WorldWideScience

Sample records for balloon-borne soft gamma-ray

  1. PoGOLite - A High Sensitivity Balloon-Borne Soft Gamma-ray Polarimeter

    CERN Document Server

    Kamae, Tuneyoshi; Arimoto, Makoto; Axelsson, Magnus; Bettolo, Cecilia Marini; Björnsson, Claes-Ingvar; Bogaert, Gilles; Carlson, Per; Craig, William; Ekeberg, Tomas; Engdegård, Olle; Fukazawa, Yasushi; Gunji, Shuichi; Hjalmarsdotter, Linnea; Iwan, Bianca; Kanai, Yoshikazu; Kataoka, Jun; Kawai, Nobuyuki; Kazejev, Jaroslav; Kiss, Mózsi; Klamra, Wlodzimierz; Larsson, Stefan; Madejski, Grzegorz; Mizuno, Tsunefumi; Ng, Johnny; Pearce, Mark; Ryde, Felix; Suhonen, Markus; Tajima, Hiroyasu; Takahashi, Hiromitsu; Takahashi, Tadayuki; Tanaka, Takuya; Thurston, Timothy; Ueno, Masaru; Varner, Gary; Yamamoto, Kazuhide; Yamashita, Yuichiro; Ylinen, Tomi; Yoshida, Hiroaki

    2007-01-01

    We describe a new balloon-borne instrument (PoGOLite) capable of detecting 10% polarisation from 200mCrab point-like sources between 25 and 80keV in one 6 hour flight. Polarisation measurements in the soft gamma-ray band are expected to provide a powerful probe into high-energy emission mechanisms as well as the distribution of magnetic fields, radiation fields and interstellar matter. At present, only exploratory polarisation measurements have been carried out in the soft gamma-ray band. Reduction of the large background produced by cosmic-ray particles has been the biggest challenge. PoGOLite uses Compton scattering and photo-absorption in an array of 217 well-type phoswich detector cells made of plastic and BGO scintillators surrounded by a BGO anticoincidence shield and a thick polyethylene neutron shield. The narrow FOV (1.25msr) obtained with well-type phoswich detector technology and the use of thick background shields enhance the detected S/N ratio. Event selections based on recorded phototube wavefor...

  2. Balloon-borne gamma-ray polarimetry

    CERN Document Server

    Pearce, Mark

    2011-01-01

    The physical processes postulated to explain the high-energy emission mechanisms of compact astrophysical sources often yield polarised soft gamma rays (X-rays). PoGOLite is a balloon-borne polarimeter operating in the 25-80 keV energy band. The polarisation of incident photons is reconstructed using Compton scattering and photoelectric absorption in an array of phoswich detector cells comprising plastic and BGO scintillators, surrounded by a BGO side anticoincidence shield. The polarimeter is aligned to observation targets using a custom attitude control system. The maiden balloon flight is scheduled for summer 2011 from the Esrange Space Centre with the Crab and Cygnus X-1 as the primary observational targets.

  3. GRAPE - A Balloon-Borne Gamma-Ray Polarimeter Experiment

    CERN Document Server

    Bloser, P F; Macri, J R; McConnell, M L; Narita, T; Ryan, J M

    2005-01-01

    This paper reviews the development status of GRAPE (the Gamma-Ray Polarimeter Experiment), a hard X-ray Compton Polarimeter. The purpose of GRAPE is to measure the polarization of hard X-rays in the 50-300 keV energy range. We are particularly interested in X-rays that are emitted from solar flares and gamma-ray bursts (GRBs), although GRAPE could also be employed in the study of other astrophysical sources. Accurately measuring the polarization of the emitted radiation will lead to a better understating of both emission mechanisms and source geometries. The GRAPE design consists of an array of plastic scintillators surrounding a central high-Z crystal scintillator. The azimuthal distribution of photon scatters from the plastic array into the central calorimeter provides a measure of the polarization fraction and polarization angle of the incident radiation. The design of the detector provides sensitivity over a large field-of-view (>pi steradian). The design facilitates the fabrication of large area arrays w...

  4. A burst of energetic gamma rays. [measured by balloon-borne instruments

    Science.gov (United States)

    Koga, R.; Simnett, G.; White, R. S.

    1974-01-01

    A burst of gamma rays with energies greater than 1 MeV occurring on May 14, 1972, at 201247 UT (151247 local time) was detected during a balloon flight from Palestine, Texas, at a float altitude of 4g/sq cm residual atmosphere. The detector was a tank of liquid scintillator 1m x 0.5 m x 15 cm surrounded by a 0.6 cm plastic scintillator in anticoincidence. The signal was 60 standard deviations above a steady background of 600 counts/sec. The flux was 0.12 (+0.07 or -0.04) gamma/sq cm, and the time integrated flux 20(+11 or -7) gamma/sq cm. Only one such event was seen during the 8 hours of observation in the daytime on May 14 and 15. Two sub-flares in H alpha occurred during the burst, but not coincident with the start time. A detector on the Solrad satellite observed X-rays on all channels 2 minutes after the gamma ray start time. This event is similar to three earlier reported events.

  5. Gamma Ray and Very Low Frequency Radio Observations from a Balloon-Borne Platform

    Science.gov (United States)

    Quinn, C.; Sheldon, A.; Cully, C. M.; Davalos, A.; Osakwe, C.; Galts, D.; Delfin, J.; Duffin, C.; Mansell, J.; Russel, M.; Bootsma, M.; Williams, R.; Patrick, M.; Mazzino, M. L.; Knudsen, D. J.

    2015-12-01

    The University of Calgary's Student Organization for Aerospace Research (SOAR) built an instrument to participate in the High Altitude Student Platform (HASP) initiative organized by Louisiana State University and supported by the NASA Balloon Program Office (BPO) and the Louisiana Space Consortium (LaSPACE). The HASP platform will be launched in early September 2015 from Fort Sumner, New Mexico and will reach heights of 36 kilometers with a flight duration of 15 to 20 hours. The instrument, Atmospheric Phenomenon Observer Gamma/VLF Emissions Experiment (APOGEE), measures Terrestrial Gamma-Ray Flashes (TGF) and sferics from lightning strikes with the use of Geiger tubes and a VLF detector. TGFs, which are quick bursts of high energy radiation that can occur alongside lightning, are believed to be the result of Relativistic Runaway Electron Avalanche (RREA). RREA occurs when a large number of relativistic electrons overcome atmospheric frictional forces and accelerate to relativistic velocities which excite secondary electrons that collide with the atmosphere causing bremsstrahlung radiation. Lightning strikes also produce sferics within the Extremely Low Frequency (ELF) and Very Low Frequency (VLF) bands which can be detected and used to locate the strikes. The goal of APOGEE is to further investigate the link between TGFs and RREA. These phenomena are very difficult to measure together as Bremsstrahlung radiation is easily detected from space but ionospheric reflection facilitates surface detection of sferics. A high altitude balloon provides a unique opportunity to study both phenomena using one instrument because both phenomena can easily be detected from its altitude. APOGEE has been designed and built by undergraduate students at the University of Calgary with faculty assistance and funding, and is equipped with three devices for data collection: a camera to have visual conformation of events, a series of Geiger Tubes to obtain directional gamma readings, and

  6. A concept for a soft gamma-ray concentrator using thin-film multilayer structures

    Science.gov (United States)

    Bloser, Peter F.; Shirazi, Farzane; Echt, Olof; Krzanowski, James E.; Legere, Jason S.; McConnell, Mark L.; Tsavalas, John G.; Wong, Emily N.; Aliotta, Paul H.

    2016-07-01

    We are investigating the use of thin-film, multilayer structures to form optics capable of concentrating soft gamma rays with energies greater than 100 keV, beyond the reach of current grazing-incidence hard X-ray mirrors. Alternating layers of low- and high-density materials (e.g., polymers and metals) will channel soft gamma-ray photons via total external reflection. A suitable arrangement of bent structures will then concentrate the incident radiation to a point. Gamma-ray optics made in this way offer the potential for soft gamma-ray telescopes with focal lengths of less than 10 m, removing the need for formation flying spacecraft and opening the field up to balloon-borne instruments. Following initial investigations conducted at Los Alamos National Laboratory, we have constructed and tested a prototype structure using spin coating combined with magnetron sputtering. We are now investigating whether it is possible to grow such flexible multi-layer structures with the required thicknesses and smoothness more quickly by using magnetron sputter and pulsed laser deposition techniques. We present the latest results of our fabrication and gamma-ray channeling tests, and describe our modeling of the sensitivity of potential concentrator-based telescope designs. If successful, this technology offers the potential for transformational increases in sensitivity while dramatically improving the system-level performance of future high-energy astronomy missions through reduced mass and complexity.

  7. Soft gamma rays from heavy WIMPs

    Science.gov (United States)

    Krauss, Manuel Ernst; Opferkuch, Toby; Staub, Florian; Winkler, Martin Wolfgang

    2016-12-01

    We propose an explanation of the galactic center gamma ray excess by supersymmetric WIMPs as heavy as 500 GeV. The lightest neutralino annihilates into vector-like leptons or quarks which cascade decay through intermediate Higgs bosons. Due to the long decay chains, the gamma ray spectrum is much softer than naively expected and peaks at GeV energies. The model predicts correlated diboson and dijet signatures to be tested at the LHC.

  8. Central Engine Memory of Gamma-Ray Bursts and Soft Gamma-Ray Repeaters

    CERN Document Server

    Zhang, Bin-Bin; Castro-Tirado, Alberto J

    2016-01-01

    Gamma-ray Bursts (GRBs) are bursts of $\\gamma$-rays generated from relativistic jets launched from catastrophic events such as massive star core collapse or binary compact star coalescence. Previous studies suggested that GRB emission is erratic, with no noticeable memory in the central engine. Here we report a discovery that similar light curve patterns exist within individual bursts for at least some GRBs. Applying the Dynamic Time Warping (DTW) method, we show that similarity of light curve patterns between pulses of a single burst or between the light curves of a GRB and its X-ray flare can be identified. This suggests that the central engine of at least some GRBs carries "memory" of its activities. We also show that the same technique can identify memory-like emission episodes in the flaring emission in Soft Gamma-Ray Repeaters (SGRs), which are believed to be Galactic, highly magnetized neutron stars named magnetars. Such a phenomenon challenges the standard black hole central engine models for GRBs, an...

  9. Central Engine Memory of Gamma-Ray Bursts and Soft Gamma-Ray Repeaters

    Science.gov (United States)

    Zhang, Bin-Bin; Zhang, Bing; Castro-Tirado, Alberto J.

    2016-04-01

    Gamma-ray bursts (GRBs) are bursts of γ-rays generated from relativistic jets launched from catastrophic events such as massive star core collapse or binary compact star coalescence. Previous studies suggested that GRB emission is erratic, with no noticeable memory in the central engine. Here we report a discovery that similar light curve patterns exist within individual bursts for at least some GRBs. Applying the Dynamic Time Warping method, we show that similarity of light curve patterns between pulses of a single burst or between the light curves of a GRB and its X-ray flare can be identified. This suggests that the central engine of at least some GRBs carries “memory” of its activities. We also show that the same technique can identify memory-like emission episodes in the flaring emission in soft gamma-ray repeaters (SGRs), which are believed to be Galactic, highly magnetized neutron stars named magnetars. Such a phenomenon challenges the standard black hole central engine models for GRBs, and suggest a common physical mechanism behind GRBs and SGRs, which points toward a magnetar central engine of GRBs.

  10. CENTRAL ENGINE MEMORY OF GAMMA-RAY BURSTS AND SOFT GAMMA-RAY REPEATERS

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Bin-Bin; Castro-Tirado, Alberto J. [Instituto de Astrofísica de Andalucá (IAA-CSIC), P.O. Box 03004, E-18080 Granada (Spain); Zhang, Bing, E-mail: zhang.grb@gmail.com [Department of Physics and Astronomy, University of Nevada, Las Vegas, NV 89154 (United States)

    2016-04-01

    Gamma-ray bursts (GRBs) are bursts of γ-rays generated from relativistic jets launched from catastrophic events such as massive star core collapse or binary compact star coalescence. Previous studies suggested that GRB emission is erratic, with no noticeable memory in the central engine. Here we report a discovery that similar light curve patterns exist within individual bursts for at least some GRBs. Applying the Dynamic Time Warping method, we show that similarity of light curve patterns between pulses of a single burst or between the light curves of a GRB and its X-ray flare can be identified. This suggests that the central engine of at least some GRBs carries “memory” of its activities. We also show that the same technique can identify memory-like emission episodes in the flaring emission in soft gamma-ray repeaters (SGRs), which are believed to be Galactic, highly magnetized neutron stars named magnetars. Such a phenomenon challenges the standard black hole central engine models for GRBs, and suggest a common physical mechanism behind GRBs and SGRs, which points toward a magnetar central engine of GRBs.

  11. Hard X / soft gamma ray polarimetry using a Laue lens

    CERN Document Server

    Barrière, Nicolas M; Ubertini, Pietro

    2011-01-01

    Hard X / soft gamma-ray polarimetric analysis can be performed efficiently by the study of Compton scattering anisotropy in a detector composed of fine pixels. But in the energy range above 100 keV where sources flux are extremely weak and instrumental background very strong, such delicate measurement is actually very difficult to perform. Laue lens is an emerging technology based on diffraction in crystals allowing the concentration of soft gamma rays. This kind of optics can be applied to realize an efficient high-sensitivity and high-angular resolution telescope, at the cost of a field of view reduced to a few arcmin though. A 20 m focal length telescope concept focusing in the 100 keV - 600 keV energy range is taken as example here to show that recent progresses in the domain of high-reflectivity crystals can lead to very appealing performance. The Laue lens being fully transparent to polarization, this kind of telescope would be well suited to perform polarimetric studies since the ideal focal plan is a ...

  12. The nature of plerions surrounding soft gamma-ray repeaters

    CERN Document Server

    Harding, A K

    1995-01-01

    Compact steady sources of X-ray emission have been detected at the positions of at least two soft gamma-ray repeaters (SGRs). These sources have been interpreted as synchrotron nebulae powered by the neutron star that is causing the bursts. We explore a plerion model for the sources surrounding SGRs where the steady observed emission is powered by the SGR bursts rather than by the spin-down of a pulsar. In this case there is no limit on the neutron star magnetic field. We find that the synchrotron lifetime of the particles injected into the plerion around SGR1806-20 is long enough to smear out nebular emission from individual bursts. Transient nebular emission would therefore not be detected following an SGR burst. The combined radio emission from multiple burst injections is expected to have a steeper spectrum than that of a typical plerion.

  13. Compact sources as the origin of the soft gamma-ray emission of the Milky Way

    DEFF Research Database (Denmark)

    Lebrun, F.; Terrier, R.; Bazzano, A.;

    2004-01-01

    the origin of the soft gamma-rays is therefore necessary to determine the dominant particle acceleration processes and to gain insights into the physical and chemical equilibrium of the interstellar medium(7). Here we report observations in the soft gamma-ray domain that reveal numerous compact sources. We...

  14. Soft $\\gamma$-ray Repeaters in Clusters of Massive Stars

    CERN Document Server

    Mirabel, I F; Chaty, S; Mirabel, Felix I; Fuchs, Yael; Chaty, and Sylvain

    1999-01-01

    Infrared observations of the environment of the two Soft Gamma-ray Repeaters(SGRs) with the best known locations on the sky show that they are associatedto clusters of massive stars. Observations with ISO revealed that SGR 1806-20is in a cluster of giant massive stars, still enshrouded in a dense cloud ofgas and dust. SGR 1900+14 is at the edge of a similar cluster that was recentlyfound hidden in the glare of a pair of M5 supergiant stars. Since none of thestars of these clusters has shown in the last years significant flux variationsin the infrared, these two SGRs do not form bound binary systems with massivestars. SGR 1806-20 is at only ~ 0.4 pc, and SGR 1900+14 at ~ 0.8 pc from thecenters of their parental star clusters. If these SGRs were born with typicalneutron star runaway velocities of ~ 300 km/s, they are not older than a few10$^{3}$ years. We propose that SGR 1806-20 and SGR 1900+14 are ideallaboratories to study the evolution of supernovae explosions insideinterstellar bubbles produced by the stro...

  15. Soft gamma-ray sources detected by INTEGRAL

    CERN Document Server

    Petry, D; Halloin, H; Strong, A

    2009-01-01

    We aim to exploit the available INTEGRAL/SPI data to provide time-averaged spectra of the brightest soft gamma-ray sources. Employing a maximum-likelihood fit technique for our SPI data analysis, we take as input to our source model the source catalog derived by Bouchet et al. (2008) from a SPI all-sky study. We use the first four years of public SPI data and extract spectra between 25 keV and 1 MeV for the 20 catalog sources detected by Bouchet et al. at 200 - 600 keV with >= 2.5 sigma. In order to verify our analysis, we also extract spectra for the same sources from the corresponding INTEGRAL/ISGRI data. We fit adequate spectral models to the energy range 25-1000 keV for SPI and 25-600 keV for ISGRI. We use our spectra from the Crab (which is among the 20 sources studied here) and an empty location in a crowded field to derive an estimation of the systematic errors. The agreement between our SPI and ISGRI measurements is good if we normalise them on the Crab spectrum. Our SPI flux measurements also agree w...

  16. A 3D CZT hard x-ray polarimeter for a balloon-borne payload

    DEFF Research Database (Denmark)

    Caroli, E.; Alvarez, J. M.; Auricchio, N.;

    2012-01-01

    Today it is widely recognised that a measurement of the polarization status of cosmic sources high energy emission is a key observational parameter to understand the active production mechanism and its geometry. Therefore new instrumentation operating in the hard X/soft γ rays energy range should...... be optimized also for this type of measurement. In this framework, we present the concept of a small high-performance spectrometer designed for polarimetry between 100 and 1000 keV suitable as a stratospheric balloon-borne payload dedicated to perform an accurate and reliable measurement of the polarization...... development results and possible improvements currently under study. Furthermore we describe a possible baseline design of the payload, which can be also seen as a pathfinder for a high performance focal plane detector in new hard X and soft gamma ray focussing telescopes and/or advanced Compton instruments...

  17. Limits for an inverse bremsstrahlung origin of the diffuse Galactic soft gamma-ray emission

    DEFF Research Database (Denmark)

    Pohl, M.

    1998-01-01

    RXTE, GINGA, and OSSE observations have revealed an intense low-energy gamma-ray continuum emission from the Galactic plane, which is commonly interpreted as evidence for the possible existence of a strong flux of low-energy cosmic ray electrons. In this Paper I discuss the scenario of a hadronic...... in case of energetic heavy nuclei the limits are violated by about an order of magnitude, for a large population of low-energy protons the implied gamma-ray line flux and pi(0)-decay continuum intensity are larger than the existing limits by at least a factor of 2.......-7 MeV emission from the Galactic plane, in concert with the constraints from pi(0)-decay gamma-ray emission at higher energies, are in serious conflict with an inverse bremsstrahlung origin of the Galactic soft gamma-ray emission for any physically plausible low-energy cosmic ray spectrum. While...

  18. Period derivative of the Soft Gamma-ray Repeater SGR 1627-41

    NARCIS (Netherlands)

    P. Esposito; A. Tiengo; S. Mereghetti; A. De Luca; G.L. Israel; D. Gotz; N. Rea; R. Turolla; S. Zane; P. Romano; M. Burgay; A. Possenti

    2009-01-01

    After nearly a decade of quiescence, the soft gamma-ray repeater SGR 1627-41 reactivated on 2008 May 28 with a bursting episode (Esposito et al. 2008, MNRAS, 390, L34). On 2008 September 27-28 we performed an XMM-Newton target of opportunity observation of the source and discovered its long-sought s

  19. Giant flares in soft gamma-ray repeaters and short GRBs.

    Science.gov (United States)

    Zane, S

    2007-05-15

    Soft gamma-ray repeaters (SGRs) are a peculiar family of bursting neutron stars that, occasionally, have been observed to emit extremely energetic giant flares (GFs), with energy release up to approximately 10(47) ergs(-1). These are exceptional and rare events. It has been recently proposed that GFs, if emitted by extragalactic SGRs, may appear at Earth as short gamma-ray bursts. Here, I will discuss the properties of the GFs observed in SGRs, with particular emphasis on the spectacular event registered from SGR 1806-20 in December 2004. I will review the current scenario for the production of the flare, within the magnetar model, and the observational implications.

  20. Soft Gamma-ray selected radio galaxies: favouring giant size discovery

    Science.gov (United States)

    Panessa, Francesca; Bassani, Loredana

    2016-07-01

    Using the recent INTEGRAL/IBIS and Swift/BAT surveys we have extracted a sample of radio galaxies selected in the soft gamma-ray band. The sample consists of known and candidate radio galaxies. The sample extraction criteria will be presented and its general properties outlined. In particular we provide strong evidence that this soft gamma-ray selection favours the discovery of large size radio objects, otherwise known as Giant Radio Galaxies or GRG. The main reasons and/or conditions leading to the formation of these sources are still unclear and this result suggests that they maybe related to exceptional internal properties of the source central engine, like a high jet power or a long activity time. Broad band analysis of new GRG, discovered during this work, will also be presented.

  1. The IBIS soft gamma-ray sky after 1000 INTEGRAL orbits

    CERN Document Server

    Bird, A J; Malizia, A; Fiocchi, M; Sguera, V; Bassani, L; Hill, A B; Ubertini, P; Winkler, C

    2016-01-01

    We report here an all-sky soft gamma-ray source catalog based on IBIS observations performed during the first 1000 orbits of INTEGRAL. The database for the construction of the source list consists of all good quality data available from launch in 2002 up to the end of 2010. This corresponds to $\\sim$110 Ms of scientific public observations with a concentrated coverage on the Galactic Plane and extragalactic deep exposures. This new catalog includes 939 sources above a 4.5 sigma significance threshold detected in the 17-100 keV energy band, of which 120 represent previously undiscovered soft gamma-ray emitters. The source positions are determined, mean fluxes are provided in two main energy bands, and are reported together with the overall source exposure. Indicative levels of variability are provided, and outburst times and durations are given for transient sources. Comparison is made with previous IBIS catalogs, and those from other similar missions.

  2. Developing a method for soft gamma-ray Laue lens assembly and calibration

    CERN Document Server

    Barrière, Nicolas M; Boggs, Steven E; Lowell, Alexander; Wade, Colin; Baugh, Max; von Ballmoos, Peter; Abrosimov, Nikolay V; Hanlon, Lorraine

    2013-01-01

    Laue lenses constitute a promising option for concentrating soft gamma rays with a large collection area and reasonable focal lengths. In astronomy they could lead to increased telescope sensitivity by one to two orders of magnitude, in particular for faint nuclear gamma-ray lines, but also for continua like hard X-ray tails from a variety of compact objects. Other fields like Homeland security and nuclear medicine share the same need for more sensitive gamma-ray detection systems and could find applications for gamma-ray focusing optics. There are two primary challenges for developing Laue lenses: the search for high-reflectivity and reproducible crystals, and the development of a method to accurately orient and fix the thousands of crystals constituting a lens. In this paper we focus on the second topic. We used our dedicated X-ray beamline and Laue lens assembly station to build a breadboard lens made of 15 crystals. This allowed us to test our tools and methods, as well as our simulation code and calibrat...

  3. Soft Gamma-ray selected radio galaxies: favouring giant size discovery

    CERN Document Server

    Bassani, L; Molina, M; Malizia, A; Dallacasa, D; Panessa, F; Bazzano, A; Ubertini, P

    2016-01-01

    Using the recent INTEGRAL/IBIS and Swift/BAT surveys we have extracted a sample of 64 confirmed plus 3 candidate radio galaxies selected in the soft gamma-ray band. The sample covers all optical classes and is dominated by objects showing a FR II radio morphology; a large fraction (70%) of the sample is made of radiative mode or High Excitation Radio Galaxies (HERG). We have measured the source size on NVSS, FIRST and SUMSS images and have compared our findings with data in the literature obtaining a good match. We surprisingly found that the soft gamma-ray selection favours the detection of large size radio galaxies: 60% of objects in the sample have size greater than 0.4 Mpc while around 22% reach dimension above 0.7 Mpc at which point they are classified as Giant Radio Galaxies or GRGs, the largest and most energetic single entities in the Universe. Their fraction among soft gamma ray selected radio galaxies is significantly larger than typically found in radio surveys, where only a few percent of objects ...

  4. Emission mechanism of GeV-quiet soft gamma-ray pulsars; A case for peculiar geometry?

    CERN Document Server

    Wang, Y; Takata, J; Leung, Gene C K; Cheng, K S

    2014-01-01

    There is a growing new class of young spin-down powered pulsars called GeV-quiet soft gamma-ray pulsar; (1) spectral turnover appears around~10MeV, (2) the X-ray spectra of below 20 keV can be described by power law with photon index around 1.2 and (3) the light curve in X-ray/soft gamma-ray bands shows single broad pulse. Their emission properties are distinct from the normal gamma-ray pulsars, for which the spectral peak in $\

  5. SMM hard X-ray observations of the soft gamma-ray repeater 1806-20

    Science.gov (United States)

    Kouveliotou, C.; Norris, J. P.; Cline, T. L.; Dennis, B. R.; Desai, U. D.; Orwig, L. E.

    1987-01-01

    Six bursts from the soft gamma-ray repeater (SGR) 1806-20 have been recorded with the SMM Hard X-ray Burst Spectrometer during a highly active phase in 1983. Rise and decay times of less than 5 ns have been detected. Time profiles of these events indicate low-level emission prior to and after the main peaks. The results suggest that SGRs are distinguished from classical gamma-ray bursts by repetition, softer nonvarying spectra, short durations, simple temporal profiles, and a tendency for source locations to correlate with Population I objects. SGR characteristics differ from those of type I X-ray bursts, but they appear to have similarities with the type II bursts from the Rapid Burster.

  6. Gravitational-wave bursts from soft gamma-ray repeaters Can they be detected?

    CERN Document Server

    Cuesta, H J M; Aguiar, O D; Horváth, J E

    1998-01-01

    In this letter we suggest a scenario for simultaneous emission of gravitational-wave and $\\gamma$-ray bursts (GRBs) from soft gamma-ray repeaters (SGRs). we argue that both of the radiations can be generated by a super-Eddington accreting neutron stars in X-ray binaries. In this model a supercritical accretion transient takes back onto the remnant star the disk leftover by the hydrodynamic instability phase of a low magnetized, rapidly rotating neutron star in a X-ray binary system. We estimate the rise timescale effective associated temperature $T_{eff} = 740 keV$, and the timescale for repeating a burst of $\\gamma$-rays $\\Delta \\tau_R = 11.3 yr$. Altogether, we find the associated GW amplitude and frequency to be $h_c = 2.7 \\times 10^{-23}/{(Hz)}^{1/2}$ and $f_{gw} = 966 Hz$, for a source distance $\\sim 55 kpc$. Detectability of the pulses by t he forthcoming GW anntenas is discussed and found likely.

  7. Imprints of superfluidity on magnetoelastic quasiperiodic oscillations of soft gamma-ray repeaters.

    Science.gov (United States)

    Gabler, Michael; Cerdá-Durán, Pablo; Stergioulas, Nikolaos; Font, José A; Müller, Ewald

    2013-11-22

    Our numerical simulations show that axisymmetric, torsional, magnetoelastic oscillations of magnetars with a superfluid core can explain the whole range of observed quasiperiodic oscillations (QPOs) in the giant flares of soft gamma-ray repeaters. There exist constant phase QPOs at f is 500 Hz), in good agreement with observations. The range of magnetic field strengths required to match the observed QPO frequencies agrees with that from spin-down estimates. These results suggest that there is at least one superfluid species in magnetar cores.

  8. Soft gamma-ray repeaters and anomalous X-ray pulsars as highly magnetized white dwarfs

    CERN Document Server

    Mukhopadhyay, Banibrata

    2016-01-01

    We show that the soft gamma-ray repeaters (SGRs) and anomalous X-ray pulsars (AXPs) can be explained as recently proposed highly magnetized white dwarfs (B-WDs). The radius and magnetic field of B-WDs are perfectly adequate to explain energies in SGRs/AXPs as the rotationally powered energy. While the highly magnetized neutron stars require an extra, observationally not well established yet, source of energy, the magnetized white dwarfs, yet following Chandrasekhar's theory (C-WDs), exhibit large ultra-violet luminosity which is observationally constrained from a strict upper limit.

  9. Measurements of the Soft Gamma-ray Emission from SN2014J with Suzaku

    CERN Document Server

    Terada, Y; Fukazawa, Y; Bamba, A; Ueda, Y; Katsuda, S; Enoto, T; Takahashi, T; Tamagawa, T; Roepke, F K; Summa, A; Diehl, R

    2016-01-01

    The hard X-ray detector (HXD) onboard {\\it Suzaku} measured soft $\\gamma$-rays from the Type Ia supernova SN2014J at $77\\pm2$ days after the explosion. Although the confidence level of the signal is about 90\\% (i.e., $2 \\sigma$), the $3 \\sigma$ upper limit has been derived at $< 2.2 \\times10^{-4}$ ph s$^{-1}$ cm$^{-2}$ in the 170 -- 250 keV band as the first independent measurement of soft $\\gamma$-rays with an instrument other than {\\it INTEGRAL}. For this analysis, we have examined the reproducibility of the NXB model of HXD/GSO using blank sky data. We find that the residual count rate in the 90 -- 500 keV band is distributed around an average of 0.19\\% with a standard deviation of 0.42\\% relative to the NXB rate. The averaged residual signals are consistent with that expected from the cosmic X-ray background. The flux of SN2014J derived from {\\it Suzaku} measurements taken in one snapshot at $t=77\\pm2$ days after the explosion is consistent with the {\\it INTEGRAL} values averaged over the period betwee...

  10. THE IBIS SOFT GAMMA-RAY SKY AFTER 1000 INTEGRAL ORBITS

    Energy Technology Data Exchange (ETDEWEB)

    Bird, A. J.; Hill, A. B. [School of Physics and Astronomy, University of Southampton, SO17 1BJ (United Kingdom); Bazzano, A.; Fiocchi, M.; Ubertini, P. [IAPS/INAF (Italy); Malizia, A.; Sguera, V.; Bassani, L. [IASF/INAF, Bologna (Italy); Winkler, C. [ESA-ESTEC, Research and Scientific Support Dept., Keplerlaan 1, 2201 AZ, Noordwijk (Netherlands)

    2016-03-15

    Here we report an all-sky soft gamma-ray source catalog based on IBIS observations performed during the first 1000 orbits of INTEGRAL. The database for the construction of the source list consists of all good-quality data available, from the launch in 2002, up to the end of 2010. This corresponds to ∼110 Ms of scientific public observations, with a concentrated coverage on the Galactic Plane and extragalactic deep exposures. This new catalog includes 939 sources above a 4.5σ significance threshold detected in the 17–100 keV energy band, of which 120 sources represent previously undiscovered soft gamma-ray emitters. The source positions are determined, mean fluxes are provided in two main energy bands, and these are both reported together with the overall source exposure. Indicative levels of variability are provided, and outburst times and durations are given for transient sources. A comparison is made with previous IBIS catalogs and catalogs from other similar missions.

  11. The IBIS Soft Gamma-Ray Sky after 1000 Integral Orbits

    Science.gov (United States)

    Bird, A. J.; Bazzano, A.; Malizia, A.; Fiocchi, M.; Sguera, V.; Bassani, L.; Hill, A. B.; Ubertini, P.; Winkler, C.

    2016-03-01

    Here we report an all-sky soft gamma-ray source catalog based on IBIS observations performed during the first 1000 orbits of INTEGRAL. The database for the construction of the source list consists of all good-quality data available, from the launch in 2002, up to the end of 2010. This corresponds to ˜110 Ms of scientific public observations, with a concentrated coverage on the Galactic Plane and extragalactic deep exposures. This new catalog includes 939 sources above a 4.5σ significance threshold detected in the 17-100 keV energy band, of which 120 sources represent previously undiscovered soft gamma-ray emitters. The source positions are determined, mean fluxes are provided in two main energy bands, and these are both reported together with the overall source exposure. Indicative levels of variability are provided, and outburst times and durations are given for transient sources. A comparison is made with previous IBIS catalogs and catalogs from other similar missions. Based on observations with INTEGRAL, an ESA project with instruments and a science data center funded by ESA member states (especially the PI countries: Denmark, France, Germany, Italy, Switzerland, Spain), Czech Republic and Poland, and with the participation of Russia and the USA.

  12. Candidate counterparts to the soft gamma-ray flare in the direction of LS I +61303

    CERN Document Server

    Munoz-Arjonilla, A J; Combi, J A; Luque-Escamilla, P; Sanchez-Sutil, J R; Zabalza, V; Paredes, J M

    2009-01-01

    Context. A short duration burst reminiscent of a soft gamma-ray repeater/anomalous X-ray pulsar behaviour was detected in the direction of LS I +61 303 by the Swift satellite. While the association with this well known gamma-ray binary is likely, a different origin cannot be excluded. Aims. We explore the error box of this unexpected flaring event and establish the radio, near-infrared and X-ray sources in our search for any peculiar alternative counterpart. Methods. We carried out a combined analysis of archive Very Large Array radio data of LS I +61 303 sensitive to both compact and extended emission. We also reanalysed previous near infrared observations with the 3.5 m telescope of the Centro Astronomico Hispano Aleman and X-ray observations with the Chandra satellite. Results. Our deep radio maps of the LS I +61 303 environment represent a significant advancement on previous work and 16 compact radio sources in the LS I +61 303 vicinity are detected. For some detections, we also identify near infrared and...

  13. Soft Gamma-ray Detector for the ASTRO-H Mission

    CERN Document Server

    Tajima, Hiroyasu; Enoto, Teruaki; Fukazawa, Yasushi; Gilmore, Kirk; Kamae, Tuneyoshi; Kataoka, Jun; Kawaharada, Madoka; Kokubun, Motohide; Laurent, Philippe; Lebrun, Francois; Limousin, Olivier; Madejski, Greg; Makishima, Kazuo; Mizuno, Tsunefumi; Nakazawa, Kazuhiro; Ohno, Masanori; Ohta, Masayuki; Sato, Goro; Sato, Rie; Takahashi, Hiromitsu; Takahashi, Tadayuki; Tanaka, Takaaki; Tashiro, Makoto; Terada, Yukikatsu; Uchiyama, Yasunobu; Watanabe, Shin; Yamaoka, Kazutaka; Yonetoku, Daisuke; 10.1117/12.857531

    2010-01-01

    ASTRO-H is the next generation JAXA X-ray satellite, intended to carry instruments with broad energy coverage and exquisite energy resolution. The Soft Gamma-ray Detector (SGD) is one of ASTRO-H instruments and will feature wide energy band (40-600 keV) at a background level 10 times better than the current instruments on orbit. SGD is complimentary to ASTRO-H's Hard X-ray Imager covering the energy range of 5-80 keV. The SGD achieves low background by combining a Compton camera scheme with a narrow field-of-view active shield where Compton kinematics is utilized to reject backgrounds. The Compton camera in the SGD is realized as a hybrid semiconductor detector system which consists of silicon and CdTe (cadmium telluride) sensors. Good energy resolution is afforded by semiconductor sensors, and it results in good background rejection capability due to better constraints on Compton kinematics. Utilization of Compton kinematics also makes the SGD sensitive to the gamma-ray polarization, opening up a new window ...

  14. Optical constants in the hard x-ray/soft gamma-ray range

    DEFF Research Database (Denmark)

    Cooper-Jensen, Carsten P.; Brejnholt, Nicolai; Romaine, S.

    2008-01-01

    Future astrophysics missions operating in the hard X-ray/Soft Gamma ray range is slated to carry novel focusing telescopes based on the use of depth graded multilayer reflectors. Current design studies show that, at the foreseen focal lengths, it should be feasible to focus X-rays at energies...... as high as 300 keV. These designs use extrapolations of theoretical and experimentally determined optical constants below 100 keV. We have previously shown that determining the optical constants from traditional single layer film above 40 keV is very difficult. One needs to have substrates which are very...... and compare these to theoretically calculated values and previous experiments....

  15. The soft gamma-ray detector (SGD) onboard ASTRO-H

    Science.gov (United States)

    Watanabe, Shin; Tajima, Hiroyasu; Fukazawa, Yasushi; Blandford, Roger; Enoto, Teruaki; Goldwurm, Andrea; Hagino, Kouichi; Hayashi, Katsuhiro; Ichinohe, Yuto; Kataoka, Jun; Katsuta, Junichiro; Kitaguchi, Takao; Kokubun, Motohide; Laurent, Philippe; Lebrun, François; Limousin, Olivier; Madejski, Grzegorz M.; Makishima, Kazuo; Mizuno, Tsunefumi; Mori, Kunishiro; Nakamori, Takeshi; Nakano, Toshio; Nakazawa, Kazuhiro; Noda, Hirofumu; Odaka, Hirokazu; Ohno, Masanori; Ohta, Masayuki; Saito, Shinya; Sato, Goro; Sato, Rie; Takeda, Shin'ichiro; Takahashi, Hiromitsu; Takahashi, Tadayuki; Tanaka, Takaaki; Tanaka, Yasuyuki; Terada, Yukikatsu; Uchiyama, Hideki; Uchiyama, Yasunobu; Yamaoka, Kazutaka; Yatsu, Yoichi; Yonetoku, Daisuke; Yuasa, Takayuki

    2016-07-01

    The Soft Gamma-ray Detector (SGD) is one of science instruments onboard ASTRO-H (Hitomi) and features a wide energy band of 60{600 keV with low backgrounds. SGD is an instrument with a novel concept of "Narrow field-of-view" Compton camera where Compton kinematics is utilized to reject backgrounds which are inconsistent with the field-of-view defined by the active shield. After several years of developments, the flight hardware was fabricated and subjected to subsystem tests and satellite system tests. After a successful ASTRO-H (Hitomi) launch on February 17, 2016 and a critical phase operation of satellite and SGD in-orbit commissioning, the SGD operation was moved to the nominal observation mode on March 24, 2016. The Compton cameras and BGO-APD shields of SGD worked properly as designed. On March 25, 2016, the Crab nebula observation was performed, and, the observation data was successfully obtained.

  16. Soft gamma-ray optics: new Laue lens design and performance estimates

    CERN Document Server

    Barriere, N; Abrosimov, N; Von Ballmoos, P; Bastie, P; Courtois, P; Jentschel, M; Knödlseder, J; Rousselle, J; Ubertini, P

    2009-01-01

    Laue lenses are an emerging technology based on diffraction in crystals that allows the concentration of soft gamma rays. This kind of optics that works in the 100 keV - 1.5 MeV band can be used to realize an high-sensitivity and high-angular resolution telescope (in a narrow field of view). This paper reviews the recent progresses that have been done in the development of efficient crystals, in the design study and in the modelisation of the answer of Laue lenses. Through the example of a new concept of 20 m focal length lens focusing in the 100 keV - 600 keV band, the performance of a telescope based on a Laue lens is presented. This lens uses the most efficient mosaic crystals in each sub-energy range in order to yield the maximum reflectivity. Imaging capabilities are investigated and shows promising results.

  17. Quiet but still bright: XMM-Newton observations of the soft gamma-ray repeater SGR 0526-66

    NARCIS (Netherlands)

    A. Tiengo; P. Esposito; S. Mereghetti; G.L. Israel; L. Stella; R. Turolla; S. Zane; N. Rea; D. Götz; M. Feroci

    2009-01-01

    SGR 0526-66 was the first soft gamma-ray repeater (SGR) from which a giant flare was detected in March 1979, suggesting the existence of magnetars, i.e. neutron stars powered by the decay of their extremely strong magnetic field. Since then, very little information has been obtained on this object,

  18. GAMMA-RAY OBSERVATIONS OF CYGNUS X-1 ABOVE 100 MeV IN THE HARD AND SOFT STATES

    Energy Technology Data Exchange (ETDEWEB)

    Sabatini, S.; Tavani, M.; Del Santo, M.; Campana, R.; Evangelista, Y.; Piano, G.; Del Monte, E.; Giusti, M.; Striani, E. [INAF/IAPS-Roma, I-00133 Roma (Italy); Coppi, P. [Yale University, P.O. Box 208101, New Haven, CT 06520-8101 (United States); Pooley, G. [Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE (United Kingdom); Chen, A.; Giuliani, A. [INAF/IASF-Milano, I-20133 Milano (Italy); Bulgarelli, A. [INAF/IASF-Bologna, I-40129 Bologna (Italy); Cattaneo, P. W. [INFN-Pavia, I-27100 Pavia (Italy); Colafrancesco, S. [INAF-OAR, I-00040 Monteporzio Catone (Italy); Longo, F. [Dip. Fisica and INFN Trieste, I-34127 Trieste (Italy); Morselli, A. [INFN Roma Tor Vergata, I-00133 Roma (Italy); Pellizzoni, A. [INAF-OAC, I-09012 Capoterra (Italy); Pilia, M. [ASTRON, The Netherlands Institute for Radio Astronomy, Postbus 2, 7990 AA, Dwingeloo (Netherlands); and others

    2013-04-01

    We present the results of multi-year gamma-ray observations by the AGILE satellite of the black hole binary system Cygnus X-1. In a previous investigation we focused on gamma-ray observations of Cygnus X-1 in the hard state during the period mid-2007/2009. Here we present the results of the gamma-ray monitoring of Cygnus X-1 during the period 2010/mid-2012 which includes a remarkably prolonged 'soft state' phase (2010 June-2011 May). Previous 1-10 MeV observations of Cyg X-1 in this state hinted at a possible existence of a non-thermal particle component with substantial modifications of the Comptonized emission from the inner accretion disk. Our AGILE data, averaged over the mid-2010/mid-2011 soft state of Cygnus X-1, provide a significant upper limit for gamma-ray emission above 100 MeV of F{sub soft} < 20 Multiplication-Sign 10{sup -8} photons cm{sup -2} s{sup -1} , excluding the existence of prominent non-thermal emission above 100 MeV during the soft state of Cygnus X-1. We discuss theoretical implications of our findings in the context of high-energy emission models of black hole accretion. We also discuss possible gamma-ray flares detected by AGILE. In addition to a previously reported episode observed by AGILE in 2009 October during the hard state, we report a weak but important candidate for enhanced emission which occurred at the end of 2010 June (2010 June 30 10:00-2010 July 2 10:00 UT) exactly coinciding with a hard-to-soft state transition and before an anomalous radio flare. An appendix summarizes all previous high-energy observations and possible detections of Cygnus X-1 above 1 MeV.

  19. A photon splitting cascade model of soft gamma-ray repeaters

    CERN Document Server

    Harding, A K; Harding, Alice K; Baring, Matthew G

    1996-01-01

    The spectra of soft gamma-ray repeaters (SGRs), with the exception of the March 5, 1979 main burst, are characterized by high-energy cutoffs around 30 keV and low-energy turnovers that are much steeper than a Wien spectrum. Baring (1995) found that the spectra of cascades due to photon splitting in a very strong, homogeneous magnetic field can soften spectra and produce good fits to the soft spectra of SGRs. Magnetic field strengths somewhat above the QED critical field strength B_{\\rm cr}, where B_{\\rm cr} = 4.413 \\times 10^{13} G, is required to produce cutoffs at 30-40 keV. We have improved upon this model by computing Monte Carlo photon splitting cascade spectra in a neutron star dipole magnetic field, including effects of curved space-time in a Schwarzschild metric. We investigate spectra produced by photons emitted at different locations and observer angles. We find that the general results of Baring hold for surface emission throughout most of the magnetosphere, but that emission in equatorial regions ...

  20. Measurements of the Soft Gamma-Ray Emission from SN2014J with Suzaku

    Science.gov (United States)

    Terada, Y.; Maeda, K.; Fukazawa, Y.; Bamba, A.; Ueda, Y.; Katsuda, S.; Enoto, T.; Takahashi, T.; Tamagawa, T.; Röpke, F. K.; Summa, A.; Diehl, R.

    2016-05-01

    The hard X-ray detector (HXD) on board Suzaku measured soft γ-rays from the SN Ia SN2014J at 77 ± 2 days after the explosion. Although the confidence level of the signal is about 90% (i.e., 2σ), the 3σ upper limit has been derived at X-ray background. The flux of SN2014J derived from Suzaku measurements taken in one snapshot at t = 77 ± 2 days after the explosion is consistent with the INTEGRAL values averaged over the period between t = 50 and 100 days and also with explosion models of single or double degenerate scenarios. Being sensitive to the total ejecta mass surrounding the radioactive material, the ratio between continuum and line flux in the soft gamma-ray regime might distinguish different progenitor models. The Suzaku data have been examined with this relation at t = 77 ± 2 days, but could not distinguish models between single and double degenerate-progenitors. We disfavor explosion models with larger 56Ni masses than 1 M ⊙, from our 1σ error on the 170-250 keV X-ray flux of (1.2 ± 0.7) × 10-4 ph s-1 cm-2.

  1. Soft gamma-ray repeaters and anomalous X-ray pulsars as highly magnetized white dwarfs

    Science.gov (United States)

    Mukhopadhyay, Banibrata; Rao, A. R.

    2016-05-01

    We explore the possibility that soft gamma-ray repeaters (SGRs) and anomalous X-ray pulsars (AXPs) are powered by highly magnetized white dwarfs (B-WDs). We take a sample of SGRs and AXPs and provide the possible parameter space in mass, radius, and surface magnetic field based on their observed properties (period and its derivative) and the assumption that these sources obey the mass-radius relation derived for the B-WDs. The radius and magnetic field of B-WDs are adequate to explain energies in SGRs/AXPs as the rotationally powered energy. In addition, B-WDs also adequately explain the perplexing radio transient GCRT J1745-3009 as a white dwarf pulsar. Note that the radius and magnetic fields of B-WDs are neither extreme (unlike of highly magnetized neutron stars) nor ordinary (unlike of magnetized white dwarfs, yet following the Chandrasekhar's mass-radius relation (C-WDs)). In order to explain SGRs/AXPs, while the highly magnetized neutron stars require an extra, observationally not well established yet, source of energy, the C-WDs predict large ultra-violet luminosity which is observationally constrained from a strict upper limit. Finally, we provide a set of basic differences between the magnetar and B-WD hypotheses for SGRs/AXPs.

  2. Soft gamma-ray repeaters and anomalous X-ray pulsars as highly magnetized white dwarfs

    CERN Document Server

    Mukhopadhyay, Banibrata

    2016-01-01

    We explore the possibility that soft gamma-ray repeaters (SGRs) and anomalous X-ray pulsars (AXPs) are powered by highly magnetized white dwarfs (B-WDs). We take a sample of SGRs and AXPs and provide the possible parameter space in mass, radius, and surface magnetic field based on their observed properties (period and its derivative) and the assumption that these sources obey the mass-radius relation derived for the B-WDs. The radius and magnetic field of B-WDs are adequate to explain energies in SGRs/AXPs as the rotationally powered energy. In addition, B-WDs also adequately explain the perplexing radio transient GCRT J1745-3009 as a white dwarf pulsar. Note that the radius and magnetic fields of B-WDs are neither extreme (unlike of highly magnetized neutron stars) nor ordinary (unlike of magnetized white dwarfs, yet following the Chandrasekhar's mass-radius relation (C-WDs)). In order to explain SGRs/AXPs, while the highly magnetized neutron stars require an extra, observationally not well established yet, ...

  3. Spin-down rate and inferred dipole magnetic field of the soft gamma-ray repeater SGR 1627-41

    NARCIS (Netherlands)

    P. Esposito; M. Burgay; A. Possenti; R. Turolla; S. Zane; A. De Luca; A. Tiengo; G.L. Israel; F. Mattana; S. Mereghetti; M. Bailes; P. Romano; D. Götz; N. Rea

    2009-01-01

    Using Chandra data taken on 2008 June, we detected pulsations at 2.59439(4) s in the soft gamma-ray repeater SGR 1627-41. This is the second measurement of the source spin period and allows us to derive for the first time a long-term spin-down rate of (1.9 +/- 0.4)E-11 s/s. From this value we infer

  4. Attitude determination for balloon-borne experiments

    CERN Document Server

    Gandilo, N N; Amiri, M; Angile, F E; Benton, S J; Bock, J J; Bond, J R; Bryan, S A; Chiang, H C; Contaldi, C R; Crill, B P; Devlin, M J; Dober, B; Dore, O P; Farhang, M; Filippini, J P; Fissel, L M; Fraisse, A A; Fukui, Y; Galitzki, N; Gambrel, A E; Golwala, S; Gudmundsson, J E; Halpern, M; Hasselfield, M; Hilton, G C; Holmes, W A; Hristov, V V; Irwin, K D; Jones, W C; Kermish, Z D; Klein, J; Korotkov, A L; Kuo, C L; MacTavish, C J; Mason, P V; Matthews, T G; Megerian, K G; Moncelsi, L; Morford, T A; Mroczkowski, T K; Nagy, J M; Netterfield, C B; Novak, G; Nutter, D; O'Brient, R; Pascale, E; Poidevin, F; Rahlin, A S; Reintsema, C D; Ruhl, J E; Runyan, M C; Savini, G; Scott, D; Shariff, J A; Soler, J D; Thomas, N E; Trangsrud, A; Truch, M D; Tucker, C E; Tucker, G S; Tucker, R S; Turner, A D; Ward-Thompson, D; Weber, A C; Wiebe, D V; Young, E Y

    2014-01-01

    An attitude determination system for balloon-borne experiments is presented. The system provides pointing information in azimuth and elevation for instruments flying on stratospheric balloons over Antarctica. In-flight attitude is given by the real-time combination of readings from star cameras, a magnetometer, sun sensors, GPS, gyroscopes, tilt sensors and an elevation encoder. Post-flight attitude reconstruction is determined from star camera solutions, interpolated by the gyroscopes using an extended Kalman Filter. The multi-sensor system was employed by the Balloon-borne Large Aperture Submillimeter Telescope for Polarimetry (BLASTPol), an experiment that measures polarized thermal emission from interstellar dust clouds. A similar system was designed for the upcoming flight of SPIDER, a Cosmic Microwave Background polarization experiment. The pointing requirements for these experiments are discussed, as well as the challenges in designing attitude reconstruction systems for high altitude balloon flights. ...

  5. Supernova remnant candidates for the soft gamma-ray repeater 1900+14

    Science.gov (United States)

    Vasisht, G.; Kulkarni, S. R.; Frail, D. A.; Greiner, J.

    1994-01-01

    Motivated by the association of two soft gamma-ray repeaters (SGRs) with supernova remnants (SNR) we have carried out radio, optical and X-ray studies of two cataloged SNRs in the large KONUS error box 11 deg x 8 min of SGR 1900+14. Our very large array (VLA) observations of SNR G43.9+1.6 do not reveal any obvious plerionic component. A radio flat-spectrum source, close to, but outside the error box was found. We suggest this to be a distant H II region foreground to the SNR. A sensitive VLA image at meter wavelengths show that the other SNR, G42.8+0.6, is an ordinary typical SNR with a shell morphology with no peculiarities such as a plerionic component. No ROSAT source with an apparent flux greater than or approximately 10(exp -13) ergs cm(exp -2) s(exp -1) is found within the two SNRs. Recently, Hurley et al. have reported a new very small error box close to G42.8+0.6. There is no radio feature within or close to the error box. However, a ROSAT source is found just outside this localization. We speculate that this is the quiescent X-ray counterpart of SGR 1900+14. We suggest that SGR 1900+14 is a neutron star that was born with high speed which has now overtaken the expanding shell of SNR G42.8+0.6. Owing to the low confining pressure, there has been no development of a synchrotron bubble which explains the absence of the radio plerion. In our picture, SGR 1900+14 is the oldest known SGR.

  6. Wide band X-ray Imager (WXI) and Soft Gamma-ray Detector (SGD) for the NeXT Mission

    CERN Document Server

    Takahashi, T; Dotani, T; Fukazawa, Y; Hayashida, K; Kamae, T; Kataoka, J; Kawai, N; Kitamoto, S; Kohmura, T; Kokubun, M; Koyama, K; Makishima, K; Matsumoto, H; Miyata, E; Murakami, T; Nakazawa, K; Momachi, M; Ozaki, M; Tajima, H; Tashiro, M; Tamagawa, T; Terada, Y; Tsunemi, H; Tsuru, T; Yamaoka, K; Yonetoku, D; Yoshida, A

    2004-01-01

    The NeXT mission has been proposed to study high-energy non-thermal phenomena in the universe. The high-energy response of the super mirror will enable us to perform the first sensitive imaging observations up to 80 keV. The focal plane detector, which combines a fully depleted X-ray CCD and a pixellated CdTe detector, will provide spectra and images in the wide energy range from 0.5 keV to 80 keV. In the soft gamma-ray band up to ~1 MeV, a narrow field-of-view Compton gamma-ray telescope utilizing several tens of layers of thin Si or CdTe detector will provide precise spectra with much higher sensitivity than present instruments. The continuum sensitivity will reach several times 10^(-8) photons/s/keV/cm^(2) in the hard X-ray region and a few times10^(-7) photons/s/keV/cm^(2) in the soft gamma-ray region.

  7. A balloon-borne integrating nephelometer

    Energy Technology Data Exchange (ETDEWEB)

    Brown, G.S.; Apple, M.L. (Sandia National Labs., Albuquerque, NM (USA)); Weiss, R.E. (Radiance Research, Seattle, WA (USA))

    1990-09-01

    A balloon-borne integrating nephelometer has been successfully developed and flown by Sandia National Laboratories and Radiance Research. This report details instrument design, calibration and data conversion procedure. Free and tethered balloon transport and telemetry systems are described. Data taken during March 1989 South-Central New Mexico free flight ascents are presented as vertical profiles of atmospheric particle scattering coefficient, temperature and balloon heading. Data taken during December 1989 Albuquerque, New Mexico tethered flights are also presented as vertical profiles. Data analysis shows superior instrument performance. 5 refs., 22 figs.

  8. Optical constants in the hard X-ray/Soft gamma ray range of selected materials for multilayer reflectors

    DEFF Research Database (Denmark)

    Cooper-Jensen, Carsten P.; Romaine, S.; Bruni, R.

    2007-01-01

    Future Astrophysics missions operating in the hard X-ray/Soft Gamma ray range is slated to carry novel focusing telescopes based on the use of depth graded multilayer reflectors. Current design studies show that, at the foreseen focal lengths, it should be feasible to focus X-rays at energies...... as high as 300 keV. These designs use extrapolations of theoretical and experimentally determined optical constants from below 200 keV. In this paper we report on the first experimental determination of optical constants up to and above 200 keV. We present these first results as obtained at the National...

  9. Upper limit on the radio emission from the soft gamma-ray repeater SGR 1833-0832

    Science.gov (United States)

    Burgay, M.; Possenti, A.; Esposito, P.; Israel, G. L.; Rea, N.; Sarkissian, J.; Tiengo, A.; Turolla, R.; Zane, S.; Gotz, D.; Stella, L.; Mereghetti, S.

    2010-03-01

    The soft gamma-ray repeater J1833-0832 has been discovered on 2010 March 19 thanks to the detection of a short burst by Swift (GCN #10526). Prompted by the detection of a radio outburst following the X-ray transient activity of two other magnetars, the anomalous X-ray pulsars XTE J1810-197 and 1E 1547.0-5408 (Camilo et al. 2006, Nature, 442, 892; 2007, ApJ, 666, L93), we observed the source with the 64-m Parkes radio telescope.

  10. Balloon-Borne, High-Energy Astrophysics: Experiences from the 1960s to the 1980s

    Science.gov (United States)

    Fishman, Gerald J.

    2008-01-01

    Observational high-energy astrophysics in the hard-x-ray and gamma-ray regions owes its development and initial successes to the balloon-borne development of detector systems, as well as pioneering observations, primarily in the timeframe from the 1960s to the 1990s. I will describe some of the first observations made by the Rice University balloon group in the 1960s, including the impetus for these observations. The appearance of SN 1987a led to several balloon-flight campaigns, sponsored by NASA, from Alice Springs, Australia in 1987 and 1988. During the 1980s, prototypes of instruments for the Compton Gamma Ray Observatory were flown on many balloon flights, which greatly enhanced the success of that mission.

  11. The Si/CdTe semiconductor Compton camera of the ASTRO-H Soft Gamma-ray Detector (SGD)

    CERN Document Server

    Watanabe, Shin; Fukazawa, Yasushi; Ichinohe, Yuto; Takeda, Shin'ichiro; Enoto, Teruaki; Fukuyama, Taro; Furui, Shunya; Genba, Kei; Hagino, Kouichi; Harayama, Astushi; Kuroda, Yoshikatsu; Matsuura, Daisuke; Nakamura, Ryo; Nakazawa, Kazuhiro; Noda, Hirofumi; Odaka, Hirokazu; Ohta, Masayuki; Onishi, Mitsunobu; Saito, Shinya; Sato, Goro; Sato, Tamotsu; Takahashi, Tadayuki; Tanaka, Takaaki; Togo, Atsushi; Tomizuka, Shinji

    2015-01-01

    The Soft Gamma-ray Detector (SGD) is one of the instrument payloads onboard ASTRO-H, and will cover a wide energy band (60--600 keV) at a background level 10 times better than instruments currently in orbit. The SGD achieves low background by combining a Compton camera scheme with a narrow field-of-view active shield. The Compton camera in the SGD is realized as a hybrid semiconductor detector system which consists of silicon and cadmium telluride (CdTe) sensors. The design of the SGD Compton camera has been finalized and the final prototype, which has the same configuration as the flight model, has been fabricated for performance evaluation. The Compton camera has overall dimensions of 12 cm x 12 cm x 12 cm, consisting of 32 layers of Si pixel sensors and 8 layers of CdTe pixel sensors surrounded by 2 layers of CdTe pixel sensors. The detection efficiency of the Compton camera reaches about 15% and 3% for 100 keV and 511 keV gamma rays, respectively. The pixel pitch of the Si and CdTe sensors is 3.2 mm, and ...

  12. Beam Test of a Prototype Phoswich Detector Assembly forthe PoGOLite Astronomical Soft Gamma-ray Polarimeter

    Energy Technology Data Exchange (ETDEWEB)

    Kanai, Y.; Ueno, M.; Kataoka, J.; Arimoto, M.; Kawai, N.; /Tokyo Inst. Tech.; Yamamoto, K.; Mizuno, T.; Fukazawa, Y.; /Hiroshima U.; Kiss, M.; Ylinen, T.; Bettolo,; Carlson, P.; /Royal Inst. Tech., Stockholm; P.Chen d, B.Craig d, T.Kamae d, G.Madejski d, J.S.T.Ng; Rogers, R.; Tajima, H.; Thurston, T.S.; /SLAC; Saito, Y.; Takahashi, T.; Gunji, S.; /Yamagata U.; Bjornsson, C-I.; Larsson, S.; /Stockholm U. /Ecole Polytechnique /KEK, Tsukuba

    2007-01-17

    We report about the beam test on a prototype of the balloon-based astronomical soft gamma-ray polarimeter, PoGOLite (Polarized Gamma-ray Observer--Light Version) conducted at KEK Photon Factory, a synchrotron radiation facility in Japan. The synchrotron beam was set at 30, 50, and 70 keV and its polarization was monitored by a calibrated polarimeter. The goal of the experiment was to validate the flight design of the polarimeter. PoGOLite is designed to measure polarization by detecting a Compton scattering and the subsequent photo-absorption in an array of 217 well-type phoswich detector cells (PDCs). The test setup included a first flight model PDC and a front-end electronics to select and reconstruct valid Compton scattering events. The experiment has verified that the flight PDC can detect recoil electrons and select valid Compton scattering events down to 30 keV from background. The measure azimuthal modulations (34.4 %, 35.8 % and 37.2 % at 30, 50, and 70 keV, respectively) agreed within 10% (relative) with the predictions by Geant4 implemented with dependence on the initial and final photon polarizations.

  13. XMM-Newton discovery of 2.6 s pulsations in the soft gamma-ray repeater SGR 1627-41

    NARCIS (Netherlands)

    P. Esposito; A. Tiengo; S. Mereghetti; G.L. Israel; A. De Luca; D. Götz; N. Rea; R. Turolla; S. Zane

    2009-01-01

    After nearly a decade of quiescence, the soft gamma-ray repeater SGR 1627-41 reactivated on 2008 May 28 with a bursting episode followed by a slowly decaying enhancement of its persistent emission. To search for the still unknown spin period of this SGR taking advantage of its high flux state, we pe

  14. Physics of reflective optics for the soft gamma-ray photon energy range

    DEFF Research Database (Denmark)

    Fernández-Perea, Mónica; Descalle, Marie-Anne; Soufli, Regina

    2013-01-01

    Traditional multilayer reflective optics that have been used in the past for imaging at x-ray photon energies as high as 200 keV are governed by classical wave phenomena. However, their behavior at higher energies is unknown, because of the increasing effect of incoherent scattering and the disag......Traditional multilayer reflective optics that have been used in the past for imaging at x-ray photon energies as high as 200 keV are governed by classical wave phenomena. However, their behavior at higher energies is unknown, because of the increasing effect of incoherent scattering...... and the disagreement between experimental and theoretical optical properties of materials in the hard x-ray and gamma-ray regimes. Here, we demonstrate that multilayer reflective optics can operate efficiently and according to classical wave physics up to photon energies of at least 384 keV. We also use particle...... transport simulations to quantitatively determine that incoherent scattering takes place in the mirrors but it does not affect the performance at the Bragg angles of operation. Our results open up new possibilities of reflective optical designs in a spectral range where only diffractive optics (crystals...

  15. Background Information: Magnetars, Soft Gamma-Ray Repeaters and the Most Powerful Magnetic Fields in the Universe

    Science.gov (United States)

    1998-08-01

    Near the end of its life, a star more massive than our Sun finds itself no longer able to support its own weight from the crush of gravity and so it collapses, producing an expanding shock wave that sweeps through the surrounding gas, creating what is called a supernova remnant. All that remains of the original star is a dense, compact object known as a neutron star. Magnetars are the latest addition to the "zoo" of neutron stars and they are truly exotic beasts with magnetic fields hundreds of millions of times stronger than have ever been seen on Earth. The story which led to the prediction of magnetars and then to their discovery is given elsewhere. Here we will focus on the other part of the story, the supernova remnants born at the same time as magnetars and the diffuse emission produced by the energetic outpourings of the magnetars. All four of the soft gamma-ray repeaters that we currently know are located in or near a supernova remnant. It was this discovery that led astronomers to determine that soft gamma-ray repeaters were in our Galaxy and the nearby galaxy known as the Large Magellanic Cloud. Through the study of these supernova remnants, astronomers were able to infer that soft gamma-ray repeaters were solitary young neutron stars speeding away from their birthplace at 3 million miles per hour. Theories predict that the same process which can produce the fantastic bursts of hard X-ray emission that give soft gamma-ray repeaters their name, can also accelerate particles (electrons, protons, etc) to speeds approaching the speed of light. As the saying goes, "where there's smoke there's fire" and this case is no exception. Most of the energy released by the burst event is carried away by these high energy particles and not the gamma-ray burst itself. As the particles spiral in the surrounding magnetic field, they too emit radiation, creating extended nebulae called "plerions". Provided there is some way to confine the outflow, these plerions act as "wind

  16. To understand the X-ray spectrum of anomalous X-ray pulsars and soft gamma-ray repeaters

    CERN Document Server

    Guo, Yan-Jun; Li, Zhao-Sheng; Liu, Yuan; Tong, Hao; Xu, Ren-Xin

    2014-01-01

    Hard X-rays above 10 keV are detected from several anomalous X-ray pulsars (AXPs) and soft gamma-ray repeaters (SGRs), and different models have been proposed to explain the physical origin within the frame of either magnetar model or fallback disk system. Using data from $\\it Suzaku$ and INTEGRAL, we study the soft and hard X-ray spectra of four AXPs/SGRs, 1RXS J170849-400910, 1E 1547.0-5408, SGR 1806-20 and SGR 0501+4516. It is found that the spectra could be well reproduced by bulk-motion Comptonization (BMC) process as was first suggested by Tr$\\"u$mper et al., showing that the accretion scenario could be compatible with X-ray emission of AXPs/SGRs. HXMT simulations for BMC model show that the spectra would have discrepancies from power-law, especially the cutoff at $\\sim$ 200 keV. Thus future observations are promising to distinguish different models for the hard tail and may help us understand the nature of AXPs/SGRs.

  17. Hard X-ray/soft gamma-ray telescope designs for future astrophysics missions

    DEFF Research Database (Denmark)

    Ferreira, Desiree Della Monica; Christensen, Finn Erland; Pivovaroff, Michael J.

    2013-01-01

    We present several concept designs of hard X-ray/soft λ-ray focusing telescopes for future astrophysics missions. The designs are based on depth graded multilayer coatings. These have been successfully employed on the NuSTAR mission for energies up to 80 keV. Recent advances in demonstrating...... theoretical reflectivities for candidate multilayer material combinations up to 400 keV including effects of incoherent scatter has given an experimental base for extending this type of designs to the soft λ-ray range. At the same time, the calibration of the in-flight performance of the NuSTAR mission has...

  18. Search for high-frequency periodicities in time-tagged event data from gamma ray bursts and soft gamma repeaters

    CERN Document Server

    Kruger, A T; Wasserman, I M; Kruger, Adam T.; Loredo, Thomas J.; Wasserman, Ira

    2002-01-01

    We analyze the Time-Tagged Event (TTE) data from observations of gamma ray bursts (GRBs) and soft gamma repeaters (SGRs) by the Burst and Transient Source Experiment (BATSE). These data provide the best available time resolution for GRBs and SGRs. We have performed an extensive search for weak periodic signals in the frequency range 400 Hz to 2500 Hz using the burst records for 2203 GRBs and 152 SGR flares. The study employs the Rayleigh power as a test statistic to evaluate the evidence for periodic emissions. We find no evidence of periodic emissions from these events at these frequencies. In all but a very few cases the maximum power values obtained are consistent with what would be expected by chance from a non-periodic signal. In those few instances where there is marginal evidence for periodicity there are problems with the data that cast doubt on the reality of the signal. For classical GRBs, the largest Rayleigh power occurs in bursts whose TTE data appear to be corrupted. For SGRs, our largest Raylei...

  19. Nature vs. Nurture The Origin of Soft $\\gamma$-ray Repeaters and Anomalous X-ray Pulsars

    CERN Document Server

    Marsden, D C; Rothschild, R E; Higdon, J C

    1999-01-01

    Soft gamma-ray repeaters (SGRs) and anomalous x-ray pulsars (AXPs) are young and radio-quiet x-ray pulsars which have been rapidly spun-down to slow spin periods clustered in the range 5-12 s. If the unusual properties of SGRs and AXPs were due to an innate feature, such as a superstrong magnetic field, then the pre-supernova environments of SGRs and AXPs should be typical of neutron star progenitors. This is not the case, however, as we demonstrate that the interstellar media which surrounded the SGR and AXP progenitors and their SNRs were unusually dense compared to the environments around most young radio pulsars and SNRs. Thus, if these SNR associations are real the SGRs and AXPs can not be the result of a purely innate property. We suggest instead that the environments surrounding SGRs and AXPs play a key role in their development, and we explore a scenario in which the SGRs and AXPs are high velocity neutron stars spun-down by propeller effect winds driven by their interactions with co-moving ejecta fro...

  20. Hard x-ray/soft gamma-ray telescope designs for future astrophysics missions

    Science.gov (United States)

    Della Monica Ferreira, Desiree; Christensen, Finn E.; Pivovaroff, Michael J.; Brejnholt, Nicolai; Fernandez-Perea, Monica; Westergaard, Niels Jørgen S.; Jakobsen, Anders C.; Descalle, Marie-Anne; Soufli, Regina; Vogel, Julia K.

    2013-09-01

    We present several concept designs of hard X-ray/soft λ-ray focusing telescopes for future astrophysics missions. The designs are based on depth graded multilayer coatings. These have been successfully employed on the NuSTAR mission for energies up to 80 keV. Recent advances in demonstrating theoretical reflectivities for candidate multilayer material combinations up to 400 keV including effects of incoherent scatter has given an experimental base for extending this type of designs to the soft λ-ray range. At the same time, the calibration of the in-flight performance of the NuSTAR mission has given a solid understanding and modelling of the relevant effects influencing the performance, including optical constants, roughness, scatter, non-uniformities and figure error. This allows for a realistic extension for designs going to much higher energies. Similarly, both thin slumped glass and silicon pore optics has been developed to a prototype stage which promises imaging resolution in the sub 10 arcsecond range. We present designs based on a 20 m and 50 m focal lengths with energy ranges up to 200 keV and 600 keV.

  1. The rotation-powered nature of some soft gamma-ray repeaters and anomalous X-ray pulsars

    Science.gov (United States)

    Coelho, Jaziel G.; Cáceres, D. L.; de Lima, R. C. R.; Malheiro, M.; Rueda, J. A.; Ruffini, R.

    2017-03-01

    Context. Soft gamma-ray repeaters (SGRs) and anomalous X-ray pulsars (AXPs) are slow rotating isolated pulsars whose energy reservoir is still matter of debate. Adopting neutron star (NS) fiducial parameters; mass M = 1.4 M⊙, radius R = 10 km, and moment of inertia, I = 1045 g cm2, the rotational energy loss, Ėrot, is lower than the observed luminosity (dominated by the X-rays) LX for many of the sources. Aims: We investigate the possibility that some members of this family could be canonical rotation-powered pulsars using realistic NS structure parameters instead of fiducial values. Methods: We compute the NS mass, radius, moment of inertia and angular momentum from numerical integration of the axisymmetric general relativistic equations of equilibrium. We then compute the entire range of allowed values of the rotational energy loss, Ėrot, for the observed values of rotation period P and spin-down rate Ṗ. We also estimate the surface magnetic field using a general relativistic model of a rotating magnetic dipole. Results: We show that realistic NS parameters lowers the estimated value of the magnetic field and radiation efficiency, LX/Ėrot, with respect to estimates based on fiducial NS parameters. We show that nine SGRs/AXPs can be described as canonical pulsars driven by the NS rotational energy, for LX computed in the soft (2-10 keV) X-ray band. We compute the range of NS masses for which LX/Ėrotgroup of nine potentially rotation-powered NSs. This additional hard X-ray component dominates over the soft one leading to LX/Ėrot > 1 in two of them. Conclusions: We show that 9 SGRs/AXPs can be rotation-powered NSs if we analyze their X-ray luminosity in the soft 2-10 keV band. Interestingly, four of them show radio emission and six have been associated with supernova remnants (including Swift J1834.9-0846 the first SGR observed with a surrounding wind nebula). These observations give additional support to our results of a natural explanation of these

  2. Hard-X-Ray/Soft-Gamma-Ray Imaging Sensor Assembly for Astronomy

    Science.gov (United States)

    Myers, Richard A.

