol, S.; Soncini, F. C.; Groisman, E. A.; Laub, M. T.; Goulian, M.; Krell, T.; Lai, H. C.; Lin, C. S.; Soo, P. C.; Tsai, Y. H.; Wei, J. R.; Wyckoff, E. E.; Mey, A. R.; Leimbach, A.; Fisher, C. F.; Payne, S. M.; Livak, K. J.; Schmittgen, T. D.; Clarke, M. B.; Hughes, D. T.; Zhu, C.; Boedeker, E. C.; Sperandio, V.; Stintzi, A.; Clarke-Pearson, M. F.; Brady, S. F.; Drake, E. J.; Gulick, A. M.; Qaisar, U.; Rowland, M. A.; Deeds, E. J.; Garcia, C. A.; Alcaraz, E. S.; Franco, M. A.; Rossi, B. N. Passerini de; Mehi, O.; Skaar, E. P.; Visaggio, D.; Nishino, K.; Dietz, P.; Gerlach, G.; Beier, D.; Bustin, S. A.; Schwyn, B.; Neilands, J. B.

    2016-01-01

    Iron availability affects swarming and biofilm formation in various bacterial species. However, how bacteria sense iron and coordinate swarming and biofilm formation remains unclear. Using Serratia marcescens as a model organism, we identify here a stage-specific iron-regulatory machinery comprising

  11. Iron-lactoferrin complex reduces iron-catalyzed off-flavor formation in powdered milk with added fish oil.

    Science.gov (United States)

    Ueno, Hiroshi M; Shiota, Makoto; Ueda, Noriko; Isogai, Tomoyuki; Kobayashi, Toshiya

    2012-08-01

    The iron-lactoferrin complex (FeLf) is useful for dietary iron supplementation. However, the effects of FeLf on iron-catalyzed off-flavors in lipid-containing food products have not been reported. In this study, we investigated the effects of FeLf on off-flavors development during the production and storage of powdered milk with added fish oil. Powdered milk samples were formulated with FeLf or iron (II) sulfate, then stored at 37 °C for 5 mo. A sensory evaluation revealed that FeLf delayed the development of oxidized flavor and reduced metallic taste in the powdered milk compared with iron (II) sulfate. Headspace gas chromatography-mass spectrometry analysis showed that oxidized volatile compounds, such as pentanal, hexanal, heptanal, octanal, 1-penten-3-one, (Z)-4-heptenal, (E, E)-2,4-heptadienal, and (E)-2-octenal, were less developed in the powdered milk containing FeLf than in that containing iron (II) sulfate. Iron and lactoferrin (Lf) were retained in the high-molecular-weight (>10000 Da) fraction of the reconstituted FeLf-containing powdered milk after its manufacture and storage, whereas the antigenicity of Lf was lost after ultrahigh-temperature processing at 120 °C for 5 s. These results suggest that FeLf reduces the iron-catalyzed off-flavors that develop during the production and storage of powdered milk. The stable iron-holding property of FeLf contributes to the inhibition of oxidized and metallic volatile formation, although the loss of Lf antigenicity did not affect the stability of FeLf and the iron-catalyzed formation of off-flavors in the powdered milk. Consequently, FeLf is a suitable candidate for the simultaneous supplementation of a single food with iron and fish oil. The supplementation of food products with iron and fish oil is a useful approach to redressing their inadequate intake in many populations. The iron-lactoferrin complex can protect food products against the off-flavors caused by iron-catalyzed lipid oxidation. Our results

  12. Iron isotope fractionation during pyrite formation in a sulfidic Precambrian ocean analogue

    Science.gov (United States)

    Rolison, John M.; Stirling, Claudine H.; Middag, Rob; Gault-Ringold, Melanie; George, Ejin; Rijkenberg, Micha J. A.

    2018-04-01

    The chemical response of the Precambrian oceans to rising atmospheric O2 levels remains controversial. The iron isotope signature of sedimentary pyrite is widely used to trace the microbial and redox states of the ocean, yet the iron isotope fractionation accompanying pyrite formation in nature is difficult to constrain due to the complexity of the pyrite formation process, difficulties in translating the iron isotope systematics of experimental studies to natural settings, and insufficient iron isotope datasets for natural euxinic (i.e. anoxic and sulfidic) marine basins where pyrite formation occurs. Herein we demonstrate, that a large, permil-level shift in the isotope composition of dissolved iron occurs in the Black Sea euxinic water column during syngenetic pyrite formation. Specifically, iron removal to syngenetic pyrite gives rise to an iron isotope fractionation factor between Fe(II) and FeS2 of 2.75 permil (‰), the largest yet reported for reactions under natural conditions that do not involve iron redox chemistry. These iron isotope systematics offer the potential to generate permil-level shifts in the sedimentary pyrite iron isotope record due to partial drawdown of the oceanic iron inventory. The implication is that the iron stable isotope signatures of sedimentary pyrites may record fundamental regime shifts between pyrite formation under sulfur-limited conditions and pyrite formation under iron-limited conditions. To this end, the iron isotope signatures of sedimentary pyrite may best represent the extent of euxinia in the past global ocean, rather than its oxygenation state. On this basis, the reinterpreted sedimentary pyrite Fe isotope record suggests a fundamental shift towards more sulfidic oceanic conditions coincident with the 'Great Oxidation Event' around 2.3 billion years ago. Importantly, this does not require the chemical state of the ocean to shift from mainly de-oxygenated to predominantly oxygenated in parallel with the permanent rise

  13. A Novel Approach for Controlling the Band Formation in Medium Mn Steels

    Science.gov (United States)

    Farahani, H.; Xu, W.; van der Zwaag, S.

    2018-03-01

    Formation of the microstructural ferrite/pearlite bands in medium Mn steels is an undesirable phenomenon commonly addressed through fast cooling treatments. In this study, a novel approach using the cyclic partial phase transformation concept is applied successfully to prevent microstructural band formation in a micro-chemically banded Fe-C-Mn-Si steel. The effectiveness of the new approach is assessed using the ASTM E1268-01 standard. The cyclic intercritical treatments lead to formation of isotropic microstructures even for cooling rates far below the critical one determined in conventional continuous cooling. In contrast, isothermal intercritical experiments have no effect on the critical cooling rate to suppress microstructural band formation. The origin of the suppression of band formation either by means of fast cooling or a cyclic partial phase transformation is investigated in detail. Theoretical modeling and microstructural observations confirm that band formation is suppressed only if the intercritical annealing treatment leads to partial reversion of the austenite-ferrite interfaces. The resulting interfacial Mn enrichment is responsible for suppression of the band formation upon final cooling at low cooling rates.

  14. Changes in Gallbladder Motility and Gallstone Formation Following Laparoscopic Gastric Banding for Morbid Obesity

    Directory of Open Access Journals (Sweden)

    Bilal O Al-Jiffry

    2003-01-01

    Full Text Available Morbid obesity is associated with cholesterol gallstone formation, a risk compounded by rapid weight loss. Laparoscopic gastric banding allows for a measured rate of weight loss, but the subsequent risk for developing gallstones is unknown.

  15. Bacterial and iron oxide aggregates mediate secondary iron mineral formation: green rust versus magnetite.

    Science.gov (United States)

    Zegeye, A; Mustin, C; Jorand, F

    2010-06-01

    In the presence of methanoate as electron donor, Shewanella putrefaciens, a Gram-negative, facultative anaerobe, is able to transform lepidocrocite (gamma-FeOOH) to secondary Fe (II-III) minerals such as carbonated green rust (GR1) and magnetite. When bacterial cells were added to a gamma-FeOOH suspension, aggregates were produced consisting of both bacteria and gamma-FeOOH particles. Recently, we showed that the production of secondary minerals (GR1 vs. magnetite) was dependent on bacterial cell density and not only on iron reduction rates. Thus, gamma-FeOOH and S. putrefaciens aggregation pattern was suggested as the main mechanism driving mineralization. In this study, lepidocrocite bioreduction experiments, in the presence of anthraquinone disulfonate, were conducted by varying the [cell]/[lepidocrocite] ratio in order to determine whether different types of aggregate are formed, which may facilitate precipitation of GR1 as opposed to magnetite. Confocal laser scanning microscopy was used to analyze the relative cell surface area and lepidocrocite concentration within the aggregates and captured images were characterized by statistical methods for spatial data (i.e. variograms). These results suggest that the [cell]/[lepidocrocite] ratio influenced both the aggregate structure and the nature of the secondary iron mineral formed. Subsequently, a [cell]/[lepidocrocite] ratio above 1 x 10(7) cells mmol(-1) leads to densely packed aggregates and to the formation of GR1. Below this ratio, looser aggregates are formed and magnetite was systematically produced. The data presented in this study bring us closer to a more comprehensive understanding of the parameters governing the formation of minerals in dense bacterial suspensions and suggest that screening mineral-bacteria aggregate structure is critical to understanding (bio)mineralization pathways.

  16. Formation and characterization of iron-binding phosphorylated human-like collagen as a potential iron supplement.

    Science.gov (United States)

    Deng, Jianjun; Chen, Fei; Fan, Daidi; Zhu, Chenhui; Ma, Xiaoxuan; Xue, Wenjiao

    2013-10-01

    Iron incorporated into food can induce precipitation and unwanted interaction with other components in food. Iron-binding proteins represent a possibility to avoid these problems and other side effects, as the iron is protected. However, there are several technical problems associated with protein-iron complex formation. In this paper, the iron-binding phosphorylated human-like collagen (Fe-G6P-HLC) was prepared under physiological conditions through phosphorylated modification. One molecule of Fe-G6P-HLC possesses about 24 atoms of Fe. Spectroscopy analysis, differential scanning calorimetry (DSC) and equilibrium dialysis techniques were employed to investigate the characteristics of the Fe-G6P-HLC. The binding sites (nb) and apparent association constant (Kapp) between iron and phosphorylated HLC were measured at nb=23.7 and log Kapp=4.57, respectively. The amount of iron (Fe(2+) sulfate) binding to phosphorylated HLC was found to be a function of pH and phosphate content. In addition, the solubility and thermal stability of HLC were not significantly affected. The results should facilitate the utilization of HLC as a bioactive iron supplement in the food and medical industry and provide an important theoretical evidence for the application of HLC chelates. © 2013.

  17. Formation of banded vegetation patterns resulted from interactions between sediment deposition and vegetation growth.

    Science.gov (United States)

    Huang, Tousheng; Zhang, Huayong; Dai, Liming; Cong, Xuebing; Ma, Shengnan

    2018-03-01

    This research investigates the formation of banded vegetation patterns on hillslopes affected by interactions between sediment deposition and vegetation growth. The following two perspectives in the formation of these patterns are taken into consideration: (a) increased sediment deposition from plant interception, and (b) reduced plant biomass caused by sediment accumulation. A spatial model is proposed to describe how the interactions between sediment deposition and vegetation growth promote self-organization of banded vegetation patterns. Based on theoretical and numerical analyses of the proposed spatial model, vegetation bands can result from a Turing instability mechanism. The banded vegetation patterns obtained in this research resemble patterns reported in the literature. Moreover, measured by sediment dynamics, the variation of hillslope landform can be described. The model predicts how treads on hillslopes evolve with the banded patterns. Thus, we provide a quantitative interpretation for coevolution of vegetation patterns and landforms under effects of sediment redistribution. Copyright © 2018. Published by Elsevier Masson SAS.

  18. Formation and characterization of iron-binding phosphorylated human-like collagen as a potential iron supplement

    International Nuclear Information System (INIS)

    Deng, Jianjun; Chen, Fei; Fan, Daidi; Zhu, Chenhui; Ma, Xiaoxuan; Xue, Wenjiao

    2013-01-01

    Iron incorporated into food can induce precipitation and unwanted interaction with other components in food. Iron-binding proteins represent a possibility to avoid these problems and other side effects, as the iron is protected. However, there are several technical problems associated with protein–iron complex formation. In this paper, the iron-binding phosphorylated human-like collagen (Fe-G6P-HLC) was prepared under physiological conditions through phosphorylated modification. One molecule of Fe-G6P-HLC possesses about 24 atoms of Fe. Spectroscopy analysis, differential scanning calorimetry (DSC) and equilibrium dialysis techniques were employed to investigate the characteristics of the Fe-G6P-HLC. The binding sites (n b ) and apparent association constant (K app ) between iron and phosphorylated HLC were measured at n b = 23.7 and log K app = 4.57, respectively. The amount of iron (Fe 2+ sulfate) binding to phosphorylated HLC was found to be a function of pH and phosphate content. In addition, the solubility and thermal stability of HLC were not significantly affected. The results should facilitate the utilization of HLC as a bioactive iron supplement in the food and medical industry and provide an important theoretical evidence for the application of HLC chelates. - Highlights: • The iron-binding phosphorylated human-like collagen (Fe-G6P-HLC) was prepared. • One molecule of Fe-G6P-HLC possesses about 24 atoms of Fe. • The binding properties could be modulated through alterations in pH and phosphate content presented in HLC. • A novel strategy for preparing iron-binding proteins was provided

  19. Hundness versus Mottness in a three-band Hund model with relevance for iron-pnictides

    Energy Technology Data Exchange (ETDEWEB)

    Stadler, Katharina M.; Delft, Jan von; Weichselbaum, Andreas [Ludwig Maximilians University, Munich (Germany); Yin, Zhiping; Kotliar, Gabriel [Rutgers University, New Jersey (United States)

    2016-07-01

    The recently discovered iron pnictide superconductors (as well as chalcogenides, ruthenates, and other 4d transition metal oxides) show puzzling anomalous properties, like a coherence-incoherence crossover, also in the normal state. While there is consensus about strong correlation effects playing a key role in these materials, their precise origin (Coulomb repulsion or Hund's rule coupling between electrons of different orbitals) has been under debate as one of the major open questions in the field many years. In a recent detailed study of the Hund metal problem the coherence-incoherence crossover was shown to be connected to spin-orbital separation and to be clearly driven by Hund's rule coupling. In order to better understand the differences between Mott insulators and Hund metals we explore the phase diagram for a three-band model with Coulomb repulsion and Hund's rule coupling on a Bethe lattice at 1/3 filling using the numerical renormalization group to obtain a numerically exact dynamical mean-field theory solution.

  20. Hundness and Mottness in a Three-Band Hund Model with Relevance for Iron Pnictides

    Science.gov (United States)

    Stadler, Katharina; Yin, Zhiping; von Delft, Jan; Kotliar, Gabriel; Weichselbaum, Andreas

    The recently discovered iron pnictide superconductors (as well as chalcogenides, ruthenates, and other 4d transition metal oxides) show puzzling anomalous properties, like a coherence-incoherence crossover, also in the normal state. While there is consensus about strong correlation effects playing a key role in these materials, their precise origin (Coulomb repulsion or Hund's rule coupling between electrons of different orbitals) has been under debate as one of the major open questions in the field many years. In a recent detailed study of the Hund metal problem the coherence-incoherence crossover was shown to be connected to spin-orbital separation and to be clearly driven by Hund's rule coupling. In order to better understand the differences between Mott insulators and Hund metals and to obtain a generic picture of the role of Hund's rule coupling in both regimes, we explore the phase diagram for a channel-symmetric three-band model with Coulomb repulsion and Hund's rule coupling on a Bethe lattice at and away from 1/3 filling using the numerical renormalization group to obtain a numerically exact dynamical mean-field theory solution.

  1. Hematite from Natural Iron Stones as Microwave Absorbing Material on X-Band Frequency Ranges

    Science.gov (United States)

    Zainuri, Mochamad

    2017-05-01

    This study has been investigated the effect of hematite as microwave absorbing materials (RAM) on X-Band frequency ranges. Hematite was succesfully processed by coprecipitation method and calcined at 500 °C for 5 hour. It was synthesized from natural iron stones from Tanah Laut, South Kalimantan, Indonesia. The products were characterized by X-ray diffraxtion (XRD), conductivity measurement, Vibrating Sample Magnetometer (VSM), and Vector Network Analyzer (VNA). The result was shown that hematite has conductivity value on (2.5-3).10-7 S/cm and be included as dielectric materials. The hysterisis curve was shown that hematite was a super paramagnetic materials. The product was mixed on paint with procentage 10% of total weight and coated on steel grade AH36 with spray methods. Then, the maximum of reflection loss on x - band’s frequency range (8,2-12,4) GHz was -7 dB on frequency of 10.5 GHz. It mean that almost 50% electromagnetic energy was absorbed by hematite.

  2. Complex Formation Between Iron(III) and Isonicotinohydroxamic ...

    African Journals Online (AJOL)

    acer

    ion complexes (Fernandes et al., 1997). Hydroxamic acids and other compounds containing the hydroxamate group are ubiquitous in nature and are intimately associated with iron transport in bacteria (Nwabueze 1997). Iron(III) complexes of naturally occurring hydroxamate acids called siderophores, are involved in the.

  3. What Do We Really Know about the Role of Microorganisms in Iron Sulfide Mineral Formation?

    OpenAIRE

    Picard, Aude A; Gartman, Amy; Girguis, Peter R.

    2016-01-01

    Iron sulfide mineralization in low-temperature systems is a result of biotic and abiotic processes, though the delineation between these two modes of formation is not always straightforward. Here we review the role of microorganisms in the precipitation of extracellular iron sulfide minerals. We summarize the evidence that links sulfur-metabolizing microorganisms and sulfide minerals in nature and we present a critical overview of laboratory-based studies of the nucleation and growth of iron ...

  4. Effects of texture on shear band formation in plane strain tension/compression and bending

    DEFF Research Database (Denmark)

    Kuroda, M.; Tvergaard, Viggo

    2007-01-01

    model analysis. Third, shear band developments in plane strain pure bending of a sheet specimen with the typical textures are studied. Regions near the surfaces in a bent sheet specimen are approximately subjected to plane strain tension or compression. From this viewpoint, the bendability of a sheet......In this study, effects of typical texture components observed in rolled aluminum alloy sheets on shear band formation in plane strain tension/compression and bending are systematically studied. The material response is described by a generalized Taylor-type polycrystal model, in which each grain...... are obtained: i.e. the critical strain at the onset of shear banding and the corresponding orientation of shear band. Second, the shear band development in plane strain tension/compression is analyzed by the finite element method. Predictability of the finite element analysis is compared to that of the simple...

  5. GPM GROUND VALIDATION NOAA S-BAND PROFILER RAW DATA NETCDF FORMAT MC3E V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The S-band Profiler Raw dataset was saved in two data formats: netCDF anda proprietary Vaisala SPC format. The numeric values in both formats are exactly the same....

  6. Copper Stress Affects Iron Homeostasis by Destabilizing Iron-Sulfur Cluster Formation in Bacillus subtilis

    NARCIS (Netherlands)

    Chillappagari, Shashi; Seubert, Andreas; Trip, Hein; Kuipers, Oscar P.; Marahiel, Mohamed A.; Miethke, Marcus

    2010-01-01

    Copper and iron are essential elements for cellular growth. Although bacteria have to overcome limitations of these metals by affine and selective uptake, excessive amounts of both metals are toxic for the cells. Here we investigated the influences of copper stress on iron homeostasis in Bacillus

  7. Geochemical and iron isotopic insights into hydrothermal iron oxyhydroxide deposit formation at Loihi Seamount

    Science.gov (United States)

    Rouxel, Olivier; Toner, Brandy; Germain, Yoan; Glazer, Brian

    2018-01-01

    Low-temperature hydrothermal vents, such as those encountered at Loihi Seamount, harbor abundant microbial communities and provide ideal systems to test hypotheses on biotic versus abiotic formation of hydrous ferric oxide (FeOx) deposits at the seafloor. Hydrothermal activity at Loihi Seamount produces abundant microbial mats associated with rust-colored FeOx deposits and variably encrusted with Mn-oxyhydroxides. Here, we applied Fe isotope systematics together with major and trace element geochemistry to study the formation mechanisms and preservation of such mineralized microbial mats. Iron isotope composition of warm (<60 °C), Fe-rich and H2S-depleted hydrothermal fluids yielded δ56Fe values near +0.1‰, indistinguishable from basalt values. Suspended particles in the vent fluids and FeOx deposits recovered nearby active vents yielded systematically positive δ56Fe values. The enrichment in heavy Fe isotopes between +1.05‰ and +1.43‰ relative to Fe(II) in vent fluids suggest partial oxidation of Fe(II) during mixing of the hydrothermal fluid with seawater. By comparing the results with experimentally determined Fe isotope fractionation factors, we determined that less than 20% of Fe(II) is oxidized within active microbial mats, although this number may reach 80% in aged or less active deposits. These results are consistent with Fe(II) oxidation mediated by microbial processes considering the expected slow kinetics of abiotic Fe oxidation in low oxygen bottom water at Loihi Seamount. In contrast, FeOx deposits recovered at extinct sites have distinctly negative Fe-isotope values down to -1.77‰ together with significant enrichment in Mn and occurrence of negative Ce anomalies. These results are best explained by the near-complete oxidation of an isotopically light Fe(II) source produced during the waning stage of hydrothermal activity under more oxidizing conditions. Light Fe isotope values of FeOx are therefore generated by subsurface precipitation of

  8. Iron(III) species formed during iron(II) oxidation and iron-core formation in bacterioferritin of Escherichia coli

    International Nuclear Information System (INIS)

    Hawkins, C.; Treffry, A.; Mackey, J.; Williams, J.M.; Andrews, S.C.; Guest, J.R.; Harrison, P.M.

    1996-01-01

    This paper describes a preliminary investigation of the mechanisms of Fe(II) oxidation and storage of Fe(III) in the bacterioferritin of Escherichia coli (EcBFR). Using Moessbauer spectroscopy to examine the initial oxidation of iron by EcBFR it is confirmed that this ferritin exhibits 'ferroxidase' activity and is shown that dimeric and monomeric iron species are produced as intermediates. The characteristics of ferroxidase activity in EcBFR is compare d with those of human H-chain ferritin (HuHF) and discuss the different Moessbauer parameters of their dimeric iron with reference to the structures of their di-metal sites. In addition, it is presented preliminary findings suggesting that after an initial 'burst', the rate of oxidation is greatly reduced, possibly due to blockage of the ferroxidase centre by bound iron. A new component, not found in HuHF and probably representing a small cluster of Fe(III) atoms, is reported

  9. Modeling gas formation and mineral precipitation in a granular iron column.

    Science.gov (United States)

    Jeen, Sung-Wook; Amos, Richard T; Blowes, David W

    2012-06-19

    In granular iron permeable reactive barriers (PRBs), hydrogen gas formation, entrapment and release of gas bubbles, and secondary mineral precipitation have been known to affect the permeability and reactivity. The multicomponent reactive transport model MIN3P was enhanced to couple gas formation and release, secondary mineral precipitation, and the effects of these processes on hydraulic properties and iron reactivity. The enhanced model was applied to a granular iron column, which was studied for the treatment of trichloroethene (TCE) in the presence of dissolved CaCO(3). The simulation reasonably reproduced trends in gas formation, secondary mineral precipitation, permeability changes, and reactivity changes observed over time. The simulation showed that the accumulation of secondary minerals reduced the reactivity of the granular iron over time, which in turn decreased the rate of mineral accumulation, and also resulted in a gradual decrease in gas formation over time. This study provides a quantitative assessment of the evolving nature of geochemistry and permeability, resulting from coupled processes of gas formation and mineral precipitation, which leads to a better understanding of the processes controlling the granular iron reactivity, and represents an improved method for incorporating these factors into the design of granular iron PRBs.

  10. Band Formation in Mixtures of Oppositely Charged Colloids Driven by an ac Electric Field

    NARCIS (Netherlands)

    Vissers, T.; van Blaaderen, A.; Imhof, A.

    2011-01-01

    We present experiments on pattern formation in a Brownian system of oppositely charged colloids driven by an ac electric field. Using confocal laser scanning microscopy we observe complete segregation of the two particle species into bands perpendicular to a field of sufficient strength when the

  11. Catalysis of iron core formation in Pyrococcus furiosus ferritin

    NARCIS (Netherlands)

    Ebrahimi, K.H.; Hagedoorn, P.L.; Jongejan, J.A.; Hagen, W.R.

    2009-01-01

    The hollow sphere-shaped 24-meric ferritin can store large amounts of iron as a ferrihydrite-like mineral core. In all subunits of homomeric ferritins and in catalytically active subunits of heteromeric ferritins a diiron binding site is found that is commonly addressed as the ferroxidase center

  12. Mechanisms and mechanics of porosity formation in ductile iron castings

    Directory of Open Access Journals (Sweden)

    M. Perzyk

    2007-12-01

    Full Text Available Shrinkage defects in ductile iron castings can be of two basic types: shrinkage cavities associated with the liquid contraction prior to the expansion period of the iron as well as the porosity, which may appear even if the liquid shrinkage is fully compensated. In the present paper two possible mechanisms of the porosity are presented and analyzed. The first one is the Karsay’s mechanism based on the secondary shrinkage concept. The second one is the mechanism acting during the expansion period of the iron, first suggested by Ohnaka and co-authors and essentially modified by the present authors. The mechanical interactions between casting and mould are determined for the both mechanisms. Their analysis leads to the conclusion, that porosity forms during expansion period of the melt. The direct cause is the negative pressure which appears in the central part of the casting due to the differences in expansion coefficients of the fast cooling surface layer and slow cooling inner region. Observations concerning feeding behavior of ductile iron castings, based on this mechanism, agree well with industrial practice. The secondary shrinkage is not only needless to induce the porosity, but the corresponding mechanism of its occurrence, proposed by Karsay, does not seem to be valid.

  13. Band registration of tuneable frame format hyperspectral UAV imagers in complex scenes

    Science.gov (United States)

    Honkavaara, Eija; Rosnell, Tomi; Oliveira, Raquel; Tommaselli, Antonio

    2017-12-01

    A recent revolution in miniaturised sensor technology has provided markets with novel hyperspectral imagers operating in the frame format principle. In the case of unmanned aerial vehicle (UAV) based remote sensing, the frame format technology is highly attractive in comparison to the commonly utilised pushbroom scanning technology, because it offers better stability and the possibility to capture stereoscopic data sets, bringing an opportunity for 3D hyperspectral object reconstruction. Tuneable filters are one of the approaches for capturing multi- or hyperspectral frame images. The individual bands are not aligned when operating a sensor based on tuneable filters from a mobile platform, such as UAV, because the full spectrum recording is carried out in the time-sequential principle. The objective of this investigation was to study the aspects of band registration of an imager based on tuneable filters and to develop a rigorous and efficient approach for band registration in complex 3D scenes, such as forests. The method first determines the orientations of selected reference bands and reconstructs the 3D scene using structure-from-motion and dense image matching technologies. The bands, without orientation, are then matched to the oriented bands accounting the 3D scene to provide exterior orientations, and afterwards, hyperspectral orthomosaics, or hyperspectral point clouds, are calculated. The uncertainty aspects of the novel approach were studied. An empirical assessment was carried out in a forested environment using hyperspectral images captured with a hyperspectral 2D frame format camera, based on a tuneable Fabry-Pérot interferometer (FPI) on board a multicopter and supported by a high spatial resolution consumer colour camera. A theoretical assessment showed that the method was capable of providing band registration accuracy better than 0.5-pixel size. The empirical assessment proved the performance and showed that, with the novel method, most parts of

  14. Carbonate petrography, kerogen distribution, and carbon and oxygen isotope variations in an early Proterozoic transition from limestone to iron-formation deposition, Transvaal Supergroup, South Africa

    Science.gov (United States)

    Beukes, N. J.; Klein, C.; Kaufman, A. J.; Hayes, J. M.

    1990-01-01

    sparites are most depleted in 13C. Carbonates in oxide-rich iron-formations are more depleted in 13C than those in siderite-rich iron-formation whereas the kerogens in oxide banded iron-formations (BIF) are more enriched. This implies that the siderite-rich iron-formations were not derived from oxide-rich iron-formation through reduction of ferric iron by organic matter. Organic matter oxidation by ferric iron did, however, decrease the abundance of kerogen in oxide-rich iron-formation and led to the formation of isotopically very light sparry carbonates. Siderite and calcmicrosparite both represent recrystallized primary micritic precipitates but differ in their 13C composition, with the siderites depleted in 13C by 4.6 per mil on average relative to calcmicrosparite. This means that the siderites were precipitated from water with dissolved inorganic carbon depleted in 13C by about 9 per mil relative to that from which the limestones precipitated. This implies an ocean system stratified with regard to total carbonate, with the deeper water, from which siderite-rich iron-formation formed, depleted in 13C. Iron-formations were deposited in areas of very low organic matter supply. Depletion of 13C may, therefore, derive not from degradation of organic matter but from hydrothermal activity, a conclusion which is supported by 18O composition of the carbonate minerals and trace element and rare earth element (REE) compositions of the iron-formations.

  15. Biological carbon precursor to diagenetic siderite with spherical structures in iron formations.

    Science.gov (United States)

    Köhler, Inga; Konhauser, Kurt O; Papineau, Dominic; Bekker, Andrey; Kappler, Andreas

    2013-01-01

    During deposition of Precambrian iron formation, the combined sedimentation of ferrihydrite and phytoplankton biomass should have facilitated Fe(III) reduction during diagenesis. However, the only evidence for this reaction in iron formations is the iron and carbon isotope values preserved in the authigenic ferrous iron-containing minerals. Here we show experimentally that spheroidal siderite, which is preserved in many iron formation and could have been precursor to rhombohedral or massive siderite, forms by reacting ferrihydrite with glucose (a proxy for microbial biomass) at pressure and temperature conditions typical of diagenesis (170 °C and 1.2 kbar). Depending on the abundance of siderite, we found that it is also possible to draw conclusions about the Fe(III):C ratio of the initial ferrihydrite-biomass sediment. Our results suggest that spherical to rhombohedral siderite structures in deep-water, Fe-oxide iron formation can be used as a biosignature for photoferrotrophy, whereas massive siderite reflects high cyanobacterial biomass loading in highly productive shallow-waters.

  16. MODELING OF QUALITY FORMATION OF PIG IRON BILLET SURFACE AT WIRE BRUSH MILLING

    Directory of Open Access Journals (Sweden)

    I. L. Barshaj

    2009-01-01

    Full Text Available Formation of topography, geometrical structure and micro-hardness of pig iron billet surface is considered in the paper. Mathematical models pertaining to formation of the above-mentioned characteristics of surface quality according to parameters of machining regime have been developed on the basis of the executed investigations.

  17. Experimental method for the evaluation of the susceptibility of materials to shear band formation

    Directory of Open Access Journals (Sweden)

    Tham R.

    2012-08-01

    Full Text Available In order to characterize materials with respect to their susceptibility to shear band formation at high strain rates, a modified Hopkinson pressure bar apparatus and hat-shaped steel specimens with a shear zone having a width significantly larger than the typical width of adiabatic bands are used. The sample is directly impacted by the striker. The force acting on the sample is measured with a PVDF-gauge between the sample and the output bar. The displacement is recorded with an electro-optical extensometer. The energy absorbed by the shearing process up to failure can be used as a reference for the susceptibility of materials to shear band formation. The method is demonstrated comparing the shear behavior of two high-strength steels with similar metallic structure and strength. Differences were found in the transition region between quasi-static and fully adiabatic shearing conditions where the energy up to rupture differs by 40 %. For fully adiabatic shear band formation, the deformation process of both materials equals. At extreme rates, shear processes are mainly governed by the thermodynamic properties of the materials. On the other hand, strength and structural properties play a role for low and intermediate rates where global and localized shear mechanisms occur in parallel.

  18. Iron

    Science.gov (United States)

    Iron is a mineral that our bodies need for many functions. For example, iron is part of hemoglobin, a protein which carries ... It helps our muscles store and use oxygen. Iron is also part of many other proteins and ...

  19. Iron is a signal for Stenotrophomonas maltophilia biofilm formation, oxidative stress response, OMPs expression and virulence

    Directory of Open Access Journals (Sweden)

    Carlos Adrian Garcia

    2015-09-01

    Full Text Available Stenotrophomonas maltophilia is an emerging nosocomial pathogen. In many bacteria iron availability regulates, trough the Fur system, not only iron homeostasis but also virulence. The aim of this work was to assess the role of iron on S. maltophilia biofilm formation, EPS production, oxidative stress response, OMPs regulation, quorum sensing (QS, and virulence. Studies were done on K279 and its isogenic fur mutant F60 cultured in the presence or absence of dipyridyl. This is the first report of spontaneous fur mutants obtained in S. maltophilia. F60 produced higher amounts of biofilms than K279a and CLSM analysis demonstrated improved adherence and biofilm organization. Under iron restricted conditions, K279a produced biofilms with more biomass and enhanced thickness. In addition, F60 produced higher amounts of EPS than K279a but with a similar composition, as revealed by ATR-FTIR spectroscopy. With respect to the oxidative stress response, MnSOD was the only SOD isoenzyme detected in K279a. F60 presented higher SOD activity than the wt strain in planktonic and biofilm cultures, and iron deprivation increased K279a SOD activity. Under iron starvation, SDS-PAGE profile from K279a presented two iron-repressed proteins. Mass spectrometry analysis revealed homology with FepA and another putative TonB-dependent siderophore receptor of K279a. In silico analysis allowed the detection of potential Fur boxes in the respective coding genes. K279a encodes the QS diffusible signal factor (DSF. Under iron restriction K279a produced higher amounts of DSF than under iron rich condition. Finally, F60 was more virulent than K279a in the Galleria mellonella killing assay. These results put in evidence that iron levels regulate, likely through the Fur system, S. maltophilia biofilm formation, oxidative stress response, OMPs expression, DSF production and virulence.

  20. Formation of polychlorinated compounds in the combustion of PVC with iron nanoparticles.

    Science.gov (United States)

    Font, Rafael; Gálvez, Araceli; Moltó, Julia; Fullana, Andrés; Aracil, Ignacio

    2010-01-01

    The influence of iron nanoparticles in the fuel-rich combustion of PVC has been studied in this work. Dynamic runs for PVC and the mixture PVC and iron nanoparticles were firstly carried out by TGA-MS in order to study the influence of iron on the compounds evolved in the thermal degradation of PVC. To complete the study both PVC and a mixture of PVC and iron nanoparticles were burnt in a laboratory reactor under two different operating conditions: at 850 degrees C and in two stages, the first one at 375 degrees C and the resulting char cooled and subsequently burnt at 850 degrees C. Carbon oxides, light hydrocarbons, PAHs, chlorophenols, chlorobenzenes and PCDD/Fs were analyzed. It was observed that the mixture of PVC with iron nanoparticles at 375 degrees C greatly enhances the formation of light hydrocarbons and polychlorinated compounds, probably indicating that the presence of iron during the thermal decomposition of PVC causes the formation of iron chloride which may have a high catalytic effect.

  1. Biofuel-Promoted Polychlorinated Dibenzodioxin/furan Formation in an Iron-Catalyzed Diesel Particle Filter.

    Science.gov (United States)

    Heeb, Norbert V; Rey, Maria Dolores; Zennegg, Markus; Haag, Regula; Wichser, Adrian; Schmid, Peter; Seiler, Cornelia; Honegger, Peter; Zeyer, Kerstin; Mohn, Joachim; Bürki, Samuel; Zimmerli, Yan; Czerwinski, Jan; Mayer, Andreas

    2015-08-04

    Iron-catalyzed diesel particle filters (DPFs) are widely used for particle abatement. Active catalyst particles, so-called fuel-borne catalysts (FBCs), are formed in situ, in the engine, when combusting precursors, which were premixed with the fuel. The obtained iron oxide particles catalyze soot oxidation in filters. Iron-catalyzed DPFs are considered as safe with respect to their potential to form polychlorinated dibenzodioxins/furans (PCDD/Fs). We reported that a bimetallic potassium/iron FBC supported an intense PCDD/F formation in a DPF. Here, we discuss the impact of fatty acid methyl ester (FAME) biofuel on PCDD/F emissions. The iron-catalyzed DPF indeed supported a PCDD/F formation with biofuel but remained inactive with petroleum-derived diesel fuel. PCDD/F emissions (I-TEQ) increased 23-fold when comparing biofuel and diesel data. Emissions of 2,3,7,8-TCDD, the most toxic congener [toxicity equivalence factor (TEF) = 1.0], increased 90-fold, and those of 2,3,7,8-TCDF (TEF = 0.1) increased 170-fold. Congener patterns also changed, indicating a preferential formation of tetra- and penta-chlorodibenzofurans. Thus, an inactive iron-catalyzed DPF becomes active, supporting a PCDD/F formation, when operated with biofuel containing impurities of potassium. Alkali metals are inherent constituents of biofuels. According to the current European Union (EU) legislation, levels of 5 μg/g are accepted. We conclude that risks for a secondary PCDD/F formation in iron-catalyzed DPFs increase when combusting potassium-containing biofuels.

  2. Mechanisms of bands and spirals formation during the drying of watery solutions of mercury (II) chloride with agar-agar

    Energy Technology Data Exchange (ETDEWEB)

    Suarez-DomInguez, Edgardo Jonathan; Betancourt-Mar, Juvencio Alberto [Laboratorio de Investigacion UNE-SAS, Universidad del Noreste, Prol. Av. Hidalgo 6315 Col. Nuevo Aeropuerto, Tampico, Tam., Mexico, C.P. 89337 (Mexico)

    2005-01-01

    It is proposed two mechanisms to explain the formation of periodic and non periodic bands and spirals as thin films of gelatinous aqueous solutions of mercury (II) chloride are dried. The first mechanism supposes an homogeneous drying, where the height of the film decreases at constant rate, forming Liesegang bands. The second mechanism implies a non homogeneous drying where an evaporation front drives the formation of periodic bands and spirals.

  3. Shelf-to-basin iron shuttling enhances vivianite formation in deep Baltic Sea sediments

    Science.gov (United States)

    Reed, Daniel C.; Gustafsson, Bo G.; Slomp, Caroline P.

    2016-01-01

    Coastal hypoxia is a growing and persistent problem largely attributable to enhanced terrestrial nutrient (i.e., nitrogen and phosphorus) loading. Recent studies suggest phosphorus removal through burial of iron (II) phosphates, putatively vivianite, plays an important role in nutrient cycling in the Baltic Sea - the world's largest anthropogenic dead zone - yet the dynamics of iron (II) phosphate formation are poorly constrained. To address this, a reactive-transport model was used to reconstruct the diagenetic and depositional history of sediments in the Fårö basin, a deep anoxic and sulphidic region of the Baltic Sea where iron (II) phosphates have been observed. Simulations demonstrate that transport of iron from shelf sediments to deep basins enhances vivianite formation while sulphide concentrations are low, but that pyrite forms preferentially over vivianite when sulphate reduction intensifies due to elevated organic loading. Episodic reoxygenation events, associated with major inflows of oxic waters, encourage the retention of iron oxyhydroxides and iron-bound phosphorus in sediments, increasing vivianite precipitation as a result. Results suggest that artificial reoxygenation of the Baltic Sea bottom waters could sequester up to 3% of the annual external phosphorus loads as iron (II) phosphates, but this is negligible when compared to potential internal phosphorus loads due to dissolution of iron oxyhydroxides when low oxygen conditions prevail. Thus, enhancing vivianite formation through artificial reoxygenation of deep waters is not a viable engineering solution to eutrophication in the Baltic Sea. Finally, simulations suggest that regions with limited sulphate reduction and hypoxic intervals, such as eutrophic estuaries, could act as important phosphorus sinks by sequestering vivianite. This could potentially alleviate eutrophication in shelf and slope environments.

  4. Observation of a hidden hole-like band approaching the fermi level in K-doped iron selenide superconductor

    International Nuclear Information System (INIS)

    Sunagawa, Masanori; Terashima, Kensei; Hamada, Takahiro

    2016-01-01

    One of the ultimate goals of the study of iron-based superconductors is to identify the common feature that produces the high critical temperature (T c ). In the early days, based on a weak-coupling viewpoint, the nesting between hole- and electron-like Fermi surfaces (FSs) leading to the so-called s± state was considered to be one such key feature. However, this theory has faced a serious challenge ever since the discovery of alkali-metal-doped FeSe (AFS) superconductors, in which only electron-like FSs with a nodeless superconducting gap are observed. Several theories have been proposed, but a consistent understanding is yet to be achieved. Here we show experimentally that a hole-like band exists in K x Fe 2-y Se 2 , which presumably forms a hole-like Fermi surface. The present study suggests that AFS can be categorized in the same group as iron arsenides with both hole- and electron-like FSs present. This result provides a foundation for a comprehensive understanding of the superconductivity in iron-based superconductors. (author)

  5. What do we really know about the role of microorganisms in iron sulfide mineral formation?

    Science.gov (United States)

    Picard, Aude A.; Gartman, Amy; Girguis, Peter R.

    2016-01-01

    Iron sulfide mineralization in low-temperature systems is a result of biotic and abiotic processes, though the delineation between these two modes of formation is not always straightforward. Here we review the role of microorganisms in the precipitation of extracellular iron sulfide minerals. We summarize the evidence that links sulfur-metabolizing microorganisms and sulfide minerals in nature and we present a critical overview of laboratory-based studies of the nucleation and growth of iron sulfide minerals in microbial cultures. We discuss whether biologically derived minerals are distinguishable from abiotic minerals, possessing attributes that are uniquely diagnostic of biomineralization. These inquiries have revealed the need for additional thorough, mechanistic and high-resolution studies to understand microbially mediated formation of a variety of sulfide minerals across a range of natural environments.

  6. Formation of Titanium Carbide in the Surface Layer of Cavityless-Cast Iron-Carbon Alloys

    Science.gov (United States)

    Ovcharenko, P. G.; Leshchev, A. Yu.; Makhneva, T. M.

    2018-01-01

    Special features of formation of titanium carbide in the surface layer of castings of iron-carbon alloys obtained with the use of investment patterns and "Ti - C" and "FeTi - C" alloying compositions are considered. The phase composition, the structure, and the hardness of the alloyed layers are determined.

  7. In situ observations of graphite formation during solidification of cast iron

    DEFF Research Database (Denmark)

    Bjerre, Mathias Karsten

    , the solidification of cast iron is studied with focus on formation and growth of spheroidal graphite. To this end, an experiment is conducted at the Diamond Light Source synchrotron facility in Harwell, UK: Employing an environmental cell devel-oped at the Manchester X-ray Imaging Facility at the University...

  8. Pathways of ferrous iron mineral formation upon sulfidation of lepidocrocite surfaces

    NARCIS (Netherlands)

    Hellige, K.; Pollok, K.; Larese-Casanova, P.; Behrends, T.; Peiffer, S.

    2012-01-01

    The interaction between S(-II) and ferric oxides exerts a major control for the sulphur and iron cycle and in particular for the carbon and electron flow in many aquatic systems. It is regarded to be a key reaction leading ultimately to pyrite formation, the pathways still remaining unresolved. We

  9. Interaction between sulfur and lead in toxicity, iron plaque formation and lead accumulation in rice plant.

    Science.gov (United States)

    Yang, Junxing; Liu, Zhiyan; Wan, Xiaoming; Zheng, Guodi; Yang, Jun; Zhang, Hanzhi; Guo, Lin; Wang, Xuedong; Zhou, Xiaoyong; Guo, Qingjun; Xu, Ruixiang; Zhou, Guangdong; Peters, Marc; Zhu, Guangxu; Wei, Rongfei; Tian, Liyan; Han, Xiaokun

    2016-06-01

    Human activities have resulted in lead and sulfur accumulation in paddy soils in parts of southern China. A combined soil-sand pot experiment was conducted to investigate the influence of S supply on iron plaque formation and Pb accumulation in rice (Oryza sativa L.) under two Pb levels (0 and 600 mg kg(-1)), combined with four S concentrations (0, 30, 60, and 120 mg kg(-1)). Results showed that S supply significantly decreased Pb accumulation in straw and grains of rice. This result may be attributed to the enhancement of Fe plaque formation, decrease of Pb availability in soil, and increase of reduced glutathione (GSH) in rice leaves. Moderate S supply (30 mg kg(-1)) significantly increased Fe plaque formation on the root surface and in the rhizosphere, whereas excessive S supply (60 and 120 mg kg(-1)) significantly decreased the amounts of iron plaque on the root surface. Sulfur supply significantly enhanced the GSH contents in leaves of rice plants under Pb treatment. With excessive S application, the rice root acted as a more effective barrier to Pb accumulation compared with iron plaque. Excessive S supply may result in a higher monosulfide toxicity and decreased iron plaque formation on the root surface during flooded conditions. However, excessive S supply could effectively decrease Pb availability in soils and reduce Pb accumulation in rice plants. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Effect of packing fraction on shear band formation in a granular material forced by a penetrometer.

    Science.gov (United States)

    Tapia, Franco; Espíndola, David; Hamm, Eugenio; Melo, Francisco

    2013-01-01

    Granular ensembles subjected to confinement forces can reach metastable states that often break down via formation of shear bands for sufficiently high deviatoric stress. In this article we investigate the flow induced in a granular ensemble that is perturbed by a vertically moving finger in a quasiplanar geometry. The flow exhibits spiral-like shear bands and evolves discontinuously in time, in concert with an oscillating penetration force. We characterize the nature of this nucleation-relaxation type process for loose to dense packing fractions. The nucleation dynamics is reasonably well described by a simple Mohr-Coulomb failure criterium in which the friction coefficient is a function of packing fraction. We contrast our findings with the recent work of Gravish et al. [Phys. Rev. Lett. 105, 128301 (2010)].

  11. STRUCTURE FORMATION OF ALLOYS ON IRON BASIS AFTER LASER ALLOYING

    Directory of Open Access Journals (Sweden)

    О. V. Diachenko

    2016-01-01

    Full Text Available The paper is devoted to investigations on influence of laser treatment regimes of gas-thermal and adhesive coatings from self-fluxing powders on iron basis and after melting with modifying plaster on their roughness and phase composition. One of mathematical planning methods that is a complete factor experiment method has been used for investigation of parameters’ influence on micro-geometry of coatings. The executed investigations have made it possible to observe a general regularity which does not depend on a type of alloying plaster: while increasing speed of laser beam relatively to treated part, beam diameter value of Ra parameter is becoming less. Decrease in height of surface irregularities in case of increasing laser beam speed is related with intensification of evaporation processes. An increase in beam diameter diminishes Ra parameter of the surface. This is due to the fact that decrease in power density occurs at high rate of beam defocusing. Overlapping coefficient does not exert a pronounced effect on Ra parameter of fused coatings. While increasing the speed of laser beam relatively to the part structure is transferred from dendrite into supersaturated one with carbide and boride precipitations. It has been established that technological parameters of laser treatment and particularly speed of laser beam influence on coating composition. While increasing the speed up to v5 = 5 × 10–3 m/s amount of chromium has become larger by 1.5-fold that resulted in increase of micro-hardness of the coating from 9.5–10.1 GPa up to 11.04–15.50 GPa.

  12. Formation of crystalline nanoparticles by iron binding to pentapeptide (Asp-His-Thr-Lys-Glu) from egg white hydrolysates.

    Science.gov (United States)

    Sun, Na; Cui, Pengbo; Li, Dongmei; Jin, Ziqi; Zhang, Shuyu; Lin, Songyi

    2017-09-20

    A novel peptide from egg white, Asp-His-Thr-Lys-Glu (DHTKE), contains specific amino acids associated with iron binding. The present study aims to better understand the molecular basis of interactions between the DHTKE peptide and iron ions. The ultraviolet-visible and fluorescence spectra indicate an interaction between the DHTKE peptide and iron ions, which leads to the formation of a DHTKE-iron complex. Notably, Asp, Glu, His, and Lys in the DHTKE peptide play crucial roles in the formation of the DHTKE-iron complex, and the iron-binding site of the DHTKE peptide corresponds primarily to the amide and carboxyl groups. The DHTKE peptide can bind iron ions in a 1 : 2 ratio with a binding constant of 1.312 × 10 5 M -1 . Moreover, the DHTKE-iron complex belongs to thermodynamically stable nanoparticles that are present in the crystalline structure, which might be attributed to peptide folding induced by iron binding. Meanwhile, the DHTKE-iron complex exhibits a relatively high iron-releasing percentage and exerts excellent solubility in the human gastrointestinal tract in vitro. This suggests a potential application of peptides containing Asp, Glu, His, or Lys residues as potential iron supplements.

  13. GPM GROUND VALIDATION NOAA S-BAND PROFILER RAW DATA NETCDF FORMAT MC3E V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The GPM Ground Validation NOAA S-Band Profiler Raw Data NetCDF Format MC3E dataset was gathered during the Midlatitude Continental Convective Clouds Experiment...

  14. Controlled formation of iron carbides and their performance in Fischer-Tropsch synthesis

    KAUST Repository

    Wezendonk, Tim A.

    2018-04-19

    Iron carbides are unmistakably associated with the active phase for Fischer-Tropsch synthesis (FTS). The formation of these carbides is highly dependent on the catalyst formulation, the activation method and the operational conditions. Because of this highly dynamic behavior, studies on active phase performance often lack the direct correlation between catalyst performance and iron carbide phase. For the above reasons, an extensive in situ Mössbauer spectroscopy study on highly dispersed Fe on carbon catalysts (Fe@C) produced through pyrolysis of a Metal Organic Framework was coupled to their FTS performance testing. The preparation of Fe@C catalysts via this MOF mediated synthesis allows control over the active phase formation and therefore provides an ideal model system to study the performance of different iron carbides. Reduction of fresh Fe@C followed by low-temperature Fischer-Tropsch (LTFT) conditions resulted in the formation of the ε′-Fe2.2C, whereas carburization of the fresh catalysts under high-temperature Fischer-Tropsch (HTFT) resulted in the formation of χ-Fe5C2. Furthermore, the different activation methods did not alter other important catalyst properties, as pre- and post-reaction transmission electron microscopy (TEM) characterization confirmed that the iron nanoparticle dispersion was preserved. The weight normalized activities (FTY) of χ-Fe5C2 and ε′-Fe2.2C are virtually identical, whilst it is found that ε′-Fe2.2C is a better hydrogenation catalyst than χ-Fe5C2. The absence of differences under subsequent HTFT experiments, where χ-Fe5C2 is the dominating phase, is a strong indication that the iron carbide phase is responsible for the differences in selectivity.

  15. Study about iron disilicide formation by high current ion implantation

    CERN Document Server

    Liu, Z Q; Li, W Z

    2002-01-01

    beta-FeSi sub 2 exhibits a strong optical absorption and luminescence peak at the energy of about 0.85 eV, which corresponds to the wavelength window preferred for optical communication systems. This property makes beta-FeSi sub 2 a promising material to be used in optoelectronic applications and it has received great research interest. In this study, the formation of beta-FeSi sub 2 by high current ion implantation using a metal vapor vacuum arc ion source was investigated. Fe atoms with dose ranging from 4x10 sup 1 sup 7 to 2x10 sup 1 sup 8 /cm sup 2 were implanted into (1 0 0)Si substrates. Pure beta-FeSi sub 2 was successfully fabricated. alpha-FeSi sub 2 with strong (1 1 1) preferred orientation was also formed when the implantation was conducted at the temperature of 580 degree sign C.

  16. Microstructural characterization and formation mechanism of abnormal segregation band of hot rolled ferrite/pearlite steel

    International Nuclear Information System (INIS)

    Feng, Rui; Li, Shengli; Zhu, Xinde; Ao, Qing

    2015-01-01

    In order to further reveal the microstructural characterization and formation mechanism of abnormal segregation band of hot rolled ferrite/pearlite steel, the microstructure of this type steel was intensively studied with Scanning Auger Microprobe (SAM), etc. The results show that severe C–Mn segregation exists in the abnormal segregation band region at the center of hot rolled ferrite/pearlite steel, which results from the Mn segregation during solidification process of the continuous casting slab. The C–Mn segregation causes relative displacement of pearlite transformation curve and bainite transformation curve of C curve in the corresponding region, leading to bay-like shaped C curve. The bay-like shaped C curve creates conditions for the transformation from supercooling austenite to bainite at relatively lower cooling rate in this region. The Fe–Mn–C Atomic Segregation Zone (FASZ) caused by C–Mn segregation can powerfully retard the atomic motion, and increase the lattice reconstruction resistance of austenite transformation. These two factors provide thermodynamic and kinetic conditions for the bainite transformation, and result in the emergence of granular bainitic abnormal segregation band at the center of steel plate, which leads to lower plasticity and toughness of this region, and induces the layered fracture. - Highlights: • Scanning Auger Microprobe (SAM) is applied in the fracture analysis. • The abnormal segregation band region appears obvious C–Mn segregation. • The C–Mn segregation leads to bay-like shaped C curve. • The C–Mn segregation leads to Fe–Mn–C Atomic Segregation Zone

  17. Formation of oriented nitrides by N{sup +} ion implantation in iron single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Costa, A.R.G. [CFMC, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa (Portugal); IST/IPFN, Universidade de Lisboa, Campus Tecnológico e Nuclear, E.N.10, 2686-953 Sacavém (Portugal); Silva, R.C. da [IST/IPFN, Universidade de Lisboa, Campus Tecnológico e Nuclear, E.N.10, 2686-953 Sacavém (Portugal); Ferreira, L.P. [CFMC, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa (Portugal); Dep. Física, Fac. Ciências e Tecnologia, Universidade de Coimbra, 3004-516 Coimbra (Portugal); Carvalho, M.D. [CCMM/Dep. Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa (Portugal); Silva, C. [CFMC, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa (Portugal); Dep. Física, Fac. Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa (Portugal); Franco, N. [IST/IPFN, Universidade de Lisboa, Campus Tecnológico e Nuclear, E.N.10, 2686-953 Sacavém (Portugal); Godinho, M. [CFMC, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa (Portugal); Dep. Física, Fac. Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa (Portugal); and others

    2014-01-15

    Iron single crystals were implanted with nitrogen at room temperature, with a fluence of 5×10{sup 17} cm{sup −2} and 50 keV energy, to produce iron nitride phases and characterize the influence of the crystal orientation. The stability and evolution of the nitride phases and diffusion of implanted nitrogen were studied as a function of successive annealing treatments at 250 °C in vacuum. The composition, structure and magnetic properties were characterized using RBS/channeling, X-Ray Diffraction, Magnetic Force Microscopy, Magneto-optical Kerr Effect and Conversion Electron Mössbauer Spectroscopy. In the as-implanted state the formation of Fe{sub 2}N phase was clearly identified in all single crystals. This phase is not stable at 250 °C and annealing at this temperature promotes the formation of ε-Fe{sub 3}N, or γ′-Fe{sub 4}N, depending on the orientation of the substrate. - Highlights: • Oriented magnetic iron nitrides were obtained by nitrogen implantation into iron single crystals. • The stable magnetic nitride phase at 250 °C depends on the orientation of the host single crystal, being γ'-Fe{sub 4}N or ε-Fe{sub 3}N. • The easy magnetization axis was found to lay in the (100) plane for cubic γ'-Fe{sub 4}N and out of (100) plane for hexagonal ε-Fe{sub 3}N.

