WorldWideScience

Sample records for band electronic structures

  1. Banded electron structures in the plasmasphere

    Energy Technology Data Exchange (ETDEWEB)

    Burke, W.J.; Rubin, A.G.; Hardy, D.A.; Holeman, E.G.

    1995-05-01

    The low-energy plasma analyzer on CRRES has detected significant fluxes of 10-eV to 30-keV electrons trapped on plasmaspheric field lines. On energy versus time spectrograms these electrons appear as banded structures that can span the 2 < L < 6 range of magnetic shells. The authors present an example of banded electron structures, encountered in the nightside plasmasphere during the magnetically quiet January 30, 1991. Empirical analysis suggests that two clouds of low energy electrons were injected from the plasma sheet to L < 4 on January 26 and 27 while the convective electric field was elevated. The energies of electrons in the first cloud were greater than those in the second. DMSP F8 measurements show that after the second injection, the polar cap potential rapidly decreased from >50 to <20 kY. Subsequent encounters with the lower energy cloud on alternating CRRES orbits over the next 2 days showed a progressive, earthward movement of the electrons, inner boundary. Whistler and electron cyclotron harmonic emissions accompanied the most intense manifestations of cloud electrons. The simplest explanation of these measurements is that after initial injection, the AIfven boundary moved Outward, leaving the cloud electrons on closed drift paths. Subsequent fluctuations of the convective electric field penetrated the plasmasphere, transporting cloud elements inward. The magnetic shell distribution of electron temperatures in one of the banded structures suggests that radiative energy losses may be comparable in magnitude to gains due to adiabatic compression.

  2. Electronic band structure of beryllium oxide

    CERN Document Server

    Sashin, V A; Kheifets, A S; Ford, M J

    2003-01-01

    The energy-momentum resolved valence band structure of beryllium oxide has been measured by electron momentum spectroscopy (EMS). Band dispersions, bandwidths and intervalence bandgap, electron momentum density (EMD) and density of occupied states have been extracted from the EMS data. The experimental results are compared with band structure calculations performed within the full potential linear muffin-tin orbital approximation. Our experimental bandwidths of 2.1 +- 0.2 and 4.8 +- 0.3 eV for the oxygen s and p bands, respectively, are in accord with theoretical predictions, as is the s-band EMD after background subtraction. Contrary to the calculations, however, the measured p-band EMD shows large intensity at the GAMMA point. The measured full valence bandwidth of 19.4 +- 0.3 eV is at least 1.4 eV larger than the theory. The experiment also finds a significantly higher value for the p-to-s-band EMD ratio in a broad momentum range compared to the theory.

  3. Tuning the electronic band structure of PCBM by electron irradiation

    Directory of Open Access Journals (Sweden)

    Yoo Seung

    2011-01-01

    Full Text Available Abstract Tuning the electronic band structures such as band-edge position and bandgap of organic semiconductors is crucial to maximize the performance of organic photovoltaic devices. We present a simple yet effective electron irradiation approach to tune the band structure of [6, 6]-phenyl-C61-butyric acid methyl ester (PCBM that is the most widely used organic acceptor material. We have found that the lowest unoccupied molecular orbital (LUMO level of PCBM up-shifts toward the vacuum energy level, while the highest occupied molecular orbital (HOMO level down-shifts when PCBM is electron-irradiated. The shift of the HOMO and the LUMO levels increases as the irradiated electron fluence increases. Accordingly, the band-edge position and the bandgap of PCBM can be controlled by adjusting the electron fluence. Characterization of electron-irradiated PCBM reveals that the variation of the band structure is attributed to the molecular structural change of PCBM by electron irradiation.

  4. Electronic band structures of binary skutterudites

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Banaras [Center for Computational Materials Science, University of Malakand, Chakdara (Pakistan); Department of Physics, University of Malakand, Chakdara (Pakistan); Aliabad, H.A. Rahnamaye [Department of Physics, Hakim Sabzevari University, Sabzevar (Iran, Islamic Republic of); Saifullah [Center for Computational Materials Science, University of Malakand, Chakdara (Pakistan); Department of Physics, University of Malakand, Chakdara (Pakistan); Jalali-Asadabadi, S. [Department of Physics, Faculty of Science, University of Isfahan (UI), 81744 Isfahan (Iran, Islamic Republic of); Khan, Imad [Center for Computational Materials Science, University of Malakand, Chakdara (Pakistan); Department of Physics, University of Malakand, Chakdara (Pakistan); Ahmad, Iftikhar, E-mail: ahma5532@gmail.com [Center for Computational Materials Science, University of Malakand, Chakdara (Pakistan); Department of Physics, University of Malakand, Chakdara (Pakistan)

    2015-10-25

    The electronic properties of complex binary skutterudites, MX{sub 3} (M = Co, Rh, Ir; X = P, As, Sb) are explored, using various density functional theory (DFT) based theoretical approaches including Green's Function (GW) as well as regular and non-regular Tran Blaha modified Becke Jhonson (TB-mBJ) methods. The wide range of calculated bandgap values for each compound of this skutterudites family confirm that they are theoretically as challenging as their experimental studies. The computationally expensive GW method, which is generally assume to be efficient in the reproduction of the experimental bandgaps, is also not very successful in the calculation of bandgaps. In this article, the issue of the theoretical bandgaps of these compounds is resolved by reproducing the accurate experimental bandgaps, using the recently developed non-regular TB-mBJ approach, based on DFT. The effectiveness of this technique is due to the fact that a large volume of the binary skutterudite crystal is empty and hence quite large proportion of electrons lie outside of the atomic spheres, where unlike LDA and GGA which are poor in the treatment of these electrons, this technique properly treats these electrons and hence reproduces the clear electronic picture of these compounds. - Highlights: • Theoretical and experimental electronic band structures of binary skutterudites are reviewed. • The literature reveals that none of the existing theoretical results are consistent with the experiments. • GW, regular and non-regular TB-mBJ methods are used to reproduce the correct results. • The GW and regular TB-mBJ results are better than the available results in literature. • However, non-regular TB-mBJ reproduces the correct experimental band structures.

  5. Electronic band structure and photoemission: A review and projection

    International Nuclear Information System (INIS)

    A brief review of electronic-structure calculations in solids, as a means of interpreting photoemission spectra, is presented. The calculations are, in general, of three types: ordinary one-electron-like band structures, which apply to bulk solids and are the basis of all other calculations; surface modified calculations, which take into account, self-consistently if at all possible, the presence of a vacuum-solid interface and of the electronic modifications caused thereby; and many-body calculations, which go beyond average-field approximations and consider dynamic rearrangement effects caused by electron-electron correlations during the photoemission process. 44 refs

  6. Role of interface band structure on hot electron transport

    Science.gov (United States)

    Garramone, John J.

    Knowledge of electron transport through materials and interfaces is fundamentally and technologically important. For example, metal interconnects within integrated circuits suffer increasingly from electromigration and signal delay due to an increase in resistance from grain boundary and sidewall scattering since their dimensions are becoming shorter than the electron mean free path. Additionally, all semiconductor based devices require the transport of electrons through materials and interfaces where scattering and parallel momentum conservation are important. In this thesis, the inelastic and elastic scattering of hot electrons are studied in nanometer thick copper, silver and gold films deposited on silicon substrates. Hot electrons are electron with energy greater than kBT above the Fermi level (EF). This work was performed utilizing ballistic electron emission microscopy (BEEM) which is a three terminal scanning tunneling microscopy (STM) technique that measures the percentage of hot electrons transmitted across a Schottky barrier interface. Hot electron attenuation lengths of the metals were extracted by measuring the BEEM current as a function of metal overlayer thickness for both hot electron and hot hole injection at 80 K and under ultra high vacuum. The inelastic and elastic scattering lengths were extracted by fitting the energetic dependence of the measured attenuation lengths to a Fermi liquid based model. A sharp increase in the attenuation length is observed at low injection energies, just above the Schottky barrier height, only for metals on Si(001) substrates. In contrast, the attenuation length measured on Si(111) substrates shows a sharp decrease. These results indicate that interface band structure and parallel momentum conservation have significant impact upon the transport of hot electrons across non epitaxial metal-semiconductor interfaces. In addition, they help to separate effects upon hot electron transport that are inherent to the metal

  7. Analysis of the electronic structure of crystals through band structure unfolding

    Science.gov (United States)

    Gordienko, A. B.; Kosobutsky, A. V.

    2016-03-01

    In this work, we consider an alternative implementation of the band structure unfolding method within the framework of the density functional theory, which combines the advantages of the basis of localized functions and plane waves. This approach has been used to analyze the electronic structure of the ordered CuCl x Br1- x copper halide alloys and F 0 center in MgO that enables us to reveal qualitatively the features remaining hidden when using the standard supercell method, because of the complex band structure of systems with defects.

  8. Band structure of semiconductors

    CERN Document Server

    Tsidilkovski, I M

    2013-01-01

    Band Structure of Semiconductors provides a review of the theoretical and experimental methods of investigating band structure and an analysis of the results of the developments in this field. The book presents the problems, methods, and applications in the study of band structure. Topics on the computational methods of band structure; band structures of important semiconducting materials; behavior of an electron in a perturbed periodic field; effective masses and g-factors for the most commonly encountered band structures; and the treatment of cyclotron resonance, Shubnikov-de Haas oscillatio

  9. Determination of conduction and valence band electronic structure of anatase and rutile TiO2

    Indian Academy of Sciences (India)

    Jakub Szlachetko; Katarzyna Michalow-Mauke; Maarten Nachtegaal; Jacinto Sá

    2014-03-01

    Electronic structures of rutile and anatase polymorph of TiO2 were determined by resonant inelastic X-ray scattering measurements and FEFF9.0 calculations. Difference between crystalline structures led to shifts in the rutile Ti -band to lower energy with respect to anatase, i.e., decrease in band gap. Anatase possesses localized states located in the band gap where electrons can be trapped, which are almost absent in the rutile structure. This could well explain the reported longer lifetimes in anatase. It was revealed that HR-XAS is insufficient to study in-depth unoccupied states of investigated materials because it overlooks the shallow traps.

  10. Coexisting Honeycomb and Kagome Characteristics in the Electronic Band Structure of Molecular Graphene.

    Science.gov (United States)

    Paavilainen, Sami; Ropo, Matti; Nieminen, Jouko; Akola, Jaakko; Räsänen, Esa

    2016-06-01

    We uncover the electronic structure of molecular graphene produced by adsorbed CO molecules on a copper (111) surface by means of first-principles calculations. Our results show that the band structure is fundamentally different from that of conventional graphene, and the unique features of the electronic states arise from coexisting honeycomb and Kagome symmetries. Furthermore, the Dirac cone does not appear at the K-point but at the Γ-point in the reciprocal space and is accompanied by a third, almost flat band. Calculations of the surface structure with Kekulé distortion show a gap opening at the Dirac point in agreement with experiments. Simple tight-binding models are used to support the first-principles results and to explain the physical characteristics behind the electronic band structures.

  11. Electronic structure and band alignment at an epitaxial spinel/perovskite heterojunction.

    Science.gov (United States)

    Qiao, Liang; Li, Wei; Xiao, Haiyan; Meyer, Harry M; Liang, Xuelei; Nguyen, N V; Weber, William J; Biegalski, Michael D

    2014-08-27

    The electronic properties of solid-solid interfaces play critical roles in a variety of technological applications. Recent advances of film epitaxy and characterization techniques have demonstrated a wealth of exotic phenomena at interfaces of oxide materials, which are critically dependent on the alignment of their energy bands across the interface. Here we report a combined photoemission and electrical investigation of the electronic structures across a prototypical spinel/perovskite heterojunction. Energy-level band alignment at an epitaxial Co3O4/SrTiO3(001) heterointerface indicates a chemically abrupt, type I heterojunction without detectable band bending at both the film and substrate. The unexpected band alignment for this typical p-type semiconductor on SrTiO3 is attributed to its intrinsic d-d interband excitation, which significantly narrows the fundamental band gap between the top of the valence band and the bottom of the conduction band. The formation of the type I heterojunction with a flat-band state results in a simultaneous confinement of both electrons and holes inside the Co3O4 layer, thus rendering the epitaxial Co3O4/SrTiO3(001) heterostructure to be a very promising material for high-efficiency luminescence and optoelectronic device applications. PMID:25075939

  12. Engineering the electronic structure and band gap of boron nitride nanoribbon via external electric field

    Science.gov (United States)

    Chegel, Raad

    2016-06-01

    By using the third nearest neighbor modified tight binding (3NN-TB) method, the electronic structure and band gap of BNNRs under transverse electric fields are explored. The band gap of the BNNRs has a decreasing with increasing the intensity of the applied electric field, independent on the ribbon edge types. Furthermore, an analytic model for the dependence of the band gap in armchair and zigzag BNNRs on the electric field is proposed. The reduction of E g is similar for some N a armchair and N z zigzag BNNRs independent of their edges.

  13. The LDA+U calculation of electronic band structure of GaAs

    Science.gov (United States)

    Bahuguna, B. P.; Sharma, R. O.; Saini, L. K.

    2016-05-01

    We present the electronic band structure of bulk gallium arsenide (GaAs) using first principle approach. A series of calculations has been performed by applying norm-conserving pseudopotentials and ultrasoft non-norm-conserving pseudopotentials within the density functional theory. These calculations yield too small band gap as compare to experiment. Thus, we use semiemperical approach called local density approximation plus the multi-orbital mean-field Hubbard model (LDA+U), which is quite effective in order to describe the band gap of GaAs.

  14. Electronic Band Structures of TiO2 with Heavy Nitrogen Doping

    Institute of Scientific and Technical Information of China (English)

    XUE Jinbo; LI Qi; LIANG Wei; SHANG Jianku

    2008-01-01

    The first-principles density-functional calculation was conducted to investigate the electronic band structures of titanium dioxide with heavy nitrogen doping (TiO2-xNx).The calculation results indicate that when x≤0.25,isolated N 2p states appear above the valence-band maximum of TiO2 without a band-gap narrowing between O 2p and Ti 3d states.When x≥0.50,an obvious band gap narrowing between O 2p and Ti 3d states was observed along with the existence of isolated N 2p states above the valence-band of TiO2,indicating that the mechanism proposed by Asahi et al operates under heavy nitrogen doping condition.

  15. A Review of Electronic Band Structure of Graphene and Carbon Nanotubes Using Tight Binding

    Directory of Open Access Journals (Sweden)

    Davood Fathi

    2011-01-01

    Full Text Available The electronic band structure variations of single-walled carbon nanotubes (SWCNTs using Huckle/tight binding approximation theory are studied. According to the chirality indices, the related expressions for energy dispersion variations of these elements are derived and plotted for zigzag and chiral nanotubes.

  16. Direct Measurement of the Band Structure of a Buried Two-Dimensional Electron Gas

    DEFF Research Database (Denmark)

    Miwa, Jill; Hofmann, Philip; Simmons, Michelle Y.;

    2013-01-01

    We directly measure the band structure of a buried two dimensional electron gas (2DEG) using angle resolved photoemission spectroscopy. The buried 2DEG forms 2 nm beneath the surface of p-type silicon, because of a dense delta-type layer of phosphorus n-type dopants which have been placed there...

  17. Structural characteristic correlated to the electronic band gap in Mo S2

    Science.gov (United States)

    Chu, Shengqi; Park, Changyong; Shen, Guoyin

    2016-07-01

    The structural evolution with pressure in bulk Mo S2 has been investigated by high-pressure x-ray diffraction using synchrotron radiation. We found that the out-of-plane S-Mo-S bond angle θ increases and that in in-plane angle ϕ decreases linearly with increasing pressure across the known semiconducting-to-metal phase transition, whereas the Mo-S bond length and the S-Mo-S trilayer thickness display only little change. Extrapolating the experimental result along the in-plane lattice parameter with pressure, both S-Mo-S bond angles trend to those found in monolayer Mo S2 , which manifests as a structural characteristic closely correlating the electronic band gap of Mo S2 to its physical forms and phases, e.g., monolayer as direct band gap semiconductor, multilayer or bulk as indirect band gap semiconductor, and high-pressure (>19 GPa ) bulk form as metal. Combined with the effects of bond strength and van der Waals interlayer interactions, the structural correlations between the characteristic bond angle and electronic band gaps are readily extendible to other transition metal dichalcogenide systems (M X2 , where M =Mo , W and X =S , Se, Te).

  18. Impact of the electronic band structure in high-harmonic generation spectra of solids

    CERN Document Server

    Tancogne-Dejean, Nicolas; Kärtner, Franz X; Rubio, Angel

    2016-01-01

    An accurate analytic model describing high-harmonic generation (HHG) in solids is derived. Extensive first-principles simulations within a time-dependent density-functional framework corroborate the conclusions of the model. Our results reveal that: (i) the emitted HHG spectra are highly anisotropic and laser-polarization dependent even for cubic crystals, (ii) the harmonic emission is enhanced by the inhomogeneity of the electron-nuclei potential, the yield is increased for heavier atoms, and (iii) the cutoff photon energy is driver-wavelength independent. Moreover, we show that it is possible to predict the laser polarization for optimal HHG in bulk crystals solely from the knowledge of their electronic band structure. Our results pave the way to better control and optimize HHG in solids by engineering their band structure.

  19. Ferromagnetism and the electronic band structure in (Ga,Mn)(Bi,As) epitaxial layers

    International Nuclear Information System (INIS)

    Impact of Bi incorporation into (Ga,Mn)As layers on their electronic- and band-structures as well as their magnetic and structural properties has been studied. Homogenous (Ga,Mn)(Bi,As) layers of high structural perfection have been grown by the low-temperature molecular-beam epitaxy technique. Post-growth annealing treatment of the layers results in an improvement of their structural and magnetic properties and an increase in the hole concentration in the layers. The modulation photoreflectance spectroscopy results are consistent with the valence-band model of hole-mediated ferromagnetism in the layers. This material combines the properties of (Ga,Mn)As and Ga(Bi,As) ternary compounds and offers the possibility of tuning its electrical and magnetic properties by controlling the alloy composition.

  20. Banded structures in electron pitch angle diffusion coefficients from resonant wave-particle interactions

    Science.gov (United States)

    Tripathi, A. K.; Singhal, R. P.; Khazanov, G. V.; Avanov, L. A.

    2016-04-01

    Electron pitch angle (Dαα) and momentum (Dpp) diffusion coefficients have been calculated due to resonant interactions with electrostatic electron cyclotron harmonic (ECH) and whistler mode chorus waves. Calculations have been performed at two spatial locations L = 4.6 and 6.8 for electron energies ≤10 keV. Landau (n = 0) resonance and cyclotron harmonic resonances n = ±1, ±2, … ±5 have been included in the calculations. It is found that diffusion coefficient versus pitch angle (α) profiles show large dips and oscillations or banded structures. The structures are more pronounced for ECH and lower band chorus (LBC) and particularly at location 4.6. Calculations of diffusion coefficients have also been performed for individual resonances. It is noticed that the main contribution of ECH waves in pitch angle diffusion coefficient is due to resonances n = +1 and n = +2. A major contribution to momentum diffusion coefficients appears from n = +2. However, the banded structures in Dαα and Dpp coefficients appear only in the profile of diffusion coefficients for n = +2. The contribution of other resonances to diffusion coefficients is found to be, in general, quite small or even negligible. For LBC and upper band chorus waves, the banded structures appear only in Landau resonance. The Dpp diffusion coefficient for ECH waves is one to two orders smaller than Dαα coefficients. For chorus waves, Dpp coefficients are about an order of magnitude smaller than Dαα coefficients for the case n ≠ 0. In case of Landau resonance, the values of Dpp coefficient are generally larger than the values of Dαα coefficients particularly at lower energies. As an aid to the interpretation of results, we have also determined the resonant frequencies. For ECH waves, resonant frequencies have been estimated for wave normal angle 89° and harmonic resonances n = +1, +2, and +3, whereas for whistler mode waves, the frequencies have been calculated for angle 10° and Landau

  1. Banding and electronic structures of metal azides——Sensitivity and conductivity

    Institute of Scientific and Technical Information of China (English)

    肖鹤鸣; 李永富

    1995-01-01

    By using both DV-Xα and EH-CO methods, the calculation studies of the structure-property relationships of a series of metal azides, of their clusters’ electronic structures in ground and excited states, of their systems with cation vacancy and the doped Pb(N3)2, as well as their crystal band structures have been conducted. The results show that the sensitivity of ionic-type metal azides varies with the degree of difficulty of electronic transition of the losing charge on N3. A metal azide with cation vacancies has a greater sensitivity than the perfect one. When doped with monovalent metal ions, lead azide’s sensitivity increased; when with trivalent ones, its sensitivity decreased; when with divalent ones, little of it changed. Compared with heavy metal azides. an alkali metal azide has a larger band gap, a smaller band width and a greater transition energy of frontier electron with a smaller amount of losing charge on N3, and thus has lower sensitivity and conductivity than heavy metal azides.

  2. Band structure and electron-phonon coupling in H3S : A tight-binding model

    Science.gov (United States)

    Ortenzi, L.; Cappelluti, E.; Pietronero, L.

    2016-08-01

    We present a robust tight-binding description, based on the Slater-Koster formalism, of the band structure of H3S in the Im3 ¯m structure, stable in the range of pressure P =180 -220 GPa. We show that the interatomic hopping between the 3 s and 3 p orbitals (and partially between the 3 p orbitals themselves) of sulfur is fundamental to capturing the relevant physics associated with the Van Hove singularities close to the Fermi level. Comparing the model so defined with density functional theory calculations we obtain a very good agreement not only of the overall band structure but also of the low-energy states and the Fermi surface properties. The description in terms of Slater-Koster parameters permits us also to evaluate at a microscopic level a hopping-resolved linear electron-lattice coupling which can be employed for further tight-binding analyses also at a local scale.

  3. Correlation between morphology, electron band structure, and resistivity of Pb atomic chains on the Si(5 5 3)-Au surface.

    Science.gov (United States)

    Jałochowski, M; Kwapiński, T; Łukasik, P; Nita, P; Kopciuszyński, M

    2016-07-20

    Structural and electron transport properties of multiple Pb atomic chains fabricated on the Si(5 5 3)-Au surface are investigated using scanning tunneling spectroscopy, reflection high electron energy diffraction, angular resolved photoemission electron spectroscopy and in situ electrical resistance. The study shows that Pb atomic chains growth modulates the electron band structure of pristine Si(5 5 3)-Au surface and hence changes its sheet resistivity. Strong correlation between chains morphology, electron band structure and electron transport properties is found. To explain experimental findings a theoretical tight-binding model of multiple atomic chains interacting on effective substrate is proposed. PMID:27228462

  4. Giant amplification in degenerate band edge slow-wave structures interacting with an electron beam

    Science.gov (United States)

    Othman, Mohamed A. K.; Veysi, Mehdi; Figotin, Alexander; Capolino, Filippo

    2016-03-01

    We propose a new amplification regime based on a synchronous operation of four degenerate electromagnetic (EM) modes in a slow-wave structure and the electron beam, referred to as super synchronization. These four EM modes arise in a Fabry-Pérot cavity when degenerate band edge (DBE) condition is satisfied. The modes interact constructively with the electron beam resulting in superior amplification. In particular, much larger gains are achieved for smaller beam currents compared to conventional structures based on synchronization with only a single EM mode. We demonstrate giant gain scaling with respect to the length of the slow-wave structure compared to conventional Pierce type single mode traveling wave tube amplifiers. We construct a coupled transmission line model for a loaded waveguide slow-wave structure exhibiting a DBE, and investigate the phenomenon of giant gain via super synchronization using the Pierce model generalized to multimode interaction.

  5. Electronic Properties of ZnO: Band Structure and Directional Compton Profiles

    Science.gov (United States)

    Sharma, G.; Mishra, M. C.; Dhaka, M. S.; Kothari, R. K.; Joshi, K. B.; Sharma, B. K.

    2013-12-01

    The electronic band structure and directional Compton profiles (DCPs) of ZnO are studied in this work. Calculations are performed considering a set of three schemes based on density functional theory (DFT), the Hartree-Fock (HF) method, and a hybrid scheme. All band structures predict direct bandgaps. The best agreement with experiment is, however, shown by the hybrid scheme. The three schemes are also applied to compute DCPs along [100], [110], and [001] directions. These are compared with measurements made on single crystals of ZnO employing a 59.54 keV gamma-ray Compton spectrometer. Calculations overestimate the momentum density in the low-momentum region while underestimate the anisotropies. Positions of extremes in anisotropies deduced from calculations are well reproduced by the measured anisotropies in some cases. Within the experimental limits, the DCPs from the HF method are in better agreement with the measurements compared with DFT.

  6. [Band electronic structures and crystal packing forces: Progress report, July 1, 1989--December 13, 1991

    Energy Technology Data Exchange (ETDEWEB)

    1991-12-31

    This report briefly summaries our research accomplishments made during the period of July 1, 1989 to December 13, 1991. A number of significant progresses were achieved in our studies of several different classes of low-dimensional solid state materials. On the basis of tight-binding band electronic structure calculations, we investigated the electronic properties of various organic conducting salts, cuprate superconductors, and transition-metal oxide and chalcogenide metals to find structure-property correlations governing of the physical properties of these low-dimensional materials. By employing a number of different quality basis sets, we also carried out extensive ab initio SCF-MO/MP2 calculations on model molecular systems to accurately describe the weak intermolecular contact interactions governing the structures of organic donor slats and molecular crystals. Our research efforts led to about 80 publications and two important computer programs.

  7. (Band electronic structures and crystal packing forces: Progress report, July 1, 1989--December 13, 1991)

    Energy Technology Data Exchange (ETDEWEB)

    1991-01-01

    This report briefly summaries our research accomplishments made during the period of July 1, 1989 to December 13, 1991. A number of significant progresses were achieved in our studies of several different classes of low-dimensional solid state materials. On the basis of tight-binding band electronic structure calculations, we investigated the electronic properties of various organic conducting salts, cuprate superconductors, and transition-metal oxide and chalcogenide metals to find structure-property correlations governing of the physical properties of these low-dimensional materials. By employing a number of different quality basis sets, we also carried out extensive ab initio SCF-MO/MP2 calculations on model molecular systems to accurately describe the weak intermolecular contact interactions governing the structures of organic donor slats and molecular crystals. Our research efforts led to about 80 publications and two important computer programs.

  8. Electronic structure of the misfit layer compound (LaS)1.14NbS2 : band-structure calculations and photoelectron spectra

    NARCIS (Netherlands)

    Fang, C.M.; Smaalen, S. van; Wiegers, G.A.; Haas, C.; Groot, R.A. de

    1996-01-01

    In order to understand the electronic structure of the misfit layer compound (LaS)1.14NbS2 we carried out an ab initio band-structure calculation in a supercell approximation. The band structure is compared with that of the components NbS2 and LaS. The calculations show that the electronic structure

  9. Giant Amplification in Degenerate Band Edge Slow-Wave Structures Interacting with an Electron Beam

    CERN Document Server

    Othman, Mohamed A K; Figotin, Alexander; Capolino, Filippo

    2015-01-01

    We advance here a new amplification regime based on synchronous operation of four degenerate electromagnetic (EM) modes and the electron beam referred to as super synchronization. These four EM modes arise in a Fabry-Perot cavity (FPC) when degenerate band edge (DBE) condition is satisfied. The modes interact constructively with the electron beam resulting in superior amplification. In particular, much larger gains are achieved for smaller beam currents compared to conventional structures allowing for synchronization with only a single EM mode. We construct a mutli transmission line (MTL) model for a loaded waveguide slow-wave structure exhibiting a DBE, and investigate the phenomenon of giant gain via super synchronization using generalized Pierce model.

  10. Conduction band structure and electron mobility in uniaxially strained Si via externally applied strain in nanomembranes

    Energy Technology Data Exchange (ETDEWEB)

    Chen Feng [Xi' an Jiaotong University, Xi' an, Shaanxi 710049 (China); Euaruksakul, Chanan; Himpsel, F J; Lagally, Max G [University of Wisconsin-Madison, Madison, WI 53706 (United States); Liu Zheng; Liu Feng, E-mail: lagally@engr.wisc.edu [University of Utah, Salt Lake City, UT 84112 (United States)

    2011-08-17

    Strain changes the band structure of semiconductors. We use x-ray absorption spectroscopy to study the change in the density of conduction band (CB) states when silicon is uniaxially strained along the [1 0 0] and [1 1 0] directions. High stress can be applied to silicon nanomembranes, because their thinness allows high levels of strain without fracture. Strain-induced changes in both the sixfold degenerate {Delta} valleys and the eightfold degenerate L valleys are determined quantitatively. The uniaxial deformation potentials of both {Delta} and L valleys are directly extracted using a strain tensor appropriate to the boundary conditions, i.e., confinement in the plane in the direction orthogonal to the straining direction, which correspond to those of strained CMOS in commercial applications. The experimentally determined deformation potentials match the theoretical predictions well. We predict electron mobility enhancement created by strain-induced CB modifications.

  11. Electronic band structure of the layered compound Td-WTe2

    Science.gov (United States)

    Augustin, J.; Eyert, V.; Böker, Th.; Frentrup, W.; Dwelk, H.; Janowitz, C.; Manzke, R.

    2000-10-01

    We have studied the electronic structure of the layered compound Td-WTe2 experimentally using high-resolution angle-resolved photoelectron spectroscopy, and theoretically using density-functional based augmented spherical wave calculations. Comparison of the measured and calculated data shows in general good agreement. The theoretical results reveal the semimetallic as well as metallic character of Td-WTe2; the semimetallic character is due to a 0.5 eV overlap of Te 5p- and W 5d-like bands along Γ-Y, while the metallic character is due to two classical metallic bands. The rather low conductivity of Td-WTe2 is interpreted as resulting from a low density of states at the Fermi level.

  12. First principles electronic band structure and phonon dispersion curves for zinc blend beryllium chalcogenide

    Energy Technology Data Exchange (ETDEWEB)

    Dabhi, Shweta, E-mail: venu.mankad@gmail.com; Mankad, Venu, E-mail: venu.mankad@gmail.com; Jha, Prafulla K., E-mail: venu.mankad@gmail.com [Department of Physics, Maharaja Krishnakumasinhji Bhavnagar University, Bhavnagar-364001 (India)

    2014-04-24

    A detailed theoretical study of structural, electronic and Vibrational properties of BeX compound is presented by performing ab-initio calculations based on density-functional theory using the Espresso package. The calculated value of lattice constant and bulk modulus are compared with the available experimental and other theoretical data and agree reasonably well. BeX (X = S,Se,Te) compounds in the ZB phase are indirect wide band gap semiconductors with an ionic contribution. The phonon dispersion curves are represented which shows that these compounds are dynamically stable in ZB phase.

  13. Electronic structure of the misfit layer compound (LaS)(1.14)NbS2 : Band-structure calculations and photoelectron spectra

    NARCIS (Netherlands)

    Fang, CM; vanSmaalen, S; Wiegers, GA; Haas, C; deGroot, RA

    1996-01-01

    In order to understand the electronic structure of the misfit layer compound (LaS)(1.14)NbS2 we carried out an ab initio band-structure calculation in a supercell approximation. The band structure is compared with that of the components NbS2 and LaS. The calculations show that the electronic structu

  14. Physical properties and electronic band structure of noncentrosymmetric Th7Co3 superconductor.

    Science.gov (United States)

    Sahakyan, M; Tran, V H

    2016-05-25

    The physical properties of the noncentrosymmetric superconductor Th7Co3 have been investigated by means of ac-magnetic susceptibility, magnetization, specific heat, electrical resistivity, magnetoresistance and Hall effect measurements. From these data it is established that Th7Co3 is a dirty type-II superconductor with [Formula: see text] K, [Formula: see text] and moderate electron-phonon coupling [Formula: see text]. Some evidences for anisotropic superconducting gap are found, including e.g. reduced specific heat jump ([Formula: see text]) at T c, diminished superconducting energy gap ([Formula: see text]) as compared to the BCS values, power law field dependence of the Sommerfeld coefficient at 0.4 K ([Formula: see text]), and a concave curvature of the [Formula: see text] line. The magnitudes of the thermodynamic critical field and the energy gap are consistent with mean-squared anisotropy parameter [Formula: see text]. The electronic specific heat in the superconducting state is reasonably fitted to an oblate spheroidal gap model. Calculations of scalar relativistic and fully relativistic electronic band structures reveal considerable differences in the degenerate structure, resulting from asymmetric spin-orbit coupling (ASOC). A large splitting energy of spin-up spin-down bands at the Fermi level E F, [Formula: see text] meV is observed and a sizeable ratio [Formula: see text] could classify the studied compound into the class of noncentrosymmetric superconductors with strong ASOC. The noncentrosymmetry of the crystal structure and the atomic relativistic effects are both responsible for an importance of ASOC in Th7Co3. The calculated results for the density of states show a Van Hove singularity just below E F and dominant role of the 6d electrons of Th to the superconductivity.

  15. From Metal Cluster to Metal Nanowire: A Topological Analysis of Electron Density and Band Structure Calculation

    Directory of Open Access Journals (Sweden)

    Yu Wang

    2002-01-01

    Full Text Available Abstract:We investigate a theoretical model of molecular metalwire constructed from linear polynuclear metal complexes. In particular we study the linear Crn metal complex and Cr molecular metalwire. The electron density distributions of the model nanowire and the linear Crn metal complexes, with n = 3, 5, and 7, are calculated by employing CRYSTAL98 package with topological analysis. The preliminary results indicate that the bonding types between any two neighboring Cr are all the same, namely the polarized open-shell interaction. The pattern of electron density distribution in metal complexes resembles that of the model Cr nanowire as the number of metal ions increases. The conductivity of the model Cr nanowire is also tested by performing the band structure calculation.

  16. Manifestation of Structure of Electron Bands in Double-Resonant Raman Spectra of Single-Walled Carbon Nanotubes.

    Science.gov (United States)

    Stubrov, Yurii; Nikolenko, Andrii; Gubanov, Viktor; Strelchuk, Viktor

    2016-12-01

    Micro-Raman spectra of single-walled carbon nanotubes in the range of two-phonon 2D bands are investigated in detail. The fine structure of two-phonon 2D bands in the low-temperature Raman spectra of the mixture and individual single-walled carbon nanotubes is considered as the reflection of structure of their π-electron zones. The dispersion behavior of 2D band fine structure components in the resonant Raman spectra of single-walled carbon nanotube mixture is studied depending on the energy of excitating photons. The role of incoming and outgoing electron-phonon resonances in the formation of 2D band fine structure in Raman spectra of single-walled carbon nanotubes is analyzed. The similarity of dispersion behavior of 2D phonon bands in single-walled carbon nanotubes, one-layer graphene, and bulk graphite is discussed. PMID:26729220

  17. Influence of variations in the electron-electron interaction on the ground state metric space "band structure" of a two-electron magnetic system

    Science.gov (United States)

    Sharp, P. M.; D'Amico, I.

    2016-02-01

    We consider a model system of two electrons confined in a two-dimensional harmonic oscillator potential, with the electrons interacting via an α / r2 potential, and subject to a magnetic field applied perpendicular to the plane of confinement. Our results show that variations in the strength of the electron-electron interaction generate a "band structure" in ground state metric spaces, which shares many characteristics with those generated as a result of varying the confinement potential. In particular, the metric spaces for wavefunctions, particle densities, and paramagnetic current densities all exhibit distinct "bands" and "gaps". The behavior of the polar angle of the bands also shares traits with that obtained by varying the confinement potential, but the behavior of the arc lengths of the bands on the metric space spheres can be seen to be different for the two cases and opposite for a large range of angular momentum values. The findings here and in Refs. [1,2] demonstrate that the "band structure" that arises in ground state metric spaces when a magnetic field is applied is a robust feature.

  18. Physical properties and electronic band structure of noncentrosymmetric Th7Co3 superconductor

    Science.gov (United States)

    Sahakyan, M.; Tran, V. H.

    2016-05-01

    The physical properties of the noncentrosymmetric superconductor Th7Co3 have been investigated by means of ac-magnetic susceptibility, magnetization, specific heat, electrical resistivity, magnetoresistance and Hall effect measurements. From these data it is established that Th7Co3 is a dirty type-II superconductor with {{T}\\text{c}}=1.8+/- 0.02 K, Hc2\\text{orb}text{kOe}c2p and moderate electron-phonon coupling {λ\\text{el-\\text{ph}}}=0.56 . Some evidences for anisotropic superconducting gap are found, including e.g. reduced specific heat jump (Δ {{C}p}/γ {{T}\\text{c}}=1.01 ) at T c, diminished superconducting energy gap ({{Δ }0}/{{k}\\text{B}}{{T}\\text{c}}=2.17 ) as compared to the BCS values, power law field dependence of the Sommerfeld coefficient at 0.4 K ({{C}p}/T\\propto {{H}0.6} ), and a concave curvature of the {{H}c2}≤ft({{T}\\text{c}}\\right) line. The magnitudes of the thermodynamic critical field and the energy gap are consistent with mean-squared anisotropy parameter ˜ 0.23 . The electronic specific heat in the superconducting state is reasonably fitted to an oblate spheroidal gap model. Calculations of scalar relativistic and fully relativistic electronic band structures reveal considerable differences in the degenerate structure, resulting from asymmetric spin-orbit coupling (ASOC). A large splitting energy of spin-up spin-down bands at the Fermi level E F, Δ {{E}\\text{ASOC}}˜ 100 meV is observed and a sizeable ratio Δ {{E}\\text{ASOC}}/{{k}\\text{B}}{{T}\\text{c}}˜ 640 could classify the studied compound into the class of noncentrosymmetric superconductors with strong ASOC. The noncentrosymmetry of the crystal structure and the atomic relativistic effects are both responsible for an importance of ASOC in Th7Co3. The calculated results for the density of states show a Van Hove singularity just below E F and dominant role of the 6d electrons of Th to the superconductivity.

  19. First-Principles Band Calculations on Electronic Structures of Ag-Doped Rutile and Anatase TiO2

    Institute of Scientific and Technical Information of China (English)

    HOU Xing-Gang; LIU An-Dong; HUANG Mei-Dong; LIAO Bin; WU Xiao-Ling

    2009-01-01

    The electronic structures of Ag-doped rutile and anatase TiO2 are studied by first-principles band calculations based on density funetionai theory with the full-potentiai linearized-augraented-plane-wave method.New occupied bands ore found between the band gaps of both Ag-doped rutile and anatase TiO2.The formation of these new bands Capri be explained mainly by their orbitals of Ag 4d states mixed with Ti 3d states and are supposed to contribute to their visible light absorption.

  20. Electronic band structure of LaCoO3/Y/Mn compounds

    Science.gov (United States)

    Rahnamaye Aliabad, H. A.; Hesam, V.; Ahmad, Iftikhar; Khan, Imad

    2013-02-01

    Spin polarization effects on electronic properties of pure LaCoO3 and doped compounds (La0.5Y0.5CoO3, LaCo0.5Mn0.5O3) in the rhombohedral phase have been studied. We have employed the full potential linearized augmented plane wave (FP-LAPW) method with the generalized gradient approximation (GGA+U) under density functional theory (DFT). The calculated band structures along with total as well as partial densities of states reveal that Y and Mn impurities have a significant effect on the structural and electronic properties of LaCoO3. It is found that Mn alters insulating behavior of this compound to the half metallic for spin up state. Obtained results show that the magnetic moment for the Co-3d state is near 3.12μB in LaCoO3 compound which increases and decreases with addition of Y and Mn dopants respectively.

  1. Electronic structure of the misfit layer compound (SnS)(1.20)TiS2 : Band structure calculations and photoelectron spectra

    NARCIS (Netherlands)

    Fang, CM; deGroot, RA; Wiegers, GA; Haas, C

    1996-01-01

    In order to understand the electronic structure of the incommensurate misfit layer compound (SnS)(1.20)TiS2 we carried out an ab initio band structure calculation in the supercell approximation. The band structure is compared with that of the components 1T-TiS2 and hypothetical SnS with a similar st

  2. Electronic structure of the misfit layer compound (SnS)1.20TiS2 : band structure calculations and photoelectron spectra

    NARCIS (Netherlands)

    Fang, C.M.; Groot, R.A. de; Wiegers, G.A.; Haas, C.

    1996-01-01

    In order to understand the electronic structure of the incommensurate misfit layer compound (SnS)1.20TiS2 we carried out an ab initio band structure calculation in the supercell approximation. The band structure is compared with that of the components 1T-TiS2 and hypothetical SnS with a similar stru

  3. The electronic band structures of gadolinium chalcogenides: a first-principles prediction for neutron detecting.

    Science.gov (United States)

    Li, Kexue; Liu, Lei; Yu, Peter Y; Chen, Xiaobo; Shen, D Z

    2016-05-11

    By converting the energy of nuclear radiation to excited electrons and holes, semiconductor detectors have provided a highly efficient way for detecting them, such as photons or charged particles. However, for detecting the radiated neutrons, those conventional semiconductors hardly behave well, as few of them possess enough capability for capturing these neutral particles. While the element Gd has the highest nuclear cross section, here for searching proper neutron-detecting semiconductors, we investigate theoretically the Gd chalcogenides whose electronic band structures have never been characterized clearly. Among them, we identify that γ-phase Gd2Se3 should be the best candidate for neutron detecting since it possesses not only the right bandgap of 1.76 eV for devices working under room temperature but also the desired indirect gap nature for charge carriers surviving longer. We propose further that semiconductor neutron detectors with single-neutron sensitivity can be realized with such a Gd-chalcogenide on the condition that their crystals can be grown with good quality. PMID:27049355

  4. Two dimensional band structure mapping of organic single crystals using the new generation electron energy analyzer ARTOF

    OpenAIRE

    Vollmer, A.; R. Ovsyannikov; Gorgoi, M.; Krause, S.; Oehzelt, M.; Lindblad, Andreas; Mårtensson, Nils; Svensson, Svante; Karlsson, P; Lundvuist, M.; Schmeiler, T.; Pflaum, J.; Koch, N.

    2012-01-01

    We report on a novel type of photoemission detector, the Angle Resolved Time Of Flight electron energy analyzer (ARTOF 10k), which enables electronic band structure determination under measurement conditions that are ideal for radiation-sensitive samples. This is facilitated through the combination of very high electron transmission and wide accessible angular range in one geometry. These properties make the ARTOF 10k predestined to investigate specimens that strongly suffer from radiation da...

  5. Development of accelerating structure of 9 MeV C-band electron linac

    International Nuclear Information System (INIS)

    In this paper, the design and performance characteristics of accelerating guide for C-band SW electron linac are discussed. The guide can accelerate electrons to 9 MeV or 6 MeV. Its length is about 620mm, and a Pierce electron gun has been used. A 2.5MW pulsed magnetron at 5712 MHz is served as the guide's RF power source. The two energy modes are performed by turning RF power source and the injecting voltage of electron gun. (authors)

  6. Experimental and theoretical investigations of the electronic band structure of metal-organic frameworks of HKUST-1 type

    Energy Technology Data Exchange (ETDEWEB)

    Gu, Zhi-Gang [Institut für Funktionelle Grenzflächen (IFG), Karlsruher Institut für Technologie (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 350002 Fuzhou (China); Heinke, Lars, E-mail: Lars.Heinke@KIT.edu; Wöll, Christof [Institut für Funktionelle Grenzflächen (IFG), Karlsruher Institut für Technologie (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Neumann, Tobias; Wenzel, Wolfgang; Li, Qiang; Fink, Karin [Institute of Nanotechnology (INT), Karlsruher Institut für Technologie (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Gordan, Ovidiu D.; Zahn, Dietrich R. T. [Semiconductor Physics, Technische Universität Chemnitz, 09107 Chemnitz (Germany)

    2015-11-02

    The electronic properties of metal-organic frameworks (MOFs) are increasingly attracting the attention due to potential applications in sensor techniques and (micro-) electronic engineering, for instance, as low-k-dielectric in semiconductor technology. Here, the band gap and the band structure of MOFs of type HKUST-1 are studied in detail by means of spectroscopic ellipsometry applied to thin surface-mounted MOF films and by means of quantum chemical calculations. The analysis of the density of states, the band structure, and the excitation spectrum reveal the importance of the empty Cu-3d orbitals for the electronic properties of HKUST-1. This study shows that, in contrast to common belief, even in the case of this fairly “simple” MOF, the excitation spectra cannot be explained by a superposition of “intra-unit” excitations within the individual building blocks. Instead, “inter-unit” excitations also have to be considered.

  7. Two dimensional band structure mapping of organic single crystals using the new generation electron energy analyzer ARTOF

    Energy Technology Data Exchange (ETDEWEB)

    Vollmer, A.; Ovsyannikov, R.; Gorgoi, M.; Krause, S.; Oehzelt, M. [Helmholtz-Zentrum Berlin fuer Materialien und Energie GmbH, Elektronenspeicherring BESSY II, 12489 Berlin (Germany); Lindblad, A.; Martensson, N.; Svensson, S. [Uppsala University, Department of Materials Chemistry and Department of Physics and Astronomy, Uppsala (Sweden); Karlsson, P.; Lundvuist, M. [VG Scienta AB, Uppsala (Sweden); Schmeiler, T.; Pflaum, J. [Lehrstuhl fuer Experimentelle Physik VI, Universitaet Wuerzburg und ZAE Bayern, 97074 Wuerzburg (Germany); Koch, N., E-mail: norbert.koch@physik.hu-berlin.de [Helmholtz-Zentrum Berlin fuer Materialien und Energie GmbH, Elektronenspeicherring BESSY II, 12489 Berlin (Germany); Institut fuer Physik, Humboldt-Universitaet zu Berlin, 12489 Berlin (Germany)

    2012-04-15

    Highlights: Black-Right-Pointing-Pointer A novel type of photoemission detector is introduced: the Angle Resolved Time Of Flight electron energy analyzer (ARTOF). Black-Right-Pointing-Pointer It enables electronic band structure determination under measurement conditions that are ideal for radiation-sensitive samples. Black-Right-Pointing-Pointer The band structures of rubrene single crystal is confirmed. Black-Right-Pointing-Pointer The absence of HOMO-band dispersion for tetracene single crystals is revealed. - Abstract: We report on a novel type of photoemission detector, the Angle Resolved Time Of Flight electron energy analyzer (ARTOF 10k), which enables electronic band structure determination under measurement conditions that are ideal for radiation-sensitive samples. This is facilitated through the combination of very high electron transmission and wide accessible angular range in one geometry. These properties make the ARTOF 10k predestined to investigate specimens that strongly suffer from radiation damage during photoemission experiments under 'standard' conditions, such as organic single crystals, as extremely low fluxes can be used while not compromising spectra accumulation times and signal-to-noise ratio. Even though organic single crystals are of increasing fundamental and applied scientific interest, knowledge of their electronic properties is still largely based on theoretical calculations due to major experimental challenges in measuring photoemission. In this work we show that the band structures of rubrene and tetracene single crystals can be obtained with unprecedented quality using the ARTOF 10k detector. The dispersion of the highest occupied band in rubrene is confirmed in accordance with an earlier report and we disclose the absence of notable dispersion for the highest occupied energy level on the surface of tetracene single crystals.

  8. Study of electronic structures and absorption bands of BaMgF4 crystal with F colour centre

    Institute of Scientific and Technical Information of China (English)

    Kang Ling-Ling; Liu Ting-Yu; Zhang Qi-Ren; Xu Ling-Zhi; Zhang Fei-Wu

    2011-01-01

    The electronic structures of BaMgF4 crystals containing an F colour centre are studied within the framework of the fully relativistic self-consistent Direc-Slate-theory, using a numerically discrete variational (DV-Xα)method. It is concluded from the calculated results that the energy levels of the F colour centre are located in the forbidden band.The optical transition energy from the ground state to the excited state for the F colour centre is about 5.12 eV, which corresponds to the 242-nm absorption band. These calculated results can explain the origin of the absorption bands.

  9. Band gap engineering and \\vec{k}\\cdot \\vec{\\pi } electronic structure of lead and tin tellurides

    Science.gov (United States)

    Behera, S. S.; Tripathi, G. S.

    2016-06-01

    We study the effect of the variation of energy gap on the k\\cdot π electronic structure of PbTe and SnTe, using a six-level basis at the L point. The basis functions in both the systems have the same transformation properties. However, the basis functions of the band edge states in SnTe are reversed with respect to the same in PbTe. Band dispersions are obtained analytically for a two band model. As the band gap decreases, the bands become linear. Far bands are included in the electronic dispersion, using perturbation theory. Fermi energy and the Density of States at the Fermi energy, { D }({\\varepsilon }F), are calculated for different carrier concentrations and energy gaps through a self-consistent approach. Interesting results are seen when the energy gap is reduced from the respective equilibrium values. For both the systems, the Fermi energy increases as the gap is decreased. The behavior of { D }({\\varepsilon }F) is, however, different. It decreases with the gap. It is also on expected lines. Calculated values of the electronic effective mass, as a function of temperature, energy gap and carrier concentration, are compared with previously published data. As distinguished from a first principles calculation, the work has focused on the carrier dependent electronic parameters for use both by theorists and experimenters as well.

  10. Electronic Band Structures of the Highly Desirable III-V Semiconductors: TB-mBJ DFT Studies

    Science.gov (United States)

    Rehman, Gul; Shafiq, M.; Saifullah; Ahmad, Rashid; Jalali-Asadabadi, S.; Maqbool, M.; Khan, Imad; Rahnamaye-Aliabad, H.; Ahmad, Iftikhar

    2016-07-01

    The correct band gaps of semiconductors are highly desirable for their effective use in optoelectronic and other photonic devices. However, the experimental and theoretical results of the exact band gaps are quite challenging and sometimes tricky. In this article, we explore the electronic band structures of the highly desirable optical materials, III-V semiconductors. The main reason of the ineffectiveness of the theoretical band gaps of these compounds is their mixed bonding character, where large proportions of electrons reside outside atomic spheres in the intestinal regions, which are challenging for proper theoretical treatment. In this article, the band gaps of the compounds are revisited and successfully reproduced by properly treating the density of electrons using the recently developed non-regular Tran and Blaha's modified Becke-Johnson (nTB-mBJ) approach. This study additionally suggests that this theoretical scheme could also be useful for the band gap engineering of the III-V semiconductors. Furthermore, the optical properties of these compounds are also calculated and compared with the experimental results.

  11. Electronic band structure of ZnO-rich highly mismatched ZnO1−xTex alloys

    International Nuclear Information System (INIS)

    We synthesized ZnO1−xTex alloys with Te composition x < 0.23 by using pulsed laser deposition. Alloys with x < 0.06 are crystalline with a columnar growth structure while samples with higher Te content are polycrystalline with random grain orientation. Electron microscopy images show a random distribution of Te atoms with no observable clustering. We found that the incorporation of a small concentration of Te (x ∼ 0.003) redshifts the ZnO optical absorption edge by more than 1 eV. The minimum band gap obtained in this work is 1.8 eV for x = 0.23. The optical properties of the alloys are explained by the modification of the valence band of ZnO, due to the anticrossing interactions of the localized Te states with the ZnO valence band extended states. Hence, the observed large band gap reduction is primarily originating from the upward shift of the valence band edge. We show that the optical data can be explained by the band anticrossing model with the localized level of Te located at 0.95 eV above the ZnO valence band and the band anticrossing coupling constant of 1.35 eV. These parameters allow the prediction of the compositional dependence of the band gap as well as the conduction and the valence band offsets in the full composition range of ZnO1−xTex alloys

  12. 8-band and 14-band kp modeling of electronic band structure and material gain in Ga(In)AsBi quantum wells grown on GaAs and InP substrates

    Energy Technology Data Exchange (ETDEWEB)

    Gladysiewicz, M.; Wartak, M. S. [Faculty of Fundamental Problems of Technology, Wroclaw University of Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw (Poland); Department of Physics and Computer Science, Wilfrid Laurier University, Waterloo, Ontario N2L 3C5 (Canada); Kudrawiec, R. [Faculty of Fundamental Problems of Technology, Wroclaw University of Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw (Poland)

    2015-08-07

    The electronic band structure and material gain have been calculated for GaAsBi/GaAs quantum wells (QWs) with various bismuth concentrations (Bi ≤ 15%) within the 8-band and 14-band kp models. The 14-band kp model was obtained by extending the standard 8-band kp Hamiltonian by the valence band anticrossing (VBAC) Hamiltonian, which is widely used to describe Bi-related changes in the electronic band structure of dilute bismides. It has been shown that in the range of low carrier concentrations n < 5 × 10{sup 18 }cm{sup −3}, material gain spectra calculated within 8- and 14-band kp Hamiltonians are similar. It means that the 8-band kp model can be used to calculate material gain in dilute bismides QWs. Therefore, it can be applied to analyze QWs containing new dilute bismides for which the VBAC parameters are unknown. Thus, the energy gap and electron effective mass for Bi-containing materials are used instead of VBAC parameters. The electronic band structure and material gain have been calculated for 8 nm wide GaInAsBi QWs on GaAs and InP substrates with various compositions. In these QWs, Bi concentration was varied from 0% to 5% and indium concentration was tuned in order to keep the same compressive strain (ε = 2%) in QW region. For GaInAsBi/GaAs QW with 5% Bi, gain peak was determined to be at about 1.5 μm. It means that it can be possible to achieve emission at telecommunication windows (i.e., 1.3 μm and 1.55 μm) for GaAs-based lasers containing GaInAsBi/GaAs QWs. For GaInAsBi/Ga{sub 0.47}In{sub 0.53}As/InP QWs with 5% Bi, gain peak is predicted to be at about 4.0 μm, i.e., at the wavelengths that are not available in current InP-based lasers.

  13. Transverse C-band deflecting structure for longitudinal electron-bunch-diagnosis in XFEL “SACLA”

    Energy Technology Data Exchange (ETDEWEB)

    Ego, H., E-mail: ego@spring8.or.jp [Japan Synchrotron Radiation Research Institute (JASRI), Kouto, Sayo, Hyogo (Japan); Maesaka, H.; Sakurai, T.; Otake, Y. [RIKEN SPring-8 Center, Kouto, Sayo, Hyogo (Japan); Hashirano, T.; Miura, S. [Mitsubishi Heavy Industries, Ltd. (MHI), Itozaki, Mihara, Hiroshima (Japan)

    2015-09-21

    In the 8 GeV compact X-ray FEL “SACLA,” a single bunch of electrons is compressed to a duration of approximately 30 fs to yield a peak current of 3 kA, which creates brilliant self-amplified spontaneous emission. To measure the longitudinal profile of an ultrashort electron bunch and verify the compression, we developed a high-gradient C-band RF deflecting structure 1.8 m long and periodically loaded with racetrack-shaped irises. The irises generated a high deflection gradient for the vertically deflecting HEM11-5π/6 dipole mode and suppressed rotation of the deflection plane. The two structures were fabricated and generated a stable total deflecting voltage exceeding 60 MV and revealed the longitudinal electron-bunch profile with an effective time resolution of approximately 10 fs.

  14. The valence band electronic structure of the Cu(111) (√3X√3)R30deg-Si interface

    International Nuclear Information System (INIS)

    Full text: The structure and bonding of the copper-silicon interface is of considerable interest from a number of aspects. Firstly as a catalyst in the commercial synthesis of silane polymers, secondly as an anti-corrosion treatment, and thirdly, the formation of a well ordered and reactive silicon layer, which can be oxidised is relevant in the creation of ultra-thin silicon oxide-metal interfaces for electronic devices. Silicon is capable of forming a number of compounds with copper, the most widely studied of which is Cu3Si. Calculations have shown that when silicon impurity atoms are incorporated into a copper solid, there is an interaction between copper 3d levels and the 3s and sp levels of silicon. The silicon 2p orbitals rehybridise with the copper 3d band to form bonding and antibonding states separated by -4 eV. The resulting compounds have metallic, rather than semiconducting nature, there is charge transfer from copper to silicon and there is an increase in electron density into the silicon valence bands, making silicon more reactive. The splitting of the density of states near the Fermi edge has been measured as 4-5 eV in amorphous copper-silicon alloys, using Si Kβ fluorescence spectroscopy and has also been inferred from the 4 eV splitting of the LV V auger lines in Cu-Si compounds and in copper deposited on Si(100) and Si(111) surfaces. In this study we have used high resolution valence band photoemission spectroscopy to investigate the nature of the silicon valence bands in a well ordered silicon-copper interface. By comparing the valence band spectra of the clean surface and those from the silicon interface, we are able to identify three silicon-derived features which are in agreement with other published data. We suggest that these levels are due to emission from the 3s and 3p levels of Si

  15. Atomic and electronic structures evolution of the narrow band gap semiconductor Ag2Se under high pressure

    Science.gov (United States)

    Naumov, P.; Barkalov, O.; Mirhosseini, H.; Felser, C.; Medvedev, S. A.

    2016-09-01

    Non-trivial electronic properties of silver telluride and other chalcogenides, such as the presence of a topological insulator state, electronic topological transitions, metallization, and the possible emergence of superconductivity under pressure have attracted attention in recent years. In this work, we studied the electronic properties of silver selenide (Ag2Se). We performed direct current electrical resistivity measurements, in situ Raman spectroscopy, and synchrotron x-ray diffraction accompanied by ab initio calculations to explore pressure-induced changes to the atomic and electronic structure of Ag2Se. The temperature dependence of the electrical resistivity was measured up to 30 GPa in the 4-300 K temperature interval. Resistivity data showed an unusual increase in the thermal energy gap of phase I, which is a semiconductor under ambient conditions. Recently, a similar effect was reported for the 3D topological insulator Bi2Se3. Raman spectroscopy studies revealed lattice instability in phase I indicated by the softening of observed vibrational modes with pressure. Our hybrid functional band structure calculations predicted that phase I of Ag2Se would be a narrow band gap semiconductor, in accordance with experimental results. At a pressure of ~7.5 GPa, Ag2Se underwent a structural transition to phase II with an orthorhombic Pnma structure. The temperature dependence of the resistivity of Ag2Se phase II demonstrated its metallic character. Ag2Se phase III, which is stable above 16.5 GPa, is also metallic according to the resistivity data. No indication of the superconducting transition is found above 4 K in the studied pressure range.

  16. Atomic and electronic structures evolution of the narrow band gap semiconductor Ag2Se under high pressure

    Science.gov (United States)

    Naumov, P.; Barkalov, O.; Mirhosseini, H.; Felser, C.; Medvedev, S. A.

    2016-09-01

    Non-trivial electronic properties of silver telluride and other chalcogenides, such as the presence of a topological insulator state, electronic topological transitions, metallization, and the possible emergence of superconductivity under pressure have attracted attention in recent years. In this work, we studied the electronic properties of silver selenide (Ag2Se). We performed direct current electrical resistivity measurements, in situ Raman spectroscopy, and synchrotron x-ray diffraction accompanied by ab initio calculations to explore pressure-induced changes to the atomic and electronic structure of Ag2Se. The temperature dependence of the electrical resistivity was measured up to 30 GPa in the 4–300 K temperature interval. Resistivity data showed an unusual increase in the thermal energy gap of phase I, which is a semiconductor under ambient conditions. Recently, a similar effect was reported for the 3D topological insulator Bi2Se3. Raman spectroscopy studies revealed lattice instability in phase I indicated by the softening of observed vibrational modes with pressure. Our hybrid functional band structure calculations predicted that phase I of Ag2Se would be a narrow band gap semiconductor, in accordance with experimental results. At a pressure of ~7.5 GPa, Ag2Se underwent a structural transition to phase II with an orthorhombic Pnma structure. The temperature dependence of the resistivity of Ag2Se phase II demonstrated its metallic character. Ag2Se phase III, which is stable above 16.5 GPa, is also metallic according to the resistivity data. No indication of the superconducting transition is found above 4 K in the studied pressure range.

  17. Electronic Band Structure and Optical Characteristics of Quantum-Size Cadmium Telluride Crystals in Glass Films

    Science.gov (United States)

    Potter, Barrett George, Jr.

    Low-dimensional semiconductor structures now occupy a position of central importance with regard to the understanding and application of the basic physics of quantum confinement. Isolated II-VI semiconductor crystals embedded in transparent, insulating matrices represent a convenient medium for the study of quantum-size effects on the electronic and optical properties of compound semiconductors. The present study simultaneously examines finite crystal size-related shifts in the energies of optical transitions originating from states located at two different critical points of the zincblende Brillouin zone of CdTe. Using a versatile, dual source, R.F.-sputtering technique, CdTe-glass composite thin films have been produced possessing average crystal sizes ranging from 24 to 125 A in films containing 5 vol% semiconductor as determined by cross-sectional, transmission electron microscopy. Previously unattainable control over such microstructural characteristics as volume fraction and crystalline phase distribution throughout the matrix have been demonstrated using the sequential sputtering process. Analysis of quantum-size induced transition energy shifts, monitored by optical absorption, indicates the persistence of significant Coulomb interactions between carriers at the T-point of CdTe in crystallite sizes 0.3 times the size of the bulk exciton. L-point transition energy shifts support the existence of two-dimensional bound electron-hole pair states whose center-of-mass motion is confined within the potential well. The influence of finite crystal size distribution width on the interpretation of quantum confinement effects in these materials was also analyzed using a numerical integration technique. Findings substantiate the relative dominance of inhomogeneous broadening effects over homogeneous broadening in determining the observed absorption lineshape of the polydisperse collection of crystallites. This does not, however, explain an apparent saturation of the

  18. Micro-metric electronic patterning of a topological band structure using a photon beam

    Science.gov (United States)

    Golden, Mark; Frantzeskakis, Emmanouil; de Jong, Nick; Huang, Yingkai; Wu, Dong; Pan, Yu; de Visser, Anne; van Heumen, Erik; van Bay, Tran; Zwartsenberg, Berend; Pronk, Pieter; Varier Ramankutty, Shyama; Tytarenko, Alona; Xu, Nan; Plumb, Nick; Shi, Ming; Radovic, Milan; Varkhalov, Andrei

    2015-03-01

    The only states crossing EF in ideal, 3D TIs are topological surface states. Single crystals of Bi2Se3andBi2Te3 are too defective to exhibit bulk-insulating behaviour, and ARPES shows topologically trivial 2DEGs at EF in the surface region due to downward band bending. Ternary & quaternary alloys of Bi /Te /Se /Sb hold promise for obtaining bulk-insulating crystals. Here we report ARPES data from quaternary, bulk-insulating, Bi-based TIs. Shortly after cleavage in UHV, downward band bending pulls the bulk conduction band below EF, once again frustrating the ``topological only'' ambition for the Fermi surface. However, there is light at the end of the tunnel: we show that a super-band-gap photon beam generates a surface photovoltage sufficient to flatten the bands, thereby recovering the ideal, ``topological only'' situation. In our bulk-insulating quaternary TIs, this effect is local in nature, and permits the writing of arbitrary, micron-sized patterns in the topological energy landscape at the surface. Support from FOM, NWO and the EU is gratefully acknowledged.

  19. Low-energy electron microscopy on two-dimensional systems : : growth, potentiometry and band structure mapping

    NARCIS (Netherlands)

    Kautz, Jaap

    2015-01-01

    Low Energy Electron Microscopy (LEEM) is a microscopy technique typically used to study surface processes. The sample is illuminated with a parallel beam of electrons under normal incidence and the reflected electrons are projected onto a pixelated detector, where an image is formed. In the first

  20. A theoretical analysis of ballistic electron emission microscopy: band structure effects and attenuation lengths

    International Nuclear Information System (INIS)

    Using quantum mechanical approach, we compute the ballistic electron emission microscopy current distribution in reciprocal space to compare experimental and theoretical spectroscopic I(V) curves. In the elastic limit, this formalism is a 'parameter free' representation of the problem. At low voltages, low temperatures, and for thin metallic layers, the elastic approximation is enough to explain the experiments (ballistic conditions). At low temperatures, inelastic effects can be taken into account approximately by introducing an effective electron-electron lifetime as an imaginary part in the energy. Ensemble Monte Carlo calculations were also performed to obtain ballistic electron emission microscopy currents in good agreement with the previous approach. (author)

  1. Electronic structure of the conduction band upon the formation of ultrathin fullerene films on the germanium oxide surface

    Science.gov (United States)

    Komolov, A. S.; Lazneva, E. F.; Gerasimova, N. B.; Panina, Yu. A.; Baramygin, A. V.; Zashikhin, G. D.

    2016-06-01

    The results of the investigation of the electronic structure of the conduction band in the energy range 5-25 eV above the Fermi level E F and the interfacial potential barrier upon deposition of aziridinylphenylpyrrolofullerene (APP-C60) and fullerene (C60) films on the surface of the real germanium oxide ((GeO2)Ge) have been presented. The content of the oxide on the (GeO2)Ge surface has been determined using X-ray photoelectron spectroscopy. The electronic properties have been measured using the very low energy electron diffraction (VLEED) technique in the total current spectroscopy (TCS) mode. The regularities of the change in the fine structure of total current spectra (FSTCS) with an increase in the thickness of the APP-C60 and C60 coatings to 7 nm have been investigated. A comparison of the structures of the FSTCS maxima for the C60 and APP-C60 films has made it possible to reveal the energy range (6-10 eV above the Fermi level E F) in which the energy states are determined by both the π* and σ* states and the FSTCS spectra have different structures of the maxima for the APP-C60 and unsubstituted C60 films. The formation of the interfacial potential barrier upon deposition of APP-C60 and C60 on the (GeO2)Ge surface is accompanied by an increase in the work function of the surface E vac- E F by the value of 0.2-0.3 eV, which corresponds to the transfer of the electron density from the substrate to the organic films under investigation. The largest changes occur with an increase in the coating thickness to 3 nm, and with further deposition of APP-C60 and C60, the work function of the surface changes only slightly.