    2008-01-01

    An improved sensor assembly has been developed for astronomical imaging at photon energies ranging from 1 to 100 keV. The assembly includes a thallium-doped cesium iodide scintillator divided into pixels and coupled to an array of high-gain avalanche photodiodes (APDs). Optionally, the array of APDs can be operated without the scintillator to detect photons at energies below 15 keV. The array of APDs is connected to compact electronic readout circuitry that includes, among other things, 64 independent channels for detection of photons in various energy ranges, up to a maximum energy of 100 keV, at a count rate up to 3 kHz. The readout signals are digitized and processed by imaging software that performs "on-the-fly" analysis. The sensor assembly has been integrated into an imaging spectrometer, along with a pair of coded apertures (Fresnel zone plates) that are used in conjunction with the pixel layout to implement a shadow-masking technique to obtain relatively high spatial resolution without having to use extremely small pixels. Angular resolutions of about 20 arc-seconds have been measured. Thus, for example, the imaging spectrometer can be used to (1) determine both the energy spectrum of a distant x-ray source and the angular deviation of the source from the nominal line of sight of an x-ray telescope in which the spectrometer is mounted or (2) study the spatial and temporal development of solar flares, repeating - ray bursters, and other phenomena that emit transient radiation in the hard-x-ray/soft- -ray region of the electromagnetic spectrum.

  3. Detailed Radio to Soft Gamma-ray Studies of the 2005 Outburst of the New X-ray Transient XTE J1818-245

    CERN Document Server

    Bel, M Cadolle; Rodríguez, J; Ribó, M; Barragan, L; D'Avanzo, P; Hannikainen, D C; Kuulkers, E; Campana, S; Moldon, J; Chaty, S; Zurita-Heras, J; Goldwurm, A; Goldoni, P

    2009-01-01

    XTE J1818-245 is an X-ray nova that experienced an outburst in 2005, first seen by the RXTE satellite. The source was observed simultaneously at various wavelengths up to soft gamma-rays with the INTEGRAL satellite, from 2005 February to September. X-ray novae are extreme systems that often harbor a black hole, and are known to emit throughout the electromagnetic spectrum when in outburst. We analyzed radio, (N)IR, optical, X-ray and soft gamma-ray observations and constructed simultaneous broad-band X-ray spectra. Analyzing both the light curves in various energy ranges and the hardness-intensity diagram enabled us to study the long-term behavior of the source. Spectral parameters were typical of the Soft Intermediate States and the High Soft States of a black hole candidate. The source showed relatively small spectral variations in X-rays with considerable flux variation in radio. Spectral studies showed that the accretion disc cooled down from 0.64 to 0.27 keV in 100 days and that the total flux decreased ...

  4. Development activities of a CdTe/CdZnTe pixel detector for gamma-ray spectrometry with imaging and polarimetry capability in astrophysics

    Science.gov (United States)

    Gálvez, J. L.; Hernanz, M.; Álvarez, J. M.; Álvarez, L.; La Torre, M.; Caroli, E.; Lozano, M.; Pellegrini, G.; Ullán, M.; Cabruja, E.; Martínez, R.; Chmeissani, M.; Puigdengoles, C.

    2013-05-01

    In the last few years we have been working on feasibility studies of future instruments in the gamma-ray range, from several keV up to a few MeV, in collaboration with other research institutes. High sensitivities are essential to perform detailed studies of cosmic explosions and cosmic accelerators, e.g., Supernovae, Classical Novae, Supernova Remnants (SNRs), Gamma-Ray Bursts (GRBs), Pulsars, Active Galactic Nuclei (AGN).Cadmium Telluride (CdTe) and Cadmium Zinc Telluride (CdZnTe) are very attractive materials for gamma-ray detection, since they have already demonstrated their great performance onboard current space missions, such as IBIS/INTEGRAL and BAT/SWIFT, and future projects like ASIM onboard the ISS. However, the energy coverage of these instruments is limited up to a few hundred keV, and there has not been yet a dedicated instrument for polarimetry.Our research and development activities aim to study a gamma-ray imaging spectrometer in the MeV range based on CdTe detectors, suited either for the focal plane of a focusing mission or as a calorimeter for a Compton camera. In addition, our undergoing detector design is proposed as the baseline for the payload of a balloon-borne experiment dedicated to hard X- and soft gamma-ray polarimetry, currently under study and called CμSP (CZT μ-Spectrometer Polarimeter). Other research institutes such as INAF-IASF, DTU Space, LIP, INEM/CNR, CEA, are involved in this proposal. We will report on the main features of the prototype we are developing at the Institute of Space Sciences, a gamma-ray detector with imaging and polarimetry capabilities in order to fulfil the combined requirement of high detection efficiency with good spatial and energy resolution driven by the science.

  5. First Results from Fermi GBM Earth Occultation Monitoring: Observations of Soft Gamma-Ray Sources Above 100 keV

    CERN Document Server

    Case, Gary L; Rodi, James C; Jenke, Peter; Wilson-Hodge, Colleen A; Finger, Mark H; Meegan, Charles A; Camero-Arranz, Ascencion; Beklen, Elif; Bhat, P Narayan; Briggs, Michael S; Chaplin, Vandiver; Connaughton, Valerie; Paciesas, William S; Preece, Robert; Kippen, R Marc; von Kienlin, Andreas; Griener, Jochen

    2010-01-01

    The NaI and BGO detectors on the Gamma-ray Burst Monitor (GBM) on Fermi are now being used for long-term monitoring of the hard X-ray/low energy gamma-ray sky. Using the Earth occultation technique as demonstrated previously by the BATSE instrument on the Compton Gamma-Ray Observatory, GBM can be used to produce multiband light curves and spectra for known sources and transient outbursts in the 8 keV to 1 MeV energy range with its NaI detectors and up to 40 MeV with its BGO detectors. Over 85% of the sky is viewed every orbit, and the precession of the Fermi orbit allows the entire sky to be viewed every ~26 days with sensitivity exceeding that of BATSE at energies below ~25 keV and above ~1.5 MeV. We briefly describe the technique and present preliminary results using the NaI detectors after the first two years of observations at energies above 100 keV. Eight sources are detected with a significance greater than 7 sigma: the Crab, Cyg X-1, SWIFT J1753.5-0127, 1E 1740-29, Cen A, GRS 1915+105, and the transien...

  6. Extragalactic Gamma-Ray Astrophysics

    CERN Document Server

    CERN. Geneva

    2016-01-01

    During the last decades, various classes of radio-loud active galactic nuclei have been established as sources of high-energy radiation extending over a very broad range from soft gamma-rays (photon energies E~MeV) up to very-high-energy gamma-rays (E>100 GeV). These include blazars of different types, as well as young and evolved radio galaxies. The observed gamma-ray emission from such implies efficient particle acceleration processes taking place in highly magnetized and relativistic jets produced by supermassive black holes, processes that have yet to be identified and properly understood. In addition, nearby starforming and starburst galaxies, some of which host radio-quiet Seyfert-type nuclei, have been detected in the gamma-ray range as well. In their cases, the observed gamma-ray emission is due to non-thermal activity in the interstellar medium, possibly including also a contribution from accretion disks and nuclear outflows. Finally, the high-energy emission from clusters of galaxies remains elusive...

  7. Three years of Fermi GBM Earth Occultation Monitoring: Observations of Hard X-ray/Soft Gamma-Ray Sources

    CERN Document Server

    Jenke, P; Case, Gary L; Cherry, Michael L; Rodi, James; Camero-Arranz, Ascension; Chaplin, Vandiver; Beklen, Elif; Finger, Mark H; Bhat, Narayana; Briggs, Michael S; Connaughto, Valerie; Greiner, Jochen; Kippen, R Marc; Meegan, Charles A; Paciesas, William S; Preece, Robert; von Kienlin, Andreas

    2013-01-01

    The Gamma ray Burst Monitor (GBM) on board Fermi Gamma-ray Space Telescope has been providing continuous data to the astronomical community since 2008 August 12. We will present the results of the analysis of the first three years of these continuous data using the Earth occultation technique to monitor a catalog of 209 sources. Although the occultation technique is in principle quite simple, in practice there are many complications including the dynamic instrument response, source confusion, and scattering in the Earth's atmosphere, which will be described. We detect 99 sources, including 40 low-mass X-ray binary/neutron star systems, 31 high-mass X-ray binary/neutron star systems, 12 black hole binaries, 12 active galaxies, 2 other sources, plus the Crab Nebula and the Sun. Nine of these sources are detected in the 100-300 keV band, including seven black-hole binaries, the active galaxy Cen A, and the Crab. The Crab and Cyg X-1 are also detected in the 300-500 keV band. GBM provides complementary data to ot...

  8. Pointing System for the Balloon-Borne Astronomical Payloads

    CERN Document Server

    Nirmal, K; Mathew, Joice; Sarpotdar, Mayuresh; Suresh, Ambily; Prakash, Ajin; Safonova, Margarita; Murthy, Jayant

    2016-01-01

    We describe the development and implementation of a light-weight, fully autonomous 2-axis pointing and stabilization system designed for balloon-borne astronomical payloads. The system is developed using off-the-shelf components such as Arduino Uno controller, HMC 5883L magnetometer, MPU-9150 Inertial Measurement Unit (IMU) and iWave GPS receiver unit. It is a compact and rugged system which can also be used to take images/video in a moving vehicle, or in areal photography. The system performance is evaluated from the ground, as well as in conditions simulated to imitate the actual flight by using a tethered launch.

  9. Balloon-Borne System Would Aim Instrument Toward Sun

    Science.gov (United States)

    Polites, M. E.

    1992-01-01

    Proposed system including digital control computer, control sensors, and control actuators aims telescope or other balloon-borne instrument toward Sun. Pointing system and instrument flown on gondola, suspended from balloon. System includes reaction wheel, which applies azimuthal control torques to gondola, and torque motor to apply low-frequency azimuthal torques between gondola and cable. Three single-axis rate gyroscopes measure yaw, pitch, and roll. Inclinometer measures roll angle. Two-axis Sun sensor measures deviation, in yaw and pitch, of attitude of instrument from line to apparent center of Sun. System provides initial coarse pointing, then maintains fine pointing.

  10. Pointing system for the balloon-borne astronomical payloads

    Science.gov (United States)

    Nirmal, Kaipacheri; Sreejith, Aickara Gopinathan; Mathew, Joice; Sarpotdar, Mayuresh; Ambily, Suresh; Prakash, Ajin; Safonova, Margarita; Murthy, Jayant

    2016-10-01

    We describe the development and implementation of a light-weight, fully autonomous 2-axis pointing and stabilization system designed for balloon-borne astronomical payloads. The system is developed using off-the-shelf components such as Arduino Uno controller, HMC 5883L magnetometer, MPU-9150 inertial measurement unit, and iWave GPS receiver unit. It is a compact and rugged system which can also be used to take images/video in a moving vehicle or in real photography. The system performance is evaluated from the ground, as well as in conditions simulated to imitate the actual flight by using a tethered launch.

  11. Computing Optimum Heights for Balloon-Borne Radar

    Science.gov (United States)

    1993-11-01

    ducting, a " radar hole" against other raytrace niodels (IREPS, could develop. Although the radar beam. EREPS) that are considered accurate. The may be...TD-1369, Naval Ocean Systems Center, San Diego, CA, October 1985. ,quires, M.F., Caribbean Basin Radar Network Raytrace Study, USAPETAC/PR-91/005...IlI-AFETAC/PR-93IoO5 * AD-A286 832 COMPUTING OPTIMUM HEIGHTS for BALLOON-BORNE RADAR by Michael F. Squires IjxEA NOVEMBER 1993 DTIC QUAI’ii E’T" 2T

  12. An X-ray Pulsar with a Superstrong Magnetic Field in the Soft Gamma-Ray Repeater SGR1806-20

    Science.gov (United States)

    Kouveliotou, C.; Dieters, S.; Strohmayer, T.; vanParadijs, J.; Fishman, G. J.; Meegan, C. A.; Hurley, K.; Kommers, J.; Smith, I.; Frail, D.; Murakami, T.

    1998-01-01

    Soft gamma-ray repeaters (SGRs) emit multiple, brief (approximately O.1 s) intense outbursts of low-energy gamma-rays. They are extremely rare; three are known in our galaxy and one in the Large Magellanic Cloud. Two SGRs are associated with young supernova remnants (SNRs), and therefore most probably with neutron stars, but it remains a puzzle why SGRs are so different from 'normal' radio pulsars. Here we report the discovery of pulsations in the persistent X-ray flux of SGR1806-20, with a period of 7.47 s and a spindown rate of 2.6 x 10(exp -3) s/yr. We argue that the spindown is due to magnetic dipole emission and find that the pulsar age and (dipolar) magnetic field strength are approximately 1500 years and 8 x 10(exp 14) gauss, respectively. Our observations demonstrate the existence of 'magnetars', neutron stars with magnetic fields about 100 times stronger than those of radio pulsars, and support earlier suggestions that SGR bursts are caused by neutron-star 'crust-quakes' produced by magnetic stresses. The 'magnetar' birth rate is about one per millenium, a substantial fraction of that of radio pulsars. Thus our results may explain why some SNRs have no radio pulsars.

  13. ESA's Integral solves thirty-year old gamma-ray mystery

    Science.gov (United States)

    Integral solves mystery hi-res Size hi-res: 60 kb Credits: Credit: ESA, F. Lebrun (CEA-Saclay). ESA's Integral solves thirty-year old gamma-ray mystery The central regions of our galaxy, the Milky Way, as seen by Integral in gamma rays. With its superior ability to see faint details, Integral correctly reveals the individual sources that comprised the foggy, gamma-ray background seen by previous observatories. The brightest 91 objects seen in this image were classified by Integral as individual sources, while the others appear too faint to be properly characterized at this stage. During the spring and autumn of 2003, Integral observed the central regions of our Galaxy, collecting some of the perpetual glow of diffuse low-energy gamma rays that bathe the entire Galaxy. These gamma rays were first discovered in the mid-1970s by high-flying balloon-borne experiments. Astronomers refer to them as the 'soft' Galactic gamma-ray background, with energies similar to those used in medical X-ray equipment. Initially, astronomers believed that the glow was caused by interactions involving the atoms of the gas that pervades the Galaxy. Whilst this theory could explain the diffuse nature of the emission, since the gas is ubiquitous, it failed to match the observed power of the gamma rays. The gamma rays produced by the proposed mechanisms would be much weaker than those observed. The mystery has remained unanswered for decades. Now Integral's superb gamma-ray telescope IBIS, built for ESA by an international consortium led by Principal Investigator Pietro Ubertini (IAS/CNR, Rome, Italy), has seen clearly that, instead of a fog produced by the interstellar medium, most of the gamma-rays are coming from individual celestial objects. In the view of previous, less sensitive instruments, these objects appeared to merge together. In a paper published today in "Nature", Francois Lebrun (CEA Saclay, Gif sur Yvette, France) and his collaborators report the discovery of 91 gamma-ray

  14. Three years of Fermi GBM Earth Occultation Monitoring: Observations of Hard X-ray/Soft Gamma-Ray Sources

    CERN Document Server

    Wilson-Hodge, Colleen A; Cherry, Michael L; Rodi, James; Camero-Arranz, Ascension; Jenke, Peter; Chaplin, Vandiver; Beklen, Elif; Finger, Mark; Bhat, Narayan; Briggs, Michael S; Connaughton, Valerie; Greiner, Jochen; Kippen, R Marc; Meegan, Charles A; Paciesas, William S; Preece, Robert; von Kienlin, Andreas

    2012-01-01

    The Gamma ray Burst Monitor (GBM) on board Fermi has been providing continuous data to the astronomical community since 2008 August 12. In this paper we present the results of the analysis of the first three years of these continuous data using the Earth occultation technique to monitor a catalog of 209 sources. From this catalog, we detect 102 sources, including 41 low-mass X-ray binary/neutron star systems, 33 high-mass X-ray binary neutron star systems, 12 black hole binaries, 12 active galaxies, 2 other sources, plus the Crab Nebula, and the Sun. Nine of these sources are detected in the 100-300 keV band, including seven black-hole binaries, the active galaxy Cen A, and the Crab. The Crab and Cyg X-1 are also detected in the 300-500 keV band. GBM provides complementary data to other sky-monitors below 100 keV and is the only all-sky monitor above 100 keV. Up-to-date light curves for all of the catalog sources can be found at http://heastro.phys.lsu.edu/gbm/.

  15. THREE YEARS OF FERMI GBM EARTH OCCULTATION MONITORING: OBSERVATIONS OF HARD X-RAY/SOFT GAMMA-RAY SOURCES

    Energy Technology Data Exchange (ETDEWEB)

    Wilson-Hodge, Colleen A.; Jenke, Peter [ZP 12 Astrophysics Office, NASA Marshall Space Flight Center, Huntsville, AL 35812 (United States); Case, Gary L.; Cherry, Michael L.; Rodi, James [Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA 70803 (United States); Camero-Arranz, Ascension [Instituto de Ciencias del Espacio (IEEC-CSIC), Campus UAB, Torre C5, 2a planta, 08193 Barcelona (Spain); Chaplin, Vandiver; Bhat, Narayan; Briggs, Michael S.; Connaughton, Valerie; Preece, Robert [Physics Department, University of Alabama in Huntsville, Huntsville, AL 35899 (United States); Beklen, Elif [Physics Department, Suleyman Demirel University, 32260 Isparta (Turkey); Finger, Mark; Paciesas, William S. [Universities Space Research Association, Huntsville, AL 35805 (United States); Greiner, Jochen; Meegan, Charles A.; Von Kienlin, Andreas [Max-Planck Institut fuer Extraterrestische Physik, D-85748 Garching (Germany); Kippen, R. Marc [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

    2012-08-01

    The Gamma-ray Burst Monitor (GBM) on board Fermi has been providing continuous data to the astronomical community since 2008 August 12. In this paper, we present the results of the analysis of the first three years of these continuous data using the Earth occultation technique to monitor a catalog of 209 sources. From this catalog, we detect 99 sources, including 40 low-mass X-ray binary/neutron star systems, 31 high-mass X-ray binary/neutron star systems, 12 black hole binaries, 12 active galaxies, and 2 other sources, plus the Crab Nebula, and the Sun. Nine of these sources are detected in the 100-300 keV band, including seven black hole binaries, the active galaxy Cen A, and the Crab. The Crab and Cyg X-1 are also detected in the 300-500 keV band. GBM provides complementary data to other sky-monitors below 100 keV and is the only all-sky monitor above 100 keV. Up-to-date light curves for all of the catalog sources can be found online.

  16. SPIDER: A Balloon-borne Large-scale CMB Polarimeter

    CERN Document Server

    Crill, B P; Battistelli, E S; Benton, S; Bihary, R; Bock, J J; Bond, J R; Brevik, J; Bryan, S; Contaldi, C R; Dore, O; Farhang, M; Fissel, L; Golwala, S R; Halpern, M; Hilton, G; Holmes, W; Hristov, V V; Irwin, K; Jones, W C; Kuo, C L; Lange, A E; Lawrie, C; MacTavish, C J; Martin, T G; Mason, P; Montroy, T E; Netterfield, C B; Pascale, E; Riley, D; Ruhl, J E; Runyan, M C; Trangsrud, A; Tucker, C; Turner, A; Viero, M; Wiebe, D

    2008-01-01

    Spider is a balloon-borne experiment that will measure the polarization of the Cosmic Microwave Background over a large fraction of a sky at 1 degree resolution. Six monochromatic refracting millimeter-wave telescopes with large arrays of antenna-coupled transition-edge superconducting bolometers will provide system sensitivities of 4.2 and 3.1 micro K_cmb rt s at 100 and 150 GHz, respectively. A rotating half-wave plate will modulate the polarization sensitivity of each telescope, controlling systematics. Bolometer arrays operating at 225 GHz and 275 GHz will allow removal of polarized galactic foregrounds. In a 2-6 day first flight from Alice Springs, Australia in 2010, Spider will map 50% of the sky to a depth necessary to improve our knowledge of the reionization optical depth by a large factor.

  17. Balloon-Borne Infrasound Detection of Energetic Bolide Events

    Science.gov (United States)

    Young, Eliot F.; Ballard, Courtney; Klein, Viliam; Bowman, Daniel; Boslough, Mark

    2016-10-01

    Infrasound is usually defined as sound waves below 20 Hz, the nominal limit of human hearing. Infrasound waves propagate over vast distances through the Earth's atmosphere: the CTBTO (Comprehensive Nuclear-Test-Ban Treaty Organization) has 48 installed infrasound-sensing stations around the world to detect nuclear detonations and other disturbances. In February 2013, several CTBTO infrasound stations detected infrasound signals from a large bolide that exploded over Chelyabinsk, Russia. Some stations recorded signals that had circumnavigated the Earth, over a day after the original event. The goal of this project is to improve upon the sensitivity of the CTBTO network by putting microphones on small, long-duration super-pressure balloons, with the overarching goal of studying the small end of the NEO population by using the Earth's atmosphere as a witness plate.A balloon-borne infrasound sensor is expected to have two advantages over ground-based stations: a lack of wind noise and a concentration of infrasound energy in the "stratospheric duct" between roughly 5 - 50 km altitude. To test these advantages, we have built a small balloon payload with five calibrated microphones. We plan to fly this payload on a NASA high-altitude balloon from Ft Sumner, NM in August 2016. We have arranged for three large explosions to take place in Socorro, NM while the balloon is aloft to assess the sensitivity of balloon-borne vs. ground-based infrasound sensors. We will report on the results from this test flight and the prospects for detecting/characterizing small bolides in the stratosphere.

  18. Collection of Stratospheric Samples using Balloon-Borne Payload System

    Science.gov (United States)

    Prakash, Ajin; Safonova, Margarita; Murthy, Jayant; Sreejith, A. G.; Kumble, Sheshashayi; Mathew, Joice; Sarpotdar, Mayuresh; Kj, Nirmal; Suresh, Ambily; Chakravortty, Dipshikha; Rangarajan, Annapoorni

    2016-07-01

    Earth's atmosphere at stratospheric altitudes contains dust particles from soil lifted by weather, volcanic dust, man-made aerosols, IDP (Interplanetary Dust Particles) - remnants of comets and asteroids, and even interstellar dust. Satellite observations suggest that approximately 100--300 tons of cosmic dust enter Earth's atmosphere every day. However, very little is known about the microbial life in the upper atmosphere, where conditions are very much similar to that on Mars and possibly on some exoplanets. Stratosphere provides a good opportunity to study the existence or survival of biological life in these conditions. Despite the importance of this topic to astrobiology, stratospheric microbial diversity/survival remains largely unexplored, probably due to significant difficulties in the access and ensuring the absence of contamination of the samples. To conduct a detailed study into this, we are developing the balloon-borne payload system SAMPLE (Stratospheric Altitude Microbiology Probe for Life Existence) to collect dust samples from stratosphere and bring them in an hygienic and uncontaminated manner to a suitable laboratory environment, where further study will be conducted to establish the possibility of microbial life in the upper atmosphere. This balloon-borne payload system will rise through the atmosphere till it reaches an altitude of about 25-30 km above sea level. The payload consists of detachable pre-sterilized sampling chambers designed to collect and contain the dust samples and get them back to the surface without contamination during the flight, a microprocessor and a controller which will determine the altitude of the payload system to actively monitor the opening and closing of the sample collection chambers. For contamination control, we will have two extra chambers, one of which will fly but not open, and one will remain closed on the ground. Other onboard devices include environmental sensors, GPS tracking devices, cameras to monitor

  19. Soft X-ray Extended Emissions of Short Gamma-Ray Bursts as Electromagnetic Counterparts of Compact Binary Mergers; Possible Origin and Detectability

    CERN Document Server

    Nakamura, Takashi; Nakauchi, Daisuke; Suwa, Yudai; Sakamoto, Takanori; Kawai, Nobuyuki

    2013-01-01

    We investigate the possible origin of extended emissions (EE) of short gamma-ray bursts (SGRBs) with an isotropic energy of $\\sim 10^{50\\mbox{-}51} \\ \\rm erg$ and a duration of $\\sim 100 \\ \\rm s$, based on the compact binary (neutron star (NS)-NS or NS-black hole (BH)) merger scenario. We analyze the evolution of magnetized neutrino-dominated accretion disks of mass $\\sim 0.1 \\ M_\\odot$ around BHs formed after the mergers, and estimate the power of relativistic outflows via the Blandford-Znajek (BZ) process. We show that a rotation energy of the BH up to $\\sim 10^{53} \\ \\rm erg$ can be extracted with a time scale of $\\sim 100 \\ \\rm s$ with a disk viscosity parameter of $\\alpha \\sim 0.01$. Such a BZ power dissipates by clashing with non-relativistic pre-ejected matter of mass $M \\sim 10^{-(2\\mbox{-}4)} \\ M_\\odot$, and form a mildly relativistic fireball. We show that the dissipative photospheric emissions from such fireballs are likely in soft X-ray band ($1\\mbox{-}10 \\ \\rm keV$) for $M \\sim 10^{-2} M_\\odot$ p...

  20. A Deep Near-Infrared Survey of the N 49 Region around the Soft Gamma-Ray Repeater 0526-66

    Science.gov (United States)

    Klose, S.; Henden, A. A.; Geppert, U.; Greiner, J.; Guetter, H. H.; Hartmann, D. H.; Kouveliotou, C.; Luginbuhl, C. B.; Stecklurn, B.; Vrba, F. J.

    2004-01-01

    We report the results of a deep near-infrared survey of the vicinity of supernova remnant N49 in the Large Magellanic Cloud (LMC), which contains the soft gamma-ray repeater (SGR) 0526-66. Two of the four confirmed SGRs are potentially associated with compact stellar clusters. We thus searched for a similar association of SGR0526-66, and find the unexplored young stellar cluster SL 463 at a projected distance of approx. 30 pc from the SGR. This constitutes the third cluster-SGR link, and lends support to scenarios in which SGR progenitors originate in young, embedded clusters. If real, the cluster-SGR association constrains the age and thus the initial mass of these stars. In addition, our high-resolution images of the super- nova remnant N49 reveal an area of excess K-band flux in the southeastern part of the SNR. This feature coincides with the maximum flux area at 8.28 microns as detected by the Midcourse Space Experiment (MSX satellite), which we identify with IRAS 052594607.

  1. An X-Ray Study of Supernova Remnant N49 and Soft Gamma-Ray Repeater 0526-66 in the Large Magellanic Cloud

    CERN Document Server

    Park, Sangwook; Slane, Patrick O; Burrows, David N; Lee, Jae-Joon; Mori, Koji

    2012-01-01

    We report on the results from our deep Chandra observation (120 ks) of the supernova remnant (SNR) N49 and soft Gamma-ray repeater (SGR) 0526-66 in the Large Magellanic Cloud. We firmly establish the detection of an ejecta "bullet" beyond the southwestern boundary of N49. The X-ray spectrum of the bullet is distinguished from that of the main SNR shell, showing significantly enhanced Si and S abundances. We also detect an ejecta feature in the eastern shell, which shows metal overabundances similar to those of the bullet. If N49 was produced by a core-collapse explosion of a massive star, the detected Si-rich ejecta may represent explosive O-burning or incomplete Si-burning products from deep interior of the supernova. On the other hand, the observed Si/S abundance ratio in the ejecta may favor Type Ia origin for N49. We refine the Sedov age of N49, tau_Sed ~ 4800 yr, with the explosion energy E_0 ~ 1.8 x 10^51 erg. Our blackbody (BB) + power law (PL) model for the quiescent X-ray emission from SGR 0526-66 in...

  2. Demonstration of a Balloon Borne Arc-second Pointer Design

    Science.gov (United States)

    Deweese, K.; Ward, P.

    Many designs for utilizing stratospheric balloons as low-cost platforms on which to conduct space science experiments have been proposed throughout the years A major hurdle in extending the range of experiments for which these vehicles are useful has been the imposition of the gondola dynamics on the accuracy with which an instrument can be kept pointed at a celestial target A significant number of scientists have sought the ability to point their instruments with jitter in the arc-second range This paper presents the design and analysis of a stratospheric balloon borne pointing system that is able to meet this requirement The test results of a demonstration prototype of the design with similar ability are also presented Discussion of a high fidelity controller simulation for design analysis is presented The flexibility of the flight train is represented through generalized modal analysis A multiple controller scheme is utilized for coarse and fine pointing Coarse azimuth pointing is accomplished by an established pointing system with extensive flight history residing above the gondola structure A pitch-yaw gimbal mount is used for fine pointing providing orthogonal axes when nominally on target Fine pointing actuation is from direct drive dc motors eliminating backlash problems An analysis of friction nonlinearities and a demonstration of the necessity in eliminating static friction are provided A unique bearing hub design is introduced that eliminates static friction from the system dynamics A control scheme involving linear

  3. EBEX: A balloon-borne CMB polarization experiment

    CERN Document Server

    Reichborn-Kjennerud, Britt; Ade, Peter; Aubin, Françcois; Baccigalupi, Carlo; Bao, Chaoyun; Borrill, Julian; Cantalupo, Christopher; Chapman, Daniel; Didier, Joy; Dobbs, Matt; Grain, Julien; Grainger, William; Hanany, Shaul; Hillbrand, Seth; Hubmayr, Johannes; Jaffe, Andrew; Johnson, Bradley; Jones, Terry; Kisner, Theodore; Klein, Jeff; Korotkov, Andrei; Leach, Sam; Lee, Adrian; Levinson, Lorne; Limon, Michele; MacDermid, Kevin; Matsumura, Tomotake; Meng, Xiaofan; Miller, Amber; Milligan, Michael; Pascale, Enzo; Polsgrove, Daniel; Ponthieu, Nicolas; Raach, Kate; Sagiv, Ilan; Smecher, Graeme; Stivoli, Federico; Stompor, Radek; Tran, Huan; Tristram, Matthieu; Tucker, Gregory S; Vinokurov, Yury; Yadav, Amit; Zaldarriaga, Matias; Zilic, Kyle

    2010-01-01

    EBEX is a NASA-funded balloon-borne experiment designed to measure the polarization of the cosmic microwave background (CMB). Observations will be made using 1432 transition edge sensor (TES) bolometric detectors read out with frequency multiplexed SQuIDs. EBEX will observe in three frequency bands centered at 150, 250, and 410 GHz, with 768, 384, and 280 detectors in each band, respectively. This broad frequency coverage is designed to provide valuable information about polarized foreground signals from dust. The polarized sky signals will be modulated with an achromatic half wave plate (AHWP) rotating on a superconducting magnetic bearing (SMB) and analyzed with a fixed wire grid polarizer. EBEX will observe a patch covering ~1% of the sky with 8' resolution, allowing for observation of the angular power spectrum from \\ell = 20 to 1000. This will allow EBEX to search for both the primordial B-mode signal predicted by inflation and the anticipated lensing B-mode signal. Calculations to predict EBEX constrain...

  4. The Balloon-borne Large Aperture Submillimeter Telescope: BLAST

    Science.gov (United States)

    Truch, Matthew D. P.; Ade, P. A. R.; Bock, J. J.; Chapin, E. L.; Chung, J.; Devlin, M. J.; Dicker, S.; Griffin, M.; Gundersen, J. O.; Halpern, M.; Hargrave, P. C.; Hughes, D. H.; Klein, J.; MacTavish, C. J.; Marsden, G.; Martin, P. G.; Martin, T. G.; Mauskopf, P.; Netterfield, C. B.; Olmi, L.; Pascale, E.; Patanchon, G.; Rex, M.; Scott, D.; Semisch, C.; Thomas, N. E.; Tucker, C.; Tucker, G. S.; Viero, M. P.; Wiebe, D. V.

    2009-01-01

    The Balloon-borne Large Aperture Submillimeter Telescope (BLAST) is a suborbital surveying experiment designed to study the evolutionary history and processes of star formation in local galaxies (including the Milky Way) and galaxies at cosmological distances. The BLAST continuum camera, which consists of 270 detectors distributed between three arrays, observes simultaneously in broadband (30%) spectral windows at 250, 350, and 500 microns. The optical design is based on a 2 m diameter telescope, providing a diffraction-limited resolution of 30" at 250 microns. The gondola pointing system enables raster mapping of arbitrary geometry, with a repeatable positional accuracy of 30"; postflight pointing reconstruction to manual override. On this poster, we describe the primary characteristics and measured in-flight performance of BLAST. BLAST performed a test flight in 2003 and has since made two scientifically productive long-duration balloon flights: a 100 hour flight from ESRANGE (Kiruna), Sweden to Victoria Island, northern Canada in 2005 June; and a 250 hour, circumpolar flight from McMurdo Station, Antarctica in 2006 December. The BLAST collaboration acknowledges the support of NASA through grants NAG5-12785, NAG5-13301, and NNGO-6GI11G, the Canadian Space Agency (CSA), the Science and Technology Facilities Council (STFC), Canada's Natural Sciences and Engineering Research Council (NSERC), the Canada Foundation for Innovation, the Ontario Innovation Trust, the Puerto Rico Space Grant Consortium, the Fondo Institucional para la Investigacion of the University of Puerto Rico, and the National Science Foundation Office of Polar Programs.

  5. Beam tests of the balloon-borne ATIC experiment

    CERN Document Server

    Ganel, O; Ahn, H S; Ampe, J; Bashindzhagian, G L; Case, G; Chang, H; Ellison, S; Fazely, A; Gould, R; Granger, D; Gunasingha, R M; Guzik, T G; Han, Y J; Isbert, J; Kim, H J; Kim, K C; Kim, S K; Kwon, Y; Panasyuk, M Y; Panov, A; Price, B; Samsonov, G; Schmidt, W K H; Sen, M; Seo, E S; Sina, R; Sokolskaya, N; Stewart, M; Voronin, A; Wagner, D; Wang, J Z; Wefel, J P; Wu, J; Zatsepin, V

    2005-01-01

    The Advanced Thin Ionization Calorimeter (ATIC) balloon-borne experiment is designed to perform cosmic-ray elemental spectra measurements from 50 GeV to 100 TeV for nuclei from hydrogen to iron. These measurements are expected to provide information about some of the most fundamental questions in astroparticle physics today. ATIC's design centers on an 18 radiation length (X0) deep bismuth germanate (BGO) calorimeter, preceded by a 0.75λint graphite target. In September 1999, the ATIC detector was exposed to high-energy beams at CERN's SPS accelerator within the framework of the development program for the Advanced Cosmic-ray Composition Experiment for the Space Station (ACCESS). In December 2000–January 2001 and again in December 2002–January 2003, ATIC flew on the first two of a series of long-duration balloon (LDB) flights from McMurdo Station, Antarctica. We present here results from the 1999 beam tests, including energy resolutions for electrons and protons at several beam energies from 100 to 375 G...

  6. The balloon-borne electron telescope with scintillating fibers (BETS)

    CERN Document Server

    Torii, S; Tateyama, N; Yoshida, K; Ouchi, Y; Yamagami, T; Saitô, Y; Murakami, H; Kobayashi, T; Komori, Y; Kasahara, K; Yuda, T; Nishimura, J

    2000-01-01

    we describe a new detector system developed for high-altitude balloon flights to observe the cosmic-ray electrons above 10 GeV. The balloon borne electron telescope with Scintillating (BETS) fibers instrument is an imaging calorimeter which is capable of selecting electrons against the large background of protons. The calorimeter is composed of a sandwich of scintillating optical-fiber belts and lead plates with a combination of three plastic scintillators for the shower trigger. The total thickness of lead is 40 mm (~7.1 r.l.) and the number of fiber belts is nine. In each belt, alternating layers are oriented in orthogonal (x and y) directions. Two sets of an intensified CCD camera are adopted for read-out of the scintillating fibers in the x and y direction, respectively. The accelerator beam tests were carried out to study the performance of detector for electrons in 1996 and for protons in 1997 at CERN-SPS. The instrument was successfully flown aboard high-altitude balloon in 1997 and 1998. It is demonst...

  7. Pointing control for the SPIDER balloon-borne telescope

    CERN Document Server

    Shariff, Jamil A; Amiri, Mandana; Benton, Steven J; Bock, Jamie J; Bond, J Richard; Bryan, Sean A; Chiang, H Cynthia; Contaldi, Carlo R; Crill, Brendan P; Doré, Olivier P; Farhang, Marzieh; Filippini, Jeffrey P; Fissel, Laura M; Fraisse, Aurelien A; Gambrel, Anne E; Gandilo, Natalie N; Golwala, Sunil R; Gudmundsson, Jon E; Halpern, Mark; Hasselfield, Matthew; Hilton, Gene C; Holmes, Warren A; Hristov, Viktor V; Irwin, Kent D; Jones, William C; Kermish, Zigmund D; Kuo, Chao-Lin; MacTavish, Carolyn J; Mason, Peter V; Megerian, Krikor G; Moncelsi, Lorenzo; Morford, Tracy A; Nagy, Johanna M; Netterfield, C Barth; O'Brient, Roger; Rahlin, Alexandra S; Reintsema, Carl D; Ruhl, John E; Runyan, Marcus C; Soler, Juan D; Trangsrud, Amy; Tucker, Carole E; Tucker, Rebecca S; Turner, Anthony D; Weber, Alexis C; Wiebe, Donald V; Young, Edward Y

    2014-01-01

    We present the technology and control methods developed for the pointing system of the SPIDER experiment. SPIDER is a balloon-borne polarimeter designed to detect the imprint of primordial gravitational waves in the polarization of the Cosmic Microwave Background radiation. We describe the two main components of the telescope's azimuth drive: the reaction wheel and the motorized pivot. A 13 kHz PI control loop runs on a digital signal processor, with feedback from fibre optic rate gyroscopes. This system can control azimuthal speed with < 0.02 deg/s RMS error. To control elevation, SPIDER uses stepper-motor-driven linear actuators to rotate the cryostat, which houses the optical instruments, relative to the outer frame. With the velocity in each axis controlled in this way, higher-level control loops on the onboard flight computers can implement the pointing and scanning observation modes required for the experiment. We have accomplished the non-trivial task of scanning a 5000 lb payload sinusoidally in az...

  8. Precision Attitude Control for the BETTII Balloon-Borne Interferometer

    Science.gov (United States)

    Benford, Dominic J.; Fixsen, Dale J.; Rinehart. Stephen

    2012-01-01

    The Balloon Experimental Twin Telescope for Infrared Interferometry (BETTII) is an 8-meter baseline far-infrared interferometer to fly on a high altitude balloon. Operating at wavelengths of 30-90 microns, BETTII will obtain spatial and spectral information on science targets at angular resolutions down to less than half an arcsecond, a capability unmatched by other far-infrared facilities. This requires attitude control at a level ofless than a tenth of an arcsecond, a great challenge for a lightweight balloon-borne system. We have designed a precision attitude determination system to provide gondola attitude knowledge at a level of 2 milliarcseconds at rates up to 100Hz, with accurate absolute attitude determination at the half arcsecond level at rates of up to 10Hz. A mUlti-stage control system involving rigid body motion and tip-tilt-piston correction provides precision pointing stability to the level required for the far-infrared instrument to perform its spatial/spectral interferometry in an open-loop control. We present key aspects of the design of the attitude determination and control and its development status.

  9. Balloon-borne CALET prototype payload (bCALET)

    Science.gov (United States)

    Ueyama, Yoshitaka; Torii, Shoji; Kasahara, Katsuaki; Murakami, Hiroyuki; Ozawa, Shunsuke; Akaike, Yosui; Nakai, Mikio; Aiba, Toshihide; Kai, Yuuichirou; Tamura, Tadahisa; Yoshida, Kenji; Katayose, Yusaku; Saito, Yoshitaka; Fuke, Hideyuki; Kawada, Jiro; Mizuta, Eiichi; Marrocchesi, Pier Simone; Kim, Meyoung; Bigongiari, Gabriele

    The CALorimetric Electron Telescope (CALET) payload will be installed in the Japanese Experiment Module Exposed Facility (JEM-EF) of the International Space Station (ISS). We have been developing a balloon borne payload to evaluate the performance of CALET by carring out precursor flights for the electron observation in 1-1000 GeV. The first flight of bCALET was done in 2006, and the enhanced version, bCALET-2, was successfully flown in 2009. In this paper, we describe the bCALET-3 payload which is composed of Imaging Calorimeter (IMC), Total Absorption Calorimeter (TASC) and Silicon pixel Array (SIA). IMC has an area of 320mm × 320mm, and is consisted 8 x-y layers of scintillating fiber belts inserted below tungsten plates for a fine imaging of shower particles. TASC is constructed by 6 layers of BGO scintillator blocks with an area of 300mm × 300mm, for measuring the total energy deposit of incoming shower particles. SIA owns to measure the charge number of incoming particle. Each component has very similar function with CALET with about half the area of CALET. We are planning to carry out the balloon experiment by bCALET-3 in November, 2010 for the test of the CALET capability of observing the electrons.

  10. The Balloon-borne Large Aperture Submillimeter Telescope: BLAST

    CERN Document Server

    Pascale, E; Bock, J J; Chapin, E L; Chung, J; Devlin, M J; Dicker, S; Griffin, M; Gundersen, J O; Halpern, M; Hargrave, P C; Hughes, D H; Klein, J; MacTavish, C J; Marsden, G; Martin, P G; Martin, T G; Mauskopf, P; Netterfield, C B; Olmi, L; Patanchon, G; Rex, M; Scott, D; Semisch, C; Thomas, N; Truch, M D P; Tucker, C; Tucker, G S; Viero, M P; Wiebe, D V

    2007-01-01

    The Balloon-borne Large Aperture Submillimeter Telescope (BLAST) is a sub-orbital survey-experiment designed to study the evolutionary history and processes of star formation in local galaxies (including the Milky Way) and galaxies at cosmological distances. The BLAST continuum camera, which consists of 270 detectors distributed between 3 arrays, observes simultaneously in broad-band (30%) spectral-windows at 250, 350, and 500 micron. The optical design is based on a 2m diameter Cassegrain telescope, providing a diffraction-limited resolution of 30" at 250 micron. The gondola pointing system enables raster-like maps of arbitrary geometry, with a repeatable positional accuracy of ~30" post-flight pointing reconstruction to ~<5" rms is also achieved. The on-board telescope control software permits autonomous execution of a pre-selected set of maps, with the option of manual intervention. In this paper we describe the primary characteristics and measured in-flight performance of BLAST. Since a test-flight in ...

  11. High Altitude Infrasound Measurements using Balloon-Borne Arrays

    Science.gov (United States)

    Bowman, D. C.; Johnson, C. S.; Gupta, R. A.; Anderson, J.; Lees, J. M.; Drob, D. P.; Phillips, D.

    2015-12-01

    For the last fifty years, almost all infrasound sensors have been located on the Earth's surface. A few experiments consisting of microphones on poles and tethered aerostats comprise the remainder. Such surface and near-surface arrays likely do not capture the full diversity of acoustic signals in the atmosphere. Here, we describe results from a balloon mounted infrasound array that reached altitudes of up to 38 km (the middle stratosphere). The balloon drifted at the ambient wind speed, resulting in a near total reduction in wind noise. Signals consistent with tropospheric turbulence were detected. A spectral peak in the ocean microbarom range (0.12 - 0.35 Hz) was present on balloon-mounted sensors but not on static infrasound stations near the flight path. A strong 18 Hz signal, possibly related to building ventilation systems, was observed in the stratosphere. A wide variety of other narrow band acoustic signals of uncertain provenance were present throughout the flight, but were absent in simultaneous recordings from nearby ground stations. Similar phenomena were present in spectrograms from the last balloon infrasound campaign in the 1960s. Our results suggest that the infrasonic wave field in the stratosphere is very different from that which is readily detectable on surface stations. This has implications for modeling acoustic energy transfer between the lower and upper atmosphere as well as the detection of novel acoustic signals that never reach the ground. Our work provides valuable constraints on a proposed mission to detect earthquakes on Venus using balloon-borne infrasound sensors.

  12. BLAST: A balloon-borne, large-aperture, submillimetre telescope

    Science.gov (United States)

    Wiebe, Donald Victor

    BLAST is a balloon-borne large-aperture, submillimetre telescope, which makes large area (1--200 square degree) surveys of Galactic and extragalactic targets. Since BLAST observes in the stratosphere, it is able to make broad-band observations between 200 mum and 550 mum which are difficult or impossible to perform from the ground. BLAST has been designed to probe star formation both in the local Galaxy and in the high redshift (z = 1--4) universe. Because BLAST is flown on an unmanned stratospheric balloon platform, it has been designed to be able to operate autonomously, without needing operator intervention to perform its scientific goals. This thesis includes an overview of the design of the BLAST platform, with emphasis on the command and control systems used to operate the telescope. BLAST has been flown on two long-duration balloon flights. The first of these, from Esrange, Sweden in June of 2005, acquired ˜70 hours of primarily Galactic data. During the second flight, from Willy Field, Antarctica in December of 2006, BLAST acquired ˜225 hours of both Galactic and extragalactic data. Operational performance of the platform during these two flights is reviewed, with the goal of providing insight on how future flights can be improved. Reduction of the data acquired by these large-format bolometer arrays is a challenging procedure, and techniques developed for BLAST data reduction are reviewed. The ultimate goal of this reduction is the generation of high quality astronomical maps which can be used for subsequent portions of data analysis. This thesis treats, in detail, the iterative, maximum likelihood map maker developed for BLAST. Results of simulations performed on the map maker to characterise its ability to reconstruct astronomical signals are presented. Finally, astronomical maps produced by this map maker using real data acquired by BLAST are presented, with a discussion on non-physical map pathologies resulting from the data reduction pipeline and

  13. Gamma ray camera

    Science.gov (United States)

    Perez-Mendez, V.

    1997-01-21

    A gamma ray camera is disclosed for detecting rays emanating from a radiation source such as an isotope. The gamma ray camera includes a sensor array formed of a visible light crystal for converting incident gamma rays to a plurality of corresponding visible light photons, and a photosensor array responsive to the visible light photons in order to form an electronic image of the radiation therefrom. The photosensor array is adapted to record an integrated amount of charge proportional to the incident gamma rays closest to it, and includes a transparent metallic layer, photodiode consisting of a p-i-n structure formed on one side of the transparent metallic layer, and comprising an upper p-type layer, an intermediate layer and a lower n-type layer. In the preferred mode, the scintillator crystal is composed essentially of a cesium iodide (CsI) crystal preferably doped with a predetermined amount impurity, and the p-type upper intermediate layers and said n-type layer are essentially composed of hydrogenated amorphous silicon (a-Si:H). The gamma ray camera further includes a collimator interposed between the radiation source and the sensor array, and a readout circuit formed on one side of the photosensor array. 6 figs.

  14. Gamma ray camera

    Science.gov (United States)

    Perez-Mendez, Victor

    1997-01-01

    A gamma ray camera for detecting rays emanating from a radiation source such as an isotope. The gamma ray camera includes a sensor array formed of a visible light crystal for converting incident gamma rays to a plurality of corresponding visible light photons, and a photosensor array responsive to the visible light photons in order to form an electronic image of the radiation therefrom. The photosensor array is adapted to record an integrated amount of charge proportional to the incident gamma rays closest to it, and includes a transparent metallic layer, photodiode consisting of a p-i-n structure formed on one side of the transparent metallic layer, and comprising an upper p-type layer, an intermediate layer and a lower n-type layer. In the preferred mode, the scintillator crystal is composed essentially of a cesium iodide (CsI) crystal preferably doped with a predetermined amount impurity, and the p-type upper intermediate layers and said n-type layer are essentially composed of hydrogenated amorphous silicon (a-Si:H). The gamma ray camera further includes a collimator interposed between the radiation source and the sensor array, and a readout circuit formed on one side of the photosensor array.

  15. A Balloon-borne Measurement of High Latitude Atmospheric Neutrons Using a LiCAF Neutron Detector

    CERN Document Server

    Kole, Merlin; Fukuda, Kentaro; Ishizu, Sumito; Jackson, Miranda; Kamae, Tune; Kawaguchi, Noriaki; Kawano, Takafumi; Kiss, Mózsi; Moretti, Elena; Salinas, Maria Fernanda Muñoz; Pearce, Mark; Rydström, Stefan; Takahashi, Hiromitsu; Yanagida, Takayuki

    2013-01-01

    PoGOLino is a scintillator-based neutron detector. Its main purpose is to provide data on the neutron flux in the upper stratosphere at high latitudes at thermal and nonthermal energies for the PoGOLite instrument. PoGOLite is a balloon borne hard X-ray polarimeter for which the main source of background stems from high energy neutrons. No measurements of the neutron environment for the planned flight latitude and altitude exist. Furthermore this neutron environment changes with altitude, latitude and solar activity, three variables that will vary throughout the PoGOLite flight. PoGOLino was developed to study the neutron environment and the influences from these three variables upon it. PoGOLino consists of two Europium doped Lithium Calcium Aluminium Fluoride (Eu:LiCAF) scintillators, each of which is sandwiched between 2 Bismuth Germanium Oxide (BGO) scintillating crystals, which serve to veto signals produced by gamma-rays and charged particles. This allows the neutron flux to be measured even in high rad...

  16. Gamma ray bursts observed with WATCH‐EURECA

    DEFF Research Database (Denmark)

    Brandt, Søren; Lund, Niels; Castro-Tirado, A. J.

    1994-01-01

    The WATCH wide field x‐ray monitor has the capability of independently locating bright Gamma Ray Bursts to 1° accuracy. We report the preliminary positions of 12 Gamma Ray Bursts observed with the WATCH monitor flown on the ES spacecraft EURECA during its 11 month mission. Also the recurrence...... of the Soft Gamma Repeater SGR 1900+14 in 1992 is verified....

  17. SVOM gamma ray monitor

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The space-based multi-band astronomical Variable Object Monitor(SVOM) mission is dedicated to the detection,localization and broad-band study of gamma-ray bursts(GRBs) and other high-energy transient phenomena.The gamma ray monitor(GRM) onboard is designed to observe GRBs up to 5 MeV.With this instrument,one of the key GRB parameters,Epeak,can be easily measured in the hard X-ray band.It can achieve a detection rate of 100 GRBs per year which ensures the scientific output of SVOM.

  18. SVOM Gamma Ray Monitor

    CERN Document Server

    Dong, Yongwei; Li, Yanguo; Zhang, Yongjie; Zhang, Shuangnan

    2009-01-01

    The Space-based multi-band astronomical Variable Object Monitor (SVOM) mission is dedicated to the detection, localization and broad-band study of Gamma-Ray Bursts (GRBs) and other high-energy transient phenomena. The Gamma Ray Monitor (GRM) onboard is designed to observe the GRBs up to 5 MeV. With this instrument one of the key GRB parameter, Epeak, can be easily measured in the hard x-ray band. It can achieve a detection rate of 100 GRBs per year which ensures the scientific output of SVOM.

  19. Supernovae and Gamma-Ray Bursts

    Science.gov (United States)

    Livio, Mario; Panagia, Nino; Sahu, Kailash

    2001-07-01

    Participants; Preface; Gamma-ray burst-supernova relation B. Paczynski; Observations of gamma-ray bursts G. Fishman; Fireballs T. Piran; Gamma-ray mechanisms M. Rees; Prompt optical emission from gamma-ray bursts R. Kehoe, C. Akerlof, R. Balsano, S. Barthelmy, J. Bloch, P. Butterworth, D. Casperson, T. Cline, S. Fletcher, F. Frontera, G. Gisler, J. Heise, J. Hills, K. Hurley, B. Lee, S. Marshall, T. McKay, A. Pawl, L. Piro, B. Priedhorsky, J. Szymanski and J. Wren; X-ray afterglows of gamma-ray bursts L. Piro; The first year of optical-IR observations of SN1998bw I. Danziger, T. Augusteijn, J. Brewer, E. Cappellaro, V. Doublier, T. Galama, J. Gonzalez, O. Hainaut, B. Leibundgut, C. Lidman, P. Mazzali, K. Nomoto, F. Patat, J. Spyromilio, M. Turatto, J. Van Paradijs, P. Vreeswijk and J. Walsh; X-ray emission of Supernova 1998bw in the error box of GRB980425 E. Pian; Direct analysis of spectra of type Ic supernovae D. Branch; The interaction of supernovae and gamma-ray bursts with their surroundings R. Chevalier; Magnetars, soft gamma-ray repeaters and gamma-ray bursts A. Harding; Super-luminous supernova remnants Y. -H. Chu, C. -H. Chen and S. -P. Lai; The properties of hypernovae: SNe Ic 1998bw, 1997ef, and SN IIn 1997cy K. Nomoto, P. Mazzali, T. Nakamura, K. Iwanmoto, K. Maeda, T. Suzuki, M. Turatto, I. Danziger and F. Patat; Collapsars, Gamma-Ray Bursts, and Supernovae S. Woosley, A. MacFadyen and A. Heger; Pre-supernova evolution of massive stars N. Panagia and G. Bono; Radio supernovae and GRB 980425 K. Weiler, N. Panagia, R. Sramek, S. Van Dyk, M. Montes and C. Lacey; Models for Ia supernovae and evolutionary effects P. Hoflich and I. Dominguez; Deflagration to detonation A. Khokhlov; Universality in SN Iae and the Phillips relation D. Arnett; Abundances from supernovae F. -K. Thielemann, F. Brachwitz, C. Freiburghaus, S. Rosswog, K. Iwamoto, T. Nakamura, K. Nomoto, H. Umeda, K. Langanke, G. Martinez-Pinedo, D. Dean, W. Hix and M. Strayer; Sne, GRBs, and the

  20. Gamma Ray Astronomy

    Science.gov (United States)

    Wu, S. T.

    2000-01-01

    The project has progressed successfully during this period of performance. The highlights of the Gamma Ray Astronomy teams efforts are: (1) Support daily BATSE data operations, including receipt, archival and dissemination of data, quick-look science analysis, rapid gamma-ray burst and transient monitoring and response efforts, instrument state-of-health monitoring, and instrument commanding and configuration; (2) On-going scientific analysis, including production and maintenance of gamma-ray burst, pulsed source and occultation source catalogs, gamma-ray burst spectroscopy, studies of the properties of pulsars and black holes, and long-term monitoring of hard x-ray sources; (3) Maintenance and continuous improvement of BATSE instrument response and calibration data bases; (4) Investigation of the use of solid state detectors for eventual application and instrument to perform all sky monitoring of X-Ray and Gamma sources with high sensitivity; and (5) Support of BATSE outreach activities, including seminars, colloquia and World Wide Web pages. The highlights of this efforts can be summarized in the publications and presentation list.

  1. Gamma rays from Galactic pulsars

    OpenAIRE

    2014-01-01

    Gamma rays from young pulsars and milli-second pulsars are expected to contribute to the diffuse gamma-ray emission measured by the {\\it Fermi} Large Area Telescope (LAT) at high latitudes. We derive the contribution of the pulsars undetected counterpart by using information from radio to gamma rays and we show that they explain only a small fraction of the isotropic diffuse gamma-ray background.

  2. AN X-RAY STUDY OF SUPERNOVA REMNANT N49 AND SOFT GAMMA-RAY REPEATER 0526-66 IN THE LARGE MAGELLANIC CLOUD

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sangwook [Department of Physics, University of Texas at Arlington, Box 19059, Arlington, TX 76019 (United States); Hughes, John P. [Department of Physics and Astronomy, Rutgers University, 136 Frelinghuysen Road, Piscataway, NJ 08854-8019 (United States); Slane, Patrick O. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Burrows, David N. [Department of Astronomy and Astrophysics, Pennsylvania State University, 525 Davey Laboratory, University Park, PA 16802 (United States); Lee, Jae-Joon [Korea Astronomy and Space Science Institute, Daejeon 305-348 (Korea, Republic of); Mori, Koji, E-mail: s.park@uta.edu [Department of Applied Physics, University of Miyazaki, 1-1 Gakuen Kibana-dai Nishi, Miyazaki 889-2192 (Japan)

    2012-04-01

    We report on the results from our deep Chandra observation (120 ks) of the supernova remnant (SNR) N49 and soft gamma-ray repeater (SGR) 0526-66 in the Large Magellanic Cloud. We firmly establish the detection of an ejecta 'bullet' beyond the southwestern boundary of N49. The X-ray spectrum of the bullet is distinguished from that of the main SNR shell, showing significantly enhanced Si and S abundances. We also detect an ejecta feature in the eastern shell, which shows metal overabundances similar to those of the bullet. If N49 was produced by a core-collapse explosion of a massive star, the detected Si-rich ejecta may represent explosive O-burning or incomplete Si-burning products from deep interior of the SN. On the other hand, the observed Si/S abundance ratio in the ejecta may favor Type Ia origin for N49. We refine the Sedov age of N49, {tau}{sub Sed} {approx} 4800 yr, with the explosion energy E{sub 0} {approx} 1.8 Multiplication-Sign 10{sup 51} erg. Our blackbody (BB) + power law (PL) model for the quiescent X-ray emission from SGR 0526-66 indicates that the PL photon index ({Gamma} {approx} 2.5) is identical to that of PSR 1E1048.1-5937, the well-known candidate transition object between anomalous X-ray pulsars and SGRs. Alternatively, the two-component BB model implies X-ray emission from a small (R {approx} 1 km) hot spot(s) (kT {approx} 1 keV) in addition to emission from the neutron star's cooler surface (R {approx} 10 km, kT {approx} 0.4 keV). There is a considerable discrepancy in the estimated column toward 0526-66 between BB+PL and BB+BB model fits. Discriminating these spectral models would be crucial to test the long-debated physical association between N49 and 0526-66.

  3. Thermal design and performance of the balloon-borne large aperture submillimeter telescope for polarimetry BLASTPol

    CERN Document Server

    Soler, J D; Angilè, F E; Benton, S J; Devlin, M J; Dober, B; Fissel, L M; Fukui, Y; Galitzki, N; Gandilo, N N; Klein, J; Korotkov, A L; Matthews, T G; Moncelsi, L; Mroczkowski, A; Netterfield, C B; Novak, G; Nutter, D; Pascale, E; Poidevin, F; Savini, G; Scott, D; Shariff, J A; Thomas, N E; Truch, M D; Tucker, C E; Tucker, G S; Ward-Thompson, D

    2014-01-01

    We present the thermal model of the Balloon-borne Large-Aperture Submillimeter Telescope for Polarimetry (BLASTPol). This instrument was successfully flown in two circumpolar flights from McMurdo, Antarctica in 2010 and 2012. During these two flights, BLASTPol obtained unprecedented information about the magnetic field in molecular clouds through the measurement of the polarized thermal emission of interstellar dust grains. The thermal design of the experiment addresses the stability and control of the payload necessary for this kind of measurement. We describe the thermal modeling of the payload including the sun-shielding strategy. We present the in-flight thermal performance of the instrument and compare the predictions of the model with the temperatures registered during the flight. We describe the difficulties of modeling the thermal behavior of the balloon-borne platform and establish landmarks that can be used in the design of future balloon-borne instruments.

  4. Design and construction of a carbon fiber gondola for the SPIDER balloon-borne telescope

    CERN Document Server

    Soler, J D; Amiri, M; Benton, S J; Bock, J J; Bond, J R; Bryan, S A; Chiang, C; Contaldi, C C; Crill, B P; Doré, O P; Farhang, M; Filippini, J P; Fissel, L M; Fraisse, A A; Gambrel, A E; Gandilo, N N; Golwala, S; Gudmundsson, J E; Halpern, M; Hasselfield, M; Hilton, G C; Holmes, W A; Hristov, V V; Irwin, K D; Jones, W C; Kermish, Z D; Kuo, C L; MacTavish, C J; Mason, P V; Megerian, K G; Moncelsi, L; Nagy, J M; Netterfield, C B; O'Brient, R; Rahlin, A S; Reintsema, C D; Ruhl, J E; Runyan, M C; Shariff, J A; Trangsrud, A; Tucker, C; Tucker, R S; Turner, A D; Weber, A C; Wiebe, D V; Young, E Y

    2014-01-01

    We introduce the light-weight carbon fiber and aluminum gondola designed for the SPIDER balloon-borne telescope. SPIDER is designed to measure the polarization of the Cosmic Microwave Background radiation with unprecedented sensitivity and control of systematics in search of the imprint of inflation: a period of exponential expansion in the early Universe. The requirements of this balloon-borne instrument put tight constrains on the mass budget of the payload. The SPIDER gondola is designed to house the experiment and guarantee its operational and structural integrity during its balloon-borne flight, while using less than 10% of the total mass of the payload. We present a construction method for the gondola based on carbon fiber reinforced polymer tubes with aluminum inserts and aluminum multi-tube joints. We describe the validation of the model through Finite Element Analysis and mechanical tests.

  5. Gamma-Ray Localization of Terrestrial Gamma-Ray Flashes

    CERN Document Server

    Marisaldi, M; Trois, A; Giuliani, A; Tavani, M; Labanti, C; Fuschino, F; Bulgarelli, A; Longo, F; Barbiellini, G; Del Monte, E; Moretti, E; Trifoglio, M; Costa, E; Caraveo, P; Cattaneo, P W; Chen, A; D'Ammando, F; De Paris, G; Di Cocco, G; Di Persio, G; Donnarumma, I; Evangelista, Y; Feroci, M; Ferrari, A; Fiorini, M; Froysland, T; Galli, M; Gianotti, F; Lapshov, I; Lazzarotto, F; Lipari, P; Mereghetti, S; Morselli, A; Pacciani, L; Pellizzoni, A; Perotti, F; Picozza, P; Piano, G; Pilia, M; Prest, M; Pucella, G; Rapisarda, M; Rappoldi, A; Rubini, A; Sabatini, S; Soffitta, P; Striani, E; Vallazza, E; Vercellone, S; Vittorini, V; Zambra, A; Zanello, D; Antonelli, L A; Colafrancesco, S; Cutini, S; Giommi, P; Lucarelli, F; Pittori, C; Santolamazza, P; Verrecchia, F; Salotti, L; 10.1103/PhysRevLett.105.128501

    2010-01-01

    Terrestrial Gamma-Ray Flashes (TGFs) are very short bursts of high energy photons and electrons originating in Earth's atmosphere. We present here a localization study of TGFs carried out at gamma-ray energies above 20 MeV based on an innovative event selection method. We use the AGILE satellite Silicon Tracker data that for the first time have been correlated with TGFs detected by the AGILE Mini-Calorimeter. We detect 8 TGFs with gamma-ray photons of energies above 20 MeV localized by the AGILE gamma-ray imager with an accuracy of 5-10 degrees at 50 MeV. Remarkably, all TGF-associated gamma rays are compatible with a terrestrial production site closer to the sub-satellite point than 400 km. Considering that our gamma rays reach the AGILE satellite at 540 km altitude with limited scattering or attenuation, our measurements provide the first precise direct localization of TGFs from space.

  6. The TopHat experiment: A balloon-borne instrument for mapping millimeter and submillimeter emission

    DEFF Research Database (Denmark)

    Silverberg, R.F.; Cheng, E.S.; Aguirre, J.E.

    2005-01-01

    The TopHat experiment was designed to measure the anisotropy in the cosmic microwave background radiation on angular scales from 0.degrees 3 to 30 degrees and the thermal emission from both Galactic and extragalactic dust. The balloon-borne instrument had five spectral bands spanning frequencies...

  7. High energy gamma-ray emission from Gamma-Ray Bursts -- before GLAST

    CERN Document Server

    Fan, Yi-Zhong

    2008-01-01

    Gamma-ray bursts (GRBs) are short and intense emission of soft gamma-rays, which have fascinated astronomers and astrophysicists since their unexpected discovery in 1960s. The X-ray/optical/radio afterglow observations confirm the cosmological origin of GRBs, support the fireball model, and imply a long-activity of the central engine. The high energy gamma-ray emission (>20 MeV) from GRBs is particularly important because they shed some lights on the radiation mechanisms and can help us to constrain the physical processes giving rise to the early afterglows. In this work, we review observational and theoretical studies of the high energy emission from GRBs. Special attention is given to the expected high energy emission signatures accompanying the canonical early-time X-ray afterglow that was observed by the Swift X-ray Telescope. We also discuss the detection prospect of the upcoming GLAST satellite and the current ground-based Cerenkov detectors.

  8. Airborne gamma-ray spectrometry

    DEFF Research Database (Denmark)

    Hovgaard, Jens

    A new method - Noise Adjusted Singular Value Decomposition, NASVD - for processing gamma-ray spectra has been developed as part of a Ph.D. project. By using this technique one is able to decompose a large set of data - for example from airborne gamma-ray surveys - into a few spectral components. ...

  9. Demonstration of polarization sensitivity of emulsion-based pair conversion telescope for cosmic gamma-ray polarimetry

    CERN Document Server

    Ozaki, Keita; Aoki, Shigeki; Kamada, Keiki; Kaneyama, Taichi; Nakagawa, Ryo; Rokujo, Hiroki

    2016-01-01

    Linear polarization of high-energy gamma-rays (10 MeV-100 GeV) can be detected by measuring the azimuthal angle of electron-positron pairs and observing the modulation of the azimuthal distribution. To demonstrate the gamma-ray polarization sensitivity of emulsion, we conducted a test using a polarized gamma-ray beam at SPring-8/LEPS. Emulsion tracks were reconstructed using scanning data, and gamma-ray events were selected automatically. Using an optical microscope, out of the 2381 gamma-ray conversions that were observed, 1372 remained after event selection, on the azimuthal angle distribution of which we measured the modulation. From the distribution of the azimuthal angles of the selected events, a modulation factor of 0.21 + 0.11 - 0.09 was measured, from which the detection of a non-zero modulation was established with a significance of 3.06 $\\sigma$. This attractive polarimeter will be applied to the GRAINE project, a balloon-borne experiment that observes cosmic gamma-rays with an emulsion-based pair ...

  10. Stirling Colgate and Gamma-Ray Bursts

    Science.gov (United States)

    Lamb, Donald

    2014-10-01

    Even before the discovery of gamma-ray bursts (GRBs), Stirling Colgate proposed that bursts of x rays and gamma rays might be produced by a relativistic shock created in the supernova explosion of a massive star. We trace the scientific story of GRBs from their detection to the present, highlighting along the way Stirling's interest in them and his efforts to understand them. We summarize our current understanding that short, soft, repeating bursts are produced by magnetic neutron stars; short, hard bursts are produced by the mergers of neutron star-neutron star binaries; and long, hard bursts are produced by the core collapse of massive stars that have lost their hydrogen and helium envelopes. We then discuss some important open questions about GRBs and how they might be answered. We conclude by describing the recent serendipitous discovery of an x-ray burst of exactly the kind he proposed, and the insights into core collapse supernovae and GRBs that it provided.

  11. A balloon-borne millimeter-wave telescope for cosmic microwave background anisotropy measurements

    CERN Document Server

    Fixsen, D J; Cottingham, D A; Folz, W C; Inman, C A; Kowitt, M S; Meyer, S; Page, L A; Puchalla, J L; Ruhl, J E; Silverberg, R F

    1995-01-01

    We report on the characteristics and design details of the Medium Scale Anisotropy Measurement (MSAM), a millimeter-wave, balloon-borne telescope that has been used to observe anisotropy in the Cosmic Microwave Background Radiation (CMBR) on 0\\fdg5 angular scales. The gondola is capable of determining and maintaining absolute orientation to a few arcminutes during a one-night flight. Emphasis is placed on the optical and pointing performance as well as the weight and power budgets. We also discuss the total balloon/gondola mechanical system. The pendulation from this system is a ubiquitous perturbation on the pointing system. A detailed understanding in these areas is needed for developing the next generation of balloon-borne instruments.

  12. Applied gamma-ray spectrometry

    CERN Document Server

    Dams, R; Crouthamel, Carl E

    1970-01-01

    Applied Gamma-Ray Spectrometry covers real life application of the gamma-ray and the devices used in their experimental studies. This book is organized into 9 chapters, and starts with discussions of the various decay processes, the possible interaction mechanisms of gamma radiation with matter, and the intrinsic and extrinsic variables, which affect the observed gamma-ray and X-ray spectra. The subsequent chapters deal with the properties and fabrication of scintillation detectors, semiconductor detectors, and proportional gas counters. These chapters present some of the most widely utilized

  13. Gamma-ray-selected AGN

    Science.gov (United States)

    Giommi, Paolo

    2016-08-01

    The gamma-ray band is the most energetic part of the electromagnetic spectrum. As such it is also where selection effects are most severe, as it can only be reached by the most extreme non-thermal AGN. Blazars, with their emission dominated by non-thermal blue-shifted radiation arising in a relativistic jet pointed in the direction of the observer, naturally satisfy this though requirement. For this reason, albeit these sources are intrisically very rare (orders of magnitude less abundant than radio quiet AGN of the same optical magnitude) they almost completely dominate the extragalactic gamma-ray and very high energy sky. I will discuss the emission of different types of blazars and the selection effects that are at play in the gamma-ray band based on recent results from the current generation of gamma-ray astronomy satellites, ground-based Cherenkov telescopes, and Monte Carlo simulations.

  14. Relation between $\\gamma$-rays and emission lines for the $\\gamma$-ray loud blazars

    CERN Document Server

    Fan, J H

    2000-01-01

    The relation between the $\\gamma$-ray and the emission line luminosities for a sample of 36 $\\gamma$-ray loud blazars is investigated; an apparent correlation between them, $L_{\\gamma} \\propto L_{Line}^{0.69\\pm0.11}$, with a correlation coefficient $r=0.741$ and a chance probability of $p = 1.9\\times10^{-6}$, is found. It is found, however, that there is no intrinsic correlation between them: the apparent correlation is due to the redshift dependence in a flux-limited sample. Thus no evidence is found to support the argument that the up-scattered soft photons are from the broad emission lines. Our analysis does not conflict with the SSC model. The disk-jet symbiosis and radio/$\\gamma$-ray correlation found in the literature are also discussed. The radio/$\\gamma$-ray correlation may be an apparent correlation caused by the boosting effect since both bands are strongly beamed.

  15. Gamma-ray Pulsar Revolution

    CERN Document Server

    Caraveo, Patrizia A

    2013-01-01

    Isolated Neutron Stars (INSs) were the first sources identified in the field of high-energy gamma-ray astronomy. At first, in the 70s, there were only two identified sources, the Crab and Vela pulsars. However, although few in number, these objects were crucial in establishing the very concept of a gamma-ray source. Moreover, they opened up significant discovery space both in the theoretical and phenomenological fronts. The need to explain the copious gamma-ray emission of these pulsars led to breakthrough developments in understanding the structure and physics of neutron star magnetospheres. In parallel, the 20-year-long chase to understand the nature of Geminga unveiled the existence of a radio-quiet, gamma-ray-emitting, INS, adding a new dimension to the INS family. Today we are living through an extraordinary time of discovery. The current generation of gamma-ray detectors has vastly increased the population of known of gamma-ray-emitting neutron stars. The 100 mark was crossed in 2011 and we are now appr...

  16. Two classes of gamma-ray bursts

    CERN Document Server

    Katz, J I

    1995-01-01

    Data from the 3B Catalogue suggest that short and long GRB are the results of different classes of events, rather than different parameter values within a single class: Short bursts have harder spectra in the BATSE bands, but chiefly long bursts are detected at photon energies over 1 MeV, implying that their hard photons are radiated by a process not found in short bursts. The values of \\langle V/V_{max} \\rangle for short and long bursts differ by 4.3 \\sigma, implying different spatial distributions. Only the soft gamma-ray radiation mechanisms are the same in both classes.

  17. Properties of $\\gamma$-Ray Burst Classes

    CERN Document Server

    Hakkila, J; Roiger, R J; Mallozzi, R S; Pendleton, G N; Meegan, C A; Hakkila, Jon; Haglin, David J.; Roiger, Richard J.; Mallozzi, Robert S.; Pendleton, Geoffrey N.; Meegan, Charles A.