  18. Microstructures and formation mechanism of hypoeutectic white cast iron by isothermal electromagnetic rheocast process

    Directory of Open Access Journals (Sweden)

    Zhang Wanning

    2010-05-01

    Full Text Available An investigation was made on the evolution of microstructures of hypoeutectic white cast iron slurry containing 2.5wt.%C and 1.8wt.%Si produced by rheocasting in which the solidifying alloy was vigorously agitated by electromagnetic stirrer during isothermal cooling processes. The results indicated that under the proper agitating temperatures and speeds applied, the dendrite structures in white cast iron slurry were gradually evolved into spherical structures during a certain agitating time. It also revealed that the bent dendrites were formed by either convection force or by the growth of the dendrites themselves in the bending direction; then, as they were in solidifying, they were gradually being alternated into separated particles and into more spherical structures at the end of the isothermal cooling process. Especially, the dendrites were granulated as the bending process proceeding, which suggested that they were caused by unwanted elements such as sulfur and phosphor usually contained in engineering cast iron. Convective flow of the melt caused corrosion on the dendritic segments where they were weaker in strength and lower in melting temperature because of higher concentration of sulfur or phosphor. And the granulation process for such dendrites formed in the melt became possible under the condition. Certainly, dendrite fragments are another factors considerable to function for spherical particles formation. A new mechanism, regarding to the rheocast structure formation of white cast iron, was suggested based on the structural evolution observed in the study.

  19. Formation of oriented nitrides by N+ ion implantation in iron single crystals

    International Nuclear Information System (INIS)

    Costa, A.R.G.; Silva, R.C. da; Ferreira, L.P.; Carvalho, M.D.; Silva, C.; Franco, N.; Godinho, M.

    2014-01-01

    Iron single crystals were implanted with nitrogen at room temperature, with a fluence of 5×10 17 cm −2 and 50 keV energy, to produce iron nitride phases and characterize the influence of the crystal orientation. The stability and evolution of the nitride phases and diffusion of implanted nitrogen were studied as a function of successive annealing treatments at 250 °C in vacuum. The composition, structure and magnetic properties were characterized using RBS/channeling, X-Ray Diffraction, Magnetic Force Microscopy, Magneto-optical Kerr Effect and Conversion Electron Mössbauer Spectroscopy. In the as-implanted state the formation of Fe 2 N phase was clearly identified in all single crystals. This phase is not stable at 250 °C and annealing at this temperature promotes the formation of ε-Fe 3 N, or γ′-Fe 4 N, depending on the orientation of the substrate. - Highlights: • Oriented magnetic iron nitrides were obtained by nitrogen implantation into iron single crystals. • The stable magnetic nitride phase at 250 °C depends on the orientation of the host single crystal, being γ'-Fe 4 N or ε-Fe 3 N. • The easy magnetization axis was found to lay in the (100) plane for cubic γ'-Fe 4 N and out of (100) plane for hexagonal ε-Fe 3 N

  20. Oncoidal granular iron formation in the Mesoarchaean Pongola Supergroup, southern Africa: Textural and geochemical evidence for biological activity during iron deposition.

    Science.gov (United States)

    Smith, A J B; Beukes, N J; Gutzmer, J; Czaja, A D; Johnson, C M; Nhleko, N

    2017-11-01

    We document the discovery of the first granular iron formation (GIF) of Archaean age and present textural and geochemical results that suggest these formed through microbial iron oxidation. The GIF occurs in the Nconga Formation of the ca. 3.0-2.8 Ga Pongola Supergroup in South Africa and Swaziland. It is interbedded with oxide and silicate facies micritic iron formation (MIF). There is a strong textural control on iron mineralization in the GIF not observed in the associated MIF. The GIF is marked by oncoids with chert cores surrounded by magnetite and calcite rims. These rims show laminated domal textures, similar in appearance to microstromatolites. The GIF is enriched in silica and depleted in Fe relative to the interbedded MIF. Very low Al and trace element contents in the GIF indicate that chemically precipitated chert was reworked above wave base into granules in an environment devoid of siliciclastic input. Microbially mediated iron precipitation resulted in the formation of irregular, domal rims around the chert granules. During storm surges, oncoids were transported and deposited in deeper water environments. Textural features, along with positive δ 56 Fe values in magnetite, suggest that iron precipitation occurred through incomplete oxidation of hydrothermal Fe 2+ by iron-oxidizing bacteria. The initial Fe 3+ -oxyhydroxide precipitates were then post-depositionally transformed to magnetite. Comparison of the Fe isotope compositions of the oncoidal GIF with those reported for the interbedded deeper water iron formation (IF) illustrates that the Fe 2+ pathways and sources for these units were distinct. It is suggested that the deeper water IF was deposited from the evolved margin of a buoyant Fe 2+ aq -rich hydrothermal plume distal to its source. In contrast, oncolitic magnetite rims of chert granules were sourced from ambient Fe 2+ aq -depleted shallow ocean water beyond the plume. © 2017 John Wiley & Sons Ltd.

  1. Studies on alkaline band formation in Chara corallina: ameliorating effect of Ca2+ on inhibition induced by osmotic shock.

    Science.gov (United States)

    Shimmen, Teruo; Yonemura, Satoko; Negoro, Mio; Lucas, William J

    2003-09-01

    Although the decrease in cell turgor by application of sorbitol to the external medium did not inhibit the alkaline band formation in Chara corallina, recovery of normal turgor severely inhibited it. Alkaline-loading analysis suggested that the inhibition of alkaline band formation was caused by inhibition of HCO(3)(-) influx but not that of OH(-) efflux. In the presence of 10 mM CaCl(2), the capacity of alkaline band formation was maintained during osmotic treatment. Cells could not form alkaline bands, when plasmolysis was induced by application of sorbitol at a higher concentration. Addition of 10 mM CaCl(2) could ameliorate the inhibition caused by plasmolyis.

  2. Geochemistry and source of iron-formation from Guanhaes group, Guanhaes district, Minas Gerais, Brazil

    International Nuclear Information System (INIS)

    Sad, J.H.G.; Chiodi Filho, C.; Magalhaes, J.M.M.; Carelos, P.M.

    1990-01-01

    The Guanhaes district is underlain by metavolcano-sedimentary rocks of the Guanhaes Group, emplaced over an older Archean basement and intruded by granitic bodies. The Guanhaes Group is composed of pelitic, mafic and ultramafic schists at the base; silicate and carbonate facies iron-formation, calcarious schists, calcsilicates rocks and quartzites at the median portion and para-gneisses (meta-graywacks) at the top. Geochemistry of iron-formation suggest a hydrothermal affinity comparable to the hydrothermal sediments flanking East Pacific Rise. Paragenetic studies indicates that the rocks were submited to two metamorphic processes: one of regional character (high-amphibolite facies) and one of themal character (pyroxene-hornfels facies). Chemical analysis, as X-ray and optic spectrography, atomic absorption and plasma spectrography are presented. (author)

  3. Spatial inhomogeneities in iron pnictide superconductors: The formation of charge stripes

    Science.gov (United States)

    Gor'Kov, Lev P.; Teitel'Baum, Gregory B.

    2010-07-01

    The heterogeneous coexistence of antiferromagnetism [spin-density wave (SDW)] and superconductivity on a mesoscopic scale was observed in iron pnictides in many recent experiments. We suggest and discuss the scenario in which the heterogeneity is caused by formation of domain walls inherent to the SDW state of pnictides at a proper doping or under applied pressure. Superconductivity would emerge from the modulated SDW structure. The phenomenon is akin to the Fulde-Ferrel-Larkin-Ovchinnikov (FFLO) phase in superconductors.

  4. Textural and Isotopic Evidence for Silica Cementation in 1.88 GA Granular Iron Formation

    Science.gov (United States)

    Brengman, L. A.; Fedo, C.; Martin, W.

    2016-12-01

    Controls on quartz precipitation mechanisms and silicon isotope fractionation during diagenesis of Precambrian iron formation (IF) are not well constrained. The goal of this study is to identify textural evidence for the relative timing of silica cementation of granular units from the near un-metamorphosed 1.88 Ga Biwabik IF and determine the silicon isotope composition for such a silicification event. The lowermost IF (lower cherty, LC) consists of granular units associated with high-energy sedimentary structures interpreted to represent shallow-marine shelf deposition. Up-section is marked by an abrupt shift to banded units interpreted as a transition to quiescent (deeper) water, followed by a return to granular textures and shallower conditions (upper cherty, UC). We first surveyed granular samples of the lower stromatolitic (LC) and upper oncolitic facies (UC) to identify sedimentary textures and cement. LC units consist of microquartz (chert), megaquartz, hematite, carbonate, and detrital quartz, chert, and quartz/Fe-oxide intraclastic material. In UC samples, space between granular material (hematite, magnetite, quartz ooids/intraclasts) is filled by mega-quartz cement, and cross-cutting mega-quartz veins. We targeted mega-quartz cement, and veins for δ30Si analysis via secondary ion mass spectrometry. The average measured δ30Si value of cement (δ30Siavg. cement UC6b = -3.11 ± 0.21 ‰) is significantly different than associated veins (δ30Siavg. vein UC6b = 0.21 ± 0.21 ‰; δ30Siavg. vein LC4 = 0.39 ± 0.21 ‰), both within and between samples. We interpret the relative difference between cement and veins to represent quartz precipitation under different geochemical conditions, and therefore at different times. Combining isotopic and textural evidence, we interpret silica cementation to pre-date veins, and represent quartz precipitation that either varied in rate, or occurred under closed-system conditions affected by Rayleigh distillation. Both

  5. Iron-catalyzed hydrogenation of bicarbonates and carbon dioxide to formates.

    Science.gov (United States)

    Zhu, Fengxiang; Zhu-Ge, Ling; Yang, Guangfu; Zhou, Shaolin

    2015-02-01

    The catalytic hydrogenation of carbon dioxide and bicarbonate to formate has been explored extensively. The vast majority of the known active catalyst systems are based on precious metals. Herein, we describe an effective, phosphine-free, air- and moisture-tolerant catalyst system based on Knölker's iron complex for the hydrogenation of bicarbonate and carbon dioxide to formate. The catalyst system can hydrogenate bicarbonate at remarkably low hydrogen pressures (1-5 bar). © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Synergistic Activities of an Efflux Pump Inhibitor and Iron Chelators against Pseudomonas aeruginosa Growth and Biofilm Formation

    DEFF Research Database (Denmark)

    Liu, Yang; Yang, Liang; Molin, Søren

    2010-01-01

    The efflux pump inhibitor phenyl-arginine-beta-naphthylamide (PA beta N) was paired with iron chelators 2,2'-dipyridyl, acetohydroxamic acid, and EDTA to assess synergistic activities against Pseudomonas aeruginosa growth and biofilm formation. All of the tested iron chelators synergistically...

  7. Atomistic explanation of shear-induced amorphous band formation in boron carbide.

    Science.gov (United States)

    An, Qi; Goddard, William A; Cheng, Tao

    2014-08-29

    Boron carbide (B4C) is very hard, but its applications are hindered by stress-induced amorphous band formation. To explain this behavior, we used density function theory (Perdew-Burke-Ernzerhof flavor) to examine the response to shear along 11 plausible slip systems. We found that the (0111)/ slip system has the lowest shear strength (consistent with previous experimental studies) and that this slip leads to a unique plastic deformation before failure in which a boron-carbon bond between neighboring icosahedral clusters breaks to form a carbon lone pair (Lewis base) on the C within the icosahedron. Further shear then leads this Lewis base C to form a new bond with the Lewis acidic B in the middle of a CBC chain. This then initiates destruction of this icosahedron. The result is the amorphous structure observed experimentally. We suggest how this insight could be used to strengthen B4C.

  8. Comparative analysis of biofilm formation by Bacillus cereus reference strains and undomesticated food isolates and the effect of free iron.

    Science.gov (United States)

    Hayrapetyan, Hasmik; Muller, Lisette; Tempelaars, Marcel; Abee, Tjakko; Nierop Groot, Masja

    2015-05-04

    Biofilm formation of Bacillus cereus reference strains ATCC 14579 and ATCC 10987 and 21 undomesticated food isolates was studied on polystyrene and stainless steel as contact surfaces. For all strains, the biofilm forming capacity was significantly enhanced when in contact with stainless steel (SS) as a surface as compared to polystyrene (PS). For a selection of strains, the total CFU and spore counts in biofilms were determined and showed a good correlation between CFU counts and total biomass of these biofilms. Sporulation was favoured in the biofilm over the planktonic state. To substantiate whether iron availability could affect B. cereus biofilm formation, the free iron availability was varied in BHI by either the addition of FeCl3 or by depletion of iron with the scavenger 2,2-Bipyridine. Addition of iron resulted in increased air-liquid interface biofilm on polystyrene but not on SS for strain ATCC 10987, while the presence of Bipyridine reduced biofilm formation for both materials. Biofilm formation was restored when excess FeCl3 was added in combination with the scavenger. Further validation of the iron effect for all 23 strains in microtiter plate showed that fourteen strains (including ATCC10987) formed a biofilm on PS. For eight of these strains biofilm formation was enhanced in the presence of added iron and for eleven strains it was reduced when free iron was scavenged. Our results show that stainless steel as a contact material provides more favourable conditions for B. cereus biofilm formation and maturation compared to polystyrene. This effect could possibly be linked to iron availability as we show that free iron availability affects B. cereus biofilm formation. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. The role of microbial iron reduction in the formation of Proterozoic molar tooth structures

    Science.gov (United States)

    Hodgskiss, Malcolm S. W.; Kunzmann, Marcus; Poirier, André; Halverson, Galen P.

    2018-01-01

    Molar tooth structures are poorly understood early diagenetic, microspar-filled voids in clay-rich carbonate sediments. They are a common structure in sedimentary successions dating from 2600-720 Ma, but do not occur in rocks older or younger, with the exception of two isolated Ediacaran occurrences. Despite being locally volumetrically significant in carbonate rocks of this age, their formation and disappearance in the geological record remain enigmatic. Here we present iron isotope data, supported by carbon and oxygen isotopes, major and minor element concentrations, and total organic carbon and sulphur contents for 87 samples from units in ten different basins spanning ca. 1900-635 Ma. The iron isotope composition of molar tooth structures is almost always lighter (modal depletion of 2‰) than the carbonate or residue components in the host sediment. We interpret the isotopically light iron in molar tooth structures to have been produced by dissimilatory iron reduction utilising Fe-rich smectites and Fe-oxyhydroxides in the upper sediment column. The microbial conversion of smectite to illite results in a volume reduction of clay minerals (∼30%) while simultaneously increasing pore water alkalinity. When coupled with wave loading, this biogeochemical process is a viable mechanism to produce voids and subsequently precipitate carbonate minerals. The disappearance of molar tooth structures in the mid-Neoproterozoic is likely linked to a combination of a decrease in smectite abundance, a decline in the marine DIC reservoir, and an increase in the concentration of O2 in shallow seawater.

  10. Iron

    Science.gov (United States)

    ... Share: Search the ODS website Submit Search NIH Office of Dietary Supplements Consumer Datos en español Health ... eating a variety of foods, including the following: Lean meat, seafood, and poultry. Iron-fortified breakfast cereals ...

  11. Formation of Gas-Phase Formate in Thermal Reactions of Carbon Dioxide with Diatomic Iron Hydride Anions.

    Science.gov (United States)

    Jiang, Li-Xue; Zhao, Chongyang; Li, Xiao-Na; Chen, Hui; He, Sheng-Gui

    2017-04-03

    The hydrogenation of carbon dioxide involves the activation of the thermodynamically very stable molecule CO 2 and formation of a C-H bond. Herein, we report that HCO 2 - and CO can be formed in the thermal reaction of CO 2 with a diatomic metal hydride species, FeH - . The FeH - anions were produced by laser ablation, and the reaction with CO 2 was analyzed by mass spectrometry and quantum-chemical calculations. Gas-phase HCO 2 - was observed directly as a product, and its formation was predicted to proceed by facile hydride transfer. The mechanism of CO 2 hydrogenation in this gas-phase study parallels similar behavior of a condensed-phase iron catalyst. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Influence of boron on ferrite formation in copper-added spheroidal graphite cast iron

    Directory of Open Access Journals (Sweden)

    Ying Zou

    2014-07-01

    Full Text Available This paper reviews the original work of the authors published recently, describing the influence of B on the matrix of the Cuadded spheroidal graphite cast iron. The effect of Cu has been corrected as a ferrite formation promoter in the matrix of the grey cast iron by the usage of high-purity material. Also, this paper focuses on the ferrite formation and the observation of the Cu distribution in the B-added and B-free Cu-containing spheroidal graphite cast iron. The Cu film on the spheroidal graphite can be successfully observed in the B-free sample using a special etching method. However, in the B-added sample, no Cu film could be found, while the secondary graphite was formed on the surface of the spheroidal graphite. The interaction between B and Cu is stressed as a peculiar phenomenon by the employment of a contrast experiment of B and Mn. The heat treatment could make Cu precipitate more significantly in the eutectic cells and in the matrix in the form of large Cu particles because of the limited solubility of Cu.

  13. Effects of aluminum on plasma membrane as revealed by analysis of alkaline band formation in internodal cells of Chara corallina.

    Science.gov (United States)

    Takano, M; Shimmen, T

    1999-06-01

    To study the mechanism of aluminum toxicity in plant cells, the effects of aluminum on alkaline band formation were analyzed in the internodal cells of Chara. After cells were treated with AlCl3, they were examined for their capacity to develop alkaline bands. Treating cells with AlCl3 medium at pH 4.5 completely inhibited alkaline band formation. When either CaCl2 or malic acid was added to the AlCl3 medium (pH 4.5), it did not produce an ameliorative effect, whereas addition of both CaCl2 and malic acid induced a significant ameliorative effect. It was found that treatment at pH 4.5 in the absence of AlCl3 strongly inhibited alkaline band formation. This inhibition by the low pH (4.5) treatment was effectively ameliorated by CaCl2. At higher pH (5.0), malic acid alone produced a significant ameliorative effect on aluminum inhibition of alkaline band formation, but CaCl2 did not. Recovery from aluminum inhibition was also studied. When cells treated with AlCl3 at pH 4.5 were incubated in artificial pond water, they could not recover the capacity to develop alkaline band. When either malic acid or CaCl2 was added to artificial pond water, cells recovered their alkaline band formation. It was concluded that one of the primary targets of aluminum is the plasma membrane and that aluminum affects the plasma membrane from the cell exterior at the beginning of the treatment (within 24 h). It was also suggested that the aluminum treatment impairs the HCO3- influx mechanism but not the OH- efflux mechanism.

  14. Role of Short-Range Order and Hyperuniformity in the Formation of Band Gaps in Disordered Photonic Materials.

    Science.gov (United States)

    Froufe-Pérez, Luis S; Engel, Michael; Damasceno, Pablo F; Muller, Nicolas; Haberko, Jakub; Glotzer, Sharon C; Scheffold, Frank

    2016-07-29

    We study photonic band gap formation in two-dimensional high-refractive-index disordered materials where the dielectric structure is derived from packing disks in real and reciprocal space. Numerical calculations of the photonic density of states demonstrate the presence of a band gap for all polarizations in both cases. We find that the band gap width is controlled by the increase in positional correlation inducing short-range order and hyperuniformity concurrently. Our findings suggest that the optimization of short-range order, in particular the tailoring of Bragg scattering at the isotropic Brillouin zone, are of key importance for designing disordered PBG materials.

  15. Magneto-structural transformations via a solid-state nudged elastic band method: Application to iron under pressure.

    Science.gov (United States)

    Zarkevich, N A; Johnson, D D

    2015-08-14

    We extend the solid-state nudged elastic band method to handle a non-conserved order parameter, in particular, magnetization, that couples to volume and leads to many observed effects in magnetic systems. We apply this formalism to the well-studied magneto-volume collapse during the pressure-induced transformation in iron-from ferromagnetic body-centered cubic (bcc) austenite to hexagonal close-packed (hcp) martensite. We find a bcc-hcp equilibrium coexistence pressure of 8.4 GPa, with the transition-state enthalpy of 156 meV/Fe at this pressure. A discontinuity in magnetization and coherent stress occurs at the transition state, which has a form of a cusp on the potential-energy surface (yet all the atomic and cell degrees of freedom are continuous); the calculated pressure jump of 25 GPa is related to the observed 25 GPa spread in measured coexistence pressures arising from martensitic and coherency stresses in samples. Our results agree with experiments, but necessarily differ from those arising from drag and restricted parametrization methods having improperly constrained or uncontrolled degrees of freedom.

  16. Thermal Conductivity of the Iron-Based Superconductor FeSe: Nodeless Gap with a Strong Two-Band Character.

    Science.gov (United States)

    Bourgeois-Hope, P; Chi, S; Bonn, D A; Liang, R; Hardy, W N; Wolf, T; Meingast, C; Doiron-Leyraud, N; Taillefer, Louis

    2016-08-26

    The thermal conductivity κ of the iron-based superconductor FeSe was measured at temperatures down to 75 mK in magnetic fields up to 17 T. In a zero magnetic field, the electronic residual linear term in the T=0  K limit, κ_{0}/T, is vanishingly small. The application of a magnetic field B causes an exponential increase in κ_{0}/T initially. Those two observations show that there are no zero-energy quasiparticles that carry heat and therefore no nodes in the superconducting gap of FeSe. The full field dependence of κ_{0}/T has the classic two-step shape of a two-band superconductor: a first rise at very low field, with a characteristic field B^{⋆}≪B_{c2}, and then a second rise up to the upper critical field B_{c2}. This shows that the superconducting gap is very small (but finite) on one of the pockets in the Fermi surface of FeSe. We estimate that the minimum value of the gap, Δ_{min}, is an order of magnitude smaller than the maximum value, Δ_{max}.

  17. Iron enhances the peptidyl deformylase activity and biofilm formation in Staphylococcus aureus.

    Science.gov (United States)

    Swarupa, Vimjam; Chaudhury, Abhijit; Sarma, Potukuchi Venkata Gurunadha Krishna

    2018-01-01

    Staphylococcus aureus plays a major role in persistent infections and many of these species form structured biofilms on different surfaces which is accompanied by changes in gene expression profiles. Further, iron supplementation plays a critical role in the regulation of several protein(s)/enzyme function, which all aid in the development of active bacterial biofilms. It is well known that for each protein, deformylation is the most crucial step in biosynthesis and is catalyzed by peptidyl deformylase (PDF). Thus, the aim of the current study is to understand the role of iron in biofilm formation and deformylase activity of PDF. Hence, the PDF gene of S. aureus ATCC12600 was PCR amplified using specific primers and sequenced, followed by cloning and expression in Escherichia coli DH5α. The deformylase activity of the purified recombinant PDF was measured in culture supplemented with/without iron where the purified rPDF showed K m of 1.3 mM and V max of 0.035 mM/mg/min, which was close to the native PDF ( K m  = 1.4 mM, V max  = 0.030 mM/mg/min). Interestingly, the K m decreased and PDF activity increased when the culture was supplemented with iron, corroborating with qPCR results showing 100- to 150-fold more expression compared to control in S. aureus and its drug-resistant strains. Further biofilm-forming units (BU) showed an incredible increase (0.42 ± 0.005 to 6.3 ± 0.05 BU), i.e., almost 15-fold elevation in anaerobic conditions, indicating the significance of iron in S. aureus biofilms.

  18. Iron-dependent formation of reactive oxygen species and glutathione depletion after accumulation of magnetic iron oxide nanoparticles by oligodendroglial cells

    International Nuclear Information System (INIS)

    Hohnholt, Michaela C.; Dringen, Ralf

    2011-01-01

    Magnetic iron oxide nanoparticles (IONP) are currently used for various neurobiological applications. To investigate the consequences of a treatment of brain cells with such particles, we have applied dimercaptosuccinate (DMSA)-coated IONP that had an average hydrodynamic diameter of 60 nm to oligodendroglial OLN-93 cells. After exposure to 4 mM iron applied as DMSA–IONP, these cells increased their total specific iron content within 8 h 600-fold from 7 to 4,200 nmol/mg cellular protein. The strong iron accumulation was accompanied by a change in cell morphology, although the cell viability was not compromized. DMSA–IONP treatment caused a concentration-dependent increase in the iron-dependent formation of reactive oxygen species and a decrease in the specific content of the cellular antioxidative tripeptide glutathione. During a 16 h recovery phase in IONP-free culture medium following exposure to DMSA–IONP, OLN-93 cells maintained their high iron content and replenished their cellular glutathione content. These data demonstrate that viable OLN-93 cells have a remarkable potential to deal successfully with the consequences of an accumulation of large amounts of iron after exposure to DMSA–IONP.

  19. Iron plaque formation and heavy metal uptake in Spartina alterniflora at different tidal levels and waterlogging conditions.

    Science.gov (United States)

    Xu, Yan; Sun, Xiangli; Zhang, Qiqiong; Li, Xiuzhen; Yan, Zhongzheng

    2018-05-30

    Tidal flat elevation in the estuarine wetland determines the tidal flooding time and flooding frequency, which will inevitably affect the formation of iron plaque and accumulations of heavy metals (HMs) in wetland plants. The present study investigated the formation of iron plaque and HM's (copper, zinc, lead, and chromium) accumulation in S. alterniflora, a typical estuarine wetland species, at different tidal flat elevations (low, middle and high) in filed and at different time (3, 6, 9, 12 h per day) of waterlogging treatment in greenhouse conditions. Results showed that the accumulation of copper, zinc, lead, and chromium in S. alterniflora was proportional to the exchangeable fraction of these metals in the sediments, which generally increased with the increase of waterlogging time, whereas the formations of iron plaque in roots decreased with the increase of waterlogging time. Under field conditions, the uptake of copper and zinc in the different parts of the plants generally increased with the tidal levels despite the decrease in the metals' exchangeable fraction with increasing tidal levels. The formation of iron plaque was found to be highest in the middle tidal positions and significantly lower in low and high tidal positions. Longer waterlogging time increased the metals' accumulation but decreased the formation of iron plaque in S. alterniflora. The binding of metal ions on iron plaque helped impede the uptake and accumulation of copper and chromium in S. alterniflora. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. Dilatant shear band formation and diagenesis in calcareous, arkosic sandstones, Vienna Basin (Austria)

    Science.gov (United States)

    Lommatzsch, Marco; Exner, Ulrike; Gier, Susanne; Grasemann, Bernhard

    2015-01-01

    The present study examines deformation bands in calcareous arkosic sands. The investigated units can be considered as an equivalent to the Matzen field in the Vienna Basin (Austria), which is one of the most productive oil reservoirs in central Europe. The outcrop exposes carbonate-free and carbonatic sediments of Badenian age separated by a normal fault. Carbonatic sediments in the hanging wall of the normal fault develop dilation bands with minor shear displacements (< 2 mm), whereas carbonate-free sediments in the footwall develop cataclastic shear bands with up to 70 cm displacement. The cataclastic shear bands show a permeability reduction up to 3 orders of magnitude and strong baffling effects in the vadose zone. Carbonatic dilation bands show a permeability reduction of 1-2 orders of magnitude and no baffling structures. We distinguished two types of deformation bands in the carbonatic units, which differ in deformation mechanisms, distribution and composition. Full-cemented bands form as dilation bands with an intense syn-kinematic calcite cementation, whereas the younger loose-cemented bands are dilatant shear bands cemented by patchy calcite and clay minerals. All analyzed bands are characterized by a porosity and permeability reduction caused by grain fracturing and cementation. The changed petrophysical properties and especially the porosity evolution are closely related to diagenetic processes driven by varying pore fluids in different diagenetic environments. The deformation band evolution and sealing capacity is controlled by the initial host rock composition. PMID:26300577

  1. Spin wave mediated interaction as a mechanism of pairs formation in iron-based superconductors

    Science.gov (United States)

    Lima, Leonardo S.

    2018-03-01

    The spin wave mediated interaction between electrons has been proposed as mechanism to formation of electron pairs in iron-based superconductors. We employe the diagrammatic expansion to calculate the binding energy of electrons pairs mediated by spin wave. Therefore, we propose the coupling of electrons in high-temperature superconductors mediated by spin waves, since that is well known that this class of superconductors materials if relates with spin-1/2 two-dimensional antiferromagnets, where it is well known there be an interplay between antiferromagnetism 2D and high-temperature superconductivity.

  2. Primary and diagenetic controls of isotopic compositions of iron-formation carbonates

    Science.gov (United States)

    Kaufman, Alan J.; Hayes, J. M.; Klein, C.

    1990-01-01

    Results are presented on parallel analyses of carbonate and chert microbands in segments from the early Proterozoic Dales Gorge Member of the Brockman Iron Formation (western Australia), including data on isotopic, chemical, and mineralogic variations in microbanded carbonates, cherts, and coexisting minerals in four core segments from Paraburdoo and one from Wittenoom. It is shown that patterns of variation observed in isotopic abundance and mineral composition can be consistently explained in terms of diagenetic replacement of fine-grained primary precipitates by secondary ones, rather than by mineral-dependent fractionations, metamorphism, or the influence of large volumes of water in an open system.

  3. Characterisation of iron inclusion during the formation of calcium sulfoaluminate phase

    International Nuclear Information System (INIS)

    Idrissi, M.; Diouri, A.; Damidot, D.; Greneche, J.M.; Talbi, M. Alami; Taibi, M.

    2010-01-01

    The iron distribution among the sulfoaluminate clinker phases and its ability to enter the calcium sulfoaluminate lattice in solid solution can have a significant influence on manufacturing process and reactivity of calcium sulfoaluminate (CSA) cements. X-ray diffraction (XRD) analysis, Moessbauer spectroscopy, scanning electron microscopy (SEM) equipped with an energy dispersive X-ray analysis system (EDAX) and infrared spectroscopy were used to identify the mineralogical conditions of iron inclusion during the formation of calcium sulfoaluminate (C 4 A 3 S) phase from different mixtures in the CaO-Al 2 O 3 -Fe 2 O 3 -SO 3 system. The mixtures, heated in a laboratory electric oven, contained stoichiometric amounts of reagent grade CaCO 3 , Al 2 O 3 , Fe 2 O 3 and CaSO 4 .2H 2 O for the synthesis of Ca 4 Al (6- 2x) Fe 2x SO 16 , where x, comprised between 0 and 3, is the mole number of Al 2 O 3 substituted by Fe 2 O 3 . With x increasing from 0 to 1.5, both the iron content of C 4 A 3 S phase and the amounts of side components such as C 2 F and CS increased. For x values included in the range of 1.5-3.0, at temperatures higher than 1200 o C, melting phenomena were observed and, instead of the C 4 A 3 S solid solution, ferritic phases and anhydrite were formed.

  4. Slip-band formation and dislocation kinetics in the stage I deformation of neutron-irradiated copper single crystals

    International Nuclear Information System (INIS)

    Kitajima, Sadakichi; Shinohara, Kazutoshi; Kutsuwada, Masanori

    1995-01-01

    The velocity of edge and screw dislocations moving in primary slip bands and the formation rate of primary slip bands were measured in stage I deformation of neutron-irradiated copper single crystals at different strain rates at room temperature using micro-cinematography and optical micrography. The average velocity of edge dislocations was larger at least by one order than that of screw ones, and that of screw dislocations did not depend so strongly on strain rate. The formation rate of primary slip bands was proportional to strain rate. From these results, it is concluded that (1) jogs produced on moving dislocations by cutting dislocation loops result in the difference in velocity between edge and screw dislocations and (2) the change in the density of mobile dislocations as well as velocity of dislocations is responsible for the change of plastic strain rate of a crystal. (author)

  5. Increased iron bioavailability from lactic-fermented vegetables is likely an effect of promoting the formation of ferric iron (Fe(3+)).

    Science.gov (United States)

    Scheers, Nathalie; Rossander-Hulthen, Lena; Torsdottir, Inga; Sandberg, Ann-Sofie

    2016-02-01

    Lactic fermentation of foods increases the availability of iron as shown in a number of studies throughout the years. Several explanations have been provided such as decreased content of inhibitory phytate, increased solubility of iron, and increased content of lactic acid in the fermented product. However, to our knowledge, there are no data to support that the bioavailability of iron is affected by lactic fermentation. The objective of the present study was to investigate whether the bioavailability of iron from a vegetable mix was affected by lactic fermentation and to propose a mechanism for such an event, by conducting human and cell (Caco-2, HepG2) studies and iron speciation measurements (voltammetry). We also investigated whether the absorption of zinc was affected by the lactic fermentation. In human subjects, we observed that lactic-fermented vegetables served with both a high-phytate and low-phytate meal increased the absorption of iron, but not zinc. In vitro digested fermented vegetables were able to provoke a greater hepcidin response per ng Fe than fresh vegetables, indicating that Fe in the fermented mixes was more bioavailable, independent on the soluble Fe content. We measured that hydrated Fe(3+) species were increased after the lactic fermentation, while there was no significant change in hydrated Fe(2+). Furthermore, lactate addition to Caco-2 cells did not affect ferritin formation in response to Fe nor did lactate affect the hepcidin response in the Caco-2/HepG2 cell system. The mechanism for the increased bioavailability of iron from lactic-fermented vegetables is likely an effect of the increase in ferric iron (Fe(3+)) species caused by the lactic fermentation. No effect on zinc bioavailability was observed.

  6. Morphologic study of the effect of iron on pseudocyst formation in Trichomonas vaginalis and its interaction with human epithelial cells

    Directory of Open Access Journals (Sweden)

    Geovane Dias-Lopes

    Full Text Available BACKGROUND Trichomonas vaginalis is the aetiological agent of human trichomoniasis, which is one of the most prevalent sexually transmitted diseases in humans. Iron is an important element for the survival of this parasite and the colonisation of the host urogenital tract. OBJECTIVES In this study, we investigated the effects of iron on parasite proliferation in the dynamics of pseudocyst formation and morphologically characterised iron depletion-induced pseudocysts. METHODS We performed structural and ultrastructural analyses using light microscopy, scanning electron microscopy and transmission electron microscopy. FINDINGS It was observed that iron depletion (i interrupts the proliferation of T. vaginalis, (ii induces morphological changes in typical multiplicative trophozoites to spherical non-proliferative, non-motile pseudocysts, and (iii induces the arrest of cell division at different stages of the cell cycle; (iv iron is the fundamental element for the maintenance of typical trophozoite morphology; (v pseudocysts induced by iron depletion are viable and reversible forms; and, finally, (vi we demonstrated that pseudocysts induced by iron depletion are able to interact with human epithelial cells maintaining their spherical forms. MAIN CONCLUSIONS Together, these data suggest that pseudocysts could be induced as a response to iron nutritional stress and could have a potential role in the transmission and infection of T. vaginalis.

  7. Morphologic study of the effect of iron on pseudocyst formation in Trichomonas vaginalis and its interaction with human epithelial cells.

    Science.gov (United States)

    Dias-Lopes, Geovane; Saboia-Vahia, Leonardo; Margotti, Eliane Trindade; Fernandes, Nilma de Souza; Castro, Cássia Luana de Faria; Oliveira, Francisco Odencio; Peixoto, Juliana Figueiredo; Britto, Constança; Silva, Fernando Costa E; Cuervo, Patricia; Jesus, José Batista de

    2017-10-01

    Trichomonas vaginalis is the aetiological agent of human trichomoniasis, which is one of the most prevalent sexually transmitted diseases in humans. Iron is an important element for the survival of this parasite and the colonisation of the host urogenital tract. In this study, we investigated the effects of iron on parasite proliferation in the dynamics of pseudocyst formation and morphologically characterised iron depletion-induced pseudocysts. We performed structural and ultrastructural analyses using light microscopy, scanning electron microscopy and transmission electron microscopy. It was observed that iron depletion (i) interrupts the proliferation of T. vaginalis, (ii) induces morphological changes in typical multiplicative trophozoites to spherical non-proliferative, non-motile pseudocysts, and (iii) induces the arrest of cell division at different stages of the cell cycle; (iv) iron is the fundamental element for the maintenance of typical trophozoite morphology; (v) pseudocysts induced by iron depletion are viable and reversible forms; and, finally, (vi) we demonstrated that pseudocysts induced by iron depletion are able to interact with human epithelial cells maintaining their spherical forms. Together, these data suggest that pseudocysts could be induced as a response to iron nutritional stress and could have a potential role in the transmission and infection of T. vaginalis.

  8. Effects of low energy ion bombardment on the formation of cubic iron mononitride thin films

    Energy Technology Data Exchange (ETDEWEB)

    Prieto, Pilar [Departamento de Física Aplicada M-12, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid (Spain); Figuera, Juan de la [Instituto de Química-Física “Rocasolano”, CSIC, Serrano 119, 28006 Madrid (Spain); Sanz, José M. [Departamento de Física Aplicada M-12, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid (Spain); Marco, José F. [Instituto de Química-Física “Rocasolano”, CSIC, Serrano 119, 28006 Madrid (Spain)

    2013-07-31

    The formation of cubic nitrides with stoichiometry close to FeN obtained by ion assisted sputter deposition has been studied as a function of deposition parameters. In particular, we have explored the influence of the energy deposited by the assistant beam per deposited Fe atom to understand changes in composition, phase formation and nanocrystallinity of the films. An optimum N{sub 2}{sup +} ion energy and a J{sub N}/J{sub Fe} ratio (J{sub N} and J{sub Fe} represent the current density of N{sub 2}{sup +} ions and Fe atoms respectively) have been determined in order to obtain only iron mononitride phases. X-ray diffraction and Mössbauer spectroscopy revealed a phase evolution from ε-Fe{sub x(x≈2)}N to γ″ and γ‴-FeN as the N{sub 2}{sup +} ion energy and the J{sub N}/J{sub Fe} flux ratio increase. Pure nanocrystalline iron mononitride, with nitrogen content close to 50%, is obtained when J{sub N}/J{sub Fe} ratio reaches 5.9 and the N{sub 2}{sup +} ion energy is 63.4 eV. Further increments of N{sub 2}{sup +} energies and J{sub N}/J{sub Fe} values reverse this behavior and a phase evolution from γ″ and γ‴-FeN to ε-Fe{sub x(x≈2)}N is found. This behavior is attributed to energy damage and resputtering phenomena. It has also been found that γ‴-FeN phase coexists with γ″-FeN phase when the deposition is performed at room temperature. - Highlights: • We have grown iron nitride FeN{sub x(0.6} {sub ≤x≤1)} thin films by dual ion beam sputtering. • Effects of N{sub 2}{sup +} ion assistance in the formation of Fe mononitride phases are studied. • Nanocrystalline Fe mononitride with a composition FeN{sub x≈1} is obtained. • A phase evolution ε → γ‴ + γ″ → ε is observed as E{sub Fe} increases. • γ‴-FeN phase coexists with γ″-FeN at room temperature deposition conditions.

  9. Renewable Formate from C-H Bond Formation with CO2: Using Iron Carbonyl Clusters as Electrocatalysts.

    Science.gov (United States)

    Loewen, Natalia D; Neelakantan, Taruna V; Berben, Louise A

    2017-09-19

    As a society, we are heavily dependent on nonrenewable petroleum-derived fuels and chemical feedstocks. Rapid depletion of these resources and the increasingly evident negative effects of excess atmospheric CO 2 drive our efforts to discover ways of converting excess CO 2 into energy dense chemical fuels through selective C-H bond formation and using renewable energy sources to supply electrons. In this way, a carbon-neutral fuel economy might be realized. To develop a molecular or heterogeneous catalyst for C-H bond formation with CO 2 requires a fundamental understanding of how to generate metal hydrides that selectively donate H - to CO 2 , rather than recombining with H + to liberate H 2 . Our work with a unique series of water-soluble and -stable, low-valent iron electrocatalysts offers mechanistic and thermochemical insights into formate production from CO 2 . Of particular interest are the nitride- and carbide-containing clusters: [Fe 4 N(CO) 12 ] - and its derivatives and [Fe 4 C(CO) 12 ] 2- . In both aqueous and mixed solvent conditions, [Fe 4 N(CO) 12 ] - forms a reduced hydride intermediate, [H-Fe 4 N(CO) 12 ] - , through stepwise electron and proton transfers. This hydride selectively reacts with CO 2 and generates formate with >95% efficiency. The mechanism for this transformation is supported by crystallographic, cyclic voltammetry, and spectroelectrochemical (SEC) evidence. Furthermore, installation of a proton shuttle onto [Fe 4 N(CO) 12 ] - facilitates proton transfer to the active site, successfully intercepting the hydride intermediate before it reacts with CO 2 ; only H 2 is observed in this case. In contrast, isoelectronic [Fe 4 C(CO) 12 ] 2- features a concerted proton-electron transfer mechanism to form [H-Fe 4 C(CO) 12 ] 2- , which is selective for H 2 production even in the presence of CO 2 , in both aqueous and mixed solvent systems. Higher nuclearity clusters were also studied, and all are proton reduction electrocatalysts, but none

  10. Large Format Narrow Band High Throughput Optical Filters for 0.5-2.75 Project

    Data.gov (United States)

    National Aeronautics and Space Administration — One of the most efficient ways to create narrow band filter is the use of reflective Bragg gratings or which allow increasing of efficiency and decreasing of weight...

  11. Formation of systems of incompact bands parallel to the compression axis in the unconsolidated sedimentary rocks: A model

    Science.gov (United States)

    Mukhamediev, Sh. A.; Ul'Kin, D. A.

    2011-10-01

    Uniaxial compression of poorly lithified rocks leads to the formation of thin incompact layers (or bands, in the two-dimensional case) parallel to the compression axis, which are characterized by increased porosity. The standard model of the formation of such bands, as well as deformation bands of other types, associates them with the narrow zones of localization of plastic deformations. In the case of decompaction, it is assumed that transverse tensile deformations are localized within the band, which cause the band to dilate. Here, the formation of a band of localized deformations is treated as a loss-of-stability phenomenon. Based on observations, we propose a fundamentally different model of incompact bands formation, according to which the microdefects in sediment packing (pores) rather than the deformations are localized in the narrow zones. The localization of pores, which are initially randomly distributed in the medium, occurs as a result of their migration through the geomaterial. The migration and subsequent localization of pores are driven by a common mechanism, namely, a trend of a system to lower its total energy (small variations in total energy are equal to the increment of free energy minus the work of external forces). Migration of a single pore in a granular sedimentary rock is caused by the force f driving the defect. This force was introduced by J. Eshelby (1951; 1970). An important feature of our model is that the formation of an incompact band here does not have a sense of a loss of stability. Quite the contrary, the formation of incompact bands is treated as a gradual process spread over time. In this context, the origination of incompact band systems directly follows from our model itself, without any a priori assumptions postulating the existence of such systems and without any special tuning of the model parameters. Moreover, based on the proposed model, we can predict the incompact bands to always occur in the form of systems rather than

  12. Iron plaque formation on roots of different rice cultivars and the relation with lead uptake.

    Science.gov (United States)

    Liu, Jianguo; Leng, Xuemei; Wang, Mingxin; Zhu, Zhongquan; Dai, Qinghua

    2011-07-01

    The relationships between lead (Pb) uptake and iron/manganese plaque formation on rice roots were investigated with three cultivars. The results showed that the rice cultivars with indica consanguinity were more sensitive to soil Pb stress than the cultivar with japonica consanguinity. Pb concentrations and distribution ratios in root tissues were in the order: Shanyou 63 > Yangdao 6 > Wuyunjing 7, but Pb and Fe concentrations and distribution ratios in the plaques showed a reverse order. Mn concentrations and distribution ratios in the plaques of Wuyunjing 7 were significantly higher (P rice root can provide a barrier to soil Pb stress. The plaque will increase sequestration of Pb on rice root surface and in the rhizosphere, providing a means of external exclusion of soil Pb to some extent. Copyright © 2011 Elsevier Inc. All rights reserved.

  13. Discrete Responses to Limitation for Iron and Manganese in Agrobacterium tumefaciens: Influence on Attachment and Biofilm Formation.

    Science.gov (United States)

    Heindl, Jason E; Hibbing, Michael E; Xu, Jing; Natarajan, Ramya; Buechlein, Aaron M; Fuqua, Clay

    2015-12-28

    Transition metals such as iron and manganese are crucial trace nutrients for the growth of most bacteria, functioning as catalytic cofactors for many essential enzymes. Dedicated uptake and regulatory systems have evolved to ensure their acquisition for growth, while preventing toxicity. Transcriptomic analysis of the iron- and manganese-responsive regulons of Agrobacterium tumefaciens revealed that there are discrete regulatory networks that respond to changes in iron and manganese levels. Complementing earlier studies, the iron-responsive gene network is quite large and includes many aspects of iron-dependent metabolism and the iron-sparing response. In contrast, the manganese-responsive network is restricted to a limited number of genes, many of which can be linked to transport and utilization of the transition metal. Several of the target genes predicted to drive manganese uptake are required for growth under manganese-limited conditions, and an A. tumefaciens mutant with a manganese transport deficiency is attenuated for plant virulence. Iron and manganese limitation independently inhibit biofilm formation by A. tumefaciens, and several candidate genes that could impact biofilm formation were identified in each regulon. The biofilm-inhibitory effects of iron and manganese do not rely on recognized metal-responsive transcriptional regulators, suggesting alternate mechanisms influencing biofilm formation. However, under low-manganese conditions the dcpA operon is upregulated, encoding a system that controls levels of the cyclic di-GMP second messenger. Mutation of this regulatory pathway dampens the effect of manganese limitation. Responses to changes in transition metal levels, such as those of manganese and iron, are important for normal metabolism and growth in bacteria. Our study used global gene expression profiling to understand the response of the plant pathogen Agrobacterium tumefaciens to changes of transition metal availability. Among the properties

  14. Fraction-specific controls on the trace element distribution in iron formations : Implications for trace metal stable isotope proxies

    NARCIS (Netherlands)

    Oonk, Paul B.H.; Tsikos, Harilaos; Mason, Paul R.D.; Henkel, Susann; Staubwasser, Michael; Fryer, Lindi; Poulton, Simon W.; Williams, Helen M.

    2017-01-01

    Iron formations (IFs) are important geochemical repositories that provide constraints on atmospheric and ocean chemistry, prior to and during the onset of the Great Oxidation Event. Trace metal abundances and their Mo-Cr-U isotopic ratios have been widely used for investigating ocean redox processes

  15. An acoustic analog for a quantum mechanical level-splitting route to band formation

    Science.gov (United States)

    D'Onofrio, Marissa; Crum, Mitchell; Hilbert, Shawn A.; Batelaan, Herman; Canalichio, Timothy; Bull, Tyler

    2016-11-01

    This paper explores band structure in a simple acoustic apparatus that acts as an analog to the quantum infinite square well with multiple delta-function perturbations. The apparatus can be used to visualize abstract quantum phenomena in a concrete and easily understandable way. It consists of regular sections of PVC pipes connected by variable aluminum diaphragms to allow coupling between the pipe sections. The equivalence between standing waves in the acoustic system and stationary states in the quantum system is examined for multiple-cavity situations. We show that the experimental results from the acoustic system and the analytic solutions of the quantum system demonstrate the same resonance structure. We also experimentally show that the acoustic system supports band structure and that the band width is dependent on the hole size of the diaphragms.

  16. Influence of Mineralogical Characteristics of Iron Ore on Formation and Flow of Liquid Phase

    Science.gov (United States)

    Su, Bo; Wu, Sheng-li; Zhang, Guo-liang

    The mineralogical characteristics of iron ores can influence their high temperature sintering performance. In this study, eight iron ore samples from Brazil, Australia, and South Africa were characterized by their chemical composition, mineral types, particle morphology, and gangue dispersity. Meanwhile the influence rules between the mineralogical characteristics and the high temperature characteristics were evaluated and analyzed. The results showed that the effect of SiO2 on assimilation characteristic of iron ores was relatively complex, Al2O3 and LOI of iron ores had negative correlation with assimilation temperature of iron ores, the dense slab-flaky mineral granule restrained to the assimilation characteristics of iron ores; liquid phase of iron ores with high SiO2 content and low Al2O3 content had high fluidity, and the higher dispersity of gangue minerals in iron ores was good to the fluidity of liquid phase.

  17. [Effect of temperature on activity of Acidithiobacillus ferrooxidan and formation of biogenic secondary iron minerals].

    Science.gov (United States)

    Song, Yong-Wei; Zhao, Bo-Wen; Huo, Min-Bo; Cui, Chun-Hong; Zhou, Li-Xiang

    2013-08-01

    In this study, batch experiments were performed to investigate the effect of temperature on the Fe (II) oxidation and the formation of biogenic secondary iron minerals by Acidithiobacillus ferrooxidan. Results showed that the low temperature significantly inhibited the oxidation activity of A. ferrooxidan. In the FeSO4-H2O biological oxidation system facilitated by A. ferrooxidan, it was found that after 5 days culture, the oxidation rates of Fe (II) in treatments of 10 degrees C and 28 degrees C were 11.81% and 100%, respectively. In addition, it rapidly rose to 95.10% when the temperature was adjusted from 10 degrees C (cultured for 7 days) to 28 degrees C in 1 day, and the maximum oxidation rates were as follows: 10 degrees C (cultured for 7 days) +28 degrees C (2.25 h(-1)) > 28 degrees C (1.42 h(-1)) >10 degrees C (0.81 h(-1)). Furthermore, the XRD patterns showed that the lower Fe (III) supply rate was more conducive to the formation of amorphous schwertmannite in 9K medium at 10 degrees C. Correspondingly, the generation of amorphous schwertmannite was preceded to ihleite at 28 degrees C, and the crystallinity degree of ihleite was getting better with the extension of culture time. Combined with the SEM characteristics, it was judged that the 28 degrees C sample contained jarosite and schwertmannite.

  18. Formation and transformation of a short range ordered iron carbonate precursor

    DEFF Research Database (Denmark)

    Dideriksen, Knud; Frandsen, Cathrine; Bovet, Nicolas

    2015-01-01

    structural order. Moreover, PDF peak positions differ from those for known iron carbonates and hydroxides. Mössbauer spectra also deviate from those expected for known iron carbonates and suggest a less crystalline structure. These data show that a previously unidentified iron carbonate precursor phase...

  19. PECULIARITIES OF PROCESSES OF CARBIDE FORMATION AND DISTRIBUTION OF Cr, Mn AND Ni IN WHITE CAST IRONS

    Directory of Open Access Journals (Sweden)

    V. V. Netrebko

    2015-01-01

    Full Text Available During crystallization of castings from white cast iron, carbides Me3С, Me7С3, Me23С6 were formed depending on chromium and carbon content. Impeded chromium diffusion caused formation of thermodynamically unstable and non-uniform phases (carbides. During heat treatment process stable equilibrium phases were formed as a result of rearrangement of the carbides’ crystal lattice, replacement of iron, manganese, nickel and silicon atoms by chromium atoms. The allocated atoms concentrated, forming inclusions of austenite inside the carbides. Holding during 9 hours at 720 °С and annealing decreased the non-uniformity of chromium distribution in the metallic base of cast iron containing 11,5 % Cr, and increased it in the cast iron containing 21,5 % Cr. Holding during 4.5 hours at 1050 °С and normalization decreased the non-uniformity of chromium distribution in the metallic base of cast iron containing 21,5 % Cr, and increased it in cast iron containing 11,5 % Cr.

  20. Lithotrophic iron-oxidizing bacteria produce organic stalks to control mineral growth: implications for biosignature formation.

    Science.gov (United States)

    Chan, Clara S; Fakra, Sirine C; Emerson, David; Fleming, Emily J; Edwards, Katrina J

    2011-04-01

    Neutrophilic Fe-oxidizing bacteria (FeOB) are often identified by their distinctive morphologies, such as the extracellular twisted ribbon-like stalks formed by Gallionella ferruginea or Mariprofundus ferrooxydans. Similar filaments preserved in silica are often identified as FeOB fossils in rocks. Although it is assumed that twisted iron stalks are indicative of FeOB, the stalk's metabolic role has not been established. To this end, we studied the marine FeOB M. ferrooxydans by light, X-ray and electron microscopy. Using time-lapse light microscopy, we observed cells excreting stalks during growth (averaging 2.2  μm  h(-1)). Scanning transmission X-ray microscopy and near-edge X-ray absorption fine structure (NEXAFS) spectroscopy show that stalks are Fe(III)-rich, whereas cells are low in Fe. Transmission electron microscopy reveals that stalks are composed of several fibrils, which contain few-nanometer-sized iron oxyhydroxide crystals. Lepidocrocite crystals that nucleated on the fibril surface are much larger (∼100  nm), suggesting that mineral growth within fibrils is retarded, relative to sites surrounding fibrils. C and N 1s NEXAFS spectroscopy and fluorescence probing show that stalks primarily contain carboxyl-rich polysaccharides. On the basis of these results, we suggest a physiological model for Fe oxidation in which cells excrete oxidized Fe bound to organic polymers. These organic molecules retard mineral growth, preventing cell encrustation. This model describes an essential role for stalk formation in FeOB growth. We suggest that stalk-like morphologies observed in modern and ancient samples may be correlated confidently with the Fe-oxidizing metabolism as a robust biosignature.

  1. Lithotrophic iron-oxidizing bacteria produce organic stalks to control mineral growth: implications for biosignature formation

    Energy Technology Data Exchange (ETDEWEB)

    Chan, Clara S; Fakra, Sirine C; Emerson, David; Fleming, Emily J; Edwards, Katrina J

    2011-07-01

    Neutrophilic Fe-oxidizing bacteria (FeOB) are often identified by their distinctive morphologies, such as the extracellular twisted ribbon-like stalks formed by Gallionella ferruginea or Mariprofundus ferrooxydans. Similar filaments preserved in silica are often identified as FeOB fossils in rocks. Although it is assumed that twisted iron stalks are indicative of FeOB, the stalk's metabolic role has not been established. To this end, we studied the marine FeOB M. ferrooxydans by light, X-ray and electron microscopy. Using time-lapse light microscopy, we observed cells excreting stalks during growth (averaging 2.2 {micro}m h(-1)). Scanning transmission X-ray microscopy and near-edge X-ray absorption fine structure (NEXAFS) spectroscopy show that stalks are Fe(III)-rich, whereas cells are low in Fe. Transmission electron microscopy reveals that stalks are composed of several fibrils, which contain few-nanometer-sized iron oxyhydroxide crystals. Lepidocrocite crystals that nucleated on the fibril surface are much larger ({approx}100 nm), suggesting that mineral growth within fibrils is retarded, relative to sites surrounding fibrils. C and N 1s NEXAFS spectroscopy and fluorescence probing show that stalks primarily contain carboxyl-rich polysaccharides. On the basis of these results, we suggest a physiological model for Fe oxidation in which cells excrete oxidized Fe bound to organic polymers. These organic molecules retard mineral growth, preventing cell encrustation. This model describes an essential role for stalk formation in FeOB growth. We suggest that stalk-like morphologies observed in modern and ancient samples may be correlated confidently with the Fe-oxidizing metabolism as a robust biosignature.