  2. Density-matrix renormalization group study of pairing when electron-electron and electron-phonon interactions coexist: effect of the electronic band structure

    OpenAIRE

    Tezuka, Masaki; Arita, Ryotaro; Aoki, Hideo

    2005-01-01

    Density-matrix renormalization group is used to study the pairing when both of electron-electron and electron-phonon interactions are strong in the Holstein-Hubbard model at half-filling in a region intermediate between the adiabatic (Migdal's) and antiadiabatic limits. We have found: (i) the pairing correlation obtained for a one-dimensional system is nearly degenerate with the CDW correlation in a region where the phonon-induced attraction is comparable with the electron-electron repulsion,...

  3. RESONANT ZENER TUNNELING OF ELECTRONS ACROSS THE BAND-GAP BETWEEN BOUND STATES IN THE VALENCE- AND CONDUCTION-BAND QUANTUM WELLS IN A MULTIPLE QUANTUM-WELL STRUCTURE

    OpenAIRE

    Allam, J.; Beltram, F.; Capasso, F; Cho, A.

    1987-01-01

    We report the observation of resonant tunneling effects at high applied fields in a multiple quantum-well P-I-N diode. The Al0.48In0.52As/Ga0.47In0.53As structure shows features in the dark current due to Zener tunneling of electrons from the lowest sub-band in a valence-band quantum well to the first and second sub-bands of an adjacent conduction-band well.

  4. Electronic band structure and specific features of Sm{sub 2}NiMnO{sub 6} compound: DFT calculation

    Energy Technology Data Exchange (ETDEWEB)

    Reshak, A.H. [Institute of complex systems, FFPW, CENAKVA, University of South Bohemia in CB, Nove Hrady 37333 (Czech Republic); Center of Excellence Geopolymer and Green Technology, School of Material Engineering, University Malaysia Perlis, 01007 Kangar, Perlis (Malaysia); Azam, Sikander, E-mail: sikander.physicst@gmail.com [Institute of complex systems, FFPW, CENAKVA, University of South Bohemia in CB, Nove Hrady 37333 (Czech Republic)

    2013-09-15

    The band structure, density of states, electronic charge density, Fermi surface and optical properties of Sm{sub 2}NiMnO{sub 6} compound have been investigated with the support of density functional theory (DFT). The atomic positions of Sm{sub 2}NiMnO{sub 6} compound were optimized by minimizing the forces acting on the atoms, using the full potential linear augmented plane wave method. We employed the local density approximation (LDA), generalized gradient approximation (GGA) and Engel–Vosko GGA (EVGGA) to treat the exchange correlation potential by solving Kohn–Sham equations. The calculation shows that the compound is metallic with strong hybridization near the Fermi energy level (E{sub F}). The calculated density of states at the E{sub F} is about 21.60, 24.52 and 26.21 states/eV, and the bare linear low-temperature electronic specific heat coefficient (γ) is found to be 3.74, 4.25 and 4.54 mJ/mol K{sup 2} for EVGGA, GGA and LDA, respectively. The Fermi surface is composed of two sheets. The bonding features of the compounds are analyzed using the electronic charge density in the (011) crystallographic plane. The dispersion of the optical constants was calculated and discussed. - Highlights: • The compound is metallic with strong hybridization near the Fermi energy. • The density of states at the Fermi energy is calculated. • The bare linear low-temperature electronic specific heat coefficient is obtained. • Fermi surface is composed of two sheets. • The bonding features are analyzed using the electronic charge density.

  5. Importance of doping, dopant distribution, and defects on electronic band structure alteration of metal oxide nanoparticles: Implications for reactive oxygen species.

    Science.gov (United States)

    Saleh, Navid B; Milliron, Delia J; Aich, Nirupam; Katz, Lynn E; Liljestrand, Howard M; Kirisits, Mary Jo

    2016-10-15

    Metal oxide nanoparticles (MONPs) are considered to have the potency to generate reactive oxygen species (ROS), one of the key mechanisms underlying nanotoxicity. However, the nanotoxicology literature demonstrates a lack of consensus on the dominant toxicity mechanism(s) for a particular MONP. Moreover, recent literature has studied the correlation between band structure of pristine MONPs to their ability to introduce ROS and thus has downplayed the ROS-mediated toxicological relevance of a number of such materials. On the other hand, material science can control the band structure of these materials to engineer their electronic and optical properties and thereby is constantly modulating the pristine electronic structure. Since band structure is the fundamental material property that controls ROS-producing ability, band tuning via introduction of dopants and defects needs careful consideration in toxicity assessments. This commentary critically evaluates the existing material science and nanotoxicity literature and identifies the gap in our understanding of the role of important crystal structure features (i.e., dopants and defects) on MONPs' electronic structure alteration as well as their ROS-generation capability. Furthermore, this commentary provides suggestions on characterization techniques to evaluate dopants and defects on the crystal structure and identifies research needs for advanced theoretical predictions of their electronic band structures and ROS-generation abilities. Correlation of electronic band structure and ROS will not only aid in better mechanistic assessment of nanotoxicity but will be impactful in designing and developing ROS-based applications ranging from water disinfection to next-generation antibiotics and even cancer therapeutics.

  6. FDTD method for computing the off-plane band structure in a two-dimensional photonic crystal consisting of nearly free-electron metals

    Energy Technology Data Exchange (ETDEWEB)

    Xiao Sanshui; He Sailing

    2002-12-01

    An FDTD numerical method for computing the off-plane band structure of a two-dimensional photonic crystal consisting of nearly free-electron metals is presented. The method requires only a two-dimensional discretization mesh for a given off-plane wave number k{sub z} although the off-plane propagation is a three-dimensional problem. The off-plane band structures of a square lattice of metallic rods with the high-frequency metallic model in the air are studied, and a complete band gap for some nonzero off-plane wave number k{sub z} is founded.

  7. Electronic band structures of AV{sub 2} (A = Ta, Ti, Hf and Nb) Laves phase compounds

    Energy Technology Data Exchange (ETDEWEB)

    Charifi, Z; Baaziz, H [Physics Department, Faculty of Science and Engineering, University of M' sila, 28000 M' sila (Algeria); Reshak, Ali Hussain [Institute of Physical Biology, South Bohemia University, Nove Hrady 37333 (Czech Republic)], E-mail: maalidph@yahoo.co.uk

    2009-01-14

    First-principles density functional calculations, using the all-electron full potential linearized augmented plane wave method, have been performed in order to investigate the structural and electronic properties for Laves phase AV{sub 2} (A = Ta, Ti, Hf and Nb) compounds. The generalized gradient approximation and the Engel-Vosko-generalized gradient approximation were used. Our calculations show that these compounds are metallic with more bands cutting the Fermi energy (E{sub F}) as we move from Nb to Ta, Hf and Ti, consistent with the increase in the values of the density of states at the Fermi level N(E{sub F}). N(E{sub F}) is controlled by the overlapping of V-p/d, A-d and A-p states around the Fermi energy. The ground state properties of these compounds, such as equilibrium lattice constant, are calculated and compared with the available literature. There is a strong/weak hybridization between the states, V-s states are strongly hybridized with A-s states below and above E{sub F}. Around the Fermi energy we notice that V-p shows strong hybridization with A-p states.

  8. Calculation of the Energy-Band Structure of the Kronig-Penney Model Using the Nearly-Free and Tightly-Bound-Electron Approximations

    Science.gov (United States)

    Wetsel, Grover C., Jr.

    1978-01-01

    Calculates the energy-band structure of noninteracting electrons in a one-dimensional crystal using exact and approximate methods for a rectangular-well atomic potential. A comparison of the two solutions as a function of potential-well depth and ratio of lattice spacing to well width is presented. (Author/GA)

  9. Electronic band structure of GaAs/Al{sub x}Ga{sub 1-x}As superlattice in an intense laser field

    Energy Technology Data Exchange (ETDEWEB)

    Sakiroglu, S., E-mail: serpil.sakiroglu@deu.edu.tr [Physics Department, Faculty of Science, Dokuz Eyluel University, 35160 Izmir (Turkey); Yesilgul, U.; Ungan, F. [Physics Department, Faculty of Science, Cumhuriyet University, 58140 Sivas (Turkey); Duque, C.A. [Instituto de Fisica, Universidad de Antioquia, AA 1226, Medellin (Colombia); Kasapoglu, E.; Sari, H. [Physics Department, Faculty of Science, Cumhuriyet University, 58140 Sivas (Turkey); Sokmen, I. [Physics Department, Faculty of Science, Dokuz Eyluel University, 35160 Izmir (Turkey)

    2012-06-15

    We perform theoretical calculations for the band structure of semiconductor superlattice under intense high-frequency laser field. In the frame of the non-perturbative approach, the laser effects are included via laser-dressed potential. Results reveal that an intense laser field creates an additional geometric confinement on the electronic states. Numerical results show that when tuning the strength of the laser field significant changes come in the electronic energy levels and density of states. - Graphical abstract: We have theoretically investigated the influence of an intense, high-frequency, non-resonant laser field on the electronic band structure of GaAs/Al{sub x}Ga{sub 1-x}As semiconductor superlattice. By tuning the strength of the laser field significant changes come in the electronic energy levels and density of states. Highlights: Black-Right-Pointing-Pointer Band structure of GaAs/Al{sub x}Ga{sub 1-x}As superlattice under an ILF is investigated. Black-Right-Pointing-Pointer Dramatic variation of the confinement potential in the well/barrier region is predicted. Black-Right-Pointing-Pointer ILF creates an additional geometric confinement on the electronic states. Black-Right-Pointing-Pointer Significant changes come in the electronic energy levels and density of states.

  10. Effects of the Born-Oppenheimer approximation in the electronic band structure of MgB{sub 2} and ZrB{sub 2}.

    Energy Technology Data Exchange (ETDEWEB)

    Petzold, Vivien; Rosner, Helge [Max-Planck-Institut fuer Chemische Physik fester Stoffe, Dresden (Germany)

    2011-07-01

    Electronic band structure calculations are routinely applied to many problems in chemistry and physics. The methods rely on a number of approximations, where the treatment of exchange and correlation is a very prominent issue, probably the most prominent in the development of new density functionals in the framework of density functional theory (DFT). The present work highlights effects that arise from the more fundamental Born-Oppenheimer approximation. Based on this approximation, the original problem - the quantum-mechanical description of matter consisting of nuclei and electrons - is decomposed into a nuclear and an electronic problem, the latter of which is treated by electronic band structure methods. Utilizing the most common density functionals, the local density approximation (LDA) and the generalized gradient approximation (GGA), we observe deviations between experimental and theoretical de Haas van Alphen (dHvA) frequencies for MgB{sub 2} and ZrB{sub 2} that can be consistently understood by electron-phonon coupling effects, which the theory is lacking. The explanation is based on a highly accurate computation of dHvA frequencies indicating an electron-phonon coupling-induced shift of the electronic bands.

  11. Development of S-band accelerating structure

    International Nuclear Information System (INIS)

    In Pohang Accelerator Laboratory (PAL) in Korea construction of XFEL (X-ray Free electron Lazar) institution is under construction aiming at the completion in 2014. Energy 10 GeV of the linac part of this institution and main frequency are planned in S-band (2856 MHz), and about 178 S-band 3m accelerating structures are due to be used for this linac. The oscillation of an X-ray laser requires very low emittance electron beam. On the other hand, since the accelerating structure which accelerates an electron beam has a feed port of microwave (iris), the electromagnetic field asymmetry of the microwave feeding device called coupler worsens the emittance of an electron beam. MHI manufactured two kinds of S-band accelerating structures with which the electromagnetic field asymmetry of coupler cavity was compensated for PALXFEL linac. We report these accelerating structures. (author)

  12. Simultaneous Out-of-band Interference Rejection and Radiation Enhancement in an Electronic Product via an EBG Structure

    DEFF Research Database (Denmark)

    Ruaro, Andrea; Thaysen, Jesper; Jakobsen, Kaj Bjarne

    2014-01-01

    to achieve simultaneously both the enhancement of the antenna radiation efficiency and the shrinking of its dimensions, while making the device more resilient to out-of-band electromagnetic interference (EMI). The patterning of the ground plane allows, in fact, to effectively suppress higher-order resonances......This work presents an application of a planar electromagnetic band gap (EBG) structure with a perspective product implementation in the back of the mind. The focus is on the integration of such structure under the constraint of space and system coexistence. It is discovered that it is possible...... (alternatively, parallel plate noise) and decrease the radiation efficiency of the structure forbidding higher-order modes to propagate and subsequently be diffracted by the ground plane....

  13. Electronic structure and phase stability of oxide semiconductors: Performance of dielectric-dependent hybrid functional DFT, benchmarked against G W band structure calculations and experiments

    Science.gov (United States)

    Gerosa, Matteo; Bottani, Carlo Enrico; Caramella, Lucia; Onida, Giovanni; Di Valentin, Cristiana; Pacchioni, Gianfranco

    2015-04-01

    We investigate band gaps, equilibrium structures, and phase stabilities of several bulk polymorphs of wide-gap oxide semiconductors ZnO, TiO2,ZrO2, and WO3. We are particularly concerned with assessing the performance of hybrid functionals built with the fraction of Hartree-Fock exact exchange obtained from the computed electronic dielectric constant of the material. We provide comparison with more standard density-functional theory and GW methods. We finally analyze the chemical reduction of TiO2 into Ti2O3 , involving a change in oxide stoichiometry. We show that the dielectric-dependent hybrid functional is generally good at reproducing both ground-state (lattice constants, phase stability sequences, and reaction energies) and excited-state (photoemission gaps) properties within a single, fully ab initio framework.

  14. Numerical study of electronic structure under uniform magnetic field and quantized Hall conductance for multi-band tight-binding models

    Science.gov (United States)

    Arai, Masao; Hatsugai, Yasuhiro

    2011-12-01

    The electronic structure of periodic lattice under uniform magnetic field was studied numerically for multi-band tight-binding models with non-orthogonal basis sets. When magnetic translational symmetry is fully taken into account, computational time can be greatly reduced. Quantized Hall conductance was evaluated by robust multi-band formulation of Chern number. We found that calculated quantized Hall conductance coincides with the semi-classical results. Discontinuous jumps of Hall conductance occur at van-Hove singularities and correspond to mod q ambiguity of the Diophantine equation of Chern number.

  15. Microstrip microwave band gap structures

    Indian Academy of Sciences (India)

    V Subramanian

    2008-04-01

    Microwave band gap structures exhibit certain stop band characteristics based on the periodicity, impedance contrast and effective refractive index contrast. These structures though formed in one-, two- and three-dimensional periodicity, are huge in size. In this paper, microstrip-based microwave band gap structures are formed by removing the substrate material in a periodic manner. This paper also demonstrates that these structures can serve as a non-destructive characterization tool for materials, a duplexor and frequency selective coupler. The paper presents both experimental results and theoretical simulation based on a commercially available finite element methodology for comparison.

  16. F-electron systems: Pushing band theory

    Energy Technology Data Exchange (ETDEWEB)

    Koelling, D.D.

    1990-08-01

    The f-electron orbitals have always been the incomplete atomic shell acting as a local moment weakly interacting with the remaining electronic structure'' in the minds of most people. So examining them using a band theory where one views them as itinerant once was -- and to some extent even today still is -- considered with some skepticism. Nonetheless, a very significant community has successfully utilized band theory as a probe of the electronic structure of the appropriate actinides and rare earths. Those people actually using the approach would be the first to declare that it is not the whole solution. Instead, one is pushing and even exceeding its limits of applicability. However, the appropriate procedure is to push the model consistently to its limits, patch where possible, and then look to see where discrepancies remain. I propose to offer a selected review of past developments (emphasizing the career to date of A. J. Freeman in this area), offer a list of interesting puzzles for the future, and then make some guesses as to the techniques one might want to use. 27 refs.

  17. Electronic structure of MoSe2, MoS2, and WSe2. I. Band-structure calculations and photoelectron spectroscopy

    OpenAIRE

    Coehoorn, R.; Haas, C.; Dijkstra, J.; Flipse, C.J.F.; de Groot, R. A.; Wold, A.

    1987-01-01

    The band structures of the semiconducting layered compounds MoSe2, MoS2, and WSe2 have been calculated self-consistently with the augmented-spherical-wave method. Angle-resolved photoelectron spectroscopy of MoSe2 using He I, He II, and Ne I radiation, and photon-energy-dependent normal-emission photoelectron spectroscopy using synchrotron radiation, show that the calculational results give a good description of the valence-band structure. At about 1 eV below the top of the valence band a dis...

  18. Band structure engineering in organic semiconductors

    Science.gov (United States)

    Schwarze, Martin; Tress, Wolfgang; Beyer, Beatrice; Gao, Feng; Scholz, Reinhard; Poelking, Carl; Ortstein, Katrin; Günther, Alrun A.; Kasemann, Daniel; Andrienko, Denis; Leo, Karl

    2016-06-01

    A key breakthrough in modern electronics was the introduction of band structure engineering, the design of almost arbitrary electronic potential structures by alloying different semiconductors to continuously tune the band gap and band-edge energies. Implementation of this approach in organic semiconductors has been hindered by strong localization of the electronic states in these materials. We show that the influence of so far largely ignored long-range Coulomb interactions provides a workaround. Photoelectron spectroscopy confirms that the ionization energies of crystalline organic semiconductors can be continuously tuned over a wide range by blending them with their halogenated derivatives. Correspondingly, the photovoltaic gap and open-circuit voltage of organic solar cells can be continuously tuned by the blending ratio of these donors.

  19. Band structure engineering in organic semiconductors.

    Science.gov (United States)

    Schwarze, Martin; Tress, Wolfgang; Beyer, Beatrice; Gao, Feng; Scholz, Reinhard; Poelking, Carl; Ortstein, Katrin; Günther, Alrun A; Kasemann, Daniel; Andrienko, Denis; Leo, Karl

    2016-06-17

    A key breakthrough in modern electronics was the introduction of band structure engineering, the design of almost arbitrary electronic potential structures by alloying different semiconductors to continuously tune the band gap and band-edge energies. Implementation of this approach in organic semiconductors has been hindered by strong localization of the electronic states in these materials. We show that the influence of so far largely ignored long-range Coulomb interactions provides a workaround. Photoelectron spectroscopy confirms that the ionization energies of crystalline organic semiconductors can be continuously tuned over a wide range by blending them with their halogenated derivatives. Correspondingly, the photovoltaic gap and open-circuit voltage of organic solar cells can be continuously tuned by the blending ratio of these donors. PMID:27313043

  20. Formation of the conduction band electronic structure during deposition of ultrathin dicarboximide-substituted perylene films on the oxidized silicon surface

    Science.gov (United States)

    Komolov, A. S.; Lazneva, E. F.; Gerasimova, N. B.; Panina, Yu. A.; Baramygin, A. V.; Ovsyannikov, A. D.

    2015-07-01

    The results of the investigation of the conduction band electronic structure and the interfacial potential barrier during deposition of ultrathin dicarboximide-substituted perylene films (PTCBI-C8) on the oxidized silicon surface have been presented. The measurements have been performed using the very low energy electron diffraction (VLEED) technique implemented in the total current spectroscopy (TCS) mode with a variation in the incident electron energy from 0 to 25 eV. Changes in the intensities of the maxima from the deposited PTCBI-C8 film and from the substrate with an increase in the organic coating thickness to 7 nm have been analyzed using TCS measurements. A comparison of the structure of the maxima of PTCBI-C8 and perylene-tetracarboxylic-dianhydride (PTCDA) films has made it possible to distinguish the energy range (8-13 eV above E F) in which distinct differences in the structures of maxima for PTCDA and PTCBI-C8 films are observed. This energy range corresponds to low-lying σ*-states of the conduction band of the films studied. The formation of the interfacial region of the PTCBI-C8 film and (SiO2) n-Si substrate is accompanied by an increase in the surface work function by 0.6 eV, which corresponds to the electron density charge transfer from the (SiO2) n-Si substrate to the PTCBI-C8 film.

  1. van der Waals epitaxy of monolayer hexagonal boron nitride on copper foil: growth, crystallography and electronic band structure

    Science.gov (United States)

    Wood, Grace E.; Marsden, Alexander J.; Mudd, James J.; Walker, Marc; Asensio, Maria; Avila, Jose; Chen, Kai; Bell, Gavin R.; Wilson, Neil R.

    2015-06-01

    We investigate the growth of hexagonal boron nitride (h-BN) on copper foil by low pressure chemical vapour deposition (LP-CVD). At low pressure, h-BN growth proceeds through the nucleation and growth of triangular islands. Comparison between the orientation of the islands and the local crystallographic orientation of the polycrystalline copper foil reveals an epitaxial relation between the copper and h-BN, even on Cu(100) and Cu(110) regions whose symmetry is not matched to the h-BN. However, the growth rate is faster and the islands more uniformly oriented on Cu(111) grains. Angle resolved photoemission spectroscopy measurements reveal a well-defined band structure for the h-BN, consistent with a band gap of 6 eV, that is decoupled from the copper surface beneath. These results indicate that, despite a weak interaction between h-BN and copper, van der Waals epitaxy defines the long range ordering of h-BN even on polycrystalline copper foils and suggest that large area, single crystal, monolayer h-BN could be readily and cheaply produced.

  2. The electronic structure of Nb3Al/Nb3Sn, a new test case for flat/steep band model of superconductivity

    Institute of Scientific and Technical Information of China (English)

    Yanlong Ding; Shuiquan Deng; Yong Zhao

    2014-01-01

    In this work, we choose Nb3Al/Nb3Sn as a new test case for flat/steep band model of superconductivity. Based on the density functional theory in the generalized gradient approximation, the electronic structure of Nb3Al/Nb3Sn has been studied. The obtained results agree well with those of the earlier studies and show clearly flat bands around the Fermi level. The steep bands as characterized in this work locate around the M point in the first Brillouin zone. The obtained results reveal that Nb3Al/Nb3Sn fits more to the ‘‘Flat/steep’’ band model than to the van-Hove singularity scenario. The flat/steep band condition for superconductivity implies a different thermodynamic behavior of superconductors other than that predicted from the conventional BCS theory. This observation sets up an indicator for selecting a suitable superconductor when its large-scale industrial use is needed, for example, in superconducting maglev system or ITER project.

  3. Band offsets and electronic structures of interface between In{sub 0.5}Ga{sub 0.5}As and InP

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Genwang [School of Physical Science and Engineering and Key Laboratory of Materials Physics of Ministry of Education of China, Zhengzhou University, Zhengzhou 450052 (China); College of Science, Henan University of Technology, Zhengzhou 450001 (China); Wang, Changhong; Wang, Weichao [College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300071 (China); Liang, Erjun, E-mail: ejliang@zzu.edu.cn [School of Physical Science and Engineering and Key Laboratory of Materials Physics of Ministry of Education of China, Zhengzhou University, Zhengzhou 450052 (China)

    2016-02-07

    III–V semiconductor interfacing with high-κ gate oxide is crucial for the high mobility metal-oxide-semiconductor field transistor device. With density functional theory calculations, we explored the band offsets and electronic structures of the In{sub 0.5}Ga{sub 0.5}As/InP interfaces with various interfacial bondings. Among six different bonding interfaces, we found that P-In(Ga) bonding interface showed the highest stability. Local density of states calculations was adopted to calculate the band offsets. Except for the metallic interface, we noticed that neither valence band offset nor conduction band offset depended on the interfacial bondings. For the most stable P-In(Ga) interface, we did not observe any gap states. Furthermore, we explored the P-In(Ga) interfaces with interfacial P-As exchange defects, which slightly modified the interface stability and the band offsets but did not produce any gap states. These findings provide solid evidence that InP could serve as a promising interfacial passivation layer between III–V material and high-κ oxide in the application of high mobility devices.

  4. Band offsets and electronic structures of interface between In0.5Ga0.5As and InP

    International Nuclear Information System (INIS)

    III–V semiconductor interfacing with high-κ gate oxide is crucial for the high mobility metal-oxide-semiconductor field transistor device. With density functional theory calculations, we explored the band offsets and electronic structures of the In0.5Ga0.5As/InP interfaces with various interfacial bondings. Among six different bonding interfaces, we found that P-In(Ga) bonding interface showed the highest stability. Local density of states calculations was adopted to calculate the band offsets. Except for the metallic interface, we noticed that neither valence band offset nor conduction band offset depended on the interfacial bondings. For the most stable P-In(Ga) interface, we did not observe any gap states. Furthermore, we explored the P-In(Ga) interfaces with interfacial P-As exchange defects, which slightly modified the interface stability and the band offsets but did not produce any gap states. These findings provide solid evidence that InP could serve as a promising interfacial passivation layer between III–V material and high-κ oxide in the application of high mobility devices

  5. Tl{sub 4}CdI{sub 6} – Wide band gap semiconductor: First principles modelling of the structural, electronic, optical and elastic properties

    Energy Technology Data Exchange (ETDEWEB)

    Piasecki, M., E-mail: m.piasecki@ajd.czest.pl [Institute of Physics, Jan Dlugosz University, Armii Krajowej 13/15, 42-200 Czestochowa (Poland); Brik, M.G. [College of Sciences, Chongqing University of Posts and Telecommunications, Chongqing 400065 (China); Institute of Physics, University of Tartu, Ravila 14C, Tartu 50411 (Estonia); Institute of Physics, Polish Academy of Sciences, Al. Lotników 32/46, 02-668 Warsaw (Poland); Kityk, I.V. [Faculty of Electrical Engineering, Czestochowa University of Technology, Armii Krajowej 17, 42-200 Czestochowa (Poland)

    2015-08-01

    A novel infrared optoelectronic material Tl{sub 4}CdI{sub 6} was studied using the density functional theory (DFT)-based techniques. Its structural, electronic, optical and elastic properties were all calculated in the generalized gradient approximation (GGA) with the Perdew–Burke–Ernzerhof (PBE) and the local density approximation (LDA) with the Ceperley-Alder–Perdew-Zunger (CA–PZ) functionals. The studied material is a direct band gap semiconductor with the calculated band gaps of 2.043 eV (GGA) and 1.627 eV (LDA). The wavelength dependence of the refractive index was fitted to the Sellmeier equation in the spectral range from 400 to 2000 nm. Good agreement between the GGA-calculated values of refractive index and experimental data was achieved. To the best of our knowledge, this is the first consistent theoretical description of the title compound, which includes calculations and analysis of the structural, electronic, optical and elastic properties. - Graphical abstract: Display Omitted - Highlights: • Infrared optoelectronic material Tl{sub 4}CdI{sub 6} was studied using ab initio methods. • Structural, electronic, optical and elastic properties were calculated. • Independent components of the elastic constants tensor were calculated. • Good agreement with available experimental results was achieved.

  6. Fowler-Nordheim tunneling and conduction-band discontinuity in GaAs/GaAsAl high electron mobility transistor structures

    Science.gov (United States)

    Smoliner, J.; Christanell, R.; Hauser, M.; Gornik, E.; Weimann, G.

    1987-06-01

    Oscillatory structure is observed in the dI/dV characteristics of conventional GaAs/GaAlAs high electron mobility transistor samples at liquid-helium temperature, which can be explained using a Fowler-Nordheim tunneling theory. The position of the oscillations allows a determination of the conduction-band discontinuity, and the depth of the deep donor levels in the GaAlAs for high aluminum concentrations. The fit of the data gives a value of Delta Ec/Delta Eg = 0.61 + or - 0.04 for aluminum concentration 30, 36, and 40 percent. The deep donor level in the GaAlAs was determined to be 130 meV below the conduction band.

  7. Electronic structure of transition metal dichalcogenides monolayers 1H-MX2 (M = Mo, W; X = S, Se, Te) from ab-initio theory: new direct band gap semiconductors

    Science.gov (United States)

    Kumar, A.; Ahluwalia, P. K.

    2012-06-01

    We report first principles calculations of the electronic structure of monolayer 1H-MX2 (M = Mo, W; X = S, Se, Te), using the pseudopotential and numerical atomic orbital basis sets based methods within the local density approximation. Electronic band structure and density of states calculations found that the states around the Fermi energy are mainly due to metal d states. From partial density of states we find a strong hybridisation between metal d and chalcogen p states below the Fermi energy. All studied compounds in this work have emerged as new direct band gap semiconductors. The electronic band gap is found to decrease as one goes from sulphides to the tellurides of both Mo and W. Reducing the slab thickness systematically from bulk to monolayers causes a blue shift in the band gap energies, resulting in tunability of the electronic band gap. The magnitudes of the blue shift in the band gap energies are found to be 1.14 eV, 1.16 eV, 0.78 eV, 0.64, 0.57 eV and 0.37 eV for MoS2, WS2, MoSe2, WSe2, MoTe2 and WTe2, respectively, as we go from bulk phase (indirect band gap) to monolayer limit (direct band gap). This tunability in the electronic band gap and transitions from indirect to direct band make these materials potential candidates for the fabrication of optoelectronic devices.

  8. Theoretical Study of L-Edge Resonant Inelastic X-ray Scattering in La2CuO4 on the Basis of Detailed Electronic Band Structure

    Science.gov (United States)

    Nomura, Takuji

    2015-09-01

    We study theoretically resonant inelastic x-ray scattering (RIXS) at the Cu L3-edge in a typical parent compound of high-Tc cuprate superconductors La2CuO4 on the basis of a detailed electronic band structure. We construct a realistic and precise tight-binding model by employing the maximally-localized Wannier functions derived from a first-principles electronic structure calculation, and then take account of the Coulomb repulsion between d electrons at each Cu site. The antiferromagnetic ground state is described within the Hartree-Fock approximation, and take account of electron correlations in the intermediate states of RIXS within the random-phase approximation (RPA). Calculated RIXS spectra agree well with the experimentally observed features including low-energy magnon excitation, d-d excitations, and charge-transfer excitations, over a wide excitation-energy range. In particular, we stress the importance of photon polarization dependence: the intensity of magnon excitation and the spectral structure of d-d excitations depend significantly not only on the polarization direction of incident incoming photons but also that of outgoing photons. It is demonstrated that the single-magnon excitation intensity is maximized when the polarization directions of incoming and outgoing photons are perpendicular to each other.

  9. Structural, electronic structure, and band alignment properties at epitaxial NiO/Al2O3 heterojunction evaluated from synchrotron based X-ray techniques

    Science.gov (United States)

    Singh, S. D.; Nand, Mangla; Das, Arijeet; Ajimsha, R. S.; Upadhyay, Anuj; Kamparath, Rajiv; Shukla, D. K.; Mukherjee, C.; Misra, P.; Rai, S. K.; Sinha, A. K.; Jha, S. N.; Phase, D. M.; Ganguli, Tapas

    2016-04-01

    The valence band offset value of 2.3 ± 0.2 eV at epitaxial NiO/Al2O3 heterojunction is determined from photoelectron spectroscopy experiments. Pulsed laser deposited thin film of NiO on Al2O3 substrate is epitaxially grown along [111] direction with two domain structures, which are in-plane rotated by 60° with respect to each other. Observation of Pendellosung oscillations around Bragg peak confirms high interfacial and crystalline quality of NiO layer deposited on Al2O3 substrate. Surface related feature in Ni 2p3/2 core level spectra along with oxygen K-edge soft X-ray absorption spectroscopy results indicates that the initial growth of NiO on Al2O3 substrate is in the form of islands, which merge to form NiO layer for the larger coverage. The value of conduction band offset is also evaluated from the measured values of band gaps of NiO and Al2O3 layers. A type-I band alignment at NiO and Al2O3 heterojunction is also obtained. The determined values of band offsets can be useful in heterojunction based light emitting devices.

  10. Mn Doping Effects on the Electronic Band Structure of PbS Quantum Dot Thin Films: A Scanning Tunneling Microscopy Analysis

    Science.gov (United States)

    Yost, Andrew J.; Rimal, Gaurab; Tang, Jinke; Chien, Teyu

    A thorough understanding of the phenomena associated with doping of transition metals in semiconductors is important for the development of semiconducting electronic technologies such as semiconducting quantum dot sensitized solar cells (QDSSC). Manganese doping is of particular interest in a PbS QD as it is potentially capable of increasing overall QDSSC performance. Here we present scanning tunneling microscopy and spectroscopy studies about the effects of Manganese doping on the energy band structures of PbS semiconducting QD thin films, grown using pulsed laser deposition. As a result of Manganese doping in the PbS QD thin films, a widening of the electronic band gap was observed, which is responsible for the observed increase in resistivity. Furthermore, a loss of long range periodicity observed by XRD, upon incorporation of Manganese, indicates that the Manganese dopants also induce a large amount of grain boundaries. This work was supported by the following: U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Science and Engineering, DEFG02-10ER46728 and the National Science Foundation Grant #0948027.

  11. First-principles study of spin-polarized electronic band structures in ferromagnetic Zn1-xTMxS (TM = Fe, Co and Ni)

    KAUST Repository

    Saeed, Yasir

    2010-10-01

    We report a first-principles study of structural, electronic and magnetic properties of crystalline alloys Zn1-xTMxS (TM = Fe, Co and Ni) at x = 0.25. Structural properties are computed from the total ground state energy convergence and it is found that the cohesive energies of Zn 1-xTMxS are greater than that of zincblende ZnS. We also study the spin-polarized electronic band structures, total and partial density of states and the effect of TM 3d states. Our results exhibit that Zn 0.75Fe0.25S, Zn0.75Co0.25S and Zn0.75Ni0.25S are half-metallic ferromagnetic with a magnetic moment of 4μB, 3μB and 2μB, respectively. Furthermore, we calculate the TM 3d spin-exchange-splitting energies Δx (d), Δx (x-d), exchange constants N0α and N0β, crystal field splitting (ΔEcrystEt2g-Eeg), and find that p-d hybridization reduces the local magnetic moment of TM from its free space charge value. Moreover, robustness of Zn1-xTMxS with respect to the variation of lattice constants is also discussed. © 2010 Elsevier B.V. All rights reserved.

  12. Li induced effects in the core level and π-band electronic structure of graphene grown on C-face SiC

    Energy Technology Data Exchange (ETDEWEB)

    Johansson, Leif I., E-mail: lij@ifm.liu.se; Xia, Chao; Virojanadara, Chariya [Department of Physics, Chemistry and Biology, Linköping University, SE-58183 Linköping (Sweden)

    2015-11-15

    Studies of the effects induced in the electronic structure after Li deposition, and subsequent heating, on graphene samples prepared on C-face SiC are reported. The as prepared graphene samples are essentially undoped, but after Li deposition, the Dirac point shifts down to 1.2 eV below the Fermi level due to electron doping. The shape of the C 1s level also indicates a doping concentration of around 10{sup 14 }cm{sup −2} after Li deposition, when compared with recent calculated results of core level spectra of graphene. The C 1s, Si 2p, and Li 1s core level results show little intercalation directly after deposition but that most of the Li has intercalated after heating at 280 °C. Heating at higher temperatures leads to desorption of Li from the sample, and at 1030 °C, Li can no longer be detected on the sample. The single π-band observable from multilayer C-face graphene samples in conventional angle resolved photoelectron spectroscopy is reasonably sharp both on the initially prepared sample and after Li deposition. After heating at 280 °C, the π-band appears more diffuse and possibly split. The Dirac point becomes located at 0.4 eV below the Fermi level, which indicates occurrence of a significant reduction in the electron doping concentration. Constant energy photoelectron distribution patterns extracted from the as prepared graphene C-face sample and also after Li deposition and heating at 280 °C look very similar to earlier calculated distribution patterns for monolayer graphene.

  13. Correlation effects of π electrons on the band structures of conjugated polymers using the self-consistent GW approximation with vertex corrections.

    Science.gov (United States)

    Chang, Yao-Wen; Jin, Bih-Yaw

    2012-01-14

    Many-body perturbation theory is used to investigate the effect of π-electron correlations on the quasi-particle band structures of conjugated polymers at the level of the Pariser-Parr-Pople model. The self-consistent GW approximation with vertex corrections to both the self-energy and the polarization in Hedin's equations is employed in order to eliminate self-interaction errors and include the effects of electron-hole attraction in screening processes. The dynamic inverse dielectric function is constructed from the generalized plasmon-pole approximation with the static dressed polarization given by the coupled-perturbed Hartree-Fock equation. The bandgaps of trans-polyacetylene, trans-polyphenylenevinylene and poly(para)phenylene are calculated by both the Hartree-Fock and GW approximation, and a lowering of bandgaps due to electron correlations is found. We conclude that both dielectric screening and vertex corrections are important for calculating the quasi-particle bandgaps of conjugated polymers.

  14. An Improved Study of Electronic Band Structure and Optical Parameters of X-Phosphides (X--B, AL, Ga, In) by Modified Becke-Johnson Potential%An Improved Study of Electronic Band Structure and Optical Parameters of X-Phosphides (X--B, AL, Ga, In) by Modified Becke-Johnson Potential

    Institute of Scientific and Technical Information of China (English)

    Masood Yousaf; M.A. Saeed; R. Ahmed; M.M. Alsardia; Ahmad Radzi Mat Isa; A. Shaari

    2012-01-01

    We report the electronic band structure and optical parameters of X-Phosphides (X=B, AI, Ga, In) by first-principles technique based on a new approximation known as modified Becke-Johnson (roB J). This potential is considered more accurate in elaborating excited states properties of insulators and semiconductors as compared to LDA and GGA. The present calculated band gaps values of BP, AlP, GaP, and InP are 1.867 eV, 2.268 eV, 2.090 eV, and 1.377 eV respectively, which are in close agreement to the experimental results. The band gap values trend in this study is as: E9 (mBJ-GGA/LDA) 〉 E9 (GGA) 〉 Eg (LDA). Optical parametric quantities (dielectric constant, refractive index, reflectivity and optical conductivity) which based on the band structure are aiso presented and discussed. BP, AlP, GaP, and InP have strong absorption in between the energy range 4-9 eV, 4-7 ev, 3-7 eV, and 2-7 eV respectively. Static dielectric constant, static refractive index and coefficient of reflectivity at zero frequency, within mBJ-GGA, are also calculated. BP, AIP, GaP, and InP show significant optical conductivity in the range 5.2-10 eV, 4.3-8 eV, 3.5- 7.2 eV, and 3.2-8 eV respectively. The present study endorses that the said compounds can be used in opto-electronic applications, for different energy ranges.

  15. Photonic band gap structure simulator

    Science.gov (United States)

    Chen, Chiping; Shapiro, Michael A.; Smirnova, Evgenya I.; Temkin, Richard J.; Sirigiri, Jagadishwar R.

    2006-10-03

    A system and method for designing photonic band gap structures. The system and method provide a user with the capability to produce a model of a two-dimensional array of conductors corresponding to a unit cell. The model involves a linear equation. Boundary conditions representative of conditions at the boundary of the unit cell are applied to a solution of the Helmholtz equation defined for the unit cell. The linear equation can be approximated by a Hermitian matrix. An eigenvalue of the Helmholtz equation is calculated. One computation approach involves calculating finite differences. The model can include a symmetry element, such as a center of inversion, a rotation axis, and a mirror plane. A graphical user interface is provided for the user's convenience. A display is provided to display to a user the calculated eigenvalue, corresponding to a photonic energy level in the Brilloin zone of the unit cell.

  16. Band Structure of the Growth Rate of the Two-Stream Instability of an Electron Beam Propagating in a Bounded Plasma

    CERN Document Server

    Kaganovich, I D

    2015-01-01

    This paper presents a study of the two-stream instability of an electron beam propagating in a finite-size plasma placed between two electrodes. It is shown that the growth rate in such a system is much smaller than that of an infinite plasma or a finite size plasma with periodic boundary conditions. Even if the width of the plasma matches the resonance condition for a standing wave, a spatially growing wave is excited instead with the growth rate small compared to that of the standing wave in a periodic system. The approximate expression for this growth rate is $\\gamma \\approx (1/13)\\omega_{pe}(n_{b}/n_{p})(L\\omega_{pe}/v_{b})\\ln (L\\omega_{pe}/v_{b})[ 1-0.18\\cos ( L\\omega_{pe}/v_{b}+{\\pi }/{2}) ]$, where $\\omega_{pe}$ is the electron plasma frequency, $n_{b}$ and $n_{p}$ are the beam and the plasma densities, respectively, $v_{b}$ is the beam velocity, and $L$ is the plasma width. The frequency, wave number and the spatial and temporal growth rates as functions of the plasma size exhibit band structure.

  17. Elucidating the stop bands of structurally colored systems through recursion

    CERN Document Server

    Amir, Ariel

    2012-01-01

    Interference phenomena are the source of some of the spectacular colors of animals and plants in nature. In some of these systems, the physical structure consists of an ordered array of layers with alternating high and low refractive indices. This periodicity leads to an optical band structure that is analogous to the electronic band structure encountered in semiconductor physics; namely, specific bands of wavelengths (the stop bands) are perfectly reflected. Here, we present a minimal model for optical band structure in a periodic multilayer and solve it using recursion relations. We present experimental data for various beetles, whose optical structure resembles the proposed model. The stop bands emerge in the limit of an infinite number of layers by finding the fixed point of the recursive relations. In order for these to converge, an infinitesimal amount of absorption needs to be present, reminiscent of the regularization procedures commonly used in physics calculations. Thus, using only the phenomenon of...

  18. Dominance of many-body effects over the one-electron mechanism for band structure doping dependence in Nd{sub 2-x}Ce{sub x}CuO{sub 4}: the LDA+GTB approach

    Energy Technology Data Exchange (ETDEWEB)

    Korshunov, M M [L V Kirensky Institute of Physics, Siberian Branch of Russian Academy of Sciences, 660036 Krasnoyarsk (Russian Federation); Gavrichkov, V A [L V Kirensky Institute of Physics, Siberian Branch of Russian Academy of Sciences, 660036 Krasnoyarsk (Russian Federation); Ovchinnikov, S G [L V Kirensky Institute of Physics, Siberian Branch of Russian Academy of Sciences, 660036 Krasnoyarsk (Russian Federation); Nekrasov, I A [Institute of Electrophysics, Russian Academy of Sciences-Ural Division, 620016 Yekaterinburg, Amundsena 106 (Russian Federation); Kokorina, E E [Institute of Electrophysics, Russian Academy of Sciences-Ural Division, 620016 Yekaterinburg, Amundsena 106 (Russian Federation); Pchelkina, Z V [Institute of Metal Physics, Russian Academy of Sciences-Ural Division, 620041 Yekaterinburg, GSP-170 (Russian Federation)

    2007-12-05

    In the present work we report band structure calculations for the high-temperature superconductor Nd{sub 2-x}Ce{sub x}CuO{sub 4} in the regime of strong electronic correlations within an LDA+GTB method, which combines the local density approximation (LDA) and the generalized tight-binding method (GTB). The two mechanisms of band structure doping dependence were taken into account. Namely, the one-electron mechanism provided by the doping dependence of the crystal structure, and the many-body mechanism provided by the strong renormalization of the fermionic quasiparticles due to the large on-site Coulomb repulsion. We have shown that, in the antiferromagnetic and in the strongly correlated paramagnetic phases of the underdoped cuprates, the main contribution to the doping evolution of the band structure and Fermi surface comes from the many-body mechanism.

  19. Electronic structure of MoSe2, MoS2, and WSe2. II. The nature of the optical band gaps

    OpenAIRE

    Coehoorn, R.; Haas, C.; de Groot, R. A.

    1987-01-01

    From band-structure calculations it is shown that MoSe2, MoS2, and WSe2 are indirect-gap semiconductors. The top of the valence band is at the Γ point and the bottom of the conduction band is along the line T of the hexagonal Brillouin zone, halfway between the points Γ and K. The A and B excitons correspond to the smallest direct gap at the K point. This assignment of the exciton peaks is shown to be consistent with the polarization dependence of their intensities, their effective masses, an...

  20. Band structure of the heavily-electron-doped FeAs-based Ba(Fe,Co)2As2 superconductor suppresses antiferromagnetic correlations.

    Science.gov (United States)

    Sudayama, T; Wakisaka, Y; Takubo, K; Morinaga, R; Sato, T J; Arita, M; Namatame, H; Taniguchi, M; Mizokawa, T

    2010-04-30

    In the heavily-electron-doped regime of the Ba(Fe,Co)2As2 superconductor, three hole bands at the zone center are observed and two of them reach the Fermi level. The larger hole pocket at the zone center is apparently nested with the smaller electron pocket around the zone corner. However, the (pi,0) Fermi surface reconstruction reported for the hole-doped case is absent in the heavily-electron-doped case. This observation shows that the apparent Fermi surface nesting alone is not enough to enhance the antiferromagnetic correlation as well as the superconducting transition temperature.

  1. High-energy band structure of gold

    DEFF Research Database (Denmark)

    Christensen, N. Egede

    1976-01-01

    The band structure of gold for energies far above the Fermi level has been calculated using the relativistic augmented-plane-wave method. The calculated f-band edge (Γ6-) lies 15.6 eV above the Fermi level is agreement with recent photoemission work. The band model is applied to interpret...

  2. Account of helical and rotational symmetries in the linear augmented cylindrical wave method for calculating the electronic structure of nanotubes: Towards the ab initio determination of the band structure of a (100, 99) tubule

    Science.gov (United States)

    D'Yachkov, P. N.; Makaev, D. V.

    2007-11-01

    Every carbon single-walled nanotube (SWNT) can be generated by first mapping only two nearest-neighbor C atoms onto a surface of a cylinder and then using the rotational and helical symmetry operators to determine the remainder of the tubule [C. T. White , Phys. Rev. B 47, 5485 (1993)]. With account of these symmetries, we developed a symmetry-adapted version of a linear augmented cylindrical wave method. In this case, the cells contain only two carbon atoms, and the ab initio theory becomes applicable to any SWNT independent of the number of atoms in a translational unit cell. The approximations are made in the sense of muffin-tin (MT) potentials and local-density-functional theory only. An electronic potential is suggested to be spherically symmetrical in the regions of atoms and constant in an interspherical region up to the two essentially impenetrable cylinder-shaped potential barriers. To construct the basis wave functions, the solutions of the Schrödinger equation for the interspherical and MT regions of the tubule were sewn together using a theorem of addition for cylindrical functions, the resulting basis functions being continuous and differentiable anywhere in the system. With account of analytical equations for these functions, the overlap and Hamiltonian integrals are calculated, which permits determination of electronic structure of nanotube. We have calculated the total band structures and densities of states of the chiral and achiral, semiconducting, semimetallic, and metallic carbon SWNTs (13, 0), (12, 2), (11, 3), (10, 5), (9, 6), (8, 7), (7, 7), (12, 4), and (100, 99) containing up to the 118 804 atoms per translational unit cell. Even for the (100, 99) system with huge unit cell, the band structure can be easily calculated and the results can be presented in the standard form of four curves for the valence band plus one curve for the low-energy states of conduction band. About 150 functions produce convergence of the band structures better then

  3. Atomic structure of amorphous shear bands in boron carbide.

    Science.gov (United States)

    Reddy, K Madhav; Liu, P; Hirata, A; Fujita, T; Chen, M W

    2013-01-01

    Amorphous shear bands are the main deformation and failure mode of super-hard boron carbide subjected to shock loading and high pressures at room temperature. Nevertheless, the formation mechanisms of the amorphous shear bands remain a long-standing scientific curiosity mainly because of the lack of experimental structure information of the disordered shear bands, comprising light elements of carbon and boron only. Here we report the atomic structure of the amorphous shear bands in boron carbide characterized by state-of-the-art aberration-corrected transmission electron microscopy. Distorted icosahedra, displaced from the crystalline matrix, were observed in nano-sized amorphous bands that produce dislocation-like local shear strains. These experimental results provide direct experimental evidence that the formation of amorphous shear bands in boron carbide results from the disassembly of the icosahedra, driven by shear stresses.

  4. The complex band structure for armchair graphene nanoribbons

    Institute of Scientific and Technical Information of China (English)

    Zhang Liu-Jun; Xia Tong-Sheng

    2010-01-01

    Using a tight binding transfer matrix method, we calculate the complex band structure of armchair graphene nanoribbons. The real part of the complex band structure calculated by the transfer matrix method fits well with the bulk band structure calculated by a Hermitian matrix. The complex band structure gives extra information on carrier's decay behaviour. The imaginary loop connects the conduction and valence band, and can profoundly affect the characteristics of nanoscale electronic device made with graphene nanoribbons. In this work, the complex band structure calculation includes not only the first nearest neighbour interaction, but also the effects of edge bond relaxation and the third nearest neighbour interaction. The band gap is classified into three classes. Due to the edge bond relaxation and the third nearest neighbour interaction term, it opens a band gap for N= 3M-1. The band gap is almost unchanged for N = 3M + 1, but decreased for N = 3M. The maximum imaginary wave vector length provides additional information about the electrical characteristics of graphene nmaoribbons, and is also classified into three classes.

  5. Surface and bulk electronic structure of unconventional superconductor Sr_2RuO_4: unusual splitting of the beta-band

    OpenAIRE

    Zabolotnyy, V. B.; Carleschi, E.; Kim, T K; Kordyuk, A. A.; Trinckauf, J.; Geck, J.; Evtushinsky, D. V.; Doyle, B.P.; Fittipaldi, R.; Cuoco, M.; Vecchione, A.; Buchner, B; Borisenko, S. V.

    2011-01-01

    We present an angle resolved photoemission study of the surface and bulk electronic structure of the single layer ruthenate Sr$_2$RuO$_4$. As the early studies of its electronic structure by photoemission and scanning tunneling microscopy were confronted with a problem of surface reconstruction, surface aging was previously proposed as a possible remedy to access the bulk states. Here we suggest an alternative way by demonstrating that, in the case of Sr$_2$RuO$_4$, circularly polarised light...

  6. The Electronic Structure of Calcium

    DEFF Research Database (Denmark)

    Jan, J.-P.; Skriver, Hans Lomholt

    1981-01-01

    The electronic structure of calcium under pressure is re-examined by means of self-consistent energy band calculations based on the local density approximation and using the linear muffin-tin orbitals (LMTO) method with corrections to the atomic sphere approximation included. At zero pressure...

  7. Electronic pairing mechanism due to band modification in a two-band model: Tc evaluation

    International Nuclear Information System (INIS)

    Following the electronic model developed by us previously (Mizia and Romanowski, Mizia) we estimate the superconducting transition temperature in a simple electronic two-band model for materials characterized by a broad superconducting band and a narrow level within the same energy range. A large electron deformation coupling constant and large electron correlation effects are assumed. It is shown that high-temperature superconductivity is entirely possible within a range of reasonable electronic parameters. This model does not assume any artificial interactions to obtain a negative pairing potential. Instead, the negative part of the electronic interaction potential comes from the modification of the electron dispersion relation with growing number of superconducting pairs. Such a modification is possible in soft electronic systems, i.e. in systems partial to band modification due to large internal stresses, strong electronic correlation effects and broad band narrow level charge transfer during the superconducting transition. (orig.)

  8. Crystal and electronic structures and high-pressure behavior of AgSO4, a unique narrow band gap antiferromagnetic semiconductor: LDA(+U) picture.

    Science.gov (United States)

    Derzsi, Mariana; Stasiewicz, Juliusz; Grochala, Wojciech

    2011-09-01

    We demonstrate that DFT calculations performed with the local density approximation (LDA) allow for significantly better reproduction of lattice constants, the unit cell volume and the density of Ag(II)SO(4) than those done with generalized gradient approximation (GGA). The LDA+U scheme, which accounts for electronic correlation effects, enables the accurate prediction of the magnetic superexchange constant of this strongly correlated material and its band gap at the Fermi level. The character of the band gap places the compound on the borderline between a Mott insulator and a charge transfer insulator. The size of the band gap (0.82 eV) indicates that AgSO(4) is a ferrimagnetic semiconductor, and possibly an attractive material for spintronics. A bulk modulus of 27.0 GPa and a compressibility of 0.037 GPa(-1) were determined for AgSO(4) from the third-order Birch-Murnaghan isothermal equation of state up to 20 GPa. Several polymorphic types compete with the ambient pressure P-1 phase as the external pressure is increased. The P-1 phase is predicted to resist pressure-induced metallization up to at least 20 GPa.

  9. Crystal and electronic structures and high-pressure behavior of AgSO4, a unique narrow band gap antiferromagnetic semiconductor: LDA(+U) picture.

    Science.gov (United States)

    Derzsi, Mariana; Stasiewicz, Juliusz; Grochala, Wojciech

    2011-09-01

    We demonstrate that DFT calculations performed with the local density approximation (LDA) allow for significantly better reproduction of lattice constants, the unit cell volume and the density of Ag(II)SO(4) than those done with generalized gradient approximation (GGA). The LDA+U scheme, which accounts for electronic correlation effects, enables the accurate prediction of the magnetic superexchange constant of this strongly correlated material and its band gap at the Fermi level. The character of the band gap places the compound on the borderline between a Mott insulator and a charge transfer insulator. The size of the band gap (0.82 eV) indicates that AgSO(4) is a ferrimagnetic semiconductor, and possibly an attractive material for spintronics. A bulk modulus of 27.0 GPa and a compressibility of 0.037 GPa(-1) were determined for AgSO(4) from the third-order Birch-Murnaghan isothermal equation of state up to 20 GPa. Several polymorphic types compete with the ambient pressure P-1 phase as the external pressure is increased. The P-1 phase is predicted to resist pressure-induced metallization up to at least 20 GPa. PMID:21267751

  10. One-Dimensional Anisotropic Band Gap Structure

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The band gap structure of one-dimensional anisotropic photonic crystal has been studied by means of the transfer matrix formalism. From the analytic expressions and numeric calculations we see some general characteristics of the band gap structure of anisotropic photonic crystals, each band separates into two branches and the two branches react to polarization sensitively. In the practical case of oblique incidence, gaps move towards high frequency when the angle of incidence increases. Under some special conditions, the two branches become degenerate again.

  11. Band structure analysis in SiGe nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Amato, Michele [' Centro S3' , CNR-Istituto Nanoscienze, via Campi 213/A, 41100 Modena (Italy); Dipartimento di Scienze e Metodi dell' Ingegneria, Universita di Modena e Reggio Emilia, via Amendola 2 Pad. Morselli, I-42100 Reggio Emilia (Italy); Palummo, Maurizia [European Theoretical Spectroscopy Facility (ETSF) (Italy); CNR-INFM-SMC, Dipartimento di Fisica, Universita di Roma, ' Tor Vergata' , via della Ricerca Scientifica 1, 00133 Roma (Italy); Ossicini, Stefano, E-mail: stefano.ossicini@unimore.it [' Centro S3' , CNR-Istituto Nanoscienze, via Campi 213/A, 41100 Modena (Italy) and Dipartimento di Scienze e Metodi dell' Ingegneria, Universita di Modena e Reggio Emilia, via Amendola 2 Pad. Morselli, I-42100 Reggio Emilia (Italy) and European Theoretical Spectroscopy Facility - ETSF (Italy) and Centro Interdipartimentale ' En and Tech' , Universita di Modena e Reggio Emilia, via Amendola 2 Pad. Morselli, I-42100 Reggio Emilia (Italy)

    2012-06-05

    One of the main challenges for Silicon-Germanium nanowires (SiGe NWs) electronics is the possibility to modulate and engine their electronic properties in an easy way, in order to obtain a material with the desired electronic features. Diameter and composition constitute two crucial ways for the modification of the band gap and of the band structure of SiGe NWs. Within the framework of density functional theory we present results of ab initio calculations regarding the band structure dependence of SiGe NWs on diameter and composition. We point out the main differences with respect to the case of pure Si and Ge wires and we discuss the particular features of SiGe NWs that are useful for future technological applications.

  12. Phononic band gap structures as optimal designs

    DEFF Research Database (Denmark)

    Jensen, Jakob Søndergaard; Sigmund, Ole

    2003-01-01

    In this paper we use topology optimization to design phononic band gap structures. We consider 2D structures subjected to periodic loading and obtain the distribution of two materials with high contrast in material properties that gives the minimal vibrational response of the structure. Both in-plane...... and out-of-plane vibrations are considered....

  13. Electronic structure and band alignments of ZnTe/CrTe(0 0 1), CdSe/CrTe(0 0 1) and CdTe/CrTe(0 0 1) interfaces

    Indian Academy of Sciences (India)

    F Ahmadian; R Zare

    2011-08-01

    All-electron full potential calculations based on spin density functional theory were performed to study cubic zincblende (ZB) and hexagonal NiAs structures of bulk CrTe and ZnTe/CrTe(0 0 1), CdTe/CrTe(0 0 1) and CdSe/CrTe(0 0 1) interfaces. The lattice mismatch effect in ZB CrTe and magnetic properties of CrTe in the ideal ZB CrTe structure were investigated. The band alignment properties of the ZnTe/CrTe(0 0 1), CdTe/CrTe(0 0 1) and CdSe/CrTe(0 0 1) interfaces were computed and a rather large minority valence band offset of about 1.09 eV was observed in ZnTe/CrTe(0 0 1) heterojunction. Also in the CdTe/CrTe(0 0 1) and CdSe/CrTe(0 0 1) interfaces, the conduction band minimum of minority spin in CrTe was above the conduction band minimum of CdTe and CdSe and so the majority spin electrons could be directly injected to both semiconductors, indicating the possibility of highly efficient spin injection into the CdSe and CdTe semiconductors.

  14. Electronic structure and band gap of zinc spinel oxides beyond LDA: ZnAl{sub 2}O{sub 4}, ZnGa{sub 2}O{sub 4} and ZnIn{sub 2}O{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Dixit, H; Saniz, R; Lamoen, D; Partoens, B [CMT-group and EMAT, Departement Fysica, Universiteit Antwerpen Groenenborgerlaan 171, B-2020 Antwerpen (Belgium); Tandon, N [Instituut voor Kern- en Stralingsfysica, K U Leuven Celestijnenlaan 200D, B-3001 Leuven (Belgium); Cottenier, S; Van Speybroeck, V; Waroquier, M, E-mail: Hemant.Dixit@ua.ac.be [Center for Molecular Modeling, Ghent University Technologiepark 903, 9052 Zwijnaarde (Belgium)

    2011-06-15

    We examine the electronic structure of the family of ternary zinc spinel oxides ZnX{sub 2}O{sub 4} (X=Al, Ga and In). The band gap of ZnAl{sub 2}O{sub 4} calculated using density functional theory (DFT) is 4.25 eV and is overestimated compared with the experimental value of 3.8-3.9 eV. The DFT band gap of ZnGa{sub 2}O{sub 4} is 2.82 eV and is underestimated compared with the experimental value of 4.4-5.0 eV. Since DFT typically underestimates the band gap in the oxide system, the experimental measurements for ZnAl{sub 2}O{sub 4} probably require a correction. We use two first-principles techniques capable of describing accurately the excited states of semiconductors, namely the GW approximation and the modified Becke-Johnson (MBJ) potential approximation, to calculate the band gap of ZnX{sub 2}O{sub 4}. The GW and MBJ band gaps are in good agreement with each other. In the case of ZnAl{sub 2}O{sub 4}, the predicted band gap values are >6 eV, i.e. {approx}2 eV larger than the only reported experimental value. We expect future experimental work to confirm our results. Our calculations of the electron effective masses and the second band gap indicate that these compounds are very good candidates to act as transparent conducting host materials.

  15. Many-electron bands in transition metal compounds

    NARCIS (Netherlands)

    Stoyanova, A.; de Graaf, C.; Broer, R.; Simos, TE; Maroulis, G

    2007-01-01

    A new method is presented for generating correlated many-electron bands for localized excited states, hole states and added-electron states in extended systems with strong electron correlation effects. The method allows for a rigorous treatment of the local electronic response that accompanies the e

  16. Electronic structure of layered quaternary chalcogenide materials for band-gap engineering: The example of Cs2MIIM3IVQ8

    Science.gov (United States)

    Besse, Rafael; Sabino, Fernando P.; Da Silva, Juarez L. F.

    2016-04-01

    Quaternary chalcogenide materials offer a wide variety of chemical and physical properties, and hence, those compounds have been widely studied for several technological applications. Recently, experimental studies have found that the chalcogenide Cs2MIIM3IVQ8 family (MII = Mg , Zn , Cd , Hg , MIV = Ge , Sn and Q = S , Se , Te ), which includes 24 compounds, yields a wide range of band gaps, namely, from 1.07 to 3.4 eV, and hence, they have attracted great interest. To obtain an improved atomistic understanding of the role of the cations and anions on the physical properties, we performed a first-principles investigation of the 24 Cs2MIIM3IVQ8 compounds employing density functional theory within semilocal and hybrid exchange-correlation energy functionals and the addition of van der Waals corrections to improve the description of the weakly interacting layers. Our lattice parameters are in good agreement with the available experimental data (i.e., 11 compounds), and the equilibrium volume increases linearly by increasing the atomic number of the chalcogen, which can be explained by the increased atomic radius of the chalcogen atoms from S to Te . We found that van der Waals corrections play a crucial role in the lattice parameter in the stacking direction of the Cs2MIIM3IVQ8 layers, while the binding energy per unit area has similar magnitude as obtained for different layered materials. We obtained that the band gaps follow a linear relation as a function of the unit cell volume, which can be explained by the atomic size of the chalcogen atom and the relative position of the Q p states within the band structure. The fundamental and optical band gaps differ by less than 0.1 eV. The band gaps obtained with the hybrid functional are in good agreement with the available experimental data. Furthermore, we found from the Bader analysis, that the Coulomb interations among the cations and anions play a crucial role on the energetic properties.

  17. Quasiparticle Band Structure of BaS

    Institute of Scientific and Technical Information of China (English)

    LU Tie-Yu; CHEN De-Yan; HUANG Mei-Chun

    2006-01-01

    @@ We calculate the band structure of BaS using the local density approximation and the GW approximation (GWA),i.e. in combination of the Green function G and the screened Coulomb interaction W. The Ba 4d states are treated as valence states. We find that BaS is a direct band-gap semiconductor. The result shows that the GWA band gap (Eg-Gw = 3.921 eV) agrees excellently with the experimental result (Eg-EXPT = 3.88 eV or 3.9eV).

  18. Low Starting Electron Beam Current in Degenerate Band Edge Oscillators

    CERN Document Server

    Othman, Mohamed A K; Figotin, Alexander; Capolino, Filippo

    2016-01-01

    We propose a new principle of operation in vacuum electron-beam-based oscillators that leads to a low beam current for starting oscillations. The principle is based on super synchronous operation of an electron beam interacting with four degenerate electromagnetic modes in a slow-wave structure (SWS). The four mode super synchronous regime is associated with a very special degeneracy condition in the dispersion diagram of a cold periodic SWS called degenerate band edge (DBE). This regime features a giant group delay in the finitelength SWS and low starting-oscillation beam current. The starting beam current is at least an order of magnitude smaller compared to a conventional backward wave oscillator (BWO) of the same length. As a representative example we consider a SWS conceived by a periodically-loaded metallic waveguide supporting a DBE, and investigate starting-oscillation conditions using Pierce theory generalized to coupled transmission lines (CTL). The proposed super synchronism regime can be straightf...

  19. Electronic Energy Band Structure of Si Doped Anatase TiO2%Si掺杂锐钛矿相TiO2的电子能带结构

    Institute of Scientific and Technical Information of China (English)

    郑树凯; 吴国浩; 王芳; 刘磊

    2012-01-01

    The electronic energy band structures, electronic density of states and absorption specta of anatase TiO2 before and after Si doping were calculated using first-principles based on the density functional theory. The results indicate that the band gap of anatase TiO2 is enlarged about 0.048 eV by Si doping. The valence band and conduction band of anatase TiO2 before Si doping are mainly composed of O 2p and Ti 3d orbitals. After Si doping, the valence band and conduction band of anatase TiO2 are mainly composed of Si 3p, Ti 4s and Ti 3d orbitals. Si doping results in a blue shift of absorption edge of anatase TiO2.%利用基于密度泛函理论的第一性原理方法对Si掺杂前、后锐钛矿相TiO2的电子能带结构、电子态密度以及吸收光谱进行计算.结果表明,Si掺杂导致锐钛矿相TiO2的禁带宽度略增大0.048 eV;掺杂前锐钛矿相TiO2的价带和导带主要由O的2p和Ti的3d轨道构成,Si掺杂后其价带和导带主要由Si的3p、Ti的4s和Ti的3d轨道构成;Si掺杂可导致锐钛矿相TiO2的吸收边蓝移.

  20. Maximizing band gaps in plate structures

    DEFF Research Database (Denmark)

    Halkjær, Søren; Sigmund, Ole; Jensen, Jakob Søndergaard

    2006-01-01

    Band gaps, i.e., frequency ranges in which waves cannot propagate, can be found in elastic structures for which there is a certain periodic modulation of the material properties or structure. In this paper, we maximize the band gap size for bending waves in a Mindlin plate. We analyze an infinite...... periodic plate using Bloch theory, which conveniently reduces the maximization problem to that of a single base cell. Secondly, we construct a finite periodic plate using a number of the optimized base cells in a postprocessed version. The dynamic properties of the finite plate are investigated...