    2000-01-01

    The three gamma-ray burst (GRB) classes identified by statistical clustering analysis (Mukherjee et al. 1998) are examined using the pattern recognition algorithm C4.5 (Quinlan 1986). Although the statistical existence of Class 3 (intermediate duration, intermediate fluence, soft) is supported, the properties of this class do not need to arise from a distinct source population. Class 3 properties can easily be produced from Class 1 (long, high fluence, intermediate hardness) by a combination of measurement error, hardness/intensity correlation, and a newly-identified BATSE bias (the fluence duration bias). Class 2 (short, low fluence, hard) does not appear to be related to Class 1.

  18. Gamma-ray observations of SN 1987A with an array of high-purity germanium detectors

    Science.gov (United States)

    Sandie, W. G.; Nakano, G. H.; Chase, L. F., Jr.; Fishman, G. J.; Meegan, C. A.; Wilson, R. B.; Paciesas, W.

    A balloonborne gamma-ray spectrometer comprising an array of high-purity n-type germanium detectors was flown from Alice Springs, Northern Territory, Australia, on May 29 - 30, 1987, 96 days after the observed neutrino pulse. SN 1987A was within the 22-deg field of view for about 3300 s during May 29.9 - 30.3 UT. No excess gamma rays were observed at energies appropriate to the Ni(56) - Co(56) decay chain or from other lines in the energy region from 0.1 to 3.0 MeV. The data imply that there was less than 2.5×10-4 solar masses of Co(56) exposed to the Earth at the time of the observation. Additional balloon-borne observations are planned.

  19. Search for Signatures of Inflation with the EBEX Balloon-Borne Instrument

    Science.gov (United States)

    Hanany, Shaul

    EBEX (E and B EXperiment) is a balloon-borne experiment designed to measure the polarization of the cosmic microwave background radiation. It is a long-duration payload equipped with an array of 1564 bolometric transition edge sensors. The unique combination of sensitivity, resolution and sky coverage enables unprecedented power to constrain inflationary models and to determine the amplitude of the matter power spectrum through measurement of the gravitational lensing of CMB photons. The experiment is optimized to take full advantage of the balloon-borne environment in its frequency coverage, and to measure the yet unknown properties of Galactic dust polarization. EBEX completed a test flight in June of 2009 from Ft. Sumner, NM, and a second end- to-end integration campaign in the summer of 2011. Important milestones have been achieved including the first operation of any transition edge sensor (TES) bolometer in a balloon-borne environment, the first demonstration of any multiplexed readout of TES bolometers in space-like conditions, the first operation of a polarimeter based on continuous rotation of a half-wave plate by means of a superconducting magnetic bearing, and validation of the EBEX optical system and end-to-end polarimetry. The EBEX instrument is now being readied for its first long duration flight, which is scheduled to take place in December 2012, just before the start of this proposed grant period. In this proposal we are requesting funding to analyze and publish the science data generated during the first EBEX science flight. In addition to its science goals EBEX is a technology pathfinder for other experiments and for a future NASA satellite mission. It continues to provide excellent training grounds for student and post-docs. Already 6 Ph.D. theses have been produced based on the project and 7 more are anticipated.

  20. Design and characterization of TES bolometers and SQUID readout electronics for a balloon-borne application

    CERN Document Server

    Hubmayr, Johannes; Bissonnette, Eric; Dobbs, Matt; Hanany, Shaul; Lee, Adrian T; MacDermid, Kevin; Meng, Xiaofan; Sagiv, Ilan; Smecher, Graeme

    2009-01-01

    We present measurements of the electrical and thermal properties of new arrays of bolometeric detectors that were fabricated as part of a program to develop bolometers optimized for the low photon background of the EBEX balloon-borne experiment. An array consists of 140 spider-web transition edge sensor bolometers microfabricated on a 4" diameter silicon wafer. The designed average thermal conductance of bolometers on a proto-type array is 32 pW/K, and measurements are in good agreement with this value. The measurements are taken with newly developed, digital frequency domain multiplexer SQUID readout electronics.

  1. PoGOLino: a scintillator-based balloon-borne neutron detector

    CERN Document Server

    Kole, Merlin; Fukazawa, Yasushi; Fukuda, Kentaro; Ishizu, Sumito; Jackson, Miranda; Kamae, Tune; Kawaguchi, Noriaki; Kawano, Takafumi; Kiss, Mozsi; Moretti, Elena; Pearce, Mark; Rydström, Stefan; Takahashi, Hiromitsu; Yanagida, Takayuki

    2014-01-01

    PoGOLino is a balloon-borne scintillator-based experiment developed to study the largely unexplored high altitude neutron environment at high geomagnetic latitudes. The instrument comprises two detectors that make use of LiCAF, a novel neutron sensitive scintillator, sandwiched by BGO crystals for background reduction. The experiment was launched on March 20th 2013 from the Esrange Space Centre, Northern Sweden (geomagnetic latitude of $65^\\circ$), for a three hour flight during which the instrument took data up to an altitude of 30.9 km. The detector design and ground calibration results are presented together with the measurement results from the balloon flight.

  2. First flight of the Gamma-Ray Imager/Polarimeter for Solar flares (GRIPS) instrument

    CERN Document Server

    Duncan, Nicole; Shih, A Y; Hurford, G J; Bain, H M; Amman, M; Mochizuki, B A; Hoberman, J; Olson, J; Maruca, B A; Godbole, N M; Smith, D M; Sample, J; Kelley, N A; Zoglauer, A; Caspi, A; Kaufmann, P; Boggs, S; Lin, R P

    2016-01-01

    The Gamma-Ray Imager/Polarimeter for Solar flares (GRIPS) is a balloon-borne telescope designed to study solar-flare particle acceleration and transport. We describe GRIPS's first Antarctic long-duration flight in Jan 2016 and report preliminary calibration and science results. Electron and ion dynamics, particle abundances and the ambient plasma conditions in solar flares can be understood by examining hard X-ray (HXR) and gamma-ray emission (20 keV to 10 MeV) with enhanced imaging, spectroscopy and polarimetry. GRIPS is specifically designed to answer questions including: What causes the spatial separation between energetic electrons producing HXRs and energetic ions producing gamma-ray lines? How anisotropic are the relativistic electrons, and why can they dominate in the corona? How do the compositions of accelerated and ambient material vary with space and time, and why? GRIPS's key technological improvements over the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) include 3D position-sensi...

  3. High-resolution observations of gamma-ray line emission from SN 1987A

    Science.gov (United States)

    Sandie, W. G.; Nakano, G. H.; Chase, L. F., Jr.; Fishman, G. J.; Meegan, C. A.; Wilson, R. B.; Paciesas, W. S.; Lasche, G. P.

    1988-11-01

    A balloon-borne gamma-ray spectrometer was flown from Alice springs, Australia, 1987 October 29 - 31, nominally 250 days after the supernova event. High-resolution data, typically 2.5 keV at 1.33 MeV, were obtained for two transits of the supernova. A significant net flux of gamma rays with energy 847 keV was observed from the direction of SN 1987A on each transit. No prominent gamma-ray features were seen at other energies. A preliminary estimate of the line flux is (5.1±1.7)×10-4photons cm-2s-1. The net flux observed in the first supernova transit extends from 838 keV to 850 keV and may be evidence of dynamical broadening of the 847 keV line. The total excess flux from 838 keV to 850 keV corresponds to (1.0±0.28)×10-3photons cm-2s-1. This line may be interpreted as emission from the first excited state of 56Fe due to the radioactive decay of 56Co.

  4. Terrestrial gamma-ray flashes

    Energy Technology Data Exchange (ETDEWEB)

    Marisaldi, Martino, E-mail: marisaldi@iasfbo.inaf.it [INAF-IASF Bologna, Via Gobetti 101, I-40129 Bologna (Italy); Fuschino, Fabio; Labanti, Claudio [INAF-IASF Bologna, Via Gobetti 101, I-40129 Bologna (Italy); Tavani, Marco [INAF-IASF Roma, Via Fosso del Cavaliere 100, I-00133 Roma (Italy); Argan, Andrea [INAF, Viale del Parco Mellini 84, 00136 Roma (Italy); Del Monte, Ettore [INAF-IASF Roma, Via Fosso del Cavaliere 100, I-00133 Roma (Italy); Longo, Francesco; Barbiellini, Guido [Dipartimento di Fisica Università di Trieste and INFN Trieste, via A. Valerio 2, I-34127 Trieste (Italy); Giuliani, Andrea [INAF-IASF Milano, Via Bassini 15, I-20133 Milano (Italy); Trois, Alessio [INAF Osservatorio Astronomico di Cagliari, loc. Poggio dei Pini, strada 54, I-09012 Capoterra (Italy); Bulgarelli, Andrea; Gianotti, Fulvio; Trifoglio, Massimo [INAF-IASF Bologna, Via Gobetti 101, I-40129 Bologna (Italy)

    2013-08-21

    Lightning and thunderstorm systems in general have been recently recognized as powerful particle accelerators, capable of producing electrons, positrons, gamma-rays and neutrons with energies as high as several tens of MeV. In fact, these natural systems turn out to be the highest energy and most efficient natural particle accelerators on Earth. Terrestrial Gamma-ray Flashes (TGFs) are millisecond long, very intense bursts of gamma-rays and are one of the most intriguing manifestation of these natural accelerators. Only three currently operative missions are capable of detecting TGFs from space: the RHESSI, Fermi and AGILE satellites. In this paper we review the characteristics of TGFs, including energy spectrum, timing structure, beam geometry and correlation with lightning, and the basic principles of the associated production models. Then we focus on the recent AGILE discoveries concerning the high energy extension of the TGF spectrum up to 100 MeV, which is difficult to reconcile with current theoretical models.

  5. Zeptosecond $\\gamma$-ray pulses

    CERN Document Server

    Klaiber, Michael; Keitel, Christoph H

    2007-01-01

    High-order harmonic generation (HHG) in the relativistic regime is employed to obtain zeptosecond pulses of $\\gamma$-rays. The harmonics are generated from atomic systems in counterpropagating strong attosecond laser pulse trains of linear polarization. In this setup recollisions of the ionized electrons can be achieved in the highly relativistic regime via a reversal of the commonly deteriorating drift and without instability of the electron dynamics such as in a standing laser wave. As a result, coherent attosecond $\\gamma$-rays in the 10 MeV energy range as well as coherent zeptosecond $\\gamma$-ray pulses of MeV photon energy for time-resolved nuclear spectroscopy become feasible.

  6. The Gamma-ray Sky with Fermi

    Science.gov (United States)

    Thompson, David

    2012-01-01

    Gamma rays reveal extreme, nonthermal conditions in the Universe. The Fermi Gamma-ray Space Telescope has been exploring the gamma-ray sky for more than four years, enabling a search for powerful transients like gamma-ray bursts, novae, solar flares, and flaring active galactic nuclei, as well as long-term studies including pulsars, binary systems, supernova remnants, and searches for predicted sources of gamma rays such as dark matter annihilation. Some results include a stringent limit on Lorentz invariance derived from a gamma-ray burst, unexpected gamma-ray variability from the Crab Nebula, a huge gamma-ray structure associated with the center of our galaxy, surprising behavior from some gamma-ray binary systems, and a possible constraint on some WIMP models for dark matter.

  7. Gamma-ray Imaging Methods

    Energy Technology Data Exchange (ETDEWEB)

    Vetter, K; Mihailescu, L; Nelson, K; Valentine, J; Wright, D

    2006-10-05

    In this document we discuss specific implementations for gamma-ray imaging instruments including the principle of operation and describe systems which have been built and demonstrated as well as systems currently under development. There are several fundamentally different technologies each with specific operational requirements and performance trade offs. We provide an overview of the different gamma-ray imaging techniques and briefly discuss challenges and limitations associated with each modality (in the appendix we give detailed descriptions of specific implementations for many of these technologies). In Section 3 we summarize the performance and operational aspects in tabular form as an aid for comparing technologies and mapping technologies to potential applications.

  8. Gamma-ray burst spectra

    Science.gov (United States)

    Teegarden, B. J.

    1982-01-01

    A review of recent results in gamma-ray burst spectroscopy is given. Particular attention is paid to the recent discovery of emission and absorption features in the burst spectra. These lines represent the strongest evidence to date that gamma-ray bursts originate on or near neutron stars. Line parameters give information on the temperature, magnetic field and possibly the gravitational potential of the neutron star. The behavior of the continuum spectrum is also discussed. A remarkably good fit to nearly all bursts is obtained with a thermal-bremsstrahlung-like continuum. Significant evolution is observed of both the continuum and line features within most events.

  9. Performance of the CAPRICE98 balloon-borne gas-RICH detector

    Energy Technology Data Exchange (ETDEWEB)

    Bergstroem, D. E-mail: david@particle.kth.se; Boezio, M.; Carlson, P.; Francke, T.; Grinstein, S.; Weber, N.; Suffert, M.; Hof, M.; Kremer, J.; Menn, W.; Simon, M.; Stephens, S.A.; Ambriola, M.; Bellotti, R.; Cafagna, F.; Castellano, M.; Ciacio, F.; Circella, M.; Marzo, C.D.C. De; Finetti, N.; Papini, P.; Piccardi, S.; Spillantini, P.; Bartalucci, S.; Ricci, M.; Bidoli, V.; Casolino, M.; Pascale, M.P.D.M.P. De; Morselli, A.; Picozza, P.; Sparvoli, R.; Barbiellini, G.; Schiavon, P.; Vacchi, A.; Zampa, N.; Mitchell, J.W.; Ormes, J.F.; Streitmatter, R.E.; Bravar, U.; Stochaj, S.J

    2001-05-01

    A RICH counter using a gas radiator of C{sub 4}F{sub 10} and a photosensitive MWPC with pad readout has been developed, tested in particle beam at CERN and used in the CAPRICE98 balloon-borne experiment. The MWPC was operated with a TMAE and ethane mixture at atmospheric pressure and used a cathode pad plane to give an unambiguous image of the Cherenkov light. The induced signals in the pad plane were read out using the AMPLEX chip and CRAMS. The good efficiency of the Cherenkov light collection, the efficient detection of the weak signal from single UV photons together with a low noise level in the electronics of the RICH detector, resulted in a large number of detected photoelectrons per event. For {beta}{approx_equal}1 charge one particles, an average of 12 photoelectrons per event were detected. The reconstructed Cherenkov angle of 50 mrad for a {beta}{approx_equal}1 particle had a resolution of 1.2 mrad (rms). The RICH was flown with the CAPRICE98 magnetic spectrometer and was the first RICH counter ever used in a balloon-borne experiment capable of identifying charge one particles at energies above 5 GeV. The RICH provided an identification of cosmic ray antiprotons up to the highest energies ever studied (about 50 GeV of total energy). The spectrometer was flown on 28-29 May 1998 from Fort Sumner, New Mexico, USA.

  10. Stratospheric BrO abundance measured by a balloon-borne submillimeterwave radiometer

    Directory of Open Access Journals (Sweden)

    R. A. Stachnik

    2012-11-01

    Full Text Available Measurements of mixing ratio profiles of stratospheric bromine monoxide (BrO were made using observations of BrO otational line emission at 650.179 GHz by a balloon-borne SIS (superconductor-insulator-superconductor submillimeterwave heterodyne receiver. The balloon was launched from Ft. Sumner, New Mexico (34°N on 22 September 2011. Peak mid-day BrO abundance varied from 16 ± 2 ppt at 34 km to 6 ± 4 ppt at 16 km. Corresponding estimates of total inorganic bromine (Bry, derived from BrO vmr (volume mixing ratio using a photochemical box model, were 21 ± 3 ppt and 11 ± 5 ppt, respectively. Inferred Bry abundance exceeds that attributable solely to decomposition of long-lived methyl bromide and other halons, and is consistent with a contribution from bromine-containing very short lived substances, BryVSLS, of 4 ppt to 8 ppt. These results for BrO and Bry were compared with, and found to be in good agreement with, those of other recent balloon-borne and satellite instruments.

  11. Stratospheric BrO abundance measured by a balloon-borne submillimeterwave radiometer

    Directory of Open Access Journals (Sweden)

    R. A. Stachnik

    2013-03-01

    Full Text Available Measurements of mixing ratio profiles of stratospheric bromine monoxide (BrO were made using observations of BrO rotational line emission at 650.179 GHz by a balloon-borne SIS (superconductor-insulator-superconductor submillimeterwave heterodyne limb sounder (SLS. The balloon was launched from Ft. Sumner, New Mexico (34° N on 22 September 2011. Peak mid-day BrO abundance varied from 16 ± 2 ppt at 34 km to 6 ± 4 ppt at 16 km. Corresponding estimates of total inorganic bromine (Bry, derived from BrO vmr (volume mixing ratio using a photochemical box model, were 21 ± 3 ppt and 11 ± 5 ppt, respectively. Inferred Bry abundance exceeds that attributable solely to decomposition of long-lived methyl bromide and other halons, and is consistent with a contribution from bromine-containing very short lived substances, BryVSLS, of 4 ppt to 8 ppt. These results for BrO and Bry were compared with, and found to be in good agreement with, those of other recent balloon-borne and satellite instruments.

  12. Precise Pointing and Stabilization Performance for the Balloon-borne Imaging Testbed (BIT): 2015 Test Flight

    CERN Document Server

    Romualdez, L J; Damaren, C J; Galloway, M N; Hartley, J W; Li, L; Massey, R J; Netterfield, C B

    2016-01-01

    Balloon-borne astronomy offers an attractive option for experiments that require precise pointing and attitude stabilization, due to a large reduction in the atmospheric interference observed by ground-based systems as well as the low-cost and short development time-scale compared to space-borne systems. The Balloon-borne Imaging Testbed (BIT) is an instrument designed to meet the technological requirements of high precision astronomical missions and is a precursor to the development of a facility class instrument with capabilities similar to the Hubble Space Telescope. The attitude determination and control systems (ADCS) for BIT, the design, implementation, and analysis of which are the focus of this paper, compensate for compound pendulation effects and other sub-orbital disturbances in the stratosphere to within 1-2$^{\\prime\\prime}$ (rms), while back-end optics provide further image stabilization down to 0.05$^{\\prime\\prime}$ (not discussed here). During the inaugural test flight from Timmins, Canada in S...

  13. Novae in gamma-rays

    CERN Document Server

    Hernanz, M

    2013-01-01

    Classical novae produce radioactive nuclei which are emitters of gamma-rays in the MeV range. Some examples are the lines at 478 and 1275 keV (from 7Be and 22Na) and the positron-electron annihilation emission (511 keV line and a continuum below this energy, with a cut-off at 20-30 keV). The analysis of gamma-ray spectra and light curves is a potential unique and powerful tool both to trace the corresponding isotopes and to give insights on the properties of the expanding envelope determining its transparency. Another possible origin of gamma-rays is the acceleration of particles up to very high energies, so that either neutral pions or inverse Compton processes produce gamma-rays of energies larger than 100 MeV. MeV photons during nova explosions have not been detected yet, although several attempts have been made in the last decades; on the other hand, GeV photons from novae have been detected in some particular novae, in symbiotic binaries, where the companion is a red giant with a wind, instead of a main ...

  14. Short duration gamma ray bursts

    Indian Academy of Sciences (India)

    Patrick Das Gupta

    2004-10-01

    After a short review of gamma ray bursts (GRBs), we discuss the physical implications of strong statistical correlations seen among some of the parameters of short duration bursts (90 < 2 s). Finally, we conclude with a brief sketch of a new unified model for long and short GRBs.

  15. High Energy Gamma-Ray Emission from Gamma-Ray Bursts - Before GLAST

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Yi-Zhong; Piran, Tsvi

    2011-11-29

    Gamma-ray bursts (GRBs) are short and intense emission of soft {gamma}-rays, which have fascinated astronomers and astrophysicists since their unexpected discovery in 1960s. The X-ray/optical/radio afterglow observations confirm the cosmological origin of GRBs, support the fireball model, and imply a long-activity of the central engine. The high-energy {gamma}-ray emission (> 20 MeV) from GRBs is particularly important because they shed some lights on the radiation mechanisms and can help us to constrain the physical processes giving rise to the early afterglows. In this work, we review observational and theoretical studies of the high-energy emission from GRBs. Special attention is given to the expected high-energy emission signatures accompanying the canonical early-time X-ray afterglow that was observed by the Swift X-ray Telescope. We also discuss the detection prospect of the upcoming GLAST satellite and the current ground-based Cerenkov detectors.

  16. The Gamma-ray Sky with Fermi

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, D.J. [NASA Goddard Space Flight Center, Greenbelt, Maryland, 20771 (United States)

    2013-10-15

    Gamma rays reveal extreme, nonthermal conditions in the Universe. The Fermi Gamma-ray Space Telescope has been exploring the gamma-ray sky for more than four years, enabling a search for powerful transients like gamma-ray bursts, solar flares, and flaring active galactic nuclei, as well as long-term studies including pulsars, binary systems, supernova remnants, and searches for predicted sources of gamma rays such as clusters of galaxies. Some results include a stringent limit on Lorentz invariance violation derived from a gamma-ray burst, unexpected gamma-ray variability from the Crab Nebula, a huge gamma-ray structure in the direction of the center of our Galaxy, and strong constraints on some Weakly Interacting Massive Particle (WIMP) models for dark matter.

  17. Cosmic Rays: What Gamma Rays Can Say

    OpenAIRE

    2014-01-01

    We will review the main channels of gamma ray emission due to the acceleration and propagation of cosmic rays, discussing the cases of both galactic and extra-galactic cosmic rays and their connection with gamma rays observations.

  18. The Gamma-ray Universe through Fermi

    Science.gov (United States)

    Thompson, David J.

    2012-01-01

    Gamma rays, the most powerful form of light, reveal extreme conditions in the Universe. The Fermi Gamma-ray Space Telescope and its smaller cousin AGILE have been exploring the gamma-ray sky for several years, enabling a search for powerful transients like gamma-ray bursts, novae, solar flares, and flaring active galactic nuclei, as well as long-term studies including pulsars, binary systems, supernova remnants, and searches for predicted sources of gamma rays such as dark matter annihilation. Some results include a stringent limit on Lorentz invariance derived from a gamma-ray burst, unexpected gamma-ray variability from the Crab Nebula, a huge ga.nuna-ray structure associated with the center of our galaxy, surprising behavior from some gamma-ray binary systems, and a possible constraint on some WIMP models for dark matter.

  19. PANGU: a wide field gamma-ray imager and polarimeter

    Science.gov (United States)

    Wu, X.; Walter, R.; Su, M.; Ambrosi, G.; Azzarello, P.; Böttcher, M.; Chang, J.; Chernyakova, M.; Fan, Y.; Farnier, C.; Gargano, F.; Grenier, I.; Hajdas, W.; Mazziotta, M. N.; Pearce, M.; Pohl, M.; Zdziarski, A.

    2016-07-01

    PANGU (the PAir-productioN Gamma-ray Unit) is a gamma-ray telescope with a wide field of view optimized for spectro-imaging, timing and polarization studies. It will map the gamma-ray sky from 10 MeV to a few GeV with unprecedented spatial resolution. This window on the Universe is unique to detect photons produced directly by relativistic particles, via the decay of neutral pions, or the annihilation or decay light from anti-matter and the putative light dark matter candidates. A wealth of questions can be probed among the most important themes of modern physics and astrophysics. The PANGU instrument is a pair-conversion gamma-ray telescope based on an innovative design of a silicon strip tracker. It is light, compact and accurate. It consists of 100 layers of silicon micro-strip detector of 80 x 80 cm2 in area, stacked to height of about 90 cm, and covered by an anticoincidence detector. PANGU relies on multiple scattering effects for energy measurement, reaching an energy resolution between 30-50% for 10 MeV - 1 GeV. The novel tracker will allow the first polarization measurement and provide the best angular resolution ever obtained in the soft gamma ray and GeV band.

  20. Fermi Reveals New Light on Novae in Gamma rays

    CERN Document Server

    Cheung, C C; Shore, S N; Grove, J E; Leising, M

    2016-01-01

    Novae are now firmly established as a high-energy (>100 MeV) gamma-ray source class by the Fermi Large Area Telescope (LAT). In symbiotic binary systems such as V407 Cyg 2010, there is a firm theoretical framework for the production of shock-accelerated particles in the nova ejecta from interactions with the dense wind of the red giant companion. Yet, the high-energy gamma-ray emission detected in classical novae involving less evolved stellar companions cannot be explained in the same way and could instead be produced in internal shocks in the ejecta. We summarize the Fermi-LAT gamma-ray observations of novae, highlighting the main properties that will guide further studies. Additionally, we report on the soft gamma-ray (~0.1 MeV) continuum detection of the oxygen-neon type classical nova V382 Vel 1999 with the OSSE detector aboard the Compton Gamma Ray Observatory in light of its Fermi-era analog, V959 Mon 2012.

  1. BLASTbus electronics: general-purpose readout and control for balloon-borne experiments

    CERN Document Server

    Benton, S J; Amiri, M; Angilè, F E; Bock, J J; Bond, J R; Bryan, S A; Chiang, H C; Contaldi, C R; Crill, B P; Devlin, M J; Dober, B; Doré, O P; Dowell, C D; Farhang, M; Filippini, J P; Fissel, L M; Fraisse, A A; Fukui, Y; Galitzki, N; Gambrel, A E; Gandilo, N N; Golwala, S R; Gudmundsson, J E; Halpern, M; Hasselfield, M; Hilton, G C; Holmes, W A; Hristov, V V; Irwin, K D; Jones, W C; Kermish, Z D; Klein, J; Korotkov, A L; Kuo, C L; MacTavish, C J; Mason, P V; Matthews, T G; Megerian, K G; Moncelsi, L; Morford, T A; Mroczkowski, T K; Nagy, J M; Netterfield, C B; Novak, G; Nutter, D; O'Brient, R; Ogburn, R W; Pascale, E; Poidevin, F; Rahlin, A S; Reintsema, C D; Ruhl, J E; Runyan, M C; Savini, G; Scott, D; Shariff, J A; Soler, J D; Thomas, N E; Trangsrud, A; Truch, M D; Tucker, C E; Tucker, G S; Tucker, R S; Turner, A D; Ward-Thompson, D; Weber, A C; Wiebe, D V; Young, E Y

    2014-01-01

    We present the second generation BLASTbus electronics. The primary purposes of this system are detector readout, attitude control, and cryogenic housekeeping, for balloon-borne telescopes. Readout of neutron transmutation doped germanium (NTD-Ge) bolometers requires low noise and parallel acquisition of hundreds of analog signals. Controlling a telescope's attitude requires the capability to interface to a wide variety of sensors and motors, and to use them together in a fast, closed loop. To achieve these different goals, the BLASTbus system employs a flexible motherboard-daughterboard architecture. The programmable motherboard features a digital signal processor (DSP) and field-programmable gate array (FPGA), as well as slots for three daughterboards. The daughterboards provide the interface to the outside world, with versions for analog to digital conversion, and optoisolated digital input/output. With the versatility afforded by this design, the BLASTbus also finds uses in cryogenic, thermometry, and powe...

  2. GPS-aided gravimetry at 30 km altitude from a balloon-borne platform

    Science.gov (United States)

    Lazarewicz, Andrew R.; Evans, Alan G.

    1989-01-01

    A balloon-borne experiment, flown at 30 km altitude over New Mexico, was used to test dynamic differential Global Positioning System (GPS) tracking in support of gravimetry at high-altitudes. The experiment package contained a gravimeter (Vibrating String Accelerometer), a full complement of inertial instruments, a TI-4100 GPS receiver and a radar transponder. The flight was supported by two GPS receivers on the ground near the flight path. From the 8 hour flight, about a forty minute period was selected for analysis. Differential GPS phase measurements were used to estimate changes in position over the sample time interval, or average velocity. In addition to average velocity, differential positions and numerical averages of acceleration were obtained in three components. Gravitational acceleration was estimated by correcting for accelerations due to translational motion, ignoring all rotational effects.

  3. Pre-flight integration and characterization of the SPIDER balloon-borne telescope

    CERN Document Server

    Rahlin, A S; Amiri, M; Benton, S J; Bock, J J; Bond, J R; Bryan, S A; Chiang, H C; Contaldi, C R; Crill, B P; Doré, O; Farhang, M; Filippini, J P; Fissel, L M; Fraisse, A A; Gambrel, A E; Gandilo, N N; Golwala, S; Gudmundsson, J E; Halpern, M; Hasselfield, M F; Hilton, G; Holmes, W A; Hristov, V V; Irwin, K D; Jones, W C; Kermish, Z D; Kuo, C L; MacTavish, C J; Mason, P V; Megerian, K; Moncelsi, L; Morford, T A; Nagy, J M; Netterfield, C B; O'Brient, R; Reintsema, C; Ruhl, J E; Runyan, M C; Shariff, J A; Soler, J D; Trangsrud, A; Tucker, C; Tucker, R S; Turner, A D; Weber, A C; Wiebe, D V; Young, E Y

    2014-01-01

    We present the results of integration and characterization of the SPIDER instrument after the 2013 pre-flight campaign. SPIDER is a balloon-borne polarimeter designed to probe the primordial gravitational wave signal in the degree-scale $B$-mode polarization of the cosmic microwave background. With six independent telescopes housing over 2000 detectors in the 94 GHz and 150 GHz frequency bands, SPIDER will map 7.5% of the sky with a depth of 11 to 14 $\\mu$K$\\cdot$arcmin at each frequency, which is a factor of $\\sim$5 improvement over Planck. We discuss the integration of the pointing, cryogenic, electronics, and power sub-systems, as well as pre-flight characterization of the detectors and optical systems. SPIDER is well prepared for a December 2014 flight from Antarctica, and is expected to be limited by astrophysical foreground emission, and not instrumental sensitivity, over the survey region.

  4. SPIDER: a balloon-borne CMB polarimeter for large angular scales

    CERN Document Server

    Filippini, J P; Amiri, M; Benton, S J; Bihary, R; Bock, J J; Bond, J R; Bonetti, J A; Bryan, S A; Burger, B; Chiang, H C; Contaldi, C R; Crill, B P; Doré, O; Farhang, M; Fissel, L M; Gandilo, N N; Golwala, S R; Gudmundsson, J E; Halpern, M; Hasselfield, M; Hilton, G; Holmes, W; Hristov, V V; Irwin, K D; Jones, W C; Kuo, C L; MacTavish, C J; Mason, P V; Montroy, T E; Morford, T A; Netterfield, C B; O'Dea, D T; Rahlin, A S; Reintsema, C D; Ruhl, J E; Runyan, M C; Schenker, M A; Shariff, J A; Soler, J D; Trangsrud, A; Tucker, C; Tucker, R S; Turner, A D

    2011-01-01

    We describe SPIDER, a balloon-borne instrument to map the polarization of the millimeter-wave sky with degree angular resolution. Spider consists of six monochromatic refracting telescopes, each illuminating a focal plane of large-format antenna-coupled bolometer arrays. A total of 2,624 superconducting transition-edge sensors are distributed among three observing bands centered at 90, 150, and 280 GHz. A cold half-wave plate at the aperture of each telescope modulates the polarization of incoming light to control systematics. Spider's first flight will be a 20-30-day Antarctic balloon campaign in December 2011. This flight will map \\sim8% of the sky to achieve unprecedented sensitivity to the polarization signature of the gravitational wave background predicted by inflationary cosmology. The Spider mission will also serve as a proving ground for these detector technologies in preparation for a future satellite mission.

  5. The Balloon-borne Large Aperture Submillimetre Telescope (BLAST) and BLASTPol

    Science.gov (United States)

    Pascale, Enzo; Pascale

    2013-01-01

    Balloon observations from Antarctica have proven an effective and efficient way to address open Cosmological questions as well as problems in Galactic astronomy. The Balloon-borne Large Aperture Submillimetre Telescope (BLAST) is a sub-orbital mapping experiment which uses 270 bolometric detectors to image the sky in three wavebands centred at 250, 350 and 500 μm with a 1.8 m telescope. In the years before Herschel launched, BLAST provided data of unprecedented angular and spectral coverage in frequency bands close to the peak of dust emission in star forming regions in our Galaxy, and in galaxies at cosmological distances. More recently, BLASTPol was obtained by reconfiguring the BLAST focal plane as a submillimetric polarimeter to study the role that Galactic magnetic fields have in regulating the processes of star-formation. The first and successful BLASTPol flight from Antarctica in 2010 is followed by a second flight, currently scheduled for the end of 2012.

  6. High Energy Replicated Optics to Explore the Sun Balloon-Borne Telescope: Astrophysical Pointing

    Science.gov (United States)

    Gaskin, Jessica; Wilson-Hodge, Colleen; Ramsey, Brian; Apple, Jeff; Kurt, Dietz; Tennant, Allyn; Swartz, Douglas; Christe, Steven D.; Shih, Albert

    2014-01-01

    On September 21, 2013, the High Energy Replicated Optics to Explore the Sun, or HEROES, balloon-borne x-ray telescope launched from the Columbia Scientific Balloon Facility's site in Ft. Summer, NM. The flight lasted for approximately 27 hours and the observational targets included the Sun and astrophysical sources GRS 1915+105 and the Crab Nebula. Over the past year, the HEROES team upgraded the existing High Energy Replicated Optics (HERO) balloon-borne telescope to make unique scientific measurements of the Sun and astrophysical targets during the same flight. The HEROES Project is a multi-NASA Center effort with team members at both Marshall Space Flight Center (MSFC) and Goddard Space Flight Center (GSFC), and is led by Co-PIs (one at each Center). The HEROES payload consists of the hard X-ray telescope HERO, developed at MSFC, combined with several new systems. To allow the HEROES telescope to make observations of the Sun, a new solar aspect system was added to supplement the existing star camera for fine pointing during both the day and night. A mechanical shutter was added to the star camera to protect it during solar observations and two alignment monitoring systems were added for improved pointing and post-flight data reconstruction. This mission was funded by the NASA HOPE (Hands-On Project Experience) Training Opportunity awarded by the NASA Academy of Program/Project and Engineering Leadership, in partnership with NASA's Science Mission Directorate, Office of the Chief Engineer and Office of the Chief Technologist.

  7. Gamma rays from dark matter

    CERN Document Server

    Bringmann, Torsten

    2011-01-01

    A leading hypothesis for the nature of the elusive dark matter are thermally produced, weakly interacting massive particles that arise in many theories beyond the standard model of particle physics. Their self-annihilation in astrophysical regions of high density provides a potential means of indirectly detecting dark matter through the annihilation products, which nicely complements direct and collider searches. Here, I review the case of gamma rays which are particularly promising in this respect: distinct and unambiguous spectral signatures would not only allow a clear discrimination from astrophysical backgrounds but also to extract important properties of the dark matter particles; powerful observational facilities like the Fermi Gamma-ray Space Telescope or upcoming large, ground-based Cherenkov telescope arrays will be able to probe a considerable part of the underlying, e.g. supersymmetric, parameter space. I conclude with a more detailed comparison of indirect and direct dark matter searches, showing...

  8. DUAL Gamma-Ray Mission

    CERN Document Server

    Boggs, S; von Ballmoos, P; Takahashi, T; Gehrels, N; Tueller, J; Baring, M; Beacom, J; Diehl, R; Greiner, J; Grove, E; Hartmann, D; Hernanz, M; Jean, P; Johnson, N; Kanbach, G; Kippen, M; Knödlseder, J; Leising, M; Madejski, G; McConnell, M; Milne, P; Motohide, K; Nakazawa, K; Oberlack, U; Phlips, B; Ryan, J; Skinner, G; Starrfield, S; Tajima, H; Wulf, E; Zoglauer, A; Zych, A

    2010-01-01

    Gamma-ray astronomy presents an extraordinary scientific potential for the study of the most powerful sources and the most violent events in the Universe. In order to take full advantage of this potential, the next generation of instrumentation for this domain will have to achieve an improvement in sensitivity over present technologies of at least an order of magnitude. The DUAL mission concept takes up this challenge in two complementary ways: a very long observation of the entire sky, combined with a large collection area for simultaneous observations of Type Ia SNe. While the Wide-Field Compton Telescope (WCT) accumulates data from the full gamma-ray sky (0.1-10 MeV) over the entire mission lifetime, the Laue-Lens Telescope (LLT) focuses on 56Co emission from SNe Ia (0.8-0.9 MeV), collecting gamma-rays from its large area crystal lens onto the WCT. Two separated spacecraft flying in formation will maintain the DUAL payloads at the lens' focal distance.

  9. Fermi Establishes Classical Novae as a Distinct Class of Gamma-ray Sources

    Science.gov (United States)

    Ackermann, M.; Ajello, M.; Albert, A.; Baldini, L.; Ballet, J.; Bastieri, D.; Bellazzini, R.; Bissaldi, E.; Blandford, R. D.; Bloom, E. D.; Bottacini, E.; Brandt, T. J.; Bregeon, J.; Bruel, P.; Buehler, R.; Buson, S.; Caliandro, G. A.; Cameron, R. A.; Caragiulo, M.; Caraveo, P. A.; Ferrara, E. C.; Harding, A. K.; Hays, E.; Perkins, J. S.; Thompson, D. J.

    2014-01-01

    A classical nova results from runaway thermonuclear explosions on the surface of a white dwarf that accretes matter from a low-mass main-sequence stellar companion. In 2012 and 2013, three novae were detected in gamma rays and stood in contrast to the first gamma-ray detected nova V407 Cygni 2010, which belongs to a rare class of symbiotic binary systems. Despite likely differences in the compositions and masses of their white dwarf progenitors, the three classical novae are similarly characterized as soft spectrum transient gamma-ray sources detected over 2-3 week durations. The gamma-ray detections point to unexpected high-energy particle acceleration processes linked to the mass ejection from thermonuclear explosions in an unanticipated class of Galactic gamma-ray sources.

  10. Searching for Gamma-Ray Blazar Candidates Among the Unidentified INTEGRAL Sources

    Energy Technology Data Exchange (ETDEWEB)

    Massaro, F.; /SLAC; Paggi, A.; D' Abrusco, R.; /Harvard-Smithsonian Ctr. Astrophys.; Tosti, G.; /Perugia U.

    2012-04-02

    The identification of low-energy counterparts for {gamma}-ray sources is one of the biggest challenge in modern {gamma}-ray astronomy. Recently, we developed and successfully applied a new association method to recognize {gamma}-ray blazar candidates that could be possible counterparts for the unidentified {gamma}-ray sources above 100 MeV in the second Fermi Large Area Telescope (LAT) catalog (2FGL). This method is based on the Infrared (IR) colors of the recent Wide-Field Infrared Survey Explorer (WISE) all-sky survey. In this letter we applied our new association method to the case of unidentified INTEGRAL sources (UISs) listed in the fourth soft gamma-ray source catalog (4IC). Only 86 UISs out of the 113 can be analyzed, due to the sky coverage of the WISE Preliminary data release. Among these 86 UISs, we found that 18 appear to have a {gamma}-ray blazar candidate within their positional error region. Finally, we analyzed the Swift archival data available for 10 out these 18 {gamma}-ray blazar candidates, and we found that 7 out of 10 are clearly detected in soft X-rays and/or in the optical-ultraviolet band. We cannot confirm the associations between the UISs and the selected {gamma}-ray blazar candidates due to the discrepancies between the INTEGRAL and the soft X-ray spectra. However, the discovery of the soft X-ray counterparts for the selected {gamma}-ray blazar candidates adds an important clue to help understand their origin and to confirm their blazar nature.

  11. High Redshift Gamma Ray Bursts

    Science.gov (United States)

    Gehrels, Neil

    2012-01-01

    The Swift Observatory has been detecting 100 gamma-ray bursts per year for 7 years and has greatly stimulated the field with new findings. Observations are made of the X-ray and optical afterglow from 1 minute after the burst, continuing for days. GRBs are providing a new tool to study the high redshift universe. Swift has detected several events at z>5 and one at z=9.4 giving information on metallicity, star formation rate and reionization. The talk will present the latest results.

  12. Gravitational microlensing of gamma-ray blazars

    DEFF Research Database (Denmark)

    F. Torres, Diego; E. Romero, Gustavo; F. Eiroa, Ernesto;

    2003-01-01

    We present a detailed study of the effects of gravitational microlensing on compact and distant $\\gamma$-ray blazars. These objects have $\\gamma$-ray emitting regions which are small enough as to be affected by microlensing effects produced by stars lying in intermediate galaxies. We analyze...... the temporal evolution of the gamma-ray magnification for sources moving in a caustic pattern field, where the combined effects of thousands of stars are taken into account using a numerical technique. We propose that some of the unidentified $\\gamma$-ray sources (particularly some of those lying at high...... galactic latitude whose gamma-ray statistical properties are very similar to detected $\\gamma$-ray blazars) are indeed the result of gravitational lensing magnification of background undetected Active Galactic Nuclei (AGNs)....

  13. Gamma-Ray Spectral States of Galactic Black Hole Candidates

    CERN Document Server

    Grove, J E; Kroeger, R A; McNaron-Brown, K; Skibo, J G; Phlips, B F

    1998-01-01

    OSSE has observed seven transient black hole candidates: GRO J0422+32, GX339-4, GRS 1716-249, GRS 1009-45, 4U 1543-47, GRO J1655-40, and GRS 1915+105. Two gamma-ray spectral states are evident and, based on a limited number of contemporaneous X-ray and gamma-ray observations, these states appear to be correlated with X-ray states. The former three objects show hard spectra below 100 keV (photon number indices Gamma < 2) that are exponentially cut off with folding energy ~100 keV, a spectral form that is consistent with thermal Comptonization. This "breaking gamma-ray state" is the high-energy extension of the X-ray low, hard state. In this state, the majority of the luminosity is above the X-ray band, carried by photons of energy ~100 keV. The latter four objects exhibit a "power-law gamma-ray state" with a relatively soft spectral index (Gamma ~ 2.5-3) and no evidence for a spectral break. For GRO J1655-40, the lower limit on the break energy is 690 keV. GRS 1716-249 exhibits both spectral states, with th...

  14. Gamma-Ray Astronomy Technology Needs

    Science.gov (United States)

    Gehrels, N.; Cannizzo, J. K.

    2012-01-01

    In recent decades gamma-ray observations have become a valuable tool for studying the universe. Progress made in diverse 8re1lS such as gamma-ray bursts (GRBs), nucleosynthesis, and active galactic nuclei (AGNs) has complimented and enriched our astrophysical understanding in many ways. We present an overview of current and future planned space y-ray missions and discussion technology needs for- the next generation of space gamma-ray instruments.

  15. Magnetars and Gamma Ray Bursts

    CERN Document Server

    Bucciantini, N

    2012-01-01

    In the last few years, evidences for a long-lived and sustained engine in Gamma Ray Bursts (GRBs) have increased the attention to the so called millisecond-magnetar model, as a competitive alternative to the standard collapsar scenario. I will review here the key aspects of the {\\it millisecond magnetar} model for Long Duration Gamma Ray Bursts (LGRBs). I will briefly describe what constraints, present observations put on any engine model, both in term of energetic, outflow properties, and the relation with the associated Supernova (SN). For each of these I will show how the millisecond magnetar model satisfies the requirements, what are the limits of the model, how can it be further tested, and what observations might be used to discriminate against it. I will also discuss numerical results that show the importance of the confinement by the progenitor star in explaining the formation of a collimated outflow, how a detailed model for the evolution of the central engine can be built, and show that a wide varie...

  16. Gamma-ray burst models.

    Science.gov (United States)

    King, Andrew

    2007-05-15

    I consider various possibilities for making gamma-ray bursts, particularly from close binaries. In addition to the much-studied neutron star+neutron star and black hole+neutron star cases usually considered good candidates for short-duration bursts, there are also other possibilities. In particular, neutron star+massive white dwarf has several desirable features. These systems are likely to produce long-duration gamma-ray bursts (GRBs), in some cases definitely without an accompanying supernova, as observed recently. This class of burst would have a strong correlation with star formation and occur close to the host galaxy. However, rare members of the class need not be near star-forming regions and could have any type of host galaxy. Thus, a long-duration burst far from any star-forming region would also be a signature of this class. Estimates based on the existence of a known progenitor suggest that this type of GRB may be quite common, in agreement with the fact that the absence of a supernova can only be established in nearby bursts.

  17. Fine-scale turbulence soundings in the stratosphere with the new balloon-borne instrument LITOS

    Directory of Open Access Journals (Sweden)

    A. Theuerkauf

    2010-08-01

    Full Text Available We have developed a new compact balloon payload called LITOS (Leibniz-Institute Turbulence Observations in the Stratosphere for high resolution wind turbulence soundings up to 35 km altitude. The wind measurements are performed applying a constant temperature anemometer (CTA with a vertical resolution of ~2.5 mm, i.e. 2 kHz sampling rate at 5 m/s ascent speed. Thereby, for the first time, it is possible to study the entire turbulence spectrum down to the viscous subrange in the stratosphere. Including telemetry, housekeeping, batteries and recovery unit the payload weighs less than 5 kg and can be launched at any radiosonde station. Since autumn 2007 LITOS has been successfully launched several times from the Leibniz-Institute of Atmospheric Physics (IAP in Kühlungsborn, Germany (54° N, 12° E. Two additional soundings were carried out in 2008 and 2009 at Kiruna, Sweden (67° N, 21° E as part of the BEXUS program (Balloon-borne EXperiments for University Students. We describe here the basic principle of CTA measurements and prove the validity of this method in the stratosphere. First case studies allow a clear distinction between non-turbulent layers and turbulent layers with a thickness of some tens of meters. Since our measurements cover the transition between the inertial and viscous subrange, energy dissipation rates can be calculated with high reliability.

  18. Balloon-borne far-infrared spectrophotometry of the galactic center region

    Science.gov (United States)

    Drapatz, S.; Haser, L.; Hofmann, R.; Oda, N.; Wilczek, R.

    Far-infrared observations of the galactic center have been carried through with the MPE 1m balloon-borne telescope "Golden Dragon". The measurements are composed of photometric scanning (33 - 95 μm) of the inner 4arcmin×4arcmin and low resolution spectroscopy (Δν = 10 cm-1) of the center and of a position approximately 1.5arcmin to the north. A Mars spectrum has been obtained for calibration. The spatial resolution of the photometry map is increased using the Maximum Entropy Method and the resulting map is compared to other observations in the same and other spectral regions. A clear asymmetry in the ring-like structure around the center indicates the presence of noncircular motions. The shape of the spectra is fairly smooth with at least no prominent dust features. A simple modelling shows a drastic increase of column density within 2 pc from the center and a modest drop over the next 3 pc to the north.

  19. Design and Implementation of an experiment-specific Payload Orientation Platform for balloon-borne Experiment .

    Science.gov (United States)

    Devarajan, Anand; Rodi, Ashish; Ojha, Devendra

    2012-07-01

    To investigate the mesospheric dynamics and its coupling to the upper atmospheric regions above, a Balloon-borne optical Investigation of Regional-atmospheric Dynamics (BIRD) experiment was jointly conducted by Physical Research Laboratory Ahmedabad and Boston University, on 08 March 2010 from TIFR Balloon Facility, Hyderabad. Along with the BIRD payload, a nano payload of University of York, Canada was also flown for aerosol studies during sunset. The balloon carrying a 335kg BIRD payload was launched at 1052 hrs, reached a float altitude of 34.8km amsl at 1245 hrs and was allowed to float till 1825 hrs before it was parachuted down. To achieve the experimental objectives, it was essential that the payload Gandola, comprising of two optical spectrographs, is programmed to rotate azimuthally in 3 steps of 30 degrees each from East-West (E-W) to North-South (N-S) direction, stop at each step for 5 minutes for data acquisition, return to the original E-W position and keep repeating the sequence continuously with a provision to start or stop the orientation from Ground station through telecommand. To meet these unique requirements, we designed developed and implemented a Payload Orientation Platform (POP), using flux-gate magnetometer for direction-finding, which worked satisfactorily in the BIRD flight. This paper presents an overview of the POP implemented, focuses on the design considerations of the associated electronics and finally presents the results of the performance during the entire balloon flight.

  20. BLASTbus electronics: general-purpose readout and control for balloon-borne experiments

    Science.gov (United States)

    Benton, S. J.; Ade, P. A.; Amiri, M.; Angilè, F. E.; Bock, J. J.; Bond, J. R.; Bryan, S. A.; Chiang, H. C.; Contaldi, C. R.; Crill, B. P.; Devlin, M. J.; Dober, B.; Doré, O. P.; Farhang, M.; Filippini, J. P.; Fissel, L. M.; Fraisse, A. A.; Fukui, Y.; Galitzki, N.; Gambrel, A. E.; Gandilo, N. N.; Golwala, S. R.; Gudmundsson, J. E.; Halpern, M.; Hasselfield, M.; Hilton, G. C.; Holmes, W. A.; Hristov, V. V.; Irwin, K. D.; Jones, W. C.; Kermish, Z. D.; Klein, J.; Korotkov, A. L.; Kuo, C. L.; MacTavish, C. J.; Mason, P. V.; Matthews, T. G.; Megerian, K. G.; Moncelsi, L.; Morford, T. A.; Mroczkowski, T. K.; Nagy, J. M.; Netterfield, C. B.; Novak, G.; Nutter, D.; O'Brient, R.; Ogburn, R. W.; Pascale, E.; Poidevin, F.; Rahlin, A. S.; Reintsema, C. D.; Ruhl, J. E.; Runyan, M. C.; Savini, G.; Scott, D.; Shariff, J. A.; Soler, J. D.; Thomas, N. E.; Trangsrud, A.; Truch, M. D.; Tucker, C. E.; Tucker, G. S.; Tucker, R. S.; Turner, A. D.; Ward-Thompson, D.; Weber, A. C.; Wiebe, D. V.; Young, E. Y.

    2014-07-01

    We present the second generation BLASTbus electronics. The primary purposes of this system are detector readout, attitude control, and cryogenic housekeeping, for balloon-borne telescopes. Readout of neutron transmutation doped germanium (NTD-Ge) bolometers requires low noise and parallel acquisition of hundreds of analog signals. Controlling a telescope's attitude requires the capability to interface to a wide variety of sensors and motors, and to use them together in a fast, closed loop. To achieve these different goals, the BLASTbus system employs a flexible motherboard-daughterboard architecture. The programmable motherboard features a digital signal processor (DSP) and field-programmable gate array (FPGA), as well as slots for three daughterboards. The daughterboards provide the interface to the outside world, with versions for analog to digital conversion, and optoisolated digital input/output. With the versatility afforded by this design, the BLASTbus also finds uses in cryogenic, thermometry, and power systems. For accurate timing control to tie everything together, the system operates in a fully synchronous manner. BLASTbus electronics have been successfully deployed to the South Pole, and own on stratospheric balloons.

  1. A sensitivity study for far infrared balloon-borne limb emission sounding of stratospheric trace gases

    Directory of Open Access Journals (Sweden)

    J. Xu

    2013-05-01

    Full Text Available This paper presents a sensitivity study performed for trace gases retrieval from synthetic observations by TELIS (TErahertz and submillimeter LImb Sounder which is a stratospheric balloon-borne cryogenic heterodyne spectrometer. Issues pertaining to hydroxyl radical (OH retrieval from the far infrared measurements by the 1.8 THz channel are addressed. The study is conducted by a retrieval code PILS (Profile Inversion for Limb Sounding developed to solve the nonlinear inverse problems arising in the analysis of infrared/microwave limb sounding measurements. PILS combines a line-by-line forward model with automatic differentiation for computing Jacobians and employs regularized nonlinear least squares inversion. We examine the application of direct and iterative regularization methods and evaluate the performance of single- and multi-profile retrievals. Sensitivities to expected errors in calibration procedure, instrumental knowledge and atmospheric profiles have been analyzed. Nonlinearity effect, inaccurate sideband ratio, and pointing error turned out to be the dominant error sources. Furthermore, the capability of multi-channel simultaneous retrieval from the far infrared and submillimeter data has been investigated. The errors and averaging kernels infer that the quality of the obtained hydrogen chloride (HCl can be improved by significantly better exploitation of information from the observations.

  2. Performance of the CAPRICE98 balloon-borne gas-RICH detector

    CERN Document Server

    Bergström, D; Carlson, P J; Francke, T; Grinstein, S; Weber, N; Suffert, Martin; Hof, M; Kremer, J; Menn, W; Simon, M; Stephens, S A; Ambriola, M; Bellotti, R; Cafagna, F; Castellano, M G; Ciacio, F; Circella, M; De Marzo, C; Finetti, N; Papini, P; Piccardi, S; Spillantini, P; Bartalucci, S; Ricci, M; Bidoli, V; Casolino, M; De Pascale, M P; Morselli, A; Picozza, P; Sparvoli, R; Barbiellini, Guido; Schiavon, R P; Vacchi, A; Zampa, N; Mitchell, J W; Ormes, J F; Streitmatter, R E; Bravar, U; Stochaj, S J

    2001-01-01

    A RICH counter using a gas radiator of C/sub 4/F/sub 10/ and a photosensitive MWPC with pad readout has been developed, tested in particle beam at CERN and used in the CAPRICE98 balloon-borne experiment. The MWPC was operated with a TMAE and ethane mixture at atmospheric pressure and used a cathode pad plane to give an unambiguous image of the Cherenkov light. The induced signals in the pad plane were read our using the AMPLEX chip and CRAMS. The good efficiency of the Cherenkov light collection, the efficient detection of the weak signal from single UV photons together with a low noise level in the electronics of the RICH detector, resulted in a large number of detected photoelectrons per event. For beta approximately=1 charge one particles, an average of 12 photoelectrons per event were detected. The reconstructed Cherenkov angle of 50 mrad for a beta approximately=1 particle had a resolution of 1.2 mrad (rms). The RICH was flown with the CAPRICE98 magnetic spectrometer and was the first RICH counter ever u...

  3. A Frequency Selective Surface based focal plane receiver for the OLIMPO balloon-borne telescope

    CERN Document Server

    Mahashabde, Sumedh; Bengtsson, Andreas; Andrén, Daniel; Tarasov, Michael; Salatino, Maria; de Bernardis, Paolo; Masi, Silvia; Kuzmin, Leonid

    2015-01-01

    We describe here a focal plane array of Cold-Electron Bolometer (CEB) detectors integrated in a Frequency Selective Surface (FSS) for the 350 GHz detection band of the OLIMPO balloon-borne telescope. In our architecture, the two terminal CEB has been integrated in the periodic unit cell of the FSS structure and is impedance matched to the embedding impedance seen by it and provides a resonant interaction with the incident sub-mm radiation. The detector array has been designed to operate in background noise limited condition for incident powers of 20 pW to 80 pW, making it possible to use the same pixel in both photometric and spectrometric configurations. We present high frequency and dc simulations of our system, together with fabrication details. The frequency response of the FSS array, optical response measurements with hot/cold load in front of optical window and with variable temperature black body source inside cryostat are presented. A comparison of the optical response to the CEB model and estimations...

  4. The balloon-borne large-aperture submillimeter telescope for polarimetry: BLAST-Pol

    CERN Document Server

    Fissel, Laura M; Angile, Francesco E; Benton, Steven J; Chapin, Edward L; Devlin, Mark J; Gandilo, Natalie N; Gundersen, Joshua O; Hargrave, Peter C; Hughes, David H; Klein, Jeffrey; Korotkov, Andrei L; Marsden, Galen; Matthews, Tristan G; Moncelsi, Lorenzo; Mroczkowski, Tony K; Netterfield, C Barth; Novak, Giles; Olmi, Luca; Pascale, Enzo; Savini, Giorgio; Scott, Douglas; Shariff, Jamil A; Soler, Juan Diego; Thomas, Nicholas E; Truch, Matthew D P; Tucker, Carole E; Tucker, Gregory S; Ward-Thompson, Derek; Wiebe, Donald V

    2010-01-01

    The Balloon-borne Large Aperture Submillimeter Telescope for Polarimetry (BLAST-Pol) is a suborbital mapping experiment designed to study the role played by magnetic fields in the star formation process. BLAST-Pol is the reconstructed BLAST telescope, with the addition of linear polarization capability. Using a 1.8 m Cassegrain telescope, BLAST-Pol images the sky onto a focal plane that consists of 280 bolometric detectors in three arrays, observing simultaneously at 250, 350, and 500 um. The diffraction-limited optical system provides a resolution of 30'' at 250 um. The polarimeter consists of photolithographic polarizing grids mounted in front of each bolometer/detector array. A rotating 4 K achromatic half-wave plate provides additional polarization modulation. With its unprecedented mapping speed and resolution, BLAST-Pol will produce three-color polarization maps for a large number of molecular clouds. The instrument provides a much needed bridge in spatial coverage between larger-scale, coarse resolutio...

  5. Indirect dark matter search with the balloon-borne PEBS detector

    CERN Document Server

    Gast, H; Kirn, T; Yearwood, G Roper; Schael, S

    2009-01-01

    A precision measurement of the cosmic-ray positron spectrum may help to solve the puzzle of the nature of dark matter. Pairwise annihilation of neutralinos, predicted by some supersymmetric extensions to the standard model of particle physics, may leave a distinct feature in the cosmic-ray positron spectrum. As the available data are limited both in terms of statistics and energy range, we are developing a balloon-borne detector (PEBS) with a large acceptance of 4000 cm^2 sr. A superconducting magnet creating a field of 0.8 T and a tracking device consisting of scintillating fibers of 0.25 mm diameter with silicon photomultiplier readout will allow rigidity and charge determination to energies above 100 GeV. The dominant proton background is suppressed by the combination of an electromagnetic calorimeter and a transition radiation detector consisting of fleece layers interspersed with straw-tube proportional counters. The calorimeter uses a sandwich of tungsten and scintillating fibers that are again read out...

  6. The Balloon-borne Large-Aperture Submillimeter Telescope for Polarization: BLAST-pol

    CERN Document Server

    Marsden, G; Bock, J J; Chapin, E L; Chung, J; Devlin, M J; Dicker, S; Griffin, M; Gundersen, J O; Halpern, M; Hargrave, P C; Hughes, D H; Klein, J; MacTavish, C J; Martin, P G; Martin, T G; Matthews, T G; Mauskopf, P; Moncelsi, L; Netterfield, C B; Novak, G; Pascale, E; Olmi, L; Patanchon, G; Rex, M; Savini, G; Scott, D; Semisch, C; Thomas, N; Truch, M D P; Tucker, C; Tucker, G S; Viero, M P; Ward-Thompson, D; Wiebe, D V

    2008-01-01

    The Balloon-borne Large Aperture Submillimeter Telescope (BLAST) is a sub-orbital experiment designed to study the process of star formation in local galaxies (including the Milky Way) and in galaxies at cosmological distances. Using a 2-m Cassegrain telescope, BLAST images the sky onto a focal plane, which consists of 270 bolometric detectors split between three arrays, observing simultaneously in 30% wide bands, centered at 250, 350, and 500 microns. The diffraction-limited optical system provides a resolution of 30" at 250 microns. The pointing system enables raster-like scans with a positional accuracy of ~30", reconstructed to better than 5" rms in post-flight analysis. BLAST had two successful flights, from the Arctic in 2005, and from Antarctica in 2006, which provided the first high-resolution and large-area (~0.8-200 deg^2) submillimeter surveys at these wavelengths. As a pathfinder for the SPIRE instrument on Herschel, BLAST shares with the ESA satellite similar focal plane technology and scientific...

  7. Status of the Balloon-Borne X-ray Polarimetry Mission X-Calibur

    Science.gov (United States)

    Krawczynski, Henric; Kislat, Fabian; Stuchlik, David; Okajima, Takashi; de Geronimo, Gianluigi

    2016-04-01

    We report on the status of the balloon borne hard X-ray polairmetry mission X-Calibur. The missions combines a focussing hard X-ray mirror from the InFOCuS collaboration with a scattering polarimeter and the WASP (Wallops Arc Second Pointer) pointing system. The mission is scheduled for a conventonal ~1 day balloon flight in Fall 2016 and a long duration (~30 day) balloon flight from McMurdo (Ross Island) in 2018/2019. X-Calibur will allow us to measure ~5% polarization fractions for strong sources with a Crab-like enegry spectra and fluxes. The science targets of the first balloon flights will include the stellar mass black holes GRS 1915+105 and Cyg X-1, Her X-1, Sco X-1, and the Crab nebula and pulsar. The long duration balloon flight will target several X-ray binaries and the extragalactic mass accreting supermassive black hole Cen A. In this contribution we give an update on the status of the mission, and the expected science return.

  8. The Debris Disk Explorer: a balloon-borne coronagraph for observing debris disks

    CERN Document Server

    Roberts, Lewis C; Traub, Wesley; Unwin, Stephen; Trauger, John; Krist, John; Aldrich, Jack; Brugarolas, Paul; Stapelfeldt, Karl; Wyatt, Mark; Stuchlik, David; Lanzi, James

    2013-01-01

    The Debris Disk Explorer (DDX) is a proposed balloon-borne investigation of debris disks around nearby stars. Debris disks are analogs of the Asteroid Belt (mainly rocky) and Kuiper Belt (mainly icy) in our Solar System. DDX will measure the size, shape, brightness, and color of tens of disks. These measurements will enable us to place the Solar System in context. By imaging debris disks around nearby stars, DDX will reveal the presence of perturbing planets via their influence on disk structure, and explore the physics and history of debris disks by characterizing the size and composition of disk dust. The DDX instrument is a 0.75-m diameter off-axis telescope and a coronagraph carried by a stratospheric balloon. DDX will take high-resolution, multi-wavelength images of the debris disks around tens of nearby stars. Two flights are planned; an overnight test flight within the United States followed by a month-long science flight launched from New Zealand. The long flight will fully explore the set of known de...

  9. The TRACER instrument: A balloon-borne cosmic-ray detector

    Science.gov (United States)

    Ave, M.; Boyle, P. J.; Brannon, E.; Gahbauer, F.; Hermann, G.; Höppner, C.; Hörandel, J. R.; Ichimura, M.; Müller, D.; Obermeier, A.; Romero-Wolf, A.

    2011-10-01

    We describe a large-area detector for measurements of the intensity of cosmic-ray nuclei in balloon-borne exposures. In order to observe individual nuclei at very high energies, the instrument employs transition radiation detectors (TRD) whose energy response extends well beyond 10 4 GeV amu -1. The TR measurement is performed with arrays of single-wire proportional tubes interleaved with plastic-fiber radiators. An additional energy determination comes from the specific ionization in gas and its relativistic rise which is also measured with proportional tubes. The tubes also determine the trajectory of each cosmic-ray nucleus with mm-resolution. In total, nearly 1600 tubes are used. The instrument is triggered by large-area plastic scintillators. The scintillators, together with acrylic Cherenkov counters, also determine the nuclear charge Z of each cosmic-ray particle, measure the energy in the GeV amu -1 region, and discriminate against low-energy background. We describe the details of this detector system, and discuss its performance in three high-altitude balloon flights, including two long-duration flights in 2003 and 2006 at Antarctic and Arctic latitudes, respectively. Scientific results from these flights are summarized, and possible future developments are reviewed.

  10. 5,120 Superconducting Bolometers for the PIPER Balloon-Borne CMB Polarization Experiment

    Science.gov (United States)

    Benford, Dominic J.; Chuss, David T.; Hilton, Gene C.; Irwin, Kent D.; Jethava, Nikhil S.; Jhabvala, Christine A.; Kogut, Alan J.; Miller, Timothy M.; Mirel, Paul; Moseley, S. Harvey; Rostem, Karwan; Sharp, Elmer H.; Staguhn, Johannes G.; Stiehl, gregory M.; Voellmer, George M.; Wollack, Edward J.

    2010-01-01

    We are constructing the Primordial Inflation Polarization Explorer (PIPER) to measure the polarization o[ the cosmic microwave background (CMB) and search for the imprint of gravity waves produced during an inflationary epoch in the early universe. The signal is faint and lies behind confusing foregrounds, both astrophysical and cosmological, and so many detectors are required to complete the measurement in a limited time. We will use four of our matured 1,280 pixel, high-filling-factor backshort-under-grid bolometer arrays for efficient operation at the PIPER CMB wavelengths. All four arrays observe at a common wavelength set by passband filters in the optical path. PIPER will fly four times to observe at wavelengths of 1500, 1100, 850, and 500 microns in order to separate CMB from foreground emission. The arrays employ leg-isolated superconducting transition edge sensor bolometers operated at 128mK; tuned resonant backshorts for efficient optical coupling; and a second-generation superconducting quantum interference device (SQUID) multiplexer readout. We describe the design, development, and performance of PIPER bo|ometer array technology to achieve background-limited sensitivity for a cryogenic balloon-borne telescope.

  11. Design of 280~GHz feedhorn-coupled TES arrays for the balloon-borne polarimeter SPIDER

    CERN Document Server

    Hubmayr, Johannes; Beall, James A; Becker, Daniel T; Benton, Steven J; Bergman, A Stevie; Bond, J Richard; Bryan, Sean; Duff, Shannon M; Duivenvoorden, Adri J; Eriksen, H K; Filippini, Jeffrey P; Fraisse, Aurelien A; Galloway, Mathew; Gambrel, Anne E; Ganga, K; Grigorian, Arpi L; Gualtieri, Riccardo; Gudmundsson, Jon E; Hartley, John W; Halpern, M; Hilton, Gene C; Jones, William C; McMahon, Jeffrey J; Moncelsi, Lorenzo; Nagy, Johanna M; Netterfield, C B; Osherson, Benjamin; Padilla, Ivan; Rahlin, Alexandra S; Racine, B; Ruhl, John; Ruud, T M; Shariff, J A; Soler, J D; Song, Xue; Ullom, Joel N; Van Lanen, Jeff; Vissers, Michael R; Wehus, I K; Wen, Shyang; Wiebe, D V; Young, Edward

    2016-01-01

    We describe 280 GHz bolometric detector arrays that instrument the balloon-borne polarimeter SPIDER. A primary science goal of SPIDER is to measure the large-scale B-mode polarization of the cosmic microwave background in search of the cosmic-inflation, gravitational-wave signature. 280 GHz channels aid this science goal by constraining the level of B-mode contamination from galactic dust emission. We present the focal plane unit design, which consists of a 16$\\times$16 array of conical, corrugated feedhorns coupled to a monolithic detector array fabricated on a 150 mm diameter silicon wafer. Detector arrays are capable of polarimetric sensing via waveguide probe-coupling to a multiplexed array of transition-edge-sensor (TES) bolometers. The SPIDER receiver has three focal plane units at 280 GHz, which in total contains 765 spatial pixels and 1,530 polarization sensitive bolometers. By fabrication and measurement of single feedhorns, we demonstrate 14.7$^{\\circ}$ FHWM Gaussian-shaped beams with $<$1% ellip...

  12. Balloon-borne observations of stratospheric aerosol in Antarctica from 1972 to 1984

    Science.gov (United States)

    Hofmann, D. J.

    1985-01-01

    Stratospheric levels of particles with r or = 0.15 microns were monitored with optical particle counters in approximately monthly balloon soundings at Laramie, Wyoming (41 deg N) since 1971. These measurements were used to characterize the background stratospheric aerosol layer and the disturbed layer following major volcanic eruptions. Levels of particles with r or = 0.01 microns have also been measured with balloon-borne counters since 1973. The latter are collectively called condensation nuclei (CN) as they are characteristic of aerosol in the early stages of growth. While they dominate the size distribution in the tropsophere, they are a trace species in the undisturbed stratosphere. From 1972 until 1980, annual balloon soundings from McMurdo Station (78 deg S) and/or Amundsen-Scott Station (90 deg S), in Antarctica, have also been conducted to crudely monitor Southern Hemisphere aerosol levels. These measurements were continued in 1983 and 1984. Profiles of r 0.15 microns aerosol concentrations as measured during January at the south pole from 1972 to 1975 and in 1980 are given. The former are typical of undisturbed conditions and indicate the small degree of variability under these conditions. The latter indicates the effect of minor volcanic activity, visible in the 10 to 15 km region.

  13. Ozone loss derived from balloon-borne tracer measurements and the SLIMCAT CTM

    Directory of Open Access Journals (Sweden)

    A. D. Robinson

    2004-11-01

    Full Text Available Balloon-borne measurements of CFC-11 (on flights of the DIRAC in situ gas chromatograph and the DESCARTES grab sampler, ClO and O3 were made during the 1999/2000 winter as part of the SOLVE-THESEO 2000 campaign. Here we present the CFC-11 data from nine flights and compare them first with data from other instruments which flew during the campaign and then with the vertical distributions calculated by the SLIMCAT 3-D CTM. We calculate ozone loss inside the Arctic vortex between late January and early March using the relation between CFC-11 and O3 measured on the flights, the peak ozone loss (1200 ppbv occurs in the 440–470 K region in early March in reasonable agreement with other published empirical estimates. There is also a good agreement between ozone losses derived from three independent balloon tracer data sets used here. The magnitude and vertical distribution of the loss derived from the measurements is in good agreement with the loss calculated from SLIMCAT over Kiruna for the same days.

  14. A new project, SPIRALE. Balloon-borne in situ multi-component measurement using infrared diode lasers

    Energy Technology Data Exchange (ETDEWEB)

    Moreau, G.; Pirre, M.; Robert, C. [Centre National de la Recherche Scientifique (CNRS), 45 - Orleans-la-Source (France); Rosier, B.; Louvet, Y.; Ramaroson, R. [Office National d`Etudes et de Recherches Aerospatiales, 91 - Palaiseau (France); Peyret, C.C. [Universite Pierre et Marie Curie, 75 - Paris (France); Macleod, Y. [Universite Pierreet Marie Curie, 75 - Paris (France); Courtois, D. [Reims Univ., 51 (France). Faculte des Sciences

    1997-12-31

    The scientific goals and the description of a new experiment for stratospheric studies SPIRALE are presented which is a balloon-borne instrument, able to measure in situ several air components (up to 10). Infrared diode laser spectroscopy is applied for monitoring simultaneously atmospheric trace gases at high rate. Its specificity, sensitivity, and wide range of compounds to which it can be applied is described. (R.P.) 5 refs.

  15. Origin of $\\gamma$ Ray Bursters

    CERN Document Server

    Mészáros, P

    1999-01-01

    The successful discovery of X-ray, optical and radio afterglows of GRB hasmade possible the identification of host galaxies at cosmological distances.The energy release inferred in these outbursts place them among the mostenergetic and violent events in the Universe. They are thought to be theoutcome of a cataclysmic stellar collapse or compact stellar merger, leading toa relativistically expanding fireball, in which particles are accelerated atshocks and produce nonthermal radiation. The substantial agreement betweenobservations and the theoretical predictions of the fireball shock modelprovide confirmation of the basic aspects of this scenario. Among recent issuesare the collimation of the outflow and its implications for the energetics, theproduction of prompt bright flashes at wavelenghts much longer than gamma-rays,the time structure of the afterglow, its dependence on the central engine orprogenitor system behavior, and the role of the environment on the afterglow.

  16. Prompt gamma-ray activation analysis (PGAA)

    Energy Technology Data Exchange (ETDEWEB)

    Kern, J. [Fribourg Univ. (Switzerland). Inst. de Physique

    1996-11-01

    The paper deals with a brief description of the principles of prompt gamma-ray activation analysis (PGAA), with the detection of gamma-rays, the PGAA project at SINQ and with the expected performances. 8 figs., 3 tabs., 10 refs.