  2. The formation of magnetic carboxymethyl-dextrane-coated iron-oxide nanoparticles using precipitation from an aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Makovec, Darko [Department for Materials Synthesis, Jožef Stefan Institute, Jamova ulica 39, SI-1000 Ljubljana (Slovenia); Gyergyek, Sašo, E-mail: saso.gyergyek@ijs.si [Department for Materials Synthesis, Jožef Stefan Institute, Jamova ulica 39, SI-1000 Ljubljana (Slovenia); Primc, Darinka [Department for Materials Synthesis, Jožef Stefan Institute, Jamova ulica 39, SI-1000 Ljubljana (Slovenia); Plantan, Ivan [Lek Pharmaceuticals d.d., Mengeš (Slovenia)

    2015-03-01

    The formation of spinel iron-oxide nanoparticles during the co-precipitation of Fe{sup 3+}/Fe{sup 2+} ions from an aqueous solution in the presence of carboxymethyldextrane (CMD) was studied. To follow the formation of the nanoparticles, a mixture of the Fe ions, CMD and ammonia was heated to different temperatures, while the samples were taken, quenched in liquid nitrogen, freeze-dried and characterized using transmission electron microscopy (TEM), X-ray diffractometry (XRD) and magnetometry. The CMD plays a role in the reactions of the Fe ions' precipitation by partially immobilizing the Fe{sup 3+} ions into a complex. At room temperature, the amorphous material is precipitated. Then, above approximately 30 °C, the spinel nanoparticles form inside the amorphous matrix, and at approximately 40 °C the matrix decomposes into the suspension of carboxymethyl-dextrane-coated iron-oxide nanoparticles. The CMD bonded to the nanoparticles' surfaces hinders the mass transport and thus prevents their growth. - Highlights: • The carboxymethyl-dextrane coated iron-oxide nanoparticles were synthesized. • The carboxymethyl-dextrane significantly modifies formation of the spinel nanoparticles. • The spinel nanoparticles are formed inside the amorphous matrix. • At approximately 40 °C the matrix decomposes into the suspension of carboxymethyl-dextrane-coated iron-oxide nanoparticles.

  3. Effect of bacterial communities on the formation of cast iron corrosion tubercles in reclaimed water.

    Science.gov (United States)

    Jin, Juntao; Wu, Guangxue; Guan, Yuntao

    2015-03-15

    To understand the role bacterial communities play in corrosion scale development, the morphological and physicochemical characteristics of corrosion scales in raw and disinfected reclaimed water were systematically investigated. Corrosion tubercles were found in raw reclaimed water while thin corrosion layers formed in disinfected reclaimed water. The corrosion tubercles, composed mainly of α-FeOOH, γ-FeOOH, and CaCO3, consisted of an top surface; a shell containing more magnetite than other layers; a core in association with stalks produced by bacteria; and a corroded layer. The thin corrosion layers also had layered structures. These had a smooth top, a dense middle, and a corroded layer. They mostly consisted of the same main components as the tubercles in raw reclaimed water, but with different proportions. The profiles of the dissolved oxygen (DO) concentration, redox potential, and pH in the tubercles were different to those in the corrosion layers, which demonstrated that these parameters changed with a shift in the microbial processes in the tubercles. The bacterial communities in the tubercles were found to be dominated by Proteobacteria (56.7%), Bacteroidetes (10.0%), and Nitrospira (6.9%). The abundance of sequences affiliated to iron-reducing bacteria (IRB, mainly Geothrix) and iron-oxidizing bacteria (mainly Aquabacterium) was relatively high. The layered characteristics of the corrosion layers was due to the blocking of DO transfer by the development of the scales themselves. Bacterial communities could at least promote the layering process and formation of corrosion tubercles. Possible mechanisms might include: (1) bacterial communities mediated the pH and redox potential in the tubercles (which helped to form shell-like and core layers), (2) the metabolism of IRB and magnetic bacteria (Magnetospirillum) might contribute to the presence of Fe3O4 in the shell-like layer, while IRB contributed to green rust in the core layer, and (3) the diversity of

  4. Root iron plaque formation and characteristics under N2 flushing and its effects on translocation of Zn and Cd in paddy rice seedlings (Oryza sativa).

    Science.gov (United States)

    Xu, Bo; Yu, Shen

    2013-06-01

    Anoxic conditions are seldom considered in root iron plaque induction of wetland plants in hydroponic experiments, but such conditions are essential for root iron plaque formation in the field. Although ferrous ion availability and root radial oxygen loss capacity are generally taken into account, neglect of anoxic conditions in root iron plaque formation might lead to an under- or over-estimate of their functional effects, such as blocking toxic metal uptake. This study hypothesized that anoxic conditions would influence root iron plaque formation characteristics and translocation of Zn and Cd by rice seedlings. A hydroponic culture was used to grow rice seedlings and a non-disruptive approach for blocking air exchange between the atmosphere and the induction solution matrix was applied for root iron plaque formation, namely flushing the headspace of the induction solution with N2 during root iron plaque induction. Zn and Cd were spiked into the solution after root iron plaque formation, and translocation of both metals was determined. Blocking air exchange between the atmosphere and the nutrient solution by N2 flushing increased root plaque Fe content by between 11 and 77 % (average 31 %). The N2 flushing treatment generated root iron plaques with a smoother surface than the non-N2 flushing treatment, as observed by scanning electron microscopy, but Fe oxyhydroxides coating the rice seedling roots were amorphous. The root iron plaques sequestrated Zn and Cd and the N2 flushing enhanced this effect by approx. 17 % for Zn and 71 % for Cd, calculated by both single and combined additions of Zn and Cd. Blocking of oxygen intrusion into the nutrient solution via N2 flushing enhanced root iron plaque formation and increased Cd and Zn sequestration in the iron plaques of rice seedlings. This study suggests that hydroponic studies that do not consider redox potential in the induction matrices might lead to an under-estimate of metal sequestration by root iron plaques of

  5. Iron oxidation on the surface of adventitious roots and its relation to aerenchyma formation in rice genotypes

    Directory of Open Access Journals (Sweden)

    Marquel Jonas Holzschuh

    2014-02-01

    Full Text Available Establishment of the water layer in an irrigated rice crop leads to consumption of free oxygen in the soil which enters in a chemical reduction process mediated by anaerobic microorganisms, changing the crop environment. To maintain optimal growth in an environment without O2, rice plants develop pore spaces (aerenchyma that allow O2 transport from air to the roots. Carrying capacity is determined by the rice genome and it may vary among cultivars. Plants that have higher capacity for formation of aerenchyma should theoretically carry more O2 to the roots. However, part of the O2 that reaches the roots is lost due to permeability of the roots and the O2 gradient created between the soil and roots. The O2 that is lost to the outside medium can react with chemically reduced elements present in the soil; one of them is iron, which reacts with oxygen and forms an iron plaque on the outer root surface. Therefore, evaluation of the iron plaque and of the formation of pore spaces on the root can serve as a parameter to differentiate rice cultivars in regard to the volume of O2 transported via aerenchyma. An experiment was thus carried out in a greenhouse with the aim of comparing aerenchyma and iron plaque formation in 13 rice cultivars grown in flooded soils to their formation under growing conditions similar to a normal field, without free oxygen. The results indicated significant differences in the volume of pore spaces in the roots among cultivars and along the root segment in each cultivar, indicating that under flooded conditions the genetic potential of the plant is crucial in induction of cell death and formation of aerenchyma in response to lack of O2. In addition, the amount of Fe accumulated on the root surface was different among genotypes and along the roots. Thus, we concluded that the rice genotypes exhibit different responses for aerenchyma formation, oxygen release by the roots and iron plaque formation, and that there is a direct

  6. Measurements of electron avalanche formation time in W-band microwave air breakdown

    Science.gov (United States)

    Cook, Alan M.; Hummelt, Jason S.; Shapiro, Michael A.; Temkin, Richard J.

    2011-08-01

    We present measurements of formation times of electron avalanche ionization discharges induced by a focused 110 GHz millimeter-wave beam in atmospheric air. Discharges take place in a free volume of gas, with no nearby surfaces or objects. When the incident field amplitude is near the breakdown threshold for pulsed conditions, measured formation times are ˜0.1-2 μs over the pressure range 5-700 Torr. Combined with electric field breakdown threshold measurements, the formation time data shows the agreement of 110 GHz air breakdown with the similarity laws of gas discharges.

  7. Measurements of electron avalanche formation time in W-band microwave air breakdown

    International Nuclear Information System (INIS)

    Cook, Alan M.; Hummelt, Jason S.; Shapiro, Michael A.; Temkin, Richard J.

    2011-01-01

    We present measurements of formation times of electron avalanche ionization discharges induced by a focused 110 GHz millimeter-wave beam in atmospheric air. Discharges take place in a free volume of gas, with no nearby surfaces or objects. When the incident field amplitude is near the breakdown threshold for pulsed conditions, measured formation times are ∼0.1-2 μs over the pressure range 5-700 Torr. Combined with electric field breakdown threshold measurements, the formation time data shows the agreement of 110 GHz air breakdown with the similarity laws of gas discharges.

  8. Measurement of the enthalpy of formation of an iron pico-hydride and of its main properties

    Science.gov (United States)

    Dufour, Jacques; Dufour, Xavier; Dioury, Fabienne; Vinko, Jenny D.

    2017-10-01

    Chemical reactions result from the outside shell electrons of the reacting species being shared in various types of combinations. Typical distances involved are tenths of nm, resulting in binding energies typically in the order of hundreds of kJ/mole (eV/atom). The synthesis of a novel “atomic system” formed from Iron and di-Hydrogen has been achieved. The measured enthalpy of formation is some 40 MJ/moleFe and the distance between the hydrogen proton and the iron nucleus is some 8 pm, hence the proposed name: Iron Pico-Hydride. This compound is a permanent electric dipole of atomic size. Pico-Hydrides could, thus, play a significant role in HT superconductivity and in super-capacitors. The synthesis is compatible with the standard model.

  9. The effect of triple ion beam irradiation on cavity formation on pure EFDA iron

    Energy Technology Data Exchange (ETDEWEB)

    Roldán, M., E-mail: marcelo.roldan@ciemat.es [National Fusion Laboratory-Fusion Materials, CIEMAT, 28040, Madrid (Spain); Fernández, P.; Vila, R. [National Fusion Laboratory-Fusion Materials, CIEMAT, 28040, Madrid (Spain); Gómez-Herrero, A. [National Centre of Electronic Microscopy, Complutense University, 28040, Madrid (Spain); Sánchez, F.J. [National Fusion Laboratory-Fusion Materials, CIEMAT, 28040, Madrid (Spain)

    2016-10-15

    Pure EFDA Iron was irradiated under triple ions beam (Fe + He + H) at 350 °C, 450 °C and 550 °C respectively to a nominal 40 dpa with a uniform He concentration of ∼14 appm He/dpa and H content of ∼50 appm H/dpa at depth between 1 and 2 μm. Cavity characteristics (size, morphology, distribution and population) at each irradiation temperature have been thoroughly studied by TEM using FIB lamellae, showing bubble formation at all irradiation temperatures with several differences between one to another experimental condition. At 350 °C homogeneous distribution of small cavities with sizes in the range of 2–4 μm was observed. However, irradiations at 450 °C and 550 °C led to non-homogeneous distribution of cavities with a wide range of sizes. Additionally, it was detected at these temperatures, preferential nucleation of bubbles within the ferritic grains exhibiting rounded and faceted shapes. Faceted cavities with sizes larger than 16 nm were detected at 450 °C and 550 °C.

  10. Axial-Compressive Behavior, Including Kink-Band Formation and Propagation, of Single p-Phenylene Terephthalamide (PPTA Fibers

    Directory of Open Access Journals (Sweden)

    M. Grujicic

    2013-01-01

    Full Text Available The mechanical response of p-phenylene terephthalamide (PPTA single fibers when subjected to uniaxial compression is investigated computationally using coarse-grained molecular statics/dynamics methods. In order to construct the coarse-grained PPTA model (specifically, in order to define the nature of the coarse-grained particles/beads and to parameterize various components of the bead/bead force-field functions, the results of an all-atom molecular-level computational investigation are used. In addition, the microstructure/topology of the fiber core, consisting of a number of coaxial crystalline fibrils, is taken into account. Also, following our prior work, various PPTA crystallographic/topological defects are introduced into the model (at concentrations consistent with the prototypical PPTA synthesis/processing conditions. The analysis carried out clearly revealed (a formation of the kink bands during axial compression; (b the role of defects in promoting the formation of kink bands; (c the stimulating effects of some defects on the fiber-fibrillation process; and (d the detrimental effect of the prior compression, associated with fiber fibrillation, on the residual longitudinal-tensile strength of the PPTA fibers.

  11. Compressibility change in iron-rich melt and implications for core formation models

    NARCIS (Netherlands)

    Sanloup, C.; van Westrenen, W.; Dasgupta, R.; Maynard-Casely, H.; Perrillat, J.P.

    2011-01-01

    Metallic iron, in both solid and liquid states, is the dominant component of Earth's core. Density measurements of molten iron containing an appropriate amount of light elements (5.7. wt.% carbon) identified a liquid-liquid transition by a significant compressibility increase in the vicinity of the

  12. Texture formation in iron particles using mechanical milling with graphite as a milling aid

    International Nuclear Information System (INIS)

    Motozuka, S.; Hayashi, K.; Tagaya, M.; Morinaga, M.

    2015-01-01

    Crystallographically anisotropic platelet iron particles were successfully prepared using a conventional ball mill with addition of graphite (Gp) particles. The morphological and structural changes resulting from the milling were investigated using scanning electron microscopy and X-ray diffraction. The spherical iron particles were plastically deformed into platelet shapes during the milling. Simultaneously, it is suggested that the size of the Gp particles decreased and adhered as nanoparticles on the surface of the iron particles. The adhered Gp particles affected the plastic deformation behavior of the iron particles: the (001) planes of α-iron were oriented parallel to the particle face, and no preferred in-plane orientation was observed. This study not only details the preparation of soft magnetic metal particles that crystallographically oriented to enhance their magnetic properties but also provides new insight into the activities of the well-established and extensively studied mechanical milling method

  13. An Iron-Rain Model for Core Formation on Asteroid 4 Vesta

    Science.gov (United States)

    Kiefer, Walter S.; Mittlefehldt, David W.

    2016-01-01

    Asteroid 4 Vesta is differentiated into a crust, mantle, and core, as demonstrated by studies of the eucrite and diogenite meteorites and by data from NASA's Dawn spacecraft. Most models for the differentiation and thermal evolution of Vesta assume that the metal phase completely melts within 20 degrees of the eutectic temperature, well before the onset of silicate melting. In such a model, core formation initially happens by Darcy flow, but this is an inefficient process for liquid metal and solid silicate. However, the likely chemical composition of Vesta, similar to H chondrites with perhaps some CM or CV chondrite, has 13-16 weight percent S. For such compositions, metal-sulfide melting will not be complete until a temperature of at least 1350 degrees Centigrade. The silicate solidus for Vesta's composition is between 1100 and 1150 degrees Centigrade, and thus metal and silicate melting must have substantially overlapped in time on Vesta. In this chemically and physically more likely view of Vesta's evolution, metal sulfide drops will sink by Stokes flow through the partially molten silicate magma ocean in a process that can be envisioned as "iron rain". Measurements of eucrites show that moderately siderophile elements such as Ni, Mo, and W reached chemical equilibrium between the metal and silicate phases, which is an important test for any Vesta differentiation model. The equilibration time is a function of the initial metal grain size, which we take to be 25-45 microns based on recent measurements of H6 chondrites. For these sizes and reasonable silicate magma viscosities, equilibration occurs after a fall distance of just a few meters through the magma ocean. Although metal drops may grow in size by merger with other drops, which increases their settling velocities and decreases the total core formation time, the short equilibration distance ensures that the moderately siderophile elements will reach chemical equilibrium between metal and silicate before

  14. Diagnostics of fast formation of distributed plasma discharges using X-band microwaves

    Energy Technology Data Exchange (ETDEWEB)

    Xiang, X., E-mail: xxiang3@wisc.edu; Kupczyk, B.; Booske, J.; Scharer, J. [Department of Electrical and Computer Engineering, University of Wisconsin, Madison, Wisconsin 53705 (United States)

    2014-02-14

    We present measurements of high power (25.7 kW), pulsed (800 ns), X-band (9.382 GHz) microwave breakdown plasmas, including reflected power measurements, mixer reflected amplitude and phase measurements, optical emission spectroscopy (OES) measurements, and an analysis that estimates the average electron density and electron temperature. In addition, a six-region, 1-D model was used to determine plasma parameters and compare with the experimental results. The experimental results show that using a 43 Hz repetition rate with an 800 ns pulse, fast (<300 ns) breakdown occurs in neon measured between 50 Torr and 250 Torr, producing plasma that lasts for over 7 μs. It also leads to large microwave reflections (70%) and an on-axis transmission attenuation of −15 dB. Moreover, a comparison between a 1-D model and mixer measurements shows that at 100 Torr, the neon plasma electron density peaked at 2 × 10{sup 12} cm{sup −3}, and the electron temperature peaked at 2.5 eV assuming a Maxwellian distribution. The addition of 2% Ar in Ne reduced the breakdown time and allowed OES measurements to determine the effective electron temperature. OES measurements of mixed (Ne/Ar: 98/2) argon line ratios (420.1 nm/419.8 nm) were used to determine the average effective electron temperature T{sub e(eff)} = 1.2 eV, averaged over the entire 7μs plasma lifetime. They indicate that the electron energy distribution was not Maxwellian but, instead, tended towards a Druyvesteyn character.

  15. Controlled hydrodynamic conditions on the formation of iron oxide nanostructures synthesized by electrochemical anodization: Effect of the electrode rotation speed

    International Nuclear Information System (INIS)

    Lucas-Granados, Bianca; Sánchez-Tovar, Rita; Fernández-Domene, Ramón M.; García-Antón, Jose

    2017-01-01

    Highlights: • Novel iron anodization process under controlled dynamic conditions was evaluated. • Iron oxide nanostructures composed mainly by hematite were synthesized. • Different morphologies were obtained depending on the electrode rotation speed. • A suitable photocatalyst was obtained by stirring the electrode at 1000 rpm.. - Abstract: Iron oxide nanostructures are of particular interest because they can be used as photocatalysts in water splitting due to their advantageous properties. Electrochemical anodization is one of the best techniques to synthesize nanostructures directly on the metal substrate (direct back contact). In the present study, a novel methodology consisting of the anodization of iron under hydrodynamic conditions is carried out in order to obtain mainly hematite (α-Fe 2 O 3 ) nanostructures to be used as photocatalysts for photoelectrochemical water splitting applications. Different rotation speeds were studied with the aim of evaluating the obtained nanostructures and determining the most attractive operational conditions. The synthesized nanostructures were characterized by means of Raman spectroscopy, Field Emission Scanning Electron Microscopy, photoelectrochemical water splitting, stability against photocorrosion tests, Mott-Schottky analysis, Electrochemical Impedance Spectroscopy (EIS) and band gap measurements. The results showed that the highest photocurrent densities for photoelectrochemical water splitting were achieved for the nanostructure synthesized at 1000 rpm which corresponds to a nanotubular structure reaching ∼0.130 mA cm −2 at 0.54 V (vs. Ag/AgCl). This is in agreement with the EIS measurements and Mott-Schottky analysis which showed the lowest resistances and the corresponding donor density values, respectively, for the nanostructure anodized at 1000 rpm.

  16. Biogenic iron oxyhydroxide formation at mid-ocean ridge hydrothermal vents: Juan de Fuca Ridge

    Energy Technology Data Exchange (ETDEWEB)

    Toner, Brandy M.; Santelli, Cara M.; Marcus, Matthew A.; Wirth, Richard; Chan, Clara S.; McCollom, Thomas; Bach, Wolfgang; Edwards, Katrina J.

    2008-05-22

    Here we examine Fe speciation within Fe-encrusted biofilms formed during 2-month seafloor incubations of sulfide mineral assemblages at the Main Endeavor Segment of the Juan de Fuca Ridge. The biofilms were distributed heterogeneously across the surface of the incubated sulfide and composed primarily of particles with a twisted stalk morphology resembling those produced by some aerobic Fe-oxidizing microorganisms. Our objectives were to determine the form of biofilm-associated Fe, and identify the sulfide minerals associated with microbial growth. We used micro-focused synchrotron-radiation X-ray fluorescence mapping (mu XRF), X-ray absorption spectroscopy (mu EXAFS), and X-ray diffraction (mu XRD) in conjunction with focused ion beam (FIB) sectioning, and highresolution transmission electron microscopy (HRTEM). The chemical and mineralogical composition of an Fe-encrusted biofilm was queried at different spatial scales, and the spatial relationship between primary sulfide and secondary oxyhydroxide minerals was resolved. The Fe-encrusted biofilms formed preferentially at pyrrhotite-rich (Fe1-xS, 0<_ x<_ 0.2) regions of the incubated chimney sulfide. At the nanometer spatial scale, particles within the biofilm exhibiting lattice fringing and diffraction patterns consistent with 2-line ferrihydrite were identified infrequently. At the micron spatial scale, Fe mu EXAFS spectroscopy and mu XRD measurements indicate that the dominant form of biofilm Fe is a short-range ordered Fe oxyhydroxide characterized by pervasive edge-sharing Fe-O6 octahedral linkages. Double corner-sharing Fe-O6 linkages, which are common to Fe oxyhydroxide mineral structures of 2-line ferrihydrite, 6-line ferrihydrite, and goethite, were not detected in the biogenic iron oxyhydroxide (BIO). The suspended development of the BIO mineral structure is consistent with Fe(III) hydrolysis and polymerization in the presence of high concentrations of Fe-complexing ligands. We hypothesize that

  17. Band structure and fermi surface of an extremely overdoped iron-based superconductor KFe2As2.

    Science.gov (United States)

    Sato, T; Nakayama, K; Sekiba, Y; Richard, P; Xu, Y-M; Souma, S; Takahashi, T; Chen, G F; Luo, J L; Wang, N L; Ding, H

    2009-07-24

    We have performed high-resolution angle-resolved photoemission spectroscopy on heavily overdoped KFe_{2}As_{2} (transition temperature T_{c} = 3 K). We observed several renormalized bands near the Fermi level with a renormalization factor of 2-4. While the Fermi surface around the Brillouin-zone center is qualitatively similar to that of optimally doped Ba_{1-x}K_{x}Fe_{2}As_{2} (x = 0.4; T_{c} = 37 K), the Fermi surface topology around the zone corner (M point) is markedly different: the two electron Fermi surface pockets are completely absent due to an excess of hole doping. This result indicates that the electronic states around the M point play an important role in the high-T_{c} superconductivity of Ba_{1-x}K_{x}Fe_{2}As_{2} and suggests that the interband scattering via the antiferromagnetic wave vector essentially controls the T_{c} value in the overdoped region.

  18. Preparation and microwave absorbing properties in the X-band of natural ferrites from iron sands by high energy milling

    Science.gov (United States)

    Mashuri, X.; Lestari, W.; Triwikantoro, X.; Darminto, X.

    2018-01-01

    Bulk natural ferrites based in iron sands were synthesized at room temperature by high energy ball milling. The reduced particle sizes of the ferrites were milled at 100 rpm at selected time intervals of 0, 2, 4, and 6 h. The as-milled products were then characterized by x-ray diffraction (XRD), a vibrating sample magnetometer (VSM) and a vector network analyzer (VNA). The results showed that the magnetite phase contents, their mean size and the saturated magnetization of the natural ferrites were about 95 nm and 36–.50 emu g‑1 without a new phase. The microwave absorbing characteristics were investigated by measuring the absorption of electromagnetic waves in the frequency range 7–12 GHz. The maximum reflection loss (RL m) and matching frequency (f m) for the best process of milling (100 rpm, 6 h) of natural ferrites were RL m1  =  ‑7.28 dB in f m1  =  7.50 GHz (▵f  =  1.50 GHz) and RL m2  =  ‑4.31 dB in f m2  =10.28 GHz (▵f  =  2.57 GHz). These results suggest that synthesized natural ferrites can be employed as effective microwave absorbers in various devices.

  19. Different Conditions of Formation Experienced by Iron Meteorites as Suggested by Neutron Diffraction Investigation

    Directory of Open Access Journals (Sweden)

    Francesco Grazzi

    2018-01-01

    Full Text Available In this communication, we report the results of a preliminary neutron diffraction investigation of iron meteorites. These planetary materials are mainly constituted by metallic iron with variable nickel contents, and, owing to their peculiar genesis, are considered to offer the best constrains on the early stages of planetary accretion. Nine different iron meteorites, representative of different chemical and structural groups, thought to have been formed in very different pressure and temperature conditions, were investigated, evidencing variances in crystallites size, texturing, and residual strain. The variability of these parameters and their relationship, were discussed in respect to possible diverse range of petrological conditions, mainly pressure and cooling rate, experienced by these materials during the crystallization stage and/or as consequence of post accretion events.

  20. Experimental observation of zinc dialkyl dithiophosphate (ZDDP)-induced iron sulphide formation

    Energy Technology Data Exchange (ETDEWEB)

    Soltanahmadi, Siavash, E-mail: s.soltanahmadi@leeds.ac.uk [Institute of Functional Surfaces, School of Mechanical Engineering, University of Leeds, LS2 9JT (United Kingdom); Morina, Ardian [Institute of Functional Surfaces, School of Mechanical Engineering, University of Leeds, LS2 9JT (United Kingdom); Eijk, Marcel C.P. van; Nedelcu, Ileana [SKF Engineering and Research Centre, 3430 DT Nieuwegein (Netherlands); Neville, Anne [Institute of Functional Surfaces, School of Mechanical Engineering, University of Leeds, LS2 9JT (United Kingdom)

    2017-08-31

    Graphical abstract: Chemical analysis of ZDDP-induced tribofilm under severe boundary lubricated regime in nano and micro-meter scales.▪ - Highlights: • A ZDDP-derived locally formed iron-sulphide layer is detected on the steel surface. • The iron-sulphide is a 5–10 nm thin distinct layer at steel-phosphate interface. • Near the surface-crack site the elemental distribution of the tribofilm is altered. • Sulphur concentration is enhanced in the iron-sulphide layer near the cracked-site. • ZDDP elements are detected inside the crack with a greater contribution of sulphur. - Abstract: Zinc dialkyl dithiophosphate (ZDDP) as a well-known anti-wear additive enhances the performance of the lubricant beyond its wear-protection action, through its anti-oxidant and Extreme Pressure (EP) functionality. In spite of over thirty years of research attempting to reveal the mechanism of action of ZDDP, there are still some uncertainties around the exact mechanisms of its action. This is especially the case with the role of sulphide layer formed in the tribofilm and its impact on surface fatigue. Although iron sulphide on the substrate is hypothesised in literature to form as a separate layer, there has been no concrete experimental observation on the distribution of the iron sulphide as a dispersed precipitate, distinct layer at the steel substrate or both. It remains to be clarified whether the iron sulphide layer homogeneously covers the surface or locally forms at the surface. In the current study a cross section of the specimen after experiment was prepared and has been investigated with Transmission Electron Microscopy (TEM) and Energy-Dispersive X-ray (EDX) elemental analysis. A 5–10 nm iron sulphide layer is visualised on the interface as a separate layer underneath the phosphate layer with an altered distribution of tribofilm elements near the crack site. The iron sulphide interface layer is more visible near the crack site where the concentration of the

  1. Mineralogical study of brown olivine in Northwest Africa 1950 shergottite and implications for the formation mechanism of iron nanoparticles

    Science.gov (United States)

    Takenouchi, Atsushi; Mikouchi, Takashi; Kogure, Toshihiro

    2017-12-01

    Martian meteorites, in particular shergottites, contain darkened olivine (so-called "brown olivine") whose color is induced by iron nanoparticles formed in olivine during a shock event. The formation process and conditions of brown olivine have been discussed in the Northwest Africa 2737 (NWA 2737) chassignite. However, formation conditions of brown olivine in NWA 2737 cannot be applied to shergottites because NWA 2737 has a different shock history from that of shergottites. Therefore, this study observed brown olivine in the NWA 1950 shergottite and discusses the general formation process and conditions of brown olivine in shergottites. Our observation of NWA 1950 revealed that olivine is heterogeneously darkened between and within grains different from brown olivine in NWA 2737. XANES analysis showed that brown olivine contains small amounts of Fe3+ and TEM/STEM observation revealed that there is no SiO-rich phase around iron metal nanoparticles. These observations indicate that iron nanoparticles were formed by a disproportionation reaction of olivine (3Fe2+olivine → Fe0metal + 2Fe3+olivine + Volivine, where Volivine means a vacancy in olivine). Some parts of brown olivine show lamellar textures in SEM observation and Raman peaks in addition to those expected for olivine, implying that brown olivine experienced a phase transition (to e.g., ringwoodite). In order to induce heterogeneous darkening, heterogeneous high temperature of about 1500-1700 K and shock duration of at least 90 ms are required. This heterogeneous high temperature resulted in high postshock temperature (>900 K) inducing back-transformation of most high-pressure phases. Therefore, in spite of lack of high-pressure phases, NWA 1950 (= Martian meteorites with brown olivine) experienced higher pressure and temperature compared to other highly shocked meteorite groups.

  2. Effects of Gender and Estrogen Receptors on Iron-Induced Brain Edema Formation.

    Science.gov (United States)

    Xie, Qing; Xi, Guohua; Keep, Richard F; Hua, Ya

    2016-01-01

    Our previous studies have shown that female mice have less brain edema and better recovery in neurological deficits after intracerebral hemorrhage (ICH) and that 17β-estradiol treatment in male mice markedly reduces ICH-induced brain edema. In this study, we investigated the role of gender and the estrogen receptors (ERs) in iron-induced brain edema. There were three parts in this study: (1) either male or female mice received an injection of 10 μL FeCl2 (1 mM) into the right caudate; (2) females received an intracaudate injection of FeCl2 or saline with 1 μg of ICI 182,780 (antagonists of ERs) or vehicle; and (3) males were treated with the ER regulator tamoxifen (5 mg/kg subcutaneously) or vehicle 1 h after FeCl2 injection. Mice were euthanized 24 h later for brain edema determination. FeCl2 induced lower brain edema in females than in males. Co-injection of ICI 182,780 with FeCl2 aggravated iron-induced brain edema in female mice. ICI 182,780 itself did not induce brain edema at the dose of 1 μg. Tamoxifen treatment reduced FeCl2-induced brain edema in male mice. In conclusion, iron induced less brain edema in female mice than in males. ER modification can affect iron-induced brain edema.

  3. Multistage Core Formation in Planetesimals Revealed by Numerical Modeling and Hf-W Chronometry of Iron Meteorites

    Science.gov (United States)

    Neumann, W.; Kruijer, T. S.; Breuer, D.; Kleine, T.

    2018-02-01

    Iron meteorites provide some of the most direct insights into the processes and timescales of core formation in planetesimals. Of these, group IVB irons stand out by having one of the youngest 182Hf-182W model ages for metal segregation (2.9 ± 0.6 Ma after solar system formation), as well as the lowest bulk sulfur content and hence highest liquidus temperature. Here, using a new model for the internal evolution of the IVB parent body, we show that a single stage of metal-silicate separation cannot account for the complete melting of pure Fe metal at the relatively late time given by the Hf-W model age. Instead, a complex metal-silicate separation scenario is required that includes migration of partial silicate melts, formation of a shallow magma ocean, and core formation in two distinct stages of metal segregation. In the first stage, a protocore formed at ≈1.5 Ma via settling of metal particles in a mantle magma ocean, followed by metal segregation from a shallow magma ocean at ≈5.4 Ma. As these stages of metal segregation occurred at different times, the two metal fractions had different 182W compositions. Consequently, the final 182W composition of the IVB core does not correspond to a single differentiation event, but represents the average composition of early- and late-segregated core fractions. Our best fit model indicates an ≈100 km radius for the IVB parent body and provides an accretion age of ≈0.1-0.5 Ma after solar system formation. The computed solidification time is, furthermore, consistent with the Re-Os age for crystallization of the IVB core.

  4. Molecular analysis of long-term biofilm formation on PVC and cast iron surfaces in drinking water distribution system.

    Science.gov (United States)

    Liu, Ruyin; Zhu, Junge; Yu, Zhisheng; Joshi, DevRaj; Zhang, Hongxun; Lin, Wenfang; Yang, Min

    2014-04-01

    To understand the impacts of different plumbing materials on long-term biofilm formation in water supply system, we analyzed microbial community compositions in the bulk water and biofilms on faucets with two different materials-polyvinyl chloride (PVC) and cast iron, which have been frequently used for more than10 years. Pyrosequencing was employed to describe both bacterial and eukaryotic microbial compositions. Bacterial communities in the bulk water and biofilm samples were significantly different from each other. Specific bacterial populations colonized on the surface of different materials. Hyphomicrobia and corrosion associated bacteria, such as Acidithiobacillus spp., Aquabacterium spp., Limnobacter thiooxidans, and Thiocapsa spp., were the most dominant bacteria identified in the PVC and cast iron biofilms, respectively, suggesting that bacterial colonization on the material surfaces was selective. Mycobacteria and Legionella spp. were common potential pathogenic bacteria occurred in the biofilm samples, but their abundance was different in the two biofilm bacterial communities. In contrast, the biofilm samples showed more similar eukaryotic communities than the bulk water. Notably, potential pathogenic fungi, i.e., Aspergillus spp. and Candida parapsilosis, occurred in similar abundance in both biofilms. These results indicated that microbial community, especially bacterial composition was remarkably affected by the different pipe materials (PVC and cast iron). Copyright © 2014 The Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.

  5. Formation cross section of iron-60 with reactor neutrons in 59Fe(n, γ)60Fe reaction

    International Nuclear Information System (INIS)

    Sato, T.; Suzuki, T.

    1993-01-01

    Ingrowth of 60 Co radioactivity in an iron sample irradiated in a nuclear reactor has been measured for determination of formation cross section of 60 Fe in the 59 Fe(n, γ) 60 Fe reaction with reactor neutrons. After 5 years cooling, the irradiated iron was purified from 60 Co and other radioactive nuclides by an anion exchange separation method and isopropyl ether extraction in hydrochloric acid. The amount of 60 Co ingrowth was measured by γ-spectrometry using a Ge-detector coupled to a multichannel pulse height analyzer 4 years after the purification of iron. Neutron flux of the irradiation position was calculated from the amount of 55 Fe produced. The observed value of 12.5 ± 2.8 barn is slightly greater than reported value for burnup cross section of 59 Fe(n, x)X, where x refers γ, α, d, p and 2n, and X is any nuclide produced by the above reactions. (author) 8 refs.; 2 tabs

  6. Experimental observation of zinc dialkyl dithiophosphate (ZDDP)-induced iron sulphide formation

    Science.gov (United States)

    Soltanahmadi, Siavash; Morina, Ardian; van Eijk, Marcel C. P.; Nedelcu, Ileana; Neville, Anne

    2017-08-01

    Zinc dialkyl dithiophosphate (ZDDP) as a well-known anti-wear additive enhances the performance of the lubricant beyond its wear-protection action, through its anti-oxidant and Extreme Pressure (EP) functionality. In spite of over thirty years of research attempting to reveal the mechanism of action of ZDDP, there are still some uncertainties around the exact mechanisms of its action. This is especially the case with the role of sulphide layer formed in the tribofilm and its impact on surface fatigue. Although iron sulphide on the substrate is hypothesised in literature to form as a separate layer, there has been no concrete experimental observation on the distribution of the iron sulphide as a dispersed precipitate, distinct layer at the steel substrate or both. It remains to be clarified whether the iron sulphide layer homogeneously covers the surface or locally forms at the surface. In the current study a cross section of the specimen after experiment was prepared and has been investigated with Transmission Electron Microscopy (TEM) and Energy-Dispersive X-ray (EDX) elemental analysis. A 5-10 nm iron sulphide layer is visualised on the interface as a separate layer underneath the phosphate layer with an altered distribution of tribofilm elements near the crack site. The iron sulphide interface layer is more visible near the crack site where the concentration of the sulphur is enhanced. Also, ZDDP elements were clearly detected inside the crack with a varied relative concentration from the crack-mouth to the crack-tip. Sulphur is present inside the crack to a higher extent than in the bulk of the tribofilm.

  7. Responses to Iron-Deficiency in Arabidopsis-Thaliana - The Turbo Iron Reductase does not depend on the Formation of Root Hairs and Transfer Cells.

    NARCIS (Netherlands)

    Moog, P.R.; Van der Kooij, T.A.W.; Bruggemann, W.; Schiefelbein, J.W.; Kuiper, P.J.C.

    Arabidopsis thaliana (L.) Heynh. Columbia wild type and a root hair-less mutant RM57 were grown on iron-containing and iron-deficient nutrient solutions. In both genotypes, ferric chelate reductase (FCR) of intact roots was induced upon iron deficiency and followed a Michaelis-Menten kinetic with a

  8. Quantum statistics in the spin-lattice dynamics simulation of formation and migration of mono-vacancy in BCC iron

    Energy Technology Data Exchange (ETDEWEB)

    Wen, Haohua; Woo, C.H., E-mail: chung.woo@polyu.edu.hk

    2016-03-15

    Contributions from the vibrational thermodynamics of phonons and magnons in the dynamic simulations of thermally activated atomic processes in crystalline materials were considered within the framework of classical statistics in conventional studies. The neglect of quantum effects produces the wrong lattice and spin dynamics and erroneous activation characteristics, sometimes leading to the incorrect results. In this paper, we consider the formation and migration of mono-vacancy in BCC iron over a large temperature range from 10 K to 1400 K, across the ferro/paramagnetic phase boundary. Entropies and enthalpies of migration and formation are calculated using quantum heat baths based on a Bose–Einstein statistical description of thermal excitations in terms of phonons and magnons. Corrections due to the use of classical heat baths are evaluated and discussed.

  9. Siderophile element systematics of IAB complex iron meteorites: New insights into the formation of an enigmatic group

    Science.gov (United States)

    Worsham, Emily A.; Bermingham, Katherine R.; Walker, Richard J.

    2016-09-01

    Siderophile trace element abundances and the 187Re-187Os isotopic systematics of the metal phases of 58 IAB complex iron meteorites were determined in order to investigate formation processes and how meteorites within chemical subgroups may be related. Close adherence of 187Re-187Os isotopic data of most IAB iron meteorites to a primordial isochron indicates that the siderophile elements of most members of the complex remained closed to elemental disturbance soon after formation. Minor, presumably late-stage open-system behavior, however, is observed in some members of the sLM, sLH, sHL, and sHH subgroups. The new siderophile element abundance data are consistent with the findings of prior studies suggesting that the IAB subgroups cannot be related to one another by any known crystallization process. Equilibrium crystallization, coupled with crystal segregation, solid-liquid mixing, and subsequent fractional crystallization can account for the siderophile element variations among meteorites within the IAB main group (MG). The data for the sLM subgroup are consistent with equilibrium crystallization, combined with crystal segregation and mixing. By contrast, the limited fractionation of siderophile elements within the sLL subgroup is consistent with metal extraction from a chondritic source with little subsequent processing. The limited data for the other subgroups were insufficient to draw robust conclusions about crystallization processes involved in their formation. Collectively, multiple formational processes are represented in the IAB complex, and modeling results suggest that fractional crystallization within the MG may have been a more significant process than has been previously recognized.

  10. Microstructure formation and fracturing characteristics of grey cast iron repaired using laser.

    Science.gov (United States)

    Yi, Peng; Xu, Pengyun; Fan, Changfeng; Yang, Guanghui; Liu, Dan; Shi, Yongjun

    2014-01-01

    The repairing technology based on laser rapid fusion is becoming an important tool for fixing grey cast iron equipment efficiently. A laser repairing protocol was developed using Fe-based alloy powders as material. The microstructure and fracturing feature of the repaired zone (RZ) were analyzed. The results showed that regionally organized RZ with good density and reliable metallurgical bond can be achieved by laser repairing. At the bottom of RZ, dendrites existed in similar direction and extended to the secondary RZ, making the grains grow extensively with inheritance with isometric grains closer to the surface substrate. The strength of the grey cast iron base material was maintained by laser repairing. The base material and RZ were combined with robust strength and fracture resistance. The prevention and deflection of cracking process were analyzed using a cracking process model and showed that the overall crack toughness of the materials increased.

  11. Formation and properties of thin films of iron silicides on Si(111) Surface: Ab initio simulation

    Science.gov (United States)

    Kuyanov, I. A.; Alekseev, A. A.; Zotov, A. V.

    2012-03-01

    Density functional theory in the generalized gradient approximation has been used to calculate the total energy and model the atomic and electronic structures of thin FeSi films with CsCl type lattice and γ-FeSi2 films with CaF2 fluorite type lattice on a Si(111) surface. It is shown that, upon the adsorption of two monolayers of iron atoms on Si(111), the most energetically favorable process is the growth of a γ-FeSi2 film with CaF2 type structure. The electronic structure of a silicide film formed upon the adsorption of one monolayer of iron atoms exhibits features that are characteristic of both FeSi and γ-FeSi2. The density of states calculated for the γ-FeSi2 well agrees with the experimental photoemission spectra reported in the literature.

  12. A study of formation of iron nanoparticles in aluminium matrix with helium pores

    Czech Academy of Sciences Publication Activity Database

    Kichanov, S.E.; Kozlenko, D. P.; Belushkin, A.V.; Reutov, V.F.; Samoilenko, S.O.; Jirák, Zdeněk; Savenko, B. N.; Bulavin, L. A.; Zubavichus, Y.V.

    2012-01-01

    Roč. 351, č. 1 (2012), "012013-1"-"012013-5" ISSN 1742-6588. [International Workshop on SANS-YuMO User Meeting at the Start-up of Scientific Experiments on the IBR-2M Reactor - Devoted to the 75th anniversary of Yu M Ostanevich's Birth /2./. Dubna, 27.05.2011-30.05.2011] Institutional research plan: CEZ:AV0Z10100521 Keywords : iron nanoparticles * aluminium matrix * helium pores Subject RIV: BM - Solid Matter Physics ; Magnetism

  13. Direct Imaging of the Water Snow Line at the Time of Planet Formation using Two ALMA Continuum Bands

    Science.gov (United States)

    Banzatti, A.; Pinilla, P.; Ricci, L.; Pontoppidan, K. M.; Birnstiel, T.; Ciesla, F.

    2015-12-01

    Molecular snow lines in protoplanetary disks have been studied theoretically for decades because of their importance in shaping planetary architectures and compositions. The water snow line lies in the planet formation region at ≲10 AU, and so far its location has been estimated only indirectly from spatially unresolved spectroscopy. This work presents a proof-of-concept method to directly image the water snow line in protoplanetary disks through its physical and chemical imprint on the local dust properties. We adopt a physical disk model that includes dust coagulation, fragmentation, drift, and a change in fragmentation velocities of a factor of 10 between dry silicates and icy grains as found by laboratory work. We find that the presence of a water snow line leads to a sharp discontinuity in the radial profile of the dust emission spectral index αmm due to replenishment of small grains through fragmentation. We use the ALMA simulator to demonstrate that this effect can be observed in protoplanetary disks using spatially resolved ALMA images in two continuum bands. We explore the model dependence on the disk viscosity and find that the spectral index reveals the water snow line for a wide range of conditions, with opposite trends when the emission is optically thin rather than thick. If the disk viscosity is low (αvisc structure with a minimum at αmm ˜ 2 in the optically thick regime, possibly similar to what has been measured with ALMA in the innermost region of the HL Tau disk.

  14. Carbon Solubility in Silicon-Iron-Bearing Metals during Core Formation on Mercury

    Science.gov (United States)

    Vander Kaaden, Kathleen E.; McCubbin, Francis M.; Ross, D. Kent; Rapp, Jennifer F.; Danielson, Lisa R.; Keller, Lindsay P.; Righter, Kevin

    2016-01-01

    Recent results obtained from the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft showed the surface of Mercury has high S abundances (approximately 4 wt%) and low Iron(II) Oxide abundances (less than 2 wt%). Based on these extreme values, the oxygen fugacity of Mercury's surface materials was estimated to be approximately 3 to 7 log(sub 10) units below the IW buffer (Delta IW-3 to Delta IW-7). This highly reducing nature of the planet has resulted in a large core and relatively thin mantle, extending to only approximately 420 km depth (corresponding to a core-mantle boundary pressure of approximately 4-7 GPa) within the planet. Furthermore, MESSENGER results have suggested the presence of carbon on the surface of the planet. Previous experimental results from have also suggested the possibility of a primary floatation crust on Mercury composed of graphite, produced after a global magma ocean event. With these exotic conditions of this compositional end-member planet, it begs the question, what is the core composition of Mercury? Although no definitive conclusion has been reached, previous studies have made advances towards answering this question. Riner et al. and Chen et al. looked at iron sulfide systems and implemented various crystallization and layered core scenarios to try and determine the composition and structure of Mercury's core. Malavergne et al. examined core crystallization scenarios in the presence of sulfur and silicon. Hauck et al. used the most recent geophysical constraints from the MESSENGER spacecraft to model the internal structure of Mercury, including the core, in a iron-sulfur-silicon system. More recently, Chabot et al. conducted a series of metal-silicate partitioning experiments in a iron-sulfur-silicon system. These results showed the core of Mercury has the potential to contain more than 15 wt% silicon. However, with the newest results from MESSENGER's low altitude campaign, carbon is another

  15. Preservation of carbohydrates through sulfurization in a Jurassic euxinic shelf sea: Examination of the Blackstone Band TOC-cycle in the Kimmeridge Clay Formation, UK

    NARCIS (Netherlands)

    Dongen, B.E. van; Schouten, S.; Sinninghe Damsté, J.S.

    2006-01-01

    A complete total organic carbon (TOC) cycle in the Upper Jurassic Kimmeridge Clay Formation (KCF) comprising the extremely TOC-rich (34%) Blackstone Band was studied to investigate the controlling factors on TOC accumulation. Compared with the under- and overlying strata, TOC in the Blackstone

  16. Petrology and geochemistry of the ~2.9 Ga Itilliarsuk banded iron formation and associated supracrustal rocks, West Greenland

    DEFF Research Database (Denmark)

    Haugaard, Rasmus; Frei, Robert; Stendal, Henrik

    2013-01-01

    ) metasediments with affinities to TTG-suites, primarily extrusives, whereas the meta-semipelites and metapelites contain a larger mafic contribution with higher content of Fe2O3, MgO, Cr, Ni and HREEs. This suggests that the BIF was deposited in a highly unstable basin, presumably in a palaeo-continental slope...

  17. Ferritin associates with marginal band microtubules

    International Nuclear Information System (INIS)

    Infante, Anthony A.; Infante, Dzintra; Chan, M.-C.; How, P.-C.; Kutschera, Waltraud; Linhartova, Irena; Muellner, Ernst W.; Wiche, Gerhard; Propst, Friedrich

    2007-01-01

    We characterized chicken erythrocyte and human platelet ferritin by biochemical studies and immunofluorescence. Erythrocyte ferritin was found to be a homopolymer of H-ferritin subunits, resistant to proteinase K digestion, heat stable, and contained iron. In mature chicken erythrocytes and human platelets, ferritin was localized at the marginal band, a ring-shaped peripheral microtubule bundle, and displayed properties of bona fide microtubule-associated proteins such as tau. Red blood cell ferritin association with the marginal band was confirmed by temperature-induced disassembly-reassembly of microtubules. During erythrocyte differentiation, ferritin co-localized with coalescing microtubules during marginal band formation. In addition, ferritin was found in the nuclei of mature erythrocytes, but was not detectable in those of bone marrow erythrocyte precursors. These results suggest that ferritin has a function in marginal band formation and possibly in protection of the marginal band from damaging effects of reactive oxygen species by sequestering iron in the mature erythrocyte. Moreover, our data suggest that ferritin and syncolin, a previously identified erythrocyte microtubule-associated protein, are identical. Nuclear ferritin might contribute to transcriptional silencing or, alternatively, constitute a ferritin reservoir

  18. Features of Wear-Resistant Cast Iron Coating Formation During Plasma-Powder Surfacing

    Science.gov (United States)

    Vdovin, K. N.; Emelyushin, A. N.; Nefed'ev, S. P.

    2017-09-01

    The structure of coatings deposited on steel 45 by plasma-powder surfacing of white wear-resistant cast iron is studied. The effects of surfacing regime and additional production effects on the welding bath during surfacing produced by current modulation, accelerated cooling of the deposited beads by blowing with air, and accelerated cooling of the substrate with running water on the structure, are determined. A new composition is suggested for powder material for depositing wear-resistant and corrosion-resistant coatings on a carbon steel by the plasma-powder process.

  19. Sedimentary environment and tectonic deformations of the Neoproterozoic Iron formation at the Wadi El-Dabbah greenstone sequence, Central Eastern Desert, Egypt

    Science.gov (United States)

    Kiyokawa, S.; Suzuki, T.; Ikehara, M.; Horie, K.; Takehara, M.; Abd-Elmonem, H.; Dawoud, A. D. M.; El-Hasan, M. M.

    2017-12-01

    El-Dabbah area Central Eastern Desert of the Nubia Shield preserved Neoproterozoic lower green schist faces volcaniclastics greenstone sequence and covered strike-slip deformation related subaerial sedimentary sequence (Hammamat Group). The volcaniclastics greenstone sequence (El-Dabbah Formation) preserved several iron beds bearing well stratified sequence. Four tectonic deformation identified as this area; thrust deformation (D1), strike-slip deformation with transtension normal fault and strong left-lateral shear (D2), subaerial pull apart sediments basin formed strike-slip deformations (D3), and extensional deformation after the Hammamat Group sedimentation (D4). New age data from intrusions identified about 638 Ma white granite and about 660 Ma quartz porphyry. Based on the detail mapping, we reconstruct more than 5000m thick volcano sedimentary succession. At least, 10 iron rich sections were identified within 3500m thick volcano-sedimentary sequence. There are 14 iron formation sequence identified in this greenstone sequence. Each Iron sequences are bedded with greenish-black shales within massive volcaniclastics and lava flow. Iron formation is formed mostly fine grain magnetite deposited within volcanic mudstone and siltstone with gradual distribution. Timing of this iron sediment is identified within Sturtian glaciation (730-700Ma). However, there is no geological direct support evidence in the Snowball earth event at this greenstone sequence. The volcanic activities at this ocean already produced many Fe2+ to ocean water. Repeated iron precipitation occur during volcanic activity interphase period which produced oxidation of iron and produce oxyhydroxide with mud-silt sediment at bottom of ocean.

  20. Polyelectrolyte multilayer film-assisted formation of zero-valent iron nanoparticles onto polymer nanofibrous mats

    International Nuclear Information System (INIS)

    Xiao Shili; Shi Xiangyang; Wu Siqi; Shen Mingwu; Guo Rui; Wang Shanyuan

    2009-01-01

    A facile approach that combines the electrospinning technique and layer-by-layer (LbL) assembly method has been developed to synthesize and immobilize zero-valent iron nanoparticles (ZVI NPs) onto the surface of nanofibers for potential environmental applications. In this approach, negatively charged cellulose acetate (CA) nanofibers fabricated by electrospinning CA solution were modified with bilayers composed of positively charged poly(diallyl-dimethyl-ammoniumchloride) (PDADMAC) and negatively charged poly(acrylic acid) (PAA) through electrostatic LbL assembly approach to form composite nanofibrous mats. The composite nanofibrous mats were immersed into the ferrous iron solution to allow Fe(II) ions to complex with the free carboxyl groups of PAA, and then ZVI NPs were immobilized onto the composite nanofibrous mats instantly by reducing the ferrous cations. Combined scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive spectroscopy (EDS), and thermogravimetry analysis demonstrated that the ZVI NPs are successfully synthesized and uniformly distributed into the polyelectrolyte (PE) multilayer films assembled onto the CA nanofibers. The present approach to synthesis ZVI NPs opens a new avenue to fabricating various materials with high surface area for environmental, catalytic, and sensing applications.

  1. Incorporation of either molybdenum or tungsten into formate dehydrogenase from Desulfovibrio alaskensis NCIMB 13491; EPR assignment of the proximal iron-sulfur cluster to the pterin cofactor in formate dehydrogenases from sulfate-reducing bacteria.

    Science.gov (United States)

    Brondino, Carlos D; Passeggi, Mario C G; Caldeira, Jorge; Almendra, Maria J; Feio, Maria J; Moura, Jose J G; Moura, Isabel

    2004-03-01

    We report the characterization of the molecular properties and EPR studies of a new formate dehydrogenase (FDH) from the sulfate-reducing organism Desulfovibrio alaskensis NCIMB 13491. FDHs are enzymes that catalyze the two-electron oxidation of formate to carbon dioxide in several aerobic and anaerobic organisms. D. alaskensis FDH is a heterodimeric protein with a molecular weight of 126+/-2 kDa composed of two subunits, alpha=93+/-3 kDa and beta=32+/-2 kDa, which contains 6+/-1 Fe/molecule, 0.4+/-0.1 Mo/molecule, 0.3+/-0.1 W/molecule, and 1.3+/-0.1 guanine monophosphate nucleotides. The UV-vis absorption spectrum of D. alaskensis FDH is typical of an iron-sulfur protein with a broad band around 400 nm. Variable-temperature EPR studies performed on reduced samples of D. alaskensis FDH showed the presence of signals associated with the different paramagnetic centers of D. alaskensis FDH. Three rhombic signals having g-values and relaxation behavior characteristic of [4Fe-4S] clusters were observed in the 5-40 K temperature range. Two EPR signals with all the g-values less than two, which accounted for less than 0.1 spin/protein, typical of mononuclear Mo(V) and W(V), respectively, were observed. The signal associated with the W(V) ion has a larger deviation from the free electron g-value, as expected for tungsten in a d(1) configuration, albeit with an unusual relaxation behavior. The EPR parameters of the Mo(V) signal are within the range of values typically found for the slow-type signal observed in several Mo-containing proteins belonging to the xanthine oxidase family of enzymes. Mo(V) resonances are split at temperatures below 50 K by magnetic coupling with one of the Fe/S clusters. The analysis of the inter-center magnetic interaction allowed us to assign the EPR-distinguishable iron-sulfur clusters with those seen in the crystal structure of a homologous enzyme.

  2. Grains of Nonferrous and Noble Metals in Iron-Manganese Formations and Igneous Rocks of Submarine Elevations of the Sea of Japan

    Science.gov (United States)

    Kolesnik, O. N.; Astakhova, N. V.

    2018-01-01

    Iron-manganese formations and igneous rocks of submarine elevations in the Sea of Japan contain overlapping mineral phases (grains) with quite identical morphology, localization, and chemical composition. Most of the grains conform to oxides, intermetallic compounds, native elements, sulfides, and sulfates in terms of the set of nonferrous, noble, and certain other metals (Cu, Zn, Sn, Pb, Ni, Mo, Ag, Pd, and Pt). The main conclusion that postvolcanic hydrothermal fluids are the key sources of metals is based upon a comparison of the data of electron microprobe analysis of iron-manganese formations and igneous rocks dredged at the same submarine elevations in the Sea of Japan.

