WorldWideScience

Sample records for balanced tripartite entanglement

  1. Facets of tripartite entanglement

    Indian Academy of Sciences (India)

    Dipankar Home

    2001-02-01

    Tripartite entangled states of systems 1, 2 and 3 involving nonorthogonal states are used to reveal two hitherto unexplored quantum effects. The first shows that kinematic entanglement between the states of 1 and 2 can affect the result of dynamical interaction between 2 and 3, though 1 and 2 may be spatially separated so that they no longer interact. The second shows that if a residual interaction persists between 1 and 2 while 2 interacts with 3 to form an entangled state, the measurement of observables of 1 can be used to determine whether 2 has interacted with 3. This effect occurs even when the measurement on 1 is made long after the residual interaction between 1 and 2 has ceased to act. Such effects resulting from interplay between unitary dynamics and kinematic entanglement have interesting implications. In particular, we discuss the significance as regards what we call the dynamic version of Einstein locality

  2. A Peculiar Tripartite Entangled State

    Institute of Scientific and Technical Information of China (English)

    黄燕霞; 於亚飞; 詹明生

    2003-01-01

    We present a scheme to prepare two-atom Einstein-Podolsky-Rosen states and three-atom entangled states via cavity quantum electrodynamics, and it can be realized experimentally. Importantly, we find that in the set of tripartite entangled states prepared by our scheme there is a peculiar tripartite entangled state except the Greenberger-Horne-Zeilinger (GHZ) state. The peculiar tripartite entangled states have double feature of the GHZ state (i.e. T123 > 0) and W state (i.e. the remaining reduce density matrices ρij retain entanglement according to the positive partial transformation (PPT) criterion) simultaneously. However, its entanglement properties are not completely identical either to the GHZ state or to the W state. It is interesting that for peculiar entanglement properties, the remaining reduced density matrices ρij can retain entanglement or disentanglement independently, which can be chosen freely according to our need.

  3. Balanced Tripartite Entanglement, the Alternating Group A4 and the Lie Algebra $sl(3,C) \\oplus u(1)$

    CERN Document Server

    Planat, Michel; Saniga, Metod

    2009-01-01

    We discuss three important classes of three-qubit entangled states and their encoding into quantum gates, finite groups and Lie algebras. States of the GHZ and W-type correspond to pure tripartite and bipartite entanglement, respectively. We introduce another generic class B of three-qubit states, that have balanced entanglement over two and three parties. We show how to realize the largest cristallographic group $W(E_8)$ in terms of three-qubit gates (with real entries) encoding states of type GHZ or W [M. Planat, {\\it Clifford group dipoles and the enactment of Weyl/Coxeter group $W(E_8)$ by entangling gates}, Preprint 0904.3691 (quant-ph)]. Then, we describe a peculiar "condensation" of $W(E_8)$ into the four-letter alternating group $A_4$, obtained from a chain of maximal subgroups. Group $A_4$ is realized from two B-type generators and found to correspond to the Lie algebra $sl(3,\\mathbb{C})\\oplus u(1)$. Possible applications of our findings to particle physics and the structure of genetic code are also ...

  4. Continuous variable tripartite entanglement from twin nonlinearities

    Energy Technology Data Exchange (ETDEWEB)

    Olsen, M K; Bradley, A S [ARC Centre of Excellence for Quantum-Atom Optics, School of Physical Sciences, University of Queensland, Brisbane 4072, Qld (Australia)

    2006-01-14

    In this work, we analyse and compare the continuous variable tripartite entanglement available from the use of two concurrent or cascaded {chi}{sup (2)} nonlinearities. We examine both idealized travelling-wave models and more experimentally realistic intracavity models, showing that tripartite entangled outputs are readily producible. These may be a useful resource for applications such as quantum cryptography and teleportation.

  5. Tripartite entanglement of fermionic system in accelerated frames

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Salman, E-mail: sksafi@comsats.edu.pk

    2014-09-15

    The dynamics of tripartite entanglement of fermionic system in noninertial frames through linear contraction criterion when one or two observers are accelerated is investigated. In one observer accelerated case the entanglement measurement is not invariant with respect to the partial realignment of different subsystems and for two observers accelerated case it is invariant. It is shown that the acceleration of the frame does not generate entanglement in any bipartite subsystems. Unlike the bipartite states, the genuine tripartite entanglement does not completely vanish in both one observer accelerated and two observers accelerated cases even in the limit of infinite acceleration. The degradation of tripartite entanglement is fast when two observers are accelerated than when one observer is accelerated. It is shown that tripartite entanglement is a better resource for quantum information processing than the bipartite entanglement in noninertial frames. - Highlights: • Tripartite entanglement of fermionic system in noninertial frames is studied. • Linear contraction criterion for quantifying tripartite entanglement is used. • Acceleration does not produce any bipartite entanglement. • The invariance of entanglement quantifier depends on accelerated observers. • The tripartite entanglement degrades against the acceleration, it never vanishes.

  6. Tripartite entanglement dynamics of vibrations in triatomic molecules.

    Science.gov (United States)

    Zhai, Liangjun; Zheng, Yujun

    2016-06-21

    In the present study, the dynamical behaviors of tripartite entanglement of vibrations in triatomic molecules are studied based on the Lie algebraic models of molecules. The dynamical behaviors of tripartite entanglement of the local mode molecule H2O and normal mode molecule NO2 are comparatively studied for different initial states by employing the general concurrence. Our results show that the dynamics of tripartite entanglement are relied on the dynamics of intramolecular energy distribution. The local mode molecule is more suitable to construct the tripartite entangled states. Also, the greater degree of tripartite entanglement can be obtained if the stretching vibration is first excited. These results shed new light on the understanding of quantum multipartite entanglement of vibrations in the polyatomic molecules.

  7. Nonlinear Tripartite Entangled State Representation and Related Generalized Wigner Function

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    We construct the nonlinear tripartite entangled state representation and the related generalized Wigner operator. Then we discussed the Wigner functions of the nonlinear tripartite entangled state and the three-mode nonlinear squeezed vacuum state, and obtained the classical Weyl corresponding function of the three-mode nonlinear squeezed state.

  8. Teleportation with Tripartite Entangled State via Thermal Cavity

    International Nuclear Information System (INIS)

    Teleportation schemes with a tripartite entangled state in cavity QED are investigated. The schemes do not need Bell state measurements and the successful probabilities reach optimality. In addition, the schemes are insensitive to both the cavity decay and the thermal field. We first consider two teleportation schemes via a tripartite GHZ state. The first one is a controlled one for an unknown single-qubit state. The second scheme is teleportation of unknown two-atom entangled state. Then we consider teleporting of single-qubit arbitrary state via a tripartite W state.

  9. Teleportation with Tripartite Entangled State via Thermal Cavity

    Institute of Scientific and Technical Information of China (English)

    XUE Zheng-Yuan; YI You-Min; CAO Zhuo-Liang

    2006-01-01

    Teleportation schemes with a tripartite entangled state in cavity QED are investigated. The schemes do not need Bell state measurements and the successful probabilities reach optimality. In addition, the schemes are insensitive to both the cavity decay and the thermal field. We first consider two teleportation schemes via a tripartite GHZ state.The first one is a controlled one for an unknown single-qubit state. The second scheme is teleportation of unknown two-atom entangled state. Then we consider teleporting of single-qubit arbitrary state via a tripartite W state.

  10. Asymmetric polychromatic tripartite entanglement from interlinked χ(2) parametric interactions

    Science.gov (United States)

    Olsen, M. K.; Bradley, A. S.

    2006-12-01

    We examine the tripartite entanglement properties of an optical system using interlinked χ(2) interactions, recently studied experimentally in terms of its phase-matching properties by Bondani [Opt. Express 14, 21, 9838 (2006)]. We show that the system produces output modes at three distinct frequencies which are genuinely tripartite entangled, and analyze this entanglement in terms of different measurable correlations. We show that, due to the asymmetry of the process, the detection of this entanglement depends crucially on the correlation functions that are measured. We find that some of the correlations found in the literature fail to register the entanglement, in contrast to symmetric systems, for which the actual choice of correlation to be measured makes little difference.

  11. Measure of tripartite entanglement in bosonic and fermionic systems

    Energy Technology Data Exchange (ETDEWEB)

    Buscemi, Fabrizio [Dipartimento di Elettronica, Informatica, e Sistemi, Universita di Bologna, Viale Risorgimento 2, I-40136 Bologna (Italy); ARCES, Alma Mater Studiorum, Universita di Bologna, Via Toffano 2/2, I-40125 Bologna (Italy); Bordone, Paolo [Dipartimento di Fisica, Universita di Modena e Reggio Emilia, I-41125 Modena (Italy); Centro S3, CNR-Istituto di Nanoscienze, Via Campi 213/A, I-41125 Modena (Italy)

    2011-08-15

    We describe an efficient theoretical criterion suitable for the evaluation of the tripartite entanglement of any mixed three-boson or three-fermion state, based on the notion of the entanglement of particles for bipartite systems of identical particles. Our approach allows one to quantify the accessible number of quantum correlations in the systems without any violation of the local particle number superselection rule. A generalization of the tripartite negativity is here applied to some correlated systems including the continuous-time quantum walks of identical particles (for both bosons and fermions) and compared with other criteria recently proposed in the literature. Our results show the dependence of the entanglement dynamics upon the quantum statistics: The bosonic bunching results in a low number of quantum correlations while Fermi-Dirac statistics allows for higher values of the entanglement.

  12. A measure of tripartite entanglement in bosonic and fermionic systems

    CERN Document Server

    Buscemi, Fabrizio

    2011-01-01

    We describe an efficient theoretical criterion suitable for the evaluation of the tripartite entanglement of any mixed three-boson or -fermion state, based on the notion of the entanglement of particles for bipartite systems of identical particles. Our approach allows one to quantify the accessible amount of quantum correlations in the systems without any violation of the local particle number superselection rule. A generalization of the tripartite negativity is here applied to some correlated systems including the continuous-time quantum walks of identical particles (both for bosons and fermions) and compared with other criteria recently proposed in the literature. Our results show the dependence of the entanglement dynamics upon the quantum statistics: the bosonic bunching results into a low amount of quantum correlations while Fermi-Dirac statistics allows for higher values of the entanglement.

  13. Probabilistic Remote Preparation of a Tripartite High-Dimensional Equatorial Entangled State

    Institute of Scientific and Technical Information of China (English)

    SHI Jin; ZHAN You-Bang

    2009-01-01

    We present a scheme for probabilistic remote preparation of a tripartite qutrit entangled state with a partial tripartite qutrit entangled state and a partial bipartite qutrit entangled state as the quantum channel.It is found that a bipartite qutrit orthogonal projective measurement, an auxiliary qutrit particle, and the corresponding unitary transformation are required.A scheme for probabilistic remote preparation of a tripartite qudit equatorial entangled state by using a partial tripartite qudit entangled state and a partial bipartite qudit entangled state as the quantum channel is also proposed.We calculate the successful total probability and the total classical communication cost required in the RSP process, respectively.

  14. Entanglement Dynamics in a Model Tripartite Quantum System

    Science.gov (United States)

    Laha, Pradip; Sudarsan, B.; Lakshmibala, S.; Balakrishnan, V.

    2016-09-01

    A Λ-type atom interacting with two radiation fields exhibits electromagnetically induced transparency and other nonclassical effects that appear in the entanglement dynamics of the atomic subsystem and in appropriate field observables. Both EIT and field-atom entanglement are important for quantum information processing. We investigate the roles played by specific initial field states, detuning parameters, field nonlinearities and intensity-dependent field-atom couplings on EIT and the entanglement between subsystems. Departure from coherence of the initial field states produces significant effects. We investigate these aspects in a model that exhibits the salient features of entangled tripartite systems. For initial photon-added coherent states, collapses and revivals of the atomic subsystem von Neumann entropy appear as the intensity parameter varies over a narrow range of values. These features could be useful in enabling entanglement.

  15. Quantum frequency doubling based on tripartite entanglement with cavities

    Science.gov (United States)

    Juan, Guo; Zhi-Feng, Wei; Su-Ying, Zhang

    2016-02-01

    We analyze the entanglement characteristics of three harmonic modes, which are the output fields from three cavities with an input tripartite entangled state at fundamental frequency. The entanglement properties of the input beams can be maintained after their frequencies have been up-converted by the process of second harmonic generation. We have calculated the parametric dependences of the correlation spectrum on the initial squeezing factor, the pump power, the transmission coefficient, and the normalized analysis frequency of cavity. The numerical results provide references to choose proper experimental parameters for designing the experiment. The frequency conversion of the multipartite entangled state can also be applied to a quantum communication network. Project supported by the National Natural Science Foundation of China (Grant No. 91430109), the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20111401110004), and the Natural Science Foundation of Shanxi Province, China (Grant No. 2014011005-3).

  16. On the Entangled Fractional Fourier Transform in Tripartite Entangled State Representation

    Institute of Scientific and Technical Information of China (English)

    FAN Hong-Yi; JIANG Nian-Quan

    2003-01-01

    Based on the newly constructed two mutually conjugate 3-mode entangled states of continuum variablesin three-mode Fock space we introduce entangled fractional Fourier transform (EFFT) for the tripartite entangled staterepresentations, which are not a direct product of three 1-dimensional FFTs. The eigenmodes of EFFT are obtained,which is different from the usual Hermite polynomials. The EFFT of the three-mode squeezed state is derived.

  17. Entanglement and quantum teleportation via decohered tripartite entangled states

    Energy Technology Data Exchange (ETDEWEB)

    Metwally, N., E-mail: nmohamed31@gmail.com

    2014-12-15

    The entanglement behavior of two classes of multi-qubit system, GHZ and GHZ like states passing through a generalized amplitude damping channel is discussed. Despite this channel causes degradation of the entangled properties and consequently their abilities to perform quantum teleportation, one can always improve the lower values of the entanglement and the fidelity of the teleported state by controlling on Bell measurements, analyzer angle and channel’s strength. Using GHZ-like state within a generalized amplitude damping channel is much better than using the normal GHZ-state, where the decay rate of entanglement and the fidelity of the teleported states are smaller than those depicted for GHZ state.

  18. Entanglement of Tripartite States with Decoherence in Noninertial frames

    OpenAIRE

    Khan, Salman

    2013-01-01

    The one-tangle and {\\pi}-tangle are used to quantify the entanglement of a tripartite GHZ state in noninertial frames when the system interacts with a noisy environment in the form of phase damping, phase flip and bit flip channel. It is shown that the two-tangles behave as a closed system. The one-tangle and {\\pi}-tangle have different behaviors in the three channel. In the case of phase damping channel, depending on the kind of coupling, the sudden death of both one-tangle and {\\pi}-tangle ...

  19. Detailed balance and entanglement

    International Nuclear Information System (INIS)

    We study a connection between quantum detailed balance, which is a concept of importance in statistical mechanics, and entanglement. We also explore how this connection fits into thermofield dynamics. (paper)

  20. Bipartite and Tripartite Entanglement in a Three-Qubit Heisenberg Model

    Institute of Scientific and Technical Information of China (English)

    REN Jie; ZHU Shi-Qun

    2006-01-01

    The bipartite and tripartite entanglement in a three-qubit Heisenberg XY model with a nonuniformmagnetic field is studied. There are two or four peaks in the concurrence of the bipartite entanglement when the amplitudes of the magnetic fields are differently distributed between the three qubits. It is very interesting to note that there is no tangle of tripartite entanglement between the three qubits when the amplitudes of the magnetic fields are varied. However, the variation of the magnetic field direction can induce the tangle. The tangle is periodic about the angle between the magnetic field and the z axis of the spin.

  1. Application of Bipartite and Tripartite Entangled State Representations in Quantum Teleportation of Continuous Variables

    Institute of Scientific and Technical Information of China (English)

    YUAN Hong-Chun; QI Kai-Guo

    2005-01-01

    We mostly investigate two schemes. One is to teleport a multi-mode W-type entangled coherent state using a peculiar bipartite entangled state as the quantum channel different from other proposals. Based on our formalism,teleporting multi-mode coherent state or squeezed state is also possible. Another is that the tripartite entangled state is used as the quantum channel of controlled teleportation of an arbitrary and unknown continuous variable in the case of three participators.

  2. Tripartite entanglement of bosonic systems in a noninertial frame beyond the single- mode approximation

    Directory of Open Access Journals (Sweden)

    M Soltani

    2015-12-01

    Full Text Available In this work, we generalize the entanglement of three-qbit Bosonic systems beyond the single-mode approximation when one of the observers is accelerated. For this purpose, we review the effects of acceleration on field modes and quantum states. The single-mode approximation and beyond the single-mode approximation methods are introduced. After this brief introduction, the main problem of this paper, tripartite entanglement of bosonic systems in a noninertial frame beyond the single- mode approximation is investigated. The tripartite entangled states have different classes with GHZ and W states being most important. Here, we choose &pi-tangle as a measure of tripartite entanglement. If the three parties share GHZ state, the corresponding &pi-tangle will increase by increasing acceleration for some Unruh modes. This phenomenon, increasing entanglement, has never been observed in the single-mode approximation for bosonic case. Moreover, the &pi-tangle dose not exhibit a monotonic behavior with increasing acceleration. In the infinite acceleration limit, the &pi-tangle goes to different nonzero values for distinct Unruh modes. Unlike GHZ state, the entanglement of the W state shows only monotonically increasing and decreasing behaviors with increasing acceleration. Also, the entanglement for all possible choices of Unruh modes approaches only 0.176 in the high acceleration limit. Therefore, according to the quantum entanglement, there is no distinction between the single-mode approximation and beyond the single-mode approximation methods in this limit.