  17. Gamma ray spectroscopy with PPM resolving power

    CERN Document Server

    Börner, H; Mutti, P

    2002-01-01

    Applications of gamma-ray spectroscopy with ppm resolving power are presented. The extraordinary resolution allows via the Gamma Ray Induced Doppler broadening (GRID) technique to determine lifetimes of excited nuclear levels. This has contributed to important nuclear structure information. We report on the current status of the technique

  18. GAMMA-400 gamma-ray observatory

    CERN Document Server

    Topchiev, N P; Bonvicini, V; Adriani, O; Aptekar, R L; Arkhangelskaja, I V; Arkhangelskiy, A I; Bakaldin, A V; Bergstrom, L; Berti, E; Bigongiari, G; Bobkov, S G; Boezio, M; Bogomolov, E A; Bonechi, L; Bongi, M; Bottai, S; Castellini, G; Cattaneo, P W; Cumani, P; Dalkarov, O D; Dedenko, G L; De Donato, C; Dogiel, V A; Finetti, N; Gascon, D; Gorbunov, M S; Gusakov, Yu V; Hnatyk, B I; Kadilin, V V; Kaplin, V A; Kaplun, A A; Kheymits, M D; Korepanov, V E; Larsson, J; Leonov, A A; Loginov, V A; Longo, F; Maestro, P; Marrocchesi, P S; Martinez, M; Menshenin, A L; Mikhailov, V V; Mocchiutti, E; Moiseev, A A; Mori, N; Moskalenko, I V; Naumov, P Yu; Papini, P; Paredes, J M; Pearce, M; Picozza, P; Rappoldi, A; Ricciarini, S; Runtso, M F; Ryde, F; Serdin, O V; Sparvoli, R; Spillantini, P; Stozhkov, Yu I; Suchkov, S I; Taraskin, A A; Tavani, M; Tiberio, A; Tyurin, E M; Ulanov, M V; Vacchi, A; Vannuccini, E; Vasilyev, G I; Ward, J E; Yurkin, Yu T; Zampa, N; Zirakashvili, V N; Zverev, V G

    2015-01-01

    The GAMMA-400 gamma-ray telescope with excellent angular and energy resolutions is designed to search for signatures of dark matter in the fluxes of gamma-ray emission and electrons + positrons. Precision investigations of gamma-ray emission from Galactic Center, Crab, Vela, Cygnus, Geminga, and other regions will be performed, as well as diffuse gamma-ray emission, along with measurements of high-energy electron + positron and nuclei fluxes. Furthermore, it will study gamma-ray bursts and gamma-ray emission from the Sun during periods of solar activity. The energy range of GAMMA-400 is expected to be from ~20 MeV up to TeV energies for gamma rays, up to 20 TeV for electrons + positrons, and up to 10E15 eV for cosmic-ray nuclei. For high-energy gamma rays with energy from 10 to 100 GeV, the GAMMA-400 angular resolution improves from 0.1{\\deg} to ~0.01{\\deg} and energy resolution from 3% to ~1%; the proton rejection factor is ~5x10E5. GAMMA-400 will be installed onboard the Russian space observatory.

  19. Gamma-Ray Interactions for Reachback Analysts

    Energy Technology Data Exchange (ETDEWEB)

    Karpius, Peter Joseph [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Myers, Steven Charles [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-08-02

    This presentation is a part of the DHS LSS spectroscopy training course and presents an overview of the following concepts: identification and measurement of gamma rays; use of gamma counts and energies in research. Understanding the basic physics of how gamma rays interact with matter can clarify how certain features in a spectrum were produced.

  20. Handbook on Mobile Gamma-ray Spectrometry

    DEFF Research Database (Denmark)

    Aage, Helle Karina; Korsbech, Uffe C C

    2003-01-01

    Basic physics and mathematics for Airborne and Car-borne Gamma-ray Spectrometry supplemented with practical examples and methods for advanced data processing......Basic physics and mathematics for Airborne and Car-borne Gamma-ray Spectrometry supplemented with practical examples and methods for advanced data processing...

  1. Instrumentation for gamma-ray astronomy

    Science.gov (United States)

    Bertsch, David L.; Fichtel, Carl E.; Trombka, Jacob I.

    1988-01-01

    The current status of gamma-ray-telescope technology for ground, airborne, and space observations is surveyed and illustrated with drawings, diagrams, and graphs and tables of typical data. For the low- and medium-energy ranges, consideration is given to detectors and detector cooling systems, background-rejection methods, radiation damage, large-area detectors, gamma-ray imaging, data analysis, and the Compton-interaction region. Also discussed are the gamma-ray interaction process at high energies; multilevel automated spark-chamber gamma-ray telescopes; the Soviet Gamma-1 telescope; the EGRET instrument for the NASA Gamma-Ray Observatory; and Cerenkov, air-shower, and particle-detector instruments for the TeV and PeV ranges. Significant improvements in resolution and sensitivity are predicted for the near future.

  2. Gamma-ray pulsars: a gold mine

    CERN Document Server

    Grenier, Isabelle A

    2015-01-01

    The most energetic neutron stars, powered by their rotation, are capable of producing pulsed radiation from the radio up to gamma rays with nearly TeV energies. These pulsars are part of the universe of energetic and powerful particle accelerators, using their uniquely fast rotation and formidable magnetic fields to accelerate particles to ultra-relativistic speed. The extreme properties of these stars provide an excellent testing ground, beyond Earth experience, for nuclear, gravitational, and quantum-electrodynamical physics. A wealth of gamma-ray pulsars has recently been discovered with the Fermi Gamma-Ray Space Telescope. The energetic gamma rays enable us to probe the magnetospheres of neutron stars and particle acceleration in this exotic environment. We review the latest developments in this field, beginning with a brief overview of the properties and mysteries of rotation-powered pulsars, and then discussing gamma-ray observations and magnetospheric models in more detail.

  3. A Balloon-Borne Telescope System for Planetary Atmosphere and Plasma Studies

    Science.gov (United States)

    Taguchi, M.; Yoshida, K.; Sakamoto, Y.; Kanazawa, T.; Shoji, Y.; Sawakami, T.; Takahashi, Y.; Hoshino, N.; Sato, T.; Sakanoi, T.

    2007-12-01

    A telescope floating in the polar stratosphere can continuously monitor planets for more than 24 hours. Thin, clear and stable air of the stratosphere makes it possible to observe planets in a condition free from cloud with fine seeing and high atmospheric transmittance. Moreover, a balloon-borne telescope system is less expensive compared with a huge terrestrial telescope or a direct planetary probe mission. Targets of a balloon-borne telescope system will extend over various atmospheric and plasma phenomena on almost all the planets, i.e., a sodium tail of Mercury, lightning, airglow and aurora in the atmospheres of Venus, Jupiter and Saturn, escaping atmospheres of the Earth-type planets, satellite-induced luminous events in the Jovian atmosphere, etc. The first target is global dynamics of the Venusian atmosphere by detecting cloud motion in UV and NIR imagery. A decoupling mechanism and a pair of control moment gyros (CMGs) are mounted at the top of the gondola. The decoupling mechanism isolates the gondola from a balloon and also transfers an excess angular momentum of the CMGs to the balloon. The attitude of the gondola is stabilized at a constant sun azimuthal angle so that a solar cell panel faces to the sun. A 300 mm F30 Schmidt-Cassegrain telescope is installed at the bottom of the gondola. DC/DC converters, a PC, a high voltage power supply for a piezo-electrically moving mirror and digital video recorders are contained in a sealed cell. The azimuthal angle is detected by a sun-sensor. A PC processes sensor output to control DC motors used in the decoupling mechanism and CMGs with an accuracy in azimuthal attitude of about 0.5 deg. The two-axis gimbal mount of the telescope is controlled by the same PC, guiding an object within a field-of-view of a guide telescope. Residual tracking error is detected by a position sensitive photomultiplier tube and corrected by the two-axis moving mirror installed in the optical system. The optical path is divided into

  4. In Situ Balloon-Borne Ice Particle Imaging in High-Latitude Cirrus

    Science.gov (United States)

    Kuhn, Thomas; Heymsfield, Andrew J.

    2016-09-01

    Cirrus clouds reflect incoming solar radiation, creating a cooling effect. At the same time, these clouds absorb the infrared radiation from the Earth, creating a greenhouse effect. The net effect, crucial for radiative transfer, depends on the cirrus microphysical properties, such as particle size distributions and particle shapes. Knowledge of these cloud properties is also needed for calibrating and validating passive and active remote sensors. Ice particles of sizes below 100 µm are inherently difficult to measure with aircraft-mounted probes due to issues with resolution, sizing, and size-dependent sampling volume. Furthermore, artefacts are produced by shattering of particles on the leading surfaces of the aircraft probes when particles several hundred microns or larger are present. Here, we report on a series of balloon-borne in situ measurements that were carried out at a high-latitude location, Kiruna in northern Sweden (68N 21E). The method used here avoids these issues experienced with the aircraft probes. Furthermore, with a balloon-borne instrument, data are collected as vertical profiles, more useful for calibrating or evaluating remote sensing measurements than data collected along horizontal traverses. Particles are collected on an oil-coated film at a sampling speed given directly by the ascending rate of the balloon, 4 m s-1. The collecting film is advanced uniformly inside the instrument so that an always unused section of the film is exposed to ice particles, which are measured by imaging shortly after sampling. The high optical resolution of about 4 µm together with a pixel resolution of 1.65 µm allows particle detection at sizes of 10 µm and larger. For particles that are 20 µm (12 pixel) in size or larger, the shape can be recognized. The sampling volume, 130 cm3 s-1, is well defined and independent of particle size. With the encountered number concentrations of between 4 and 400 L-1, this required about 90- to 4-s sampling times to

  5. High Energy Replicated Optics to Explore the Sun: Hard X-Ray Balloon-Borne Telescope

    Science.gov (United States)

    Gaskin, Jessica; Apple, Jeff; StevensonChavis, Katherine; Dietz, Kurt; Holt, Marlon; Koehler, Heather; Lis, Tomasz; O'Connor, Brian; RodriquezOtero, Miguel; Pryor, Jonathan; Ramsey, Brian; Rinehart-Dawson, Maegan; Smith, Leigh; Sobey, Alexander; Wilson-Hodge, Colleen; Christe, Steven; Cramer, Alexander; Edgerton, Melissa; Rodriquez, Marcello; Shih, Albert; Gregory, Don; Jasper, John; Bohon, Steven

    2013-01-01

    Set to fly in the Fall of 2013 from Ft. Sumner, NM, the High Energy Replicated Optics to Explore the Sun (HEROES) mission is a collaborative effort between the NASA Marshall Space Flight Center and the Goddard Space Flight Center to upgrade an existing payload, the High Energy Replicated Optics (HERO) balloon-borne telescope, to make unique scientific measurements of the Sun and astrophysical targets during the same flight. The HEROES science payload consists of 8 mirror modules, housing a total of 109 grazing-incidence optics. These modules are mounted on a carbon-fiber - and Aluminum optical bench 6 m from a matching array of high pressure xenon gas scintillation proportional counters, which serve as the focal-plane detectors. The HERO gondola utilizes a differential GPS system (backed by a magnetometer) for coarse pointing in the azimuth and a shaft angle encoder plus inclinometer provides the coarse elevation. The HEROES payload will incorporate a new solar aspect system to supplement the existing star camera, for fine pointing during both the day and night. A mechanical shutter will be added to the star camera to protect it during solar observations. HEROES will also implement two novel alignment monitoring system that will measure the alignment between the optical bench and the star camera and between the optics and detectors for improved pointing and post-flight data reconstruction. The overall payload will also be discussed. This mission is funded by the NASA HOPE (Hands On Project Experience) Training Opportunity awarded by the NASA Academy of Program/Project and Engineering Leadership, in partnership with NASA's Science Mission Directorate, Office of the Chief Engineer and Office of the Chief Technologist

  6. High Energy Replicated Optics to Explore the Sun: Hard X-ray balloon-borne telescope

    Science.gov (United States)

    Gaskin, J.; Apple, J.; Chavis, K. S.; Dietz, K.; Holt, M.; Koehler, H.; Lis, T.; O'Connor, B.; Otero, M. R.; Pryor, J.; Ramsey, B.; Rinehart-Dawson, M.; Smith, L.; Sobey, A.; Wilson-Hodge, C.; Christe, S.; Cramer, A.; Edgerton, M.; Rodriguez, M.; Shih, A.; Gregory, D.; Jasper, J.; Bohon, S.

    Set to fly in the Fall of 2013 from Ft. Sumner, NM, the High Energy Replicated Optics to Explore the Sun (HEROES) mission is a collaborative effort between the NASA Marshall Space Flight Center and the Goddard Space Flight Center to upgrade an existing payload, the High Energy Replicated Optics (HERO) balloon-borne telescope, to make unique scientific measurements of the Sun and astrophysical targets during the same flight. The HEROES science payload consists of 8 mirror modules, housing a total of 109 grazing-incidence optics. These modules are mounted on a carbon-fiber - and Aluminum optical bench 6 m from a matching array of high pressure xenon gas scintillation proportional counters, which serve as the focal-plane detectors. The HERO gondola utilizes a differential GPS system (backed by a magnetometer) for coarse pointing in the azimuth and a shaft angle encoder plus inclinometer provides the coarse elevation. The HEROES payload will incorporate a new solar aspect system to supplement the existing star camera, for fine pointing during both the day and night. A mechanical shutter will be added to the star camera to protect it during solar observations. HEROES will also implement two novel alignment monitoring system that will measure the alignment between the optical bench and the star camera and between the optics and detectors for improved pointing and post-flight data reconstruction. The overall payload will also be discussed. This mission is funded by the NASA HOPE (Hands On Project Experience) Training Opportunity awarded by the NASA Academy of Program/Project and Engineering Leadership, in partnership with NASA's Science Mission Directorate, Office of the Chief Engineer and Office of the Chief Technologist.

  7. EBEX: A Balloon-Borne Telescope for Measuring Cosmic Microwave Background Polarization

    Science.gov (United States)

    Chapman, Daniel

    2015-05-01

    EBEX is a long-duration balloon-borne (LDB) telescope designed to probe polarization signals in the cosmic microwave background (CMB). It is designed to measure or place an upper limit on the inflationary B-mode signal, a signal predicted by inflationary theories to be imprinted on the CMB by gravitational waves, to detect the effects of gravitational lensing on the polarization of the CMB, and to characterize polarized Galactic foreground emission. The payload consists of a pointed gondola that houses the optics, polarimetry, detectors and detector readout systems, as well as the pointing sensors, control motors, telemetry sytems, and data acquisition and flight control computers. Polarimetry is achieved with a rotating half-wave plate and wire grid polarizer. The detectors are sensitive to frequency bands centered on 150, 250, and 410 GHz. EBEX was flown in 2009 from New Mexico as a full system test, and then flown again in December 2012 / January 2013 over Antarctica in a long-duration flight to collect scientific data. In the instrumentation part of this thesis we discuss the pointing sensors and attitude determination algorithms. We also describe the real-time map making software, "QuickLook", that was custom-designed for EBEX. We devote special attention to the design and construction of the primary pointing sensors, the star cameras, and their custom-designed flight software package, "STARS" (the Star Tracking Attitude Reconstruction Software). In the analysis part of this thesis we describe the current status of the post-flight analysis procedure. We discuss the data structures used in analysis and the pipeline stages related to attitude determination and map making. We also discuss a custom-designed software framework called "LEAP" (the LDB EBEX Analysis Pipeline) that supports most of the analysis pipeline stages.

  8. BLAST-TNG: A Next Generation Balloon-borne Large Aperture Submillimeter Polarimeter

    Science.gov (United States)

    Fissel, Laura M.; Ade, Peter; Angilè, Francesco E.; Campbell Ashton, Peter; Austermann, Jason Edward; Billings, Tashalee; Che, George; Cho, Hsiao-Mei; Cunningham, Maria R.; Davis, Kristina; Devlin, Mark J.; Dicker, Simon; Dober, Bradley; Fukui, Yasuo; Galitzki, Nicholas; gao, jiansong; Gordon, Sam; Groppi, Christopher E.; Hillbrand, Seth; Hilton, Gene; Hubmayr, Hannes; Irwin, Kent; Jones, Paul; Klein, Jeffrey; li, dale; Li, Zhi-Yun; lourie, nathan; Lowe, Ian; Mani, Hamdi; Martin, Peter G.; Mauskopf, Philip; McKenney, Christopher; Nati, Federico; Novak, Giles; Pascale, Enzo; pisano, giampaolo; Pereira Santos, Fábio; Scott, Douglas; Sinclair, Adrian; Diego Diego Soler, Juan; tucker, carole; Underhill, Matthew; Vissers, Michael; Williams, Paul

    2017-01-01

    Measurements of polarized thermal dust emission can be used to map magnetic fields in the interstellar medium. Recently, BLASTPol, the Balloon-borne Large Aperture Submillimeter Telescope for Polarimetry, has published the most detailed map ever made of a giant molecular cloud forming high-mass stars. I will present an overview of The Next Generation BLAST polarimeter (BLAST-TNG), the successor telescope to BLASTPol, which maps linearly polarized dust emission at 250, 350 and 500 μm. BLAST-TNG utilizes a 2.5-meter carbon-fiber primary mirror that illuminates focal plane arrays containing over 3,000 microwave kinetic inductance detectors. This new polarimeter has an order of magnitude increase in mapping speed and resolution compared to BLASTPol and we expect to make over 500,000 measurements of magnetic field orientation per flight. BLAST-TNG will have the sensitivity to map entire molecular cloud complexes as well as regions of diffuse high Galactic latitude dust. It also has the resolution (FWHM = 25’’ at 250 μm) necessary to trace magnetic fields in prestellar cores and dense filaments. BLAST-TNG will thus provide a crucial link between the low resolution Planck all-sky maps and the detailed but narrow field of view polarimetry capabilities of ALMA. For our first Antarctic flight in December 2017 we are putting out a call for shared-risk proposals to fill 25% of the available science time. In addition, BLAST-TNG data will be publicly released within a year of the publication of our first look papers, leaving a large legacy data set for the study of the role played by magnetic fields in the star formation process and the properties of interstellar dust.

  9. Modeling gamma-ray bursts

    Science.gov (United States)

    Maxham, Amanda

    Discovered serendipitously in the late 1960s, gamma-ray bursts (GRBs) are huge explosions of energy that happen at cosmological distances. They provide a grand physical playground to those who study them, from relativistic effects such as beaming, jets, shocks and blastwaves to radiation mechanisms such as synchrotron radiation to galatic and stellar populations and history. Through the Swift and Fermi space telescopes dedicated to observing GRBs over a wide range of energies (from keV to GeV), combined with accurate pinpointing that allows ground based follow-up observations in the optical, infrared and radio, a rich tapestry of GRB observations has emerged. The general picture is of a mysterious central engine (CE) probably composed of a black hole or neutron star that ejects relativistic shells of matter into intense magnetic fields. These shells collide and combine, releasing energy in "internal shocks" accounting for the prompt emission and flaring we see and the "external shock" or plowing of the first blastwave into the ambient surrounding medium has well-explained the afterglow radiation. We have developed a shell model code to address the question of how X-ray flares are produced within the framework of the internal shock model. The shell model creates randomized GRB explosions from a central engine with multiple shells and follows those shells as they collide, merge and spread, producing prompt emission and X-ray flares. We have also included a blastwave model, which can constrain X-ray flares and explain the origin of high energy (GeV) emission seen by the Fermi telescope. Evidence suggests that gamma-ray prompt emission and X-ray flares share a common origin and that at least some flares can only be explained by long-lasting central engine activity. We pay special attention to the time history of central engine activity, internal shocks, and observed flares. We calculate the gamma-ray (Swift/BAT band) and X-ray (Swift/XRT band) lightcurves for arbitrary

  10. Gamma-ray Burst Cosmology

    CERN Document Server

    Wang, F Y; Liang, E W

    2015-01-01

    Gamma-ray bursts (GRBs) are the most luminous electromagnetic explosions in the Universe, which emit up to $8.8\\times10^{54}$ erg isotropic equivalent energy in the hard X-ray band. The high luminosity makes them detectable out to the largest distances yet explored in the Universe. GRBs, as bright beacons in the deep Universe, would be the ideal tool to probe the properties of high-redshift universe: including the cosmic expansion and dark energy, star formation rate, the reionization epoch and the metal enrichment history of the Universe. In this article, we review the luminosity correlations of GRBs, and implications for constraining the cosmological parameters and dark energy. Observations show that the progenitors of long GRBs are massive stars. So it is expected that long GRBs are tracers of star formation rate. We also review the high-redshift star formation rate derived from GRBs, and implications for the cosmic reionization history. The afterglows of GRBs generally have broken power-law spectra, so it...

  11. Gamma-ray burst progenitors

    CERN Document Server

    Levan, Andrew; de Grijs, Richard; Langer, Norbert; Xu, Dong; Yoon, Sung-Chul

    2016-01-01

    We review our current understanding of the progenitors of both long and short duration gamma-ray bursts (GRBs). Constraints can be derived from multiple directions, and we use three distinct strands; i) direct observations of GRBs and their host galaxies, ii) parameters derived from modeling, both via population synthesis and direct numerical simulation and iii) our understanding of plausible analog progenitor systems observed in the local Universe. From these joint constraints, we describe the likely routes that can drive massive stars to the creation of long GRBs, and our best estimates of the scenarios that can create compact object binaries which will ultimately form short GRBs, as well as the associated rates of both long and short GRBs. We further discuss how different the progenitors may be in the case of black hole engine or millisecond-magnetar models for the production of GRBs, and how central engines may provide a unifying theme between many classes of extremely luminous transient, from luminous an...

  12. Gamma-Ray Burst Progenitors

    Science.gov (United States)

    Levan, Andrew; Crowther, Paul; de Grijs, Richard; Langer, Norbert; Xu, Dong; Yoon, Sung-Chul

    2016-12-01

    We review our current understanding of the progenitors of both long and short duration gamma-ray bursts (GRBs). Constraints can be derived from multiple directions, and we use three distinct strands; (i) direct observations of GRBs and their host galaxies, (ii) parameters derived from modelling, both via population synthesis and direct numerical simulation and (iii) our understanding of plausible analog progenitor systems observed in the local Universe. From these joint constraints, we describe the likely routes that can drive massive stars to the creation of long GRBs, and our best estimates of the scenarios that can create compact object binaries which will ultimately form short GRBs, as well as the associated rates of both long and short GRBs. We further discuss how different the progenitors may be in the case of black hole engine or millisecond-magnetar models for the production of GRBs, and how central engines may provide a unifying theme between many classes of extremely luminous transient, from luminous and super-luminous supernovae to long and short GRBs.

  13. Gamma-Ray Burst Early Afterglows

    CERN Document Server

    Zhang, B

    2005-01-01

    The successful launch and operation of NASA's Swift Gamma-Ray Burst Explorer open a new era for the multi-wavelength study of the very early afterglow phase of gamma-ray bursts (GRBs). GRB early afterglow information is essential to explore the unknown physical composition of GRB jets, the link between the prompt gamma-ray emission and the afterglow emission, the GRB central engine activity, as well as the immediate GRB environment. Here I review some of the recent theoretical efforts to address these problems and describe how the latest Swift data give answers to these outstanding questions.

  14. Atmospheric Cherenkov Gamma-ray Telescopes

    CERN Document Server

    Holder, Jamie

    2015-01-01

    The stereoscopic imaging atmospheric Cherenkov technique, developed in the 1980s and 1990s, is now used by a number of existing and planned gamma-ray observatories around the world. It provides the most sensitive view of the very high energy gamma-ray sky (above 30 GeV), coupled with relatively good angular and spectral resolution over a wide field-of-view. This Chapter summarizes the details of the technique, including descriptions of the telescope optical systems and cameras, as well as the most common approaches to data analysis and gamma-ray reconstruction.

  15. New readout and data-acquisition system in an electron-tracking Compton camera for MeV gamma-ray astronomy (SMILE-II)

    Energy Technology Data Exchange (ETDEWEB)

    Mizumoto, T., E-mail: mizumoto@cr.scphys.kyoto-u.ac.jp [Department of Physics, Kyoto University, 606-8502 Kyoto (Japan); Matsuoka, Y. [Department of Physics, Kyoto University, 606-8502 Kyoto (Japan); Mizumura, Y. [Unit of Synergetic Studies for Space, Kyoto University, 606-8502 Kyoto (Japan); Department of Physics, Kyoto University, 606-8502 Kyoto (Japan); Tanimori, T. [Department of Physics, Kyoto University, 606-8502 Kyoto (Japan); Unit of Synergetic Studies for Space, Kyoto University, 606-8502 Kyoto (Japan); Kubo, H.; Takada, A.; Iwaki, S.; Sawano, T.; Nakamura, K.; Komura, S.; Nakamura, S.; Kishimoto, T.; Oda, M.; Miyamoto, S.; Takemura, T.; Parker, J.D.; Tomono, D.; Sonoda, S. [Department of Physics, Kyoto University, 606-8502 Kyoto (Japan); Miuchi, K. [Department of Physics, Kobe University, 658-8501 Kobe (Japan); Kurosawa, S. [Institute for Materials Research, Tohoku University, 980-8577 Sendai (Japan)

    2015-11-11

    For MeV gamma-ray astronomy, we have developed an electron-tracking Compton camera (ETCC) as a MeV gamma-ray telescope capable of rejecting the radiation background and attaining the high sensitivity of near 1 mCrab in space. Our ETCC comprises a gaseous time-projection chamber (TPC) with a micro pattern gas detector for tracking recoil electrons and a position-sensitive scintillation camera for detecting scattered gamma rays. After the success of a first balloon experiment in 2006 with a small ETCC (using a 10×10×15 cm{sup 3} TPC) for measuring diffuse cosmic and atmospheric sub-MeV gamma rays (Sub-MeV gamma-ray Imaging Loaded-on-balloon Experiment I; SMILE-I), a (30 cm){sup 3} medium-sized ETCC was developed to measure MeV gamma-ray spectra from celestial sources, such as the Crab Nebula, with single-day balloon flights (SMILE-II). To achieve this goal, a 100-times-larger detection area compared with that of SMILE-I is required without changing the weight or power consumption of the detector system. In addition, the event rate is also expected to dramatically increase during observation. Here, we describe both the concept and the performance of the new data-acquisition system with this (30 cm){sup 3} ETCC to manage 100 times more data while satisfying the severe restrictions regarding the weight and power consumption imposed by a balloon-borne observation. In particular, to improve the detection efficiency of the fine tracks in the TPC from ~10% to ~100%, we introduce a new data-handling algorithm in the TPC. Therefore, for efficient management of such large amounts of data, we developed a data-acquisition system with parallel data flow.

  16. Observations of cosmic ray positrons during the 1993 flight of the NMSU/WiZard-TS93 balloon borne apparatus

    Energy Technology Data Exchange (ETDEWEB)

    Basini, G. [INFN, Laboratori Nazionali di Frascati, Rome (Italy); Bellotti, R.; Cafagna, F.; Circella, M.; De Cataldo, G.; De Marzo, C.N. [Bari Univ. (Italy)]|[INFN, Bari (Italy); Brunetti, M.T.; Codini, A. [Perugia Univ. (Italy)]|[INFN, Perugia (Italy); De Pascale, M.P. [Rome Univ. `Tor Vergata` (Italy)]|[INFN, Rome (Italy); Aversa, F. [Trieste Univ. (Italy)]|[INFN, Trieste (Italy)

    1995-09-01

    As a part of a series of experiments to search for antimatter in the primary cosmic ray, the NMSU balloon borne apparatus was configured for a flight dedicated to the search of positrons. Two completely new instruments were added to the magnetic spectrometer: a transition radiation detector (TRD) and a silicon-tungsten tracking calorimeter. The function of these two instruments complemented one another and the combined action provided a proton rejection factor better than 5x10{sup 5}. The paper shows the results from the analysis on the complete set of data. All the presented spectra are at the level of the spectrometer.

  17. Gamma photometric redshifts for long gamma-ray bursts

    CERN Document Server

    Bagoly, Z; Mészáros, A; Mészáros, P; Horváth, I; Balázs, L G; Vavrek, R

    2003-01-01

    It is known that the soft tail of the gamma-ray bursts' spectra show excesses from the exact power-law dependence. In this article we show that this departure can be detected in the peak flux ratios of different BATSE DISCSC energy channels. This effect allows to estimate the redshift of the bright long gamma-ray bursts in the BATSE Catalog. A verification of these redshifts is obtained for the 8 GRB which have both BATSE DISCSC data and measured optical spectroscopic redshifts. There is good correlation between the measured and esti redshifts, and the average error is $\\Delta z \\approx 0.33$. The method is similar to the photometric redshift estimation of galaxies in the optical range, hence it can be called as "gamma photometric redshift estimation". The estimated redshifts for the long bright gamma-ray bursts are up to $z \\simeq 4$. For the the faint long bursts - which should be up to $z \\simeq 20$ - the redshifts cannot be determined unambiguously with this method.

  18. GAMMA-RAY AND X-RAY EMISSION FROM GAMMA-RAY-LOUD BLAZARS

    Institute of Scientific and Technical Information of China (English)

    ZHANG XIONG; ZHAO GANG; XIE GUANG-ZHONG; ZHENG GUANG-SHENG; ZHANG LI

    2001-01-01

    We present a strong correlation of the gamma-ray (above 100 MeV) mean spectral indices aγ and X-ray (1 keV)mean spectral indices cX for 34 gamma-ray-loud blazars (16 BL Lac objects and 18 flat spectrum radio quasars). Astrong correlation is also found between the gamma-ray flux densities F-γ and X-ray flux densities Fx in the low state for 47 blazars (17 BL Lac and 30 flat spectrum radio quasars). Possible correlation on the gamma-ray emission mechanism is discussed. We suggest that the main gamma-ray radiation mechanism is probably the synchrotron process. The gamma-ray emission may be somewhat different from that of BL Lac objects and flat spectrum radio quasars.

  19. Gamma-Ray Astrophysics NSSTC Fermi GBM

    Data.gov (United States)

    National Aeronautics and Space Administration — The Fermi Gamma-Ray Burst Monitor (GBM) is not a pointed or imaging instrument. To determine fluxes for known sources, we measure the change in the count rate...

  20. Supernova remnants and gamma-ray sources

    CERN Document Server

    Torres, D F; Dame, T M; Combi, J A; Butt, Y M; Torres, Diego F.; Romero, Gustavo E.; Dame, Thomas M.; Combi, Jorge A.; Butt, Yousaf M.

    2003-01-01

    A review of the possible relationship between $\\gamma$-ray sources and supernova remnants (SNRs) is presented. Particular emphasis is given to the analysis of the observational status of the problem of cosmic ray acceleration at SNR shock fronts. All positional coincidences between SNRs and unidentified $\\gamma$-ray sources listed in the Third EGRET Catalog at low Galactic latitudes are discussed on a case by case basis. For several coincidences of particular interest, new CO(J=1-0) and radio continuum maps are shown, and the mass content of the SNR surroundings is determined. The contribution to the $\\gamma$-ray flux observed that might come from cosmic ray particles (particularly nuclei) locally accelerated at the SNR shock fronts is evaluated. We discuss the prospects for future research in this field and remark on the possibilities for observations with forthcoming $\\gamma$-ray instruments.

  1. Polarization measurements of proton capture gamma rays

    NARCIS (Netherlands)

    Suffert, M.; Endt, P.M.; Hoogenboom, A.M.

    1959-01-01

    The linear polarization has been measured of eight different gamma rays of widely differing energies (Eγ = 0.8 - 8.0 MeV) emitted at resonances in the 24Mg(p, γ)25Al, 30Si(p, γ)31P, and 32S(p, γ)33Cl reactions. The gamma rays emitted at 90° to the proton beam were Compton scattered in a 2″ NaI scint

  2. FERMI Observations of Gamma -Ray Emission From the Moon

    Science.gov (United States)

    Abdo, A. A.; Ackermann, M.; Ajello, M.; Atwoo, W. B.; Baldini, I.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Bechtol, K.; Bellazzini, R.; Berenji, B.; Blandford, R. D.; Bonamente, E.; Borgland, A. W.; Bottacini, E.; Bouvier, A.; Bregeon, J.; Brigida, M.; Bruel, P.; Buehler, R.; Gehrels, N.; Hays, E.; Thompson, D. J.; McEnery, J. E.; Troja, E.

    2012-01-01

    We report on the detection of high-energy ? -ray emission from the Moon during the first 24 months of observations by the Fermi Large Area Telescope (LAT). This emission comes from particle cascades produced by cosmicray (CR) nuclei and electrons interacting with the lunar surface. The differential spectrum of the Moon is soft and can be described as a log-parabolic function with an effective cutoff at 2-3 GeV, while the average integral flux measured with the LAT from the beginning of observations in 2008 August to the end of 2010 August is F(greater than100 MeV) = (1.04 plus or minus 0.01 [statistical error] plus or minus 0.1 [systematic error]) × 10(sup -6) cm(sup -2) s(sup -1). This flux is about a factor 2-3 higher than that observed between 1991 and 1994 by the EGRET experiment on board the Compton Gamma Ray Observatory, F(greater than100 MeV)˜5×10(sup -7) cm(sup -2) s(sup -1), when solar activity was relatively high. The higher gamma -ray flux measured by Fermi is consistent with the deep solar minimum conditions during the first 24 months of the mission, which reduced effects of heliospheric modulation, and thus increased the heliospheric flux of Galactic CRs. A detailed comparison of the light curve with McMurdo Neutron Monitor rates suggests a correlation of the trends. The Moon and the Sun are so far the only known bright emitters of gamma-rays with fast celestial motion. Their paths across the sky are projected onto the Galactic center and high Galactic latitudes as well as onto other areas crowded with high-energy gamma-ray sources. Analysis of the lunar and solar emission may thus be important for studies of weak and transient sources near the ecliptic.

  3. The HAWC Gamma-Ray Observatory: Sensitivity to Steady and Transient Sources of Gamma Rays

    CERN Document Server

    Abeysekara, A U; Alvarez, C; Álvarez, J D; Arceo, R; Arteaga-Velázquez, J C; Solares, H A Ayala; Barber, A S; Baughman, B M; Bautista-Elivar, N; Belmont, E; BenZvi, S Y; Berley, D; Rosales, M Bonilla; Braun, J; Caballero-Lopez, R A; Caballero-Mora, K S; Carramiñana, A; Castillo, M; Cotti, U; Cotzomi, J; de la Fuente, E; De León, C; DeYoung, T; Hernandez, R Diaz; Díaz-Vélez, J C; Dingus, B L; DuVernois, M A; Ellsworth, R W; Fernandez, A; Fiorino, D W; Fraija, N; Galindo, A; Garfias, F; González, L X; González, M M; Goodman, J A; Grabski, V; Gussert, M; Hampel-Arias, Z; Hui, C M; Hüntemeyer, P; Imran, A; Iriarte, A; Karn, P; Kieda, D; Kunde, G J; Lara, A; Lauer, R J; Lee, W H; Lennarz, D; Vargas, H León; Linares, E C; Linnemann, J T; Longo, M; Luna-GarcIa, R; Marinelli, A; Martinez, H; Martinez, O; Martínez-Castro, J; Matthews, J A J; Miranda-Romagnoli, P; Moreno, E; Mostafá, M; Nava, J; Nellen, L; Newbold, M; Noriega-Papaqui, R; Oceguera-Becerra, T; Patricelli, B; Pelayo, R; Pérez-Pérez, E G; Pretz, J; Rivière, C; Rosa-González, D; Salazar, H; Salesa, F; Sanchez, F E; Sandoval, A; Santos, E; Schneider, M; Silich, S; Sinnis, G; Smith, A J; Sparks, K; Springer, R W; Taboada, I; Toale, P A; Tollefson, K; Torres, I; Ukwatta, T N; Villaseñor, L; Weisgarber, T; Westerhoff, S; Wisher, I G; Wood, J; Yodh, G B; Younk, P W; Zaborov, D; Zepeda, A; Zhou, H

    2013-01-01

    The High-Altitude Water Cherenkov (HAWC) Gamma-Ray Observatory is designed to record air showers produced by cosmic rays and gamma rays between 100 GeV and 100 TeV. Because of its large field of view and high livetime, HAWC is well-suited to measure gamma rays from extended sources, diffuse emission, and transient sources. We describe the sensitivity of HAWC to emission from the extended Cygnus region as well as other types of galactic diffuse emission; searches for flares from gamma-ray bursts and active galactic nuclei; and the first measurement of the Crab Nebula with HAWC-30.

  4. First flight of the Gamma-Ray Imager/Polarimeter for Solar flares (GRIPS) instrument

    Science.gov (United States)

    Duncan, Nicole; Saint-Hilaire, P.; Shih, A. Y.; Hurford, G. J.; Bain, H. M.; Amman, M.; Mochizuki, B. A.; Hoberman, J.; Olson, J.; Maruca, B. A.; Godbole, N. M.; Smith, D. M.; Sample, J.; Kelley, N. A.; Zoglauer, A.; Caspi, A.; Kaufmann, P.; Boggs, S.; Lin, R. P.

    2016-07-01

    The Gamma-Ray Imager/Polarimeter for Solar flares (GRIPS) instrument is a balloon-borne telescope designed to study solar- are particle acceleration and transport. We describe GRIPS's first Antarctic long-duration flight in January 2016 and report preliminary calibration and science results. Electron and ion dynamics, particle abundances and the ambient plasma conditions in solar flares can be understood by examining hard X-ray (HXR) and gamma-ray emission (20 keV to 10 MeV). Enhanced imaging, spectroscopy and polarimetry of are emissions in this energy range are needed to study particle acceleration and transport questions. The GRIPS instrument is specifically designed to answer questions including: What causes the spatial separation between energetic electrons producing hard X-rays and energetic ions producing gamma-ray lines? How anisotropic are the relativistic electrons, and why can they dominate in the corona? How do the compositions of accelerated and ambient material vary with space and time, and why? GRIPS's key technological improvements over the current solar state of the art at HXR/gamma-ray energies, the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI), include 3D position-sensitive germanium detectors (3D-GeDs) and a single-grid modulation collimator, the multi-pitch rotating modulator (MPRM). The 3D-GeDs have spectral FWHM resolution of a few hundred keV and spatial resolution 150 keV, the energy deposition sites can be tracked, providing polarization measurements as well as enhanced background reduction through Compton imaging. Each of GRIPS's detectors has 298 electrode strips read out with ASIC/FPGA electronics. In GRIPS's energy range, indirect imaging methods provide higher resolution than focusing optics or Compton imaging techniques. The MPRM gridimaging system has a single-grid design which provides twice the throughput of a bi-grid imaging system like RHESSI. The grid is composed of 2.5 cm deep tungsten-copper slats, and quasi

  5. Study of the properties of Cosmic rays and solar X-Ray Flares by balloon borne experiments

    CERN Document Server

    Chakrabarti, S K; Chakraborty, S; Palit, S; Mondal, S K; Bhattacharya, A; Midya, S; Chakrabarti, S

    2013-01-01

    Indian Centre for Space Physics is engaged in pioneering balloon borne experiments with typical payloads less than ~ 3.5kg. Low cost rubber balloons are used to fly them to a height of about 40km. In a double balloon system, the booster balloon lifts the orbiter balloon to its cruising altitude where data is taken for a longer period of time. In this Paper, we present our first scientific report on the variation of Cosmic Rays and muons with altitude and detection of several solar flares in X-rays between 20keV and 100keV. We found the altitude of the Pfotzer maximum at Tropic of Cancer for cosmic rays and muons and catch several solar flares in hard X-rays. We find that the hard X-ray (> 40keV) sky becomes very transparent above Pfotzer maximum. We find the flare spectrum to have a power-law distribution. From these studies, we infer that valuable scientific research could be carried out in near space using low cost balloon borne experiments. Published in Online version of Indian Journal of Physics.

  6. Performance of the Light Trigger System in the Liquid Xenon Gamma-Ray Telescope LXeGRIT

    CERN Document Server

    Oberlack, U; Curioni, A; Giboni, K; 10.1109/23.958720

    2009-01-01

    LXeGRIT is a balloon-borne Compton telescope for MeV gamma-ray astrophysics, based on a liquid xenon time projection chamber with charge and light readout. The energy and direction of an incident gamma-ray is reconstructed from the three-dimensional locations and energy deposits of individual interactions taking place in the homogeneous detector volume. While the charge signals provide energy information and X-Y positions, the fast xenon scintillation light signal is used to trigger the detector. The drift time measurement, referred to the time of the trigger signal, gives the Z-position with the known drift velocity. The light is detected by four UV-sensitive photomultiplier tubes (PMTs). The logical OR of the PMT signals triggers the data acquisition system with an efficiency which depends on the event energy and location, as well as on the discriminator thresholds used on the individual PMTs. Results from experiments with a tagged 22Na source give the spatial distribution of the light trigger efficiency fo...

  7. Gamma-Ray Burst Class Properties

    Science.gov (United States)

    Hakkila, Jon; Haglin, David J.; Pendleton, Geoffrey N.; Mallozzi, Robert S.; Meegan, Charles A.; Roiger, Richard J.

    2000-01-01

    Guided by the supervised pattern recognition algorithm C4.5 developed by Quinlan in 1986, we examine the three gamma-ray burst classes identified by Mukherjee et al. in 1998. C4.5 provides strong statistical support for this classification. However, with C4.5 and our knowledge of the Burst and Transient Source Experiment (BATSE) instrument, we demonstrate that class 3 (intermediate fluence, intermediate duration, soft) does not have to be a distinct source population: statistical/systematic errors in measuring burst attributes combined with the well-known hardness/intensity correlation can cause low peak flux class 1 (high fluence, long, intermediate hardness) bursts to take on class 3 characteristics naturally. Based on our hypothesis that the third class is not a distinct one, we provide rules so that future events can be placed in either class 1 or class 2 (low fluence, short, hard). We find that the two classes are relatively distinct on the basis of Band's work in 1993 on spectral parameters alpha, beta, and E (sub peak) alone. Although this does not indicate a better basis for classification, it does suggest that different physical conditions exist for class 1 and class 2 bursts. In the process of studying burst class characteristics, we identify a new bias affecting burst fluence and duration measurements. Using a simple model of how burst duration can be underestimated, we show how this fluence duration bias can affect BATSE measurements and demonstrate the type of effect it can have on the BATSE fluence versus peak flux diagram.

  8. New insights from cosmic gamma rays

    Science.gov (United States)

    Roland, Diehl

    2016-04-01

    The measurement of gamma rays from cosmic sources at ~MeV energies is one of the key tools for nuclear astrophysics, in its study of nuclear reactions and their impacts on objects and phenomena throughout the universe. Gamma rays trace nuclear processes most directly, as they originate from nuclear transitions following radioactive decays or high-energy collisions with excitation of nuclei. Additionally, the unique gamma-ray signature from the annihilation of positrons falls into this astronomical window and is discussed here: Cosmic positrons are often produced from β-decays, thus also of nuclear physics origins. The nuclear reactions leading to radioactive isotopes occur inside stars and stellar explosions, which therefore constitute the main objects of such studies. In recent years, both thermonuclear and core-collapse supernova radioactivities have been measured though 56Ni, 56Co, and 44Ti lines, and a beginning has thus been made to complement conventional supernova observations with such measurements of the prime energy sources of supernova light created in their deep interiors. The diffuse radioactive afterglow of massive-star nucleosynthesis in gamma rays is now being exploited towards astrophysical studies on how massive stars feed back their energy and ejecta into interstellar gas, as part of the cosmic cycle of matter through generations of stars enriching the interstellar gas and stars with metals. Large interstellar cavities and superbubbles have been recognised to be the dominating structures where new massive-star ejecta are injected, from 26Al gamma-ray spectroscopy. Also, constraints on the complex interiors of stars derive from the ratio of 60Fe/26Al gamma rays. Finally, the puzzling bulge-dominated intensity distribution of positron annihilation gamma rays is measured in greater detail, but still not understood; a recent microquasar flare provided evidence that such objects may be prime sources for positrons in interstellar space, rather than

  9. On the difference between gamma-ray-detected and non-gamma-ray-detected pulsars

    CERN Document Server

    Rookyard, Simon C; Johnston, Simon; Kerr, Matthew

    2016-01-01

    We compare radio profile widths of young, energetic gamma-ray-detected and non-gamma-ray-detected pulsars. We find that the latter typically have wider radio profiles, with the boundary between the two samples exhibiting a dependence on the rate of rotational energy loss. We also find that within the sample of gamma-ray-detected pulsars, radio profile width is correlated with both the separation of the main gamma-ray peaks and the presence of narrow gamma-ray components. These findings lead us to propose that these pulsars form a single population where the main factors determining gamma ray detectability are the rate of rotational energy loss and the proximity of the line of sight to the rotation axis. The expected magnetic inclination angle distribution will be different for radio pulsars with and without detectable gamma rays, naturally leading to the observed differences. Our results also suggest that the geometry of existing radio and outer-magnetosphere gamma-ray emission models are at least qualitative...

  10. Gamma-Ray Pulsars Expected in the Outer Gap Model of Gamma-Ray Emission

    Institute of Scientific and Technical Information of China (English)

    张力; 吴杰; 姜泽军; 梅冬成

    2003-01-01

    We study the possibility of high-energy gamma-ray emission from the known 1130 radio pulsars based on the outer gap model of high-energy emission from pulsars. We estimate the fractional size of outer gap, the integrated flux, the gamma-ray luminosity for each known radio pulsar, and find that only 14% of the known radio pulsars are gamma-ray emitters according to the outer gap model. In the sample of possible 156 gamma-ray pulsars, our statistical analysis indicates that the distributions of the spin-down powers and the ages of these pulsars concentrate mainly on 1033.5-1039 erg/s and 103-107 y, respectively. The predictions of gamma-ray pulsars detected by the AGILE and GLAST missions are given.

  11. Gamma-Ray Lenses for Astrophysics-and the Gamma-Ray Imager Mission GRI

    DEFF Research Database (Denmark)

    Wunderer, C. B.; Ballmoos, P. V.; Barriere, N.

    2009-01-01

    Observations of the gamma-ray sky reveal the most powerful sources and the most violent events in the Universe. While at lower wavebands the observed emission is generally dominated by thermal processes, the gamma-ray sky provides us with a view on the non-thermal Universe. Here particles...... are accelerated to extreme relativistic energies by mechanisms which are still poorly understood, and nuclear reactions are synthesizing the basic constituents of our world. Cosmic accelerators and cosmic explosions are major science themes that are addressed in the gamma-ray regime. While Fermi will take......, albeit at much more modest sensitivities. There will be clearly a growing need to perform deeper, more focused investigations of gamma-ray sources in the 100-keV to MeV regime. Recent technological advances in the domain of gamma-ray focusing using Lane diffraction and multilayer-coated mirror techniques...

  12. The Infrared-Gamma-Ray Connection: A WISE View of the Extragalactic Gamma-Ray Sky

    CERN Document Server

    Massaro, F

    2016-01-01

    Using data from the WISE all-sky survey we discovered that the non-thermal infrared (IR) emission of blazars, the largest known population of extragalactic gamma-ray sources, has peculiar spectral properties. In this work, we confirm and strengthen our previous analyses using the latest available releases of both the WISE and the Fermi source catalogs. We also show that there is a tight correlation between the mid-IR colors and the gamma-ray spectral index of Fermi blazars. We name this correlation "the infrared--gamma-ray connection". We discuss how this connection links both the emitted powers and the spectral shapes of particles accelerated in jets arising from blazars over ten decades in energy. Based on this evidence, we argue that the infrared--gamma-ray connection is stronger than the well known radio--gamma-ray connection.

  13. Gamma-Ray Astronomy from the Ground

    CERN Document Server

    Horns, D

    2016-01-01

    The observation of cosmic gamma-rays from the ground is based upon the detection of gamma-ray initiated air showers. At energies between approximately $10^{11}$ eV and $10^{13}$ eV, the imaging air Cherenkov technique is a particularly successful approach to observe gamma-ray sources with energy fluxes as low as $\\approx 10^{-13}$ erg\\,cm$^{-2}\\,$s$^{-1}$. The observations of gamma-rays in this energy band probe particle acceleration in astrophysical plasma conditions and are sensitive to high energy phenomena beyond the standard model of particle physics (e.g., self-annihilating or decaying dark matter, violation of Lorentz invariance, mixing of photons with light pseudo-scalars). The current standing of the field and its major instruments are summarised briefly by presenting selected highlights. A new generation of ground based gamma-ray instruments is currently under development. The perspectives and opportunities of these future facilities will be discussed.

  14. Stellar Photon Archaeology with Gamma-Rays

    Science.gov (United States)

    Stecker, Floyd W.

    2009-01-01

    Ongoing deep surveys of galaxy luminosity distribution functions, spectral energy distributions and backwards evolution models of star formation rates can be used to calculate the past history of intergalactic photon densities and, from them, the present and past optical depth of the Universe to gamma-rays from pair production interactions with these photons. The energy-redshift dependence of the optical depth of the Universe to gamma-rays has become known as the Fazio-Stecker relation (Fazio & Stecker 1970). Stecker, Malkan & Scully have calculated the densities of intergalactic background light (IBL) photons of energies from 0.03 eV to the Lyman limit at 13.6 eV and for 0$ < z < $6, using deep survey galaxy observations from Spitzer, Hubble and GALEX and have consequently predicted spectral absorption features for extragalactic gamma-ray sources. This procedure can also be reversed. Determining the cutoff energies of gamma-ray sources with known redshifts using the recently launched Fermi gamma-ray space telescope may enable a more precise determination of the IBL photon densities in the past, i.e., the "archaeo-IBL.", and therefore allow a better measure of the past history of the total star formation rate, including that from galaxies too faint to be observed.

  15. A giant radio flare from Cygnus X-3 with associated Gamma-ray emission

    CERN Document Server

    Corbel, S; Tomsick, J A; Szostek, A; Corbet, R H D; Miller-Jones, J C A; Richards, J L; Pooley, G; Trushkin, S; Dubois, R; Hill, A B; Kerr, M; Max-Moerbeck, W; Readhead, A C S; Bodaghee, A; Tudose, V; Parent, D; Wilms, J; Pottschmidt, K

    2012-01-01

    With frequent flaring activity of its relativistic jets, Cygnus X-3 is one of the most active microquasars and is the only Galactic black hole candidate with confirmed high energy Gamma-ray emission, thanks to detections by Fermi/LAT and AGILE. In 2011, Cygnus X-3 was observed to transit to a soft X-ray state, which is known to be associated with high-energy Gamma-ray emission. We present the results of a multi-wavelength campaign covering a quenched state, when radio emission from Cygnus X-3 is at its weakest and the X-ray spectrum is very soft. A giant (~ 20 Jy) optically thin radio flare marks the end of the quenched state, accompanied by rising non-thermal hard X-rays. Fermi/LAT observations (E >100 MeV) reveal renewed Gamma-ray activity associated with this giant radio flare, suggesting a common origin for all non-thermal components. In addition, current observations unambiguously show that the Gamma-ray emission is not exclusively related to the rare giant radio flares. A 3-week period of Gamma-ray emis...

  16. New insights from cosmic gamma rays

    CERN Document Server

    Diehl, Roland

    2016-01-01

    The measurement of gamma rays from cosmic sources at MeV energies is one of the key tools for nuclear astrophysics, in its study of nuclear reactions and their impacts on objects and phenomena throughout the universe. Gamma rays trace nuclear processes most directly, as they originate from nuclear transitions following radioactive decays or high-energy collisions with excitation of nuclei. Additionally, the unique gamma-ray signature from the annihilation of positrons falls into this astronomical window and is discussed here: Cosmic positrons are often produced from beta-decays, thus also of nuclear physics origins. The nuclear reactions leading to radioactive isotopes occur inside stars and stellar explosions, which therefore constitute the main objects of such studies. In recent years, both thermonuclear and core-collapse supernova radioactivities have been measured, and complement conventional supernova observations with measurements of their prime energy sources. The diffuse radioactive afterglow of massi...

  17. Technology Needs for Gamma Ray Astronomy

    Science.gov (United States)

    Gehrels, Neil

    2011-01-01

    Gamma ray astronomy is currently in an exciting period of multiple missions and a wealth of data. Results from INTEGRAL, Fermi, AGILE, Suzaku and Swift are making large contributions to our knowledge of high energy processes in the universe. The advances are due to new detector and imaging technologies. The steps to date have been from scintillators to solid state detectors for sensors and from light buckets to coded aperture masks and pair telescopes for imagers. A key direction for the future is toward focusing telescopes pushing into the hard X-ray regime and Compton telescopes and pair telescopes with fine spatial resolution for medium and high energy gamma rays. These technologies will provide finer imaging of gamma-ray sources. Importantly, they will also enable large steps forward in sensitivity by reducing background.

  18. TeV Gamma-Ray Astrophysics

    CERN Document Server

    Ribó, M

    2008-01-01

    The window of TeV Gamma-Ray Astrophysics was opened less than two decades ago, when the Crab Nebula was detected for the first time. After several years of development, the technique used by imaging atmospheric Cherenkov telescopes like HESS, MAGIC or VERITAS, is now allowing to conduct sensitive observations in the TeV regime. Water Cherenkov instruments like Milagro are also providing the first results after years of integration time. Different types of extragalactic and galactic sources have been detected, showing a variety of interesting phenomena that are boosting theory in very high energy gamma-ray astrophysics. Here I review some of the most interesting results obtained up to now, making special emphasis in the field of X-ray/gamma-ray binaries.

  19. Accessing the population of high redshift Gamma Ray Bursts

    CERN Document Server

    Ghirlanda, G; Ghisellini, G; Mereghetti, S; Tagliaferri, G; Campana, S; Osborne, J P; O'Brien, P; Tanvir, N; Willingale, R; Amati, L; Basa, S; Bernardini, M G; Burlon, D; Covino, S; D'Avanzo, P; Frontera, F; Gotz, D; Melandri, A; Nava, L; Piro, L; Vergani, S D

    2015-01-01

    Gamma Ray Bursts (GRBs) are a powerful probe of the high redshift Universe. We present a tool to estimate the detection rate of high-z GRBs by a generic detector with defined energy band and sensitivity. We base this on a population model that reproduces the observed properties of GRBs detected by Swift, Fermi and CGRO in the hard X-ray and gamma-ray bands. We provide the expected cumulative distributions of the flux and fluence of simulated GRBs in different energy bands. We show that scintillator detectors, operating at relatively high energies (e.g. tens of keV to the MeV), can detect only the most luminous GRBs at high redshifts due to the link between the peak spectral energy and the luminosity (Ep-Liso) of GRBs. We show that the best strategy for catching the largest number of high-z bursts is to go softer (e.g. in the soft X-ray band) but with a very high sensitivity. For instance, an imaging soft X-ray detector operating in the 0.2-5 keV energy band reaching a sensitivity, corresponding to a fluence o...

  20. Neutron and Gamma-ray Measurements

    Science.gov (United States)

    Krasilnikov, Anatoly V.; Sasao, Mamiko; Kaschuck, Yuri A.; Kiptily, Vasily G.; Nishitani, Takeo; Popovichev, Sergey V.; Bertalot, Luciano

    2008-03-01

    Due to high neutron and gamma-ray yields and large size plasmas many future fusion reactor plasma parameters such as fusion power, fusion power density, ion temperature, fuel mixture, fast ion energy and spatial distributions can be well measured by various fusion product diagnostics. Neutron diagnostics provide information on fusion reaction rate, which indicates how close is the plasma to the ultimate goal of nuclear fusion and fusion power distribution in the plasma core, which is crucial for optimization of plasma breakeven and burn. Depending on the plasma conditions neutron and gamma-ray diagnostics can provide important information, namely about dynamics of fast ion energy and spatial distributions during neutral beam injection, ion cyclotron heating and generated by fast ions MHD instabilities. The influence of the fast particle population on the 2-D neutron source profile was clearly demonstrated in JET experiments. 2-D neutron and gamma-ray source measurements could be important for driven plasma heating profile optimization in fusion reactors. To meat the measurement requirements in ITER the planned set of neutron and gamma ray diagnostics includes radial and vertical neutron and gamma cameras, neutron flux monitors, neutron activation systems and neutron spectrometers. The necessity of using massive radiation shielding strongly influences the diagnostic designs in fusion reactor, determines angular fields of view of neutron and gamma-ray cameras and spectrometers and gives rise to unavoidable difficulties in the absolute calibration. The development, testing in existing tokomaks and a possible engineering integration of neuron and gamma-ray diagnostic systems into ITER are presented.

  1. Nuclear forensics using gamma-ray spectroscopy

    CERN Document Server

    Norman, Eric B

    2016-01-01

    Much of George Dracoulis's research career was devoted to utilizing gamma-ray spectroscopy in fundamental studies in nuclear physics. This same technology is useful in a wide range of applications in the area of nuclear forensics. Over the past several years, our research group has made use of both high- and low- resolution gamma ray spectrometers to: identify the first sample of plutonium large enough to be weighed; determine the yield of the Trinity nuclear explosion; measure fission fragment yields as a function of target nucleus and neutron energy; and observe fallout in the U. S. from the Fukushima nuclear reactor accident.

  2. Nuclear Forensics using Gamma-ray Spectroscopy

    Directory of Open Access Journals (Sweden)

    Norman E. B.

    2016-01-01

    Full Text Available Much of George Dracoulis’s research career was devoted to utilising gamma-ray spectroscopy in fundamental studies in nuclear physics. This same technology is useful in a wide range of applications in the area of nuclear forensics. Over the last several years, our research group has made use of both high- and low-resolution gamma-ray spectrometers to: identify the first sample of plutonium large enough to be weighed; determine the yield of the Trinity nuclear explosion; measure fission fragment yields as a function of target nucleus and neutron energy; and observe fallout in the U. S. from the Fukushima nuclear reactor accident.

  3. Gamma Ray Bursts in the HAWC Era

    CERN Document Server

    Mészáros, Peter; Murase, Kohta; Fox, Derek; Gao, He; Senno, Nicholas

    2015-01-01

    Gamma-Ray Bursts are the most energetic explosions in the Universe, and are among the most promising for detecting multiple non-electromagnetic signals, including cosmic rays, high energy neutrinos and gravitational waves. The multi-GeV to TeV gamma-ray range of GRB could have significant contributions from hadronic interactions, mixed with more conventional leptonic contributions. This energy range is important for probing the source physics, including overall energetics, the shock parameters and the Lorentz factor. We discuss some of the latest observational and theoretical developments in the field.

  4. Status of the Milagro $\\gamma$ Ray Observatory

    CERN Document Server

    Atkins, R; Berley, D; Chen, M L; Coyne, D G; Delay, R S; Dingus, B L; Dorfan, D E; Ellsworth, R W; Evans, D; Falcone, A D; Fleysher, L; Fleysher, R; Gisler, G; Goodman, J A; Haines, T J; Hoffman, C M; Hugenberger, S; Kelley, L A; Leonor, I; Macri, J R; McConnell, M; McCullough, J F; McEnery, J E; Miller, R S; Mincer, A I; Morales, M F; Némethy, P; Ryan, J M; Schneider, M; Shen, B; Shoup, A L; Sinnis, G; Smith, A J; Sullivan, G W; Thompson, T N; Tümer, T O; Wang, K; Wascko, M O; Westerhoff, S; Williams, D A; Yang, T; Yodh, G B

    2001-01-01

    The Milagro Gamma Ray Observatory is the world's first large-area water Cherenkov detector capable of continuously monitoring the sky at TeV energies. Located in northern New Mexico, Milagro will perform an all sky survey of the Northern Hemisphere at energies between ~250 GeV and 50 TeV. With a high duty cycle, large detector area (~5000 square meters), and a wide field-of-view (~1 sr), Milagro is uniquely capable of searching for transient and DC sources of high-energy gamma-ray emission. Milagro has been operating since February, 1999. The current status of the Milagro Observatory and initial results will be discussed.

  5. Nuclear Forensics using Gamma-ray Spectroscopy

    Science.gov (United States)

    Norman, E. B.

    2016-09-01

    Much of George Dracoulis's research career was devoted to utilising gamma-ray spectroscopy in fundamental studies in nuclear physics. This same technology is useful in a wide range of applications in the area of nuclear forensics. Over the last several years, our research group has made use of both high- and low-resolution gamma-ray spectrometers to: identify the first sample of plutonium large enough to be weighed; determine the yield of the Trinity nuclear explosion; measure fission fragment yields as a function of target nucleus and neutron energy; and observe fallout in the U. S. from the Fukushima nuclear reactor accident.

  6. The atmospheric nightglow in the 300-400 nm wavelength Results by the balloon-borne experiment 'BABY'

    CERN Document Server

    Catalano, O; Biondo, B; Celi, F; Di Raffaele, R; Giarrusso, S; Linsley, J; Lo Bue, A; Mangano, A; Russo, F

    2002-01-01

    The balloon-borne experiment, named BAckground BYpass (BABY) belongs to a wider program that has as its final goal the detection and study of high-energy cosmic rays from space (satellite, Space Station). An information of fundamental importance for this class of projects concerns the nighttime background light. The instrument designed to detect fluorescence photons is basically composed of two collimated photomultipliers: a single photon-counting PMT and a charge integration PMT. We briefly report the details of the design, operation and performance of the detector, which was designed and completely built at the IFCAI-CNR Institute in Palermo. Preliminary analysis and results of the nocturnal background in the range of 300-400 nm are presented for the whole duration of the flight during the 1998 Mediterranean balloon flight campaign. A substantial part of the flight was at night over the sea.

  7. Design and characterization of the balloon-borne Michelson Interferometer for Passive Atmospheric Sounding (MIPAS-B2).

    Science.gov (United States)

    Friedl-Vallon, Felix; Maucher, Guido; Seefeldner, Meinhard; Trieschmann, Olaf; Kleinert, Anne; Lengel, Anton; Keim, Corneli; Oelhaf, Hermann; Fischer, Herbert

    2004-06-01

    MIPAS-B2 is a balloon-borne limb-emission sounder for atmospheric research. The heart of the instrument is a Fourier spectrometer that covers the mid-infrared spectral range (4-14 microns) and operates at cryogenic temperatures. Essential for this application is the sophisticated line-of-sight stabilization system, which is based on an inertial navigation system and is supplemented with an additional star reference system. The major scientific benefit of the instrument is the simultaneous detection of complete trace gas families in the stratosphere without restrictions concerning the time of day and viewing directions. The specifications, the design considerations, the actual realization of the instrument, and the results of characterization measurements that have been performed are described.

  8. The Balloon-borne Large Aperture Submillimeter Telescope for Polarimetry-BLASTPol: Performance and results from the 2012 Antarctic flight

    CERN Document Server

    Galitzki, N; Angilé, F E; Benton, S J; Devlin, M J; Dober, B; Fissel, L M; Fukui, Y; Gandilo, N N; Klein, J; Korotkov, A L; Matthews, T G; Moncelsi, L; Netterfield, C B; Novak, G; Nutter, D; Pascale, E; Poidevin, F; Savini, G; Scott, D; Shariff, J A; Soler, J D; Tucker, C E; Tucker, G S; Ward-Thompson, D

    2014-01-01

    The Balloon-borne Large Aperture Submillimeter Telescope for Polarimetry (BLASTPol) is a suborbital mapping experiment, designed to study the role played by magnetic fields in the star formation process. BLASTPol observes polarized light using a total power instrument, photolithographic polarizing grids, and an achromatic half-wave plate to modulate the polarization signal. During its second flight from Antarctica in December 2012, BLASTPol made degree scale maps of linearly polarized dust emission from molecular clouds in three wavebands, centered at 250, 350, and 500 microns. The instrumental performance was an improvement over the 2010 BLASTPol flight, with decreased systematics resulting in a higher number of confirmed polarization vectors. The resultant dataset allows BLASTPol to trace magnetic fields in star-forming regions at scales ranging from cores to entire molecular cloud complexes.

  9. Retrieval of ultraviolet skylight radiances and O3 slant column densities from balloon-borne limb spectrometer

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    With a novel light-weight and absolutely calibrated ultraviolet (UV) spectrometer,UV skylight radiances and O3 slant column densities are measured by balloon-borne limb measurements in Xinjiang area,China.UV skylight radiances measured at the height of 31 km are compared with the results from Modtran in the wavelength range from 290 to 420 nm.03 slant column densities are derived from radiance spectra in the Huggins bands (320 - 335 nm) using differential optical absorption spectroscopy method.And the parameter exhibits a good correlation with the same value simulated by radiative transfer model (Tracy).The O3 profile simultaneously measured by an O3 sonde is used as input in Tracy calculations.The O3 sonde is launched on the same balloon.

  10. Validation of GOMOS vertical profiles using the stratospheric balloon-borne AMON and SALOMON UV-visible spetrometers

    Science.gov (United States)

    Renard, J.-B.; Chartier, M.; Berthet, G.; Robert, C.; Lemaire, T.; Pepe, F.; George, M.; Pirre, M.

    2003-08-01

    The stratospheric balloon-borne UV-visible spectrometers AMON and SALOMON, which use stars and Moon as light source, respectively, are involved in the validation of the UV-visible spectrometer GOMOS onboard ENVISAT, which uses also stars as light source. A low spectral resolution UV-visible spectrometer, AMON-RA, is also implanted in the AMON gondola, for the analysis of the chromatic scintillation effect. A flight of SALOMON occurred in September 19, 2002, at mid latitude from Aire sur l'Adour, France. An AMON (and AMON-RA) flight occurred at high latitude from Kiruna (northern Sweden) on March 1, 2003. The vertical profiles are compared to those obtained by GOMOS. Taking into account the effect of the chromatic scintillation on the transmission spectra, recommendations will be proposed in order to improve the GOMOS retrievals.

  11. Use of a Fourier transform spectrometer on a balloon-borne telescope and at the multiple mirror telescope (MMT)

    Science.gov (United States)

    Traub, W. A.; Chance, K. V.; Brasunas, J. C.; Vrtilek, J. M.; Carleton, N. P.

    1982-01-01

    The design and use of an infrared Fourier transform spectrometer which has been used for observations of laboratory, stratospheric, and astronomical spectra are described. The spectrometer has a spectral resolution of 0.032/cm and has operated in the mid-infrared (12 to 13 microns) as well as the far-infrared (40 to 140 microns), using both bolometer and photoconductor cryogenic detectors. The spectrometer is optically sized to accept an f/9 beam from the multi-mirror telescope (MMT). The optical and electronic design are discussed, including remote operation of the spectrometer on a balloon-borne 102-cm telescope. The performance of the laser-controlled, screw-driven moving cat's-eye mirror is discussed. Segments of typical far-infrared balloon flight spectra, lab spectra, and mid-infrared MMT spectra are presented. Data reduction, interferogram processing, artifact removal, wavelength calibration, and intensity calibration methods are discussed. Future use of the spectrometer is outlined.

  12. A comparison of lidar and balloon-borne particle counter measurements of the stratospheric aerosol 1974-1980

    Science.gov (United States)

    Swissler, T. J.; Hamill, P.; Osborn, M.; Russell, P. B.; McCormick, M. P.

    1982-04-01

    The optical radar measurements considered in the present investigation are those which have been obtained routinely at Hampton, VA (37.1 deg N, 76.3 deg W) since 1974. The dustsonde measurements are those made monthly at Laramie, WY (41.2 deg N, 105 deg W). The extensive data sets acquired with these two instruments during the time period 1974-80 permit a long-term comparison of the two different measurement techniques. The balloon-borne dustsonde pumps ambient air in a well-defined stream through an illuminated chamber where individual aerosol particles scatter light into photodetectors. The optical radar system used in the studies has a ruby laser with a 48-inch Cassegrainian configured telescope mounted on a mobile platform to collect the backscattered laser light. The investigation shows that optical radar measurements, dustsonde measurements, and realistic optical models together give a very consistent picture of stratospheric aerosol behavior.

  13. Constraints on JN2O5 from balloon-borne limb scanning measurements of NO2 in the tropics

    Science.gov (United States)

    Kritten, Lena; Butz, Andre; Deutschmann, Tim; Dorf, Marcel; Kreycy, Sebastian; Prados-Roman, Cristina; Pfeilsticker, Klaus

    2010-05-01

    The NOx ozone cycle (NOx = NO + NO2) is of great importance for the budget of stratospheric ozone and in future may even become more important due to increasing stratospheric N2O concentrations (Ravishankara et al., 2009). A regulating process for the amount of stratospheric NOx and thus for the efficiency of the NOx mediated ozone loss cycle is photolytic release of N2O5 at daytime since N2O5 acts as a nighttime reservoir gas for stratospheric NOx radicals. Observations of UV/vis scattered skylight by balloon-borne limb scanning spectrometry support the detection of time dependent trace gas and radical profiles, in particular of NO2. Here we present balloon borne measurements of time dependent NO2 profiles from the tropical stratosphere - taken at north-eastern Brazil (5° S, 43° W) in June 2005 - where excess stratospheric ozone is produced and transported to higher latitudes by the Brewer-Dobson circulation. The photolysis rate of N2O5 - uncertain by a factor of 2 (JPL-2006) - is constrained from the comparison of the measured and modelled diurnal variation of NO2. For the photochemical model initial conditions are based on our own observations of O3 and NO2, MIPAS-B measurements and on output of the 3-D SLIMCAT model. The kinetic and thermodynamic parameters and absorption cross-sections are taken from the JPL-2006 compilation (Sander et. al, 2006). Overall it is found that, the observed rate of diurnal NO2 increase requires a N2O5 photolysis frequency at the upper limit of values possible according to the uncertainty range given by the JPL-2006 compilation. In conclusion it suggested that the NOx mediated ozone loss in the tropical stratosphere is probably larger than assumed by many photochemical models, and in future may even relatively become more important.

  14. EBEX-IDS: A Balloon-Borne Experiment to Observe and Separate Galactic Dust from Cosmic Inflation Signals

    Science.gov (United States)

    Hanany, Shaul

    Measurements of the imprint of inflationary gravity waves on the cosmic microwave background radiation are currently limited by uncertainty in the properties of polarized galactic dust. A balloon-borne platform probing frequency bands that are not accessible from the ground is uniquely suited to drastically reduce this uncertainty. We propose to advance the technology readiness level of EBEX-IDS, a long-duration balloon-borne experiment that will measure the polarization of galactic dust at 360 GHz with 36 times lower power spectrum noise, compared to the Planck satellite. EBEX-IDS will have 20,562 detectors, spread over 7 frequency bands between 150 and 360 GHz. Using its high sensitivity and broad-bandwidth EBEX-IDS will determine the spectral index of polarized dust emission and its B-mode power spectrum at 150 GHz with an unprecedented accuracy of 0.04% and signal-to-noise ratio (SNR) of 42, respectively. EBEX-IDS proposes to use three types of sinuous antenna multichroic pixels (SAMPs) that are readout with a frequency domain multiplexed system. To advance the TRL if these technologies, we will fabricate and characterize SAMPs with the appropriate properties for use at the balloon environment. We will investigate low power readout systems that are suitable for use aboard EBEX-IDS. We will implement a prototype end-to-end system in the laboratory consisting of SAMP wafers and the intended readout system, and measure its noise, frequency response, and power consumption properties. The work will be carried out by a postdoctoral fellow and graduate student at the University of Minnesota, and a newly hired person at the University of California, Berkeley.