  3. Flotation of Magnetite Crystals upon Decompression - A Formation Model for Kiruna-type Iron Oxide-Apatite Deposits

    Science.gov (United States)

    Knipping, J. L.; Simon, A. C.; Fiege, A.; Webster, J. D.; Reich, M.; Barra, F.; Holtz, F.; Oeser-Rabe, M.

    2017-12-01

    Trace-element characteristics of magnetite from Kiruna-type iron oxide-apatite deposits indicate a magmatic origin. A possible scenario currently considered for the magmatic formation, apart from melt immiscibility, is related to degassing of volatile-rich magmas. Decompression, e.g., induced by magma ascent, results in volatile exsolution and the formation of a magmatic volatile phase. Volatile bubbles are expected to nucleate preferentially on the surface of oxides like magnetite which is due to a relatively low surface tension of oxide-bubble interfaces [1]. The "bulk" density of these magnetite-bubble pairs is typically lower than the surrounding magma and thus, they are expected to migrate upwards. Considering that magnetite is often the liquidus phase in fluid-saturated, oxidized andesitic arc magmas, this process may lead to the formation of a rising magnetite-bubble suspension [2]. To test this hypothesis, complementary geochemical analyses and high pressure experimental studies are in progress. The core to rim Fe isotopic signature of magnetite grains from the Los Colorados deposit in the Chilean Iron Belt was determined by Laser Ablation-MC-ICP-MS. The δ56Fe data reveal a systematic zonation from isotopically heavy Fe (δ56Fe: 0.25 ±0.07 ‰) in the core of magnetite grains to relatively light Fe (δ56Fe: 0.15 ±0.05 ‰) toward grain rims. This variation indicates crystallization of the magnetite cores at early magmatic stages from a silicate melt and subsequent growth of magnetite rims at late magmatic - hydrothermal stages from a free volatile phase. These signatures agree with the core to rim trace-element signatures of the same magnetite grains. The presence of Cl in the exsolved volatile phase and the formation of FeCl2 complexes is expected to enhance the transport of Fe in fluids and the formation of magmatic-hydrothermal magnetite [3]. First experiments (975 °C, 350 to 100 MPa, 0.025 MPa/s) show certain magnetite accumulation only 15 minutes

  4. Methane formation by oxidation of ascorbic acid using iron minerals and hydrogen peroxide.

    Science.gov (United States)

    Althoff, Frederik; Jugold, Alke; Keppler, Frank

    2010-06-01

    The possibility of methane formation in an oxidative environment has been intensely debated, especially since the discovery of methane generation by living plants. However, recent studies with animal tissue suggested that under specific conditions aerobic methane formation is also possible. Here, we investigated the generation of methane in an abiotic model system using bioavailable substances. We show formation of methane in a highly oxidative media, using ascorbic acid, ferrihydrite and hydrogen peroxide as reagents. Methane production was shown to be related to reagent ratio, reaction volume and pH. A 2:1 ratio of hydrogen peroxide to ascorbic acid, catalytic amounts of ferrihydrite and acidic conditions (pH 3) enhanced formation of methane. We further show that gaseous oxygen has a strong influence with higher levels found to inhibit methane formation. This study is a first step towards providing an insight for the reaction mechanism of methane formation that would be applicable to aerobic environments. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  5. Effects of applied strain on nanoscale self-interstitial cluster formation in BCC iron

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Ning; Setyawan, Wahyu; Kurtz, Richard J.; Wang, Zhiguang

    2017-09-01

    The effect of applied strains on the configurational evolution of self-interstitial clusters in BCC iron (Fe) is explored with atomistic simulations. A novel cluster configuration is discovered at low temperatures (<600 K), which consists of <110> dumbbells and <111> crowdions in a specific configuration, resulting in an immobile defect. The stability and diffusion of this cluster at higher temperatures is explored. In addition, an anisotropy distribution factor of a particular [hkl] interstitial loop within the family of loops is calculated as a function of strain. The results show that loop anisotropy is governed by the angle between the stress direction and the orientation of the <111> crowdions in the loop, and directly linked to the stress induced preferred nucleation of self-interstitial atoms.

  6. Effects of applied strain on nanoscale self-interstitial cluster formation in BCC iron

    Science.gov (United States)

    Gao, Ning; Setyawan, Wahyu; Kurtz, Richard J.; Wang, Zhiguang

    2017-09-01

    The effect of applied strains on the configurational evolution of self-interstitial clusters in BCC iron (Fe) is explored with atomistic simulations. A novel cluster configuration is discovered at low temperatures (dumbbells and 〈 111 〉 crowdions in a specific configuration, resulting in an immobile defect. The stability and diffusion of this cluster at higher temperatures is explored. In addition, an anisotropy distribution factor of a particular [ hkl ] interstitial loop within the family of 〈 hkl 〉 loops is calculated as a function of strain. The results show that loop anisotropy is governed by the angle between the stress direction and the orientation of the 〈 111 〉 crowdions in the loop, and directly linked to the stress induced preferred nucleation of self-interstitial atoms.

  7. Corrosive inorganic contamination on wafer surfaces after nickel-iron electroplating formation mechanisms and prevention

    Energy Technology Data Exchange (ETDEWEB)

    Kritzer, P. [Freudenberg Nonwovens KG, Technical Nonwovens Div., Weinheim (Germany); Diel, W.; Barber, P.H. [IBM Speichersysteme Deutschland GmbH, Mainz (Germany); Romankiw, L.T. [IBM Watson Research Center, Yorktown Heights, NY (United States)

    2001-11-01

    Electroplating of Nickel-Iron alloys is widely used in the production of magnetic heads for storage systems. Usually, the plating process is performed in acidic, salt-containing solutions. After the plating step, a complete removal of the plating salts is necessary to receive a clean surface. In disadvantageous cases, a precipitation of sticky particles is observed that cannot be removed from the plated surface without damaging the surface. Some of these substances (esp. nickel sulfates) might lead to severe local corrosion and thus might act as ''time-bomb'' in the later product. Non-corrosive precipitations (i.e. nickel hydroxides) strongly hinder or even prevent the following production steps. In the present paper, the mechanisms of the origin of the different kinds of precipitation are described and the principle actions for their prevention are given. An outlook is given for other possible technical applications. (orig.)

  8. Controlled synthesis of magnetic iron oxides@SnO2 quasi-hollow core-shell heterostructures: formation mechanism, and enhanced photocatalytic activity.

    Science.gov (United States)

    Wu, Wei; Zhang, Shaofeng; Ren, Feng; Xiao, Xiangheng; Zhou, Juan; Jiang, Changzhong

    2011-11-01

    Iron oxide/SnO(2) magnetic semiconductor core-shell heterostructures with high purity were synthesized by a low-cost, surfactant-free and environmentally friendly hydrothermal strategy via a seed-mediated method. The morphology and structure of the hybrid nanostructures were characterized by means of high-resolution transmission electron microscopy and X-ray diffraction. The morphology evolution investigations reveal that the Kirkendall effect directs the diffusion and causes the formation of iron oxide/SnO(2) quasi-hollow particles. Significantly, the as-obtained iron oxides/SnO(2) core-shell heterostructures exhibited enhanced visible light or UV photocatalytic abilities, remarkably superior to as-used α-Fe(2)O(3) seeds and commercial SnO(2) products, mainly owing to the effective electron hole separation at the iron oxides/SnO(2) interfaces.

  9. On Iron Enrichment, Star Formation, and Type Ia Supernovae in Galaxy Clusters

    Science.gov (United States)

    Loewenstein, Michael

    2006-01-01

    The nature of star formation and Type Ia supernovae (SNIa) in galaxies in the field and in rich galaxy clusters are contrasted by juxtaposing the buildup of heavy metals in the universe inferred from observed star formation and supernovae rate histories with data on the evolution of Fe abundances in the intracluster medium (ICM). Models for the chemical evolution of Fe in these environments are constructed, subject to observational constraints, for this purpose. While models with a mean delay for SNIa of 3 Gyr and standard initial mass function (IMF) are fully consistent with observations in the field, cluster Fe enrichment immediately tracked a rapid, top-heavy phase of star formation - although transport of Fe into the ICM may have been more prolonged and star formation likely continued beyond redshift 1. The means of this prompt enrichment consisted of SNII yielding greater than or equal to 0.1 solar mass per explosion (if the SNIa rate normalization is scaled down from its value in the field according to the relative number of candidate progenitor stars in the 3 - 8 solar mass range) and/or SNIa with short delay times originating during the rapid star formation epoch. Star formation is greater than 3 times more efficient in rich clusters than in the field, mitigating the overcooling problem in numerical cluster simulations. Both the fraction of baryons cycled through stars, and the fraction of the total present-day stellar mass in the form of stellar remnants, are substantially greater in clusters than in the field.

  10. The formation of α-phase SnS nanorods by PVP assisted polyol synthesis: Phase stability, micro structure, thermal stability and defects induced energy band transitions

    Energy Technology Data Exchange (ETDEWEB)

    Baby, Benjamin Hudson; Mohan, D. Bharathi, E-mail: d.bharathimohan@gmail.com

    2017-05-01

    We report the formation of single phase of SnS nanostructure through PVP assisted polyol synthesis by varying the source concentration ratio (Sn:S) from 1:1M to 1:12M. The effect of PVP concentration and reaction medium towards the preparation of SnS nanostructure is systematically studied through confocal Raman spectrometer, X-ray diffraction, thermogravimetry analysis, scanning electron microscope, transmission electron microscopy, X-ray photoelectron spectroscopy, UV–Vis–NIR absorption and fluorescence spectrophotometers. The surface morphology of SnS nanostructure changes from nanorods to spherical shape with increasing PVP concentration from 0.15M to 0.5M. Raman analysis corroborates that Raman active modes of different phases of Sn-S are highly active when Raman excitation energy is slightly greater than the energy band gap of the material. The presence of intrinsic defects and large number of grain boundaries resulted in an improved thermal stability of 20 °C during the phase transition of α-SnS. Band gap calculation from tauc plot showed the direct band gap of 1.5 eV which is attributed to the single phase of SnS, could directly meet the requirement of an absorber layer in thin film solar cells. Finally, we proposed an energy band diagram for as synthesized single phase SnS nanostructure based on the experimental results obtained from optical studies showing the energy transitions attributed to band edge transition and also due to the presence of intrinsic defects. - Highlights: • PVP stabilizes the orthorhombic (α) phase of SnS. • Optical band gap of P type SnS tuned by PVP for photovoltaic applications. • The formation of Sn rich SnS phase is investigated through XPS analysis. • Intrinsic defects enhance the thermal stability of α-SnS. • The feasibility of energy transition liable to point defects is discussed.

  11. Iron bioavailability from commercially available iron supplements.

    Science.gov (United States)

    Christides, Tatiana; Wray, David; McBride, Richard; Fairweather, Rose; Sharp, Paul

    2015-12-01

    Iron deficiency anaemia (IDA) is a global public health problem. Treatment with the standard of care ferrous iron salts may be poorly tolerated, leading to non-compliance and ineffective correction of IDA. Employing supplements with higher bioavailability might permit lower doses of iron to be used with fewer side effects, thus improving treatment efficacy. Here, we compared the iron bioavailability of ferrous sulphate tablets with alternative commercial iron products, including three liquid-based supplements. Iron bioavailability was measured using Caco-2 cells with ferritin formation as a surrogate marker for iron uptake. Statistical analysis was performed using one-way ANOVA followed by either Dunnett's or Tukey's multiple comparisons tests. Spatone Apple(®) (a naturally iron-rich mineral water with added ascorbate) and Iron Vital F(®) (a synthetic liquid iron supplement) had the highest iron bioavailability. There was no statistical difference between iron uptake from ferrous sulphate tablets, Spatone(®) (naturally iron-rich mineral water alone) and Pregnacare Original(®) (a multimineral/multivitamin tablet). In our in vitro model, naturally iron-rich mineral waters and synthetic liquid iron formulations have equivalent or better bioavailability compared with ferrous iron sulphate tablets. If these results are confirmed in vivo, this would mean that at-risk groups of IDA could be offered a greater choice of more bioavailable and potentially better tolerated iron preparations.

  12. Formation mechanism of the low-frequency locally resonant band gap in the two-dimensional ternary phononic crystals

    Science.gov (United States)

    Wang, Gang; Liu, Yao-Zong; Wen, Ji-Hong; Yu, Dian-Long

    2006-02-01

    The low-frequency band gap and the corresponding vibration modes in two-dimensional ternary locally resonant phononic crystals are restudied successfully with the lumped-mass method. Compared with the work of C. Goffaux and J. Sánchez-Dehesa (Phys. Rev. B 67 14 4301(2003)), it is shown that there exists an error of about 50% in their calculated results of the band structure and one band is missing in their results. Moreover, the in-plane modes shown in their paper are improper, which results in the wrong conclusion on the mechanism of the ternary locally resonant phononic crystals. Based on the lumped-mass method and better description of the vibration modes according to the band gaps, the locally resonant mechanism in forming the subfrequency gaps is thoroughly analysed. The rule used to judge whether a resonant mode in the phononic crystals can result in a corresponding subfrequency gap is also verified in this ternary case.

  13. Environmental implications of iron fuel borne catalysts and their effects on diesel particulate formation and composition

    Science.gov (United States)

    Metal fuel borne catalysts can be used with diesel fuels to effectively reduce engine out particle mass emissions. Mixed with the fuel, the metals become incorporated as nanometer-scale occlusions with soot during its formation and are available to promote in-cylinder soot oxida...

  14. ABOUT MECHANISM OF STRUCTURE FORMATION OF PARTICULAR SOLID CARBONIC PHASE IN NANOCOMPOSITE ON THE BASIS OF IRON AND NANO-DISPERSE CARBON

    Directory of Open Access Journals (Sweden)

    D. V. Kuis

    2010-01-01

    Full Text Available The mechanism of structure formation in super-solid carbon phase in nanocomposite on the basis of iron and nano-disperse carbon, which can be used at development of technology and composition of creation of new materials using inexpensive nano-carbon materials is offered.

  15. The Tonkolili Iron Occurrence of Sierrra Leone: A Petrological ...

    African Journals Online (AJOL)

    It is therefore the conclusion of this paper that with the realisation that the primary Fe mineral is magnetite rather than haematite and since there is an intimate association between the volcanic rocks and the Fe mineralisations, the Tonkolili Fe deposits can be classified as an Algoma type of Banded Iron Formation according ...

  16. Positron studies of interaction between yttrium atoms and vacancies in bcc iron with relevance for ODS nanoparticles formation

    Energy Technology Data Exchange (ETDEWEB)

    He, C.W., E-mail: chenwei.he@cnrs-orleans.fr [CNRS, CEMHTI UPR3079, Univ. Orléans, F-45071 Orléans (France); Barthe, M.F.; Desgardin, P. [CNRS, CEMHTI UPR3079, Univ. Orléans, F-45071 Orléans (France); Akhmadaliev, S. [Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf, BautznerLandstr. 400, D-01328 Dresden (Germany); Behar, M. [Instituto de Fisica, Av. Bento Gonçalves 9500, Agronomia, Porto Alegre (Brazil); Jomard, F. [GEMac, Univ. Versailles, 45 avenue des Etats Unis, 78035 Versailles cedex (France)

    2014-12-15

    The very high calculated binding energy of vacancy (V)–Y{sub sub} (1.45 eV) in Fe makes it be one possible earliest formation stage of (Y, Ti, O) nanoclusters in ODS alloy. Our direct slow positrons annihilation observations are used to valid the interaction between V and Y. The pure bcc iron samples have been implanted by 1.2 MeV Y ions at three fluences from 1 × 10{sup 14} to 3 × 10{sup 15} cm{sup −2}. Vacancy clusters are observed for all these three fluences. Their size and concentration decrease with Y concentration measured by using SIMS. Two hypotheses are proposed to explain the results, including the formation of complexes V{sub m}–Y{sub n} and/or of precipitates Y{sub m}–X{sub n} (X = Y, O, etc.). In addition, vacancy clusters are detected deeper than predicted by SRIM calculation due to, at least for a part, channelling which is confirmed by Marlowe calculation and SIMS measurements.

  17. Phase formation in the process of iron and titanium oxides metallothermic reduction

    Energy Technology Data Exchange (ETDEWEB)

    Krasikov, S A [Institute of Metallurgy, Ural Branch of Russian Academy of Sciences, 101 Amundsen str., Ekaterinburg 620016 (Russian Federation); Nadolsky, A L [Physical Department. Ural State University, 51 Lenin ave., Ekaterinburg 620083 (Russian Federation); Shapovalov, A G; Pazdnikov, I P; Tashmurzin, A Y; Shurygin, Y Y [JSC URALREDMET, 59 Petrov str., Verkhnyaya Pyshma 624092, Sverdlovsk Region (Russian Federation); Osokina, M A [Metallurgical Department, Ural State Technical University, 19 Mira str., Ekaterinburg 620002 (Russian Federation)], E-mail: sankr@mail.ru

    2008-02-15

    Phase formation in the alloys obtained during process of collective Ti and Fe oxides reduction by Al has been investigated. Thermodynamic computer simulation of the process (based on the system free energy minimizing principle) has indicated a range of possible reactions with various metallic compounds formation. Differential-thermal (DT), X-ray diffraction (XRD) methods and melting of reaction mixtures at 1773-1973 K have been carried out to confirm the thermodynamic predictions. The DT experiments showed that the process began after Al melting at 943 K and was accompanied by large exothermic effects. The intermetallic phases of alloys with various content of Ti, Fe and Al have been observed by the XRD analysis.

  18. Study on the Microstructure and Liquid Phase Formation in a Semisolid Gray Cast Iron

    Science.gov (United States)

    Benati, Davi Munhoz; Ito, Kazuhiro; Kohama, Kazuyuki; Yamamoto, Hajime; Zoqui, Eugenio José

    2017-10-01

    The development of high-quality semisolid raw materials requires an understanding of the phase transformations that occur as the material is heated up to the semisolid state, i.e., its melting behavior. The microstructure of the material plays a very important role during semisolid processing as it determines the flow behavior of the material when it is formed, making a thorough understanding of the microstructural evolution essential. In this study, the phase transformations and microstructural evolution in Fe2.5C1.5Si gray cast iron specially designed for thixoforming processes as it was heated to the semisolid state were observed using in situ high-temperature confocal laser scanning microscopy. At room temperature, the alloy has a matrix of pearlite and ferrite with fine interdendritic type D flake graphite. During heating, the main transformations observed were graphite precipitation inside the grains and at the austenite grain boundaries; graphite flakes and graphite precipitates growing and becoming coarser with the increasing temperature; and the beginning of melting at around 1413 K to 1423 K (1140 °C to 1150 °C). Melting begins with the eutectic phase ( i.e., the carbon-rich phase) and continues with the primary phase (primary austenite), which is consumed as the temperature increases. Melting of the eutectic phase composed by coarsened interdendritic graphite flakes produced a semi-continuous liquid network homogeneously surrounding and wetting the dendrites of the solid phase, causing grains to detach from each other and producing the intended solid globules immersed in liquid.

  19. Visible-light-driven methane formation from CO2 with a molecular iron catalyst.

    Science.gov (United States)

    Rao, Heng; Schmidt, Luciana C; Bonin, Julien; Robert, Marc

    2017-08-03

    Converting CO 2 into fuel or chemical feedstock compounds could in principle reduce fossil fuel consumption and climate-changing CO 2 emissions. One strategy aims for electrochemical conversions powered by electricity from renewable sources, but photochemical approaches driven by sunlight are also conceivable. A considerable challenge in both approaches is the development of efficient and selective catalysts, ideally based on cheap and Earth-abundant elements rather than expensive precious metals. Of the molecular photo- and electrocatalysts reported, only a few catalysts are stable and selective for CO 2 reduction; moreover, these catalysts produce primarily CO or HCOOH, and catalysts capable of generating even low to moderate yields of highly reduced hydrocarbons remain rare. Here we show that an iron tetraphenylporphyrin complex functionalized with trimethylammonio groups, which is the most efficient and selective molecular electro- catalyst for converting CO 2 to CO known, can also catalyse the eight-electron reduction of CO 2 to methane upon visible light irradiation at ambient temperature and pressure. We find that the catalytic system, operated in an acetonitrile solution containing a photosensitizer and sacrificial electron donor, operates stably over several days. CO is the main product of the direct CO 2 photoreduction reaction, but a two-pot procedure that first reduces CO 2 and then reduces CO generates methane with a selectivity of up to 82 per cent and a quantum yield (light-to-product efficiency) of 0.18 per cent. However, we anticipate that the operating principles of our system may aid the development of other molecular catalysts for the production of solar fuels from CO 2 under mild conditions.

  20. Visible-light-driven methane formation from CO2 with a molecular iron catalyst

    Science.gov (United States)

    Rao, Heng; Schmidt, Luciana C.; Bonin, Julien; Robert, Marc

    2017-08-01

    Converting CO2 into fuel or chemical feedstock compounds could in principle reduce fossil fuel consumption and climate-changing CO2 emissions. One strategy aims for electrochemical conversions powered by electricity from renewable sources, but photochemical approaches driven by sunlight are also conceivable. A considerable challenge in both approaches is the development of efficient and selective catalysts, ideally based on cheap and Earth-abundant elements rather than expensive precious metals. Of the molecular photo- and electrocatalysts reported, only a few catalysts are stable and selective for CO2 reduction; moreover, these catalysts produce primarily CO or HCOOH, and catalysts capable of generating even low to moderate yields of highly reduced hydrocarbons remain rare. Here we show that an iron tetraphenylporphyrin complex functionalized with trimethylammonio groups, which is the most efficient and selective molecular electro- catalyst for converting CO2 to CO known, can also catalyse the eight-electron reduction of CO2 to methane upon visible light irradiation at ambient temperature and pressure. We find that the catalytic system, operated in an acetonitrile solution containing a photosensitizer and sacrificial electron donor, operates stably over several days. CO is the main product of the direct CO2 photoreduction reaction, but a two-pot procedure that first reduces CO2 and then reduces CO generates methane with a selectivity of up to 82 per cent and a quantum yield (light-to-product efficiency) of 0.18 per cent. However, we anticipate that the operating principles of our system may aid the development of other molecular catalysts for the production of solar fuels from CO2 under mild conditions.

  1. Growth and microstructure of iron nitride layers and pore formation in {epsilon}-Fe{sub 3}N

    Energy Technology Data Exchange (ETDEWEB)

    Middendorf, C.; Mader, W. [Univ. Bonn, Inst. fuer Anorganische Chemie, Bonn (Germany)

    2003-03-01

    Layers of {epsilon}-Fe{sub 3}N and {gamma}'-Fe{sub 4}N on ferrite were produced by nitriding iron single crystals or rolled sheets of iron in flowing ammonia at 520 C. The nitride layers were characterised using X-ray diffraction, light microscopy as well as scanning and transmission electron microscopy. The compound layer consists of {epsilon}-Fe{sub 3}N at the surface and of {gamma}'-Fe{sub 4}N facing the ferrite. After 4 h of nitriding, pores develop in the near surface region of {epsilon}-Fe{sub 3}N showing more or less open porosity. Growth of the entire compound layer as well as of the massive and the porous {epsilon}-Fe{sub 3}N sublayer is diffusion-controlled and follows a parabolic growth rate. The {gamma}'-Fe{sub 4}N layer is formed as a transition phase within a narrow interval of nitrogen activity, and it shows little growth in thickness. The transformation of {gamma}'-Fe{sub 4}N to {epsilon}-Fe{sub 3}N is topotactic, where the orientation of the closed-packed iron layers of the crystal structures is preserved. Determination of lattice plane spacings was possible by X-ray diffraction, and this was correlated to the nitrogen content of {epsilon}-Fe{sub 3}N. While the porous layer exhibits an enhanced nitrogen content corresponding to the chemical composition Fe{sub 3}N{sub 1.1}, the massive e Fe{sub 3}N layer corresponds to Fe{sub 3}N{sub 1.0}. The pore formation in {epsilon}-Fe{sub 3}N{sub 1.1} is concluded to be the result of excess nitrogen atoms on non-structural sites, which have a high mobility. Therefore, recombination of excess nitrogen to molecular N{sub 2} at lattice defects is preferred in {epsilon}-Fe{sub 3}N with high nitrogen content compared to stoichiometric {epsilon}-Fe{sub 3}N{sub 1.0} with nitrogen on only structural sites. (orig.)

  2. Formation of ethyl acetate by Kluyveromyces marxianus on whey during aerobic batch and chemostat cultivation at iron limitation.

    Science.gov (United States)

    Löser, Christian; Urit, Thanet; Förster, Sylvia; Stukert, Anton; Bley, Thomas

    2012-11-01

    The ability of Kluyveromyces marxianus to convert lactose into ethyl acetate offers a chance for an economic reuse of whey. Former experiments with K. marxianus DSM 5422 proved limitation of growth by iron (Fe) or copper as a precondition for significant ester synthesis. Several aerobic batch and chemostat cultivations were done with whey-borne media of a variable Fe content for exploring the effect of Fe on growth, the Fe content of biomass, and metabolite synthesis. At low Fe doses, Fe was the growth-limiting factor, the available Fe was completely absorbed by the yeasts, and the biomass formation linearly depended on the Fe dose governed by a minimum Fe content in the yeasts, x (Fe,min). At batch conditions, x (Fe,min) was 8.8 μg/g, while during chemostat cultivation at D = 0.15 h(-1), it was 23 μg/g. At high Fe doses, sugar was the growth-limiting factor, Fe was more or less absorbed, and the formed biomass became constant. Significant amounts of ethyl acetate were only formed at Fe limitation while high Fe doses suppressed ester formation. Analysis of formed metabolites such as glycerol, pyruvate, acetate, ethanol, ethyl acetate, isocitrate, 2-oxoglutarate, succinate, and malate during chemostat cultivation allowed some interpretation of the Fe-dependent mechanism of ester synthesis; formation of ethyl acetate from acetyl-SCoA and ethanol is obviously initiated by a diminished metabolic flux of acetyl-SCoA into the citrate cycle and by a limited oxidation of NADH in the respiratory chain since Fe is required for the function of aconitase, succinate dehydrogenase, and the electron-transferring proteins.

  3. Observation of the anisotropic Dirac cone in the band dispersion of 112-structured iron-based superconductor Ca{sub 0.9}La{sub 0.1}FeAs{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Z. T.; Li, M. Y.; Fan, C. C.; Yang, H. F.; Liu, J. S.; Wang, Z. [State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology (SIMIT), Chinese Academy of Sciences, Shanghai 200050 (China); Xing, X. Z.; Zhou, W.; Sun, Y.; Shi, Z. X. [Department of Physics and Key Laboratory of MEMS of the Ministry of Education, Southeast University, Nanjing 211189 (China); Yao, Q. [State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology (SIMIT), Chinese Academy of Sciences, Shanghai 200050 (China); State Key Laboratory of Surface Physics, Department of Physics, and Advanced Materials Laboratory, Fudan University, Shanghai 200433 (China); Li, W. [State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology (SIMIT), Chinese Academy of Sciences, Shanghai 200050 (China); State Key Laboratory of Surface Physics, Department of Physics, and Advanced Materials Laboratory, Fudan University, Shanghai 200433 (China); CAS-Shanghai Science Research Center, Shanghai 201203 (China); Shen, D. W., E-mail: dwshen@mail.sim.ac.cn [State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology (SIMIT), Chinese Academy of Sciences, Shanghai 200050 (China); CAS-Shanghai Science Research Center, Shanghai 201203 (China); CAS Center for Excellence in Superconducting Electronics (CENSE), Shanghai 200050 (China)

    2016-07-25

    CaFeAs{sub 2} is a parent compound of recently discovered 112-type iron-based superconductors. It is predicted to be a staggered intercalation compound that naturally integrates both quantum spin Hall insulating and superconducting layers and an ideal system for the realization of Majorana modes. We performed a systematical angle-resolved photoemission spectroscopy and first-principles calculation study of the slightly electron-doped CaFeAs{sub 2}. We found that the zigzag As chain of 112-type iron-based superconductors play a considerable role in the low-energy electronic structure, resulting in the characteristic Dirac-cone like band dispersion as the prediction. Our experimental results further confirm that these Dirac cones only exist around the X but not Y points in the Brillouin zone, breaking the S{sub 4} symmetry at iron sites. Our findings present the compelling support to the theoretical prediction that the 112-type iron-based superconductors might host the topological nontrivial edge states. The slightly electron doped CaFeAs{sub 2} would provide us a unique opportunity to realize and explore Majorana fermion physics.

  4. The first solution heats and primary curvature of formation enthalpy isotherms of liquid binary iron alloys with scandium, yttrium, lanthanum and cerium

    International Nuclear Information System (INIS)

    Esin, Yu.O.; Valishev, M.G.; Ermakov, A.F.; Demin, S.E.; Gel'd, P.V.

    1984-01-01

    Experimental values of the first solution heats Δ anti Hsub(i)sup(0) and initial curvature Δ 2 anti Hsub(i)sup(0) of formation enthalpy isotherms of alloys for diluted iron alloys with scandium, yttrium, lanthanum and cerium are discussed. The first partial enthalpy of liquid scandium dissolution in liquid iron is shown to be equal to - (42.3+-3) kJ/g-at. The minimum value of integral formation enthalpy, as calculated by means of a polynomial approximating the experimental data, makes up - (8+-1) kJ/g-at. at 29 at.% Sc. The value Δsup(2)anti Hsub(Sc)sup(0) turned out to be equal to 46+-20 kJ/g-at. The considered electronic structure model correctly reflects basic features of the alloy formation energetics in the investigated systems

  5. Iron speciation analysis of 3.2 Ga old DXCL-DP drillcore BIFs and shales of the Dixon Island Formation, Cleaverville Group, Western Australia

    Science.gov (United States)

    Fujita, S.; Yamaguchi, K. E.; Yamaguchi, A.; Kiyokawa, S.; Ito, T.; Ikehara, M.

    2016-12-01

    In order to examine redox state of the ocean well before the inferred rise of atmospheric oxygen at around 2.4 Ga ago (a.k.a. GOE; e.g., Holland, 1994), we conducted geochemical studies of the 3.2 Ga old drillcore black shale and banded iron formation (BIF). The samples (CL3 core) that belong to the Cleaverville Group, were recovered in 2011 in the northwestern part of Pilbara district, Western Australia. The samples are free from effects of modern-weathering (containing layer-parallel and disseminated pyrite). We measured abundance of major elements by XRF and different Fe-bearing species (FeHCl, Fecarb, Feox, and Femag) of the 23 samples (17 BIF samples and 6 black shales). Furthermore, we extracted pyrite from 6 black shales by Cr reduction method (Canfield et al. 1986; Kobayashi, 2013) and estimated redox condition based on the DOP (degree of pyritization) values. Black shales in the lower part of the core have Al2O3 content (13.04-18.39 wt.%) that decreased toward upper part of the core where BIF dominates. The black shales have higher FeHR/FeTratios (highly-reactive Fe toward pyrite formation to total Fe). The DOP values of the black shales suggest that their sedimentary environment was anoxic. We then estimated, using mass balance calculation with PAAS (post-Archean Australian Average Shale), the origin of Fe in the samples. We found that Fe in the black shales in the lower part of the core was continental, whereas Fe in the BIF samples in the upper part of the core was mostly hydrothermal. We suggest that the samples used in this study represent environmental transitions from continent-dominated to submarine hydrothermal-dominated, Such environmental transition could be represented by modern Red Sea, where initiation of rifting created sedimentary basin where input of continental materials dominated, input from hydrothermal activity gradually increased, and BIF-like Fe-rich material accumulated. To test the above hypothesis, we will provide trace element

  6. Defect production and formation of helium-vacancy clusters due to cascades in α-iron

    International Nuclear Information System (INIS)

    Yang, L.; Zu, X.T.; Xiao, H.Y.; Gao, F.; Heinisch, H.L.; Kurtz, R.J.

    2007-01-01

    Displacement cascades are simulated by molecular dynamics methods in α-Fe containing different concentrations of substitutional He atoms. Primary knock-on atom (PKA) energies, E p , from 0.5 to 5 keV are considered at the irradiation temperature of 100 K. The concentration of He in Fe varies from 1 to 5 at%, and the results are compared with the simulations performed in pure α-Fe. We find that the total number of point defects increases with increasing He concentration. The present studies reveal the formation and the configurations of He-vacancy clusters in the cascades of α-Fe. Furthermore, the production efficiency of He-vacancy clusters increases with increasing He concentration and PKA energy. The nucleation mechanisms of He-vacancy clusters in displacement cascades are discussed in detail

  7. Intermediate band formation in a δ-doped like QW superlattices of GaAs/AlxGa1-xAs for solar cell design

    Science.gov (United States)

    Del Río-De Santiago, A.; Martínez-Orozco, J. C.; Rodríguez-Magdaleno, K. A.; Contreras-Solorio, D. A.; Rodríguez-Vargas, I.; Ungan, F.

    2018-03-01

    It is reported a numerical computation of the local density of states for a δ-doped like QW superlattices of AlxGa1-xAs, as a possible heterostructure that, being integrated into a solar cell device design, can provide an intermediate band of allowed states to assist the absorption of photons with lower energies than that of the energy gap of the solar-cell constituent materials. This work was performed using the nearest neighbors sp3s* tight-binding model including spin. The confining potential caused by the ionized donor impurities in δ-doped impurities seeding that was obtained analytically within the lines of the Thomas-Fermi approximation was reproduced here by the Al concentration x variation. This potential is considered as an external perturbation in the tight-binding methodology and it is included in the diagonal terms of the tight-binding Hamiltonian. Special attention is paid to the width of the intermediate band caused by the change in the considered aluminium concentration x, the inter-well distance between δ-doped like QW wells and the number of them in the superlattice. In general we can conclude that this kind of superlattices can be suitable for intermediate band formation for possible intermediate-band solar cell design.

  8. Link between light-triggered Mg-banding and chamber formation in the planktic foraminifera Neogloboquadrina dutertrei

    Science.gov (United States)

    Fehrenbacher, Jennifer S.; Russell, Ann D.; Davis, Catherine V.; Gagnon, Alexander C.; Spero, Howard J.; Cliff, John B.; Zhu, Zihua; Martin, Pamela

    2017-05-01

    The relationship between seawater temperature and the average Mg/Ca ratios in planktic foraminifera is well established, providing an essential tool for reconstructing past ocean temperatures. However, many species display alternating high and low Mg-bands within their shell walls that cannot be explained by temperature alone. Recent experiments demonstrate that intrashell Mg variability in Orbulina universa, which forms a spherical terminal shell, is paced by the diurnal light/dark cycle. Whether Mg-heterogeneity is also diurnally paced in species with more complex shell morphologies is unknown. Here we show that high Mg/Ca-calcite forms at night in cultured specimens of the multi-chambered species Neogloboquadrina dutertrei. Our results demonstrate that N. dutertrei adds a significant amount of calcite, and nearly all Mg-bands, after the final chamber forms. These results have implications for interpreting patterns of calcification in N. dutertrei and suggest that diurnal Mg-banding is an intrinsic component of biomineralization in planktic foraminifera.

  9. Influence of Rapeseed Cake on Iron Plaque Formation and Cd Uptake by Rice (Oryza sativa L.) Seedlings Exposed to Excess Cd.

    Science.gov (United States)

    Yang, Wen-Tao; Zhou, Hang; Gu, Jiao-Feng; Zeng, Qing-Ru; Liao, Bo-Han

    2017-11-01

    A soil spiking experiment at two Cd levels (0.72 and 5.20 mg kg -1 ) was conducted to investigate the effects of rapeseed cake (RSC) at application rates of 0%, 0.75%, 1.5%, and 3.0% (w/w) on iron plaque formation and Cd uptake by rice (Oryza sativa L.) seedlings. The use of RSC did result in a sharp decrease in soil bioavailability of Cd and a significant increase in rice growth, soil pH and organic matter. Application of RSC increased the amount of iron plaque formation and this effectively inhibited the uptake and translocation of Cd into the rice seedlings. RSC was an effective organic additive for increasing rice growth and reducing Cd uptake by rice plant, simultaneously. These results could be used as a reference for the safety use of Cd polluted paddy soil.

  10. Possible wave formation and martensitic transformation of iron particles in copper single crystals during argon ion bombardment

    DEFF Research Database (Denmark)

    Thölén, Anders Ragnar; Li, Chang-Hai; Easterling, K.E.

    1983-01-01

    Thin single crystal copper specimens (thickness ~250 nm) containing coherent iron particles (diameter 40–50 nm) have been bombarded with argon ions (5, 80, and 330 keV). During this process some of the iron particles transform to martensite. The transformation was observed near the exposed surface...

  11. Ferrimagnetic Iron Sulfide Formation and Methane Venting Across the Paleocene-Eocene Thermal Maximum in Shallow Marine Sediments, Ancient West Siberian Sea

    Science.gov (United States)

    Rudmin, Maxim; Roberts, Andrew P.; Horng, Chorng-Shern; Mazurov, Aleksey; Savinova, Olesya; Ruban, Aleksey; Kashapov, Roman; Veklich, Maxim

    2018-01-01

    Authigenesis of ferrimagnetic iron sulfide minerals (greigite and monoclinic pyrrhotite) occurred across the Paleocene-Eocene Thermal Maximum (PETM) within the Bakchar oolitic ironstone in southeastern Western Siberia. Co-occurrence of these minerals is associated with diagenetic environments that support anaerobic oxidation of methane, which has been validated by methane fluid inclusion analysis in the studied sediments. In modern settings, such ferrimagnetic iron sulfide formation is linked to upward methane diffusion in the presence of minor dissolved sulfide ions. The PETM was the most extreme Cenozoic global warming event and massive methane mobilization has been proposed as a major contributor to the globally observed warming and carbon isotope excursion associated with the PETM. The studied sediments provide rare direct evidence for methane mobilization during the PETM. Magnetic iron sulfide formation associated with methanogenesis in the studied sediments can be explained by enhanced local carbon burial across the PETM. While there is no strong evidence to link local methane venting with more widespread methane mobilization and global warming, the magnetic, petrographic, and geochemical approach used here is applicable to identifying authigenic minerals that provide telltale signatures of methane mobility that can be used to assess methane formation and mobilization through the PETM and other hyperthermal climatic events.

  12. Iron and Immunity

    NARCIS (Netherlands)

    Verbon, E.H.|info:eu-repo/dai/nl/413534049; Trapet, P.L.; Stringlis, I.|info:eu-repo/dai/nl/41185206X; Kruijs, Sophie; Bakker, P.A.H.M.|info:eu-repo/dai/nl/074744623; Pieterse, C.M.J.|info:eu-repo/dai/nl/113115113

    2017-01-01

    Iron is an essential nutrient for most life on Earth because it functions as a crucial redox catalyst in many cellular processes. However, when present in excess iron can lead to the formation of harmful hydroxyl radicals. Hence, the cellular iron balance must be tightly controlled. Perturbation of

  13. VALES - IV. Exploring the transition of star formation efficiencies between normal and starburst galaxies using APEX/SEPIA Band-5 and ALMA at low redshift

    Science.gov (United States)

    Cheng, C.; Ibar, E.; Hughes, T. M.; Villanueva, V.; Leiton, R.; Orellana, G.; Muñoz Arancibia, A.; Lu, N.; Xu, C. K.; Willmer, C. N. A.; Huang, J.; Cao, T.; Yang, C.; Xue, Y. Q.; Torstensson, K.

    2018-03-01

    In this work, we present new the Swedish-ESO PI receiver for the Atacama Pathfinder Experiment APEX/SEPIA Band-5 observations targeting the CO (J = 2-1) emission line of 24 Herschel-detected galaxies at z = 0.1-0.2. Combining this sample with our recent new Valparaíso ALMA Line Emission Survey (VALES), we investigate the star formation efficiencies [SFEs = star formation rate (SFR)/M_H2] of galaxies at low redshift. We find the SFE of our sample bridges the gap between normal star-forming galaxies and Ultra-Luminous Infrared Galaxies (ULIRGs), which are thought to be triggered by different star formation modes. Considering the SFE΄ as the SFR and the L^' }_CO ratio, our data show a continuous and smooth increment as a function of infrared luminosity (or star formation rate) with a scatter about 0.5 dex, instead of a steep jump with a bimodal behaviour. This result is due to the use of a sample with a much larger range of sSFR/sSFRms using LIRGs, with luminosities covering the range between normal and ULIRGs. We conclude that the main parameters controlling the scatter of the SFE in star-forming galaxies are the systematic uncertainty of the αCO conversion factor, the gas fraction, and physical size.

  14. Fluence and ion dependence of amorphous iron-phase-formation due to swift heavy ion irradiation in electrodeposited iron thin films

    Energy Technology Data Exchange (ETDEWEB)

    Stichleutner, S. [Institute of Chemistry, Eoetvoes University, Budapest (Hungary); Institute of Isotopes, Hungarian Academy of Sciences, Budapest (Hungary); Kuzmann, E., E-mail: kuzmann@ludens.elte.h [Institute of Chemistry, Eoetvoes University, Budapest (Hungary); Laboratory of Nuclear Chemistry, Chemical Research Center, Hungarian Academy of Sciences, Budapest (Hungary); Havancsak, K.; Huhn, A. [Department of Materials Physics, Eoetvoes University, Budapest (Hungary); El-Sharif, M.R.; Chisholm, C.U.; Doyle, O. [Glasgow Caledonian University, Glasgow, Scotland (United Kingdom); Skuratov, V. [Joint Institute for Nuclear Research, Dubna (Russian Federation); Homonnay, Z. [Institute of Chemistry, Eoetvoes University, Budapest (Hungary); Vertes, A. [Institute of Chemistry, Eoetvoes University, Budapest (Hungary); Laboratory of Nuclear Chemistry, Chemical Research Center, Hungarian Academy of Sciences, Budapest (Hungary)

    2011-03-15

    {sup 57}Fe conversion electron Moessbauer spectroscopy, XRD and AFM measurements were used to study the radiation effect of 246 MeV Kr, 470 MeV Xe and 710 MeV Bi ions on electrochemically deposited iron thin films. It was found that, in the irradiated electrochemically deposited crystalline ferromagnetic {alpha}-Fe coatings, partial amorphisation of Fe took place. The relative amount of the ferromagnetic amorphous phase increased with both ion energy and ion mass as well as with the fluence of irradiation.

  15. The crystal structure of TrxA(CACA): Insights into the formation of a [2Fe-2S] iron-sulfur cluster in an Escherichia coli thioredoxin mutant.

    Science.gov (United States)

    Collet, Jean-Francois; Peisach, Daniel; Bardwell, James C A; Xu, Zhaohui

    2005-07-01

    Escherichia coli thioredoxin is a small monomeric protein that reduces disulfide bonds in cytoplasmic proteins. Two cysteine residues present in a conserved CGPC motif are essential for this activity. Recently, we identified mutations of this motif that changed thioredoxin into a homodimer bridged by a [2Fe-2S] iron-sulfur cluster. When exported to the periplasm, these thioredoxin mutants could restore disulfide bond formation in strains lacking the entire periplasmic oxidative pathway. Essential for the assembly of the iron-sulfur was an additional cysteine that replaced the proline at position three of the CGPC motif. We solved the crystalline structure at 2.3 Angstroms for one of these variants, TrxA(CACA). The mutant protein crystallized as a dimer in which the iron-sulfur cluster is replaced by two intermolecular disulfide bonds. The catalytic site, which forms the dimer interface, crystallized in two different conformations. In one of them, the replacement of the CGPC motif by CACA has a dramatic effect on the structure and causes the unraveling of an extended alpha-helix. In both conformations, the second cysteine residue of the CACA motif is surface-exposed, which contrasts with wildtype thioredoxin where the second cysteine of the CXXC motif is buried. This exposure of a pair of vicinal cysteine residues apparently allows thioredoxin to acquire an iron-sulfur cofactor at its active site, and thus a new activity and mechanism of action.

  16. The crystal structure of TrxA(CACA): Insights into the formation of a [2Fe-2S] iron-sulfur cluster in an Escherichia coli thioredoxin mutant

    Energy Technology Data Exchange (ETDEWEB)

    Collet, Jean-Francois; Peisach, Daniel; Bardwell, James C.A.; Xu, Zhaohui [Michigan

    2010-07-13

    Escherichia coli thioredoxin is a small monomeric protein that reduces disulfide bonds in cytoplasmic proteins. Two cysteine residues present in a conserved CGPC motif are essential for this activity. Recently, we identified mutations of this motif that changed thioredoxin into a homodimer bridged by a [2Fe-2S] iron-sulfur cluster. When exported to the periplasm, these thioredoxin mutants could restore disulfide bond formation in strains lacking the entire periplasmic oxidative pathway. Essential for the assembly of the iron-sulfur was an additional cysteine that replaced the proline at position three of the CGPC motif. We solved the crystalline structure at 2.3 {angstrom} for one of these variants, TrxA(CACA). The mutant protein crystallized as a dimer in which the iron-sulfur cluster is replaced by two intermolecular disulfide bonds. The catalytic site, which forms the dimer interface, crystallized in two different conformations. In one of them, the replacement of the CGPC motif by CACA has a dramatic effect on the structure and causes the unraveling of an extended {alpha}-helix. In both conformations, the second cysteine residue of the CACA motif is surface-exposed, which contrasts with wildtype thioredoxin where the second cysteine of the CXXC motif is buried. This exposure of a pair of vicinal cysteine residues apparently allows thioredoxin to acquire an iron-sulfur cofactor at its active site, and thus a new activity and mechanism of action.

  17. Rate of Iron Transfer Through the Horse Spleen Ferritin Shell Determined by the Rate of Formation of Prussian Blue and Fe-desferrioxamine Within the Ferritin Cavity

    Science.gov (United States)

    Zhang, Bo; Watt, Richard K.; Galvez, Natividad; Dominquez-Vera, Jose M.; Watt, Gerald D.

    2005-01-01

    Iron (2+ and 3+) is believed to transfer through the three-fold channels in the ferritin shell during iron deposition and release in animal ferritins. However, the rate of iron transit in and out through these channels has not been reported. The recent synthesis of [Fe(CN)(sub 6)](3-), Prussian Blue (PB) and desferrioxamine (DES) all trapped within the horse spleen ferritin (HoSF) interior makes these measurements feasible. We report the rate of Fe(2+) penetrating into the ferritin interior by adding external Fe(2+) to [Fe(CN)(sub 6)](3-) encapsulated in the HoSF interior and measuring the rate of formation of the resulting encapsulated PB. The rate at which Fe(2+) reacts with [Fe(CN)(sub 6)](3-) in the HoSF interior is much slower than the formation of free PB in solution and is proceeded by a lag period. We assume this lag period and the difference in rate represent the transfer of Fe(2+) through the HoSF protein shell. The calculated diffusion coefficient, D approx. 5.8 x 10(exp -20) square meters per second corresponds to the measured lag time of 10-20 s before PB forms within the HoSF interior. The activation energy for Fe(2+) transfer from the outside solution through the protein shell was determined to be 52.9 kJ/mol by conducting the reactions at 10 to approximately 40 C. The reaction of Fe(3+) with encapsulated [Fe(CN)6](4-) also readily forms PB in the HoSF interior, but the rate is faster than the corresponding Fe(2+) reaction. The rate for Fe(3+) transfer through the ferritin shell was confirmed by measuring the rate of the formation of Fe-DES inside HoSF and an activation energy of 58.4 kJ/mol was determined. An attempt was made to determine the rate of iron (2+ and 3+) transit out from the ferritin interior by adding excess bipyridine or DES to PB trapped within the HoSF interior. However, the reactions are slow and occur at almost identical rates for free and HoSF-encapsulated PB, indicating that the transfer of iron from the interior through the

  18. Hydroxyapatite formation on titania-based materials in a solution mimicking body fluid: Effects of manganese and iron addition in anatase.

    Science.gov (United States)

    Shin, Euisup; Kim, Ill Yong; Cho, Sung Baek; Ohtsuki, Chikara

    2015-03-01

    Hydroxyapatite formation on the surfaces of implanted materials plays an important role in osteoconduction of bone substitutes in bone tissues. Titania hydrogels are known to instigate hydroxyapatite formation in a solution mimicking human blood plasma. To date, the relationship between the surface characteristics of titania and hydroxyapatite formation on its surface remains unclear. In this study, titania powders with varying surface characteristics were prepared by addition of manganese or iron to examine hydroxyapatite formation in a type of simulated body fluid (Kokubo solution). Hydroxyapatite formation was monitored by observation of deposited particles with scale-like morphology on the prepared titania powders. The effect of the titania surface characteristics, i.e., crystal structure, zeta potential, hydroxy group content, and specific surface area, on hydroxyapatite formation was examined. Hydroxyapatite formation was observed on the surface of titania powders that were primarily anatase, and featured a negative zeta potential and low specific surface areas irrespective of the hydroxy group content. High specific surface areas inhibited the formation of hydroxyapatite because calcium and phosphate ions were mostly consumed by adsorption on the titania surface. Thus, these surface characteristics of titania determine its osteoconductivity following exposure to body fluid. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Multiband Gutzwiller theory of the band magnetism of LaO iron arsenide; Multiband Gutzwiller-Theorie des Bandmagnetismus von LaO-Eisen-Arsenid

    Energy Technology Data Exchange (ETDEWEB)

    Schickling, Tobias

    2012-02-23

    In this work we apply the Gutzwiller theory for various models for LaOFeAs. It was discovered in 2008 that doped LaOFeAs is superconducting below a temperature of T{sub c} = 28 K. Soon after that discovery, more iron based materials were found which have an atomic structure that is similar to the one of LaOFeAs and which are also superconducting. These materials form the class of iron-based superconductors. Many properties of this material class are in astonishing agreement with the properties of the cuprates. Therefore, studying this new material may promote our understanding of high-T{sub c} superconductivity. Despite great efforts, however, Density Functional Theory calculations cannot reproduce the small magnetic moment in the ground state of undoped LaOFeAs. Such calculations overestimate the magnetic moment by a factor 2-3. Within our Gutzwiller approach, we take additional local Coulomb correlations into account. We show that it is necessary to work with the iron 3d-orbitals and the arsenic 4p-orbitals to obtain a realistic description of LaOFeAs. For a broad parameter regime of the electronic interactions, we find a magnetic moment that is in the region of the experimentally observed values. We claim that the magnetic phase in LaOFeAs can be described as a spin-density wave of Landau-Gutzwiller quasi-particles.

  20. Formation of iron plaque on mangrove Kandalar. Obovata (S.L.) root surfaces and its role in cadmium uptake and translocation

    International Nuclear Information System (INIS)

    Du, Jingna; Yan, Chongling; Li, Zhaodeng

    2013-01-01

    Highlights: • Cd application increased iron plaque, the higher Cd added, the more Fe plaque formed. • Significant positive correlation exists between DCB–Cd and DCB–Fe. • DCB–Cd content was significantly lower than that in roots or above-ground tissues. • It is the root tissue rather than iron plaque that acts as main buffer of Cd uptake. -- Abstract: In this study, a pot experiment was conducted to investigate the formation of iron plaque under Cd stress and its role in Cd uptake and translocation by mangrove Kandalar. Obovata (S.L.). Results showed: 1.the Fe in dithionite–citrate–bicarbonate (DCB) extracts increased with an increasing rate of Cd treatments. 2.the Cd in DCB extracts and in roots and above-ground tissues significantly increased with an increasing Cd application; 3.significant positive correlation between concentration of Cd and Fe in DCB extracts existed (p < 0.05); and that 4.the proportion of Cd in DCB extracts was significantly lower than that in roots or above-ground tissues (p < 0.001). In conclusion, formation of Fe plaque can precipitate Cd on root surfaces and impede its uptake and translocation in Kandalar. Obovata (S.L.). However, in comparison with root tissues, Fe plaque is of little significance. It is the mangrove root tissue that acts as the main buffer to Cd uptake and translocation

  1. Carbon steel protection in G.S. (Girlder sulfide) plants. Iron sulfide scales formation on surfaces covered by fabrication produced films. Pt. 4

    International Nuclear Information System (INIS)

    Burkart, A.L.

    1986-04-01

    This work describes the assays aimed to passivate the steel carbon of the process pipings. This steel is marked by the ASTM A 333 G6 and is chemically similar to those of isotopic exchange towers which corrode in contact with in-water hydrogen sulfide solutions forming iron sulfide protective layers. The differences between both materials lie in the surface characteristics to be passivated. The steel of towers has an internal side covered by paint which shall be removed prior to passivation. The steel's internal side shall be covered by a film formed during the fabrication process and constituted by calcinated wastes and iron oxides (magnetite, hematite and wustite). This film interferes in the formation process of passivating layers of pyrrhotite and pyrite. The possibility to passivate the pipes in their actual state was evaluated since it would result highly laborious and expensive to eliminate the film. (Author) [es

  2. A compounded rare-earth iron garnet single crystal exhibiting stable Faraday rotation against wavelength and temperature variation in the 1.55 μm band

    International Nuclear Information System (INIS)

    Xu, Z.C.; Huang, M.; Li Miao

    2006-01-01

    The Bi, Tb and Yb partially substituted iron garnet bulk single crystals of Tb 3- x - y Yb y Bi x Fe 5 O 12 were grown by using Bi 2 O 3 /B 2 O 3 as flux and accelerated crucible rotation technique for single-crystal growth. Faraday rotation (FR) spectra showed that the specific FR of the (Tb 0.91 Yb 1.38 Bi 0.71 )Fe 5 O 12 crystal under magnetic field at saturation was measured to be about -1617 o /cm at λ=1.55 μm, Faraday rotation wavelength coefficient (FWC, 0.009%/nm) in the wavelength range of 1.50-1.62 μm and Faraday rotation temperature coefficient (FTC, 3.92x10 -5 /K) at λ=1.55 μm were even smaller than that of YIG. It is proven that through combining two types of Bi-substituted rare-earth iron garnets with opposite FWC and FTC signs, the compound rare-earth iron garnets with low FWC and FTC may be obtained due to the compensation effect. The saturation magnetization of (Tb 0.91 Yb 1.38 Bi 0.71 ) Fe 5 O 12 crystal is 0.48x10 6 A/M and is also much smaller than that of YIG. We have found empirically that there is a simple relationship between the FR θ f (x) and Bi content x for Tb 3- x - y Yb y Bi x Fe 5 O 12 , which is given by θ f (x)=(-2759x+400) o /cm

  3. Molecular Tethering or Aggregation: Is the Existence of Charge-Transfer Bands Indicative of the Formation of Blue-Box/Tetrathiafulvalene Inclusion Complexes?

    Energy Technology Data Exchange (ETDEWEB)

    Tejerina, Baudilio; Gothard, Chris M.; Grzybowski, Bartosz A.