  3. Tripartite nonlocality and continuous-variable entanglement in thermal states of trapped ions

    International Nuclear Information System (INIS)

    We study a system of three trapped ions in an anisotropic bidimensional trap. By focusing on the transverse modes of the ions, we show that the mutual ion-ion Coulomb interactions set entanglement of a genuine tripartite nature, to some extent persistent to the thermal nature of the vibronic modes. We tackle this issue by addressing a nonlocality test in the phase space of the ionic system and quantifying the genuine residual tripartite entanglement in the continuous variable state of the transverse modes.

  4. Tripartite entanglement dynamics in the presence of Markovian or non-Markovian environment

    Science.gov (United States)

    Park, DaeKil

    2016-08-01

    We study on the tripartite entanglement dynamics when each party is initially entangled with other parties, but they locally interact with their own Markovian or non-Markovian environment. First we consider three GHZ-type initial states, all of which have GHZ-symmetry provided that the parameters are chosen appropriately. However, this symmetry is broken due to the effect of environment. The corresponding π -tangles, one of the tripartite entanglement measures, are analytically computed at arbitrary time. For Markovian case while the tripartite entanglement for type I exhibits an entanglement sudden death, the dynamics for the remaining cases decays normally in time with the half-life rule. For non-Markovian case the revival phenomenon of entanglement occurs after complete disappearance of entanglement. We also consider two W-type initial states. For both cases the π -tangles are analytically derived. The revival phenomenon also occurs in this case. On the analytical ground the robustness or fragility issue against the effect of environment is examined for both GHZ-type and W-type initial states.

  5. Continuous variable tripartite entanglement and Einstein-Podolsky-Rosen correlations from triple nonlinearities

    Energy Technology Data Exchange (ETDEWEB)

    Olsen, M K; Bradley, A S; Reid, M D [ARC Centre of Excellence for Quantum-Atom Optics, School of Physical Sciences, University of Queensland, Brisbane, Qld 4072 (Australia)

    2006-06-14

    We compare theoretically the tripartite entanglement available from the use of three concurrent {chi}{sup (2)} nonlinearities and three independent squeezed states mixed on beamsplitters, using an appropriate version of the van Loock-Furusawa inequalities. We also define three-mode generalizations of the Einstein-Podolsky-Rosen paradox which are an alternative for demonstrating the inseparability of the density matrix.

  6. Various notions of positivity for bi-linear maps and applications to tri-partite entanglement

    Energy Technology Data Exchange (ETDEWEB)

    Han, Kyung Hoon, E-mail: kyunghoon.han@gmail.com [Department of Mathematics, The University of Suwon, Gyeonggi-do 445-743 (Korea, Republic of); Kye, Seung-Hyeok, E-mail: kye@snu.ac.kr [Department of Mathematics and Institute of Mathematics, Seoul National University, Seoul 151-742 (Korea, Republic of)

    2016-01-15

    We consider bi-linear analogues of s-positivity for linear maps. The dual objects of these notions can be described in terms of Schmidt ranks for tri-tensor products and Schmidt numbers for tri-partite quantum states. These tri-partite versions of Schmidt numbers cover various kinds of bi-separability, and so we may interpret witnesses for those in terms of bi-linear maps. We give concrete examples of witnesses for various kinds of three qubit entanglement.

  7. Schemes for deterministic joint remote preparation of an arbitrary tripartite four-qubit entangled state

    Science.gov (United States)

    Ma, Peng-Cheng; Chen, Gui-Bin; Li, Xiao-Wei; Zhan, You-Bang

    2016-10-01

    We present two schemes for the joint remote state preparation (JRSP) of an arbitrary tripartite four-qubit entangled state with complex coefficients via four and two three-qubit GHZ states as the quantum channel, respectively. In these schemes, the two senders share the original state which they wish to help the receiver remotely prepare. To complete the JRSP schemes, some novel sets of mutually orthogonal basis vectors are introduced. It is shown that, only if the two senders collaborate with each other, and perform projective measurements under a suitable measuring basis on their own qubits respectively, can the receiver reconstruct the original state by means of some appropriate unitary operations. We demonstrate, in our both schemes, the total success probability of the JRSP can reach 1. Moreover, compared with the first scheme in this paper, the advantage of the second scheme is that the entanglement resource can be reduced.

  8. Genuine Tripartite Entanglement and Nonlocality in Bose-Einstein Condensates by Collective Atomic Recoil

    Directory of Open Access Journals (Sweden)

    Gerardo Adesso

    2013-05-01

    Full Text Available We study a system represented by a Bose-Einstein condensate interacting with a cavity field in presence of a strong off-resonant pumping laser. This system can be described by a three-mode Gaussian state, where two are the atomic modes corresponding to atoms populating upper and lower momentum sidebands and the third mode describes the scattered cavity field light. We show that, as a consequence of the collective atomic recoil instability, these modes possess a genuine tripartite entanglement that increases unboundedly with the evolution time and is larger than the bipartite entanglement in any reduced two-mode bipartition. We further show that the state of the system exhibits genuine tripartite nonlocality, which can be revealed by a robust violation of the Svetlichny inequality when performing displaced parity measurements. Our exact results are obtained by exploiting the powerful machinery of phase-space informational measures for Gaussian states, which we briefly review in the opening sections of the paper.

  9. Non-Maximal Tripartite Entanglement Degradation of Dirac and Scalar Fields in Non-Inertial Frames

    Science.gov (United States)

    Salman, Khan; Niaz, Ali Khan; M. K., Khan

    2014-03-01

    The π-tangle is used to study the behavior of entanglement of a nonmaximal tripartite state of both Dirac and scalar fields in accelerated frame. For Dirac fields, the degree of degradation with acceleration of both one-tangle of accelerated observer and π-tangle, for the same initial entanglement, is different by just interchanging the values of probability amplitudes. A fraction of both one-tangles and the π-tangle always survives for any choice of acceleration and the degree of initial entanglement. For scalar field, the one-tangle of accelerated observer depends on the choice of values of probability amplitudes and it vanishes in the range of infinite acceleration, whereas for π-tangle this is not always true. The dependence of π-tangle on probability amplitudes varies with acceleration. In the lower range of acceleration, its behavior changes by switching between the values of probability amplitudes and for larger values of acceleration this dependence on probability amplitudes vanishes. Interestingly, unlike bipartite entanglement, the degradation of π-tangle against acceleration in the case of scalar fields is slower than for Dirac fields.

  10. 三体Bell对角态的纠缠%Entanglement of Tripartite Bell Diagonal States

    Institute of Scientific and Technical Information of China (English)

    赵慧; 张兴华

    2011-01-01

    给出了三体2(×)2(×)3Bell对角态纠缠判定的一个必要条件和3(×)3(×)3Bell对角态纠缠的充分条件,进一步研究了3(×)3(×)3Bell对角态纠缠与密度矩阵部分转置的关系以及Bell对角态负性的数学表达式.%A necessary condition of entanglement for tripartite 2 (⊕)2 (⊕)3 Bell diagonal states and a sufficient condition of entanglement for 3 (⊕)3 (⊕)3 Bell diagonal states are presented. Moreover, the relation between entanglement of 3(⊕)3(⊕)3 Bell diagonal states and partial transpose of density matrix is investigated. And an analytical expression of negative for Bell diagonal states is presented.Key words: Bell diagonal states; entanglement; density matrix Robust Estimation for Varying Coefficient Model Abstract: This paper considers robust estimation of varying coefficient models with emphasis on resistance against outliers. By combining B-splines method with taut string method, a robust estimation procedure is proposed. Based on local quadratic approximation, an iterative algorithm is introduced. Simulation study indicates that the proposed method is robust.

  11. Versatility of continuous-variable asymmetric tripartite entanglement allows Alice and Clare to keep secrets from Bob

    Science.gov (United States)

    Olsen, M. K.; Cavalcanti, E. G.

    2016-07-01

    The fully symmetric Gaussian tripartite entangled pure states will not exhibit two-mode Einstein-Podolsky-Rosen (EPR) steering. This means that any two participants cannot share quantum secrets using the security of one-sided device independent quantum key distribution (1SDI-QKD) without involving the third. They are restricted at most to standard quantum key distribution, which is less secure. Here we demonstrate an asymmetric tripartite system that can exhibit bipartite EPR steering, so that two of the participants can use 1SDI-QKD without involving the other. This is possible because the promiscuity relations of continuous-variable tripartite entanglement are different from those of discrete-variable systems. We analyze these properties for two different systems, showing that the asymmetric system exhibits practical properties not found in the symmetric one.

  12. Measurable genuine tripartite entanglement of (2 ⊗2 ⊗n )-dimensional quantum states via only two simultaneous copies

    Science.gov (United States)

    Yu, Chang-shui; Guo, Bao-qing; Yang, Si-ren

    2016-04-01

    Usually, the three-tangle of a tripartite pure state of qubits can be directly measured with the simultaneous preparation of a not-less-than fourfold copy of the state. We show that the exact genuine tripartite entanglement for (2 ⊗2 ⊗n )-dimensional pure quantum states can be measured in a similar manner, provided that only two simultaneous copies of the state are available. Lower bounds are also proposed for more convenient experimental operations. As an example, a comprehensive demonstration of the scheme is provided for the three-tangle of a three-qubit state.

  13. Entanglement of Multi-qudit States Constructed by Linearly Independent Coherent States: Balanced Case

    Science.gov (United States)

    Najarbashi, G.; Mirzaei, S.

    2016-03-01

    Multi-mode entangled coherent states are important resources for linear optics quantum computation and teleportation. Here we introduce the generalized balanced N-mode coherent states which recast in the multi-qudit case. The necessary and sufficient condition for bi-separability of such balanced N-mode coherent states is found. We particularly focus on pure and mixed multi-qubit and multi-qutrit like states and examine the degree of bipartite as well as tripartite entanglement using the concurrence measure. Unlike the N-qubit case, it is shown that there are qutrit states violating monogamy inequality. Using parity, displacement operator and beam splitters, we will propose a scheme for generating balanced N-mode entangled coherent states for even number of terms in superposition.

  14. 变系数模型的稳健估计%Entanglement of Tripartite Bell Diagonal States

    Institute of Scientific and Technical Information of China (English)

    赵培信; 薛留根

    2011-01-01

    为了研究变系数模型的稳健估计问题,结合B-样条方法和taut string方法得到了一个稳健估计过程;结合局部二次逼近方法,给出了一个迭代算法.数据模拟结果表明所得估计是稳健的.%A necessary condition of entanglement for tripartite 2 (⊕)2 (⊕)3 Bell diagonal states and a sufficient condition of entanglement for 3 (⊕)3 (⊕)3 Bell diagonal states are presented. Moreover, the relation between entanglement of 3(⊕)3(⊕)3 Bell diagonal states and partial transpose of density matrix is investigated. And an analytical expression of negative for Bell diagonal states is presented.Key words: Bell diagonal states; entanglement; density matrix Robust Estimation for Varying Coefficient Model Abstract: This paper considers robust estimation of varying coefficient models with emphasis on resistance against outliers. By combining B-splines method with taut string method, a robust estimation procedure is proposed. Based on local quadratic approximation, an iterative algorithm is introduced. Simulation study indicates that the proposed method is robust.

  15. Transformation of bipartite non-maximally entangled states into a tripartiteWstate in cavity QED

    Indian Academy of Sciences (India)

    ZANG XUE-PING; YANG MING; DU CHAO-QUN; WANG MIN; FANG SHU-DONG; CAO ZHUO-LIANG

    2016-05-01

    We present two schemes for transforming bipartite non-maximally entangled states into a W state in cavity QED system, by using highly detuned interactions and the resonant interactions between two-level atoms and a single-mode cavity field. A tri-atom W state can be generated by adjusting the interaction times between atoms and the cavity mode. These schemes demonstrate that two bipartite non-maximally entangled states can be merged into a maximally entangled W state. So the scheme can, in some sense, be regarded as an entanglement concentration process. The experimental feasibility of the schemes is also discussed.

  16. Tripartite entanglement of {Cu3} single molecular magnet with magnetic field in thermal equilibrium%{Cu3}单分子磁体在热平衡和磁场作用下的三体纠缠∗

    Institute of Scientific and Technical Information of China (English)

    郑一丹; 周斌

    2016-01-01

    Quantum entanglement is one of the most fundamental properties of quantum mechanics. Because of the nonlocality, quantum entanglement is widely used in quantum computation and quantum information. Considering the fact that thermal fluctuation suppresses quantum effects, the concept of thermal entanglement is introduced to refer to the idea that the effect of temperature should be viewed as external control in the preparation of entangled state. It has been found that nanoscale single molecular magnet has a novel quantum effect at low temperature. Furthermore, single-molecular magnet is viewed as a promising candidate for realizing encoding and manipulation of quantum information. Na9[Cu3Na3(H2O)9(α-AsW9O33)2]·26H2O (denoted as {Cu3} for convenience) is one of the typical representatives of nanoscale single molecular magnets. In this paper, we will theoretically analyze the properties of tripartite entanglement in {Cu3} with an external magnetic field in thermal equilibrium. The tripartite negativity is used to characterize the tripartite entanglement. The tripartite negativity of {Cu3} single molecular magnet is calculated numerically by using the equivalent spin model and experimental fitting parameters. We consider the magnetic fields along the vertical and the parallel directions of triangular spin ring, respectively, and the case with a tilted magnetic field is also discussed in this paper. It is shown that the magnitude and direction of magnetic field, and temperature have importance effects on the tripartite negativity of the system. It is found that the larger extra strong magnetic field will inhibit the generation of the quantum state of tripartite entanglement at higher temperature. In addition, compared with the magnetic field along the parallel direction of triangular spin ring and the tilted magnetic field, the magnetic field along the vertical direction of triangular spin ring obtains larger values of tripartite negativity under the same temperature

  17. 固态电路 QED 系统中三模连续变量纠缠的实现%The Realization of Tripartite Continuous Variable Entanglement Generated in Solid-state Circuit QED

    Institute of Scientific and Technical Information of China (English)

    刘祥; 陈娟

    2016-01-01

    The paper indicates that the tripartite continuous-variable entanglement could be realized in the solid-stated circuit through the interconnection between the energy transition of the four-level superconductor qubit system and the three superconducting transmission line resonators. Thus the correlation between the energy level transition of the four-level superconductor qubit system and the driving of classical fields and the coupling of resonators is analyzed. It turns out that an effective tripartite continuous-variable entanglement could be realized in the three solid-stated resonators via the application of the adiabatic eliminated method, besides, the research provides a new way to research the multipartite CV entanglement.%通过三个超导传输线谐振器与四能级超导量子比特相互耦合实现了固态电路 QED 系统中三模连续变量纠缠,并分析了四能级超导量子比特系统的能级跃迁与经典场的驱动和谐振器的耦合之间的关联。结果表明:采用绝热消除的方法可以在三个固态谐振器中实现三模连续变量纠缠,为多模连续变量纠缠研究提供了新途径。

  18. Polygamy of distributed entanglement

    Science.gov (United States)

    Buscemi, Francesco; Gour, Gilad; Kim, Jeong San

    2009-07-01

    While quantum entanglement is known to be monogamous (i.e., shared entanglement is restricted in multipartite settings), here we show that distributed entanglement (or the potential for entanglement) is by nature polygamous. By establishing the concept of one-way unlocalizable entanglement (UE) and investigating its properties, we provide a polygamy inequality of distributed entanglement in tripartite quantum systems of arbitrary dimension. We also provide a polygamy inequality in multiqubit systems and several trade-offs between UE and other correlation measures.

  19. Charcterization of multipartite entanglement

    Energy Technology Data Exchange (ETDEWEB)

    Chong, Bo

    2006-06-23

    In this thesis, we discuss several aspects of the characterization of entanglement in multipartite quantum systems, including detection, classification and quantification of entanglement. First, we discuss triqubit pure entanglement and propose a special true tripartite entanglement, the mixed entanglement, besides the Greenberger-Horne-Zeilinger (GHZ) entanglement and the W entanglement. Then, based on quantitative complementarity relations, we draw entanglement Venn diagrams for triqubit pure states with different entanglements and introduce the total tangle {tau}{sup (T)} to quantify total entanglement of triqubit pure states by defining the union I that is equivalent to the total tangle {tau}{sup (T)} from the mathematical point of view. The generalizations of entanglement Venn diagrams and the union I to N-qubit pure states are also discussed. Finally, based on the ranks of reduced density matrices, we discuss the separability of multiparticle arbitrary-dimensional pure and mixed states, respectively. (orig.)

  20. Charcterization of multipartite entanglement

    International Nuclear Information System (INIS)

    In this thesis, we discuss several aspects of the characterization of entanglement in multipartite quantum systems, including detection, classification and quantification of entanglement. First, we discuss triqubit pure entanglement and propose a special true tripartite entanglement, the mixed entanglement, besides the Greenberger-Horne-Zeilinger (GHZ) entanglement and the W entanglement. Then, based on quantitative complementarity relations, we draw entanglement Venn diagrams for triqubit pure states with different entanglements and introduce the total tangle τ(T) to quantify total entanglement of triqubit pure states by defining the union I that is equivalent to the total tangle τ(T) from the mathematical point of view. The generalizations of entanglement Venn diagrams and the union I to N-qubit pure states are also discussed. Finally, based on the ranks of reduced density matrices, we discuss the separability of multiparticle arbitrary-dimensional pure and mixed states, respectively. (orig.)