  15. Relativistic feedback models of terrestrial gamma-ray flashes and gamma-ray glows

    Science.gov (United States)

    Dwyer, J. R.

    2015-12-01

    Relativistic feedback discharges, also known as dark lightning, are capable of explaining many of the observed properties of terrestrial gamma-ray flashes (TGFs) and gamma-ray glows, both created within thunderstorms. During relativistic feedback discharges, the generation of energetic electrons is self-sustained via the production of backward propagating positrons and back-scattered x-rays, resulting in very larges fluxes of energetic radiation. In addition, ionization produces large electric currents that generate LF/VLF radio emissions and eventually discharge the electric field, terminating the gamma-ray production. In this presentation, new relativistic feedback model results will be presented and compared to recent observations.

  16. Gamma-ray bursts at high redshift

    NARCIS (Netherlands)

    R.A.M.J. Wijers

    1999-01-01

    Gamma-ray bursts are much brighter than supernovae, and could therefore possibly probe the Universe to high redshift. The presently established GRB redshifts range from 0.83 to 5, and quite possibly even beyond that. Since most proposed mechanisms for GRB link them closely to deaths of massive stars

  17. Gamma-Ray Telescope and Uncertainty Principle

    Science.gov (United States)

    Shivalingaswamy, T.; Kagali, B. A.

    2012-01-01

    Heisenberg's Uncertainty Principle is one of the important basic principles of quantum mechanics. In most of the books on quantum mechanics, this uncertainty principle is generally illustrated with the help of a gamma ray microscope, wherein neither the image formation criterion nor the lens properties are taken into account. Thus a better…

  18. Gamma-ray emission from nova outbursts

    CERN Document Server

    Hernanz, M

    2013-01-01

    Classical novae produce radioactive nuclei which are emitters of gamma-rays in the MeV range. Some examples are the lines at 478 and 1275 keV (from 7Be and 22Na) and the positron-electron annihilation emission, with the 511 keV line and a continuum. Gamma-ray spectra and light curves are potential unique tools to trace the corresponding isotopes and to give insights on the properties of the expanding envelope. Another possible origin of gamma-rays is the acceleration of particles up to very high energies, so that either neutral pions or inverse Compton processes produce gamma-rays of energies larger than 100 MeV. MeV photons during nova explosions have not been detected yet, although several attempts have been made in the last decades; on the other hand, GeV photons from novae have been detected with the Fermi satellite in V407 Cyg, a nova in a symbiotic binary, where the companion is a red giant with a wind, instead of a main sequence star as in the cataclysmic variables hosting classical novae. Two more nov...

  19. Gamma-Rays from Intergalactic Shocks

    CERN Document Server

    Keshet, U; Loeb, A; Springel, V; Hernquist, L E; Keshet, Uri; Waxman, Eli; Loeb, Abraham; Springel, Volker; Hernquist, Lars

    2003-01-01

    Structure formation in the intergalactic medium (IGM) produces large-scale, collisionless shock waves, where electrons can be accelerated to highly relativistic energies. Such electrons can Compton scatter cosmic microwave background photons up to gamma-ray energies. We study the radiation emitted in this process using a hydrodynamic cosmological simulation of a LCDM universe. The resulting radiation, extending beyond TeV energies, has roughly constant energy flux per decade in photon energy, in agreement with the predictions of Loeb & Waxman (2000). Assuming that a fraction \\xi_e=0.05 of the shock energy is transferred to the relativistic electrons, as inferred from collisionless non-relativistic shocks in the interstellar medium, we find that the radiation energy flux, e^2 (dJ/de) ~ 50-160 eV cm^{-2} s^{-1} sr^{-1}, constitutes ~10% of the extragalactic gamma-ray background flux. The associated gamma-ray point-sources are too faint to account for the ~60 unidentified EGRET gamma-ray sources, but GLAST s...

  20. Gamma ray observations of the solar system

    Science.gov (United States)

    1981-01-01

    Two general categories are discussed concerning the evolution of the solar system: the dualistic view, the planetesimal approach; and the monistic view, the nebular hypothesis. The major points of each view are given and the models that are developed from these views are described. Possible applications of gamma ray astronomical observations to the question of the dynamic evolution of the solar system are discussed.

  1. Gamma Rays From Rotation-Powered Pulsars

    CERN Document Server

    Harding, A K

    2002-01-01

    The seven known gamma-ray pulsars represent a very small fraction of the more than 1000 presently known radio pulsars, yet they can give us valuable information about pulsar particle acceleration and energetics. Although the theory of acceleration and high-energy emission in pulsars has been studied for over 25 years, the origin of the pulsed gamma rays is a question that remains unanswered. Characteristics of the pulsars detected by the Compton Gamma-Ray Observatory could not clearly distinguish between an emission site at the magnetic poles (polar cap models) and emission from the outer magnetosphere (outer gap models). There are also a number of theoretical issues in both type of model which have yet to be resolved. The two types of models make contrasting predictions for the numbers of radio-loud and radio-quiet gamma-ray pulsars and of their spectral characteristics. GLAST will probably detect at least 50 radio-selected pulsars and possibly many more radio-quiet pulsars. With this large sample, it will b...

  2. New shield for gamma-ray spectrometry

    Science.gov (United States)

    Brar, S. S.; Gustafson, P. F.; Nelson, D. M.

    1969-01-01

    Gamma-ray shield that can be evacuated, refilled with a clean gas, and pressurized for exclusion of airborne radioactive contaminants effectively lowers background noise. Under working conditions, repeated evacuation and filling procedures have not adversely affected the sensitivity and resolution of the crystal detector.

  3. Effects of Shielding on Gamma Rays

    Energy Technology Data Exchange (ETDEWEB)

    Karpius, Peter Joseph [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-03-13

    The interaction of gamma rays with matter results in an effect we call attenuation (i.e. ‘shielding’). Attenuation can dramatically alter the appearance of a spectrum. Attenuating materials may actually create features in a spectrum via x-ray fluorescence

  4. Black Hole Accretion in Gamma Ray Bursts

    Directory of Open Access Journals (Sweden)

    Agnieszka Janiuk

    2017-02-01

    Full Text Available We study the structure and evolution of the hyperaccreting disks and outflows in the gamma ray bursts central engines. The torus around a stellar mass black hole is composed of free nucleons, Helium, electron-positron pairs, and is cooled by neutrino emission. Accretion of matter powers the relativistic jets, responsible for the gamma ray prompt emission. The significant number density of neutrons in the disk and outflowing material will cause subsequent formation of heavier nuclei. We study the process of nucleosynthesis and its possible observational consequences. We also apply our scenario to the recent observation of the gravitational wave signal, detected on 14 September 2015 by the two Advanced LIGO detectors, and related to an inspiral and merger of a binary black hole system. A gamma ray burst that could possibly be related with the GW150914 event was observed by the Fermi satellite. It had a duration of about 1 s and appeared about 0.4 s after the gravitational-wave signal. We propose that a collapsing massive star and a black hole in a close binary could lead to the event. The gamma ray burst was powered by a weak neutrino flux produced in the star remnant’s matter. Low spin and kick velocity of the merged black hole are reproduced in our simulations. Coincident gravitational-wave emission originates from the merger of the collapsed core and the companion black hole.

  5. Chandra Imaging of Gamma-Ray Binaries

    CERN Document Server

    Kargaltsev, Oleg; Hare, Jeremy; Pavlov, George G

    2013-01-01

    We review the multiwavelength properties of the few known gamma-ray binaries, focusing on extended emission recently resolved with Chandra. We discuss the implications of these findings for the nature of compact objects and for physical processes operating in these systems.

  6. Gamma-ray Novae: Rare or Nearby?

    CERN Document Server

    Morris, Paul J; Brown, Anthony M; Chadwick, Paula M

    2016-01-01

    Classical Novae were revealed as a surprise source of gamma-rays in Fermi LAT observations. During the first 8 years since the LAT was launched, 6 novae in total have been detected to > 5 sigma in gamma-rays, in contrast to the 69 discovered optically in the same period. We attempt to resolve this discrepancy by assuming all novae are gamma-ray emitters, and assigning peak one-day fluxes based on a flat distribution of the known emitters to a simulated population. To determine optical parameters, the spatial distribution and magnitudes of bulge and disc novae in M31 are scaled to the Milky Way, which we approximate as a disc with a 20 kpc radius and elliptical bulge with semi major axis 3 kpc and axis ratios 2:1 in the xy plane. We approximate Galactic reddening using a double exponential disc with vertical and radial scale heights of r_d = 5 kpc and z_d = 0.2 kpc, and demonstrate that even such a rudimentary model can easily reproduce the observed fraction of gamma-ray novae, implying that these apparently r...

  7. HAWC observatory catches first gamma rays

    Science.gov (United States)

    Frías Villegas, Gabriela

    2013-06-01

    The world's largest and most modern gamma-ray observatory has carried out its first successful observations. Located inside the Pico de Orizaba national park in the Mexican state of Puebla, the High-Altitude Water Cherenkov Observatory (HAWC) is a collaboration between 26 Mexican and US institutions.

  8. Discovery of Giant Gamma-ray Bubbles in the Milky Way

    Science.gov (United States)

    Su, Meng

    Based on data from the Fermi Gamma-ray Space Telescope, we have discovered two gigantic gamma-ray emitting bubble structures in our Milky Way (known as the Fermi bubbles), extending ˜50 degrees above and below the Galactic center with a width of ˜40 degrees in longitude. The gamma-ray emission associated with these bubbles has a significantly harder spectrum (dN/dE ˜ E-2) than the inverse Compton emission from known cosmic ray electrons in the Galactic disk, or the gamma-rays produced by decay of pions from proton-ISM collisions. There is no significant difference in the spectrum or gamma-ray luminosity between the north and south bubbles. The bubbles are spatially correlated with the hard-spectrum microwave excess known as the WMAP haze; we also found features in the ROSAT soft X-ray maps at 1.5 -- 2 keV which line up with the edges of the bubbles. The Fermi bubbles are most likely created by some large episode of energy injection in the Galactic center, such as past accretion events onto the central massive black hole, or a nuclear starburst in the last ˜ 10 Myr. Study of the origin and evolution of the bubbles also has the potential to improve our understanding of recent energetic events in the inner Galaxy and the high-latitude cosmic ray population. Furthermore, we have recently identified a gamma-ray cocoon feature within the southern bubble, with a jet-like feature along the cocoon's axis of symmetry, and another directly opposite the Galactic center in the north. If confirmed, these jets are the first resolved gamma-ray jets ever seen.

  9. Probing the emission physics and weak/soft population of Gamma-Ray Bursts with LOFT. White Paper in Support of the Mission Concept of the Large Observatory for X-ray Timing

    DEFF Research Database (Denmark)

    Amati, L.; Stratta, G.; Atteia, J.L.

    of ultra- dense matter in neutron stars? Does matter orbiting close to the event horizon follow the predictions of general relativity? These goals are elaborated in the mission Yellow Book ( http://sci.esa.int/loft/ 53447-loft-yellow-book/ ) describing the LOFT mission as proposed in M3, which closely...... science case, but also for many other open questions in astrophysics. LOFT ’s primary instrument is the Large Area Detector (LAD), a 8 . 5 m 2 instrument operating in the 2–30 keV energy range, which will revolutionise studies of Galactic and extragalactic X-ray sources down to their fundamental time...... with an on-board alert system for the detection and rapid broadcasting to the ground of celestial bright and fast outbursts of X-rays (particularly, Gamma-ray Bursts). This paper is one of twelve White Papers that illustrate the unique potential of LOFT as an X-ray observatory in a variety of astrophysical...

  10. $\\gamma$-Ray Absorption at High Redshifts and the $\\gamma$-Ray Background

    CERN Document Server

    Stecker, F W

    1997-01-01

    We present results of a calculation of absorption of 10-500 GeV gamma-rays at high redshifts. This calculation requires the determination of the high- redshift evolution of the full spectral energy distribution of the intergalactic photon field. For this, we have primarily followed the recent analysis of Fall, Charlot and Pei. We give our results for the gamma-ray opacity as a function of redshift out to a redshift of 3. We then give predicted gamma-ray spectra for selected blazars and also extend our results on the background from unresolved blazars to an energy of 500 GeV. Absorption effects are predicted to significantly steepen the background spectrum above 20 GeV. Our absorption calculations can be used to place limits on the redshifts of gamma-ray bursts. Our background calculations can be used to determine the observability of multi-GeV lines from dark matter neutralino particles.

  11. Systematic Study of Gamma-ray bright Blazars with Optical Polarization and Gamma-ray Variability

    CERN Document Server

    Itoh, Ryosuke; Fukazawa, Yasushi; Uemura, Makoto; Tanaka, Yasuyuki T; Kawabata, Koji S; Madejski, Grzegorz M; Schinzel, Frank K; Kanda, Yuka; Shiki, Kensei; Akitaya, Hiroshi; Kawabata, Miho; Moritani, Yuki; Nakaoka, Tatsuya; Ohsugi, Takashi; Sasada, Mahito; Takaki, Katsutoshi; Takata, Koji; Ui, Takahiro; Yamanaka, Masayuki; Yoshida, Michitoshi

    2016-01-01

    Blazars are highly variable active galactic nuclei which emit radiation at all wavelengths from radio to gamma-rays. Polarized radiation from blazars is one key piece of evidence for synchrotron radiation at low energies and it also varies dramatically. The polarization of blazars is of interest for understanding the origin, confinement, and propagation of jets. However, even though numerous measurements have been performed, the mechanisms behind jet creation, composition and variability are still debated. We performed simultaneous gamma-ray and optical photopolarimetry observations of 45 blazars between Jul. 2008 and Dec. 2014 to investigate the mechanisms of variability and search for a basic relation between the several subclasses of blazars. We identify a correlation between the maximum degree of optical linear polarization and the gamma-ray luminosity or the ratio of gamma-ray to optical fluxes. Since the maximum polarization degree depends on the condition of the magnetic field (chaotic or ordered), thi...

  12. An origin in the local Universe for some short gamma-ray bursts.

    Science.gov (United States)

    Tanvir, N R; Chapman, R; Levan, A J; Priddey, R S

    2005-12-15

    Gamma-ray bursts (GRBs) divide into two classes: 'long', which typically have initial durations of T90 > 2 s, and 'short', with durations of T90 origin of short bursts has remained mysterious until recently. A subsecond intense 'spike' of gamma-rays during a giant flare from the Galactic soft gamma-ray repeater, SGR 1806-20, reopened an old debate over whether some short GRBs could be similar events seen in galaxies out to approximately 70 Mpc (refs 6-10; redshift z approximately 0.016). Shortly after that, localizations of a few short GRBs (with optical afterglows detected in two cases) have shown an apparent association with a variety of host galaxies at moderate redshifts. Here we report a correlation between the locations of previously observed short bursts and the positions of galaxies in the local Universe, indicating that between 10 and 25 per cent of short GRBs originate at low redshifts (z < 0.025).

  13. All-Sky Monitoring with the Fermi Gamma Ray Burst Monitor

    Science.gov (United States)

    Wilson-Hodge, Colleen A.

    2010-01-01

    We are currently monitoring the transient hard X-ray/soft gamma ray sky using the Gamma Ray Burst Monitor (GBM) on-board Fermi. The twelve GBM NaI detectors span 8 keV to 1MeV, while the two GBM BGO detectors span about 150 keV to 40 MeV. With GBM, we detect transient events on multiple timescales. Brief events, such as Gamma Ray Bursts, Solar flares, and magnetar bursts are detected with on-board triggers. On longer timescales, we use the Earth occultation technique to monitor a number of sources, including X-ray binaries, AGN, and solar flaring activity. To date we have detected 7 sources above 100 keV. Transient activity from accretion-powered pulsars is monitored using epoch-folding techniques. With GBM we track the pulsed flux and frequency for a number of pulsars. We will present highlights of GBM observations on various timescales.

  14. Gamma ray spectroscopy in astrophysics: Solar gamma ray astronomy on solar maximum mission. [experimental design

    Science.gov (United States)

    Forrest, D. J.

    1978-01-01

    The SMM gamma ray experiment and the important scientific capabilities of the instrument are discussed. The flare size detectable as a function of spectrum integration time was studied. A preliminary estimate indicates that a solar gamma ray line at 4.4 MeV one-fifth the intensity of that believed to have been emitted on 4 August 1972 can be detected in approximately 1000 sec with a confidence level of 99%.

  15. Off-Beam Gamma-Ray Pulsars and Unidentified EGRET Sources in the Gould Belt

    CERN Document Server

    Harding, A K; Harding, Alice K.; Zhang, Bing

    2001-01-01

    We investigate whether gamma-ray pulsars viewed at a large angle to the neutron star magnetic pole could contribute to the new population of galactic unidentified EGRET sources associated with the Gould Belt. The faint, soft nature of these sources is distinctly different from both the properties of unidentified EGRET sources along the galactic plane and of the known gamma-ray pulsars. We explore the possibility, within the polar cap model, that some of these sources are emission from pulsars seen at lines of sight that miss both the bright gamma-ray cone beams and the radio beam. The off-beam gamma-rays come from high-altitude curvature emission of primary particles, are radiated over a large solid angle and have a much softer spectrum than that of the main beams. We estimate that the detectability of such off-beam emission is about a factor of 4-5 higher than that of the on-beam emission. At least some of the radio-quiet Gould Belt sources detected by EGRET could therefore be such off-beam gamma-ray pulsars...

  16. Earth Occultation Monitoring with the Fermi Gamma Ray Burst Monitor

    Science.gov (United States)

    Wilson-Hodge, Colleen A.

    2014-01-01

    Using the Gamma Ray Burst Monitor (GBM) on-board Fermi, we are monitoring the hard X-ray/soft gamma ray sky using the Earth occultation technique (EOT). Each time a source in our catalog is occulted by (or exits occultation by) the Earth, we measure its flux using the change in count rates due to the occultation. Currently we are using CTIME data with 8 energy channels spanning 8 keV to 1 MeV for the GBM NaI detectors for daily monitoring. Light curves, updated daily, are available on our website http://heastro.phys.lsu.edu/gbm. Our software is also capable of performing the Earth occultation monitoring using up to 128 energy bands, or any combination of those bands, using our 128-channel, 4-s CSPEC data. The GBM BGO detectors, sensitive from about 200 keV to 40 keV, can also be used with this technique. In our standard application of the EOT, we use a catalog of sources to drive the measurements. To ensure that our catalog is complete, our team has developed an Earth occultation imaging method. In this talk, I will describe both techniques and the current data products available. I will highlight recent and important results from the GBM EOT, including the current status of our observations of hard X-ray variations in the Crab Nebula.

  17. Gamma-Ray Telescopes: 400 Years of Astronomical Telescopes

    Science.gov (United States)

    Gehrels, Neil; Cannizzo, John K.

    2010-01-01

    The last half-century has seen dramatic developments in gamma-ray telescopes, from their initial conception and development through to their blossoming into full maturity as a potent research tool in astronomy. Gamma-ray telescopes are leading research in diverse areas such as gamma-ray bursts, blazars, Galactic transients, and the Galactic distribution of Al-26.

  18. NEW GAMMA RAYS FROM DECAY OF 189W

    Institute of Scientific and Technical Information of China (English)

    杨维凡; 赵之正; 等

    1995-01-01

    Radioactivities of 189W are produced through an 192Os(n,α189W reaction.Gamma ray spectroscopy from chemically separated tungsten sources using HPGe detector has revealed the presence of 22 gamma rays assigned to the decay of 189W,of them,18 gamma rays are new ones unreported until now.

  19. BL Lacertae Objects and the Extragalactic Gamma-Ray Background

    CERN Document Server

    Li, Fan

    2011-01-01

    A tight correlation between gamma-ray and radio emission is found for a sample of BL Lacertae (BL Lac) objects detected by Fermi Gamma-ray Space Telescope (Fermi) and the Energetic Gamma-Ray Experiment Telescope (EGRET). The gamma-ray emission of BL Lac objects exhibits strong variability, and the detection rate of gamma-ray BL Lac objects is low, which may be related to the gamma-ray duty cycle of BL Lac objects. We estimate the gamma-ray duty cycle ~ 0.11, for BL Lac objects detected by EGRET and Fermi. Using the empirical relation of gamma-ray emission with radio emission and the estimated gamma-ray duty cycle, we derive the gamma-ray luminosity function (LF) of BL Lac objects from their radio LF. Our derived gamma-ray LF of BL Lac objects can almost reproduce that calculated with the recently released Fermi bright active galactic nuclei (AGN) sample. We find that about 45% of the extragalactic diffuse gamma-ray background (EGRB) is contributed by BL Lac objects. Combining the estimate of the quasar contri...

  20. Gamma-Ray Library and Uncertainty Analysis: Passively Emitted Gamma Rays Used in Safeguards Technology

    Energy Technology Data Exchange (ETDEWEB)

    Parker, W

    2009-09-18

    Non-destructive gamma-ray analysis is a fundamental part of nuclear safeguards, including nuclear energy safeguards technology. Developing safeguards capabilities for nuclear energy will certainly benefit from the advanced use of gamma-ray spectroscopy as well as the ability to model various reactor scenarios. There is currently a wide variety of nuclear data that could be used in computer modeling and gamma-ray spectroscopy analysis. The data can be discrepant (with varying uncertainties), and it may difficult for a modeler or software developer to determine the best nuclear data set for a particular situation. To use gamma-ray spectroscopy to determine the relative isotopic composition of nuclear materials, the gamma-ray energies and the branching ratios or intensities of the gamma-rays emitted from the nuclides in the material must be well known. A variety of computer simulation codes will be used during the development of the nuclear energy safeguards, and, to compare the results of various codes, it will be essential to have all the {gamma}-ray libraries agree. Assessing our nuclear data needs allows us to create a prioritized list of desired measurements, and provides uncertainties for energies and especially for branching intensities. Of interest are actinides, fission products, and activation products, and most particularly mixtures of all of these radioactive isotopes, including mixtures of actinides and other products. Recent work includes the development of new detectors with increased energy resolution, and studies of gamma-rays and their lines used in simulation codes. Because new detectors are being developed, there is an increased need for well known nuclear data for radioactive isotopes of some elements. Safeguards technology should take advantage of all types of gamma-ray detectors, including new super cooled detectors, germanium detectors and cadmium zinc telluride detectors. Mixed isotopes, particularly mixed actinides found in nuclear reactor

  1. TeV gamma-ray astronomy

    Institute of Scientific and Technical Information of China (English)

    Wei Cui

    2009-01-01

    The field of ground-based gamma-ray astronomy has enjoyed rapid growth in recent years. As an increasing number of sources are detected at TeV energies, the field has matured and become a viable branch of modern astronomy. Lying at the uppermost end of the electromagnetic rainbow, TeV photons are always preciously few in number but carry essential information about the particle acceleration and radiative processes involved in extreme astronomical settings. Together with observations at longer wavelengths, TeV gamma-ray observations have drastically improved our view of the universe. In this re-view, we briefly describe recent progress in the field. We will conclude by providing a personal perspective on the future of the field, in particular, on the significant roles that China could play in advancing this young but exciting field.

  2. Are gamma-ray bursts cosmological?

    CERN Document Server

    Horvath, I

    2015-01-01

    Gamma-ray burst sources are distributed with a high level of isotropy, which is compatible with either a cosmological origin or an extended Galactic halo origin. The brightness distribution is another indicator used to characterize the spatial distribution in distance. In this paper the author discusses detailed fits of the BATSE gamma-ray burst peak-flux distributions with Friedmann models taking into account possible density evolution and standard candle luminosity functions. A chi-square analysis is used to estimate the goodness of the fits and the author derives the significance level of limits on the density evolution and luminosity function parameters. Cosmological models provide a good fit over a range of parameter space which is physically reasonable

  3. The future of gamma-ray astronomy

    CERN Document Server

    Knödlseder, Jürgen

    2016-01-01

    The field of gamma-ray astronomy has experienced impressive progress over the last decade. Thanks to the advent of a new generation of imaging air Cherenkov telescopes (H.E.S.S., MAGIC, VERITAS) and thanks to the launch of the Fermi-LAT satellite, several thousand gamma-ray sources are known today, revealing an unexpected ubiquity of particle acceleration processes in the Universe. Major scientific challenges are still ahead, such as the identification of the nature of Dark Matter, the discovery and understanding of the sources of cosmic rays, or the comprehension of the particle acceleration processes that are at work in the various objects. This paper presents some of the instruments and mission concepts that will address these challenges over the next decades.

  4. The future of gamma-ray astronomy

    Science.gov (United States)

    Knödlseder, Jürgen

    2016-06-01

    The field of gamma-ray astronomy has experienced impressive progress over the last decade. Thanks to the advent of a new generation of imaging air Cherenkov telescopes (H.E.S.S., MAGIC, VERITAS) and thanks to the launch of the Fermi-LAT satellite, several thousand gamma-ray sources are known today, revealing an unexpected ubiquity of particle acceleration processes in the Universe. Major scientific challenges are still ahead, such as the identification of the nature of Dark Matter, the discovery and understanding of the sources of cosmic rays, or the comprehension of the particle acceleration processes that are at work in the various objects. This paper presents some of the instruments and mission concepts that will address these challenges over the next decades. xml:lang="fr"

  5. Stellar Photon Archaeology with Gamma-Rays

    Science.gov (United States)

    Stecker, Floyd W.

    2009-01-01

    Ongoing deep surveys of galaxy luminosity distribution functions, spectral energy distributions and backwards evolution models of star formation rates can be used to calculate the past history of intergalactic photon densities and, from them, the present and past optical depth of the Universe to gamma-rays from pair production interactions with these photons. The energy-redshift dependence of the optical depth of the Universe to gamma-rays has become known as the Fazio-Stecker relation (Fazio & Stecker 1970). Stecker, Malkan & Scully have calculated the densities of intergalactic background light (IBL) photons of energies from 0.03 eV to the Lyman limit at 13.6 eV and for 0$ photon densities in the past, i.e., the "archaeo-IBL.", and therefore allow a better measure of the past history of the total star formation rate, including that from galaxies too faint to be observed.

  6. Physics of gamma-ray bursts

    Science.gov (United States)

    Lamb, D. Q.

    1984-01-01

    Attention is given to the accumulating evidence for the view that gamma-ray bursts come from strongly magnetic neutron stars, discussing the physical properties of the emission region and the radiation processes expected in strong magnetic fields, and emphasizing that the observed burst spectra require that the emission region be optically thin. This entails that the energy of the emitting plasma and/or the plasma itself be continuously replenished during a burst, and that the cooling time scale of the emitting plasma be much shorter than the observed duration of the bursts. This characteristic of the cooling time scale implies that the burst intensity and spectrum can vary on extremely short time scales, and that the burst duration must have a separate explanation. It is emphasized that synchrotron emission is favored as the gamma-ray production mechanism; it is the only mechanism capable of satisfying the optical thinness constraint while producing the observed luminosity.

  7. TeV Gamma Ray Astronomy

    CERN Document Server

    Cui, Wei

    2009-01-01

    The field of ground-based gamma ray astronomy has enjoyed rapid growth in recent years. As an increasing number of sources are detected at TeV energies, the field has matured and become a viable branch of modern astronomy. Lying at the uppermost end of the electromagnetic rainbow, TeV photons are always preciously few in number but carry essential information about the particle acceleration and radiative processes involved in extreme astronomical settings. Together with observations at longer wavelengths, TeV gamma-ray observations have drastically improved our view of the universe. In this review, we briefly describe recent progress in the field. We will conclude by providing a personal perspective on the future of the field, in particular, on the significant roles that China could play to advance this young but exciting field.

  8. The Future of Gamma Ray Astrophysics

    CERN Document Server

    CERN. Geneva

    2016-01-01

    Over the past decade, gamma ray astrophysics has entered the astrophysical mainstream. Extremely successful space-borne (GeV) and ground-based (TeV) detectors, combined with a multitude of partner telescopes, have revealed a fascinating “astroscape" of active galactic nuclei, pulsars, gamma ray bursts, supernova remnants, binary stars, star-forming galaxies, novae much more, exhibiting major pathways along which large energy releases can flow. From  a basic physics perspective, exquisitely sensitive measurements have constrained the nature of dark matter, the cosmological origin of magnetic field and the properties of black holes. These advances have motivated the development of new facilities, including HAWC, DAMPE, CTA and SVOM, which will further our understanding of the high energy universe. Topics that will receive special attention include merging neutron star binaries, clusters of galaxies, galactic cosmic rays and putative, TeV dark matter.

  9. Real time gamma-ray signature identifier

    Science.gov (United States)

    Rowland, Mark [Alamo, CA; Gosnell, Tom B [Moraga, CA; Ham, Cheryl [Livermore, CA; Perkins, Dwight [Livermore, CA; Wong, James [Dublin, CA

    2012-05-15

    A real time gamma-ray signature/source identification method and system using principal components analysis (PCA) for transforming and substantially reducing one or more comprehensive spectral libraries of nuclear materials types and configurations into a corresponding concise representation/signature(s) representing and indexing each individual predetermined spectrum in principal component (PC) space, wherein an unknown gamma-ray signature may be compared against the representative signature to find a match or at least characterize the unknown signature from among all the entries in the library with a single regression or simple projection into the PC space, so as to substantially reduce processing time and computing resources and enable real-time characterization and/or identification.

  10. Do Gamma-Ray Burst Sources Repeat?

    OpenAIRE

    Meegan, Charles A.; Hartmann, Dieter H.; Brainerd, J. J.; Briggs, Michael S.; Paciesas, William S.; Pendleton, Geoffrey; Kouveliotou, Chryssa; Fishman, Gerald; Blumenthal, George; Brock, Martin

    1995-01-01

    The demonstration of repeated gamma-ray bursts from an individual source would severely constrain burst source models. Recent reports (Quashnock and Lamb 1993; Wang and Lingenfelter 1993) of evidence for repetition in the first BATSE burst catalog have generated renewed interest in this issue. Here, we analyze the angular distribution of 585 bursts of the second BATSE catalog (Meegan et al. 1994). We search for evidence of burst recurrence using the nearest and farthest neighbor statistic and...

  11. GAMMA-RAY BURSTS, NEW COSMOLOGICAL BEACONS

    Directory of Open Access Journals (Sweden)

    V. Avila-Reese

    2009-01-01

    Full Text Available Long Gamma-Ray Bursts (GRBs are the brightest electromagnetic explosions in the Universe, associated to the death of massive stars. As such, GRBs are potential tracers of the evolution of the cosmic massive star formation, metallicity, and Initial Mass Function. GRBs also proved to be appealing cosmological distance indicators. This opens a unique opportunity to constrain the cosmic expansion history up to redshifts 5-6. A brief review on both subjects is presented here.

  12. Gamma ray tracking with the AGATA demonstrator

    Energy Technology Data Exchange (ETDEWEB)

    Birkenbach, Benedikt; Hess, Herbert; Lewandowski, Lars; Reiter, Peter; Steinbach, Tim; Schneiders, David; Vogt, Andreas [IKP, Universitaet zu Koeln (Germany); Collaboration: AGATA-Collaboration

    2014-07-01

    The performance of the AGATA demonstrator will be discussed based on data taken from a multi-nucleon transfer experiment at the AGATA PRISMA setup at LNL (INFN, Italy). A primary {sup 136}Xe beam of 1 GeV hitting a {sup 238}U target was used to produce a multitude of nuclei in the vicinity of {sup 136}Xe and corresponding reaction partners in the actinide region. The obtained results for in-beam gamma-ray spectroscopy allow for a critical assessment of the novel gamma ray tracking technique and comparison with standard procedure. High resolution spectroscopy of both reaction products after multi-nucleon transfer reaction in the presence of a high background from excited fission fragments is based on pulse-shape analysis (PSA) and gamma-ray tracking (GRT). The quality of the position information is crucial for the final energy resolution after Doppler correction. The impact of the calculated PSA libraries and the initial detector characterization for the PSA and GRT are summarized. Details of the achieved position and energy resolution, peak-to-background optimization are presented and illustrated with results from the neutron-transfer products in Xe and U-isotopes.

  13. Gamma Ray Bursts Cook Book I: Formulation

    CERN Document Server

    Ziaeepour, Houri

    2008-01-01

    Since the suggestion of relativistic shocks as the origin of gamma-ray bursts (GRBs) in early 90's, the mathematical formulation of this process has stayed at phenomenological level. One of the reasons for the slow development of theoretical works in this domain has been the simple power-law behaviour of the afterglows hours or days after the prompt gamma-ray emission. Nowadays with the launch of the Swift satellite, gamma-ray bursts can be observed in multi-wavelength from a few tens of seconds after trigger onward. These observations have leaded to the discovery of features unexplainable by the simple formulation of the shocks and emission processes used up to now. But "devil is in details" and some of these features may be explained with a more detailed formulation of phenomena and without adhoc addition of new processes. Such a formulation is the goal of this work. We present a consistent formulation of the collision between two spherical relativistic shells. The model can be applied to both internal and ...

  14. Bremsstrahlung gamma rays from light Dark Matter

    CERN Document Server

    Cirelli, Marco; Zaharijas, Gabrijela

    2013-01-01

    We discuss the often-neglected role of bremsstrahlung processes on the interstellar gas in computing indirect signatures of Dark Matter (DM) annihilation in the Galaxy, particularly for light DM candidates in the phenomenologically interesting O(10) GeV mass range. Especially from directions close to the Galactic Plane, the expected gamma-ray spectrum is altered via two effects: directly, by the photons emitted in the bremsstrahlung process on the interstellar gas by energetic electrons which are among the DM annihilation byproducts; indirectly, by the modification of the same electron spectrum, due to the additional energy loss process in the diffusion-loss equation (e.g. the resulting inverse Compton emission is altered). We quantify the importance of the bremsstrahlung emission in the GeV energy range, showing that it is the dominant component of the gamma-ray spectrum for some cases. We also find that, in regions in which bremsstrahlung dominates energy losses, the related gamma-ray emission is only moder...

  15. Delayed Nickel Decay in Gamma Ray Bursts

    CERN Document Server

    McLaughlin, G C

    2002-01-01

    Recently observed emission lines in the X-ray afterglow of gamma ray bursts suggest that iron group elements are either produced in the gamma ray burst, or are present nearby. If this material is the product of a thermonuclear burn, then such material would be expected to be rich in Nickel-56. If the nickel remains partially ionized, this prevents the electron capture reaction normally associated with the decay of Nickel-56, dramatically increasing the decay timescale. Here we examine the consequences of rapid ejection of a fraction of a solar mass of iron group material from the center of a collapsar/hypernova. The exact rate of decay then depends on the details of the ionization and therefore the ejection process. Future observations of iron, nickel and cobalt lines can be used to diagnose the origin of these elements and to better understand the astrophysical site of gamma ray bursts. In this model, the X-ray lines of these iron-group elements could be detected in suspected hypernovae that did not produce ...

  16. RADIO FLARES FROM GAMMA-RAY BURSTS

    Energy Technology Data Exchange (ETDEWEB)

    Kopač, D.; Mundell, C. G.; Kobayashi, S.; Virgili, F. J. [Astrophysics Research Institute, Liverpool John Moores University, Liverpool, L3 5RF (United Kingdom); Harrison, R. [Department of Astrophysics, School of Physics and Astronomy, Tel Aviv University, 69978 Tel Aviv (Israel); Japelj, J.; Gomboc, A. [Faculty of Mathematics and Physics, University of Ljubljana, Jadranska 19, 1000 Ljubljana (Slovenia); Guidorzi, C. [Department of Physics and Earth Sciences, University of Ferrara, Via Saragat, 1, I-44122 Ferrara (Italy); Melandri, A., E-mail: D.Kopac@ljmu.ac.uk [INAF/Brera Astronomical Observatory, via Bianchi 46, I-23807, Merate (Italy)

    2015-06-20

    We present predictions of centimeter and millimeter radio emission from reverse shocks (RSs) in the early afterglows of gamma-ray bursts (GRBs) with the goal of determining their detectability with current and future radio facilities. Using a range of GRB properties, such as peak optical brightness and time, isotropic equivalent gamma-ray energy, and redshift, we simulate radio light curves in a framework generalized for any circumburst medium structure and including a parameterization of the shell thickness regime that is more realistic than the simple assumption of thick- or thin-shell approximations. Building on earlier work by Mundell et al. and Melandri et al. in which the typical frequency of the RS was suggested to lie at radio rather than optical wavelengths at early times, we show that the brightest and most distinct RS radio signatures are detectable up to 0.1–1 day after the burst, emphasizing the need for rapid radio follow-up. Detection is easier for bursts with later optical peaks, high isotropic energies, lower circumburst medium densities, and at observing frequencies that are less prone to synchrotron self-absorption effects—typically above a few GHz. Given recent detections of polarized prompt gamma-ray and optical RS emission, we suggest that detection of polarized radio/millimeter emission will unambiguously confirm the presence of low-frequency RSs at early time.

  17. Gamma-Ray Pulsars Models and Predictions

    CERN Document Server

    Harding, A K

    2001-01-01

    Pulsed emission from gamma-ray pulsars originates inside the magnetosphere, from radiation by charged particles accelerated near the magnetic poles or in the outer gaps. In polar cap models, the high energy spectrum is cut off by magnetic pair production above an energy that is dependent on the local magnetic field strength. While most young pulsars with surface fields in the range B = 10^{12} - 10^{13} G are expected to have high energy cutoffs around several GeV, the gamma-ray spectra of old pulsars having lower surface fields may extend to 50 GeV. Although the gamma-ray emission of older pulsars is weaker, detecting pulsed emission at high energies from nearby sources would be an important confirmation of polar cap models. Outer gap models predict more gradual high-energy turnovers at around 10 GeV, but also predict an inverse Compton component extending to TeV energies. Detection of pulsed TeV emission, which would not survive attenuation at the polar caps, is thus an important test of outer gap models. N...

  18. Afterglow Radiation from Gamma Ray Bursts

    Energy Technology Data Exchange (ETDEWEB)

    Desmond, Hugh; /Leuven U. /SLAC

    2006-08-28

    Gamma-ray bursts (GRB) are huge fluxes of gamma rays that appear randomly in the sky about once a day. It is now commonly accepted that GRBs are caused by a stellar object shooting off a powerful plasma jet along its rotation axis. After the initial outburst of gamma rays, a lower intensity radiation remains, called the afterglow. Using the data from a hydrodynamical numerical simulation that models the dynamics of the jet, we calculated the expected light curve of the afterglow radiation that would be observed on earth. We calculated the light curve and spectrum and compared them to the light curves and spectra predicted by two analytical models of the expansion of the jet (which are based on the Blandford and McKee solution of a relativistic isotropic expansion; see Sari's model [1] and Granot's model [2]). We found that the light curve did not decay as fast as predicted by Sari; the predictions by Granot were largely corroborated. Some results, however, did not match Granot's predictions, and more research is needed to explain these discrepancies.

  19. Hadronic Gamma Rays from Supernova Remnants

    CERN Document Server

    Moskalenko, I V; Malkov, M A; Diamond, P H

    2007-01-01

    A gas cloud near a supernova remnant (SNR) provides a target for pp-collisions leading to subsequent gamma-ray emission through neutral pion decay. The assumption of a power-law ambient spectrum of accelerated particles with index near -2 is usually built into models predicting the spectra of very-high energy (VHE) gamma-ray emission from SNRs. However, if the gas cloud is located at some distance from the SNR shock, this assumption is not necessarily correct. In this case, the particles which interact with the cloud are those leaking from the shock and their spectrum is approximately monoenergetic with the injection energy gradually decreasing as the SNR ages. The gamma-ray spectrum resulting from particle interactions with the gas cloud will be flatter than expected, with the cutoff defined by the pion momentum distribution in the laboratory frame. We evaluate the flux of particles escaping from a SNR shock and apply the results to the VHE diffuse emission detected by the HESS at the Galactic centre.

  20. Keck Observations of 160 Gamma-Ray Burst Host Galaxies

    CERN Document Server

    Perley, Daniel A; Prochaska, Jason X

    2013-01-01

    We present a preliminary data release from our multi-year campaign at Keck Observatory to study the host galaxies of a large sample of Swift-era gamma-ray bursts via multi-color ground-based optical imaging and spectroscopy. With over 160 targets observed to date (and almost 100 host detections, most of which have not previously been reported in the literature) our effort represents the broadest GRB host survey to date. While targeting was heterogeneous, our observations span the known diversity of GRBs including short bursts, long bursts, spectrally soft GRBs (XRFs), ultra-energetic GRBs, X-ray faint GRBs, dark GRBs, SN-GRBs, and other sub-classes. We also present a preview of our database (currently available online via a convenient web interface) including a catalog of multi-color photometry, redshifts and line ID's. Final photometry and reduced imaging and spectra will be available in the near future.

  1. Gamma-ray Output Spectra from 239Pu Fission

    Directory of Open Access Journals (Sweden)

    Ullmann John

    2015-01-01

    Full Text Available Gamma-ray multiplicities, individual gamma-ray energy spectra, and total gamma energy spectra following neutron-induced fission of 239Pu were measured using the DANCE detector at Los Alamos. Corrections for detector response were made using a forward-modeling technique based on propagating sets of gamma rays generated from a paramaterized model through a GEANT model of the DANCE array and adjusting the parameters for best fit to the measured spectra. The results for the gamma-ray spectrum and multiplicity are in general agreement with previous results, but the measured total gamma-ray energy is about 10% higher. A dependence of the gamma-ray spectrum on the gamma-ray multplicity was also observed. Global model calculations of the multiplicity and gamma energy distributions are in good agreement with the data, but predict a slightly softer total-energy distribution.

  2. News from Cosmic Gamma-ray Line Observations

    CERN Document Server

    Diehl, Roland

    2016-01-01

    The measurement of gamma rays at MeV energies from cosmic radioactivities is one of the key tools for nuclear astrophysics, in its study of nuclear reactions and how they shape objects such as massive stars and supernova explosions. Additionally, the unique gamma-ray signature from the annihilation of positrons falls into this same astronomical window, and positrons are often produced from radioactive beta decays. Nuclear gamma-ray telescopes face instrumental challenges from penetrating gamma rays and cosmic-ray induced backgrounds. But the astrophysical benefits of such efforts are underlined by the discoveries of nuclear gamma~rays from the brightest of the expected sources. In recent years, both thermonuclear and core-collapse supernova radioactivity gamma~rays have been measured in spectral detail, and complement conventional supernova observations with measurements of origins in deep supernova interiors, from the decay of $^{56}$Ni, $^{56}$Co, and $^{44}$Ti. The diffuse afterglow in gamma rays of radioa...

  3. Measurement of fast neutrons and secondary gamma rays in graphite

    Energy Technology Data Exchange (ETDEWEB)

    Makarious, A.S.; El-Asyd Abdo, A.; Kansouh, W.A. [Atomic Energy Authority, Cairo (Egypt). Nuclear Research Centre; Bashter, I.I. [Zagazig Univ. (Egypt). Faculty of Science

    1996-05-01

    The spatial fluxes and energy distributions of fast neutrons, total gamma rays and secondary gamma rays transmitted through different thicknesses of graphite have been measured. The graphite samples were arranged in front of one of the horizontal channels of the ET-RR-1 reactor. Gamma ray measurements were carried out for bare, cadmium filtered and boron carbide filtered reactor beams. A fast neutron and gamma ray spectrometer with a stilbene crystal was used to measure the spectrum of fast neutrons and gamma rays. Pulse shape discrimination using the zero cross over technique was used to distinguish the proton pulses from the electron pulses. The total fast neutrons macroscopic cross section and the linear attenuation coefficient for gamma rays were derived both for the whole energy range and at different energies. The obtained values were used to calculate the relaxation lengths for fast neutrons and gamma rays. (Author).

  4. An Emerging Class of Gamma-ray Flares from Blazars: Beyond One-zone Models

    Science.gov (United States)

    Tavani, M.; Vittorini, V.; Cavaliere, A.

    2015-11-01

    Blazars radiate from relativistic plasma jets with bulk Lorentz factors {{Γ }}∼ 10, closely aligned along our line of sight. In a number of blazars of the flat-spectrum radio quasar type, such as 3C 454.3 and 3C 279, gamma-ray flares have recently been detected with very high luminosity and few or no counterparts in the optical and soft X-ray bands. They challenge the current one-zone leptonic models of emissions from within the broad-line region (BLR). The latter envisage the optical/X-ray emissions to be produced as synchrotron radiation by the same population of highly relativistic electrons in the jet that would also yield the gamma rays by inverse Compton upscattering of surrounding soft photons. To meet the challenge, we present here a model based on primary synchrotron photons emitted in the BLR by a plasmoid moving out with the jet and scattered back toward the incoming plasmoid by an outer plasma clump acting as a mirror. We consider both a scenario based on a static mirror located outside the BLR and an alternative provided by a moving mirror geometry. We show that mirroring phenomena can locally enhance the density and anisotropy with associated relativistic boosting of soft photons within the jet, so as to trigger bright inverse Compton gamma-ray transients from nearly steady optical/X-ray synchrotron emissions. In this picture we interpret the peculiarly asymmetric light curves of the recently detected gamma-ray flares from 3C 279. Our scenario provides a promising start to understanding the widening class of bright and transient gamma-ray activities in blazars.

  5. RAPID TeV GAMMA-RAY FLARING OF BL LACERTAE

    Energy Technology Data Exchange (ETDEWEB)

    Arlen, T. [Department of Physics and Astronomy, University of California, Los Angeles, CA 90095 (United States); Aune, T.; Bouvier, A. [Santa Cruz Institute for Particle Physics and Department of Physics, University of California, Santa Cruz, CA 95064 (United States); Beilicke, M.; Buckley, J. H.; Bugaev, V.; Dickherber, R. [Department of Physics, Washington University, St. Louis, MO 63130 (United States); Benbow, W. [Fred Lawrence Whipple Observatory, Harvard-Smithsonian Center for Astrophysics, Amado, AZ 85645 (United States); Cesarini, A.; Connolly, M. P. [School of Physics, National University of Ireland Galway, University Road, Galway (Ireland); Ciupik, L. [Astronomy Department, Adler Planetarium and Astronomy Museum, Chicago, IL 60605 (United States); Cui, W.; Feng, Q.; Finley, J. P. [Department of Physics, Purdue University, West Lafayette, IN 47907 (United States); Dumm, J.; Fortson, L. [School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455 (United States); Errando, M. [Department of Physics and Astronomy, Barnard College, Columbia University, NY 10027 (United States); Falcone, A. [Department of Astronomy and Astrophysics, 525 Davey Lab, Pennsylvania State University, University Park, PA 16802 (United States); Federici, S. [DESY, Platanenallee 6, D-15738 Zeuthen (Germany); Finnegan, G., E-mail: qfeng@purdue.edu, E-mail: cui@purdue.edu [Department of Physics and Astronomy, University of Utah, Salt Lake City, UT 84112 (United States); Collaboration: VERITAS Collaboration; and others

    2013-01-10

    We report on the detection of a very rapid TeV gamma-ray flare from BL Lacertae on 2011 June 28 with the Very Energetic Radiation Imaging Telescope Array System (VERITAS). The flaring activity was observed during a 34.6 minute exposure, when the integral flux above 200 GeV reached (3.4 {+-} 0.6) Multiplication-Sign 10{sup -6} photons m{sup -2} s{sup -1}, roughly 125% of the Crab Nebula flux measured by VERITAS. The light curve indicates that the observations missed the rising phase of the flare but covered a significant portion of the decaying phase. The exponential decay time was determined to be 13 {+-} 4 minutes, making it one of the most rapid gamma-ray flares seen from a TeV blazar. The gamma-ray spectrum of BL Lacertae during the flare was soft, with a photon index of 3.6 {+-} 0.4, which is in agreement with the measurement made previously by MAGIC in a lower flaring state. Contemporaneous radio observations of the source with the Very Long Baseline Array revealed the emergence of a new, superluminal component from the core around the time of the TeV gamma-ray flare, accompanied by changes in the optical polarization angle. Changes in flux also appear to have occurred at optical, UV, and GeV gamma-ray wavelengths at the time of the flare, although they are difficult to quantify precisely due to sparse coverage. A strong flare was seen at radio wavelengths roughly four months later, which might be related to the gamma-ray flaring activities. We discuss the implications of these multiwavelength results.

  6. Balloon-borne limb profiling of UV/vis skylight radiances, O3, NO2, and BrO: technical set-up and validation of the method

    Directory of Open Access Journals (Sweden)

    F. Weidner

    2005-01-01

    Full Text Available A novel light-weight, elevation scanning and absolutely calibrated UV/vis spectrometer and its application to balloon-borne limb radiance and trace gas profile measurements is described. Its performance and the novel method of balloon-borne UV/vis limb trace gas measurements has been tested against simultaneous observations of the same atmospheric parameters available from either (a in-situ instrumentation (cf., by an electrochemical cell (ECC ozone sonde also deployed aboard the gondola or (b trace gas profiles inferred from UV/vis/near IR solar occultation measurements performed on the same payload. The novel technique is also cross validated with radiative transfer modeling. Reasonable agreement is found (a between measured and simulated limb radiances and (b inferred limb O3, NO2, and BrO and correlative profile measurements when properly accounting for all relevant atmospheric parameters (temperature, pressure, aerosol extinction, and major absorbers.

  7. LITOS – a new balloon-borne instrument for fine-scale turbulence soundings in the stratosphere

    Directory of Open Access Journals (Sweden)

    A. Theuerkauf

    2011-01-01

    Full Text Available We have developed a new compact balloon payload called LITOS (Leibniz-Institute Turbulence Observations in the Stratosphere for high resolution wind turbulence soundings in the stratosphere up to 35 km altitude. The wind measurements are performed using a constant temperature anemometer (CTA with a vertical resolution of ~2.5 mm, i.e. 2 kHz sampling rate at 5 m/s ascent speed. Thereby, for the first time, it is possible to study the entire turbulence spectrum down to the viscous subrange in the stratosphere. Including telemetry, housekeeping, batteries and recovery unit, the payload weighs less than 5 kg and can be launched from any radiosonde station. Since autumn 2007, LITOS has been successfully launched several times from the Leibniz-Institute of Atmospheric Physics (IAP in Kühlungsborn, Germany (54° N, 12° E. Two additional soundings were carried out in 2008 and 2009 in Kiruna, Sweden (67° N, 21° E as part of the BEXUS program (Balloon-borne EXperiments for University Students. We describe here the basic principle of CTA measurements and prove the validity of this method in the stratosphere. A first case study allows a clear distinction between non-turbulent regions and a turbulent layer with a thickness of some tens of meters. Since our measurements cover the transition between the inertial and viscous subrange, energy dissipation rates can be calculated with high reliability.

  8. Lupus I Observations from the 2010 Flight of the Balloon-borne Large Aperture Submillimeter Telescope for Polarimetry

    Science.gov (United States)

    Matthews, Tristan G.; Ade, Peter A. R.; Angilè, Francesco E.; Benton, Steven J.; Chapin, Edward L.; Chapman, Nicholas L.; Devlin, Mark J.; Fissel, Laura M.; Fukui, Yasuo; Gandilo, Natalie N.; Gundersen, Joshua O.; Hargrave, Peter C.; Klein, Jeffrey; Korotkov, Andrei L.; Moncelsi, Lorenzo; Mroczkowski, Tony K.; Netterfield, Calvin B.; Novak, Giles; Nutter, David; Olmi, Luca; Pascale, Enzo; Poidevin, Frédérick; Savini, Giorgio; Scott, Douglas; Shariff, Jamil A.; Soler, Juan Diego; Tachihara, Kengo; Thomas, Nicholas E.; Truch, Matthew D. P.; Tucker, Carole E.; Tucker, Gregory S.; Ward-Thompson, Derek

    2014-04-01

    The Balloon-borne Large Aperture Submillimeter Telescope for Polarimetry (BLASTPol) was created by adding polarimetric capability to the BLAST experiment that was flown in 2003, 2005, and 2006. BLASTPol inherited BLAST's 1.8 m primary and its Herschel/SPIRE heritage focal plane that allows simultaneous observation at 250, 350, and 500 μm. We flew BLASTPol in 2010 and again in 2012. Both were long duration Antarctic flights. Here we present polarimetry of the nearby filamentary dark cloud Lupus I obtained during the 2010 flight. Despite limitations imposed by the effects of a damaged optical component, we were able to clearly detect submillimeter polarization on degree scales. We compare the resulting BLASTPol magnetic field map with a similar map made via optical polarimetry. (The optical data were published in 1998 by J. Rizzo and collaborators.) The two maps partially overlap and are reasonably consistent with one another. We compare these magnetic field maps to the orientations of filaments in Lupus I, and we find that the dominant filament in the cloud is approximately perpendicular to the large-scale field, while secondary filaments appear to run parallel to the magnetic fields in their vicinities. This is similar to what is observed in Serpens South via near-IR polarimetry, and consistent with what is seen in MHD simulations by F. Nakamura and Z. Li.

  9. Lupus I Observations from the 2010 Flight of the Balloon-borne Large Aperture Submillimeter Telescope for Polarimetry

    CERN Document Server

    Matthews, Tristan G; Angilè, Francesco E; Benton, Steven J; Chapin, Edward L; Chapman, Nicholas L; Devlin, Mark J; Fissel, Laura M; Fukui, Yasuo; Gandilo, Natalie N; Gundersen, Joshua O; Hargrave, Peter C; Klein, Jeffrey; Korotkov, Andrei L; Moncelsi, Lorenzo; Mroczkowski, Tony K; Netterfield, Calvin B; Novak, Giles; Nutter, David; Olmi, Luca; Pascale, Enzo; Poidevin, Frédérick; Savini, Giorgio; Scott, Douglas; Shariff, Jamil A; Soler, Juan Diego; Tachihara, Kengo; Thomas, Nicholas E; Truch, Matthew D P; Tucker, Carole E; Tucker, Gregory S; Ward-Thompson, Derek

    2013-01-01

    The Balloon-borne Large Aperture Submillimeter Telescope for Polarimetry (BLASTPol) was created by adding polarimetric capability to the BLAST experiment that was flown in 2003, 2005, and 2006. BLASTPol inherited BLAST's 1.8 m primary and its Herschel/SPIRE heritage focal plane that allows simultaneous observation at 250, 350, and 500 {\\mu}m. We flew BLASTPol in 2010 and again in 2012. Both were long duration Antarctic flights. Here we present polarimetry of the nearby filamentary dark cloud Lupus I obtained during the 2010 flight. Despite limitations imposed by the effects of a damaged optical component, we were able to clearly detect submillimeter polarization on degree scales. We compare the resulting BLASTPol magnetic field map with a similar map made via optical polarimetry (The optical data were published in 1998 by J. Rizzo and collaborators.). The two maps partially overlap and are reasonably consistent with one another. We compare these magnetic field maps to the orientations of filaments in Lupus I,...

  10. LUPUS I observations from the 2010 flight of the Balloon-borne large aperture submillimeter telescope for polarimetry

    Energy Technology Data Exchange (ETDEWEB)

    Matthews, Tristan G.; Chapman, Nicholas L.; Novak, Giles [Center for Interdisciplinary Exploration and Research in Astrophysics (CIERA) and Department of Physics and Astronomy, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208 (United States); Ade, Peter A. R.; Hargrave, Peter C.; Nutter, David [Cardiff University, School of Physics and Astronomy, Queens Buildings, The Parade, Cardiff, CF24 3AA (United Kingdom); Angilè, Francesco E.; Devlin, Mark J.; Klein, Jeffrey [Department of Physics and Astronomy, University of Pennsylvania, 209 South 33rd Street, Philadelphia, PA 19104 (United States); Benton, Steven J.; Fissel, Laura M.; Gandilo, Natalie N.; Netterfield, Calvin B. [Department of Astronomy and Astrophysics, University of Toronto, 50 St. George Street Toronto, ON M5S 3H4 (Canada); Chapin, Edward L. [XMM SOC, ESAC, Apartado 78, E-28691 Villanueva de la Cañada, Madrid (Spain); Fukui, Yasuo [Department of Physics, Nagoya University, Nagoya 464-8602 (Japan); Gundersen, Joshua O. [Department of Physics, University of Miami, 1320 Campo Sano Drive, Coral Gables, FL 33146 (United States); Korotkov, Andrei L. [Department of Physics, Brown University, 182 Hope Street, Providence, RI 02912 (United States); Moncelsi, Lorenzo; Mroczkowski, Tony K. [California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125 (United States); Olmi, Luca [University of Puerto Rico, Rio Piedras Campus, Physics Department, Box 23343, UPR station, San Juan (Puerto Rico); and others

    2014-04-01

    The Balloon-borne Large Aperture Submillimeter Telescope for Polarimetry (BLASTPol) was created by adding polarimetric capability to the BLAST experiment that was flown in 2003, 2005, and 2006. BLASTPol inherited BLAST's 1.8 m primary and its Herschel/SPIRE heritage focal plane that allows simultaneous observation at 250, 350, and 500 μm. We flew BLASTPol in 2010 and again in 2012. Both were long duration Antarctic flights. Here we present polarimetry of the nearby filamentary dark cloud Lupus I obtained during the 2010 flight. Despite limitations imposed by the effects of a damaged optical component, we were able to clearly detect submillimeter polarization on degree scales. We compare the resulting BLASTPol magnetic field map with a similar map made via optical polarimetry. (The optical data were published in 1998 by J. Rizzo and collaborators.) The two maps partially overlap and are reasonably consistent with one another. We compare these magnetic field maps to the orientations of filaments in Lupus I, and we find that the dominant filament in the cloud is approximately perpendicular to the large-scale field, while secondary filaments appear to run parallel to the magnetic fields in their vicinities. This is similar to what is observed in Serpens South via near-IR polarimetry, and consistent with what is seen in MHD simulations by F. Nakamura and Z. Li.

  11. The Imaging Magnetograph eXperiment (IMaX) for the Sunrise balloon-borne solar observatory

    CERN Document Server

    Pillet, V Martinez; Alvarez-Herrero, A; Domingo, V; Bonet, J A; Fernandez, L Gonzalez; Jimenez, A Lopez; Pastor, C; Blesa, J L Gasent; Mellado, P; Piqueras, J; Aparicio, B; Balaguer, M; Ballesteros, E; Belenguer, T; Rubio, L R Bellot; Berkefeld, T; Collados, M; Deutsch, W; Feller, A; Girela, F; Grauf, B; Heredero, R L; Herranz, M; Jeronimo, J M; Laguna, H; Meller, R; Menendez, M; Morales, R; Suarez, D Orozco; Ramos, G; Reina, M; Ramos, J L; Rodriguez, P; Sanchez, A; Uribe-Patarroyo, N; Barthol, P; Gandorfer, A; Knoelker, M; Schmidt, W; Solanki, S K; Dominguez, S Vargas

    2010-01-01

    The Imaging Magnetograph eXperiment (IMaX) is a spectropolarimeter built by four institutions in Spain that flew on board the Sunrise balloon-borne telesocope in June 2009 for almost six days over the Arctic Circle. As a polarimeter IMaX uses fast polarization modulation (based on the use of two liquid crystal retarders), real-time image accumulation, and dual beam polarimetry to reach polarization sensitivities of 0.1%. As a spectrograph, the instrument uses a LiNbO3 etalon in double pass and a narrow band pre-filter to achieve a spectral resolution of 85 mAA. IMaX uses the high Zeeman sensitive line of Fe I at 5250.2 AA and observes all four Stokes parameters at various points inside the spectral line. This allows vector magnetograms, Dopplergrams, and intensity frames to be produced that, after reconstruction, reach spatial resolutions in the 0.15-0.18 arcsec range over a 50x50 arcsec FOV. Time cadences vary between ten and 33 seconds, although the shortest one only includes longitudinal polarimetry. The s...

  12. GAMMA RAYS FROM STAR FORMATION IN CLUSTERS OF GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Storm, Emma M.; Jeltema, Tesla E.; Profumo, Stefano [Department of Physics, University of California, 1156 High Street, Santa Cruz, CA 95064 (United States)

    2012-08-20

    Star formation in galaxies is observed to be associated with gamma-ray emission, presumably from non-thermal processes connected to the acceleration of cosmic-ray nuclei and electrons. The detection of gamma rays from starburst galaxies by the Fermi Large Area Telescope (LAT) has allowed the determination of a functional relationship between star formation rate and gamma-ray luminosity. Since star formation is known to scale with total infrared (8-1000 {mu}m) and radio (1.4 GHz) luminosity, the observed infrared and radio emission from a star-forming galaxy can be used to quantitatively infer the galaxy's gamma-ray luminosity. Similarly, star-forming galaxies within galaxy clusters allow us to derive lower limits on the gamma-ray emission from clusters, which have not yet been conclusively detected in gamma rays. In this study, we apply the functional relationships between gamma-ray luminosity and radio and IR luminosities of galaxies derived by the Fermi Collaboration to a sample of the best candidate galaxy clusters for detection in gamma rays in order to place lower limits on the gamma-ray emission associated with star formation in galaxy clusters. We find that several clusters have predicted gamma-ray emission from star formation that are within an order of magnitude of the upper limits derived in Ackermann et al. based on non-detection by Fermi-LAT. Given the current gamma-ray limits, star formation likely plays a significant role in the gamma-ray emission in some clusters, especially those with cool cores. We predict that both Fermi-LAT over the course of its lifetime and the future Cerenkov Telescope Array will be able to detect gamma-ray emission from star-forming galaxies in clusters.

  13. The 2010 May Flaring Episode of Cygnus X-3 in Radio, X-Rays, and gamma-Rays

    Science.gov (United States)

    Williams, Peter K. G.; Tomsick, John A.; Bodaghee, Arash; Bower, Geoffrey C.; Pooley, Guy G.; Pottschmidt, Katja; Rodriguez, Jerome; Wilms, Joern; Migliari, Simone; Trushkin, Sergei A.

    2011-01-01

    In 2009, Cygnus X-3 (Cyg X-3) became the first microquasar to be detected in the GeV gamma-ray regime, via the satellites Fermi and AGILE. The addition of this new band to the observational toolbox holds promise for building a more detailed understanding of the relativistic jets of this and other systems. We present a rich dataset of radio, hard and soft X-ray, and gamma-ray observations of Cyg X-3 made during a flaring episode in 2010 May. We detect a approx.3-d softening and recovery of the X-ray emission, followed almost immediately by a approx.1-Jy radio flare at 15 GHz, followed by a 4.3sigma gamma-ray flare (E > 100 MeV) approx.1.5 d later. The radio sampling is sparse, but we use archival data to argue that it is unlikely the gamma-ray flare was followed by any significant unobserved radio flares. In this case, the sequencing of the observed events is difficult to explain in a model in which the gamma-ray emission is due to inverse Compton scattering of the companion star's radiation field. Our observations suggest that other mechanisms may also be responsible for gamma-ray emission from Cyg X-3.

  14. Material recognition using fission gamma rays

    Energy Technology Data Exchange (ETDEWEB)

    Viesti, G. [Dipartimento di Fisica dell' Universita di Padova, Via Marzolo 8, I-35131 Padova (Italy); INFN Sezione di Padova, Via Marzolo 8, I-35131 Padova (Italy)], E-mail: giuseppe.viesti@pd.infn.it; Sajo-Bohus, L. [Universidad Simon-Bolivar, Laboratorio Fisica Nuclear, Apartado 8900, 1080 A. Caracas (Venezuela, Bolivarian Republic of); Fabris, D. [INFN Sezione di Padova, Via Marzolo 8, I-35131 Padova (Italy); Lunardon, M.; Moretto, S. [Dipartimento di Fisica dell' Universita di Padova, Via Marzolo 8, I-35131 Padova (Italy); INFN Sezione di Padova, Via Marzolo 8, I-35131 Padova (Italy); Nebbia, G.; Pesente, S. [INFN Sezione di Padova, Via Marzolo 8, I-35131 Padova (Italy)

    2009-07-21

    Material recognition is studied by measuring the transmission spectrum of {sup 252}Cf fission gamma rays in the energy range E{sub {gamma}}=0.1-5.5 MeV for 0.1-MeV-wide energy bins through a number of elementary samples. Each transmitted spectrum is compared with a library of reference spectra for different elements providing the possibility of material identification. In case of elemental samples with known thickness, this procedure allows the identification of the sample Z with uncertainty typically lower than 3 Z-units over a wide range of elements. Applications to composite materials are also reported.

  15. Gamma ray constraints on decaying dark matter

    DEFF Research Database (Denmark)

    Cirelli, M.; Moulin, E.; Panci, P.

    2012-01-01

    We derive new bounds on decaying dark matter from the gamma ray measurements of (i) the isotropic residual (extragalactic) background by Fermi and (ii) the Fornax galaxy cluster by H.E.S.S. We find that those from (i) are among the most stringent constraints currently available, for a large range...... of dark matter masses and a variety of decay modes, excluding half-lives up to similar to 10(26) to few 10(27) seconds. In particular, they rule out the interpretation in terms of decaying dark matter of the e(+/-) spectral features in PAMELA, Fermi and H.E.S.S., unless very conservative choices...

  16. Multiwavelength Studies of gamma-ray Binaries

    Science.gov (United States)

    Aragona, Christina

    2011-01-01

    High mass X-ray binaries (HMXBs) consist of an O or B star orbited by either a neutron star or a black hole. Of the 114 known Galactic HMXBs, a handful of these objects, dubbed gamma-ray binaries, have been observed to produce MeV-TeV emission. The very high energy emission can be produced either by accretion from the stellar wind onto a black hole or a collision between the stellar wind and a relativistic pulsar wind. Both these scenarios make gamma-ray binaries valuable nearby systems for studying the physics of shocks and jets. Currently, the nature of the compact object and the high energy production mechanism is unknown or unconfirmed in over half of these systems. My goal for this dissertation is to constrain the parameters describing two of these systems: LS 5039 and HD 259440. LS 5039 exhibits gamma-ray emission modulated with its orbital period. The system consists of an ON6.5V((f)) star and an unidentified compact companion. Using optical spectra from the CTIO 1.5m telescope, we found LS 5039 to have an orbital period of 3.90608 d and an eccentricity of 0.337. Spectra of the Halpha line observed with SOAR indicate a mass loss rate of ˜ 1.9x10 -8 M yr-1. Observations taken with ATCA at 13 cm, 6 cm, and 3 cm indicate radio fluxes between 10--40 mJy. The measurements show variability with time, indicating a source other than thermal emission from the stellar wind. HD 259440 is a B0pe star that was proposed as the optical counterpart to the gamma-ray source HESS J0632+057. Using optical spectra from the KPNO CF, KPNO 2.1m, and OHP telescopes, we find a best fit stellar effective temperature of 27500--30000 K, a log surface gravity of 3.75--4.0, a mass of 13.2--19.0 Msolar, and a radius of 6.0--9.6 Rsolar. By fitting the spectral energy distribution, we find a distance between 1.1--1.7 kpc. We do not detect any significant radial velocity shifts in our data, ruling out orbital periods shorter than one month. If HD 259440 is a binary, it is likely a long

  17. The Nature of Gamma Ray Burst Supernovae

    OpenAIRE

    Cano, Zach

    2012-01-01

    Gamma Ray Bursts (GRBs) and Supernovae (SNe) are among the brightest and most energetic physical processes in the universe. It is known that core-collapse SNe arise from the gravitational collapse and subsequent explosion of massive stars (the progen- itors of nearby core-collapse SNe have been imaged and unambiguously identified). It is also believed that the progenitors of long-duration GRBs (L-GRBs) are massive stars, mainly due to the occurrence and detection of very energetic core-collap...

  18. Digital Logarithmic Airborne Gamma Ray Spectrometer

    OpenAIRE

    2014-01-01

    A new digital logarithmic airborne gamma ray spectrometer is designed in this study. The spectrometer adopts a high-speed and high-accuracy logarithmic amplifier (LOG114) to amplify the pulse signal logarithmically and to improve the utilization of the ADC dynamic range, because the low-energy pulse signal has a larger gain than the high-energy pulse signal. The spectrometer can clearly distinguish the photopeaks at 239, 352, 583, and 609keV in the low-energy spectral sections after the energ...

  19. Nucleosynthetic Yields from Gamma-Ray Bursts

    CERN Document Server

    Rockefeller, Gabriel; Young, Patrick; Bennett, Michael; Diehl, Steven; Herwig, Falk; Hirschi, Raphael; Hungerford, Aimee; Pignatari, Marco; Magkotsios, Georgios; Timmes, Francis X

    2008-01-01

    The "collapsar" engine for gamma-ray bursts invokes as its energy source the failure of a normal supernova and the formation of a black hole. Here we present the results of the first three-dimensional simulation of the collapse of a massive star down to a black hole, including the subsequent accretion and explosion. The explosion differs significantly from the axisymmetric scenario obtained in two-dimensional simulations; this has important consequences for the nucleosynthetic yields. We compare the nucleosynthetic yields to those of hypernovae. Calculating yields from three-dimensional explosions requires new strategies in post-process nucleosynthesis; we discuss NuGrid's plan for three-dimensional yields.

  20. Polarized gamma-rays with laser-Compton backscattering

    Energy Technology Data Exchange (ETDEWEB)

    Ohgaki, H.; Noguchi, T.; Sugiyama, S. [Electrotechnical Lab., Ibaraki (Japan)] [and others

    1995-12-31

    Polarized gamma-rays were generated through laser-Compton backscattering (LCS) of a conventional Nd:YAG laser with electrons circulating in the electron storage ring TERAS at Electrotechnical Laboratory. We measured the energy, the energy spread, and the yield of the gamma-rays to characterize our gamma-ray source. The gamma-ray energy can be varied by changing the energy of the electrons circulating the storage ring. In our case, the energy of electrons in the storage ring were varied its energy from 200 to 750 MeV. Consequently, we observed gamma-ray energies of 1 to 10 MeV with 1064 run laser photons. Furthermore, the gamma-ray energy was extended to 20 MeV by using the 2nd harmonic of the Nd:YAG laser. This shows a good agreement with theoretical calculation. The gamma-ray energy spread was also measured to be 1% FWHM for -1 MeV gamma-rays and to be 4% FWHM for 10 MeV gamma-rays with a narrow collimator that defined the scattering cone. The gamma-ray yield was 47.2 photons/mA/W/s. This value is consistent with a rough estimation of 59.5 photons/mA/W/s derived from theory. Furthermore, we tried to use these gamma-rays for a nuclear fluorescence experiment. If we use a polarized laser beam, we can easily obtain polarized gamma-rays. Elastically scattered photons from {sup 208} Pb were clearly measured with the linearly polarized gamma-rays, and we could assign the parity of J=1 states in the nucleus. We should emphasize that the polarized gamma-ray from LCS is quit useful in this field, because we can use highly, almost completely, polarized gamma-rays. We also use the LCS gamma-rays to measure the photon absorption coefficients. In near future, we will try to generate a circular polarized gamma-ray. We also have a plan to use an FEL, because it can produce intense laser photons in the same geometric configuration as the LCS facility.