  1. Emission bands of phosphorus and calculation of band structure of rare earth phosphides

    International Nuclear Information System (INIS)

    The method of x-ray emission spectroscopy has been used to investigate the electronic structure of monophosphides of rare-earth metals (REM). The fluorescence K bands of phosphorus have been obtained in LaP, PrP, SmP, GdP, TbP, DyP, HoP, ErP, TmP, YbP, and LuP and also the Lsub(2,3) bands of phosphorus in ErP, TmP, YbP, and LuP. Using the Green function technique involving the muffin-tin potential, the energy spectrum for ErP has been calculated in the single-electron approximation. The hystogram of electronic state distribution N(E) is compared with the experimental K and Lsub(2,3) bands of phosphorus in ErP. The agreement between the main details of N(E) and that of x-ray spectra allows to state that the model used provides a good description of the electron density distribution in crystals of REM monophosphides. In accordance with the character of the N(E) distribution the compounds under study are classified as semimetals or semiconductors with a very narrow forbidden band

  2. Bulk band structure of Bi2Te3

    DEFF Research Database (Denmark)

    Michiardi, Matteo; Aguilera, Irene; Bianchi, Marco;

    2014-01-01

    The bulk band structure of Bi2Te3 has been determined by angle-resolved photoemission spectroscopy and compared to first-principles calculations. We have performed calculations using the local density approximation (LDA) of density functional theory and the one-shot GW approximation within the all......-electron full-potential linearized augmented-plane-wave (FLAPW) formalism, fully taking into account spin-orbit coupling. Quasiparticle effects produce significant changes in the band structure of Bi2Te3 when compared to LDA. Experimental and calculated results are compared in the spectral regions where...... distinct differences between the LDA and GW results are present. Overall a superior agreement with GW is found, highlighting the importance of many-body effects in the band structure of this family of topological insulators....

  3. Electronic structure of PCBM

    Institute of Scientific and Technical Information of China (English)

    Sheng Chun-Qi; Wang Peng; Shen Ying; Li Yan-Jun; Zhang Wen-Hua; Xu Fa-Qiang; Zhu Jun-Fa; Li Hong-Nian; Lai Guo-Qiao

    2012-01-01

    We have studied the electronic structure of [6,6]-phenyl-C61-butyric-acid-methyl-ester (PCBM) using synchrotron radiation photoelectron spectroscopy (PES) measurements and first-principles calculations.The PES spectrum of the entire occupied valence band is reported,which exhibits abundant spectral features from the Fermi level to ~ 24 eV binding energy. All the spectral features are broadened as compared with the cases of C60. The reasons for the broadening are analysed by comparing the experimental data with the calculated energy levels and density of states.Special attention is paid to the analysis of the C60 highest occupied molecular orbital (HOMO)-1 derived states,which can play a crucial role in the bonding at the interfaces of PCBM/polymer blenders or PCBM/electrodes.Besides the well-known energy level splitting of the C60 backbone caused by the lowered symmetry,C 2p states from the side chain mix or hybridize with the molecular orbitals of parent C60.The contribution of the O 2p states can substantially modify the PES spectrum.

  4. Design of smooth orthogonal wavelets with beautiful structure from 2-band to 4-band

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    A complete algorithm to design 4-band orthogonal wavelets with beautiful structure from 2-band orthogonal wavelets is presented. For more smoothness, the conception of transfer vanishing moment is introduced by transplanting the requirements of vanishing moment from the 4-band wavelets to the 2-band ones. Consequently, the design of 4-band orthogonal wavelets with P vanishing moments and beautiful structure from 2-band ones with P transfer vanishing moments is completed.

  5. Quasi-particle electronic band structure and alignment of the V-VI-VII semiconductors SbSI, SbSBr, and SbSeI for solar cells

    Science.gov (United States)

    Butler, Keith T.; McKechnie, Scott; Azarhoosh, Pooya; van Schilfgaarde, Mark; Scanlon, David O.; Walsh, Aron

    2016-03-01

    The ternary V-VI-VII chalcohalides consist of one cation and two anions. Trivalent antimony—with a distinctive 5s2 electronic configuration—can be combined with a chalcogen (e.g., S or Se) and halide (e.g., Br or I) to produce photoactive ferroelectric semiconductors with similarities to the Pb halide perovskites. We report—from relativistic quasi-particle self-consistent GW theory—that these materials have a multi-valley electronic structure with several electron and hole basins close to the band extrema. We predict ionisation potentials of 5.3-5.8 eV from first-principles for the three materials, and assess electrical contacts that will be suitable for achieving photovoltaic action from these unconventional compounds.

  6. Ultrafast Band Structure Control of a Two-Dimensional Heterostructure.

    Science.gov (United States)

    Ulstrup, Søren; Čabo, Antonija Grubišić; Miwa, Jill A; Riley, Jonathon M; Grønborg, Signe S; Johannsen, Jens C; Cacho, Cephise; Alexander, Oliver; Chapman, Richard T; Springate, Emma; Bianchi, Marco; Dendzik, Maciej; Lauritsen, Jeppe V; King, Phil D C; Hofmann, Philip

    2016-06-28

    The electronic structure of two-dimensional (2D) semiconductors can be significantly altered by screening effects, either from free charge carriers in the material or by environmental screening from the surrounding medium. The physical properties of 2D semiconductors placed in a heterostructure with other 2D materials are therefore governed by a complex interplay of both intra- and interlayer interactions. Here, using time- and angle-resolved photoemission, we are able to isolate both the layer-resolved band structure and, more importantly, the transient band structure evolution of a model 2D heterostructure formed of a single layer of MoS2 on graphene. Our results reveal a pronounced renormalization of the quasiparticle gap of the MoS2 layer. Following optical excitation, the band gap is reduced by up to ∼400 meV on femtosecond time scales due to a persistence of strong electronic interactions despite the environmental screening by the n-doped graphene. This points to a large degree of tunability of both the electronic structure and the electron dynamics for 2D semiconductors embedded in a van der Waals-bonded heterostructure. PMID:27267820

  7. Hubbard-U band-structure methods

    DEFF Research Database (Denmark)

    Albers, R.C.; Christensen, Niels Egede; Svane, Axel

    2009-01-01

    are inconsistent with what the calculations actually do. Although many of these calculations are often treated as essentially first-principles calculations, in fact, we argue that they should be viewed from an entirely different point of view, namely, as based on phenomenological many-body corrections to band......The last decade has seen a large increase in the number of electronic-structure calculations that involve adding a Hubbard term to the local-density approximation band-structure Hamiltonian. The Hubbard term is then determined either at the mean-field level or with sophisticated many......-body techniques such as using dynamical mean-field theory. We review the physics underlying these approaches and discuss their strengths and weaknesses in terms of the larger issues of electronic structure that they involve. In particular, we argue that the common assumptions made to justify such calculations...

  8. High spin band structure in 139Nd

    Institute of Scientific and Technical Information of China (English)

    XU Qiang; ZHU Sheng-Jiang; CHE Xing-Lai; DING Huai-Bo; GU Long; ZHU Li-Hua; WU Xiao-Guang; LIU Ying; HE Chuang-Ye; LI Li-Hua; PAN Bo; HAO Xin; LI Guang-Sheng

    2009-01-01

    High-spin states in 139Nd nucleus have been reinvestigated with the reaction 128Te (16O, 5n) at a beam energy of 90 MeV. The level scheme has been expanded with spin up to 47/2 h. At the low spin states,the yrast collective structure built on the vh(-1)(11/2) multiplet shows a transitional shape with γ≈32° according to calculations of the triaxial rotor-plus-particle model. Three collective oblate bands with γ~-60° at the high spin states were identified for the first time. A band crossing is observed around hw ~0.4 MeV in one oblate band based on the 25/2- level.

  9. New linear accelerator (Linac) design based on C-band accelerating structures for SXFEL facility

    Institute of Scientific and Technical Information of China (English)

    ZHANG Meng; GU Qiang

    2011-01-01

    A C-band accelerator structure is one promising technique for a compact XFEL facility.It is also attractive in beam dynamics in maintaining a high quality electron beam,which is an important factor in the performance of a free electron laser.In this paper,a comparison between traditional S-band and C-band accelerating structures is made based on the linac configuration of a Shanghai Soft X-ray Free Electron Laser (SXFEL) facility.Throughout the comprehensive simulation,we conclude that the C-band structure is much more competitive.

  10. Electronic structure of hcp transition metals

    DEFF Research Database (Denmark)

    Jepsen, O.; Andersen, O. Krogh; Mackintosh, A. R.

    1975-01-01

    Using the linear muffin-tin-orbital method described in the previous paper, we have calculated the electronic structures of the hcp transition metals, Zr, Hf, Ru, and Os. We show how the band structures of these metals may be synthesized from the sp and d bands, and illustrate the effects...... mRy. Very small pieces of Fermi surface, which have not yet been observed experimentally, are predicted for Os. The limited amount of experimental information available for Zr can be fairly satisfactorily interpreted if the calculated d bands are raised by about 10-20 mRy relative to the sp bands...

  11. Complex band structure of topological insulator Bi2Se3.

    Science.gov (United States)

    Betancourt, J; Li, S; Dang, X; Burton, J D; Tsymbal, E Y; Velev, J P

    2016-10-01

    Topological insulators are very interesting from a fundamental point of view, and their unique properties may be useful for electronic and spintronic device applications. From the point of view of applications it is important to understand the decay behavior of carriers injected in the band gap of the topological insulator, which is determined by its complex band structure (CBS). Using first-principles calculations, we investigate the dispersion and symmetry of the complex bands of Bi2Se3 family of three-dimensional topological insulators. We compare the CBS of a band insulator and a topological insulator and follow the CBS evolution in both when the spin-orbit interaction is turned on. We find significant differences in the CBS linked to the topological band structure. In particular, our results demonstrate that the evanescent states in Bi2Se3 are non-trivially complex, i.e. contain both the real and imaginary contributions. This explains quantitatively the oscillatory behavior of the band gap obtained from Bi2Se3 (0 0 0 1) slab calculations. PMID:27485021

  12. Electronic properties of cubic TaC{sub x}N{sub 1-x}: A comparative study using self-consistent cluster and ab initio band-structure calculations and X-ray spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Lavrentyev, A.A.; Gabrelian, B.V.; Vorzhev, V.B.; Nikiforov, I.Ya. [Department of Physics, Don State Technical University, Gagarin Sq. 1, Rostov-on-Don (Russian Federation); Khyzhun, O.Yu. [Frantsevych Institute for Problems of Materials Science, National Academy of Sciences of Ukraine, 3 Krzhyzhanivsky Street, UA-03142 Kyiv (Ukraine)], E-mail: khyzhun@ipms.kiev.ua

    2009-03-20

    To investigate the influence of substitution of carbon atoms for nitrogen atoms in the cubic TaC{sub x}N{sub 1-x} carbonitrides, total and partial densities of states were calculated for TaC, TaC{sub 0.5}N{sub 0.5} and TaN compounds (NaCl structure) using the self-consistent cluster (with the FEFF8 code) and ab initio band-structure augmented plane wave + local orbitals (APW + LO) methods. In the present work a rather good agreement of the theoretical FEFF8 and APW + LO data for electronic properties of the TaC{sub x}N{sub 1-x} system under consideration was obtained. The results indicate that a strong hybridization of the Ta 5d- and C(N) 2p-like states is characteristic for the valence band of the TaC{sub x}N{sub 1-x} carbonitrides. When going from TaC to TaN through the TaC{sub 0.5}N{sub 0.5} carbonitride, the main maxima of curves representing total and partial Ta 5d densities of states shift in the direction opposite to the position of the Fermi level. In the above sequence of compounds, an increase of occupation of the near-Fermi sub-band formed by contributions of Ta 5d(t{sub 2g}) states has been detected. The theoretical FEFF8 and APW + LO results for the electronic structure of the TaC{sub x}N{sub 1-x} carbonitrides were found to be in excellent agreement with the experimental data derived in the present work employing X-ray photoelectron, emission and absorption spectroscopy methods for cubic TaC{sub 0.98}, TaC{sub 0.52}N{sub 0.49} and TaN{sub 0.97} compounds.

  13. Complex banded structures in directional solidification processes.

    Science.gov (United States)

    Korzhenevskii, A L; Rozas, R E; Horbach, J

    2016-01-27

    A combination of theory and numerical simulation is used to investigate impurity superstructures that form in rapid directional solidification (RDS) processes in the presence of a temperature gradient and a pulling velocity with an oscillatory component. Based on a capillary wave model, we show that the RDS processes are associated with a rich morphology of banded structures, including frequency locking and the transition to chaos.

  14. Terra MODIS Band 27 Electronic Crosstalk Effect and Its Removal

    Science.gov (United States)

    Sun, Junqiang; Xiong, Xiaoxiong; Madhavan, Sriharsha; Wenny, Brian

    2012-01-01

    The MODerate-resolution Imaging Spectroradiometer (MODIS) is one of the primary instruments in the NASA Earth Observing System (EOS). The first MODIS instrument was launched in December, 1999 on-board the Terra spacecraft. MODIS has 36 bands, covering a wavelength range from 0.4 micron to 14.4 micron. MODIS band 27 (6.72 micron) is a water vapor band, which is designed to be insensitive to Earth surface features. In recent Earth View (EV) images of Terra band 27, surface feature contamination is clearly seen and striping has become very pronounced. In this paper, it is shown that band 27 is impacted by electronic crosstalk from bands 28-30. An algorithm using a linear approximation is developed to correct the crosstalk effect. The crosstalk coefficients are derived from Terra MODIS lunar observations. They show that the crosstalk is strongly detector dependent and the crosstalk pattern has changed dramatically since launch. The crosstalk contributions are positive to the instrument response of band 27 early in the mission but became negative and much larger in magnitude at later stages of the mission for most detectors of the band. The algorithm is applied to both Black Body (BB) calibration and MODIS L1B products. With the crosstalk effect removed, the calibration coefficients of Terra MODIS band 27 derived from the BB show that the detector differences become smaller. With the algorithm applied to MODIS L1B products, the Earth surface features are significantly removed and the striping is substantially reduced in the images of the band. The approach developed in this report for removal of the electronic crosstalk effect can be applied to other MODIS bands if similar crosstalk behaviors occur.

  15. The band-gap enhanced photovoltaic structure

    Science.gov (United States)

    Tessler, Nir

    2016-05-01

    We critically examine the recently suggested structure that was postulated to potentially add 50% to the photo-conversion efficiency of organic solar cells. We find that the structure could be realized using stepwise increase in the gap as long as the steps are not above 0.1 eV. We also show that the charge extraction is not compromised due to an interplay between the contact's space charge and the energy level modification, which result in a flat energy band at the extracting contact.

  16. Electronic band structure of highly mismatched GaN{sub 1−x}Sb{sub x} alloys in a broad composition range

    Energy Technology Data Exchange (ETDEWEB)

    Segercrantz, N., E-mail: natalie.segercrantz@aalto.fi [Department of Applied Physics, Aalto University, P.O. Box 14100, FIN-00076 Aalto Espoo (Finland); Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Yu, K. M. [Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Department of Physics and Materials Science, City University of Hong Kong, Kowloon (Hong Kong); Ting, M. [Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Mechanical Engineering Department, University of California, Berkeley, California 94720 (United States); Sarney, W. L.; Svensson, S. P. [U.S. Army Research Laboratory, 2800 Powder Mill Road, Adelphi, Maryland 20783 (United States); Novikov, S. V.; Foxon, C. T. [School of Physics and Astronomy, University of Nottingham, Nottingham NG7 2RD (United Kingdom); Walukiewicz, W. [Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States)

    2015-10-05

    In this letter, we study the optical properties of GaN{sub 1−x}Sb{sub x} thin films. Films with an Sb fraction up to 42% were synthesized by alternating GaN-GaSb layers at a constant temperature of 325 °C. The measured optical absorption data of the films are interpreted using a modified band anticrossing model that is applicable to highly mismatched alloys such as GaN{sub 1−x}Sb{sub x} in the entire composition range. The presented model allows us to more accurately determine the band gap as well as the band edges over the entire composition range thereby providing means for determining the composition for, e.g., efficient spontaneous photoelectrochemical cell applications.

  17. Electron correlations in narrow energy bands: modified polar model approach

    Directory of Open Access Journals (Sweden)

    L. Didukh

    2008-09-01

    Full Text Available The electron correlations in narrow energy bands are examined within the framework of the modified form of polar model. This model permits to analyze the effect of strong Coulomb correlation, inter-atomic exchange and correlated hopping of electrons and explain some peculiarities of the properties of narrow-band materials, namely the metal-insulator transition with an increase of temperature, nonlinear concentration dependence of Curie temperature and peculiarities of transport properties of electronic subsystem. Using a variant of generalized Hartree-Fock approximation, the single-electron Green's function and quasi-particle energy spectrum of the model are calculated. Metal-insulator transition with the change of temperature is investigated in a system with correlated hopping. Processes of ferromagnetic ordering stabilization in the system with various forms of electronic DOS are studied. The static conductivity and effective spin-dependent masses of current carriers are calculated as a function of electron concentration at various DOS forms. The correlated hopping is shown to cause the electron-hole asymmetry of transport and ferromagnetic properties of narrow band materials.

  18. Band structural properties of MoS2 (molybdenite)

    International Nuclear Information System (INIS)

    Semiconductivity and superconductivity in MoS2 (molybdenite) can be understood in terms of the band structure of MoS2. The band structural properties of MoS2 are presented here. The energy dependence of nsub(eff) and epsilon(infinity)sub(eff) is investigated. Using calculated values of nsub(eff) and epsilon(infinity)sub(eff), the Penn gap has been determined. The value thus obtained is shown to be in good agreement with the reflectivity data and also with the value obtained from the band structure. The Ravindra and Srivastava formula has been shown to give values for the isobaric temperature gradient of Esub(G)[(deltaEsub(G)/deltaT)sub(P)], which are in agreement with the experimental data, and the contribution to (deltaEsub(G)/deltaT)sub(P) due to the electron lattice interaction has been evaluated. In addition, the electronic polarizability has been calculated using a modified Lorentz-Lorenz relation. (author)

  19. Electronic Structure of Gadolinium Calcium Oxoborate

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, A; Adams, J; Schaffers, K

    2004-07-01

    Gadolinium calcium oxoborate (GdCOB) is a nonlinear optical material that belongs to the calcium--rare-earth (R) oxoborate family, with general composition Ca{sub 4}RO(BO{sub 3}){sub 3} (R{sup 3+} = La, Sm, Gd, Lu, Y). X-ray photoemission was applied to study the valence band electronic structure and surface chemistry of this material. High resolution photoemission measurements on the valence band electronic structure and Gd 3d and 4d, Ca 2p, B 1s and O 1s core lines were used to evaluate the surface and near surface chemistry. These results provide measurements of the valence band electronic structure and surface chemistry of this rare-earth oxoborate.

  20. Analytical band Monte Carlo analysis of electron transport in silicene

    Science.gov (United States)

    Yeoh, K. H.; Ong, D. S.; Ooi, C. H. Raymond; Yong, T. K.; Lim, S. K.

    2016-06-01

    An analytical band Monte Carlo (AMC) with linear energy band dispersion has been developed to study the electron transport in suspended silicene and silicene on aluminium oxide (Al2O3) substrate. We have calibrated our model against the full band Monte Carlo (FMC) results by matching the velocity-field curve. Using this model, we discover that the collective effects of charge impurity scattering and surface optical phonon scattering can degrade the electron mobility down to about 400 cm2 V‑1 s‑1 and thereafter it is less sensitive to the changes of charge impurity in the substrate and surface optical phonon. We also found that further reduction of mobility to ∼100 cm2 V‑1 s‑1 as experimentally demonstrated by Tao et al (2015 Nat. Nanotechnol. 10 227) can only be explained by the renormalization of Fermi velocity due to interaction with Al2O3 substrate.

  1. Engineering flat electronic bands in quasiperiodic and fractal loop geometries

    Science.gov (United States)

    Nandy, Atanu; Chakrabarti, Arunava

    2015-11-01

    Exact construction of one electron eigenstates with flat, non-dispersive bands, and localized over clusters of various sizes is reported for a class of quasi-one-dimensional looped networks. Quasiperiodic Fibonacci and Berker fractal geometries are embedded in the arms of the loop threaded by a uniform magnetic flux. We work out an analytical scheme to unravel the localized single particle states pinned at various atomic sites or over clusters of them. The magnetic field is varied to control, in a subtle way, the extent of localization and the location of the flat band states in energy space. In addition to this we show that an appropriate tuning of the field can lead to a re-entrant behavior of the effective mass of the electron in a band, with a periodic flip in its sign.

  2. Electron-beam heat treatment of thin band of low-carbon steel

    International Nuclear Information System (INIS)

    Using the methods of raster electron microscopy, X-ray structural and chemical analysis and also X-ray microanalysis, the change was studied in the mechanical properies of a band made of low-carbon steel 08 kp that takes place after electron-beam heat treatment. It has been shown that the above change is due to a specific character of the α reversible γ phase transition. After electron-beam treatment under optimum conditions, the properties of the band made of steel 08 kp and 0.15 mm thick (plasticity, ultimate strength, etc.) are similar to those obtained using the conventional procedures (annealing and skin pass rolling)

  3. Valence band structure of binary chalcogenide vitreous semiconductors by high-resolution XPS

    Energy Technology Data Exchange (ETDEWEB)

    Kozyukhin, S., E-mail: sergkoz@igic.ras.ru [Russian Academy of Science, Institute of General and Inorganic Chemistry (Russian Federation); Golovchak, R. [Lviv Scientific Research Institute of Materials of SRC ' Carat' (Ukraine); Kovalskiy, A. [Lehigh University, Department of Materials Science and Engineering (United States); Shpotyuk, O. [Lviv Scientific Research Institute of Materials of SRC ' Carat' (Ukraine); Jain, H. [Lehigh University, Department of Materials Science and Engineering (United States)

    2011-04-15

    High-resolution X-ray photoelectron spectroscopy (XPS) is used to study regularities in the formation of valence band electronic structure in binary As{sub x}Se{sub 100-x}, As{sub x}S{sub 100-x}, Ge{sub x}Se{sub 100-x} and Ge{sub x}S{sub 100-x} chalcogenide vitreous semiconductors. It is shown that the highest occupied energetic states in the valence band of these materials are formed by lone pair electrons of chalcogen atoms, which play dominant role in the formation of valence band electronic structure of chalcogen-rich glasses. A well-expressed contribution from chalcogen bonding p electrons and more deep s orbitals are also recorded in the experimental valence band XPS spectra. Compositional dependences of the observed bands are qualitatively analyzed from structural and compositional points of view.

  4. From lattice Hamiltonians to tunable band structures by lithographic design

    Science.gov (United States)

    Tadjine, Athmane; Allan, Guy; Delerue, Christophe

    2016-08-01

    Recently, new materials exhibiting exotic band structures characterized by Dirac cones, nontrivial flat bands, and band crossing points have been proposed on the basis of effective two-dimensional lattice Hamiltonians. Here, we show using atomistic tight-binding calculations that these theoretical predictions could be experimentally realized in the conduction band of superlattices nanolithographed in III-V and II-VI semiconductor ultrathin films. The lithographed patterns consist of periodic lattices of etched cylindrical holes that form potential barriers for the electrons in the quantum well. In the case of honeycomb lattices, the conduction minibands of the resulting artificial graphene host several Dirac cones and nontrivial flat bands. Similar features, but organized in different ways, in energy or in k -space are found in kagome, distorted honeycomb, and Lieb superlattices. Dirac cones extending over tens of meV could be obtained in superlattices with reasonable sizes of the lithographic patterns, for instance in InAs/AlSb heterostructures. Bilayer artificial graphene could be also realized by lithography of a double quantum-well heterostructure. These new materials should be interesting for the experimental exploration of Dirac-based quantum systems, for both fundamental and applied physics.

  5. Electronic structures of TiO2-TCNE, -TCNQ, and -2,6-TCNAQ surface complexes studied by ionization potential measurements and DFT calculations: Mechanism of the shift of interfacial charge-transfer bands

    Science.gov (United States)

    Fujisawa, Jun-ichi; Hanaya, Minoru

    2016-06-01

    Interfacial charge-transfer (ICT) transitions between inorganic semiconductors and π-conjugated molecules allow direct charge separation without loss of energy. This feature is potentially useful for efficient photovoltaic conversions. Charge-transferred complexes of TiO2 nanoparticles with 7,7,8,8-tetracyanoquinodimethane (TCNQ) and its analogues (TCNX) show strong ICT absorption in the visible region. The ICT band was reported to be significantly red-shifted with extension of the π-conjugated system of TCNX. In order to clarify the mechanism of the red-shift, in this work, we systematically study electronic structures of the TiO2-TCNX surface complexes (TCNX; TCNE, TCNQ, 2,6-TCNAQ) by ionization potential measurements and density functional theory (DFT) calculations.

  6. Electronic structure of the actinide dioxides

    International Nuclear Information System (INIS)

    The electronic properties of the fluorite structured actinide dioxides have been investigated using the linear muffin tin orbital method in the atomic sphere approximation. CaF2 with the same structure was also studied because of the relative simplicity of its electronic structure and the greater amount of experimental data available. Band structures were calculated both non self consistently and self consistently. In the non self consistent calculations the effect of changing the approximation to the exchange-correlation potential and the starting atomic configurations was examined. Using the concepts of canonical bands the effects of hybridization were investigated. In particular the 5f electrons included in the band picture were found to mix more strongly into the valence band than indicated by experiment. On this basis the 5f electrons were not included in self consistent calculations which in the density functional formalism are capable of yielding ground state properties. Because of the non participation of the f electrons in the bonding UO2 only was considered as representative of the actinide dioxides. For comparison CaF2 was also examined. Using Pettifor's pressure formula to determine the equilibrium condition the lattice constants were calculated to be 0.5% and 5% respectively below the experimental values. (author)

  7. First-principles calculation of the electronic band of ZnO doped with C

    Institute of Scientific and Technical Information of China (English)

    Si Panpan; Su Xiyu; Hou Qinying; Li Yadong; Cheng Wei

    2009-01-01

    Using the first-principles approach based upon the density functional theory (DFT), we have studied the electronic structure of wurtzite ZnO systems doped with C at different sites. When Zn is substituted by C, the system turns from a direct band gap semiconductor into an indirect band gap semiconductor, and donor levels are formed. When O is substituted by C, acceptor levels are formed near the top of the valence band, and thus a p-type transformation of the system is achieved. When the two kinds of substitution coexist, the acceptor levels are compensated for all cases, which is unfavorable for the p-type transformation of the system.

  8. A Theoretical Structure of High School Concert Band Performance

    Science.gov (United States)

    Bergee, Martin J.

    2015-01-01

    This study used exploratory (EFA) and confirmatory factor analysis (CFA) to verify a theoretical structure for high school concert band performance and to test that structure for viability, generality, and invariance. A total of 101 university students enrolled in two different bands rated two high school band performances (a "first"…

  9. Electronic Bands Behaviour at Sinusoidal Potential Presence of Incommensurate Crystals

    OpenAIRE

    Vlokh R.; Vlokh O.; Lukiyanets B.

    2004-01-01

    On the basis of solving the Schrodinger and Mathieu equations, for the case of crystal field perturbed by one-dimensional sinusoidal potential of the modulated phase in uniaxial ferroelectrics, it has been shown that the positions of electronic levels are sensitive to the ratio of periods of the crystal field and the perturbation potential. Considering the energy states as prototypes of bands normalized by perturbation, one can come to the conclusion that the level of the states is the same a...

  10. Particle simulation of dual-band coaxial relativistic backward-wave oscillator with single annular electron beam structure%单电子束双波段同轴相对论返波管粒子模拟

    Institute of Scientific and Technical Information of China (English)

    唐永福; 蒙林; 李海龙; 张斐娜

    2013-01-01

    设计了一种能在C波段和X波段实现稳定双频输出的带有非对称谐振反射腔的单电子束同轴相对论返波振荡器.采用耦合阻抗跃变型慢波结构,使用粒子PIC模拟软件进行了粒子模拟研究.模拟结果显示:轴向电场在系统中的分布得到改进,电子束的能散得到改善.在电子束电压511 kV,电流8.95 kA,引导磁场0.73T的条件下,双频器件实现了8.09 GHz和9.91 GHz的双波段频率稳定输出,平均功率为1.0 GW,波束互作用效率为21.9%,效率高于空心双波段返波管及其他双波段器件.器件辐射功率的拍频为1.82GHz,拍波更为明显和稳定.模拟研究中同时发现,随着慢波结构之间漂移段的变化,双频频率都呈现一种准周期的变化.%A C-band and X-band dual-frequency coaxial relativistic backward-wave oscillator (CRBWO) with an asymmetric resonant reflector and a single annular electron beam structure is designed and investigated in this paper. The improved slow wave structure (SWS) with stepwise variable coupling impedance is employed, and the particle-in-cell (PIC) simulation code is used to investigate the device. The PIC simulation results indicate that the axial electric field in the SWS is enhanced and the energy scatter of the relativistic electron beam (REB) is improved. With an electron beam of 511 kV and 8. 95 kA and an axial magnetic field of 0. 73 T, an average power of 1. 0 GW with power conversion efficiency of 21. 9% is obtained and the two dominant frequencies are 8. 09 GHz and 9. 91 GHz. The efficiency is higher than dual-band non-coaxial RBWO and other dual-band high-power microwave (HPM) generators. A more clear and stable beat radiation microwave power with beat frequency of 1. 82 GHz is acquired, and the dual frequencies both demonstrate periodic-like dependence on the length of the tapered waveguide between the two SWS sections.

  11. Kink Band Instability and Propagation in Layered Structures

    NARCIS (Netherlands)

    Wadee, M.A.; Hunt, G.W.; Peletier, M.A.

    2003-01-01

    A recent two-dimensional prototype model for the initiation of kink banding in compressed layered structures is extended to embrace the two propagation mechanisms of band broadening and band progression. As well as interlayer friction, overburden pressure and layer bending energy, the characteristic

  12. Dual-band electromagnetic band gap structure for noise isolation in mixed signal SiP

    OpenAIRE

    Rotaru, M. D.; Sykulski, J. K.

    2010-01-01

    A compact dual-band electromagnetic band-gap (EBG) structure is proposed. It is shown through numerical simulation using 3D electromagnetic finite element modelling that by adding a slit to the classical mushroom shape an extra resonance is introduced and thus dual-band EBG structures can be built by cascading these new elements. It is also demonstrated that this novel approach can be used to isolate noise in a system such as a dual band transceiver integrated into a mixed signal system in a ...

  13. Band structure of surface barrier states and resonances

    International Nuclear Information System (INIS)

    Full text: G. Binnig and H. Rohrer, Nobel Prize Winners for the invention of the Scanning Tunneling Microscope, write in the opening sentence of one of their papers, co-authored with others : 'One of the fundamental problems in surface physics is obtaining knowledge of the electron-metal-surface interaction potential.' Although it is known that the surface barrier has an 'image' asymptotic form and saturates or weakens closer to the crystal surface, the position of the image tail, momentum dependence of the barrier height and saturation closer to the surface have not been agreed upon by different workers and techniques to this day. Ab initio calculations using the density functional approximation produce locations for the position of the image tail which differ by ∼50% depending on whether the exiting or incoming electron is considered part of the crystal or a classical charge interacting with the electron gas. Very low energy electron diffraction (VLEED), k-resolved inverse photoemission spectroscopy (KRIPES) and 2-photon photoemission spectroscopy (2PPE) are sensitive to the barrier but analyses to date have not yielded consistent conclusions. In this work we have used our plane-wave scattering method to calculate the barrier energy band structure for Cu (001) over the whole SBZ to compare with experimental results from KRIPES and 2PPE data as well as the calculation of Smith et al. This calculation used a parameterized nearly-free-electron function to represent the substrate scattering and could only produce states not resonances which occur outside of bulk band gaps and above the barrier height. As well, no inelastic scattering could be included. We show that inelastic scattering, surface restructuring and an extended data-base must be included for definitive conclusions about details of the barrier. Also, our calculation shows above-barrier resonances are strong and should be measured by experimentalists to extract the momentum dependent saturation and

  14. The electronic structures of solids

    CERN Document Server

    Coles, B R

    2013-01-01

    The Electronic Structures of Solids aims to provide students of solid state physics with the essential concepts they will need in considering properties of solids that depend on their electronic structures and idea of the electronic character of particular materials and groups of materials. The book first discusses the electronic structure of atoms, including hydrogen atom and many-electron atom. The text also underscores bonding between atoms and electrons in metals. Discussions focus on bonding energies and structures in the solid elements, eigenstates of free-electron gas, and electrical co

  15. Band structures of 4f and 5f materials studied by angle-resolved photoelectron spectroscopy

    Science.gov (United States)

    Fujimori, Shin-ichi

    2016-04-01

    Recent remarkable progress in angle-resolved photoelectron spectroscopy (ARPES) has enabled the direct observation of the band structures of 4f and 5f materials. In particular, ARPES with various light sources such as lasers (hν ∼ 7~\\text{eV} ) or high-energy synchrotron radiations (hν ≳ 400~\\text{eV} ) has shed light on the bulk band structures of strongly correlated materials with energy scales of a few millielectronvolts to several electronvolts. The purpose of this paper is to summarize the behaviors of 4f and 5f band structures of various rare-earth and actinide materials observed by modern ARPES techniques, and understand how they can be described using various theoretical frameworks. For 4f-electron materials, ARPES studies of \\text{Ce}M\\text{I}{{\\text{n}}5} (M=\\text{Rh} , \\text{Ir} , and \\text{Co} ) and \\text{YbR}{{\\text{h}}2}\\text{S}{{\\text{i}}2} with various incident photon energies are summarized. We demonstrate that their 4f electronic structures are essentially described within the framework of the periodic Anderson model, and that the band-structure calculation based on the local density approximation cannot explain their low-energy electronic structures. Meanwhile, electronic structures of 5f materials exhibit wide varieties ranging from itinerant to localized states. For itinerant \\text{U}~5f compounds such as \\text{UFeG}{{\\text{a}}5} , their electronic structures can be well-described by the band-structure calculation assuming that all \\text{U}~5f electrons are itinerant. In contrast, the band structures of localized \\text{U}~5f compounds such as \\text{UP}{{\\text{d}}3} and \\text{U}{{\\text{O}}2} are essentially explained by the localized model that treats \\text{U}~5f electrons as localized core states. In regards to heavy fermion \\text{U} -based compounds such as the hidden-order compound \\text{UR}{{\\text{u}}2}\\text{S}{{\\text{i}}2} , their electronic structures exhibit complex behaviors. Their overall band structures

  16. Electron Elevator: Excitations across the Band Gap via a Dynamical Gap State.

    Science.gov (United States)

    Lim, A; Foulkes, W M C; Horsfield, A P; Mason, D R; Schleife, A; Draeger, E W; Correa, A A

    2016-01-29

    We use time-dependent density functional theory to study self-irradiated Si. We calculate the electronic stopping power of Si in Si by evaluating the energy transferred to the electrons per unit path length by an ion of kinetic energy from 1 eV to 100 keV moving through the host. Electronic stopping is found to be significant below the threshold velocity normally identified with transitions across the band gap. A structured crossover at low velocity exists in place of a hard threshold. An analysis of the time dependence of the transition rates using coupled linear rate equations enables one of the excitation mechanisms to be clearly identified: a defect state induced in the gap by the moving ion acts like an elevator and carries electrons across the band gap. PMID:26871327

  17. The electronic structure of core states under extreme compressions

    International Nuclear Information System (INIS)

    At normal density and for modest compressions, the electronic structure of a metal can be accurately described by treating the conduction electrons and their interactions with the usual methods of band theory. The core electrons remain essentially the same as for an isolated free atom and do not participate in the bonding forces responsible for creating a condensed phase. As the density increases, the core electrons begin to ''see'' one another as the overlap of the tails of wave functions can no longer be neglected. The electronic structure of the core electrons is responsible for an effective repulsive interaction that eventually becomes free-electron-like at very high compressions. The electronic structure of the interacting core electrons may be treated in a simple manner using the Atomic Surface Method (ASM). The ASM is a first-principles treatment of the electronic structure involving a rigorous integration of the Schroedinger equation within the atomic-sphere approximation. Solid phase wave functions are constructed from isolated atom wave functions and the band width Wl and the center of gravity of the band Cl are obtained from simple formulas. The ASM can also utilize analytic forms of the atomic wave functions and thus provide direct functional dependence of various aspects of the electronic structure. Of particular use in understanding the behavior of the core electrons, the ASM provides the ability to analytically determine the density dependence of the band widths and positions. The process whereby core states interact with one another is best viewed as the formation of narrow electron bands formed from atomic states. As the core-core overlap increases, the bands increase in width and mean energy. In Sec.3 this picture is further developed and from the ASM one obtains the analytic dependence on density of the relative motion of the different bands. Also in Sec. 3 is a discussion of the transition to free electron bands

  18. Electronic structure of Fe-based superconductors

    Indian Academy of Sciences (India)

    Kalobaran Maiti

    2015-06-01

    Fe-based superconductors have drawn much attention during the last decade due to the presence of superconductivity in materials containing the magnetic element, Fe, and the coexistence of superconductivity and magnetism. Extensive study of the electronic structure of these systems suggested the dominant role of states in their electronic properties, which is significantly different from the cuprate superconductors. In this article, some of our studies of the electronic structure of these fascinating systems employing high-resolution photoemission spectroscopy is reviewed. The combined effect of electron correlation and covalency reveals an interesting scenario in their electronic structure. The contribution of ligand states at the Fermi level is found to be much more significant than indicated in earlier studies. Temperature evolution of the energy bands reveals the signature of transition akin to Lifshitz transition in these systems.

  19. Band Structure Characteristics of Nacreous Composite Materials with Various Defects

    Science.gov (United States)

    Yin, J.; Zhang, S.; Zhang, H. W.; Chen, B. S.

    2016-06-01

    Nacreous composite materials have excellent mechanical properties, such as high strength, high toughness, and wide phononic band gap. In order to research band structure characteristics of nacreous composite materials with various defects, supercell models with the Brick-and-Mortar microstructure are considered. An efficient multi-level substructure algorithm is employed to discuss the band structure. Furthermore, two common systems with point and line defects and varied material parameters are discussed. In addition, band structures concerning straight and deflected crack defects are calculated by changing the shear modulus of the mortar. Finally, the sensitivity of band structures to the random material distribution is presented by considering different volume ratios of the brick. The results reveal that the first band gap of a nacreous composite material is insensitive to defects under certain conditions. It will be of great value to the design and synthesis of new nacreous composite materials for better dynamic properties.

  20. Optical properties and electronic band structure of BiMg2PO6, BiMg2VO6, BiMg2VO6:Pr3+ and BiMg2VO6:Eu3+

    Science.gov (United States)

    Barros, A.; Deloncle, R.; Deschamp, J.; Boutinaud, P.; Chadeyron, G.; Mahiou, R.; Cavalli, E.; Brik, M. G.

    2014-08-01

    The luminescence properties of the yellow pigment BiMg2VO6 are revisited and those of BiMg2PO6, BiMg2VO6:Pr3+ and BiMg2VO6:Eu3+ are described. It is shown that the undoped systems exhibit broad band emission in the green or orange spectral regions, but only upon UV or near UV excitation. In contradiction with a previous report, we found that the blue, host absorbed, photons are lost non-radiatively and do not contribute to the luminescence processes in BiMg2VO6. To understand these experimental results, the optical properties of BiMg2VO6 and BiMg2PO6 are theoretically analysed on the basis of electronic structure diagrams calculated by the DFT method. It is found that the optical transitions are mostly localised within [VO4]3- units or non-regular Bi3+ ions and occur in the UV or near UV regions. The luminescence of the trivalent lanthanide dopants is weak (Eu3+) or unobserved (Pr3+) in BiMg2VO6 which is explained by inefficient energy migration in the host lattice to the impurity sites.

  1. First-principle study of energy band structure of armchair graphene nanoribbons

    Science.gov (United States)

    Ma, Fei; Guo, Zhankui; Xu, Kewei; Chu, Paul K.

    2012-07-01

    First-principle calculation is carried out to study the energy band structure of armchair graphene nanoribbons (AGNRs). Hydrogen passivation is found to be crucial to convert the indirect band gaps into direct ones as a result of enhanced interactions between electrons and nuclei at the edge boundaries, as evidenced from the shortened bond length as well as the increased differential charge density. Ribbon width usually leads to the oscillatory variation of band gaps due to quantum confinement no matter hydrogen passivated or not. Mechanical strain may change the crystal symmetry, reduce the overlapping integral of C-C atoms, and hence modify the band gap further, which depends on the specific ribbon width sensitively. In practical applications, those effects will be hybridized to determine the energy band structure and subsequently the electronic properties of graphene. The results can provide insights into the design of carbon-based devices.

  2. An electronic structure perspective of graphene interfaces

    Science.gov (United States)

    Schultz, Brian J.; Dennis, Robert V.; Lee, Vincent; Banerjee, Sarbajit

    2014-03-01

    The unusual electronic structure of graphene characterized by linear energy dispersion of bands adjacent to the Fermi level underpins its remarkable transport properties. However, for practical device integration, graphene will need to be interfaced with other materials: 2D layered structures, metals (as ad-atoms, nanoparticles, extended surfaces, and patterned metamaterial geometries), dielectrics, organics, or hybrid structures that in turn are constituted from various inorganic or organic components. The structural complexity at these nanoscale interfaces holds much promise for manifestation of novel emergent phenomena and provides a means to modulate the electronic structure of graphene. In this feature article, we review the modifications to the electronic structure of graphene induced upon interfacing with disparate types of materials with an emphasis on iterative learnings from theoretical calculations and electronic spectroscopy (X-ray absorption fine structure (XAFS) spectroscopy, scanning transmission X-ray microscopy (STXM), angle-resolved photoemission spectroscopy (ARPES), and X-ray magnetic circular dichroism (XMCD)). We discuss approaches for engineering and modulating a bandgap in graphene through interfacial hybridization, outline experimental methods for examining electronic structure at interfaces, and overview device implications of engineered interfaces. A unified view of how geometric and electronic structure are correlated at interfaces will provide a rational means for designing heterostructures exhibiting emergent physical phenomena with implications for plasmonics, photonics, spintronics, and engineered polymer and metal matrix composites.

  3. Tuning the electronic band-gap of fluorinated 3C-silicon carbide nanowires

    Science.gov (United States)

    Miranda Durán, Álvaro; Trejo Baños, Alejandro; Pérez, Luis Antonio; Cruz Irisson, Miguel

    The possibility of control and modulation of the electronic properties of silicon carbide nanowires (SiCNWs) by varying the wire diameter is well known. SiCNWs are particularly interesting and technologically important, due to its electrical and mechanical properties, allowing the development of materials with specific electronic features for the design of stable and robust electronic devices. Tuning the band gap by chemical surface passivation constitutes a way for the modification of the electronic band gap of these nanowires. We present, the structural and electronic properties of fluorinated SiCNWs, grown along the [111] crystallographic direction, which are investigated by first principles. We consider nanowires with six diameters, varying from 0.35 nm to 2.13 nm, and eight random covering schemes including fully hydrogen- and fluorine terminated ones. Gibbs free energy of formation and electronic properties were calculated for the different surface functionalization schemes and diameters considered. The results indicate that the stability and band gap of SiCNWs can be tuned by surface passivation with fluorine atoms This work was supported by CONACYT infrastructure project 252749 and UNAM-DGAPA-PAPIIT IN106714. A.M. would like to thank for financial support from CONACyT-Retención. Computing resources from proyect SC15-1-IR-27 of DGTIC-UNAM are acknowledged.

  4. Band structures in Sierpinski triangle fractal porous phononic crystals

    Science.gov (United States)

    Wang, Kai; Liu, Ying; Liang, Tianshu

    2016-10-01

    In this paper, the band structures in Sierpinski triangle fractal porous phononic crystals (FPPCs) are studied with the aim to clarify the effect of fractal hierarchy on the band structures. Firstly, one kind of FPPCs based on Sierpinski triangle routine is proposed. Then the influence of the porosity on the elastic wave dispersion in Sierpinski triangle FPPCs is investigated. The sensitivity of the band structures to the fractal hierarchy is discussed in detail. The results show that the increase of the hierarchy increases the sensitivity of ABG (Absolute band gap) central frequency to the porosity. But further increase of the fractal hierarchy weakens this sensitivity. On the same hierarchy, wider ABGs could be opened in Sierpinski equilateral triangle FPPC; whilst, a lower ABG could be opened at lower porosity in Sierpinski right-angled isosceles FPPCs. These results will provide a meaningful guidance in tuning band structures in porous phononic crystals by fractal design.

  5. Electronic energy band structures of carbon nanotubes with spin-orbit coupling interaction%自旋轨道耦合作用对碳纳米管电子能带结构的影响

    Institute of Scientific and Technical Information of China (English)

    杨杰; 董全力; 江兆潭; 张杰

    2011-01-01

    Based on the symmetry adapted tight-binding model, the electronic energy band structures of single wall carbon nanotubes are calculated by considering the spin-orbit coupling interaction. The energy gaps at the Dirac point for the armchair nanotubes are formed due to the spin-orbit coupling interaction and the curvature effect. For the zigzag and chiral carbon nanotubes,the energy band splittings for the lowest unoccupied states and the highest occupied states are also formed by the spin-orbit coupling interaction. The energy splittings are not only dependedent on the diameter and the chiral angle of the carbon nanotubes, but also a symmetric with respect to the Fermi energy level. According to the chiral index (n, m) , different tube behaviors are grouped into three families. The numeral results are in good agreement with the experimental results.%本文考虑自旋轨道耦合作用的情况下,采用紧束缚近似螺旋对称模型计算了单壁碳纳米管的电子能带结构.研究发现:对于Armchair型单壁碳纳米管,自旋轨道耦合作用和弯曲效应共同导致了费米面Dirac点附近电子能带结构的能隙;对于Zigzag型和手性单壁碳纳米管,自旋轨道耦合作用使得电子最高占据态和最低未占据态产生能级劈裂,能级劈裂的大小不但与碳纳米管的直径和手性角密切相关,而且相对于费米面是不对称的;根据指数(n,m)可以将Zigzag型和手性单壁碳纳米管分为金属性碳纳米管(V=0)、第一类半导体性碳纳米管(v

  6. Hydrogen production by Tuning the Photonic Band Gap with the Electronic Band Gap of TiO2

    KAUST Repository

    Waterhouse, G. I. N.

    2013-10-10

    Tuning the photonic band gap (PBG) to the electronic band gap (EBG) of Au/TiO2 catalysts resulted in considerable enhancement of the photocatalytic water splitting to hydrogen under direct sunlight. Au/TiO2 (PBG-357 nm) photocatalyst exhibited superior photocatalytic performance under both UV and sunlight compared to the Au/TiO2 (PBG-585 nm) photocatalyst and both are higher than Au/TiO2 without the 3 dimensionally ordered macro-porous structure materials. The very high photocatalytic activity is attributed to suppression of a fraction of electron-hole recombination route due to the co-incidence of the PBG with the EBG of TiO2 These materials that maintain their activity with very small amount of sacrificial agents (down to 0.5 vol.% of ethanol) are poised to find direct applications because of their high activity, low cost of the process, simplicity and stability.

  7. Convergence of electronic bands for high performance bulk thermoelectrics.

    Science.gov (United States)

    Pei, Yanzhong; Shi, Xiaoya; LaLonde, Aaron; Wang, Heng; Chen, Lidong; Snyder, G Jeffrey

    2011-05-01

    Thermoelectric generators, which directly convert heat into electricity, have long been relegated to use in space-based or other niche applications, but are now being actively considered for a variety of practical waste heat recovery systems-such as the conversion of car exhaust heat into electricity. Although these devices can be very reliable and compact, the thermoelectric materials themselves are relatively inefficient: to facilitate widespread application, it will be desirable to identify or develop materials that have an intensive thermoelectric materials figure of merit, zT, above 1.5 (ref. 1). Many different concepts have been used in the search for new materials with high thermoelectric efficiency, such as the use of nanostructuring to reduce phonon thermal conductivity, which has led to the investigation of a variety of complex material systems. In this vein, it is well known that a high valley degeneracy (typically ≤6 for known thermoelectrics) in the electronic bands is conducive to high zT, and this in turn has stimulated attempts to engineer such degeneracy by adopting low-dimensional nanostructures. Here we demonstrate that it is possible to direct the convergence of many valleys in a bulk material by tuning the doping and composition. By this route, we achieve a convergence of at least 12 valleys in doped PbTe(1-x)Se(x) alloys, leading to an extraordinary zT value of 1.8 at about 850 kelvin. Band engineering to converge the valence (or conduction) bands to achieve high valley degeneracy should be a general strategy in the search for and improvement of bulk thermoelectric materials, because it simultaneously leads to a high Seebeck coefficient and high electrical conductivity.

  8. Volume and surface photoemission from tungsten. I. Calculation of band structure and emission spectra

    DEFF Research Database (Denmark)

    Christensen, N. Egede; Feuerbacher, B.

    1974-01-01

    The electronic energy-band structure of tungsten has been calculated by means of the relativistic-augmented-plane-wave method. A series of mutually related potentials are constructed by varying the electronic configuration and the amount of Slater exchange included. The best band structure...... of photoemission spectra from W single crystals. The nondirect as well as the direct models for bulk photoemission processes are investigated. The emission from the three low-index surfaces (100), (110), and (111) exhibits strong dependence on direction and acceptance cone. According to the present band model.......e., emission of those electrons which are excited in a single-step process from initial states near the surface to final states outside the crystal. The electrons that are emitted from the surface in directions perpendicular to the crystal planes carry information on the one-dimensional surface density...

  9. Electronic structure studies of topological materials

    Science.gov (United States)

    Zhou, Shuyun

    Three-dimensional (3D) Dirac fermions are a new class of topological quantum materials. In 3D Dirac semimetals, the conduction and valence bands touch each other at discrete points in the momentum space and show linear dispersions along all momentum directions, forming 3D Dirac cones which are protected by the crystal symmetry. Here I will present our recent studies of the electronic structures of novel materials which host 3D Dirac fermions by using angle-resolved photoemission spectroscopy.

  10. Controlling the Electronic Structure of Bilayer Graphene

    Science.gov (United States)

    Ohta, Taisuke; Bostwick, Aaron; McChesney, Jessica; Seyller, Thomas; Horn, Karsten; Rotenberg, Eli

    2007-03-01

    Carbon-based materials such as carbon nanotubes, graphite intercalation compounds, fullerenes, and ultrathin graphite films exhibit many exotic phenomena such as superconductivity and an anomalous quantum Hall effect. These findings have caused renewed interest in the electronic structure of ultrathin layers of graphene: a single honeycomb carbon layer that is the building block for these materials. There is a strong motivation to incorporate graphene multilayers into atomic-scale devices, spurred on by rapid progress in their fabrication and manipulation. We have synthesized bilayer graphene thin films deposited on insulating silicon carbide and characterized their electronic band structure using angle-resolved photoemission. By selectively adjusting the carrier concentration in each layer, changes in the Coulomb potential led to control of the gap between valence and conduction bands [1]. This control over the band structure suggests the potential application of bilayer graphene to switching functions in atomic scale electronic devices. [1] T. Ohta, A. Bostwick, T. Seyller, K. Horn, E. Rotenberg, Science, 313, 951 (2006).

  11. Topologically nontrivial electronic bands and tunable Dirac cones in graphynes with spin-orbit coupling

    Science.gov (United States)

    Juricic, Vladimir; van Miert, Guido; Morais Smith, Cristiane

    2015-03-01

    Graphynes represent an emerging family of carbon allotropes that differ from graphene by the presence of the triple bonds (-C ≡C-) in their band structure. They have recently attracted much interest due to the tunability of the Dirac cones in the band structure. I will show that the spin-orbit coupling in β-graphyne could produce various effects related to the topological properties of its electronic bands. Intrinsic spin-orbit coupling yields high- and tunable Chern-number bands, which may host both topological and Chern insulators, in the presence and absence of time-reversal symmetry, respectively. Furthermore, Rashba spin-orbit coupling can be used to control the position and the number of Dirac cones in the Brillouin zone. Finally, I will also discuss the electronic properties of α - and γ - graphyne in the presence of the spin-orbit coupling within recently developed general theory of spin-orbit couplings in graphynes. Work supported by the Netherlands Organization for Scientific Research (NWO).

  12. Fractional Band Filling in an Atomic Chain Structure

    Science.gov (United States)

    Crain, J. N.; Kirakosian, A.; Altmann, K. N.; Bromberger, C.; Erwin, S. C.; McChesney, J. L.; Lin, J.-L.; Himpsel, F. J.

    2003-05-01

    A new chain structure of Au is found on stepped Si(111) which exhibits a 1/4-filled band and a pair of ≥1/2-filled bands with a combined filling of 4/3. Band dispersions and Fermi surfaces for Si(553)-Au are obtained by photoemission and compared to that of Si(557)-Au. The dimensionality of both systems is determined using a tight binding fit. The fractional band filling makes it possible to preserve metallicity in the presence of strong correlations.

  13. Experimental Benchmarking of Pu Electronic Structure

    Energy Technology Data Exchange (ETDEWEB)

    Tobin, J.G.; Moore, K.T.; Chung, B.W.; Wall, M.A.; Schwartz, A.J.; Ebbinghaus, B.B.; Butterfield, M.T.; Teslich, Jr., N.E.; Bliss, R.A.; Morton, S.A.; Yu, S.W.; Komesu, T.; Waddill, G.D.; van der Laan, G.; Kutepov, A.L. (UMR-MUST); (LLNL)

    2008-10-30

    The standard method to determine the band structure of a condensed phase material is to (1) obtain a single crystal with a well defined surface and (2) map the bands with angle resolved photoelectron spectroscopy (occupied or valence bands) and inverse photoelectron spectroscopy (unoccupied or conduction bands). Unfortunately, in the case of Pu, the single crystals of Pu are either nonexistent, very small and/or having poorly defined surfaces. Furthermore, effects such as electron correlation and a large spin-orbit splitting in the 5f states have further complicated the situation. Thus, we have embarked upon the utilization of unorthodox electron spectroscopies, to circumvent the problems caused by the absence of large single crystals of Pu with well-defined surfaces. Our approach includes the techniques of resonant photoelectron spectroscopy, x-ray absorption spectroscopy, electron energy loss spectroscopy, Fano Effect measurements, and Bremstrahlung Isochromat Spectroscopy, including the utilization of micro-focused beams to probe single-crystallite regions of polycrystalline Pu samples.

  14. Structure of nearly degenerate dipole bands in {sup 108}Ag

    Energy Technology Data Exchange (ETDEWEB)

    Sethi, J. [Tata Institute of Fundamental Research, Colaba, Mumbai 400 005 (India); Palit, R., E-mail: palit@tifr.res.in [Tata Institute of Fundamental Research, Colaba, Mumbai 400 005 (India); Saha, S.; Trivedi, T. [Tata Institute of Fundamental Research, Colaba, Mumbai 400 005 (India); Bhat, G.H.; Sheikh, J.A. [Department of Physics, University of Kashmir, Srinagar 190 006 (India); Datta, P. [Ananda Mohan College, Kolkata 700009 (India); Carroll, J.J. [US Army Research Laboratory, Adelphi, MD 20783 (United States); Chattopadhyay, S. [Saha Institute of Nuclear Physics, Kolkata 700064 (India); Donthi, R. [Tata Institute of Fundamental Research, Colaba, Mumbai 400 005 (India); Garg, U. [University of Notre Dame, Notre Dame, IN 46556 (United States); Jadhav, S.; Jain, H.C. [Tata Institute of Fundamental Research, Colaba, Mumbai 400 005 (India); Karamian, S. [Joint Institute for Nuclear Research, Dubna 141980 (Russian Federation); Kumar, S. [University of Delhi, Delhi 110007 (India); Litz, M.S. [US Army Research Laboratory, Adelphi, MD 20783 (United States); Mehta, D. [Panjab University, Chandigarh 160014 (India); Naidu, B.S. [Tata Institute of Fundamental Research, Colaba, Mumbai 400 005 (India); Naik, Z. [Sambalpur University, Sambalpur 143005 (India); Sihotra, S. [Panjab University, Chandigarh 160014 (India); and others

    2013-08-09

    The high spin negative parity states of {sup 108}Ag have been investigated with the {sup 11}B + {sup 100}Mo reaction at 39 MeV beam energy using the INGA facility at TIFR, Mumbai. From the γ–γ coincidence analysis, an excited negative parity band has been established and found to be nearly degenerate with the ground state band. The spin and parity of the levels are assigned using angular correlation and polarization measurements. This pair of degenerate bands in {sup 108}Ag is studied using the recently developed microscopic triaxial projected shell model approach. The observed energy levels and the ratio of the electromagnetic transition probabilities of these bands in this isotope are well reproduced by the present model. Further, it is shown that the partner band has a different quasiparticle structure as compared to the yrast band.

  15. Crystal structure and band gap of AlGaAsN

    Science.gov (United States)

    Munich, D. P.; Pierret, R. F.

    1987-09-01

    Quantum dielectric theory is applied to the quaternary alloy Al xGa 1- xAs 1- yN y to predict its electronic properties as a function of Al and N mole fractions. Results are presented for the expected crystal structure, minimum electron energy band gap, and direction in k-space of the band gap minimum for all x and y values. The results suggest that, for a proper choice of x and y, Al xGa 1- xAs 1- yN y could exhibit certain advantages over Al xGa 1- xAs when utilized in field-effect transistor structures.

  16. Electronic structure of the superconducting layered perovskite niobate

    Science.gov (United States)

    Hase, Izumi; Nishihara, Yoshikazu

    1998-07-01

    The electronic energy-band structure for RbLaNb2O7, which is closely related to the layered perovskite niobate superconducting KCa2Nb3O10 and metallic KLaNb2O7 with Li intercalation, has been calculated by using the scalar-relativistic full-potential linearized augmented-plane-wave method within the local-density approximation. The result of the calculation shows that this compound is a band insulator with a small gap, and its conduction band is a typical two-dimensional one and the valence band is rather three dimensional. We can conclude that the layered perovskite niobate KCa2Nb3O10 is a band insulator that can be superconducting with electron doping, and have the highly two-dimensional electronic structure.

  17. ELECTRONIC STRUCTURE OF CLUSTER ASSEMBLED Al12C (Si) SOLID

    Institute of Scientific and Technical Information of China (English)

    QUAN HONG-JUN; GONG XIN-GAO

    2000-01-01

    The electronic structures of the cluster-assembled solid Al12C (Si) are studied by the ab initio method. We find that Al12C (Si) can solidify into a van der Waals solid. The electronic band structures show very weak dispersion. The main features in the electronic structure of cluster are retained in the solid, and an energy gap up to about 1.5 eV is observed for Al12C and Al12Si solids.

  18. Tuning the Refractive Index and Optical Band Gap of Silk Fibroin Films by Electron Irradiation

    Directory of Open Access Journals (Sweden)

    S. Asha

    2015-01-01

    Full Text Available The Bombyx mori silk fibroin (SF films were prepared by solution casting method and effects of electron beam on the optical properties and optical constants of the films have been studied by using UV-Visible spectrophotometer. Optical properties like optical band gap Eg, refractive index n, extinction coefficient k, optical conductivity σopt, and dielectric constants ε∗ of virgin and electron irradiated films were determined by using UV-Visible absorption and transmission spectra. It was found that the reduction in optical band gap and increase in refractive index with increasing radiation dosage was observed. It is also observed from results that there is increase in dielectric constants with increasing photon energy. The observed optical changes have been tried to be correlated with the structural changes, revealed through FT-IR spectroscopy. The present study is quite important for tailoring the optical responses of SF films as per specific requirements.

  19. Band structure characteristics of T-square fractal phononic crystals

    Institute of Scientific and Technical Information of China (English)

    Liu Xiao-Jian; Fan You-Hua

    2013-01-01

    The T-square fractal two-dimensional phononic crystal model is presented in this article.A comprehensive study is performed for the Bragg scattering and locally resonant fractal phononic crystal.We find that the band structures of the fractal and non-fractal phononic crystals at the same filling ratio are quite different through using the finite element method.The fractal design has an important impact on the band structures of the two-dimensional phononic crystals.

  20. QCD Anomalous Structure of Electron

    OpenAIRE

    Slominski, Wojciech

    1998-01-01

    The parton content of the electron is analyzed within perturbative QCD. It is shown that electron acquires an anomalous component from QCD, analogously to photon. The evolution equations for the `exclusive' and `inclusive' electron structure function are constructed and solved numerically in the asymptotic $Q^2$ region.

  1. High-Pressure Crystal Structure, Lattice Vibrations, and Band Structure of BiSbO4.

    Science.gov (United States)

    Errandonea, Daniel; Muñoz, Alfonso; Rodríguez-Hernández, Placida; Gomis, Oscar; Achary, S Nagabhusan; Popescu, Catalin; Patwe, Sadeque J; Tyagi, Avesh K

    2016-05-16

    The high-pressure crystal structure, lattice-vibrations, and electronic band structure of BiSbO4 were studied by ab initio simulations. We also performed Raman spectroscopy, infrared spectroscopy, and diffuse-reflectance measurements, as well as synchrotron powder X-ray diffraction. High-pressure X-ray diffraction measurements show that the crystal structure of BiSbO4 remains stable up to at least 70 GPa, unlike other known MTO4-type ternary oxides. These experiments also give information on the pressure dependence of the unit-cell parameters. Calculations properly describe the crystal structure of BiSbO4 and the changes induced by pressure on it. They also predict a possible high-pressure phase. A room-temperature pressure-volume equation of state is determined, and the effect of pressure on the coordination polyhedron of Bi and Sb is discussed. Raman- and infrared-active phonons were measured and calculated. In particular, calculations provide assignments for all the vibrational modes as well as their pressure dependence. In addition, the band structure and electronic density of states under pressure were also calculated. The calculations combined with the optical measurements allow us to conclude that BiSbO4 is an indirect-gap semiconductor, with an electronic band gap of 2.9(1) eV. Finally, the isothermal compressibility tensor for BiSbO4 is given at 1.8 GPa. The experimental (theoretical) data revealed that the direction of maximum compressibility is in the (0 1 0) plane at ∼33° (38°) to the c-axis and 47° (42°) to the a-axis. The reliability of the reported results is supported by the consistency between experiments and calculations. PMID:27128858

  2. New bismuth borophosphate Bi4BPO10: Synthesis, crystal structure, optical and band structure analysis

    International Nuclear Information System (INIS)

    New bismuth borophosphate Bi4BPO10 was obtained by spontaneous crystallization from the melt of correspondent composition at 804 °C. Crystal structure with orthorhombic lattice parameters: a = 22.5731(3) Å, b = 14.0523(2) Å, c = 5.5149(1) Å, V = 1749.34(4), Z = 8, SG Pcab was determined by X-ray powder diffraction technique. The [Bi2O2]2+ -layers, which are typical for bismuth oxide compounds, transform into cationic endless strips of 4 bismuth atoms width directed along the c-axis in Bi4BPO10. The strips combining stacks are separated by flat triangle [BO3]3− -anions within stacks. Neighboring stacks are separated by tetrahedral [PO4]3−-anions and shifted relatively to each other. Bismuth atoms are placed in 5–7 vertex oxygen irregular polyhedra. Bi4BPO10 is stable up to 812 °C, then melts according to the peritectic law. The absorption spectrum in the range 350–700 nm was obtained and the width of the forbidden band was estimated as 3.46 eV. The band electronic structure of Bi4BPO10 was modeled using DFT approach. The calculated band gap (3.56 eV) is in good agreement with the experimentally obtained data. - Graphical abstract: Display Omitted - Highlights: • New bismuth borophosphate with composition Bi4BPO10 was synthesized. • The crystal structure was determined by X-ray powder diffraction technique. • Bismuth-oxygen part [Bi4O3]6+ forms endless strips of 4 bismuth atoms width. • Electronic structure was modeled by DFT method. • The calculated band gap (3.56 eV) is very close to the experimental one (3.46 eV)

  3. Automated effective band structures for defective and mismatched supercells.

    Science.gov (United States)

    Brommer, Peter; Quigley, David

    2014-12-01

    In plane-wave density functional theory codes, defects and incommensurate structures are usually represented in supercells. However, interpretation of E versus k band structures is most effective within the primitive cell, where comparison to ideal structures and spectroscopy experiments are most natural. Popescu and Zunger recently described a method to derive effective band structures (EBS) from supercell calculations in the context of random alloys. In this paper, we present bs_sc2pc, an implementation of this method in the CASTEP code, which generates an EBS using the structural data of the supercell and the underlying primitive cell with symmetry considerations handled automatically. We demonstrate the functionality of our implementation in three test cases illustrating the efficacy of this scheme for capturing the effect of vacancies, substitutions and lattice mismatch on effective primitive cell band structures. PMID:25388668

  4. Characterization of electronic structure of periodically strained graphene

    International Nuclear Information System (INIS)

    We induced periodic biaxial tensile strain in polycrystalline graphene by wrapping it over a substrate with repeating pillar-like structures with a periodicity of 600 nm. Using Raman spectroscopy, we determined to have introduced biaxial strains in graphene in the range of 0.4% to 0.7%. Its band structure was characterized using photoemission from valance bands, shifts in the secondary electron emission, and x-ray absorption from the carbon 1s levels to the unoccupied graphene conduction bands. It was observed that relative to unstrained graphene, strained graphene had a higher work function and higher density of states in the valence and conduction bands. We measured the conductivity of the strained and unstrained graphene in response to a gate voltage and correlated the changes in their behavior to the changes in the electronic structure. From these sets of data, we propose a simple band diagram representing graphene with periodic biaxial strain

  5. Influence of structure defects on optical and electronic properties of icosahedral boron rich solids

    CERN Document Server

    Schmechel, R

    1999-01-01

    doped beta-rhombohedral boron by Kramers-Kronig-Analysis gives information on the main transport processes. Beside hopping conduction of localized electrons, band conduction of delocalized electrons were found. While holes in the valence band are the delocalized charge carriers in boron carbide, in vanadium doped beta-rhombohedral boron delocalized electrons in an extrinsic impurity band are suggested. Boron and boron rich solids are known to have a high concentration on intrinsic structural imperfections. From known structure data of real crystals and known band structure calculations of perfect ideal crystals a correlation between intrinsic structure defect concentration and electron deficit in the valence band is concluded. This correlation forms the basis for the following theses: 1. The electron deficit in the valence band of a perfect crystal is the driving force for the intrinsic structure defects in a real crystal. 2. The small electron deficit becomes compensated by the structure defects - this expla...