  1. Tripartite Quantum Controlled Teleportation via Seven-Qubit Cluster State

    Science.gov (United States)

    Li, Wei; Zha, Xin-Wei; Qi, Jian-Xia

    2016-04-01

    In this paper, a theoretical scheme for tripartite quantum controlled teleportation is presented using the entanglement property of seven-qubit cluster state. This means that Alice wants to transmit a entangled state of particle a to Bob, Charlie wants to transmit a entangled state of particle b to David and Edison wants to transmit a entangled state of particle c to Ford via the control of the supervisor. In the end, we compared the aspects of quantum resource consumption, operation complexity, classical resource consumption, quantum information bits transmitted, success probability and efficiency with other schemes.

  2. Quantum teleportation of entangled squeezed vacuum states

    Institute of Scientific and Technical Information of China (English)

    蔡新华

    2003-01-01

    An optical scheme for probabilistic teleporting entangled squeezed vacuum states (SVS) is proposed. In this scheme,the teleported state is a bipartite entangled SVS,and the quantum channel is a tripartite entangled SVS.The process of the teleportation is achieved by using a 50/50 symmetric beamsplitter and photon detectors with the help of classical information.

  3. Entangling gates in even Euclidean lattices such as Leech lattice

    CERN Document Server

    Planat, Michel

    2010-01-01

    We point out a organic relationship between real entangling n-qubit gates of quantum computation and the group of automorphisms of even Euclidean lattices of the corresponding dimension 2n. The type of entanglement that is found in the gates/generators of Aut() depends on the lattice. In particular, we investigate Zn lattices, Barnes-Wall lattices D4, E8, 16 (associated to n = 2, 3 and 4 qubits), and the Leech lattices h24 and 24 (associated to a 3-qubit/qutrit system). Balanced tripartite entanglement is found to be a basic feature of Aut(), a nding that bears out our recent work related to the Weyl group of E8 [1, 2].

  4. Driven optomechanical systems for mechanical entanglement distribution

    CERN Document Server

    Paternostro, M; Li, Jie

    2012-01-01

    We consider the distribution of entanglement from a multi-mode optical driving source to a network of remote and independent optomechanical systems. By focusing on the tripartite case, we analyse the effects that the features of the optical input states have on the degree and sharing-structure of the distributed, fully mechanical, entanglement. This study, which is conducted looking at the mechanical steady-state, highlights the structure of the entanglement distributed among the nodes and determines the relative efficiency between bipartite and tripartite entanglement transfer. We discuss a few open points, some of which directed towards the bypassing of such limitations.

  5. Links and Quantum Entanglement

    CERN Document Server

    Solomon, A I

    2011-01-01

    We discuss the analogy between topological entanglement and quantum entanglement, particularly for tripartite quantum systems. We illustrate our approach by first discussing two clearly (topologically) inequivalent systems of three-ring links: The Borromean rings, in which the removal of any one link leaves the remaining two non-linked (or, by analogy, non-entangled); and an inequivalent system (which we call the NUS link) for which the removal of any one link leaves the remaining two linked (or, entangled in our analogy). We introduce unitary representations for the appropriate Braid Group ($B_3$) which produce the related quantum entangled systems. We finally remark that these two quantum systems, which clearly possess inequivalent entanglement properties, are locally unitarily equivalent.

  6. Controlled Probabilistic Teleportation of an Unknown Multi-Particle High-Dimensional Entangled State

    International Nuclear Information System (INIS)

    We propose a protocol for controlled probabilistic teleportation of an unknown tripartite qutrit entangled state with two partial tripartite qutrit entangled states as the quantum channel. It is found that teleportation associated with the generalized qutrit Bell-basis measurement, the generalized qutrit π-state measurement and the generalized Hadamard operator in three-dimensional Hilbert space. We generalize the protocol for controlled probabilistic teleportation of an unknown k-particle qudit entangled state with a multi-particle qudit entangled state and a tripartite qudit entangled state as the quantum channel. We also calculate the classical communication cost required in both cases. (general)

  7. Controlled Probabilistic Teleportation of an Unknown Multi-Particle High-Dimensional Entangled State

    Institute of Scientific and Technical Information of China (English)

    SHI Jin; ZHAN You-Bang

    2009-01-01

    We propose a protocol for controlled probabilistic teleportation of an unknown tripartite qutrit entangled state with two partial tripartite qutrit entangled states as the quantum channel. It is found that teleportation associ-ated with the generalized qutrit Bell-basis measurement, the generalized qutrit π-state measurement and the generalized Hadamard operator in three-dimensional Hilbert space. We generalize the protocol for controlled probabilistic telepor-ration of an unknown k-particle qudit entangled state with a multi-particle qudit entangled state and a tripartite qudit entangled state as the quantum channel. We also calculate the classical communication cost required in both cases.

  8. Purified discord and multipartite entanglement

    International Nuclear Information System (INIS)

    We study bipartite quantum discord as a manifestation of a multipartite entanglement structure in the tripartite purified system. In particular, we find that bipartite quantum discord requires the presence of both bipartite and tripartite entanglement in the purification. This allows one to understand the asymmetry of quantum discord, D(A,B)≠D(B,A) in terms of entanglement monogamy. As instructive special cases, we study discord for qubits and Gaussian states in detail. As a result of this we shed new light on a counterintuitive property of Gaussian states: the presence of classical correlations necessarily requires the presence of quantum correlations. Finally, our results also shed new light on a protocol for remote activation of entanglement by a third party. -- Highlights: •Bipartite quantum discord as a manifestation of multipartite entanglement. •Relevance of quantum discord as a utilizable resource for quantum info. tasks. •Quantum discord manifests itself in entanglement in the purified state. •Relation between asymmetry of discord and entanglement monogamy. •Protocol for remote activation of entanglement by a third party

  9. Killing quantum entanglement by acceleration or a black hole

    CERN Document Server

    Dai, Yue; Shi, Yu

    2015-01-01

    We consider two entangled accelerating qubits coupled with real scalar fields, each described by the Unruh-Wald model. It is demonstrated that because of the Unruh effect, the bipartite entanglement of the two qubits suddenly dies when the acceleration of one or more qubits are large enough. We also consider three entangled accelerating qubits in GHZ state and in W state, with equal acceleration-frequency ratio, and found that in either state, the tripartite entanglement suddenly dies at a certain value of acceleration-frequency ratio. The equivalence between the Rindler metric and the Schwarzchild metric in the vicinity of the horizon of a black hole implies that for the two entangled qubits outside a black hole, the entanglement suddenly dies when one or both of the qubits are close enough to the horizon, while for the three entangled qubits in GHZ or W state, the tripartite entanglement suddenly dies when these qubits are close enough to the horizon.

  10. From entanglement witness to generalized Catalan numbers.

    Science.gov (United States)

    Cohen, E; Hansen, T; Itzhaki, N

    2016-01-01

    Being extremely important resources in quantum information and computation, it is vital to efficiently detect and properly characterize entangled states. We analyze in this work the problem of entanglement detection for arbitrary spin systems. It is demonstrated how a single measurement of the squared total spin can probabilistically discern separable from entangled many-particle states. For achieving this goal, we construct a tripartite analogy between the degeneracy of entanglement witness eigenstates, tensor products of SO(3) representations and classical lattice walks with special constraints. Within this framework, degeneracies are naturally given by generalized Catalan numbers and determine the fraction of states that are decidedly entangled and also known to be somewhat protected against decoherence. In addition, we introduce the concept of a "sterile entanglement witness", which for large enough systems detects entanglement without affecting much the system's state. We discuss when our proposed entanglement witness can be regarded as a sterile one. PMID:27461089

  11. From entanglement witness to generalized Catalan numbers

    Science.gov (United States)

    Cohen, E.; Hansen, T.; Itzhaki, N.

    2016-07-01

    Being extremely important resources in quantum information and computation, it is vital to efficiently detect and properly characterize entangled states. We analyze in this work the problem of entanglement detection for arbitrary spin systems. It is demonstrated how a single measurement of the squared total spin can probabilistically discern separable from entangled many-particle states. For achieving this goal, we construct a tripartite analogy between the degeneracy of entanglement witness eigenstates, tensor products of SO(3) representations and classical lattice walks with special constraints. Within this framework, degeneracies are naturally given by generalized Catalan numbers and determine the fraction of states that are decidedly entangled and also known to be somewhat protected against decoherence. In addition, we introduce the concept of a “sterile entanglement witness”, which for large enough systems detects entanglement without affecting much the system’s state. We discuss when our proposed entanglement witness can be regarded as a sterile one.

  12. From entanglement witness to generalized Catalan numbers.

    Science.gov (United States)

    Cohen, E; Hansen, T; Itzhaki, N

    2016-07-27

    Being extremely important resources in quantum information and computation, it is vital to efficiently detect and properly characterize entangled states. We analyze in this work the problem of entanglement detection for arbitrary spin systems. It is demonstrated how a single measurement of the squared total spin can probabilistically discern separable from entangled many-particle states. For achieving this goal, we construct a tripartite analogy between the degeneracy of entanglement witness eigenstates, tensor products of SO(3) representations and classical lattice walks with special constraints. Within this framework, degeneracies are naturally given by generalized Catalan numbers and determine the fraction of states that are decidedly entangled and also known to be somewhat protected against decoherence. In addition, we introduce the concept of a "sterile entanglement witness", which for large enough systems detects entanglement without affecting much the system's state. We discuss when our proposed entanglement witness can be regarded as a sterile one.

  13. Graphical Classification of Entangled Qutrits

    Directory of Open Access Journals (Sweden)

    Kentaro Honda

    2012-10-01

    Full Text Available A multipartite quantum state is entangled if it is not separable. Quantum entanglement plays a fundamental role in many applications of quantum information theory, such as quantum teleportation. Stochastic local quantum operations and classical communication (SLOCC cannot essentially change quantum entanglement without destroying it. Therefore, entanglement can be classified by dividing quantum states into equivalence classes, where two states are equivalent if each can be converted into the other by SLOCC. Properties of this classification, especially in the case of non two-dimensional quantum systems, have not been well studied. Graphical representation is sometimes used to clarify the nature and structural features of entangled states. SLOCC equivalence of quantum bits (qubits has been described graphically via a connection between tripartite entangled qubit states and commutative Frobenius algebras (CFAs in monoidal categories. In this paper, we extend this method to qutrits, i.e., systems that have three basis states. We examine the correspondence between CFAs and tripartite entangled qutrits. Using the symmetry property, which is required by the definition of a CFA, we find that there are only three equivalence classes that correspond to CFAs. We represent qutrits graphically, using the connection to CFAs. We derive equations that characterize the three equivalence classes. Moreover, we show that any qutrit can be represented as a composite of three graphs that correspond to the three classes.

  14. Teleportation of a Kind of Three-Mode Entangled States of Continuous Variables

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    A quantum teleportation scheme to teleport a kind of tripartite entangled states of continuous variables by using a quantum channel composed of three bipartite entangled states is proposed. The joint Bell measurement is feasible because the bipartite entangled states are complete and the squeezed state has a natural representation in the entangled state basis. The calculation is greatly simplified by using the Schmidt decomposition of the entangled states.

  15. Three qubit entanglement within graphical Z/X-calculus

    Directory of Open Access Journals (Sweden)

    Bob Coecke

    2011-03-01

    Full Text Available The compositional techniques of categorical quantum mechanics are applied to analyse 3-qubit quantum entanglement. In particular the graphical calculus of complementary observables and corresponding phases due to Duncan and one of the authors is used to construct representative members of the two genuinely tripartite SLOCC classes of 3-qubit entangled states, GHZ and W. This nicely illustrates the respectively pairwise and global tripartite entanglement found in the W- and GHZ-class states. A new concept of supplementarity allows us to characterise inhabitants of the W class within the abstract diagrammatic calculus; these method extends to more general multipartite qubit states.

  16. Disentanglement, Bell-nonlocality violation and teleportation capacity of the decaying tripartite states

    International Nuclear Information System (INIS)

    Dynamics of disentanglement as measured by the tripartite negativity and Bell nonlocality as measured by the extent of violation of the multipartite Bell-type inequalities are investigated in this work. It is shown definitively that for the initial three-qubit Greenberger–Horne–Zeilinger (GHZ) or W class state preparation, the Bell nonlocality suffers sudden death under the influence of thermal reservoirs. Moreover, all the Bell-nonlocal states are useful for nonclassical teleportation, while there are entangled states that do not violate any Bell-type inequalities, but still yield nonclassical teleportation fidelity. - Highlights: ► Comparison of different aspects of quantum correlations. ► Robustness of the initial tripartite GHZ and W class states against decoherence. ► Bell-nonlocality sudden death under the influence of thermal reservoir. ► A nonzero minimum tripartite negativity is needed for nonclassical teleportation. ► All the Bell-nonlocal states yield nonclassical teleportation fidelity.

  17. Entanglement sharing: from qubits to Gaussian states

    OpenAIRE

    Adesso, Gerardo; Illuminati, Fabrizio

    2005-01-01

    It is a central trait of quantum information theory that there exist limitations to the free sharing of quantum correlations among multiple parties. Such 'monogamy constraints' have been introduced in a landmark paper by Coffman, Kundu and Wootters, who derived a quantitative inequality expressing a trade-off between the couplewise and the genuine tripartite entanglement for states of three qubits. Since then, a lot of efforts have been devoted to the investigation of distributed entanglement...

  18. Two Theorems on Calculating the Relative Entropy of Entanglement

    Institute of Scientific and Technical Information of China (English)

    WU Sheng-Jun; ZHANG Yong-De; WU Qiang

    2001-01-01

    We present two theorems on calculating the relative entropy of entanglement. Theorem 1 is an extension of Vedral and Plenio's theorem (Phys. Rev. A 57 (1998) 1619) for pure states, which is useful for calculating the relative entropy of entanglement for all pure states as well as for a class of mixed states. Theorem 2 gives the relative entropy of entanglement for any bipartite state whose tripartite purification has two separable reduced bipartite states.

  19. Page curves for tripartite systems

    CERN Document Server

    Hwang, Junha; Nho, Dongju; Oh, Jeonghun; Park, Hyosub; Yeom, Dong-han; Zoe, Heeseung

    2016-01-01

    We investigate information flow and Page curves for tripartite systems. We prepare a tripartite system (say, A, B, and C) of a given number of states and calculate information and entropy contents by assuming random states. Initially, every particle was in A (this means a black hole), and as time goes on, particles move to either B (means Hawking radiation) or C (means a broadly defined remnant, including a non-local transport of information, the last burst, an interior large volume, or a bubble universe, etc.). If the final number of states of the remnant is smaller than that of Hawking radiation, then information will be stored by both of the radiation and the mutual information between the radiation and the remnant, while the remnant itself does not contain information. On the other hand, if the final number of states of the remnant is greater than that of Hawking radiation, then the radiation contains negligible information, while the remnant and the mutual information between the radiation and the remnan...

  20. From Entanglement Witness to Generalized Catalan Numbers

    CERN Document Server

    Cohen, Eliahu; Itzhaki, Nissan

    2015-01-01

    The problem of entanglement detection for arbitrary spin systems is analyzed. We demonstrate how a single measurement of the squared total spin can probabilistically discern separable from entangled many-particle states. For achieving this goal, we construct a tripartite analogy between the degeneracy of entanglement witness eigenstates, tensor products of SO(3) representations and classical lattice walks with special constraints. Within this framework, degeneracies are naturally given by generalized Catalan numbers and determine the fraction of states that are decidedly entangled. In addition, we introduce the concept of a "sterile entanglement witness", which detects entanglement without affecting much the system's dynamics. We show that our proposed witness is sterile when the system becomes large enough.

  1. Multipartite Entanglement in Stabilizer Tensor Networks

    CERN Document Server

    Nezami, Sepehr

    2016-01-01

    Tensor network models reproduce important structural features of holography, including the Ryu-Takayanagi formula for the entanglement entropy and quantum error correction in the entanglement wedge. In contrast, only little is known about their multipartite entanglement structure, which has been of considerable recent interest. In this work, we study random stabilizer tensor networks and show that here the tripartite entanglement question has a sharp answer: The average number of GHZ triples that can be extracted from a stabilizer tensor network is small, implying that the entanglement is predominantly bipartite. As a consequence, we obtain a new operational interpretation of the monogamy of the Ryu-Takayanagi mutual information and an entropic diagnostic for higher-partite entanglement. Our technical contributions include a spin model for evaluating the average GHZ content of stabilizer tensor networks and a novel formula for the third moment of random stabilizer states.

  2. Tensor rank of the tripartite state |W>xn

    International Nuclear Information System (INIS)

    Tensor rank refers to the number of product states needed to express a given multipartite quantum state. Its nonadditivity as an entanglement measure has recently been observed. In this Brief Report, we estimate the tensor rank of multiple copies of the tripartite state |W>=(1/√(3))(|100>+|010>+|001>). Both an upper bound and a lower bound of this rank are derived. In particular, it is proven that the rank of |W>x2 is 7, thus resolving a previously open problem. Some implications of this result are discussed in terms of transformation rates between |W>xn and multiple copies of the state |GHZ>=(1/√(2))(|000>+|111>).