  1. Highlights of GeV Gamma-Ray Astronomy

    Science.gov (United States)

    Thompson, David J.

    2010-01-01

    Because high-energy gamma rays are primarily produced by high-energy particle interactions, the gamma-ray survey of the sky by the Fermi Gamma-ray Space Telescope offers a view of sites of cosmic ray production and interactions. Gamma-ray bursts, pulsars, pulsar wind nebulae, binary sources, and Active Galactic Nuclei are all phenomena that reveal particle acceleration through their gamma-ray emission. Diffuse Galactic gamma radiation, Solar System gamma-ray sources, and energetic radiation from supernova remnants are likely tracers of high-energy particle interactions with matter and photon fields. This paper will present a broad overview of the constantly changing sky seen with the Large Area Telescope (LAT) on the Fermi spacecraft.

  2. SAS-2 galactic gamma ray results. 2. Localized sources

    Science.gov (United States)

    Hartman, R. C.; Fichtel, C. E.; Kniffen, D. A.; Lamb, R. C.; Thompson, D. J.; Bignami, G. F.; Oegelman, H.; Oezel, M. E.; Tuemer, T.

    1976-01-01

    Gamma-ray emission was detected from the radio pulsars PSR1818-04 and PSR1747-46, in addition to the previously reported gamma-ray emission from the Crab and Vela pulsars. Since the Crab pulsar is the only one observed in the optical and X-ray bands, these gamma-ray observations suggest a uniquely gamma-ray phenomenon occurring in a fraction of the radio pulsars. Using distance estimates it is found that PSR1818-04 has a gamma-ray luminosity comparable to that of the Crab pulsar, while the luminosities of PSR1747-46 and the Vela pulsar are approximately an order of magnitude lower. This survey of SAS-2 data for pulsar correlations has also yielded upper limits to gamma-ray luminosity for 71 other radio pulsars.

  3. AGN emission processes of NGC 4945 in the X-rays and gamma-rays

    CERN Document Server

    Menzel, Marie-Luise; Mattana, Fabio

    2012-01-01

    NGC 4945 has an outstanding role among the Seyfert 2 active galatic nuclei (AGN) because it is one of the few non-blazars which have been detected in the gamma-rays. Here, we analyse the high energy spectrum using Suzaku, INTEGRAL and Fermi data. We reconstruct the spectral energy distribution in the soft X-ray to gamma-ray domain in order to provide a better understanding of the processes in the AGN. We present two models to fit the high-energy data. The first model assumes that the gamma-ray emission originates from one single non-thermal component, e.g. a shock-induced pion decay caused by the starburst processes in the host galaxy, or by interaction with cosmic rays. The second model describes the high-energy spectrum by two independent components: a thermal inverse Compton process of photons in the non-beamed AGN and a non-thermal emission of the gamma-rays. These components are represented by an absorbed cut-off power law for the thermal component in the X-ray energy range and a simple power law for the...

  4. Pulse Summing in the gamma-Ray Spectra

    CERN Document Server

    Gromov, K Ya; Samatov, Zh K; Chumin, V G

    2004-01-01

    It was shown that the peaks formed at the summing of the cascade gamma-rays pulses can be used for the determination of gamma-ray source activity and gamma-ray registration efficency. Possible sources of the determined quantities errors have been investigated. Such a method can be useful at the nuclear reaction cross section measurements, at background analysis in looking for rare decays and so on.

  5. AGNs and microquasars as high energy gamma-ray sources

    CERN Document Server

    Paredes, J M

    2004-01-01

    The extragalactic analogs of the microquasars, the quasars, are strong gamma-ray emitters at GeV energies. It is expected that microquasars are also gamma-ray sources, because of the analogy with quasars and because theoretical models predict the high-energy emission. There are two microquasars that appear as the possible counterparts for two unidentified high-energy gamma-ray sources.

  6. Gamma ray bursts, neutron star quakes, and the Casimir effect

    CERN Document Server

    Carlson, C; Pérez-Mercader, J; Carlson, C; Goldman, T; Perez-Mercader, J

    1994-01-01

    We propose that the dynamic Casimir effect is a mechanism that converts the energy of neutron starquakes into \\gamma--rays. This mechanism efficiently produces photons from electromagnetic Casimir energy released by the rapid motion of a dielectric medium into a vacuum. Estimates based on the cutoff energy of the gamma ray bursts and the volume involved in a starquake indicate that the total gamma ray energy emission is consonant with observational requirements.

  7. Spectra of {gamma} rays feeding superdeformed bands

    Energy Technology Data Exchange (ETDEWEB)

    Lauritsen, T.; Khoo, T.L.; Henry, R.G. [and others

    1995-08-01

    The spectrum of {gamma}rays coincident with SD transitions contains the transitions which populate the SD band. This spectrum can provide information on the feeding mechanism and on the properties (moment of inertia, collectivity) of excited SD states. We used a model we developed to explain the feeding of SD bands, to calculate the spectrum of feeding {gamma}rays. The Monte Carlo simulations take into account the trigger conditions present in our Eurogam experiment. Both experimental and theoretical spectra contain a statistical component and a broad E2 peak (from transitions occurring between excited states in the SD well). There is good resemblance between the measured and calculated spectra although the calculated multiplicity of an E2 bump is low by {approximately}30%. Work is continuing to improve the quality of the fits, which will result in a better understanding of excited SD states. In addition, a model for the last steps, which cool the {gamma} cascade into the SD yrast line, needs to be developed. A strong M1/E2 low-energy component, which we believe is responsible for this cooling, was observed.

  8. Long Gamma-Ray Transients from Collapsars

    CERN Document Server

    Woosley, S E

    2011-01-01

    In the collapsar model for common gamma-ray bursts, the formation of a centrifugally supported disk occurs during the first $\\sim$10 seconds following the collapse of the iron core in a massive star. This only occurs in a small fraction of massive stellar deaths, however, and requires unusual conditions. A much more frequent occurrence could be the death of a star that makes a black hole and a weak or absent outgoing shock, but in a progenitor that only has enough angular momentum in its outermost layers to make a disk. We consider several cases where this is likely to occur - blue supergiants with low mass loss rates, tidally-interacting binaries involving either helium stars or giant stars, and the collapse to a black hole of very massive pair-instability supernovae. These events have in common the accretion of a solar mass or so of material through a disk over a period much longer than the duration of a common gamma-ray burst. A broad range of powers is possible, $10^{47}$ to $10^{50}\\,$erg s$^{-1}$, and t...

  9. The Cosmic Gamma-Ray Bursts

    CERN Document Server

    Djorgovski, S G; Kulkarni, S R; Sari, R; Bloom, J S; Galama, T J; Harrison, F A; Price, P A; Fox, D; Reichart, D; Yost, S; Berger, E; Diercks, A H; Goodrich, R; Chaffee, F H

    2001-01-01

    Cosmic gamma-ray bursts are one of the great frontiers of astrophysics today. They are a playground of relativists and observers alike. They may teach us about the death of stars and the birth of black holes, the physics in extreme conditions, and help us probe star formation in the distant and obscured universe. In this review we summarise some of the remarkable progress in this field over the past few years. While the nature of the GRB progenitors is still unsettled, it now appears likely that at least some bursts originate in explosions of very massive stars, or at least occur in or near the regions of massive star formation. The physics of the burst afterglows is reasonably well understood, and has been tested and confirmed very well by the observations. Bursts are found to be beamed, but with a broad range of jet opening angles; the mean gamma-ray energies after the beaming corrections are ~ 10^51 erg. Bursts are associated with faint ~ 25 mag) galaxies at cosmological redshifts, with ~ 1. The host gal...

  10. Gamma-ray binaries: pulsars in disguise ?

    CERN Document Server

    Dubus, G

    2006-01-01

    LS 5039 and LSI +61 303 are unique amongst high-mass X-ray binaries (HMXB) for their spatially-resolved radio emission and their counterpart at >GeV gamma-ray energies, canonically attributed to non-thermal particles in an accretion-powered relativistic jet. The only other HMXB known to emit very high energy (VHE) gamma-rays, PSR B1259-63, harbours a non-accreting millisecond pulsar. I investigate whether the interaction of the relativistic wind from a young pulsar with the wind from its stellar companion, as in PSR B1259-63, constitutes a viable scenario to explain the observations of LS 5039 and LSI +61 303. Emission would arise from the shocked pulsar wind material, which then flows away to large distances in a comet-shape tail, reproducing on a smaller scale what is observed in isolated, high motion pulsars interacting with the ISM. Simple expectations for the SED are derived and are shown to depend on few input parameters. Detailed modelling of the particle evolution is compared to the observations from ...

  11. The interplanetary gamma ray burst network

    Science.gov (United States)

    Cline, T.

    The Interplanetary Gamma-Ray Burst Network (IPN) is providing gamma-ray burst (GRB) alerts and localizations at the maximum rate anticipated before the launch of the Swift mission. The arc-minute source precision of the IPN is again permitting searches for GRB afterglows in the radio and optical regimes with delays of only hours up to 2 days. The successful addition of the Mars Odyssey mission has compensated for the loss of the asteroid mission NEAR, to reconstitute a fully long- baseline interplanetary network, with Ulysses at > 5 AU and Konus-Wind and HETE-2 near the Earth. In addition to making unassisted GRB localizations that enable a renewed supply of counterpart observations, the Mars/Ulysses/Wind IPN is confirming and reinforcing GRB source localizations with HETE-2. It has also confirmed and reinforced localizations with the BeppoSAX mission before the BeppoSAX termination in May and has detected and localized both SGRs and an unusual hard x-ray transient that is neither an SGR nor a GRB. This IPN is expected to operate until at least 2004.

  12. Gamma-ray bursts and collisionless shocks

    CERN Document Server

    Waxman, E

    2006-01-01

    Particle acceleration in collisionless shocks is believed to be responsible for the production of cosmic-rays over a wide range of energies, from few GeV to >10^{20} eV, as well as for the non-thermal emission of radiation from a wide variety of high energy astrophysical sources. A theory of collisionless shocks based on first principles does not, however, exist. Observations of gamma-ray burst (GRB) "afterglows" provide a unique opportunity for diagnosing the physics of relativistic collisionless shocks. Most GRBs are believed to be associated with explosions of massive stars, and their "afterglows," delayed low energy emission following the prompt burst of gamma-rays, are produced by relativistic collisionless shock waves driven by the explosion into the surrounding plasma. Some of the striking characteristics of these shocks include the generation of downstream magnetic fields with energy density exceeding that of the upstream field by ~8 orders of magnitude, the survival of this strong field at distances ...

  13. Radio flares from gamma-ray bursts

    CERN Document Server

    Kopac, D; Kobayashi, S; Virgili, F J; Harrison, R; Japelj, J; Guidorzi, C; Melandri, A; Gomboc, A

    2015-01-01

    We present predictions of centimeter and millimeter radio emission from reverse shocks in the early afterglows of gamma-ray bursts with the goal of determining their detectability with current and future radio facilities. Using a range of GRB properties, such as peak optical brightness and time, isotropic equivalent gamma-ray energy and redshift, we simulate radio light curves in a framework generalized for any circumburst medium structure and including a parametrization of the shell thickness regime that is more realistic than the simple assumption of thick- or thin-shell approximations. Building on earlier work by Mundell et al. (2007) and Melandri et al. (2010) in which the typical frequency of the reverse shock was suggested to lie at radio, rather than optical wavelengths at early times, we show that the brightest and most distinct reverse-shock radio signatures are detectable up to 0.1 -- 1 day after the burst, emphasizing the need for rapid radio follow-up. Detection is easier for bursts with later opt...

  14. $\\gamma$-Ray Bursts the Four Crises

    CERN Document Server

    Tavani, M

    1998-01-01

    We discuss some open problems concerning the origin and the emission mechanism of gamma-ray bursts (GRBs) in light of recent developments. If GRBs originate at extragalactic distances, we are facing four crises: (1) an energy crisis, models have to account for more than 10^{53} ergs of energy emitted in the gamma-ray energy band; (2) a spectral crisis, emission models have to account for the surprising `smoothness' of GRB broad-band spectra, with no indication of the predicted spectral `distorsions' caused by inverse Compton scattering in large radiation energy density media, and no evidence for beaming; (3) an afterglow crisis, relativistic shock models have to explain the complexity of the afterglow behavior, the longevity of optical transients detectable up to six months after the burst, the erratic behavior of the radio emission, and the lack of evidence for substantial beaming as indicated by recent searches for GRB afterglows in the X-ray band; (4) a population crisis, from data clearly indicating that ...

  15. Classifying Unidentified Gamma-ray Sources

    CERN Document Server

    Salvetti, David

    2016-01-01

    During its first 2 years of mission the Fermi-LAT instrument discovered more than 1,800 gamma-ray sources in the 100 MeV to 100 GeV range. Despite the application of advanced techniques to identify and associate the Fermi-LAT sources with counterparts at other wavelengths, about 40% of the LAT sources have no a clear identification remaining "unassociated". The purpose of my Ph.D. work has been to pursue a statistical approach to identify the nature of each Fermi-LAT unassociated source. To this aim, we implemented advanced machine learning techniques, such as logistic regression and artificial neural networks, to classify these sources on the basis of all the available gamma-ray information about location, energy spectrum and time variability. These analyses have been used for selecting targets for AGN and pulsar searches and planning multi-wavelength follow-up observations. In particular, we have focused our attention on the search of possible radio-quiet millisecond pulsar (MSP) candidates in the sample of...

  16. Gamma ray tests of Minimal Dark Matter

    Energy Technology Data Exchange (ETDEWEB)

    Cirelli, Marco [Institut de Physique Théorique, Université Paris Saclay, CNRS, CEA, Orme des Merisiers, F-91191 Gif-sur-Yvette (France); Hambye, Thomas [Service de Physique Theórique, Université Libre de Bruxelles, Boulevard du Triomphe, CP225, 1050 Brussels (Belgium); Panci, Paolo [Institut d’Astrophysique de Paris, UMR 7095 CNRS, Université Pierre et Marie Curie, 98 bis Boulevard Arago, Paris 75014 (France); Sala, Filippo; Taoso, Marco [Institut de Physique Théorique, Université Paris Saclay, CNRS, CEA, Orme des Merisiers, F-91191 Gif-sur-Yvette (France)

    2015-10-12

    We reconsider the model of Minimal Dark Matter (a fermionic, hypercharge-less quintuplet of the EW interactions) and compute its gamma ray signatures. We compare them with a number of gamma ray probes: the galactic halo diffuse measurements, the galactic center line searches and recent dwarf galaxies observations. We find that the original minimal model, whose mass is fixed at 9.4 TeV by the relic abundance requirement, is constrained by the line searches from the Galactic Center: it is ruled out if the Milky Way possesses a cuspy profile such as NFW but it is still allowed if it has a cored one. Observations of dwarf spheroidal galaxies are also relevant (in particular searches for lines), and ongoing astrophysical progresses on these systems have the potential to eventually rule out the model. We also explore a wider mass range, which applies to the case in which the relic abundance requirement is relaxed. Most of our results can be safely extended to the larger class of multi-TeV WIMP DM annihilating into massive gauge bosons.

  17. Validation of GOMOS vertical profiles using the stratospheric balloon-borne AMON and SALOMON UV-Visible spectrometers

    Science.gov (United States)

    Renard, J. B.; Chartier, M.; Berthet, G.; Robert, C.; Lemaire, T.; Pepe, F.; George, M.; Pirre, M.

    2003-04-01

    The stratospheric balloon-borne UV-visible spectrometers AMON and SALOMON, which uses stars and Moon as light source, respectively, were involved in the validation of the UV-visible spectrometer GOMOS onboard ENVISAT, which uses also stars as light source. A low spectral resolution UV-visible spectrometer, AMON-RA, is also implanted in the AMON gondola, for the validation of the GOMOS algorithm dedicated to the correction of the chromatic scintillation effect. A flight of SALOMON occurred in September 19, 2002, at mid latitude from Aire sur l’Adour, France. The night-time SALOMON and GOMOS measurements were conducted at the same time (around 21h30 TU) and with a spatial coincidence less than 250 km. Comparison of vertical profiles was done for an altitude in the 15-40 km range. While the global shape of the GOMOS and SALOMON ozone profiles are quite in agreement, the GOMOS NO2 and NO3 profiles are unrealistic when compared to SALOMON profiles. A reanalysis of the GOMOS transmission using algorithms already developed for SALOMON shows that accurate NO2 and NO3 profiles can be retrieved if DOAS technique and dedicated spectral windows are used. An AMON (and AMON-RA) flight and a new SALOMON flight should occurred at high latitude from Kiruna (northern Sweden) in January and March 2003, respectively. The same analyses as for the September 2002 flight will be conducted, including this time the OClO and aerosols extinction coefficient retrievals. Taking into account the effect of the chromatic scintillation on the transmission spectra, recommendations will be proposed in order to improve the GOMOS retrievals.

  18. Gamma-ray spectroscopy on irradiated fuel rods

    Energy Technology Data Exchange (ETDEWEB)

    Terremoto, Luis Antonio Albiac [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil). Centro de Engenharia Nuclear], e-mail: laaterre@ipen.br

    2009-07-01

    The recording of gamma-ray spectra along an irradiated fuel rod allows the fission products to be qualitatively and quantitatively examined. Among all nondestructive examinations performed on irradiated fuel rods by gamma-ray spectroscopy, the most comprehensive one is the average burnup measurement, which is quantitative. Moreover, burnup measurements by means of gamma-ray spectroscopy are less time-consuming and waste-generating than burnup measurements by radiochemical, destructive methods. This work presents the theoretical foundations and experimental techniques necessary to measure, using nondestructive gamma-ray spectroscopy, the average burnup of irradiated fuel rods in a laboratory equipped with hot cells. (author)

  19. GRIPS - Gamma-Ray Burst Investigation via Polarimetry and Spectroscopy

    CERN Document Server

    Greiner, J

    2008-01-01

    The primary scientific goal of the GRIPS mission is to revolutionize our understanding of the early universe using gamma-ray bursts. We propose a new generation gamma-ray observatory capable of unprecedented spectroscopy over a wide range of gamma-ray energies (200 keV--50 MeV) and of polarimetry (200--1000 keV). Secondary goals achievable by this mission include direct measurements of supernova interiors through gamma-rays from radioactive decays, nuclear astrophysics with massive stars and novae, and studies of particle acceleration near compact stars, interstellar shocks, and clusters of galaxies.

  20. Fermi Large Area Telescope Bright Gamma-ray Source List

    Energy Technology Data Exchange (ETDEWEB)

    Abdo, Aous A.; /Naval Research Lab, Wash., D.C.; Ackermann, M.; /KIPAC, Menlo Park /SLAC; Ajello, M.; /KIPAC, Menlo Park /SLAC; Atwood, W.B.; /UC, Santa Cruz; Axelsson, M.; /Stockholm U., OKC /Stockholm U.; Baldini, L.; /INFN, Pisa; Ballet, J.; /DAPNIA, Saclay; Band, D.L.; /NASA, Goddard /NASA, Goddard; Barbiellini, Guido; /INFN, Trieste /Trieste U.; Bastieri, Denis; /INFN, Padua /Padua U.; Bechtol, K.; /KIPAC, Menlo Park /SLAC; Bellazzini, R.; /INFN, Pisa; Berenji, B.; /KIPAC, Menlo Park /SLAC; Bignami, G.F.; /Pavia U.; Bloom, Elliott D.; /KIPAC, Menlo Park /SLAC; Bonamente, E.; /INFN, Perugia /Perugia U.; Borgland, A.W.; /KIPAC, Menlo Park /SLAC; Bregeon, J.; /INFN, Pisa; Brigida, M.; /Bari U. /INFN, Bari; Bruel, P.; /Ecole Polytechnique; Burnett, Thompson H.; /Washington U., Seattle /Bari U. /INFN, Bari /KIPAC, Menlo Park /SLAC /IASF, Milan /IASF, Milan /DAPNIA, Saclay /ASDC, Frascati /INFN, Perugia /Perugia U. /KIPAC, Menlo Park /SLAC /George Mason U. /Naval Research Lab, Wash., D.C. /NASA, Goddard /KIPAC, Menlo Park /SLAC /INFN, Perugia /Perugia U. /KIPAC, Menlo Park /SLAC /Montpellier U. /Sonoma State U. /Stockholm U., OKC /Royal Inst. Tech., Stockholm /Stockholm U. /KIPAC, Menlo Park /SLAC /ASDC, Frascati /NASA, Goddard /Maryland U. /Naval Research Lab, Wash., D.C. /INFN, Trieste /Pavia U. /Bari U. /INFN, Bari /KIPAC, Menlo Park /SLAC /UC, Santa Cruz /KIPAC, Menlo Park /SLAC /KIPAC, Menlo Park /SLAC /KIPAC, Menlo Park /SLAC /Montpellier U. /Bari U. /INFN, Bari /Ecole Polytechnique /NASA, Goddard; /more authors..

    2009-05-15

    Following its launch in 2008 June, the Fermi Gamma-ray Space Telescope (Fermi) began a sky survey in August. The Large Area Telescope (LAT) on Fermi in three months produced a deeper and better resolved map of the {gamma}-ray sky than any previous space mission. We present here initial results for energies above 100 MeV for the 205 most significant (statistical significance greater than {approx}10{sigma}) {gamma}-ray sources in these data. These are the best characterized and best localized point-like (i.e., spatially unresolved) {gamma}-ray sources in the early mission data.

  1. Mercuric Iodide Anticoincidence Shield for Gamma-Ray Spectrometer Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to utilize a new detector material, polycrystalline mercuric iodide, for background suppression by active anticoincidence shielding in gamma-ray...

  2. Mercuric Iodide Anticoincidence Shield for Gamma-Ray Spectrometer Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We utilize a new detector material, polycrystalline mercuric iodide, for background suppression by active anticoincidence shielding in gamma-ray spectrometers. Two...

  3. Gamma-ray opacity of the anisotropic stratified broad-line regions in blazars

    Science.gov (United States)

    Abolmasov, Pavel; Poutanen, Juri

    2016-09-01

    The GeV-range spectra of blazars are shaped not only by non-thermal emission processes internal to the relativistic jet but also by external pair-production absorption on the thermal emission of the accretion disc and the broad-line region (BLR). For the first time, we compute here the pair-production opacities in the GeV range produced by a realistic BLR accounting for the radial stratification and radiation anisotropy. Using photoionization modelling with the CLOUDY code, we calculate a series of BLR models of different sizes, geometries, cloud densities, column densities and metallicities. The strongest emission features in the model BLR are Lyα and He II Lyα. Contribution of recombination continua is smaller, especially for hydrogen, because Ly continuum is efficiently trapped inside the large optical depth BLR clouds and converted to Lyman emission lines and higher-order recombination continua. The largest effects on the gamma-ray opacity are produced by the BLR geometry and localization of the gamma-ray source. We show that when the gamma-ray source moves further from the central source, all the absorption details move to higher energies and the overall level of absorption drops because of decreasing incidence angles between the gamma-rays and BLR photons. The observed positions of the spectral breaks can be used to measure the geometry and the location of the gamma-ray emitting region relative to the BLR. Strong dependence on geometry means that the soft photons dominating the pair-production opacity may be actually produced by a different population of BLR clouds than the bulk of the observed broad line emission.

  4. Gamma-ray opacity of the anisotropic stratified broad-line regions in blazars

    Science.gov (United States)

    Abolmasov, Pavel; Poutanen, Juri

    2017-01-01

    The GeV-range spectra of blazars are shaped not only by non-thermal emission processes internal to the relativistic jet but also by external pair-production absorption on the thermal emission of the accretion disc and the broad-line region (BLR). For the first time, we compute here the pair-production opacities in the GeV range produced by a realistic BLR accounting for the radial stratification and radiation anisotropy. Using photoionization modelling with the CLOUDY code, we calculate a series of BLR models of different sizes, geometries, cloud densities, column densities and metallicities. The strongest emission features in the model BLR are Ly α and He II Ly α. Contribution of recombination continua is smaller, especially for hydrogen, because Ly continuum is efficiently trapped inside the large optical depth BLR clouds and converted to Lyman emission lines and higher order recombination continua. The largest effects on the gamma-ray opacity are produced by the BLR geometry and localization of the gamma-ray source. We show that when the gamma-ray source moves further from the central source, all the absorption details move to higher energies and the overall level of absorption drops because of decreasing incidence angles between the gamma-rays and BLR photons. The observed positions of the spectral breaks can be used to measure the geometry and the location of the gamma-ray emitting region relative to the BLR. Strong dependence on geometry means that the soft photons dominating the pair-production opacity may be actually produced by a different population of BLR clouds than the bulk of the observed broad line emission.

  5. The Gamma Ray Bursts Hubble diagram

    CERN Document Server

    Capozziello, S; Dainotti, M G; De Laurentis, M; Izzo, L; Perillo, M

    2011-01-01

    Thanks to their enormous energy release, Gamma Rays Bursts (GRBs) have recently attracted a lot of interest to probe the Hubble diagram (HD) deep into the matter dominated era and hence complement Type Ia Supernovae (SNeIa). We consider here three different calibration methods based on the use of a fiducial LCDM model, on cosmographic parameters and on the local regression on SNeIa to calibrate the scaling relations proposed as an equivalent to the Phillips law to standardize GRBs finding any significant dependence. We then investigate the evolution of these parameters with the redshift to obtain any statistical improvement. Under this assumption, we then consider possible systematics effects on the HDs introduced by the calibration method, the averaging procedure and the homogeneity of the sample arguing against any significant bias.

  6. Search for Gamma Ray Bursts at Chacaltaya

    CERN Document Server

    Vernetto, S

    2001-01-01

    A search for Gamma Ray Bursts in the GeV-TeV energy range has been performed by INCA, an air shower array working at 5200 m of altitude at the Chacaltaya Laboratory (Bolivia). The altitude of the detector and the use of the "single particle technique" allows to lower the energy threshold up to few GeVs. No significant signals are observed during the occurrence of 125 GRBs detected by BATSE, and the obtained upper limits on the energy fluence in the interval 1-1000(100) GeV range from 3.2(8.6) 10^-5 to 2.6(7.0) 10^-2 erg/cm^2 depending on the zenith angle of the events. These limits, thanks to the extreme altitude of INCA, are the lowest ever obtained in the sub-TeV energy region by a ground based esperiment.

  7. Black Holes, Supernovae and Gamma Ray Bursts

    CERN Document Server

    Ruffini, Remo

    2013-01-01

    We review recent progress in our understanding of the nature of gamma ray bursts (GRBs) and in particular, of the relationship between short GRBs and long GRBs. The first example of a short GRB is described. The coincidental occurrence of a GRB with a supernova (SN) is explained within the induced gravitational collapse (IGC) paradigm, following the sequence: 1) an initial binary system consists of a compact carbon-oxygen (CO) core star and a neutron star (NS); 2) the CO core explodes as a SN, and part of the SN ejecta accretes onto the NS which reaches its critical mass and collapses to a black hole (BH) giving rise to a GRB; 3) a new NS is generated by the SN as a remnant. The observational consequences of this scenario are outlined.

  8. Gamma-ray Production in Supernova Remnants

    CERN Document Server

    Baring, M G

    1997-01-01

    Supernova remnants are widely believed to be a principal source of galactic cosmic rays, produced by diffusive shock acceleration in the environs of the remnant's expanding shock. This review discusses recent modelling of how such energetic particles can produce gamma-rays via interactions with the remnants' ambient interstellar medium, specifically via neutral pion decay, bremsstrahlung and inverse Compton emission. Predictions that relate to the handful of associations between EGRET unidentified sources and known radio/optical/X-ray emitting remnants are summarized. The cessation of acceleration above 1 TeV - 10 TeV energies in young shell-type remnants is critical to model consistency with Whipple's TeV upper limits; these observations provide important diagnostics for theoretical models.

  9. Relativistic Outflows in Gamma-Ray Bursts

    CERN Document Server

    Aloy, M A

    2007-01-01

    The possibility that gamma-ray bursts (GRBs) were not isotropic emissions was devised theoretically as a way to ameliorate the huge energetic budget implied by the standard fireball model for these powerful phenomena. However, the mechanism by which after the quasy-isotropic release of a few $10^{50} $erg yields a collimated ejection of plasma could not be satisfactory explained analytically. The reason being that the collimation of an outflow by its progenitor system depends on a very complex and non-linear dynamics. That has made necessary the use of numerical simulations in order to shed some light on the viability of some likely progenitors of GRBs. In this contribution I will review the most relevant features shown by these numerical simulations and how they have been used to validate the collapsar model (for long GRBs) and the model involving the merger of compact binaries (for short GRBs).

  10. Statistics of gamma ray burst temporal asymmetry

    CERN Document Server

    Link, B; Link, Bennett; Epstein, Richard

    1996-01-01

    We study the temporal asymmetry of over 600 bursts from the BATSE 3B catalog, encompassing a 200-fold range in peak flux. By comparing the rates of rise and fall of the flux near the highest burst peak, we find that about two-thirds of the bursts exhibit a preferred asymmetry in the sense that the flux rises more rapidly than it falls, confirming the conclusions of previous studies employing smaller databases. The statistical significance of the average time asymmetry of the sample is >99.999\\%; therefore, models that predict time symmetry of the burst profile are ruled out. We find no statistically significant correlation between burst temporal asymmetry and peak. This result is consistent with both cosmological and local interpretations of the gamma ray burst phenomenon.

  11. Perspectives on Gamma-Ray Pulsar Emission

    CERN Document Server

    Baring, Matthew G

    2010-01-01

    Pulsars are powerful sources of radiation across the electromagnetic spectrum. This paper highlights some theoretical insights into non-thermal, magnetospheric pulsar gamma-ray radiation. These advances have been driven by NASA's Fermi mission, launched in mid-2008. The Large Area Telescope (LAT) instrument on Fermi has afforded the discrimination between polar cap and slot gap/outer gap acceleration zones in young and middle-aged pulsars. Altitude discernment using the highest energy pulsar photons will be addressed, as will spectroscopic interpretation of the primary radiation mechanism in the LAT band, connecting to both polar cap/slot gap and outer gap scenarios. Focuses will mostly be on curvature radiation and magnetic pair creation, including population trends that may afford probes of the magnetospheric accelerating potential.

  12. Critical Test Of Gamma Ray Burst Theories

    CERN Document Server

    Dado, Shlomo

    2016-01-01

    Long and precise follow-up measurements of the X-ray afterglow (AG) of very intense gamma ray bursts (GRBs) provide a critical test of GRB afterglow theories. Here we show that the power-law decline with time of X-ray AG of GRB 130427A, the longest measured X-ray AG of an intense GRB with the Swift, Chandra and XMM Newton satellites, and of all other well measured late-time X-ray afterglow of intense GRBs, is that predicted by the cannonball (CB) model of GRBs from their measured spectral index, while it disagrees with that predicted by the widely accepted fireball (FB) models of GRBs.

  13. Gamma-ray burst afterglow theory

    CERN Document Server

    van Eerten, Hendrik

    2013-01-01

    It is by now fairly well established that gamma-ray burst afterglows result from initially relativistic outflows interacting with the medium surrounding the burster and emitting non-thermal radiation ranging from radio to X-rays. However, beyond that, many big and small questions remain about afterglows, with the accumulating amount of observational data at the various frequencies raising as many questions as they answer. In this review I highlight a number of current theoretical issues and how they fit or do not fit within our basic theoretical framework. In addition to theoretical progress I will also emphasize the increasing role and usefulness of numerical studies of afterglow blast waves and their radiation.

  14. Digital Logarithmic Airborne Gamma Ray Spectrometer

    CERN Document Server

    Zeng, GuoQiang; Li, Chen; Tan, ChengJun; Ge, LiangQuan; Gu, Yi; Cheng, Feng

    2014-01-01

    A new digital logarithmic airborne gamma ray spectrometer is designed in this study. The spectrometer adopts a high-speed and high-accuracy logarithmic amplifier (LOG114) to amplify the pulse signal logarithmically and to improve the utilization of the ADC dynamic range, because the low-energy pulse signal has a larger gain than the high-energy pulse signal. The spectrometer can clearly distinguish the photopeaks at 239, 352, 583, and 609keV in the low-energy spectral sections after the energy calibration. The photopeak energy resolution of 137Cs improves to 6.75% from the original 7.8%. Furthermore, the energy resolution of three photopeaks, namely, K, U, and Th, is maintained, and the overall stability of the energy spectrum is increased through potassium peak spectrum stabilization. Thus, effectively measuring energy from 20keV to 10MeV is possible.

  15. Digital logarithmic airborne gamma ray spectrometer

    Science.gov (United States)

    Zeng, Guo-Qiang; Zhang, Qing-Xian; Li, Chen; Tan, Cheng-Jun; Ge, Liang-Quan; Gu, Yi; Cheng, Feng

    2014-07-01

    A new digital logarithmic airborne gamma ray spectrometer is designed in this study. The spectrometer adopts a high-speed and high-accuracy logarithmic amplifier (LOG114) to amplify the pulse signal logarithmically and to improve the utilization of the ADC dynamic range because the low-energy pulse signal has a larger gain than the high-energy pulse signal. After energy calibration, the spectrometer can clearly distinguish photopeaks at 239, 352, 583 and 609 keV in the low-energy spectral sections. The photopeak energy resolution of 137Cs improves to 6.75% from the original 7.8%. Furthermore, the energy resolution of three photopeaks, namely, K, U, and Th, is maintained, and the overall stability of the energy spectrum is increased through potassium peak spectrum stabilization. Thus, it is possible to effectively measure energy from 20 keV to 10 MeV.

  16. SAS-2 galactic gamma ray results, 1

    Science.gov (United States)

    Thompson, D. J.; Fichtel, C. E.; Hartman, R. C.; Kniffen, D. A.; Bignami, G. F.; Lamb, R. C.; Oegelman, H.; Oezel, M. E.; Tuemer, T.

    1976-01-01

    Continuing analysis of the data from the SAS-2 high energy gamma-ray experiment has produced an improved picture of the sky at photon energies above 35 MeV. On a large scale, the diffuse emission from the galactic plane is the dominant feature observed by SAS-2. This galactic plane emission is most intense between galactic longitude 310 and 45 deg, corresponding to a region within 7kpc of the galactic center. Within the high-intensity region, SAS-2 observes peaks around galactic longitudes 315 deg, 330 deg, 345 deg, 0 deg, and 35 deg. These peaks appear to be correlated with such galactic features and components as molecular hydrogen, atomic hydrogen, magnetic fields, cosmic ray concentrations, and photon fields.

  17. Gamma ray bursts and their afterglows

    Science.gov (United States)

    Nicuesa Guelbenzu, A.

    2017-03-01

    Gamma-Ray Bursts (GRBs) were among the greatest mysteries in modern astrophysics. They were first observed 50 years ago but it took three decades before optical counterparts could be found and the underlying physical phenomena studied in detail. GRB research represents currently one of the most rapidly growing areas in extragalactic astronomy. This is due in large part to the numerous connections that GRBs have with other disciplines like cosmology, supernovae, stellar evolution, nuclear physics, astroparticle and gravitational wave astronomy. Therefore, their study is of great importance to understand various astrophysical phenomena such as the formation of the first stars, the chemical evolution and the expansion of the Universe. Since gamma radiation can travel along cosmological distances without being affected by any possible intervening absorption, GRBs can be detected from the most distant universe, reaching redshifts up to z = 10 or more.

  18. Gamma-Ray Bursts: A Radio Perspective

    Directory of Open Access Journals (Sweden)

    Poonam Chandra

    2016-01-01

    Full Text Available Gamma-ray bursts (GRBs are extremely energetic events at cosmological distances. They provide unique laboratory to investigate fundamental physical processes under extreme conditions. Due to extreme luminosities, GRBs are detectable at very high redshifts and potential tracers of cosmic star formation rate at early epoch. While the launch of Swift and Fermi has increased our understanding of GRBs tremendously, many new questions have opened up. Radio observations of GRBs uniquely probe the energetics and environments of the explosion. However, currently only 30% of the bursts are detected in radio bands. Radio observations with upcoming sensitive telescopes will potentially increase the sample size significantly and allow one to follow the individual bursts for a much longer duration and be able to answer some of the important issues related to true calorimetry, reverse shock emission, and environments around the massive stars exploding as GRBs in the early Universe.

  19. Gamma-Ray Bursts: Pulses and Populations

    Science.gov (United States)

    Loredo, Thomas J.; Hakkila, J. E.; Broadbent, M.; Wasserman, I. M.; Wolpert, R. L.

    2013-04-01

    We describe ongoing work on two projects that are enabling more thorough and accurate use of archival BATSE data for elucidating the nature of GRB sources; the methods and tools we are developing will also be valuable for analyzing data from other missions. The first project addresses modeling the spectro-temporal behavior of prompt gamma ray emission from GRBs by modeling gamma ray count and event data with a population of pulses, with the population drawn from one or more families of single-pulse kernels. Our approach is built on a multilevel nonparametric probabilistic framework we have dubbed "Bayesian droplets," and offers several important advances over previous pulse decomposition approaches: (1) It works in the pulse-confusion regime, quantifying uncertainty in the number, locations, and shapes of pulses, even when there is strong overlap. (2) It can self-consistently model pulse behavior across multiple spectral bands. (3) It readily handles a variety of spatio-temporal kernel shapes. (4) It reifies the idea of a burst as a population of pulses, enabling explicit modeling and estimation of the pulse population distribution. We describe the framework and present analyses of prototypical simple and complex GRB light curves. The second project aims to enable accurate demographic modeling of GRBs using the BATSE catalog. We present new calculations of the BATSE sky exposure, encompassing the full duration of the BATSE catalog for the first time, with many improvements over the currently available exposure map. A similar calculation of the detection efficiency is in progress. We also describe public Python software enabling access and accurate modeling of BATSE GRB data. The software enables demographic studies (e.g., modeling log N - log S distributions) with accurate accounting of both selection effects and measurement errors. It also enables spectro-temporal modeling of detailed data from individual GRBs. These projects are supported by NASA through the AISR

  20. Gamma Rays from Star Formation in Clusters of Galaxies

    CERN Document Server

    Storm, Emma; Profumo, Stefano

    2012-01-01

    Star formation in galaxies is observed to be associated with gamma-ray emission. The detection of gamma rays from star-forming galaxies by the Fermi Large Area Telescope (LAT) has allowed the determination of a functional relationship between star formation rate and gamma-ray luminosity (Ackermann et. al. 2012). Since star formation is known to scale with total infrared (8-1000 micrometers) and radio (1.4 GHz) luminosity, the observed infrared and radio emission from a star-forming galaxy can be used to quantitatively infer the galaxy's gamma-ray luminosity. Similarly, star forming galaxies within galaxy clusters allow us to derive lower limits on the gamma-ray emission from clusters, which have not yet been conclusively detected in gamma rays. In this study we apply the relationships between gamma-ray luminosity and radio and IR luminosities derived in Ackermann et. al. 2012 to a sample of galaxy clusters from Ackermann et. al. 2010 in order to place lower limits on the gamma-ray emission associated with sta...

  1. A new processing technique for airborne gamma-ray data

    DEFF Research Database (Denmark)

    Hovgaard, Jens

    1997-01-01

    The mathematical-statistical background for at new technique for processing gamma-ray spectra is presented. The technique - Noise Adjusted Singular Value Decomposition - decomposes at set of gamma-ray spectra into a few basic spectra - the spectral components. The spectral components can...

  2. Wolf-Rayet stars as gamma-ray burst progenitors

    NARCIS (Netherlands)

    Langer, N.; van Marle, A. -J; Yoon, S.C.

    2010-01-01

    It became clear in the last few years that long gamma-ray bursts are associated with the endpoints of massive star evolution. They occur in star forming regions at cosmological distances (Jakobsson et al., 2005), and are associated with supernova-type energies. The collapsar model explains gamma-ray

  3. Gamma-rays from Muon Capture in $^{14}$N

    CERN Document Server

    Stocki, T J; Gete, E; Saliba, M A; Moftah, B A; Gorringe, T P

    2001-01-01

    Many new $\\gamma$-rays have been observed, following muon capture on $^{14}$N. One had been reported before, and the low yield is confirmed, indicating that the nuclear structure of $^{14}$N is still not understood. Gamma-rays from $^{13}$C resulting from the reaction $^{14}$N($\\mu^{-}$,$\

  4. Supernova sheds light on gamma-ray bursts

    CERN Multimedia

    2003-01-01

    On 29 March the HETE-II satellite detected the most violent explosion in the universe to date - an enormous burst of gamma rays. Observers across the world recorded and studied the event. It appears to prove that gamma ray bursts originate in supernovae (1 page)

  5. HEAO C-1 gamma-ray spectrometer. [experimental design

    Science.gov (United States)

    Mahoney, W. A.; Ling, J. C.; Willett, J. B.; Jacobson, A. S.

    1978-01-01

    The gamma-ray spectroscopy experiment to be launched on the third High Energy Astronomy Observatory (HEAO C) will perform a complete sky search for narrow gamma-ray line emission to the level of about 00001 photons/sq cm -sec for steady point sources. The design of this experiment and its performance based on testing and calibration to date are discussed.

  6. Enhanced gamma-ray activity from the Crab nebula

    Science.gov (United States)

    Buehler, R.; Ciprini, S.

    2016-01-01

    Preliminary LAT analysis indicates enhanced gamma-ray activity from the Crab nebula. The daily-averaged gamma-ray emission (E > 100 MeV) from the direction of the Crab Nebula has surpassed 4.0 x 10^-6 ph cm^-2 s^-1 five times in the last 12 days.

  7. Jet simulations and gamma-ray burst afterglow jet breaks

    NARCIS (Netherlands)

    van Eerten, H. J.; Meliani, Z.; Wijers, R.A.M.J.; Keppens, R.

    2010-01-01

    The conventional derivation of the gamma-ray burst afterglow jet break time uses only the blast wave fluid Lorentz factor and therefore leads to an achromatic break. We show that in general gamma-ray burst afterglow jet breaks are chromatic across the self-absorption break. Depending on circumstance

  8. Jet simulations and gamma-ray burst afterglow jet breaks

    NARCIS (Netherlands)

    van Eerten, H. J.; Meliani, Z.; Wijers, Ramj; Keppens, R.

    2011-01-01

    The conventional derivation of the gamma-ray burst afterglow jet break time uses only the blast wave fluid Lorentz factor and therefore leads to an achromatic break. We show that in general gamma-ray burst afterglow jet breaks are chromatic across the self-absorption break. Depending on circumstance

  9. Jet simulations and gamma-ray burst afterglow jet breaks

    NARCIS (Netherlands)

    van Eerten, H.J.; Meliani, Z.; Wijers, R.A.M.J.; Keppens, R.

    2012-01-01

    The conventional derivation of the gamma-ray burst afterglow jet break time uses only the blast wave fluid Lorentz factor and therefore leads to an achromatic break. We show that in general gamma-ray burst afterglow jet breaks are chromatic across the self-absorption break. Depending on circumstance

  10. Very High Energy Gamma Ray Extension of GRO Observations

    Science.gov (United States)

    Weekes, Trevor C.

    1994-01-01

    The membership, progress, and invited talks, publications, and proceedings made by the Whipple Gamma Ray Collaboration is reported for june 1990 through May 1994. Progress was made in the following areas: the May 1994 Markarian Flare at Whipple and EGRET (Energetic Gamma Ray Experiment Telescope) energies; AGN's (Active Galactic Nuclei); bursts; supernova remnants; and simulations and energy spectra.

  11. SAS-2 galactic gamma-ray results. 2: Localized sources

    Science.gov (United States)

    Hartman, R. C.; Fichtel, C. E.; Kniffen, D. A.; Lamb, R. C.; Thompson, D. J.; Bignami, G. F.; Oegelman, H.; Oezel, M. E.; Tuemer, T.

    1977-01-01

    Gamma ray emission was detected from the radio pulsars PSR 1818-04 and PSR 1747-46, in addition to the previously reported gamma ray emission from the Crab and Vela pulsars. Because the Crab pulsar is the only one observed in the optical and X-ray bands, these gamma ray observations suggest a uniquely gamma ray phenomenon occurring in a fraction of the radio pulsars. PSR 1818-04 has a gamma ray luminosity comparable to that of the Crab pulsar, whereas the luminosities of PSR 1747-46 and the Vela pulsar are approximately an order of magnitude lower. SAS-2 data for pulsar correlations yielded upper limits to gamma ray luminosity for 71 other radio pulsars. For five of the closest pulsars, upper limits for gamma ray luminosity are found to be at least three orders of magnitude lower than that of the Crab pulsar. Gamma ray enhancement near the Milky Way satellite galaxy and the galactic plane in the Cygnus region is also discussed.

  12. The First Fermi Gamma-ray Burst Monitor (GBM) Terrestrial Gamma-ray Flash (TGF) Catalog

    Science.gov (United States)

    Briggs, Michael; Connaughton, Valerie; Stanbro, Matthew; Zhang, Binbin; Bhat, Narayana; Fishman, Gerald; Roberts, Oliver; Fitzpatrick, Gerard; McBreen, Shelia; Grove, Eric; Chekhtman, Alexandre

    2015-04-01

    We present summary results from the first catalog of Terrestrial Gamma-ray Flashes (TGFs) detected with the Gamma-ray Burst Monitor (GBM) on the Fermi Space Telescope. The catalog reports parameters for over 2700 TGFs. Since the launch of Fermi in 2008 the TGF detection sensitivity of GBM has been improved several times, both in the flight software and in ground analysis. Starting in 2010 July individual photons were downloaded for portions of the orbits, enabling an off-line search that found weaker and shorter TGFs. Since 2012 November 26 this telemetry mode has been extended to continuous coverage. The TGF sample is reliable, with cosmic rays rejected using data both from Fermi GBM and from the Large Area Telescope on Fermi. The online catalog include times (UTC and solar), spacecraft geographic positions, durations, count intensities and Bayesian Block durations. The catalog includes separate tables for bright TGFs detected by the flight software and for Terrestrial Electron Beams (TEBs).

  13. Extragalactic Gamma Ray Excess from Coma Supercluster Direction

    Indian Academy of Sciences (India)

    Pantea Davoudifar; S. Jalil Fatemi

    2011-09-01

    The origin of extragalactic diffuse gamma ray is not accurately known, especially because our suggestions are related to many models that need to be considered either to compute the galactic diffuse gamma ray intensity or to consider the contribution of other extragalactic structures while surveying a specific portion of the sky. More precise analysis of EGRET data however, makes it possible to estimate the diffuse gamma ray in Coma supercluster (i.e., Coma\\A1367 supercluster) direction with a value of ( > 30MeV) ≃ 1.9 × 10-6 cm-2 s-1, which is considered to be an upper limit for the diffuse gamma ray due to Coma supercluster. The related total intensity (on average) is calculated to be ∼ 5% of the actual diffuse extragalactic background. The calculated intensity makes it possible to estimate the origin of extragalactic diffuse gamma ray.

  14. Effect of Conversion Efficiency on Gamma-Ray Burst Energy

    Institute of Scientific and Technical Information of China (English)

    Lei Xu; Zi-Gao Dai

    2004-01-01

    Beaming effect makes it possible that gamma-ray bursts have a standard energy,but the gamma-ray energy release is sensitive to some parameters.Our attention is focused on the effect of the gamma ray conversion efficiency(ηγ),which may range between 0.01 and 0.9,and which probably has a random value for different GRBs under certain conditions.Making use of the afterglow data from the literature,we carried out a complete correction to the conical opening angle formula.Within the framework of the conical jet model,we ran a simple Monte Carlo simulation for random values of ηγ,and found that the gamma-ray energy release is narrowly clustered,whether we use a constant value of ηγ or random values for different gamma-ray bursts.

  15. Gamma-rays as probes of the Universe

    CERN Document Server

    Horns, Dieter

    2016-01-01

    The propagation of $\\gamma$ rays over very large distances provides new insights on the intergalactic medium and on fundamental physics. On their path to the Earth, $\\gamma$ rays can annihilate with diffuse infrared or optical photons of the intergalactic medium, producing $e^+ \\, e^-$ pairs. The density of these photons is poorly determined by direct measurements due to significant galactic foregrounds. Studying the absorption of $\\gamma$ rays from extragalactic sources at different distances allows the density of low-energy diffuse photons to be measured. Gamma-ray propagation may also be affected by new phenomena predicted by extensions of the Standard Model of particle physics. Lorentz Invariance is violated in some models of Quantum Gravity, leading to an energy-dependent speed of light in vacuum. From differential time-of-flight measurements of the most distant $\\gamma$-ray bursts and of flaring active galactic nuclei, lower bounds have been set on the energy scale of Quantum Gravity. Another effect tha...

  16. The supernova-gamma-ray burst-jet connection.

    Science.gov (United States)

    Hjorth, Jens

    2013-06-13

    The observed association between supernovae and gamma-ray bursts represents a cornerstone in our understanding of the nature of gamma-ray bursts. The collapsar model provides a theoretical framework for this connection. A key element is the launch of a bipolar jet (seen as a gamma-ray burst). The resulting hot cocoon disrupts the star, whereas the (56)Ni produced gives rise to radioactive heating of the ejecta, seen as a supernova. In this discussion paper, I summarize the observational status of the supernova-gamma-ray burst connection in the context of the 'engine' picture of jet-driven supernovae and highlight SN 2012bz/GRB 120422A--with its luminous supernova but intermediate high-energy luminosity--as a possible transition object between low-luminosity and jet gamma-ray bursts. The jet channel for supernova explosions may provide new insights into supernova explosions in general.

  17. Optical telescope BIRT in ORIGIN for gamma ray burst observing

    DEFF Research Database (Denmark)

    Content, Robert; Sharples, Ray; Page, Mathew J.

    2012-01-01

    The ORIGIN concept is a space mission with a gamma ray, an X-ray and an optical telescope to observe the gamma ray bursts at large Z to determine the composition and density of the intergalactic matter in the line of sight. It was an answer to the ESA M3 call for proposal. The optical telescope i...... length. All 3 instruments use the same 2k x 2k detector simultaneously so that telescope pointing and tip-tilt control of a fold mirror permit to place the gamma ray burst on the desired instrument without any other mechanism. © 2012 SPIE.......The ORIGIN concept is a space mission with a gamma ray, an X-ray and an optical telescope to observe the gamma ray bursts at large Z to determine the composition and density of the intergalactic matter in the line of sight. It was an answer to the ESA M3 call for proposal. The optical telescope...

  18. Review of GRANAT observations of gamma-ray bursts

    DEFF Research Database (Denmark)

    Terekhov, O.; Denissenko, D.; Sunyaev, R.;

    1995-01-01

    The GRANAT observatory was launched into a high apogee orbit on 1 December, 1989. Three instruments onboard GRANAT - PHEBUS, WATCH and SIGMA are able to detect gamma-ray bursts in a very broad energy range from 6 keV up to 100 MeV. Over 250 gamma-ray bursts were detected. We discuss the results...... of four differently behaving componenents in gamma-ray burst spectra is discussed. Statistical properties of the gamma-ray burst sources based on the 5 years of observations with (∼ 10−6 erg/cm2) sensitivity as well as the results of high sensitivity (∼ 10−8 erg/cm2) search for Gamma-Ray Bursts within...... the SIGMA telescope field of view are reviewed....

  19. Gamma-ray Explosion in Multiple Compton Scattering Regime

    CERN Document Server

    Gong, Z; Shou, Y R; Qiao, B; Bulanov, S V; Esirkepov, T Zh; Bulanov, S S; Chen, C E; He, X T; Yan, X Q

    2016-01-01

    Gamma-ray explosion from near critical density (NCD) target irradiated by four symmetrical imploding laser pulses is numerically investigated. With peak intensities about $10^{23}$ W/cm$^2$, the laser pulses boost electron energy through direct laser acceleration, while pushing them inward with the ponderomotive force. After backscattering with counter-propagating laser, the accelerated electron will be trapped in the optical lattice or the electromagnetic standing waves (SW) created by the coherent overlapping of the laser pulses, and meanwhile emit gamma-ray photon in Multiple Compton Scattering regime, where electron acts as a medium to transfer energy from laser to gamma-ray. The energy conversion rate from laser pulses to gamma-ray can be as high as around 50\\%. It may become one of the most efficient gamma-ray sources in laboratory.

  20. ProtoEXIST: balloon-borne technology development for wide-field hard X-ray imaging

    Science.gov (United States)

    Grindlay, Jonathan

    We report on the development of the ProtoEXIST balloon-borne experiment for development of wide-field coded aperture imaging with high spatial resolution imaging Cd-Zn-Te (CZT) arrays in close-tiled, large area configurations. ProtoEXIST1 will incorporate two coded aperture telescopes, each with 16 x 16cm close-tiled imaging CZT with 2.5mm pixels that maintain registration across the full detector. The detector plane incorporates new-technology low powered ASIC readout on each 20 x 20 x 5mm CZT crystal. A 2 x 4 array of such crystals are closetiled on a single board (DCA) with vertical integration to a controlling and readout-enabling FPGA. Detector readout modes can be commanded through the FPGA and selected in flight: from simple peak pixel, to peak plus neighbor pixels to larger pixel-selected modes, which will improve spatial/spectral resolution as well as allow for future tests of Compton imaging. The full readout consists of a 2 x 4 array of DCAs for each of the two telescopes. The detector plane is shielded from below by an active shield (2cm CsI) on one telescope vs. an equivalent graded-passive shield on the other to enable direct imaging comparisons of background rejection in a balloon environment. Both telescopes incorporate otherwise identical graded-passive side shields and laminated coded aperture masks (5mm pixels, laser-cut in W sheet). The telescopes each have 20o x 20o fields of view (FWHM), with 21arcmin resolution across the field. The ProtoEXIST gondola is derived from the old Harvard EXITE gondola but now with new pointing system and daytime star camera as developed at MSFC for the HERO balloon payload. A first flight is planned for September/October, 2008. Tests will include not only the first tests of this multipixel, controllable ASIC-readout system but also tests of the scanning coded aperture imaging as planned for the proposed EXIST mission. Followup flight(s) will test the higher-spatial resolution CZT imager (0.6mm pixels) now planned

  1. PILOT: a balloon-borne experiment to measure the polarized FIR emission of dust grains in the interstellar medium

    Science.gov (United States)

    Misawa, Ruka; Bernard, Jean-Philippe

    Measuring precisely the faint polarization of the Far-Infrared and sub-millimetre sky is one of the next observational challenges of modern astronomy and cosmology. In particular, detection of the B-mode polarization from the Cosmic Microwave Background (CMB) may reveal the inflationary periods in the very early universe. Such measurements will require very high sensitivity and very low instrumental systematic effects. As for measurements of the CMB intensity, sensitive measurements of the CMB polarization will be made difficult by the presence of foreground emission from our own Milky Way, which is orders of magnitude stronger than the faint polarized cosmological signal. Such foreground emission will have to be understood very accurately and removed from cosmological measurements. This polarized emission is also interesting in itself, since it brings information relevant to the process of star formation, about the orientation of the magnetic field in our Galaxy through the alignment of dust grains. I will first summarize our current knowledge in this field, on the basis of extinction and emission measurements from the ground and airborne experiments and in the context of the recent measurements with the Planck satellite. I will then describe the concept and science goals of the PILOT balloon-borne experiment project (http://pilot.irap.omp.eu). This project is funded by the French space agency (CNES: “Centre National des Etudes Spatiales”) and currently under final assembly and tests. The experiment is dedicated to measuring precisely the linear polarization of the faint interstellar diffuse dust emission in the Far-Infrared in our Galaxy and nearby galaxies. It is composed of a 0.83 m diameter telescope and a Helium 4 deware accommodating the rest of the optics and 2 focal plane arrays with a total of 2048 individual bolometers cooled to 300 mK, developed for the PACS instruments on board the Hershel satellite. It will be operating in two broad photometric

  2. The Fermi Gamma-ray Burst Monitor (GBM) Terrestrial Gamma-ray Flash (TGF) Catalog

    Science.gov (United States)

    Stanbro, M.; Briggs, M. S.; Roberts, O.; McBreen, S.; Bhat, N.; Fitzpatrick, G.

    2015-12-01

    We present results from the catalog of Terrestrial Gamma-ray Flashes (TGFs) detected with the Gamma-ray Burst Monitor (GBM) on the Fermi Gamma-ray Space Telescope. The first release, in January 2015, provided data on 2700 TGFs. Updates are extending the catalog at a rate of ~800 TGFs per year. The TGF sample is reliable, with cosmic rays rejected using data both from Fermi GBM and from the Large Area Telescope on Fermi. The online catalog include times (UTC and solar), spacecraft geographic positions, durations, count intensities and other Bayesian Block durations. The catalog includes separate tables for bright TGFs detected by the flight software and for Terrestrial Electron Beams (TEBs). In January 2016 additional data will be released online from correlating these TGFs with sferics detected by the World Wide Lightning Location Network (WWLLN). Maps of sferics in the vicinity of each TGF will be provided, as will the locations and times of sferics found to be associated with TGFs.

  3. More Gamma-ray Bursts from the Fermi Gamma-ray Burst Monitor

    Science.gov (United States)

    Briggs, Michael; Fermi GBM Team Team

    2017-01-01

    The Fermi Gamma-ray Burst Monitor (GBM) Team has developed an offline search for weak gamma-ray bursts which were not already detected in-orbit as ``triggers''. This search is ``untargeted'', searching all of the GBM data without guidance from other observations. The initial version of the search has been operational from January 2016, finding several likely short GRBs per month that are posted to a webpage. The GBM individual photon data are binned to various timescales, a background model is created and the binned data are searched for significant signals above the background that are coincident in two or more detectors. The current search has a latency of several days because several steps require manual intervention. An improved version will be fully automatic so that the latency in detecting candidates will be dominated by the few hours delay in receiving the data. The new version of the search will also include additional detection algorithms to increase the GRB detection rate and will also detect some long GRBs. We will report the candidates via the Gamma-ray Coordinates Network (GCN). These prompt GRB detections and localization should aid multi-messenger observations, in some cases refining localizations on timescales useful for followup observations.

  4. Landau level-superfluid modified factor and effective X/$\\gamma$-ray coefficient of a magnetar

    CERN Document Server

    Gao, Z F; Wang, N; Chou, C K; Huo, W S

    2013-01-01

    As soon as the energy of electrons near the Fermi surface are higher than $Q$, the threshold energy of inverse $\\beta-$ decay, the electron capture process will dominate. The resulting high-energy neutrons will destroy anisotropic ${}^3P_2$ neutron superfluid Cooper pairs. By colliding with the neutrons produced in the process $n+ (n\\uparrow n\\downarrow)\\longrightarrow n+ n+ n$, the kinetic energy of the outgoing neutrons will be transformed into thermal energy. The transformed thermal energy would transported from the star interior to the star surface by conduction, then would be transformed into radiation energy as soft X-rays and gamma-rays. After a highly efficient modulation within the pulsar magnetosphere, the surface thermal emission (mainly soft X/$\\gamma$-ray emission) has been shaped into a spectrum with the observed characteristics of magnetars. By introducing two important parameters: Landau level-superfluid modified factor and effective X/$\\gamma$-ray coefficient, we numerically simulate the proc...

  5. X-rays, gamma-rays and neutrinos from collisoinless shocks in supernova wind breakouts

    CERN Document Server

    Katz, Boaz; Waxman, Eli

    2011-01-01

    We show that a collisionless shock necessarily forms during the shock breakout of a supernova (SN) surrounded by an optically thick wind. An intense non-thermal flash of <~ MeV gamma rays, hard X-rays and multi-TeV neutrinos is produced simultaneously with and following the soft X-ray breakout emission, carrying similar or larger energy than the soft emission. The non-thermal flash is detectable by current X-ray telescopes and may be detectable out to 10's of Mpc by km-scale neutrino telescopes.

  6. A 16 channel frequency-domain-modulation readout system with custom superconducting LC filters for the SWIPE instrument of the balloon-borne LSPE experiment

    Energy Technology Data Exchange (ETDEWEB)

    Signorelli, G., E-mail: giovanni.signorelli@pi.infn.it [INFN Sezione di Pisa, Largo B. Pontecorvo 3, 56127 Pisa (Italy); Baldini, A.M. [INFN Sezione di Pisa, Largo B. Pontecorvo 3, 56127 Pisa (Italy); Bemporad, C. [INFN Sezione di Pisa, Largo B. Pontecorvo 3, 56127 Pisa (Italy); Università di Pisa, Dipartimento di Fisica, Largo B. Pontecorvo 3, 56127 Pisa (Italy); Biasotti, M. [INFN Sezione di Genova and Università degli studi di Genova, Via Dodecaneso 33, 16146 Genova (Italy); Cei, F. [INFN Sezione di Pisa, Largo B. Pontecorvo 3, 56127 Pisa (Italy); Università di Pisa, Dipartimento di Fisica, Largo B. Pontecorvo 3, 56127 Pisa (Italy); Ceriale, V.; Corsini, D.; Fontanelli, F. [INFN Sezione di Genova and Università degli studi di Genova, Via Dodecaneso 33, 16146 Genova (Italy); Galli, L.; Gallucci, G. [INFN Sezione di Pisa, Largo B. Pontecorvo 3, 56127 Pisa (Italy); Gatti, F. [INFN Sezione di Genova and Università degli studi di Genova, Via Dodecaneso 33, 16146 Genova (Italy); Incagli, M.; Grassi, M. [INFN Sezione di Pisa, Largo B. Pontecorvo 3, 56127 Pisa (Italy); Nicolò, D. [INFN Sezione di Pisa, Largo B. Pontecorvo 3, 56127 Pisa (Italy); Università di Pisa, Dipartimento di Fisica, Largo B. Pontecorvo 3, 56127 Pisa (Italy); Spinella, F. [INFN Sezione di Pisa, Largo B. Pontecorvo 3, 56127 Pisa (Italy); Vaccaro, D. [INFN Sezione di Pisa, Largo B. Pontecorvo 3, 56127 Pisa (Italy); Università di Pisa, Dipartimento di Fisica, Largo B. Pontecorvo 3, 56127 Pisa (Italy); Venturini, M. [INFN Sezione di Pisa, Largo B. Pontecorvo 3, 56127 Pisa (Italy); Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa (Italy)

    2016-07-11

    We present the design, implementation and first tests of the superconducting LC filters for the frequency domain readout of spiderweb TES bolometers of the SWIPE experiment on the balloon-borne LSPE mission which aims at measuring the linear polarization of the Cosmic Microwave Background at large angular scales to find the imprint of inflation on the B-mode CMB polarization. LC filters are designed, produced and tested at the INFN sections of Pisa and Genoa where thin film deposition and cryogenic test facilities are present, and where also the TES spiderweb bolometers are being produced.

  7. The transparency of the universe for very high energy gamma-rays

    CERN Document Server

    Horns, D

    2016-01-01

    The propagation of very high energy gamma-rays ($E>100$~GeV) over cosmological distances is suppressed by pair-production processes with the ubiquitous extra-galactic soft photon background, mainly in the optical to near infra-red. The detailed spectroscopy of gamma-ray emitting blazars has revealed the signature of this absorption process leading to a meaningful measurement of the background photon field which is linked to the star-forming history of the universe. Deviations from the expected absorption have been claimed in the past. Here the status of the observations is summarized, an update on the search for the persisting anomalous transparency is given and discussed.

  8. Observations of the Prompt Gamma-Ray Emission of GRB 070125

    CERN Document Server

    Bellm, Eric C; Pal'shin, Valentin; Yamaoka, Kazutaka; Bandstra, Mark E; Boggs, Steven E; Hong, Soojing; Kodaka, Natsuki; Kozyrev, A S; Litvak, M L; Mitrofanov, I G; Nakagawa, Yujin E; Ohno, Masanori; Onda, Kaori; Sanin, A B; Sugita, Satoshi; Tashiro, Makoto; Tretyakov, V I; Urata, Yuji; Wigger, Claudia

    2007-01-01

    The long, bright gamma-ray burst GRB 070125 was localized by the Interplanetary Network. We present light curves of the prompt gamma-ray emission as observed by Konus-WIND, RHESSI, Suzaku-WAM, and Swift-BAT. We detail the results of joint spectral fits with Konus and RHESSI data. The burst shows moderate hard-to-soft evolution in its multi-peaked emission over a period of about one minute. The total burst fluence as observed by Konus is $1.75 \\times 10^{-4}$ erg/cm$^2$ (20 keV-10 MeV). Using the spectroscopic redshift z = 1.547, we find that the burst is consistent with the Amati $E_{peak,i}-E_{iso}$ and the Ghirlanda $E_{peak,i}-E_\\gamma$ correlations.

  9. All-Sky Earth Occultation Observations with the Fermi Gamma Ray Burst Monitor

    CERN Document Server

    Wilson-Hodge, Colleen A; Bhat, P N; Briggs, M S; Chaplin, V; Connaughton, V; Camero-Arranz, A; Case, G; Cherry, M; Rodi, J; Finger, M H; Jenke, P; Haynes, R H

    2009-01-01

    Using the Gamma Ray Burst Monitor (GBM) on-board Fermi, we are monitoring the hard X-ray/soft gamma ray sky using the Earth occultation technique. Each time a source in our catalog enters or exits occultation by the Earth, we measure its flux using the change in count rates due to the occultation. Currently we are using CTIME data with 8 energy channels spanning 8 keV to 1 MeV for the GBM NaI detectors and spanning 150 keV to 40 MeV for the GBM BGO detectors. Our preliminary catalog consists of galactic X-ray binaries, the Crab Nebula, and active galactic nuclei. In addition, to Earth occultations, we have observed numerous occultations with Fermi's solar panels. We will present early results. Regularly updated results can be found on our website http://gammaray.nsstc.nasa.gov/gbm/science/occultation

  10. All-Sky Earth Occultation Observations with the Fermi Gamma-Ray Burst Monitor

    Science.gov (United States)

    Wilson-Hodge, C. A.; Beklen, E.; Bhat, P. N.; Briggs, M.; Camero-Arranz, A.; Case, G.; Jenke, P.; Chaplin, V.; Cherry, M.; Connaughton, V.; Finger, M.; Haynes, R. H.; Preece, R.; Rodi, J.

    2009-01-01

    Using the Gamma Ray Burst Monitor (GBM) on-board Fermi, we are monitoring the hard X-ray/ soft gamma ray sky using the Earth occultation technique. Each time a source in our catalog is occulted by (or exits occultation by) the Earth, we measure its flux using the change in count rates due to the occultation. Currently we are using CTIME data with 8 energy channels spanning 8 keV to 1 MeV for the GBM NaI detectors and spanning 150 keV to 40 MeV for the GBM BGO detectors. Our preliminary catalog consists of galactic X-ray binaries, the Crab Nebula, and active galactic nuclei. In addition, to Earth occultations, we have observed numerous occultations with Fermi's solar panels.

  11. Galactic sources of high energy neutrinos: Expectation from gamma-ray data

    CERN Document Server

    Sahakyan, N

    2015-01-01

    The recent results from ground based $\\gamma$-ray detectors (HESS, MAGIC, VERITAS) provide a population of TeV galactic $\\gamma$-ray sources which are potential sources of High Energy (HE) neutrinos. Since the $\\gamma$-rays and $\

  12. Gamma-ray astronomy: From Fermi up to the HAWC high-energy {gamma}-ray observatory in Sierra Negra

    Energy Technology Data Exchange (ETDEWEB)

    Carraminana, Alberto [Instituto Nacional de Astrofisica, Optica y Electronica Luis Enrique Erro 1, Tonantzintla, Puebla 72840 (Mexico); Collaboration: HAWC Collaboration

    2013-06-12

    Gamma-rays represent the most energetic electromagnetic window for the study of the Universe. They are studied both from space at MeV and GeV energies, with instruments like the Fermi{gamma}-ray Space Telescope, and at TeV energies with ground based instruments profiting of particle cascades in the atmosphere and of the Cerenkov radiation of charged particles in the air or in water. The Milagro gamma-ray observatory represented the first instrument to successfully implement the water Cerenkov technique for {gamma}-ray astronomy, opening the ground for the more sensitive HAWC {gamma}-ray observatory, currently under development in the Sierra Negra site and already providing early science results.

  13. ICF gamma-ray reaction history diagnostics

    Science.gov (United States)

    Herrmann, H. W.; Young, C. S.; Mack, J. M.; Kim, Y. H.; McEvoy, A.; Evans, S.; Sedillo, T.; Batha, S.; Schmitt, M.; Wilson, D. C.; Langenbrunner, J. R.; Malone, R.; Kaufman, M. I.; Cox, B. C.; Frogget, B.; Miller, E. K.; Ali, Z. A.; Tunnell, T. W.; Stoeffl, W.; Horsfield, C. J.; Rubery, M.

    2010-08-01

    Reaction history measurements, such as nuclear bang time and burn width, are fundamental components of diagnosing ICF implosions and will be employed to help steer the National Ignition Facility (NIF) towards ignition. Fusion gammas provide a direct measure of nuclear interaction rate (unlike x-rays) without being compromised by Doppler spreading (unlike neutrons). Gas Cherenkov Detectors that convert fusion gamma rays to UV/visible Cherenkov photons for collection by fast optical recording systems have established their usefulness in illuminating ICF physics in several experimental campaigns at OMEGA. In particular, bang time precision better than 25 ps has been demonstrated, well below the 50 ps accuracy requirement defined by the NIF. NIF Gamma Reaction History (GRH) diagnostics are being developed based on optimization of sensitivity, bandwidth, dynamic range, cost, and NIF-specific logistics, requirements and extreme radiation environment. Implementation will occur in two phases. The first phase consists of four channels mounted to the outside of the target chamber at ~6 m from target chamber center (GRH-6m) coupled to ultra-fast photo-multiplier tubes (PMT). This system is intended to operate in the 1013-1017 neutron yield range expected during the early THD campaign. It will have high enough bandwidth to provide accurate bang times and burn widths for the expected THD reaction histories (> 80 ps fwhm). Successful operation of the first GRH-6m channel has been demonstrated at OMEGA, allowing a verification of instrument sensitivity, timing and EMI/background suppression. The second phase will consist of several channels located just inside the target bay shield wall at 15 m from target chamber center (GRH-15m) with optical paths leading through the cement shield wall to well-shielded streak cameras and PMTs. This system is intended to operate in the 1016-1020 yield range expected during the DT ignition campaign, providing higher temporal resolution for the

  14. Radiative striped wind model for gamma-ray bursts

    Science.gov (United States)

    Bégué, D.; Pe'er, A.; Lyubarsky, Y.

    2017-01-01

    In this paper we revisit the striped wind model in which the wind is accelerated by magnetic reconnection. In our treatment, radiation is included as an independent component, and two scenarios are considered. In the first one, radiation cannot stream efficiently through the reconnection layer, while the second scenario assumes that radiation is homogeneous in the striped wind. We show how these two assumptions affect the dynamics. In particular, we find that the asymptotic radial evolution of the Lorentz factor is not strongly modified whether radiation can stream through the reconnection layer or not. On the other hand, we show that the width, density and temperature of the reconnection layer are strongly dependent on these assumptions. We then apply the model to the gamma-ray burst context and find that photons cannot diffuse efficiently through the reconnection layer below radius r_D^{Δ } ˜ 10^{10.5} cm, which is about an order of magnitude below the photospheric radius. Above r_D^{Δ }, the dynamics asymptotes to the solution of the scenario in which radiation can stream through the reconnection layer. As a result, the density of the current sheet increases sharply, providing efficient photon production by the Bremsstrahlung process which could have profound influence on the emerging spectrum. This effect might provide a solution to the soft photon problem in GRBs.