  6. Structural mechanisms of formation of adiabatic shear bands

    Directory of Open Access Journals (Sweden)

    Mikhail Sokovikov

    2016-10-01

    Full Text Available The paper focuses on the experimental and theoretical study of plastic deformation instability and localization in materials subjected to dynamic loading and high-velocity perforation. We investigate the behavior of samples dynamically loaded during Hopkinson-Kolsky pressure bar tests in a regime close to simple shear conditions. Experiments were carried out using samples of a special shape and appropriate test rigging, which allowed us to realize a plane strain state. Also, the shear-compression specimens proposed in were investigated. The lateral surface of the samples was investigated in a real-time mode with the aid of a high-speed infra-red camera CEDIP Silver 450M. The temperature field distribution obtained at different time made it possible to trace the evolution of plastic strain localization. Use of a transmission electron microscope for studying the surface of samples showed that in the regions of strain localization there are parts taking the shape of bands and honeycomb structure in the deformed layer. The process of target perforation involving plug formation and ejection was investigated using a high-speed infra-red camera. A specially designed ballistic set-up for studying perforation was used to test samples in different impulse loading regimes followed by plastic flow instability and plug ejection. Changes in the velocity of the rear surface at different time of plug ejection were analyzed by Doppler interferometry techniques. The microstructure of tested samples was analyzed using an optical interferometer-profilometer and a scanning electron microscope. The subsequent processing of 3D deformation relief data enabled estimation of the distribution of plastic strain gradients at different time of plug formation and ejection. It has been found that in strain localization areas the subgrains are elongated taking the shape of bands and undergo fragmentation leading to the formation of super-microcrystalline structure, in which the

  7. Electronic structure of germanium selenide investigated using ultra-violet photo-electron spectroscopy

    International Nuclear Information System (INIS)

    The valence band electronic structure of GeSe single crystals has been investigated using angle resolved photoemission spectroscopy (ARPES) and x-ray photoelectron spectroscopy. The experimentally observed bands from ARPES, match qualitatively with our LDA-based band structure calculations along the Γ–Z, Γ–Y and Γ–T symmetry directions. The valence band maximum occurs nearly midway along the Γ–Z direction, at a binding energy of −0.5 eV, substantiating the indirect band gap of GeSe. Non-dispersive features associated with surface states and indirect transitions have been observed. The difference in hybridization of Se and Ge 4p orbitals leads to the variation of dispersion along the three symmetry directions. The predominance of the Se 4pz orbitals, evidenced from theoretical calculations, may be the cause for highly dispersive bands along the Γ–T direction. Detailed electronic structure analysis reveals the significance of the cation–anion 4p orbitals hybridization in the valence band dispersion of IV–VI semiconductors. This is the first comprehensive report of the electronic structure of a GeSe single crystal using ARPES in conjugation with theoretical band structure analysis. (paper)

  8. Stacking dependent electronic structures of transition metal dichalcogenides heterobilayer

    Science.gov (United States)

    Lee, Yea-Lee; Park, Cheol-Hwan; Ihm, Jisoon

    The systematic study of the electronic structures and optical properties of the transition metal dichalcogenides (TMD) heterobilayers can significantly improve the designing of new electronic and optoelectronic devices. Here, we theoretically study the electronic structures and optical properties of TMD heterobilayers using the first-principles methods. The band structures of TMD heterobilayer are shown to be determined by the band alignments of the each layer, the weak interlayer interactions, and angle dependent stacking patterns. The photoluminescence spectra are investigated using the calculated band structures, and the optical absorption spectra are examined by the GW approximations including the electron-hole interaction through the solution of the Bethe-Salpeter equation. It is expected that the weak interlayer interaction gives rise to the substantial interlayer optical transition which will be corresponding to the interlayer exciton.

  9. Electronic Power Conditioner for Ku-band Travelling Wave Tube

    Science.gov (United States)

    Kowstubha, Palle; Krishnaveni, K.; Ramesh Reddy, K.

    2016-07-01

    A highly sophisticated regulated power supply is known as electronic power conditioner (EPC) is required to energise travelling wave tubes (TWTs), which are used as RF signal amplifiers in satellite payloads. The assembly consisting of TWT and EPC together is known as travelling wave tube amplifier (TWTA). EPC is used to provide isolated and conditioned voltage rails with tight regulation to various electrodes of TWT and makes its RF performance independent of solar bus variations which are caused due to varying conditions of eclipse and sunlit. The payload mass and their power consumption is mainly due to the existence of TWTAs that represent about 35 % of total mass and about 70-90 % (based on the type of satellite application) of overall dc power consumption. This situation ensures a continuous improvement in the design of TWTAs and their associated EPCs to realize more efficient and light products. Critical technologies involved in EPCs are design and configuration, closed loop regulation, component and material selection, energy limiting of high voltage (HV) outputs and potting of HV card etc. This work addresses some of these critical technologies evolved in realizing and testing the state of art of EPC and it focuses on the design of HV supply with a HV and high power capability, up to 6 kV and 170 WRF, respectively required for a space TWTA. Finally, an experimental prototype of EPC with a dc power of 320 W provides different voltages required by Ku-band TWT in open loop configuration.

  10. Ab initio theory for ultrafast magnetization dynamics with a dynamic band structure

    Science.gov (United States)

    Mueller, B. Y.; Haag, M.; Fähnle, M.

    2016-09-01

    Laser-induced modifications of magnetic materials on very small spatial dimensions and ultrashort timescales are a promising field for novel storage and spintronic devices. Therefore, the contribution of electron-electron spin-flip scattering to the ultrafast demagnetization of ferromagnets after an ultrashort laser excitation is investigated. In this work, the dynamical change of the band structure resulting from the change of the magnetization in time is taken into account on an ab initio level. We find a large influence of the dynamical band structure on the magnetization dynamics and we illustrate the thermalization and relaxation process after laser irradiation. Treating the dynamical band structure yields a demagnetization comparable to the experimental one.

  11. Pathway to Oxide Photovoltaics via Band-Structure Engineering of SnO

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Haowei; Bikowski, Andre; Zakutayev, Andriy; Lany, Stephan

    2016-10-01

    All-oxide photovoltaics could open rapidly scalable manufacturing routes, if only oxide materials with suitable electronic and optical properties were developed. SnO has exceptional doping and transport properties among oxides, but suffers from a strongly indirect band gap. Here, we address this shortcoming by band-structure engineering through isovalent but heterostructural alloying with divalent cations (Mg, Ca, Sr, and Zn). Using first-principles calculations, we show that suitable band gaps and optical properties close to that of direct semiconductors are achievable, while the comparatively small effective masses are preserved in the alloys. Initial thin film synthesis and characterization support the feasibility of the approach.

  12. Strain effects on band structure of wurtzite ZnO: a GGA + U study

    International Nuclear Information System (INIS)

    Band structures in wurtzite bulk ZnO/Zn1−xMgxO are calculated using first-principles based on the framework of generalized gradient approximation to density functional theory with the introduction of the on-site Coulomb interaction. Strain effects on band gap, splitting energies of valence bands, electron and hole effective masses in strained bulk ZnO are discussed. According to the results, the band gap increases gradually with increasing stress in strained ZnO as an Mg content of Zn1−xMgxO substrate less than 0.3, which is consistent with the experimental results. It is further demonstrated that electron mass of conduction band (CB) under stress increases slightly. There are almost no changes in effective masses of light hole band (LHB) and heavy hole band (HHB) along [00k] and [k00] directions under stress, and stress leads to an obvious decrease in effective masses of crystal splitting band (CSB) along the same directions. (semiconductor materials)

  13. Electron emission from conduction band of heavily phosphorus doped diamond negative electron affinity surface

    Science.gov (United States)

    Yamada, Takatoshi; Masuzawa, Tomoaki; Mimura, Hidenori; Okano, Ken

    2016-02-01

    Hydrogen (H)-terminated surfaces of diamond have attracted significant attention due to their negative electron affinity (NEA), suggesting high-efficiency electron emitters. Combined with n-type doping technique using phosphorus (P) as donors, the unique NEA surface makes diamond a promising candidate for vacuum cold-cathode applications. However, high-electric fields are needed for the electron emission from the n-type doped diamond with NEA. Here we have clarified the electron emission mechanism of field emission from P-doped diamond having NEA utilizing combined ultraviolet photoelectron spectroscopy/field emission spectroscopy (UPS/FES). An UP spectrum has confirmed the NEA of H-terminated (1 1 1) surface of P-doped diamond. Despite the NEA, electron emission occurs only when electric field at the surface exceeds 4.2  ×  106 V cm-1. Further analysis by UPS/FES has revealed that the emitted energy level is shifted, indicating that the electron emission mechanism of n-type diamond having NEA surface does not follow a standard field emission theory, but is dominated by potential barrier formed within the diamond due to upward band bending. The reduction of internal barrier is the key to achieve high-efficiency electron emitters using P-doped diamond with NEA, of which application ranges from high-resolution electron spectroscopy to novel vacuum nanoelectronics devices.

  14. The Development of Layered Photonic Band Gap Structures Using a Micro-Transfer Molding Technique

    Energy Technology Data Exchange (ETDEWEB)

    Kevin Jerome Sutherland

    2001-05-01

    Photonic band gap (PBG) crystals are periodic dielectric structures that manipulate electromagnetic radiation in a manner similar to semiconductor devices manipulating electrons. Whereas a semiconductor material exhibits an electronic band gap in which electrons cannot exist, similarly, a photonic crystal containing a photonic band gap does not allow the propagation of specific frequencies of electromagnetic radiation. This phenomenon results from the destructive Bragg diffraction interference that a wave propagating at a specific frequency will experience because of the periodic change in dielectric permitivity. This gives rise to a variety of optical applications for improving the efficiency and effectiveness of opto-electronic devices. These applications are reviewed later. Several methods are currently used to fabricate photonic crystals, which are also discussed in detail. This research involves a layer-by-layer micro-transfer molding ({mu}TM) and stacking method to create three-dimensional FCC structures of epoxy or titania. The structures, once reduced significantly in size can be infiltrated with an organic gain media and stacked on a semiconductor to improve the efficiency of an electronically pumped light-emitting diode. Photonic band gap structures have been proven to effectively create a band gap for certain frequencies of electro-magnetic radiation in the microwave and near-infrared ranges. The objective of this research project was originally two-fold: to fabricate a three dimensional (3-D) structure of a size scaled to prohibit electromagnetic propagation within the visible wavelength range, and then to characterize that structure using laser dye emission spectra. As a master mold has not yet been developed for the micro transfer molding technique in the visible range, the research was limited to scaling down the length scale as much as possible with the current available technology and characterizing these structures with other methods.

  15. Millimeter-wave waveguiding using photonic band structures

    Science.gov (United States)

    Eliyahu, Danny; Sadovnik, Lev S.; Manasson, Vladimir A.

    2000-07-01

    Current trends in device miniaturization and integration, especially in the development of microwave monolithic integrated circuits, calls for flexible, arbitrarily shaped and curved interconnects. Standard dielectric waveguides and microstrip lines are subject to prohibitive losses and their functionality is limited because of their unflexible structures. The problem is addressed by confining the wave- guiding path in a substrate with a Photonic Band Gap structure in a manner that will result in the guided mode being localized within the band gap. Two devices implementing Photonic Band Structures for millimeter waves confinement are presented. The first waveguide is a linear defect in triangular lattice created in a silicon slab (TE mode). The structure consists of parallel air holes of circular cross sections. The silicon was laser drilled to create the 2D crystal. The second device consists of alumina rods arranged in a triangular lattice, surrounded by air and sandwiched between two parallel metal plates (TM mode). Electromagnetic wave (W-band) confinement was obtained in both devices for straight and bent waveguides. Three branch waveguides (intersecting line defects) was studied as well. Measurements confirmed the lowloss waveguide confinement property of the utilizing Photonic Band Gap structure. This structure can find applications in power combiner/splitter and other millimeter wave devices.

  16. Coupling between Fano and Bragg bands in photonic band structure of two-dimensional metallic photonic structures

    CERN Document Server

    Markos, Peter

    2016-01-01

    Frequency and transmission spectrum of two-dimensional array of metallic rods is investigated numerically. Based on the recent analysis of the band structure of two-dimensional photonic crystal with dielectric rods [P. Marko\\v{s}, Phys. Rev. A 92 043814 (2015)] we identify two types of bands in the frequency spectrum: Bragg (P) bands resulting from a periodicity and Fano (F) bands which arise from Fano resonances associated with each of the cylinders within the periodic structure. It is shown that the existence of Fano band in a certain frequency range is manifested by a Fano resonance in the transmittance. In particular, we re-examine the symmetry properties of the H- polarized band structure in the frequency range where the spectrum consists of the localized modes associated with the single scatterer resonances and we explore process of formation of Fano bands by identifying individual terms in the expansion of the LCAO states. We demonstrate how the interplay between the two scattering mechanisms affects p...

  17. Electrons and photons in periodic structures

    DEFF Research Database (Denmark)

    Pedersen, Jesper Goor

    This thesis concerns various theoretical proposals for engineering dispersion relations of photons and electrons for particular applications. The common concept is the use of a periodic modulation to induce new phenomena on length scales comparable with the periodicity of the modulation. In parti......This thesis concerns various theoretical proposals for engineering dispersion relations of photons and electrons for particular applications. The common concept is the use of a periodic modulation to induce new phenomena on length scales comparable with the periodicity of the modulation...... periodic modulation of an electron gas leads to the emergence of localized defect states with energies within the band gap, where no propagating modes exist. Secondly, the divergence of the photonic density of states near a photonic band gap leads to strongly modified light-matter interactions, which has...... the way for graphene transistors. Photonic band gaps can be engineered using structures with a periodic modulations of the refractive index, commonly referred to as photonic crystal. We discuss the application of photonic crystals to slow light phenomena, where advantage is taken of the divergence...

  18. Band formation in coupled-resonator slow-wave structures.

    Science.gov (United States)

    Möller, Björn M; Woggon, Ulrike; Artemyev, Mikhail V

    2007-12-10

    Sequences of coupled-resonator optical waveguides (CROWs) have been examined as slow-wave structures. The formation of photonic bands in finite systems is studied in the frame of a coupled oscillator model. Several types of resonator size tuning in the system are evaluated in a systematical manner. We show that aperiodicities in sequences of coupled microspheres provide an additional degree of freedom for the design of photonic bands. PMID:19551030

  19. Band structures and localization properties of aperiodic layered phononic crystals

    Energy Technology Data Exchange (ETDEWEB)

    Yan Zhizhong, E-mail: zzyan@bit.edu.cn [Department of Applied Mathematics, Beijing Institute of Technology, Beijing 100081 (China); Zhang Chuanzeng [Department of Civil Engineering, University of Siegen, D-57078 Siegen (Germany)

    2012-03-15

    The band structures and localization properties of in-plane elastic waves with coupling of longitudinal and transverse modes oblique propagating in aperiodic phononic crystals based on Thue-Morse and Rudin-Shapiro sequences are studied. Using transfer matrix method, the concept of the localization factor is introduced and the correctness is testified through the Rytov dispersion relation. For comparison, the perfect periodic structure and the quasi-periodic Fibonacci system are also considered. In addition, the influences of the random disorder, local resonance, translational and/or mirror symmetries on the band structures of the aperiodic phononic crystals are analyzed in this paper.

  20. Band structure and optical properties of LiKB4O7 single crystal

    NARCIS (Netherlands)

    Smok, P; Seinert, H; Kityk, [No Value; Berdowski, J

    2003-01-01

    The band structure (BS), electronic charge density distribution and linear optical properties of the LiKB4O7 (LKB4) single crystal are calculated using a self-consistent norm-conserving pseudo-potential method within the framework of the local density approximation theory. Dispersion of the imaginar

  1. Strain localization band width evolution by electronic speckle pattern interferometry strain rate measurement

    Energy Technology Data Exchange (ETDEWEB)

    Guelorget, Bruno [Institut Charles Delaunay-LASMIS, Universite de technologie de Troyes, FRE CNRS 2848, 12 rue Marie Curie, B.P. 2060, 10010 Troyes Cedex (France)], E-mail: bruno.guelorget@utt.fr; Francois, Manuel; Montay, Guillaume [Institut Charles Delaunay-LASMIS, Universite de technologie de Troyes, FRE CNRS 2848, 12 rue Marie Curie, B.P. 2060, 10010 Troyes Cedex (France)

    2009-04-15

    In this paper, electronic speckle pattern interferometry strain rate measurements are used to quantify the width of the strain localization band, which occurs when a sheet specimen is submitted to tension. It is shown that the width of this band decreases with increasing strain. Just before fracture, this measured width is about five times wider than the shear band and the initial sheet thickness.

  2. Electronic structure and equilibrium properties of hcp titanium and zirconium

    Indian Academy of Sciences (India)

    B P Panda

    2012-08-01

    The electronic structures of hexagonal-close-packed divalent titanium (3-d) and zirconium (4-d) transition metals are studied by using a non-local model potential method. From the present calculation of energy bands, Fermi energy, density of states and the electronic heat capacity of these two metals are determined and compared with the existing results in the literature.

  3. Band structures in near spherical {sup 138}Ce

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharjee, T. [Variable Energy Cyclotron Centre, Kolkata 700 064 (India)], E-mail: btumpa@veccal.ernet.in; Chanda, S. [Variable Energy Cyclotron Centre, Kolkata 700 064 (India); Fakir Chand College, Diamond Harbour, West Bengal (India); Bhattacharyya, S.; Basu, S.K. [Variable Energy Cyclotron Centre, Kolkata 700 064 (India); Bhowmik, R.K.; Das, J.J. [Inter University Accelerator Centre, New Delhi 110 067 (India); Pramanik, U. Datta [Saha Institute of Nuclear Physics, Kolkata 700 064 (India); Ghugre, S.S. [UGC-DAE Consortium for Scientific Research, Kolkata Centre, Kolkata 700 098 (India); Madhavan, N. [Inter University Accelerator Centre, New Delhi 110 067 (India); Mukherjee, A.; Mukherjee, G. [Variable Energy Cyclotron Centre, Kolkata 700 064 (India); Muralithar, S.; Singh, R.P. [Inter University Accelerator Centre, New Delhi 110 067 (India)

    2009-06-15

    The high spin states of N=80{sup 138}Ce have been populated in the fusion evaporation reaction {sup 130}Te({sup 12}C, 4n){sup 138}Ce at E{sub beam}=65 MeV. The {gamma} transitions belonging to various band structures were detected and characterized using an array of five Clover Germanium detectors. The level scheme has been established up to a maximum spin and excitation energy of 23h and 9511.3 keV, respectively, by including 53 new transitions. The negative parity {delta}I=1 band, developed on the 6536.3 keV 15{sup -} level, has been conjectured to be a magnetic rotation band following a semiclassical analysis and comparing the systematics of similar bands in the neighboring nuclei. The said band is proposed to have a four quasiparticle configuration of [{pi}g{sub 7/2}h{sub (11)/2}]x[{nu}h{sub (11)/2}]{sup -2}. Other band structures are interpreted in terms of multi-quasiparticle configurations, based on Total Routhian Surface (TRS) calculations. For the low and medium spin states, a shell model calculation using a realistic two body interaction has been performed using the code OXBASH.

  4. Band Structure Analysis of La0.7Sr0.3MnO3 Perovskite Manganite Using a Synchrotron

    Directory of Open Access Journals (Sweden)

    Hong-Sub Lee

    2015-01-01

    Full Text Available Oxide semiconductors and their application in next-generation devices have received a great deal of attention due to their various optical, electric, and magnetic properties. For various applications, an understanding of these properties and their mechanisms is also very important. Various characteristics of these oxides originate from the band structure. In this study, we introduce a band structure analysis technique using a soft X-ray energy source to study a La0.7Sr0.3MnO3 (LSMO oxide semiconductor. The band structure is formed by a valence band, conduction band, band gap, work function, and electron affinity. These can be determined from secondary electron cut-off, valence band spectrum, O 1s core electron, and O K-edge measurements using synchrotron radiation. A detailed analysis of the band structure of the LSMO perovskite manganite oxide semiconductor thin film was established using these techniques.

  5. Optimum design of band-gap beam structures

    DEFF Research Database (Denmark)

    Olhoff, Niels; Niu, Bin; Cheng, Gengdong

    2012-01-01

    of a single, linearly elastic material without damping. Numerical results are presented for different combinations of classical boundary conditions, prescribed orders of the upper and lower natural frequencies of maximized natural frequency gaps, and a given minimum constraint value for the beam cross......The design of band-gap structures receives increasing attention for many applications in mitigation of undesirable vibration and noise emission levels. A band-gap structure usually consists of a periodic distribution of elastic materials or segments, where the propagation of waves is impeded...

  6. Coupler design for an L-band electron linac

    Institute of Scientific and Technical Information of China (English)

    ZHAO Wei; TANG Xiao; SHI Rong-Jian; HOU Mi

    2012-01-01

    The RF coupler is a key component for an accelerating structure which is the most important component for a linac.In order to feed microwave power into the accelerating cavities effectively,the coupler has to be well matched with the feeding waveguide.In this paper,an electron linac coupler was designed,constructed and tested.A numerical simulation method based on the Kyhl's method was employed to search for the optimal dimensions of the coupler.The frequency and the coupling coefficient as a function of the coupler dimensions were also calculated.The results fitted the Kyhl's method simulation results well and gave tolerances of the coupler.The coupler was brazed to the accelerating cavities and it was cold-tested and hot-tested.The experimental results were consistent with the numerical simulation results.

  7. A phenomenological model of electronic band structure in ferroelectric Pb(In{sub 1/2}Nb{sub 1/2})O{sub 3}-Pb(Mg{sub 1/3}Nb{sub 2/3})O{sub 3}-PbTiO{sub 3} single crystals around the morphotropic phase boundary determined by temperature-dependent transmittance spectra

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, J.J.; Li, W.W. [Key Laboratory of Polar Materials and Devices, Ministry of Education, Department of Electronic Engineering, East China Normal University, Shanghai 200241 (China); Xu, G.S. [R and D Center of Synthetic Crystals, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 201800 (China); Jiang, K. [Key Laboratory of Polar Materials and Devices, Ministry of Education, Department of Electronic Engineering, East China Normal University, Shanghai 200241 (China); Hu, Z.G., E-mail: zghu@ee.ecnu.edu.cn [Key Laboratory of Polar Materials and Devices, Ministry of Education, Department of Electronic Engineering, East China Normal University, Shanghai 200241 (China); Chu, J.H. [Key Laboratory of Polar Materials and Devices, Ministry of Education, Department of Electronic Engineering, East China Normal University, Shanghai 200241 (China)

    2011-10-15

    The optical properties of ferroelectric Pb(In{sub 1/2}Nb{sub 1/2})O{sub 3}-Pb(Mg{sub 1/3}Nb{sub 2/3})O{sub 3}-PbTiO{sub 3} (PIN-PMN-PT) single crystals around the morphotropic phase boundary (MPB) have been investigated using ultraviolet-infrared transmittance spectra in the temperature range of 8-300 K. Based on the temperature-dependent spectral measurement of the band gap, we propose a phenomenological model of band structure vs. temperature to explain both the negative and positive band narrowing coefficient dE{sub gd}/dT in ferroelectric PIN-PMN-PT crystals around the MPB where multiple phases coexist. The peculiar positive coefficient only exists in the fragile multiphase region of the MPB, while the negative coefficient, caused by thermal expansion of the lattice and renormalization of the band structure by electron-phonon interaction, exists in the rhombohedral or tetragonal single-phase region as well as in the stationary multiphase region of the MPB. The origin of the positive coefficient is a long-range increasing fraction of coexistence from the monoclinic phase with small band gap to rhombohedral phase with large band gap at elevated temperature. In agreement with optical transmittance results of PMN-PT/PIN-PMN-PT, the model predicts that these unusual positive band narrowing coefficients may exist for all ferroelectrics around the MPB where the coexistence of phases lacks thermodynamic stability.

  8. Electronic structure at rubrene metal interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Huanjun; Gao, Yongli [University of Rochester, Department of Physics and Astronomy, Rochester, NY (United States)

    2009-04-15

    The electronic structure of the interfaces between rubrene and various metals, including Au, Ag, Al, and Ca, have been investigated with photoemission and inverse photoemission spectroscopy. The formation of the interface dipole is observed at all interfaces. The Fermi level shifts linearly within the band gap as a function of metal workfunction, until it is almost aligned with the lowest unoccupied molecular orbital (LUMO) by Ca. Strong interactions take place at the interface between rubrene and Ca, evidenced by the evolution of the valence features. (orig.)

  9. The electronic structure of impurities in semiconductors

    CERN Multimedia

    Nylandsted larsen, A; Svane, A

    2002-01-01

    The electronic structure of isolated substitutional or interstitial impurities in group IV, IV-IV, and III-V compound semiconductors will be studied. Mössbauer spectroscopy will be used to investigate the incorporation of the implanted isotopes on the proper lattice sites. The data can be directly compared to theoretical calculations using the LMTO scheme. Deep level transient spectroscopy will be used to identify the band gap levels introduced by metallic impurities, mainly in Si~and~Si$ _{x}$Ge$_{1-x}$. \\\\ \\\\

  10. Electronic structure of sulfanilamides

    Energy Technology Data Exchange (ETDEWEB)

    Grechishkin, V.S.; Grechishkina, R.V.; Starovoitova, O.V.

    1986-05-01

    At present, about 30,000 derivatives of sulfanilamide are known. The establishment of a relationship between the structure of these compounds and their bacteriostatic activity is an urgent problem. In the present work, this problem is solved by means of NQR and NMR spectroscopy. Since the content of the /sup 14/N nuclei in these molecules is not high, to run the NQR, they used the double resonance method. Some samples of the sulfanilamides were studied by direct pulsed NQR method. The high resolution NMR spectra were run in heavy water solution on a RS-60MA spectrometer. All the measurements were carried out at 120/sup 0/K in the solid phase. The results of the calculation of eQq/sub zz/ for the NH/sub 2/ groups in the sulfanilamide residue are listed. To interpret the results by the MO LCAO method in the Hueckel approximation on the EC-1022 computer by a special FORTRAN program, they calculated the charged rho on an atom in the amino group with parameters of hetero atoms and coupling constants.

  11. Electronic structure of multielectron bubbles in liquid helium

    International Nuclear Information System (INIS)

    A quantum-statistical generalized Thomas-Fermi model is presented for the structure of multielectron bubbles observed in liquid helium-4 at low temperatures. The authors estimate bubbles with more than about 20 electrons to be stable against fissioning to single-electron bubbles. Electrons inside multielectron bubbles are found to concentrate in a narrow layer on the liquid helium surface. It is suggested that large bubbles in liquid helium constitute a new system and regime for testing electron density profiles; one which is quite clean from impurities, band structure effects and the background charge, all of which usually complicate the treatment of the electron density profile of metal surfaces. (Auth.)

  12. Tunable band structures of polycrystalline graphene by external and mismatch strains

    Institute of Scientific and Technical Information of China (English)

    Jiang-Tao Wu; Xing-Hua Shi; Yu-Jie Wei

    2012-01-01

    Lacking a band gap largely limits the application of graphene in electronic devices.Previous study shows that grain boundaries (GBs) in polycrystalline graphene can dramatically alter the electrical properties of graphene.Here,we investigate the band structure of polycrystalline graphene tuned by externally imposed strains and intrinsic mismatch strains at the GB by density functional theory (DFT) calculations.We found that graphene with symmetrical GBs typically has zero band gap even with large uniaxial and biaxial strain.However,some particular asymmetrical GBs can open a band gap in graphene and their band structures can be substantially tuned by external strains.A maximum band gap about 0.19 eV was observed in matched-armchair GB (5,5) | (3,7) with a misorientation of θ =13° when the applied uniaxial strain increases to 9%.Although mismatch strain is inevitable in asymmetrical GBs,it has a small influence on the band gap of polycrystalline graphene.

  13. Band gap and chemically ordered domain structure of a graphene analogue BCN

    Science.gov (United States)

    Venu, K.; Kanuri, S.; Raidongia, K.; Hembram, K. P. S. S.; Waghmare, U. V.; Datta, R.

    2010-12-01

    Chemically synthesized few layer graphene analogues of B xC yN z are characterized by aberration corrected transmission electron microscopy and high resolution electron energy loss spectroscopy (HREELS) to determine the local phase, electronic structure and band gap. HREELS band gap studies of a B xC yN z composition reveal absorption edges at 2.08, 3.43 and 6.01 eV, indicating that the B xC yN z structure may consist of domains of different compositions. The K-absorption edge energy position of the individual elements in B xC yN z is determined and compared with h-BN and graphite. An understanding of these experimental findings is developed with complementary first-principles based calculations of the various ordered configurations of B xC yN z.

  14. Doping-dependent quasiparticle band structure in cuprate superconductors

    NARCIS (Netherlands)

    Eder, R; Ohta, Y.; Sawatzky, G.A

    1997-01-01

    We present an exact diagonalization study of the single-particle spectral function in the so-called t-t'-t ''-J model in two dimensions. As a key result, we find that hole doping leads to a major reconstruction of the quasiparticle band structure near (pi,0): whereas for the undoped system the quasi

  15. Design for maximum band-gaps in beam structures

    DEFF Research Database (Denmark)

    Olhoff, Niels; Niu, Bin; Cheng, Gengdong

    2012-01-01

    This paper aims to extend earlier optimum design results for transversely vibrating Bernoulli-Euler beams by determining new optimum band-gap beam structures for (i) different combinations of classical boundary conditions, (ii) much larger values of the orders n and n-1 of adjacent upper and lower...

  16. Complex band structures of transition metal dichalcogenide monolayers with spin-orbit coupling effects.

    Science.gov (United States)

    Szczęśniak, Dominik; Ennaoui, Ahmed; Ahzi, Saïd

    2016-09-01

    Recently, the transition metal dichalcogenides have attracted renewed attention due to the potential use of their low-dimensional forms in both nano- and opto-electronics. In such applications, the electronic and transport properties of monolayer transition metal dichalcogenides play a pivotal role. The present paper provides a new insight into these essential properties by studying the complex band structures of popular transition metal dichalcogenide monolayers (MX 2, where M  =  Mo, W; X  =  S, Se, Te) while including spin-orbit coupling effects. The conducted symmetry-based tight-binding calculations show that the analytical continuation from the real band structures to the complex momentum space leads to nonlinear generalized eigenvalue problems. Herein an efficient method for solving such a class of nonlinear problems is presented and yields a complete set of physically relevant eigenvalues. Solutions obtained by this method are characterized and classified into propagating and evanescent states, where the latter states manifest not only monotonic but also oscillatory decay character. It is observed that some of the oscillatory evanescent states create characteristic complex loops at the direct band gap of MX 2 monolayers, where electrons can directly tunnel between the band gap edges. To describe these tunneling currents, decay behavior of electronic states in the forbidden energy region is elucidated and their importance within the ballistic transport regime is briefly discussed. PMID:27367475

  17. Complex band structures of transition metal dichalcogenide monolayers with spin-orbit coupling effects

    Science.gov (United States)

    Szczęśniak, Dominik; Ennaoui, Ahmed; Ahzi, Saïd

    2016-09-01

    Recently, the transition metal dichalcogenides have attracted renewed attention due to the potential use of their low-dimensional forms in both nano- and opto-electronics. In such applications, the electronic and transport properties of monolayer transition metal dichalcogenides play a pivotal role. The present paper provides a new insight into these essential properties by studying the complex band structures of popular transition metal dichalcogenide monolayers (MX 2, where M  =  Mo, W; X  =  S, Se, Te) while including spin-orbit coupling effects. The conducted symmetry-based tight-binding calculations show that the analytical continuation from the real band structures to the complex momentum space leads to nonlinear generalized eigenvalue problems. Herein an efficient method for solving such a class of nonlinear problems is presented and yields a complete set of physically relevant eigenvalues. Solutions obtained by this method are characterized and classified into propagating and evanescent states, where the latter states manifest not only monotonic but also oscillatory decay character. It is observed that some of the oscillatory evanescent states create characteristic complex loops at the direct band gap of MX 2 monolayers, where electrons can directly tunnel between the band gap edges. To describe these tunneling currents, decay behavior of electronic states in the forbidden energy region is elucidated and their importance within the ballistic transport regime is briefly discussed.

  18. Complex band structures of transition metal dichalcogenide monolayers with spin–orbit coupling effects

    Science.gov (United States)

    Szczęśniak, Dominik; Ennaoui, Ahmed; Ahzi, Saïd

    2016-09-01

    Recently, the transition metal dichalcogenides have attracted renewed attention due to the potential use of their low-dimensional forms in both nano- and opto-electronics. In such applications, the electronic and transport properties of monolayer transition metal dichalcogenides play a pivotal role. The present paper provides a new insight into these essential properties by studying the complex band structures of popular transition metal dichalcogenide monolayers (MX 2, where M  =  Mo, W; X  =  S, Se, Te) while including spin–orbit coupling effects. The conducted symmetry-based tight-binding calculations show that the analytical continuation from the real band structures to the complex momentum space leads to nonlinear generalized eigenvalue problems. Herein an efficient method for solving such a class of nonlinear problems is presented and yields a complete set of physically relevant eigenvalues. Solutions obtained by this method are characterized and classified into propagating and evanescent states, where the latter states manifest not only monotonic but also oscillatory decay character. It is observed that some of the oscillatory evanescent states create characteristic complex loops at the direct band gap of MX 2 monolayers, where electrons can directly tunnel between the band gap edges. To describe these tunneling currents, decay behavior of electronic states in the forbidden energy region is elucidated and their importance within the ballistic transport regime is briefly discussed.

  19. Electronic structure of palladium and its relation to uv spectroscopy

    DEFF Research Database (Denmark)

    Christensen, N.E.

    1976-01-01

    The electronic-energy-band structure of palladium has been calculated by means of the relativistic augmented-plane-wave method covering energies up to 30 eV above the Fermi level. The optical interband transitions producing structure in the dielectric function up to photon energies of 25 eV have...

  20. X-Band Photonic Band-Gap Accelerator Structure Breakdown Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Marsh, Roark A.; /MIT /MIT /NIFS, Gifu /JAERI, Kyoto /LLNL, Livermore; Shapiro, Michael A.; Temkin, Richard J.; /MIT; Dolgashev, Valery A.; Laurent, Lisa L.; Lewandowski, James R.; Yeremian, A.Dian; Tantawi, Sami G.; /SLAC

    2012-06-11

    In order to understand the performance of photonic band-gap (PBG) structures under realistic high gradient, high power, high repetition rate operation, a PBG accelerator structure was designed and tested at X band (11.424 GHz). The structure consisted of a single test cell with matching cells before and after the structure. The design followed principles previously established in testing a series of conventional pillbox structures. The PBG structure was tested at an accelerating gradient of 65 MV/m yielding a breakdown rate of two breakdowns per hour at 60 Hz. An accelerating gradient above 110 MV/m was demonstrated at a higher breakdown rate. Significant pulsed heating occurred on the surface of the inner rods of the PBG structure, with a temperature rise of 85 K estimated when operating in 100 ns pulses at a gradient of 100 MV/m and a surface magnetic field of 890 kA/m. A temperature rise of up to 250 K was estimated for some shots. The iris surfaces, the location of peak electric field, surprisingly had no damage, but the inner rods, the location of the peak magnetic fields and a large temperature rise, had significant damage. Breakdown in accelerator structures is generally understood in terms of electric field effects. These PBG structure results highlight the unexpected role of magnetic fields in breakdown. The hypothesis is presented that the moderate level electric field on the inner rods, about 14 MV/m, is enhanced at small tips and projections caused by pulsed heating, leading to breakdown. Future PBG structures should be built to minimize pulsed surface heating and temperature rise.

  1. Atomic structure and electron correlations

    International Nuclear Information System (INIS)

    Synchrotron experiments combined with theoretical calculations have already given much information on atomic structure and the effects of electron correlations, and this combination of theory and experiment is expected to yield much new information in coming years. In the calculations of photoabsorption cross sections, it is almost always necessary to include electron correlations in both initial and final states to obtain good agreement with experiment. The main theoretical approaches which include effects of electron correlations have been R-matrix theory, random phase approximation with exchange (RPAE), relativistic random phase approximation with exchange, and many-body perturbation theory

  2. Crystal structure, energy band and optical properties of dysprosium monophosphate DyPO{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Khadraoui, Z.; Bouzidi, C., E-mail: bouzidtc@yahoo.fr; Horchani-Naifer, K.; Ferid, M.

    2014-12-25

    Graphical abstract: The monophosphate DyPO{sub 4} has been synthesized by high temperature solid-state reaction method and was structurally characterized by single crystal X-ray diffraction. DyPO{sub 4} crystallizes in the tetragonal system (I4{sub 1}/Iamd). The energy-band structure, density of states and the chemical bonds have been investigated by density functional methods (DFT). - Highlights: • The DyPO{sub 4} has been synthesized by high temperature solid-state reaction method. • DFT was used to determine the electronic structure and optical properties of DyPO{sub 4}. • The monophosphate DyPO{sub 4} is an insulator with direct band gap (6.38 eV). - Abstract: A rare earth monophosphate crystal of DyPO{sub 4} has been synthesized by high temperature solid-state reaction method and was structurally characterized by single crystal X-ray diffraction. Atomic arrangement of DyPO{sub 4} structure is based on corner and edge sharing PO{sub 4} tetrahedra and DyO{sub 8} polyhedra. The FTIR, Raman, Scanning electron microscopy, diffuse reflectance and emission spectra of the compound have been investigated. Density functional calculation using a Generalized Gradient Approximation was used to determine the electronic structure and optical properties. The calculated total and partial densities of states indicate that the top of valance band is mainly built upon O-2p states with P-3p states via σ (P–O) interactions, and the low conduction bands mostly originates from Dy-5d. The results show that the monophosphate DyPO{sub 4} is an insulator with a calculated band gap (5.8 eV) closer to the experimental value (6.38 eV)

  3. Band Structure Modifications in Deformed InP Quantum Wires

    Directory of Open Access Journals (Sweden)

    V.V. Kuryliuk

    2014-11-01

    Full Text Available The work describes the features of the band structure of deformed InP nanowires with different diameters. It is shown that the bending of quantum wires is capable of creating local minima in the conduction and valence bands which are separated from the surface of the cylindrical wire. This result opens up new possibilities for controlling both the lifetime of photoexcited carriers by keeping them at these minima and the magnitude of the photovoltage in solar energy conversion devices based on quantum wires. The work lies within a common goal aiming to develop new methods of functionalization of nanostructured surfaces using mechanical deformations.

  4. Coherent phonon spectroscopy characterization of electronic bands at buried semiconductor heterointerfaces

    Energy Technology Data Exchange (ETDEWEB)

    Ishioka, Kunie, E-mail: ishioka.kunie@nims.go.jp [Nano Characterization Unit, National Institute for Materials Science, Tsukuba 305-0047 (Japan); Brixius, Kristina; Beyer, Andreas; Stolz, Wolfgang; Volz, Kerstin; Höfer, Ulrich [Faculty of Physics and Materials Sciences Center, Philipps-Universität Marburg, 35032 Marburg (Germany); Rustagi, Avinash; Stanton, Christopher J. [Department of Physics, University of Florida, Gainesville, Florida 32611 (United States); Petek, Hrvoje [Department of Physics and Astronomy and Pittsburgh Quantum Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15260 (United States)

    2016-02-01

    We demonstrate an all-optical approach to probe electronic band structure at buried interfaces involving polar semiconductors. Femtosecond optical pulses excite coherent phonons in epitaxial GaP films grown on Si(001) substrate. We find that the coherent phonon amplitude critically depends on the film growth conditions, specifically in the presence of antiphase domains, which are independently characterized by transmission electron microscopy. We determine the Fermi levels at the buried interface of GaP/Si from the coherent phonon amplitudes and demonstrate that the internal electric fields are created in the nominally undoped GaP films as well as the Si substrates, possibly due to the carrier trapping at the antiphase boundaries and/or at the interface.

  5. Electronic band gaps and transport in aperiodic graphene-based superlattices of Thue-Morse sequence

    Science.gov (United States)

    Wang, Ligang; Ma, Tianxing

    2014-03-01

    We investigate electronic band structure and transport properties in aperiodic graphene-based superlattices of Thue-Morse (TM) sequence. The robust properties of zero- k gap are demonstrated in both mono-layer and bi-layer graphene TM sequence. The Extra Dirac points may emerge at ky ≠ 0, and the electronic transport behaviors such as the conductance and the Fano factor are discussed in detail. Our results provide a flexible and effective way to control the transport properties in graphene-based superlattices. This work is supported by NSFCs (Nos. 11274275, 11104014 and 61078021), Research Fund for the Doctoral Program of Higher Education 20110003120007, SRF for ROCS (SEM), and the National Basic Research Program of China (No. 2011CBA00108, and 2012CB921602).

  6. S-band linac-based X-ray source with π/2-mode electron linac

    International Nuclear Information System (INIS)

    The activities with the compact X-ray source are attracting more attention, particularly for the applications of the source in medical fields. We propose the fabrication of a compact X-ray source using the SAMEER electron linear accelerator and the KEK laser undulator X-ray source (LUCX) technologies. The linac developed at SAMEER is a standing wave side-coupled S-band linac operating in the π/2 mode. In the proposed system, a photocathode RF gun will inject bunches of electrons in the linac to accelerate and achieve a high-energy, low-emittance beam. This beam will then interact with the laser in the laser cavity to produce X-rays of a type well suited for various applications. The side-coupled structure will make the system more compact, and the π/2 mode of operation will enable a high repetition rate operation, which will help to increase the X-ray yield.

  7. Electronic Structure of Semiconductor Nanocrystals

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    This paper reviews our recent development of the use of the large-scale pseudopotential method to calculate the electronic structure of semiconductor nanocrystals, such as quantum dots and wires, which often contain tens of thousands of atoms. The calculated size-dependent exciton energies and absorption spectra of quantum dots and wires are in good agreement with experiments. We show that the electronic structure of a nanocrystal can be tuned not only by its size,but also by its shape. Finally,we show that defect properties in quantum dots can be significantly different from those in bulk semiconductors.

  8. Study on Band Structure of YbB6 and Analysis of Its Optical Conductivity Spectrum

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The electronic structure of YbB6 crystal was studied by means of density functional (GGA+U) method.The calculations were performed by FLAPW method.The high accurate band structure was achieved.The correlation between the feature of the band structure and the Yb-B6 bonding in YbB6 was analyzed.On this basis, some optical constants of YbB6 such as reflectivity, dielectric function, optical conductivity, and energy-loss function were calculated.The results are in good agreement with the experiments.The real part of the optical conductivity spectrum and the energy-loss function spectrum were analyzed in detail.The assignments of the spectra were carried out to correlate the spectral peaks with the interband electronic transitions, which justify the reasonable part of previous empirical assignments and renew the missed or incorrect ones.

  9. Electronic structure and optic absorption of phosphorene under strain

    Science.gov (United States)

    Duan, Houjian; Yang, Mou; Wang, Ruiqiang

    2016-07-01

    We studied the electronic structure and optic absorption of phosphorene (monolayer of black phosphorus) under strain. Strain was found to be a powerful tool for the band structure engineering. The in-plane strain in armchair or zigzag direction changes the effective mass components along both directions, while the vertical strain only has significant effect on the effective mass in the armchair direction. The band gap is narrowed by compressive in-plane strain and tensile vertical strain. Under certain strain configurations, the gap is closed and the energy band evolves to the semi-Dirac type: the dispersion is linear in the armchair direction and is gapless quadratic in the zigzag direction. The band-edge optic absorption is completely polarized along the armchair direction, and the polarization rate is reduced when the photon energy increases. Strain not only changes the absorption edge (the smallest photon energy for electron transition), but also the absorption polarization.

  10. QUANTITATIVE ANALYSIS OF BANDED STRUCTURES IN DUAL-PHASE STEELS

    Directory of Open Access Journals (Sweden)

    Benoit Krebs

    2011-05-01

    Full Text Available Dual-Phase (DP steels are composed of martensite islands dispersed in a ductile ferrite matrix, which provides a good balance between strength and ductility. Current processing conditions (continuous casting followed by hot and cold rolling generate 'banded structures' i.e., irregular, parallel and alternating bands of ferrite and martensite, which are detrimental to mechanical properties and especially for in-use properties. We present an original and simple method to quantify the intensity and wavelength of these bands. This method, based on the analysis of covariance function of binary images, is firstly tested on model images. It is compared with ASTM E-1268 standard and appears to be more robust. Then it is applied on real DP steel microstructures and proves to be sufficiently sensitive to discriminate samples resulting from different thermo-mechanical routes.

  11. Coupling effect of quantum wells on band structure

    International Nuclear Information System (INIS)

    The coupling effects of quantum wells on band structure are numerically investigated by using the Matlab programming language. In a one dimensional finite quantum well with the potential barrier V0, the calculation is performed by increasing the number of inserted barriers with the same height Vb, and by, respectively, varying the thickness ratio of separated wells to inserted barriers and the height ratio of Vb to V0. Our calculations show that coupling is strongly influenced by the above parameters of the inserted barriers and wells. When these variables change, the width of the energy bands and gaps can be tuned. Our investigation shows that it is possible for quantum wells to achieve the desired width of the bands and gaps. (paper)

  12. Valley-dependent band structure and valley polarization in periodically modulated graphene

    Science.gov (United States)

    Lu, Wei-Tao

    2016-08-01

    The valley-dependent energy band and transport property of graphene under a periodic magnetic-strained field are studied, where the time-reversal symmetry is broken and the valley degeneracy is lifted. The considered superlattice is composed of two different barriers, providing more degrees of freedom for engineering the electronic structure. The electrons near the K and K' valleys are dominated by different effective superlattices. It is found that the energy bands for both valleys are symmetric with respect to ky=-(AM+ξ AS) /4 under the symmetric superlattices. More finite-energy Dirac points, more prominent collimation behavior, and new crossing points are found for K' valley. The degenerate miniband near the K valley splits into two subminibands and produces a new band gap under the asymmetric superlattices. The velocity for the K' valley is greatly renormalized compared with the K valley, and so we can achieve a finite velocity for the K valley while the velocity for the K' valley is zero. Especially, the miniband and band gap could be manipulated independently, leading to an increase of the conductance. The characteristics of the band structure are reflected in the transmission spectra. The Dirac points and the crossing points appear as pronounced peaks in transmission. A remarkable valley polarization is obtained which is robust to the disorder and can be controlled by the strain, the period, and the voltage.

  13. Molecular electronic-structure theory

    CERN Document Server

    Helgaker, Trygve; Jorgensen, Poul

    2013-01-01

    Ab initio quantum chemistry is increasingly paired with computational methods to solve intractable problems in chemistry and molecular physics. Now in a paperback edition, this comprehensive and technical work covers all the important aspects of modern molecular electronic-structure theory, clearly explaining quantum-mechanical methods and applications to molecular equilibrium structure, atomization energies, and reaction enthalpies. Extensive numerical examples illustrate each method described. An excellent resource for researchers in quantum chemistry and anyone interested in the theory and its applications.

  14. Electron density and carriers of the diffuse interstellar bands

    OpenAIRE

    Gnacinski, P.; Sikorski, J. K.; Galazutdinov, G. A.

    2007-01-01

    We have used the ionisation equilibrium equation to derive the electron density in interstellar clouds in the direction to 13 stars. A linear relation was found, that allows the determination of the electron density from the Mg I and Mg II column densities in diffuse clouds. The comparison of normalised equivalent width of 12 DIBs with the electron density shows that the DIBs equivalent width do not change with electron density varying in the range ne=0.01-2.5 cm^-3. Therefore the DIBs carrie...

  15. Electronic shell structure and chemisorption on gold nanoparticles

    OpenAIRE

    Larsen, Ask Hjorth; Kleis, Jesper; Thygesen, Kristian Sommer; Nørskov, J. K.; Jacobsen, Karsten Wedel

    2013-01-01

    We use density functional theory (DFT) to investigate the electronic structure and chemical properties of gold nanoparticles. Different structural families of clusters are compared. For up to 60 atoms we optimize structures using DFT-based simulated annealing. Cluster geometries are found to distort considerably, creating large band gaps at the Fermi level. For up to 200 atoms we consider structures generated with a simple EMT potential and clusters based on cuboctahedra and icosahedra. All t...

  16. Electronic structure and correlation effects in actinides

    Energy Technology Data Exchange (ETDEWEB)

    Albers, R.C.

    1998-12-01

    This report consists of the vugraphs given at a conference on electronic structure. Topics discussed are electronic structure, f-bonding, crystal structure, and crystal structure stability of the actinides and how they are inter-related.

  17. Mini-Dirac cones in the band structure of a copper intercalated epitaxial graphene superlattice

    Science.gov (United States)

    Forti, S.; Stöhr, A.; Zakharov, A. A.; Coletti, C.; Emtsev, K. V.; Starke, U.

    2016-09-01

    The electronic band structure of an epitaxial graphene superlattice, generated by intercalating a monolayer of Cu atoms, is directly imaged by angle-resolved photoelectron spectroscopy. The 3.2 nm lateral period of the superlattice is induced by a varying registry between the graphene honeycomb and the Cu atoms as imposed by the heteroepitaxial interface Cu/SiC. The carbon atoms experience a lateral potential across the supercell of an estimated value of about 65 meV. The potential leads to strong energy renormalization in the band structure of the graphene layer and the emergence of mini-Dirac cones. The mini-cones’ band velocity is reduced to about half of graphene's Fermi velocity. Notably, the ordering of the interfacial Cu atoms can be reversibly blocked by mild annealing. The superlattice indeed disappears at ∼220 °C.

  18. Planar C-Band Antenna with Electronically Controllable Switched Beams

    Directory of Open Access Journals (Sweden)

    Mariano Barba

    2009-01-01

    Full Text Available The design, manufacturing, and measurements of a switchable-beam antenna at 3.5 GHz for WLL or Wimax base station antennas in planar technology are presented. This antenna performs a discrete beam scan of a 60∘ sector in azimuth and can be easily upgraded to 5 or more steps. The switching capabilities have been implemented by the inclusion of phase shifters based on PIN diodes in the feed network following a strategy that allows the reduction of the number of switches compared to a classic design. The measurements show that the design objectives have been achieved and encourage the application of the acquired experience in antennas for space applications, such as X-band SAR and Ku-band DBS.

  19. Quantum Unfolding: A program for unfolding electronic energy bands of materials

    Science.gov (United States)

    Zheng, Fawei; Zhang, Ping; Duan, Wenhui

    2015-04-01

    We present Quantum Unfolding, a Fortran90 program for unfolding first-principles electronic energy bands. It unfolds energy bands accurately by handling the Fourier components of Bloch wavefunctions, which are reconstructed from Wannier functions from Wannier90. Due to the wide application of Wannier90 package and the possibility of focusing only on the most important energy bands, the present code works very conveniently.

  20. Band Structure and Quantum Confined Stark Effect in InN/GaN superlattices

    DEFF Research Database (Denmark)

    Gorczyca, I.; Suski, T.; Christensen, Niels Egede;

    2012-01-01

    for the gap error. The calculated band gap shows a strong decrease with the thickness (m) of the InN well. In superlattices containing a single layer of InN (m = 1) the band gap increases weakly with the GaN barrier thickness n, reaching a saturation value around 2 eV. In superlattices with n = m and n > 5......InN/GaN superlattices offer an important way of band gap engineering in the blue-green range of the spectrum. This approach represents a more controlled method than the band gap tuning in quantum well systems by application of InGaN alloys. The electronic structures of short-period wurtzite InN/GaN......(0001) superlattices are investigated, and the variation of the band gap with the thicknesses of the well and the barrier is discussed. Superlattices of the form mInN/nGaN with n ≥ m are simulated using band structure calculations in the Local Density Approximation with a semiempirical correction...

  1. Development of X-band accelerating structures for high gradients

    Institute of Scientific and Technical Information of China (English)

    S. Bini; M. G. Grimaldi; L. Romano; F. Ruffino; R. Parodi; V. Chimenti; A. Marcelli; L. Palumbo; B. Spataro; V. A. Dolgashev; S. Tantawi; A.D. Yeremian; Y. Higashi

    2012-01-01

    Short copper standing wave (SW) structures operating at an X-band frequency have been recently designed and manufactured at the Laboratori Nazionali di Frascati of the Istituto Nazionale di Fisica Nucleare (INFN) using the vacuum brazing technique.High power tests of the structures have been performed at the SLAC National Accelerator Laboratory.In this manuscript we report the results of these tests and the activity in progress to enhance the high gradient performance of the next generation of structures,particularly the technological characterization of high performance coatings obtained via molybdenum sputtering.

  2. Electronic Structure and Magnetic Properties of Cobalt Doped Zinc Oxide

    Directory of Open Access Journals (Sweden)

    O.U. Okeke

    2011-01-01

    Full Text Available Using the first principle methods, the electronic structure and magnetic properties of Co doped ZnO are investigated. It is found that Co substitutes Zn site in the host, and this doped configuration favors the ferromagnetic ground state. Electronic structure calculation shows that total magnetic moment for the supercell is 3.03 µB, which is mainly, contributed by Dopant (Co 2.45 µB. The compound is found to be a semiconductor, where the filled-states are located in the valence bands and the empty ones above the conduction band edge. The filled and empty d-states are also shown to shift downwards and upwards in the valence and the conduction bands, respectively. The total and atom resolved density of states shed light on the evolution of the electronic and magnetic properties.

  3. Engineering Design of a Multipurpose X-band Accelerating Structure

    CERN Document Server

    Gudkov, Dmitry; Samoshkin, Alexander; Zennaro, Riccardo; Dehler, Micha; Raguin, Jean-Yves

    2010-01-01

    Both FEL projects, SwissFEL and Fermi-Elettra each require an X-band RF accelerating structure for optimal bunch compression at the respective injectors. As the CLIC project is pursuing a program for producing and testing the X-band high-gradient RF structures, a collaboration between PSI, Elettra and CERN has been established to build a multipurpose X-band accelerating structure. This paper focuses on its engineering design, which is based on the disked cells jointed together by diffusion bonding. Vacuum brazing and laser beam welding is used for auxiliary components. The accelerating structure consists of two coupler subassemblies, 73 disks and includes a wakefield monitor and diagnostic waveguides. The engineering study includes the external cooling system, consisting of two parallel cooling circuits and an RF tuning system, which allows phase advance tuning of the cell by deforming the outer wall. The engineering solution for the installation and sealing of the wake field monitor feed-through devices that...

  4. Band structure of germanium carbides for direct bandgap silicon photonics

    Science.gov (United States)

    Stephenson, C. A.; O'Brien, W. A.; Penninger, M. W.; Schneider, W. F.; Gillett-Kunnath, M.; Zajicek, J.; Yu, K. M.; Kudrawiec, R.; Stillwell, R. A.; Wistey, M. A.

    2016-08-01

    Compact optical interconnects require efficient lasers and modulators compatible with silicon. Ab initio modeling of Ge1-xCx (x = 0.78%) using density functional theory with HSE06 hybrid functionals predicts a splitting of the conduction band at Γ and a strongly direct bandgap, consistent with band anticrossing. Photoreflectance of Ge0.998C0.002 shows a bandgap reduction supporting these results. Growth of Ge0.998C0.002 using tetrakis(germyl)methane as the C source shows no signs of C-C bonds, C clusters, or extended defects, suggesting highly substitutional incorporation of C. Optical gain and modulation are predicted to rival III-V materials due to a larger electron population in the direct valley, reduced intervalley scattering, suppressed Auger recombination, and increased overlap integral for a stronger fundamental optical transition.

  5. Calculation of complex band structure for low symmetry lattices

    Science.gov (United States)

    Srivastava, Manoj; Zhang, Xiaoguang; Cheng, Hai-Ping

    2009-03-01

    Complex band structure calculation is an integral part of a first-principles plane-wave based quantum transport method. [1] The direction of decay for the complex wave vectors is also the transport direction. The existing algorithm [1] has the limitation that it only allows the transport direction along a lattice vector perpendicular to the basal plane formed by two other lattice vectors, e.g., the c-axis of a tetragonal lattice. We generalize this algorithm to nonorthogonal lattices with transport direction not aligned with any lattice vector. We show that this generalization leads to changes in the boundary conditions and the Schrodinger's equation projected to the transport direction. We present, as an example, the calculation of the complex band structure of fcc Cu along a direction perpendicular to the (111) basal plane. [1] Hyoung Joon Choi and Jisoon Ihm, Phys. Rev. B 59, 2267 (1999).

  6. The structure of rotational bands in alpha-cluster nuclei

    Directory of Open Access Journals (Sweden)

    Bijker Roelof

    2015-01-01

    Full Text Available In this contribution, I discuss an algebraic treatment of alpha-cluster nuclei based on the introduction of a spectrum generating algebra for the relative motion of the alpha-clusters. Particular attention is paid to the discrete symmetry of the geometric arrangement of the α-particles, and the consequences for the structure of the rotational bands in the 12C and 16O nuclei.

  7. Parameterization and algebraic structure of 3-band orthogonal wavelet systems

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    In this paper, a complete parameterization for the 3-band compact wavelet systems is presented. Using the parametric result, a program of the filterbank design is completed, which can give not only the filterbanks but also the graphs of all possible scaling functions and their corresponding wavelets. Especially some symmetric wavelets with small supports are given. Finally an algebraic structure for this kind of wavelet systems is characterized.

  8. Structural and electronic properties of carbon nanotubes under hydrostatic pressures

    Institute of Scientific and Technical Information of China (English)

    Zhang Ying; Cao Jue-Xian; Yang Wei

    2008-01-01

    We studied the structural and electronic properties of carbon nanotubes under hydrostatic pressures based on molecular dynamics simulations and first principles band structure calculations.It is found that carbon nanotubes experience a hard-to-soft transition as external pressure increases.The bulk modulus of soft phase is two orders of magnitude smaller than that of hard phase.The band structure calculations show that band gap of (10,0) nanotube increases with the increase of pressure at low pressures. Above a critical pressure (5.70GPa),band gap of (10,0) nanotube drops rapidly and becomes zero at 6.62GPa. Moreover,the calculated charge density shows that a large pressure can induce an sp2-to-sp3 bonding transition,which is confirmed by recent experiments on deformed carbon nanotubes.

  9. Density functional study of BaNi$_2$As$_2$: Electronic structure, phonons and electron-phonon superconductivity

    OpenAIRE

    Subedi, Alaska; Singh, David J.

    2008-01-01

    We investigate the properties of BaNi$_2$As$_2$ using first principles calculations. The band structure has a similar shape to that of the BaFe$_2$As$_2$, and in particular shows a pseudogap between a manifold of six heavy $d$ electron bands and four lighter $d$ bands, i.e. at an electron count of six $d$ electrons per Ni. However, unlike BaFe$_2$As$_2$, where the Fermi energy occurs at the bottom of the pseudogap, the two additional electrons per Ni in the Ni compound place the Fermi energy ...

  10. Photoelectron spectroscopy bulk and surface electronic structures

    CERN Document Server

    Suga, Shigemasa

    2014-01-01

    Photoelectron spectroscopy is now becoming more and more required to investigate electronic structures of various solid materials in the bulk, on surfaces as well as at buried interfaces. The energy resolution was much improved in the last decade down to 1 meV in the low photon energy region. Now this technique is available from a few eV up to 10 keV by use of lasers, electron cyclotron resonance lamps in addition to synchrotron radiation and X-ray tubes. High resolution angle resolved photoelectron spectroscopy (ARPES) is now widely applied to band mapping of materials. It attracts a wide attention from both fundamental science and material engineering. Studies of the dynamics of excited states are feasible by time of flight spectroscopy with fully utilizing the pulse structures of synchrotron radiation as well as lasers including the free electron lasers (FEL). Spin resolved studies also made dramatic progress by using higher efficiency spin detectors and two dimensional spin detectors. Polarization depend...

  11. Electronic structure investigation of novel superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Buling, Anna

    2014-05-15

    The discovery of superconductivity in iron-based pnictides in 2008 gave rise to a high advance in the research of high-temperature superconductors. But up to now there is no generally admitted theory of the non-BCS mechanism of these superconductors. The electron and hole doped Ba122 (BaFe{sub 2}As{sub 2}) compounds investigated in this thesis are supposed to be suitable model systems for studying the electronic behavior in order to shed light on the superconducting mechanisms. The 3d-transition metal doped Ba122 compounds are investigated using the X-ray photoelectron spectroscopy (XPS), X-ray absorption spectroscopy (XAS), X-ray emission spectroscopy (XES) and X-ray magnetic circular dichroism (XMCD), while the completely hole doped K122 is observed using XPS. The experimental measurements are complemented by theoretical calculations. A further new class of superconductors is represented by the electride 12CaO*7Al{sub 2}O{sub 3}: Here superconductivity can be realized by electrons accommodated in the crystallographic sub-nanometer-sized cavities, while the mother compound is a wide band gap insulator. Electronic structure investigations, represented by XPS, XAS and resonant X-ray photoelectron spectroscopy (ResPES), carried out in this work, should help to illuminate this unconventional superconductivity and resolve a debate of competing models for explaining the existence of superconductivity in this compound.

  12. Demonstration of molecular beam epitaxy and a semiconducting band structure for I-Mn-V compounds

    International Nuclear Information System (INIS)

    Our ab initio theory calculations predict a semiconducting band structure of I-Mn-V compounds. We demonstrate on LiMnAs that high-quality materials with group-I alkali metals in the crystal structure can be grown by molecular beam epitaxy. Optical measurements on the LiMnAs epilayers are consistent with the theoretical electronic structure. Our calculations also reproduce earlier reports of high antiferromagnetic ordering temperature and predict large, spin-orbit-coupling-induced magnetic anisotropy effects. We propose a strategy for employing antiferromagnetic semiconductors in high-temperature semiconductor spintronics.

  13. Electronically coupled complementary interfaces between perovskite band insulators

    NARCIS (Netherlands)

    Huijben, Mark; Rijnders, Guus; Blank, Dave H.A.; Bals, Sara; Aert, van Sandra; Verbeeck, Jo; Tendeloo, van Gustaav; Brinkman, Alexander; Hilgenkamp, Hans

    2006-01-01

    Perovskite oxides exhibit a plethora of exceptional properties, providing the basis for novel concepts of oxide-electronic devices. The interest in these materials is even extended by the remarkable characteristics of their interfaces. Studies on single epitaxial connections between the wide-bandgap

  14. Photoconductivities from band states and a dissipative electron dynamics: Si(111) without and with adsorbed Ag clusters

    Energy Technology Data Exchange (ETDEWEB)

    Vazhappilly, Tijo [Departments of Chemistry and of Physics, Quantum Theory Project, University of Florida, Gainesville, Florida 32611 (United States); Theoretical Chemistry Section, Bhabha Atomic Research Centre, Mumbai 400 085 (India); Hembree, Robert H.; Micha, David A., E-mail: micha@qtp.ufl.edu [Departments of Chemistry and of Physics, Quantum Theory Project, University of Florida, Gainesville, Florida 32611 (United States)

    2016-01-14

    A new general computational procedure is presented to obtain photoconductivities starting from atomic structures, combining ab initio electronic energy band states with populations from density matrix theory, and implemented for a specific set of materials based on Si crystalline slabs and their nanostructured surfaces without and with adsorbed Ag clusters. The procedure accounts for charge mobility in semiconductors in photoexcited states, and specifically electron and hole photomobilities at Si(111) surfaces with and without adsorbed Ag clusters using ab initio energy bands and orbitals generated from a generalized gradient functional, however with excited energy levels modified to provide correct bandgaps. Photoexcited state populations for each band and carrier type were generated using steady state solution of a reduced density matrix which includes dissipative medium effects. The present calculations provide photoexcited electronic populations and photoinduced mobilities resulting from applied electric fields and obtained from the change of driven electron energies with their electronic momentum. Extensive results for Si slabs with 8 layers, without and with adsorbed Ag clusters, show that the metal adsorbates lead to substantial increases in the photomobility and photoconductivity of electrons and holes.

  15. Photoconductivities from band states and a dissipative electron dynamics: Si(111) without and with adsorbed Ag clusters.