    2012-03-27

    The interaction between tetrathiafulvalene and tetracation cyclobis(paraquat-p-phenylene) fragments—the key elements of many rotaxane systems—was investigated theoretically by using ab-initio second-order perturbation methods. In addition to the inclusion complex observed in the solid state, a thermodynamically stable “exterior” complex was identified. Calculation of the UV/Vis spectra for the inclusion and the exterior complexes indicated that the charge-transfer band that is often used to predict the formation of the inclusion complexes in solution is, in reality, due to the exterior mode of complexation. These results suggest that UV/Vis spectroscopy is not a reliable method for assigning the complexation modes in TTF:BB4+ rotaxanes and related systems.

  4. Self-organized pattern formation in the oxidation of supported iron thin films. II. A simulation study

    Science.gov (United States)

    Ogale, Abhijit S.

    2001-07-01

    The process of oxidation of supported iron thin films is modeled by casting it into the form of an activator-inhibitor system, with precursor oxidation state as the activator, and stress produced by the large density difference between the metal and its oxide as a fast-diffusing inhibitor. An activator-substrate mechanism also coexists due to the finite availability of iron. The redistribution of iron by diffusion via vacancies also indirectly contributes to the activation process. A slow process of ripening, which minimizes surface energy, is suggested to convert the early leaflike pattern to a spiral assembly of hillocks. This model simulation yields patterns, which closely resemble the patterns observed in experiments reported by Shinde et al. [Phys. Rev. B 64, 035408 (2001)], in the accompanying Paper I.

  5. Iron Chelation

    Science.gov (United States)

    Skip to main content Menu Donate Treatments Therapies Iron Chelation Iron chelation therapy is the main treatment ... have iron overload and need treatment. What is iron overload? Iron chelation therapy is used when you ...

  6. Polyaspartic acid facilitates oxolation within iron(iii) oxide pre-nucleation clusters and drives the formation of organic-inorganic composites

    Science.gov (United States)

    Scheck, J.; Drechsler, M.; Ma, X.; Stöckl, M. T.; Konsek, J.; Schwaderer, J. B.; Stadler, S. M.; De Yoreo, J. J.; Gebauer, D.

    2016-12-01

    The interplay between polymers and inorganic minerals during the formation of solids is crucial for biomineralization and bio-inspired materials, and advanced material properties can be achieved with organic-inorganic composites. By studying the reaction mechanisms, basic questions on organic-inorganic interactions and their role during material formation can be answered, enabling more target-oriented strategies in future synthetic approaches. Here, we present a comprehensive study on the hydrolysis of iron(iii) in the presence of polyaspartic acid. For the basic investigation of the formation mechanism, a titration assay was used, complemented by microscopic techniques. The polymer is shown to promote precipitation in partly hydrolyzed reaction solutions at the very early stages of the reaction by facilitating iron(iii) hydrolysis. In unhydrolyzed solutions, no significant interactions between the polymer and the inorganic solutes can be observed. We demonstrate that the hydrolysis promotion by the polymer can be understood by facilitating oxolation in olation iron(iii) pre-nucleation clusters. We propose that the adsorption of olation pre-nucleation clusters on the polymer chains and the resulting loss in dynamics and increased proximity of the reactants is the key to this effect. The resulting composite material obtained from the hydrolysis in the presence of the polymer was investigated with additional analytical techniques, namely, scanning and transmission electron microscopies, light microscopy, atomic force microscopy, zeta potential measurements, dynamic light scattering, and thermogravimetric analyses. It consists of elastic, polydisperse nanospheres, ca. 50-200 nm in diameter, and aggregates thereof, exhibiting a high polymer and water content.

  7. Electron Spectroscopy Studies of Iron, Iron Sulfides and Supported Iron Surfaces: Chemisorption of Simple Gases.

    Science.gov (United States)

    Lee, Yiu Chung

    EELS was used to investigate the chemisorption of oxygen and carbon on iron. The EELS spectra of oxidized iron show characteristic features with strong enhancement of the interband transitions involving the Fe 3d band (4.6 and 7.5 eV) and moderate enhancement of the M(,2,3) transition doublet (54.4 and 58.2 eV). The changes in the electron energy loss structures with an overlayer of graphitic or carbidic carbon were investigated. The adsorption and growth of iron on Ni(100) has been studied using the combined techniques of LEED and EELS. Initially iron grows by a layer-by-layer mechanism for the first few layers. High iron coverages result in the observation of complex LEED patterns with satellites around the main (1 x 1) diffraction sports. This is due to the formation of b.c.c. Fe(110) crystallites arranged in domains with different orientations. EELS studies show the presence of three stages in the growth of iron on Ni(100): low-coverage, film-like and bulk-like. Auger and EELS were used to study the iron sulfide (FeS(,2), Fe(,7)S(,8) and FeS) surfaces. A characteristic M(,2,3) VV Auger doublet with a separation of 5.0 eV was observed on the sulfides. An assignment of the electron energy loss peaks was made based on the energy dependence of the loss peaks and previous photoemission results. The effect of argon ion bombardment was studied. Peaks with strong iron and sulfur character were observed. Heating the damaged sulfides results in reconstruction of the sulfide surfaces. The reactions of the sulfides with simple gases, such as H(,2), CO, CH(,4), C(,2)H(,4), NH(,3) and O(,2) were also studied. Using XPS, the chemisorption of SO(,2) on CaO(100) has been studied. The chemical state of sulfur has been identified as that of sulfate. The kinetics of SO(,2) chemisorption on CaO are discussed. The binding states of Fe and Na on CaO were determined to be Fe('2+) and Na('+) respectively. At low Fe or Na coverages (< 0.5 ML), there is a large increase in the rate of

  8. Iron and manganese shuttles control the formation of authigenic phosphorus minerals in the euxinic basins of the Baltic Sea

    NARCIS (Netherlands)

    Jilbert, T.|info:eu-repo/dai/nl/304835714; Slomp, C.P.|info:eu-repo/dai/nl/159424003

    2013-01-01

    Microanalysis of epoxy resin-embedded sediments is used to demonstrate the presence of authigenic iron (Fe) (II) phosphates and manganese (Mn)-calcium (Ca)-carbonate-phosphates in the deep euxinic basins of the Baltic Sea. These minerals constitute major burial phases of phosphorus (P) in this area,

  9. Evolution of iron crust and clayey Ferralsol in deeply weathered sandstones of Marília Formation (Western Minas Gerais State, Brazil)

    Science.gov (United States)

    Rosolen, Vania; Bueno, Guilherme Taitson; Melfi, Adolpho José; Montes, Célia Regina; de Sousa Coelho, Carla Vanessa; Ishida, Débora Ayumi; Govone, José Silvio

    2017-11-01

    Extensive flat plateaus are typical landforms in the cratonic compartment of tropical regions. Paleoclimate, pediplanation, laterization, and dissection have created complex and distinct geological, geomorphological, and pedological features in these landscapes. In the Brazilian territory, the flat plateau sculpted in sandstone of Marília Formation (Neocretaceous) belonging to the Sul-Americana surface presents a very clayey and pisolitic Ferralsol (Red and Yellow Latossolo in the Brazilian soil classification). The clayey texture of soil and the pisolites have been considered as weathering products of a Cenozoic detritical formation which is believed to overlay the Marília Formation sandstones. Using data of petrography (optical microscopy and SEM), mineralogy (RXD), and macroscopic structures (description in the field of the arrangement of horizons and layers), a complete profile of Ferralsol with ferricrete and pisolites was studied. The complex succession of facies is in conformity with a sedimentary structure of Serra da Galga member (uppermost member of Marília Formation). The hardening hematite concentration appears as layered accretions in the subparallel clayey lenses of sandstone saprolite, preserving its structure. Iron contents varied according to different soil fabrics. Higher concentrations of iron are found in the massive ferricrete or in pisolites in the mottled horizon. Kaolinite is a dominant clay mineral and shows two micro-organizations: (1) massive fabric intrinsic to the sedimentary rock, and (2) reworked in pisolites and illuviated features. The pisolites are relicts of ferricrete in the soft bioturbated topsoil. The continuous sequence of ferricrete from saprolite to the Ferralsol indicates that the regolith is autochthonous, developed directly from sandstones of Marília Formation, through a long and intense process of laterization.

  10. The spin filter effect of iron-cyclopentadienyl multidecker clusters: the role of the electrode band structure and the coupling strength

    International Nuclear Information System (INIS)

    Shen Xin; Yi Zelong; Shen Ziyong; Zhao Xingyu; Wu Jinlei; Hou Shimin; Sanvito, Stefano

    2009-01-01

    We present a theoretical study of spin transport in a series of organometallic iron-cyclopentadienyl, Fe n Cp n+1 , multidecker clusters sandwiched between either gold or platinum electrodes. Ab initio modeling is performed by combining the non-equilibrium Green's function formalism with spin density functional theory. Due to the intrinsic bonding nature, the low-bias conductance of the Fe n Cp n+1 clusters contacted to gold electrodes is relatively small even for strong cluster-electrode coupling. However, a nearly 100% spin polarization of the transmitted electrons can be achieved for the Fe n Cp n+1 (n>2) clusters. In contrast, the Fe n Cp n+1 (n>2) clusters attached to platinum electrodes through Pt adatoms not only can act as nearly perfect spin filters but also show a much larger transmission around the Fermi level, demonstrating their promising applications in future molecular spintronics.

  11. Evolution of nanoscale zero-valent iron (nZVI) in water: Microscopic and spectroscopic evidence on the formation of nano- and micro-structured iron oxides

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Airong, E-mail: liuairong@tongji.edu.cn; Liu, Jing; Han, Jinhao; Zhang, Wei-xian, E-mail: zhangwx@tongji.edu.cn

    2017-01-15

    Highlights: • A comprehensive study of corrosion products for nZVI under both oxic and anoxic conditions is performed. • Under anoxic conditions, the oxidation products contain a mixture of wustite (FeO), goethite (α-FeOOH) and akaganeite (β-FeOOH). • Under oxic conditions, the final products are mainly crystalline lepidocrocite (γ-FeOOH) with acicular-shaped structures. • Morphological and structural evolution of nZVI under both oxic and anoxic conditions are substantially different. - Abstract: Knowledge on the transformation of nanoscale zero-valent iron (nZVI) in water is essential to predict its surface chemistry including surface charge, colloidal stability and aggregation, reduction and sorption of organic contaminants, heavy metal ions and other pollutants in the environment. In this work, transmission electronic microscopy (TEM), X-ray diffraction (XRD) and Raman spectroscopy are applied to study the compositional and structural evolution of nZVI under oxic and anoxic conditions. Under anoxic conditions, the core–shell structure of nZVI is well maintained even after 72 h, and the corrosion products usually contain a mixture of wustite (FeO), goethite (α-FeOOH) and akaganeite (β-FeOOH). Under oxic conditions, the core–shell structure quickly collapses to flakes or acicular-shaped structures with crystalline lepidocrocite (γ-FeOOH) as the primary end product. This work provides detailed information and fills an important knowledge gap on the physicochemical characteristics and structural evolution of engineered nanomaterials in the environment.

  12. Analysis on Actinobacillus pleuropneumoniae LuxS regulated genes reveals pleiotropic roles of LuxS/AI-2 on biofilm formation, adhesion ability and iron metabolism.

    Science.gov (United States)

    Li, Lu; Xu, Zhuofei; Zhou, Yang; Li, Tingting; Sun, Lili; Chen, Huanchun; Zhou, Rui

    2011-06-01

    LuxS is an enzyme involved in the activated methyl cycle and the by-product autoinducer-2 (AI-2) was a quorum sensing signal in some species. In our previous study, the functional LuxS in AI-2 production was verified in the porcine respiratory pathogen Actinobacillus pleuropneumoniae. Enhanced biofilm formation and reduced virulence were observed in the luxS mutant. To comprehensively understand the luxS function, in this study, the transcriptional profiles were compared between the A. pleuropneumoniae luxS mutant and its parental strain in four different growth phases using microarray. Many genes associated with infection were differentially expressed. The biofilm formation genes pgaABC in the luxS mutant were up-regulated in early exponential phase, while 9 genes associated with adhesion were down-regulated in late exponential phase. A group of genes involved in iron acquisition and metabolism were regulated in four growth phases. Phenotypic investigations using luxS mutant and both genetic and chemical (AI-2) complementation on these virulence traits were performed. The results demonstrated that the luxS mutant showed enhanced biofilm formation and reduced adhesion ability and these effects were not due to lack of AI-2. But AI-2 could increase biofilm formation and adhesion of A. pleuropneumoniae independent of LuxS. Growth under iron restricted condition could be controlled by LuxS through AI-2 production. These results revealed pleiotropic roles of LuxS and AI-2 on A. pleuropneumoniae virulence traits. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. Carbon steel protection in G.S. (Girlder sulfide) plants. Iron sulfide scales formation conditions. Pt. 1

    International Nuclear Information System (INIS)

    Bruzzoni, P.; Burkart, A.L.; Garavaglia, R.N.

    1981-11-01

    An ASTM A 516 degree 60 carbon steel superficial protection technique submitted to a hydrogen-water sulfide corrosive medium at 2 MPa of pressure and 40-125 deg C forming on itself an iron sulfide layer was tested. Studies on pH influence, temperature, passivating mean characteristics and exposure time as well as the mechanical resistance of sulfide layers to erosion are included. (Author) [es

  14. Grafting of diazonium salts on oxides surface: formation of aryl-O bonds on iron oxide nanoparticles

    International Nuclear Information System (INIS)

    Brymora, Katarzyna; Fouineau, Jonathan; Eddarir, Asma; Chau, François; Yaacoub, Nader; Grenèche, Jean-Marc; Pinson, Jean; Ammar, Souad; Calvayrac, Florent

    2015-01-01

    Combining ab initio modeling and 57 Fe Mössbauer spectrometry, we characterized the nature of the chemical linkage of aminoalkyl arenediazonium salt on the surface of iron oxide nanoparticles. We established that it is built through a metal–oxygen–carbon bonding and not a metal–carbon one, as usually suggested and commonly observed in previously studied metal- or carbon-based surfaces

  15. Grafting of diazonium salts on oxides surface: formation of aryl-O bonds on iron oxide nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Brymora, Katarzyna [LUNAM Université du Maine, IMMM UMR CNRS 6283 (France); Fouineau, Jonathan; Eddarir, Asma; Chau, François [Université Paris Diderot, Sorbonne Paris Cité, ITODYS CNRS UMR 7086 (France); Yaacoub, Nader; Grenèche, Jean-Marc [LUNAM Université du Maine, IMMM UMR CNRS 6283 (France); Pinson, Jean; Ammar, Souad [Université Paris Diderot, Sorbonne Paris Cité, ITODYS CNRS UMR 7086 (France); Calvayrac, Florent, E-mail: florent.calvayrac@univ-lemans.fr [LUNAM Université du Maine, IMMM UMR CNRS 6283 (France)

    2015-11-15

    Combining ab initio modeling and {sup 57}Fe Mössbauer spectrometry, we characterized the nature of the chemical linkage of aminoalkyl arenediazonium salt on the surface of iron oxide nanoparticles. We established that it is built through a metal–oxygen–carbon bonding and not a metal–carbon one, as usually suggested and commonly observed in previously studied metal- or carbon-based surfaces.

  16. Existence, character, and origin of surface-related bands in the high temperature iron pnictide superconductor BaFe(2-x)Co(x)As2.

    Science.gov (United States)

    van Heumen, Erik; Vuorinen, Johannes; Koepernik, Klaus; Massee, Freek; Huang, Yingkai; Shi, Ming; Klei, Jesse; Goedkoop, Jeroen; Lindroos, Matti; van den Brink, Jeroen; Golden, Mark S

    2011-01-14

    Low energy electron diffraction (LEED) experiments, LEED simulations, and finite slab density functional calculations are combined to study the cleavage surface of Co doped BaFe(2-x)Co(x)As2 (x = 0.1,0.17). We demonstrate that the energy dependence of the LEED data can only be understood from a terminating 1/2 Ba layer accompanied by distortions of the underlying As-Fe2-As block. As a result, surface-related Fe 3d states are present in the electronic structure, which we identify in angle resolved photoemission spectroscopy (ARPES) experiments. The close proximity of the surface-related states to the bulk bands inevitably leads to broadening of the ARPES signals, which excludes the use of the BaFe(2-x)Co(x)As2 system for accurate determination of self-energies using ARPES.

  17. Glutathione, Glutaredoxins, and Iron.

    Science.gov (United States)

    Berndt, Carsten; Lillig, Christopher Horst

    2017-11-20

    Glutathione (GSH) is the most abundant cellular low-molecular-weight thiol in the majority of organisms in all kingdoms of life. Therefore, functions of GSH and disturbed regulation of its concentration are associated with numerous physiological and pathological situations. Recent Advances: The function of GSH as redox buffer or antioxidant is increasingly being questioned. New functions, especially functions connected to the cellular iron homeostasis, were elucidated. Via the formation of iron complexes, GSH is an important player in all aspects of iron metabolism: sensing and regulation of iron levels, iron trafficking, and biosynthesis of iron cofactors. The variety of GSH coordinated iron complexes and their functions with a special focus on FeS-glutaredoxins are summarized in this review. Interestingly, GSH analogues that function as major low-molecular-weight thiols in organisms lacking GSH resemble the functions in iron homeostasis. Since these iron-related functions are most likely also connected to thiol redox chemistry, it is difficult to distinguish between mechanisms related to either redox or iron metabolisms. The ability of GSH to coordinate iron in different complexes with or without proteins needs further investigation. The discovery of new Fe-GSH complexes and their physiological functions will significantly advance our understanding of cellular iron homeostasis. Antioxid. Redox Signal. 27, 1235-1251.

  18. GROUND-BASED Paα NARROW-BAND IMAGING OF LOCAL LUMINOUS INFRARED GALAXIES. I. STAR FORMATION RATES AND SURFACE DENSITIES

    Energy Technology Data Exchange (ETDEWEB)

    Tateuchi, Ken; Konishi, Masahiro; Motohara, Kentaro; Takahashi, Hidenori; Kato, Natsuko Mitani; Kitagawa, Yutaro; Todo, Soya; Toshikawa, Koji; Sako, Shigeyuki; Uchimoto, Yuka K.; Ohsawa, Ryou; Asano, Kentaro; Kamizuka, Takafumi; Nakamura, Tomohiko; Okada, Kazushi [Institute of Astronomy, Graduate School of Science, The University of Tokyo, 2-21-1 Osawa, Mitaka, Tokyo 181-0015 (Japan); Ita, Yoshifusa [Astronomical Institute, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8578 (Japan); Komugi, Shinya [Division of Liberal Arts, Kogakuin University, 2665-1, Hachioji, Tokyo 192-0015 (Japan); Koshida, Shintaro [Subaru Telescope, National Astronomical Observatory of Japan, Hilo, HI 96720 (United States); Manabe, Sho [Department of Earth and Planetary Sciences, Kobe University, Kobe 657-8501 (Japan); Nakashima, Asami, E-mail: tateuchi@ioa.s.u-tokyo.ac.jp [Department of Astronomy, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); and others

    2015-03-15

    Luminous infrared galaxies (LIRGs) are enshrouded by a large amount of dust produced by their active star formation, and it is difficult to measure their activity in optical wavelengths. We have carried out Paα narrow-band imaging observations of 38 nearby star forming galaxies including 33 LIRGs listed in the IRAS Revised Bright Galaxy Sample catalog with the Atacama Near InfraRed camera on the University of Tokyo Atacama Observatory (TAO) 1.0 m telescope (miniTAO). Star formation rates (SFRs) estimated from the Paα fluxes, corrected for dust extinction using the Balmer decrement method (typically A{sub V} ∼ 4.3 mag), show a good correlation with those from the bolometric infrared luminosity of the IRAS data within a scatter of 0.27 dex. This suggests that the correction of dust extinction for the Paα flux is sufficient in our sample. We measure the physical sizes and surface densities of infrared luminosities (Σ{sub L(IR)}) and the SFR (Σ{sub SFR}) of star forming regions for individual galaxies, and we find that most of the galaxies follow a sequence of local ultra-luminous or luminous infrared galaxies (U/LIRGs) on the L(IR)-Σ{sub L(IR)} and SFR-Σ{sub SFR} plane. We confirm that a transition of the sequence from normal galaxies to U/LIRGs is seen at L(IR) = 8 × 10{sup 10} L {sub ☉}. Also, we find that there is a large scatter in physical size, different from normal galaxies or ULIRGs. Considering the fact that most U/LIRGs are merging or interacting galaxies, this scatter may be caused by strong external factors or differences in their merging stages.

  19. Synthesis, structural, optical band gap and biological studies on iron (III), nickel (II), zinc (II) and mercury (II) complexes of benzyl α-monoxime pyridyl thiosemicarbazone

    Science.gov (United States)

    Bedier, R. A.; Yousef, T. A.; Abu El-Reash, G. M.; El-Gammal, O. A.

    2017-07-01

    New ligand, (E)-2-((E)-2-(hydroxyimino)-1,2-diphenylethylidene)-N-(pyridin-2 yl) hydrazinecarbothioamide (H2DPPT) and its complexes [Fe(DPPT)Cl(H2O)], [Ni(H2DPPT)2Cl2], [Zn(HDPPT)(OAc)] and [Hg(HDPPT)Cl](H2O)4 were isolated and characterized by various of physico-chemical techniques. IR spectra show that H2DPPT coordinates to the metal ions as neutral NN bidentate, mononegative NNS tridentate and binegative NNSN tetradentate, respectively. From the modeling studies, the bond length, bond angle, HOMO, LUMO and dipole moment had been calculated to confirm the geometry of the ligands and their investigated complexes. The thermal studies showed the type of water molecules involved in metal complexes Furthermore, the kinetic and thermodynamic parameters for the different decomposition steps were calculated using the Coats-Redfern and Horowitz-Metzger methods. Also, the optical band gap (Eg) has been calculated to elucidate the conductivity of the isolated complexes. The optical transition energy (Eg) is direct and equals 3.34 and 3.44 ev for Ni and Fe complexes, respectively. The ligand and their metal complexes were screened for antibacterial activity against the following bacterial species, Bacillus thuringiensis, Staphylococcus aureus, Pseudomonas aeuroginosa and Escherichia coli. The results revealed that the metal complexes have more potent antibacterial compared with the ligand. Also, the degradation effect of the investigated compounds was tested showing that, Ni complex exhibited powerful and complete degradation effect on DNA.

  20. Rituals of commensality and the politics of state formation in the "princely" societies of early Iron Age Europe

    OpenAIRE

    Dietler, Michael

    2015-01-01

    Introduction My task in this essay is to address the question «what can an examination of rituals of commensality add to our understanding of political structure and process in the so-called "princely" societies of Early Iron Age Europe ? ». The short answer is, I believe, a great deal. This is both because rituals are potentially recoverable as distinct events in the archaeological record and because, as will be shown, they are a fundamental instrument and theater of political relations. The...

  1. A new model for the formation of a spaced crenulation (shear band) cleavage in the Dalradian rocks of the Tay Nappe, SW Highlands, Scotland

    Science.gov (United States)

    Geoff Tanner, P. W.

    2016-03-01

    The main conclusion of this study is that non-coaxial strain acting parallel to a flat-lying D1 spaced cleavage was responsible for the formation of the D2 spaced crenulation (shear band) cleavage in Dalradian rocks of Neoproterozoic-Lower Ordovician age in the SW Highlands, Scotland. The cm-dm-scale D2 microlithons are asymmetric; have a geometrically distinctive nose and tail; and show a thickened central portion resulting from back-rotation of the constituent D1 microlithons. The current terminology used to describe crenulation cleavages is reviewed and updated. Aided by exceptional 3D exposures, it is shown how embryonic D2 flexural-slip folds developed into a spaced cleavage comprising fold-pair domains wrapped by anastomosing cleavage seams. The bulk strain was partitioned into low-strain domains separated by zones of high non-coaxial strain. This new model provides a template for determining the sense of shear in both low-strain situations and in ductile, higher strain zones where other indicators, such as shear folds, give ambiguous results. Analogous structures include tectonic lozenges in shear zones, and flexural-slip duplexes. Disputes over the sense and direction of shear during emplacement of the Tay Nappe, and the apparently intractable conflict between minor fold asymmetry and shear sense, appear to be resolved.

  2. Large shift and small broadening of Br2 valence band upon dimer formation with H2O: an ab initio study.

    Science.gov (United States)

    Franklin-Mergarejo, Ricardo; Rubayo-Soneira, Jesus; Halberstadt, Nadine; Ayed, Tahra; Bernal-Uruchurtu, Margarita I; Hernández-Lamoneda, Ramón; Janda, Kenneth C

    2011-06-16

    Valence electronic excitation spectra are calculated for the H(2)O···Br(2) complex using highly correlated ab initio potentials for both the ground and the valence electronic excited states and a 2-D approximation for vibrational motion. Due to the strong interaction between the O-Br and the Br-Br stretching motions, inclusion of these vibrations is the minimum necessary for the spectrum calculation. A basis set calculation is performed to determine the vibrational wave functions for the ground electronic state and a wave packet simulation is conducted for the nuclear dynamics on the excited state surfaces. The effects of both the spin-orbit interaction and temperature on the spectra are explored. The interaction of Br(2) with a single water molecule induces nearly as large a shift in the spectrum as is observed for an aqueous solution. In contrast, complex formation has a remarkably small effect on the T = 0 K width of the valence bands due to the fast dissociation of the dihalogen bond upon excitation. We therefore conclude that the widths of the spectra in aqueous solution are mostly due to inhomogeneous broadening. © 2011 American Chemical Society

  3. RELATIONSHIP BETWEEN METAMORPHISM DEGREE AND LIBERATION SIZE OF COMPACT ITABIRITES FROM THE IRON QUADRANGLE

    Directory of Open Access Journals (Sweden)

    Rodrigo Fina Ferreira

    2015-06-01

    Full Text Available Iron ore exploited in Brazil can be classified into several lithological types which have distinct features. The progress of mining over time leads to scarcity of high grade iron ores, leading to the exploitation of poor, contaminated and compact ores. There is a growing trend of application of process flowsheets involving grinding to promote mineral liberation, essential condition for concentration processes. Several authors have correlated metamorphism processes of banded iron formations to mineralogical features observed on itabirites from the Iron Quadrangle, mainly the crystals size. This paper presents the implications of such variation in defining the mesh of grinding. Mineralogical characterization and grinding, desliming and flotation tests have been carried out with samples from two regions of the Iron Quadrangle subjected to different degrees of metamorphism. It was found a trend of reaching satisfactory liberation degree in coarser size for the itabirite of higher metamorphic degree, which has larger crystals. The flotation tests have confirmed the mineralogical findings.

  4. Formation of a homocitrate-free iron-molybdenum cluster on NifEN: implications for the role of homocitrate in nitrogenase assembly.

    Science.gov (United States)

    Fay, Aaron Wolfe; Blank, Michael Aaron; Yoshizawa, Janice Mariko; Lee, Chi Chung; Wiig, Jared Andrew; Hu, Yilin; Hodgson, Keith Owen; Hedman, Britt; Ribbe, Markus Walter

    2010-03-28

    Molybdenum (Mo)-dependent nitrogenase is a complex metalloprotein that catalyzes the biological reduction of dinitrogen (N(2)) to ammonia (NH(3)) at the molybdenum-iron cofactor (FeMoco) site of its molybdenum-iron (MoFe) protein component. Here we report the formation of a homocitrate-free, iron-molybdenum ("FeMo") cluster on the biosynthetic scaffold of FeMoco, NifEN. Such a NifEN-associated "FeMo" cluster exhibits EPR features similar to those of the NifEN-associated, fully-complemented "FeMoco", which originate from the presence of Mo in both cluster species; however, "FeMo" cluster and "FeMoco" display different temperature-dependent changes in the line shape and the signal intensity of their respective EPR features, which reflect the impact of homocitrate on the redox properties of these clusters. XAS/EXAFS analysis reveals that the Mo centers in both "FeMo" cluster and "FeMoco" are present in a similar coordination environment, although Mo in "FeMo" cluster is more loosely coordinated as compared to that in "FeMoco" with respect to the Mo-O distances in the cluster, likely due to the absence of homocitrate that normally serves as an additional ligand for the Mo in the cluster. Subsequent biochemical investigation of the "FeMo" cluster not only facilitates the determination of the sequence of events in the mobilization of Mo and homocitrate during FeMoco maturation, but also permits the examination of the role of homocitrate in the transfer of FeMoco between NifEN and MoFe protein. Combined outcome of these studies establishes a platform for future structural analysis of the interactions between NifEN and MoFe protein, which will provide useful insights into the mechanism of cluster transfer between the two proteins.

  5. Genetic analysis of the biosynthesis of non-ribosomal peptide- and polyketide-like antibiotics, iron uptake and biofilm formation by Bacillus subtilis A1/3.

    Science.gov (United States)

    Hofemeister, J; Conrad, B; Adler, B; Hofemeister, B; Feesche, J; Kucheryava, N; Steinborn, G; Franke, P; Grammel, N; Zwintscher, A; Leenders, F; Hitzeroth, G; Vater, J

    2004-11-01

    The Bacillus subtilis strain A1/3 shows exceptionally diverse antibiotic capacities compared to other B. subtilis strains. To analyze this phenomenon, mutants for the putative pantotheinyltransferase gene (pptS), and for several genes involved in non-ribosomal peptide synthesis and polyketide synthesis were constructed and characterized, using bioassays with blood cells, bacterial and fungal cells, and mass spectrometry. Among at least nine distinct bioactive compounds, five antibiotics and one siderophore activity were identified. The anti-fungal and hemolytic activities of strain A1/3 could be eliminated by mutation of the fen and srf genes essential for the synthesis of fengycins and surfactins. Both pptS- and dhb -type mutants were defective in iron uptake, indicating an inability to produce a 2,3-dihydroxybenzoate-type iron siderophore. Transposon mutants in the malonyl CoA transacylase gene resulted in the loss of hemolytic and anti-fungal activities due to the inhibition of bacillomycin L synthesis, and this led to the discovery of bmyLD-LA-LB* genes. In mutants bearing disruption mutations in polyketide (pksM- and/or pksR -like) genes, the biosynthesis of bacillaene and difficidins, respectively, was inactivated and was accompanied by the loss of discrete antibacterial activities. The formation of biofilms (pellicles) was shown to require the production of surfactins, but no other lipopeptides, indicating that surfactins serve specific developmental functions.

  6. Evidence of synsedimentary microbial activity and iron deposition in ferruginous crusts of the Late Cenomanian Utrillas Formation (Iberian Basin, central Spain)

    Science.gov (United States)

    García-Hidalgo, José F.; Elorza, Javier; Gil-Gil, Javier; Herrero, José M.; Segura, Manuel

    2018-02-01

    Ferruginous sandstones and crusts are prominent sedimentary features throughout the continental (braided)-coastal siliciclastic (estuarine-tidal) wedges of the Late Cenomanian Utrillas Formation in the Iberian Basin. Crust types recognized are: Ferruginous sandy crusts (Fsc) with oxides-oxyhydroxides (hematite and goethite) concentrated on sandstone tops presenting a fibro-radial internal structure reminding organic structures that penetrate different mineral phases, suggesting the existence of bacterial activity in crust development; Ferruginous muddy crusts (Fmc) consisting of wavy, laminated, microbial mats, being composed mainly of hematite. On the other hand, a more dispersed and broader mineralization included as Ferruginous sandstones with iron oxides and oxyhydroxides (hematite and goethite) representing a limited cement phase on these sediments. The presence of microbial remains, ferruginous minerals, Microbially-induced sedimentary structures, microbial laminites and vertebrate tracks preserved due to the presence of biofilms suggest firstly a direct evidence of syn-depositional microbial activity in these sediments; and, secondly, that iron accumulation and ferruginous crusts development occurred immediately after deposition of the host, still soft sediments. Ferruginous crusts cap sedimentary cycles and they represent the gradual development of hard substrate conditions, and the development of a discontinuity surface at the top of the parasequence sets, related to very low sedimentary rates; the overlying sediments record subsequent flooding of underlying shallower environments; crusts are, consequently, interpreted as boundaries for these higher-order cycles in the Iberian Basin.

  7. Formation of iron (hydr)oxides during the abiotic oxidation of Fe(II) in the presence of arsenate.

    Science.gov (United States)

    Song, Jia; Jia, Shao-Yi; Yu, Bo; Wu, Song-Hai; Han, Xu

    2015-08-30

    Abiotic oxidation of Fe(II) is a common pathway in the formation of Fe (hydr)oxides under natural conditions, however, little is known regarding the presence of arsenate on this process. In hence, the effect of arsenate on the precipitation of Fe (hydr)oxides during the oxidation of Fe(II) is investigated. Formation of arsenic-containing Fe (hydr)oxides is constrained by pH and molar ratios of As:Fe during the oxidation Fe(II). At pH 6.0, arsenate inhibits the formation of lepidocrocite and goethite, while favors the formation of ferric arsenate with the increasing As:Fe ratio. At pH 7.0, arsenate promotes the formation of hollow-structured Fe (hydr)oxides containing arsenate, as the As:Fe ratio reaches 0.07. Arsenate effectively inhibits the formation of magnetite at pH 8.0 even at As:Fe ratio of 0.01, while favors the formation of lepidocrocite and green rust, which can be latterly degenerated and replaced by ferric arsenate with the increasing As:Fe ratio. This study indicates that arsenate and low pH value favor the slow growth of dense-structured Fe (hydr)oxides like spherical ferric arsenate. With the rapid oxidation rate of Fe(II) at high pH, ferric (hydr)oxides prefer to precipitate in the formation of loose-structured Fe (hydr)oxides like lepidocrocite and green rust. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Enhancing Electrochemical Water-Splitting Kinetics by Polarization-Driven Formation of Near-Surface Iron(0): An In Situ XPS Study on Perovskite-Type Electrodes**

    Science.gov (United States)

    Opitz, Alexander K; Nenning, Andreas; Rameshan, Christoph; Rameshan, Raffael; Blume, Raoul; Hävecker, Michael; Knop-Gericke, Axel; Rupprechter, Günther; Fleig, Jürgen; Klötzer, Bernhard

    2015-01-01

    In the search for optimized cathode materials for high-temperature electrolysis, mixed conducting oxides are highly promising candidates. This study deals with fundamentally novel insights into the relation between surface chemistry and electrocatalytic activity of lanthanum ferrite based electrolysis cathodes. For this means, near-ambient-pressure X-ray photoelectron spectroscopy (NAP-XPS) and impedance spectroscopy experiments were performed simultaneously on electrochemically polarized La0.6Sr0.4FeO3−δ (LSF) thin film electrodes. Under cathodic polarization the formation of Fe0 on the LSF surface could be observed, which was accompanied by a strong improvement of the electrochemical water splitting activity of the electrodes. This correlation suggests a fundamentally different water splitting mechanism in presence of the metallic iron species and may open novel paths in the search for electrodes with increased water splitting activity. PMID:25557533

  9. Study of the sulfur mechanism on the formation of coke deposition on iron surfaces; Etude des mecanismes d'action du soufre sur le cokage catalytique du fer

    Energy Technology Data Exchange (ETDEWEB)

    Bonnet, F.

    2001-12-01

    The formation of coke deposition which occurs in a range of temperature 500 deg C-650 deg C is a major problem in many chemical and petrochemical processes where hydrocarbons or other strongly carburizing atmospheres are involved. To reduce the rate of coke deposition, sulfur can be added in the gas phase. The topic of this work is to study the sulfur mechanism on the formation of coke deposition on iron surfaces. Firstly, we study the mechanism of graphitic filament formation on reduced and oxidised iron surfaces. A new mechanism of catalytic particle formation is proposed when the surface is initially oxidised. This mechanism is based on thermodynamic, kinetic and structural considerations. The results show that oxide/carbide transitions are involved in the transformation of the oxide layer in catalytic particles. Although the different iron oxides are precursors for the formation of catalytic particles, wustite (FeO) has a better reactivity than magnetite (Fe{sub 3}O{sub 4}) and hematite (Fe{sub 2}O{sub 3}). Sulfur acts on different steps of the coke formation, preventing phase transformations (carburation, graphitization) which occur during the formation of catalytic particles. Sulfur activity required to prevent these transformations changes with the temperature, the chemical state of iron (reduced or oxidised) and the carbon activity in the gas phase. Sulfur/ethylene co-adsorption studies were performed on mono-crystal of iron (110). The results show that sulfur can prevent adsorption and decomposition of this hydrocarbon on metallic surface (Fe) and on magnetite (Fe{sub 3}O{sub 4}). Then, sulfur prevents the reaction leading to the carburation and graphitization of the surface. (author)

  10. Carbon steel protection in G.S. (Girlder sulfide) plants. Pressure influence on iron sulfide scales formation. Pt. 5

    International Nuclear Information System (INIS)

    Delfino, C.A.; Lires, O.A.; Rojo, E.A.

    1987-01-01

    In order to protect carbon steel towers and piping of Girlder sulfide (G.S.) experimental heavy water plants against corrosion produced by the action of aqueous solutions of hydrogen sulfide, a method, previously published, was developed. Carbon steel, exposed to saturated aqueous solutions of hydrogen sulfide, forms iron sulfide scales. In oxygen free solutions evolution of corrosion follows the sequence: mackinawite → cubic ferrous sulfide → troilite → pyrrotite → pyrite. Scales formed by pyrrotite-pyrite or pyrite are the most protective layers (these are obtained at 130 deg C, 2MPa, for periods of 14 days). Experiments, at 125 deg C and periods of 10-25 days, were performed in two different ways: 1- constant pressure operations at 0.5 and 1.1 MPa. 2- variable pressure operation between 0.3-1 MPa. In all cases pyrrotite-pyrite scales were obtained. (Author) [es

  11. Trace elements in magnetite from massive iron oxide-apatite deposits indicate a combined formation by igneous and magmatic-hydrothermal processes

    Science.gov (United States)

    Knipping, Jaayke L.; Bilenker, Laura D.; Simon, Adam C.; Reich, Martin; Barra, Fernando; Deditius, Artur P.; Wälle, Markus; Heinrich, Christoph A.; Holtz, François; Munizaga, Rodrigo

    2015-12-01

    Iron oxide-apatite (IOA) deposits are an important source of iron and other elements (e.g., REE, P, U, Ag and Co) vital to modern society. However, their formation, including the namesake Kiruna-type IOA deposit (Sweden), remains controversial. Working hypotheses include a purely magmatic origin involving separation of an Fe-, P-rich, volatile-rich oxide melt from a Si-rich silicate melt, and precipitation of magnetite from an aqueous ore fluid, which is either of magmatic-hydrothermal or non-magmatic surface or metamorphic origin. In this study, we focus on the geochemistry of magnetite from the Cretaceous Kiruna-type Los Colorados IOA deposit (∼350 Mt Fe) located in the northern Chilean Iron Belt. Los Colorados has experienced minimal hydrothermal alteration that commonly obscures primary features in IOA deposits. Laser ablation-inductively coupled plasma-mass spectroscopy (LA-ICP-MS) transects and electron probe micro-analyzer (EPMA) wavelength-dispersive X-ray (WDX) spectrometry mapping demonstrate distinct chemical zoning in magnetite grains, wherein cores are enriched in Ti, Al, Mn and Mg. The concentrations of these trace elements in magnetite cores are consistent with igneous magnetite crystallized from a silicate melt, whereas magnetite rims show a pronounced depletion in these elements, consistent with magnetite grown from an Fe-rich magmatic-hydrothermal aqueous fluid. Further, magnetite grains contain polycrystalline inclusions that re-homogenize at magmatic temperatures (>850 °C). Smaller inclusions (abundances consistent with growth from a magmatic-hydrothermal fluid. Mass balance calculations indicate that this process can leach and transport sufficient Fe from a magmatic source to form large IOA deposits such as Los Colorados. Furthermore, published experimental data demonstrate that a saline magmatic-hydrothermal ore fluid will scavenge significant quantities of metals such as Cu and Au from a silicate melt, and when combined with solubility

  12. Formation of single domain magnetite by green rust oxidation promoted by microbial anaerobic nitrate-dependent iron oxidation

    Science.gov (United States)

    Miot, Jennyfer; Li, Jinhua; Benzerara, Karim; Sougrati, Moulay Tahar; Ona-Nguema, Georges; Bernard, Sylvain; Jumas, Jean-Claude; Guyot, François

    2014-08-01

    Biomineralization of magnetite is a central geomicrobiological process that might have played a primordial role over Earth’s history, possibly leaving traces of life in the geological record or controlling trace metal(loid)s and organic pollutants mobility in modern environments. Magnetite biomineralization has been attributed to two main microbial pathways to date (namely magnetotactic bacteria and dissimilatory iron-reducing bacteria). Here, we uncover a new route of magnetite biomineralization involving the anaerobic nitrate-reducing iron(II) oxidizing bacterium Acidovorax sp. strain BoFeN1. Using transmission electron microscopy, scanning transmission X-ray microscopy, transmission Mössbauer spectroscopy and rock magnetic analyses, this strain is shown to promote the transformation of hydroxychloride green rust in equilibrium with dissolved Fe(II) to (1) periplasmic lepidocrocite (γ-FeOOH) and (2) extracellular magnetite, thus leading to strong redox heterogeneities at the nanometer scale. On the one hand, lepidocrocite was associated with protein moieties and exhibited an anisotropic texture, with the elongated axis parallel to the cell wall. On the other hand, magnetite crystals exhibited grain sizes and magnetic properties consistent with stable single domain particles. By comparison, abiotic controls led to a very slow (4 months vs. 2 days in BoFeN1 cultures) and incomplete oxidation of hydroxychloride green rust towards magnetite. As this abiotic magnetite exhibited the same size and magnetic properties (stable single domain particles) as magnetite produced in BoFeN1 cultures, only the co-occurrence of textured Fe(III)-oxides and magnetite, associated with the persistence of organic carbon molecules, might constitute valuable biosignatures to be looked for in the geological record. Our results furthermore contribute to a more complex picture of Fe redox cycling in the environment, providing an additional process of Fe(II)-bearing phase

  13. Simbol-X: a formation flight mission with an unprecedented imaging capability in the 0.5-80 keV energy band

    Science.gov (United States)

    Tagliaferri, Gianpiero; Ferrando, Philippe; Le Duigou, Jean-Michel; Pareschi, Giovanni; Laurent, Philippe; Malaguti, Giuseppe; Clédassou, Rodolphe; Piermaria, Mauro; La Marle, Olivier; Fiore, Fabrizio; Giommi, Paolo

    2017-11-01

    The discovery of X-ray emission from cosmic sources in the 1960s has opened a new powerful observing window on the Universe. In fact, the exploration of the X-ray sky during the 70s-90s has established X-ray astronomy as a fundamental field of astrophysics. Today, the emission from astrophysical sources is by large best known at energies below 10 keV. The main reason for this situation is purely technical since grazing incidence reflection has so far been limited to the soft X-ray band. Above 10 keV all the observations have been obtained with collimated detectors or coded mask instruments. To make a leap step forward in Xray astronomy above 10 keV it is necessary to extend the principle of focusing X ray optics to higher energies, up to 80 keV and beyond. To this end, ASI and CNES are presently studying the implementation of a X-ray mission called Simbol-X. Taking advantage of emerging technology in mirror manufacturing and spacecraft formation flying, Simbol-X will push grazing incidence imaging up to 80 keV and beyond, providing a strong improvement both in sensitivity and angular resolution compared to all instruments that have operated so far above 10 keV. This technological breakthrough will open a new highenergy window in astrophysics and cosmology. Here we will address the problematic of the development for such a distributed and deformable instrument. We will focus on the main performances of the telescope, like angular resolution, sensitivity and source localization. We will also describe the specificity of the calibration aspects of the payload distributed over two satellites and therefore in a not "frozen" configuration.

  14. Iron and sulphur isotopes from the Carajas mining province (Para, Brazil) : implications for the oxidation of the ocean and the atmosphere across the Archaean-Proterozoic transition

    OpenAIRE

    Fabre, S.; Nédélec, A.; Poitrasson, Franck; Strauss, H.; Thomazo, C.; Nogueira, A.

    2011-01-01

    Mineralogical analyses and major and trace element geochemistry combined with iron and sulfur isotopes were applied to banded iron formations (BIFs) and pyrite-bearing sandstones from the Carajas mineral province, Brazil. The BIFs belong to the 2.7 Ga old Grao Para Group and show a rather simple mineralogy (hematite and quartz or cryptocrystalline silica). Their REE + Y patterns suggest deposition under marine sub-oxic conditions. Fe isotopes show highly positive values (delta Fe-57(IRMM-14) ...

  15. Thyroid Hormone-Dependent Formation of a Subcortical Band Heterotopia (SBH) in the Neonatal Brain is not Exacerbated Under Conditions of Low Dietary Iron (FeD)

    Science.gov (United States)

    Although the critical role of thyroid hormone (TH) in brain development is well established - severe deficiency producing significant neurological dysfunction - there is a paucity of data on neurological impairments that accompany modest degrees of TH disruption. Quantitative m...

  16. Geochemical characteristics of gold bearing boninites and banded iron formations from Shimoga greenstone belt, India: Implications for gold genesis and hydrothermal processes in diverse tectonic settings

    Digital Repository Service at National Institute of Oceanography (India)

    Ganguly, S.; Manikyamba, C.; Saha, A.; Lingadevaru, M.; Santosh, M.; Rambabu, S.; Khelen, A.C.; Purushotham, D.; Linga, D.

    in an intraoceanic arc setting. The Gd/Yb and Dy/Yb ratios suggest parent magma origin through partial melting of a spinel lherzolite mantle source. Geochemical signatures of the boninites suggest high temperature, shallow level melting of refractory mantle wedge...

  17. Ferrite grade iron oxides from ore rejects

    Indian Academy of Sciences (India)

    Iron oxyhydroxides and hydroxides were synthesized from chemically beneficiated high SiO2/Al2O3 low-grade iron ore (57.49% Fe2O3) rejects and heated to get iron oxides of 96–99.73% purity. The infrared band positions, isothermal weight loss and thermogravimetric and chemical analysis established the chemical ...

  18. Ultrafast Charge and Triplet State Formation in Diketopyrrolopyrrole Low Band Gap Polymer/Fullerene Blends: Influence of Nanoscale Morphology of Organic Photovoltaic Materials on Charge Recombination to the Triplet State

    Directory of Open Access Journals (Sweden)

    René M. Williams

    2017-01-01

    Full Text Available Femtosecond transient absorption spectroscopy of thin films of two types of morphologies of diketopyrrolopyrrole low band gap polymer/fullerene-adduct blends is presented and indicates triplet state formation by charge recombination, an important loss channel in organic photovoltaic materials. At low laser fluence (approaching solar intensity charge formation characterized by a 1350 nm band (in ~250 fs dominates in the two PDPP-PCBM blends with different nanoscale morphologies and these charges recombine to form a local polymer-based triplet state on the sub-ns timescale (in ~300 and ~900 ps indicated by an 1100 nm absorption band. The rate of triplet state formation is influenced by the morphology. The slower rate of charge recombination to the triplet state (in ~900 ps belongs to a morphology that results in a higher power conversion efficiency in the corresponding device. Nanoscale morphology not only influences interfacial area and conduction of holes and electrons but also influences the mechanism of intersystem crossing (ISC. We present a model that correlates morphology to the exchange integral and fast and slow mechanisms for ISC (SOCT-ISC and H-HFI-ISC. For the pristine polymer, a flat and unstructured singlet-singlet absorption spectrum (between 900 and 1400 nm and a very minor triplet state formation (5% are observed at low laser fluence.

  19. Electrochemical studies of iron/carbonates system applied to the formation of thin layers of siderite on inert substrates

    International Nuclear Information System (INIS)

    Ithurbide, A.; Peulon, S.; Mandin, Ph.; Beaucaire, C.; Chausse, A.

    2007-01-01

    In order to understand the complex mechanisms of the reactions occurring, a methodology is developed. It is based on the use of compounds electrodeposited under the form of thin layers and which are used then as electrodes to study their interactions with the toxic species. It is in this framework that is studied the electrodeposition of siderite on inert substrates. At first, have been studied iron electrochemical systems in carbonated solutions. These studies have been carried out with classical electrochemical methods (cyclic voltametry, amperometry) coupled to in-situ measurements: quartz microbalance, pH. Different compounds have been obtained under the form of homogeneous and adherent thin layers. The analyses of these depositions, by different ex-situ characterizations (XRD, IR, SEM, EDS..) have revealed particularly the presence of siderite. Then, the influence of several experimental parameters (substrate, potential, medium composition, temperature) on the characteristics of siderite thin layers has been studied. From these experimental results, models have been proposed. (O.M.)

  20. Influence of copper in spheres of iron and aluminum oxide

    International Nuclear Information System (INIS)

    Sousa, A.F. de; Gomes, E.C.C.; Valentini, A.; Longhinotti, E.; Sales, F.A.M.

    2010-01-01

    The various applications of mesoporous materials in adsorption and catalysis have driven research for new synthetic routes to improve the structural and morphological characteristics of the compounds currently available. Spherical mesoporous materials of aluminum oxide and / or iron were synthesized in proportions of 10.30 and 50%, and then impregnated with copper oxide by wet impregnation method. Supporters of spherical iron oxide and aluminum before and after impregnation with copper were characterized by XRD, SEM, chemical analysis, BET and TPR. The analysis results of XRD showed the formation of crystalline phases AB 2 O 4 type, the results of TPR showed a shift of the band of iron reduction with the incorporation of copper and the samples indicated a decrease in porosity, possibly due to the closure of pores with the addition of copper. (author)

  1. A novel mechanism of iron-core formation by Pyrococcus furiosus archaeoferritin, a member of an uncharacterized branch of the ferritin-like superfamily

    NARCIS (Netherlands)

    Honarmand Ebrahimi, K.; Hagedoorn, P.L.; Van der Weel, L.; Verhaert, P.D.E.M.; Hagen, W.R.

    2012-01-01

    Storage of iron in a nontoxic and bioavailable form is essential for many forms of life. Three subfamilies of the ferritin-like superfamily, namely, ferritin, bacterioferritin, and Dps (DNA-binding proteins from starved cells), are able to store iron. Although the function of these iron-storage

  2. Morphologies of omega band auroras

    Science.gov (United States)

    Sato, Natsuo; Yukimatu, Akira Sessai; Tanaka, Yoshimasa; Hori, Tomoaki

    2017-08-01

    We examined the morphological signatures of 315 omega band aurora events observed using the Time History of Events and Macroscale Interactions during Substorm ground-based all-sky imager network over a period of 8 years. We find that omega bands can be classified into the following three subtypes: (1) classical (O-type) omega bands, (2) torch or tongue (T-type) omega bands, and (3) combinations of classical and torch or tongue (O/T-type) omega bands. The statistical results show that T-type bands occur the most frequently (45%), followed by O/T-type bands (35%) and O-type bands (18%). We also examined the morphologies of the omega bands during their formation, from the growth period to the declining period through the maximum period. Interestingly, the omega bands are not stable, but rather exhibit dynamic changes in shape, intensity, and motion. They grow from small-scale bumps (seeds) at the poleward boundary of preexisting east-west-aligned auroras, rather than via the rotation or shear motion of preexisting east-west-aligned auroras, and do not exhibit any shear motion during the periods of auroral activity growth. Furthermore, the auroral luminosity is observed to increase during the declining period, and the total time from the start of the growth period to the end of the declining period is found to be about 20 min. Such dynamical signatures may be important in determining the mechanism responsible for omega band formation.

  3. Oxygen isotope exchange kinetics of mineral pairs in closed and open systems: Applications to problems of hydrothermal alteration of igneous rocks and Precambrian iron formations

    Science.gov (United States)

    Gregory, R.T.; Criss, R.E.; Taylor, H.P.

    1989-01-01

    heat-balance constraints, we can utilize the 18O 16O data on natural mineral assemblages to calculate the kinetic rate constants (k's) and the effective diffusion constants (D's) for mineral-H2O exchange: these calculated values (kqtz ??? 10-14, kfeld ??? 10-13-10-12) agree with experimental determinations of such constants. In nature, once the driving force or energy source for the external infiltrating fluid phase is removed, the disequilibrium mineral-pair arrays will either: (1) remain "frozen" in their existing state, if the temperatures are low enough, or (2) re-equilibrate along specific closed-system exchange vectors determined solely by the temperature path and the mineral modal proportions. Thus, modal mineralogical information is a particularly important parameter in both the open- and closed-system scenarios, and should in general always be reported in stable-isotopic studies of mineral assemblages. These concepts are applied to an analysis of 18O 16O systematics of gabbros (Plagioclase-clinopyroxene and plagioclase-amphibole pairs), granitic plutons (quartz-feldspar pairs), and Precambrian siliceous iron formations (quartz-magnetite pairs). In all these examples, striking regularities are observed on ??-?? and ??-?? plots, but we point out that ??-?? plots have many advantages over their equivalent ??-?? diagrams, as the latter are more susceptible to misinterpretation. Using the equations developed in this study, these regularities can be interpreted to give semiquantitative information on the exchange histories of these rocks subsequent to their formation. In particular, we present a new interpretation indicating that Precambrian cherty iron formations have in general undergone a complex fluid exchange history in which the iron oxide (magnetite precursor?) has exchanged much faster with low-temperature (< 400??C) fluids than has the relatively inert quartz. ?? 1989.

  4. Controversial Pb-Pb and Sm-Nd isotope results in the early Archean Isua (West Greenland) oxide iron formation

    DEFF Research Database (Denmark)

    Frei, Robert; Rosing, Minik; Stecher, Ole

    1999-01-01

    for a minimum deposition age of 3.71 Ga for volcanic sequences (Nutman et al., 1997) comprising the studied BIFs, and supported by microtextural observations, this demonstrates an early Archean amphibolite facies metamorphic event in the supracrustal. PbSL data on magnetite from slightly discordant veins within...... yield unrealistically high Nd(3800) of +14.8 and +14.4, indicative of Sm/Nd ratios resembling REE fractionated, continental sources. These high Nd(3800), together with radiogenic Sr leached from the magnetite-enriched separates, is ascribed to secondary hydroxyapatite, which predominantly forms...... supracrustal belt and adjoining gneisses can be assigned to post-formational hydrothermal processes and underline the need for care in the interpretation of Sm-Nd bulk data from polymetamorphic rocks to constrain isotopic models of early Earth’s evolution....