  3. Monogamy, polygamy, and other properties of entanglement of purification

    Science.gov (United States)

    Bagchi, Shrobona; Pati, Arun Kumar

    2015-04-01

    For bipartite pure and mixed quantum states, in addition to the quantum mutual information, there is another measure of total correlation, namely, the entanglement of purification. We study the monogamy, polygamy, and additivity properties of the entanglement of purification for pure and mixed states. In this paper, we show that, in contrast to the quantum mutual information which is strictly monogamous for any tripartite pure states, the entanglement of purification is polygamous for the same. This shows that there can be genuinely two types of total correlation across any bipartite cross in a pure tripartite state. Furthermore, we find the lower bound and actual values of the entanglement of purification for different classes of tripartite and higher-dimensional bipartite mixed states. Thereafter, we show that if entanglement of purification is not additive on tensor product states, it is actually subadditive. Using these results, we identify some states which are additive on tensor products for entanglement of purification. The implications of these findings on the quantum advantage of dense coding are briefly discussed, whereby we show that for tripartite pure states, it is strictly monogamous and if it is nonadditive, then it is superadditive on tensor product states.

  4. $E_{6}$ and the bipartite entanglement of three qutrits

    CERN Document Server

    Duff, M J

    2007-01-01

    Recent investigations have established an analogy between the entropy of four-dimensional supersymmetric black holes in string theory and entanglement in quantum information theory. Examples include: (1) N=2 STU black holes and the tripartite entanglement of three qubits (2-state systems), where the common symmetry is [SL(2)]^3 and (2) N=8 black holes and the tripartite entanglement of seven qubits where the common symmetry is E_7 which contains [SL(2)]^7. Here we present another example: N=8 black holes (or black strings) in five dimensions and the bipartite entanglement of three qutrits (3-state systems), where the common symmetry is E_6 which contains [SL(3)]^3. Both the black hole (or black string) entropy and the entanglement measure are provided by the Cartan cubic E_6 invariant. Similar analogies exist for ``magic'' N=2 supergravity black holes in both four and five dimensions.

  5. Structure and operation of bacterial tripartite pumps.

    Science.gov (United States)

    Hinchliffe, Philip; Symmons, Martyn F; Hughes, Colin; Koronakis, Vassilis

    2013-01-01

    In bacteria such as Pseudomonas aeruginosa and Escherichia coli, tripartite membrane machineries, or pumps, determine the efflux of small noxious molecules, such as detergents, heavy metals, and antibiotics, and the export of large proteins including toxins. They are therefore influential in bacterial survival, particularly during infections caused by multidrug-resistant pathogens. In these tripartite pumps an inner membrane transporter, typically an ATPase or proton antiporter, binds and translocates export or efflux substrates. In cooperation with a periplasmic adaptor protein it recruits and opens a TolC family cell exit duct, which is anchored in the outer membrane and projects across the periplasmic space between inner and outer membranes. Assembled tripartite pumps thus span the entire bacterial cell envelope. We review the atomic structures of each of the three pump components and discuss how these have allowed high-resolution views of tripartite pump assembly, operation, and possible inhibition. PMID:23808339

  6. Equivalence between entanglement and the optimal fidelity of continuous variable teleportation.

    Science.gov (United States)

    Adesso, Gerardo; Illuminati, Fabrizio

    2005-10-01

    We devise the optimal form of Gaussian resource states enabling continuous-variable teleportation with maximal fidelity. We show that a nonclassical optimal fidelity of N-user teleportation networks is necessary and sufficient for N-party entangled Gaussian resources, yielding an estimator of multipartite entanglement. The entanglement of teleportation is equivalent to the entanglement of formation in a two-user protocol, and to the localizable entanglement in a multiuser one. Finally, we show that the continuous-variable tangle, quantifying entanglement sharing in three-mode Gaussian states, is defined operationally in terms of the optimal fidelity of a tripartite teleportation network. PMID:16241708

  7. Entanglement dynamics in quantum information theory

    Energy Technology Data Exchange (ETDEWEB)

    Cubitt, T.S.

    2007-03-29

    This thesis contributes to the theory of entanglement dynamics, that is, the behaviour of entanglement in systems that are evolving with time. Progressively more complex multipartite systems are considered, starting with low-dimensional tripartite systems, whose entanglement dynamics can nonetheless display surprising properties, progressing through larger networks of interacting particles, and finishing with infinitely large lattice models. Firstly, what is perhaps the most basic question in entanglement dynamics is considered: what resources are necessary in order to create entanglement between distant particles? The answer is surprising: sending separable states between the parties is sufficient; entanglement can be created without it being carried by a ''messenger'' particle. The analogous result also holds in the continuous-time case: two particles interacting indirectly via a common ancilla particle can be entangled without the ancilla ever itself becoming entangled. The latter result appears to discount any notion of entanglement flow. However, for pure states, this intuitive idea can be recovered, and even made quantitative. A ''bottleneck'' inequality is derived that relates the entanglement rate of the end particles in a tripartite chain to the entanglement of the middle one. In particular, no entanglement can be created if the middle particle is not entangled. However, although this result can be applied to general interaction networks, it does not capture the full entanglement dynamics of these more complex systems. This is remedied by the derivation of entanglement rate equations, loosely analogous to the rate equations describing a chemical reaction. A complete set of rate equations for a system reflects the full structure of its interaction network, and can be used to prove a lower bound on the scaling with chain length of the time required to entangle the ends of a chain. Finally, in contrast with these more

  8. Three-qubit topological phase on entangled photon pairs

    CERN Document Server

    Johansson, Markus; Singh, Kuldip; Sjöqvist, Erik

    2013-01-01

    We propose an experiment to observe the topological phases associated with cyclic evolutions, generated by local SU(2) operations, on three-qubit entangled states prepared on different degrees of freedom of entangled photon pairs. The topological phases reveal the nontrivial topological structure of the local SU(2) orbits. We describe how to prepare states showing different topological phases, and discuss their relation to entanglement. In particular, the presence of a $\\pi/2$ phase shift is a signature of genuine tripartite entanglement in the sense that it does not exist for two-qubit systems.

  9. Dissipative preparation of a tripartite singlet state in coupled arrays of cavities via quantum feedback control

    Science.gov (United States)

    Shao, X. Q.; Wang, Z. H.; Liu, H. D.; Yi, X. X.

    2016-09-01

    We propose an experimentally feasible scheme for dissipative preparation of a tripartite entangled state with atoms separately trapped in an array of three coupled cavities. The combination of coherent driving fields and quantum-jump-based feedback control will drive the system into a nonequilibrium steady state, which has a nearly perfect overlap with the genuine three-atom singlet state. Different control strategies are investigated and the corresponding optimal parameters are confirmed. Moreover, the fidelity of the target state is insensitive to detection inefficiencies, and it exceeds 90% for a wide range of decoherence parameters as long as the single-atom cooperativity parameter C ≡g2/(γ κ ) >350 .

  10. Is 'entanglement' always entangled?

    International Nuclear Information System (INIS)

    Entanglement, including 'quantum entanglement', is a consequence of correlation between objects. When the objects are subunits of pairs which in turn are members of an ensemble described by a wavefunction, a correlation among the subunits induces the mysterious properties of 'cat-states'. However, correlation between subsystems can be present in purely non-quantum sources, thereby entailing no unfathomable behaviour. Such entanglement arises whenever the so-called 'qubit space' is not afflicted with Heisenberg uncertainty. It turns out that all optical experimental realizations of the Einstein, Podolsky and Rosen (EPR) Gedanken experiment in fact do not suffer Heisenberg uncertainty. Examples will be analysed and non-quantum models for some of these described. The consequences for experiments that were to test EPRs contention in the form of Bell's theorem are drawn: valid tests of EPR's hypothesis have yet to be done

  11. R esearch of S ite S election M echanism of A ffordable H ousing B ased on the Tripartite G am e--G am e Im balance and R ole R econstruction%基于三方博弈的保障性住房选址机制研究--博弈失衡与角色重构

    Institute of Scientific and Technical Information of China (English)

    董世永; 张丁文

    2014-01-01

    本文在对我国保障性住房空间布局的问题和建设模式综合分析的基础上,从三方博弈的角度,探讨了低收入居民的社会需求、开发商的经济诉求和政府对综合效益的平衡,指出我国保障性住房边缘化集中布局、职住分离、公共服务设施缺乏等问题根本上是源于因为政府主导、开发商偏向和低收入居民话语权缺失而失衡的三方选址博弈机制。最后通过借鉴美国保障性住房建设中角色激励的经验,提出了拓宽社会投资渠道、对开发商采用制度激励、强化公众参与和城市规划引导和控制能力等重构策略。%This article first makes a comprehensive analysis about the spatial layout problems and the construction patterns of affordable housing in our country. Then, from the perspective of the tripartite game, discusses the social demands of low-income residents, the economic demands of developers and the balance of the comprehensive beneifts kept by the government. After that, this paper points out that the marginal centralized layout, the phenomena of separation of workplace and residence and the lack of public service facilities of the affordable housing in our country are rooted in the imbalance of the tripartite game mechanism. At last, by reference to the role of motivation in the affordable housing strategy in the USA, this article puts forward strategies such as widening the channel of social investment, adopting incentives for developers and strengthening public participation and the ability of guidance and control of urban planning.

  12. Cauchy-Schwarz characterization of tripartite quantum correlations in an optical parametric oscillator

    CERN Document Server

    Dechoum, K; Khoury, A Z; 10.1103/PhysRevA.83.063843

    2011-01-01

    We analyze the three-mode correlation properties of the electromagnetic field in a optical parametric oscillator below threshold. We employ a perturbative expansion of the It\\^o equations derived from the positive-P representation of the density matrix. Using the generalized Cauchy-Schwarz inequality, we investigate the genuine quantum nature of the triple correlations between the interacting fields, since in this case continuous variable entanglement is not detected by the van Loock-Furusawa criterion [Phys. Rev. A {\\bf 67}, 052315 (2003)]. Although not being a necessary condition, these triple correlations are a sufficient evidence of tripartite entanglement. Of course, our characterization of the quantum correlations is applicable to non-Gaussian states, which we show to be the case of the optical parametric oscillator below threshold, provided nonlinear quantum fluctuations are properly taken into account.

  13. Multipartite entanglement arising from dense Euclidean lattices in dimensions 4-24

    International Nuclear Information System (INIS)

    The group of automorphisms of Euclidean (embedded in Rn) dense lattices such as the root lattices D4 and E8, the Barnes-Wall lattice BW16, the unimodular lattice D12+ and the Leech lattice Λ24 may be generated by entangled quantum gates of the corresponding dimension. These (real) gates/lattices are useful for quantum error correction: for instance, the two- and four-qubit real Clifford groups are the automorphism groups of the lattices D4 and BW16, respectively, and the three-qubit real Clifford group is maximal in the Weyl group W(E8). Technically, the automorphism group Aut(Λ) of the lattice Λ is the set of orthogonal matrices B such that, following the conjugation action by the generating matrix of the lattice, the output matrix is unimodular (of determinant ±1, with integer entries). When the degree n is equal to the number of basis elements of Λ, Aut(Λ) also acts on basis vectors and is generated with matrices B such that the sum of squared entries in a row is 1, i.e. B may be seen as a quantum gate. For the dense lattices listed above, maximal multipartite entanglement arises. In particular, one finds a balanced tripartite entanglement in E8 (the two- and three-tangles have the same magnitude 1/4) and a Greenberger-Horne-Zeilinger-type entanglement in BW16. In this paper, we also investigate the entangled gates from D12+ and Λ24, by seeing them as systems coupling a qutrit to two- and three-qubits, respectively. In addition to quantum computing, the work may be related to particle physics in the spirit of Planat et al (2011 Rep. Math. Phys. 66 39-51).

  14. Disentanglement, Bell-nonlocality violation and teleportation capacity of the decaying tripartite states

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Ming-Liang, E-mail: mingliang0301@163.com

    2012-09-15

    Dynamics of disentanglement as measured by the tripartite negativity and Bell nonlocality as measured by the extent of violation of the multipartite Bell-type inequalities are investigated in this work. It is shown definitively that for the initial three-qubit Greenberger-Horne-Zeilinger (GHZ) or W class state preparation, the Bell nonlocality suffers sudden death under the influence of thermal reservoirs. Moreover, all the Bell-nonlocal states are useful for nonclassical teleportation, while there are entangled states that do not violate any Bell-type inequalities, but still yield nonclassical teleportation fidelity. - Highlights: Black-Right-Pointing-Pointer Comparison of different aspects of quantum correlations. Black-Right-Pointing-Pointer Robustness of the initial tripartite GHZ and W class states against decoherence. Black-Right-Pointing-Pointer Bell-nonlocality sudden death under the influence of thermal reservoir. Black-Right-Pointing-Pointer A nonzero minimum tripartite negativity is needed for nonclassical teleportation. Black-Right-Pointing-Pointer All the Bell-nonlocal states yield nonclassical teleportation fidelity.

  15. Entanglement revive and information flow within the decoherent environment.

    Science.gov (United States)

    Shi, Jia-Dong; Wang, Dong; Ye, Liu

    2016-01-01

    In this paper, the dynamics of entanglement is investigated in the presence of a noisy environment. We reveal its revival behavior and probe the mechanisms of this behavior via an information-theoretic approach. By analyzing the correlation distribution and the information flow within the composite system including the qubit subsystem and a noisy environment, it has been found that the subsystem-environment coupling can induce the quasi-periodic entanglement revival. Furthermore, the dynamical relationship among tripartite correlations, bipartite entanglement and local state information is explored, which provides a new insight into the non-Markovian mechanisms during the evolution. PMID:27506664

  16. Entanglement revive and information flow within the decoherent environment

    Science.gov (United States)

    Shi, Jia-dong; Wang, Dong; Ye, Liu

    2016-01-01

    In this paper, the dynamics of entanglement is investigated in the presence of a noisy environment. We reveal its revival behavior and probe the mechanisms of this behavior via an information-theoretic approach. By analyzing the correlation distribution and the information flow within the composite system including the qubit subsystem and a noisy environment, it has been found that the subsystem-environment coupling can induce the quasi-periodic entanglement revival. Furthermore, the dynamical relationship among tripartite correlations, bipartite entanglement and local state information is explored, which provides a new insight into the non-Markovian mechanisms during the evolution. PMID:27506664

  17. Topological entanglement negativity in Chern-Simons theories

    CERN Document Server

    Wen, Xueda; Ryu, Shinsei

    2016-01-01

    We study the topological entanglement negativity between two spatial regions in (2+1)-dimensional Chern-Simons gauge theories by using the replica trick and the surgery method. For a bipartitioned or tripartitioned spatial manifold, we show how the topological entanglement negativity depends on the presence of quasiparticles and the choice of ground states. In particular, for two adjacent non-contractible regions on a tripartitioned torus, the entanglement negativity provides a simple way to distinguish Abelian and non-Abelian theories. Our method applies to a Chern-Simons gauge theory defined on an arbitrary oriented (2+1)-dimensional spacetime manifold. Our results agree with the edge theory approach in a recent work (X. Wen, S. Matsuura and S. Ryu, arXiv:1603.08534).

  18. Topological entanglement negativity in Chern-Simons theories

    Science.gov (United States)

    Wen, Xueda; Chang, Po-Yao; Ryu, Shinsei

    2016-09-01

    We study the topological entanglement negativity between two spatial regions in (2+1)-dimensional Chern-Simons gauge theories by using the replica trick and the surgery method. For a bipartitioned or tripartitioned spatial manifold, we show how the topological entanglement negativity depends on the presence of quasiparticles and the choice of ground states. In particular, for two adjacent non-contractible regions on a tripartitioned torus, the entanglement negativity provides a simple way to distinguish Abelian and non-Abelian theories. Our method applies to a Chern-Simons gauge theory defined on an arbitrary oriented (2+1)-dimensional spacetime manifold. Our results agree with the edge theory approach in a recent work [35].

  19. Modular Entanglement

    OpenAIRE

    Gualdi, Giulia; Giampaolo, Salvatore M.; Illuminati, Fabrizio

    2011-01-01

    We introduce and discuss the concept of modular entanglement. This is the entanglement that is established between the end points of modular systems composed by sets of interacting moduli of arbitrarily fixed size. We show that end-to-end modular entanglement scales in the thermodynamic limit and rapidly saturates with the number of constituent moduli. We clarify the mechanisms underlying the onset of entanglement between distant and non-interacting quantum systems and its optimization for ap...

  20. BALANCE

    Science.gov (United States)

    Carmichael, H.

    1953-01-01

    A torsional-type analytical balance designed to arrive at its equilibrium point more quickly than previous balances is described. In order to prevent external heat sources creating air currents inside the balance casing that would reiard the attainment of equilibrium conditions, a relatively thick casing shaped as an inverted U is placed over the load support arms and the balance beam. This casing is of a metal of good thernnal conductivity characteristics, such as copper or aluminum, in order that heat applied to one portion of the balance is quickly conducted to all other sensitive areas, thus effectively preventing the fornnation of air currents caused by unequal heating of the balance.

  1. Entanglement dynamics of a three-qubit system with different interatomic distances

    Science.gov (United States)

    Feng, Ling-Juan; Zhang, Ying-Jie; Zhang, Lu; Xia, Yun-Jie

    2015-11-01

    We investigate the tripartite entanglement dynamics of three two-level atoms in a multi-mode vacuum field. By considering the influences of the interatomic distance and the initial condition on the lower bound of concurrence and the tripartite negativity, we show that an optimal interatomic distance can be found to minimize the collective damping. Interestingly, at the same optimal distance, the tripartite entanglement would be maximized in the open dynamics process. In the case of shorter interatomic distance, the tripartite entanglement can display the oscillatory behavior in the initial short-time limit and be trapped in a stationary value in the long-time limit. In addition, the tripartite entanglement for the general situation with different interatomic distances is also discussed. Project supported by the National Natural Science Foundation of China (Grant Nos. 61178012, 11204156, and 11304179), the Specialized Research Fund for the Doctoral Program of Higher Education, China (Grant Nos. 20133705110001 and 20123705120002), and the Natural Science Foundation of Shandong Province, China (Grant Nos. BS2013DX034, ZR2012FQ024, and ZR2014AP009).