    Science.gov (United States)

    Vazhappilly, Tijo; Hembree, Robert H; Micha, David A

    2016-01-14

    A new general computational procedure is presented to obtain photoconductivities starting from atomic structures, combining ab initio electronic energy band states with populations from density matrix theory, and implemented for a specific set of materials based on Si crystalline slabs and their nanostructured surfaces without and with adsorbed Ag clusters. The procedure accounts for charge mobility in semiconductors in photoexcited states, and specifically electron and hole photomobilities at Si(111) surfaces with and without adsorbed Ag clusters using ab initio energy bands and orbitals generated from a generalized gradient functional, however with excited energy levels modified to provide correct bandgaps. Photoexcited state populations for each band and carrier type were generated using steady state solution of a reduced density matrix which includes dissipative medium effects. The present calculations provide photoexcited electronic populations and photoinduced mobilities resulting from applied electric fields and obtained from the change of driven electron energies with their electronic momentum. Extensive results for Si slabs with 8 layers, without and with adsorbed Ag clusters, show that the metal adsorbates lead to substantial increases in the photomobility and photoconductivity of electrons and holes. PMID:26772554

  16. CdS and Cd-Free Buffer Layers on Solution Phase Grown Cu2ZnSn(SxSe1- x)4 :Band Alignments and Electronic Structure Determined with Femtosecond Ultraviolet Photoemission Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Haight, Richard; Barkhouse, Aaron; Wang, Wei; Yu, Luo; Shao, Xiaoyan; Mitzi, David; Hiroi, Homare; Sugimoto, Hiroki

    2013-12-02

    The heterojunctions formed between solution phase grown Cu2ZnSn(SxSe1- x)4(CZTS,Se) and a number of important buffer materials including CdS, ZnS, ZnO, and In2S3, were studied using femtosecond ultraviolet photoemission spectroscopy (fs-UPS) and photovoltage spectroscopy. With this approach we extract the magnitude and direction of the CZTS,Se band bending, locate the Fermi level within the band gaps of absorber and buffer and measure the absorber/buffer band offsets under flatband conditions. We will also discuss two-color pump/probe experiments in which the band bending in the buffer layer can be independently determined. Finally, studies of the bare CZTS,Se surface will be discussed including our observation of mid-gap Fermi level pinning and its relation to Voc limitations and bulk defects.

  17. Vibrational renormalisation of the electronic band gap in hexagonal and cubic ice

    Energy Technology Data Exchange (ETDEWEB)

    Engel, Edgar A., E-mail: eae32@cam.ac.uk; Needs, Richard J. [TCM Group, Cavendish Laboratory, University of Cambridge, J. J. Thomson Avenue, Cambridge CB3 0HE (United Kingdom); Monserrat, Bartomeu [TCM Group, Cavendish Laboratory, University of Cambridge, J. J. Thomson Avenue, Cambridge CB3 0HE (United Kingdom); Department of Physics and Astronomy, Rutgers University, Piscataway, New Jersey 08854-8019 (United States)

    2015-12-28

    Electron-phonon coupling in hexagonal and cubic water ice is studied using first-principles quantum mechanical methods. We consider 29 distinct hexagonal and cubic ice proton-orderings with up to 192 molecules in the simulation cell to account for proton-disorder. We find quantum zero-point vibrational corrections to the minimum electronic band gaps ranging from −1.5 to −1.7 eV, which leads to improved agreement between calculated and experimental band gaps. Anharmonic nuclear vibrations play a negligible role in determining the gaps. Deuterated ice has a smaller band-gap correction at zero-temperature of −1.2 to −1.4 eV. Vibrations reduce the differences between the electronic band gaps of different proton-orderings from around 0.17 eV to less than 0.05 eV, so that the electronic band gaps of hexagonal and cubic ice are almost independent of the proton-ordering when quantum nuclear vibrations are taken into account. The comparatively small reduction in the band gap over the temperature range 0 − 240 K of around 0.1 eV does not depend on the proton ordering, or whether the ice is protiated or deuterated, or hexagonal, or cubic. We explain this in terms of the atomistic origin of the strong electron-phonon coupling in ice.

  18. Relaxation of femtosecond photoexcited electrons in a polar indirect band-gap semiconductor nanoparticle

    Indian Academy of Sciences (India)

    Navinder Singh

    2005-01-01

    A model calculation is given for the energy relaxation of a non-equilibrium distribution of hot electrons (holes) prepared in the conduction (valence) band of a polar indirect band-gap semiconductor, which has been subjected to homogeneous photoexcitation by a femtosecond laser pulse. The model assumes that the pulsed photoexcitation creates two distinct but spatially interpenetrating electron and hole non-equilibrium subsystems that initially relax non-radiatively through the electron (hole)–phonon processes towards the conduction (valence) band minimum (maximum), and finally radiatively through the phonon-assisted electron–hole recombination across the band-gap, which is a relatively slow process. This leads to an accumulation of electrons (holes) at the conduction (valence) band minimum (maximum). The resulting peaking of the carrier density and the entire evolution of the hot electron (hole) distribution has been calculated. The latter may be time resolved by a pump-probe study. The model is particularly applicable to a divided (nanometric) polar indirect band-gap semiconductor with a low carrier concentration and strong electron–phonon coupling, where the usual two-temperature model [1–4] may not be appropriate.

  19. Hyperfine interactions and electronic band structure in Tb{sub 0.27}Dy{sub 0.73}(Fe{sub 1-x}Co{sub x}){sub 2} compounds

    Energy Technology Data Exchange (ETDEWEB)

    Bodnar, W.; Szklarska - Lukasik, M. [Faculty of Physics and Applied Computer Science, AGH, Al. Mickiewicza 30, 30-059 Krakow (Poland); Stoch, P. [Institute of Atomic Energy, 05-400 Swierk-Otwock (Poland); Faculty of Material Science and Ceramics, AGH, Al. Mickiewicza 30, 30-059 Krakow (Poland); Zachariasz, P. [Institute of Atomic Energy, 05-400 Swierk-Otwock (Poland); Pszczola, J., E-mail: pszczola@agh.edu.p [Faculty of Physics and Applied Computer Science, AGH, Al. Mickiewicza 30, 30-059 Krakow (Poland); Suwalski, J. [Institute of Atomic Energy, 05-400 Swierk-Otwock (Poland)

    2010-04-30

    The after-effects of Fe/Co substitution in the intermetallic series Tb{sub 0.27}Dy{sub 0.73}(Fe{sub 1-x}Co{sub x}){sub 2}, with a starting compound Tb{sub 0.27}Dy{sub 0.73}Fe{sub 2} known as Terfenol-D, were studied. Co substitution introduces a local area, at sub-nanoscale, with random Fe/Co neighbourhoods of the {sup 57}Fe atoms. {sup 57}Fe Moessbauer effect measurements for the intermetallic system Tb{sub 0.27}Dy{sub 0.73}(Fe{sub 1-x}Co{sub x}){sub 2} carried out at 4.2 K evidence an [100] easy axis of magnetization. Hyperfine interaction parameters: isomer shift, a magnetic hyperfine field and a quadrupole interaction parameter were obtained from the fitting procedure of the spectra, both for the local area and for the sample as bulk. As a result of Fe/Co substitution, a Slater-Pauling type curve for the average magnetic hyperfine field vs. Co content is observed. It is found that the magnetic hyperfine fields corresponding to the local area sorted out against Co contribution in the Fe/Co neighbourhoods also create a dependence similar to a Slater-Pauling type curve. Band structure calculations using the Full-Potential Linearized Augmented Plane Waves (FLAPW) method were performed. The experimentally determined magnetic hyperfine field correlates linearly with the weighted magnetic moment calculated per transition metal atom.

  20. Determination of the band structure of LuNi{sub 2}B{sub 2}C

    Energy Technology Data Exchange (ETDEWEB)

    Bergk, B. [Hochfeld-Magnetlabor, Forschungszentrum Rossendorf, Dresden (Germany); Inst. fuer Festkoerperphysik, Technische Univ. Dresden (Germany); Bartkowiak, M.; Ignatchik, O. [Hochfeld-Magnetlabor, Forschungszentrum Rossendorf, Dresden (Germany); Jaeckel, M. [Inst. fuer Festkoerperphysik, Technische Univ. Dresden (Germany); Wosnitza, J.; Rosner, H.; Petzold, V. [MPI fuer chemische Physik fester Stoffe, Dresden (Germany); Canfield, P. [Iowa State Univ. of Science and Technology, Ames (United States). Ames Lab., Condensed Matter Physics

    2007-07-01

    We present de Haas-van Alphen (dHvA) investigations on the nonmagnetic borocarbide superconductor LuNi{sub 2}B{sub 2}C which have been performed by use of the torque method in high magnetic fields up to 32 T and at low temperatures down to 50 mK. The complex band structure is extracted from the quantum oscillations in the normal state. In comparison with full-potential-local-orbital calculations of the band structure we are able to assign the observed dHvA frequencies to the different bands. Temperature dependent dHvA investigations allowed the extraction of the effective band masses for the several Fermi-surface sheets. We observe an enhancement of the effective masses compared to the theoretical calculations which is due to electron-phonon interaction. Finally, we are able to examine the angular dependence of the electron-phonon coupling for the different Fermi-surface sheets. (orig.)

  1. Strain effect on graphene nanoribbon carrier statistic in the presence of non-parabolic band structure

    Science.gov (United States)

    Izuani Che Rosid, N. A.; Ahmadi, M. T.; Ismail, Razali

    2016-09-01

    The effect of tensile uniaxial strain on the non-parabolic electronic band structure of armchair graphene nanoribbon (AGNR) is investigated. In addition, the density of states and the carrier statistic based on the tight-binding Hamiltonian are modeled analytically. It is found that the property of AGNR in the non-parabolic band region is varied by the strain. The tunable energy band gap in AGNR upon strain at the minimum energy is described for each of n-AGNR families in the non-parabolic approximation. The behavior of AGNR in the presence of strain is attributed to the breakable AGNR electronic band structure, which varies the physical properties from its normality. The linear relation between the energy gap and the electrical properties is featured to further explain the characteristic of the deformed AGNR upon strain. Project supported by the Ministry of Higher Education (MOHE), Malaysia under the Fundamental Research Grant Scheme (FRGS) (Grant No.Q.J130000.7823.4F477). We also thank the Research Management Center (RMC) of Universiti Teknologi Malaysia (UTM) for providing an excellent research environment.

  2. G0W0 band structure of CdWO4

    International Nuclear Information System (INIS)

    The full quasiparticle band structure of CdWO4 is calculated within the single-shot GW (G0W0) approximation using maximally localized Wannier functions, which allows one to assess the validity of the commonly used scissor operator. Calculations are performed using the Godby–Needs plasmon pole model and the accurate contour deformation technique. It is shown that while the two methods yield identical band gap energies, the low-lying states are given inaccurately by the plasmon pole model. We report a band gap energy of 4.94 eV, including spin–orbit interaction at the DFT–LDA (density functional theory–local density approximation) level. Quasiparticle renormalization in CdWO4 is shown to be correlated with localization distance. Electron and hole effective masses are calculated at the DFT and G0W0 levels. (paper)

  3. k.p Parameters with Accuracy Control from Preexistent First-Principles Band Structure Calculations

    Science.gov (United States)

    Sipahi, Guilherme; Bastos, Carlos M. O.; Sabino, Fernando P.; Faria Junior, Paulo E.; de Campos, Tiago; da Silva, Juarez L. F.

    The k.p method is a successful approach to obtain band structure, optical and transport properties of semiconductors. It overtakes the ab initio methods in confined systems due to its low computational cost since it is a continuum method that does not require all the atoms' orbital information. From an effective one-electron Hamiltonian, the k.p matrix representation can be calculated using perturbation theory and the parameters identified by symmetry arguments. The parameters determination, however, needs a complementary approach. In this paper, we developed a general method to extract the k.p parameters from preexistent band structures of bulk materials that is not limited by the crystal symmetry or by the model. To demonstrate our approach, we applied it to zinc blende GaAs band structure calculated by hybrid density functional theory within the Heyd-Scuseria-Ernzerhof functional (DFT-HSE), for the usual 8 ×8 k.p Hamiltonian. Our parameters reproduced the DFT-HSE band structure with great accuracy up to 20% of the first Brillouin zone (FBZ). Furthermore, for fitting regions ranging from 7-20% of FBZ, the parameters lie inside the range of values reported by the most reliable studies in the literature. The authors acknowledge financial support from the Brazilian agencies CNPq (Grant #246549/2012-2) and FAPESP (Grants #2011/19333-4, #2012/05618-0 and #2013/23393-8).

  4. Band alignment of vanadium oxide as an interlayer in a hafnium oxide-silicon gate stack structure

    Science.gov (United States)

    Zhu, Chiyu; Kaur, Manpuneet; Tang, Fu; Liu, Xin; Smith, David J.; Nemanich, Robert J.

    2012-10-01

    Vanadium oxide (VO2) is a narrow band gap material (Eg = 0.7 eV) with a thermally induced insulator-metal phase transition at ˜343 K and evidence of an electric field induced transition at T oxidized Si(100) surface and a 2 nm hafnium oxide (HfO2) layer. The layer structure was confirmed with high resolution transmission electron microscopy. The electronic properties were characterized with x-ray and ultraviolet photoemission spectroscopy, and the band alignment was deduced on both n-type and p-type Si substrates. The valence band offset between VO2 and SiO2 is measured to be 4.0 eV. The valence band offset between HfO2 and VO2 is measured to be ˜3.4 eV. The band relation developed from these results demonstrates the potential for charge storage and switching for the embedded VO2 layer.

  5. Experimental Studies Of W-band Accelerator Structures At High Field

    CERN Document Server

    Hill, M E

    2001-01-01

    A high-gradient electron accelerator is desired for high- energy physics research, where frequency scalings of breakdown and trapping of itinerant beamline particles dictates operation of the accelerator at short wavelengths. The first results of design and test of a high-gradient mm-wave linac with an operating frequency at 91.392 GHz (W-band) are presented. A novel approach to particle acceleration is presented employing a planar, dielectric lined waveguide used for particle acceleration. The traveling wave fields in the planar dielectric accelerator (PDA) are analyzed for an idealized structure, along with a circuit equivalent model used for understanding the structure as a microwave circuit. Along with the W-band accelerator structures, other components designed and tested are high power rf windows, high power attenuators, and a high power squeeze-type phase shifter. The design of the accelerator and its components where eased with the aide of numerical simulations using a finite-difference electromagneti...

  6. Influence of the sequence on the ab initio band structures of single and double stranded DNA models

    International Nuclear Information System (INIS)

    The solid state physical approach is widely used for the characterization of electronic properties of DNA. In the simplest case the helical symmetry is explicitly utilized with a repeat unit containing only a single nucleotide or nucleotide pair. This model provides a band structure that is easily interpretable and reflects the main characteristic features of the single nucleotide or a nucleotide pair chain, respectively. The chemical variability of the different DNA chains is, however, almost completely neglected in this way. In the present work we have investigated the effect of the different sequences on the band structure of periodic DNA models. For this purpose we have applied the Hartree–Fock crystal orbital method for single and double stranded DNA chains with two different subsequent nucleotides in the repeat unit of former and two different nucleotide pairs in the latter case, respectively. These results are compared to simple helical models with uniform sequences. The valence and conduction bands related to the stacked nucleotide bases of single stranded DNA built up only from guanidine as well as of double stranded DNA built up only from guanidine–cytidine pairs showed special properties different from the other cases. Namely, they had higher conduction and lower valence band positions and this way larger band gaps and smaller widths of these bands. With the introduction of non-uniform guanidine containing sequences band structures became more similar to each other and to the band structures of other sequences without guanidine. The maximal bandwidths of the non-uniform sequences are considerably smaller than in the case of uniform sequences implying smaller charge carrier mobilities both in the conduction and valence bands. - Highlights: • HF Energy bands in DNA. • The role of aperiodicity in the DNA band structure. • Hole mobilities in quasi-periodic DNA with broader valence bands

  7. Electronic structure of EuFe2As2.

    Science.gov (United States)

    Adhikary, Ganesh; Sahadev, Nishaina; Biswas, Deepnarayan; Bindu, R; Kumar, Neeraj; Thamizhavel, A; Dhar, S K; Maiti, Kalobaran

    2013-06-01

    Employing high resolution photoemission spectroscopy, we studied the temperature evolution of the electronic structure of EuFe2As2, a unique pnictide, where antiferromagnetism of the Eu layer survives within the superconducting phase due to 'FeAs' layers, achieved via substitution and/or pressure. High energy and angle resolution helped to reveal the signature of peak-dip features, having significant p orbital character and spin density wave transition induced band folding in the electronic structure. A significant spectral weight redistribution is observed below 20 K manifesting the influence of antiferromagnetic order on the conduction electrons.

  8. Structural Dynamics of Electronic Systems

    Science.gov (United States)

    Suhir, E.

    2013-03-01

    The published work on analytical ("mathematical") and computer-aided, primarily finite-element-analysis (FEA) based, predictive modeling of the dynamic response of electronic systems to shocks and vibrations is reviewed. While understanding the physics of and the ability to predict the response of an electronic structure to dynamic loading has been always of significant importance in military, avionic, aeronautic, automotive and maritime electronics, during the last decade this problem has become especially important also in commercial, and, particularly, in portable electronics in connection with accelerated testing of various surface mount technology (SMT) systems on the board level. The emphasis of the review is on the nonlinear shock-excited vibrations of flexible printed circuit boards (PCBs) experiencing shock loading applied to their support contours during drop tests. At the end of the review we provide, as a suitable and useful illustration, the exact solution to a highly nonlinear problem of the dynamic response of a "flexible-and-heavy" PCB to an impact load applied to its support contour during drop testing.

  9. Familial band--shaped keratopathy and spheroidal degeneration. Clinical and electron microscopic study.

    Science.gov (United States)

    Kloucek, F

    1977-12-31

    Presumptive primary band-shaped keratopathy was described in a 35-year-old man and his 62-year-old paternal uncle. Lamellar keratoplasty was performed in one eye in each of these patients. The light and electron microscopic studies were carried out on both corneal specimens. Histologic stains for calcium were negative. Noncalcific band-shaped keratopathy was confirmed by electron microscopic findings too. Electron-dense globular deposits were found in the region of Bowman's membrane and superficial stroma. These may be characterized as a secondary form of spheroidal degeneration.

  10. Electronic structure of point defects in semiconductors

    International Nuclear Information System (INIS)

    trace concentration (of the order of one part per million). However, owing to the heavy burden of the quantum-mechanical electronic structure calculations, which grow very rapidly with the number of electrons, the present day simulations do not easily exceed a few hundred atoms nowadays. This induces effective defect concentrations of the order of one percent which are very far from the diluted defects observed in the experiments. The extrapolation of high concentrations to low concentrations is difficult because defects in semiconductors often bear a net electric charge which induces long-range interactions between the spuriously interacting charged defects. The first part of my work presents the techniques available in this area, improvements in the techniques and some understanding of these spurious interactions. The second topic addressed in this memoir focuses on improving the electronic structure of defects in semiconductors and insulators. Defects in these materials introduce discrete electronic levels within the band gap of the pristine bulk material. These electronic levels correspond to the electrons involved in the defect states. Their wave function is more or less localized around the defect region and the filling of the state may also vary with the thermodynamic conditions (Fermi level). These levels inside the band gap govern the modification of the properties of electronic and optical transport. Unfortunately the standard ab initio approaches, in the context of Density Functional Theory (DFT), are unable to get the correct band gaps of semiconductors and insulators. This is why many defect properties cannot be predicted with certainty within these approaches. This second part demonstrates how the introduction of the many-body perturbation theory in the so-called GW approximation solves the problem of band gaps and thus allows one to obtain more reliable defect properties. Of course, the field of ab initio electronic structure for defects is far from being

  11. Electronic structure of α-oligothiophenes with various substituents

    Science.gov (United States)

    Vikramaditya, Talapunur; Saisudhakar, Mukka; Sumithra, Kanakamma

    2015-02-01

    Density functional theory is employed to investigate the effect of various substituents on the electronic structure of α-oligothiophenes. The effect of electron donating and withdrawing groups of oligothiophenes in the regio regular HT-HT form is studied. Depending on the type of substituent and the substitution pattern, large differences in the delocalization pattern are observed between the substituted and unsubstituted oligomers. It is found that the band gaps critically depend on the chemical structure and regioselectivity of the building blocks. For the 3-substitued systems, electron donating and electron withdrawing substituents are shown to decrease and increase band gaps respectively compared to unsubstituted systems. There are charge separation effects introduced as a result of lack of symmetry in some of the substituted oligothiophenes. A new strategy is explained to achieve low band gap materials by making use of the regioselective form with lesser symmetry. Push-pull substitution with an electron donor at one end of the conjugation and an acceptor the other end is also investigated. Comparisons of band gaps of the substituted oligothiophenes with the corresponding polymeric systems are also done.

  12. Temperature dependence of band gaps in semiconductors: electron-phonon interaction

    Energy Technology Data Exchange (ETDEWEB)

    Kremer, Reinhard K.; Cardona, M.; Lauck, R. [MPI for Solid State Research, Stuttgart (Germany); Bhosale, J.; Ramdas, A.K. [Physics Dept., Purdue University, West Lafayette, IN (United States); Burger, A. [Fisk University, Dept. of Life and Physical Sciences, Nashville, TN (United States); Munoz, A. [MALTA Consolider Team, Dept. de Fisica Fundamental II, Universidad de La Laguna, Tenerife (Spain); Instituto de Materiales y Nanotecnologia, Universidad de La Laguna, Tenerife (Spain); Romero, A.H. [CINVESTAV, Dept. de Materiales, Unidad Queretaro, Mexico (Mexico); MPI fuer Mikrostrukturphysik, Halle an der Saale (Germany)

    2013-07-01

    We investigate the temperature dependence of the energy gap of several semiconductors with chalcopyrite structure and re-examine literature data and analyze own high-resolution reflectivity spectra in view of our new ab initio calculations of their phonon properties. This analysis leads us to distinguish between materials with d-electrons in the valence band (e.g. CuGaS{sub 2}, AgGaS{sub 2}) and those without d-electrons (e.g. ZnSnAs{sub 2}). The former exhibit a rather peculiar non-monotonic temperature dependence of the energy gap which, so far, has resisted cogent theoretical description. We demonstrate it can well be fitted by including two Bose-Einstein oscillators with weights of opposite sign leading to an increase at low-T and a decrease at higher T's. We find that the energy of the former correlates well with characteristic peaks in the phonon density of states associated with low-energy vibrations of the d-electron constituents.

  13. Electron confinement in thin metal films. Structure, morphology and interactions

    Energy Technology Data Exchange (ETDEWEB)

    Dil, J.H.

    2006-05-15

    This thesis investigates the interplay between reduced dimensionality, electronic structure, and interface effects in ultrathin metal layers (Pb, In, Al) on a variety of substrates (Si, Cu, graphite). These layers can be grown with such a perfection that electron confinement in the direction normal to the film leads to the occurrence of quantum well states in their valence bands. These quantum well states are studied in detail, and their behaviour with film thickness, on different substrates, and other parameters of growth are used here to characterise a variety of physical properties of such nanoscale systems. The sections of the thesis deal with a determination of quantum well state energies for a large data set on different systems, the interplay between film morphology and electronic structure, and the influence of substrate electronic structure on their band shape; finally, new ground is broken by demonstrating electron localization and correlation effects, and the possibility to measure the influence of electron-phonon coupling in bulk bands. (orig.)

  14. Band gaps, ionization potentials, and electron affinities of periodic electron systems via the adiabatic-connection fluctuation-dissipation theorem

    Science.gov (United States)

    Trushin, Egor; Betzinger, Markus; Blügel, Stefan; Görling, Andreas

    2016-08-01

    An approach to calculate fundamental band gaps, ionization energies, and electron affinities of periodic electron systems is explored. Starting from total energies obtained with the help of the adiabatic-connection fluctuation-dissipation (ACFD) theorem, these physical observables are calculated according to their basic definition by differences of the total energies of the N -, (N -1 ) -, and (N +1 ) -electron system. The response functions entering the ACFD theorem are approximated here by the direct random phase approximation (dRPA). For a set of prototypical semiconductors and insulators it is shown that even with this quite drastic approximation the resulting band gaps are very close to experiment and of a similar quality to those from the computationally more involved G W approximation. By going beyond the dRPA in the future the accuracy of the calculated band gaps may be significantly improved further.

  15. Portable X-Band Linear Electron Accelerators for Radiographic Applications

    CERN Document Server

    Saverskiy, Aleksandr J; Hernandez, Michael; Mishin, Andrey V; Skowbo, Dave

    2005-01-01

    The MINAC series portable linear electron accelerator systems designed and manufactured at American Science and Engineering, Inc. High Energy Systems Division (AS&E HESD) are discussed in this paper. Each system can be configured as either an X-ray or electron beam source. The powerful 4 MeV and 6 MeV linacs powered by a 1,5 MW magnetron permit operation in a dose rate range from 100 R/min at 80 cm to 600 R/min at 80 cm. Each MINAC is a self-contained source with radiation leakage outside of the X-ray head less than 0,1% of the maximum dose. Along with these systems a 1 MeV ultra compact MINAC has been successfully tested. The unit is available with radiation leakage less then 0.01% and permits producing X-ray beam in an energy range (1…2) MeV at a high output dose rate. Design and experimental parameters are presented. The common and system specific features are also discussed.

  16. Collective Band Structures in Neutron-Rich 108Mo Nucleus

    Institute of Scientific and Technical Information of China (English)

    DING Huai-Bo; WANG Jian-Guo; XU Qiang; ZHU Sheng-Jiang; J. H. Hamilton; A. V. Ramayya; J. K. Hwang; Y. X. Luo; J. O. Rasmussen; I. Y. Lee; CHE Xing-Lai

    2007-01-01

    High spin states in the neutron-rich 108Mo nucleus are studied by measuring prompt γ-rays following the spontaneous fission of 252Cf with a Gammasphere detector array. The ground-state band is confirmed, and the one-phonon γ-vibrational band is updated with spin up to 12 h. A new collective band with the band head level at 1422.4 keV is suggested as a two-phonon γ-vibrational band. Another new band is proposed as a two-quasi-proton excitation band. Systematic characteristics of the collective bands are discussed.

  17. Electronic instrumentation for smart structures

    Science.gov (United States)

    Blanar, George J.

    1995-04-01

    The requirements of electronic instrumentation for smart structures are similar to those of data acquisition systems at our national particle physics laboratories. Modern high energy and heavy ion physics experiments may have tens of thousands of channels of data sources producing data that must be converted to digital form, compacted, stored and interpreted. In parallel, multiple sensors distributed in and around smart structures generate either binary or analog signals that are voltage, charge, or time like in their information content. In all cases, they must be transmitted, converted and preserved into a unified digital format for real-time processing. This paper will review the current status of practical large scale electronic measurement systems with special attention to architectures and physical organization. Brief surveys of the current state of the art will include preamplifiers and amplifiers, comparators and discriminators, voltage or charge analog-to-digital converters, time internal meters or time-to-digital converters, and finally, counting or scalar systems. The paper will conclude by integrating all of these ideas in a concept for an all-digital readout of a smart structure using the latest techniques used in physics research today.

  18. Promoting Photochemical Water Oxidation with Metallic Band Structures.

    Science.gov (United States)

    Liu, Hongfei; Moré, René; Grundmann, Henrik; Cui, Chunhua; Erni, Rolf; Patzke, Greta R

    2016-02-10

    The development of economic water oxidation catalysts is a key step toward large-scale water splitting. However, their current exploration remains empirical to a large extent. Elucidating the correlations between electronic properties and catalytic activity is crucial for deriving general and straightforward catalyst design principles. Herein, strongly correlated electronic systems with abundant and easily tunable electronic properties, namely La(1-x)Sr(x)BO3 perovskites and La(2-x)Sr(x)BO4 layered perovskites (B = Fe, Co, Ni, or Mn), were employed as model systems to identify favorable electronic structures for water oxidation. We established a direct correlation between the enhancement of catalytic activity and the insulator to metal transition through tuning the electronic properties of the target perovskite families via the La(3+)/Sr(2+) ratio. Their improved photochemical water oxidation performance was clearly linked to the increasingly metallic character. These electronic structure-activity relations provide a promising guideline for constructing efficient water oxidation catalysts. PMID:26771537

  19. Wide band-gap materials for high power electronics

    International Nuclear Information System (INIS)

    The wide gap semiconductors are the basis for the third generation of microelectronics and specially for the high end of the temperature range. In this presentation we will review the prospects and status of two members of this group: Diamond and Silicon Carbide (SiC). The two are at different stages of technological development and their respective modes of application at present are quite different. SiC devices can operate at up to 105 deg C. High power and high frequency devices have been demonstrated. Diamond is not yet ready for real electronic devices but its many extreme properties find their applications in several cases. The prospects of the future applications will be described in view of the semiconducting characteristics of these materials

  20. Molecular electronic-structure theory

    CERN Document Server

    Helgaker, Trygve; Olsen, Jeppe

    2014-01-01

    Ab initio quantum chemistry has emerged as an important tool in chemical research and is appliced to a wide variety of problems in chemistry and molecular physics. Recent developments of computational methods have enabled previously intractable chemical problems to be solved using rigorous quantum-mechanical methods. This is the first comprehensive, up-to-date and technical work to cover all the important aspects of modern molecular electronic-structure theory. Topics covered in the book include: * Second quantization with spin adaptation * Gaussian basis sets and molecular-integral evaluati

  1. Experimental studies of W-band accelerator structures at high field

    Science.gov (United States)

    Hill, Marc Edward

    2001-06-01

    A high-gradient electron accelerator is desired for high- energy physics research, where frequency scalings of breakdown and trapping of itinerant beamline particles dictates operation of the accelerator at short wavelengths. The first results of design and test of a high-gradient mm-wave linac with an operating frequency at 91.392 GHz (W-band) are presented. A novel approach to particle acceleration is presented employing a planar, dielectric lined waveguide used for particle acceleration. The traveling wave fields in the planar dielectric accelerator (PDA) are analyzed for an idealized structure, along with a circuit equivalent model used for understanding the structure as a microwave circuit. Along with the W-band accelerator structures, other components designed and tested are high power rf windows, high power attenuators, and a high power squeeze-type phase shifter. The design of the accelerator and its components where eased with the aide of numerical simulations using a finite-difference electromagnetic field solver. Manufacturing considerations of the small, delicate mm-wave components and the steps taken to reach a robust fabrication process are detailed. These devices were characterized under low power using a two-port vector network analyzer to verify tune and match, including measurements of the structures' fields using a bead-pull. The measurements are compared with theory throughout. Addition studies of the W-band structures were performed under high power utilizing a 11.424 GHz electron linac as a current source. Test results include W-band power levels of 200 kW, corresponding to fields in the PDA of over 20 MV/m, higher than any collider. Also presented are the first measurements of the quadrapole component of the monopole accelerating field.

  2. The dependence of the tunneling characteristic on the electronic energy bands and the carrier’s states of Graphene superlattice

    Science.gov (United States)

    Yang, C. H.; Shen, G. Z.; Ao, Z. M.; Xu, Y. W.

    2016-09-01

    Using the transfer matrix method, the carrier tunneling properties in graphene superlattice generated by the Thue-Morse sequence and Kolakoski sequence are investigated. The positions and strength of the transmission can be modulated by the barrier structures, the incident energy and angle, the height and width of the potential. These carriers tunneling characteristic can be understood from the energy band structures in the corresponding superlattice systems and the carrier’s states in well/barriers. The transmission peaks above the critical incident angle rely on the carrier’s resonance in the well regions. The structural diversity can modulate the electronic and transport properties, thus expanding its applications.

  3. Quasiparticle band structure for the Hubbard systems: Application to. alpha. -CeAl sub 2

    Energy Technology Data Exchange (ETDEWEB)

    Costa-Quintana, J.; Lopez-Aguilar, F. (Departamento de Fisica, Grupo de Electromagnetismo, Universidad Autonoma de Barcelona, Bellaterra, E-08193 Barcelona, Spain (ES)); Balle, S. (Departament de Fisica, Universitat de les Illes Balears, E-07071 Palma de Mallorca, Spain (ES)); Salvador, R. (Control Data Corporation, TALLAHASSEE, FL (USA) Supercomputer Computations Research Institute, Florida State University, Tallahassee, Florida 32306-4052 (USA))

    1990-04-01

    A self-energy formalism for determining the quasiparticle band structure of the Hubbard systems is deduced. The self-energy is obtained from the dynamically screened Coulomb interaction whose bare value is the correlation energy {ital U}. A method for integrating the Schroedingerlike equation with the self-energy operator is given. The method is applied to the cubic Laves phase of {alpha}-CeAl{sub 2} because it is a clear Hubbard system with a very complex electronic structure and, moreover, this system provides us with sufficient experimental data for testing our method.

  4. DFT Study of Effects of Potassium Doping on Band Structure of Crystalline Cuprous Azide

    Institute of Scientific and Technical Information of China (English)

    ZHU,Wei-Hua; ZHANG,Xiao-Wen; WEI,Tao; XIAO,He-Ming

    2008-01-01

    The structure and defect formation energies of the K-doped CuN3 were studied using density functional theory within the generalized gradient approximation. The results show that the K-doping breaks the azide symmetry and causes asymmetric atomic displacement. As the K-doping level increases, the band gap of the doped system gradually increases. The K impurity is easily incorporated into the crystal thermodynamically. The Cu vacancy is easily created thermodynamically and the K impurity can serve as nucleation centers for vacancy clustering. Finally the effects of K-doping concentrations on the sensitivity of CuN3 were understood based on electronic structures.

  5. Observation of valence band electron emission from n-type silicon field emitter arrays

    Science.gov (United States)

    Ding, Meng; Kim, Han; Akinwande, Akintunde I.

    1999-08-01

    Electron emission from the valence band of n-type Si field emitter arrays is reported. High electrostatic field at the surface of Si was achieved by reducing the radius of the emitter tip. Using oxidation sharpening, 1 μm aperture polycrystalline Si gate, n-type Si field emitter arrays with small tip radius (˜10 nm) were fabricated. Three distinct emission regions were observed: conduction band emission at low gate voltages, saturated current emission from the conduction band at intermediate voltages, and valence band plus conduction band emission at high gate voltages. Emission currents at low and high voltages obey the Fowler-Nordheim theory. The ratio of the slopes of the corresponding Fowler-Nordheim fits for these two regions is 1.495 which is in close agreement with the theoretical value of 1.445.

  6. Engineered band structure for an enhanced performance on quantum dot-sensitized solar cells

    Science.gov (United States)

    Jin, Bin Bin; Wang, Ye Feng; Wei, Dong; Cui, Bin; Chen, Yu; Zeng, Jing Hui

    2016-06-01

    A photon-to-current efficiency of 2.93% is received for the Mn-doped CdS (MCdS)-quantum dot sensitized solar cells (QDSSCs) using Mn:ZnO (MZnO) nanowire as photoanode. Hydrothermal synthesized MZnO are spin-coated on fluorine doped tin oxide (FTO) glass with P25 paste to serve as photoanode after calcinations. MCdS was deposited on the MZnO film by the successive ionic layer adsorption and reaction method. The long lived excitation energy state of Mn2+ is located inside the conduction band in the wide bandgap ZnO and under the conduction band of CdS, which increases the energetic overlap of donor and acceptor states, reducing the "loss-in-potential," inhibiting charge recombination, and accelerating electron injection. The engineered band structure is well reflected by the electrochemical band detected using cyclic voltammetry. Cell performances are evidenced by current density-voltage (J-V) traces, diffuse reflectance spectra, transient PL spectroscopy, and incident photon to current conversion efficiency characterizations. Further coating of CdSe on MZnO/MCdS electrode expands the light absorption band of the sensitizer, an efficiency of 4.94% is received for QDSSCs.

  7. Electronic structure and magnetic properties of zigzag blue phosphorene nanoribbons

    International Nuclear Information System (INIS)

    We investigated the electronic structure and magnetism of zigzag blue phosphorene nanoribbons (ZBPNRs) using first principles density functional theory calculations by changing the widths of ZBPNRs from 1.5 to 5 nm. In addition, the effect of H and O passivation was explored as well. The ZBPNRs displayed intra-edge antiferromagnetic ground state with a semiconducting band gap of ∼0.35 eV; and this was insensitive to the edge structure relaxation effect. However, the edge magnetism of ZBPNRs disappeared with H-passivation. Moreover, the band gap of H-passivated ZBPNRs was greatly enhanced because the calculated band gap was ∼1.77 eV, and this was almost the same as that of two-dimensional blue phosphorene layer. For O-passivated ZBPNRs, we also found an intra-edge antiferromagnetic state. Besides, both unpassivated and O-passivated ZBPNRs preserved almost the same band gap. We predict that the electronic band structure and magnetic properties can be controlled by means of passivation. Moreover, the edge magnetism can be also modulated by the strain. Nonetheless, the intrinsic physical properties are size independent. This feature can be an advantage for device applications because it may not be necessary to precisely control the width of the nanoribbon

  8. Variable-energy microtron-injector for a compact wide-band FIR free electron laser

    Science.gov (United States)

    Kazakevitch, Grigori M.; Jeong, Young Uk; Lee, Byung Cheol; Gavrilov, Nikolay G.; Kondaurov, Mikhail N.

    2003-07-01

    A microtron-injector (Proceedings of the 2001 Particle Accelerator Conference, USA, 2001, 2739) for the KAERI compact far infrared free electron laser (FIR FEL) facility has been upgraded to provide tuning of the FEL wavelength from 100 μm to more than 300 μm. The wide-band tunability of the radiation has been achieved by changing the kinetic energy of the accelerated electrons from 6.5 to 4.9 MeV. To do so, the position of an RF cavity inside the microtron is movable within the range of ˜170 mm, and it changes the maximum orbit number of the electrons from 12 to 8. Dependence of the electron beam parameters on the orbit number has been investigated to choose acceptable operating conditions of the microtron for stable operation of the wide-band FIR FEL. Measured parameters of the electron beam and corresponding lasing results of the FIR FEL are presented and discussed.

  9. Extraordinary electronic properties in uncommon structure types

    Science.gov (United States)

    Ali, Mazhar Nawaz

    In this thesis I present the results of explorations into several uncommon structure types. In Chapter 1 I go through the underlying idea of how we search for new compounds with exotic properties in solid state chemistry. The ideas of exploring uncommon structure types, building up from the simple to the complex, using chemical intuition and thinking by analogy are discussed. Also, the history and basic concepts of superconductivity, Dirac semimetals, and magnetoresistance are briefly reviewed. In chapter 2, the 1s-InTaS2 structural family is introduced along with the discovery of a new member of the family, Ag0:79VS2; the synthesis, structure, and physical properties of two different polymorphs of the material are detailed. Also in this chapter, we report the observation of superconductivity in another 1s structure, PbTaSe2. This material is especially interesting due to it being very heavy (resulting in very strong spin orbit coulping (SOC)), layered, and noncentrosymmetric. Electronic structure calculations reveal the presence of a bulk 3D Dirac cone (very similar to graphene) that is gapped by SOC originating from the hexagonal Pb layer. In Chapter 3 we show the re-investigation of the crystal structure of the 3D Dirac semimetal, Cd3As2. It is found to be centrosymmetric, rather than noncentrosymmetric, and as such all bands are spin degenerate and there is a 4-fold degenerate bulk Dirac point at the Fermi level, making Cd3As2 a 3D electronic analog to graphene. Also, for the first time, scanning tunneling microscopy experiments identify a 2x2 surface reconstruction in what we identify as the (112) cleavage plane of single crystals; needle crystals grow with a [110] long axis direction. Lastly, in chapter 4 we report the discovery of "titanic" (sadly dubbed ⪉rge, nonsaturating" by Nature editors and given the acronym XMR) magnetoresistance (MR) in the non-magnetic, noncentrosymmetric, layered transition metal dichalcogenide WTe2; over 13 million% at 0.53 K in

  10. Towards structural integration of airborne Ku-band SatCom antenna

    NARCIS (Netherlands)

    Schippers, Harmen; Verpoorte, Jaco; Hulzinga, Adriaan; Roeloffzen, Chris; Baggen, Rens

    2013-01-01

    The paper describes research towards a fully structurally integrated Ku-band SatCom antenna. This antenna covers the complete receive band for aeronautical earth stations and DVB-S broadcast in Ku band (10.7 - 12.75 GHz). The antenna front-end consists of 32 tiles where each tile has 8×8 Ku-band sta

  11. Structure of negative parity yrast bands in odd mass 125-131Ce nuclei

    Indian Academy of Sciences (India)

    Arun Bharti; Suram Singh; S K Khosa

    2010-04-01

    The negative parity yrast bands of neutron-deficient 125-131Ce nuclei are studied by using the projected shell model approach. Energy levels, transition energies and (1)/(2) ratios are calculated and compared with the available experimental data. The calculations reproduce the band-head spins of negative parity yrast bands and indicate the multi-quasiparticle structure for these bands.

  12. Design of C-band 50 MW klystron with traveling wave output structure

    International Nuclear Information System (INIS)

    This paper presents the simulation study of a C-band 50 MW klystron with disc-loaded waveguide traveling wave output structure. The electron gun with a perveance of 1.53 μP is designed. The gun has a voltage gradient lower than 22.1 kV/mm and a cathode load current lower than 6.3 A/cm2. The beam focusing system is a space-charge balanced flow type with solenoid magnet structure and the focusing beam trajectories have a good laminar condition. A single gap cavity is adopted instead of the traveling wave output structure in the initial beam-wave interaction simulation to decide the parameters of the cavities except the output structure. A C-band disc-loaded waveguide output structure working at π/2 mode is designed and the dispersion and interaction impedance of the structure are determined by the CST code. The beam-wave interaction system with disc-loaded waveguide output structure is simulated by a three-dimensional PIC code. More than 50 MW output power is obtained. The efficiency is more than 45% and the saturate gain is more than 50 dB. The voltage gradient of the disc-loaded waveguide output structure is 30 percent less than that of the single gap cavity and there is an increase of 4% in efficiency above that of the single gap cavity. (authors)

  13. Longitudinal spin relaxation of donor-bound electrons in direct band-gap semiconductors

    Science.gov (United States)

    Linpeng, Xiayu; Karin, Todd; Durnev, M. V.; Barbour, Russell; Glazov, M. M.; Sherman, E. Ya.; Watkins, S. P.; Seto, Satoru; Fu, Kai-Mei C.

    2016-09-01

    We measure the donor-bound electron longitudinal spin-relaxation time (T1) as a function of magnetic field (B ) in three high-purity direct band-gap semiconductors: GaAs, InP, and CdTe, observing a maximum T1 of 1.4, 0.4, and 1.2 ms, respectively. In GaAs and InP at low magnetic field, up to ˜2 T, the spin-relaxation mechanism is strongly density and temperature dependent and is attributed to the random precession of the electron spin in hyperfine fields caused by the lattice nuclear spins. In all three semiconductors at high magnetic field, we observe a power-law dependence T1∝B-ν with 3 ≲ν ≲4 . Our theory predicts that the direct spin-phonon interaction is important in all three materials in this regime in contrast to quantum dot structures. In addition, the "admixture" mechanism caused by Dresselhaus spin-orbit coupling combined with single-phonon processes has a comparable contribution in GaAs. We find excellent agreement between high-field theory and experiment for GaAs and CdTe with no free parameters, however a significant discrepancy exists for InP.

  14. Electron pairing in the presence of incipient bands in iron-based superconductors

    Science.gov (United States)

    Chen, Xiao; Maiti, S.; Linscheid, A.; Hirschfeld, P. J.

    2015-12-01

    Recent experiments on certain Fe-based superconductors have hinted at a role for paired electrons in "incipient" bands that are close to, but do not cross, the Fermi level. Related theoretical works disagree on whether or not strong-coupling superconductivity is required to explain such effects, and whether a critical interaction strength exists. In this work, we consider various versions of the model problem of pairing of electrons in the presence of an incipient band, within a simple multiband weak-coupling BCS approximation. We categorize the problem into two cases: case (i), where superconductivity arises from the "incipient band pairing" alone, and case (ii), where it is induced on an incipient band by pairing due to Fermi-surface-based interactions. Negative conclusions regarding the importance of incipient bands have been drawn so far largely based on case (i), but we show explicitly that models under case (ii) are qualitatively different, and can explain the nonexponential suppression of Tc, as well as robust large gaps on an incipient band. In the latter situation, large gaps on the incipient band do not require a critical interaction strength. We also model the interplay between phonon and spin fluctuation driven superconductivity and describe situations in which they can enhance each other rather than compete. Finally, we discuss the effect of the dimensionality of the incipient band on our results. We argue that pairing on incipient bands may be significant and important in several Fe-based materials, including LiFeAs, FeSe intercalates, and FeSe monolayers on strontium titanate, and indeed may contribute to high critical temperatures in some cases.

  15. Surface morphology and electronic structure of Ni/Ag(100)

    International Nuclear Information System (INIS)

    The growth morphology and electronic structure of Ni on Ag(100) has been studied with scanning tunneling microscopy (STM) and synchrotron based angle resolved photoemission spectroscopy. At deposition temperatures at or below 300 K, STM reveals Ni cluster growth on the surface along with some subsurface growth. Upon annealing to 420 K, virtually all Ni segregates into the subsurface region forming embedded nanoclusters. The electronic structure of Ni d bands in the unannealed surface shows dispersion only perpendicular to the surface whereas the annealed surface has Ni d bands that exhibit a three-dimensional-like structure. This is a result of the increased Ni d-Ag sp hybridization bonding and increased coordination of the embedded Ni nanoclusters. (c) 2000 American Vacuum Society

  16. Halogen versus halide electronic structure

    Institute of Scientific and Technical Information of China (English)

    Willem-Jan; van; Zeist; F.Matthias; Bickelhaupt

    2010-01-01

    Halide anions X-are known to show a decreasing proton affinity(PA),as X descends in the periodic table along series F,Cl,Br and I.But it is also well-known that,along this series,the halogen atom X becomes less electronegative(or more electropositive).This corresponds to an increasing energy of the valence np atomic orbital(AO) which,somewhat contradictorily,suggests that the electron donor capability and thus the PA of the halides should increase along the series F,Cl,Br,I.To reconcile these contradictory observations,we have carried out a detailed theoretical analysis of the electronic structure and bonding capability of the halide anions X-as well as the halogen radicals X-,using the molecular orbital(MO) models contained in Kohn-Sham density functional theory(DFT,at SAOP/TZ2P as well as OLYP/TZ2P levels) and ab initio theory(at the HF/TZ2P level).We also resolve an apparent intrinsic contradiction in Hartree-Fock theory between orbital-energy and PA trends.The results of our analyses are of direct relevance for understanding elementary organic reactions such as nucleophilic substitution(SN2) and base-induced elimination(E2) reactions.

  17. Electronic structure of spatially aligned graphene nanoribbons on Au(788).

    Science.gov (United States)

    Linden, S; Zhong, D; Timmer, A; Aghdassi, N; Franke, J H; Zhang, H; Feng, X; Müllen, K; Fuchs, H; Chi, L; Zacharias, H

    2012-05-25

    We report on a bottom-up approach of the selective and precise growth of subnanometer wide straight and chevron-type armchair nanoribbons (GNRs) on a stepped Au(788) surface using different specific molecular precursors. This process creates spatially well-aligned GNRs, as characterized by STM. High-resolution direct and inverse photoemission spectroscopy of occupied and unoccupied states allows the determination of the energetic position and momentum dispersion of electronic states revealing the existence of band gaps of several electron volts for straight 7-armchair, 13-armchair, and chevron-type GNRs in the electronic structure. PMID:23003288

  18. Cell and band structures in cold rolled polycrystalline copper

    DEFF Research Database (Denmark)

    Ananthan, V.S.; Leffers, Torben; Hansen, Niels

    1991-01-01

    The effect of plastic strain on the deformation microstructure has been investigated in polycrystalline copper rolled at room temperature to 5, 10, 20, and 30% reduction in thickness equivalent strain 0.06-0.42). Results from transmission electron microscopy (TEM) observations show that dense...... dislocation walls (DDWs) and cells develop during the initial stages of cold rolling. Grains having a high density of DDWs are described as high wall density (HWD) structures, and grains having a low density of DDWs are described as low wall density (LWD) structures. These structures are characterised by cell...... size, misorientation across the cell walls, and the crystallographic orientation of the grains in which they appear. The DDWs in the HWD structures have special characteristics, extending along several cells and having a misorientation across them greater than that across ordinary cell boundaries...

  19. Electronic structure of a graphene superlattice with massive Dirac fermions

    Energy Technology Data Exchange (ETDEWEB)

    Lima, Jonas R. F., E-mail: jonas.iasd@gmail.com [Instituto de Ciencia de Materiales de Madrid (CSIC) - Cantoblanco, Madrid 28049 (Spain)

    2015-02-28

    We study the electronic and transport properties of a graphene-based superlattice theoretically by using an effective Dirac equation. The superlattice consists of a periodic potential applied on a single-layer graphene deposited on a substrate that opens an energy gap of 2Δ in its electronic structure. We find that extra Dirac points appear in the electronic band structure under certain conditions, so it is possible to close the gap between the conduction and valence minibands. We show that the energy gap E{sub g} can be tuned in the range 0 ≤ E{sub g} ≤ 2Δ by changing the periodic potential. We analyze the low energy electronic structure around the contact points and find that the effective Fermi velocity in very anisotropic and depends on the energy gap. We show that the extra Dirac points obtained here behave differently compared to previously studied systems.

  20. Effect of potassium doping on electronic structure and thermoelectric properties of topological crystalline insulator

    Science.gov (United States)

    Roychowdhury, Subhajit; Sandhya Shenoy, U.; Waghmare, Umesh V.; Biswas, Kanishka

    2016-05-01

    Topological crystalline insulator (TCI), Pb0.6Sn0.4Te, exhibits metallic surface states protected by crystal mirror symmetry with negligibly small band gap. Enhancement of its thermoelectric performances needs tuning of its electronic structure particularly through engineering of its band gap. While physical perturbations tune the electronic structure of TCI by breaking of the crystal mirror symmetry, chemical means such as doping have been more attractive recently as they result in better thermoelectric performance in TCIs. Here, we demonstrate that K doping in TCI, Pb0.6Sn0.4Te, breaks the crystal mirror symmetry locally and widens electronic band gap, which is confirmed by direct electronic absorption spectroscopy and electronic structure calculations. K doping in Pb0.6Sn0.4Te increases p-type carrier concentration and suppresses the bipolar conduction via widening a band gap, which collectively boosts the thermoelectric figure of merit (ZT) to 1 at 708 K.

  1. Band gap bowing and electron localization of (GaxIn1-x)N

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Byounghak; Wang, Lin-Wang

    2006-05-09

    The band gap bowing and the electron localization ofGaxIn1-xN are calculated using both the local density approximation (LDA)and screened-exchange local density functional (sX-LDA) methods. Thecalculated sX-LDA band gaps are in good agreement with the experimentallyobserved values, with errors of -0.26 and 0.09 eV for bulk GaN and InN,respectively. The LDA band gap errors are 1.33 and 0.81 eV for GaN andInN, in order. In contrast to the gap itself, the band gap bowingparameter is found to be very similar in sX-LDA and LDA. We identify thelocalization of hole states in GaxIn1-xN alloys along In-N-In chains. Thepredicted localizationis stronger in sX-LDA.

  2. Dynamic Beam Shaping Using a Dual-Band Metasurface-Inspired Electronically Tunable Reflectarray Antenna

    CERN Document Server

    Tayebi, Amin; Paladhi, Pavel Roy; Udpa, Lalita; Udpa, Satish; Rothwell, Edward

    2015-01-01

    An electronically reconfigurable dual-band-reflectarray antenna is presented in this paper. The tunable unit cell, a ring loaded square patch with a single varactor diode connected across the gap between the ring and the patch, is modeled using both a full-wave solver and an equivalent circuit. The parameters of the equivalent circuit are calculated independently of the simulation and experiment using analysis techniques employed in frequency selective surfaces. The reflection phase of the proposed unit cell is shown to provide an excellent phase range of 335$^{\\circ}$ in F band and 340$^{\\circ}$ in S band. Results from the analysis are used to design and build a 10x10 element reflectarray antenna. The high tuning phase range of each element allows the fabricated reflectarray to demonstrate a very broad steering range of up to $\\pm$60$^{\\circ}$ in both frequency bands.

  3. Density changes in shear bands of a metallic glass determined by correlative analytical transmission electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Rösner, Harald, E-mail: rosner@uni-muenster.de [Institut für Materialphysik, Westfälische Wilhelms-Universität Münster, Wilhelm-Klemm-Strasse 10, D-48149 Münster (Germany); Peterlechner, Martin [Institut für Materialphysik, Westfälische Wilhelms-Universität Münster, Wilhelm-Klemm-Strasse 10, D-48149 Münster (Germany); Kübel, Christian [Karlsruhe Institute of Technology (KIT), Institute of Nanotechnology (INT), Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen (Germany); Karlsruhe Nano Micro Facility (KNMF), Karlsruhe Institute of Technology (KIT), D-76344 Eggenstein-Leopoldshafen (Germany); Schmidt, Vitalij [Institut für Materialphysik, Westfälische Wilhelms-Universität Münster, Wilhelm-Klemm-Strasse 10, D-48149 Münster (Germany); Wilde, Gerhard [Institut für Materialphysik, Westfälische Wilhelms-Universität Münster, Wilhelm-Klemm-Strasse 10, D-48149 Münster (Germany); Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444 (China)

    2014-07-01

    Density changes between sheared zones and their surrounding amorphous matrix as a result of plastic deformation in a cold-rolled metallic glass (melt-spun Al{sub 88}Y{sub 7}Fe{sub 5}) were determined using high-angle annular dark-field (HAADF) detector intensities supplemented by electron-energy loss spectroscopy (EELS), energy-dispersive X-ray (EDX) and nano-beam diffraction analyses. Sheared zones or shear bands were observed as regions of bright or dark contrast arising from a higher or lower density relative to the matrix. Moreover, abrupt contrast changes from bright to dark and vice versa were found within individual shear bands. We associate the decrease in density mainly with an enhanced free volume in the shear bands and the increase in density with concomitant changes of the mass. This interpretation is further supported by changes in the zero loss and Plasmon signal originating from such sites. The limits of this new approach are discussed. - Highlights: • We describe a novel approach for measuring densities in shear bands of metallic glasses. • The linear relation of the dark-field intensity I/I{sub 0} and the mass thickness ρt was used. • Individual shear bands showed abrupt contrast changes from bright to dark and vice versa. • Density changes ranging from about −10% to +6% were found for such shear bands. • Mixtures of amorphous/medium range ordered domains were found within the shear bands.

  4. Strongly correlated flat-band systems: The route from Heisenberg spins to Hubbard electrons

    Science.gov (United States)

    Derzhko, Oleg; Richter, Johannes; Maksymenko, Mykola

    2015-05-01

    On a large class of lattices (such as the sawtooth chain, the kagome and the pyrochlore lattices), the quantum Heisenberg and the repulsive Hubbard models may host a completely dispersionless (flat) energy band in the single-particle spectrum. The flat-band states can be viewed as completely localized within a finite volume (trap) of the lattice and allow for construction of many-particle states, roughly speaking, by occupying the traps with particles. If the flat-band happens to be the lowest-energy one, the manifold of such many-body states will often determine the ground-state and low-temperature physics of the models at hand even in the presence of strong interactions. The localized nature of these many-body states makes possible the mapping of this subset of eigenstates onto a corresponding classical hard-core system. As a result, the ground-state and low-temperature properties of the strongly correlated flat-band systems can be analyzed in detail using concepts and tools of classical statistical mechanics (e.g., classical lattice-gas approach or percolation approach), in contrast to more challenging quantum many-body techniques usually necessary to examine strongly correlated quantum systems. In this review, we recapitulate the basic features of the flat-band spin systems and briefly summarize earlier studies in the field. The main emphasis is made on recent developments which include results for both spin and electron flat-band models. In particular, for flat-band spin systems, we highlight field-driven phase transitions for frustrated quantum Heisenberg antiferromagnets at low temperatures, chiral flat-band states, as well as the effect of a slight dispersion of a previously strictly flat-band due to nonideal lattice geometry. For electronic systems, we discuss the universal low-temperature behavior of several flat-band Hubbard models, the emergence of ground-state ferromagnetism in the square-lattice Tasaki-Hubbard model and the related Pauli

  5. Evolution of band structures in MoS2-based homo- and heterobilayers

    International Nuclear Information System (INIS)

    Density functional theory calculations have been performed to elucidate the detailed evolution of band structures in MoS2-based homo- and heterobilayers. By constructing the energy-band alignments we observed that biaxial tensile and compressive strain in the constituent transition-metal dichalcogenide (TMD) monolayer shifts the states at the K C, Q C, and K V points down and up, respectively, while the states at the ΓV point are almost unaltered. In contrast, interlayer coupling tends to modify the states at the ΓV and Q C points by splitting the band-edge states of two strained or unstrained constituent TMD monolayers, while it does not affect the states at the K C and K V points. Considering the combined actions of strain and interlayer coupling, the relevant electronic parameters, especially the detailed evolution processes, of the band structures of the investigated bilayer systems can be clearly described. When further applying the extra biaxial strain to the three bilayer systems, it is found that energy differences ΔE(K C  −  Q C) and ΔE(K V  −  ΓV) decrease linearly as the increasing of the biaxial strain. According to the varying trends of ΔE(K C  −  Q C) and ΔE(K V  −  ΓV), MoS2 bilayer will maintain the indirect-bandgap character under any compressive or tensile strain. Differently, WS2/MoS2 heterobilayer transforms interestingly to the direct-bandgap material under the strain from  −1.6% to  −1.2% with the valence band maximum and conduction band minimum located at the K C and K V point respectively. The direct-to-indirect bandgap transition can be obtained for the WSe2/MoS2 heterobilayer when applying much larger extra tensile or compressive strain. The results offer an effective route to verify and tailor the electronic properties of TMD homo- and heterostructures and can be helpful in evaluating the performance of TMD-based electronic devices. (paper)

  6. Evolution of band structures in MoS2-based homo- and heterobilayers

    Science.gov (United States)

    Zhu, H. L.; Zhou, C. J.; Huang, X. J.; Wang, X. L.; Xu, H. Z.; Lin, Yong; Yang, W. H.; Wu, Y. P.; Lin, W.; Guo, F.

    2016-02-01

    Density functional theory calculations have been performed to elucidate the detailed evolution of band structures in MoS2-based homo- and heterobilayers. By constructing the energy-band alignments we observed that biaxial tensile and compressive strain in the constituent transition-metal dichalcogenide (TMD) monolayer shifts the states at the K C, Q C, and K V points down and up, respectively, while the states at the ΓV point are almost unaltered. In contrast, interlayer coupling tends to modify the states at the ΓV and Q C points by splitting the band-edge states of two strained or unstrained constituent TMD monolayers, while it does not affect the states at the K C and K V points. Considering the combined actions of strain and interlayer coupling, the relevant electronic parameters, especially the detailed evolution processes, of the band structures of the investigated bilayer systems can be clearly described. When further applying the extra biaxial strain to the three bilayer systems, it is found that energy differences ΔE(K C  -  Q C) and ΔE(K V  -  ΓV) decrease linearly as the increasing of the biaxial strain. According to the varying trends of ΔE(K C  -  Q C) and ΔE(K V  -  ΓV), MoS2 bilayer will maintain the indirect-bandgap character under any compressive or tensile strain. Differently, WS2/MoS2 heterobilayer transforms interestingly to the direct-bandgap material under the strain from  -1.6% to  -1.2% with the valence band maximum and conduction band minimum located at the K C and K V point respectively. The direct-to-indirect bandgap transition can be obtained for the WSe2/MoS2 heterobilayer when applying much larger extra tensile or compressive strain. The results offer an effective route to verify and tailor the electronic properties of TMD homo- and heterostructures and can be helpful in evaluating the performance of TMD-based electronic devices.

  7. Two-dimensional silica: Structural, mechanical properties, and strain-induced band gap tuning

    International Nuclear Information System (INIS)

    Two-dimensional silica is of rising interests not only for its practical applications as insulating layers in nanoelectronics, but also as a model material to understand crystals and glasses. In this study, we examine structural and electronic properties of hexagonal and haeckelite phases of silica bilayers by performing first-principles calculations. We find that the corner-sharing SiO4 tetrahedrons in these two phases are locally similar. The robustness and resilience of these tetrahedrons under mechanical perturbation allow effective strain engineering of the electronic structures with band gaps covering a very wide range, from of that for insulators, to wide-, and even narrow-gap semiconductors. These findings suggest that the flexible 2D silica holds great promises in developing nanoelectronic devices with strain-tunable performance, and lay the ground for the understanding of crystalline and vitreous phases in 2D, where bilayer silica provides an ideal test-bed

  8. Two-dimensional silica: Structural, mechanical properties, and strain-induced band gap tuning

    Science.gov (United States)

    Gao, Enlai; Xie, Bo; Xu, Zhiping

    2016-01-01

    Two-dimensional silica is of rising interests not only for its practical applications as insulating layers in nanoelectronics, but also as a model material to understand crystals and glasses. In this study, we examine structural and electronic properties of hexagonal and haeckelite phases of silica bilayers by performing first-principles calculations. We find that the corner-sharing SiO4 tetrahedrons in these two phases are locally similar. The robustness and resilience of these tetrahedrons under mechanical perturbation allow effective strain engineering of the electronic structures with band gaps covering a very wide range, from of that for insulators, to wide-, and even narrow-gap semiconductors. These findings suggest that the flexible 2D silica holds great promises in developing nanoelectronic devices with strain-tunable performance, and lay the ground for the understanding of crystalline and vitreous phases in 2D, where bilayer silica provides an ideal test-bed.

  9. Two-dimensional silica: Structural, mechanical properties, and strain-induced band gap tuning

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Enlai; Xie, Bo [Applied Mechanics Laboratory, Department of Engineering Mechanics, and Center for Nano and Micro Mechanics, Tsinghua University, Beijing 100084 (China); Xu, Zhiping, E-mail: xuzp@tsinghua.edu.cn [Applied Mechanics Laboratory, Department of Engineering Mechanics, and Center for Nano and Micro Mechanics, Tsinghua University, Beijing 100084 (China); State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China)

    2016-01-07

    Two-dimensional silica is of rising interests not only for its practical applications as insulating layers in nanoelectronics, but also as a model material to understand crystals and glasses. In this study, we examine structural and electronic properties of hexagonal and haeckelite phases of silica bilayers by performing first-principles calculations. We find that the corner-sharing SiO{sub 4} tetrahedrons in these two phases are locally similar. The robustness and resilience of these tetrahedrons under mechanical perturbation allow effective strain engineering of the electronic structures with band gaps covering a very wide range, from of that for insulators, to wide-, and even narrow-gap semiconductors. These findings suggest that the flexible 2D silica holds great promises in developing nanoelectronic devices with strain-tunable performance, and lay the ground for the understanding of crystalline and vitreous phases in 2D, where bilayer silica provides an ideal test-bed.

  10. THE BAND STRUCTURE AND WORK FUNCTION OF TRANSPARENT CONDUCTING ALUMINUM AND MANGANESE CO-DOPED ZINC OXIDE FILMS

    Institute of Scientific and Technical Information of China (English)

    H.T. Cao; Z.L. Pei; X.B. Zhang; J. Gong; C. Sun; L.S. Wen

    2005-01-01

    Al and Mn co-doped-ZnO films have been prepared at room temperature by DC reactive magnetron sputtering technique. The optical absorption coefficient, apparent and fundamental band gap, and work function of the films have been investigated using optical spectroscopy, band structure analyses and ultraviolet photoelectron spectroscopy (UPS). ZnO films have direct allowed transition band structure, which has been confirmed by the character of the optical absorption coefficient. The apparent band gap has been found directly proportional to N2/3, showing that the effect of Burstein-Moss shift on the band gap variations dominates over the many-body effect. With only standard cleaning protocols, the work function of ZnO: (Al, Mn) and ZnO: Al films have been measured to be 4.26 and 4.21eV, respectively. The incorporation of Mn element into the matrix of ZnO, as a relatively deep donor, can remove some electrons from the conduction band and deplete the density of occupied states at the Fermi energy, which causes a loss in measured photoemission intensity and an increase in the surface work function. Based on the band gap and work function results, the energy band diagram of the ZnO: (Al, Mn)film near its surface is also given.

  11. A Banding Structure in a Ni-Cu-Si Cast Alloy

    Institute of Scientific and Technical Information of China (English)

    Qi ZHENG; Yufeng ZHENG; Hongyu ZHANG; Xiaofeng SUN; Hengrong GUAN; Zhuangqi HU

    2008-01-01

    The solidified microstructure of a Ni-Cu-Si cast alloy has been investigated, and a kind of banding structure was observed. The results showed that, the banding structure was composed of coarser particles which were Ni3Si type of precipitates and similar to the fine particles precipitate uniformly distributed within matrix of Ni solid solution, in both crystal structure and composition. The formation of bandings was resulted from cast thermal stress and dislocation walls. It was found that the cracks propagated along these bandings in tensile test. The banding structure can be depressed by reducing the cast thermal stress, which can improve the Qtensile ductility.

  12. Strain-tunable band parameters of ZnO monolayer in graphene-like honeycomb structure

    Science.gov (United States)

    Behera, Harihar; Mukhopadhyay, Gautam

    2012-10-01

    We present ab initio calculations which show that the direct-band-gap, effective masses and Fermi velocities of charge carriers in ZnO monolayer (ML-ZnO) in graphene-like honeycomb structure are all tunable by application of in-plane homogeneous biaxial strain. Within our simulated strain limit of ±10%, the band gap remains direct and shows a strong non-linear variation with strain. Moreover, the average Fermi velocity of electrons in unstrained ML-ZnO is of the same order of magnitude as that in graphene. The results promise potential applications of ML-ZnO in mechatronics/straintronics and other nano-devices such as the nano-electromechanical systems (NEMS) and nano-optomechanical systems (NOMS).