  5. Formation of carbonate pipes in the northern Okinawa Trough linked to strong sulfate exhaustion and iron supply

    Science.gov (United States)

    Peng, Xiaotong; Guo, Zixiao; Chen, Shun; Sun, Zhilei; Xu, Hengchao; Ta, Kaiwen; Zhang, Jianchao; Zhang, Lijuan; Li, Jiwei; Du, Mengran

    2017-05-01

    The microbial anaerobic oxidation of methane (AOM), a key biogeochemical process that consumes substantial amounts of methane produced in seafloor sediments, can lead to the formation of carbonate deposits at or beneath the sea floor. Although Fe oxide-driven AOM has been identified in cold seep sediments, the exact mode by which it may influence the formation of carbonate deposits remains poorly understood. Here, we characterize the morphology, petrology and geochemistry of a methane-derived Fe-rich carbonate pipe in the northern Okinawa Trough (OT). We detect abundant authigenic pyrites, as well as widespread trace Fe, within microbial mat-like carbonate veins in the pipe. The in situ δ34S values of these pyrites range from -3.9 to 31.6‰ (VCDT), suggesting a strong consumption of seawater sulfate by sulfate-driven AOM at the bottom of sulfate reduction zone. The positive δ56Fe values of pyrite and notable enrichment of Fe in the OT pipe concurrently indicate that the pyrites are primarily derived from Fe oxides in deep sediments. We propose that the Fe-rich carbonate pipe formed at the bottom of sulfate reduction zone, below which Fe-driven AOM, rather than Fe-oxide reduction coupled to organic matter degradation, might be responsible for the abundantly available Fe2+ in the fluids from which pyrites precipitated. The Fe-rich carbonate pipe described in this study probably represents the first fossil example of carbonate deposits linked to Fe-driven AOM. Because Fe-rich carbonate deposits have also been found at other cold seeps worldwide, we infer that similar processes may play an essential role in biogeochemical cycling of sub-seafloor methane and Fe at continental margins.

  6. Experimental formation of cronstedtite from Cox argillite-iron interaction at decreasing temperature in the 90 deg. C-40 deg. C range

    International Nuclear Information System (INIS)

    Pignatelli, Isabella; Mosser-Ruck, Regine; Rozsypal, Christophe; Truche, Laurent; Randi, Aurelien; Bartier, Daniele; Cathelineau, Michel; Ghanbaja, Jaafar; Mouton, Ludovic; Michau, Nicolas

    2012-01-01

    octahedral sites, and more Si and Fe 3+ in the tetrahedral sites than the conic crystals. The mean formulas are (Fe 2+ 2.195 Fe 3+ 0.780 Mg 0.025 ) (Si 1.201 Al 0.072 Fe 3+ 0.727 )O 5 (OH) 4 and (Fe 2+ 2.174 Fe 3+ 0.797 Mg 0.029 ) (Si 1.184 Al 0.144 Fe 3+ 0.672 )O 5 (OH) 4 respectively for the former and second ones. The Si/Fe tot and Fe 3+ /Fe 2+ ratios are nearly the same in both cases. As the crystallinity degree improves with decreasing temperature, selected area electron diffraction (SAED) images of well-shaped pyramidal cronstedtites were obtained (Fig. 2). From these images the poly-typic structure of analyzed crystals was unequivocally identified: the experimental interplanar spacing of ∼4.65 Angstrom, 4.34 Angstrom, 3.18 Angstrom and 2.44 Angstrom allow to distinguish the 3T polytype from the other cronstedtite polytypes belonging to the hexagonal family. The trigonal symmetry of the 3T cronstedtite polytype is moreover reflected by the predominant pyramidal morphology. This stud y shows that the temperature decrease which will affect the iron overpack-clay formation interface will result in changes of the mineral assemblage: from Fe-rich 7 Angstrom berthierine-like minerals to cronstedtite.The stability field of cronstedtite and its morphology and polytypes need to be related to temperature and physical-chemical variations. (authors)

  7. Jarosite versus Soluble Iron-Sulfate Formation and Their Role in Acid Mine Drainage Formation at the Pan de Azúcar Mine Tailings (Zn-Pb-Ag, NW Argentina

    Directory of Open Access Journals (Sweden)

    Jesica Murray

    2014-05-01

    Full Text Available Secondary jarosite and water-soluble iron-sulfate minerals control the composition of acid mine waters formed by the oxidation of sulfide in tailings impoundments at the (Zn-Pb-Ag Pan de Azúcar mine located in the Pozuelos Lagoon Basin (semi-arid climate in Northwest (NW Argentina. In the primary zone of the tailings (9.5 wt % pyrite-marcasite precipitation of anglesite (PbSO4, wupatkite ((Co,Mg,NiAl2(SO44 and gypsum retain Pb, Co and Ca, while mainly Fe2+, Zn2+, Al3+, Mg2+, As3+/5+ and Cd2+ migrate downwards, forming a sulfate and metal-rich plume. In the oxidation zone, jarosite (MFe3(TO42(OH6 is the main secondary Fe3+ phase; its most suitable composition is M = K+, Na+, and Pb2+and TO4 = SO42−; AsO42−. During the dry season, iron-sulfate salts precipitate by capillary transport on the tailings and at the foot of DC2 (tailings impoundment DC2 tailings dam where an acid, Fe2+ rich plume outcrops. The most abundant compounds in the acid mine drainage (AMD are SO42−, Fe2+, Fe3+, Zn2+, Al3+, Mg2+, Cu2+, As3+/5+, Cd2+. These show peak concentrations at the beginning of the wet season, when the soluble salts and jarosite dissolve. The formation of soluble sulfate salts during the dry season and dilution during the wet season conform an annual cycle of rapid metals and acidity transference from the tailings to the downstream environment.

  8. Band-notched ultrawide band antenna loaded with ferrite slab

    Science.gov (United States)

    Wang, Hao; Zong, Weihua; Sun, Nian X.; Lin, Hwaider; Li, Shandong

    2017-05-01

    In this paper, a novel technique to design a band-notched UWB antenna by using Yttrium Iron Garnet (YIG) ferrite is proposed. A printed slot UWB antenna with size of 21mm×26 mm×0.8 mm is adopted as a basic antenna. A piece of ferrite slab with size of 5 mm×10 mm×2 mm is attached on the feeding layer of the antenna to achieve band-notched characteristics. The measured -10 dB bandwidth of the antenna without ferrite slab is 2.91-10.98 GHz. With loading of ferrite slab, the bandwidth turns to 2.73-5.12 and 5.87-10.78 GHz. A band notch of 5.12- 5.87 GHz is achieved to filter WLAN 5 GHz (5.15-5.825 GHz) band. The proposed technique has virtue of easy fabrication and keeping antenna miniaturization.

  9. Facile and reversible formation of iron(III)-oxo-cerium(IV) adducts from nonheme oxoiron(IV) complexes and cerium(III)

    International Nuclear Information System (INIS)

    Draksharapu, Apparao; Rasheed, Waqas; Klein, Johannes E.M.N.; Que, Lawrence Jr.

    2017-01-01

    Ceric ammonium nitrate (CAN) or Ce IV (NH 4 ) 2 (NO 3 ) 6 is often used in artificial water oxidation and generally considered to be an outer-sphere oxidant. Herein we report the spectroscopic and crystallographic characterization of [(N4Py)Fe III -O-Ce IV (OH 2 )(NO 3 ) 4 ] + (3), a complex obtained from the reaction of [(N4Py)Fe II (NCMe)] 2+ with 2 equiv CAN or [(N4Py)Fe IV =O] 2+ (2) with Ce III (NO 3 ) 3 in MeCN. Surprisingly, the formation of 3 is reversible, the position of the equilibrium being dependent on the MeCN/water ratio of the solvent. These results suggest that the Fe IV and Ce IV centers have comparable reduction potentials. Moreover, the equilibrium entails a change in iron spin state, from S=1 Fe IV in 2 to S=5/2 in 3, which is found to be facile despite the formal spin-forbidden nature of this process. This observation suggests that Fe IV =O complexes may avail of reaction pathways involving multiple spin states having little or no barrier. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  10. Facile and reversible formation of iron(III)-oxo-cerium(IV) adducts from nonheme oxoiron(IV) complexes and cerium(III)

    Energy Technology Data Exchange (ETDEWEB)

    Draksharapu, Apparao; Rasheed, Waqas; Klein, Johannes E.M.N.; Que, Lawrence Jr. [Department of Chemistry and Center for Metals in Biocatalysis, University of Minnesota, Minneapolis, MN (United States)

    2017-07-24

    Ceric ammonium nitrate (CAN) or Ce{sup IV}(NH{sub 4}){sub 2}(NO{sub 3}){sub 6} is often used in artificial water oxidation and generally considered to be an outer-sphere oxidant. Herein we report the spectroscopic and crystallographic characterization of [(N4Py)Fe{sup III}-O-Ce{sup IV}(OH{sub 2})(NO{sub 3}){sub 4}]{sup +} (3), a complex obtained from the reaction of [(N4Py)Fe{sup II}(NCMe)]{sup 2+} with 2 equiv CAN or [(N4Py)Fe{sup IV}=O]{sup 2+} (2) with Ce{sup III}(NO{sub 3}){sub 3} in MeCN. Surprisingly, the formation of 3 is reversible, the position of the equilibrium being dependent on the MeCN/water ratio of the solvent. These results suggest that the Fe{sup IV} and Ce{sup IV} centers have comparable reduction potentials. Moreover, the equilibrium entails a change in iron spin state, from S=1 Fe{sup IV} in 2 to S=5/2 in 3, which is found to be facile despite the formal spin-forbidden nature of this process. This observation suggests that Fe{sup IV}=O complexes may avail of reaction pathways involving multiple spin states having little or no barrier. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  11. Biogenic Iron-Rich Filaments in the Quartz Veins in the Uppermost Ediacaran Qigebulake Formation, Aksu Area, Northwestern Tarim Basin, China: Implications for Iron Oxidizers in Subseafloor Hydrothermal Systems.

    Science.gov (United States)

    Zhou, Xiqiang; Chen, Daizhao; Tang, Dongjie; Dong, Shaofeng; Guo, Chuan; Guo, Zenghui; Zhang, Yanqiu

    2015-07-01

    Fe-(oxyhydr)oxide-encrusted filamentous microstructures produced by microorganisms have been widely reported in various modern and ancient extreme environments; however, the iron-dependent microorganisms preserved in hydrothermal quartz veins have not been explored in detail because of limited materials available. In this study, abundant well-preserved filamentous microstructures were observed in the hydrothermal quartz veins of the uppermost dolostones of the terminal-Ediacaran Qigebulake Formation in the Aksu area, northwestern Tarim Basin, China. These filamentous microstructures were permineralized by goethite and hematite as revealed by Raman spectroscopy and completely entombed in chalcedony and quartz cements. Microscopically, they are characterized by biogenic filamentous morphologies (commonly 20-200 μm in length and 1-5 μm in diameter) and structures (curved, tubular sheath-like, segmented, and mat-like filaments), similar to the Fe-oxidizing bacteria (FeOB) living in modern and ancient hydrothermal vent fields. A previous study revealed that quartz-barite vein swarms were subseafloor channels of low-temperature, silica-rich, diffusive hydrothermal vents in the earliest Cambrian, which contributed silica to the deposition of the overlying bedded chert of the Yurtus Formation. In this context, this study suggests that the putative filamentous FeOB preserved in the quartz veins might have thrived in the low-temperature, silica- and Fe(II)-rich hydrothermal vent channels in subseafloor mixing zones and were rapidly fossilized by subsequent higher-temperature, silica-rich hydrothermal fluids in response to waning and waxing fluctuations of diffuse hydrothermal venting. In view of the occurrence in a relatively stable passive continental margin shelf environment in Tarim Block, the silica-rich submarine hydrothermal vent system may represent a new and important geological niche favorable for FeOB colonization, which is different from their traditional

  12. Hurricane Spiral Bands.

    Science.gov (United States)

    Guinn, Thomas A.; Schubert, Wayne H.

    1993-10-01

    The spiral bands that occur in tropical cyclones can be conveniently divided into two classes-outer bands and inner bands. Evidence is presented here that the outer bands form as the result of nonlinear effects during the breakdown of the intertropical convergence zone (ITCZ) through barotropic instability. In this process a zonal strip of high potential vorticity (the ITCZ shear zone or monsoon trough) begins to distort in a varicose fashion, with the potential vorticity (PV) becoming pooled in local regions that are connected by filaments of high PV. As the pooled regions become more axisymmetric, the filaments become thinner and begin to wrap around the PV centers.It is argued that inner bands form in a different manner. As a tropical cyclone intensifies due to latent heat release, the PV field becomes nearly circular with the highest values of PV in the cyclone center. The radial gradient of PV provides a state on which PV waves (the generalization of Rossby waves) can propagate. The nonlinear breaking of PV waves then leads to an irreversible distortion of the PV contours and a downgradient flux of PV. The continuation of this proem tends to erode the high PV core of the tropical cyclone, to produce a surrounding surf zone, and hence to spread the PV horizontally. In a similar fashion, inner bands can also form by the merger of a vortex with a patch of relatively high PV air. As the merger proem occurs the patch of PV is quickly elongated and wrapped around the vortex. The resulting vortex is generally larger in horizontal extent and exhibits a spiral band of PV.When the formation of outer and inner bands is interpreted in the context of a normal-mode spectral model, they emerge as slow manifold phenomena; that is, they have both rotational and (balanced or slaved) gravitational mode aspects. In this sense, regarding them as simply gravity waves leads to an incomplete dynamical picture.

  13. L’impossible seconde vie ? Le poids des standards éditoriaux et la résistance de la bande dessinée franco-belge au format de poche

    Directory of Open Access Journals (Sweden)

    Sylvain Lesage

    2011-07-01

    Full Text Available Si le livre de poche a joué un rôle central dans la diffusion du patrimoine littéraire, la bande dessinée ne dispose pas de cet outil permettant la constitution d’un corpus de classiques aisément accessibles au plus grand nombre. En ceci, la bande dessinée constitue bien une véritable exception dans le champ éditorial français, par la quasi-absence de collections permettant de republier des classiques en format de poche. L’importance de l’image et l’impératif de lisibilité compliquent en effet le problème de l’adaptation du « grand format » vers le poche, mais demeurent insuffisants pour comprendre la réticence de la bande dessinée au poche. Le présent article propose un retour en arrière sur les expériences des années 1980-1990, afin de mieux cerner cette singularité éditoriale.

  14. Iron and sulfur isotope constraints on redox conditions associated with the 3.2 Ga barite deposits of the Mapepe Formation (Barberton Greenstone Belt, South Africa)

    Science.gov (United States)

    Busigny, Vincent; Marin-Carbonne, Johanna; Muller, Elodie; Cartigny, Pierre; Rollion-Bard, Claire; Assayag, Nelly; Philippot, Pascal

    2017-08-01

    The occurrence of Early Archean barite deposits is intriguing since this type of sediment requires high availability of dissolved sulfate (SO42-), the oxidized form of sulfur, although most authors argued that the Archean eon was dominated by reducing conditions, with low oceanic sulfate concentration (state of the paleo-atmosphere and -oceans, we examined Fe and S isotope compositions in a sedimentary sequence from the 3.2 Ga-old Mendon and Mapepe formations (Kaapvaal craton, South Africa), recovered from the drill-core BBDP2 of the Barberton Barite Drilling Project. Major elements were also analyzed to constrain the respective imprints of detrital vs metasomatic processes, in particular using Al, Ti and K interrelations. Bulk rock Fe isotope compositions are linked to mineralogy, with δ56Fe values varying between -2.04‰ in Fe sulfide-dominated barite beds, to +2.14‰ in Fe oxide-bearing cherts. δ34S values of sulfides vary between -10.84 and +3.56‰, with Δ33S in a range comprised between -0.35 and +2.55‰, thus supporting an O2-depleted atmosphere (<10-5 PAL). Iron isotope variations together with major element correlations show that, although the sediments experienced a pervasive stage of hydrothermal alteration, the rocks preserved a primary/authigenic signature predating subsequent hydrothermal stage. Highly positive δ56Fe values recorded in primary Fe-oxides from ferruginous cherts support partial Fe oxidation in a reducing oceanic environment (O2 < 10-4 μM), but are incompatible with a model of complete oxidation at the redox boundary of a stratified water column. Iron oxide precipitation under low O2 levels was likely mediated by anoxygenic photosynthesis, and/or abiotic photo-oxidation processes. Our results are consistent with global anoxic conditions in the 3.2 Ga-old sediments, implying that the barite deposits were most likely sourced by atmospheric photolysis of S gases produced by large subaerial volcanic events, and possibly SO42

  15. The Pharmacokinetics and Pharmacodynamics of Iron Preparations

    Directory of Open Access Journals (Sweden)

    Susanna Burckhardt

    2011-01-01

    Full Text Available Standard approaches are not appropriate when assessing pharmacokinetics of iron supplements due to the ubiquity of endogenous iron, its compartmentalized sites of action, and the complexity of the iron metabolism. The primary site of action of iron is the erythrocyte, and, in contrast to conventional drugs, no drug-receptor interaction takes place. Notably, the process of erythropoiesis, i.e., formation of new erythrocytes, takes 3−4 weeks. Accordingly, serum iron concentration and area under the curve (AUC are clinically irrelevant for assessing iron utilization. Iron can be administered intravenously in the form of polynuclear iron(III-hydroxide complexes with carbohydrate ligands or orally as iron(II (ferrous salts or iron(III (ferric complexes. Several approaches have been employed to study the pharmacodynamics of iron after oral administration. Quantification of iron uptake from radiolabeled preparations by the whole body or the erythrocytes is optimal, but alternatively total iron transfer can be calculated based on known elimination rates and the intrinsic reactivity of individual preparations. Degradation kinetics, and thus the safety, of parenteral iron preparations are directly related to the molecular weight and the stability of the complex. High oral iron doses or rapid release of iron from intravenous iron preparations can saturate the iron transport system, resulting in oxidative stress with adverse clinical and subclinical consequences. Appropriate pharmacokinetics and pharmacodynamics analyses will greatly assist our understanding of the likely contribution of novel preparations to the management of anemia.

  16. Mesoarchean BIF and iron ores of the Badampahar greenstone belt, Iron Ore Group, East Indian Shield

    Science.gov (United States)

    Ghosh, Rupam; Baidya, Tapan Kumar

    2017-12-01

    Banded iron formations (BIFs) are chemically precipitated sedimentary rock characterized by alternating Fe-rich and Si-rich bands. The origin of BIF has remained controversial despite years of diligent research. Most models proposed for the BIF origin are based on the observations of well-preserved Neoarchean to Paleoproterozoic BIFs. The present paper is focused on the origin of Mesoarchean BIFs present in the Badampahar greenstone belt (3.3-3.1 Ga), East Indian Shield. Here, BIF is interlayered with metavolcanic rocks, quartzite, phyllite and chert representing a typical greenstone sequence. Geochemical and sedimentological evidence suggest deposition of BIF below the wave base as part of a back-arc basin with insignificant detrital input. Interaction of seawater and volcanogenic high temperature hydrothermal fluids, generated from back-arc spreading centre, supplied metals for BIF deposition. Distinctly negative Ce anomalies in some lower BIF horizons indicate Fe2+ oxidation in an oxygenated hydrosphere and derivation of free oxygen from microbial photosynthesis. Subsequent stages of deformation, metamorphism, hydrothermal and supergene processes after deposition led to the formation of the iron ore bodies at present.

  17. Distinguishing major lithologic types in rocks of precambrian age in central Wyoming using multilevel sensing, with a chapter on possible economic significance of iron formation discovered by use of aircraft images in the Granite Mountains of Wyoming

    Science.gov (United States)

    Houston, R. S. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. Information obtained by remote sensing from three altitude levels: ERTS-1 (565 miles), U-2 (60,000 feet), and C-130 aircraft (15,000 feet) illustrates the possible application of multilevel sensing in mineral exploration. Distinction can be made between rocks of greenstone belts and rocks of granite-granite gneiss areas by using ERTS-1 imagery in portions of the Precambrian of central Wyoming. Study of low altitude color and color infrared photographs of the mafic terrain revealed the presence of metasedimentary rocks with distinct layers that were interpreted as amphibolite by photogeologic techniques. Some of the amphibolite layers were found to be iron formation when examined in the field. To our knowledge this occurrence of iron formation has not been previously reported in the literature.

  18. Investigation of iron-bismuth-molybdenum catalysts

    International Nuclear Information System (INIS)

    Ven'yaminov, S.A.; Pitaeva, A.N.; Barannik, G.B.; Plyasova, L.M.; Maksimovskaya, R.I.; Kustova, G.N.

    1977-01-01

    Using the methods of roentgenography, derivatography, EPR-and infrared-spectroscopy, the phase composition of an iron-bismut molybdenum system is investigated. It is shown that the method of introducing iron additives substantially affects the phase composition of the system. Interaction of a mixture of bismuth and iron hydroxides with a molybdic acid solution results in the formation of bismuth and iron molybdates. If iron hydroxide reacts with previously synthesized bismuth molybdate, a compound containing bismuth, molybdenum, and iron (the X-phase) is formed in the specimens along with the bismuth and iron molybdates

  19. Physiochemical Characterization of Five Iron Tubercles from a Single Drinking Water Distribution System: Possible New Insights on Their Formation and Growth

    Science.gov (United States)

    Physiochemical data on five iron tubercles from a single Distribution System (DS) are divided into two groups based on internal morphology and the predominate core iron mineral phases, α-FeOOH, γ-FeOOH, or Fe3O4, yet all three coexist in each tubercle. Cond...

  20. Iron biomineralization by anaerobic neutrophilic iron-oxidizing bacteria

    DEFF Research Database (Denmark)

    Miot, Jennyfer; Benzerara, Karim; Morin, Guillaume

    2009-01-01

    precipitation in the periplasm (in a few tens of minutes), followed by the formation of surface-bound globules. Moreover, we frequently observed an asymmetric mineral thickening at the cell poles. In parallel, the evolution of iron oxidation was quantified by STXM: iron both contained in the bacteria......Minerals formed by bio-oxidation of ferrous iron (Fe(II)) at neutral pH, their association with bacterial ultrastructures as well as their impact on the metabolism of iron-oxidizing bacteria remain poorly understood. Here, we investigated iron biomineralization by the anaerobic nitrate......-dependent iron-oxidizing bacterium Acidovorax sp. strain BoFeN1 in the presence of dissolved Fe(II) using electron microscopy and Scanning Transmission X-ray Microscopy (STXM). All detected minerals consisted mainly of amorphous iron phosphates, but based on their morphology and localization, three types...

  1. Colour Metallography of Cast Iron - Chapter 2: Grey Iron (Ⅲ

    Directory of Open Access Journals (Sweden)

    Zhou Jiyang

    2009-11-01

    Full Text Available The book, Colour Metallography of Cast Iron , uses colour metallography technique to study solidification structures of cast irons: graphite, carbides, austenite and eutectics; and focuses on solidification processes. With progress of modern solidification theory, the control of material solidification process becomes important measure for improving traditional materials and developing new materials. Solidification structure not only influences mechanical and physical properties of cast iron, but also affects its internal quality. The book uses a large amount of colour photos to describe the formation of solidification structures and their relations. Crystallization phenomena, which cannot be displayed with traditional metallography, are presented and more phase transformation information is obtained from these colour metallographic photos. This book consists of five sections: Chapter 1 Introduction, Chapter 2 Grey Iron, Chapter 3 Ductile Iron, Chapter 4 Vermicular Cast Iron, and Chapter 5 White Cast Iron. CHINA FOUNDRY publishs this book in several parts serially,starting from the first issue of 2009.

  2. Gold, iron and manganese in central Amapá, Brazil

    Directory of Open Access Journals (Sweden)

    Wilson Scarpelli

    Full Text Available ABSTRACT: Greenstone belts with deposits of gold, iron and manganese are common in the Paleoproterozoic Maroni-Itacaiunas Tectonic Province of the Guiana Shield. In Brazil, in the State of Amapá and northwest of Pará, they are represented by the Vila Nova Group, constituted by a basal unit of metabasalts, covered by metasediments of clastic and chemical origin. The basal metasediments, the Serra do Navio Formation, are made of a cyclothem with lenses of manganese marbles at the top of each cycle. Under the intense weathering of the Amazon, these lenses were oxidized to large deposits of high-grade manganese oxides. The exploitation of these oxides left behind the manganese carbonates and low-grade oxides. The overlaying Serra da Canga Formation presents a calcium and magnesium domain grading to an iron domain with banded silicate and oxide iron formations, mined for iron ores. Overlapping structures and superposed metamorphic crystallizations indicate two phases of dynamothermal metamorphism, the first one with axis to north-northeast and the second one to northwest, with an intermediate phase of thermal metamorphism related to syntectonic granitic intrusions. Shears oriented north-south, possibly formed during the first dynamothermal metamorphism and reactivated in the second, are ideal sites for hydrothermalism and gold mineralization, which is greater when occurs in iron formation and carbonate-bearing rocks, as it happened at the Tucano mine. Layered mafic-ultramafic intrusions in the greenstones represent a potential for chromite and platinum group elements. Pegmatites are source of cassiterite and tantalite exploited from alluvial deposits.

  3. Modern rather than Mesoarchaean oxidative weathering responsible for the heavy stable Cr isotopic signatures of the 2.95 Ga old Ijzermijn iron formation (South Africa)

    Science.gov (United States)

    Albut, Gülüm; Babechuk, Michael G.; Kleinhanns, Ilka C.; Benger, Manuela; Beukes, Nicolas J.; Steinhilber, Bernd; Smith, Albertus J. B.; Kruger, Stephanus J.; Schoenberg, Ronny

    2018-05-01

    Previously reported stable Cr isotopic fractionation in Archaean paleosols and iron formations (IFs) have been interpreted as a signature of oxidative weathering of Cr(III) to Cr(VI) in soils, and delivery of isotopically heavy Cr(VI) into the oceans. One of the oldest reported fingerprints of this process is isotopically heavy Cr preserved in the 2.95 Ga old Ijzermijn IF, Sinqeni Formation of the Mozaan Group (Pongola Supergroup), South Africa and could suggest that atmospheric free oxygen was present ca. 600 million years earlier than the Great Oxidation Event (GOE). However, fractionated stable Cr isotopic signatures have only been found to date in surface outcrop samples of the White Mfolozi Inlier exposed along the White Mfolozi River Gorge. In this study, the latter outcrop was resampled along with two drill cores of the Ijzermijn IF and a drill core of the Scotts Hill IF to represent multiple exposures of Mozaan Group IFs with different states of preservation. A detailed geochemical comparison on bulk samples of different units was undertaken using stable Cr isotopes coupled with trace and major elements. Outcrop iron-rich mudstones (Fe - lutites) show very low LOI [wt] %, and very low Fe(II)/Fetot ratios, and lower Ca and Mg relative to equivalent facies in drill cores, indicating the effects that oxidative recent surface weathering had on Fe/Mn-rich carbonate minerals of the IF. Overall rare earth element and yttrium (REE + Y) mixing models agree well with previous studies, confirming that they were minimally disturbed by weathering and are consistent with a high magnitude of continental solutes delivered in a near-shore depositional environment, with a minor contribution of hydrothermally derived fluids that upwelled into shallower depositional setting. Importantly, all drill core samples of this study revealed δ53/52Cr values within the igneous inventory, despite variable amounts of detrital Cr input that includes nearly detritus-free, chert

  4. High temperature corrosion studies. A. Iron: based superalloy in SO/sub 2//O/sub 2/ atmospheres. B. Gas: solid reaction with formation of volatile species

    Energy Technology Data Exchange (ETDEWEB)

    Liu, T.K.

    1980-03-01

    The thermogravimetric method was used to study high temperature corrosion under SO/sub 2//O/sub 2/ atmosphere applied to Armco 18SR alloys with different heat treatment histories, Armco T310 and pure chromium between 750 and 1100/sup 0/C. The weight gain follows the parabolic rate law. The volatilization of the protective Cr/sub 2/O/sub 3/ layer via formation of CrO/sub 3/ was taken into account above 900/sup 0/C for long time runs. The parabolic rate and the volatilization rate, derived from fitting the experimental data to the modified Tedmon's non-linear model, were correlated using the Arrhenius equation. Armco 18SR-C has the best corrosion resistance of the Armco 18SR alloys. Armco T310 is not protective at high temperatures. The available rate data on the oxidation of chromium oxide, chlorination of chromium, oxidation-chlorination of chromium oxide, chlorination of nickel and chlorination of iron were found to be predictable. The calculation of high temperature volatilization rate was performed using the available fluid correlation equations and the Lennard-Jones parameters derived from the molecule with similar structure and from the low temperature viscosity measurement. The lower predicted volatilization rate is due to the use of the Chapman-Enskog equation with the Lennard-Jones parameters mostly derived from the low temperature viscosity measurement. This was substantiated by comparing the reliable high temperature diffusion rate in the literature with the above mentioned calculational method. The experimental volatilization rates of this study are compared with the other related studies and the mass transfer predictions.

  5. Iron species determination by task-specific ionic liquid-based in situ solvent formation dispersive liquid-liquid microextraction combined with flame atomic absorption spectrometry.

    Science.gov (United States)

    Sadeghi, Susan; Ashoori, Vahid

    2017-10-01

    The task-specific ionic liquid (TSIL) of 1-ethyl-3-methylimidazolium bromide functionalized with 8-hydroxyquinoline was used as a chelating agent and extracting solvent for dispersive liquid-liquid microextraction and subsequent determination of Fe(III) by flame atomic absorption spectrometry. The in situ solvent formation of TSIL using KPF 6 provided the desired water-immiscible ionic liquid. The total Fe concentration could be determined after pre-oxidation of Fe(II) to Fe(III). Various factors affecting the proposed extraction procedure were optimized. The proposed analytical conditions were: sample pH 5, TSIL amount 0.3% (w/v), KPF 6 amount 0.15% (w/v), anti-sticking 0.1% (w/v) and salt concentration 5% (w/v). Under optimal conditions, the linear dynamic ranges for Fe(III) and total Fe were 20-80 and 20-110 ng mL -1 , respectively, with a detection limit of 6.9 ng mL -1 for Fe(III) and relative standard deviation of 2.2%. The proposed method was successfully applied to the determination of trace Fe(III) in water (underground, tap, refined water and artificial sea water) and beverage (apple, tomato, and tea) samples. The developed method offers advantages such as simplicity, ease of operation, and extraction of Fe(III) from aqueous solutions without the use of organic solvent. It was successfully applied for iron speciation in different real samples. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  6. Iron and oxygen isotope fractionation during iron UV photo-oxidation: Implications for early Earth and Mars

    Science.gov (United States)

    Nie, Nicole X.; Dauphas, Nicolas; Greenwood, Richard C.

    2017-01-01

    Banded iron formations (BIFs) contain appreciable amounts of ferric iron (Fe3+). The mechanism by which ferrous iron (Fe2+) was oxidized into Fe3+ in an atmosphere that was globally anoxic is highly debated. Of the three scenarios that have been proposed to explain BIF formation, photo-oxidation by UV photons is the only one that does not involve life (the other two are oxidation by O2 produced by photosynthesis, and anoxygenic photosynthesis whereby Fe2+ is directly used as electron donor in place of water). We experimentally investigated iron and oxygen isotope fractionation imparted by iron photo-oxidation at a pH of 7.3. The iron isotope fractionation between precipitated Fe3+-bearing lepidocrocite and dissolved Fe2+ follows a Rayleigh distillation with an instantaneous 56Fe/54Fe fractionation factor of + 1.2 ‰. Such enrichment in the heavy isotopes of iron is consistent with the values measured in BIFs. We also investigated the nature of the mass-fractionation law that governs iron isotope fractionation in the photo-oxidation experiments (i.e., the slope of the δ56Fe-δ57Fe relationship). The experimental run products follow a mass-dependent law corresponding to the high-T equilibrium limit. The fact that a ∼3.8 Gyr old BIF sample (IF-G) from Isua (Greenland) falls on the same fractionation line confirms that iron photo-oxidation in the surface layers of the oceans was a viable pathway to BIF formation in the Archean, when the atmosphere was largely transparent to UV photons. Our experiments allow us to estimate the quantum yield of the photo-oxidation process (∼0.07 iron atom oxidized per photon absorbed). This yield is used to model iron oxidation on early Mars. As the photo-oxidation proceeds, the aqueous medium becomes more acidic, which slows down the reaction by changing the speciation of iron to species that are less efficient at absorbing UV-photons. Iron photo-oxidation in centimeter to meter-deep water ponds would take months to years to

  7. Algoma-, Superior-, and oolitic-type iron deposits of the Islamic Republic of Mauritania (phase V, deliverable 83): Chapter O in Second projet de renforcement institutionnel du secteur minier de la République Islamique de Mauritanie (PRISM-II)

    Science.gov (United States)

    Taylor, Cliff D.; Finn, Carol A.; Anderson, Eric D.; Joud, M. Y.; Taleb, M. A.; Horton, John D.

    2015-01-01

    High-grade hematitic iron ores (or HIF, containing 60–65 percent Fe) have been mined in Mauritania from Superior-type iron deposits since 1952. Depletion of the high grade ores in recent years has resulted in a number of new projects focused on lower grade magnetite ores in Algoma-type banded iron formation (or BIF, containing approximately 35 percent Fe). Large deposits of oolitic-type iron ores are also present in Phanerozoic sedimentary rocks in Mauritania. According to recent U.S. Geological Survey figures, Mauritania is the fifteenth largest iron producer in the World and currently has about 1.1 billion tonnes of crude iron ore reserves (USGS, 2012).

  8. Geological Controls on High-Grade Iron Ores from Kiriburu-Meghahatuburu Iron Ore Deposit, Singhbhum-Orissa Craton, Eastern India

    Directory of Open Access Journals (Sweden)

    Jitendra Prasad

    2017-10-01

    Full Text Available Numerous iron ore deposits are hosted within the Meso to Neo-Archean banded iron formations (BIFs extending across the Singhbhum-Orissa Craton, eastern India. Despite the widespread distribution of BIFs, which forms part of the iron ore group (IOG, heterogeneity in their grade and mineral composition is occasionally observed even within a single ore deposit. Kiriburu-Meghahatuburu iron ore deposit (KMIOD, west Singhbhum district, Jharkhand, eastern India is characterized by a dominant hematite (often martitized occurrence with a total resource of >150 million tonnes (MT at 62.85 wt % Fe. Very high-grade blue dust ore (friable and powdery hematitewith~67% Fe, high-grade massive, hard laminated hematitic ores (~66% Fe and medium to low grade goethitic/lateritic ores (50%–60% Fe are the common iron-ore lithologies in KMIOD. These ores can be distinguished in the field from their physical appearance, meso-scale texture and spatial occurrences with the host rocks along with the variation in chemical composition. The high-grade ores are characterized by high Fe (>62 wt %, low Al2O3 (1.5–2.5 wt %, low SiO2 (2.0–4.5 wt % and low P (<0.06 wt %. Detailed field studies and laboratory investigations on the ore mineral assemblages suggest that the mineralization of high-grade iron ores at KMIOD is controlled by three major parameters, i.e., lithological, paleoclimatic and structural controls. High-grade iron ores such as blue dust seem to be formed during leaching processes through inter-bedded ferruginous shale and banded hematite jasper (BHJ occurring within BIFs. Structural elements such as folds, joint network, fracture arrays, local faults and steeply dipping bedding planes are surmised as strong controls for the evolution of different iron ore types from the BHJ. Most of the high-grade ores are concentrated at the hinge portions of second generation folds (F2 owing to the easy access for circulation of meteoric solution along the fractures

  9. Native iron

    DEFF Research Database (Denmark)

    Brooks, Charles Kent

    2015-01-01

    , a situation unique in the Solar System. In such a world, iron metal is unstable and, as we all know, oxidizes to the ferric iron compounds we call 'rust'. If we require iron metal it must be produced at high temperatures by reacting iron ore, usually a mixture of ferrous (Fe2+) and ferric (Fe3+) oxides (Fe2O3......, hematite, or FeO.Fe2O3, magnetite), with carbon in the form of coke. This is carried out in a blast furnace. Although the Earth's core consists of metallic iron, which may also be present in parts of the mantle, this is inaccessible to us, so we must make our own. In West Greenland, however, some almost...... unique examples of iron metal, otherwise called 'native iron' or 'telluric iron', occur naturally....

  10. Trace-element and multi-isotope geochemistry of Late-Archean black shales in the Carajas iron-ore district, Brazil

    DEFF Research Database (Denmark)

    Cabral, A. R.; Creaser, R. A.; Naegler, T.

    2013-01-01

    The 250-300-m-thick Carajas Formation in the Carajas mineral province, northern Brazil, consists of banded iron formation (including giant high-grade iron-ore deposits) and minor black shale, overlying a thick pile (2-3 km) of about 2.75-Ga-old metabasalt. Carbonaceous shale with pyrite-and locally......, with heavy data restricted to pyrrhotite-free samples. The data suggest microbial sulfate reduction under, at least partially, sulfate-limiting conditions with later overprint by migrating solutions. The black shale is affected by pronounced low-temperature potassium metasomatism (K2O/Na2O > 100; up to 10 wt...

  11. Formation, surface characterization, and electrocatalytic application of self-assembled monolayer films of tetra-substituted manganese, iron, and cobalt benzylthio phthalocyanine complexes

    CSIR Research Space (South Africa)

    Akinbulu, IA

    2011-10-01

    Full Text Available Molecular thin films of manganese (SAM-2), iron (SAM-3), and cobalt (SAM-4) phthalocyanine complexes, non-peripherally tetra-substituted with benzylmercapto, were formed on polycrystalline gold disc electrode by selfassembly technique. Surface...

  12. Raman spectroscopy of the system iron(III)-sulfuric acid-water: an approach to Tinto River's (Spain) hydrogeochemistry.

    Science.gov (United States)

    Sobron, P; Rull, F; Sobron, F; Sanz, A; Medina, J; Nielsen, C J

    2007-12-15

    Acid mine drainage is formed when pyrite (FeS(2)) is exposed and reacts with air and water to form sulfuric acid and dissolved iron. Tinto River (Huelva, Spain) is an example of this phenomenon. In this study, Raman spectroscopy has been used to investigate the speciation of the system iron(III)-sulfuric acid-water as an approach to Tinto River's aqueous solutions. The molalities of sulfuric acid (0.09 mol/kg) and iron(III) (0.01-1.5 mol/kg) were chosen to mimic the concentration of the species in Tinto River waters. Raman spectra of the solutions reveal a strong iron(III)-sulfate inner-sphere interaction through the nu(1) sulfate band at 981 cm(-1) and its shoulder at 1005 cm(-1). Iron(III)-sulfate interaction may also be facilitated by hydrogen bonds and monitored in the Raman spectra through the symmetric stretching band of bisulfate at 1052 cm(-1) and a shoulder at 1040 cm(-1). Other bands in the low-frequency region of the Raman spectra are attributed to the hydrogen-bonded complexes formation as well.

  13. Mechanistic Study of Monodisperse Iron Oxide Nanocrystals ...

    African Journals Online (AJOL)

    To gain better insight into the formation of iron oxide nanocrystals from the solution phase thermal decomposition of iron (III) oleate complex, different reaction conditions including time, heating ramp, as well as concentrations of iron oleate precursor and oleic acid ligand were systematically varied and the resulting ...

  14. Microbial Reducibility of Fe(III Phases Associated with the Genesis of Iron Ore Caves in the Iron Quadrangle, Minas Gerais, Brazil

    Directory of Open Access Journals (Sweden)

    Ceth W. Parker

    2013-11-01

    Full Text Available The iron mining regions of Brazil contain thousands of “iron ore caves” (IOCs that form within Fe(III-rich deposits. The mechanisms by which these IOCs form remain unclear, but the reductive dissolution of Fe(III (hydroxides by Fe(III reducing bacteria (FeRB could provide a microbiological mechanism for their formation. We evaluated the susceptibility of Fe(III deposits associated with these caves to reduction by the FeRB Shewanella oneidensis MR-1 to test this hypothesis. Canga, an Fe(III-rich duricrust, contained poorly crystalline Fe(III phases that were more susceptible to reduction than the Fe(III (predominantly hematite associated with banded iron formation (BIF, iron ore, and mine spoil. In all cases, the addition of a humic acid analogue enhanced Fe(III reduction, presumably by shuttling electrons from S. oneidensis to Fe(III phases. The particle size and quartz-Si content of the solids appeared to exert control on the rate and extent of Fe(III reduction by S. oneidensis, with more bioreduction of Fe(III associated with solid phases containing more quartz. Our results provide evidence that IOCs may be formed by the activities of Fe(III reducing bacteria (FeRB, and the rate of this formation is dependent on the physicochemical and mineralogical characteristics of the Fe(III phases of the surrounding rock.

  15. Heterojunction nanowires having high activity and stability for the reduction of oxygen: Formation by self-assembly of iron phthalocyanine with single walled carbon nanotubes (FePc/SWNTs)

    KAUST Repository

    Zhu, Jia

    2014-04-01

    A self-assembly approach to preparing iron phthalocyanine/single-walled carbon nanotube (FePc/SWNT) heterojunction nanowires as a new oxygen reduction reaction (ORR) electrocatalyst has been developed by virtue of water-adjusted dispersing in 1-cyclohexyl-pyrrolidone (CHP) of the two components. The FePc/SWNT nanowires have a higher Fermi level compared to pure FePc (d-band center, DFT. =. -0.69. eV versus -0.87. eV, respectively). Consequently, an efficient channel for transferring electron to the FePc surface is readily created, facilitating the interaction between FePc and oxygen, so enhancing the ORR kinetics. This heterojunction-determined activity in ORR illustrates a new stratagem to preparing non-noble ORR electrocatalysts of significant importance in constructing real-world fuel cells. © 2013 Elsevier Inc.

  16. CLUSTER MECHANISM OF NUCLEUS FORMATION AND CONFORMITIES OF PRIMARY CRYSTALLIZATION OF CAST ALLOYS (AT THE EXAMPLE OF HIGH-CHROMIUM CAST IRONS

    Directory of Open Access Journals (Sweden)

    N. I. Bestuzhev

    2005-01-01

    Full Text Available The theoretical concepts on crystallization of cast alloys on the basis of cluster mechanism of nucleation and growth of initial crystals are given, the technological methods of receiving of fine-grained structure of high-chromium hypercutectic cast irons are outlined.

  17. Multiple Stage Ore Formation in the Chadormalu Iron Deposit, Bafq Metallogenic Province, Central Iran: Evidence from BSE Imaging and Apatite EPMA and LA-ICP-MS U-Pb Geochronology

    Directory of Open Access Journals (Sweden)

    Hassan Heidarian

    2018-02-01

    Full Text Available The Chadormalu magnetite-apatite deposit in Bafq metallogenic province, Central Iran, is hosted in the late Precambrian-lower Cambrian volcano-sedimentary rocks with sodic, calcic, and potassic alterations characteristic of iron oxide copper-gold (IOCG and iron oxide-apatite (IOA ore systems. Apatite occurs as scattered irregular veinlets and disseminated grains, respectively, within and in the marginal parts of the main ore-body, as well as apatite-magnetite veins in altered wall rocks. Textural evidence (SEM-BSE images of these apatites shows primary bright, and secondary dark areas with inclusions of monazite/xenotime. The primary, monazite-free fluorapatite contains higher concentrations of Na, Si, S, and light rare earth elements (LREE. The apatite was altered by hydrothermal events that led to leaching of Na, Si, and REE + Y, and development of the dark apatite. The bright apatite yielded two U-Pb age populations, an older dominant age of 490 ± 21 Ma, similar to other iron deposits in the Bafq district and associated intrusions, and a younger age of 246 ± 17 Ma. The dark apatite yielded a U-Pb age of 437 ± 12 Ma. Our data suggest that hydrothermal magmatic fluids contributed to formation of the primary fluorapatite, and sodic and calcic alterations. The primary apatite reequilibrated with basinal brines in at least two regional extensions and basin developments in Silurian and Triassic in Central Iran.

  18. Specific hemosiderin deposition in spleen induced by a low dose of cisplatin: altered iron metabolism and its implication as an acute hemosiderin formation model.

    Science.gov (United States)

    Wang, Yingze; Juan, L V; Ma, Xiaowei; Wang, Dongliang; Ma, Huili; Chang, Yanzhong; Nie, Guangjun; Jia, Lee; Duan, Xianglin; Liang, Xing-Jie

    2010-07-01

    Cisplatin is one of the commonly-used chemotherapeutic drugs to efficiently treat malignant tumors in clinic, however, the adverse effects of cisplatin such as nephrotoxicity, neurotoxicity, and hemolytic uremic syndrome are often observed at its clinical doses (approximately 60 mg/m(2)), which limit its broader application. In earlier studies, little attention was paid to the subtle changes in the architecture of lymphatic organs after low doses of cisplatin treatment. This paper reviews current understanding of cisplatin-induced erythrocyte injury, and presents our latest finding that a low dose of cisplatin (3.6 mg/m(2)/day, 14 days) could induce specific hemosiderin deposition in spleen of both normal and hepatoma-22 (H22) inoculated Balb/C mice. This dose of cisplatin significantly inhibited H22-induced acute ascites development. No significant toxicity was induced by this dose of cisplatin to tissues except for hemosiderin accumulation in the spleen of both normal and H22 tumor-bearing mice. Increased splenic iron content and erythrocyte injury were observed after treatment with the low dose of cisplatin. The mRNA levels of ferroportin (FPN1) and ferritin were upregulated by 25 and 5-fold in spleen, respectively. Overexpression of FPN1 and ferritin protein were also been observed at protein levels by Western blotting analysis. In addition, the mRNA expression of hepcidin was also increased, suggesting blockage of iron recycling through FPN1 in spleen with cisplatin treatment. In conclusion, cisplatin treatment damages the erythrocytes which accumulate in the red pulp of spleen with defective recycling of FPN1 and ferritin protein. Hepcidin inhibits the function of FPN1 as iron-exporter leading to iron overloaded inside ferritins of splenic cells, which are stained with abnormal hemosiderin accumulation. These results demonstrate that cisplatin-caused hemosiderin deposition in spleen provides a valuable clue for understanding the molecular basis of toxicity of

  19. Iron refractory iron deficiency anemia

    Science.gov (United States)

    De Falco, Luigia; Sanchez, Mayka; Silvestri, Laura; Kannengiesser, Caroline; Muckenthaler, Martina U.; Iolascon, Achille; Gouya, Laurent; Camaschella, Clara; Beaumont, Carole

    2013-01-01

    Iron refractory iron deficiency anemia is a hereditary recessive anemia due to a defect in the TMPRSS6 gene encoding Matriptase-2. This protein is a transmembrane serine protease that plays an essential role in down-regulating hepcidin, the key regulator of iron homeostasis. Hallmarks of this disease are microcytic hypochromic anemia, low transferrin saturation and normal/high serum hepcidin values. The anemia appears in the post-natal period, although in some cases it is only diagnosed in adulthood. The disease is refractory to oral iron treatment but shows a slow response to intravenous iron injections and partial correction of the anemia. To date, 40 different Matriptase-2 mutations have been reported, affecting all the functional domains of the large ectodomain of the protein. In vitro experiments on transfected cells suggest that Matriptase-2 cleaves Hemojuvelin, a major regulator of hepcidin expression and that this function is altered in this genetic form of anemia. In contrast to the low/undetectable hepcidin levels observed in acquired iron deficiency, in patients with Matriptase-2 deficiency, serum hepcidin is inappropriately high for the low iron status and accounts for the absent/delayed response to oral iron treatment. A challenge for the clinicians and pediatricians is the recognition of the disorder among iron deficiency and other microcytic anemias commonly found in pediatric patients. The current treatment of iron refractory iron deficiency anemia is based on parenteral iron administration; in the future, manipulation of the hepcidin pathway with the aim of suppressing it might become an alternative therapeutic approach. PMID:23729726

  20. Deformation assisted by fluids in quartz veins of shear zones: an example from Iron Formations of Quadrilátero Ferrífero, Brazil.

    Science.gov (United States)

    Barbosa, Paola; Lagoeiro, Leonardo

    2013-04-01

    The evidences of fluid activity in rocks are well recognized. In many cases, the fluid is responsible to remobilize many elements (e.g. Au, Mn, Si) that may be transported over a long distance and precipitated as new minerals in regions of low stress of the rock. In many deformed rocks, the origin of a large number of structures (veins, pressure shadows, dissolved grain boundaries, etc) may be correlated to the fluid activity. However, the fluids are important not only during the crack-and-seal process but also after the sealing ceases. As an example of how the fluids are responsible to rearrange the structure of the rock, we studied many quartz veins of one iron-formation from Brazil. The rocks were collected in Quadrilátero Ferrífero (QF), Brazil, that is one of the most important metalogenetic provinces in the world. It is assumed the existence of a deformational and metamorphic gradient in the rocks of QF, increasing the occurrence of penetrative structures from southwest to northeast. However, the effects of the local shear zones in the deformation pattern of QF may not be neglected. Shear zones are generally recognized as structures that accommodate deformation, eventually with intense fluid percolation. It is indubitable that there is a relationship between the fluid activity and the deformation accommodation in shear zones. So, to investigate how the fluid activity can affect the mechanisms of accommodation of deformation in rocks of shear zones from QF, we characterized the crystallographic preferred orientation (CPO) of some quartz vein by EBSD (electron backscattering diffraction). All the samples came from the same outcrop and from the same dextral shear zone, localized in the low-deformation region of QF, under greenschist metamorphic conditions. The samples were oriented according to the XYZ reference system, with X parallel to the foliation and Z normal to the XY plane. The veins are quartz-rich layers parallel to the rock foliation. They do not

  1. The connection between iron ore formations and "mud-shrimp" colonizations around sunken wood debris and hydrothermal sediments in a Lower Cretaceous continental rift basin, Mecsek Mts., Hungary

    Science.gov (United States)

    Jáger, Viktor; Molnár, Ferenc; Buchs, David; Koděra, Peter

    2012-09-01

    In the Early Cretaceous, the continental rift basin of the Mecsek Mts. (Hungary), was situated on the southern edge of the European plate. The opening of the North Atlantic Ocean created a dilatational regime that expanded to the southern edge of the European plate, where several extensional basins and submarine volcanoes were formed during the Early Cretaceous epoch. Permanent seaquake activity caused high swell events during which a large amount of terrestrial wood fragments entered into submarine canyons from rivers or suspended woods which had sunk into the deep seafloor. These fragments created extended wood-fall deposits which contributed large-scale flourishing of numerous burrowing thalassinid crustaceans. Twelve different thalassinid coprolite ichnospecies can be found in the Berriasian-Hauterivian volcano-sedimentary formations. According to the seladonitic crustacean burrows which associated with framboidal pyrite containing Zoophycos and Chondrites ichnofossils (i.e. a "fodinichnia" trace fossil association), the bottom water was aerobic and the pore water was anaerobic; in the latter sulfate reduction occurred. The preservation of wood fragments around thalassinid burrows can be explained by rapid sedimentation related to turbidity currents. Due to the low temperature hydrothermal circulations of seawater, large amounts of iron were released from intrusive, pillowed basaltic sills; these sills intruded into soft, water-saturated sediments containing large amounts of thalassinid excrement. In the coprolites can be found idiomorphic mineral particles originating from the basalts, and coprolites can often be found in peperitic interpillow sediments. This indicates that the life-activity of the decapoda crustaceans in many Lower Cretaceous occurrences initially preceded the first magmatic eruptions. The paroxysm of the rift volcanism took place during the Valanginian age, when some submarine volcanoes emerged above sea level, reaching a maximum height of

  2. Protection of iron against corrosion by coverage with ultrathin two-dimensional polymer films of a hydroxymethylbenzene self-assembled monolayer anchored by the formation of a covalent bond

    International Nuclear Information System (INIS)

    Shimura, Tadashi; Aramaki, Kunitsugu

    2008-01-01

    Ultrathin films of two-dimensional polymers were prepared on an iron electrode by modification of a p-hydroxymethylbenzene p-HOCH 2 C 6 H 4 (HOMB) self-assembled monolayer (SAM) with 1,2-bis(triethoxysilyl)ethane (C 2 H 5 O) 3 Si(CH 2 ) 2 Si(OC 2 H 5 ) 3 (BTESE) and alkyltriethoxysilanes C n H 2n+1 Si(OC 2 H 5 ) 3 (C n TES, n = 8 and 18). The electrode was derivatized by cathodic reduction of p-hydroxymethylbenzenediazonium tetrafluoroborate HOCH 2 C 6 H 4 N 2 BF 4 in an electrolytic acetonitrile solution below 10deg. C for 1 h to form the SAM via a covalent bond between carbon and iron atoms. The protective ability of the polymer film against iron corrosion was determined by polarization measurement of the coated electrode in an oxygenated 0.5 M NaCl solution. The protective efficiencies of the polymer films prepared by modification with BTESE plus C 8 TES and C 18 TES were 63.9% and 68.5% after immersion in 0.5 M NaCl for 1.5 h, respectively. These values were higher than those of the one-dimensional polymer films prepared with the respective C n TES. The film of the HOMB SAM modified with BTESE plus C 8 TES was characterized by contact angle measurement using a drop of water and X-ray photoelectron and FTIR reflection spectroscopies. The films of the HOMB SAM modified with BTESE plus C 8 TES and C 18 TES were persistent during immersion of the coated electrodes in 0.5 M NaCl for many hours by far as compared with the alkanethiol SAM anchored on iron by the formation of a coordinate bond

  3. Cast irons

    CERN Document Server

    1996-01-01

    Cast iron offers the design engineer a low-cost, high-strength material that can be easily melted and poured into a wide variety of useful, and sometimes complex, shapes. This latest handbook from ASM covers the entire spectrum of one of the most widely used and versatile of all engineered materials. The reader will find the basic, but vital, information on metallurgy, solidification characteristics, and properties. Extensive reviews are presented on the low-alloy gray, ductile, compacted graphite, and malleable irons. New and expanded material has been added covering high-alloy white irons used for abrasion resistance and high-alloy graphitic irons for heat and corrosion resistance. Also discussed are melting furnaces and foundry practices such as melting, inoculation, alloying, pouring, gating and rising, and molding. Heat treating practices including stress relieving, annealing, normalizing, hardening and tempering, autempering (of ductile irons), and surface-hardening treatments are covered, too. ASM Spec...

  4. New Kronig-Penney Equation Emphasizing the Band Edge Conditions

    Science.gov (United States)

    Szmulowicz, Frank

    2008-01-01

    The Kronig-Penney problem is a textbook example for discussing band dispersions and band gap formation in periodic layered media. For example, in photonic crystals, the behaviour of bands next to the band edges is important for further discussions of such effects as inhibited light emission, slow light and negative index of refraction. However,…

  5. Accelerated dissolution of iron oxides in ice

    Directory of Open Access Journals (Sweden)

    D. Jeong

    2012-11-01

    Full Text Available Iron dissolution from mineral dusts and soil particles is vital as a source of bioavailable iron in various environmental media. In this work, the dissolution of iron oxide particles trapped in ice was investigated as a new pathway of iron supply. The dissolution experiments were carried out in the absence and presence of various organic complexing ligands under dark condition. In acidic pH conditions (pH 2, 3, and 4, the dissolution of iron oxides was greatly enhanced in the ice phase compared to that in water. The dissolved iron was mainly in the ferric form, which indicates that the dissolution is not a reductive process. The extent of dissolved iron was greatly affected by the kind of organic complexing ligands and the surface area of iron oxides. The iron dissolution was most pronounced with high surface area iron oxides and in the presence of strong iron binding ligands. The enhanced dissolution of iron oxides in ice is mainly ascribed to the "freeze concentration effect", which concentrates iron oxide particles, organic ligands, and protons in the liquid like ice grain boundary region and accelerates the dissolution of iron oxides. The ice-enhanced dissolution effect gradually decreased when decreasing the freezing temperature from −10 to −196 °C, which implies that the presence and formation of the liquid-like ice grain boundary region play a critical role. The proposed phenomenon of enhanced dissolution of iron oxides in ice may provide a new pathway of bioavailable iron production. The frozen atmospheric ice with iron-containing dust particles in the upper atmosphere thaws upon descending and may provide bioavailable iron upon deposition onto the ocean surface.