  2. Bound entanglement and entanglement bounds

    Energy Technology Data Exchange (ETDEWEB)

    Sauer, Simeon [Physikalisch-Astronomische Fakultaet, Friedrich-Schiller-Univesitaet Jena (Germany)]|[Physikalisches Institut, Albert-Ludwigs-Universitaet Freiburg, Hermann-Herder-Strasse 3, D-79104 Freiburg (Germany); Melo, Fernando de; Mintert, Florian; Buchleitner, Andreas [Physikalisches Institut, Albert-Ludwigs-Universitaet Freiburg, Hermann-Herder-Strasse 3, D-79104 Freiburg (Germany)]|[Max-Planck-Institut fuer Physik komplexer Systeme, Noethnitzer Str.38, D-01187 Dresden (Germany); Bae, Joonwoo [School of Computational Sciences, Korea Institute for Advanced Study, Seoul 130-012 (Korea); Hiesmayr, Beatrix [Faculty of Physics, University of Vienna, Boltzmanngasse 5, A-1090 Vienna (Austria)

    2008-07-01

    We investigate the separability of Bell-diagonal states of two qutrits. By using lower bounds to algebraically estimate concurrence, we find convex regions of bound entangled states. Some of these regions exactly coincide with the obtained results when employing optimal entanglement witnesses, what shows that the lower bound can serve as a precise detector of entanglement. Some hitherto unknown regions of bound entangled states were discovered with this approach, and delimited efficiently.

  3. Modular Entanglement

    CERN Document Server

    Gualdi, Giulia; Illuminati, Fabrizio

    2010-01-01

    We introduce and discuss the concept of modular entanglement. This is the entanglement that is established between the end points of modular systems composed by sets of interacting blocks of arbitrarily fixed size. We show that end-to-end modular entanglement scales in the thermodynamic limit and rapidly saturates with the number of constituent blocks. We clarify the mechanisms underlying the onset of entanglement between distant and non-interacting quantum systems and its optimization for applications to quantum repeaters and entanglement distribution and sharing.

  4. Modular entanglement.

    Science.gov (United States)

    Gualdi, Giulia; Giampaolo, Salvatore M; Illuminati, Fabrizio

    2011-02-01

    We introduce and discuss the concept of modular entanglement. This is the entanglement that is established between the end points of modular systems composed by sets of interacting moduli of arbitrarily fixed size. We show that end-to-end modular entanglement scales in the thermodynamic limit and rapidly saturates with the number of constituent moduli. We clarify the mechanisms underlying the onset of entanglement between distant and noninteracting quantum systems and its optimization for applications to quantum repeaters and entanglement distribution and sharing. PMID:21405382

  5. Tripartite assembly of RND multidrug efflux pumps

    Science.gov (United States)

    Daury, Laetitia; Orange, François; Taveau, Jean-Christophe; Verchère, Alice; Monlezun, Laura; Gounou, Céline; Marreddy, Ravi K. R.; Picard, Martin; Broutin, Isabelle; Pos, Klaas M.; Lambert, Olivier

    2016-02-01

    Tripartite multidrug efflux systems of Gram-negative bacteria are composed of an inner membrane transporter, an outer membrane channel and a periplasmic adaptor protein. They are assumed to form ducts inside the periplasm facilitating drug exit across the outer membrane. Here we present the reconstitution of native Pseudomonas aeruginosa MexAB-OprM and Escherichia coli AcrAB-TolC tripartite Resistance Nodulation and cell Division (RND) efflux systems in a lipid nanodisc system. Single-particle analysis by electron microscopy reveals the inner and outer membrane protein components linked together via the periplasmic adaptor protein. This intrinsic ability of the native components to self-assemble also leads to the formation of a stable interspecies AcrA-MexB-TolC complex suggesting a common mechanism of tripartite assembly. Projection structures of all three complexes emphasize the role of the periplasmic adaptor protein as part of the exit duct with no physical interaction between the inner and outer membrane components.

  6. Quantum entanglement without eigenvalue spectra multipartite case

    CERN Document Server

    Chen, H

    2001-01-01

    We introduce algebriac sets in the products of complex projective spaces for multipartite mixed states, which are independent of their eigenvalues and only measure the "position" of their eigenvectors, as their non-local invariants (ie. remaining invariant after local untary transformations). The algebraic sets have to be the union of linear subspaces if the multipartite mixed state is separable, and thus we give a new separability criterion of multipartite mixed states. A continuous family of 4-party mixed states, whose members are separable for any 2:2 cut and entangled for any 1:3 cut (thus bound entanglement if 4 parties are isolated), is constructed and studied from our invariants and separability criterion. Examples of LOCC-incomparable entangled tripartite pure states are given to show it is hopeless to characterize the entanglement properties of tripartite pure states by only using the eigenvalue speactra of their partial traces. We also prove that at least $n^2+n-1$ terms of separable pure states, wh...

  7. Entanglement sharing: from qubits to Gaussian states

    CERN Document Server

    Adesso, G; Adesso, Gerardo; Illuminati, Fabrizio

    2005-01-01

    It is a central trait of quantum information theory that there exist limitations to the free sharing of quantum correlations among multiple parties. Such {\\em monogamy constraints} have been introduced in a landmark paper by Coffman, Kundu and Wootters, who derived a quantitative inequality expressing a trade-off between the couplewise and the genuine tripartite entanglement for states of three qubits. Since then, a lot of efforts have been devoted to the investigation of distributed entanglement in multipartite quantum systems. In these proceedings we report, in a unifying framework, a bird's eye view of the most relevant results that have been established so far on entanglement sharing in quantum systems. We will take off from the domain of $N$ qubits, graze qudits, and finally land in the almost unexplored territory of multimode Gaussian states of continuous variable systems.

  8. Two Color Entanglement

    CERN Document Server

    Samblowski, Aiko; Grosse, Nicolai; Lam, Ping Koy; Schnabel, Roman

    2010-01-01

    We report on the generation of entangled states of light between the wavelengths 810 and 1550 nm in the continuous variable regime. The fields were produced by type I optical parametric oscillation in a standing-wave cavity build around a periodically poled potassium titanyl phosphate crystal, operated above threshold. Balanced homodyne detection was used to detect the non-classical noise properties, while filter cavities provided the local oscillators by separating carrier fields from the entangled sidebands. We were able to obtain an inseparability of I=0.82, corresponding to about -0.86 dB of non-classical quadrature correlation.

  9. Quantum correlations and entanglement in a model comprised of a short chain of nonlinear oscillators

    Science.gov (United States)

    Kalaga, J. K.; Kowalewska-Kudłaszyk, A.; Leoński, W.; Barasiński, A.

    2016-09-01

    We discuss a model comprised of a chain of three Kerr-like nonlinear oscillators pumped by two modes of external coherent field. We show that the system can be treated as nonlinear quantum scissors and behave as a three-qubit model. For such situation, different types of tripartite entangled states can be generated, even when damping effects are present in the system. Some amount of such entanglement can survive even in a long-time limit. The flow of bipartite entanglement between subsystems of the model and relations among first-order correlations, second-order correlations, and the entanglement are discussed.

  10. Nonlocality and entanglement via the Unruh effect

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Zehua; Wang, Jieci; Jing, Jiliang, E-mail: jljing@hunnu.edu.cn

    2013-05-15

    Modeling the qubit by a two-level semiclassical detector coupled to a massless scalar field, we investigate how the Unruh effect affects the nonlocality and entanglement of two-qubit and three-qubit states when one of the entangled qubits is accelerated. Two distinct differences with the results of free field model in non-inertial frames are (i) for the two-qubit state, the CHSH inequality cannot be violated for sufficiently large but finite acceleration, furthermore, the concurrence will experience “sudden death”; and (ii) for the three-qubit state, not only does the entanglement vanish in the infinite acceleration limit, but also the Svetlichny inequality cannot be violated in the case of large acceleration. -- Highlights: ► We compare entanglement and nonlocality of two-level detector model with that of free field model in noninertial frame. ► Two-qubit state entanglement experiences “sudden death”. ► Three-qubit state entanglement vanishes in the infinite acceleration limit. ► Bipartite nonlocal correlations vanish for finite values of the acceleration. ► Tripartite nonlocal correlations vanish for finite values of the acceleration as well.

  11. Classification of multipartite systems featuring only $|W\\rangle$ and $|GHZ\\rangle$ genuine entangled states

    OpenAIRE

    Holweck, Frédéric; Lévay, Péter

    2015-01-01

    In this paper we present several multipartite quantum systems featuring the same type of genuine (tripartite) entanglement. Based on a geometric interpretation of the so-called $|W\\rangle$ and $|GHZ\\rangle$ states we show that the classification of all multipartite systems featuring those and only those two classes of genuine entanglement can be deduced from earlier work of algebraic geometers. This classification corresponds in fact to classification of fundamental subadjoint varieties and e...

  12. Deterministically Entangling Two Remote Atomic Ensembles via Light-Atom Mixed Entanglement Swapping.

    Science.gov (United States)

    Liu, Yanhong; Yan, Zhihui; Jia, Xiaojun; Xie, Changde

    2016-01-01

    Entanglement of two distant macroscopic objects is a key element for implementing large-scale quantum networks consisting of quantum channels and quantum nodes. Entanglement swapping can entangle two spatially separated quantum systems without direct interaction. Here we propose a scheme of deterministically entangling two remote atomic ensembles via continuous-variable entanglement swapping between two independent quantum systems involving light and atoms. Each of two stationary atomic ensembles placed at two remote nodes in a quantum network is prepared to a mixed entangled state of light and atoms respectively. Then, the entanglement swapping is unconditionally implemented between the two prepared quantum systems by means of the balanced homodyne detection of light and the feedback of the measured results. Finally, the established entanglement between two macroscopic atomic ensembles is verified by the inseparability criterion of correlation variances between two anti-Stokes optical beams respectively coming from the two atomic ensembles. PMID:27165122

  13. Deterministically Entangling Two Remote Atomic Ensembles via Light-Atom Mixed Entanglement Swapping

    Science.gov (United States)

    Liu, Yanhong; Yan, Zhihui; Jia, Xiaojun; Xie, Changde

    2016-05-01

    Entanglement of two distant macroscopic objects is a key element for implementing large-scale quantum networks consisting of quantum channels and quantum nodes. Entanglement swapping can entangle two spatially separated quantum systems without direct interaction. Here we propose a scheme of deterministically entangling two remote atomic ensembles via continuous-variable entanglement swapping between two independent quantum systems involving light and atoms. Each of two stationary atomic ensembles placed at two remote nodes in a quantum network is prepared to a mixed entangled state of light and atoms respectively. Then, the entanglement swapping is unconditionally implemented between the two prepared quantum systems by means of the balanced homodyne detection of light and the feedback of the measured results. Finally, the established entanglement between two macroscopic atomic ensembles is verified by the inseparability criterion of correlation variances between two anti-Stokes optical beams respectively coming from the two atomic ensembles.

  14. Deterministically Entangling Two Remote Atomic Ensembles via Light-Atom Mixed Entanglement Swapping.

    Science.gov (United States)

    Liu, Yanhong; Yan, Zhihui; Jia, Xiaojun; Xie, Changde

    2016-05-11

    Entanglement of two distant macroscopic objects is a key element for implementing large-scale quantum networks consisting of quantum channels and quantum nodes. Entanglement swapping can entangle two spatially separated quantum systems without direct interaction. Here we propose a scheme of deterministically entangling two remote atomic ensembles via continuous-variable entanglement swapping between two independent quantum systems involving light and atoms. Each of two stationary atomic ensembles placed at two remote nodes in a quantum network is prepared to a mixed entangled state of light and atoms respectively. Then, the entanglement swapping is unconditionally implemented between the two prepared quantum systems by means of the balanced homodyne detection of light and the feedback of the measured results. Finally, the established entanglement between two macroscopic atomic ensembles is verified by the inseparability criterion of correlation variances between two anti-Stokes optical beams respectively coming from the two atomic ensembles.

  15. Entanglement of mixed quantum states for qubits and qudit in double photoionization of atoms

    Energy Technology Data Exchange (ETDEWEB)

    Chakraborty, M., E-mail: bminakshi@yahoo.com [Department of Physics, Asansol Girls’ College, Asansol 713304 (India); Sen, S. [Department of Physics, Triveni Devi Bhalotia College, Raniganj 713347 (India)

    2015-08-15

    Highlights: • We study tripartite entanglement between two electronic qubits and an ionic qudit. • We study bipartite entanglement between any two subsystems of a tripartite system. • We have presented a quantitative application of entangled properties in Neon atom. - Abstract: Quantum entanglement and its paradoxical properties are genuine physical resources for various quantum information tasks like quantum teleportation, quantum cryptography, and quantum computer technology. The physical characteristic of the entanglement of quantum-mechanical states, both for pure and mixed, has been recognized as a central resource in various aspects of quantum information processing. In this article, we study the bipartite entanglement of one electronic qubit along with the ionic qudit and also entanglement between two electronic qubits. The tripartite entanglement properties also have been investigated between two electronic qubits and an ionic qudit. All these studies have been done for the single-step double photoionization from an atom following the absorption of a single photon without observing spin orbit interaction. The dimension of the Hilbert space of the qudit depends upon the electronic state of the residual photoion A{sup 2+}. In absence of SOI, when Russell–Saunders coupling (L–S coupling) is applicable, dimension of the qudit is equal to the spin multiplicity of A{sup 2+}. For estimations of entanglement and mixedness, we consider the Peres–Horodecki condition, concurrence, entanglement of formation, negativity, linear and von Neumann entropies. In case of L–S coupling, all the properties of a qubit–qudit system can be predicted merely with the knowledge of the spins of the target atom and the residual photoion.

  16. Authenticating Tripartite Key Agreement Protocol with Pairings

    Institute of Scientific and Technical Information of China (English)

    Sheng-Li Liu; Fang-Guo Zhang; Ke-Fei Chen

    2004-01-01

    In this paper, an authenticated tripartite key agreement protocol is proposed, which is an ID-based one with pairings. This protocol involves only one round. The authenticity of the protocol is assured by a special signature scheme, so that messages carrying the information of two ephemeral keys can be broadcasted authentically by an entity. Consequently, one instance of the protocol results in eight session keys for three entities. In other word, one instance of the protocol generates a session key, which is eight times longer than those obtained from traditional key agreement protocols. Security attributes of the protocol are presented, and the computational overhead and bandwidth of the broadcast messages are analyzed as well.

  17. Device-independent witnesses of genuine multipartite entanglement.

    Science.gov (United States)

    Bancal, Jean-Daniel; Gisin, Nicolas; Liang, Yeong-Cherng; Pironio, Stefano

    2011-06-24

    We consider the problem of determining whether genuine multipartite entanglement was produced in an experiment, without relying on a characterization of the systems observed or of the measurements performed. We present an n-partite inequality that is satisfied by all correlations produced by measurements on biseparable quantum states, but which can be violated by n-partite entangled states, such as Greenberger-Horne-Zeilinger states. In contrast to traditional entanglement witnesses, the violation of this inequality implies that the state is not biseparable independently of the Hilbert space dimension and of the measured operators. Violation of this inequality does not imply, however, genuine multipartite nonlocality. We show more generically how the problem of identifying genuine tripartite entanglement in a device-independent way can be addressed through semidefinite programming. PMID:21770616

  18. Entanglement and Coherence in Quantum State Merging.

    Science.gov (United States)

    Streltsov, A; Chitambar, E; Rana, S; Bera, M N; Winter, A; Lewenstein, M

    2016-06-17

    Understanding the resource consumption in distributed scenarios is one of the main goals of quantum information theory. A prominent example for such a scenario is the task of quantum state merging, where two parties aim to merge their tripartite quantum state parts. In standard quantum state merging, entanglement is considered to be an expensive resource, while local quantum operations can be performed at no additional cost. However, recent developments show that some local operations could be more expensive than others: it is reasonable to distinguish between local incoherent operations and local operations which can create coherence. This idea leads us to the task of incoherent quantum state merging, where one of the parties has free access to local incoherent operations only. In this case the resources of the process are quantified by pairs of entanglement and coherence. Here, we develop tools for studying this process and apply them to several relevant scenarios. While quantum state merging can lead to a gain of entanglement, our results imply that no merging procedure can gain entanglement and coherence at the same time. We also provide a general lower bound on the entanglement-coherence sum and show that the bound is tight for all pure states. Our results also lead to an incoherent version of Schumacher compression: in this case the compression rate is equal to the von Neumann entropy of the diagonal elements of the corresponding quantum state.