  13. Enlargement of Photonic Band Gaps and Physical Picture of Photonic Band Structures

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yan; SHI Jun-Jie

    2006-01-01

    @@ Light propagation in a one-dimensional photonic crystal (PC), consisting of alternative slabs with refractive indices (layer thicknesses) n1 (a) and n2 (b), is investigated. An important optimal parameter matching condition,n1a ≈ n2b, is obtained for the largest photonic band gap (PBG). Moreover, we find that the exact analytical solutions for the electric/magnetic field eigenmodes at the band edges are standing waves with odd or even symmetry about the centre of each layer. The electric/magnetic field eigenfunctions at the top and bottom of the nth band have n and n - 1 nodes in one period of PC, respectively. The PBG arises from the symmetric differences of the field eigenfunctions at the band edges.

  14. Electronic structure of transparent oxides with the Tran-Blaha modified Becke-Johnson potential.

    Science.gov (United States)

    Dixit, H; Saniz, R; Cottenier, S; Lamoen, D; Partoens, B

    2012-05-23

    We present electronic band structures of transparent oxides calculated using the Tran-Blaha modified Becke-Johnson (TB-mBJ) potential. We studied the basic n-type conducting binary oxides In(2)O(3), ZnO, CdO and SnO(2) along with the p-type conducting ternary oxides delafossite CuXO(2) (X=Al, Ga, In) and spinel ZnX(2)O(4) (X=Co, Rh, Ir). The results are presented for calculated band gaps and effective electron masses. We discuss the improvements in the band gap determination using TB-mBJ compared to the standard generalized gradient approximation (GGA) in density functional theory (DFT) and also compare the electronic band structure with available results from the quasiparticle GW method. It is shown that the calculated band gaps compare well with the experimental and GW results, although the electron effective mass is generally overestimated. PMID:22538303

  15. Electronic structure of p type Delta doped systems

    International Nuclear Information System (INIS)

    We summarize of the results obtained for the electronic structure of quantum wells that consist in an atomic layer doped with impurities of p type. The calculations are made within the frame worth of the wrapper function approach to independent bands and with potentials of Hartree. We study the cases reported experimentally (Be in GaAs and B in Si). We present the levels of energy, the wave functions and the rate of the electronic population between the different subbands, as well as the dependence of these magnitudes with the density of impurities in the layer. The participation of the bans of heavy holes is analysed, light and split-off band in the total electronic population. The effect of the temperature is discussed and we give a possible qualitative explanation of the experimental optical properties. (Author)

  16. Temperature-dependent band structure of Hg1-xZnxTe-CdTe superlattices

    Science.gov (United States)

    Manassès, J.; Guldner, Y.; Vieren, J. P.; Voos, M.; Faurie, J. P.

    1991-12-01

    We present transport and far-infrared magneto-optical measurements in narrow-band-gap n-type Hg1-xZnxTe-CdTe superlattices. Hall and conductivity data obtained over a broad temperature range (1.5-300 K) show that these superlattices are semimetallic at low temperature and are degenerate intrinsic semiconductors for T>100 K, which constitutes an interesting situation in semiconductor-superlattice physics. The analysis of the data gives the Fermi energy as well as the temperature-dependent band gap, in good agreement with the calculated band structure, which predicts a semimetal-semiconductor transition induced by temperature in these heterostructures. We have measured the electron cyclotron resonances as a function of temperature with the magnetic field B applied parallel and perpendicular to the growth axis. The observed magneto-optical intraband transitions are in very satisfactory agreement with the calculated Landau levels and the Fermi energy. We show that the semimetal-semiconductor transition is characterized by an important reduction of the cyclotron mass measured with B perpendicular to the superlattice growth axis. The large variation of the conduction-band anisotropy calculated near the transition accounts for this effect.

  17. Electronic Crosstalk in Aqua MODIS Long-Wave Infrared Photovoltaic Bands

    Directory of Open Access Journals (Sweden)

    Junqiang Sun

    2016-09-01

    Full Text Available Recent investigations have discovered that Terra MODerate-resolution Imaging Spectroradiometer (MODIS long-wave infrared (LWIR photovoltaic (PV bands, bands 27–30, have strong crosstalk among themselves. The linear model developed to test the electronic crosstalk effect was instrumental in the first discovery of the effect in Terra MODIS band 27, and through subsequent investigations the model and the correction algorithm were tested further and established to be correct. It was shown that the correction algorithm successfully mitigated the anomalous features in the calibration coefficients as well as the severe striping and the long-term drift in the Earth view (EV retrievals for the affected Terra bands. Here, the examination into Aqua MODIS using the established methodology confirms the existence of significant crosstalk contamination in its four LWIR PV, although the finding shows the overall effect to be of lesser degree. The crosstalk effect is characterized and the crosstalk correction coefficients are derived for all four Aqua LWIR PV bands via analysis of signal contamination in the lunar imagery. Sudden changes in the crosstalk contamination are clearly seen, as also in the Terra counterparts in previous investigations. These sudden changes are consistent with the sudden jumps observed in the linear calibration coefficients for many years, thus this latest finding provides an explanation to the long-standing but unexplained anomalies in the calibration coefficients of the four Aqua LWIR bands. It is also shown that the crosstalk contamination for these bands are of similar level for the two MODIS instruments in the early mission that can lead to as much as 2 K increase in brightness temperature for the affected bands, thus demonstrating significant impact on the science results already started at the early going. As Aqua MODIS is a legacy sensor, the crosstalk correction to its LWIR PV bands will be important to remove the impact of

  18. Theoretical investigation of the band structure of picene single crystals within the GW approximation

    Science.gov (United States)

    Yanagisawa, Susumu; Morikawa, Yoshitada; Schindlmayr, Arno

    2014-01-01

    We investigate the band dispersion and related electronic properties of picene single crystals within the GW approximation for the electronic self-energy. The width of the upper highest occupied molecular orbital (HOMOu) band along the Γ-Y direction, corresponding to the b crystal axis in real space along which the molecules are stacked, is determined to be 0.60 eV and thus 0.11 eV larger than the value obtained from density-functional theory. As in our recent study of rubrene using the same methodology [S. Yanagisawa, Y. Morikawa, and A. Schindlmayr, Phys. Rev. B 88, 115438 (2013)], this increase in the bandwidth is due to the strong variation of the GW self-energy correction across the Brillouin zone, which in turn reflects the increasing hybridization of the HOMOu states of neighboring picene molecules from Γ to Y. In contrast, the width of the lower HOMO (HOMOl) band along Γ-Y remains almost unchanged, consistent with the fact that the HOMOl(Γ) and HOMOl(Y) states exhibit the same degree of hybridization, so that the nodal structure of the wave functions and the matrix elements of the self-energy correction are very similar.

  19. Structural and electronic properties of poly(vinyl alcohol) using density functional theory

    Energy Technology Data Exchange (ETDEWEB)

    Dabhi, Shweta, E-mail: shwetadabhi1190@gmail.com; Jha, Prafulla K., E-mail: shwetadabhi1190@gmail.com [Department of Physics, Maharaja Krishnakumasinhji Bhavnagar University, Bhavnagar-364001 (India)

    2014-04-24

    The first principles calculations have been carried out to investigate the structural, electronic band structure density of states along with the projected density of states for poly(vinyl alcohol). Our structural calculation suggests that the poly(vinyl alcohol) exhibits monoclinic structure. The calculated structural lattice parameters are in excellent agreement with available experimental values. The band structure calculations reveal that the direct and indirect band gaps are 5.55 eV and 5.363 eV respectively in accordance with experimental values.

  20. Electronic shell and supershell structure in graphene flakes

    CERN Document Server

    Manninen, M; Akola, J

    2008-01-01

    We use a simple tight-binding (TB) model to study electronic properties of free graphene flakes. Valence electrons of triangular graphene flakes show a shell and supershell structure which follows an analytical expression derived from the solution of the wave equation for triangular cavity. However, the solution has different selection rules for triangles with armchair and zigzag edges, and roughly 40000 atoms are needed to see clearly the first supershell oscillation. In the case of spherical flakes, the edge states of the zigzag regions dominate the shell structure which is thus sensitive to the flake diameter and center. A potential well that is made with external gates cannot have true bound states in graphene due to the zero energy band gap. However, it can cause strong resonances in the conduction band.

  1. Electronic structure of (Ca0.85La0.15)FeAs2

    Science.gov (United States)

    Liu, Z.-H.; Kim, T. K.; Sala, A.; Ogino, H.; Shimoyama, J.; Büchner, B.; Borisenko, S. V.

    2015-02-01

    We report a comprehensive study of orbital character and tridimensional nature of the electronic structure of (Ca0.85La0.15)FeAs2 from recently discovered "112" family of Iron-based superconductors (IBS), with angle-resolved photoemission spectroscopy. We observed that the band structure is similar to that of "122" family, namely, there are three hole-like bands at the Brillouin zone (BZ) center and two electron-like bands at the BZ corner. The bands near the Fermi level (EF) are mainly derived from the Fe t2g orbitals. On the basis of our present and earlier studies, we classify IBS into the three types according to their crystal structures. We show that although the bands near EF mainly originate from Fe 3d electrons, they are significantly modified by the interaction between the superconducting slabs and the intermediate atoms.

  2. True photonic band-gap mode-control in VCSEL structures

    DEFF Research Database (Denmark)

    Romstad, F.; Madsen, M.; Birkedal, Dan;

    2003-01-01

    Photonic band-gap mode confinement in novel nano-structured large area VCSEL structures is confirmed by the amplified spontaneous emission spectrum. Both guide and anti-guide VCSEL structures are experimentally characterised to verify the photonic band-gap effect.......Photonic band-gap mode confinement in novel nano-structured large area VCSEL structures is confirmed by the amplified spontaneous emission spectrum. Both guide and anti-guide VCSEL structures are experimentally characterised to verify the photonic band-gap effect....

  3. Analysis of Kikuchi band contrast reversal in electron backscatter diffraction patterns of silicon.

    Science.gov (United States)

    Winkelmann, Aimo; Nolze, Gert

    2010-02-01

    We analyze the contrast reversal of Kikuchi bands that can be seen in electron backscatter diffraction (EBSD) patterns under specific experimental conditions. The observed effect can be reproduced using dynamical electron diffraction calculations. Two crucial contributions are identified to be at work: First, the incident beam creates a depth distribution of incoherently backscattered electrons which depends on the incidence angle of the beam. Second, the localized inelastic scattering in the outgoing path leads to pronounced anomalous absorption effects for electrons at grazing emission angles, as these electrons have to go through the largest amount of material. We use simple model depth distributions to account for the incident beam effect, and we assume an exit angle dependent effective crystal thickness in the dynamical electron diffraction calculations. Very good agreement is obtained with experimental observations for silicon at 20keV primary beam energy.

  4. QUANTUM-MECHANICAL MODELING OF SPATIAL AND BAND STRUCTURE OF Y3AL5O12 SCINTILLATION CRYSTAL

    Directory of Open Access Journals (Sweden)

    I. I. Vrubel

    2016-05-01

    Full Text Available Spatial and electronic structures of a unit cell of yttrium-aluminum garnet have been studied. Quantum-mechanical model have been presented. Semi-empirical methods PM6 and PM7 have been used for geometry optimization of the crystal unit cell. Band structure has been calculated within density functional theory with the use of PBE exchange-correlation functional. Histograms of metal-oxygen distances for equilibrium geometry have been constructed. Comparison of the used methods has been carried out and recommendation about their applicability for such problems was given. The single-particle wave functions and energies have been calculated. The bandgap was estimated. The band structure was plotted. It was shown that the method gives reliable results for spatial and band structure of Y3Al5O12 scintillation crystal. The results of this work can be used for improvement of characteristics of garnet scintillation crystals.

  5. The two dimensional electron system as a nanoantenna in the microwave and terahertz bands

    Science.gov (United States)

    Iñarrea, Jesús

    2011-12-01

    We study the magnetoresistance of two-dimensional electron systems under several radiation sources of different frequencies for moderate power. We use the model of radiation-driven electron orbits extended to this regime. First, we consider the case of two different radiations and we find a regime of superposition or interference of harmonic motions, i.e., a modulated magnetoresistance response with pulses and beats. Finally, we consider a multiple photoexcitation case where we propose the two-dimensional electron system as a potential nanoantenna device or ultrasensitive detector for the microwave and terahertz bands. Thus, these results could be of special interest in nanophotonics and nanoelectronics.

  6. Electronic structure of ternary hydrides based on light elements

    Energy Technology Data Exchange (ETDEWEB)

    Orgaz, E. [Departamento de Fisica y Quimica Teorica, Facultad de Quimica, Universidad Nacional Autonoma de Mexico, CP 04510 Coyoacan, Mexico, D.F. (Mexico)]. E-mail: orgaz@eros.pquim.unam.mx; Membrillo, A. [Departamento de Fisica y Quimica Teorica, Facultad de Quimica, Universidad Nacional Autonoma de Mexico, CP 04510 Coyoacan, Mexico, D.F. (Mexico); Castaneda, R. [Departamento de Fisica y Quimica Teorica, Facultad de Quimica, Universidad Nacional Autonoma de Mexico, CP 04510 Coyoacan, Mexico, D.F. (Mexico); Aburto, A. [Departamento de Fisica, Facultad de Ciencias, Universidad Nacional Autonoma de Mexico, CP 04510 Coyoacan, Mexico, D.F. (Mexico)

    2005-12-08

    Ternary hydrides based on light elements are interesting owing to the high available energy density. In this work we focused into the electronic structure of a series of known systems having the general formula AMH{sub 4}(A=Li,Na,M=B,Al). We computed the energy bands and the total and partial density of states using the linear-augmented plane waves method. In this report, we discuss the chemical bonding in this series of complex hydrides.

  7. Electronic structure of wurtzite quantum dots with cylindrical symmetry

    OpenAIRE

    Voon, L. C. Lew Yan; Galeriu, C.; Lassen, B.; M. Willatzen; R. Melnik

    2005-01-01

    This paper presents a six-band k.p theory for wurtzite semiconductor nanostructures with cylindrical symmetry. Our work extends the formulation of Vahala and Sercel [Physical Review Letters 65, 239 (1990)] to the Rashba-Sheka-Pikus Hamiltonian for wurtzite semiconductors, without the need for the axial approximation. Results comparing our formulation for studying the electronic structure of wurzite quantum dots with the conventional formulation are given.

  8. Long-term drift induced by the electronic crosstalk in Terra MODIS Band 29

    Science.gov (United States)

    Sun, Junqiang; Madhavan, Sriharsha; Xiong, Xiaoxiong; Wang, Menghua

    2015-10-01

    Terra MODerate Resolution Imaging Spectroradiometer (MODIS) is one of the key sensors in the NASA's Earth Observing System, which has successfully completed 15 years of on-orbit operation. Terra MODIS continues to collect valuable information of the Earth's energy radiation from visible to thermal infrared wavelengths. The instrument has been well characterized over its lifetime using onboard calibrators whose calibration references are traceable to the National Institute of Standards and Technology standards. In this paper, we focus on the electronic crosstalk effect of Terra MODIS band 29, a thermal emissive band (TEB) whose center wavelength is 8.55 µm. Previous works have established the mechanism to describe the effect of the electronic crosstalk in the TEB channels of Terra MODIS. This work utilizes the established methodology to apply to band 29. The electronic crosstalk is identified and characterized using the regularly scheduled lunar observations. The moon being a near-pulse-like source allowed easy detection of extraneous signals around the actual Moon surface. First, the crosstalk-transmitting bands are identified along with their amplitudes. The crosstalk effect then is characterized using a moving average mechanism that allows a high fidelity of the magnitude to be corrected. The lunar-based analysis unambiguously shows that the crosstalk contamination is becoming more severe in recent years and should be corrected in order to maintain calibration quality for the affected spectral bands. Finally, two radiometrically well-characterized sites, Pacific Ocean and Libya 1 desert, are used to assess the impact of crosstalk effect. It is shown that the crosstalk contamination induces a long-term upward drift of 1.5 K in band 29 brightness temperature of MODIS Collection 6 L1B, which could significantly impact the science products. The crosstalk effect also induces strong detector-to-detector differences, which result in severe stripping in the Earth view

  9. Electronic and structural properties of the (1010) and (1120) ZnO surfaces.

    Science.gov (United States)

    Marana, N L; Longo, V M; Longo, E; Martins, J B L; Sambrano, J R

    2008-09-25

    The structural and electronic properties of ZnO (1010) and (1120) surfaces were investigated by means of density functional theory applied to periodic calculations at B3LYP level. The stability and relaxation effects for both surfaces were analyzed. The electronic and energy band properties were discussed on the basis of band structure as well as density of states. There is a significant relaxation in the (1010) as compared to the (1120) terminated surfaces. The calculated direct gap is 3.09, 2.85, and 3.09 eV for bulk, (1010), and (1120) surfaces, respectively. The band structures for both surfaces are very similar.

  10. Photonic band structure of two-dimensional metal/dielectric photonic crystals

    International Nuclear Information System (INIS)

    An improved plane wave expansion method for the numerical calculation of photonic bands of metal/dielectric photonic crystal (PC) are presented. This method is applied to two-dimensional PCs with frequency-dependent dielectric constants. We obtained the photonic band structure of three kinds of structures: sawtooth, cylinder and hole PCs. The results show that the lowest band-1 is relatively flat, and does not approach zero. Also, there is no complete band-gap that extends throughout the first Brillouin zone for these three structures. However, there are partial band-gaps in different directions in the first Brillouin zone. For the complementary cylinder and hole PCs, their photonic bands are similar except for the lowest three bands; the hole PC’s lowest frequency of band-1 is larger than that of cylinder PC for the configuration R/d  =  0.2. (paper)

  11. Electronic structure of pesticides: 1. Organochlorine insecticides

    Energy Technology Data Exchange (ETDEWEB)

    Novak, Igor, E-mail: inovak@csu.edu.au [Charles Sturt University, POB 883, Orange, NSW 2800 (Australia); Kovac, Branka [Physical Chemistry Division, ' R. Boskovic' Institute, HR-10000 Zagreb (Croatia)

    2011-11-15

    Highlights: {yields} Electronic structure of several organochlorine insecticides has been determined by UV photoelectron spectroscopy and high-level ab initio calculations. {yields} The electronic structure obtained from spectra has been related to their biological activity. {yields} The molecular modes of binding to appropriate receptors are rationalized in view of the molecule's electronic structure and conformational flexibility. - Abstract: The electronic structures of six organochlorine insecticides: {gamma}-lindane (I), aldrin (II), dieldrin (III), DDD (IV), DDE (V) and DDT (VI) have been investigated by UV photoelectron spectroscopy (UPS), quantum chemical calculations and comparison with molecular modelling studies. Their electronic and molecular structures are discussed in order to rationalize their biological activity. In this work we relate the biological activity of these insecticides to their experimentally observed electronic and molecular structures.

  12. Electronic structure of crystalline uranium nitride: LCAO DFT calculations

    International Nuclear Information System (INIS)

    The results of the first LCAO DFT calculations of cohesive energy, band structure and charge distribution in uranium nitride (UN) crystal are presented and discussed. The calculations are made with the uranium atom relativistic effective core potentials, including 60, 78 and 81 electrons in the core. It is demonstrated that the chemical bonding in UN crystal has a metallic-covalent nature. Three 5f-electrons are localized on the U atom and occupy the states near the Fermi level. The metallic nature of the crystal is due to the f-character of both the valence-band top and the conduction-band bottom. The covalent bonds are formed by the interaction of 7s- and 6d-states of the uranium atom with the 2p-states of the nitrogen atom. It is shown that the inclusion of 5f-electrons in the atomic core introduces small changes in the calculated cohesive energy of UN crystal and electron charge distribution. However, the inclusion of 5s-, 5p-, 5d-electrons in the valence shell allows the better agreement with the calculated and experimental cohesive-energy value. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  13. Electronic structure of Mg studied by compton scattering

    Energy Technology Data Exchange (ETDEWEB)

    Kontrym-Sznajd, Grazyna; Samsel-Czekala, Malgorzata [W. Trzebiatowski Institute of Low Temperature and Structure Research, Polish Academy of Sciences, P. O. Box 1410, 50-950 Wroclaw 2 (Poland); Pylak, Maciej [The Soltan Institute for Nuclear Studies, 05-400 Otwock-Swierk (Poland); Dobrzynski, Ludwik [The Soltan Institute for Nuclear Studies, 05-400 Otwock-Swierk (Poland); Faculty of Physics, University of Bialystok, ul. Lipowa 41, 15-424 Bialystok (Poland); Brancewicz, Marek; Andrejczuk, Andrzej; Zukowski, Eugeniusz [Faculty of Physics, University of Bialystok, ul. Lipowa 41, 15-424 Bialystok (Poland); Kaprzyk, Stanislaw [Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Krakow (Poland)

    2011-03-15

    The electronic structure of divalent hexagonal close packed Mg is investigated by means of the high-resolution Compton scattering. Two-dimensional (2D) electron momentum densities are reconstructed using their line integrals, derived from the plane integrals of three-dimensional (3D) electron momentum densities measured directly in the Compton experiment. The analysis is performed both in the extended and reduced zone schemes. The results are compared with corresponding densities calculated within Korringa-Kohn-Rostoker in the local density approximation (KKR-LDA) band structure theory and electron-positron densities measured in the angular correlation of annihilation radiation (ACAR) experiment. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  14. Advanced X-Band Test Accelerator for High Brightness Electron and Gamma Ray Beams

    Energy Technology Data Exchange (ETDEWEB)

    Marsh, Roark; /LLNL, Livermore; Anderson, Scott; /LLNL, Livermore; Barty, Christopher; /LLNL, Livermore; Chu, Tak Sum; /LLNL, Livermore; Ebbers, Chris; /LLNL, Livermore; Gibson, David; /LLNL, Livermore; Hartemann, Fred; /LLNL, Livermore; Adolphsen, Chris; /SLAC; Jongewaard, Erik; /SLAC; Raubenheimer, Tor; /SLAC; Tantawi, Sami; /SLAC; Vlieks, Arnold; /SLAC; Wang, Juwen; /SLAC

    2012-07-03

    In support of Compton scattering gamma-ray source efforts at LLNL, a multi-bunch test stand is being developed to investigate accelerator optimization for future upgrades. This test stand will enable work to explore the science and technology paths required to boost the current 10 Hz monoenergetic gamma-ray (MEGa-Ray) technology to an effective repetition rate exceeding 1 kHz, potentially increasing the average gamma-ray brightness by two orders of magnitude. Multiple bunches must be of exceedingly high quality to produce narrow-bandwidth gamma-rays. Modeling efforts will be presented, along with plans for a multi-bunch test stand at LLNL. The test stand will consist of a 5.5 cell X-band rf photoinjector, single accelerator section, and beam diagnostics. The photoinjector will be a high gradient standing wave structure, featuring a dual feed racetrack coupler. The accelerator will increase the electron energy so that the emittance can be measured using quadrupole scanning techniques. Multi-bunch diagnostics will be developed so that the beam quality can be measured and compared with theory. Design will be presented with modeling simulations, and layout plans.

  15. ADVANCED X-BAND TEST ACCELERATOR FOR HIGH BRIGHTNESS ELECTRON AND GAMMA RAY BEAMS

    Energy Technology Data Exchange (ETDEWEB)

    Marsh, R A; Anderson, S G; Barty, C P; Chu, T S; Ebbers, C A; Gibson, D J; Hartemann, F V; Adolphsen, C; Jongewaard, E N; Raubenheimer, T; Tantawi, S G; Vlieks, A E; Wang, J W

    2010-05-12

    In support of Compton scattering gamma-ray source efforts at LLNL, a multi-bunch test stand is being developed to investigate accelerator optimization for future upgrades. This test stand will enable work to explore the science and technology paths required to boost the current 10 Hz monoenergetic gamma-ray (MEGa-Ray) technology to an effective repetition rate exceeding 1 kHz, potentially increasing the average gamma-ray brightness by two orders of magnitude. Multiple bunches must be of exceedingly high quality to produce narrow-bandwidth gamma-rays. Modeling efforts will be presented, along with plans for a multi-bunch test stand at LLNL. The test stand will consist of a 5.5 cell X-band rf photoinjector, single accelerator section, and beam diagnostics. The photoinjector will be a high gradient standing wave structure, featuring a dual feed racetrack coupler. The accelerator will increase the electron energy so that the emittance can be measured using quadrupole scanning techniques. Multi-bunch diagnostics will be developed so that the beam quality can be measured and compared with theory. Design will be presented with modeling simulations, and layout plans.

  16. Electronic structure of herbicides: Atrazine and bromoxynil

    Science.gov (United States)

    Novak, Igor; Kovač, Branka

    2011-06-01

    The electronic structures of herbicides atrazine and bromoxynil have been investigated by UV photoelectron spectroscopy (UPS), quantum chemical calculations and comparison with X-ray diffraction, molecular docking and molecular dynamics studies. Their electronic and molecular structures are discussed in the context of their biological activity. This is the first report which correlates the molecular mechanism of biological activity of these herbicides with their experimentally determined electronic and molecular structures.

  17. Photoinduced Reconstruction of Electronic Structure in Half-Metal CrO2

    Institute of Scientific and Technical Information of China (English)

    WU Xue-Wei; NIU Dong-Lin; LIU Xiao-Jun

    2007-01-01

    We investigate the photoinduced effects on the electronic structure for haft-metallic ferromagnet CrO2(Tc~390K),in which the conducting electrons are totally polarized,by using the LSDA+U method.A significant change is found for the band structure and the density of states (DOS) for CrO2 under photo-excitation,especially for the Cr 3dr2g band:disappearance of the spin-split band,suggesting collapse of the half-metallic state.We ascribe the change of electronic structure under photo-excitation to the wider one-electron band W via the strong hybridization of the down-spin Cr 3d and O 2p states.Furthermore we discuss the magnetic properties under photo-excitation.

  18. Structural and electronic properties of oligo- and polythiophenes modified by substituents

    OpenAIRE

    Simon P. Rittmeyer; Axel Groß

    2012-01-01

    The electronic and structural properties of oligo- and polythiophenes that can be used as building blocks for molecular electronic devices have been studied by using periodic density functional theory calculations. We have in particular focused on the effect of substituents on the electronic structure of thiophenes. Whereas singly bonded substituents, such as methyl, amino or nitro groups, change the electronic properties of thiophene monomers and dimers, they hardly influence the band gap of...

  19. Measurements of band gap structure in diamond compressed to 370 GPa

    Science.gov (United States)

    Gamboa, Eliseo; Fletcher, Luke; Lee, Hae-Ja; Zastrau, Ulf; Gauthier, Maxence; Gericke, Dirk; Vorberger, Jan; Granados, Eduardo; Heimann, Phillip; Hastings, Jerome; Glenzer, Siegfried

    2015-06-01

    We present the first measurements of the electronic structure of dynamically compressed diamond demonstrating a widening of the band gap to pressures of up to 370 +/- 25 GPa. The 8 keV free electron laser x-ray beam from the Linac Coherently Light Source (LCLS) has been focussed onto a diamond foil compressed by two counter-propagating laser pulses to densities of up to 5.3 g/cm3 and temperatures of up to 3000 +/- 400 K. The x-ray pulse excites a collective interband transition of the valence electrons, leading to a plasmon-like loss. We find good agreement with the observed plasmon shift by including the pressure dependence of the band gap as determined from density functional theory simulations. This work was performed at the Matter at Extreme Conditions (MEC) instrument of LCLS, supported by the DOE Office of Science, Fusion Energy Science under Contract No. SF00515. This work was supported by DOE Office of Science, Fusion Energy Science under F.

  20. An electron injector based on a high power X-band TWT amplifier

    International Nuclear Information System (INIS)

    Theoretical investigation of the interaction of electrons with an electromagnetic wave in a microwave amplifier indicates that nearly 50% of the electrons are in fact accelerated in the amplification process. These fast electrons are phase correlated at the output of an amplifier and they can be further accelerated. For a beam pulse of 100 nsec and an X-band amplifier, a train of about 1000 bunches can be achieved. Several schemes were considered. Here we present a uniform amplifier, a drift tube (were the slow electrons are dumped) and an accelerator section. With an initial current of 1200 A, and an input power of 20 kW we calculated electrons with energies of 6 MeV in buckets of 20 degree corresponding to about 1x1010 particles per bunch and an instantaneous current of more than 270 A; the total system length was 1.1 m

  1. Miniaturization of electromagnetic band gap structures for mobile applications

    Science.gov (United States)

    Goussetis, G.; Feresidis, A. P.; Palikaras, G. K.; Kitra, M.; Vardaxoglou, J. C.

    2005-12-01

    It is well known that interference of the human body affects the performance of the antennas in mobile phone handsets. In this contribution, we investigate the use of miniaturized metallodielectric electromagnetic band gap (MEBG) structures embedded in the case of a mobile handset as a means of decoupling the antenna from the user's hand. The closely coupled MEBG concept is employed to achieve miniaturization of the order of 15:1. Full wave dispersion relations for planar closely coupled MEBG arrays are presented and are validated experimentally. The performance of a prototype handset with an embedded conformal MEBG is assessed experimentally and is compared to a similar prototype without the MEBG. Reduction in the detuning of the antenna because of the human hand by virtue of the MEBG is demonstrated. Moreover, the efficiency of the handset when loaded with a human hand model is shown to improve when the MEBG is in place. The improvements are attributed to the decoupling of the antenna from the user's hand, which is achieved by means of suppressing the fields in the locality of the hand.

  2. Electronic structure of beryllium fluoride

    International Nuclear Information System (INIS)

    Vacuum-ultraviolet reflectance, absorptance, and photoelectron spectroscopy of vitreous and crystalline BeF2 are reported. The data are interpreted with reference to self-consistent unrestricted Hartree-Fock cluster calculations also presented in this paper. The first allowed exciton reflectance peak in crystalline BeF2 is at 12.9 eV, similar to the 12.8-eV peak found in the glass. Optical transmission of bulk samples extends at least to 9.5 eV, and can be assumed to be impurity limited in available material. Calculations of several defect and impurity levels are presented. Since the calculations presented here indicate that BeF2 should have an optically forbidden band edge similar to that in SiO2, the ultimate transparency range of purified BeF2 will depend on the forbidden exciton absorption, not yet observable above the impurity background. Grazing-incidence reflectance spectra near the Be2+ K edge are interpreted in terms of a core exciton state lying at or slightly below the conduction-band minimum as determined from x-ray photoelectron data and the optical band gap

  3. Location of Trapped Electron Centers in the Bulk of Epitaxial MgO(001) Films Grown on Mo(001) Using in situ W -band Electron Paramagnetic Resonance Spectroscopy

    Science.gov (United States)

    Cornu, Damien; Rocker, Jan; Gonchar, Anastasia; Risse, Thomas; Freund, Hans-Joachim

    2016-07-01

    We present the first in situ W -band (94-GHz) electron paramagnetic resonance (EPR) study of a trapped electron center in thin MgO(001) films. The improved resolution of the high-field EPR experiments proves that the signal originate from a well-defined species present in the bulk of the films, whose projection of the principal g -tensor components onto the (001) plane are oriented along the [110] direction of the MgO lattice. Based on a comparison between the structural properties of the films, knowledge of the ability of bulk defects to trap electrons, and the properties of the EPR signal, it is possible to propose that the paramagnetic species are located at the origin of a screw dislocation in the bulk of the film.

  4. Band Structure and Fermi-Surface Properties of Ordered beta-Brass

    DEFF Research Database (Denmark)

    Skriver, Hans Lomholt; Christensen, N. E.

    1973-01-01

    The band structure of ordered β-brass (β′-CuZn) has been calculated throughout the Brillouin zone by the augmented-plane-wave method. The present band model differs from previous calculations with respect to the position and width of the Cu 3d band. The derived dielectric function ε2(ω) and the p...

  5. LHR band emissions at mid-latitude and their relationship to ionospheric ELF hiss and relativistic electrons

    Directory of Open Access Journals (Sweden)

    A. Morioka

    2005-03-01

    Full Text Available LHR band emissions observed at mid-latitude were investigated using data from the EXOS-C (Ohzora satellite. A typical feature of the LHR band emissions is a continuous banded structure without burst-like and cut-off features whose center frequency decreases as the satellite moves to higher latitudes. A statistical analysis of the occurrence characteristics of the phenomena showed that mid-latitude LHR emissions are distributed inside the plasmapause during magnetically quiet periods, and the poleward boundary of the emission region moves to lower latitudes as the magnetic activity increases. The altitude distribution of the waves suggests that the propagation in the LHR duct formed horizontally in the mid-latitude upper-ionosphere. The emission is closely related to the occurrence of ionospheric ELF hiss. It is also shown that LHR emissions are commonly observed in the slot region of the radiation belt, and they sometimes accompany the enhancement of the ionospheric electron temperature. The generation of the LHR band emissions is discussed based on the observed characteristics.

  6. Electronic structure of superlattices of graphene and hexagonal boron nitride

    KAUST Repository

    Kaloni, Thaneshwor P.

    2011-11-14

    We study the electronic structure of superlattices consisting of graphene and hexagonal boron nitride slabs, using ab initio density functional theory. We find that the system favors a short C–B bond length at the interface between the two component materials. A sizeable band gap at the Dirac point is opened for superlattices with single graphene layers but not for superlattices with graphene bilayers. The system is promising for applications in electronic devices such as field effect transistors and metal-oxide semiconductors.

  7. Electronic Structure Basis for the Extraordinary Magnetoresistance in WTe2

    Science.gov (United States)

    Pletikosić, I.; Ali, Mazhar N.; Fedorov, A. V.; Cava, R. J.; Valla, T.

    2014-11-01

    The electronic structure basis of the extremely large magnetoresistance in layered nonmagnetic tungsten ditelluride has been investigated by angle-resolved photoelectron spectroscopy. Hole and electron pockets of approximately the same size were found at low temperatures, suggesting that carrier compensation should be considered the primary source of the effect. The material exhibits a highly anisotropic Fermi surface from which the pronounced anisotropy of the magnetoresistance follows. A change in the Fermi surface with temperature was found and a high-density-of-states band that may take over conduction at higher temperatures and cause the observed turn-on behavior of the magnetoresistance in WTe2 was identified.

  8. A first-principles study of the electronic structure of the sulvanite compounds

    Energy Technology Data Exchange (ETDEWEB)

    Osorio-Guillen, J.M., E-mail: jorge.osorio@fisica.udea.edu.co [Instituto de Fisica, Universidad de Antioquia, Medellin A.A. 1226 (Colombia); Espinosa-Garcia, W.F. [Instituto de Fisica, Universidad de Antioquia, Medellin A.A. 1226 (Colombia)

    2012-03-15

    We have investigated by means of first-principles total energy calculations the electronic structure of the sulvanite compounds: Cu{sub 3}VS{sub 4}, Cu{sub 3}NbS{sub 4} and Cu{sub 3}TaS{sub 4}; the later is a possible candidate as a p-type transparent conductor with potential applications in solar cells and electrochromic devices. The calculated electronic structure shows that these compounds are indirect band gap semiconductors, with the valence band maximum located at the R-point and the conduction band minimum located at the X-point. The character of the valence band maximum is dominated by Cu d-states and the character of the conduction band minimum is due to the d-states of the group five elements. From the calculated charge density and electron localisation function we can conclude that the sulvanite compounds are polar covalent semiconductors.

  9. Electronic Structures of Free-Standing Nanowires made from Indirect Bandgap Semiconductor Gallium Phosphide

    Science.gov (United States)

    Liao, Gaohua; Luo, Ning; Chen, Ke-Qiu; Xu, H. Q.

    2016-01-01

    We present a theoretical study of the electronic structures of freestanding nanowires made from gallium phosphide (GaP)—a III-V semiconductor with an indirect bulk bandgap. We consider [001]-oriented GaP nanowires with square and rectangular cross sections, and [111]-oriented GaP nanowires with hexagonal cross sections. Based on tight binding models, both the band structures and wave functions of the nanowires are calculated. For the [001]-oriented GaP nanowires, the bands show anti-crossing structures, while the bands of the [111]-oriented nanowires display crossing structures. Two minima are observed in the conduction bands, while the maximum of the valence bands is always at the Γ-point. Using double group theory, we analyze the symmetry properties of the lowest conduction band states and highest valence band states of GaP nanowires with different sizes and directions. The band state wave functions of the lowest conduction bands and the highest valence bands of the nanowires are evaluated by spatial probability distributions. For practical use, we fit the confinement energies of the electrons and holes in the nanowires to obtain an empirical formula. PMID:27307081

  10. Electronic Structures of Free-Standing Nanowires made from Indirect Bandgap Semiconductor Gallium Phosphide

    Science.gov (United States)

    Liao, Gaohua; Luo, Ning; Chen, Ke-Qiu; Xu, H. Q.

    2016-06-01

    We present a theoretical study of the electronic structures of freestanding nanowires made from gallium phosphide (GaP)—a III-V semiconductor with an indirect bulk bandgap. We consider [001]-oriented GaP nanowires with square and rectangular cross sections, and [111]-oriented GaP nanowires with hexagonal cross sections. Based on tight binding models, both the band structures and wave functions of the nanowires are calculated. For the [001]-oriented GaP nanowires, the bands show anti-crossing structures, while the bands of the [111]-oriented nanowires display crossing structures. Two minima are observed in the conduction bands, while the maximum of the valence bands is always at the Γ-point. Using double group theory, we analyze the symmetry properties of the lowest conduction band states and highest valence band states of GaP nanowires with different sizes and directions. The band state wave functions of the lowest conduction bands and the highest valence bands of the nanowires are evaluated by spatial probability distributions. For practical use, we fit the confinement energies of the electrons and holes in the nanowires to obtain an empirical formula.

  11. Probing the graphite band structure with resonant soft-x-ray fluorescence

    Energy Technology Data Exchange (ETDEWEB)

    Carlisle, J.A.; Shirley, E.L.; Hudson, E.A. [Lawrence Berkeley National Lab., CA (United States)] [and others

    1997-04-01

    Soft x-ray fluorescence (SXF) spectroscopy using synchrotron radiation offers several advantages over surface sensitive spectroscopies for probing the electronic structure of complex multi-elemental materials. Due to the long mean free path of photons in solids ({approximately}1000 {angstrom}), SXF is a bulk-sensitive probe. Also, since core levels are involved in absorption and emission, SXF is both element- and angular-momentum-selective. SXF measures the local partial density of states (DOS) projected onto each constituent element of the material. The chief limitation of SXF has been the low fluorescence yield for photon emission, particularly for light elements. However, third generation light sources, such as the Advanced Light Source (ALS), offer the high brightness that makes high-resolution SXF experiments practical. In the following the authors utilize this high brightness to demonstrate the capability of SXF to probe the band structure of a polycrystalline sample. In SXF, a valence emission spectrum results from transitions from valence band states to the core hole produced by the incident photons. In the non-resonant energy regime, the excitation energy is far above the core binding energy, and the absorption and emission events are uncoupled. The fluorescence spectrum resembles emission spectra acquired using energetic electrons, and is insensitive to the incident photon`s energy. In the resonant excitation energy regime, core electrons are excited by photons to unoccupied states just above the Fermi level (EF). The absorption and emission events are coupled, and this coupling manifests itself in several ways, depending in part on the localization of the empty electronic states in the material. Here the authors report spectral measurements from highly oriented pyrolytic graphite.

  12. Self-consistent treatment of v-groove quantum wire band structure in no parabolic approximation

    Directory of Open Access Journals (Sweden)

    Crnjanski Jasna V.

    2004-01-01

    Full Text Available The self-consistent no parabolic calculation of a V-groove-quantum-wire (VQWR band structure is presented. A comparison with the parabolic flat-band model of VQWR shows that both, the self-consistency and the nonparabolicity shift sub band edges, in some cases even in the opposite directions. These shifts indicate that for an accurate description of inter sub band absorption, both effects have to be taken into the account.

  13. Electronic Structure of Single-Crystal Monolayer Graphene on Hydrogen-Terminated Germanium Surface

    Science.gov (United States)

    Ahn, Sung Joon; Lee, Jae-Hyun; Ahn, Joung Real; Whang, Dongmok

    2015-03-01

    Graphene, atomically flat 2-Dimensional layered nano material, has a lot of interesting characteristics from its unusual electronic structure. Almost properties of graphene are influenced by its crystallinity, therefore the uniform growth of single crystal graphene and layer control over the wafer scale areas remains a challenge in the fields of electronic, photonic and other devices based on graphene. Here, we report the method to make wafer scale single crystal monolayer graphene on hydrogen terminated germanium(110) surface and properties and electronic band structure of the graphene by using the tool of scanning electron microscopy, transmission electron microscopy, Raman spectroscopy, electron transport measurement, electron diffraction and angle-resolved photoemission spectroscopy.

  14. Electronic structure of ZnO and its defects

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The electronic structure of ZnO and its native point defects has been calculated using full potential linear Muffin_tin orbital (FP_LMTO) method for the first time. The results show that Zn3d electrons play an important role in the bonding of ZnO. Vacant Zn (VZn) and interstitial O (Oi) produce the shallow acceptor levels at 0.3 eV and 0.4 eV above the top of the valence band (VB), while interstitial Zn (Zni) produces a shallow donor level at 0.5 eV bellow the bottom of the conduction band (CB). However, Vacant O (Vo) produces a deep donor level at 1.3 eV below the bottom of CB. On the basis of these results, we confirm that Zni is the main factor to induce the native n_type conductivity in ZnO.

  15. Electronic structure of a linear C 60 polymer

    Science.gov (United States)

    Tanaka, Kazuyoshi; Matsuura, Yukihito; Oshima, Yoshiaki; Yamabe, Tokio; Asai, Yoshihiro; Tokumoto, Madoka

    1995-01-01

    The electronic structure of a C 60-polymer chain was studied based on the tight-binding calculation including both σ and π electrons. The C 60-polymer turns out semiconducting with a finite band gap ( ca 1.1 eV) and its lowest unoccupied (LU) band is no more degenerate. The LU bandwidth of this polymer is generally smaller than that of A 3C 60 by more than one order of magnitude around the Fermi level assuring that C 60-1-polymer ( o-RbC 60) is a strongly correlated system ( {U}/{t ≫ 1}) and can have the antiferromagnetic ground state. Such reduction of t comes from the cut of π-conjugation on the surface of C 60 molecule by the bridging.

  16. Ku Band Hemispherical Fully Electronic Antenna for Aircraft in Flight Entertainment

    OpenAIRE

    Alfredo Catalani; Franco Di Paolo; Marzia Migliorelli; Lino Russo; Giovanni Toso; Piero Angeletti

    2009-01-01

    The results obtained in the frame of the ESA activity “Advanced Antenna Concepts For Aircraft In Flight Entertainment” are presented. The aim of the activity consists in designing an active antenna able to guarantee the Ku band link between an aircraft and a geostationary satellite in order to provide in flight entertainment services. The transmit-receive antenna generates a single narrow beam to be steered electronically in a half sphere remaining compliant with respect to stringent requirem...

  17. Theoretical and experimental differential cross sections for electron impact excitation of the electronic bands of furfural

    Science.gov (United States)

    Jones, D. B.; Neves, R. F. C.; Lopes, M. C. A.; da Costa, R. F.; do N. Varella, M. T.; Bettega, M. H. F.; Lima, M. A. P.; García, G.; Limão-Vieira, P.; Brunger, M. J.

    2016-03-01

    We report results from a joint experimental and theoretical investigation into electron scattering from the important industrial species furfural (C5H4O2). Specifically, differential cross sections (DCSs) have been measured and calculated for the electron-impact excitation of the electronic states of C5H4O2. The measurements were carried out at energies in the range 20-40 eV, and for scattered-electron angles between 10° and 90°. The energy resolution of those experiments was typically ˜80 meV. Corresponding Schwinger multichannel method with pseudo-potential calculations, for energies between 6-50 eV and with and without Born-closure, were also performed for a sub-set of the excited electronic-states that were accessed in the measurements. Those calculations were undertaken at the static exchange plus polarisation-level using a minimum orbital basis for single configuration interaction (MOB-SCI) approach. Agreement between the measured and calculated DCSs was qualitatively quite good, although to obtain quantitative accord, the theory would need to incorporate even more channels into the MOB-SCI. The role of multichannel coupling on the computed electronic-state DCSs is also explored in some detail.

  18. Electronic structure of disordered alloys, surfaces and interfaces

    CERN Document Server

    Turek, Ilja; Kudrnovský, Josef; Šob, Mojmír; Weinberger, Peter

    1997-01-01

    At present, there is an increasing interest in the prediction of properties of classical and new materials such as substitutional alloys, their surfaces, and metallic or semiconductor multilayers. A detailed understanding based on a thus of the utmost importance for fu­ microscopic, parameter-free approach is ture developments in solid state physics and materials science. The interrela­ tion between electronic and structural properties at surfaces plays a key role for a microscopic understanding of phenomena as diverse as catalysis, corrosion, chemisorption and crystal growth. Remarkable progress has been made in the past 10-15 years in the understand­ ing of behavior of ideal crystals and their surfaces by relating their properties to the underlying electronic structure as determined from the first principles. Similar studies of complex systems like imperfect surfaces, interfaces, and mul­ tilayered structures seem to be accessible by now. Conventional band-structure methods, however, are of limited use ...

  19. Surface-plasmon enhanced photodetection at communication band based on hot electrons

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Kai; Zhan, Yaohui, E-mail: yhzhan@suda.edu.cn, E-mail: xfli@suda.edu.cn; Wu, Shaolong; Deng, Jiajia; Li, Xiaofeng, E-mail: yhzhan@suda.edu.cn, E-mail: xfli@suda.edu.cn [College of Physics, Optoelectronics and Energy and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006, China and Key Lab of Advanced Optical Manufacturing Technologies of Jiangsu Province and Key Lab of Modern Optical Technologies of Education Ministry of China, Soochow University, Suzhou 215006 (China)

    2015-08-14

    Surface plasmons can squeeze light into a deep-subwavelength space and generate abundant hot electrons in the nearby metallic regions, enabling a new paradigm of photoconversion by the way of hot electron collection. Unlike the visible spectral range concerned in previous literatures, we focus on the communication band and design the infrared hot-electron photodetectors with plasmonic metal-insulator-metal configuration by using full-wave finite-element method. Titanium dioxide-silver Schottky interface is employed to boost the low-energy infrared photodetection. The photodetection sensitivity is strongly improved by enhancing the plasmonic excitation from a rationally engineered metallic grating, which enables a strong unidirectional photocurrent. With a five-step electrical simulation, the optimized device exhibits an unbiased responsivity of ∼0.1 mA/W and an ultra-narrow response band (FWHM = 4.66 meV), which promises to be a candidate as the compact photodetector operating in communication band.

  20. Surface-plasmon enhanced photodetection at communication band based on hot electrons

    International Nuclear Information System (INIS)

    Surface plasmons can squeeze light into a deep-subwavelength space and generate abundant hot electrons in the nearby metallic regions, enabling a new paradigm of photoconversion by the way of hot electron collection. Unlike the visible spectral range concerned in previous literatures, we focus on the communication band and design the infrared hot-electron photodetectors with plasmonic metal-insulator-metal configuration by using full-wave finite-element method. Titanium dioxide-silver Schottky interface is employed to boost the low-energy infrared photodetection. The photodetection sensitivity is strongly improved by enhancing the plasmonic excitation from a rationally engineered metallic grating, which enables a strong unidirectional photocurrent. With a five-step electrical simulation, the optimized device exhibits an unbiased responsivity of ∼0.1 mA/W and an ultra-narrow response band (FWHM = 4.66 meV), which promises to be a candidate as the compact photodetector operating in communication band

  1. Analysis of the Band-Structure in (Ga, MnAs Epitaxial Layers by Optical Methods

    Directory of Open Access Journals (Sweden)

    O. Yastrubchak

    2012-03-01

    Full Text Available The ternary III-V semiconductor (Ga, MnAs has recently drawn a lot of attention as the model diluted ferromagnetic semiconductor, combining semiconducting properties with magnetism. (Ga, MnAs layers are usually gown by the low-temperature molecular-beam epitaxy (LT-MBE technique. Below a magnetic transition temperature, TC, substitutional Mn2+ ions are ferromagnetically ordered owing to interaction with spin-polarized holes. However, the character of electronic states near the Fermi energy and the electronic structure in ferromagnetic (Ga, MnAs are still a matter of controversy. The photoreflectance (PR spectroscopy was applied to study the band-structure evolution in (Ga, MnAs layers with increasing Mn content. We have investigated thick (800-700 nm and 230-300 nm (Ga, MnAs layers with Mn content in the wide range from 0.001 % to 6 % and, as a reference, undoped GaAs layer, grown by LT-MBE on semi-insulating (001 GaAs substrates. Our findings were interpreted in terms of the model, which assumes that the mobile holes residing in the valence band of ferromagnetic (Ga, MnAs and the Fermi level position determined by the concentration of valence-band holes. The ternary III-V semiconductor (Ga, MnAs has recently drawn a lot of attention as the model diluted ferromagnetic semiconductor, combining semiconducting properties with magnetism. (Ga, MnAs layers are usually gown by the low-temperature molecular-beam epitaxy (LT-MBE technique. Below a magnetic transition temperature, TC, substitutional Mn2+ ions are ferromagnetically ordered owing to interaction with spin-polarized holes. However, the character of electronic states near the Fermi energy and the electronic structure in ferromagnetic (Ga, MnAs are still a matter of controversy. The photoreflectance (PR spectroscopy was applied to study the band-structure evolution in (Ga, MnAs layers with increasing Mn content. We have investigated thick (800-700 nm and 230-300 nm (Ga

  2. Statistical analysis of the electronic crosstalk correction in Terra MODIS Band 27

    Science.gov (United States)

    Madhavan, Sriharsha; Sun, Junqiang; Xiong, Xiaoxiong; Wenny, Brian N.; Wu, Aisheng

    2014-10-01

    The first MODerate-resolution Imaging Spectroradiometer (MODIS), also known as the Proto-Flight model (PFM), is on-board the Terra spacecraft and has completed 14 years of on orbit flight as of December 18, 2013. MODIS remotely senses the Earth in 36 spectral bands, with a wavelength range from 0.4 μm to 14.4 μm. The 36 bands can be subdivided into two groups based on their spectral responsivity as Reflective Solar Bands (RSBs) and Thermal Emissive Bands (TEBs). Band 27 centered at 6.77 μm is a TEB used to study the global water vapor distribution. It was found recently that this band has been severely affected by electronic crosstalk. The electronic crosstalk magnitude, its on-orbit change and calibration impact have been well characterized in our previous studies through the use of regularly scheduled lunar observations. Further, the crosstalk correction was implemented in Earth view (EV) images and quantified the improvements of the same. However, improvements remained desirable on several fronts. Firstly, the effectiveness of the correction needed to be analyzed spatially and radiometrically over a number of scenes. Also, the temporal aspect of the correction had to be investigated in a rigorous manner. In order to address these issues, a one-orbit analysis was performed on the Level 1A (L1A) scene granules over a ten year period from 2003 through 2012. Results have been quantified statistically and show a significant reduction of image striping, as well as removal of leaked signal features from the neighboring bands. Statistical analysis was performed by analyzing histograms of the one-orbit granules at a scene and detector level before and after correction. The comprehensive analysis and results reported in this paper will be very helpful to the scientific community in understanding the impacts of crosstalk correction on various scenes and could potentially be applied for future improvements of band 27 calibration and, therefore, its retrieval for the

  3. Evidence for an ultrafast breakdown of the BeO band structure due to swift argon and xenon ions.

    Science.gov (United States)

    Schiwietz, G; Czerski, K; Roth, M; Grande, P L; Koteski, V; Staufenbiel, F

    2010-10-29

    Auger-electron spectra associated with Be atoms in the pure metal lattice and in the stoichiometric oxide have been investigated for different incident charged particles. For fast incident electrons, for Ar7+ and Ar15+ ions as well as Xe15+ and Xe31+ ions at velocities of 6% to 10% the speed of light, there are strong differences in the corresponding spectral distributions of Be-K Auger lines. These differences are related to changes in the local electronic band structure of BeO on a femtosecond time scale after the passage of highly charged heavy ions.

  4. Evidence for an ultrafast breakdown of the BeO band structure due to swift argon and xenon ions.

    Science.gov (United States)

    Schiwietz, G; Czerski, K; Roth, M; Grande, P L; Koteski, V; Staufenbiel, F

    2010-10-29

    Auger-electron spectra associated with Be atoms in the pure metal lattice and in the stoichiometric oxide have been investigated for different incident charged particles. For fast incident electrons, for Ar7+ and Ar15+ ions as well as Xe15+ and Xe31+ ions at velocities of 6% to 10% the speed of light, there are strong differences in the corresponding spectral distributions of Be-K Auger lines. These differences are related to changes in the local electronic band structure of BeO on a femtosecond time scale after the passage of highly charged heavy ions. PMID:21231139

  5. Electronic structure and lattice dynamics of orthorhombic BiGaO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Kaczkowski, J., E-mail: jakub_k@ifmpan.poznan.pl

    2014-11-15

    Highlights: • Electronic structure of the orthorhombic phase of BiGaO{sub 3} have been calculated within GGA, hybrid HSE and TB-mBJ functionals. • Structural parameters were obtained within GGA and HSE functionals. • The band gap of BiGaO{sub 3} is indirect with the value: 1.88 eV (GGA), 3.14 eV (HSE) and 3.00 eV (TB-mBJ). • Elastic and vibrational properties were calculated. • The phonon band structure shows a soft mode between Γ and Z direction. - Abstract: The electronic structure, structural, elastic and vibrational properties of the orthorhombic BiGaO{sub 3} were calculated by using the density functional theory. For the electronic structure calculations standard generalized gradient approximation, nonlocal hybrid Heyd–Scuseria–Ernzerhof and semilocal Tran–Blaha functionals were used. The standard and hybrid functionals were applied to obtain structural parameters. The electronic structure shows that BiGaO{sub 3} is a indirect band gap semiconductor. The values of the band gap are 1.88 eV, 3.14 eV and 3.00 eV within generalized gradient approximation, hybrid and semilocal functionals, respectively. The direct method have been used to obtain the vibrational properties. The phonon band structure shows a soft mode between Γ and Z direction. This soft mode could be responsible for structural phase transition.

  6. The valence band structure of AgxRh1–x alloy nanoparticles

    International Nuclear Information System (INIS)

    The valence band (VB) structures of face-centered-cubic Ag-Rh alloy nanoparticles (NPs), which are known to have excellent hydrogen-storage properties, were investigated using bulk-sensitive hard x-ray photoelectron spectroscopy. The observed VB spectra profiles of the Ag-Rh alloy NPs do not resemble simple linear combinations of the VB spectra of Ag and Rh NPs. The observed VB hybridization was qualitatively reproduced via a first-principles calculation. The electronic structure of the Ag0.5Rh0.5 alloy NPs near the Fermi edge was strikingly similar to that of Pd NPs, whose superior hydrogen-storage properties are well known.

  7. Differential cross sections for electron impact excitation of the electronic bands of phenol

    Energy Technology Data Exchange (ETDEWEB)

    Neves, R. F. C. [School of Chemical and Physical Sciences, Flinders University, GPO Box 2100, Adelaide SA 5001 (Australia); Instituto Federal do Sul de Minas Gerais, Campus Poços de Caldas, Minas Gerais (Brazil); Departamento de Física, UFJF, Juiz de Fora, Minas Gerais (Brazil); Jones, D. B. [School of Chemical and Physical Sciences, Flinders University, GPO Box 2100, Adelaide SA 5001 (Australia); Lopes, M. C. A.; Nixon, K. L. [Departamento de Física, UFJF, Juiz de Fora, Minas Gerais (Brazil); Silva, G. B. da [School of Chemical and Physical Sciences, Flinders University, GPO Box 2100, Adelaide SA 5001 (Australia); Universidade Federal de Mato Grosso, Barra do Garças, Mato Grosso (Brazil); Duque, H. V. [School of Chemical and Physical Sciences, Flinders University, GPO Box 2100, Adelaide SA 5001 (Australia); Departamento de Física, UFJF, Juiz de Fora, Minas Gerais (Brazil); Oliveira, E. M. de; Lima, M. A. P. [Instituto de Física “Gleb Wataghin,” Universidade Estadual de Campinas, 13083-859 Campinas, São Paulo (Brazil); Costa, R. F. da [Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, 09210-580 Santo André, São Paulo (Brazil); Varella, M. T. do N. [Instituto de Física, Universidade de São Paulo, CP 66318, 05315-970 São Paulo (Brazil); Bettega, M. H. F. [Departamento de Física, Universidade Federal do Paraná, CP 19044, 81531-990 Curitiba, Paraná (Brazil); and others

    2015-03-14

    We report results from a joint theoretical and experimental investigation into electron scattering from the important organic species phenol (C{sub 6}H{sub 5}OH). Specifically, differential cross sections (DCSs) have been measured and calculated for the electron-impact excitation of the electronic states of C{sub 6}H{sub 5}OH. The measurements were carried out at energies in the range 15–40 eV, and for scattered-electron angles between 10{sup ∘} and 90{sup ∘}. The energy resolution of those experiments was typically ∼80 meV. Corresponding Schwinger multichannel method with pseudo-potentials calculations, with and without Born-closure, were also performed for a sub-set of the excited electronic-states that were accessed in the measurements. Those calculations were conducted at the static exchange plus polarisation (SEP)-level using a minimum orbital basis for single configuration interaction (MOBSCI) approach. Agreement between the measured and calculated DCSs was typically fair, although to obtain quantitative accord, the theory would need to incorporate even more channels into the MOBSCI.

  8. Structural Features That Stabilize ZnO Clusters: An Electronic Structure Approach

    Directory of Open Access Journals (Sweden)

    Csaba E. Szakacs

    2013-05-01

    Full Text Available We show that a simple approach to building small computationally inexpensive clusters offers insights on specific structural motifs that stabilize the electronic structure of ZnO. All-electron calculations on ZniOi needle (i = 6, 9, 12, 15, and 18 and plate (i = 9 and 18 clusters within the density functional theory (DFT formalism show a higher stability for ZnO needles that increases with length. Puckering of the rings to achieve a more wurtzite-like structure destabilizes the needles, although this destabilization is reduced by going to infinite needles (calculated using periodic boundary conditions. Calculations of density of states (DOS curves and band gaps for finite clusters and infinite needles highlight opportunities for band-gap tuning through kinetic control of nanocrystal growth.

  9. Design, realization and test of C-band accelerating structures for the SPARC_LAB linac energy upgrade

    Science.gov (United States)

    Alesini, D.; Bellaveglia, M.; Biagini, M. E.; Boni, R.; Brönnimann, M.; Cardelli, F.; Chimenti, P.; Clementi, R.; Di Pirro, G.; Di Raddo, R.; Ferrario, M.; Ficcadenti, L.; Gallo, A.; Kalt, R.; Lollo, V.; Palumbo, L.; Piersanti, L.; Schilcher, T.

    2016-11-01

    The energy upgrade of the SPARC_LAB photo-injector at LNF-INFN (Frascati, Italy) has been originally conceived replacing one low gradient (13 MV/m) 3 m long SLAC type S-band traveling wave (TW) section with two 1.4 m long C-band accelerating sections. Due to the higher gradients reached by such structures, a higher energy beam can be obtained within the same accelerator footprint length. The use of C-band structures for electron acceleration has been adopted in a few FEL linacs in the world, among others, the Japanese Free Electron Laser at SPring-8 and the SwissFEL at Paul Scherrer Institute (PSI). The C-band sections are traveling wave, constant impedance structures with symmetric input and output axial couplers. Their design has been optimized for the operation with a SLED RF pulse compressor. In this paper we briefly review their design criteria and we focus on the construction, tuning, low and high-power RF tests. We also illustrate the design and realization of the dedicated low level RF system that has been done in collaboration with PSI in the framework of the EU TIARA project. Preliminary experimental results appear to confirm the operation of such structures with accelerating gradients larger than 35 MV/m.

  10. Electronic structure and electron energy-loss spectroscopy of ZrO2 zirconia

    Science.gov (United States)

    Dash, L. K.; Vast, Nathalie; Baranek, Philippe; Cheynet, Marie-Claude; Reining, Lucia

    2004-12-01

    The atomic and electronic structures of zirconia are calculated within density functional theory, and their evolution is analyzed as the crystal-field symmetry changes from tetrahedral [cubic (c-ZrO2) and tetragonal (t-ZrO2) phases] to octahedral (hypothetical rutile ZrO2 ), to a mixing of these symmetries (monoclinic phase, m-ZrO2 ). We find that the theoretical bulk modulus in c-ZrO2 is 30% larger than the experimental value, showing that the introduction of yttria in zirconia has a significant effect. Electronic structure fingerprints which characterize each phase from their electronic spectra are identified. We have carried out electron energy-loss spectroscopy experiments at low momentum transfer and compared these results to the theoretical spectra calculated within the random phase approximation. We show a dependence of the valence and 4p ( N2,3 edge) plasmons on the crystal structure, the dependence of the latter being brought into the spectra by local-field effects. Last, we attribute low energy excitations observed in EELS of m-ZrO2 to defect states 2eV above the top of the intrinsic valence band, and the EELS fundamental band gap value is reconciled with the 5.2 or 5.8eV gaps determined by vacuum ultraviolet spectroscopy.

  11. Polymorphism, band-structure, band-lineup, and alloy energetics of the group II oxides and sulfides MgO, ZnO, CdO, MgS, ZnS, CdS

    Science.gov (United States)

    Lany, Stephan

    2014-03-01

    The group II chalcogenides are an important class of functional semiconductor materials exhibiting a remarkable diversity in terms of structure and properties. In order to aid the materials design, a consistent set of electronic structure calculations is presented, including data on the polymorphic energy ordering, the band-structures, the band-lineups relative to the vacuum level, surface energies, as well as on the alloy energetics. To this end, current state-of-the-art electronic structure tools are employed, which, besides standard density functional theory (DFT), include totalenergy calculation in the random phase approximation and GW quasiparticle energy calculations. The ionization potentials and electron affinities are obtained by combining the results of bulk GW and surface DFT calculations. Considering both octahedral and tetrahedral coordination symmetries, exemplified by the rock-salt and zinc-blende lattices, respectively, this data reveals both the chemical and structural trends within this materials family.

  12. Theoretical study on the band structure and optical properties of 4H-SiC

    Institute of Scientific and Technical Information of China (English)

    Xu Peng-Shou; Xie Chang-Kun; Pan Hai-Bin; Xu Fa-Qiang

    2004-01-01

    We have studied the band structure and optical properties of 4H-SiC by using a full potential linearized augmented plane waves (FPLAPW) method. The density of states (DOS) and band structure are presented. The imaginary part of the dielectric function has been obtained directly from the band structure calculation. With band gap correction, the real part of the dielectric function has been derived from the imaginary part by the Kramers-Kronig (KK) dispersion relationship. The values of reflectivity for normal incidence as a function of photon energy have also been calculated.We found the theoretical results are in good agreement with the experimental data.

  13. Electronic structure characterization and bandgap engineeringofsolar hydrogen materials

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Jinghua

    2007-11-01

    Bandgap, band edge positions as well as the overall band structure of semiconductors are of crucial importance in photoelectrochemical and photocatalytic applications. The energy position of the band edge level can be controlled by the electronegativity of the dopants, the pH of the solution (flatband potential variation of 60 mV per pH unit), as well as by quantum confinement effects. Accordingly, band edges and bandgap can be tailored to achieve specific electronic, optical or photocatalytic properties. Synchrotron radiation with photon energy at or below 1 keV is giving new insight into such areas as condensed matter physics and extreme ultraviolet optics technology. In the soft x-ray region, the question tends to be, what are the electrons doing as they migrated between the atoms. In this paper, I will present a number of soft x-ray spectroscopic study of nanostructured 3d metal compounds Fe{sub 2}O{sub 3} and ZnO.

  14. Filling-Enforced Gaplessness in Band Structures of the 230 Space Groups.

    Science.gov (United States)

    Watanabe, Haruki; Po, Hoi Chun; Zaletel, Michael P; Vishwanath, Ashvin

    2016-08-26

    Nonsymmorphic symmetries like screws and glides produce electron band touchings, obstructing the formation of a band insulator and leading, instead, to metals or nodal semimetals even when the number of electrons in the unit cell is an even integer. Here, we calculate the electron fillings compatible with being a band insulator for all 230 space groups, for noninteracting electrons with time-reversal symmetry. Our bounds are tight-that is, we can rigorously eliminate band insulators at any forbidden filling and produce explicit models for all allowed fillings-and stronger than those recently established for interacting systems. These results provide simple criteria that should help guide the search for topological semimetals and, also, have implications for both the nature and stability of the resulting nodal Fermi surfaces. PMID:27610868

  15. Relationships between magnetic foot points and G-band bright structures

    OpenAIRE

    Ishikawa, R.; Tsuneta, S.; Kitakoshi, Y.; Katsukawa, Y.; Bonet, J. A.; Domínguez, S. Vargas; van der Voort, L. H. M. Rouppe; Sakamoto, Y; Ebisuzaki, T.