  6. HYBASE : HYperspectral BAnd SElection

    NARCIS (Netherlands)

    Schwering, P.B.W.; Bekman, H.H.P.T.; Seijen, H.H. van

    2009-01-01

    Band selection is essential in the design of multispectral sensor systems. This paper describes the TNO hyperspectral band selection tool HYBASE. It calculates the optimum band positions given the number of bands and the width of the spectral bands. HYBASE is used to assess the minimum number of

  7. Depositional environment and origin of the Lilaozhuang Neoarchean BIF-hosted iron-magnesite deposit on the southern margin of the North China Craton

    Science.gov (United States)

    Huang, Hua; Zhang, LianChang; Fabre, Sébastien; Wang, ChangLe; Zhai, MingGuo

    2017-07-01

    The Neoarchean Lilaozhuang iron-magnesite deposit is located in the middle of the Huoqiu banded iron formation (BIF) ore belt in Anhui Province on the southern margin of the North China Craton. The Huoqiu BIF is the unique one that simultaneously develops quartz-type, silicate-type, and carbonate-type magnetite in the region. The Lilaozhuang deposit is characterized by magnesium-rich carbonate (magnesite) in magnetite ores. The BIF-hosted iron ores include mainly of silicate type and carbonate type, with a small amount of quartz type, which chiefly exhibit banded and massive structure, with minor disseminated structure. The magnesite ores occur as crystal-like bright white and exhibits massive structure. The Y/Ho ratio and REY pattern of both iron and magnesite ores are similar to that of seawater, while Eu shows positive anomaly, which is the sign of seafloor hydrothermal mixture. These features suggest that ore-forming materials of iron and magnesium in the Lilaozhuang deposit are mainly from the mixture of seafloor hydrothermal and seawater. Both ores do not exhibit negative Ce anomaly, which indicates that the deposit was formed in an environment showing a lack of oxygen. C-O isotopic compositions indicate that magnesite ore has been reformed by metamorphism of low amphibolite facies and later hydrothermal alteration. Based on the comprehensive analysis, authors suggest that iron and magnesite ores in the Lilaozhuang deposits formed in a confined sea basin on continental margin and was influenced by later complex geological processes.

  8. The Urinary Antibiotic 5-Nitro-8-Hydroxyquinoline (Nitroxoline) Reduces the Formation and Induces the Dispersal of Pseudomonas aeruginosa Biofilms by Chelation of Iron and Zinc

    Science.gov (United States)

    Klinger, M.; Hermann, B.; Sachse, S.; Nietzsche, S.; Makarewicz, O.; Keller, P. M.; Pfister, W.; Straube, E.

    2012-01-01

    Since cations have been reported as essential regulators of biofilm, we investigated the potential of the broad-spectrum antimicrobial and cation-chelator nitroxoline as an antibiofilm agent. Biofilm mass synthesis was reduced by up to 80% at sub-MIC nitroxoline concentrations in Pseudomonas aeruginosa, and structures formed were reticulate rather than compact. In preformed biofilms, viable cell counts were reduced by 4 logs at therapeutic concentrations. Complexation of iron and zinc was demonstrated to underlie nitroxoline's potent antibiofilm activity. PMID:22926564

  9. Influence of the iron content on the formation process of substituted Co-Nd strontium hexaferrite prepared by the citrate precursor method

    Energy Technology Data Exchange (ETDEWEB)

    Jacobo, S.E.; Herme, C. [LAFMACEL, Facultad de Ingenieria, UBA, Paseo Colon 850, C1063EHA Buenos Aires (Argentina); Bercoff, P.G., E-mail: bercoff@famaf.unc.edu.a [FaMAF, Universidad Nacional de Cordoba and IFEG, Conicet, Ciudad Universitaria, 5000 Cordoba (Argentina)

    2010-04-16

    Strontium hexaferrite samples of different composition were prepared by the self-combustion method and heat-treated in air at 1100 {sup o}C for 2 h: SrFe{sub 12}O{sub 19} (S0), Sr{sub 0.7}Nd{sub 0.3}Fe{sub 11.7}Co{sub 0.3}O{sub 19} (SS), Sr{sub 0.7}Nd{sub 0.3}Fe{sub 10.7}Co{sub 0.3}O{sub 19} (SM) and Sr{sub 0.7}Nd{sub 0.3}Fe{sub 8.4}Co{sub 0.3}O{sub 19} (SL). The phase identification of the powders was performed using XRD. Only sample SL (with the lowest iron concentration) shows well-defined peaks of the hexaferrite phase with no secondary phases. Nd-Co substitution modifies saturation magnetization (M{sub S}) and coercivity (H{sub c}) but only samples with low Fe{sup 3+} content (SL and SM) show the best magnetic properties, indicating that the best results for applications of this ferrite will be obtained with an iron deficiency in the stoichiometric formulation.

  10. Delamination wear mechanism in gray cast irons

    International Nuclear Information System (INIS)

    Salehi, M.

    2000-01-01

    An investigation of the friction and sliding wear of gray cast iron against chromium plated cast irons was carried out on a newly constructed reciprocating friction and wear tester. The tests were the first to be done on the test rig under dry conditions and at the speed of 170 cm/min, and variable loads of 20-260 N for a duration of 15 min. to 3 hours. The gray cast iron surfaces worn by a process of plastic deformation at the subsurface, crack nucleation, and crack growth leading to formation of plate like debris and therefore the delamination theory applies. No evidence of adhesion was observed. This could be due to formation of oxides on the wear surface which prevent adhesion. channel type chromium plating ''picked'' up cast iron from the counter-body surfaces by mechanically trapping cast iron debris on and within the cracks. The removal of the plated chromium left a pitted surface on the cast iron

  11. Study of clustering point defects under irradiation in dilute iron alloys; Etude de la formation sous irradiation des amas de defauts ponctuels dans les alliages ferritiques faiblement allies

    Energy Technology Data Exchange (ETDEWEB)

    Duong-Hardouin Duparc, T.H.A

    1998-12-31

    In low copper steels for nuclear reactor pressure vessel, point defect clustering plays an important role in hardening. These clusters are very small and invisible by transmission electron microscopy. In order to study the hardening component which results from the clustering of freely migrating point defects, we irradiated in a high voltage electron microscope Fe, the FeCu{sub 0.13%}, FeP{sub 0.015%} and FeN{sub 33ppm} alloys and the complex FeMn{sub 1.5%}Ni{sub 0.8%}Cu{sub 0.13%}P{sub 0.01%} alloy the composition of which is close to the matrix of pressure vessel steel. We studied the nucleation of dislocation loops and their growth velocity. The observations and the analyses have shown that in the complex model alloy, the interstitial dislocation loops are smaller and their density is more important than for the others alloys. The diffusion coefficients of interstitials and vacancies are obtained with the help of a simplified model. The densities of dislocation loops and their growth velocities obtained experimentally are reproduced by means of a cluster dynamics model we have developed. This is achieved self-consistently by using as a first trial the approximated coefficients obtained with the simplified model. The results of calculations have shown that the binding energy of di-interstitials must be very important in the binary iron alloys and only 0.95 eV in iron. Copper, nitrogen and phosphorus stabilize di-interstitials in iron. Finally the distribution of interstitial loops at 290 deg C and at 2.10{sup -9} dpa/s is calculated with the diffusion coefficient of point defects adjusted in FeCu. A distribution of small loops appears which gives an increase of hardening estimated to 10 Hv instead of 33 Hv experimentally observed. This low value can be improved by assuming in agreement with molecular dynamics simulations that a little fraction of di-interstitials is created at 2.5 MeV. (author) 111 refs.

  12. Colour Metallography of Cast Iron - White Cast Iron (Ⅱ

    Directory of Open Access Journals (Sweden)

    Zhou Jiyang

    2011-11-01

    Full Text Available Cast iron, as a traditional metal material, has advantages of low total cost, good castability and machinability, good wear resistance and low notch sensitivity, and is still facing tough challenge in quality, property and variety of types etc. Experts and engineers studying and producing iron castings all around world extremely concern this serious challenge. Over more than 30 years, a great of research work has been carried out on how to further improve its property, expand its application and combine cast iron technology with some hi-techs (for example, computer technology. Nevertheless, cast iron is a multi-element and multi-phase alloy and has complex and variety of structures and still has great development potential in structure and property. For further studying and developing cast iron, theoretical research work is important promise, and the study on solidification process and control mechanism of graphite morphology is fundamental for improving property of cast iron and developing new type of cast iron. Metallography of cast iron normally includes two sections: liquid phase transformation and solid phase transformation. The book, Colour Metallography of Cast Iron, uses colour metallography technique to study solidification structures of cast irons: graphite, carbides, austenite and eutectics; and focuses on solidification processes. With progress of modern solidification theory, the control of material solidification process becomes important measure for improving traditional materials and developing new materials. Solidification structure not only influences mechanical and physical properties of cast iron, but also affects its internal quality. The book uses a large amount of colour photos to describe the formation of solidification structures and their relations. Crystallization phenomena, which cannot be displayed with traditional metallography, are presented and more phase transformation information is obtained from these colour

  13. Colour Metallography of Cast Iron - Chapter 2: Grey Iron (Ⅱ

    Directory of Open Access Journals (Sweden)

    Zhou Jiyang

    2009-08-01

    Full Text Available Cast iron, as a traditional metal material, has advantages of low total cost, good castability and machinability, good wear resistance and low notch sensitivity, and is still facing tough challenge in quality, property and variety of types etc. Experts and engineers studying and producing iron castings all around world extremely concern this serious challenge. Over more than 30 years, a great of research work has been carried out on how to further improve its property, expand its application and combine cast iron technology with some hi-techs (for example, computer technology. Nevertheless, cast iron is a multi-element and multi-phase alloy and has complex and variety of structures and still has great development potential in structure and property. For further studying and developing cast iron, theoretical research work is important promise, and the study on solidification process and control mechanism of graphite morphology is fundamental for improving property of cast iron and developing new type of cast iron. Metallography of cast iron normally includes two sections: liquid phase transformation and solid phase transformation. The book, Colour Metallography of Cast Iron, uses colour metallography technique to study solidification structures of cast irons: graphite, carbides, austenite and eutectics; and focuses on solidification processes. With progress of modern solidification theory, the control of material solidification process becomes important measure for improving traditional materials and developing new materials. Solidification structure not only influences mechanical and physical properties of cast iron, but also affects its internal quality. The book uses a large amount of colour photos to describe the formation of solidification structures and their relations. Crystallization phenomena, which cannot be displayed with traditional metallography, are presented and more phase transformation information is obtained from these colour

  14. Chemical speciation of iron in fog water

    Energy Technology Data Exchange (ETDEWEB)

    Schwanz, M.; Warneck, P. [Institut fuer Troposphaerenforschung e.V. (IfT), Leipzig (Germany); Preiss, M. [Frankfurt Univ. (Germany). Zentrum fuer Umweltforschung; Hoffmann, P. [TH Darmstadt, Fachbereich Materialwissenschaften (Germany)

    1998-02-01

    Concentrations of iron(II), iron(III), free sulfur(IV), manganese, copper, organic acids (acetate, formate, oxalate) and main anions and cations were determined in bulk and droplet size-fractionated samples of San Pietro Capofiume fog waters. The concentration of dissolved iron rose with decreasing droplet diameter, acidity and oxalate concentration increased as well. The distribution of iron among different complex-species was calculated. These calculations indicated that iron(III)-oxalato complexes were the dominant iron(III) species. Concentrations of dissolved manganese and copper were in the same concentration range as of dissolved iron, but the catalytic effects of these transition metals were not considered here. (orig.) 35 refs.

  15. Directional Solidification of Nodular Cast Iron

    Science.gov (United States)

    Curreri, P. A.; Stefanescu, D. M.; Hendrix, J. C.

    1987-01-01

    Cerium enhances formation of graphite nodules. Preliminary experiments in directional solidification of cast iron shows quantitative correlation of graphite microstructure with growth rate and thermal gradient, with sufficient spheroidizing element to form spheroidal graphite under proper thermal conditions. Experimental approach enables use of directional solidification to study solidification of spheriodal-graphite cast iron in low gravity. Possible to form new structural materials from nodular cast iron.

  16. Direct Iron Coating onto Nd-Fe-B Powder by Thermal Decomposition of Iron Pentacarbonyl

    International Nuclear Information System (INIS)

    Yamamuro, S; Okano, M; Tanaka, T; Sumiyama, K; Nozawa, N; Nishiuchi, T; Hirosawa, S; Ohkubo, T

    2011-01-01

    Iron-coated Nd-Fe-B composite powder was prepared by thermal decomposition of iron pentacarbonyl in an inert organic solvent in the presence of alkylamine. Though this method is based on a modified solution-phase process to synthesize highly size-controlled iron nanoparticles, it is in turn featured by a suppressed formation of iron nanoparticles to achieve an efficient iron coating solely onto the surfaces of rare-earth magnet powder. The Nd-Fe-B magnetic powder was successfully coated by iron shells whose thicknesses were of the order of submicrometer to micrometer, being tuneable by the amount of initially loaded iron pentacarbonyl in a reaction flask. The amount of the coated iron reached to more than 10 wt.% of the initial Nd-Fe-B magnetic powder, which is practically sufficient to fabricate Nd-Fe-B/α-Fe nanocomposite permanent magnets.

  17. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... iron in your body causes iron-deficiency anemia. Lack of iron usually is due to blood loss, ... can help prevent overdosing in children. Because recent research supports concerns that iron deficiency during infancy and ...

  18. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... developing iron-deficiency anemia. Foods that are good sources of iron include dried beans, dried fruits, eggs, ... is needed, such as childhood and pregnancy. Good sources of iron are meat, poultry, fish, and iron- ...

  19. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... absorb iron from the gastrointestinal tract (GI tract). Blood loss When you lose blood, you lose iron. ... other conditions that can cause iron-deficiency anemia. Blood tests to screen for iron-deficiency anemia To ...

  20. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... of iron include iron-fortified breads and cereals, beans, tofu, dried fruits, and spinach and other dark ... of iron include iron-fortified breads and cereals, beans, tofu, dried fruits, and spinach and other dark ...

  1. Iron-Deficiency Anemia

    Science.gov (United States)

    ... Home / Iron-Deficiency Anemia Iron-Deficiency Anemia Also known as Leer en español ... bleeding Consuming less than recommended daily amounts of iron Iron-deficiency anemia can be caused by getting ...

  2. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... drawings also can cause iron-deficiency anemia. Poor Diet The best sources of iron are meat, poultry, ... more likely to develop iron-deficiency anemia. Vegetarian diets can provide enough iron if you eat the ...

  3. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... you are diagnosed with iron-deficiency anemia. Risk Factors You may have an increased risk for iron- ... iron-deficiency anemia if you have certain risk factors , including pregnancy. To prevent iron-deficiency anemia, your ...

  4. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... The best sources of iron are meat, poultry, fish, and iron-fortified foods (foods that have iron ... you: Follow a diet that excludes meat and fish, which are the best sources of iron. However, ...

  5. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... good nonmeat sources of iron include iron-fortified breads and cereals, beans, tofu, dried fruits, and spinach ... good nonmeat sources of iron include iron-fortified breads and cereals, beans, tofu, dried fruits, and spinach ...

  6. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... to moderate iron-deficiency anemia, or red blood cell transfusion for severe iron-deficiency anemia. You may ... body needs iron to make healthy red blood cells. Iron-deficiency anemia usually develops over time because ...

  7. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... from developing iron-deficiency anemia. Foods that are good sources of iron include dried beans, dried fruits, ... iron is needed, such as childhood and pregnancy. Good sources of iron are meat, poultry, fish, and ...

  8. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... re more likely to develop iron-deficiency anemia. Vegetarian diets can provide enough iron if you eat ... which are the best sources of iron. However, vegetarian diets can provide enough iron if you eat ...

  9. Iron-Deficiency Anemia

    Science.gov (United States)

    ... re more likely to develop iron-deficiency anemia. Vegetarian diets can provide enough iron if you eat ... which are the best sources of iron. However, vegetarian diets can provide enough iron if you eat ...

  10. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... can provide enough iron if you eat the right foods. For example, good nonmeat sources of iron ... can provide enough iron if you eat the right foods. For example, good nonmeat sources of iron ...

  11. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... iron-deficiency anemia may require treatment in a hospital, blood transfusions , iron injections, or intravenous iron therapy. ... Treatment may need to be done in a hospital. The goals of treating iron-deficiency anemia are ...

  12. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... develop new therapies for conditions that affect the balance of iron in the body and lead to ... Disease Control and Prevention) Iron - Health Professional Fact Sheet (NIH) Iron Dietary Supplement Fact Sheet (NIH) Iron- ...

  13. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... pregnancy. Good sources of iron are meat, poultry, fish, and iron-fortified foods that have iron added. Vegetarian diets can provide enough iron if you choose nonmeat sources ...

  14. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... sources of iron include iron-fortified breads and cereals, beans, tofu, dried fruits, and spinach and other ... sources of iron include iron-fortified breads and cereals, beans, tofu, dried fruits, and spinach and other ...

  15. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... enough iron-rich foods, such as meat and fish, may result in you getting less than the ... pregnancy. Good sources of iron are meat, poultry, fish, and iron-fortified foods that have iron added. ...

  16. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... iron-rich foods, especially during certain stages of life when more iron is needed, such as childhood and pregnancy. Good sources of iron are meat, poultry, fish, and iron- ...

  17. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... for your body to absorb iron from the gastrointestinal tract (GI tract). Blood loss When you lose blood, ... iron deficiency. Endurance athletes lose iron through their gastrointestinal tracts. They also lose iron through the breakdown of ...

  18. Protein oxidation mediated by heme-induced active site conversion specific for heme-regulated transcription factor, iron response regulator.

    Science.gov (United States)

    Kitatsuji, Chihiro; Izumi, Kozue; Nambu, Shusuke; Kurogochi, Masaki; Uchida, Takeshi; Nishimura, Shin-ichiro; Iwai, Kazuhiro; O'Brian, Mark R; Ikeda-Saito, Masao; Ishimori, Koichiro

    2016-01-05

    The Bradyrhizobium japonicum transcriptional regulator Irr (iron response regulator) is a key regulator of the iron homeostasis, which is degraded in response to heme binding via a mechanism that involves oxidative modification of the protein. Here, we show that heme-bound Irr activates O2 to form highly reactive oxygen species (ROS) with the "active site conversion" from heme iron to non-heme iron to degrade itself. In the presence of heme and reductant, the ROS scavenging experiments show that Irr generates H2O2 from O2 as found for other hemoproteins, but H2O2 is less effective in oxidizing the peptide, and further activation of H2O2 is suggested. Interestingly, we find a time-dependent decrease of the intensity of the Soret band and appearance of the characteristic EPR signal at g = 4.3 during the oxidation, showing the heme degradation and the successive formation of a non-heme iron site. Together with the mutational studies, we here propose a novel "two-step self-oxidative modification" mechanism, during which O2 is activated to form H2O2 at the heme regulatory motif (HRM) site and the generated H2O2 is further converted into more reactive species such as ·OH at the non-heme iron site in the His-cluster region formed by the active site conversion.

  19. Neutron spectrometry measurements in iron

    International Nuclear Information System (INIS)

    Perlini, G.; Acerbis, S.; Carter, M.

    1988-01-01

    A compact structure was prepared for use in making measurements of neutron penetration in iron which could serve as reference data and as a check for computer codes. About 30 iron plates were put together giving a useful overall length of 130 cm. At various depths along the central axis of the iron block, measurements were made with liquid scintillator spectrometers and proton recoil proportional counters. The energy band explored was between 14 KeV and 10 MeV. Here we report the original spectra of the impulses and the neutron spectra found by the NE213 code based on the differential method and by unfolding with the SPEC4 code for liquid scintillation counters and proton recoil spectrometers, respectively. 12 figs., 60 tabs., 6 refs

  20. Spin excitations in hole-overdoped iron-based superconductors.

    Science.gov (United States)

    Horigane, K; Kihou, K; Fujita, K; Kajimoto, R; Ikeuchi, K; Ji, S; Akimitsu, J; Lee, C H

    2016-09-12

    Understanding the overall features of magnetic excitation is essential for clarifying the mechanism of Cooper pair formation in iron-based superconductors. In particular, clarifying the relationship between magnetism and superconductivity is a central challenge because magnetism may play a key role in their exotic superconductivity. BaFe2As2 is one of ideal systems for such investigation because its superconductivity can be induced in several ways, allowing a comparative examination. Here we report a study on the spin fluctuations of the hole-overdoped iron-based superconductors Ba1-xKxFe2As2 (x = 0.5 and 1.0; Tc = 36 K and 3.4 K, respectively) over the entire Brillouin zone using inelastic neutron scattering. We find that their spin spectra consist of spin wave and chimney-like dispersions. The chimney-like dispersion can be attributed to the itinerant character of magnetism. The band width of the spin wave-like dispersion is almost constant from the non-doped to optimum-doped region, which is followed by a large reduction in the overdoped region. This suggests that the superconductivity is suppressed by the reduction of magnetic exchange couplings, indicating a strong relationship between magnetism and superconductivity in iron-based superconductors.

  1. Iron deficiency

    DEFF Research Database (Denmark)

    Schou, Morten; Bosselmann, Helle; Gaborit, Freja

    2015-01-01

    BACKGROUND: Both iron deficiency (ID) and cardiovascular biomarkers are associated with a poor outcome in heart failure (HF). The relationship between different cardiovascular biomarkers and ID is unknown, and the true prevalence of ID in an outpatient HF clinic is probably overlooked. OBJECTIVES.......043). CONCLUSION: ID is frequent in an outpatient HF clinic. ID is not associated with cardiovascular biomarkers after adjustment for traditional confounders. Inflammation, but not neurohormonal activation is associated with ID in systolic HF. Further studies are needed to understand iron metabolism in elderly HF...

  2. Colour Metallography of Cast Iron

    Directory of Open Access Journals (Sweden)

    Zhou Jiyang

    2009-05-01

    Full Text Available Cast iron, as a traditional metal material, has advantages of low total cost, good castability and machinability, good wear resistance and low notch sensitivity, and is still facing tough challenge in quality, property and variety of types etc. Experts and engineers studying and producing iron castings all around world extremely concern this serious challenge. Over more than 30 years, a great of research work has been carried out on how to further improve its property, expand its application and combine cast iron technology with some hi-techs (for example, computer technology. Nevertheless, cast iron is a multi-element and multi-phase alloy and has complex and variety of structures and still has great development potential in structure and property. For further studying and developing cast iron, theoretical research work is important promise, and the study on solidification process and control mechanism of graphite morphology is fundamental for improving property of cast iron and developing new type of cast iron.Metallography of cast iron normally includes two sections: liquid phase transformation and solid phase transformation. The book, Colour Metallography of Cast Iron , uses colour metallography technique to study solidification structures of cast irons: graphite, carbides, austenite and eutectics; and focuses on solidification processes. With progress of modern solidification theory, the control of material solidification process becomes important measure for improving traditionalmaterials and developing new materials. Solidification structure not only influences mechanical and physical properties of cast iron, but also affects its internal quality. The book uses a large amount of colour photos to describe the formation of solidification structures and their relations. Crystallization phenomena, which cannot be displayed with traditional metallography, are presented and more phase transformation information is obtained from these colour

  3. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... Research Home / < Back To Health Topics / Iron-Deficiency Anemia Iron-Deficiency Anemia Also known as Leer en español Iron-deficiency ... iron-deficiency anemia. Blood tests to screen for iron-deficiency anemia To screen for iron-deficiency anemia, your doctor ...

  4. Iron, ferritin and copper in seminal plasma.

    Science.gov (United States)

    Kwenang, A; Kroos, M J; Koster, J F; van Eijk, H G

    1987-07-01

    The levels of iron, copper and ferritin were measured in seminal plasma from young healthy students and infertile men with severe teratospermia. No significant differences were found between them. The iron might be available for lipid peroxidation unless it is bound in some way. The role of ferritin in O2- formation is discussed.

  5. Polygonal deformation bands in sandstone

    Science.gov (United States)

    Antonellini, Marco; Nella Mollema, Pauline

    2017-04-01

    We report for the first time the occurrence of polygonal faults in sandstone, which is compelling given that layer-bound polygonal fault systems have been observed so far only in fine-grained sediments such as clay and chalk. The polygonal faults are dm-wide zones of shear deformation bands that developed under shallow burial conditions in the lower portion of the Jurassic Entrada Fm (Utah, USA). The edges of the polygons are 1 to 5 meters long. The shear deformation bands are organized as conjugate faults along each edge of the polygon and form characteristic horst-like structures. The individual deformation bands have slip magnitudes ranging from a few mm to 1.5 cm; the cumulative average slip magnitude in a zone is up to 10 cm. The deformation bands heaves, in aggregate form, accommodate a small isotropic horizontal extension (strain Crosscutting relationships are rare. The interactions of the deformation bands are similar to those of mode I opening fractures. Density inversion, that takes place where under-compacted and over-pressurized layers (Carmel Fm) lay below normally compacted sediments (Entrada Sandstone), may be an important process for polygonal deformation bands formation. The gravitational sliding and soft sediment structures typically observed within the Carmel Fm support this hypothesis. Soft sediment deformation may induce polygonal faulting in the section of the Entrada Sandstone just above the Carmel Fm. The permeability of the polygonal deformation bands is approximately 10-14 to 10-13 m2, which is less than the permeability of the host, Entrada Sandstone (range 10-12 to 10-11 m2). The documented fault networks have important implications for evaluating the geometry of km-scale polygonal fault systems in the subsurface, top seal integrity, as well as constraining paleo-tectonic stress regimes.

  6. IRON DOME

    African Journals Online (AJOL)

    Automated precise guided missile defence has been around for some years, and is a modern-day mechanism used frequently since 2011 to defend against rocket attacks penetrating national airspace. Israel's automated Iron Dome. Missile Defence System has intercepted over 1 000 rockets during two recent.

  7. Iron and iron derived radicals

    International Nuclear Information System (INIS)

    Borg, D.C.; Schaich, K.M.

    1987-04-01

    We have discussed some reactions of iron and iron-derived oxygen radicals that may be important in the production or treatment of tissue injury. Our conclusions challenge, to some extent, the usual lines of thought in this field of research. Insofar as they are born out by subsequent developments, the lessons they teach are two: Think fast! Think small! In other words, think of the many fast reactions that can rapidly alter the production and fate of highly reactive intermediates, and when considering the impact of competitive reactions on such species, think how they affect the microenvironment (on the molecular scale) ''seen'' by each reactive molecule. 21 refs., 3 figs., 1 tab

  8. Immunity to plant pathogens and iron homeostasis.

    Science.gov (United States)

    Aznar, Aude; Chen, Nicolas W G; Thomine, Sebastien; Dellagi, Alia

    2015-11-01

    Iron is essential for metabolic processes in most living organisms. Pathogens and their hosts often compete for the acquisition of this nutrient. However, iron can catalyze the formation of deleterious reactive oxygen species. Hosts may use iron to increase local oxidative stress in defense responses against pathogens. Due to this duality, iron plays a complex role in plant-pathogen interactions. Plant defenses against pathogens and plant response to iron deficiency share several features, such as secretion of phenolic compounds, and use common hormone signaling pathways. Moreover, fine tuning of iron localization during infection involves genes coding iron transport and iron storage proteins, which have been shown to contribute to immunity. The influence of the plant iron status on the outcome of a given pathogen attack is strongly dependent on the nature of the pathogen infection strategy and on the host species. Microbial siderophores emerged as important factors as they have the ability to trigger plant defense responses. Depending on the plant species, siderophore perception can be mediated by their strong iron scavenging capacity or possibly via specific recognition as pathogen associated molecular patterns. This review highlights that iron has a key role in several plant-pathogen interactions by modulating immunity. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  9. Band structure of semiconductors

    CERN Document Server

    Tsidilkovski, I M

    2013-01-01

    Band Structure of Semiconductors provides a review of the theoretical and experimental methods of investigating band structure and an analysis of the results of the developments in this field. The book presents the problems, methods, and applications in the study of band structure. Topics on the computational methods of band structure; band structures of important semiconducting materials; behavior of an electron in a perturbed periodic field; effective masses and g-factors for the most commonly encountered band structures; and the treatment of cyclotron resonance, Shubnikov-de Haas oscillatio

  10. Chunky graphite formation in small section ductile iron castings; Formacion de grafito chunky en piezas de pequeno espesor fabricadas utilizando fundicion de hierro con grafito esferoidal

    Energy Technology Data Exchange (ETDEWEB)

    Asenjo, I.; Larranaga, P.; Sertucha, J.

    2011-07-01

    Chunky graphite is a degenerated graphite form which can be found in the thermal centre of ductile iron heavy section castings. Previous studies made on cubic blocks (300 and 180 mm in side) manufactured using alloys with fully ferritic matrix structures show that low cooling rates, excessive post-inoculation and high silicon and/or cerium contents in the melts are the most important factors that promote this kind of defect. The enhancement of these critical factors led to obtain chunky graphite in sections lower than 50 mm. Different experimental conditions have been used in order to establish the main parameters that affect this graphite malformation. The use of cutting-edge techniques in the analysis of chemical compositions has revealed that no significant differences can be found when comparing chunky areas and well-formed spheroidal graphite areas. On the other hand, it has not been possible to establish any correlation between the oxygen contents and the scale of the defect. However, it is noteworthy that the oxygen content is related to the use of magnesium or cerium as nodulized agent. (Author) 23 refs.

  11. Characterization of iron and manganese minerals and their associated microbiota in different mine sites to reveal the potential interactions of microbiota with mineral formation.

    Science.gov (United States)

    Park, Jin Hee; Kim, Bong-Soo; Chon, Chul-Min

    2018-01-01

    Different environmental conditions such as pH and dissolved elements of mine stream induce precipitation of different minerals and their associated microbial community may vary. Therefore, mine precipitates from various environmental conditions were collected and their associated microbiota were analyzed through metagenomic DNA sequencing. Various Fe and Mn minerals including ferrihydrite, schwertmannite, goethite, birnessite, and Mn-substituted δ-FeOOH (δ-(Fe 1-x , Mn x )OOH) were found in the different environmental conditions. The Fe and Mn minerals were enriched with toxic metal(loid)s including As, Cd, Ni and Zn, indicating they can act as scavengers of toxic metal(loid)s in mine streams. Under acidic conditions, Acidobacteria was dominant phylum and Gallionella (Fe oxidizing bacteria) was the predominant genus in these Fe rich environments. Manganese oxidizing bacteria, Hyphomicrobium, was found in birnessite forming environments. Leptolyngbya within Cyanobacteria was found in Fe and Mn oxidizing environments, and might contribute to Fe and Mn oxidation through the production of molecular oxygen. The potential interaction of microbial community with minerals in mine sites can be traced by analysis of microbial community in different Fe and Mn mineral forming environments. Iron and Mn minerals contribute to the removal of toxic metal(loid)s from mine water. Therefore, the understanding characteristics of mine precipitates and their associated microbes helps to develop strategies for the management of contaminated mine water. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Iron mineralization at the Songhu deposit, Chinese Western Tianshan: a type locality with regional metallogenic implications

    Science.gov (United States)

    Wang, Chun-Long; Wang, Yi-Tian; Dong, Lian-Hui; Qin, Ke-Zhang; Evans, Noreen J.; Zhang, Bing; Ren, Yi

    2018-01-01

    Hosted by volcaniclastics of the Carboniferous Dahalajunshan Formation, the Songhu iron deposit is located in the central segment of the Awulale metallogenic belt, Chinese Western Tianshan. Mineralization and alteration are structurally controlled by orogen-parallel NWW-striking faults. Integrating with mineralogical and stable isotopic analyses based on paragenetic relationships, two types of iron mineralization have been identified. The deuteric mineralization (Type I) represented by brecciated, banded, and disseminated-vein ores juxtaposed with potassic-calcic alteration in the inner zone, which was formed from a magmatic fluid generated during the late stages of regional volcanism. In contrast, the volcanic-hydrothermal mineralization (Type II) is characterized by hydrothermal features occurring in massive and agglomerated ores with abundant sulfides, and was generated from the magmatic fluid with seawater contamination. Two volcaniclastic samples from the hanging and footwall of the main orebody yield zircon U-Pb ages of 327.8 ± 3.1 and 332.0 ± 2.0 Ma, respectively, which indicate Middle Carboniferous volcanism. Timing for iron mineralization can be broadly placed in the same epoch. By reviewing geological, mineralogical, and geochemical features of the primary iron deposits in the Awulale metallogenic belt, we propose that the two types of iron mineralization in the Songhu iron deposit are representative regionally. A summary of available geochronological data reveals Middle-Late Carboniferous polycyclic ore-related volcanism, and nearly contemporaneous iron mineralization along the belt. Furthermore, petro-geochemistry of volcanic-volcaniclastic host rocks indicates that partial melting of a metasomatized mantle wedge under a continental arc setting could have triggered the continuous volcanic activities and associated metallogenesis.

  13. Feasibility of infrared analysis of iron in zircon

    International Nuclear Information System (INIS)

    Heard, I. Jr.

    1980-05-01

    A feasibility study has concluded that quantitative infrared analysis can be employed to determine the concentration of iron in zircon. The spectral transmission curves have shown that the iron absorption band is located at 1.15 microns. These curves also revealed a second absorption band at 1.49 microns. The source of this second peak is not known; but it exhibits some features which suggest its dependance on natural α-recoil damage. 23 references, 14 figures, 2 tables

  14. In vitro evaluation of iron solubility and dialyzability of various iron fortificants and of iron-fortified milk products targeted for infants and toddlers.

    Science.gov (United States)

    Kapsokefalou, Maria; Alexandropoulou, Isidora; Komaitis, Michail; Politis, Ioannis

    2005-06-01

    The objectives of the present study were: to compare the solubility and dialyzability of various iron fortificants (iron pyrophosphate, ferrous bis-glycinate, ferrous gluconate, ferrous lactate, ferrous sulfate) added, in the presence of ascorbic acid, to pasteurized milk samples produced under laboratory conditions; and to compare the solubility and dialyzability of iron in commercial pasteurized, UHT and condensed milk products available in the Greek market fortified with various vitamins and minerals including iron and targeted towards infants (6-12 months old) and toddlers. Iron solubility and dialyzability were determined using a simulated gastrointestinal digestive system. Ferrous dialyzable iron (molecular weight lower than 8000) was used as an index for prediction of iron bioavailability. Ferrous dialyzable iron in pasteurized milk samples fortified with iron pyrophosphate, ferrous lactate and ferrous bis-glycinate was higher (P iron in products fortified with ferrous lactate was not different (P > 0.05) from those fortified with ferrous sulfate. Ferrous dialyzable iron in four condensed commercial milk products was higher (P iron was higher (P iron source, milk processing and the overall product composition affect formation of ferrous dialyzable iron and may determine the success and effectiveness of iron fortification of milk.

  15. Characterisation and Processing of Some Iron Ores of India

    Science.gov (United States)

    Krishna, S. J. G.; Patil, M. R.; Rudrappa, C.; Kumar, S. P.; Ravi, B. P.

    2013-10-01

    Lack of process characterization data of the ores based on the granulometry, texture, mineralogy, physical, chemical, properties, merits and limitations of process, market and local conditions may mislead the mineral processing entrepreneur. The proper implementation of process characterization and geotechnical map data will result in optimized sustainable utilization of resource by processing. A few case studies of process characterization of some Indian iron ores are dealt with. The tentative ascending order of process refractoriness of iron ores is massive hematite/magnetite < marine black iron oxide sands < laminated soft friable siliceous ore fines < massive banded magnetite quartzite < laminated soft friable clayey aluminous ore fines < massive banded hematite quartzite/jasper < massive clayey hydrated iron oxide ore < manganese bearing iron ores massive < Ti-V bearing magnetite magmatic ore < ferruginous cherty quartzite. Based on diagnostic process characterization, the ores have been classified and generic process have been adopted for some Indian iron ores.

  16. Investigation of the protective effects of Vitamin C, iron and ...

    African Journals Online (AJOL)

    use

    2011-12-07

    Dec 7, 2011 ... transition metals such as iron and copper ions can help in preventing reactive oxygen species (ROS) formation. They are located in metal binding proteins such as ferritin, transferrin and ceruloplasmin. Iron is an essential element required for growth and survival of most organisms. The importance of iron is ...

  17. Iron oxides as a cause of GPR reflections

    NARCIS (Netherlands)

    van Dam, R.L.; Schlager, W.; Dekkers, M.; Huisman, J.A.

    2002-01-01

    Iron oxides frequently occur as secondary precipitates in both modern and ancient sediments and may form bands or irregular patterns. We show from time-domain reflectometry (TDR) field studies that goethite iron-oxide precipitates significantly lower the electromagnetic wave velocity of sediments.

  18. Iron sensitizer converts light to electrons with 92% yield

    DEFF Research Database (Denmark)

    Harlang, Tobias C. B.; Liu, Yizhu; Gordivska, Olga

    2015-01-01

    a thousand-fold longer than that of traditional iron polypyridyl complexes. By the use of electron paramagnetic resonance, transient absorption spectroscopy, transient terahertz spectroscopy and quantum chemical calculations, we show that the iron complex generates photoelectrons in the conduction band...

  19. Iron and Atherosclerosis: Nailing Down a Novel Target with Magnetic Resonance

    OpenAIRE

    Sharkey-Toppen, Travis P.; Tewari, Arun K.; Raman, Subha V.

    2014-01-01

    Iron is an essential mineral in many proteins and enzymes in human physiology, with limited means of iron elimination to maintain iron balance. Iron accrual incurs various pathological mechanisms linked to cardiovascular disease. In atherosclerosis, iron catalyzes the creation of reactive oxygen free radicals that contribute to lipid modification, which is essential to atheroma formation. Inflammation further fuels iron-related pathologic processes associated with plaque progression. Given ir...

  20. The width of Liesegang bands: A study using moving boundary ...

    Indian Academy of Sciences (India)

    The pattern formation in reaction–diffusion systems was studied by invoking the provisions contained in the moving boundary model. The model claims that the phase separation mechanism is responsible for separating the colloidal phase of precipitants into band and non-band regions. The relation between the band ...

  1. Anoxic photochemical oxidation of siderite generates molecular hydrogen and iron oxides

    Science.gov (United States)

    Kim, J. Dongun; Yee, Nathan; Nanda, Vikas; Falkowski, Paul G.

    2013-01-01

    Photochemical reactions of minerals are underappreciated processes that can make or break chemical bonds. We report the photooxidation of siderite (FeCO3) by UV radiation to produce hydrogen gas and iron oxides via a two-photon reaction. The calculated quantum yield for the reaction suggests photooxidation of siderite would have been a significant source of molecular hydrogen for the first half of Earth’s history. Further, experimental results indicate this abiotic, photochemical process may have led to the formation of iron oxides under anoxic conditions. The reaction would have continued through the Archean to at least the early phases of the Great Oxidation Event, and provided a mechanism for oxidizing the atmosphere through the loss of hydrogen to space, while simultaneously providing a key reductant for microbial metabolism. We propose that the photochemistry of Earth-abundant minerals with wide band gaps would have potentially played a critical role in shaping the biogeochemical evolution of early Earth. PMID:23733945

  2. Iron ore pollution in Mandovi and Zuari estuarine sediments and its fate after mining ban.

    Science.gov (United States)

    Kessarkar, Pratima M; Suja, S; Sudheesh, V; Srivastava, Shubh; Rao, V Purnachandra

    2015-09-01

    Iron ore was mined from the banded iron formations of Goa, India, and transported through the Mandovi and Zuari estuaries for six decades until the ban on mining from September 2012. Here we focus on the environmental magnetic properties of sediments from the catchment area, upstream and downstream of these estuaries, and adjacent shelf during peak mining time. Magnetic susceptibility (χ lf) and saturation isothermal remanent magnetization (SIRM) values of sediments were highest in upstream (catchment area and estuaries), decreased gradually towards downstream (catchment area and estuaries), and were lowest on the adjacent shelf. The χ lf values of the Mandovi estuary were two to fourfold higher than those in the Zuari. The sediments of these two estuaries after the mining ban showed enrichment of older magnetite and sharp decrease in the SIRM values. Although the input of ore material has been reduced after mining ban, more flushing of estuarine sediments is required for healthier environment.

  3. Iron and stony-iron meteorites

    DEFF Research Database (Denmark)

    Ruzicka, Alex M.; Haack, Henning; Chabot, Nancy L.

    2017-01-01

    By far most of the melted and differentiated planetesimals that have been sampled as meteorites are metal-rich iron meteorites or stony iron meteorites. The parent asteroids of these meteorites accreted early and differentiated shortly after the solar system formed, producing some of the oldest...... and interpretations for iron and stony iron meteorites (Plate 13.1). Such meteorites provide important constraints on the nature of metal-silicate separation and mixing in planetesimals undergoing partial to complete differentiation. They include iron meteorites that formed by the solidification of cores...... (fractionally crystallized irons), irons in which partly molten metal and silicates of diverse types were mixed together (silicate-bearing irons), stony irons in which partly molten metal and olivine from cores and mantles were mixed together (pallasites), and stony irons in which partly molten metal...

  4. Iron and Prochlorococcus

    Science.gov (United States)

    2009-06-01

    facilitate iron transport, store iron, regulate iron homeostasis , and enable acclimation to low iron availability (Andrews et al, 2003). In...Bacterial iron homeostasis . FEMS Microbiology Reviews 27: 215-237. Barbeau K (2006) Photochemistry of Organic Iron(III) Complexing Ligands in Oceanic...Microbiology 145: 1473-1484. Moore JK, Doney SC, Lindsay K (2004) Upper ocean ecosystem dynamics and iron cycling in a global three-dimensional

  5. Iron bioavailability from commercially available iron supplements

    OpenAIRE

    Christides, Tatiana; Wray, David; McBride, Richard; Fairweather, Rose; Sharp, Paul

    2015-01-01

    Purpose: Iron deficiency anaemia (IDA) is a global public health problem. Treatment with the standard of care ferrous iron salts may be poorly tolerated, leading to non-compliance and ineffective correction of IDA. Employing supplements with higher bioavailability might permit lower doses of iron to be used with fewer side effects, thus improving treatment efficacy. Here, we compared the iron bioavailability of ferrous sulphate tablets with alternative commercial iron products, including thre...

  6. Electrochemical studies of iron/carbonates system applied to the formation of thin layers of siderite on inert substrates; Etudes electrochimiques du systeme fer/carbonates appliquees a la formation de couches minces de siderite sur des substrats inertes

    Energy Technology Data Exchange (ETDEWEB)

    Ithurbide, A. [CEA Saclay, Dept. de Physico-Chimie (DEN/DPC/SECR/L3MR), 91 - Gif sur Yvette (France); Peulon, S. [Univ. d' Evry-val-d' Essonne, UMR 8587, CNRS, 91 - Evry (France); Mandin, Ph. [Ecole Nationale Superieure de Chimie de Paris (ENSCP), UMR 7575, 75 - Paris (France); Beaucaire, C. [CEA Saclay, Dept. de Physico-Chimie (DEN/DPC/SECR/L3MR), 91 - Gif sur Yvette (France); Chausse, A. [Univ. d' Evry-val-d' Essonne, UMR 8587, CNRS, 91 - Evry (France)

    2007-07-01

    In order to understand the complex mechanisms of the reactions occurring, a methodology is developed. It is based on the use of compounds electrodeposited under the form of thin layers and which are used then as electrodes to study their interactions with the toxic species. It is in this framework that is studied the electrodeposition of siderite on inert substrates. At first, have been studied iron electrochemical systems in carbonated solutions. These studies have been carried out with classical electrochemical methods (cyclic voltametry, amperometry) coupled to in-situ measurements: quartz microbalance, pH. Different compounds have been obtained under the form of homogeneous and adherent thin layers. The analyses of these depositions, by different ex-situ characterizations (XRD, IR, SEM, EDS..) have revealed particularly the presence of siderite. Then, the influence of several experimental parameters (substrate, potential, medium composition, temperature) on the characteristics of siderite thin layers has been studied. From these experimental results, models have been proposed. (O.M.)

  7. A new model of the formation of Pennsylvanian iron carbonate concretions hosting exceptional soft-bodied fossils in Mazon Creek, Illinois.

    Science.gov (United States)

    Cotroneo, S; Schiffbauer, J D; McCoy, V E; Wortmann, U G; Darroch, S A F; Peng, Y; Laflamme, M

    2016-11-01

    Preservation of Pennsylvanian-aged (307 Ma) soft-bodied fossils from Mazon Creek, Illinois, USA, is attributed to the formation of siderite concretions, which encapsulate the remains of terrestrial, freshwater, and marine flora and fauna. The narrow range of positive δ 34 S values from pyrite in individual concretions suggests microenvironmentally limited ambient sulfate, which may have been rapidly exhausted by sulfate-reducing bacteria. Tissue of the decaying carcass was rapidly encased by early diagenetic pyrite and siderite produced within the sulfate reduction and methanogenic zones of the sediment, with continuation of the latter resulting in concretion cementation. Cross-sectional isotopic analyses (δ 13 C and δ 18 O) and mineralogical characterization of the concretions point to initiation of preservation in high porosity proto-concretions during the early phases of microbially induced decay. The proto-concretion was cemented prior to compaction of the sediments by siderite as a result of methanogenic production of 13 C-rich bicarbonate-which varies both between Essex and Braidwood concretions and between fossiliferous and unfossiliferous concretions. This work provides the first detailed geochemical study of the Mazon Creek siderite concretions and identifies the range of conditions allowing for exceptional soft-tissue fossil formation as seen at Mazon Creek. © 2016 John Wiley & Sons Ltd.

  8. [Iron dysregulation and anemias].

    Science.gov (United States)

    Ikuta, Katsuya

    2015-10-01

    Most iron in the body is utilized as a component of hemoglobin that delivers oxygen to the entire body. Under normal conditions, the iron balance is tightly regulated. However, iron dysregulation does occasionally occur; total iron content reductions cause iron deficiency anemia and overexpression of the iron regulatory peptide hepcidin disturbs iron utilization resulting in anemia of chronic disease. Conversely, the presence of anemia may ultimately lead to iron overload; for example, thalassemia, a common hereditary anemia worldwide, often requires transfusion, but long-term transfusions cause iron accumulation that leads to organ damage and other poor outcomes. On the other hand, there is a possibility that iron overload itself can cause anemia; iron chelation therapy for the post-transfusion iron overload observed in myelodysplastic syndrome or aplastic anemia improves dependency on transfusions in some cases. These observations reflect the extremely close relationship between anemias and iron metabolism.

  9. Iron and iron derived radicals

    Energy Technology Data Exchange (ETDEWEB)

    Borg, D.C.; Schaich, K.M.

    1987-04-01

    We have discussed some reactions of iron and iron-derived oxygen radicals that may be important in the production or treatment of tissue injury. Our conclusions challenge, to some extent, the usual lines of thought in this field of research. Insofar as they are born out by subsequent developments, the lessons they teach are two: Think fastexclamation Think smallexclamation In other words, think of the many fast reactions that can rapidly alter the production and fate of highly reactive intermediates, and when considering the impact of competitive reactions on such species, think how they affect the microenvironment (on the molecular scale) ''seen'' by each reactive molecule. 21 refs., 3 figs., 1 tab.

  10. Iron oxide nanoparticles stabilized inside highly ordered ...

    Indian Academy of Sciences (India)

    Nanosized iron oxide, a moderately large band-gap semiconductor and an essential component of optoelectrical and magnetic devices, has been prepared successfully inside the restricted internal pores of mesoporous silica material through in-situ reduction during impregnation. The samples were characterized by ...

  11. Iron oxide nanoparticles stabilized inside highly ordered ...

    Indian Academy of Sciences (India)

    Abstract. Nanosized iron oxide, a moderately large band-gap semiconductor and an essential component of optoelectrical and magnetic devices, has been prepared success- fully inside the restricted internal pores of mesoporous silica material through in-situ reduction during impregnation. The samples were characterized ...

  12. Experimental study on the adiabatic shear bands

    International Nuclear Information System (INIS)

    Affouard, J.

    1984-07-01

    Four martensitic steels (Z50CDV5 steel, 28CND8 steel, 35NCDV16 steel and 4340 steel) with different hardness between 190 and 600 Hsub(B) (Brinell hardness), have been studied by means of dynamic compressive tests on split Hopkinson pressure bar. Microscopic observations show that the fracture are associated to the development of adiabatic shear bands (except 4340 steel with 190 Hsub(B) hardness). By means of tests for which the deformation is stopped at predetermined levels, the measurement of shear and hardness inside the band and the matrix indicates the chronology of this phenomenon: first the localization of shear, followed by the formation of adiabatic shear band and ultimatly crack initiation and propagation. These results correlated with few simulations by finite elements have permitted to suggest two mecanisms of deformation leading to the formation of adiabatic shear bands in this specific test [fr

  13. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... Research Home / < Back To Health Topics / Iron-Deficiency Anemia Iron-Deficiency Anemia Leer en español What Is Iron-deficiency anemia ... cases, surgery may be advised. Treatments for Severe Iron-Deficiency Anemia Blood Transfusion If your iron-deficiency anemia is ...

  14. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... To Health Topics / Iron-Deficiency Anemia Iron-Deficiency Anemia Also known as Leer en español Iron-deficiency ... anemia. Blood tests to screen for iron-deficiency anemia To screen for iron-deficiency anemia, your doctor ...

  15. Iron-57 and iridium-193 Moessbauer spectroscopic studies of supported iron-iridium catalysts

    International Nuclear Information System (INIS)

    Berry, F.J.; Jobson, S.

    1988-01-01

    57 Fe and 193 Ir Moessbauer spectroscopy shows that silica- and alumina-supported iron-iridium catalysts formed by calcination in air contain mixtures of small particle iron(III) oxide and iridium(IV) oxide. The iridium dioxide in both supported catalysts is reduced in hydrogen to metallic iridium. The α-Fe 2 O 3 in the silica supported materials is predominantly reduced in hydrogen to an iron-iridium alloy whilst in the alumina-supported catalyst the iron is stabilised by treatment in hydrogen as iron(II). Treatment of a hydrogen-reduced silica-supported iron catalyst in hydrogen and carbon monoxide is accompanied by the formation of iron carbides. Carbide formation is not observed when the iron-iridium catalysts are treated in similar atmospheres. The results from the bimetallic catalysts are discussed in terms of the hydrogenation of associatively adsorbed carbon monoxide and the selectivity of supported iron-iridium catalysts to methanol formation. (orig.)

  16. Formation of Acetylene in the Reaction of Methane with Iron Carbide Cluster Anions FeC3- under High-Temperature Conditions.

    Science.gov (United States)

    Li, Hai-Fang; Jiang, Li-Xue; Zhao, Yan-Xia; Liu, Qing-Yu; Zhang, Ting; He, Sheng-Gui

    2018-03-01

    The underlying mechanism for non-oxidative methane aromatization remains controversial owing to the lack of experimental evidence for the formation of the first C-C bond. For the first time, the elementary reaction of methane with atomic clusters (FeC 3 - ) under high-temperature conditions to produce C-C coupling products has been characterized by mass spectrometry. With the elevation of temperature from 300 K to 610 K, the production of acetylene, the important intermediate proposed in a monofunctional mechanism of methane aromatization, was significantly enhanced, which can be well-rationalized by quantum chemistry calculations. This study narrows the gap between gas-phase and condensed-phase studies on methane conversion and suggests that the monofunctional mechanism probably operates in non-oxidative methane aromatization. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Iron release from ferritin and lipid peroxidation by radiolytically generated reducing radicals

    International Nuclear Information System (INIS)

    Reif, D.W.; Schubert, J.; Aust, S.D.

    1988-01-01

    Iron is involved in the formation of oxidants capable of damaging membranes, protein, and DNA. Using 137 Cs gamma radiation, we investigated the release of iron from ferritin and concomitant lipid peroxidation by radiolytically generated reducing radicals, superoxide and the carbon dioxide anion radical. Both radicals released iron from ferritin with similar efficiencies and iron mobilization from ferritin required an iron chelator. Radiolytically generated superoxide anion resulted in peroxidation of phospholipid liposomes as measured by malondialdehyde formation only when ferritin was included as an iron source and the released iron was found to be chelated by the phospholipid liposomes

  18. Abrasive wear behaviour of as cast and austempered ductile irons

    Energy Technology Data Exchange (ETDEWEB)

    Baydogan, M.; Koekden, M.U.; Cimenoglu, H. [Istanbul Technical Univ., Dept. of Metallurgy and Materials Science Engineering Istanbul (Turkey)

    2000-07-01

    In this study, abrasive wear behaviour of as cast and austempered GGG 50 and GGG 80 quality ductile irons was investigated. In the as cast condition, GGG 50 and GGG 80 quality ductile irons were having ferritic and pearlitic matrix structures, respectively. Austempering at 250 C after austenitisation at 900 C for 100 minutes produced bainitic matrix structure in both of the investigated ductile irons. Abrasive wear tests performed by rubbing the as cast and austempered specimens on Al{sub 2}O{sub 3} abrasive bands, revealed that austempering treatment improves abrasion resistance about 10-70% depending on the abrasive particle size and composition of the base iron. In the as cast condition, pearlitic GGG 80 grade ductile iron, has higher wear resistance than ferritic GGG 50 grade ductile iron. In the austempered condition GGG 50 and GGG 80 grade ductile irons which have bainitic matrix structure, exhibit almost similar wear resistance. (orig.)

  19. Sulfide-iron interactions in domestic wastewater from a gravity sewer

    NARCIS (Netherlands)

    Nielsen, A.H.; Lens, P.N.L.; Vollertsen, J.; Hvitved-Jacobsen, Th.

    2005-01-01

    Interactions between iron and sulfide in domestic wastewater from a gravity sewer were investigated with particular emphasis on redox cycling of iron and iron sulfide formation. The concentration ranges of iron and total sulfide in the experiments were 0.4-5.4 mg Fe L-1 and 0-5.1 mg S L-1,

  20. Iron overload in very low birth weight infants: Serum Ferritin and adverse outcomes

    LENUS (Irish Health Repository)

    Barrett, M

    2011-11-01

    Adequate iron isessential for growth and haematpoiesis. Oral iron supplementation is the standard of care in VLBW infants. Post mortem evidence has confirmed significant iron overload. Excessive free iron has been associated with free radical formation and brain injury in term infants.