  15. Energetic solar electron spectra and gamma-ray observations

    Science.gov (United States)

    Dröge, Wolfgang

    1996-06-01

    We analyze solar energetic electron events measured with particle detectors on board of the ISEE-3 (ICE) and Helios 1 and 2 spacecraft. Energy spectra in the range 0.1 to tens of MeV are generated applying the results of a careful re-examination of the electron response function of the instruments. The spectral shapes of events observed simultaneously, among them five on all three s/c, are in very good agreement inspite of the sometimes considerable difference in azimuthal and radial distances of the s/c with respect to the flare. These findings suggest that transport processes at the Sun and in the interplanetary medium depend only weakly on the electron energy and that the observed spectra are representative of the accelerated electron spectra at the Sun. A comparison of the electron spectra with SMM gamma-ray spectra gives evidence for the existence of different acceleration and emission mechanism in flares with long (LDEs) and short duration (SDEs) soft X-ray emission.

  16. Possible distance indicators in gamma-ray pulsars

    Institute of Scientific and Technical Information of China (English)

    Wei Wang

    2011-01-01

    Distance measurement of gamma-ray pulsars is a current challenge in pulsar studies. The Large Area Telescope (LAT) aboard the Fermi gamma-ray observatory discovered more than 70 gamma-ray pulsars including 24 new gamma-selected pulsars with almost no distance information. We study the relation between gammaray emission efficiency (η = Lγ/E) and pulsar parameters for young radio-selected gamma-ray pulsars with known distance information in the first gamma-ray pulsar catalog reported by Fermi/LAT. We have introduced three generation-order parameters to describe the gamma-ray emission properties of pulsars, and find a strong correlation of rη- ζ3, a generation-order parameter which reflects γ-ray photon generation in the pair cascade processes induced by magnetic field absorption in a pulsar's magnetosphere.A good correlation of η- BLC, the magnetic field at the light cylinder radius, is also found. These correlations are the distance indicators in gamma-ray pulsars used to evaluate distances for gamma-selected pulsars. Distances of 25 gamma-selected pulsars are estimated, which could be tested by other distance measurement methods. The physical origin of the correlations may also be interesting for pulsar studies.

  17. X-ray and gamma ray astronomy detectors

    Science.gov (United States)

    Decher, Rudolf; Ramsey, Brian D.; Austin, Robert

    1994-01-01

    X-ray and gamma ray astronomy was made possible by the advent of space flight. Discovery and early observations of celestial x-rays and gamma rays, dating back almost 40 years, were first done with high altitude rockets, followed by Earth-orbiting satellites> once it became possible to carry detectors above the Earth's atmosphere, a new view of the universe in the high-energy part of the electromagnetic spectrum evolved. Many of the detector concepts used for x-ray and gamma ray astronomy were derived from radiation measuring instruments used in atomic physics, nuclear physics, and other fields. However, these instruments, when used in x-ray and gamma ray astronomy, have to meet unique and demanding requirements related to their operation in space and the need to detect and measure extremely weak radiation fluxes from celestial x-ray and gamma ray sources. Their design for x-ray and gamma ray astronomy has, therefore, become a rather specialized and rapidly advancing field in which improved sensitivity, higher energy and spatial resolution, wider spectral coverage, and enhanced imaging capabilities are all sought. This text is intended as an introduction to x-ray and gamma ray astronomy instruments. It provides an overview of detector design and technology and is aimed at scientists, engineers, and technical personnel and managers associated with this field. The discussion is limited to basic principles and design concepts and provides examples of applications in past, present, and future space flight missions.

  18. GLAST and Ground-Based Gamma-Ray Astronomy

    Science.gov (United States)

    McEnery, Julie

    2008-01-01

    The launch of the Gamma-ray Large Area Space Telescope together with the advent of a new generation of ground-based gamma-ray detectors such as VERITAS, HESS, MAGIC and CANGAROO, will usher in a new era of high-energy gamma-ray astrophysics. GLAST and the ground based gamma-ray observatories will provide highly complementary capabilities for spectral, temporal and spatial studies of high energy gamma-ray sources. Joint observations will cover a huge energy range, from 20 MeV to over 20 TeV. The LAT will survey the entire sky every three hours, allowing it both to perform uniform, long-term monitoring of variable sources and to detect flaring sources promptly. Both functions complement the high-sensitivity pointed observations provided by ground-based detectors. Finally, the large field of view of GLAST will allow a study of gamma-ray emission on large angular scales and identify interesting regions of the sky for deeper studies at higher energies. In this poster, we will discuss the science returns that might result from joint GLAST/ground-based gamma-ray observations and illustrate them with detailed source simulations.

  19. The Gamma-ray Albedo of the Moon

    Energy Technology Data Exchange (ETDEWEB)

    Moskalenko, Igor V.; /Stanford U., HEPL; Porter, Troy A.; /UC, Santa Cruz

    2007-09-28

    We use the GEANT4 Monte Carlo framework to calculate the {gamma}-ray albedo of the Moon due to interactions of cosmic ray (CR) nuclei with moon rock. Our calculation of the albedo spectrum agrees with the EGRET data. We show that the spectrum of {gamma}-rays from the Moon is very steep with an effective cutoff around 3-4 GeV (600 MeV for the inner part of the Moon disk) and exhibits a narrow pion-decay line at 67.5 MeV, perhaps unique in astrophysics. Apart from other astrophysical sources, the albedo spectrum of the Moon is well understood, including its absolute normalization; this makes it a useful 'standard candle' for {gamma}-ray telescopes. The steep albedo spectrum also provides a unique opportunity for energy calibration of {gamma}-ray telescopes, such as the forthcoming Gamma Ray Large Area Space Telescope (GLAST). Since the albedo flux depends on the incident CR spectrum which changes over the solar cycle, it is possible to monitor the CR spectrum using the albedo {gamma}-ray flux. Simultaneous measurements of CR proton and helium spectra by the Payload for Antimatter-Matter Exploration and Light-nuclei Astrophysics (PAMELA), and observations of the albedo {gamma}-rays by the GLAST Large Area Telescope (LAT), can be used to test the model predictions and will enable the LAT to monitor the CR spectrum near the Earth beyond the lifetime of the PAMELA.

  20. NDA via gamma-ray active and passive computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Decman, D.J.; Martz, H.E.; Roberson, G.P.; Johansson, E.

    1996-10-01

    Gamma-ray-based computed tomography (CT) requires that two different measurements be made on a closed waste container. [MAR92 and ROB94] When the results from these two measurements are combined, it becomes possible to identify and quantify all detectable gamma-ray emitting radioisotopes within a container. All measurements are made in a tomographic manner, i.e., the container is moved sequentially through well- known and accurately reproducible translation, rotation, and elevation positions in order to obtain gamma-ray data that is reconstructed by computer into images that represent waste contents. [ROB94] The two measurements modes are called active (A) and passive (P) CT. In the ACT mode, a collimated gamma-ray source external to the waste container emits multiple, mono-energetic gamma rays that pass through the container and are detected on the opposite side. The attenuated gamma-rays transmitted are measured as a function of both energy and position of the container. Thus, container contents are `mapped` via the measured amount of attenuation suffered at each gamma-ray energy. In effect, a three dimensional (3D) image of gamma- ray attenuation versus waste content is obtained. In the PCT measurement mode, the external radioactive source is shuttered turned- off, and the waste container, is moved through similar positions used for the ACT measurements. However, this time the radiation detectors record any gamma-rays emitted by radioactive sources on the inside of the waste container. Thus, internal radioactive content is mapped or 3D-imaged in the same tomographic manner as the attenuating matrix materials were in the ACT measurement mode.

  1. The design and development of a high-resolution visible-to-near-UV telescope for balloon-borne astronomy: SuperBIT

    CERN Document Server

    Romualdez, L Javier; Clark, Paul; Damaren, Christopher J; Eifler, Tim; Fraisse, Aurelien A; Galloway, Mathew N; Hartley, John W; Jones, William C; Li, Lun; Lipton, Leeav; Luu, Thuy Vy T; Massey, Richard J; Netterfield, C Barth; Padilla, Ivan; Rhodes, Jason D; Schmoll, Jürgen

    2016-01-01

    Balloon-borne astronomy is unique in that it allows for a level of image stability, resolution, and optical backgrounds that are comparable to space-borne systems due to greatly reduced atmospheric interference, but at a fraction of the cost and over a significantly reduced development time-scale. Instruments operating within visible-to-near-UV bands ($300$ - $900$ um) can achieve a theoretical diffraction limited resolution of $0.01"$ from the stratosphere ($35$ - $40$ km altitude) without the need for extensive adaptive optical systems required by ground-based systems. The {\\it Superpressure Balloon-borne Imaging Telescope} ("SuperBIT") is a wide-field imager designed to achieve 0.02$"$ stability over a 0.5$^\\circ$ field-of-view, for deep single exposures of up to 5 minutes. SuperBIT is thus well-suited for many astronomical observations, from solar or extrasolar planetary observations, to resolved stellar populations and distant galaxies (whether to study their morphology, evolution, or gravitational lensi...

  2. Photospheric Emission in Gamma-Ray Bursts

    CERN Document Server

    Pe'er, Asaf

    2016-01-01

    A major breakthrough in our understanding of gamma-ray bursts (GRB) prompt emission physics occurred in the last few years, with the realization that a thermal component accompanies the over-all non-thermal prompt spectra. This thermal part is important by itself, as it provides direct probe of the physics in the innermost outflow regions. It further has an indirect importance, as a source of seed photons for inverse-Compton scattering, thereby it contributes to the non-thermal part as well. In this short review, we highlight some key recent developments. Observationally, although so far it was clearly identified only in a minority of bursts, there are indirect evidence that thermal component exists in a very large fraction of GRBs, possibly close to 100%. Theoretically, the existence of thermal component have a large number of implications as a probe of underlying GRB physics. Some surprising implications include its use as a probe of the jet dynamics, geometry and magnetization.

  3. Neutrino astronomy and gamma-ray bursts

    CERN Document Server

    Waxman, E

    2007-01-01

    The construction of large volume detectors of high energy, >1 TeV, neutrinos is mainly driven by the search for extra-Galactic neutrino sources. The existence of such sources is implied by observations of ultra-high energy, >10^{19} eV, cosmic-rays, the origin of which is a mystery. In this lecture I briefly discuss the expected extra-Galactic neutrino signal and the current state of the experimental efforts. Neutrino emission from gamma-ray bursts (GRBs), which are likely sources of both high energy protons and neutrinos, is discussed in some detail. The detection of the predicted GRB neutrino signal, which may become possible in the coming few years, will allow one to identify the sources of ultra-high energy cosmic-rays and to resolve open questions related to the underlying physics of GRB models. Moreover, detection of GRB neutrinos will allow one to test for neutrino properties (e.g. flavor oscillations and coupling to gravity) with an accuracy many orders of magnitude better than is currently possible.

  4. Short-Duration Gamma-Ray Bursts

    CERN Document Server

    Berger, Edo

    2013-01-01

    Gamma-ray bursts (GRBs) display a bimodal duration distribution, with a separation between the short- and long-duration bursts at about 2 sec. The progenitors of long GRBs have been identified as massive stars based on their association with Type Ic core-collapse supernovae, their exclusive location in star-forming galaxies, and their strong correlation with bright ultraviolet regions within their host galaxies. Short GRBs have long been suspected on theoretical grounds to arise from compact object binary mergers (NS-NS or NS-BH). The discovery of short GRB afterglows in 2005, provided the first insight into their energy scale and environments, established a cosmological origin, a mix of host galaxy types, and an absence of associated supernovae. In this review I summarize nearly a decade of short GRB afterglow and host galaxy observations, and use this information to shed light on the nature and properties of their progenitors, the energy scale and collimation of the relativistic outflow, and the properties ...

  5. The SVOM gamma-ray burst mission

    CERN Document Server

    Cordier, B; Atteia, J -L; Basa, S; Claret, A; Daigne, F; Deng, J; Dong, Y; Godet, O; Goldwurm, A; Götz, D; Han, X; Klotz, A; Lachaud, C; Osborne, J; Qiu, Y; Schanne, S; Wu, B; Wang, J; Wu, C; Xin, L; Zhang, B; Zhang, S -N

    2015-01-01

    We briefly present the science capabilities, the instruments, the operations, and the expected performance of the SVOM mission. SVOM (Space-based multiband astronomical Variable Objects Monitor) is a Chinese-French space mission dedicated to the study of Gamma-Ray Bursts (GRBs) in the next decade. The SVOM mission encompasses a satellite carrying four instruments to detect and localize the prompt GRB emission and measure the evolution of the afterglow in the visible band and in X-rays, a VHF communication system enabling the fast transmission of SVOM alerts to the ground, and a ground segment including a wide angle camera and two follow-up telescopes. The pointing strategy of the satellite has been optimized to favor the detection of GRBs located in the night hemisphere. This strategy enables the study of the optical emission in the first minutes after the GRB with robotic observatories and the early spectroscopy of the optical afterglow with large telescopes to measure the redshifts. The study of GRBs in the...

  6. Sensitivity of HAWC to gamma ray bursts

    Science.gov (United States)

    Taboada, Ignacio; HAWC Collaboration

    2012-12-01

    HAWC is a ground based very high-energy gamma ray detector under construction in Mexico at an altitude of 4100 m a.s.l. Higher altitude, improved design and a larger physical size used to reject CR background, make HAWC 10-20 times more sensitive than its predecessor Milagro. HAWC's large field of view, ~2sr, and over 90% duty cycle make it ideal to search for GRBs. We review the sensitivity of HAWC to GRBs with two independent data acquisition systems. We show that some of the brightest GRBs observed by Fermi LAT (e.g. GRB 090510) could result in >5 σ observation by HAWC. The observations (or limits) of GRBs by HAWC will provide information on the high-energy spectra of GRBs. The high-energy spectra will teach us about extra galactic background light, the Lorentz boost factor of the jets tha power GRBs and/or particle acceleration models of GRBs. Finally we present limits on > 10 GeV emission from GRB 111016B, recently studied with HAWC's engineering array VAMOS.

  7. The Nature of Gamma Ray Burst Supernovae

    CERN Document Server

    Cano, Zach

    2012-01-01

    Gamma Ray Bursts (GRBs) and Supernovae (SNe) are among the brightest and most energetic physical processes in the universe. It is known that core-collapse SNe arise from the gravitational collapse and subsequent explosion of massive stars (the progen- itors of nearby core-collapse SNe have been imaged and unambiguously identified). It is also believed that the progenitors of long-duration GRBs (L-GRBs) are massive stars, mainly due to the occurrence and detection of very energetic core-collapse su- pernovae that happen both temporally and spatially coincident with most L-GRBs. However many outstanding questions regarding the nature of these events exist: How massive are the progenitors? What evolutionary stage are they at when they explode? Do they exist as single stars or in binary systems (or both, and to what fractions)? The work presented in this thesis attempts to further our understanding at the types of progenitors that give rise to long-duration GRB supernovae (GRB-SNe). This work is based on optical ...

  8. Gamma-Ray Bursts: Should cosmologists care?

    Science.gov (United States)

    Laros, J. G.

    1996-03-01

    Gamma-Ray Burst (GRB) locations are distributed isotropically on the sky, but the intensity distribution of the bursts seems clearly incompatible with spatial homogeneity. Of the scenarios that attempt to provide an explanation, there are two that enjoy current popularity: (1) GRBs are produced by high-velocity neutron stars that have formed an extended (˜100 kpc) spherical halo or “corona” around our galaxy. (2) The bursters are at cosmological distances, with redshifts near unity for the weaker events. The major evidence used to argue for or against each of these scenarios remains inconclusive. Assuming, not unreasonably, that the cosmological scenario is correct, one can discuss the advantages and disadvantages of studying GRBs as opposed to other objects at moderate redshift. We find that the advantages of GRBs-high intensity, penetrating radiation, rapid variability, and no expected source evolution-are offset by observational difficulties pertaining to the extraction of cosmological information from GRB data. If the cosmological scenario proves to be correct and if the observational difficulties are overcome, then cosmologists certainly should care.

  9. Blueshifting may explain the gamma ray bursts

    CERN Document Server

    Krasiński, Andrzej

    2015-01-01

    It is shown that the basic observed properties of the gamma-ray bursts (GRBs) are accounted for if one assumes that the GRBs arise by blueshifting the emission radiation of hydrogen and helium generated during the last scattering epoch. The blueshift generator for a single GRB is a Lema\\^{\\i}tre -- Tolman (L--T) region with a nonconstant bang-time function $t_B(r)$ matched into a Friedmann background. Blueshift visible to the observer arises \\textit{only on radial rays} that are emitted in the L--T region. The paper presents three L--T models with different Big Bang profiles, adapted for the highest and the lowest end of the GRB frequency range. The models account for: (1) The observed frequency range of the GRBs; (2) Their limited duration; (3) The afterglows; (4) Their hypothetical collimation into narrow jets; (5) The large distances to their sources; (6) The multitude of the observed GRBs. Properties (2), (3) and (6) are accounted for only qualitatively. With a small correction of the parameters of the mo...

  10. Studying the WHIM with Gamma Ray Bursts

    CERN Document Server

    Branchini, E; Corsi, A; Martizzi, D; Amati, L; Herder, J W den; Galeazzi, M; Gendre, B; Kaastra, J; Moscardini, L; Nicastro, F; Ohashi, T; Paerels, F; Piro, L; Roncarelli, M; Takei, Y; Viel, M

    2009-01-01

    We assess the possibility to detect and characterize the physical state of the missing baryons at low redshift by analyzing the X-ray absorption spectra of the Gamma Ray Burst [GRB] afterglows, measured by a micro calorimeters-based detector with 3 eV resolution and 1000 cm2 effective area and capable of fast re-pointing, similar to that on board of the recently proposed X-ray satellites EDGE and XENIA. For this purpose we have analyzed mock absorption spectra extracted from different hydrodynamical simulations used to model the properties of the Warm Hot Intergalactic Medium [WHIM]. These models predict the correct abundance of OVI absorption lines observed in UV and satisfy current X-ray constraints. According to these models space missions like EDGE and XENIA should be able to detect about 60 WHIM absorbers per year through the OVII line. About 45 % of these have at least two more detectable lines in addition to OVII that can be used to determine the density and the temperature of the gas. Systematic error...

  11. Swift observations of gamma-ray bursts.

    Science.gov (United States)

    Gehrels, Neil

    2007-05-15

    Since its launch on 20 November 2004, the Swift mission has been detecting approximately 100 gamma-ray bursts (GRBs) each year, and immediately (within approx. 90s) starting simultaneous X-ray and UV/optical observations of the afterglow. It has already collected an impressive database, including prompt emission to higher sensitivities than BATSE, uniform monitoring of afterglows and a rapid follow-up by other observatories notified through the GCN. Advances in our understanding of short GRBs have been spectacular. The detection of X-ray afterglows has led to accurate localizations and the conclusion that short GRBs can occur in non-star-forming galaxies or regions, whereas long GRBs are strongly concentrated within the star-forming regions. This is consistent with the NS merger model. Swift has greatly increased the redshift range of GRB detection. The highest redshift GRBs, at z approximately 5-6, are approaching the era of reionization. Ground-based deep optical spectroscopy of high redshift bursts is giving metallicity measurements and other information on the source environment to a much greater distance than other techniques. The localization of GRB 060218 to a nearby galaxy, and the association with SN 2006aj, added a valuable member to the class of GRBs with detected supernova.

  12. Novel Features of Gamma Ray from Dark Matter

    CERN Document Server

    Tang, Yong

    2015-01-01

    In this study, we present some general and novel features of gamma ray from dark matter. We find that gamma-ray spectra with sharp features exist in a wide class of dark matter models and mimic the gamma line signals. The generated gamma rays would generally have polynomial-type spectra or power-law with positive index. We illustrate our results in a model-independent framework with generic kinematic analysis. Similar results can also apply for cosmic rays or neutrino cases.

  13. Low permeability asphalt concrete gamma ray shielding properties.

    Science.gov (United States)

    Binney, S E; Sykes, K L

    1997-01-01

    Energy-dependent gamma ray shielding properties were measured as a function of gamma ray energy for a low permeability asphalt concrete that is used as a cap to prevent water infiltration into radioactive waste sites. Experimental data were compared to ISO-PC point kernel shielding calculations. Calculated dose equivalent rates compared well with experimental values, especially considering the poor detector resolution involved. The shielding properties of the asphalt concrete closely resembled those of aluminum. The results presented can be used to determine the asphalt concrete thickness required to reduce dose equivalent rates from several gamma ray emitting radionuclides.

  14. The STACEE-32 Ground Based Gamma-ray Detector

    CERN Document Server

    Hanna, D S; Boone, L M; Chantell, M C; Conner, Z; Covault, C E; Dragovan, M; Fortin, P; Gregorich, D T; Hinton, J A; Mukherjee, R; Ong, R A; Oser, S; Ragan, K; Scalzo, R A; Schütte, D R; Theoret, C G; Tümer, T O; Williams, D A; Zweerink, J A

    2002-01-01

    We describe the design and performance of the Solar Tower Atmospheric Cherenkov Effect Experiment detector in its initial configuration (STACEE-32). STACEE is a new ground-based gamma ray detector using the atmospheric Cherenkov technique. In STACEE, the heliostats of a solar energy research array are used to collect and focus the Cherenkov photons produced in gamma-ray induced air showers. The large Cherenkov photon collection area of STACEE results in a gamma-ray energy threshold below that of previous detectors.

  15. The STACEE Ground-Based Gamma-Ray Detector

    CERN Document Server

    Gingrich, D M; Bramel, D; Carson, J; Covault, C E; Fortin, P; Hanna, D S; Hinton, J A; Jarvis, A; Kildea, J; Lindner, T; Müller, C; Mukherjee, R; Ong, R A; Ragan, K; Scalzo, R A; Theoret, C G; Williams, D A; Zweerink, J A

    2005-01-01

    We describe the design and performance of the Solar Tower Atmospheric Cherenkov Effect Experiment (STACEE) in its complete configuration. STACEE uses the heliostats of a solar energy research facility to collect and focus the Cherenkov photons produced in gamma-ray induced air showers. The light is concentrated onto an array of photomultiplier tubes located near the top of a tower. The large Cherenkov photon collection area of STACEE results in a gamma-ray energy threshold below that of previous ground-based detectors. STACEE is being used to observe pulsars, supernova remnants, active galactic nuclei, and gamma-ray bursts.

  16. Gamma rays from muon capture in {sup 14}N

    Energy Technology Data Exchange (ETDEWEB)

    Stocki, T.J. E-mail: trevor.stocki@crc.ca; Measday, D.F.; Gete, E.; Saliba, M.A.; Moftah, B.A.; Gorringe, T.P

    2002-01-14

    Many new {gamma}-rays have been observed, following muon capture on {sup 14}N. One had been reported before, and the low yield is confirmed, indicating that the nuclear structure of {sup 14}N is still not understood. Gamma rays from {sup 13}C resulting from the reaction {sup 14}N({mu}{sup -},{nu}n){sup 13}C compare favourably with states observed in the reaction {sup 14}N({gamma}, p){sup 13}C. More precise energies are also given for the 7017 and 6730 keV {gamma}-rays in {sup 14}C.

  17. Fundamental Physics With Cosmic High-Energy Gamma Rays

    CERN Document Server

    De Angelis, Alessandro

    2016-01-01

    High-energy photons (above the MeV) are a powerful probe for astrophysics and for fundamental physics under extreme conditions. During the recent years, our knowledge of the high-energy gamma-ray sky has impressively progressed thanks to the advent of new detectors for cosmic gamma rays, at ground (H.E.S.S., MAGIC, VERITAS, HAWC) and in space (AGILE, Fermi). This presentation reviews the present status of the studies of fundamental physics problems with high-energy gamma rays, and discusses the expected experimental developments.

  18. Constraining gamma-ray propagation on cosmic distances

    CERN Document Server

    Biteau, Jonathan

    2013-01-01

    Studying the propagation of gamma rays on cosmological distances encompasses a variety of scientific fields, focusing on diffuse radiation fields such as the extragalactic background light, on the probe of the magnetism of the Universe on large scales, and on physics beyond the standard models of cosmology and particle physics. The measurements, constraints and hints from observations of gamma-ray blazars by airborne and ground-based instruments are briefly reviewed. These observations point to gamma-ray cosmology as one of the major science cases of the Cherenkov Telescope Array, CTA.

  19. Photon energy conversion efficiency in gamma-ray spectrometry.

    Science.gov (United States)

    Švec, Anton

    2016-01-01

    Photon energy conversion efficiency coefficient is presented as the ratio of total energy registered in the collected spectrum to the emitted photon energy. This parameter is calculated from the conventional gamma-ray histogram and in principle is not affected by coincidence phenomena. This feature makes it particularly useful for calibration and measurement of radionuclide samples at close geometries. It complements the number of efficiency parameters used in gamma-ray spectrometry and can partly change the view as to how the gamma-ray spectra are displayed and processed.

  20. Recent Topics on Very High Energy Gamma-ray Astronomy

    CERN Document Server

    Mori, Masaki

    2008-01-01

    With the advent of imaging atmospheric Cherenkov telescopes in late 1980's, ground-based observation of TeV gamma-rays came into reality after struggling trials by pioneers for twenty years, and the number of gamma-ray sources detected at TeV energies has increased to be over seventy now. In this review, recent findings from ground-based very-high-energy gamma-ray observations are summarized (as of 2008 March), and up-to-date problems in this research field are presented.

  1. The Multiwavelength View of Gamma-Ray Loud AGN

    Science.gov (United States)

    Venters, Tonia

    2011-01-01

    The gamma-ray sky observed by the Fermi Large Area Telescope (Fermi-LAT) encodes much information about the high-energy processes in the universe. Of the extragalactic sources sources resolved by the Fermi-LAT, blazars comprise the class of gamma-ray emitters with the largest number of identified members. Unresolved blazars are expected to contribute significantly to the diffuse extragalactic gamma-ray emission. However, blazars are also broadband emitters (from radio to TeV energies), and as such the multiwavelength study of blazars can provide insight into the high-energy processes of the universe.

  2. Egret observations of the extragalactic gamma-ray emission

    DEFF Research Database (Denmark)

    Sreekumar, P.; Bertsch, D.L.; Dingus, B.L.

    1998-01-01

    with the local interstellar gas and radiation, as well as an almost uniformly distributed component that is generally believed to originate outside the Galaxy. Through a careful study and removal of the Galactic diffuse emission, the flux, spectrum, and uniformity of the extragalactic emission are deduced......The all-sky survey in high-energy gamma rays (E > 30 MeV) carried out by EGRET aboard the Compton Gamma Ray Observatory provides a unique opportunity to examine in detail the diffuse gamma-ray emission. The observed diffuse emission has a Galactic component arising from cosmic-ray interactions...

  3. Development of a Peltier-based chilled-mirror hygrometer and cloud particle counter for balloon-borne TTL observations

    Science.gov (United States)

    Sugidachi, T.; Arai, T.; Fujiwara, M.; Shimizu, K.; Ibata, K.; Kanai, Y.; Okumura, S.; Sagara, K.; Hayashi, M.

    2013-12-01

    Dehydration processes in the TTL determines the amount of water vapor entering the stratosphere. 'In-situ' measurements of water vapor and cloud particles in the TTL are still a technical challenge, and the observational evidence of dehydration is still limited. Accumulation of the observational data is thus necessary to improve the understanding of the TTL dehydration and transport processes. In this study, we have developed a hygrometer and cloud particle counter for balloon-born TTL observations. A Peltier-based digitally-controlled chilled-mirror hygrometer has been developed to measure atmospheric water vapor accurately. The developed sensor is environmentally-friendly and ease-to-handle in nature because this sensor does not use a cryogenic material to cool the mirror. In January of 2012 and 2013, we have conducted some flight tests at Biak, Indonesia (1.18°S, 136.11°E) under the Soundings of Ozone and Water in the Equatorial Region (SOWER) project to evaluate the performances of this sensor. The results of simultaneous measurements with the Cryogenic Frostpoint Hygrometer (CFH) showed that the frost point temperature from the developed sensor is consistent with that from CFH within ~0.5 K in the whole troposphere. In the stratosphere, however, it was found that the controller, which keeps the frost layer on the mirror constant, needs to be further improved. A cloud particle counter has also been developed to measure cloud-particle number density, size distribution, and the particle phase (i.e. liquid water or ice). It is a low-cost and light-weighted (~200 g) particle counter based on a pollen sensor to be used in an air purifier. This sensor consists of a light-emitting part (linearly-polarized light by laser diode) and two light-receiving parts (one detects scattering light directly, while the other detects scattering lights through a polarization plate to estimate the degree of polarization by particles). It is considered that the counts, magnitude of

  4. High-energy gamma-rays in the hard spectral state of Cyg X-1

    CERN Document Server

    Zdziarski, Andrzej A; Chernyakova, Maria; Pooley, Guy G

    2016-01-01

    We have obtained a firm detection of Cyg X-1 during its hard and intermediate spectral states in the energy range of 40 MeV--60 GeV based on observations by Fermi Large Area Telescope, confirming the independent results at $\\geq$60 MeV of Zanin et al. The detection significance is $\\simeq\\! 8\\sigma$ in the 0.1--10 GeV range. In the soft state, we have found upper limits on the emission at energies $\\geq$0.2 MeV, also in agreement with Zanin et al. However, we have found emission with a very soft spectrum in the 40--80 MeV range, not detected previously. This is likely to represent the high-energy cutoff of the high-energy power-law tail observed in the soft state. Similarly, we have detected a $\\gamma$-ray soft excess in the hard state, which appears to be of similar origin. We have also confirmed the presence of an orbital modulation of the detected emission in the hard state, expected if the $\\gamma$-rays are from Compton upscattering of stellar blackbody photons. However, the observed modulation is signifi...

  5. Multiwavelength observations of the gamma-ray emitting narrow-line Seyfert 1 PMN J0948+0022 in 2011

    CERN Document Server

    D'Ammando, F; Orienti, M; Raiteri, C M; Angelakis, E; Carraminana, A; Carrasco, L; Drake, A J; Fuhrmann, L; Giroletti, M; Hovatta, T; Max-Moerbeck, W; Porras, A; Readhead, A C S; Recillas, E; Richards, J L

    2013-01-01

    We report on radio-to-gamma-ray observations during 2011 May-September of PMN J0948+0022, the first narrow-line Seyfert 1 (NLSy1) galaxy detected in gamma-rays by Fermi-LAT. Strong variability was observed in gamma-rays, with two flaring periods peaking on 2011 June 20 and July 28. The variability observed in optical and near-infrared seems to have no counterpart in gamma-rays. This different behaviour could be related to a bending and inhomogeneous jet or a turbulent extreme multi-cell scenario. The radio spectra showed a variability pattern typical of relativistic jets. The XMM spectrum shows that the emission from the jet dominates above 2 keV, while a soft X-ray excess is evident in the low-energy part of the X-ray spectrum. Models where the soft emission is partly produced by blurred reflection or Comptonisation of the thermal disc emission provide good fits to the data. The X-ray spectral slope is similar to that found in radio-quiet NLSy1, suggesting that a standard accretion disc is present, as expect...

  6. Study of silicon photomultipliers for the readout of scintillator crystals in the proposed GRIPS \\gamma-ray astronomy mission

    CERN Document Server

    Ulyanov, Alexei; McBreen, Sheila; Foley, Suzanne; Byrne, David

    2013-01-01

    Among the top priorities for high-energy astronomy in the coming decade are sensitive surveys in the hard X-ray/soft \\gamma-ray (10-600 keV) and medium-energy \\gamma-ray (0.2-80 MeV) bands. Historically, observations in the soft and medium energy \\gamma-ray bands have been conducted using detectors based on inorganic scintillators read out by photo-multiplier tubes (PMTs). These observations were limited by the modest energy and time resolution of traditional scintillator materials (e.g. NaI and CsI), and by the demands on mission resources imposed by the bulky, fragile, high-voltage PMTs. Recent technological advances in the development of both new scintillator materials (e.g. LaBr3:Ce, L(Y)SO) and new scintillation light readout devices (e.g. Silicon Photo-Multipliers) promise to greatly improve the observational capabilities of future scintillator-based \\gamma--ray telescopes, while retaining the relative simplicity, reliability, large collection volumes, and low-cost of scintillator instruments. We presen...

  7. SEARCHING FOR NEW {gamma}-RAY BLAZAR CANDIDATES IN THE THIRD PALERMO BAT HARD X-RAY CATALOG WITH WISE

    Energy Technology Data Exchange (ETDEWEB)

    Maselli, A.; Cusumano, G.; La Parola, V.; Segreto, A. [INAF-IASF Palermo, via U. La Malfa 153, I-90146 Palermo (Italy); Massaro, F. [SLAC National Accelerator Laboratory and Kavli Institute for Particle Astrophysics and Cosmology, 2575 Sand Hill Road, Menlo Park, CA 94025 (United States); D' Abrusco, R.; Paggi, A.; Smith, Howard A. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Tosti, G. [Dipartimento di Fisica, Universita degli Studi di Perugia, I-06123 Perugia (Italy)

    2013-06-01

    We searched for {gamma}-ray blazar candidates among the 382 unidentified hard X-ray sources of the third Palermo BAT Catalog (3PBC) obtained from the analysis of 66 months of Swift Burst Alert Telescope (BAT) survey data and listing 1586 sources. We adopted a recently developed association method based on the peculiar infrared colors that characterize the {gamma}-ray blazars included in the second catalog of active galactic nuclei detected by the Fermi Large Area Telescope. We used this method exploiting the data of the all-sky survey performed by the Wide-field Infrared Survey Explorer (WISE) to establish correspondences between unidentified 3PBC sources and WISE {gamma}-ray blazar candidates located within the BAT positional uncertainty region at a 99% confidence level. We obtained a preliminary list of candidates for which we analyzed all the available data in the Swift archive to complement the information in the literature and in the radio, infrared, and optical catalogs with the information on their optical-UV and soft X-ray emission. Requiring the presence of radio and soft X-ray counterparts consistent with the infrared positions of the selected WISE sources, as well as a blazar-like radio morphology, we finally obtained a list of 24 {gamma}-ray blazar candidates.

  8. Catalog of Short Gamma-Ray Transients Detected in the SPI/INTEGRAL Experiment

    CERN Document Server

    Minaev, P Yu; Molkov, S V; Grebenev, S A

    2014-01-01

    We analyzed data obtained by the SPI telescope onboard the INTEGRAL observatory to search for short transient events with a duration from 1 ms to a few tens of seconds. An algorithm for identifying gamma-ray events against the background of a large number of charged particle interactions with the detector has been developed. The classification of events was made. Apart from the events associated with cosmic gamma-ray bursts (GRBs) confirmed by other space experiments and the activity of known soft gamma repeaters (for example, SGR 1806-20), previously unreported GRBs have been found. GRB candidates and short gamma-ray events probably associated with the activity of known SGRs and AXPs have been selected. The spectral evolution of 28 bright GRBs from the catalog has been studied extensively. A new method for investigating the spectral evolution is proposed. The energy dependence of the spectral lag for bursts with a simple structure of their light curves and for individual pulses of multipulse events is shown ...

  9. Neutron-rich gamma-ray burst flows: dynamics and particle creation in neutron - proton collisions

    CERN Document Server

    Koers, H B J; Koers, Hylke B. J.; Giannios, Dimitrios

    2007-01-01

    We consider gamma-ray burst outflows with a substantial neutron component that are either dominated by thermal energy (fireballs) or by magnetic energy. In the latter case, we focus on the recently introduced `AC' model which relies on magnetic reconnection to accelerate the flow and power the prompt emission. For both the fireball and the AC model, we investigate the dynamical importance of neutrons on the outflow. We study particle creation in inelastic neutron - proton collisions and find that in both models the resulting neutrino emission is too weak to be detectable. The inelastic collisions also produce gamma-rays, which create pairs in interactions with soft photons carried with the flow. In magnetically driven outflows, the energy of these pairs is radiated away as synchrotron emission. The bulk of the emission takes place at a few hundred keV, which makes it difficult to disentangle this signal from the prompt emission. In fireballs, however, pair cascading leads to the emission of gamma-rays with ob...

  10. The Fermi Haze: A Gamma-Ray Counterpart to the Microwave Haze

    CERN Document Server

    Dobler, Gregory; Cholis, Ilias; Slatyer, Tracy R; Weiner, Neal

    2009-01-01

    The Fermi Gamma-Ray Space Telescope reveals a diffuse inverse Compton signal in the inner Galaxy with the same spatial morphology as the microwave haze observed by WMAP, confirming the synchrotron origin of the microwaves. Using spatial templates, we regress out pi0 gammas, as well as ICS and bremsstrahlung components associated with known soft-synchrotron counterparts. We find a significant gamma-ray excess towards the Galactic center with a spectrum that is significantly harder than other sky components and is most consistent with ICS from a hard population of electrons. The morphology and spectrum are consistent with it being the ICS counterpart to the electrons which generate the microwave haze seen at WMAP frequencies. In addition to confirming that the microwave haze is indeed synchrotron, the distinct spatial morphology and very hard spectrum of the ICS are evidence that the electrons responsible for the microwave and gamma-ray haze originate from a harder source than supernova shocks. We describe the ...

  11. Extragalactic Gamma-Ray Absorption and the Intrinsic Spectrum of Mkn 501 During the 1977 Flare

    CERN Document Server

    De Jager, O C

    2002-01-01

    Using the recent models of Malkan & Stecker (2001) for the infrared background radiation and extrapolating them into the optical and UV range using recent galaxy count data, we rederive the optical depth of the Universe to high energy gamma-rays as a function of energy and redshift for energies between 50 GeV and 100 TeV and redshifts between 0.03 and 0.3. We then use these results to derive the intrinsic gamma-ray spectrum of Mkn 501 during its 1997 high state. We find that the spectral energy distribution of Mkn 501 while flaring had a broad, flat peak in the 5-10 TeV range which corresponds to the broad, flat peak in the 50-100 keV range observed during the flare. The differential spectral index of our derived intrinsic gamma-ray spectrum at energies below about 2 TeV was found to be about 1.6 to 1.7. This corresponds to a time averaged index of 1.76 found in soft X-rays at energies below the X-ray synchrotron peak. These results appear to favor a synchrotron-self Compton origin for the TeV emission to...

  12. Observations of Gamma-ray Bursts with ASTRO-H and Fermi

    CERN Document Server

    Ohno, M; Tashiro, M S; Ueno, H; Yonetoku, D; Sameshima, H; Takahashi, T; Seta, H; Mushotzky, R; Yamaoka, K

    2015-01-01

    ASTRO-H, the sixth Japanese X-ray observatory, which is scheduled to be launched by the end of Japanese fiscal year 2015 has a capability to observe the prompt emission from Gamma-ray Bursts (GRBs) utilizing BGO active shields for the soft gamma-ray detector (SGD). The effective area of the SGD shield detectors is very large and its data acquisition system is optimized for short transients such as short GRBs. Thus, we expect to perform more detailed time-resolved spectral analysis with a combination of ASTRO-H and Fermi LAT/GBM to investigate the gamma-ray emission mechanism of short GRBs. In addition, the environment of the GRB progenitor should be a remarkable objective from the point of view of the chemical evolution of high-z universe. If we can maneuver the spacecraft to the GRBs, we can perform a high-resolution spectroscopy of the X-ray afterglow of GRBs utilizing the onboard micro calorimeter and X-ray CCD camera.

  13. The ECLAIRs telescope onboard the SVOM mission for gamma-ray burst studies

    CERN Document Server

    Schanne, Stephane

    2008-01-01

    The X- and gamma-ray telescope ECLAIRs onboard the future mission for gamma-ray burst studies SVOM (Space-based multi-band astronomical Variable Objects Monitor) is foreseen to operate in orbit from 2013 on. ECLAIRs will provide fast and accurate GRB triggers to other onboard telescopes, as well as to the whole GRB community, in particular ground-based follow-up telescopes. With its very low energy threshold ECLAIRs is particularly well suited for the detection of highly redshifted GRB. The ECLAIRs X- and gamma-ray imaging camera (CXG), used for GRB detection and localization, is combined with a soft X-ray telescope (SXT) for afterglow observations and position refinement. The CXG is a 2D-coded mask imager with a 1024 cm$^2$ detection plane made of 80$\\times$80 CdTe pixels, sensitive from 4 to 300 keV, with imaging capabilities up to about 120 keV and a localization accuracy better than 10 arcmin. The CXG permanently observes a 2 sr-wide field of the sky and provides photon data to the onboard science and tri...

  14. The AGATA Spectrometer: next generation gamma-ray spectroscopy

    Science.gov (United States)

    Simpson, J.; AGATA Collaboration

    2015-05-01

    The Advanced GAmma Tracking Array (AGATA) is a European project to develop and operate the next generation gamma-ray spectrometer. AGATA is based on the technique of gamma-ray energy tracking in electrically segmented high-purity germanium crystals. The spectrometer will have an unparalleled level of detection power for electromagnetic nuclear radiation. The tracking technique requires the accurate determination of the energy, time and position of every interaction as a gamma ray deposits its energy within the detector volume. Reconstruction of the full interaction path results in a detector with very high efficiency and excellent spectral response. The realisation of gamma-ray tracking and AGATA is a result of many technical advances and the spectrometer is now operational. AGATA has been operated in a series of scientific campaigns at Legnaro National Laboratory in Italy and GSI in Germany and is presently being assembled at GANIL in France. The status of the instrument will be reviewed.

  15. Wavelet-Based Techniques for the Gamma-Ray Sky

    CERN Document Server

    McDermott, Samuel D; Cholis, Ilias; Lee, Samuel K

    2015-01-01

    We demonstrate how the image analysis technique of wavelet decomposition can be applied to the gamma-ray sky to separate emission on different angular scales. New structures on scales that differ from the scales of the conventional astrophysical foreground and background uncertainties can be robustly extracted, allowing a model-independent characterization with no presumption of exact signal morphology. As a test case, we generate mock gamma-ray data to demonstrate our ability to extract extended signals without assuming a fixed spatial template. For some point source luminosity functions, our technique also allows us to differentiate a diffuse signal in gamma-rays from dark matter annihilation and extended gamma-ray point source populations in a data-driven way.

  16. Gamma-ray flares from the Crab Nebula.

    Science.gov (United States)

    Abdo, A A; Ackermann, M; Ajello, M; Allafort, A; Baldini, L; Ballet, J; Barbiellini, G; Bastieri, D; Bechtol, K; Bellazzini, R; Berenji, B; Blandford, R D; Bloom, E D; Bonamente, E; Borgland, A W; Bouvier, A; Brandt, T J; Bregeon, J; Brez, A; Brigida, M; Bruel, P; Buehler, R; Buson, S; Caliandro, G A; Cameron, R A; Cannon, A; Caraveo, P A; Casandjian, J M; Çelik, Ö; Charles, E; Chekhtman, A; Cheung, C C; Chiang, J; Ciprini, S; Claus, R; Cohen-Tanugi, J; Costamante, L; Cutini, S; D'Ammando, F; Dermer, C D; de Angelis, A; de Luca, A; de Palma, F; Digel, S W; do Couto e Silva, E; Drell, P S; Drlica-Wagner, A; Dubois, R; Dumora, D; Favuzzi, C; Fegan, S J; Ferrara, E C; Focke, W B; Fortin, P; Frailis, M; Fukazawa, Y; Funk, S; Fusco, P; Gargano, F; Gasparrini, D; Gehrels, N; Germani, S; Giglietto, N; Giordano, F; Giroletti, M; Glanzman, T; Godfrey, G; Grenier, I A; Grondin, M-H; Grove, J E; Guiriec, S; Hadasch, D; Hanabata, Y; Harding, A K; Hayashi, K; Hayashida, M; Hays, E; Horan, D; Itoh, R; Jóhannesson, G; Johnson, A S; Johnson, T J; Khangulyan, D; Kamae, T; Katagiri, H; Kataoka, J; Kerr, M; Knödlseder, J; Kuss, M; Lande, J; Latronico, L; Lee, S-H; Lemoine-Goumard, M; Longo, F; Loparco, F; Lubrano, P; Madejski, G M; Makeev, A; Marelli, M; Mazziotta, M N; McEnery, J E; Michelson, P F; Mitthumsiri, W; Mizuno, T; Moiseev, A A; Monte, C; Monzani, M E; Morselli, A; Moskalenko, I V; Murgia, S; Nakamori, T; Naumann-Godo, M; Nolan, P L; Norris, J P; Nuss, E; Ohsugi, T; Okumura, A; Omodei, N; Ormes, J F; Ozaki, M; Paneque, D; Parent, D; Pelassa, V; Pepe, M; Pesce-Rollins, M; Pierbattista, M; Piron, F; Porter, T A; Rainò, S; Rando, R; Ray, P S; Razzano, M; Reimer, A; Reimer, O; Reposeur, T; Ritz, S; Romani, R W; Sadrozinski, H F-W; Sanchez, D; Saz Parkinson, P M; Scargle, J D; Schalk, T L; Sgrò, C; Siskind, E J; Smith, P D; Spandre, G; Spinelli, P; Strickman, M S; Suson, D J; Takahashi, H; Takahashi, T; Tanaka, T; Thayer, J B; Thompson, D J; Tibaldo, L; Torres, D F; Tosti, G; Tramacere, A; Troja, E; Uchiyama, Y; Vandenbroucke, J; Vasileiou, V; Vianello, G; Vitale, V; Wang, P; Wood, K S; Yang, Z; Ziegler, M

    2011-02-11

    A young and energetic pulsar powers the well-known Crab Nebula. Here, we describe two separate gamma-ray (photon energy greater than 100 mega-electron volts) flares from this source detected by the Large Area Telescope on board the Fermi Gamma-ray Space Telescope. The first flare occurred in February 2009 and lasted approximately 16 days. The second flare was detected in September 2010 and lasted approximately 4 days. During these outbursts, the gamma-ray flux from the nebula increased by factors of four and six, respectively. The brevity of the flares implies that the gamma rays were emitted via synchrotron radiation from peta-electron-volt (10(15) electron volts) electrons in a region smaller than 1.4 × 10(-2) parsecs. These are the highest-energy particles that can be associated with a discrete astronomical source, and they pose challenges to particle acceleration theory.

  17. Public List of LAT-Detected Gamma-Ray Pulsars

    Data.gov (United States)

    National Aeronautics and Space Administration — The following is a compilation of all publicly-announced gamma-ray pulsars detected using the Fermi LAT. Each of the detections has been vetted by the LAT team,...

  18. Gamma-ray emission from individual classical novae

    CERN Document Server

    Gómez-Gomar, J; José, J; Isern, J

    1997-01-01

    Classical novae are important producers of radioactive nuclei, such as be7, n13, f18, na22 and al26. The disintegration of these nuclei produces positrons (except for be7) that through annihilation with electrons produce photons of energies 511 keV and below. Furthermore, be7 and na22 decay producing photons with energies of 478 keV and 1275 keV, respectively, well in the gamma-ray domain. Therefore, novae are potential sources of gamma-ray emission. The properties of gamma-ray spectra and gamma-ray light curves (for the continuum and for the lines at 511, 478 and 1275 keV) have been analyzed, with a special emphasis on the difference between carbon-oxygen and oxygen-neon novae. Predictions of detectability of individual novae by the future SPI spectrometer on board the INTEGRAL satellite are made.

  19. Status of space-based gamma-ray astronomy

    CERN Document Server

    Buehler, Rolf

    2015-01-01

    Gamma-ray observations give us a direct view into the most extreme environments of the universe. They help us to study astronomical particle accelerators as supernovae remnants, pulsars, active galaxies or gamma-ray bursts and help us to understand the propagation of cosmic rays through our Milky Way. This article summarizes the status of gamma-ray observations from space; it is the write-up of a rapporteur talk given at the 34th ICRC in The Hague, The Netherlands. The primary instrument used in the presented studies is the Large Area Telescope on-board the Fermi Spacecraft, which images the whole gamma-ray sky at photon energies between 20 MeV and 2 TeV. The Fermi mission is currently in its 8th year of observations. This article will review many of the exciting discoveries made in this time, focusing on the most recent ones.

  20. Fireball and cannonball models of gamma ray bursts confront observations

    OpenAIRE

    Dar, Arnon

    2005-01-01

    The two leading contenders for the theory of gamma-ray bursts (GRBs) and their afterglows, the Fireball and Cannonball models, are compared and their predictions are confronted, within space limitations, with key GRB observations, including recent observations with SWIFT

  1. Prompt Optical Observations of $\\gamma$-ray Bursts

    CERN Document Server

    Akerlof, Carl W; Barthelmy, S D; Bloch, J; Butterworth, P S; Casperson, D E; Cline, T; Fletcher, S; Frontera, F; Gisler, G; Heise, J; Hills, J; Hurley, K; Kehoe, R; Lee, B; Marshall, S; McKay, T; Pawl, A; Piro, L; Szymanski, J J; Wren, J; Akerlof, Carl; Balsano, Richard; Barthelmy, Scott; Bloch, Jeff; Butterworth, Paul; Casperson, Don; Cline, Tom; Fletcher, Sandra; Frontera, Fillippo; Gisler, Galen; Heise, John; Hills, Jack; Hurley, Kevin; Kehoe, Robert; Lee, Brian; Marshall, Stuart; Kay, Tim Mc; Pawl, Andrew; Piro, Luigi; Szymanski, John; Wren, Jim

    2000-01-01

    The Robotic Optical Transient Search Experiment (ROTSE) seeks to measure simultaneous and early afterglow optical emission from gamma-ray bursts (GRBs). A search for optical counterparts to six GRBs with localization errors of 1 square degree or better produced no detections. The earliest limiting sensitivity is m(ROTSE) > 13.1 at 10.85 seconds (5 second exposure) after the gamma-ray rise, and the best limit is m(ROTSE) > 16.0 at 62 minutes (897 second exposure). These are the most stringent limits obtained for GRB optical counterpart brightness in the first hour after the burst. Consideration of the gamma-ray fluence and peak flux for these bursts and for GRB990123 indicates that there is not a strong positive correlation between optical flux and gamma-ray emission.

  2. Location and origin of gamma-rays in blazars

    CERN Document Server

    Rani, B; Hodgson, J A; Zensus, J A

    2016-01-01

    One of the most intriguing and challenging quests of current astrophysics is to understand the physical conditions and processes responsible for production of high-energy particles, and emission of \\gamma-rays. A combination of high-resolution Very Long Baseline Interferometry (VLBI) images with broadband flux variability measurements is a unique way to probe the emission mechanisms at the bases of jets. Our analysis of \\gamma-ray flux variability observed by the Fermi-LAT (Large Area Telescope) along with the parsec-scale jet kinematics suggests that the $\\gamma$-ray emission in blazar S5 0716+714 has a significant correlation with the mm-VLBI core flux and the orientation of jet outflow on parsec scales. These results indicate that the inner jet morphology has a tight connection with the observed $\\gamma$-ray flares. An overview of our current understanding on high-energy radiation processes, their origin, and location is presented here.

  3. Gamma-ray emission profile measurements during JET ICRH discharges

    Energy Technology Data Exchange (ETDEWEB)

    Jarvis, O.N.; Marcus, F.B.; Sadler, G.; Van Belle, P. [Commission of the European Communities, Abingdon (United Kingdom). JET Joint Undertaking; Howarth, P.J.A. [Birmingham Univ. (United Kingdom); Adams, J.M.; Bond, D.S. [UKAEA Harwell Lab. (United Kingdom). Energy Technology Div.

    1994-07-01

    Gamma-ray emission from plasma-impurity reactions caused by minority ICRH accelerating fuel ions to MeV energies has been measured using the JET neutron profile monitor. A successful data analysis technique has been used to isolate the RF-induced gamma-ray emission that was detected, enabling profiles of gamma-ray emission to be obtained. The 2-d gamma-ray emission profiles show that virtually all the radiation originates from the low field side of the RF resonance layer, as expected from RF-induced pitch angle diffusion. The emission profiles indicate the presence of a small population of resonant {sup 3}He ions that possess orbits lying near the passing-trapped boundary. 6 refs., 4 figs.

  4. Gamma-rays from pulsar wind nebulae in starburst galaxies

    Science.gov (United States)

    Mannheim, Karl; Elsässer, Dominik; Tibolla, Omar

    2012-07-01

    Recently, gamma-ray emission at TeV energies has been detected from the starburst galaxies NGC253 (Acero et al., 2009) [1] and M82 (Acciari et al., 2009) [2]. It has been claimed that pion production due to cosmic rays accelerated in supernova remnants interacting with the interstellar gas is responsible for the observed gamma rays. Here, we show that the gamma-ray pulsar wind nebulae left behind by the supernovae contribute to the TeV luminosity in a major way. A single pulsar wind nebula produces about ten times the total luminosity of the Sun at energies above 1 TeV during a lifetime of 105 years. A large number of 3 × 104 pulsar wind nebulae expected in a typical starburst galaxy at a distance of 4 Mpc can readily produce the observed TeV gamma rays.

  5. Gamma-ray spectroscopy with relativistic exotic heavy-ions

    Indian Academy of Sciences (India)

    Samit Mandal; J Gerl; H Geissel; K Hauschild; M Hellström; Z Janas; I Kojouharov; Y Kopatch; R C Lemmon; P Mayet; Z Podolyak; P H Regan; H Schaffner; C Schlegel; J Simpson; H J Wollersheim

    2001-07-01

    Feasibility of gamma-ray spectroscopy at relativistic energies with exotic heavy-ions and new generation of germanium detectors (segmented Clover) is discussed. An experiment with such detector array and radioactive is discussed.

  6. Gamma-Ray Imager Polarimeter for Solar Flares Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose here to develop the Gamma-Ray Imager/Polarimeter for Solar flares (GRIPS), the next-generation instrument for high-energy solar observations. GRIPS will...

  7. MIRAX sensitivity for Gamma Ray Bursts

    Science.gov (United States)

    Sacahui, J. R.; Penacchioni, A. V.; Braga, J.; Castro, M. A.; D'Amico, F.

    2016-03-01

    In this work we present the detection capability of the MIRAX (Monitor e Imageador de RAios-X) experiment for Gamma-Ray Bursts (GRBs). MIRAX is an X-ray astronomy mission designed to perform a wide band hard X-ray (10-200 keV) survey of the sky, especially in the Galactic plane. With a total detection area of 169 cm2, large field of view (FoV, 20 ° × 20 °), angular resolution of 1°45‧ and good spectral and time resolution (∼8% at 60 keV, 10 μs), MIRAX will be optimized for the detection and study of transient sources, such as accreting neutron stars (NS), black holes (BH), Active Galactic Nuclei (AGNs), and both short and long GRBs. This is especially important because MIRAX is expected to operate in an epoch when probably no other hard X-ray wide-field imager will be active. We have performed detailed simulations of MIRAX GRB observations using the GEANT4 package, including the background spectrum and images of GRB sources in order to provide accurate predictions of the sensitivity for the expected GRB rate to be observed. MIRAX will be capable of detecting ∼44 GRBs per year up to redshifts of ∼4.5. The MIRAX mission will be able to contribute significantly to GRB science by detecting a large number of GRBs per year with wide band spectral response. The observations will contribute mainly to the part of GRB spectra where a thermal emission is predicted by the Fireball model. We also discuss the possibility of detecting GRB afterglows in the X-ray band with MIRAX.

  8. Dark matter properties implied by gamma ray interstellar emission models

    OpenAIRE

    Balázs, Csaba; Li, Tong

    2016-01-01

    We infer dark matter properties from gamma ray residuals extracted using eight different interstellar emission scenarios proposed by the Fermi-LAT Collaboration to explain the Galactic Center gamma ray excess. Adopting the most plausible simplified ansatz, we assume that the dark matter particle is a Majorana fermion interacting with standard fermions via a scalar mediator. Using this theoretical hypothesis and the Fermi residuals we calculate Bayesian evidences, including Fermi-LAT exclusion...

  9. $\\gamma$-rays and neutrinos from dark matter

    CERN Document Server

    Stecker, F W

    1996-01-01

    High energy gamma-rays and neutrinos can be produced both by the annihilation and by the possible slow decay of dark matter particles. We discuss the fluxes and spectra of such secondaries produced by dark matter particles in the universe and their observability in competition with other astrophysical gamma-ray signals and with atmospheric neutrinos. To do this, we work within the assumption that the dark matter particles are neutralinos which are the lightest supersymmetric particles (LSPs) predicted by supersymmetry theory.

  10. Searches for Axionlike Particles Using Gamma-Ray Observations

    CERN Document Server

    Meyer, Manuel

    2016-01-01

    Axionlike particles (ALPs) are a common prediction of theories beyond the Standard Model of particle physics that could explain the entirety of the cold dark matter. These particles could be detected through their mixing with photons in external electromagnetic fields. Here, we provide a short review over ALP searches that utilize astrophysical $\\gamma$-ray observations. We summarize current bounds as well as future sensitivities and discuss the possibility that ALPs alter the $\\gamma$-ray opacity of the Universe.

  11. Computers in activation analysis and gamma-ray spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Carpenter, B. S.; D' Agostino, M. D.; Yule, H. P. [eds.

    1979-01-01

    Seventy-three papers are included under the following session headings: analytical and mathematical methods for data analysis; software systems for ..gamma..-ray and x-ray spectrometry; ..gamma..-ray spectra treatment, peak evaluation; least squares; IAEA intercomparison of methods for processing spectra; computer and calculator utilization in spectrometer systems; and applications in safeguards, fuel scanning, and environmental monitoring. Separate abstracts were prepared for 72 of those papers. (DLC)

  12. Constraining gamma-ray propagation on cosmic distances

    OpenAIRE

    Biteau, Jonathan

    2013-01-01

    Studying the propagation of gamma rays on cosmological distances encompasses a variety of scientific fields, focusing on diffuse radiation fields such as the extragalactic background light, on the probe of the magnetism of the Universe on large scales, and on physics beyond the standard models of cosmology and particle physics. The measurements, constraints and hints from observations of gamma-ray blazars by airborne and ground-based instruments are briefly reviewed. These observations point ...

  13. Physics and astrophysics with gamma-ray telescopes

    Energy Technology Data Exchange (ETDEWEB)

    Vandenbroucke, J. [Kavli Institute for Particle Astrophysics and Cosmology, Department of Physics and SLAC National Accelerator Laboratory, Stanford University, Stanford, CA 94305 (United States)

    2012-08-15

    In the past few years gamma-ray astronomy has entered a golden age. A modern suite of telescopes is now scanning the sky over both hemispheres and over six orders of magnitude in energy. At {approx}TeV energies, only a handful of sources were known a decade ago, but the current generation of ground-based imaging atmospheric Cherenkov telescopes (H.E.S.S., MAGIC, and VERITAS) has increased this number to nearly one hundred. With a large field of view and duty cycle, the Tibet and Milagro air shower detectors have demonstrated the promise of the direct particle detection technique for TeV gamma rays. At {approx}GeV energies, the Fermi Gamma-ray Space Telescope has increased the number of known sources by nearly an order of magnitude in its first year of operation. New classes of sources that were previously theorized to be gamma-ray emitters have now been confirmed observationally. Moreover, there have been surprise discoveries of GeV gamma-ray emission from source classes for which no theory predicted it was possible. In addition to elucidating the processes of high-energy astrophysics, gamma-ray telescopes are making essential contributions to fundamental physics topics including quantum gravity, gravitational waves, and dark matter. I summarize the current census of astrophysical gamma-ray sources, highlight some recent discoveries relevant to fundamental physics, and describe the synergetic connections between gamma-ray and neutrino astronomy. This is a brief overview intended in particular for particle physicists and neutrino astronomers, based on a presentation at the Neutrino 2010 conference in Athens, Greece. I focus in particular on results from Fermi (which was launched soon after Neutrino 2008), and conclude with a description of the next generation of instruments, namely HAWC and the Cherenkov Telescope Array.

  14. Science with the new generation high energy gamma- ray experiments

    CERN Document Server

    Alvarez, M; Agnetta, G; Alberdi, A; Antonelli, A; Argan, A; Assis, P; Baltz, E A; Bambi, C; Barbiellini, G; Bartko, H; Basset, M; Bastieri, D; Belli, P; Benford, G; Bergström, L; Bernabei, R; Bertone, G; Biland, A; Biondo, B; Bocchino, F; Branchini, E; Brigida, M; Bringmann, T; Brogueira, P; Bulgarelli, A; Caballero, J A; Caliandro, G A; Camarri, P; Cappella, F; Caraveo, P; Carbone, R; Carvajal, M; Casanova, S; Castro-Tirado, A J; Catalano, O; Catena, R; Celi, F; Celotti, A; Cerulli, R; Chen, A; Clay, R; Cocco, V; Conrad, J; Costa, E; Cuoco, A; Cusumano, G; Dai, C J; Dawson, B; De Lotto, B; De Paris, G; Postigo, A de Ugarte; Del Monte, E; Delgado, C; Di Ciaccio, A; Di Cocco, G; Di Falco, S; Di Persio, G; Dingus, B L; Dominguez, A; Donato, F; Donnarumma, I; Doro, M; Edsjö, J; Navas, J M Espino; Santo, M C Espirito; Evangelista, Y; Evoli, C; Fargion, D; Favuzzi, C; Feroci, M; Fiorini, M; Foggetta, L; Fornengo, N; Froysland, T; Frutti, M; Fuschino, F; Gómez, J L; Gómez, M; Gaggero, D; Galante, N; Gallardo, M I; Galli, M; García, J E; Garczarczyk, M; Gargano, F; Gaug, M; Gianotti, F; Giarrusso, S; Giebels, B; Giglietto, N; Giommi, P; Giordano, F; Giuliani, A; Glicenstein, J; Gonçalves, P; Grasso, D; Guerriero, M; He, H L; Incicchitti, A; Kirk, J; Kuang, H H; La Barbera, A; La Rosa, G; Labanti, C; Lamanna, G; Lapshov, I; Lazzarotto, F; Liberati, S; Liello, F; Lipari, P; Longo, F; Loparco, F; Lozano, M; De Sanctis, P G Lucentini; Ma, J M; Maccarone, M C; Maccione, L; Malvezzi, V; Mangano, A; Mariotti, M; Marisaldi, M; Martel, I; Masiero, A; Massaro, E; Mastropietro, M; Mattaini, E; Mauri, F; Mazziotta, M N; Mereghetti, S; Mineo, T; Mizobuchi, S; Moiseev, A; Moles, M; Monte, C; Montecchia, F; Morelli, E; Morselli, A; Moskalenko, I; Nozzoli, F; Ormes, J F; Peres-Torres, M A; Pacciani, L; Pellizzoni, A; Pérez-Bernal, F; Perotti, F; Picozza, P; Pieri, L; Pietroni, M; Pimenta, M; Pina, A; Pittori, C; Pontoni, C; Porrovecchio, G; Prada, F; Prest, M; Prosperi, D; Protheroe, R; Pucella, G; Quesada, J M; Quintana, J M; Quintero, J R; Rainó, S; Rapisarda, M; Rissi, M; Rodríguez, J; Rossi, E; Rowell, G; Rubini, A; Russo, F; Sanchez-Conde, M; Sacco, B; Scapin, V; Schelke, M; Segreto, A; Sellerholm, A; Sheng, X D; Smith, A; Soffitta, P; Sparvoli, R; Spinelli, P; Stamatescu, V; Stark, L S; Tavani, M; Thornton, G; Titarchuk, L G; Tomé, B; Traci, A; Trifoglio, M; Trois, A; Vallania, P; Vallazza, E; Vercellone, S; Vernetto, S; Vitale, V; Wild, N; Ye, Z P; Zambra, A; Zandanel, F; Zanello, D

    2007-01-01

    This Conference is the fifth of a series of Workshops on High Energy Gamma- ray Experiments, following the Conferences held in Perugia 2003, Bari 2004, Cividale del Friuli 2005, Elba Island 2006. This year the focus was on the use of gamma-ray to study the Dark Matter component of the Universe, the origin and propagation of Cosmic Rays, Extra Large Spatial Dimensions and Tests of Lorentz Invariance.

  15. Significant gamma-ray lines from dark matter annihilation

    Energy Technology Data Exchange (ETDEWEB)

    Duerr, Michael [DESY, Notkestrasse 85, 22607 Hamburg (Germany); Fileviez Perez, Pavel; Smirnov, Juri [Max-Planck-Institut fuer Kernphysik, Saupfercheckweg 1, 69117 Heidelberg (Germany)

    2016-07-01

    Gamma-ray lines from dark matter annihilation are commonly seen as a ''smoking gun'' for the particle nature of dark matter. However, in many dark matter models the continuum background from tree-level annihilations makes such a line invisible. I present two simple extensions of the Standard Model where the continuum contributions are suppressed and the gamma-ray lines are easily visible over the continuum background.

  16. Development and performance of a gamma-ray imaging detector

    Science.gov (United States)

    Gálvez, J. L.; Hernanz, M.; Álvarez, J. M.; La Torre, M.; Álvarez, L.; Karelin, D.; Lozano, M.; Pellegrini, G.; Ullán, M.; Cabruja, E.; Martínez, R.; Chmeissani, M.; Puigdengoles, C.

    2012-09-01

    In the last few years we have been working on feasibility studies of future instruments in the gamma-ray range, from several keV up to a few MeV. The innovative concept of focusing gamma-ray telescopes in this energy range, should allow reaching unprecedented sensitivities and angular resolution, thanks to the decoupling of collecting area and detector volume. High sensitivities are essential to perform detailed studies of cosmic explosions and cosmic accelerators, e.g., Supernovae, Classical Novae, Supernova Remnants (SNRs), Gamma-Ray Bursts (GRBs), Pulsars, Active Galactic Nuclei (AGN). In order to achieve the needed performance, a gamma-ray imaging detector with mm spatial resolution and large enough efficiency is required. In order to fulfill the combined requirement of high detection efficiency with good spatial and energy resolution, an initial prototype of a gamma-ray imaging detector based on CdTe pixel detectors is being developed. It consists of a stack of several layers of CdTe detectors with increasing thickness, in order to enhance the gamma-ray absorption in the Compton regime. A CdTe module detector lies in a 11 x 11 pixel detector with a pixel pitch of 1mm attached to the readout chip. Each pixel is bump bonded to a fan-out board made of alumina (Al2O3) substrate and routed to the corresponding input channel of the readout ASIC to measure pixel position and pulse height for each incident gamma-ray photon. We will report the main features of the gamma-ray imaging detector performance such as the energy resolution for a set of radiation sources at different operating temperatures.

  17. Localization of Gamma-Ray Bursts using the Fermi Gamma-Ray Burst Monitor

    CERN Document Server

    Connaughton, V; Goldstein, A; Meegan, C A; Paciesas, W S; Preece, R D; Wilson-Hodge, C A; Gibby, M H; Greiner, J; Gruber, D; Jenke, P; Kippen, R M; Pelassa, V; Xiong, S; Yu, H -F; Bhat, P N; Burgess, J M; Byrne, D; Fitzpatrick, G; Foley, S; Giles, M M; Guiriec, S; van der Horst, A J; von Kienlin, A; McBreen, S; McGlynn, S; Tierney, D; Zhang, B -B

    2014-01-01

    The Fermi Gamma-ray Burst Monitor (GBM) has detected over 1400 Gamma-Ray Bursts (GRBs) since it began science operations in July, 2008. We use a subset of over 300 GRBs localized by instruments such as Swift, the Fermi Large Area Telescope, INTEGRAL, and MAXI, or through triangulations from the InterPlanetary Network (IPN), to analyze the accuracy of GBM GRB localizations. We find that the reported statistical uncertainties on GBM localizations, which can be as small as 1 degree, underestimate the distance of the GBM positions to the true GRB locations and we attribute this to systematic uncertainties. The distribution of systematic uncertainties is well represented (68% confidence level) by a 3.7 degree Gaussian with a non-Gaussian tail that contains about 10% of GBM-detected GRBs and extends to approximately 14 degrees. A more complex model suggests that there is a dependence of the systematic uncertainty on the position of the GRB in spacecraft coordinates, with GRBs in the quadrants on the Y-axis better l...

  18. LOCALIZATION OF GAMMA-RAY BURSTS USING THE FERMI GAMMA-RAY BURST MONITOR

    Energy Technology Data Exchange (ETDEWEB)

    Connaughton, V.; Briggs, M. S.; Burgess, J. M. [CSPAR and Physics Department, University of Alabama in Huntsville, 320 Sparkman Drive, Huntsville, AL 35899 (United States); Goldstein, A.; Wilson-Hodge, C. A. [Astrophysics Office, ZP12, NASA/Marshall Space Flight Center, Huntsville, AL 35812 (United States); Meegan, C. A.; Jenke, P.; Pelassa, V.; Xiong, S.; Bhat, P. N. [CSPAR, University of Alabama in Huntsville, 320 Sparkman Drive, Huntsville, AL 35899 (United States); Paciesas, W. S. [Universities Space Research Association, Huntsville, AL (United States); Preece, R. D. [Department of Space Science, University of Alabama in Huntsville, 320 Sparkman Drive, Huntsville, AL 35899 (United States); Gibby, M. H. [Jacobs Technology, Inc., Huntsville, AL (United States); Greiner, J.; Yu, H.-F. [Max-Planck-Institut für extraterrestrische Physik, Giessenbachstrasse 1, D-85748 Garching (Germany); Gruber, D. [Planetarium Südtirol, Gummer 5, I-39053 Karneid (Italy); Kippen, R. M. [Los Alamos National Laboratory, NM 87545 (United States); Byrne, D.; Fitzpatrick, G.; Foley, S., E-mail: valerie@nasa.gov [School of Physics, University College Dublin, Belfield, Stillorgan Road, Dublin 4 (Ireland); and others

    2015-02-01

    The Fermi Gamma-ray Burst Monitor (GBM) has detected over 1400 gamma-ray bursts (GRBs) since it began science operations in 2008 July. We use a subset of over 300 GRBs localized by instruments such as Swift, the Fermi Large Area Telescope, INTEGRAL, and MAXI, or through triangulations from the InterPlanetary Network, to analyze the accuracy of GBM GRB localizations. We find that the reported statistical uncertainties on GBM localizations, which can be as small as 1°, underestimate the distance of the GBM positions to the true GRB locations and we attribute this to systematic uncertainties. The distribution of systematic uncertainties is well represented (68% confidence level) by a 3.°7 Gaussian with a non-Gaussian tail that contains about 10% of GBM-detected GRBs and extends to approximately 14°. A more complex model suggests that there is a dependence of the systematic uncertainty on the position of the GRB in spacecraft coordinates, with GRBs in the quadrants on the Y axis better localized than those on the X axis.