    2008-01-01

    Magnetic elements are thought to be described by flux tube models, and are well reproduced by MHD simulations. However, these simulations are only partially constrained by observations. We observationally investigate the relationship between G-band bright points and magnetic structures to clarify conditions, which make magnetic structures bright in G-band. The G-band filtergrams together with magnetograms and dopplergrams were taken for a plage region covered by abnormal granules as well as u...

  16. Design and analysis of defected ground structure transformer for dual-band antenna

    Directory of Open Access Journals (Sweden)

    Wai-Wa Choi

    2014-12-01

    Full Text Available This study presents a novel dual-band antenna design methodology utilising a dual-frequency impedance transformer with defected ground structure (DGS. The proposed dual-frequency DGS impedance transformer generates a second resonant frequency from a conventional single-band antenna, resulting dual-band operation. Simulation studies illustrate that the adopted design achieves versatile configurations for arbitrary operating frequencies and diverse input impedance ranges in planar antenna structures. To experimentally verify the proposed design methodology, a dual-frequency DGS impedance transformer was implemented for a 2.4 GHz monopole antenna to obtain a 900/2400 MHz dual-band antenna. Measurement shows that the 10 dB return loss bandwidth in 900 MHz band is 34.4 MHz, whereas that in 2400 MHz band is wider than 530 MHz. Typical monopole radiation patterns are observed at both operating bands.

  17. Spin Orbit Induced Electronic Structure and Magnetotransport in WTe2

    Science.gov (United States)

    Singh, David J.; Pan, Minghu; Yan, Jiaqiang; Yang, Biao; Zang, Yunyi; Zhang, Junjie; He, Ke; Wu, Menghao; Zhao, Yanfei; Mandrus, David; Wang, Jian; Xue, Qikun; Chi, Lifeng; Li, Qing

    We report electronic structure studies of WTe2, which shows an XMR behavior and is non-centrosymmetric. We find a spin-orbit split semimetallic band structure with a different Fermi surface topology than that initially reported, including Rashba split bands with Fermi surface around the zone center. The metallic properties are not one dimensional and are best described in terms of an anisotropic 3D metal with compensating low carrier density Fermi surfaces. The spin texture and transport is discussed as the origin of the XMR effect and in particular is consistent with the geometry in which the XMR effect is observed and its angle dependence. Work supported by DOE through the Computational Synthesis of Materials Software Project.

  18. New bismuth borophosphate Bi{sub 4}BPO{sub 10}: Synthesis, crystal structure, optical and band structure analysis

    Energy Technology Data Exchange (ETDEWEB)

    Babitsky, Nicolay A.; Leshok, Darya Y.; Mikhaleva, Natalia S. [Siberian Federal University, 79 Svobodny Av, Krasnoyarsk, 660041 (Russian Federation); Kuzubov, Aleksandr A., E-mail: alexkuzubov@gmail.com [Siberian Federal University, 79 Svobodny Av, Krasnoyarsk, 660041 (Russian Federation); Institute of Physics SB RAS, Krasnoyarsk 660036 (Russian Federation); Zhereb, Vladimir P. [Siberian Federal University, 79 Svobodny Av, Krasnoyarsk, 660041 (Russian Federation); Kirik, Sergei D., E-mail: kiriksd@yandex.ru [Siberian Federal University, 79 Svobodny Av, Krasnoyarsk, 660041 (Russian Federation)

    2015-08-01

    New bismuth borophosphate Bi{sub 4}BPO{sub 10} was obtained by spontaneous crystallization from the melt of correspondent composition at 804 °C. Crystal structure with orthorhombic lattice parameters: a = 22.5731(3) Å, b = 14.0523(2) Å, c = 5.5149(1) Å, V = 1749.34(4), Z = 8, SG Pcab was determined by X-ray powder diffraction technique. The [Bi{sub 2}O{sub 2}]{sup 2+} -layers, which are typical for bismuth oxide compounds, transform into cationic endless strips of 4 bismuth atoms width directed along the c-axis in Bi{sub 4}BPO{sub 10}. The strips combining stacks are separated by flat triangle [BO{sub 3}]{sup 3−} -anions within stacks. Neighboring stacks are separated by tetrahedral [PO{sub 4}]{sup 3−}-anions and shifted relatively to each other. Bismuth atoms are placed in 5–7 vertex oxygen irregular polyhedra. Bi{sub 4}BPO{sub 10} is stable up to 812 °C, then melts according to the peritectic law. The absorption spectrum in the range 350–700 nm was obtained and the width of the forbidden band was estimated as 3.46 eV. The band electronic structure of Bi{sub 4}BPO{sub 10} was modeled using DFT approach. The calculated band gap (3.56 eV) is in good agreement with the experimentally obtained data. - Graphical abstract: Display Omitted - Highlights: • New bismuth borophosphate with composition Bi{sub 4}BPO{sub 10} was synthesized. • The crystal structure was determined by X-ray powder diffraction technique. • Bismuth-oxygen part [Bi{sub 4}O{sub 3}]{sup 6+} forms endless strips of 4 bismuth atoms width. • Electronic structure was modeled by DFT method. • The calculated band gap (3.56 eV) is very close to the experimental one (3.46 eV)

  19. A New Q-Band EPR Probe for Quantitative Studies of Even Electron Metalloproteins

    Science.gov (United States)

    Petasis, D. T.; Hendrich, M. P.

    1999-02-01

    Existing Q-band (35 GHz) EPR spectrometers employ cylindrical cavities for more intense microwave magnetic fields B1, but are so constructed that only one orientation between the external field B and B1is allowed, namely the B ⊥ B1orientation, thus limiting the use of the spectrometer to measurements on Kramers spin systems (odd electron systems). We have designed and built a Q-band microwave probe to detect EPR signals in even electron systems, which operates in the range 2 K ≤ T ≤ 300 K for studies of metalloprotein samples. The cylindrical microwave cavity operates in the TE011mode with cylindrical wall coupling to the waveguide, thus allowing all orientations of the external magnetic field B relative to the microwave field B1. Such orientations allow observation of EPR transitions in non-Kramers ions (even electron) which are either forbidden or significantly weaker for B ⊥ B1. Rotation of the external magnetic field also permits easy differentiation between spin systems from even and odd electron oxidation states. The cavity consists of a metallic helix and thin metallic end walls mounted on epoxy supports, which allows efficient penetration of the modulation field. The first quantitative EPR measurements from a metalloprotein (Hemerythrin) at 35 GHz with B1‖ B are presented.

  20. Electronic Structure of Doped Trans-Polyacetylene

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The behavior of electronic structures of doped trans-polyacetylene is revealed by a simplemethod. (C24H26)+n is used to simulate p-type doped trans-polyacetylene at various doping concentrations.The electronic structure is calculated by CNDO/2 method. These calculations show that at low doping lev-el, the decrease of electronic energy compensates the increase of elastic energy, thus the bond alternationexists, and the charge carriers are solitons. When doping level is high, the increase of elastic energy islarger than the decrease of electronic energy, the bond alternation disappears, solitons no longer exist,and polyacetylene is in a metalic state.

  1. Band structures in silicene on monolayer gallium phosphide substrate

    Science.gov (United States)

    Ren, Miaojuan; Li, Mingming; Zhang, Changwen; Yuan, Min; Li, Ping; Li, Feng; Ji, Weixiao; Chen, Xinlian

    2016-07-01

    Opening a sizable band gap in the zero-gap silicene is a key issue for its application in nanoelectronics. We design new 2D silicene and GaP heterobilayer (Si/GaP HBL) composed of silicene and monolayer (ML) GaP. Based on first-principles calculations, we find that the interaction energies are in the range of -295.5 to -297.5 meV per unit cell, indicating a weak interaction between silicene and gallium phosphide (GaP) monolayer. The band gap changes ranging from 0.06 to 0.44 eV in hybrid HBLs. An unexpected indirect-direct band gap crossover is also observed in HBLs, dependent on the stacking pattern. These provide a possible way to design effective FETs out of silicene on GaP monolayer.

  2. Electronic and thermoelectric properties of van der Waals materials with ring-shaped valence bands

    International Nuclear Information System (INIS)

    The valence band of a variety of few-layer, two-dimensional materials consist of a ring of states in the Brillouin zone. The energy-momentum relation has the form of a “Mexican hat” or a Rashba dispersion. The two-dimensional density of states is singular at or near the band edge, and the band-edge density of modes turns on nearly abruptly as a step function. The large band-edge density of modes enhances the Seebeck coefficient, the power factor, and the thermoelectric figure of merit ZT. Electronic and thermoelectric properties are determined from ab initio calculations for few-layer III–VI materials GaS, GaSe, InS, InSe, for Bi2Se3, for monolayer Bi, and for bilayer graphene as a function of vertical field. The effect of interlayer coupling on these properties in few-layer III–VI materials and Bi2Se3 is described. Analytical models provide insight into the layer dependent trends that are relatively consistent for all of these few-layer materials. Vertically biased bilayer graphene could serve as an experimental test-bed for measuring these effects

  3. Photonic band structures in one-dimensional photonic crystals containing Dirac materials

    International Nuclear Information System (INIS)

    We have investigated the band structures of one-dimensional photonic crystals (1DPCs) composed of Dirac materials and ordinary dielectric media. It is found that there exist an omnidirectional passing band and a kind of special band, which result from the interaction of the evanescent and propagating waves. Due to the interface effect and strong dispersion, the electromagnetic fields inside the special bands are strongly enhanced. It is also shown that the properties of these bands are invariant upon the lattice constant but sensitive to the resonant conditions

  4. Comparative studies in method for stratigraphical structure measurement of ice cores: Identification of cloudy bands

    Institute of Scientific and Technical Information of China (English)

    Morimasa Takata; Hitoshi Shoji; Atsushi Miyamoto; Kimiko Shimohara

    2003-01-01

    Cloudy bands are typical stratigraphic structure in deep ice core.Detailed recording of cloudy bands is important for dating of ice core since pair of series cloudy band and clear layer is corresponds to annual layer and it sometimes corresponds to volcanic ash layer.We developed two type scanners, transmitted light method and laser tomograph method for the stratigraphic study.Measurements were carried out for NGRIP deep ice core, which containing many cloudy bands, using the two type scanners and digital camera.We discussed about the possibility of identification of cloudy bands by each method and about advantage and disadvantage of measurements and their results.

  5. Atomic and electronic structure of exfoliated black phosphorus

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Ryan J.; Topsakal, Mehmet; Jeong, Jong Seok; Wentzcovitch, Renata M.; Mkhoyan, K. Andre, E-mail: mkhoyan@umn.edu [Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455 (United States); Low, Tony; Robbins, Matthew C.; Haratipour, Nazila; Koester, Steven J. [Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, Minnesota 55455 (United States)

    2015-11-15

    Black phosphorus, a layered two-dimensional crystal with tunable electronic properties and high hole mobility, is quickly emerging as a promising candidate for future electronic and photonic devices. Although theoretical studies using ab initio calculations have tried to predict its atomic and electronic structure, uncertainty in its fundamental properties due to a lack of clear experimental evidence continues to stymie our full understanding and application of this novel material. In this work, aberration-corrected scanning transmission electron microscopy and ab initio calculations are used to study the crystal structure of few-layer black phosphorus. Directly interpretable annular dark-field images provide a three-dimensional atomic-resolution view of this layered material in which its stacking order and all three lattice parameters can be unambiguously identified. In addition, electron energy-loss spectroscopy (EELS) is used to measure the conduction band density of states of black phosphorus, which agrees well with the results of density functional theory calculations performed for the experimentally determined crystal. Furthermore, experimental EELS measurements of interband transitions and surface plasmon excitations are also consistent with simulated results. Finally, the effects of oxidation on both the atomic and electronic structure of black phosphorus are analyzed to explain observed device degradation. The transformation of black phosphorus into amorphous PO{sub 3} or H{sub 3}PO{sub 3} during oxidation may ultimately be responsible for the degradation of devices exposed to atmosphere over time.

  6. Atomic and electronic structure of exfoliated black phosphorus

    International Nuclear Information System (INIS)

    Black phosphorus, a layered two-dimensional crystal with tunable electronic properties and high hole mobility, is quickly emerging as a promising candidate for future electronic and photonic devices. Although theoretical studies using ab initio calculations have tried to predict its atomic and electronic structure, uncertainty in its fundamental properties due to a lack of clear experimental evidence continues to stymie our full understanding and application of this novel material. In this work, aberration-corrected scanning transmission electron microscopy and ab initio calculations are used to study the crystal structure of few-layer black phosphorus. Directly interpretable annular dark-field images provide a three-dimensional atomic-resolution view of this layered material in which its stacking order and all three lattice parameters can be unambiguously identified. In addition, electron energy-loss spectroscopy (EELS) is used to measure the conduction band density of states of black phosphorus, which agrees well with the results of density functional theory calculations performed for the experimentally determined crystal. Furthermore, experimental EELS measurements of interband transitions and surface plasmon excitations are also consistent with simulated results. Finally, the effects of oxidation on both the atomic and electronic structure of black phosphorus are analyzed to explain observed device degradation. The transformation of black phosphorus into amorphous PO3 or H3PO3 during oxidation may ultimately be responsible for the degradation of devices exposed to atmosphere over time

  7. Generation of Intense Narrow-Band Tunable Terahertz Radiation from Highly Bunched Electron Pulse Train

    Science.gov (United States)

    Li, Heting; Lu, Yalin; He, Zhigang; Jia, Qika; Wang, Lin

    2016-07-01

    We present the analysis and start-to-end simulation of an intense narrow-band terahertz (THz) source with a broad tuning range of radiation frequency, using a single-pass free electron laser (FEL) driven by a THz-pulse-train photoinjector. The fundamental radiation frequency, corresponding to the spacing between the electron microbunches, can be easily tuned by varying the spacing time between the laser micropulses. Since the prebunched electron beam is highly bunched at the first several harmonics, with the harmonic generation technique, the radiation frequency range can be further enlarged by several times. The start-to-end simulation results show that this FEL is capable of generating a few tens megawatts power, several tens micro-joules pulse energy, and a few percent bandwidth at the frequencies of 0.5-5 THz. In addition, several practical issues are considered.

  8. Phosphorene Nanoribbons: Electronic Structure and Electric Field Modulation

    Science.gov (United States)

    Soleimanikahnoj, Sina; Knezevic, Irena

    Phosphorene, a newcomer among the 2D van der Waals materials, has attracted the attention of many scientists due to its promising electronic properties. Monolayer phosphorene has a direct band gap of 2 eV located at the Gamma point of the Brillouin zone. Increasing the number of layers reduces the bandgap due to the van der Waals interaction. The direct nature of the bandgap makes phosphorene particularly favorable for electronic transport and optoelectronic applications. While multilayer phosphorene sheets have been studied, the electronic properties of their 1D counterparts are still unexplored. An accurate tight-binding model was recently proposed for multilayer phosphorene nanoribbons. Employing this model along with the non-equilibrium Green's function method, we calculate the band structure and electronic properties of phosphorene nanoribbons. We show that, depending on the edge termination, phosphorene nanoribbons can be metallic or semiconducting. Our analysis also shows that the electronic properties of phosphorene nanoribbons are highly tunable by in-plane and out-of-plane electric fields. In metallic ribbons, the conductance can be switched off by a threshold electric field, similar to field effect devices. Support by the NSF through the University of Wisconsin MRSEC Seed (NSF Award DMR-1121288).

  9. Phononic First Band Gap of Quaternary Layered Periodic Structure with the Lumped-Mass Method

    Directory of Open Access Journals (Sweden)

    Chen Yuan

    2014-01-01

    Full Text Available Existing band gap analysis is mostly focused on the binary structure, while the researches on the quaternary layered periodic structure are still lacking. In this paper, the unidimensional lumped-mass method in the phonic crystal theory is firstly improved so that the material viscoelasticity can be taken into consideration. Then, the binary layered periodic structure is converted into a quaternary one and band gaps appear at low frequency range. Finally, the effects of density, elastic modulus, damping ratio, and the thickness of single material on the first band gap of the quaternary layered periodic structure are analyzed after the algorithm is promoted. The research findings show that effects of density, elastic modulus, and thickness of materials on the first band gap are considerable but those of damping ratio are not so distinct. This research provides theoretical bases for band gap design of the quaternary layered periodic structure.

  10. Study of electronic and Structural Properties of CaS

    Directory of Open Access Journals (Sweden)

    M. Mirfenderski

    2002-12-01

    Full Text Available   The electronic and structural properties of CaS are calculated using full potential linearized augmented plane wave (FP-LAPW method within the local density approximation (LDA and generalized gradient approximation (GGA for the exchange-correlation energy. For both structures, NaCl structure (B1 and CsCl structure (B2, the obtained values for lattice parameters, Bulk modulus and its pressure derivative and transition pressure are in reasonable agreement with the experimental values. For electronic properties, the obtained value for band gap is smaller than the experimental value as well as other calculated results based on density functional theory. Engel and Vosko calculated an exchange potential for some atoms within the so-called optimize-potential model and then used the virial relation and constructed a new exchange-correlation functional (EV-GGA. We used that functional and obtained reasonable results for band gap. Finally we investigated the possibility for a third phase (Zinc Blend structure for this crystal.

  11. Stability, electronic structure and reactivity of the polymerized fullerite forms

    Science.gov (United States)

    Belavin, V. V.; Bulusheva, L. G.; Okotrub, A. V.; Tomanek, D.

    2000-12-01

    A study of band structure, stability and electron density distribution from selected crystal orbitals of polymerized C60 forms was carried out. Linear chain, tetragonal and hexagonal layers, and three-dimensional (3D) polymer with a simple cubic lattice were calculated using an empirical tight-binding method. The hopping parameters were chosen to fit a theoretical X-ray emission spectrum of C60 to the experimental one. Our results indicate that all calculated polymers are semiconductors with the smallest energy gap for hexagonal structure. Though the molecules C60 are linked by strong covalent bonds, the crystal orbitals characterized by the electron density localization on an individual carbon cage are separated in the electronic structure of polymers. The suggestions about reactivity of the 1D and 2D tetragonal polymers were made from the analyses of crystal orbitals accompanied with the highest occupied (HO) and lowest unoccupied (LU) bands. The polymerized C60 forms were found to be less stable than an icosahedral fullerene molecule.

  12. Application of the new LDA+GTB method for the band structure calculation of n-type cuprates

    Energy Technology Data Exchange (ETDEWEB)

    Korshunov, M.M. [L.V. Kirensky Institute of Physics, Siberian Branch of Russian Academy of Sciences, 660036 Krasnoyarsk (Russian Federation)]. E-mail: mkor@iph.krasn.ru; Ovchinnikov, S.G. [L.V. Kirensky Institute of Physics, Siberian Branch of Russian Academy of Sciences, 660036 Krasnoyarsk (Russian Federation); Gavrichkov, V.A. [L.V. Kirensky Institute of Physics, Siberian Branch of Russian Academy of Sciences, 660036 Krasnoyarsk (Russian Federation); Nekrasov, I.A. [Institute of Metal Physics, Russian Academy of Sciences-Ural Division, 620219 Yekaterinburg GSP-170 (Russian Federation); Pchelkina, Z.V. [Institute of Metal Physics, Russian Academy of Sciences-Ural Division, 620219 Yekaterinburg GSP-170 (Russian Federation); Anisimov, V.I. [Institute of Metal Physics, Russian Academy of Sciences-Ural Division, 620219 Yekaterinburg GSP-170 (Russian Federation)

    2006-05-01

    A novel hybrid scheme is proposed and applied for band structure calculations of undoped n-type cuprate Nd{sub 2}CuO{sub 4}. The ab initio LDA calculation is used to obtain single electron and Coulomb parameters of the multiband Hubbard-type model. In strong correlation regime the electronic structure within this model is calculated by the generalized tight-binding (GTB) method, that combines the exact diagonalization of the model Hamiltonian for a small cluster with perturbation treatment of the intercluster hopping and interactions. For Nd{sub 2}CuO{sub 4}, this scheme results in charge transfer insulator with value of the gap and band dispersion in agreement to the experimental data.

  13. Handbook of the band structure of elemental solids from Z = 1 to Z = 112

    CERN Document Server

    Papaconstantopoulos, Dimitris A

    2015-01-01

    This handbook presents electronic structure data and tabulations of Slater-Koster parameters for the whole periodic table. This second edition presents data sets for all elements up to Z = 112, Copernicium, whereas the first edition contained only 53 elements. In this new edition, results are given for the equation of state of the elements together with the parameters of a Birch fit, so that the reader can regenerate the results and derive additional information, such as Pressure-Volume relations and variation of Bulk Modulus with Pressure. For each element, in addition to the equation of state, the energy bands, densities of states, and a set of tight-binding parameters is provided. For a majority of elements, the tight-binding parameters are presented for both a two- and three-center approximation. For the hcp structure, new three-center tight-binding results are given. Other new material in this edition include: energy bands and densities of states of all rare-earth metals, a discussion of the McMillan-Gas...

  14. Efficient calculation of inelastic vibration signals in electron transport: Beyond the wide-band approximation

    DEFF Research Database (Denmark)

    Lu, Jing Tao; Christensen, Rasmus Bjerregaard; Foti, Giuseppe;

    2014-01-01

    We extend the simple and efficient lowest order expansion (LOE) for inelastic electron tunneling spectroscopy (IETS) to include variations in the electronic structure on the scale of the vibration energies. This enables first-principles calculations of IETS line shapes for molecular junctions close...

  15. Effect of acicular ferrite on banded structures in low-carbon microalloyed steel

    Institute of Scientific and Technical Information of China (English)

    Lei Shi; Ze-sheng Yan; Yong-chang Liu; Xu Yang; Cheng Zhang; Hui-jun Li

    2014-01-01

    The effect of acicular ferrite (AF) on banded structures in low-carbon microalloyed steel with Mn segregation during both iso-thermal transformation and continuous cooling processes was studied by dilatometry and microscopic observation. With respect to the iso-thermal transformation process, the specimen isothermed at 550°C consisted of AF in Mn-poor bands and martensite in Mn-rich bands, whereas the specimen isothermed at 450°C exhibited two different morphologies of AF that appeared as bands. At a continuous cooling rate in the range of 4 to 50°C/s, a mixture of AF and martensite formed in both segregated bands, and the volume fraction of martensite in Mn-rich bands was always higher than that in Mn-poor bands. An increased cooling rate resulted in a decrease in the difference of martensite volume fraction between Mn-rich and Mn-poor bands and thereby leaded to less distinct microstructural banding. The results show that Mn segregation and cooling rate strongly affect the formation of AF-containing banded structures. The formation mechanism of microstructural banding was also discussed.

  16. Magnetic ordering in strongly correlated-electron uranium systems: Consequences of two kinds of f-electron-band-electron states

    Science.gov (United States)

    Cooper, Bernard R.; Lin, Yeong-Lieh; Sheng, Qing-Guang

    1999-04-01

    Magnetic ordering involves the electronic behavior globally; and for uranium-based systems, the hybridization-induced effects dominate over the Coulomb exchange effects in determining the magnetic ordering. Therefore, as long as the hybridization is treated as acting between properly exchange-symmetrized two-electron wave functions, the effects of exchange can be incorporated in the one-electron exchange-correlation potential. As a consequence of the necessary exchange symmetrization, there are essentially two kinds of f electrons, localized magnetic and itinerant nonmagnetic. This has enabled us to make absolute material-specific predictions of alloying or high-pressure effects on magnetic ordering in uranium strongly correlated-electron (SCE) systems using local-density approximation input into many-electron dynamics. Experimentally, the alloying effects can be dramatic, e.g., in UxLa1-xS the magnetic ordering abruptly disappears at about 55% uranium. The theory is quite successful in its detailed absolute predictions, and this has important implications for the overall understanding of electronic behavior in SCE systems including heavy fermion systems. The key conclusion is that strengthening the hybridization, as kinematically restricted by exchange symmetry, leads to a chemical-environment-dependent sharp phase transition in SCE systems with dramatic observable consequences. This phase transition is associated with the elimination of the localized-magnetic transition-shell electrons (f electrons for light actinide and cerium-based SCE materials, d electrons for transition-metal-oxide-based SCE materials).

  17. Epitaxial graphene electronic structure and transport

    Energy Technology Data Exchange (ETDEWEB)

    De Heer, Walt A; Berger, Claire; Wu Xiaosong; Sprinkle, Mike; Hu Yike; Ruan Ming; First, Phillip N [School of Physics, Georgia Institute of Technology, Atlanta, GA 30332 (United States); Stroscio, Joseph A [Center for Nanoscale Science and Technology, NIST, Gaithersburg, MD 20899 (United States); Haddon, Robert [Center for Nanoscale Science and Engineering, Departments of Chemistry and Chemical and Environmental Engineering, University of California, Riverside, CA 92521 (United States); Piot, Benjamin; Faugeras, Clement; Potemski, Marek [LNCMI -CNRS, Grenoble, 38042 Cedex 9 (France); Moon, Jeong-Sun, E-mail: walt.deheer@physics.gateh.ed [HRL Laboratories LLC, Malibu, CA 90265 (United States)

    2010-09-22

    Since its inception in 2001, the science and technology of epitaxial graphene on hexagonal silicon carbide has matured into a major international effort and is poised to become the first carbon electronics platform. A historical perspective is presented and the unique electronic properties of single and multilayered epitaxial graphenes on electronics grade silicon carbide are reviewed. Early results on transport and the field effect in Si-face grown graphene monolayers provided proof-of-principle demonstrations. Besides monolayer epitaxial graphene, attention is given to C-face grown multilayer graphene, which consists of electronically decoupled graphene sheets. Production, structure and electronic structure are reviewed. The electronic properties, interrogated using a wide variety of surface, electrical and optical probes, are discussed. An overview is given of recent developments of several device prototypes including resistance standards based on epitaxial graphene quantum Hall devices and new ultrahigh frequency analogue epitaxial graphene amplifiers.

  18. Study on relationships of electromagnetic band structures and left/right handed structures

    Institute of Scientific and Technical Information of China (English)

    GAO Chu; CHEN ZhiNing; WANG YunYi; YANG Ning

    2007-01-01

    Two types of dual periodic circuits are introduced. The distributions of passbands and stopbands are generated from their dispersion relationships. Based on the study, Brillouin diagrams of three representative special cases are drawn; S parameters of these three cases are simulated by Aglient ADS; the S parameters of one of the three cases are verified by an experiment. The phase characteristics are compared with those generated from the dispersion relationship. The theoretical analysis and the experimental verification show that both types of the periodic structures can behave as electromagnetic band gap (EBG) structures, right-handed structures (RHS), and left-handed structures (LHS), when they operate at different frequency ranges. Thus, the possibility of a physical structure showing these three different characteristics at different frequency ranges is proven.

  19. The Electronic and Lattice Structures of the Ground and the Polaron States of Polymer Poly (Phenylene Vinylene) (PPV)

    Institute of Scientific and Technical Information of China (English)

    YAO Kai-Lun; HAN Si-En; DUAN Yong-Fa

    2001-01-01

    The electronic and lattice structures of poly (phenylene vinylene) (PPV) are studied theoretically. Both the electron-electron and electron-phonon interactions are taken into account in the Pariser-Parr-Pople model. The electronic band and the lattice structure of the ground state and the polaronic state are calculated by means of the unrestricted Hartree-Fock method. In the ground state, there exist eight bands in PPV including four valence bands and four conduction bands, and the benzenes can be considered to be rigid. The polaron induces the split of energy bands. There are four localized electronic states within the energy gap. The defect of the polaron appears to extend over about 5 units. The benzenes are strongly affected by the electron-phonon interaction. Our calculation for the energy band structure of the ground and polaron states are consistent with experimental absorption spectra. The results of our calculation show that the electron-phonon and inter-site electron-electron interactions play an important role in determining the electronic and lattice structures.

  20. Determining the band gap and mean kinetic energy of atoms from reflection electron energy loss spectra

    Energy Technology Data Exchange (ETDEWEB)

    Vos, M. [Atomic and Molecular Physics Laboratories, Research School of Physics and Engineering, Australian National University, Canberra ACT (Australia); Marmitt, G. G. [Atomic and Molecular Physics Laboratories, Research School of Physics and Engineering, Australian National University, Canberra ACT (Australia); Instituto de Fisica da Universidade Federal do Rio Grande do Sul, Avenida Bento Goncalves 9500, 91501-970 Porto Alegre, RS (Brazil); Finkelstein, Y. [Nuclear Research Center — Negev, Beer-Sheva 84190 (Israel); Moreh, R. [Physics Department, Ben-Gurion University of the Negev, Beer-Sheva 84105 (Israel)

    2015-09-14

    Reflection electron energy loss spectra from some insulating materials (CaCO{sub 3}, Li{sub 2}CO{sub 3}, and SiO{sub 2}) taken at relatively high incoming electron energies (5–40 keV) are analyzed. Here, one is bulk sensitive and a well-defined onset of inelastic excitations is observed from which one can infer the value of the band gap. An estimate of the band gap was obtained by fitting the spectra with a procedure that includes the recoil shift and recoil broadening affecting these measurements. The width of the elastic peak is directly connected to the mean kinetic energy of the atom in the material (Doppler broadening). The experimentally obtained mean kinetic energies of the O, C, Li, Ca, and Si atoms are compared with the calculated ones, and good agreement is found, especially if the effect of multiple scattering is taken into account. It is demonstrated experimentally that the onset of the inelastic excitation is also affected by Doppler broadening. Aided by this understanding, we can obtain a good fit of the elastic peak and the onset of inelastic excitations. For SiO{sub 2}, good agreement is obtained with the well-established value of the band gap (8.9 eV) only if it is assumed that the intensity near the edge scales as (E − E{sub gap}){sup 1.5}. For CaCO{sub 3}, the band gap obtained here (7 eV) is about 1 eV larger than the previous experimental value, whereas the value for Li{sub 2}CO{sub 3} (7.5 eV) is the first experimental estimate.

  1. Band Structure and Optical Properties of Ordered AuCu3

    DEFF Research Database (Denmark)

    Skriver, Hans Lomholt; Lengkeek, H. P.

    1979-01-01

    The optical spectra of ordered AuCu3 have been measured at low temperatures by a direct ellipsometric technique. We find several structural elements above the absorption edge as well as in the infrared. The measured spectra are interpreted in terms of the interband absorption calculated from an ab...... initio band structure obtained by the relativistic linear muffin-tin orbitals method. The band calculation reveals that ordered AuCu3 has distinct copper and gold d bands positioned in and hybridizing with an s band common to copper and gold. The calculated state density is found to be in good agreement...

  2. The Development of Layered Photonic Band Gap Structures Using a Micro-Transfer Molding Technique

    Energy Technology Data Exchange (ETDEWEB)

    Kevin Jerome Sutherland

    2001-06-27

    Over the last ten years, photonic band gap (PBG) theory and technology have become an important area of research because of the numerous possible applications ranging from high-efficiency laser diodes to optical circuitry. This research concentrates on reducing the length scale in the fabrication of layered photonic band gap structures and developing procedures to improve processing consistency. Various procedures and materials have been used in the fabrication of layered PBG structures. This research focused on an economical micro transfer molding approach to create the final PBG structure. A poly dimethylsiloxane (PDMS) rubber mold was created from a silicon substrate. It was filled with epoxy and built layer-by-layer to create a 3-D epoxy structure. This structure was infiltrated with nanoparticle titania or a titania sol-gel, then fired to remove the polymer mold, leaving a monolithic ceramic inverse of the epoxy structure. The final result was a lattice of titania rolds that resembles a face-centered tetragonal structure. The original intent of this research was to miniaturize this process to a bar size small enough to create a photonic band gap for wavelengths of visible electro-magnetic radiation. The factor limiting progress was the absence of a silicon master mold of small enough dimensions. The Iowa State Microelectronics Research Center fabricated samples with periodicities of 2.5 and 1.0 microns with the existing technology, but a sample was needed on the order of 0.3 microns or less. A 0.4 micron sample was received from Sandia National Laboratory, which was made through an electron beam lithography process, but it contained several defects. The results of the work are primarily from the 2.5 and 1.0 micron samples. Most of the work focused on changing processing variables in order to optimize the infiltration procedure for the best results. Several critical parameters were identified, ranging from the ambient conditions to the specifics of the

  3. Implementation of electronic crosstalk correction for terra MODIS PV LWIR bands

    Science.gov (United States)

    Geng, Xu; Madhavan, Sriharsha; Chen, Na; Xiong, Xiaoxiong

    2015-09-01

    The MODerate-resolution Imaging Spectroradiometer (MODIS) is one of the primary instruments in the fleet of NASA's Earth Observing Systems (EOS) in space. Terra MODIS has completed 15 years of operation far exceeding its design lifetime of 6 years. The MODIS Level 1B (L1B) processing is the first in the process chain for deriving various higher level science products. These products are used mainly in understanding the geophysical changes occurring in the Earth's land, ocean, and atmosphere. The L1B code is designed to carefully calibrate the responses of all the detectors of the 36 spectral bands of MODIS and provide accurate L1B radiances (also reflectances in the case of Reflective Solar Bands). To fulfill this purpose, Look Up Tables (LUTs), that contain calibration coefficients derived from both on-board calibrators and Earth-view characterized responses, are used in the L1B processing. In this paper, we present the implementation mechanism of the electronic crosstalk correction in the Photo Voltaic (PV) Long Wave InfraRed (LWIR) bands (Bands 27-30). The crosstalk correction involves two vital components. First, a crosstalk correction modular is implemented in the L1B code to correct the on-board Blackbody and Earth-View (EV) digital number (dn) responses using a linear correction model. Second, the correction coefficients, derived from the EV observations, are supplied in the form of LUTs. Further, the LUTs contain time stamps reflecting to the change in the coefficients assessed using the Noise Equivalent difference Temperature (NEdT) trending. With the algorithms applied in the MODIS L1B processing it is demonstrated that these corrections indeed restore the radiometric balance for each of the affected bands and substantially reduce the striping noise in the processed images.

  4. Phononic band gaps and vibrations in one- and two-dimensional mass-spring structures

    DEFF Research Database (Denmark)

    Jensen, Jakob Søndergaard

    2003-01-01

    The vibrational response of finite periodic lattice structures subjected to periodic loading is investigated. Special attention is devoted to the response in frequency ranges with gaps in the band structure for the corresponding infinite periodic lattice. The effects of boundaries, viscous damping......, and imperfections are studied by analyzing two examples; a 1-D filter and a 2-D wave guide. In 1-D the structural response in the band gap is shown to be insensitive to damping and small imperfections. In 2-D the similar effect of damping is noted for one type of periodic structure, whereas for...... another type the band gap effect is nearly eliminated by damping. In both 1-D and 2-D it is demonstrated how the free structural boundaries affect the response in the band gap due to local resonances. Finally, 2-D wave guides are considered by replacing the periodic structure with a homogeneous structure...

  5. Computational Chemistry Using Modern Electronic Structure Methods

    Science.gov (United States)

    Bell, Stephen; Dines, Trevor J.; Chowdhry, Babur Z.; Withnall, Robert

    2007-01-01

    Various modern electronic structure methods are now days used to teach computational chemistry to undergraduate students. Such quantum calculations can now be easily used even for large size molecules.

  6. Development of C-band deflector for slice emittance monitoring of new electron gun

    International Nuclear Information System (INIS)

    The advanced RF electron gun was installed for an electronic source of a high charge and a low emittance in KEK e+/e- Linac, and the sliced bunch monitor is needed to achieve the required emittance for the SuperKEKB injection. In the KEK-Linac, we are monitoring using a fluorescent plate on the beam line. It is possible to measure the projection emittance of the beam in this way, however it is not possible to measure the slice emittance. To develop an electron gun which can be generating a beam of super-low emittance corresponding to SuperKEKB, monitoring of the slice emittance is required. The slice of time direction on a beam can be acquired by measuring the beam sliced with the RF-deflector using a fluorescent plate. RF-deflector performance is square root of RF frequency, has developed a high-powered ones corresponding to 10 GeV beam using X-band frequency at near the end of KEK-Linac. However, because the beam energy is about 10 MeV at the RF gun exit, enough resolution is obtained even by low energy. So, we have developed a new low energy RF-deflector using C-band frequency. (author)

  7. Band structures of TiO2 doped with N, C and B

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    This study on the band structures and charge densities of nitrogen (N)-, carbon (C)- and boron (B)-doped titanium dioxide (TiO2) by first-principles simulation with the CASTEP code (Segall et al., 2002) showed that the three 2p bands of impurity atom are located above the valence-band maximum and below the Ti 3d bands, and that along with the decreasing of impurity atomic number, the fluctuations become more intensive. We cannot observe obvious band-gap narrowing in our result.Therefore, the cause of absorption in visible light might be the isolated impurity atom 2p states in band-gap rather than the band-gap narrowing.

  8. Many-body effects in the electron spectroscopies of incompletely filled bands

    International Nuclear Information System (INIS)

    Photoemission and Auger line shapes from almost completely filled bands have been widely discussed in recent years within a simplified model based on an Anderson Hamiltonian in which the virtual level shift due to the interactions is suitably compensated for. Up to now, the theory has been much more succesful with XPS than with AES, and the reason for this was obscured by the lack of an exact solution and by the difficulty to assess the degree of validity of various approximate treatments that have been proposed. Here it is presented a Green's function formalism that allows us to extend the closed band solution to the partially occupied case and lends itself to the exact numerical treatment of finite systems. By applying the theory to 27 and 125 atom cluster, it is analysed the dependance of the spectra on hole-hole repulsion U with a degree of unfilling nh≤0.25. It is also considered the case when one of the spin subbands is full as a rough model for ferromagnetic metals. Correlation effects on the one-hole density of states produce a narrowing of the band region, while a split-off structure develops below the band for U comparable to the band width. The low-density approximation is in a good agreement with the exact results for nh = 0.1 and also for nh = 0.25 for small and moderate U. Our results on the Auger line shapes justify somewhat the suggestion by Haak and Bennet et al. that split-off states observed in photoemission must be discarded before computing the two-hole spectrum. Indeed self-energy correlations must be excluded also in bandlike cases, when the simple procedure of cutting off the unwanted structure is not applicable. This arises because, in wide range of physical situations, the Auger line shape reflects the mutual scattering of undressed final-state holes

  9. Electronic structure of CrAs and FeAs

    Science.gov (United States)

    Podloucky, Raimund

    1984-08-01

    As in a recent study for MnAs a two centre tight binding model consisting of itinerant metal d-states hybridizing with non-metal p-states was applied for CrAs and FeAs to calculate unpolarized and spin polarized local densities of states, ferromagnetic moments and band energies. The factor for the change of the d-band width relative to MnAs was estimated to be 1.3 for CrAs and 0.8 for FeAs. The self-consistent separation of the p- and d-band centres amounts to -1.3 eV for CrAs and -0.5 eV for FeAs providing a charge transfer of 0.8 and 0.6 electrons from the metal to the As atoms, correspondingly. One B8 1 structure and two B31 structures according to low and high temperature phases were studied for each compound. For CrAs self-consistent magnetic moments of 1.58 and 1.2μ B were obtained, respectively. For FeAs no ferromagnetic moment could be stabilized unless the d-band width was substantially reduced. The results are discussed with respect to MnAs. The model is able to reproduce the increase and breakdown of the magnetic moment for the series CrAs-MnAs-FeAs. Furthermore, the correct structural trend B31-B8 1-B31 is obtained if the band energy differences are corrected by a constant of 0.3 eV. This correction is attributed to the failure of the model to provide absolute differences of total energies.

  10. Damping effect of the inner band electrons on the optical absorption and bandwidth of metal nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Ochoo, Lawrence, E-mail: lawijapuonj@yahoo.com; Migwi, Charles; Okumu, John [Kenyatta University, Physics Department (Kenya)

    2012-12-15

    Conflicts and discrepancies around nanoparticle (NP) size effect on the optical properties of metal NPs of sizes below the mean free path of electron can be traced to the internal damping effect of the hybrid resonance of the inner band (IB) and the conduction band (CB) electrons of the noble metals. We present a scheme to show how alternative mathematical formulation of the physics of interaction between the CB and the IB electrons of NP sizes <50 nm justifies this and resolves the conflicts. While a number of controversies exist between classical and quantum theories over the phenomenological factors to attribute to the NP size effect on the absorption bandwidth, this article shows that the bandwidth behavior can be well predicted from a different treatment of the IB damping effect, without invoking any of the controversial phenomenological factors. It finds that the IB damping effect is mainly frequency dependent and only partly size dependent and shows how its influence on the surface plasmon resonance can be modeled to show the influence of NP size on the absorption properties. Through the model, it is revealed that strong coupling of IB and CB electrons drastically alters the absorption spectra, splitting it into distinctive dipole and quadrupole modes and even introduce a behavioral switch. It finds a strong overlap between the IB and the CB absorptions for Au and Cu but not Ag, which is sensitive to the NP environment. The CB modes shift with the changing refractive index of the medium in a way that can allow their independent excitation, free of influence of the IB electrons. Through a hybrid of parameters, the model further finds that metal NP sizes can be established not only by their spectral absorption peak locations but also from a proper correlation of the peak location and the bandwidth (FWHM).

  11. Band structure engineering of graphene by a local gate defined periodic potential

    Science.gov (United States)

    Forsythe, Carlos; Maher, Patrick; Scarabelli, Diego; Dean, Cory; Kim, Philip

    Recent improvements in 2-dimensional (2D) material layering have resulted in enhanced device quality and created pathways for new device architectures. We fabricate periodic arrays from a patterned local back gate and a uniform top gate on hBN encapsulated graphene channels. The symmetry and lattice size of the periodic potential can be determined by state-of-art electron beam lithography and etching, achieving a lattice constant of 35 nm. The strength of the electric potential modulation can be controlled through applied voltage on the patterned gate. We observe signatures of superlattice modulation near the main Dirac peak in the density dependent resistance measurement at zero magnetic field. Current studies focus on the exploration of Hofstadter fractal band structures under magnetic fields. Our nano-patterned engineered superlattices on graphene hold great promise for wider applications.

  12. Total binding energy via the band structure energy of 4d group transition metals

    International Nuclear Information System (INIS)

    The binding in metals provides a basis genesis to discuss the cohesive, elastic, lattice dynamical and other allied properties of the metals. A thorough and comprehensive analysis with regard to (i) various energy terms contributing to total metallic bonding, (ii) forms of the model potential incurring the band structure part of the binding, (iii) implication of s-d hybridization and (iv) effect of electron screening, has prompted us to undertake the present study of binding in several complex metals which turn out to be superconducting at low temperatures and bear hcp, bcc and fcc configurations at room temperature i.e. yttrium (Y), zirconium (Zr), niobium (Nb), molybdenum (Mo), ruthenium (Ru), rhodium (Rh) and palladium (Pd). (author). 13 refs., 2 figs., 2 tabs

  13. Effects of FeSb6 octahedral deformations on the electronic structure of LaFe4Sb12

    KAUST Repository

    Pulikkotil, Jiji Thomas Joseph

    2011-09-01

    First-principles density functional based electronic structure calculations are performed in order to clarify the influence of FeSb6 octahedral deformations on the structural and electronic structure properties of LaFe 4Sb12. Our results show that octahedral tiltings correlate with the band dispersions and, consequently, the band masses. While total energy variation points at an enhanced role of lattice anharmonicity, flat bands emerge from a redistribution of the electronic states. © 2011 Elsevier B.V. All rights reserved.

  14. Novel structure for magnetic rotation bands in 60Ni

    OpenAIRE

    Zhao, P. W.; Zhang, S.Q.; Peng, J.; H.Z. Liang; Ring, P.; Meng, J

    2011-01-01

    The self-consistent tilted axis cranking relativistic mean-field theory based on a point-coupling interaction has been established and applied to investigate systematically the newly observed shears bands in 60Ni. The tilted angles, deformation parameters, energy spectra, and reduced M1 and $E2$ transition probabilities have been studied in a fully microscopic and self-consistent way for various configurations and rotational frequencies. It is found the competition between the configurations ...

  15. The determination of the electron-phonon interaction from tunneling data in the two-band superconductor MgB2

    CERN Document Server

    Daghero, D; Ummarino, G A; Dolgov, O V; Kortus, J; Golubov, A A; Shulga, S V

    2004-01-01

    We calculate the tunneling density of states (DOS) of MgB2 for different tunneling directions, by directly solving the real-axis, two-band Eliashberg equations (EE). Then we show that the numeric inversion of the standard single-band EE, if applied to the DOS of the two-band superconductor MgB2, may lead to wrong estimates of the strength of certain phonon branches (e.g. the E_2g) in the extracted electron-phonon spectral function alpha^(2)F(omega). The fine structures produced by the two-band interaction turn out to be clearly observable only for tunneling along the ab planes in high-quality single crystals. The results are compared to recent experimental data.

  16. Near-edge band structures and band gaps of Cu-based semiconductors predicted by the modified Becke-Johnson potential plus an on-site Coulomb U

    International Nuclear Information System (INIS)

    Diamond-like Cu-based multinary semiconductors are a rich family of materials that hold promise in a wide range of applications. Unfortunately, accurate theoretical understanding of the electronic properties of these materials is hindered by the involvement of Cu d electrons. Density functional theory (DFT) based calculations using the local density approximation or generalized gradient approximation often give qualitative wrong electronic properties of these materials, especially for narrow-gap systems. The modified Becke-Johnson (mBJ) method has been shown to be a promising alternative to more elaborate theory such as the GW approximation for fast materials screening and predictions. However, straightforward applications of the mBJ method to these materials still encounter significant difficulties because of the insufficient treatment of the localized d electrons. We show that combining the promise of mBJ potential and the spirit of the well-established DFT + U method leads to a much improved description of the electronic structures, including the most challenging narrow-gap systems. A survey of the band gaps of about 20 Cu-based semiconductors calculated using the mBJ + U method shows that the results agree with reliable values to within ±0.2 eV

  17. Ultra-broad band and dual-band highly efficient polarization conversion based on the three-layered chiral structure

    Science.gov (United States)

    Xu, Kai-kai; Xiao, Zhong-yin; Tang, Jing-yao; Liu, De-jun; Wang, Zi-hua

    2016-07-01

    In the paper, a novel three-layered chiral structure is proposed and investigated, which consists of a split-ring resonator sandwiched between two layers of sub-wavelength gratings. This designed structure can achieve simultaneously asymmetric transmission with an extremely broad bandwidth and high amplitude as well as multi-band 90° polarization rotator with very low dispersion. Numerical simulations adopted two kinds of softwares with different algorithms demonstrate that asymmetric parameter can reach a maximum of 0.99 and over than 0.8 from 4.6 to 16.8 GHz, which exhibit magnitude and bandwidth improvement over previous chiral metamaterials in microwave bands (S, C, X and Ku bands). Specifically, the reason of high amplitude is analyzed in detail based on the Fabry-perot like resonance. Subsequently, the highly efficient polarization conversion with very low dispersion between two orthogonal linearly polarized waves is also analyzed by the optical activity and ellipticity. Finally, the electric fields are also investigated and further demonstrate the correctness of the simulated and calculated results.

  18. Electronic structure and magnetic properties of actinides

    International Nuclear Information System (INIS)

    The study of the actinide series shows the change between transition metal behavior and lanthanide behavior, between constant weak paramagnetism for thorium and strong Curie-Weiss paramagnetism for curium. Curium is shown to be the first metal of the actinide series to be magnetically ordered, its Neel temperature being 52K. The magnetic properties of the actinides depending on all the peripheral electrons, their electronic structure was studied and an attempt was made to determine it by means of a phenomenological model. Attempts were also made to interrelate the different physical properties which depend on the outer electronic structure

  19. Crystal structure and band gap determination of HfO2 thin films

    NARCIS (Netherlands)

    Cheynet, M.C.; Pokrant, S.; Tichelaar, F.D.; Rouvière, J.L.

    2007-01-01

    Valence electron energy loss spectroscopy (VEELS) and high resolution transmission electron microscopy (HRTEM) are performed on three different HfO2 thin films grown on Si (001) by chemical vapor deposition (CVD) or atomic layer deposition (ALD). For each sample the band gap (Eg) is determined by lo

  20. Corrected electron inelastic mean free paths (IMFPs) for selected wide band semiconductors

    Science.gov (United States)

    Krawczyk, M.

    2008-03-01

    Elastic peak electron spectroscopy (EPES) has been widely used to determine the electron inelastic mean free paths (IMFPs) in solids. In this work, we investigated quantitatively the influence of surface excitations on electron IMFPs determined by EPES. We used IMFPs obtained from the early EPES measurements of the electron elastic backscattering probability from GaN and Cd0.88Mn0.12 Te wideband-gap semiconductors, and the Ni standard in the energy range 200-2000 eV. The total surface-excitation parameter (SEP) was evaluated using Chen and Werner approaches, and was applied for correcting the EPES IMFPs. These corrected values were then compared with those predicted by the TPP-2M formula. We found that implementation of the surface-excitation correction improved agreement between the resulting IMFPs for selected wide band semiconductors and the TPP-2M values at low-energy (E > 500 eV) electrons. The extent to which the IMFPs measured by EPES differ from the corresponding bulk values (on account of surface excitations) was found to depend on the semiconductor material with finite surface. Our results also clearly demonstrated the importance of accounting for surface excitations for accuracy of the IMFPs measured for GaN.

  1. Band structure of Heusler compounds studied by photoemission and tunneling spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Arbelo Jorge, Elena

    2011-07-01

    Heusler compounds are key materials for spintronic applications. They have attracted a lot of interest due to their half-metallic properties predicted by band structure calculations. The aim of this work is to evaluate experimentally the validity of the predictions of half metallicity by band structure calculations for two specific Heusler compounds, Co{sub 2}FeAl{sub 0.3}Si{sub 0.7} and Co{sub 2}MnGa. Two different spectroscopy methods for the analysis of the electronic properties were used: Angular Resolved Ultraviolet Photoemission Spectroscopy (ARUPS) and Tunneling Spectroscopy. Heusler compounds are prepared as thin films by RF-sputtering in an ultra high vacuum system. For the characterization of the samples, bulk and surface crystallographic and magnetic properties of Co{sub 2}FeAl{sub 0.3}Si{sub 0.7} and Co{sub 2}MnGa are studied. X-ray and electron diffraction reveal a bulk and surface crossover between two different types of sublattice order (from B2 to L2{sub 1}) with increasing annealing temperature. X-ray magnetic circular dichroism results show that the magnetic properties in the surface and bulk are identical, although the magnetic moments obtained are 5 % below from the theoretically predicted. By ARUPS evidence for the validity of the predicted total bulk density of states (DOS) was demonstrated for both Heusler compounds. Additional ARUPS intensity contributions close to the Fermi energy indicates the presence of a specific surface DOS. Moreover, it is demonstrated that the crystallographic order, controlled by annealing, plays an important role on broadening effects of DOS features. Improving order resulted in better defined ARUPS features. Tunneling magnetoresistance measurements of Co{sub 2}FeAl{sub 0.3}Si{sub 0.7} and Co{sub 2}MnGa based MTJ's result in a Co{sub 2}FeAl{sub 0.3}Si{sub 0.7} spin polarization of 44 %, which is the highest experimentally obtained value for this compound, although it is lower than the 100 % predicted. For Co

  2. Electronic Structure of New Superconducting Perovskite MgCNi3

    Institute of Scientific and Technical Information of China (English)

    Li CHEN; Hua LI; Liangmo MEI

    2004-01-01

    The electronic structures of new superconducting perovskite MgCNis and related compounds MgCNi2T (T=Co, Fe,and Cu) have been studied using MS-Xα method. In MgCNi3, the main peak of density of states is located below the Fermi level and dominated by Ni d. From the results of total energy calculations, it was found that the number of Ni valence electron decreases faster for the Fe-doped case than that for the Co-doped case. The valence state of Ni changes from +1.43 in MgCNi2Co to +3.02 in MgCNi2Fe. It was confirmed that Co and Fe dopants in MgCNi3 behave as a source of d-band holes and the suppression of superconductivity occurs faster for the Fe-doped case than that for the Co-doped case. In order to explain the fact that Co and Fe dopants in MgCNi3 behave as a source of d-band holes rather than magnetic scattering centers that quench superconductivity, we have also investigated the effects of electron (Cu) doping on the superconductivity and found that both electron (Cu) doping and hole (Co, Fe)doping quench superconductivity exist. Comparing with the hole (Co) doping, there was no much difference between Cu and Co doping. This suggests that Co and Fe doping do not actas magnetic impurity.

  3. Band structure of TiO sub 2 -doped yttria-stabilized zirconia probed by soft-x-ray spectroscopy

    CERN Document Server

    Higuchi, T; Kobayashi, K; Yamaguchi, S; Fukushima, A; Shin, S

    2003-01-01

    The electronic structure of TiO sub 2 -doped yttria-stabilized zirconia (YSZ) has been studied by soft-X-ray emission spectroscopy (SXES) and X-ray absorption spectroscopy (XAS). The valence band is mainly composed of the O 2p state. The O 1s XAS spectrum exhibits the existence of the Ti 3d unoccupied state under the Zr 4d conduction band. The intensity of the Ti 3d unoccupied state increases with increasing TiO sub 2 concentration. The energy separation between the top of the valence band and the bottom of the Ti 3d unoccupied state is in accord with the energy gap, as expected from dc-polarization and total conductivity measurements. (author)

  4. NMR study of the electronic structure in titanium niobium dihydride

    International Nuclear Information System (INIS)

    The niobium spin-lattice relaxation time T1 and Knight shift K in Tisub(1-x)Nbsub(x)Hsub(1.94) (0.05 =< x =< 0.65) were measured as a function of temperature and niobium concentration. For analysis, the customary scheme of electronic band structure for transition metals in a tight-binding model was assumed. In this approximation the presented data together with values of the magnetic susceptibility have been partitioned into spin (s and d) and orbital components. The latter was found to be strongly dependent upon the composition. It decreases with the increase of niobium concentration and becomes near zero for x = 0.65. The d-band density of states decreases also with the increase of x, however, with moderate rate. The importance of these results for proton NMR and low-temperature specific heat data in the studied system is examined. (author)

  5. Energy band alignment and electronic states of amorphous carbon surfaces in vacuo and in aqueous environment

    Energy Technology Data Exchange (ETDEWEB)

    Caro, Miguel A., E-mail: mcaroba@gmail.com [Department of Electrical Engineering and Automation, Aalto University, Espoo (Finland); Department of Applied Physics, COMP Centre of Excellence in Computational Nanoscience, Aalto University, Espoo (Finland); Määttä, Jukka [Department of Chemistry, Aalto University, Espoo (Finland); Lopez-Acevedo, Olga [Department of Applied Physics, COMP Centre of Excellence in Computational Nanoscience, Aalto University, Espoo (Finland); Laurila, Tomi [Department of Electrical Engineering and Automation, Aalto University, Espoo (Finland)

    2015-01-21

    In this paper, we obtain the energy band positions of amorphous carbon (a–C) surfaces in vacuum and in aqueous environment. The calculations are performed using a combination of (i) classical molecular dynamics (MD), (ii) Kohn-Sham density functional theory with the Perdew-Burke-Ernzerhof (PBE) exchange-correlation functional, and (iii) the screened-exchange hybrid functional of Heyd, Scuseria, and Ernzerhof (HSE). PBE allows an accurate generation of a-C and the evaluation of the local electrostatic potential in the a-C/water system, HSE yields an improved description of energetic positions which is critical in this case, and classical MD enables a computationally affordable description of water. Our explicit calculation shows that, both in vacuo and in aqueous environment, the a-C electronic states available in the region comprised between the H{sub 2}/H{sub 2}O and O{sub 2}/H{sub 2}O levels of water correspond to both occupied and unoccupied states within the a-C pseudogap region. These are localized states associated to sp{sup 2} sites in a-C. The band realignment induces a shift of approximately 300 meV of the a-C energy band positions with respect to the redox levels of water.

  6. Ku Band Hemispherical Fully Electronic Antenna for Aircraft in Flight Entertainment

    Directory of Open Access Journals (Sweden)

    Alfredo Catalani

    2009-01-01

    Full Text Available The results obtained in the frame of the ESA activity “Advanced Antenna Concepts For Aircraft In Flight Entertainment” are presented. The aim of the activity consists in designing an active antenna able to guarantee the Ku band link between an aircraft and a geostationary satellite in order to provide in flight entertainment services. The transmit-receive antenna generates a single narrow beam to be steered electronically in a half sphere remaining compliant with respect to stringent requirements in terms of pattern shape, polarization alignment, EIRP, G/T, and using customized electronic devices. At the same time, the proposed solution should be competitive in terms of cost and complexity.

  7. Design and analysis of 5045 S-band klystron DC electron gun

    CERN Document Server

    Rehman, Abdul; Zhou, Z

    2015-01-01

    The design and performance analysis of DC electron gun for 5045 S-band klystron has been worked out using SLAC beam trajectory program (EGUN) and Computer Simulation Technology Particle Studio (CST-PS), Codes. Specifications of electron gun were focused on beam; current, perveance, size and emittance. Optimized beam; current, perveance, diameter and emittance were 414.00A, 2.00uP, 26.82 mm and 103.10 pi mm mrad, respectively. Furthermore, the optimized characteristic parameters of the gun were also calculated and compared with the simulated and experimental values which were in agreement. Accuracy of simulation was verified by comparison of emitted beam current which has error of zero percent.

  8. Valence Band Dependent Charge Transport in Bulk Molecular Electronic Devices Incorporating Highly Conjugated Multi-[(Porphinato)Metal] Oligomers.

    Science.gov (United States)

    Bruce, Robert C; Wang, Ruobing; Rawson, Jeff; Therien, Michael J; You, Wei

    2016-02-24

    Molecular electronics offers the potential to control device functions through the fundamental electronic properties of individual molecules, but realization of such possibilities is typically frustrated when such specialized molecules are integrated into a larger area device. Here we utilize highly conjugated (porphinato)metal-based oligomers (PM(n) structures) as molecular wire components of nanotransfer printed (nTP) molecular junctions; electrical characterization of these "bulk" nTP devices highlights device resistances that depend on PM(n) wire length. Device resistance measurements, determined as a function of PM(n) molecular length, were utilized to evaluate the magnitude of a phenomenological β corresponding to the resistance decay parameter across the barrier; these data show that the magnitude of this β value is modulated via porphyrin macrocycle central metal atom substitution [β(PZn(n); 0.065 Å(-1)) < β(PCu(n); 0.132 Å(-1)) < β(PNi(n); 0.176 Å(-1))]. Cyclic voltammetric data, and ultraviolet photoelectron spectroscopic studies carried out at gold surfaces, demonstrate that these nTP device resistances track with the valence band energy levels of the PM(n) wire, which were modulated via porphyrin macrocycle central metal atom substitution. This study demonstrates the ability to fabricate "bulk" and scalable electronic devices in which function derives from the electronic properties of discrete single molecules, and underscores how a critical device function--wire resistance--may be straightforwardly engineered by PM(n) molecular composition. PMID:26829704

  9. Obtaining the band structure of a complicated photonic crystal by linear operations

    Institute of Scientific and Technical Information of China (English)

    吴良; 叶卓; 何赛灵

    2003-01-01

    Absolute band gaps can be created by lifting the degeneracy in the bands of a photonic crystal.To calculate the band structure of a complicated photonic crystal generated by e.g.symmetry breaking,general forms of all possible linear operations are presented in terms of matrices and a procedure to combine these operations is given.Other forms of linear operations(such as the addition,subtraction,and translation transforms) are also presented to obtain an explicit expression for the Fourier coefficient of the dielectric function in the plane-wave expansion method.With the present method,band structures for various complicated photonic crystals(related through these linear operations) can be obtained easily and quickly.As a numerical example,a large absolute band gap for a complicated photonic crystal structure of GaAs is found in the high region of normalized frequency.

  10. Detailed study of the TE band structure of two dimensional metallic photonic crystals with square symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Sedghi, Aliasghar [Islamic Azad University, Shabestar (Iran, Islamic Republic of); Valiaghaie, Soma [Islamic Azad University, Sanandaj (Iran, Islamic Republic of); Soufiani, Ahad Rounaghi [Islamic Azad University, Sufian (Iran, Islamic Republic of)

    2014-10-15

    By virtue of the efficiency of the Dirichlet-to-Neumann map method, we have calculated, for H-polarization (TE mode), the band structure of 2D photonic crystals with a square lattice composed of metallic rods embedded in an air background. The rod in the unit cell is chosen to be circular in shape. Here, from a practical point of view, in order to obtain maximum band gaps, we have studied the band structure as a function of the size of the rods. We have also studied the flat bands appearing in the band structures and have shown that for frequencies around the surface plasmon frequency, the modes are highly localized at the interface between the metallic rods and the air background.

  11. Synthesis, physical properties and band structure of non-magnetic Y3AlC

    Science.gov (United States)

    Ghule, S. S.; Garde, C. S.; Ramakrishnan, S.; Singh, S.; Rajarajan, A. K.; Laad, Meena

    2016-10-01

    Y3AlC has been synthesized by arc melting and subsequent annealing. Rietveld analysis of the powder x-ray diffraction (XRD) data confirms cubic Pm-3m structure. Electrical resistivity (ρ) of Y3AlC exhibits metallic behaviour. No sign of superconductivity is observed down to the lowest measurement temperatures of 4.2 K in ρ, and 2 K in magnetic susceptibility (χ) and specific heat (Cp) measurements. The value of the electronic specific heat coefficient γ is 1.36 mJ/K2 mol from which the density of states (DOS) at the Fermi energy (EF) is obtained as 0.57 states/eV.unit cell. The value of Debye temperature θD is estimated to be 315 K. Electronic band structure calculations of Y3AlC reveal a pseudo-gap in the DOS at EF leading to a small value of 0.5 states/eV unit cell which matches quite well with that obtained from γ. Non-zero value of the DOS indicates metallic behaviour as confirmed by our ρ data. Covalent and ionic bonding seem to co-exist with metallic bonding in Y3AlC as indicated by van Arkel- Ketelaar triangle for Zintl-like systems.

  12. Quasiparticle self-consistent GW calculations for PbS, PbSe, and PbTe: Band structure and pressure coefficients

    DEFF Research Database (Denmark)

    Svane, Axel; Christensen, Niels Egede; Cardona,, M.;

    2010-01-01

    The electronic band structures of PbS, PbSe, and PbTe in the rocksalt structure are calculated with the quasiparticle self-consistent GW (QSGW) approach with spin-orbit coupling included. The semiconducting gaps and their deformation potentials as well as the effective masses are obtained. The GW...

  13. Overview of nuclear structure with electrons

    Energy Technology Data Exchange (ETDEWEB)

    Geesaman, D. F.

    1999-12-03

    Following a broad summary of the author's view of nuclear structure in 1974, he will discuss the key elements they have learned in the past 25 years from the research at the M.I.T. Bates Linear Accelerator center and its sister electron accelerator laboratories. Electron scattering has provided the essential measurements for most of the progress. The future is bright for nuclear structure research as their ability to realistically calculate nuclear structure observables has dramatically advanced and they are increasingly able to incorporate an understanding of quantum chromodynamics into their picture of the nucleus.

  14. Analysis of photonic band-gap (PBG) structures using the FDTD method

    DEFF Research Database (Denmark)

    Tong, M.S.; Cheng, M.; Lu, Y.L.;

    2004-01-01

    In this paper, a number of photonic band-gap (PBG) structures, which are formed by periodic circuit elements printed oil transmission-line circuits, are studied by using a well-known numerical method, the finite-difference time-domain (FDTD) method. The results validate the band-stop filter...

  15. First-Principles Studies the Lattice Constants and the Electronic Structures of Diluted Magnetic Semiconductors (In,Mn)As

    Institute of Scientific and Technical Information of China (English)

    WEI Shuyi; YAN Yuli; XIA Congxin; LIU Guangsheng

    2006-01-01

    Lattice constants and electronic structures of diluted magnetic semiconductors (In,Mn)As were investigated using the first principles LMTO-ASA band calculation by assuming supercell structures. Three concentrations of the 3d impurities were studied (x=1/2, 1/4, 1/8). The effect of varying Mn concentrations on the lattice constants and the electronic structures are shown.

  16. Observation of banded spherulites and lamellar structures by atomic force microscopy

    Institute of Scientific and Technical Information of China (English)

    姜勇; 罗艳红; 范泽夫; 王霞瑜; 徐军; 郭宝华; 李林

    2003-01-01

    Lamellar structures of banded spherulites of poly(ε-caprolactone)/poly(vinyl chloride) (PCL/PVC) blends are observed using tapping mode atomic force microscopy (AFM). The surface of the PCL/PVC banded spherulites presents to be concentric periodic ups and downs. The period of the bands corresponds to the extinction rings under the polarized optical microscopy observation. The lamellae with edge-on orientation in the ridges and the flat-on lamellae in the valleys of the banded spherulites are observed clearly. The twisting between the edge-on and flat-on lamellae is also observed.