  1. Environmental Transmission Electron Microscopy (ETEM) Studies of Single Iron Nanoparticle Carburization in Synthesis Gas

    DEFF Research Database (Denmark)

    Liu, Xi; Zhang, Chenghua; Li, Yongwang

    2017-01-01

    Structuralevolution of iron nanoparticles involving the formationand growth of iron carbide nuclei in the iron nanoparticle was directlyvisualized at the atomic level, using environmental transmission electronmicroscopy (TEM) under reactive conditions mimicking Fischer–Tropschsynthesis. Formation...... and electronenergy-loss spectra provides a detailed picture from initial activationto final degradation of iron under synthesis gas....

  2. The electrochemical transfer reactions and the structure of the iron|oxide layer|electrolyte interface

    International Nuclear Information System (INIS)

    Petrović, Željka; Metikoš-Huković, Mirjana; Babić, Ranko

    2012-01-01

    The thickness, barrier (protecting) and semiconducting properties of the potentiostatically formed oxide films on the pure iron electrode in an aqueous borate buffer solution were investigated by electrochemical quartz crystal nanobalance (EQCN), electrochemical impedance spectroscopy (EIS), and Mott–Schottky (MS) analysis. The thicknesses of the prepassive Fe(II)hydroxide layer (up to monolayer) nucleated on the bare iron surface and the passive Fe(II)/Fe(III) layer (up to 2 nm), deposited on the top of the first one, were determined using in situ gravimetry. Electronic properties of iron prepassive and passive films as well as ionic and electronic transfer reactions at the film|solution interface were discussed on the basis of a band structure model of the surface oxide film and the potential distribution at the interface. The anodic oxide film formation and cathodic decomposition are coupled processes and their reversible inter-conversion is mediated by the availability of free charge carriers on the electrode|solution interface. The structure of the reversible double layer at the iron oxide|solution interface was discussed based on the concept of the specific adsorption of the imidazolium cation on the negatively charged electrode surface at pH > pH pzc .

  3. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... or an inability to absorb enough iron from food. Overview Iron-deficiency anemia is a common type ... or an inability to absorb enough iron from food. Blood Loss When you lose blood, you lose ...

  4. Taking iron supplements

    Science.gov (United States)

    ... medlineplus.gov/ency/article/007478.htm Taking iron supplements To use the sharing features on this page, ... levels. You may also need to take iron supplements as well to rebuild iron stores in your ...

  5. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... breastfeeding women older than 18 need 9 mg. Problems absorbing iron Even if you consume the recommended ... life when more iron is needed, such as childhood and pregnancy. Good sources of iron are meat, ...

  6. Iron metabolism in man.

    Science.gov (United States)

    von Drygalski, Annette; Adamson, John W

    2013-09-01

    Iron metabolism in man is a highly regulated process designed to provide iron for erythropoiesis, mitochondrial energy production, electron transport, and cell proliferation. The mechanisms of iron handling also protect cells from the deleterious effects of free iron, which can produce oxidative damage of membranes, proteins, and lipids. Over the past decade, several important molecules involved in iron homeostasis have been discovered, and their function has expanded our understanding of iron trafficking under normal and pathological conditions. Physiologic iron metabolism is strongly influenced by inflammation, which clinically leads to anemia. Although hepcidin, a small circulating peptide produced by the liver, has been found to be the key regulator of iron trafficking, molecular pathways of iron sensing that control iron metabolism and hepcidin production are still incompletely understood. With this review, we provide an overview of the current understanding of iron metabolism, the recently discovered regulators of iron trafficking, and a focus on the effects of inflammation on the process.

  7. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... making new blood cells. Visit our Aplastic Anemia Health Topic to learn more. ... recommend that you take iron supplements, also called iron pills or oral iron, by mouth once or several times a ...

  8. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... fruits, eggs, lean red meat, salmon, iron-fortified breads and cereals, peas, tofu, dried fruits, and dark ... choose nonmeat sources of iron, including iron-fortified breads and cereals, beans, tofu, dried fruits, and spinach ...

  9. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... the body. Iron-deficiency anemia usually develops over time if your body doesn't have enough iron ... because your need for iron increases during these times of growth and development. Inability To Absorb Enough ...

  10. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... Heavy Menstrual Bleeding (Centers for Disease Control and Prevention) Iron - Health Professional Fact Sheet (NIH) Iron Dietary Supplement Fact Sheet (NIH) Iron-Deficiency Anemia (National Library ...

  11. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... starch. Restless legs syndrome Shortness of breath Weakness Complications Undiagnosed or untreated iron-deficiency anemia may cause ... as complete blood count and iron studies. Prevent complications over your lifetime To prevent complications from iron- ...

  12. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... heart failure . Increased risk of infections Motor or cognitive development delays in children Pregnancy complications, such as ... iron-deficiency anemia may require intravenous (IV) iron therapy or a blood transfusion . Iron supplements Your doctor ...

  13. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... for iron-deficiency anemia. Lifestyle habits Certain lifestyle habits may increase your risk for iron-deficiency anemia, including: Vegetarian or vegan eating patterns. Not eating enough iron-rich foods, such ...

  14. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... taking an overdose of iron. Iron supplements can cause side effects, such as dark stools, stomach irritation, and heartburn. Iron also can cause constipation, so your doctor may suggest that you ...

  15. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... iron in your body causes iron-deficiency anemia. Lack of iron usually is due to blood loss, ... preventing, diagnosing, and treating heart, lung, blood, and sleep disorders. Learn more about participating in a clinical ...

  16. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... have iron-deficiency anemia, you'll have a high level of transferrin that has no iron. Other ... may include dietary changes and supplements, medicines, and surgery. Severe iron-deficiency anemia may require a blood ...

  17. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... and paler than normal when viewed under a microscope. Different tests help your doctor diagnose iron-deficiency ... if you have iron-deficiency anemia or another type of anemia. You may be diagnosed with iron- ...

  18. Iron metabolism and toxicity

    International Nuclear Information System (INIS)

    Papanikolaou, G.; Pantopoulos, K.

    2005-01-01

    Iron is an essential nutrient with limited bioavailability. When present in excess, iron poses a threat to cells and tissues, and therefore iron homeostasis has to be tightly controlled. Iron's toxicity is largely based on its ability to catalyze the generation of radicals, which attack and damage cellular macromolecules and promote cell death and tissue injury. This is lucidly illustrated in diseases of iron overload, such as hereditary hemochromatosis or transfusional siderosis, where excessive iron accumulation results in tissue damage and organ failure. Pathological iron accumulation in the liver has also been linked to the development of hepatocellular cancer. Here we provide a background on the biology and toxicity of iron and the basic concepts of iron homeostasis at the cellular and systemic level. In addition, we provide an overview of the various disorders of iron overload, which are directly linked to iron's toxicity. Finally, we discuss the potential role of iron in malignant transformation and cancer

  19. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... also may help treat iron-deficiency anemia. Medical History Your doctor will ask about your signs and ... much of the transferrin in your blood isn't carrying iron. If you have iron-deficiency anemia, ...

  20. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... iron-fortified foods that have iron added. Vegetarian diets can provide enough iron if you choose nonmeat ... Anemia in Chronic Kidney Disease (National Institute of Diabetes and Digestive and Kidney Diseases) Avoiding Anemia (National ...

  1. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... breastfeeding. Recommended daily iron intake for children and adults. The table lists the recommended amounts of iron, ... increased need for iron during growth spurts. Older adults, especially those over age 65. Unhealthy environments Children ...

  2. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... foods that are high in iron. It is important to know that increasing your intake of iron may not be enough to replace the iron your body normally stores but has used up. Increase your intake of ...

  3. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... ESAs are usually used with iron therapy or IV iron, or when iron therapy alone is not enough. Look for Living With will discuss what your doctor may recommend, including lifelong lifestyle changes ...

  4. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... and pregnancy. Good sources of iron are meat, poultry, fish, and iron-fortified foods that have iron ... Anemia Restless Legs Syndrome Von Willebrand Disease Other Resources NHLBI resources Your Guide to Anemia [PDF, 1. ...

  5. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... may experience vomiting, headache, or other side effects right after the IV iron, but these usually go ... iron-rich foods, especially during certain stages of life when more iron is needed, such as childhood ...

  6. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... drinking black tea, which reduces iron absorption. Other treatments If you have chronic kidney disease and iron- ... and lifestyle changes to avoid complications. Follow your treatment plan Do not stop taking your prescribed iron ...

  7. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... is low in iron. For this and other reasons, cow's milk isn't recommended for babies in ... iron in your body is low. For this reason, other iron tests also are done. Serum ferritin. ...

  8. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... Hemolysis, in this case, is caused by strong muscle contractions and the impact of feet repeatedly striking ... iron-fortified foods that have iron added. Vegetarian diets can provide enough iron if you choose nonmeat ...

  9. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... of red blood cells, hemoglobin, and iron. Dietary Changes and Supplements Iron You may need iron supplements ... are improving. At your checkups, your doctor may change your medicines or supplements. He or she also ...

  10. Effects of microbial redox cycling of iron on cast iron pipe corrosion in drinking water distribution systems.

    Science.gov (United States)

    Wang, Haibo; Hu, Chun; Zhang, Lili; Li, Xiaoxiao; Zhang, Yu; Yang, Min

    2014-11-15

    Bacterial characteristics in corrosion products and their effect on the formation of dense corrosion scales on cast iron coupons were studied in drinking water, with sterile water acting as a reference. The corrosion process and corrosion scales were characterized by electrochemical and physico-chemical measurements. The results indicated that the corrosion was more rapidly inhibited and iron release was lower due to formation of more dense protective corrosion scales in drinking water than in sterile water. The microbial community and denitrifying functional genes were analyzed by pyrosequencing and quantitative polymerase chain reactions (qPCR), respectively. Principal component analysis (PCA) showed that the bacteria in corrosion products played an important role in the corrosion process in drinking water. Nitrate-reducing bacteria (NRB) Acidovorax and Hydrogenophaga enhanced iron corrosion before 6 days. After 20 days, the dominant bacteria became NRB Dechloromonas (40.08%) with the protective corrosion layer formation. The Dechloromonas exhibited the stronger corrosion inhibition by inducing the redox cycling of iron, to enhance the precipitation of iron oxides and formation of Fe3O4. Subsequently, other minor bacteria appeared in the corrosion scales, including iron-respiring bacteria and Rhizobium which captured iron by the produced siderophores, having a weaker corrosion-inhibition effect. Therefore, the microbially-driven redox cycling of iron with associated microbial capture of iron caused more compact corrosion scales formation and lower iron release. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. The biogeochemical iron cycle and astrobiology

    Energy Technology Data Exchange (ETDEWEB)

    Schröder, Christian, E-mail: christian.schroeder@stir.ac.uk [University of Stirling, Biological and Environmental Sciences, School of Natural Sciences (United Kingdom); Köhler, Inga [Eberhard Karls University of Tübingen, Geomicrobiology, Centre for Applied Geoscience (Germany); Muller, Francois L. L. [Qatar University, Department of Biological and Environmental Sciences (Qatar); Chumakov, Aleksandr I.; Kupenko, Ilya; Rüffer, Rudolf [ESRF-The European Synchrotron (France); Kappler, Andreas [Eberhard Karls University of Tübingen, Geomicrobiology, Centre for Applied Geoscience (Germany)

    2016-12-15

    Biogeochemistry investigates chemical cycles which influence or are influenced by biological activity. Astrobiology studies the origin, evolution and distribution of life in the universe. The biogeochemical Fe cycle has controlled major nutrient cycles such as the C cycle throughout geological time. Iron sulfide minerals may have provided energy and surfaces for the first pioneer organisms on Earth. Banded iron formations document the evolution of oxygenic photosynthesis. To assess the potential habitability of planets other than Earth one looks for water, an energy source and a C source. On Mars, for example, Fe minerals have provided evidence for the past presence of liquid water on its surface and would provide a viable energy source. Here we present Mössbauer spectroscopy investigations of Fe and C cycle interactions in both ancient and modern environments. Experiments to simulate the diagenesis of banded iron formations indicate that the formation of ferrous minerals depends on the amount of biomass buried with ferric precursors rather than on the atmospheric composition at the time of deposition. Mössbauer spectra further reveal the mutual stabilisation of Fe-organic matter complexes against mineral transformation and decay of organic matter into CO{sub 2}. This corresponds to observations of a ‘rusty carbon sink’ in modern sediments. The stabilisation of Fe-organic matter complexes may also aid transport of particulate Fe in the water column while having an adverse effect on the bioavailability of Fe. In the modern oxic ocean, Fe is insoluble and particulate Fe represents an important source. Collecting that particulate Fe yields small sample sizes that would pose a challenge for conventional Mössbauer experiments. We demonstrate that the unique properties of the beam used in synchrotron-based Mössbauer applications can be utilized for studying such samples effectively. Reactive Fe species often occur in amorphous or nanoparticulate form in the

  12. The biogeochemical iron cycle and astrobiology

    Science.gov (United States)

    Schröder, Christian; Köhler, Inga; Muller, Francois L. L.; Chumakov, Aleksandr I.; Kupenko, Ilya; Rüffer, Rudolf; Kappler, Andreas

    2016-12-01

    Biogeochemistry investigates chemical cycles which influence or are influenced by biological activity. Astrobiology studies the origin, evolution and distribution of life in the universe. The biogeochemical Fe cycle has controlled major nutrient cycles such as the C cycle throughout geological time. Iron sulfide minerals may have provided energy and surfaces for the first pioneer organisms on Earth. Banded iron formations document the evolution of oxygenic photosynthesis. To assess the potential habitability of planets other than Earth one looks for water, an energy source and a C source. On Mars, for example, Fe minerals have provided evidence for the past presence of liquid water on its surface and would provide a viable energy source. Here we present Mössbauer spectroscopy investigations of Fe and C cycle interactions in both ancient and modern environments. Experiments to simulate the diagenesis of banded iron formations indicate that the formation of ferrous minerals depends on the amount of biomass buried with ferric precursors rather than on the atmospheric composition at the time of deposition. Mössbauer spectra further reveal the mutual stabilisation of Fe-organic matter complexes against mineral transformation and decay of organic matter into CO2. This corresponds to observations of a `rusty carbon sink' in modern sediments. The stabilisation of Fe-organic matter complexes may also aid transport of particulate Fe in the water column while having an adverse effect on the bioavailability of Fe. In the modern oxic ocean, Fe is insoluble and particulate Fe represents an important source. Collecting that particulate Fe yields small sample sizes that would pose a challenge for conventional Mössbauer experiments. We demonstrate that the unique properties of the beam used in synchrotron-based Mössbauer applications can be utilized for studying such samples effectively. Reactive Fe species often occur in amorphous or nanoparticulate form in the environment and

  13. La fracturation et les bandes de déformation dans la région d’El Kohol (Atlas saharien central, Algérie: analyse fractale, lois d’échelles et modèle de réseaux de fractures discrètes

    Directory of Open Access Journals (Sweden)

    Zazoun, R. S.

    2015-12-01

    Full Text Available The aim of this paper is focused on the study of natural fractures and deformation bands in El Kohol structure, located in the Djebel Amour in the Central Saharan Atlas, Algeria. The field observations and measurements were performed through two localities on the forelimb and two others on the backlimb of the structure. The outcrop study has shown the existence of five fracture sets and three deformation bands sets. The spacing and length distribution models of the different fractures sets obey to a power law. The mechanical layer thickness analysis for the whole formations shows the existence of twelve mechanical units with a stratabound control. The deformation bands show an increasing in their numbers, and a decreasing in their spacing when they approach the major faults. The fractal analysis of faults and fractures, as well as the deformation bands show a fractal character of 2D dimension. A good correlation coefficients is obtained from the comparison between the density and the intensity parameters (Pxy calculated from the discrete fracture network (DFN modelling, and those from the outcrops. The model developed is discussed related to deformation events recognized in the area.[fr] Ce travail porte sur l’étude de la fracturation naturelle et les bandes de déformation dans la structure plicative d’El Kohol, du le Djebel Amour, dans l’Atlas saharien central. Les observations et les mesures ont été effectuées à travers deux stations sur le flanc court ou avant de la structure, et deux stations sur le flanc long ou arrière. L’étude a montré l’existence de cinq familles de fractures et de trois familles de bandes de déformation. Les modèles de distribution des espacements et des longueurs des différentes familles de fractures obéit à une loi de type puissance. L’analyse mécanostratigraphique montre une subdivision des formations étudiées en douze unités mécaniques. Les bandes de déformation montrent une

  14. Genetics Home Reference: iron-refractory iron deficiency anemia

    Science.gov (United States)

    ... refractory iron deficiency anemia Iron-refractory iron deficiency anemia Printable PDF Open All Close All Enable Javascript ... expand/collapse boxes. Description Iron-refractory iron deficiency anemia is one of many types of anemia , which ...

  15. Iron and stony-iron meteorites

    DEFF Research Database (Denmark)

    Benedix, Gretchen K.; Haack, Henning; McCoy, T. J.

    2014-01-01

    Without iron and stony-iron meteorites, our chances of ever sampling the deep interior of a differentiated planetary object would be next to nil. Although we live on a planet with a very substantial core, we will never be able to sample it. Fortunately, asteroid collisions provide us with a rich...... sampling of the deep interiors of differentiated asteroids. Iron and stony-iron meteorites are fragments of a large number of asteroids that underwent significant geological processing in the early solar system. Parent bodies of iron and some stony-iron meteorites completed a geological evolution similar...... to that continuing on Earth – although on much smaller length- and timescales – with melting of the metal and silicates; differentiation into core, mantle, and crust; and probably extensive volcanism. Iron and stony-iron meteorites are our only available analogues to materials found in the deep interiors of Earth...

  16. Iron deficiency anemia refractory to iron preparations.

    Science.gov (United States)

    Suzuki, Takahiro

    2016-01-01

    Most patients with iron deficiency anemia are treated effectively with oral iron preparations. However, a small number of these patients are refractory to such treatments, even when the pathologic condition underlying the anemia is concurrently treated. The pathological basis for this refractoriness can be explained by several factors, including malabsorption of iron, e.g. atrophic gastritis, deficiency of other hematopoietic vitamins or minerals, e.g. vitamin B12 or zinc, other undiagnosed anemic disorders, e.g. renal anemia or hematopoietic diseases, as well as certain hereditary disorders of iron metabolism, e.g. iron refractory iron deficiency anemia (IRIDA) caused by genetic mutation of the TMPRSS6 gene. This review focuses on the diagnosis and pathoetiology of iron deficiency anemia that is refractory to conventional oral iron preparations.

  17. Wide Band to ''Double Band'' upgrade

    International Nuclear Information System (INIS)

    Kasper, P.; Currier, R.; Garbincius, P.; Butler, J.

    1988-06-01

    The Wide Band beam currently uses electrons obtained from secondary photon conversions to produce the photon beam incident on the experimental targets. By transporting the positrons produced in these conversions as well as the electrons it is possible to almost double the number of photons delivered to the experiments per primary beam proton. 11 figs

  18. Whey Peptide-Iron Complexes Increase the Oxidative Stability of Oil-in-Water Emulsions in Comparison to Iron Salts.

    Science.gov (United States)

    Caetano-Silva, Maria Elisa; Barros Mariutti, Lilian Regina; Bragagnolo, Neura; Bertoldo-Pacheco, Maria Teresa; Netto, Flavia Maria

    2018-02-28

    Food fortification with iron may favor lipid oxidation in both food matrices and the human body. This study aimed at evaluating the effect of peptide-iron complexation on lipid oxidation catalyzed by iron, using oil-in-water (O/W) emulsions as a model system. The extent of lipid oxidation of emulsions containing iron salts (FeSO 4 or FeCl 2 ) or iron complexes (peptide-iron complexes or ferrous bisglycinate) was evaluated during 7 days, measured as primary (peroxide value) and secondary products (TBARS and volatile compounds). Both salts catalyzed lipid oxidation, leading to peroxide values 2.6- to 4.6-fold higher than the values found for the peptide-iron complexes. The addition of the peptide-iron complexes resulted in the formation of lower amounts of secondary volatiles of lipid oxidation (up to 78-fold) than those of iron salts, possibly due to the antioxidant activity of the peptides and their capacity to keep iron apart from the lipid phase, since the iron atom is coordinated and takes part in a stable structure. The peptide-iron complexes showed potential to reduce the undesirable sensory changes in food products and to decrease the side effects related to free iron and the lipid damage of cell membranes in the organism, due to the lower reactivity of iron in the complexed form.

  19. Iron from Zealandic bog iron ore -

    DEFF Research Database (Denmark)

    Lyngstrøm, Henriette Syrach

    2011-01-01

    og geologiske materiale, metallurgiske analyser og eksperimentel arkæologiske forsøg - konturerne af en jernproduktion med udgangspunkt i den sjællandske myremalm. The frequent application by archaeologists of Werner Christensen’s distribution map for the occurrence of bog iron ore in Denmark (1966...... are sketched of iron production based on bog iron ore from Zealand....

  20. Use of Bacteria To Stabilize Archaeological Iron.

    Science.gov (United States)

    Comensoli, Lucrezia; Maillard, Julien; Albini, Monica; Sandoz, Frederic; Junier, Pilar; Joseph, Edith

    2017-05-01

    Iron artifacts are common among the findings of archaeological excavations. The corrosion layer formed on these objects requires stabilization after their recovery, without which the destruction of the item due to physicochemical damage is likely. Current technologies for stabilizing the corrosion layer are lengthy and generate hazardous waste products. Therefore, there is a pressing need for an alternative method for stabilizing the corrosion layer on iron objects. The aim of this study was to evaluate an alternative conservation-restoration method using bacteria. For this, anaerobic iron reduction leading to the formation of stable iron minerals in the presence of chlorine was investigated for two strains of Desulfitobacterium hafniense (strains TCE1 and LBE). Iron reduction was observed for soluble Fe(III) phases as well as for akaganeite, the most troublesome iron compound in the corrosion layer of archaeological iron objects. In terms of biogenic mineral production, differential efficiencies were observed in assays performed on corroded iron coupons. Strain TCE1 produced a homogeneous layer of vivianite covering 80% of the corroded surface, while on the coupons treated with strain LBE, only 10% of the surface was covered by the same mineral. Finally, an attempt to reduce iron on archaeological objects was performed with strain TCE1, which led to the formation of both biogenic vivianite and magnetite on the surface of the artifacts. These results demonstrate the potential of this biological treatment for stabilizing archaeological iron as a promising alternative to traditional conservation-restoration methods. IMPORTANCE Since the Iron Age, iron has been a fundamental material for the building of objects used in everyday life. However, due to its reactivity, iron can be easily corroded, and the physical stability of the object built is at risk. This is particularly true for archaeological objects on which a potentially unstable corrosion layer is formed during

  1. Band - Weg interactie

    NARCIS (Netherlands)

    de Boer, Andries; ter Huerne, Henderikus L.; Noordermeer, Jacobus W.M.; Schipper, Dirk J.; prof.dr.ir. Molenaar, A.A.A.

    2008-01-01

    De huidige infrastructuur van wegen waarover men zich snel en comfortabel kan verplaatsen is niet meer weg te denken uit onze maatschappij. Twee “componenten” die hierbij een belangrijke rol spelen zijn het wegdek en de band. Het contact tussen band en wegdek is mede bepalend voor de veiligheid. De

  2. Photonic band structure computations.

    Science.gov (United States)

    Hermann, D; Frank, M; Busch, K; Wolfle, P

    2001-01-29

    We introduce a novel algorithm for band structure computations based on multigrid methods. In addition, we demonstrate how the results of these band structure calculations may be used to compute group velocities and effective photon masses. The results are of direct relevance to studies of pulse propagation in such materials.

  3. ZEBRAFISH CHROMOSOME-BANDING

    NARCIS (Netherlands)

    PIJNACKER, LP; FERWERDA, MA

    1995-01-01

    Banding techniques were carried out on metaphase chromosomes of zebrafish (Danio rerio) embryos. The karyotypes with the longest chromosomes consist of 12 metacentrics, 26 submetacentrics, and 12 subtelocentrics (2n = 50). All centromeres are C-band positive. Eight chromosomes have a pericentric

  4. Ferroxidase-Mediated Iron Oxide Biomineralization

    DEFF Research Database (Denmark)

    Zeth, Kornelius; Hoiczyk, Egbert; Okuda, Mitsuhiro

    2016-01-01

    Iron oxide biomineralization occurs in all living organisms and typically involves protein compartments ranging from 5 to 100nm in size. The smallest iron-oxo particles are formed inside dodecameric Dps protein cages, while the structurally related ferritin compartments consist of twice as many...... identical protein subunits. The largest known compartments are encapsulins, icosahedra made of up to 180 protein subunits that harbor additional ferritin-like proteins in their interior. The formation of iron-oxo particles in all these compartments requires a series of steps including recruitment of iron......, translocation, oxidation, nucleation, and storage, that are mediated by ferroxidase centers. Thus, compartmentalized iron oxide biomineralization yields uniform nanoparticles strictly determined by the sizes of the compartments, allowing customization for highly diverse nanotechnological applications....

  5. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... term but can't take iron supplements by mouth. This therapy also is given to people who need immediate treatment for iron-deficiency anemia. Living With If you have iron-deficiency anemia, get ongoing care to make sure your iron levels are improving. ...

  6. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... Home / < Back To Health Topics / Iron-Deficiency Anemia Iron-Deficiency Anemia Also known as Leer en español ... bleeding Consuming less than recommended daily amounts of iron Iron-deficiency anemia can be caused by getting ...

  7. Serum iron test

    Science.gov (United States)

    Fe+2; Ferric ion; Fe++; Ferrous ion; Iron - serum; Anemia - serum iron; Hemochromatosis - serum iron ... A blood sample is needed. Iron levels are highest in the morning. Your health care provider will likely have you do this test in the morning.

  8. Nutritional iron deficiency

    NARCIS (Netherlands)

    Zimmermann, M.B.; Hurrell, R.F.

    2007-01-01

    Iron deficiency is one of the leading risk factors for disability and death worldwide, affecting an estimated 2 billion people. Nutritional iron deficiency arises when physiological requirements cannot be met by iron absorption from diet. Dietary iron bioavailability is low in populations consuming

  9. Special thermite cast irons

    OpenAIRE

    Yu. Zhiguts; I. Kurytnik

    2008-01-01

    The given paper deals with the problems of the synthesis of cast iron by metallothermy synthesis. On the basis of investigated method of calculations structures of charges have been arranged and cast iron has been synthesized further. Peculiarities metallothermic smelting were found, mechanical properties and structure of received cast iron were investigated and different technologies for cast iron receiving were worked out.

  10. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... Home / < Back To Health Topics / Iron-Deficiency Anemia Iron-Deficiency Anemia Also known as Leer en español ... of growth and development. Inability To Absorb Enough Iron Even if you have enough iron in your ...

  11. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... other conditions to prevent you from developing iron-deficiency anemia. Foods that are good sources of iron include dried ... patterns. Increase your daily intake of iron-rich foods to help treat your iron-deficiency anemia. See Prevention strategies to learn about foods ...

  12. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... iron added). If you don't eat these foods regularly, or if you don't take an iron supplement, you're more likely to develop iron-deficiency anemia. Vegetarian diets can provide enough iron if you eat ...

  13. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... levels of red blood cells, hemoglobin, and iron. Dietary Changes and Supplements Iron You may need iron supplements to build ... Syndrome Other Resources Non-NHLBI Resources Anemia (MedlinePlus) "Dietary Supplement Fact Sheet: Iron" (Office of Dietary Supplements, National ...

  14. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... if you are diagnosed with iron-deficiency anemia. Risk Factors You may have an increased risk for iron- ... for iron-deficiency anemia if you have certain risk factors , including pregnancy. To prevent iron-deficiency anemia, your ...

  15. Iron and Your Child

    Science.gov (United States)

    ... 15 milligrams. (Adolescence is a time of rapid growth and teen girls need additional iron to replace what they ... make up the difference. Iron deficiency can affect growth and may lead to ... Enough Iron? Kids and teens should know that iron is an important part ...

  16. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... prescribes. Keep iron supplements out of reach from children. This will prevent them from taking an overdose of iron. Iron supplements can cause side effects, such as dark stools, stomach irritation, and heartburn. Iron also can cause constipation, so your doctor may suggest that you use ...

  17. Iron deficiency anemia

    Science.gov (United States)

    Anemia - iron deficiency ... iron from old red blood cells. Iron deficiency anemia develops when your body's iron stores run low. ... You may have no symptoms if the anemia is mild. Most of the time, ... slowly. Symptoms may include: Feeling weak or tired more often ...

  18. Band structures in fractal grading porous phononic crystals

    Science.gov (United States)

    Wang, Kai; Liu, Ying; Liang, Tianshu; Wang, Bin

    2018-05-01

    In this paper, a new grading porous structure is introduced based on a Sierpinski triangle routine, and wave propagation in this fractal grading porous phononic crystal is investigated. The influences of fractal hierarchy and porosity on the band structures in fractal graidng porous phononic crystals are clarified. Vibration modes of unit cell at absolute band gap edges are given to manifest formation mechanism of absolute band gaps. The results show that absolute band gaps are easy to form in fractal structures comparatively to the normal ones with the same porosity. Structures with higher fractal hierarchies benefit multiple wider absolute band gaps. This work provides useful guidance in design of fractal porous phononic crystals.

  19. Ferritin: The Protein Nanocage and Iron Biomineral in Health and in Disease

    OpenAIRE

    Theil, Elizabeth C.

    2013-01-01

    At the center of iron and oxidant metabolism is the ferritin superfamily: protein cages with Fe2+ ion channels and catalytic di- Fe/O redox centers that initiate formation of caged Fe2O3 • H2O. Ferritin nanominerals, initiated within the protein cage, grow inside the cage cavity (5 or 8 nm in diameter). Ferritins contribute to normal iron flow, maintenance of iron concentrates for iron cofactor syntheses, sequestration of iron from invading pathogens, oxidant protection, oxidative stress reco...

  20. Scanning electron microscope view of iron crystal

    Science.gov (United States)

    1972-01-01

    A scanning electron microscope photograph of iron crystals which grow in a small vug or cavity in a recrystallized breccia (fragmented rock) from the Apollo 15 Hadley-Apennino lunar landing site. The largest crystal is three microns across. Perfectly developed crystals such as these indicate slow formation from a hot vapor as the rock was cooling. The crystals are resting on an interlocking lattice of pyroxene (calsium-magnesium-iron silicate).

  1. Band parameters of phosphorene

    DEFF Research Database (Denmark)

    Lew Yan Voon, L. C.; Wang, J.; Zhang, Y.

    2015-01-01

    Phosphorene is a two-dimensional nanomaterial with a direct band-gap at the Brillouin zone center. In this paper, we present a recently derived effective-mass theory of the band structure in the presence of strain and electric field, based upon group theory. Band parameters for this theory...... are computed using a first-principles theory based upon the generalized-gradient approximation to the density-functional theory. These parameters and Hamiltonian will be useful for modeling physical properties of phosphorene....

  2. Superconductivity in an electron band just above the Fermi level: possible route to BCS-BEC superconductivity.

    Science.gov (United States)

    Okazaki, K; Ito, Y; Ota, Y; Kotani, Y; Shimojima, T; Kiss, T; Watanabe, S; Chen, C-T; Niitaka, S; Hanaguri, T; Takagi, H; Chainani, A; Shin, S

    2014-02-28

    Conventional superconductivity follows Bardeen-Cooper-Schrieffer(BCS) theory of electrons-pairing in momentum-space, while superfluidity is the Bose-Einstein condensation(BEC) of atoms paired in real-space. These properties of solid metals and ultra-cold gases, respectively, are connected by the BCS-BEC crossover. Here we investigate the band dispersions in FeTe(0.6)Se(0.4)(Tc = 14.5 K ~ 1.2 meV) in an accessible range below and above the Fermi level(EF) using ultra-high resolution laser angle-resolved photoemission spectroscopy. We uncover an electron band lying just 0.7 meV (~8 K) above EF at the Γ-point, which shows a sharp superconducting coherence peak with gap formation below Tc. The estimated superconducting gap Δ and Fermi energy [Symbol: see text]F indicate composite superconductivity in an iron-based superconductor, consisting of strong-coupling BEC in the electron band and weak-coupling BCS-like superconductivity in the hole band. The study identifies the possible route to BCS-BEC superconductivity.

  3. Nature of the emission band of Dergaon meteorite in the region ...

    Indian Academy of Sciences (India)

    Keywords. Dergaon meteorite; emission; interstellar dust. Abstract. An emission band system in the region 5700—6700 Å from Dergaon stoney iron meteorite which fell at Dergaon, India on March 2, 16.40 local time (2001) was excited with the help of a continuous 500 mW Ar+ laser. The band system is attributed to silicate ...

  4. Iron absorption in relation to iron status

    International Nuclear Information System (INIS)

    Magnusson, B.; Bjoern-Rasmussen, E.; Hallberg, L.; Rossander, L.

    1981-01-01

    The absorption from a 3 mg dose of ferrous iron was measured in 250 male subjects. The absorption was related to the log concentration of serum ferritin in 186 subjects of whom 99 were regular blood donors (r= -0.76), and to bone marrow haemosiderin grading in 52 subjects with varying iron status. The purpose was to try and establish a percentage absorption from such a dose that is representative of subjects who are borderline iron deficient. This information is necessary for food iron absorption studies in order (1) to calculate the absorption of iron from the diet at a given iron status and (2) compare the absorption of iron from different meals studied in different groups of subjects by different investigarors. The results suggest that an absorption of about 40% of a 3 mg reference dose of ferrous iron is given in a fasting state, roughly corresponds to the absorption in borderline-iron-deficient subjects. The results indicate that this 40% absorption value corresponds to a serum ferritin level of 30 μg/l and that food iron absorption in a group of subjects should be expressed preferably as the absorption corresponding to a reference-dose absorption of 45%, or possibly a serum ferritin level of 30 μg/l. (author)

  5. Laparoscopic gastric banding

    Science.gov (United States)

    ... eat by making you feel full after eating small amounts of food. After surgery, your doctor can adjust the band ... You will feel full after eating just a small amount of food. The food in the small upper pouch will ...

  6. Decay of superdeformed bands

    International Nuclear Information System (INIS)

    Carpenter, M.P.; Khoo, T.L.; Lauritsen, T.

    1995-01-01

    One of the major challenges in the study of superdeformation is to directly connect the large number of superdeformed bands now known to the yrast states. In this way, excitation energies, spins and parities can be assigned to the levels in the second well which is essential to establish the collective and single-particle components of these bands. This paper will review some of the progress which has been made to understand the decay of superdeformed bands using the new arrays including the measurement of the total decay spectrum and the establishment of direct one-step decays from the superdeformed band to the yrast line in 194 Hg. 42 refs., 5 figs

  7. HYBASE - HYperspectral BAnd SElection tool

    NARCIS (Netherlands)

    Schwering, P.B.W.; Bekman, H.H.P.T.; Seijen, H.H. van

    2008-01-01

    Band selection is essential in the design of multispectral sensor systems. This paper describes the TNO hyperspectral band selection tool HYBASE. It calculates the optimum band positions given the number of bands and the width of the spectral bands. HYBASE is used to calculate the minimum number of

  8. Atomic structure of amorphous shear bands in boron carbide.

    Science.gov (United States)

    Reddy, K Madhav; Liu, P; Hirata, A; Fujita, T; Chen, M W

    2013-01-01

    Amorphous shear bands are the main deformation and failure mode of super-hard boron carbide subjected to shock loading and high pressures at room temperature. Nevertheless, the formation mechanisms of the amorphous shear bands remain a long-standing scientific curiosity mainly because of the lack of experimental structure information of the disordered shear bands, comprising light elements of carbon and boron only. Here we report the atomic structure of the amorphous shear bands in boron carbide characterized by state-of-the-art aberration-corrected transmission electron microscopy. Distorted icosahedra, displaced from the crystalline matrix, were observed in nano-sized amorphous bands that produce dislocation-like local shear strains. These experimental results provide direct experimental evidence that the formation of amorphous shear bands in boron carbide results from the disassembly of the icosahedra, driven by shear stresses.

  9. [Iron and pregnancy].

    Science.gov (United States)

    Beaufrère, B; Bresson, J L; Briend, A; Farriaux, J P; Ghisolfi, J; Navarro, J; Rey, J; Ricour, C; Rieu, D; Vidailhet, M

    1995-12-01

    Infants, young children, and childbearing aged women are particularly exposed to iron deficiency. Pregnancy further increases iron requirements. Nevertheless the consequences of anemia and/or iron deficiency on pregnancy outcome, development of the foetus and postnatal iron status of the infant, remain to be determined. There is a 3-fold increase of premature deliveries in iron deficient anemic pregnant women whose anemia is discovered in early pregnancy: however this increased risk of premature delivery is not observed when iron deficiency anemia is discovered in late pregnancy. Iron supplementation during pregnancy improves the maternal hematological parameters but it is still unclear whether it also improves the maternal health and the pre and postnatal development of the child. Based on our actual knowledge, iron supplementation during pregnancy is to be recommended in risk groups only (ie mainly adolescents, low income women, women with multiple pregnancies), using ferrous iron at a dosage of 30 mg per day.

  10. Iron solubility in highly boron-doped silicon

    International Nuclear Information System (INIS)

    McHugo, S.A.; McDonald, R.J.; Smith, A.R.; Hurley, D.L.; Weber, E.R.

    1998-01-01

    We have directly measured the solubility of iron in high and low boron-doped silicon using instrumental neutron activation analysis. Iron solubilities were measured at 800, 900, 1000, and 1100thinsp degree C in silicon doped with either 1.5x10 19 or 6.5x10 14 thinspboronthinspatoms/cm 3 . We have measured a greater iron solubility in high boron-doped silicon as compared to low boron-doped silicon, however, the degree of enhancement is lower than anticipated at temperatures >800thinsp degree C. The decreased enhancement is explained by a shift in the iron donor energy level towards the valence band at elevated temperatures. Based on this data, we have calculated the position of the iron donor level in the silicon band gap at elevated temperatures. We incorporate the iron energy level shift in calculations of iron solubility in silicon over a wide range of temperatures and boron-doping levels, providing a means to accurately predict iron segregation between high and low boron-doped silicon. copyright 1998 American Institute of Physics

  11. Magnetic separation of algae genetically modified for increased intracellular iron uptake

    Energy Technology Data Exchange (ETDEWEB)

    Buck, Amy [Case Western Reserve University, Cleveland, OH (United States); Cleveland Clinic, Cleveland, OH (United States); Moore, Lee R. [Cleveland Clinic, Cleveland, OH (United States); Lane, Christopher D.; Kumar, Anil; Stroff, Clayton; White, Nicolas [Phycal Inc., Cleveland, OH (United States); Xue, Wei; Chalmers, Jeffrey J. [The Ohio State University, Columbus, OH (United States); Zborowski, Maciej, E-mail: zborowm@ccf.org [Cleveland Clinic, Cleveland, OH (United States)

    2015-04-15

    Algae were investigated in the past as a potential source of biofuel and other useful chemical derivatives. Magnetic separation of algae by iron oxide nanoparticle binding to cells has been proposed by others for dewatering of cellular mass prior to lipid extraction. We have investigated feasibility of magnetic separation based on the presence of natural iron stores in the cell, such as the ferritin in Auxenochlorella protothecoides (A. protothecoides) strains. The A. protothecoides cell constructs were tested for inserted genes and for increased intracellular iron concentration by inductively coupled plasma atomic absorption (ICP–AA). They were grown in Sueoka’s modified high salt media with added vitamin B1 and increasing concentration of soluble iron compound (FeCl{sub 3} EDTA, from 1× to 8× compared to baseline). The cell magnetic separation conditions were tested using a thin rectangular flow channel pressed against interpolar gaps of a permanent magnet forming a separation system of a well-defined fluid flow and magnetic fringing field geometry (up to 2.2 T and 1000 T/m) dubbed “magnetic deposition microscopy”, or MDM. The presence of magnetic cells in suspension was detected by formation of characteristic deposition bands at the edges of the magnet interpolar gaps, amenable to optical scanning and microscopic examination. The results demonstrated increasing cellular Fe uptake with increasing Fe concentration in the culture media in wild type strain and in selected genetically-modified constructs, leading to magnetic separation without magnetic particle binding. The throughput in this study is not sufficient for an economical scale harvest. - Highlights: • Auxenochlorella protothecoides algae were genetically modified for biofuel production. • Algal iron metabolism was sufficient for their label-less magnetic separation. • High magnetic field and low flow required make the separation scale-up uneconomical.

  12. Magnetic separation of algae genetically modified for increased intracellular iron uptake

    International Nuclear Information System (INIS)

    Buck, Amy; Moore, Lee R.; Lane, Christopher D.; Kumar, Anil; Stroff, Clayton; White, Nicolas; Xue, Wei; Chalmers, Jeffrey J.; Zborowski, Maciej

    2015-01-01

    Algae were investigated in the past as a potential source of biofuel and other useful chemical derivatives. Magnetic separation of algae by iron oxide nanoparticle binding to cells has been proposed by others for dewatering of cellular mass prior to lipid extraction. We have investigated feasibility of magnetic separation based on the presence of natural iron stores in the cell, such as the ferritin in Auxenochlorella protothecoides (A. protothecoides) strains. The A. protothecoides cell constructs were tested for inserted genes and for increased intracellular iron concentration by inductively coupled plasma atomic absorption (ICP–AA). They were grown in Sueoka’s modified high salt media with added vitamin B1 and increasing concentration of soluble iron compound (FeCl 3 EDTA, from 1× to 8× compared to baseline). The cell magnetic separation conditions were tested using a thin rectangular flow channel pressed against interpolar gaps of a permanent magnet forming a separation system of a well-defined fluid flow and magnetic fringing field geometry (up to 2.2 T and 1000 T/m) dubbed “magnetic deposition microscopy”, or MDM. The presence of magnetic cells in suspension was detected by formation of characteristic deposition bands at the edges of the magnet interpolar gaps, amenable to optical scanning and microscopic examination. The results demonstrated increasing cellular Fe uptake with increasing Fe concentration in the culture media in wild type strain and in selected genetically-modified constructs, leading to magnetic separation without magnetic particle binding. The throughput in this study is not sufficient for an economical scale harvest. - Highlights: • Auxenochlorella protothecoides algae were genetically modified for biofuel production. • Algal iron metabolism was sufficient for their label-less magnetic separation. • High magnetic field and low flow required make the separation scale-up uneconomical

  13. Determining Iron Distribution in the Regolith of 433 Eros

    Science.gov (United States)

    Clark, P. E.; Evans, L. F.; Murphy, M. E.

    1998-09-01

    We have produced maps of iron abundance in bulk and iron-bearing mineral (pyroxene and olivine) soil components by combining Apollo Gamma-ray (AGR) and Clementine spectral reflectance (CSR) with lunar soil data to produce a more detailed model of crustal iron distribution than the separate datasets would provide. CSR measurements are most directly correlated to pyroxene iron in lunar soils. We subtracted pyroxene-recalibrated CSR data from AGR bulk iron abundance measurements: the residual iron is clearly correlated with olivine abundance in lunar soils. This work has implications for determining iron distribution for 433 Eros, a Class S asteroid, during the upcoming NEAR mission. We have modeled X-ray and Gamma-ray spectral line ratios for the best meteorite class candidates and can clearly distinguish between them, on the basis of abundance ratios. We have considered the equivalent spectral reflectance measurements, from which mineral abundances would be derived, as well, summarized in the qualitative Meteorite Classification matrix below. With these measurements, we should be able to determine Eros' nearest meteorite analogue, and iron abundance in each component. \\begin{tabular}{llll} Si/Fe, Mg/Fe for XGRS & Fe Band Depth, Position & Albedo & Meteorite Class Medium, MediumHigh & Medium, shorter & Medium & Ordinary Chondrite, Type H Medium, High & Medium, longer & Medium & Ordinary Chondrite, Type LL High, Medium & Strong, shorter & High & Achondrite-Eucrite High, High & Strong, longer & High & Achondrite-Diogenite Low, Low & Weak & Medium & Stony Iron-Mesosiderite Low, MediumLow & Weak & Medium & Stony Iron-Pallasite

  14. Gastropericardial Fistula as a Late Complication of Laparoscopic Gastric Banding

    Directory of Open Access Journals (Sweden)

    Adam A Rudd

    2017-01-01

    Full Text Available Laparoscopic adjustable gastric banding (LAGB is a bariatric procedure that is being performed with increasing frequency as an alternative management option for morbid obesity. Several common complications have been reported including gastric band slippage and associated pouch dilatation, intragastric erosion of the band, gastric wall perforation, and abscess formation. We present a case of gastropericardial fistula occurring nine years after an LAGB. There have been no previous documented cases of the complication after this procedure.

  15. Fabrication, characterization and applications of iron selenide

    Energy Technology Data Exchange (ETDEWEB)

    Hussain, Raja Azadar, E-mail: hussainazadar@yahoo.com [Department of Chemistry, Quaid-i-Azam University, 45320 Islamabad (Pakistan); Badshah, Amin [Department of Chemistry, Quaid-i-Azam University, 45320 Islamabad (Pakistan); Lal, Bhajan [Department of Energy Systems Engineering, Sukkur Institute of Business Administration (Pakistan)

    2016-11-15

    This review article presents fabrication of FeSe by solid state reactions, solution chemistry routes, chemical vapor deposition, spray pyrolysis and chemical vapor transport. Different properties and applications such as crystal structure and phase transition, band structure, spectroscopy, superconductivity, photocatalytic activity, electrochemical sensing, and fuel cell activity of FeSe have been discussed. - Graphical abstract: Iron selenide can be synthesized by solid state reactions, chemical vapor deposition, solution chemistry routes, chemical vapor transport and spray pyrolysis. - Highlights: • Different fabrication methods of iron selenide (FeSe) have been reviewed. • Crystal structure, band structure and spectroscopy of FeSe have been discussed. • Superconducting, catalytic and fuel cell application of FeSe have been presented.

  16. Photonic band gap materials

    Science.gov (United States)

    Cassagne, D.

    Photonic band gap materials Photonic band gap materials are periodic dielectric structures that control the propagation of electromagnetic waves. We describe the plane wave method, which allows to calculate the band structures of photonic crystals. By symmetry analysis and a perturbative approach, we predict the appearance of the low energy photonic band gaps of hexagonal structures. We propose new two-dimensional structures called graphite and boron nitride. Using a transfer matrix method, we calculate the transmission of the graphite structure and we show the crucial role of the coupling with external modes. We study the appearance of allowed modes in the photonic band gap by the introduction of localized defects in the periodicity. Finally, we discuss the properties of opals formed by self-organized silica microspheres, which are very promising for the fabrication of three-dimensional photonic crystals. Les matériaux à bandes interdites photoniques sont des structures diélectriques périodiques qui contrôlent la propagation des ondes électromagnétiques. Nous décrivons la méthode des ondes planes qui permet de calculer les structures de bandes des cristaux photoniques. Par une analyse de la symétrie et une approche perturbative, nous précisons les conditions d'existence des bandes interdites de basse énergie. Nous proposons de nouvelles structures bidimensionnelles appelées graphite et nitrure de bore. Grâce à une méthode de matrices de transfert, nous calculons la transmission de la structure graphite et nous mettons en évidence le rôle fondamental du couplage avec les modes extérieurs. Nous étudions l'apparition de modes permis dans la bande interdite grâce à l'introduction de défauts dans la périodicité. Enfin, nous discutons les propriétés des opales constituées de micro-billes de silice auto-organisées, qui sont très prometteuses pour la fabrication de cristaux photoniques tridimensionnels.

  17. The mutual co-regulation of extracellular polymeric substances and iron ions in biocorrosion of cast iron pipes.

    Science.gov (United States)

    Jin, Juntao; Guan, Yuntao

    2014-10-01

    New insights into the biocorrosion process may be gained through understanding of the interaction between extracellular polymeric substances (EPS) and iron. Herein, the effect of iron ions on the formation of biofilms and production of EPS was investigated. Additionally, the impact of EPS on the corrosion of cast iron coupons was explored. The results showed that a moderate concentration of iron ions (0.06 mg/L) promoted both biofilm formation and EPS production. The presence of EPS accelerated corrosion during the initial stage, while inhibited corrosion at the later stage. The functional groups of EPS acted as electron shuttles to enable the binding of iron ions. Binding of iron ions with EPS led to anodic dissolution and promoted corrosion, while corrosion was later inhibited through oxygen reduction and availability of phosphorus from EPS. The presence of EPS also led to changes in crystalline phases of corrosion products. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Restrictive techniques: gastric banding

    Directory of Open Access Journals (Sweden)

    Katia Cristina da Cunha

    2006-03-01

    Full Text Available Surgery for the treatment of severe obesity has a definite role onthe therapeutic armamentarium all over the world. Initiated 40years ago, bariatric surgery has already a long way thanks tohundred of surgeons, who had constantly searched for the besttechnique for the adequate control of severe obesity. Among theimportant breakthroughs in obesity surgery there is theadjustable gastric band. It is a sylastic band, inflatable andadjustable, which is placed on the top of the stomach in order tocreate a 15-20 cc pouch, with an outlet of 1.3cm. The adjustablegastric band has also a subcutaneous reservoir through whichadjustments can be made, according to the patient evolution.The main feature of the adjustable gastric band is the fact thatis minimal invasive, reversible, adjustable and placedlaparoscopically. Then greatly diminishing the surgical traumato the severe obese patient. Belachew and Favretti’s techniqueof laparoscopic application of the adjustable gastric band isdescribed and the evolution of the technique during this years,as we has been practiced since 1998. The perioperative care ofthe patient is also described, as well as the follow-up and shortand long term controls.

  19. Bainitic high-strength cast iron with globular graphite

    Science.gov (United States)

    Silman, G. I.; Makarenko, K. V.; Kamynin, V. V.; Zentsova, E. A.

    2013-07-01

    Special features of formation of bainitic structures in grayed cast irons are considered. The influence of the graphite phase and of the special features of chemical composition of the iron on the intermediate transformation in high-carbon alloys is allowed for. The range of application of high-strength cast irons with bainitic structure is determined. The paper is the last and unfinished work of G. I. Silman completed by his disciples as a tribute to their teacher.

  20. Water clustering on nanostructured iron oxide films

    DEFF Research Database (Denmark)

    Merte, Lindsay Richard; Bechstein, Ralf; Peng, G.

    2014-01-01

    , but it is not well-understood how these hydroxyl groups and their distribution on a surface affect the molecular-scale structure at the interface. Here we report a study of water clustering on a moire-structured iron oxide thin film with a controlled density of hydroxyl groups. While large amorphous monolayer...... islands form on the bare film, the hydroxylated iron oxide film acts as a hydrophilic nanotemplate, causing the formation of a regular array of ice-like hexameric nanoclusters. The formation of this ordered phase is localized at the nanometre scale; with increasing water coverage, ordered and amorphous...

  1. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... at 1 year of age. Women and Girls Women of childbearing age may be tested for iron-deficiency anemia, especially if they have: A history of iron-deficiency anemia Heavy blood loss during ...

  2. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... condition. Women Women of childbearing age are at higher risk for iron-deficiency anemia because of blood ... iron-deficiency anemia. Pregnant women also are at higher risk for the condition because they need twice ...

  3. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... Look for Treatment will discuss medicines and eating pattern changes that your doctors may recommend if you ... iron-deficiency anemia, including: Vegetarian or vegan eating patterns. Not eating enough iron-rich foods, such as ...

  4. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... of iron include: Iron-fortified breads and cereals Peas; lentils; white, red, and baked beans; soybeans; and ... and juices usually have more vitamin C than canned ones. If you're taking medicines, ask your ...

  5. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... iron-deficiency anemia early in life affects later behavior, thinking, and mood during adolescence. Treating anemia in ... and is recruiting by invitation only. View more information about Donor Iron Deficiency Study - Red Blood Cells ...

  6. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... may require intravenous (IV) iron therapy or a blood transfusion . Iron supplements Your doctor may recommend that you ... Anemia Aplastic Anemia Arrhythmia Blood Donation Blood Tests Blood Transfusion Heart-Healthy Lifestyle Changes Heart Failure Hemolytic Anemia ...

  7. Iron in diet

    Science.gov (United States)

    Diet - iron; Ferric acid; Ferrous acid; Ferritin ... The human body needs iron to make the oxygen-carrying proteins hemoglobin and myoglobin. Hemoglobin is found in red blood cells and myoglobin is found ...

  8. Iron supplements (image)

    Science.gov (United States)

    The mineral iron is an essential nutrient for humans because it is part of blood cells, which carry oxygen to all body cells. There is no conclusive evidence that iron supplements contribute to heart attacks.

  9. Total iron binding capacity

    Science.gov (United States)

    ... page: //medlineplus.gov/ency/article/003489.htm Total iron binding capacity To use the sharing features on this page, please enable JavaScript. Total iron binding capacity (TIBC) is a blood test to ...

  10. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... vegan eating patterns. Not eating enough iron-rich foods, such as meat and fish, may result in ... be hard to get the recommended amount from food alone. Pregnant women need more iron to support ...

  11. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... infancy and childhood can have long-lasting, negative effects on brain health, the American Academy of Pediatrics ... overdose of iron. Iron supplements can cause side effects, such as dark stools, stomach irritation, and heartburn. ...

  12. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... carry oxygen throughout your body. A reticulocyte count shows whether your bone marrow is making red blood ... Tests to measure iron levels. These tests can show how much iron has been used from your ...

  13. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... and young children and women are the two groups at highest risk for iron-deficiency anemia. Outlook Doctors usually can successfully treat iron-deficiency anemia. Treatment ... ...

  14. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... you don't have enough iron in your body. Low iron levels usually are due to blood ... remove carbon dioxide (a waste product) from your body. Anemia also can occur if your red blood ...

  15. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... to improve health through research and scientific discovery. Improving health with current research Learn about the following ... donors for low iron stores. Reliable point-of-care testing may help identify iron deficiency before potentially ...

  16. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... apply to all types of anemia . Signs and Symptoms of Anemia The most common symptom of all ... growth and development, and behavioral problems. Signs and Symptoms of Iron Deficiency Signs and symptoms of iron ...

  17. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... For this treatment, iron is injected into a muscle or an IV line in one of your ... body can damage your organs. You may have fatigue (tiredness) and other symptoms of iron-deficiency anemia ...

  18. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... from absorbing enough iron. Certain eating patterns or habits may put you at higher risk for iron- ... preventing, diagnosing, and treating heart, lung, blood, and sleep disorders. Are you a frequent blood donor living ...

  19. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... chronic conditions such as kidney disease or celiac disease may be more likely to receive IV iron. You may experience vomiting, headache, or other side effects right after the IV iron, but these usually ...

  20. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... risk for the condition. Women Women of childbearing age are at higher risk for iron-deficiency anemia ... periods. About 1 in 5 women of childbearing age has iron-deficiency anemia. Pregnant women also are ...