  19. Tripartite Governance: Enabling Successful Implementations with Vulnerable Populations.

    Science.gov (United States)

    Kennedy, Margaret Ann

    2016-01-01

    Vulnerable populations are often at a distinct disadvantage when it comes to the implementation of health information systems in an equitable, appropriate, and timely manner. The disadvantages experienced by vulnerable populations are innumerable and include lack of representation, lack of appropriate levels of funding, lack of resources and capacity, and lack of representation. Increasingly, models of representation for complex implementations involve a tripartite project governance model. This tripartite partnership distributes accountability across all partners, and ensures that vulnerable populations have an equitable contribution to the direction of implementation according to their needs. This article shares lessons learned and best practices from complex tripartite partnerships supporting implementations with vulnerable populations in Canada. PMID:27332182

  20. Continuous variable tangle, monogamy inequality, and entanglement sharing in Gaussian states of continuous variable systems

    International Nuclear Information System (INIS)

    For continuous-variable (CV) systems, we introduce a measure of entanglement, the CV tangle (contangle), with the purpose of quantifying the distributed (shared) entanglement in multimode, multipartite Gaussian states. This is achieved by a proper convex-roof extension of the squared logarithmic negativity. We prove that the contangle satisfies the Coffman-Kundu-Wootters monogamy inequality in all three-mode Gaussian states, and in all fully symmetric N-mode Gaussian states, for arbitrary N. For three-mode pure states, we prove that the residual entanglement is a genuine tripartite entanglement monotone under Gaussian local operations and classical communication. We show that pure, symmetric three-mode Gaussian states allow a promiscuous entanglement sharing, having both maximum tripartite residual entanglement and maximum couplewise entanglement between any pair of modes. These states are thus simultaneous CV analogues of both the GHZ and the W states of three qubits: in CV systems monogamy does not prevent promiscuity, and the inequivalence between different classes of maximally entangled states, holding for systems of three or more qubits, is removed

  1. Continuous variable tangle, monogamy inequality, and entanglement sharing in Gaussian states of continuous variable systems

    Energy Technology Data Exchange (ETDEWEB)

    Adesso, Gerardo; Illuminati, Fabrizio [Dipartimento di Fisica ' E R Caianiello' , Universita degli Studi di Salerno (Italy); CNISM and CNR-Coherentia, Gruppo di Salerno (Italy); and INFN Sezione di Napoli-Gruppo Collegato di Salerno (Italy); Via S Allende, 84081 Baronissi, SA (Italy)

    2006-01-15

    For continuous-variable (CV) systems, we introduce a measure of entanglement, the CV tangle (contangle), with the purpose of quantifying the distributed (shared) entanglement in multimode, multipartite Gaussian states. This is achieved by a proper convex-roof extension of the squared logarithmic negativity. We prove that the contangle satisfies the Coffman-Kundu-Wootters monogamy inequality in all three-mode Gaussian states, and in all fully symmetric N-mode Gaussian states, for arbitrary N. For three-mode pure states, we prove that the residual entanglement is a genuine tripartite entanglement monotone under Gaussian local operations and classical communication. We show that pure, symmetric three-mode Gaussian states allow a promiscuous entanglement sharing, having both maximum tripartite residual entanglement and maximum couplewise entanglement between any pair of modes. These states are thus simultaneous CV analogues of both the GHZ and the W states of three qubits: in CV systems monogamy does not prevent promiscuity, and the inequivalence between different classes of maximally entangled states, holding for systems of three or more qubits, is removed.

  2. Output three-mode entanglement via coherently prepared inverted Y-type atoms

    International Nuclear Information System (INIS)

    In this paper, the output quantum correlations of three fields interacting with inverted Y-type atoms inside a three-mode cavity are investigated. By numerically calculating the stationary noise spectra of the fields, we show that it is possible to generate the genuine tripartite continuous variable entanglement outside the cavity by coherently preparing the atoms in a superposition of the upper excited state and two ground states initially. Our numerical results demonstrate that both zero frequency entanglement and sideband frequency entanglement can be obtained under different initial coherent conditions. In addition, we investigate the thermal fluctuation effects on the quantum entanglement. It is found out that the entanglement occurring in a high frequency regime is more robust against thermal noise than the zero frequency entanglement, which may be useful for quantum communication. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  3. Generation of Entangled State and Entanglement Swapping

    Institute of Scientific and Technical Information of China (English)

    YE Liu; GUO Guangcan

    2002-01-01

    A scheme is proposed for the generation of entangled atomic states and a method is presented to produce entangled photon states. It is shown that entanglement can be swapped from atoms to cavities via atom-cavity interaction.

  4. Entanglement and coherence in quantum state merging

    CERN Document Server

    Streltsov, A; Rana, S; Bera, M N; Winter, A; Lewenstein, M

    2016-01-01

    Understanding the resource consumption in distributed scenarios is one of the main goals of quantum information theory. A prominent example for such a scenario is the task of quantum state merging where two parties aim to merge their parts of a tripartite quantum state. In standard quantum state merging, entanglement is considered as an expensive resource, while local quantum operations can be performed at no additional cost. However, recent developments show that some local operations could be more expensive than others: it is reasonable to distinguish between local incoherent operations and local operations which can create coherence. This idea leads us to the task of incoherent quantum state merging, where one of the parties has free access to local incoherent operations only. In this case the resources of the process are quantified by pairs of entanglement and coherence. Here, we develop tools for studying this process, and apply them to several relevant scenarios. While quantum state merging can lead to ...

  5. Policy modes for climate change: the role of tripartite partnerships

    OpenAIRE

    Kolk, A.; Pinkse, J.

    2010-01-01

    This position paper provides an initial overview of the role of tripartite partnerships for climate change in the broader framework of policy options available to address the issue. First, we will position partnerships in relation to other policy modes for climate change, including emissions trading schemes, voluntary agreements and individual corporate self-regulation. Next, partnerships for climate change are explored empirically, considering two existing databases for their tripartite init...

  6. Entangling Fractals

    CERN Document Server

    Astaneh, Amin Faraji

    2015-01-01

    We use the Heat Kernel method to calculate the Entanglement Entropy for a given entangling region on a fractal. The leading divergent term of the entropy is obtained as a function of the fractal dimension as well as the walk dimension. The power of the UV cut-off parameter is (generally) a fractional number which indeed is a certain combination of these two indices. This exponent is known as the spectral dimension. We show that there is a novel log periodic oscillatory behavior in the entropy which has root in the complex dimension of a fractal. We finally indicate that the Holographic calculation in a certain Hyper-scaling violating bulk geometry yields the same leading term for the entanglement entropy, if one identifies the effective dimension of the hyper-scaling violating theory with the spectral dimension of the fractal. We provide more supports with comparing the behavior of the thermal entropy in terms of the temperature in these two cases.

  7. Preparation and measurement of three-qubit entanglement in a superconducting circuit.

    Science.gov (United States)

    Dicarlo, L; Reed, M D; Sun, L; Johnson, B R; Chow, J M; Gambetta, J M; Frunzio, L; Girvin, S M; Devoret, M H; Schoelkopf, R J

    2010-09-30

    Traditionally, quantum entanglement has been central to foundational discussions of quantum mechanics. The measurement of correlations between entangled particles can have results at odds with classical behaviour. These discrepancies grow exponentially with the number of entangled particles. With the ample experimental confirmation of quantum mechanical predictions, entanglement has evolved from a philosophical conundrum into a key resource for technologies such as quantum communication and computation. Although entanglement in superconducting circuits has been limited so far to two qubits, the extension of entanglement to three, eight and ten qubits has been achieved among spins, ions and photons, respectively. A key question for solid-state quantum information processing is whether an engineered system could display the multi-qubit entanglement necessary for quantum error correction, which starts with tripartite entanglement. Here, using a circuit quantum electrodynamics architecture, we demonstrate deterministic production of three-qubit Greenberger-Horne-Zeilinger (GHZ) states with fidelity of 88 per cent, measured with quantum state tomography. Several entanglement witnesses detect genuine three-qubit entanglement by violating biseparable bounds by 830 ± 80 per cent. We demonstrate the first step of basic quantum error correction, namely the encoding of a logical qubit into a manifold of GHZ-like states using a repetition code. The integration of this encoding with decoding and error-correcting steps in a feedback loop will be the next step for quantum computing with integrated circuits.

  8. Quantum entanglement

    CERN Document Server

    Hadjiivanov, Ludmil

    2015-01-01

    Expository paper providing a historical survey of the gradual transformation of the "philosophical discussions" between Bohr, Einstein and Schr\\"odinger on foundational issues in quantum mechanics into a quantitative prediction of a new quantum effect, its experimental verification and its proposed (and loudly advertised) applications. The basic idea of the 1935 paper of Einstein-Podolsky-Rosen (EPR) was reformulated by David Bohm for a finite dimensional spin system. This allowed John Bell to derive his inequalities that separate the prediction of quantum entanglement from its possible classical interpretation. We reproduce here their later (1971) version, reviewing on the way the generalization (and mathematical derivation) of Heisenberg's uncertainty relations (due to Weyl and Schr\\"odinger) needed for the passage from EPR to Bell. We also provide an improved derivation of the quantum theoretic violation of Bell's inequalities. Soon after the experimental confirmation of the quantum entanglement (culminati...

  9. The entanglement evolution between two entangled atoms

    Indian Academy of Sciences (India)

    Zong-Cheng Xu; Mai-Lin Liang; Ya-Ting Zhang; Jian-Quan Yao

    2016-03-01

    The entanglement properties of two entangled atoms interacting with the field under intensity-dependent coupling are studied in detail. It is found that the degree of entanglement between the two atoms changes periodically and undergoes the entanglement sudden death (ESD) and sudden birth at some time. The entanglement properties between the field and the atom insidethe cavity are dependent on the photon number. Most interestingly, the entanglement between the field and the atom in the field is influenced significantly by manipulating the atom outside the field.

  10. Entanglement teleportation using three-qubit entanglement

    OpenAIRE

    Yeo, Ye

    2003-01-01

    We investigate the teleportation of an entangled two-qubit state using three-qubit GHZ and W channels. The effects of white noise on the average teleportation fidelity and amount of entanglement transmitted are also studied.

  11. Quantum Teleportation of Tripartite Arbitrary State via W State

    Institute of Scientific and Technical Information of China (English)

    XUE Zheng-Yuan; YI You-Min; CAO Zhuo-Liang

    2005-01-01

    A scheme of teleportation of a tripartite state via W state is suggested. The W state serves as quantum channels. Standard Bell-state measurements and Von Neumann measurements are performed. After the sender operates the measurements and informs the receiver her results, he can reconstruct the original state by the corresponding unitary transformation. The probability of the successful teleportation is also obtained.

  12. Entanglement in continuous-variable systems: recent advances and current perspectives

    International Nuclear Information System (INIS)

    We review the theory of continuous-variable entanglement with special emphasis on foundational aspects, conceptual structures and mathematical methods. Much attention is devoted to the discussion of separability criteria and entanglement properties of Gaussian states, for their great practical relevance in applications to quantum optics and quantum information, as well as for the very clean framework that they allow for the study of the structure of nonlocal correlations. We give a self-contained introduction to phase-space and symplectic methods in the study of Gaussian states of infinite-dimensional bosonic systems. We review the most important results on the separability and distillability of Gaussian states and discuss the main properties of bipartite entanglement. These include the extremal entanglement, minimal and maximal, of two-mode mixed Gaussian states, the ordering of two-mode Gaussian states according to different measures of entanglement, the unitary (reversible) localization and the scaling of bipartite entanglement in multimode Gaussian states. We then discuss recent advances in the understanding of entanglement sharing in multimode Gaussian states, including the proof of the monogamy inequality of distributed entanglement for all Gaussian states. Multipartite entanglement of Gaussian states is reviewed by discussing its qualification by different classes of separability, and the main consequences of the monogamy inequality, such as the quantification of genuine tripartite entanglement in three-mode Gaussian states, the promiscuous nature of entanglement sharing in symmetric Gaussian states and the possible coexistence of unlimited bipartite and multipartite entanglement. We finally review recent advances and discuss possible perspectives on the qualification and quantification of entanglement in non-Gaussian states, a field of research that is to a large extent yet to be explored

  13. Entanglement in continuous-variable systems: recent advances and current perspectives

    Energy Technology Data Exchange (ETDEWEB)

    Adesso, Gerardo [Dipartimento di Fisica, Universita degli Studi di Roma ' La Sapienza' , Piazzale Aldo Moro 5, I-00185 Rome (Italy); Illuminati, Fabrizio [Dipartimento di Matematica e Informatica, Universita degli Studi di Salerno, Via Ponte don Melillo, I-84084 Fisciano (Italy)

    2007-07-13

    We review the theory of continuous-variable entanglement with special emphasis on foundational aspects, conceptual structures and mathematical methods. Much attention is devoted to the discussion of separability criteria and entanglement properties of Gaussian states, for their great practical relevance in applications to quantum optics and quantum information, as well as for the very clean framework that they allow for the study of the structure of nonlocal correlations. We give a self-contained introduction to phase-space and symplectic methods in the study of Gaussian states of infinite-dimensional bosonic systems. We review the most important results on the separability and distillability of Gaussian states and discuss the main properties of bipartite entanglement. These include the extremal entanglement, minimal and maximal, of two-mode mixed Gaussian states, the ordering of two-mode Gaussian states according to different measures of entanglement, the unitary (reversible) localization and the scaling of bipartite entanglement in multimode Gaussian states. We then discuss recent advances in the understanding of entanglement sharing in multimode Gaussian states, including the proof of the monogamy inequality of distributed entanglement for all Gaussian states. Multipartite entanglement of Gaussian states is reviewed by discussing its qualification by different classes of separability, and the main consequences of the monogamy inequality, such as the quantification of genuine tripartite entanglement in three-mode Gaussian states, the promiscuous nature of entanglement sharing in symmetric Gaussian states and the possible coexistence of unlimited bipartite and multipartite entanglement. We finally review recent advances and discuss possible perspectives on the qualification and quantification of entanglement in non-Gaussian states, a field of research that is to a large extent yet to be explored.

  14. Distillation of bi-partite entanglement from W state with cavity QED

    Institute of Scientific and Technical Information of China (English)

    Deng Li; Chen Ai-Xi; Chen De-Hai; Huang Ke-Lin

    2008-01-01

    Following the theoretical protocol described by Fortescue and Lo [Fortescue B and Lo H K 2007 Phys. Rev. Lett. 98 260501], we present a scheme in which one can distill maximally entangled bi-partite states from a tri-partite W state with cavity QED. Our scheme enables the concrete physical system to realize its protocol. In our scheme, the rate distillation also asymptotically approaches one. Based on the present cavity QED techniques, we discuss the experimental feasibility.

  15. Completely mixed state is a critical point for three-qubit entanglement

    Energy Technology Data Exchange (ETDEWEB)

    Tamaryan, Sayatnova, E-mail: sayat@mail.yerphi.am [Department of Theoretical Physics, A. Alikhanyan National Laboratory, Yerevan (Armenia)

    2011-06-06

    Pure three-qubit states have five algebraically independent and one algebraically dependent polynomial invariants under local unitary transformations and an arbitrary entanglement measure is a function of these six invariants. It is shown that if the reduced density operator of a some qubit is a multiple of the unit operator, than the geometric entanglement measure of the pure three-qubit state is absolutely independent of the polynomial invariants and is a constant for such tripartite states. Hence a one-particle completely mixed state is a critical point for the geometric measure of entanglement. -- Highlights: → Geometric measure of pure three-qubits is expressed in terms of polynomial invariants. → When one Bloch vector is zero the measure is independent of the remaining invariants. → Hence a one-particle completely mixed state is a critical point for the geometric measure. → The existence of the critical points is an inherent feature of the entanglement.

  16. Renormalizing Entanglement Distillation.

    Science.gov (United States)

    Waeldchen, Stephan; Gertis, Janina; Campbell, Earl T; Eisert, Jens

    2016-01-15

    Entanglement distillation refers to the task of transforming a collection of weakly entangled pairs into fewer highly entangled ones. It is a core ingredient in quantum repeater protocols, which are needed to transmit entanglement over arbitrary distances in order to realize quantum key distribution schemes. Usually, it is assumed that the initial entangled pairs are identically and independently distributed and are uncorrelated with each other, an assumption that might not be reasonable at all in any entanglement generation process involving memory channels. Here, we introduce a framework that captures entanglement distillation in the presence of natural correlations arising from memory channels. Conceptually, we bring together ideas from condensed-matter physics-ideas from renormalization and matrix-product states and operators-with those of local entanglement manipulation, Markov chain mixing, and quantum error correction. We identify meaningful parameter regions for which we prove convergence to maximally entangled states, arising as the fixed points of a matrix-product operator renormalization flow.

  17. The Climate Change - Development Nexus and Tripartite Partnerships

    OpenAIRE

    Kolk, Ans; Pinkse, Jonatan

    2011-01-01

    textabstractIn view of the very limited number of tripartite partnerships for climate change in general, and those focused on development (developing countries) in parti cular, as shown in an earlier position paper (Kolk & Pinkse, 2010), it would seem useful to take a step back and consider the linkages between climate and development in more detail. In view of the very limited number of triparti te partnerships for climate change in general, and those focused on development (developing count...

  18. Quantum entanglement and quantum operation

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    It is a simple introduction to quantum entanglement and quantum operations. The authors focus on some applications of quantum entanglement and relations between two-qubit entangled states and unitary operations. It includes remote state preparation by using any pure entangled states, nonlocal operation implementation using entangled states, entanglement capacity of two-qubit gates and two-qubit gates construction.