  17. Infrared study on the electronic structure of SmS in the black phase

    International Nuclear Information System (INIS)

    We report that the electronic structure of SmS at ambient pressure has been studied by the optical conductivity [σ(ω)] measurement and by the band structure calculation. The σ(ω) spectrum has a direct gap structure at 0.4 eV (=4600 K) but no clear gap structure expected by other experiments appears at 86 meV (=1000 K). The temperature dependence of the Drude weight, however, indicates the evidence of an indirect gap with the gap size of 1000 K. These results were well explained by a LSDA+U band structure calculation

  18. Acoustic band pinning in the phononic crystal plates of anti-symmetric structure

    Institute of Scientific and Technical Information of China (English)

    Cai Chen; Zhu Xue-Feng; Chen Qian; Yuan Ying; Liang Bin; Cheng Jian-Chun

    2011-01-01

    Acoustic bands are studied numerically for a Lamb wave propagating in an anti-symmetric structure of a onedimensional periodic plate by using the method of supercell plane-wave expansion.The results show that all the bands are pinned in pairs at the Brillouin zone boundary as long as the anti-symmetry remains and acoustic band gaps (ABGs) only appear between certain bands.In order to reveal the relationship between the band pinning and the anti-symmetry,the method of eigenmode analysis is introduced to calculate the displacement fields of different plate structures.Further,the method of harmony response analysis is employed to calculate the reference spectra to verify the accuracy of numerical calculations of acoustic band map,and both the locations and widths of ABGs in the acoustic band map are in good agreement with those of the reference spectra.The investigations show that the pinning effect is very sensitive to the anti-symmetry of periodic plates,and by introducing different types of breakages,more ABGs or narrow pass bands will appear,which is meaningful in band gap engineering.

  19. Investigation of crystal structure and associated electronic structure of Sr 6BP 5O 20

    Science.gov (United States)

    Ehrenberg, Helmut; Laubach, Sonja; Schmidt, P. C.; McSweeney, R.; Knapp, M.; Mishra, K. C.

    2006-04-01

    Strontium borophosphate phosphate (Sr 6BP 5O 20, SrBP), activated by divalent europium ions is a bluish-green phosphor emitting in a broad band with the emission peak near 480 nm. In this paper, we report the crystal structure of SrBP determined from an analysis of the X-ray diffraction pattern of a prismatic single crystal (size 60 μm×50 μm×40 μm). This crystal was chosen from undoped phosphor powder samples prepared for this purpose by solid-state reaction. SrBP is observed to crystallize in a body-centered tetragonal lattice with the lattice parameters a=9.7895(7) Å and c=19.032(3) Å, the associated space group being I4¯c2 (space group 120). Using the structural data from this study, we have also calculated its electronic structure using the augmented spherical wave method and the local density approximation (LDA). We show the ordering of the electronic states by the density of states (DOS) and the partial DOS plots. The LDA gives a direct optical band gap at the Γ point of about 5 eV. The significance of the crystal structure and associated electronic structure is discussed with respect to maintenance of this phosphor in Hg-discharge lamps.

  20. The electronic structure of structurally strained Mn3O4 postspinel and the relationship with Mn3O4 spinel

    International Nuclear Information System (INIS)

    We report the electronic structure of Mn3O4 postspinel for the first time. In contrast with Mn3O4 spinel, Mn3O4 postspinel adopts a CaMn2O4-type structure with a built-in strain. We conducted both optical measurements and ab initio calculations, and systematically studied the electronic band structures of both the postspinel and spinel Mn3O4 phases. The theoretical electronic structure of Mn3O4 postspinel is consistent with the optical absorption spectra, and both Mn3O4 postspinel and spinel display characteristic band-splitting of the conduction band. The band gap of the postspinel phase is 0.9–1.3 eV smaller than that of the spinel phase. This difference can be explained by the lowering of Mn3+ 3d eg level related to the built-in strain of the postspinel structure. The Mn 3d t2g t2g and O 2p form antibonding orbitals situated at the conduction band with higher energy. (author)

  1. Experimental determination of excitonic band structures of single-walled carbon nanotubes using circular dichroism spectra

    Science.gov (United States)

    Wei, Xiaojun; Tanaka, Takeshi; Yomogida, Yohei; Sato, Naomichi; Saito, Riichiro; Kataura, Hiromichi

    2016-10-01

    Experimental band structure analyses of single-walled carbon nanotubes have not yet been reported, to the best of our knowledge, except for a limited number of reports using scanning tunnelling spectroscopy. Here we demonstrate the experimental determination of the excitonic band structures of single-chirality single-walled carbon nanotubes using their circular dichroism spectra. In this analysis, we use gel column chromatography combining overloading selective adsorption with stepwise elution to separate 12 different single-chirality enantiomers. Our samples show higher circular dichroism intensities than the highest values reported in previous works, indicating their high enantiomeric purity. Excitonic band structure analysis is performed by assigning all observed Eii and Eij optical transitions in the circular dichroism spectra. The results reproduce the asymmetric structures of the valence and conduction bands predicted by density functional theory. Finally, we demonstrate that an extended empirical formula can estimate Eij optical transition energies for any (n,m) species.

  2. Tuning the locally resonant phononic band structures of two-dimensional periodic electroactive composites

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Xiaoling; Chen, Changqing, E-mail: chencq@tsinghua.edu.cn

    2013-12-15

    The band structures of two locally resonant phononic crystals (LRPCs) with periodic multilayered cylindrical inclusions embedded in an elastic matrix are investigated by the finite-element method. The inclusions consist of electroactive polymer layer(s). Tunability of the band gaps of the phononic crystals by applying electric field upon the electroactive layer is demonstrated. A simple analytical expression is presented on the relationship between the stop band boundaries and the electric field. Good agreement between the analytical and numerical predictions is obtained. The effects of initial stress on the band structures are explored. It is found that tensile initial stress shifts up the band gaps while compressive initial stress shifts down or even closes them.

  3. Efficient VLSI Architecture For CSD Basedsub-Band Tree Structure Using 4-Tap Filter

    OpenAIRE

    Radhe Kant Mishra,; Dr. Subbaratnam Kumar

    2014-01-01

    A sub-band tree structure hardware design based on canonic signed digit (CSD) architecture is presented in this paper. We have proposed based on canonic signed digit (CSD) arithmetic for low complexity and efficient implementation of sub-band tree structure. The canonic signed digit (CSD) technique has been applied to reduce the number of full adders required by 2’s complement based deigns. This architecture is suitable for high speed on-line applications. With this architectu...

  4. 41 CFR 101-26.508 - Electronic data processing (EDP) tape and instrumentation tape (wide and intermediate band).

    Science.gov (United States)

    2010-07-01

    ... 41 Public Contracts and Property Management 2 2010-07-01 2010-07-01 true Electronic data processing (EDP) tape and instrumentation tape (wide and intermediate band). 101-26.508 Section 101-26.508... Programs § 101-26.508 Electronic data processing (EDP) tape and instrumentation tape (wide and...

  5. Comparison of the electronic band profiles and magneto-optic properties of cubic and orthorhombic SrTbO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Ali, Zahid, E-mail: zahidf82@gmail.com [Materials Modeling Center, Department of Physics, University of Malakand, Chakdara (Pakistan); Khan, Imad; Ahmad, Iftikhar [Materials Modeling Center, Department of Physics, University of Malakand, Chakdara (Pakistan); Naeem, S. [Department of Physics, Islamia College University, Peshawar (Pakistan); Rahnamaye Aliabad, H.A. [Department of Physics, Hakim Savzevari University, Sabzevar (Iran, Islamic Republic of); Jalali Asadabadi, S. [Department of Physics, Faculty of Science, University of Isfahan, Hezar Gerib Avenue, Isfahan 81744 (Iran, Islamic Republic of); Zhang, D. [Department of Physics, California State University, Fresno (United States)

    2013-08-15

    The all electrons full potential linearized augmented plane waves (FP-LAPW) method with GGA+U is used to study SrTbO{sub 3} perovskite in cubic and orthorhombic phases. The structural parameters and ground state magnetic properties are found consistent with the experimental results. The electronic band structures and density of states demonstrate that SrTbO{sub 3} is a wide band gap semiconductor in both phases. The magnetic studies of the material show that the nature of the compound is G-type anti-ferromagnetic. The calculated magnetic moment of Tb{sup +4} is found consistent with the experiments. Furthermore, the optical properties demonstrate that the optical gap of the material is 1.8 eV, which lies in the visible region of the electromagnetic spectrum and hence the compound can be used in optoelectronic devices.

  6. Band structure engineering of anatase TiO{sub 2} by metal-assisted P-O coupling

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jiajun; Meng, Qiangqiang [Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026 (China); Huang, Jing [Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026 (China); School of Materials and Chemical Engineering, Anhui Jianzhu University, Hefei, Anhui 230601 (China); Li, Qunxiang, E-mail: liqun@ustc.edu.cn; Yang, Jinlong [Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026 (China); Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China)

    2014-05-07

    In this work, we demonstrate that the metal-assisted P-O coupling is an effective approach to improve the photoelectrochemical properties of TiO{sub 2}. The (Sc + P) and (In + P) codoping effects on electronic structures and photocatalytic activities of anatase TiO{sub 2} are examined by performing hybrid density functional theory calculations. It is found that the coupling of P dopant with the second-nearest neighboring O atom assisted by acceptor metals (Sc/In) leads to the fully occupied and delocalized intermediate bands within the band gap of anatase TiO{sub 2}, which is driven by the P-O antibonding states (π*). This metal-assisted P-O coupling can prevent the recombination of photogenerated electron-hole pairs and effectively reduce the band gap of TiO{sub 2}. Moreover, the band edge alignments in (Sc + P) and (In + P) codoped anatase TiO{sub 2} are desirable for water-splitting. The calculated optical absorption curves indicate that (Sc + P) and (In + P) codoping in anatase TiO{sub 2} can also effectively enhance the visible light absorption.

  7. Electron and Hole States in Low Dimensional Structures

    Science.gov (United States)

    Edwards, Gerard

    Available from UMI in association with The British Library. In this thesis results from microscopic calculations for the electron and hole states in low dimensional heterostructures are presented. The basis for the calculation is the local empirical pseudopotential technique which is used to generate the bulk semiconductor bandstructure. Then an S matrix approach, which is numerically stable, is employed to propagate the solution through the layered structure. The technique is essentially a scattering approach and hence is suitable to describe the experimental situation of finite samples. The fact that a finite system is treated allows the formalism to be naturally extended to include an external E field. The calculations that have been done are for the (001) growth direction. In chapter 1 the basic concepts of semiconductor physics relevant to the material of this thesis are introduced. In Chapter 2 the theoretical technique used in this thesis, for conduction band states, is reviewed and compared and contrasted with alternative methods. The emergence of miniband states and Stark ladders in coupled GaAs/AlAs quantum well structures are dealt with in chapter 3. In Chapter 4 the bound state problem, relevant to optical properties, of the energy versus k_parallel subband dispersion of a AlGaAs-GaAs-AlGaAs quantum well is examined. Chapter 5 contains the extension of the theoretical technique to incorporate the spin-orbit interaction so that heterostructure hole states can be tackled. The validity of the effective mass theory treatment of the semiconductor interface and the Luttinger model of the bulk valence band is questioned and the microscopic nature of the GaAs-AlAs interface scattering investigated. In chapter 6 hole states in GaAs/AlAs double barrier structures and coupled multiple quantum well (MQW) structures are calculated. The anomalous formation of contact interface states instead of heavy hole minibands is observed in MQW structures. In chapter 7 In

  8. Dual-Band Terahertz Left-Handed Metamaterial with Fishnet Structure

    Institute of Scientific and Technical Information of China (English)

    DU Qiu-Jiao; LIU Jin-Song; WANG Ke-Jia; YI Xu-Nong; YANG Hong-Wu

    2011-01-01

    We present the design of a dual-band left-handed metamaterial with fishnet structure in the terahertz regime. Its left-handed properties are described by the retrieved effective electromagnetic parameters. We introduce an equivalent circuit which offers a theoretical explanation for the left-handed behavior of the dual-band fishnet metamaterial, and investigate its losses receiving higher figure of merit. The design is beneficial to the development of frequency agile and broadband THz materials and devices. The dual-band fishnet metamaterial can be extended to infrared and optical frequency ranges by regulating the structural parameters.

  9. Design of UWB Monopole Antenna with Dual Notched Bands Using One Modified Electromagnetic-Bandgap Structure

    OpenAIRE

    Hao Liu; Ziqiang Xu

    2013-01-01

    A modified electromagnetic-bandgap (M-EBG) structure and its application to planar monopole ultra-wideband (UWB) antenna are presented. The proposed M-EBG which comprises two strip patch and an edge-located via can perform dual notched bands. By properly designing and placing strip patch near the feedline, the proposed M-EBG not only possesses a simple structure and compact size but also exhibits good band rejection. Moreover, it is easy to tune the dual notched bands by altering the dimensio...

  10. Realization of Band-Notch UWB Monopole Antenna Using AMC Structure

    Directory of Open Access Journals (Sweden)

    Pradeep Kumar

    2013-06-01

    Full Text Available This article presents the design, simulation and testing of an Ultra Wide Band (UWB planar monopole antenna with WLAN band-notch characteristic. The proposed antenna consists, the combination of planar monopole antenna with partial ground and a pair of AMC structures. The AMC structure used for the design is mushroom-like. Design equation of EBG parameters is also proposed for FR4 substrate using transmission line model. Using proposed equations, Mushroom-like EBG structure is integrated along the feed line of a monopole antenna for WLAN (5 GHz – 6 GHz band rejection. TheCurrent distribution and equivalent circuit model of antenna is used to explain band-notch characteristic of EBG resonator. The proposed antenna is fabricated on an FR4 substrate with a thickness of 1.6 mmand εr = 4.4. The measured VSWR characteristic is less than 2 for complete UWB band except for WLAN band i.e. 5 GHz – 6 GHz. The gain of the proposed structure is around 2 dBi – 6.7 dBi for complete UWBband except for WLAN band where it is reduced to -4 dBi. The measured radiation pattern of proposed antenna is omnidirectional along H plane and bidirectional in E plane. A nearly constant group delaywith variations < 2ns, except for the notched bandwidth makes proposed antenna suitable for UWB application.

  11. Spatial extent of band bending in diamond due to ion impact as measured by secondary electron emission: Experiment and theory

    International Nuclear Information System (INIS)

    Although hydrogentated diamond emits exceptionally high numbers of electrons upon single ion impact, the secondary electron yield decays at an extremely rapid rate as a function of ion fluence. We report measurements of this rapid decay at extremely low fluences where the ion tracks are widely separated and explain the results by a model based on the downwards bending of the conduction band edge, due to positive charge trapped within the ion track. The present work demonstrates the importance of charge trapping in explaining the electronic properties of diamond and other wide band gap materials

  12. The Electronic Structure of Nonpolar Surfaces in Insulating Metal Oxides

    Science.gov (United States)

    Zherebetskyy, Danylo; Wang, Lin-Wang

    2013-03-01

    Understanding the electronic and geometric structures of metal oxide surfaces has a key interest in many technological areas. A randomly chosen crystal surface has a high probability of being polar, unstable and containing in-gap states due to surface dangling bonds. As a result, the surface should be stabilized by passivation or reconstruction. However, do the nonpolar surfaces of ionic crystals of insulating metal oxides need the passivation or reconstruction similar to covalent crystals? We address this question by analyzing the nonpolar surfaces and their electronic structure for the common crystal structures of metal oxides. The study using periodic DFT calculations is performed for following representatives: Cu2O, ZnO, Al2O3, TiO2, V2O5, WO3, CaTiO3, Mg2SiO4. It has been shown that the nonpolar surface can be constructed out of dipole-free, charge-neutral and stoichiometric unit cells for each crystal. We demonstrate that all constructed and relaxed nonpolar surfaces of the metal oxides show a clear band gap. It should be emphasized that the constructed surfaces are neither reconstructed nor passivated. Additionally, we show a correlation between the electronic structure of the relaxed surfaces and Ewald energies calculated for the surface ions.

  13. Investigations of the electronic structure of d0 transition metal oxides belonging to the perovskite family

    International Nuclear Information System (INIS)

    Computational and experimental studies using linear muffin tin orbital methods and UV-visible diffuse reflectance spectroscopy, respectively, were performed to quantitatively probe the relationships between composition, crystal structure and the electronic structure of oxides containing octahedrally coordinated d0 transition metal ions. The ions investigated in this study (Ti4+, Nb5+, Ta5+, Mo6+, and W6+) were examined primarily in perovskite and perovskite-related structures. In these compounds the top of the valence band is primarily oxygen 2p non-bonding in character, while the conduction band arises from the π* interaction between the transition metal t2g orbitals and oxygen. For isostructural compounds the band gap increases as the effective electronegativity of the transition metal ion decreases. The effective electronegativity decreases in the following order: Mo6+>W6+>Nb5+∼Ti4+>Ta5+. The band gap is also sensitive to changes in the conduction band width, which is maximized for structures possessing linear M-O-M bonds, such as the cubic perovskite structure. As this bond angle decreases (e.g., via octahedral tilting distortions) the conduction band narrows and the band gap increases. Decreasing the dimensionality from 3-D (e.g., the cubic perovskite structure) to 2-D (e.g., the K2NiF4 structure) does not significantly alter the band gap, whereas completely isolating the MO6 octahedra (e.g., the ordered double perovskite structure) narrows the conduction band width dramatically and leads to a significant increase in the band gap. Inductive effects due to the presence of electropositive 'spectator' cations (alkali, alkaline earth, and rare-earth cations) tend to be small and can generally be neglected

  14. Density functional calculation of equilibrium geometry and electronic structure of pyrite

    Institute of Scientific and Technical Information of China (English)

    邱冠周; 肖奇; 胡岳华; 徐竞

    2001-01-01

    The equilibrium geometry and electronic structure of pyrite has been studied using self-consistent density-functional theory within the local density approximation (LDA). The optimum bulk geometry is in good agreement with crystallographic data. The calculated band structure and density of states in the region around the Fermi energy show that valence-band maximum (VBM) is at X (100), and the conduction-band minimum (CBM) is at G (000). The indirect and direct band gaps are 0.6eV and 0.74eV, respectively. The calculated contour map of difference of charge density shows excess charge in nonbonding d electron states on the Fe sites. The density increases between sulfur nuclei and between iron and sulfur nuclei qualitatively reveal that S-S bond and Fe-S bond are covalent binding.

  15. Effect of interaction between periodic δ-doping in both well and barrier layers on modulation of superlattice band structure

    Science.gov (United States)

    Xu, Huaizhe; Yan, Qiqi; Wang, Tianmin

    2007-08-01

    The modulation of superlattice band structure via periodic δ-doping in both well and barrier layers have been theoretically investigated, and the importance of interaction between the δ-function potentials in the well layers and those in the barrier layers on SL band structure have been revealed. It is pointed out that the energy dispersion relation Eq. (3) given in [G. Ihm, S.K. Noh, J.I. Lee, J.-S. Hwang, T.W. Kim, Phys. Rev. B 44 (1991) 6266] is an incomplete one, as the interaction between periodic δ-doping in both well and barrier layers had been overlooked. Finally, we have shown numerically that the electron states of a GaAs/Ga0.7Al0.3As superlattice can be altered more efficiently by intelligent tuning the two δ-doping's positions and heights.

  16. Structural and electronic properties of GaAs and GaP semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Rani, Anita [Guru Nanak College for girls, Sri Muktsar Sahib, Punjab (India); Kumar, Ranjan [Department of Physics, Panjab University, Chandigarh-160014 (India)

    2015-05-15

    The Structural and Electronic properties of Zinc Blende phase of GaAs and GaP compounds are studied using self consistent SIESTA-code, pseudopotentials and Density Functional Theory (DFT) in Local Density Approximation (LDA). The Lattice Constant, Equillibrium Volume, Cohesive Energy per pair, Compressibility and Band Gap are calculated. The band gaps calcultated with DFT using LDA is smaller than the experimental values. The P-V data fitted to third order Birch Murnaghan equation of state provide the Bulk Modulus and its pressure derivatives. Our Structural and Electronic properties estimations are in agreement with available experimental and theoretical data.

  17. Photonic band gaps in materials with triply periodic surfaces and related tubular structures

    NARCIS (Netherlands)

    Michielsen, K; Kole, JS

    2003-01-01

    We calculate the photonic band gap of triply periodic bicontinuous cubic structures and of tubular structures constructed from the skeletal graphs of triply periodic minimal surfaces. The effect of the symmetry and topology of the periodic dielectric structures on the existence and the characteristi

  18. Electronic structure of graphene oxide and reduced graphene oxide monolayers

    Energy Technology Data Exchange (ETDEWEB)

    Sutar, D. S. [Department of Physics, Indian Institute of Technology Bombay, Mumbai 400076 (India); Central Surface Analytical Facility, Indian Institute of Technology Bombay, Mumbai 400076 (India); Singh, Gulbagh; Divakar Botcha, V. [Department of Physics, Indian Institute of Technology Bombay, Mumbai 400076 (India)

    2012-09-03

    Graphene oxide (GO) monolayers obtained by Langmuir Blodgett route and suitably treated to obtain reduced graphene oxide (RGO) monolayers were studied by photoelectron spectroscopy. Upon reduction of GO to form RGO C1s x-ray photoelectron spectra showed increase in graphitic carbon content, while ultraviolet photoelectron spectra showed increase in intensity corresponding to C2p-{pi} electrons ({approx}3.5 eV). X-ray excited Auger transitions C(KVV) and plasmon energy loss of C1s photoelectrons have been analyzed to elucidate the valence band structure. The effective number of ({pi}+{sigma}) electrons as obtained from energy loss spectra was found to increase by {approx}28% on reduction of GO.

  19. Ab initio electronic structure and optical conductivity of bismuth tellurohalides

    CERN Document Server

    Schwalbe, Sebastian; Starke, Ronald; Schober, Giulio A H; Kortus, Jens

    2016-01-01

    We investigate the electronic structure, dielectric and optical properties of bismuth tellurohalides BiTeX (X = I, Cl, Br) by means of all-electron density functional theory. In particular, we present the ab initio conductivities and dielectric tensors calculated over a wide frequency range, and compare our results with the recent measurements by Akrap et al. , Makhnev et al. , and Rusinov et al. . We show how the low-frequency branch of the optical conductivity can be used to identify characteristic intra- and interband transitions between the Rashba spin-split bands in all three bismuth tellurohalides. We further calculate the refractive indices and dielectric constants, which in turn are systematically compared to previous predictions and measurements. We expect that our quantitative analysis will contribute to the general assessment of bulk Rashba materials for their potential use in spintronics devices.

  20. The electronic structure of free aluminum clusters: metallicity and plasmons.

    Science.gov (United States)

    Andersson, Tomas; Zhang, Chaofan; Tchaplyguine, Maxim; Svensson, Svante; Mårtensson, Nils; Björneholm, Olle

    2012-05-28

    The electronic structure of free aluminum clusters with ∼3-4 nm radius has been investigated using synchrotron radiation-based photoelectron and Auger electron spectroscopy. A beam of free clusters has been produced using a gas-aggregation source. The 2p core level and the valence band have been probed. Photoelectron energy-loss features corresponding to both bulk and surface plasmon excitation following photoionization of the 2p level have been observed, and the excitation energies have been derived. In contrast to some expectations, the loss features have been detected at energies very close to those of the macroscopic solid. The results are discussed from the point of view of metallic properties in nanoparticles with a finite number of constituent atoms.

  1. The electronic structure of free aluminum clusters: Metallicity and plasmons

    Science.gov (United States)

    Andersson, Tomas; Zhang, Chaofan; Tchaplyguine, Maxim; Svensson, Svante; Mârtensson, Nils; Björneholm, Olle

    2012-05-01

    The electronic structure of free aluminum clusters with ˜3-4 nm radius has been investigated using synchrotron radiation-based photoelectron and Auger electron spectroscopy. A beam of free clusters has been produced using a gas-aggregation source. The 2p core level and the valence band have been probed. Photoelectron energy-loss features corresponding to both bulk and surface plasmon excitation following photoionization of the 2p level have been observed, and the excitation energies have been derived. In contrast to some expectations, the loss features have been detected at energies very close to those of the macroscopic solid. The results are discussed from the point of view of metallic properties in nanoparticles with a finite number of constituent atoms.

  2. Electronic structure of the heavy fermion superconductor Ce2PdIn8: Experiment and calculations

    International Nuclear Information System (INIS)

    The electronic structure of a heavy-fermion superconductor Ce2PdIn8 was investigated by means of X-ray photoelectron spectroscopy (XPS) and ab initio density functional band structure calculations. The Ce 3d core-level XPS spectra point to stable trivalent configuration of Ce atoms that is also reproduced in the band structure calculations within the generalized gradient approximation GGA+U approach. Analysis of the 3d9f2 weight in the 3d XPS spectra within the Gunnarsson-Schönhammer model suggests that the onsite hybridization energy between Ce 4f and the conduction band states, Δfs, is ∼120 meV, which is about 30 meV larger than Δfs in isostructural Ce2TIn8 compounds with T = Co, Rh, and Ir. Taking into account a Coulomb repulsion U on both the Ce 4f and Pd 4d states in electronic band structure calculations, a satisfactory agreement was found between the calculated density of states (DOS) and the measured valence band XPS spectra. - Highlights: • XPS data validated strong electronic correlations in superconducting Ce2PdIn8. • DFT calculations reproduced XPS spectra measured for Ce2PdIn8. • Crucial role of Pd d electrons in the HF behavior of Ce2PdIn8 was established

  3. Electronic structure of nanograin barium titanate ceramics

    Institute of Scientific and Technical Information of China (English)

    DENG Xiangyun; WANG Xiaohui; LI Dejun; LI Longtu

    2007-01-01

    The density of states and band structure of 20 nm barium titanate(BaTiO3,BT)ceramics are investigated by first-principles calculation.The full potential linearized augmented plane wave(FLAPW)method is used and the exchange correlation effects are treated by the generalized gradient approximation(GGA).The results show that there is substantial hybridization between the Ti 3d and O 2p states in 20 nm BT ceramics and the interaction between barium and oxygen is typically ionic.

  4. Pressure-induced transition from localized electron toward band antiferromagnetism in LaMnO(3).

    Science.gov (United States)

    Zhou, J-S; Goodenough, J B

    2002-08-19

    The temperature dependence of the ac susceptibility under pressure has been used to track the Néel temperature T(N) of the Mott insulators LaMnO3, CaMnO3, and YCrO3. Bloch's rule relating T(N) to volume V, viz., alpha=dlog(T(N)/dlog(V=-3.3, is obeyed in YCrO3 and CaMnO3; it fails in LaMnO3. This breakdown is interpreted to be due to a sharp increase in the factor [U(-1)+(2Delta)(-1)] entering the superexchange perturbation formula. A first-order change at 7 kbar indicates that the transition from localized-electron to band magnetism is not smooth.

  5. Observation of electron excitation into silicon conduction band by slow-ion surface neutralization

    CERN Document Server

    Shchemelinin, S

    2016-01-01

    Bare reverse biased silicon photodiodes were exposed to 3eV He+, Ne+, Ar+, N2+, N+ and H2O+ ions. In all cases an increase of the reverse current through the diode was observed. This effect and its dependence on the ionization energy of the incident ions and on other factors are qualitatively explained in the framework of Auger-type surface neutralization theory. Amplification of the ion-induced charge was observed with an avalanche photodiode under high applied bias. The observed effect can be considered as ion-induced internal potential electron emission into the conduction band of silicon. To the best of our knowledge, no experimental evidence of such effect was previously reported. Possible applications are discussed.

  6. Temperature dependence of Q-band electron paramagnetic resonance spectra of nitrosyl heme proteins

    Energy Technology Data Exchange (ETDEWEB)

    Flores, Marco; Wajnberg, Eliane; Bemski, George

    1997-11-01

    The Q-band (35 GHz) electron paramagnetic resonance (EPR) spectra of nitrosyl hemoglobin (Hb N O) and nitrosyl myoglobin (Mb NO) were studied as a function of temperature between 19 K and 200 K. The spectra of both heme proteins show classes of variations as a function of temperature. The first one has previously been associated with the existence of two paramagnetic species, one with rhombic and the other with axial symmetry. The second one manifests itself in changes in the g-factors and linewidths of each species. These changes are correlated with the conformational substates model and associate the variations of g-values with changes in the angle of the N(his)-Fe-N (NO) bond in the rhombic species and with changes in the distance between Fe and N of the proximal (F8) histidine in the axial species. (author) 24 refs., 6 figs.

  7. Phonon-assisted ultrafast charge separation in the PCBM band structure

    Science.gov (United States)

    Smith, Samuel L.; Chin, Alex W.

    2015-05-01

    Organic solar cells separate strongly bound electron-hole pairs into free charges at interfaces between electron donor and acceptor organic semiconductors. Recently, electron-hole separation was observed on femtosecond time scales near crystallite phases of the fullerene derivative [6,6]-phenyl-C71-butyric acid methyl ester (PCBM), which is incompatible with conventional Marcus theories of organic transport. Here we show that ultrafast charge transport in PCBM arises from its broad range of electronic eigenstates, provided by three closely spaced electronic bands near the lowest unoccupied molecular orbital. The highest band provides a charge transfer state resonant with delocalized states of the lower two bands away from the interface. This state acts as a bridge between the donor phase and the acceptor bulk, bypassing the trapped charge-transfer (CT) states below. Vibrational fluctuations enable rapid electronic transitions across this bridge, which can drive the electron more than 4 nm away from the interface within 100 fs. All this is demonstrated within a simple tight-binding Hamiltonian containing transfer integrals no larger than 8 meV.

  8. Comparison and fit of the two and six band k.p models for the band edge structure of Pbsub(1-x)Snsub(x)Te

    International Nuclear Information System (INIS)

    The band edge structure of Pbsub(1-x)Snsub(x)Te is derived in detail using a two band ellipsoidal model and compared with a more rigorous calculation based on six bands. A quantitative comparison is made for two values of the energy gap, corresponding to the cases where x=0 and x=0.17. It was found that, for the occupied states in nondegenerate materials, both models are practically equivalent. Discrepancies may occur only in high degeneracies or deep inversion layers. The agreement between both models was significantly improved by introducing an effective energy gap in the two band model. It is suggested that the use of the effective energy gap may improve the agreement between the two band model and experiment whenever the details of the band edge structure enter the interpretation of the experimental results. (author)

  9. Solar energy conversion via internal photoemission in aluminum, copper, and silver: Band structure effects and theoretical efficiency estimates

    Science.gov (United States)

    Chang, Yin-Jung; Shih, Ko-Han

    2016-05-01

    Internal photoemission (IPE) across an n-type Schottky junction due to standard AM1.5G solar illumination is quantified with practical considerations for Cu, Ag, and Al under direct and fully nondirect transitions, all in the context of the constant matrix element approximation. Under direct transitions, photoemitted electrons from d bands dominate the photocurrent and exhibit a strong dependence on the barrier energy ΦB but are less sensitive to the change in the metal thickness. Photocurrent is shown to be nearly completely contributed by s-state electrons in the fully nondirect approximation that offers nearly identical results as in the direct transition for metals having a free-electron-like band structure. Compared with noble metals, Al-based IPE has the highest quantum yield up to about 5.4% at ΦB = 0.5 eV and a maximum power conversion efficiency of approximately 0.31% due mainly to its relatively uniform and wide Pexc energy spectral width. Metals (e.g., Ag) with a larger interband absorption edge are shown to outperform those with shallower d-bands (e.g., Cu and Au).

  10. Experimental valence-band study of Ti(NiCu) alloys with different compositions and crystal structures

    Science.gov (United States)

    Senkovskiy, B. V.; Usachev, D. Yu.; Fedorov, A. V.; Shelyakov, A. V.; Adamchuk, V. K.

    2012-08-01

    The density of valence-band electronic states of Ti(NiCu) alloys with different crystal structures and elemental compositions has been studied by X-ray photoelectron spectroscopy. It has been established that the change in the crystal state initiated by a martensitic transformation or a transition from the amorphous state to the crystal state does not affect the valence-band electronic state density distribution of the Ti50Ni50 and Ti50Ni25Cu25 alloys. It has been shown that a change in the elemental composition leads to a noticeable redistribution of the electronic density in alloys of the Ti50Ni50 - x Cu x system ( x = 0, 10, 15, 25, 30, 38, 50 at. %). As the copper concentration in the Ti(NiCu) alloys increases, the contribution of the Ni d states in the vicinity of the Fermi level decreases, with the d band of nickel shifting toward higher binding energies, and that of copper, toward lower binding energies.

  11. Evidence of ion intercalation mediated band structure modification and opto-ionic coupling in lithium niobite

    Energy Technology Data Exchange (ETDEWEB)

    Shank, Joshua C.; Tellekamp, M. Brooks; Doolittle, W. Alan, E-mail: alan.doolittle@ece.gatech.edu [Department of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332 (United States)

    2015-01-21

    The theoretically suggested band structure of the novel p-type semiconductor lithium niobite (LiNbO{sub 2}), the direct coupling of photons to ion motion, and optically induced band structure modifications are investigated by temperature dependent photoluminescence. LiNbO{sub 2} has previously been used as a memristor material but is shown here to be useful as a sensor owing to the electrical, optical, and chemical ease of lithium removal and insertion. Despite the high concentration of vacancies present in lithium niobite due to the intentional removal of lithium atoms, strong photoluminescence spectra are observed even at room temperature that experimentally confirm the suggested band structure implying transitions from a flat conduction band to a degenerate valence band. Removal of small amounts of lithium significantly modifies the photoluminescence spectra including additional larger than stoichiometric-band gap features. Sufficient removal of lithium results in the elimination of the photoluminescence response supporting the predicted transition from a direct to indirect band gap semiconductor. In addition, non-thermal coupling between the incident laser and lithium ions is observed and results in modulation of the electrical impedance.

  12. Polar semiconductor heterojunction structure energy band diagram considerations

    Science.gov (United States)

    Lin, Shuxun; Wen, Cheng P.; Wang, Maojun; Hao, Yilong

    2016-03-01

    The unique nature of built-in electric field induced positive/negative charge pairs of polar semiconductor heterojunction structure has led to a more realistic device model for hexagonal III-nitride HEMT. In this modeling approach, the distribution of charge carriers is dictated by the electrostatic potential profile instead of Femi statistics. The proposed device model is found suitable to explain peculiar properties of GaN HEMT structures, including: (1) Discrepancy in measured conventional linear transmission line model (LTLM) sheet resistance and contactless sheet resistance of GaN HEMT with thin barrier layer. (2) Below bandgap radiation from forward biased Nickel Schottky barrier diode on GaN HEMT structure. (3) GaN HEMT barrier layer doping has negligible effect on transistor channel sheet charge density.

  13. Precise fabrication of X-band accelerating structure

    International Nuclear Information System (INIS)

    An accelerating structure with a/λ=0.16 is being fabricated to study a precise fabrication method. A frequency control of each cell better than 10-4 level is required to realize a detuned structure. The present machining level is nearly 1 MHz/11.4 GHz in relative frequency error, which just satisfies the above requirement. To keep this machining precision, the diffusion bonding technique is found preferable to join the cells. Various diffusion conditions were tried. The frequency change can be less than 1 MHz/11.4 GHz and it can be controlled well better than that. (author)

  14. Structure of conduction electrons on polysilanes

    Energy Technology Data Exchange (ETDEWEB)

    Ichikawa, Tsuneki [Hokkaido Univ., Sapporo (Japan); Kumagai, Jun

    1998-10-01

    The orbital structures of conduction electrons on permethylated oligosilane, Si{sub 2n}(CH{sub 3}){sub 2n+2}(n = 2 - 8), and poly(cyclohexylmethylsilane) have been determined by the electron spin-echo envelope modulation signals of the radical anions of these silanes in a deuterated rigid matrix at 77 K. The conduction electron on permethylated oligosilane is delocalized over the entire main chain, whereas that on poly(cyclohexylmethylsilane) is localized on a part of the main chain composed of about six Si atoms. Quantum-chemical calculations suggest that Anderson localization due to fluctuation of {sigma} conjugation by conformational disorder of the main chain is responsible for the localization of both the conduction electron and the hole. (author)

  15. Temperature dependence of the electronic structure of semiconductors and insulators

    Energy Technology Data Exchange (ETDEWEB)

    Poncé, S., E-mail: samuel.pon@gmail.com; Gillet, Y.; Laflamme Janssen, J.; Gonze, X. [European Theoretical Spectroscopy Facility and Institute of Condensed Matter and Nanosciences, Université catholique de Louvain, Chemin des étoiles 8, bte L07.03.01, B-1348 Louvain-la-neuve (Belgium); Marini, A. [Consiglio Nazionale delle Ricerche (CNR), Via Salaria Km 29.3, CP 10, 00016 Monterotondo Stazione (Italy); Verstraete, M. [European Theoretical Spectroscopy Facility and Physique des matériaux et nanostructures, Université de Liège, Allée du 6 Août 17, B-4000 Liège (Belgium)

    2015-09-14

    The renormalization of electronic eigenenergies due to electron-phonon coupling (temperature dependence and zero-point motion effect) is sizable in many materials with light atoms. This effect, often neglected in ab initio calculations, can be computed using the perturbation-based Allen-Heine-Cardona theory in the adiabatic or non-adiabatic harmonic approximation. After a short description of the recent progresses in this field and a brief overview of the theory, we focus on the issue of phonon wavevector sampling convergence, until now poorly understood. Indeed, the renormalization is obtained numerically through a slowly converging q-point integration. For non-zero Born effective charges, we show that a divergence appears in the electron-phonon matrix elements at q → Γ, leading to a divergence of the adiabatic renormalization at band extrema. This problem is exacerbated by the slow convergence of Born effective charges with electronic wavevector sampling, which leaves residual Born effective charges in ab initio calculations on materials that are physically devoid of such charges. Here, we propose a solution that improves this convergence. However, for materials where Born effective charges are physically non-zero, the divergence of the renormalization indicates a breakdown of the adiabatic harmonic approximation, which we assess here by switching to the non-adiabatic harmonic approximation. Also, we study the convergence behavior of the renormalization and develop reliable extrapolation schemes to obtain the converged results. Finally, the adiabatic and non-adiabatic theories, with corrections for the slow Born effective charge convergence problem (and the associated divergence) are applied to the study of five semiconductors and insulators: α-AlN, β-AlN, BN, diamond, and silicon. For these five materials, we present the zero-point renormalization, temperature dependence, phonon-induced lifetime broadening, and the renormalized electronic band structure.

  16. Temperature dependence of the electronic structure of semiconductors and insulators.

    Science.gov (United States)

    Poncé, S; Gillet, Y; Laflamme Janssen, J; Marini, A; Verstraete, M; Gonze, X

    2015-09-14

    The renormalization of electronic eigenenergies due to electron-phonon coupling (temperature dependence and zero-point motion effect) is sizable in many materials with light atoms. This effect, often neglected in ab initio calculations, can be computed using the perturbation-based Allen-Heine-Cardona theory in the adiabatic or non-adiabatic harmonic approximation. After a short description of the recent progresses in this field and a brief overview of the theory, we focus on the issue of phonon wavevector sampling convergence, until now poorly understood. Indeed, the renormalization is obtained numerically through a slowly converging q-point integration. For non-zero Born effective charges, we show that a divergence appears in the electron-phonon matrix elements at q → Γ, leading to a divergence of the adiabatic renormalization at band extrema. This problem is exacerbated by the slow convergence of Born effective charges with electronic wavevector sampling, which leaves residual Born effective charges in ab initio calculations on materials that are physically devoid of such charges. Here, we propose a solution that improves this convergence. However, for materials where Born effective charges are physically non-zero, the divergence of the renormalization indicates a breakdown of the adiabatic harmonic approximation, which we assess here by switching to the non-adiabatic harmonic approximation. Also, we study the convergence behavior of the renormalization and develop reliable extrapolation schemes to obtain the converged results. Finally, the adiabatic and non-adiabatic theories, with corrections for the slow Born effective charge convergence problem (and the associated divergence) are applied to the study of five semiconductors and insulators: α-AlN, β-AlN, BN, diamond, and silicon. For these five materials, we present the zero-point renormalization, temperature dependence, phonon-induced lifetime broadening, and the renormalized electronic band structure

  17. Electron conductance in curved quantum structures

    DEFF Research Database (Denmark)

    Willatzen, Morten; Gravesen, Jens

    2010-01-01

    A differential-geometry analysis is employed to investigate the transmission of electrons through a curved quantum-wire structure. Although the problem is a three-dimensional spatial problem, the Schrodinger equation can be separated into three general coordinates. Hence, the proposed method...

  18. The electronic structure of antiferromagnetic chromium

    DEFF Research Database (Denmark)

    Skriver, Hans Lomholt

    1981-01-01

    The author has used the local spin density formalism to perform self-consistent calculations of the electronic structure of chromium in the non-magnetic and commensurate antiferromagnetic phases, as a function of the lattice parameter. A change of a few per cent in the atomic radius brings...

  19. Geometric and electronic structures of potassium-adsorbed rubrene complexes

    Science.gov (United States)

    Li, Tsung-Lung; Lu, Wen-Cai

    2015-06-01

    The geometric and electronic structures of potassium-adsorbed rubrene complexes are studied in this article. It is found that the potassium-rubrene (K1RUB) complexes inherit the main symmetry characteristics from their pristine counterparts and are thus classified into D2- and C2h-like complexes according to the relative orientations of the four phenyl side groups. The geometric structures of K1RUB are governed by two general effects on the total energy: Deformation of the carbon frame of the pristine rubrene increases the total energy, while proximity of the potassium ion to the phenyl ligands decreases the energy. Under these general rules, the structures of D2- and C2h-like K1RUB, however, exhibit their respective peculiarities. These peculiarities can be illustrated by their energy profiles of equilibrium structures. For the potassium adsorption-sites, the D2-like complexes show minimum-energy basins, whereas the C2h-like ones have single-point minimum-energies. If the potassium atom ever has the energy to diffuse from the minimum-energy site, the potassium diffusion path on the D2-like complexes is most likely along the backbone in contrast to the C2h-like ones. Although the electronic structures of the minimum-energy structures of D2- and C2h-like K1RUB are very alike, decompositions of their total spectra reveal insights into the electronic structures. First, the spectral shapes are mainly determined by the facts that, in comparison with the backbone carbons, the phenyl carbons have more uniform chemical environments and far less contributions to the electronic structures around the valence-band edge. Second, the electron dissociated from the potassium atom mainly remains on the backbone and has little effects on the electronic structures of the phenyl groups. Third, the two phenyls on the same side of the backbone as the potassium atom have more similar chemical environments than the other two on the opposite side, which leads to the largely enhanced

  20. Geometric and electronic structures of potassium-adsorbed rubrene complexes

    Energy Technology Data Exchange (ETDEWEB)

    Li, Tsung-Lung, E-mail: quantum@mail.ncyu.edu.tw [Department of Electrophysics, National Chia-Yi University, Chiayi 60004, Taiwan (China); Lu, Wen-Cai, E-mail: wencailu@jlu.edu.cn [Laboratory of Fiber Materials and Modern Textile and Growing Base for State Key Laboratory, College of Physics, Qingdao University, Qingdao, Shandong 266071 (China); State Key Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun, Jilin 130021 (China)

    2015-06-28

    The geometric and electronic structures of potassium-adsorbed rubrene complexes are studied in this article. It is found that the potassium-rubrene (K{sub 1}RUB) complexes inherit the main symmetry characteristics from their pristine counterparts and are thus classified into D{sub 2}- and C{sub 2h}-like complexes according to the relative orientations of the four phenyl side groups. The geometric structures of K{sub 1}RUB are governed by two general effects on the total energy: Deformation of the carbon frame of the pristine rubrene increases the total energy, while proximity of the potassium ion to the phenyl ligands decreases the energy. Under these general rules, the structures of D{sub 2}- and C{sub 2h}-like K{sub 1}RUB, however, exhibit their respective peculiarities. These peculiarities can be illustrated by their energy profiles of equilibrium structures. For the potassium adsorption-sites, the D{sub 2}-like complexes show minimum-energy basins, whereas the C{sub 2h}-like ones have single-point minimum-energies. If the potassium atom ever has the energy to diffuse from the minimum-energy site, the potassium diffusion path on the D{sub 2}-like complexes is most likely along the backbone in contrast to the C{sub 2h}-like ones. Although the electronic structures of the minimum-energy structures of D{sub 2}- and C{sub 2h}-like K{sub 1}RUB are very alike, decompositions of their total spectra reveal insights into the electronic structures. First, the spectral shapes are mainly determined by the facts that, in comparison with the backbone carbons, the phenyl carbons have more uniform chemical environments and far less contributions to the electronic structures around the valence-band edge. Second, the electron dissociated from the potassium atom mainly remains on the backbone and has little effects on the electronic structures of the phenyl groups. Third, the two phenyls on the same side of the backbone as the potassium atom have more similar chemical environments

  1. Electronic structure and shearing in nanolaminated ternary carbides

    Science.gov (United States)

    Music, Denis; Sun, Zhimei; Voevodin, Andrey A.; Schneider, Jochen M.

    2006-07-01

    We have studied shearing in M 2AlC phases (M=Sc,Y,La,Ti,Zr,Hf,V,Nb,Ta,Cr,Mo,W) using ab initio calculations. We propose that these phases can be classified into two groups based on the valence electron concentration induced changes in C 44. One group comprises M=V B and VIB, where the C 44 values are approximately 170 GPa and independent of the corresponding MC. The other group includes M=IIIB and IVB, where the C 44 shows a linear dependency with the corresponding MC. This may be understood based on the electronic structure: shear resistant bands are filled in M 2AlC phases with M=V B and VIB, while they are not completely filled when M=IIIB and IVB. This notion is also consistent with our stress-strain analysis. These valence electron concentration induced changes in shear behaviour were compared to previously published valence electron concentration induced changes in compression behaviour [Z. Sun, D. Music, R. Ahuja, S. Li, J.M. Schneider, Phys. Rev. B 70 (2004) 092102]. These classification proposals exhibit identical critical valence electron concentration values for the group boundary. However, the physical mechanisms are not identical: the classification proposal for the bulk modulus is based on MC-A coupling, while shearing is based on MC-MC coupling.

  2. The electronic structure of graphene tuned by hexagonal boron nitrogen layers: Semimetal-semiconductor transition

    Science.gov (United States)

    Liu, Ming-Yang; Chen, Qing-Yuan; Ma, Tai; He, Yao; Cao, Chao

    2016-05-01

    The electronic structure of graphene and hexagonal boron nitrogen (G/h-BN) systems have been carefully investigated using the pseudo-potential plane-wave within density functional theory (DFT) framework. We find that the stacking geometries and interlayer distances significantly affect the electronic structure of G/h-BN systems. By studying four stacking geometries, we conclude that the monolayer G/h-BN systems should possess metallic electronic properties. The monolayer G/h-BN systems can be transited from metallicity to semiconductor by increasing h-BN layers. It reveals that the alteration of interlayer distances 2.50-3.50 Å can obtain the metal-semiconductor-semimetal variation and a tunable band gap for G/h-BN composite systems. The band dispersion along K-H direction is analogous to the band of rhombohedral graphite when the G/h-BN systems are semiconducting.

  3. Reducing support loss in micromechanical ring resonators using phononic band-gap structures

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, Feng-Chia; Huang, Tsun-Che; Wang, Chin-Hung; Chang, Pin [Industrial Technology Research Institute-South, Tainan 709, Taiwan (China); Hsu, Jin-Chen, E-mail: fengchiahsu@itri.org.t, E-mail: hsujc@yuntech.edu.t [Department of Mechanical Engineering, National Yunlin University of Science and Technology, Douliou, Yunlin 64002, Taiwan (China)

    2011-09-21

    In micromechanical resonators, energy loss via supports into the substrates may lead to a low quality factor. To eliminate the support loss, in this paper a phononic band-gap structure is employed. We demonstrate a design of phononic-crystal (PC) strips used to support extensional wine-glass mode ring resonators to increase the quality factor. The PC strips are introduced to stop elastic-wave propagation by the band-gap and deaf-band effects. Analyses of resonant characteristics of the ring resonators and the dispersion relations, eigenmodes, and transmission properties of the PC strips are presented. With the proposed resonator architecture, the finite-element simulations show that the leaky power is effectively reduced and the stored energy inside the resonators is enhanced simultaneously as the operating frequencies of the resonators are within the band gap or deaf bands. Realization of a high quality factor micromechanical ring resonator with minimized support loss is expected.

  4. Berry phase and band structure analysis of the Weyl semimetal NbP

    Science.gov (United States)

    Sergelius, Philip; Gooth, Johannes; Bäßler, Svenja; Zierold, Robert; Wiegand, Christoph; Niemann, Anna; Reith, Heiko; Shekhar, Chandra; Felser, Claudia; Yan, Binghai; Nielsch, Kornelius

    2016-01-01

    Weyl semimetals are often considered the 3D-analogon of graphene or topological insulators. The evaluation of quantum oscillations in these systems remains challenging because there are often multiple conduction bands. We observe de Haas-van Alphen oscillations with several frequencies in a single crystal of the Weyl semimetal niobium phosphide. For each fundamental crystal axis, we can fit the raw data to a superposition of sinusoidal functions, which enables us to calculate the characteristic parameters of all individual bulk conduction bands using Fourier transform with an analysis of the temperature and magnetic field-dependent oscillation amplitude decay. Our experimental results indicate that the band structure consists of Dirac bands with low cyclotron mass, a non-trivial Berry phase and parabolic bands with a higher effective mass and trivial Berry phase. PMID:27667203

  5. Electronic Energy Band and Transport Properties in Monolayer Graphene with Periodically Modulated Magnetic Vector Potential and Electrostatic Potential

    Institute of Scientific and Technical Information of China (English)

    刘正方; 伍清萍; 刘念华

    2012-01-01

    We investigated the electronic energy band and transport features of graphene superlattice with periodically modulated magnetic vector potential and electrostatic potential. It is found that both parallel magnetic vector potential and electrostatic potential can decisively shift Dirac point in a different way, which may be an efficient way to achieve electron or hole filter. We a/so find that applying modulated parallel and anti-parallel magnetic vector potential to the electrons can efficiently change electronic states between pass and stop states, which can be useful in designing electron or hole switches and lead to large magneto-resistance.

  6. Electronic structures of GaAs/Al x Ga1-x As quantum double rings

    OpenAIRE

    Li Shu-Shen; Xia Jian-Bai

    2006-01-01

    AbstractIn the framework of effective mass envelope function theory, the electronic structures of GaAs/AlxGa1-xAs quantum double rings (QDRs) are studied. Our model can be used to calculate the electronic structures of quantum wells, wires, dots, and the single ring. In calculations, the effects due to the different effective masses of electrons and holes in GaAs and AlxGa1-xAs and the valence band mixing are considered. The energy levels of electrons and holes are calculated for different sh...

  7. Electronic Structure and Luminescence of Quasi-Freestanding MoS2 Nanopatches on Au(111)

    Science.gov (United States)

    2016-01-01

    Monolayers of transition metal dichalcogenides are interesting materials for optoelectronic devices due to their direct electronic band gaps in the visible spectral range. Here, we grow single layers of MoS2 on Au(111) and find that nanometer-sized patches exhibit an electronic structure similar to their freestanding analogue. We ascribe the electronic decoupling from the Au substrate to the incorporation of vacancy islands underneath the intact MoS2 layer. Excitation of the patches by electrons from the tip of a scanning tunneling microscope leads to luminescence of the MoS2 junction and reflects the one-electron band structure of the quasi-freestanding layer. PMID:27459588

  8. Electronic Structure of Germanium Nanocrystal Films Probed with Synchrotron Radiation

    Energy Technology Data Exchange (ETDEWEB)

    Bostedt, C

    2002-05-01

    The fundamental structure--property relationship of semiconductor quantum dots has been investigated. For deposited germanium nanocrystals strong quantum confinement effects have been determined with synchrotron radiation based x-ray absorption and photoemission techniques. The nanocrystals are condensed out of the gas phase with a narrow size distribution and subsequently deposited in situ onto various substrates. The particles are crystalline in the cubic phase with a structurally disordered surface shell and the resulting film morphology depends strongly on the substrate material and condition. The disordered surface region has an impact on the overall electronic structure of the particles. In a size-dependent study, the conduction and valence band edge of germanium nanocrystals have been measured for the first time and compared to the bulk crystal. The band edges move to higher energies as the particle size is decreased, consistent with quantum confinement theory. To obtain a more accurate analysis of confinement effects in the empty states, a novel analysis method utilizing an effective particle size for the x-ray absorption experiment, which allows a deconvolution of absorption edge broadening effects, has been introduced. Comparison of the present study to earlier studies on silicon reveals that germanium exhibits stronger quantum confinement effects than silicon. Below a critical particle size of 2.3 {+-} 0.7 nm, the band gap of germanium becomes larger than that of silicon--even if it is the opposite for bulk materials. This result agrees phenomenologically with effective mass and tight binding theories but contradicts the findings of recent pseudopotential calculations. The discrepancy between theory and experiments is attributed to the differences in the theoretical models and experimental systems. The experimentally observed structural disorder of the particle surface has to be included in the theoretical models.

  9. X-ray and photoelectron spectroscopy of the structure, reactivity, and electronic structure of semiconductor nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Hamad, K.S.

    2000-05-01

    Semiconductor nanocrystals are a system which has been the focus of interest due to their size dependent properties and their possible use in technological applications. Many chemical and physical properties vary systematically with the size of the nanocrystal and thus their study enables the investigation of scaling laws. Due to the increasing surface to volume ratio as size is decreased, the surfaces of nanocrystals are expected to have a large influence on their electronic, thermodynamic, and chemical behavior. In spite of their importance, nanocrystal surfaces are still relatively uncharacterized in terms of their structure, electronic properties, bonding, and reactivity. Investigation of nanocrystal surfaces is currently limited by what techniques to use, and which methods are suitable for nanocrystals is still being determined. This work presents experiments using x-ray and electronic spectroscopies to explore the structure, reactivity, and electronic properties of semiconductor (CdSe, InAs) nanocrystals and how they vary with size. Specifically, x-ray absorption near edge spectroscopy (XANES) in conjunction with multiple scattering simulations affords information about the structural disorder present at the surface of the nanocrystal. X-ray photoelectron spectroscopy (XPS) and ultra-violet photoelectron spectroscopy (UPS) probe the electronic structure in terms of hole screening, and also give information about band lineups when the nanocrystal is placed in electric contact with a substrate. XPS of the core levels of the nanocrystal as a function of photo-oxidation time yields kinetic data on the oxidation reaction occurring at the surface of the nanocrystal.

  10. Superlattice band structure: New and simple energy quantification condition

    International Nuclear Information System (INIS)

    Assuming an approximated effective mass and using Bastard's boundary conditions, a simple method is used to calculate the subband structure for periodic semiconducting heterostructures. Our method consists to derive and solve the energy quantification condition (EQC), this is a simple real equation, composed of trigonometric and hyperbolic functions, and does not need any programming effort or sophistic machine to solve it. For less than ten wells heterostructures, we have derived and simplified the energy quantification conditions. The subband is build point by point; each point presents an energy level. Our simple energy quantification condition is used to calculate the subband structure of the GaAs/Ga0.5Al0.5As heterostructures, and build its subband point by point for 4 and 20 wells. Our finding shows a good agreement with previously published results

  11. Superlattice band structure: New and simple energy quantification condition

    Energy Technology Data Exchange (ETDEWEB)

    Maiz, F., E-mail: fethimaiz@gmail.com [University of Cartage, Nabeul Engineering Preparatory Institute, Merazka, 8000 Nabeul (Tunisia); King Khalid University, Faculty of Science, Physics Department, P.O. Box 9004, Abha 61413 (Saudi Arabia)

    2014-10-01

    Assuming an approximated effective mass and using Bastard's boundary conditions, a simple method is used to calculate the subband structure for periodic semiconducting heterostructures. Our method consists to derive and solve the energy quantification condition (EQC), this is a simple real equation, composed of trigonometric and hyperbolic functions, and does not need any programming effort or sophistic machine to solve it. For less than ten wells heterostructures, we have derived and simplified the energy quantification conditions. The subband is build point by point; each point presents an energy level. Our simple energy quantification condition is used to calculate the subband structure of the GaAs/Ga{sub 0.5}Al{sub 0.5}As heterostructures, and build its subband point by point for 4 and 20 wells. Our finding shows a good agreement with previously published results.

  12. Electronic structure of nitride-based quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Winkelnkemper, Momme

    2008-11-07

    In the present work the electronic and optical properties of In{sub x}Ga{sub 1-x}N/GaN and GaN/AlN QDs are studied by means of eight-band k.p theory. Experimental results are interpreted in detail using the theoretical results. The k.p model for the QD electronicstructure calculations accounts for strain, piezo- and pyroelectric effects, spin-orbit and crystal-field splitting, and is implemented for arbitrarily shaped QDs on a finite differences grid. Few-particle corrections are included using the self-consistent Hartree method. Band parameters for the wurtzite and zinc-blende phases of GaN, AlN, and InN are derived from first-principle G{sub 0}W{sub 0} band-structure calculations. Reliable values are also provided for parameters that have not been determined experimentally yet. The electronic properties of nitride QDs are dominated by the large built-in piezo- and pyroelectric fields, which lead to a pronounced red-shift of excitonic transition energies and extremely long radiative lifetimes in large GaN/AlN QDs. In In{sub x}Ga{sub 1-x}N/GaN QDs these fields induce a pronounced dependence of the radiative excitonic lifetimes on the exact QD shape and composition. It is demonstrated that the resulting variations of the radiative lifetimes in an inhomogeneous QD ensemble are the origin of the multi-exponential luminescence decay frequently observed in time-resolved ensemble measurements on In{sub x}Ga{sub 1-x}N/GaN QDs. A polarization mechanism in nitride QDs based on strain-induced valence-band mixing effects is discovered. Due to the valence-band structure of wurtzite group-III nitrides and the specific strain situation in c-plane QDs, the confined hole states are formed predominantly by the two highest valence bands. In particular, the hole ground state (h{sub 0} {identical_to} h{sub A}) is formed by the A band, and the first excited hole state (h{sub 1} {identical_to} h{sub B}) by the B band. It is shown that the interband transitions involving h{sub A} or h

  13. Electronic structure of fluorides: general trends for ground and excited state properties

    Science.gov (United States)

    Cadelano, E.; Cappellini, G.

    2011-05-01

    The electronic structure of fluorite crystals are studied by means of density functional theory within the local density approximation for the exchange correlation energy. The ground-state electronic properties, which have been calculated for the cubic structures CaF2, SrF2, BaF2, CdF2, HgF2, β-PbF2, using a plane waves expansion of the wave functions, show good comparison with existing experimental data and previous theoretical results. The electronic density of states at the gap region for all the compounds and their energy-band structure have been calculated and compared with the existing data in the literature. General trends for the ground-state parameters, the electronic energy-bands and transition energies for all the fluorides considered are given and discussed in details. Moreover, for the first time results for HgF2 have been presented.

  14. Band structure engineering and vacancy induced metallicity at the GaAs-AlAs interface

    KAUST Repository

    Upadhyay Kahaly, M.

    2011-09-20

    We study the epitaxial GaAs-AlAs interface of wide gap materials by full-potential density functional theory. AlAsthin films on a GaAs substrate and GaAsthin films on an AlAs substrate show different trends for the electronic band gap with increasing film thickness. In both cases, we find an insulating state at the interface and a negligible charge transfer even after relaxation. Differences in the valence and conduction band edges suggest that the energy band discontinuities depend on the growth sequence. Introduction of As vacancies near the interface induces metallicity, which opens great potential for GaAs-AlAs heterostructures in modern electronics.

  15. Atomically Thin Ordered Alloys of Transition Metal Dichalcogenides: Stability and Band Structures

    DEFF Research Database (Denmark)

    Pandey, Mohnish; Jacobsen, Karsten Wedel; Thygesen, Kristian Sommer

    2016-01-01

    to be close to zero for several alloys and below 20 meV/atom for all the alloys. We explore to what extent the electronic properties like the band gap and band edge positions of the alloy can be evaluated by taking the weighted average of the corresponding properties of the pristine systems. In general......, this approach works well with the only exception being Cr containing compounds. Because the calculated properties of the alloys are very similar to the weighted averages, we expect that the trends observed for the ordered alloys will also hold for more realistic disordered alloys......We explore the possibility of modulating the electronic band edges of the transition metal dichalcogenides (TMD) via alloying of different semiconductors within the same group (intra-group alloying). The stability of the ordered alloys is assessed from the calculated mixing enthalpy which is found...

  16. Indirect Band Gap Emission by Hot Electron Injection in Metal/MoS2 and Metal/WSe2 Heterojunctions

    Science.gov (United States)

    Li, Zhen; Ezhilarasu, Goutham; Chatzakis, Ioannis; Dhall, Rohan; Chen, Chun-Chung; Cronin, Stephen

    Transition metal dichalcogenides (TMDCs), such as MoS2 and WSe2, are free of dangling bonds, therefore make more `ideal' Schottky junctions than bulk semiconductors, which produce recombination centers at the interface with metals, inhibiting charge transfer. Here, we observe a more than 10X enhancement in the indirect band gap PL of TMDCs deposited on various metals, while the direct band gap emission remains unchanged. We believe the main mechanism of light emission arises from photoexcited hot electrons in the metal that are injected into the conduction band of MoS2 and WSe2, and subsequently recombine radiatively with minority holes. Since the conduction band at the K-point is 0.5eV higher than at the Σ-point, a lower Schottky barrier of the Σ-point band makes electron injection more favorable. Also, the Σ band consists of the sulfur pz orbital, which overlaps more significantly with the electron wavefunctions in the metal. This enhancement only occurs for thick flakes, and is absent in monolayer and few-layer flakes. Here, the flake thickness must exceed the depletion width of the Schottky junction, in order for efficient radiative recombination to occur in the TMDC. The intensity of this indirect peak decreases at low temperatures. Reference: DOI: 10.1021/acs.nanolett.5b00885

  17. An Extensive Database of Electronic Structure Calculations between Transition Metals

    Science.gov (United States)

    Sayed, Shereef; Papaconstantopoulos, Dimitrios

    Density Functional Theory and its derived application methods, such as the Augmented Plane Wave (APW) method, have shown great success in predicting the fundamental properties of materials. In this work, we apply the APW method to explore the properties of diatomic pairs of transition metals in the CsCl structure, for all possible combinations. A total of 435 compounds have been studied. The predicted Density of States, and Band Structures are presented, along with predicted electron-phonon coupling and Stoner Criterion, in order to identify potential new superconducting or ferromagnetic materials. This work is performed to demonstrate the concept of ``high-throughput'' calculations at the crossing-point of ``Big Data'' and materials science. Us Dept of Energy.

  18. Structure sensitive bands in the vibrational spectra of metal complexes of tetraphenylporphine

    Science.gov (United States)

    Oshio, Hiroki; Ama, Tomoharu; Watanabe, Takeshi; Kincaid, James; Nakamoto, Kazuo

    The i.r. and RR spectra of twenty Fe(TPP)LL' type complexes have been measured to locate structure-sensitive bands. In i.r. spectra, band I (1350-1330 cm -1) and band III (469-432 cm -1) are spin-state sensitive whereas band II (806-790 cm -1) is oxidation-state sensitive and slightly spin-state sensitive in the Fe(II) state. To examine the nature of these bands, the i.r. spectra of Co(TPP), (Fe(TPP)) 2O and their d8 and d20 analogs have been measured, and empirical assignments proposed. In RR spectra, band C (1545-1498 cm -1, ap) and band D (1565-1540 cm -1, p) are spin-state sensitive whereas band E (391-376 cm -1, p) is sensitive to both spin and oxidation states. These results on RR spectra are in good agreement with those of previous workers.

  19. Matrix elements of intraband transitions in quantum dot intermediate band solar cells: the influence of quantum dot presence on the extended-state electron wave-functions

    Science.gov (United States)

    Nozawa, Tomohiro; Arakawa, Yasuhiko

    2014-04-01

    The intraband transitions which are essential for quantum dot intermediate band solar cells (QD IBSCs) are theoretically investigated by estimating the matrix elements from a ground bound state, which is often regarded as an intermediate band (IB), to conduction band (CB) states for a structure with a quantum dot (QD) embedded in a matrix (a QD/matrix structure). We have found that the QD pushes away the electron envelope functions (probability densities) from the QD region in almost all quantum states above the matrix CB minimum. As a result, the matrix elements of the intraband transitions in the QD/matrix structure are largely reduced, compared to those calculated assuming the envelope functions of free electrons (i.e., plane-wave envelope functions) in a matrix structure as the final states of the intraband transitions. The result indicates the strong influence of the QD itself on the intraband transitions from the IB to the CB states in QD IBSC devices. This work will help in better understanding the problem of the intraband transitions and give new insight, that is, engineering of quantum states is indispensable for the realization of QD IBSCs with high solar energy conversion efficiencies.

  20. Matrix elements of intraband transitions in quantum dot intermediate band solar cells: the influence of quantum dot presence on the extended-state electron wave-functions

    International Nuclear Information System (INIS)

    The intraband transitions which are essential for quantum dot intermediate band solar cells (QD IBSCs) are theoretically investigated by estimating the matrix elements from a ground bound state, which is often regarded as an intermediate band (IB), to conduction band (CB) states for a structure with a quantum dot (QD) embedded in a matrix (a QD/matrix structure). We have found that the QD pushes away the electron envelope functions (probability densities) from the QD region in almost all quantum states above the matrix CB minimum. As a result, the matrix elements of the intraband transitions in the QD/matrix structure are largely reduced, compared to those calculated assuming the envelope functions of free electrons (i.e., plane-wave envelope functions) in a matrix structure as the final states of the intraband transitions. The result indicates the strong influence of the QD itself on the intraband transitions from the IB to the CB states in QD IBSC devices. This work will help in better understanding the problem of the intraband transitions and give new insight, that is, engineering of quantum states is indispensable for the realization of QD IBSCs with high solar energy conversion efficiencies. (paper)