  19. Early Fermi Gamma-ray Space Telescope Observations of the Quasar 3C454.3

    Energy Technology Data Exchange (ETDEWEB)

    Abdo, A

    2009-05-07

    This is the first report of Fermi Gamma-ray Space Telescope observations of the quasar 3C 454.3, which has been undergoing pronounced long-term outbursts since 2000. The data from the Large Area Telescope (LAT), covering 2008 July 7-October 6, indicate strong, highly variable {gamma}-ray emission with an average flux of {approx} 3 x 10{sup -6} photons cm{sup -2} s{sup -1}, for energies > 100 MeV. The {gamma}-ray flux is variable, with strong, distinct, symmetrically-shaped flares for which the flux increases by a factor of several on a time scale of about three days. This variability indicates a compact emission region, and the requirement that the source is optically thin to pair-production implies relativistic beaming with Doppler factor {delta} > 8, consistent with the values inferred from VLBI observations of superluminal expansion ({delta} {approx} 25). The observed {gamma}-ray spectrum is not consistent with a simple power-law, but instead steepens strongly above {approx} 2 GeV, and is well described by a broken power-law with photon indices of {approx} 2.3 and {approx} 3.5 below and above the break, respectively. This is the first direct observation of a break in the spectrum of a high luminosity blazar above 100 MeV, and it is likely direct evidence for an intrinsic break in the energy distribution of the radiating particles. Alternatively, the spectral softening above 2GeV could be due to -ray absorption via photonphoton pair production on the soft X-ray photon field of the host AGN, but such an interpretation would require the dissipation region to be located very close ({approx}< 100 gravitational radii) to the black hole, which would be inconsistent with the X-ray spectrum of the source.

  20. The CALET Gamma-ray Burst Monitor (CGBM)

    CERN Document Server

    Yamaoka, Kazutaka; Sakamoto, Takanori; Takahashi, Ichiro; Hara, Takumi; Yamamoto, Tatsuma; Kawakubo, Yuta; Inoue, Ry ota; Terazawa, Shunsuke; Fujioka, Rie; Senuma, Kazumasa; Nakahira, Satoshi; Tomida, Hiroshi; Ueno, Shiro; Torii, Shoji; Cherry, Michael L; Ricciarini, Sergio

    2013-01-01

    The CALET Gamma-ray Burst Monitor (CGBM) is the secondary scientific instrument of the CALET mission on the International Space Station (ISS), which is scheduled for launch by H-IIB/HTV in 2014. The CGBM provides a broadband energy coverage from 7 keV to 20 MeV, and simultaneous observations with the primary instrument Calorimeter (CAL) in the GeV - TeV gamma-ray range and Advanced Star Camera (ASC) in the optical for gamma-ray bursts (GRBs) and other X-gamma-ray transients. The CGBM consists of two kinds of scintillators: two LaBr$_3$(Ce) (7 keV - 1 MeV) and one BGO (100 keV - 20 MeV) each read by a single photomultiplier. The LaBr$_3$(Ce) crystal, used in space for the first time here for celestial gamma-ray observations, enables GRB observations over a broad energy range from low energy X-ray emissions to gamma rays. The detector performance and structures have been verified using the bread-board model (BBM) via vibration and thermal vacuum tests. The CALET is currently in the development phase of the prot...

  1. Fermi: The Gamma-Ray Large Area Telescope

    Science.gov (United States)

    McEnery, Julie

    2015-01-01

    Following its launch in June 2008, high-energy gamma-ray observations by the Fermi Gamma-ray Space Telescope have unveiled over 1000 new sources and opened an important and previously unexplored window on a wide variety of phenomena. These have included the discovery of an population of pulsars pulsing only in gamma rays; the detection of photons up to 10s of GeV from gamma-ray bursts, enhancing our understanding of the astrophysics of these powerful explosions; the detection of hundreds of active galaxies; a measurement of the high energy cosmic-ray electron spectrum which may imply the presence of nearby astrophysical particle accelerators; the determination of the diffuse gamma-ray emission with unprecedented accuracy and the constraints on phenomena such as supersymmetric dark-matter annihilations and exotic relics from the Big Bang. Continuous monitoring of the high-energy gamma-ray sky has uncovered numerous outbursts from active galaxies and the discovery of transient sources in our galaxy. In this talk I will describe the current status of the Fermi observatory and review the science highlights from Fermi.

  2. Fermi: The Gamma-Ray Large Area Telescope Mission Status

    Science.gov (United States)

    McEnery, Julie

    2014-01-01

    Following its launch in June 2008, high-energy gamma-ray observations by the Fermi Gamma-ray Space Telescope have unveiled over 1000 new sources and opened an important and previously unexplored window on a wide variety of phenomena. These have included the discovery of an population of pulsars pulsing only in gamma rays; the detection of photons up to 10s of GeV from gamma-ray bursts, enhancing our understanding of the astrophysics of these powerful explosions; the detection of hundreds of active galaxies; a measurement of the high energy cosmic-ray electron spectrum which may imply the presence of nearby astrophysical particle accelerators; the determination of the diffuse gamma-ray emission with unprecedented accuracy and the constraints on phenomena such as supersymmetric dark-matter annihilations and exotic relics from the Big Bang. Continuous monitoring of the high-energy gamma-ray sky has uncovered numerous outbursts from active galaxies and the discovery of transient sources in our galaxy. In this talk I will describe the current status of the Fermi observatory and review the science highlights from Fermi.

  3. Fermi: The Gamma-Ray Large Area Space Telescope

    Science.gov (United States)

    McEnery, Julie

    2014-01-01

    Following its launch in June 2008, high-energy gamma-ray observations by the Fermi Gamma-ray Space Telescope have unveiled over 1000 new sources and opened an important and previously unexplored window on a wide variety of phenomena. These have included the discovery of an population of pulsars pulsing only in gamma rays; the detection of photons up to 10s of GeV from gamma-ray bursts, enhancing our understanding of the astrophysics of these powerful explosions; the detection of hundreds of active galaxies; a measurement of the high energy cosmic-ray electron spectrum which may imply the presence of nearby astrophysical particle accelerators; the determination of the diffuse gamma-ray emission with unprecedented accuracy and the constraints on phenomena such as supersymmetric dark-matter annihilations and exotic relics from the Big Bang. Continuous monitoring of the high-energy gamma-ray sky has uncovered numerous outbursts from active galaxies and the discovery of transient sources in our galaxy. In this talk I will describe the current status of the Fermi observatory and review the science highlights from Fermi.

  4. Gamma-ray Albedo of Small Solar System Bodies

    Energy Technology Data Exchange (ETDEWEB)

    Moskalenko, I.V.

    2008-03-25

    We calculate the {gamma}-ray albedo flux from cosmic-ray (CR) interactions with the solid rock and ice in Main Belt asteroids and Kuiper Belt objects (KBOs) using the Moon as a template. We show that the {gamma}-ray albedo for the Main Belt and KBOs strongly depends on the small-body mass spectrum of each system and may be detectable by the forthcoming Gamma Ray Large Area Space Telescope (GLAST). If detected, it can be used to derive the mass spectrum of small bodies in the Main Belt and Kuiper Belt and to probe the spectrum of CR nuclei at close-to-interstellar conditions. The orbits of the Main Belt asteroids and KBOs are distributed near the ecliptic, which passes through the Galactic center and high Galactic latitudes. Therefore, the {gamma}-ray emission by the Main Belt and Kuiper Belt has to be taken into account when analyzing weak {gamma}-ray sources close to the ecliptic. The asteroid albedo spectrum also exhibits a 511 keV line due to secondary positrons annihilating in the rock. This may be an important and previously unrecognized celestial foreground for the INTErnational Gamma-Ray Astrophysics Laboratory (INTEGRAL) observations of the Galactic 511 keV line emission including the direction of the Galactic center. For details of our calculations and references see [1].

  5. Late Time Emission of Prompt Fission Gamma Rays

    CERN Document Server

    Talou, P; Stetcu, I; Lestone, J P; McKigney, E; Chadwick, M B

    2016-01-01

    The emission of prompt fission $\\gamma$ rays within a few nanoseconds to a few microseconds following the scission point is studied in the Hauser-Feshbach formalism applied to the deexcitation of primary excited fission fragments. Neutron and $\\gamma$-ray evaporations from fully accelerated fission fragments are calculated in competition at each stage of the decay, and the role of isomers in the fission products, before $\\beta$-decay, is analyzed. The time evolution of the average total $\\gamma$-ray energy, average total $\\gamma$-ray multiplicity, and fragment-specific $\\gamma$-ray spectra, is presented in the case of neutron-induced fission reactions of $^{235}$U and $^{239}$Pu, as well as spontaneous fission of $^{252}$Cf. The production of specific isomeric states is calculated and compared to available experimental data. About 7% of all prompt fission $\\gamma$ rays are predicted to be emitted between 10 nsec and 5 $\\mu$sec following fission, in the case of $^{235}$U and $^{239}$Pu $(n_{\\rm th},f)$ reactio...

  6. Compton scattering in terrestrial gamma-ray flashes detected with the Fermi gamma-ray burst monitor

    CERN Document Server

    Fitzpatrick, Gerard; McBreen, Sheila; Briggs, Michael S; Foley, Suzanne; Tierney, David; Chaplin, Vandiver L; Connaughton, Valerie; Stanbro, Matthew; Xiong, Shaolin; Dwyer, Joseph; Fishman, Gerald J; Roberts, Oliver J; von Kienlin, Andreas

    2015-01-01

    Terrestrial gamma-ray flashes (TGFs) are short intense flashes of gamma rays associated with lightning activity in thunderstorms. Using Monte Carlo simulations of the relativistic runaway electron avalanche (RREA) process, theoretical predictions for the temporal and spectral evolution of TGFs are compared to observations made with the Gamma-ray Burst Monitor (GBM) on board the Fermi Gamma-ray Space Telescope. Assuming a single source altitude of 15 km, a comparison of simulations to data is performed for a range of empirically chosen source electron variation time scales. The data exhibit a clear softening with increased source distance, in qualitative agreement with theoretical predictions. The simulated spectra follow this trend in the data, but tend to underestimate the observed hardness. Such a discrepancy may imply that the basic RREA model is not sufficient. Alternatively, a TGF beam that is tilted with respect to the zenith could produce an evolution with source distance that is compatible with the da...

  7. The Gamma Ray Opacity of the Universe -- Indirect Measurements of the Extragalactic Background Light

    CERN Document Server

    Krennrich, F

    2014-01-01

    Indirect constraints on the intensity of the Extragalactic Background Light (EBL) were provided by recent studies of extragalactic sources emitting sub-TeV to multi-TeV photons. These constraints are provided thanks to the absorption of gamma rays by soft photons from the EBL (UV/optical/IR) via pair production by gamma - gamma interactions. This paper provides an overview of recent results that have led to substantially reduced uncertainties on the EBL intensity over a wide range of wavelengths from 0.1 to 15 micron.

  8. Dust in the wind: the role of recent mass loss in long gamma-ray bursts

    OpenAIRE

    Margutti, Raffaella; Guidorzi, C.; Lazzati, D.; Milisavljevic, D.; Kamble, A.; Laskar, T.; Parrent, J.; Gehrels, N. C.; Soderberg, A. M.

    2014-01-01

    We study the late-time (t>0.5 days) X-ray afterglows of nearby (z3) X-ray emission that is inconsistent with forward shock synchrotron radiation associated with the afterglow. These explosions also show larger-than-average intrinsic absorption (NH_x,i >6d21 cm-2) and prompt gamma-ray emission with extremely long duration (T_90>1000 s). Chance association of these three rare properties (i.e. large NH_x,i, super-soft Gamma_x and extreme duration) in the same class of explosions is statistically...

  9. NEW FERMI-LAT EVENT RECONSTRUCTION REVEALS MORE HIGH-ENERGY GAMMA RAYS FROM GAMMA-RAY BURSTS

    Energy Technology Data Exchange (ETDEWEB)

    Atwood, W. B. [Santa Cruz Institute for Particle Physics, Department of Physics and Department of Astronomy and Astrophysics, University of California at Santa Cruz, Santa Cruz, CA 95064 (United States); Baldini, L. [Universita di Pisa and Istituto Nazionale di Fisica Nucleare, Sezione di Pisa, I-56127 Pisa (Italy); Bregeon, J.; Pesce-Rollins, M.; Sgro, C.; Tinivella, M. [Istituto Nazionale di Fisica Nucleare, Sezione di Pisa, I-56127 Pisa (Italy); Bruel, P. [Laboratoire Leprince-Ringuet, Ecole polytechnique, CNRS/IN2P3, Palaiseau (France); Chekhtman, A. [Center for Earth Observing and Space Research, College of Science, George Mason University, Fairfax, VA 22030 (United States); Cohen-Tanugi, J. [Laboratoire Univers et Particules de Montpellier, Universite Montpellier 2, CNRS/IN2P3, F-34095 Montpellier (France); Drlica-Wagner, A.; Omodei, N.; Rochester, L. S.; Usher, T. L. [W. W. Hansen Experimental Physics Laboratory, Kavli Institute for Particle Astrophysics and Cosmology, Department of Physics and SLAC National Accelerator Laboratory, Stanford University, Stanford, CA 94305 (United States); Granot, J. [Department of Natural Sciences, The Open University of Israel, 1 University Road, P.O. Box 808, Ra' anana 43537 (Israel); Longo, F. [Istituto Nazionale di Fisica Nucleare, Sezione di Trieste, I-34127 Trieste (Italy); Razzaque, S. [Department of Physics, University of Johannesburg, Auckland Park 2006 (South Africa); Zimmer, S., E-mail: melissa.pesce.rollins@pi.infn.it, E-mail: nicola.omodei@stanford.edu, E-mail: granot@openu.ac.il [Department of Physics, Stockholm University, AlbaNova, SE-106 91 Stockholm (Sweden)

    2013-09-01

    Based on the experience gained during the four and a half years of the mission, the Fermi-LAT Collaboration has undertaken a comprehensive revision of the event-level analysis going under the name of Pass 8. Although it is not yet finalized, we can test the improvements in the new event reconstruction with the special case of the prompt phase of bright gamma-ray bursts (GRBs), where the signal-to-noise ratio is large enough that loose selection cuts are sufficient to identify gamma rays associated with the source. Using the new event reconstruction, we have re-analyzed 10 GRBs previously detected by the Large Area Telescope (LAT) for which an X-ray/optical follow-up was possible and found four new gamma rays with energies greater than 10 GeV in addition to the seven previously known. Among these four is a 27.4 GeV gamma ray from GRB 080916C, which has a redshift of 4.35, thus making it the gamma ray with the highest intrinsic energy ({approx}147 GeV) detected from a GRB. We present here the salient aspects of the new event reconstruction and discuss the scientific implications of these new high-energy gamma rays, such as constraining extragalactic background light models, Lorentz invariance violation tests, the prompt emission mechanism, and the bulk Lorentz factor of the emitting region.

  10. Automatic Quenching of High Energy gamma-ray Sources by Synchrotron Photons

    Energy Technology Data Exchange (ETDEWEB)

    Stawarz, Lukasz; /KIPAC, Menlo Park /SLAC /Jagiellonian U., Astron. Observ.; Kirk, John; /Heidelberg, Max Planck Inst.

    2007-02-02

    Here we investigate evolution of a magnetized system, in which continuously produced high energy emission undergoes annihilation on a soft photon field, such that the synchrotron radiation of the created electron-positron pairs increases number density of the soft photons. This situation is important in high energy astrophysics, because, for an extremely wide range of magnetic field strengths (nano to mega Gauss), it involves {gamma}-ray photons with energies between 0.3GeV and 30TeV. We derive and analyze the conditions for which the system is unstable to runaway production of soft photons and ultrarelativistic electrons, and for which it can reach a steady state with an optical depth to photon-photon annihilation larger than unity, as well those for which efficient pair loading of the emitting volume takes place. We also discuss the application of our analysis to a realistic situation involving astrophysical sources of a broad-band {gamma}-ray emission and briefly consider the particular case of sources close to active supermassive black holes.

  11. Measurements of cosmic-ray secondary nuclei at high energies with the first flight of the CREAM balloon-borne experiment

    CERN Document Server

    Ahn, H S; Bagliesi, M G; Beatty, J J; Bigongiari, G; Boyle, P J; Brandt, T J; Childers, J T; Conklin, N B; Coutu, S; Duvernois, M A; Ganel, O; Han, J H; Hyun, H J; Jeon, J A; Kim, K C; Lee, J K; Lee, M H; Lutz, L; Maestro, P; Malinin, A; Marrocchesi, P S; Minnick, S A; Mognet, S I; Nam, S; Nutter, S L; Park, I H; Park, N H; Seo, E S; Sina, R; Swordy, S P; Wakely, S P; Wu, J; Yang, J; Yoon, Y S; Zei, R; Zinn, S Y

    2008-01-01

    We present new measurements of heavy cosmic-ray nuclei at high energies per- formed during the first flight of the balloon-borne cosmic-ray experiment CREAM (Cosmic-Ray Energetics And Mass). This instrument uses multiple charge detectors and a transition radiation detector to provide the first high accuracy measurements of the relative abundances of elements from boron to oxygen up to energies around 1 TeV/n. The data agree with previous measurements at lower energies and show a relatively steep decline (~E$^-0.6$ to E$^-0.5$) at high energies. They further show the source abundance of nitrogen relative to oxygen is ~10% in the TeV/n region.

  12. Balloon-borne cryogenic frost-point hygrometer observations of water vapour in the tropical upper troposphere and lower stratosphere over India: First results

    Science.gov (United States)

    Sunilkumar, S. V.; Muhsin, M.; Emmanuel, Maria; Ramkumar, Geetha; Rajeev, K.; Sijikumar, S.

    2016-03-01

    Balloon-borne cryogenic frost-point hygrometer (CFH) observations of water vapour in the upper troposphere and lower stratosphere (UTLS) region carried out over India, from Trivandrum [8.5°N, 76.9°E] and Hyderabad [17.5°N, 78.6°E], were compared with that obtained from quasi-collocated Aura-Microwave Limb Sounder (MLS) satellite observations. Comparisons show a small dry bias for MLS in the stratosphere. Saturated or super-saturation layers observed near the base of tropical tropopause layer (TTL) are consistent with the quasi-collocated space-based observations of tropical cirrus from KALPANA-1 and CALIPSO. Disturbance of large scale waves in the upper troposphere appears to modulate the water vapour and cirrus distribution.

  13. Delayed Gamma-ray Spectroscopy for Safeguards Applications

    Energy Technology Data Exchange (ETDEWEB)

    Mozin, Vladimir [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-01-03

    The delayed gamma-ray assay technique utilizes an external neutron source (D-D, D-T, or electron accelerator-driven), and high-resolution gamma-ray spectrometers to perform characterization of SNM materials behind shielding and in complex configurations such as a nuclear fuel assembly. High-energy delayed gamma-rays (2.5 MeV and above) observed following the active interrogation, provide a signature for identification of specific fissionable isotopes in a mixed sample, and determine their relative content. Potential safeguards applications of this method are: 1) characterization of fresh and spent nuclear fuel assemblies in wet or dry storage; 2) analysis of uranium enrichment in shielded or non-characterized containers or in the presence of a strong radioactive background and plutonium contamination; 3) characterization of bulk and waste and product streams at SNM processing plants. Extended applications can include warhead confirmation and warhead dismantlement confirmation in the arms control area, as well as SNM diagnostics for the emergency response needs. In FY16 and prior years, the project has demonstrated the delayed gamma-ray measurement technique as a robust SNM assay concept. A series of empirical and modeling studies were conducted to characterize its response sensitivity, develop analysis methodologies, and analyze applications. Extensive experimental tests involving weapons-grade Pu, HEU and depleted uranium samples were completed at the Idaho Accelerator Center and LLNL Dome facilities for various interrogation time regimes and effects of the neutron source parameters. A dedicated delayed gamma-ray response modeling technique was developed and its elements were benchmarked in representative experimental studies, including highresolution gamma-ray measurements of spent fuel at the CLAB facility in Sweden. The objective of the R&D effort in FY17 is to experimentally demonstrate the feasibility of the delayed gamma-ray interrogation of shielded SNM

  14. Development of balloon-borne CO2 sonde: CO2 vertical profile (0-10km) observations and comparison with the air craft measurements

    Science.gov (United States)

    Ouchi, M.; Matsumi, Y.; Nakayama, T.; Machida, T.; Matsueda, H.; Sawa, Y.; Tanaka, T.; Morino, I.; Uchino, O.

    2012-12-01

    The atmospheric CO2 concentration has drastically increased since the Industrial Revolution due to the mass consumption of fossil fuels and natural gas by human activities. CO2 is considered to be a major factor of global warming; therefore it is important to measure CO2 correctly. CO2 vertical profile measurement is the key to estimate CO2 sources and sinks in high precision. However, current CO2 monitoring sites are limited and there are few CO2 vertical profile measurements. We have been developing a balloon-borne instrument that can measure the vertical distribution of CO2 in any place in the world under any kind of weather conditions (CO2 sonde). The target specifications of altitude range is from surface to 10 km. Time resolution is 1min. The CO2 sensor, originally developed for upper air sounding by our team, is based on the non-dispersed infrared absorption spectroscopy technique (NDIR) at the wavelengths of 4.0 and 4.3 micrometer. The data of the optical infrared absorption are transmitted through a GPS sonde with temperature, humidity and GPS data every second. In this study, we will show simultaneous measurement campaigns of the balloon-borne instruments and in-situ aircraft measurements in January and February 2011 in the Tokyo metropolitan area in Japan. We will present the comparisons between the results of CO2 sonde (5 flights) and two types of aircraft measurements. One is observed by the CONTRAIL (Comprehensive Observation Network for TRace gases by AIrLiner) and the other is chartered flight measurements operated by NIES/JAXA.

  15. Attenuation of TeV $\\gamma$-rays by the starlight photon field of the host galaxy

    CERN Document Server

    Zacharias, Michael; Wagner, Stefan J

    2016-01-01

    The absorption of TeV $\\gamma$-ray photons produced in relativistic jets by surrounding soft photon fields is a long-standing problem of jet physics. In some cases the most likely emission site close to the central black hole is ruled out because of the high opacity caused by strong optical and infrared photon sources, such as the broad line region. Mostly neglected for jet modeling is the absorption of $\\gamma$-rays in the starlight photon field of the host galaxy. Analyzing the absorption for arbitrary locations and observation angles of the $\\gamma$-ray emission site within the host galaxy we find that the distance to the galaxy center, the observation angle, and the distribution of starlight in the galaxy are crucial for the amount of absorption. We derive the absorption value for a sample of $20$ TeV detected blazars with a redshift $z_r<0.2$. The absorption value of the $\\gamma$-ray emission located in the galaxy center may be as high as $20\\%$ with an average value of $6\\%$. This is important in ord...

  16. Sky and Elemental Planetary Mapping Via Gamma Ray Emissions

    Science.gov (United States)

    Roland, John M.

    2011-01-01

    Low-energy gamma ray emissions ((is) approximately 30keV to (is) approximately 30MeV) are significant to astrophysics because many interesting objects emit their primary energy in this regime. As such, there has been increasing demand for a complete map of the gamma ray sky, but many experiments to do so have encountered obstacles. Using an innovative method of applying the Radon Transform to data from BATSE (the Burst And Transient Source Experiment) on NASA's CGRO (Compton Gamma-Ray Observatory) mission, we have circumvented many of these issues and successfully localized many known sources to 0.5 - 1 deg accuracy. Our method, which is based on a simple 2-dimensional planar back-projection approximation of the inverse Radon transform (familiar from medical CAT-scan technology), can thus be used to image the entire sky and locate new gamma ray sources, specifically in energy bands between 200keV and 2MeV which have not been well surveyed to date. Samples of these results will be presented. This same technique can also be applied to elemental planetary surface mapping via gamma ray spectroscopy. Due to our method's simplicity and power, it could potentially improve a current map's resolution by a significant factor.

  17. Multi-wavelength emission region of gamma-ray pulsars

    CERN Document Server

    Kisaka, Shota

    2011-01-01

    Recent obserbations by Fermi Gamma-Ray Space Telescope of gamma-ray pulsars have revealed further details of the structure of the emission region. We investigate the emission region for the multi-wavelength light curve using outer gap model. We assume that gamma-ray and non-thermal X-ray photons are emitted from a particle acceleration region in the outer magnetosphere, and UV/optical photons originate above that region. We also assume that gamma-rays are radiated only by outwardly moving particles, whereas the other photons are produced by particles moving inward and outward. We parametrize the altitude of the emission region. We find that the outer gap model can explain the multi-wavelength pulse behavior. From observational fitting, we also find a general tendency for the altitude of the gamma-ray emission region to depend on the inclination angle. In particular, the emission region for low inclination angle is required to be located in very low altitude, which corresponds to the inner region within the la...

  18. Diagnosing inertial confinement fusion gamma ray physics (invited)

    Energy Technology Data Exchange (ETDEWEB)

    Herrmann, H. W.; Hoffman, N.; Wilson, D. C.; Kim, Y. H.; McEvoy, A.; Young, C. S.; Mack, J. M. [Los Alamos National Laboratory, P.O. Box 1663, M/S E526, Los Alamos, New Mexico 87545 (United States); Stoeffl, W.; Dauffy, L. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Horsfield, C. J.; Rubery, M. [Atomic Weapons Establishment, Aldermaston, Reading RG7 4PR (United Kingdom); Miller, E. K. [Special Technologies Laboratory, NSTec, Santa Barbara, California 93111 (United States); Ali, Z. A. [Livermore Operations, NSTec, Livermore, California 94550 (United States)

    2010-10-15

    The gamma reaction history (GRH) diagnostic is a multichannel, time-resolved, energy-thresholded {gamma}-ray spectrometer that provides a high-bandwidth, direct-measurement of fusion reaction history in inertial confinement fusion implosion experiments. 16.75 MeV deuterium+tritium (DT) fusion {gamma}-rays, with a branching ratio of the order of 10{sup -5}{gamma}/(14 MeV n), are detected to determine fundamental burn parameters, such as nuclear bang time and burn width, critical to achieving ignition at the National Ignition Facility. During the tritium/hydrogen/deuterium ignition tuning campaign, an additional {gamma}-ray line at 19.8 MeV, produced by hydrogen+tritium fusion with a branching ratio of unity, will increase the available {gamma}-ray signal and may allow measurement of reacting fuel composition or ion temperature. Ablator areal density measurements with the GRH are also made possible by detection of 4.43 MeV {gamma}-rays produced by inelastic scatter of DT fusion neutrons on {sup 12}C nuclei in the ablating plastic capsule material.

  19. Gamma-Ray and Multiwavelength Emission from Blazars

    Indian Academy of Sciences (India)

    Meg Urry

    2011-03-01

    Blazars are now well understood as approaching relativistic jets aligned with the line of sight. The long-time uncertainty about the demographics of blazars is starting to become clearer: since the Fermi blazar sample includes a larger fraction of high-frequency peaked blazars (like the typical X-ray-selected blazars in, say, the Einstein Slew Survey sample) than did the higher-flux-limit EGRET blazar sample, these low-luminosity sources must be more common than their higher luminosity, low-frequency-peaked cousins. Blazar spectral energy distributions have a characteristic two-component form, with synchrotron radiation at radio through optical (UV, X-ray) frequencies and gamma-rays from X-ray through GeV (TeV) energies.Multiwavelength monitoring has suggested that gamma-ray flares can result from acceleration of electrons at shocks in the jet, and there appears to be an association between the creation of outflowing superluminal radio components in VLBI maps and the gamma-ray flares. In many cases, the gamma-ray emission is produced by inverse Compton upscattering of ambient optical-UV photons, although the contribution from energetic hadrons cannot be ruled out. The next few years of coordinated gamma-ray, X-ray, UV, optical, infrared and radio monitoring of blazars will be important for characterizing jet content, structure, and total power.

  20. Physics and astrophysics with gamma-ray telescopes

    CERN Document Server

    Vandenbroucke, J

    2010-01-01

    In the past few years gamma-ray astronomy has entered a golden age. A modern suite of telescopes is now scanning the sky over both hemispheres and over six orders of magnitude in energy. At $\\sim$TeV energies, only a handful of sources were known a decade ago, but the current generation of ground-based imaging atmospheric Cherenkov telescopes (H.E.S.S., MAGIC, and VERITAS) has increased this number to nearly one hundred. With a large field of view and duty cycle, the Tibet and Milagro air shower detectors have demonstrated the promise of the direct particle detection technique for TeV gamma rays. At $\\sim$GeV energies, the Fermi Gamma-ray Space Telescope has increased the number of known sources by nearly an order of magnitude in its first year of operation. New classes of sources that were previously theorized to be gamma-ray emitters have now been confirmed observationally. Moreover, there have been surprise discoveries of GeV gamma-ray emission from source classes for which no theory predicted it was possi...

  1. Dark matter annihilation via Higgs and gamma-ray channels

    Science.gov (United States)

    Chan, Man Ho

    2016-09-01

    Recent studies show that the GeV gamma-ray excess signal from the Milky Way center can be best explained by ˜ 40 GeV dark matter annihilating via bbar{b} channel. However, the recent observations of the nearby Milky Way dwarf spheroidal satellite galaxies by Fermi-LAT and the radio observations of the Milky Way center and the M31 galaxy tend to rule out this proposal. In this article, we discuss the possibility of the dark matter interpretation of the GeV gamma-ray excess by proposing 130 GeV dark matter annihilating via both Higgs and gamma-ray channels. Recent analyses show that dark matter annihilating via Higgs channel can satisfactorily explain the Milky Way GeV gamma-ray excess observed. We show that this model can satisfy the upper limits of the gamma-ray constraint of the Milky Way dwarf spheroidal satellite galaxies and the constraint from the radio observations of the M31 galaxy.

  2. Prompt Optical Emission from Gamma-ray Bursts

    CERN Document Server

    Kehoe, R; Balsano, R; Barthelmy, S D; Bloch, J; Butterworth, P S; Casperson, D E; Cline, T; Fletcher, S; Frontera, F; Gisler, G; Heise, J; Hills, J; Hurley, K; Lee, B; Marshall, S; McKay, T; Pawl, A; Piro, L; Priedhorsky, B; Szymanski, J J; Wren, J; Kehoe, Robert; Akerlof, Carl; Balsano, Richard; Barthelmy, Scott; Bloch, Jeff; Butterworth, Paul; Casperson, Don; Cline, Tom; Fletcher, Sandra; Frontera, Fillippo; Gisler, Galen; Heise, John; Hills, Jack; Hurley, Kevin; Lee, Brian; Marshall, Stuart; Kay, Tim Mc; Pawl, Andrew; Piro, Luigi; Priedhorsky, Bill; Szymanski, John; Wren, Jim

    2001-01-01

    The Robotic Optical Transient Search Experiment (ROTSE) seeks to measure contemporaneous and early afterglow optical emission from gamma-ray bursts (GRBs). The ROTSE-I telescope array has been fully automated and responding to burst alerts from the GRB Coordinates Network since March 1998, taking prompt optical data for 30 bursts in its first year. We will briefly review observations of GRB990123 which revealed the first detection of an optical burst occurring during the gamma-ray emission, reaching 9th magnitude at its peak. In addition, we present here preliminary optical results for seven other gamma-ray bursts. No other optical counterparts were seen in this analysis, and the best limiting sensitivities are m(V) > 13.0 at 14.7 seconds after the gamma-ray rise, and m(V) > 16.4 at 62 minutes. These are the most stringent limits obtained for GRB optical counterpart brightness in the first hour after the burst. This analysis suggests that there is not a strong correlation between optical flux and gamma-ray em...

  3. Fast Radio Bursts with Extended Gamma-Ray Emission?

    CERN Document Server

    Murase, Kohta; Fox, Derek B

    2016-01-01

    We consider some general implications of bright gamma-ray counterparts to fast radio bursts (FRBs). We show that, even if these manifest in only a fraction of FRBs, gamma-ray detections with current satellites (including Swift) provide stringent constraints on cosmological FRB models. If the energy is drawn from the magnetic energy of a compact object such as a magnetized neutron star, the sources should be nearby and very rare. If the intergalactic medium is responsible for the observed dispersion measure, the required gamma-ray energy is comparable to that of the early afterglow or extended emission of short gamma-ray bursts. While this can be reconciled with the rotation energy of compact objects, as expected in many merger scenarios, the prompt outflow that yields the gamma-rays is too dense for radio waves to escape. Highly-relativistic winds launched in a precursor phase, and forming a wind bubble, may avoid the scattering and absorption limits and could yield FRB emission. Largely independent of source...

  4. On the connection between radio and gamma rays

    Directory of Open Access Journals (Sweden)

    Orienti M.

    2013-12-01

    Full Text Available Relativistic jets are one of the most powerful manifestations of the release of energy produced around supermassive black holes at the centre of active galactic nuclei (AGN. Their emission is observed across the entire electromagnetic spectrum, from the radio band to gamma rays. Despite decades of efforts, many aspects of the physics of relativistic jets remain elusive. In particular, the location and the mechanisms responsible for the high-energy emission and the connection of the variability at different wavelengths are among the greatest challenges in the study of AGN. From the comparison of the radio and gamma-ray light curves of gamma-ray flaring objects, there is evidence that some flares, either in radio or in gamma rays, have not an obvious connection at the other extreme of the electromagnetic spectrum, like in the case of the Narrow-Line Seyfert 1 SBS 0846+513. An intriguing aspect pointed out by high resolution radio observations is the change of the polarization properties close in time with some high energy flares. In particular, in PKS 1510–089 and 3C 454.3 a rotation of almost 90 degrees has been observed after strong gamma-ray flares. The swing of the polarization angle may be related either to the propagation of a shock along the jet that orders the magnetic field, or a change of the opacity regime.

  5. Gammapy - A Python package for {\\gamma}-ray astronomy

    CERN Document Server

    Donath, Axel; Arribas, Manuel P; King, Johannes; Owen, Ellis; Terrier, Régis; Reichardt, Ignasi; Harris, Jon; Bühler, Rolf; Klepser, Stefan

    2015-01-01

    In the past decade imaging atmospheric Cherenkov telescope arrays such as H.E.S.S., MAGIC, VERITAS, as well as the Fermi-LAT space telescope have provided us with detailed images and spectra of the {\\gamma}-ray universe for the first time. Currently the {\\gamma}-ray community is preparing to build the next-generation Cherenkov Telecope Array (CTA), which will be operated as an open observatory. Gammapy (available at https://github.com/gammapy/gammapy under the open-source BSD li- cense) is a new in-development Astropy affiliated package for high-level analysis and simulation of astronomical {\\gamma}-ray data. It is built on the scientific Python stack (Numpy, Scipy, matplotlib and scikit-image) and makes use of other open-source astronomy packages such as Astropy, Sherpa and Naima to provide a flexible set of tools for {\\gamma}-ray astronomers. We present an overview of the current Gammapy features and example analyses on real as well as simulated {\\gamma}-ray datasets. We would like Gammapy to become a commu...

  6. The Agile Alert System For Gamma-Ray Transients

    CERN Document Server

    Bulgarelli, A; Gianotti, F; Tavani, M; Parmiggiani, N; Fioretti, V; Chen, A W; Vercellone, S; Pittori, C; Verrecchia, F; Lucarelli, F; Santolamazza, P; Fanari, G; Giommi, P; Beneventano, D; Argan, A; Trois, A; Scalise, E; Longo, F; Pellizzoni, A; Pucella, G; Colafrancesco, S; Conforti, V; Tempesta, P; Cerone, M; Sabatini, P; Annoni, G; Valentini, G; Salotti, L

    2014-01-01

    In recent years, a new generation of space missions offered great opportunities of discovery in high-energy astrophysics. In this article we focus on the scientific operations of the Gamma-Ray Imaging Detector (GRID) onboard the AGILE space mission. The AGILE-GRID, sensitive in the energy range of 30 MeV-30 GeV, has detected many gamma-ray transients of galactic and extragalactic origins. This work presents the AGILE innovative approach to fast gamma-ray transient detection, which is a challenging task and a crucial part of the AGILE scientific program. The goals are to describe: (1) the AGILE Gamma-Ray Alert System, (2) a new algorithm for blind search identification of transients within a short processing time, (3) the AGILE procedure for gamma-ray transient alert management, and (4) the likelihood of ratio tests that are necessary to evaluate the post-trial statistical significance of the results. Special algorithms and an optimized sequence of tasks are necessary to reach our goal. Data are automatically ...

  7. The WISE Gamma-Ray Strip Parametrization: The Nature of the Gamma-Ray Active Galactic Nuclei of Uncertain Type

    Energy Technology Data Exchange (ETDEWEB)

    Massaro, F.; /SLAC; D' Abrusco, R.; /Harvard-Smithsonian Ctr. Astrophys.; Tosti, G.; /Perugia U. /INFN, Perugia; Ajello, M.; /SLAC; Gasparrini, D.; /ESRIN, Frascati; Grindlay, J.E.; Smith, Howard A.; /Harvard-Smithsonian Ctr. Astrophys.

    2012-04-02

    Despite the large number of discoveries made recently by Fermi, the origins of the so called unidentified {gamma}-ray sources remain unknown. The large number of these sources suggests that among them there could be a population that significantly contributes to the isotropic gamma-ray background and is therefore crucial to understand their nature. The first step toward a complete comprehension of the unidentified {gamma}-ray source population is to identify those that can be associated with blazars, the most numerous class of extragalactic sources in the {gamma}-ray sky. Recently, we discovered that blazars can be recognized and separated from other extragalactic sources using the infrared (IR) WISE satellite colors. The blazar population delineates a remarkable and distinctive region of the IR color-color space, the WISE blazar strip. In particular, the subregion delineated by the {gamma}-ray emitting blazars is even narrower and we named it as the WISE Gamma-ray Strip (WGS). In this paper we parametrize the WGS on the basis of a single parameter s that we then use to determine if {gamma}-ray Active Galactic Nuclei of the uncertain type (AGUs) detected by Fermi are consistent with the WGS and so can be considered blazar candidates. We find that 54 AGUs out of a set 60 analyzed have IR colors consistent with the WGS; only 6 AGUs are outliers. This result implies that a very high percentage (i.e., in this sample about 90%) of the AGUs detected by Fermi are indeed blazar candidates.

  8. IMMUNE TOLERANCE INDUCED BY GAMMA-RAY IRRADIATION

    Institute of Scientific and Technical Information of China (English)

    练燕; 王延江; 粟永萍; 冉新泽; 艾国平; 刘晓宏; 郭朝华; 程天民

    2003-01-01

    Objective: To detect the existence of immune tolerance induced by gamma-ray irradiation. Methods: Peritoneal cells were harvested from mice subjected to 5 Gy 60Co gamma-ray total body irradiation at 3d, 7d, 15d and 30d, then their counts, morphological changes and IL-12 gene expression were investigated. Results: After irradiation, the peritoneal cells were sharply reduced, the cell morphology shifted from round-like to polymorphic and fusiform with some processes, expression of IL-12 p35 was seriously suppressed, while that of IL-12 p40 greatly enhanced. Conclusion: Our data highly suggest that the gamma-ray irradiation could potentially induce dendritic cell (DC) commitment and immune tolerance.

  9. Design studies for ECO, the European Gamma-ray Observatory

    CERN Document Server

    Baixeras, C

    2004-01-01

    We discuss preliminary studies concerning a large-diameter gamma-ray telescope, to be part of an array of telescopes installed at the existing observation site on the Canary island of La Palma. One of the telescopes in the array will be MAGIC, presently the largest existing gamma ray telescope and the most performant world wide at low energy. A second telescope of the same class is under construction. Eventually, we will want to install one or more devices giving access to even lower gamma-ray energy; they will be larger than MAGIC by roughly a linear factor two, and are code-named here ECO-1000 (for a mirror surface of 1000 m$^2$).

  10. The gamma ray background from large scale structure formation

    CERN Document Server

    Gabici, S; Gabici, Stefano; Blasi, Pasquale

    2003-01-01

    Hierarchical clustering of dark matter halos is thought to describe well the large scale structure of the universe. The baryonic component of the halos is shock heated to the virial temperature while a small fraction of the energy flux through the shocks may be energized through the first order Fermi process to relativistic energy per particle. It has been proposed that the electrons accelerated in this way may upscatter the photons of the universal microwave background to gamma ray energies and indeed generate a diffuse background of gamma rays that compares well to the observations. In this paper we calculate the spectra of the particles accelerated at the merger shocks and re-evaluate the contribution of structure formation to the extragalactic diffuse gamma ray background (EDGRB), concluding that this contribution adds up to at most 10% of the observed EDGRB.

  11. Gamma ray polarimetry using a position sensitive germanium detector

    CERN Document Server

    Kroeger, R A; Kurfess, J D; Phlips, B F

    1999-01-01

    Imaging gamma-ray detectors make sensitive polarimeters in the Compton energy regime by measuring the scatter direction of gamma rays. The principle is to capitalize on the angular dependence of the Compton scattering cross section to polarized gamma rays and measure the distribution of scatter directions within the detector. This technique is effective in a double-sided germanium detector between roughly 50 keV and 1 MeV. This paper reviews device characteristics important to the optimization of a Compton polarimeter, and summarizes measurements we have made using a device with a 5x5 cm active area, 1 cm thickness, and strip-electrodes on a 2 mm pitch.

  12. Miniature gamma-ray camera for tumor localization

    Energy Technology Data Exchange (ETDEWEB)

    Lund, J.C.; Olsen, R.W.; James, R.B.; Cross, E. [and others

    1997-08-01

    The overall goal of this LDRD project was to develop technology for a miniature gamma-ray camera for use in nuclear medicine. The camera will meet a need of the medical community for an improved means to image radio-pharmaceuticals in the body. In addition, this technology-with only slight modifications-should prove useful in applications requiring the monitoring and verification of special nuclear materials (SNMs). Utilization of the good energy resolution of mercuric iodide and cadmium zinc telluride detectors provides a means for rejecting scattered gamma-rays and improving the isotopic selectivity in gamma-ray images. The first year of this project involved fabrication and testing of a monolithic mercuric iodide and cadmium zinc telluride detector arrays and appropriate collimators/apertures. The second year of the program involved integration of the front-end detector module, pulse processing electronics, computer, software, and display.

  13. Pulsed Photofission Delayed Gamma Ray Detection for Nuclear Material Identification

    Energy Technology Data Exchange (ETDEWEB)

    John Kavouras; Xianfei Wen; Daren R. Norman; Dante R. Nakazawa; Haori Yang

    2012-11-01

    Innovative systems with increased sensitivity and resolution are in great demand to detect diversion and to prevent misuse in support of nuclear materials management for the U.S. fuel cycle. Nuclear fission is the most important multiplicative process involved in non-destructive active interrogation. This process produces the most easily recognizable signature for nuclear materials. High-energy gamma rays can also excite a nucleus and cause fission through a process known as photofission. After photofission reactions, delayed signals are easily distinguishable from the interrogating radiation. Linac-based, advanced inspection techniques utilizing the fission signals after photofission have been extensively studied for homeland security applications. Previous research also showed that a unique delayed gamma ray energy spectrum exists for each fissionable isotope. Isotopic composition measurement methods based on delayed gamma ray spectroscopy will be the primary focus of this work.

  14. Application of Maximum Entropy Deconvolution to ${\\gamma}$-ray Skymaps

    CERN Document Server

    Raab, Susanne

    2015-01-01

    Skymaps measured with imaging atmospheric Cherenkov telescopes (IACTs) represent the real source distribution convolved with the point spread function of the observing instrument. Current IACTs have an angular resolution in the order of 0.1$^\\circ$ which is rather large for the study of morphological structures and for comparing the morphology in $\\gamma$-rays to measurements in other wavelengths where the instruments have better angular resolutions. Serendipitously it is possible to approximate the underlying true source distribution by applying a deconvolution algorithm to the observed skymap, thus effectively improving the instruments angular resolution. From the multitude of existing deconvolution algorithms several are already used in astronomy, but in the special case of $\\gamma$-ray astronomy most of these algorithms are challenged due to the high noise level within the measured data. One promising algorithm for the application to $\\gamma$-ray data is the Maximum Entropy Algorithm. The advantages of th...

  15. VHE $\\gamma$-ray observations of Markarian 501

    CERN Document Server

    Breslin, A C; Bradbury, S M; Buckley, J H; Burdett, A M; Carson, M J; Carter-Lewis, D A; Catanese, M; Cawley, M F; Dunlea, S; D'Vali, M; Fegan, D J; Fegan, S J; Finley, J P; Gaidos, J A; Hall, T A; Hillas, A M; Horan, D; Kildea, J; Knapp, J; Krennrich, F; Le Bohec, S; Lessard, R W; Masterson, C; McKernan, B; Quinn, J; Rose, H J; Samuelson, F W; Sembroski, G H; Vasilev, V; Weekes, T C

    1999-01-01

    Markarian 501, a nearby (z=0.033) X-ray selected BL Lacertae object, is a well established source of Very High Energy (VHE, E>=300 GeV) gamma rays. Dramatic variability in its gamma-ray emission on time-scales from years to as short as two hours has been detected. Multiwavelength observations have also revealed evidence that the VHE gamma-ray and hard X-ray fluxes may be correlated. Here we present results of observations made with the Whipple Collaboration's 10 m Atmospheric Cerenkov Imaging Telescope during 1999 and discuss them in the context of observations made on Markarian 501 during the period from 1996-1998.

  16. Detection of Gamma Rays From a Starburst Galaxy

    CERN Document Server

    Acero, F

    2009-01-01

    Starburst galaxies exhibit in their central regions a highly increased rate of supernovae, the remnants of which are thought to accelerate energetic cosmic rays up to energies of ~ 10^15 eV. We report the detection of gamma rays -- tracers of such cosmic rays -- from the starburst galaxy NGC 253 using the H.E.S.S. array of imaging atmospheric Cherenkov telescopes. The gamma-ray flux above 220 GeV is F = (5.5 +/- 1.0stat +/- 2.8sys) x 10^-13 ph. s-1 cm-2, implying a cosmic-ray density about three orders of magnitude larger than that in the center of the Milky Way. The fraction of cosmic-ray energy channeled into gamma rays in this starburst environment is 5 times larger than that in our Galaxy.

  17. Terrestrial implications of cosmological gamma-ray burst models

    CERN Document Server

    Thorsett, S E

    1995-01-01

    The observation by the BATSE instrument on the Compton Gamma Ray Observatory that gamma-ray bursts (GRBs) are distributed isotropically around the Earth but nonuniformly in distance has led to the widespread conclusion that GRBs are most likely to be at cosmological distances, making them the most luminous sources known in the Universe. If bursts arise from events that occur in normal galaxies, such as neutron star binary inspirals, then they will also occur in our Galaxy about every hundred thousand to million years. The gamma-ray flux at the Earth due to a Galactic GRB would far exceed that from even the largest solar flares. The absorption of this radiation in the atmosphere would substantially increase the stratospheric nitric oxide concentration through photodissociation of N_2, greatly reducing the ozone concentration for several years through NO_x catalysis, with important biospheric effects due to increased solar ultraviolet flux. A nearby GRB may also leave traces in anomalous radionuclide abundances...

  18. Detection of gamma rays from a starburst galaxy.

    Science.gov (United States)

    Acero, F; Aharonian, F; Akhperjanian, A G; Anton, G; Barres de Almeida, U; Bazer-Bachi, A R; Becherini, Y; Behera, B; Bernlöhr, K; Bochow, A; Boisson, C; Bolmont, J; Borrel, V; Brucker, J; Brun, F; Brun, P; Bühler, R; Bulik, T; Büsching, I; Boutelier, T; Chadwick, P M; Charbonnier, A; Chaves, R C G; Cheesebrough, A; Chounet, L-M; Clapson, A C; Coignet, G; Dalton, M; Daniel, M K; Davids, I D; Degrange, B; Deil, C; Dickinson, H J; Djannati-Ataï, A; Domainko, W; Drury, L O'C; Dubois, F; Dubus, G; Dyks, J; Dyrda, M; Egberts, K; Emmanoulopoulos, D; Espigat, P; Farnier, C; Fegan, S; Feinstein, F; Fiasson, A; Förster, A; Fontaine, G; Füssling, M; Gabici, S; Gallant, Y A; Gérard, L; Gerbig, D; Giebels, B; Glicenstein, J F; Glück, B; Goret, P; Göring, D; Hauser, D; Hauser, M; Heinz, S; Heinzelmann, G; Henri, G; Hermann, G; Hinton, J A; Hoffmann, A; Hofmann, W; Hofverberg, P; Hoppe, S; Horns, D; Jacholkowska, A; de Jager, O C; Jahn, C; Jung, I; Katarzyński, K; Katz, U; Kaufmann, S; Kerschhaggl, M; Khangulyan, D; Khélifi, B; Keogh, D; Klochkov, D; Kluźniak, W; Kneiske, T; Komin, Nu; Kosack, K; Kossakowski, R; Lamanna, G; Lenain, J-P; Lohse, T; Marandon, V; Martineau-Huynh, O; Marcowith, A; Masbou, J; Maurin, D; McComb, T J L; Medina, M C; Méhault, J; Moderski, R; Moulin, E; Naumann-Godo, M; de Naurois, M; Nedbal, D; Nekrassov, D; Nicholas, B; Niemiec, J; Nolan, S J; Ohm, S; Olive, J-F; de Oña Wilhelmi, E; Orford, K J; Ostrowski, M; Panter, M; Paz Arribas, M; Pedaletti, G; Pelletier, G; Petrucci, P-O; Pita, S; Pühlhofer, G; Punch, M; Quirrenbach, A; Raubenheimer, B C; Raue, M; Rayner, S M; Reimer, O; Renaud, M; Rieger, F; Ripken, J; Rob, L; Rosier-Lees, S; Rowell, G; Rudak, B; Rulten, C B; Ruppel, J; Sahakian, V; Santangelo, A; Schlickeiser, R; Schöck, F M; Schwanke, U; Schwarzburg, S; Schwemmer, S; Shalchi, A; Sikora, M; Skilton, J L; Sol, H; Stawarz, Ł; Steenkamp, R; Stegmann, C; Stinzing, F; Superina, G; Szostek, A; Tam, P H; Tavernet, J-P; Terrier, R; Tibolla, O; Tluczykont, M; van Eldik, C; Vasileiadis, G; Venter, C; Venter, L; Vialle, J P; Vincent, P; Vivier, M; Völk, H J; Volpe, F; Wagner, S J; Ward, M; Zdziarski, A A; Zech, A

    2009-11-20

    Starburst galaxies exhibit in their central regions a highly increased rate of supernovae, the remnants of which are thought to accelerate energetic cosmic rays up to energies of approximately 10(15) electron volts. We report the detection of gamma rays--tracers of such cosmic rays--from the starburst galaxy NGC 253 using the High Energy Stereoscopic System (H.E.S.S.) array of imaging atmospheric Cherenkov telescopes. The gamma-ray flux above 220 billion electron volts is F = (5.5 +/- 1.0(stat) +/- 2.8(sys)) x 10(-13) cm(-2) s(-1), implying a cosmic-ray density about three orders of magnitude larger than that in the center of the Milky Way. The fraction of cosmic-ray energy channeled into gamma rays in this starburst environment is five times as large as that in our Galaxy.

  19. High-energy gamma-ray sources of cosmological origin

    Science.gov (United States)

    Brun, Pierre; Cohen-Tanugi, Johann

    2016-06-01

    The current generation of instruments in gamma-ray astrophysics launched a new era in the search for a dark matter signal in the high-energy sky. Such searches are said indirect, in the sense that the presence of a dark matter particle is inferred from the detection of products of its pair-annihilation or decay. They have recently started to probe the natural domain of existence for weakly interacting massive particles (WIMPs), the favorite dark matter candidates today. In this article, we review the basic framework for indirect searches and we present a status of current limits obtained with gamma-ray observations. We also devote a section to another possible class of cosmological gamma-ray sources, primordial black holes, also considered as a potential constituent of dark matter. xml:lang="fr"

  20. RoboPol: The optical polarization of gamma-ray--loud and gamma-ray--quiet blazars

    CERN Document Server

    Angelakis, E; Blinov, D; Pavlidou, V; Kiehlmann, S; Myserlis, I; Boettcher, M; Mao, P; Panopoulou, G V; Liodakis, I; King, O G; Balokovic, M; Kus, A; Kylafis, N; Mahabal, A; Marecki, A; Paleologou, E; Papadakis, I; Papamastorakis, I; Pazderski, E; Pearson, T J; Prabhudesai, S; Ramaprakash, A N; Readhead, A C S; Reig, P; Tassis, K; Urry, M; Zensus, J A

    2016-01-01

    We present average R-band optopolarimetric data, as well as variability parameters, from the first and second RoboPol observing season. We investigate whether gamma- ray--loud and gamma-ray--quiet blazars exhibit systematic differences in their optical polarization properties. We find that gamma-ray--loud blazars have a systematically higher polarization fraction (0.092) than gamma-ray--quiet blazars (0.031), with the hypothesis of the two samples being drawn from the same distribution of polarization fractions being rejected at the 3{\\sigma} level. We have not found any evidence that this discrepancy is related to differences in the redshift distribution, rest-frame R-band lu- minosity density, or the source classification. The median polarization fraction versus synchrotron-peak-frequency plot shows an envelope implying that high synchrotron- peaked sources have a smaller range of median polarization fractions concentrated around lower values. Our gamma-ray--quiet sources show similar median polarization fr...

  1. U and Pu Gamma-Ray Measurements of Spent Fuel Using a Gamma-Ray Mirror Band-Pass Filter

    Energy Technology Data Exchange (ETDEWEB)

    Ziock, Klaus-Peter [ORNL; Alameda, J.B. [Lawrence Livermore National Laboratory (LLNL); Brejnholt, N.F. [Lawrence Livermore National Laboratory (LLNL); Decker, T.A. [Lawrence Livermore National Laboratory (LLNL); Descalle, M.A. [Lawrence Livermore National Laboratory (LLNL); Fernandez-Perea, M. [Lawrence Livermore National Laboratory (LLNL); Hill, R.M. [Lawrence Livermore National Laboratory (LLNL); Kisner, R.A. [Oak Ridge National Laboratory (ORNL); Melin, A.M. [Oak Ridge National Laboratory (ORNL); Patton, B.W. [Lawrence Livermore National Laboratory (LLNL); Ruz, J. [Lawrence Livermore National Laboratory (LLNL); Soufli, R. [Lawrence Livermore National Laboratory (LLNL); Pivovaroff, M.J. [Lawrence Livermore National Laboratory (LLNL)

    2014-01-01

    Abstract. We report on the use of grazing incidence gamma-ray mirrors to serve as a narrow band-pass filter for advanced non-destructive analysis (NDA) of spent nuclear fuel. The purpose of the mirrors is to limit the radiation reaching a HPGe detector to narrow spectral bands around characteristic emission lines from fissile isotopes in the fuel. This overcomes the normal rate issues when performing gamma-ray NDA measurements. In a proof-of-concept experiment, a set of simple flat gamma-ray mirrors were used to directly observe the atomic florescence lines from U and Pu from spent fuel pins with the detector located in a shirt-sleeve environment. The mirrors, consisting of highly polished silicon substrates deposited with WC/SiC multilayer coatings, successfully deflected the lines of interest while the intense primary radiation beam from the fuel was blocked by a lead beam stop. The gamma-ray multilayer coatings that make the mirrors work at the gamma-ray energies used here (~ 100 keV) have been experimentally tested at energies as high as 645 keV, indicating that direct observation of nuclear emission lines from 239Pu should be possible with an appropriately designed optic and shielding configuration.

  2. An Emerging Class of Gamma-Ray Flares from Blazars: Beyond One-Zone Models

    CERN Document Server

    Tavani, Marco; Cavaliere, Alfonso

    2015-01-01

    Blazars radiate from relativistic plasma jets with bulk Lorentz factors {\\Gamma} ~ 10, closely aligned along our line of sight. In a number of blazars of the Flat Spectrum Radio Quasar type such as 3C 454.3 and 3C 279 gamma-ray flares have recently been detected with very high luminosity and little or no counterparts in the optical and soft X-ray bands. They challenge the current one-zone leptonic models of emissions from within the broad line region. The latter envisage the optical/X-ray emissions to be produced as synchrotron radiation by the same population of highly relativistic electrons in the jet that would also yield the gamma rays by inverse Compton up-scattering of surrounding soft photons. To meet the challenge we present here a model based on primary synchrotron photons emitted in the broad line region by a plasmoid moving out with the jet and scattered back toward the incoming plasmoid by an outer plasma clump acting as a mirror. We consider both a scenario based on a static mirror located outsid...

  3. Gravitational Waves, Gamma Ray Bursts, and Black Stars

    CERN Document Server

    Vachaspati, Tanmay

    2016-01-01

    Stars that are collapsing toward forming a black hole but appear frozen near their Schwarzschild horizon are termed "black stars". The collision of two black stars leads to gravitational radiation during the merging phase followed by a delayed gamma ray burst during coalescence. The recent observation of gravitational waves by LIGO, followed by a possible gamma ray counterpart by Fermi, suggests that the source may have been a merger of two black stars with profound implications for quantum gravity and the nature of black holes.

  4. Corrective optics for diffraction of {gamma}-rays

    Energy Technology Data Exchange (ETDEWEB)

    Materna, T. [Nuclear Physics Institute, University of Cologne, Zuelpicher Str. 77, D-50937 Cologne (Germany) and Institut Laue-Langevin, F-38042 Grenoble, Cedex 9 (France)]. E-mail: materna@ill.fr; Bruyneel, B. [Nuclear Physics Institute, University of Cologne, Zuelpicher Str. 77, D-50937 Cologne (Germany); Jolie, J. [Nuclear Physics Institute, University of Cologne, Zuelpicher Str. 77, D-50937 Cologne (Germany); Linnemann, A. [Nuclear Physics Institute, University of Cologne, Zuelpicher Str. 77, D-50937 Cologne (Germany); Warr, N. [Nuclear Physics Institute, University of Cologne, Zuelpicher Str. 77, D-50937 Cologne (Germany); Boerner, H.G. [Institut Laue-Langevin, F-38042 Grenoble, Cedex 9 (France); Jentschel, M. [Institut Laue-Langevin, F-38042 Grenoble, Cedex 9 (France); Mutti, P. [Institut Laue-Langevin, F-38042 Grenoble, Cedex 9 (France); Simpson, G. [Institut Laue-Langevin, F-38042 Grenoble, Cedex 9 (France)

    2006-12-21

    A new method to correct imperfect bending of curved crystals used for {gamma}-ray diffraction spectroscopy is presented. It relies on using position-sensitive segmented Ge-detectors and permits the determination of the emission area of each {gamma}-ray from the crystals and therefore an off-line correction of bending imperfections as if the crystals were divided into independent 2x2 mm{sup 2} bent crystals. A first experiment using the GAMS-5 spectrometer (Institut Laue-Langevin) shows proof of the principle of the method.

  5. Varying Faces of Photospheric Emission in Gamma-Ray Bursts

    CERN Document Server

    Axelsson, M

    2015-01-01

    Among the more than 1000 gamma-ray bursts observed by the Fermi Gamma-ray Space Telescope, a large fraction show narrow and hard spectra inconsistent with non-thermal emission, signifying optically thick emission from the photosphere. However, only a few of these bursts have spectra consistent with a pure Planck function. We will discuss the observational features of photospheric emission in these GRBs as well as in the ones showing multi-component spectra. We interpret the observations in light of models of subphotospheric dissipation, geometrical broadening and multi-zone emission, and show what we can learn about the dissipation mechanism and properties of GRB jets.

  6. Gamma-Ray Bursts as Sources of Strong Magnetic Fields

    CERN Document Server

    Granot, Jonathan; Bromberg, Omer; Racusin, Judith L; Daigne, Frédéric

    2015-01-01

    Gamma-Ray Bursts (GRBs) are the strongest explosions in the Universe, which due to their extreme character likely involve some of the strongest magnetic fields in nature. This review discusses the possible roles of magnetic fields in GRBs, from their central engines, through the launching, acceleration and collimation of their ultra-relativistic jets, to the dissipation and particle acceleration that power their $\\gamma$-ray emission, and the powerful blast wave they drive into the surrounding medium that generates their long-lived afterglow emission. An emphasis is put on particular areas in which there have been interesting developments in recent years.

  7. SWEPP Gamma-Ray Spectrometer System software design description

    Energy Technology Data Exchange (ETDEWEB)

    Femec, D.A.; Killian, E.W.

    1994-08-01

    To assist in the characterization of the radiological contents of contract-handled waste containers at the Stored Waste Examination Pilot Plant (SWEPP), the SWEPP Gamma-Ray Spectrometer (SGRS) System has been developed by the Radiation Measurements and Development Unit of the Idaho National Engineering Laboratory. The SGRS system software controls turntable and detector system activities. In addition to determining the concentrations of gamma-ray-emitting radionuclides, this software also calculates attenuation-corrected isotopic mass ratios of-specific interest. This document describes the software design for the data acquisition and analysis software associated with the SGRS system.

  8. Gamma-ray performance of the GAMMA-400 detector

    CERN Document Server

    Cumani, P; Bonvicini, V; Topchiev, N P; Adriani, O; Aptekar, R L; Arkhangelskaja, I V; Arkhangelskiy, A I; Bergstrom, L; Berti, E; Bigongiari, G; Bobkov, S G; Boezio, M; Bogomolov, E A; Bonechi, S; Bongi, M; Bottai, S; Castellini, G; Cattaneo, P W; Dedenko, G L; De Donato, C; Dogiel, V A; Gorbunov, M S; Gusakov, Yu V; Hnatyk, B I; Kadilin, V V; Kaplin, V A; Kaplun, A A; Kheymits, M D; Korepanov, V E; Larsson, J; Leonov, A A; Loginov, V A; Longo, F; Maestro, P; Marrocchesi, P S; Menshenin, A L; Mikhailov, V V; Mocchiutti, E; Moiseev, A A; Mori, N; Moskalenko, I V; Naumov, P Yu; Papini, P; Pearce, M; Picozza, P; Popov, A V; Rappoldi, A; Ricciarini, S; Runtso, M F; Ryde, F; Sarkar, R; Serdin, O V; Sparvoli, R; Spillantini, P; Suchkov, S I; Tavani, M; Taraskin, A A; Tiberio, A; Tyurin, E M; Ulanov, M V; Vacchi, A; Vannuccini, E; Vasilyev, G I; Yurkin, Yu T; Zampa, N; Zirakashvili, V N; Zverev, V G

    2015-01-01

    GAMMA-400 is a new space mission, designed as a dual experiment, capable to study both high energy gamma rays (from $\\sim$100 MeV to few TeV) and cosmic rays (electrons up to 20 TeV and nuclei up to $\\sim$10$^{15}$ eV). The full simulation framework of GAMMA-400 is based on the Geant4 toolkit. The details of the gamma-ray reconstruction pipeline in the three main instruments (Tracker, Imaging Calorimeter, Homogeneous Calorimeter) will be outlined. The performance of GAMMA-400 (PSF, effective area and sensitivity) have been obtained using this framework. The most updated results on them will be shown.

  9. Gamma-ray Bursts: Progresses at Purple Mountain Observatory

    Institute of Scientific and Technical Information of China (English)

    WEI Daming; FAN Yizhong

    2011-01-01

    A gamma-ray burst (GRB) is an extremely luminous flash of gamma rays that occurs as the result of an explosion, and is thought to be associated with the formation of a black hole. Most GRBs are billions of light years away from Earth, implying that the explosions are both extremely energetic (a typical burst releases as much energy in a few seconds as the Sun will in its entire 10-billion-year lifetime) and extremely rare (a few per galaxy per million years). Researches on GRBs have attracted wide attention. For experts on accretion disks,

  10. A new type gamma-ray spectrum monitoring system

    CERN Document Server

    Cheng Bo; Zhou Jian Bin; Zhang Zhi Ming; Tong Yun Fu

    2002-01-01

    This new radiation monitoring system can be used to monitor the radiation of building materials and the radiation of atmosphere, to explore and evaluate rock for building in the field, and this system can be used to monitor the gamma irradiation near the nuclear establishments in the average situation and in the serious situation of the radiation incident have happened. The control core of this monitoring system is SCM-AT89C52, and gamma-ray sensing head consists of scintillator phi 50 mm x 50 mm NaI(Tl) and PMT GDB44. This system can be used to measure the whole gamma-ray spectrum of 256 channels

  11. Search for new stellar sources of gamma-rays

    Directory of Open Access Journals (Sweden)

    Martí Josep

    2013-12-01

    Full Text Available We review and report about the present status of our search for gamma-ray binaries, microquasars, and new kinds of gamma-ray source associated with star forming regions in the Galaxy. The search is being carried out using cross-identification techniques applied to public databases and archives. A few promising candidates have been so far identified. These include the emission line star VES 737 and the central cluster of the Monoceros R2 star forming region. The observational data supporting the proposed associations is shortly presented and discussed.

  12. Time-of-flight discrimination between gamma-rays and neutrons by neural networks

    OpenAIRE

    2012-01-01

    In gamma-ray spectroscopy, a number of neutrons are emitted from the nuclei together with the gamma-rays and these neutrons influence gamma-ray spectra. An obvious method of separating between neutrons and gamma-rays is based on the time-of-flight (tof) technique. This work aims obtaining tof distributions of gamma-rays and neutrons by using feed-forward artificial neural network (ANN). It was shown that, ANN can correctly classify gamma-ray and neutron events. Testing of trained networks on ...

  13. Radio Properties of the $\\gamma$-ray Emitting CSO Candidate 2234+282

    CERN Document Server

    An, T; Gabanyi, K E; Frey, S; Baan, W A; Zhao, W

    2016-01-01

    Most of the gamma-ray emitting active galactic nuclei (AGN) are blazars, although there is still a small fraction of non-blazar AGN in the Fermi/LAT catalog. Among these misaligned gamma-ray-emitting AGN, a few can be classified as Compact Symmetric Objects (CSOs). In contrast to blazars in which gamma-ray emission is generally thought to originate from highly beamed relativistic jets, the source of gamma-ray emission in unbeamed CSOs remains an open question. The rarity of the gamma-ray emitting CSOs is a mystery as well. Here we present the radio properties of the gamma-ray CSO candidate 2234+282.

  14. Gamma-ray luminosity function of gamma-ray bright AGNs

    Institute of Scientific and Technical Information of China (English)

    Debbijoy Bhattacharya; P. Sreekumar; R. Mukherjee

    2009-01-01

    Detection of γ-ray emissions from a class of active galactic nuclei (viz blazars),has been one of the important findings from the Compton Gamma-Ray Observatory (CGRO). However, their-γ-ray luminosity function has not been well determined. Few at-tempts have been made in earlier works, where BL Lacs and Flat Spectrum Radio Quasars (FSRQs) have been considered as a single source class. In this paper, we investigated the evolution and γ-ray luminosity function of FSRQs and BL Lacs separately. Our investi-gation indicates no evolution for BL Lacs, however FSRQs show significant evolution. Pure luminosity evolution is assumed for FSRQs and exponential and power law evolu-tion models are examined. Due to the small number of sources, the low luminosity end index of the luminosity function for FSRQs is constrained with an upper limit. BL Lac lu-minosity function shows no signature of break. As a consistency check, the model source distributions derived from these luminosity functions show no significant departure from the observed source distributions.

  15. Method and System for Gamma-Ray Localization Induced Spacecraft Navigation Using Celestial Gamma-Ray Sources

    Science.gov (United States)

    Sheikh, Suneel I. (Inventor); Hisamoto, Chuck (Inventor); Arzoumanian, Zaven (Inventor)

    2015-01-01

    A method and system for spacecraft navigation using distant celestial gamma-ray bursts which offer detectable, bright, high-energy events that provide well-defined characteristics conducive to accurate time-alignment among spatially separated spacecraft. Utilizing assemblages of photons from distant gamma-ray bursts, relative range between two spacecraft can be accurately computed along the direction to each burst's source based upon the difference in arrival time of the burst emission at each spacecraft's location. Correlation methods used to time-align the high-energy burst profiles are provided. The spacecraft navigation may be carried out autonomously or in a central control mode of operation.

  16. Airborne Gamma-Ray Survey in Latvia 1995/96

    DEFF Research Database (Denmark)

    Bargholz, Kim

    1998-01-01

    Based on Airborne Gamma-Ray Spectrometry measurements performed with the Danish AGS equipment in 1995 and 1996 maps of the natural radioactivity have been produdced for selected areas in Latvia. The calibration of the quipment have been improved by comparisons with soil sample measurements....

  17. On the time variability of gamma-ray sources

    DEFF Research Database (Denmark)

    F. Torres, Diego; Pessah, Martin Elias; E. Romero, Gustavo

    2001-01-01

    We present a Monte Carlo analysis of the recently introduced variability indices $\\tau$ (Tompkins 1999) and $I$ (Zhang et al. 2000 & Torres et al. 2001) for $\\gamma$-ray sources. We explore different variability criteria and prove that these two indices, despite the very different approaches used...

  18. Carborne Gamma-Ray Spectrometry. Calibration and Applications

    DEFF Research Database (Denmark)

    Aage, Helle Karina; Korsbech, Uffe C C; Bargholz, Kim;

    2006-01-01

    Calibration of carborne gamma-ray spectrometry systems for 137Cs is carried out with a source successively placed at 791 positions within an area of 34m  62m. A computer model supplements the measurements. Hereby a sensitivity map for a surface contamination is generated as well as line and area...

  19. Reducing Statistical Noise in Airborne Gamma-Ray Data

    DEFF Research Database (Denmark)

    Hovgaard, Jens; Grasty, R. L.

    1997-01-01

    By using the Noise Adjusted Singular Value Decomposition (NASVD) technique it is possible to reconstruct the measured airborne gamma-ray spectra with a noise content that is significant smaller than the noise contained in the original measured spectra. The method can be used for improving...

  20. An optimum analysis sequence for environmental gamma-ray spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    De la Torre, F.; Rios M, C.; Ruvalcaba A, M. G.; Mireles G, F.; Saucedo A, S.; Davila R, I.; Pinedo, J. L., E-mail: fta777@hotmail.co [Universidad Autonoma de Zacatecas, Centro Regional de Estudis Nucleares, Calle Cipres No. 10, Fracc. La Penuela, 98068 Zacatecas (Mexico)

    2010-10-15

    This work aims to obtain an optimum analysis sequence for environmental gamma-ray spectroscopy by means of Genie 2000 (Canberra). Twenty different analysis sequences were customized using different peak area percentages and different algorithms for: 1) peak finding, and 2) peak area determination, and with or without the use of a library -based on evaluated nuclear data- of common gamma-ray emitters in environmental samples. The use of an optimum analysis sequence with certified nuclear information avoids the problems originated by the significant variations in out-of-date nuclear parameters of commercial software libraries. Interference-free gamma ray energies with absolute emission probabilities greater than 3.75% were included in the customized library. The gamma-ray spectroscopy system (based on a Ge Re-3522 Canberra detector) was calibrated both in energy and shape by means of the IAEA-2002 reference spectra for software intercomparison. To test the performance of the analysis sequences, the IAEA-2002 reference spectrum was used. The z-score and the reduced {chi}{sup 2} criteria were used to determine the optimum analysis sequence. The results show an appreciable variation in the peak area determinations and their corresponding uncertainties. Particularly, the combination of second derivative peak locate with simple peak area integration algorithms provides the greater accuracy. Lower accuracy comes from the combination of library directed peak locate algorithm and Genie's Gamma-M peak area determination. (Author)