  19. Higher-curvature Corrections to Holographic Entanglement with Momentum Relaxation

    CERN Document Server

    Tanhayi, M Reza

    2016-01-01

    We study the effects of Gauss-Bonnet corrections on entanglement entropy and mutual information in the holographic model with momentum relaxation. There are in fact two kinds of deformation in the states of conformal field theory in this model: the higher-curvature terms, which could address the low-energy quantum excitation corrections, and the deformation due to scalar fields, which are responsible for the momentum conservation breaking. We use holographic methods to obtain the corresponding changes due to these deformations in the finite and universal parts of entanglement entropy for strip geometry. Holographic calculation indicates that mutual and tripartite information undergo a transition beyond which they identically change their values. We find that the behavior of transition curves depends on the sign of the Gauss-Bonnet coupling $\\lambda$. The transition for $\\lambda>0$ takes place in larger separation of subsystems than that of $\\lambda<0$.

  20. Generalized Remote Preparation of Arbitrary m-qubit Entangled States via Genuine Entanglements

    Directory of Open Access Journals (Sweden)

    Dong Wang

    2015-03-01

    Full Text Available Herein, we present a feasible, general protocol for quantum communication within a network via generalized remote preparation of an arbitrary m-qubit entangled state designed with genuine tripartite Greenberger–Horne–Zeilinger-type entangled resources. During the implementations, we construct novel collective unitary operations; these operations are tasked with performing the necessary phase transfers during remote state preparations. We have distilled our implementation methods into a five-step procedure, which can be used to faithfully recover the desired state during transfer. Compared to previous existing schemes, our methodology features a greatly increased success probability. After the consumption of auxiliary qubits and the performance of collective unitary operations, the probability of successful state transfer is increased four-fold and eight-fold for arbitrary two- and three-qubit entanglements when compared to other methods within the literature, respectively. We conclude this paper with a discussion of the presented scheme for state preparation, including: success probabilities, reducibility and generalizability.

  1. The influences of dipole-dipole interaction and detuning on the sudden death of entanglement between two atoms in the Tavis-Cummings model

    Institute of Scientific and Technical Information of China (English)

    ChenLi; Shao Xiao-Qiang; Zhang Shou

    2009-01-01

    The influences of dipole-dipole interaction and detuning on the entanglement between two atoms with different initial tripartite entangled W-like states in the Tavis-Cummings model have been investigated by means of Wootters' concurrence, respectively. The results show that the entanglement between the two atoms can be enhanced via apprco-priately tuning the strength of dipole-dipole interaction of two atoms or the detunings between atom and cavity, and the so-called sudden death effect can be weakened simultaneously.

  2. Entanglement with Centers

    CERN Document Server

    Ma, Chen-Te

    2015-01-01

    Entanglement is a physical phenomenon that each state cannot be described individually. Entanglement entropy gives quantitative understanding to the entanglement. We use decomposition of the Hilbert space to discuss properties of the entanglement. Therefore, partial trace operator becomes important to define the reduced density matrix from different centers, which commutes with all elements in the Hilbert space, corresponding to different entanglement choices or different observations on entangling surface. Entanglement entropy is expected to satisfy the strong subadditivity. We discuss decomposition of the Hilbert space for the strong subadditivity and other related inequalities. The entanglement entropy with centers can be computed from the Hamitonian formulations systematically, provided that we know wavefunctional. In the Hamitonian formulation, it is easier to obtain symmetry structure. We consider massless $p$-form theory as an example. The massless $p$-form theory in ($2p+2)$-dimensions has global symm...

  3. Faithful Squashed Entanglement

    CERN Document Server

    Brandao, Fernando G S L; Yard, Jon

    2010-01-01

    Squashed entanglement is a measure for the entanglement of bipartite quantum states. In this paper we present a lower bound for squashed entanglement in terms of the LOCC distance to the set of separable states. This implies that squashed entanglement is faithful, that is, it is strictly positive if and only if the state is entangled. We derive the lower bound on squashed entanglement from a lower bound on the quantum conditional mutual information which is used to define squashed entanglement. The quantum conditional mutual information corresponds to the amount by which strong subadditivity of von Neumann entropy fails to be saturated. Our result therefore sheds light on the structure of states that almost satisfy strong subadditivity with equality. The proof is based on two recent results from quantum information theory: the operational interpretation of the quantum mutual information as the optimal rate for state redistribution and the interpretation of the regularised relative entropy of entanglement as a...

  4. Limitations to sharing entanglement

    CERN Document Server

    Kim, Jeong San; Sanders, Barry C

    2011-01-01

    We discuss limitations to sharing entanglement known as monogamy of entanglement. Our pedagogical approach commences with simple examples of limited entanglement sharing for pure three-qubit states and progresses to the more general case of mixed-state monogamy relations with multiple qudits.

  5. Towards an Urbanism of Entanglement

    DEFF Research Database (Denmark)

    Tietjen, Anne

    2009-01-01

    both with regard to an academic research context and with regard to the context of urban development practice is stressed. Based on actor-network-theory (ANT), it is outlined how site knowledge and site knowledge production can be understood and further articulated with regard to a transdisciplinary...... of spatial equality throughout Denmark to an ideal of balanced development. This shift dates back to the 1980s but has gained new topicality in light of increased spatial inequality. Current Danish spatial policy targets the two large city regions around Copenhagen and in East Jutland as the engines...... than being an autonomous field of work urban design is a transdisciplinary field that connects multiple practice and knowledge forms. Finally, an urbanism of entanglement brings about design interventions which stress performativity and connectivity. An urbanism of entanglement proposes new...

  6. Structures in entanglement dynamics

    International Nuclear Information System (INIS)

    Understanding the dynamics of entanglement that is exhibited by a quantum system constitutes a major step in the venture to harvest this quantum effect in potential applications, and to elaborate the role that entanglement plays in real world settings. Interesting dynamics include collective coherent driving and general decoherence processes. Without resorting to the phenomenological treatment of specific examples, we present general features of the structure underlying the dynamics of entanglement. Starting from low dimensional systems where algebraic properties of some entanglement monotones allow for an ''entanglement equation of motion'' we continue, using topological and measure theoretic approaches, to typical behaviour exhibited in the thermodynamic limit

  7. Renormalized entanglement entropy

    CERN Document Server

    Taylor, Marika

    2016-01-01

    We develop a renormalization method for holographic entanglement entropy based on area renormalization of entangling surfaces. The renormalized entanglement entropy is derived for entangling surfaces in asymptotically locally anti-de Sitter spacetimes in general dimensions and for entangling surfaces in four dimensional holographic renormalization group flows. The renormalized entanglement entropy for disk regions in $AdS_4$ spacetimes agrees precisely with the holographically renormalized action for $AdS_4$ with spherical slicing and hence with the F quantity, in accordance with the Casini-Huerta-Myers map. We present a generic class of holographic RG flows associated with deformations by operators of dimension $3/2 < \\Delta < 5/2$ for which the F quantity increases along the RG flow, hence violating the strong version of the F theorem. We conclude by explaining how the renormalized entanglement entropy can be derived directly from the renormalized partition function using the replica trick i.e. our re...

  8. Entanglement-saving channels

    Science.gov (United States)

    Lami, L.; Giovannetti, V.

    2016-03-01

    The set of Entanglement Saving (ES) quantum channels is introduced and characterized. These are completely positive, trace preserving transformations which when acting locally on a bipartite quantum system initially prepared into a maximally entangled configuration, preserve its entanglement even when applied an arbitrary number of times. In other words, a quantum channel ψ is said to be ES if its powers ψn are not entanglement-breaking for all integers n. We also characterize the properties of the Asymptotic Entanglement Saving (AES) maps. These form a proper subset of the ES channels that is constituted by those maps that not only preserve entanglement for all finite n but which also sustain an explicitly not null level of entanglement in the asymptotic limit n → ∞. Structure theorems are provided for ES and for AES maps which yield an almost complete characterization of the former and a full characterization of the latter.

  9. Entanglement - From Particles to Consciousness

    Science.gov (United States)

    Teodorani, M.

    2007-06-01

    This book, which is entirely devoted to the description and discussion of the mechanism of quantum entanglement, is divided into three main parts: a) canonical entanglement in the realm of elementary particles; b) entanglement in the biological environment (DNA and microtubules); c) entanglement in the psychic realm. Cosmological entanglement and non-local SETI are discussed as well.

  10. Benchmarking a quantum teleportation protocol in superconducting circuits using tomography and an entanglement witness.

    Science.gov (United States)

    Baur, M; Fedorov, A; Steffen, L; Filipp, S; da Silva, M P; Wallraff, A

    2012-01-27

    Teleportation of a quantum state may be used for distributing entanglement between distant qubits in quantum communication and for quantum computation. Here we demonstrate the implementation of a teleportation protocol, up to the single-shot measurement step, with superconducting qubits coupled to a microwave resonator. Using full quantum state tomography and evaluating an entanglement witness, we show that the protocol generates a genuine tripartite entangled state of all three qubits. Calculating the projection of the measured density matrix onto the basis states of two qubits allows us to reconstruct the teleported state. Repeating this procedure for a complete set of input states we find an average output state fidelity of 86%. PMID:22400817

  11. Entanglement of two hybrid optomechanical cavity composed of BEC atoms under Bell detection

    CERN Document Server

    Eghbali-Arani, Mohammad

    2016-01-01

    In this paper, firstly, we exploit two bipartite entanglement of output optical field, moving mirror,and the lowest band of a one dimensional BEC inside a driven optomechanical cavity. We consider atomic collision on the behaviour of the BEC in the weak photon-atom coupling, and use Bogoliubov approximation for the condensate. Secondly under above conditions, we propose a scheme for entanglement swapping which involves tripartite systems. In our investigation, we consider a scenario where BECs, mirrors, and field modes are given in a Gaussian state with a covariance matrix (CM). By applying the Bell measurement to the output optical field modes, we show how the remote entanglement between two BECs, two mirrors, and BEC-mirror modes in different optomechanical cavity can be generated.

  12. Spectral conditions for entanglement witnesses vs. bound entanglement

    OpenAIRE

    Chruściński, Dariusz; Kossakowski, Andrzej; Sarbicki, Gniewomir

    2009-01-01

    It is shown that entanglement witnesses constructed via the family of spectral conditions are decomposable, i.e. cannot be used to detect bound entanglement. It supports several observations that bound entanglement reveals highly non-spectral features.

  13. Tripartite Therapy with Older Children: Mutuality in the Relationship of a Parent-Child Attachment

    Science.gov (United States)

    Berlin, Nancy

    2008-01-01

    This is the last of a series of three papers exploring the use with older children of tripartite psychotherapy--a technique of psychoanalytic psychotherapy of the parent-child relationship with both parent and child in the room together with the therapist. Tripartite psychotherapy merits more attention than it has received. It is a flexible,…

  14. Creation of Multipartite Entanglement and Entanglement Transfer via Heisenberg Interaction

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yong; CAO Wan-Cang; LONG Gui-Lu

    2005-01-01

    @@ We discuss how to create multipartite entanglement. By coupling a new particle with entangled particles via Heisenberg interaction between two particles, we can prepare three-particle entangled states. For some special coupling strength, entanglement transfer can be achieved from entangled pair AB to particles A and C that never interact by coupling particle C with particle B, which can be used to create entanglement between two separated particles.

  15. Theory of entanglement and entanglement-assisted communication

    Science.gov (United States)

    Bennett, Charles H.

    2011-03-01

    Protocols such as quantum teleportation and measurement-based quantum computation highlight the importance of entanglement as a resource to be quantified and husbanded. Unlike classical shared randomness, entanglement has a profound effect on the capacity of quantum channels: a channel's entanglement-assisted capacity can be much greater than its unassisted capacity, and in any case is given by much a simpler formula, paralleling Shannon's original formula for the capacity of a classical channel. We review the differences between entanglement and weaker forms of correlation, and the theory of entanglement distillation and entanglement-assisted communication, including the role of strong forms of entanglement such as entanglement-embezzling states.

  16. Unlocking fermionic mode entanglement

    Science.gov (United States)

    Friis, Nicolai

    2016-06-01

    Aside from other puzzling features of entanglement, it has been debated whether a physically meaningful notion of entanglement requires two (or more) particles as carriers of the correlated degrees-of-freedom, or if a single particle could be considered to be entangled as well. While the usefulness of single-boson entanglement has been demonstrated some time ago, the restrictions of superselection rules have previously thwarted attempts at similar arguments for single fermions. In Dasenbrook et al (2016 New J. Phys. 18 043036) this obstacle is overcome. The authors propose a scheme for a Bell test on two copies of single-electron states whose entanglement is individually not accessible. The discussed scheme, which makes use of recent progress in electronic quantum optics, provides an experimentally viable and theoretically unambiguous way to assert that certain single-electron states can be considered to be entangled.

  17. Entanglement by Path Identity

    CERN Document Server

    Krenn, Mario; Lahiri, Mayukh; Zeilinger, Anton

    2016-01-01

    Quantum entanglement is one of the most prominent features of quantum mechanics and forms the basis of quantum information technologies. Here we present a novel method for the creation of quantum entanglement in multipartite and high-dimensional photonic systems, exploiting an idea introduced by the group of Leonard Mandel 25 years ago. The two ingredients are 1) superposition of photon pairs with different origins and 2) aligning photon paths such that they emerge from the same output mode. We explain examples for the creation of various classes of multiphoton entanglement encoded in polarization as well as in high-dimensional Hilbert spaces -- starting only from separable (non-entangled) photon pairs. For two photons, we show how arbitrary high-dimensional entanglement can be created. Interestingly, a common source for two-photon polarization entanglement is found as a special case. We discovered the technique by analyzing the output of a computer algorithm designing quantum experiments, and generalized it ...

  18. Thermalization of entanglement.

    Science.gov (United States)

    Zhang, Liangsheng; Kim, Hyungwon; Huse, David A

    2015-06-01

    We explore the dynamics of the entanglement entropy near equilibrium in highly entangled pure states of two quantum-chaotic spin chains undergoing unitary time evolution. We examine the relaxation to equilibrium from initial states with either less or more entanglement entropy than the equilibrium value, as well as the dynamics of the spontaneous fluctuations of the entanglement that occur in equilibrium. For the spin chain with a time-independent Hamiltonian and thus an extensive conserved energy, we find slow relaxation of the entanglement entropy near equilibration. Such slow relaxation is absent in a Floquet spin chain with a Hamiltonian that is periodic in time and thus has no local conservation law. Therefore, we argue that slow diffusive energy transport is responsible for the slow relaxation of the entanglement entropy in the Hamiltonian system. PMID:26172682

  19. Thermalization of entanglement.

    Science.gov (United States)

    Zhang, Liangsheng; Kim, Hyungwon; Huse, David A

    2015-06-01

    We explore the dynamics of the entanglement entropy near equilibrium in highly entangled pure states of two quantum-chaotic spin chains undergoing unitary time evolution. We examine the relaxation to equilibrium from initial states with either less or more entanglement entropy than the equilibrium value, as well as the dynamics of the spontaneous fluctuations of the entanglement that occur in equilibrium. For the spin chain with a time-independent Hamiltonian and thus an extensive conserved energy, we find slow relaxation of the entanglement entropy near equilibration. Such slow relaxation is absent in a Floquet spin chain with a Hamiltonian that is periodic in time and thus has no local conservation law. Therefore, we argue that slow diffusive energy transport is responsible for the slow relaxation of the entanglement entropy in the Hamiltonian system.

  20. Entanglement in neutrino oscillations

    OpenAIRE

    Blasone, Massimo; Dell'Anno, Fabio; De Siena, Silvio; Illuminati, Fabrizio

    2007-01-01

    Flavor oscillations in elementary particle physics are related to multi-mode entanglement of single-particle states. We show that mode entanglement can be expressed in terms of flavor transition probabilities, and therefore that single-particle entangled states acquire a precise operational characterization in the context of particle mixing. We treat in detail the physically relevant cases of two- and three-flavor neutrino oscillations, including the effective measure of CP violation. We disc...

  1. Quantum entanglement and quantum operation

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    It is a simple introduction to quantum entanglement and quantum operations.The authors focus on some applications of quantum entanglement and relations between two-qubit entangled states and unitary operations.It includes remote state preparation by using any pure entangled states,nonlocal operation implementation using entangled states,entanglement capacity of two-qubit gates and two-qubit gates construction.

  2. Geometric multipartite entanglement measures

    Energy Technology Data Exchange (ETDEWEB)

    Paz-Silva, Gerardo A. [Departamento de Fisica, Universidad del Valle, A.A. 25360, Cali (Colombia)]. E-mail: gerapaz@univalle.edu.co; Reina, John H. [Departamento de Fisica, Universidad del Valle, A.A. 25360, Cali (Colombia) and Institut fuer Theoretische Physik, Technische Universitaet Berlin, Hardenbergstr. 36, 10623 Berlin (Germany)]. E-mail: j.reina-estupinan@physics.ox.ac.uk

    2007-05-21

    Within the framework of constructions for quantifying entanglement, we build a natural scenario for the assembly of multipartite entanglement measures based on Hopf bundle-like mappings obtained through Clifford algebra representations. Then, given the non-factorizability of an arbitrary two-qubit density matrix, we give an alternate quantity that allows the construction of two types of entanglement measures based on their arithmetical and geometrical averages over all pairs of qubits in a register of size N, and thus fully characterize its degree and type of entanglement. We find that such an arithmetical average is both additive and strongly super additive.

  3. Uniform Entanglement Frames

    Science.gov (United States)

    Xiao, Yunlong; Jing, Naihuan; Li-Jost, Xianqing; Fei, Shao-Ming

    2016-08-01

    We present several criteria for genuine multipartite entanglement from universal uncertainty relations based on majorization theory. Under non-negative Schur-concave functions, the vector-type uncertainty relation generates a family of infinitely many detectors to check genuine multipartite entanglement. We also introduce the concept of k-separable circles via geometric distance for probability vectors, which include at most ( k-1)-separable states. The entanglement witness is also generalized to a universal entanglement witness which is able to detect the k-separable states more accurately.

  4. Collective Uncertainty Entanglement Test

    CERN Document Server

    Rudnicki, Łukasz; Życzkowski, Karol

    2011-01-01

    For a given pure state of a composite quantum system we analyze the product of its projections onto a set of locally orthogonal separable pure states. We derive a bound for this product analogous to the entropic uncertainty relations. For bipartite systems the bound is saturated for maximally entangled states and it allows us to construct a family of entanglement measures, we shall call collectibility. As these quantities are experimentally accessible, the approach advocated contributes to the task of experimental quantification of quantum entanglement, while for a three-qubit system it is capable to identify the genuine three-party entanglement.

  5. Teleportation via classical entanglement

    CERN Document Server

    Rafsanjani, Seyed Mohammad Hashemi; Magaña-Loaiza, Omar S; Boyd, Robert W

    2015-01-01

    We present a classical counterpart to quantum teleportation that uses classical entanglement instead of quantum entanglement. In our implementation we take advantage of classical entanglement among three parties: orbital angular momentum (OAM), polarization, and the radial degrees of freedom of a beam of light. We demonstrate the teleportation of arbitrary OAM states, in the subspace spanned by any two OAM states, to the polarization of the same beam. Our letter presents the first classical demonstration of a commonly-perceived--quantum phenomenon that requires entanglement among more than two parties.

  6. Holographic Quantum Entanglement Negativity

    CERN Document Server

    Chaturvedi, Pankaj; Sengupta, Gautam

    2016-01-01

    We propose a holographic prescription to compute the entanglement negativity for conformal field theories at finite temperatures which exactly reproduces the entanglement negativity for (1+1)- dimensional conformal field theories at finite temperatures dual to (2+1)- dimensional bulk Euclidean BTZ black holes. We observe that the holographic entanglement negativity captures the distillable pure quantum entanglement and is related to the holographic mutual information. The application of our prescription to higher dimensional conformal field theories at finite temperatures within a $AdS_{d+1}/CFT_{d}$ scenario involving dual bulk $AdS$-Schwarzschild black holes is discussed to elucidate the universality of our conjecture.

  7. Literature, Society And The Writer In Tripartite Unity

    Directory of Open Access Journals (Sweden)

    George Nworah Anaso

    2014-08-01

    Full Text Available The proactive unity of purpose between Literature, society and the writer is the main focus of this paper. Writers use Literature to address various important themes or the goings on in the society, with the purpose of edifying its virtues and condemning the vices so as to adulate the good deeds or correct the society where it goes wrong. However, this role often exposes the writer to danger and risks from vested interests. The paper nevertheless recommends both local and international actions that could be explored to enhance Literature, society and the writer’s works. It concludes with the submission that with proper political education, the society would be better placed to choose more responsible leaders so that the lots of the society would be better enhanced. In this way the tripartite unity and the full potentials of Literature and writers in society would be realized. 

  8. Nuclear shell effect and collinear tripartition of nuclei

    Indian Academy of Sciences (India)

    Avazbek K Nasirov; Wolfram von Oertzen; Rustam B Tashkhodjaev

    2015-08-01

    A possibility for the formation of three reaction products having comparable masses at the spontaneous fission of 252Cf is theoretically explored. This work is aimed to study the mechanism leading to the observation of the reaction products with masses $M_{1}$ = 136–140 and $M_{2}$ = 68–72 in coincidence with the FOBOS group in JINR. The same type of ternary fission decay has been observed in the 235U(nth, fff) reaction. The potential energy surface (PES) for the ternary system forming a collinear nuclear chain is calculated for a wide range of masses and charge numbers of the constituent nuclei. The results of the PES for the tripartition of 252Cf(sf, fff) allows us to establish dynamical conditions leading to the formation of fragments with mass combinations of clusters 68−70Ni with 130−132Sn and with the missing cluster 48−52Ca.

  9. Support for an expanded tripartite influence model with gay men.

    Science.gov (United States)

    Tylka, Tracy L; Andorka, Michael J

    2012-01-01

    This study investigated whether an expanded tripartite influence model would represent gay men's experiences. This model was extended by adding partners and gay community involvement as sources of social influence and considering dual body image pathways (muscularity and body fat dissatisfaction) to muscularity enhancement and disordered eating behaviors. Latent variable structural equation modeling analyses upheld this model for 346 gay men. Dual body image pathways to body change behaviors were supported, although three unanticipated interrelationships emerged, suggesting that muscularity and body fat concerns and behaviors may be more integrated for gay men. Internalization of the mesomorphic ideal, appearance comparison, muscularity dissatisfaction, and body fat dissatisfaction were key mediators in the model. Of the sources of social influence, friend and media pressure to be lean, gay community involvement, and partner, friend, media, and family pressures to be muscular made incremental contributions. Unexpectedly, certain sources were directly connected to body change behaviors. PMID:22036192

  10. Nuclear shell effect and collinear tripartition of nuclei

    CERN Document Server

    Nasirov, A K; Tashkhodjaev, R B

    2014-01-01

    A possibility of formation of the three reaction products having comparable masses at the spontaneous fission of $^{252}$Cf is theoretically explored. This work is aimed to study the mechanism leading to observation of the reaction products with masses $M_1=$136---140 and $M_2=$68---72 in coincidence by the FOBOS group in JINR. The same type of ternary fission decay has been observed in the reaction $^{235}$U(n$_{\\rm th}$,fff). The potential energy surface for the ternary system forming a collinear nuclear chain is calculated for the wide range of mass and charge numbers of constituent nuclei. The results of the PES for the tripartition of $^{252}$Cf(sf,fff) shows, that we have favorable dynamical conditions for the formation of fragments with mass combinations of clusters $^{68-70}$Ni with $^{130-132}$Sn and with missing cluster $^{48-52}$Ca.

  11. Continuous variable quantum communication with bright entangled optical beams

    Institute of Scientific and Technical Information of China (English)

    XIE Chang-de; ZHANG Jing; PAN Qing; JIA Xiao-jun; PENG Kun-chi

    2006-01-01

    In this paper,we briefly introduce the basic concepts and protocols of continuous variable quantum communication,and then summarize the experimental researches accomplished by our group in this field.The main features of quantum communication systems used in our experiments are:(1) The bright entangled optical beams with the anticorrelated amplitude quadratures and the correlated phase quadratures that serve as the entanglement resources and (2) The Bell-state direct detection systems are utilized in the measurements of quantum entanglement and transmitted signals instead of the usually balanced homodyne detectors.

  12. Single-particle entanglement

    OpenAIRE

    Can, M. Ali; Klyachko, Alexander; SHUMOVSKY, Alexander

    2004-01-01

    Using the approach to quantum entanglement based on the quantum fluctuations of observables, we show the existence of perfect entangled states of a single "spin-1" particle. We give physical examples related to the photons, condensed matter physics, and particle physics.

  13. On Fermionic Entangled State Representation and Fermionic Entangled Wigner Operator

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    By analogy with the bosonic bipartite entangled state we construct fermionic entangled state with the Grassmann numbers. The Wigner operator in the fermionic entangled state representation is introduced, whose marginal distributions are understood in an entangled way. The technique of integration within an ordered product (IWOP) of Fermi operators is used in our discussion.

  14. Dynamics of quantum entanglement

    CERN Document Server

    Zyczkowski, K; Horodecki, M; Horodecki, R; Zyczkowski, Karol; Horodecki, Pawel; Horodecki, Michal; Horodecki, Ryszard

    2002-01-01

    A model of discrete dynamics of entanglement of bipartite quantum state is considered. It involves a global unitary dynamics of the system and periodic actions of local bistochastic or decaying channel. For initially pure states the decay of entanglement is accompanied with an increase of von Neumann entropy of the system. We observe and discuss revivals of entanglement due to unitary interaction of both subsystems. For some mixed states having different marginal entropies of both subsystems (one larger than the global entropy and one smaller) we find an asymmetry in speed of entanglement decay. The entanglement of these states decreases faster, if the depolarizing channel acts on the "classical" subsystem, characterized by smaller marginal entropy.

  15. Entanglement generated by dissipation

    CERN Document Server

    Krauter, Hanna; Jensen, Kasper; Wasilewski, Wojciech; Petersen, Jonas M; Cirac, J Ignacio; Polzik, Eugene S

    2010-01-01

    Entanglement is not only one of the most striking features of Quantum Mechanics but also an essential ingredient in most applications in the field of Quantum Information. Unfortunately, this property is very fragile. In experiments conducted so far, coupling of the system to a quantum mechanical environment, commonly referred to as dissipation, either inhibits entanglement or prevents its generation. In this Letter, we report on an experiment in which dissipation induces entanglement between two atomic objects rather than impairing it. This counter-intuitive effect is achieved by engineering the dissipation by means of laser- and magnetic fields, and leads to entanglement which is very robust and therefore long-lived. Our system consists of two distant macroscopic ensembles containing about 10^{12} atoms coupled to the environment composed of the vacuum modes of the electromagnetic field. The two atomic objects are kept entangled by dissipation at room temperature for about 0.015s. The prospects of using this...

  16. Quantum entanglement percolation

    Science.gov (United States)

    Siomau, Michael

    2016-09-01

    Quantum communication demands efficient distribution of quantum entanglement across a network of connected partners. The search for efficient strategies for the entanglement distribution may be based on percolation theory, which describes evolution of network connectivity with respect to some network parameters. In this framework, the probability to establish perfect entanglement between two remote partners decays exponentially with the distance between them before the percolation transition point, which unambiguously defines percolation properties of any classical network or lattice. Here we introduce quantum networks created with local operations and classical communication, which exhibit non-classical percolation transition points leading to striking communication advantages over those offered by the corresponding classical networks. We show, in particular, how to establish perfect entanglement between any two nodes in the simplest possible network—the 1D chain—using imperfectly entangled pairs of qubits.

  17. Entanglement and decoherence: fragile and robust entanglement

    CERN Document Server

    Novotný, Jaroslav; Jex, Igor

    2011-01-01

    The destruction of entanglement of open quantum systems by decoherence is investigated in the asymptotic long-time limit. Starting from a general and analytically solvable decoherence model which does not involve any weak-coupling or Markovian assumption it is shown that two fundamentally different classes of entangled states can be distinguished. Quantum states of the first class are fragile against decoherence so that they can be disentangled asymptotically even if coherences between pointer states are still present. Quantum states of the second type are robust against decoherence. Asymptotically they can be disentangled only if also decoherence is perfect. A simple criterion for identifying these two classes on the basis of two-qubit entanglement is presented.

  18. Multi-photon entanglements

    International Nuclear Information System (INIS)

    The motivation of this thesis was to create higher-order entanglements. The first experimental observation of a four-photon entanglement was presented in the experiment of this thesis. And the visibility of this entanglement was 0.79+-0.06, which is sufficient to make claims of the nonlocality of quantum mechanics. This therefore lays a foundation for experiments showing the nonlocality of teleportation, and the purification of entanglement. The work of this thesis brings together a lot of earlier work done by the Zeilinger Group, and lays a foundation for future experiments. Earlier experiments such as teleportation together with entanglement swapping, which are 'complete teleportation' in as much as the state teleported is entirely undefined, can be combined and re-done with this four-photon entanglement. This result would be the first demonstration of complete, nonlocal teleportation. Also this experiment can be slightly modified and used to perform the first experimental quantum purification of entanglement, which is of vital importance to the fields of quantum information, and also is interesting for fundamental experiments on entanglement. Another direct application of this experiment is to perform the first 'event-ready' testing of Bell's Inequality. Here the four-photon entanglement can be used as a source of entangled photons, whereby the photons have no common source. This would enable an even more stringent testing of Bells theorem. Finally this experiment can be used for the demonstration and investigation of many practical, directly applicable quantum information schemes. For instance quantum cryptography, error correction, and computing. (author)

  19. Experimental activation of bound entanglement.

    Science.gov (United States)

    Kaneda, Fumihiro; Shimizu, Ryosuke; Ishizaka, Satoshi; Mitsumori, Yasuyoshi; Kosaka, Hideo; Edamatsu, Keiichi

    2012-07-27

    Entanglement is one of the essential resources in quantum information and communication technology (QICT). The entanglement thus far explored and applied to QICT has been pure and distillable entanglement. Yet, there is another type of entanglement, called "bound entanglement," which is not distillable by local operations and classical communication. We demonstrate the experimental "activation" of the bound entanglement held in the four-qubit Smolin state, unleashing its immanent entanglement in distillable form, with the help of auxiliary two-qubit entanglement and local operations and classical communication. We anticipate that it opens the way to a new class of QICT applications that utilize more general classes of entanglement than ever, including bound entanglement.

  20. Entanglement renormalization and integral geometry

    OpenAIRE

    Huang, Xing; Lin, Feng-Li

    2015-01-01

    We revisit the applications of integral geometry in AdS$_3$ and argue that the metric of the kinematic space can be realized as the entanglement contour, which is defined as the additive entanglement density. From the renormalization of the entanglement contour, we can holographically understand the operations of disentangler and isometry in multi-scale entanglement renormalization ansatz. Furthermore, a renormalization group equation of the long-distance entanglement contour is then derived....

  1. Multipartite Entanglement And Firewalls

    Science.gov (United States)

    Luo, Shengqiao; Stoltenberg, Henry; Albrecht, Andreas

    2016-03-01

    Black holes offer an exciting area to explore the nature of quantum gravity. The classic work on Hawking radiation indicates that black holes should decay via quantum effects, but our ideas about how this might work at a technical level are incomplete. Recently Almheiri-Marolf-Polchinski-Sully AMPS have noted an apparent paradox in reconciling fundamental properties of quantum mechanics with standard beliefs about black holes. One way to resolve the paradox is to postulate the existence of a ``firewall'' inside the black hole horizon which prevents objects from falling smoothly toward the singularity. A fundamental limitation on the behavior of quantum entanglement known as ``monogamy'' plays a key role in the AMPS argument. Our goal is to study and apply many-body entanglement theory to consider the entanglement among different parts of Hawking radiation and black holes. We identified an example which could change the AMPS accounting of quantum entanglement and perhaps eliminating the need for a firewall. Looking at different many body entanglement measures and their monogamy properties can tell us subtle ways in which different subsystems can share their entanglement. Specific measures we consider include negativity, concurrence, and mutual information. Taking insights from these different measures, we constructed toy models for black hole decay which have different entanglement behaviors than those assumed by AMPS. We hope to use our effective toy model to demonstrate interesting new ways of thinking about black holes.

  2. Demonstration of a bright and compact source of tripartite nonclassical light

    OpenAIRE

    Allevi, Alessia; Bondani, Maria; Paris, Matteo G. A.; Andreoni, Alessandra

    2008-01-01

    We experimentally demonstrate the nonclassical photon number correlations expected in tripartite continuous variable states obtained by parametric processes. Our scheme involves a single nonlinear crystal, where two interlinked parametric interactions take place simultaneously, and represents a bright and compact source of a sub-shot-noise tripartite light field. We analyze the effects of the pump intensities on the numbers of detected photons and on the amount of noise reduction in some deta...

  3. Lower bound on concurrence for arbitrary-dimensional tripartite quantum states

    Science.gov (United States)

    Chen, Wei; Fei, Shao-Ming; Zheng, Zhu-Jun

    2016-06-01

    In this paper, we study the concurrence of arbitrary-dimensional tripartite quantum states. An explicit operational lower bound of concurrence is obtained in terms of the concurrence of substates. A given example shows that our lower bound may improve the well-known existing lower bounds of concurrence. The significance of our result is to get a lower bound when we study the concurrence of arbitrary m⊗ n⊗ l -dimensional tripartite quantum states.

  4. Wormholes and Entanglement

    CERN Document Server

    Baez, John C

    2014-01-01

    Maldacena and Susskind have proposed a correspondence between wormholes and entanglement, dubbed ER=EPR. We study this in the context of 3d topological quantum field theory, where we show that the formation of a wormhole is the same process as creating a particle-antiparticle pair. A key feature of the ER=EPR proposal is that certain apparently entangled degrees of freedom turn out to be the same. We name this phenomenon "fake entanglement", and show how it arises in our topological quantum field theory model.

  5. Constructing optimal entanglement witnesses

    Science.gov (United States)

    Chruściński, Dariusz; Pytel, Justyna; Sarbicki, Gniewomir

    2009-12-01

    We provide a class of indecomposable entanglement witnesses. In 4×4 case, it reproduces the well-known Breuer-Hall witness. We prove that these witnesses are optimal and atomic, i.e., they are able to detect the “weakest” quantum entanglement encoded into states with positive partial transposition. Equivalently, we provide a construction of indecomposable atomic maps in the algebra of 2k×2k complex matrices. It is shown that their structural physical approximations give rise to entanglement breaking channels. This result supports recent conjecture by Korbicz [Phys. Rev. A 78, 062105 (2008)].

  6. Entanglement in Anderson Nanoclusters

    CERN Document Server

    Samuelsson, Peter

    2007-01-01

    We investigate the two-particle spin entanglement in magnetic nanoclusters described by the periodic Anderson model. An entanglement phase diagram is obtained, providing a novel perspective on a central property of magnetic nanoclusters, namely the temperature dependent competition between local Kondo screening and nonlocal Ruderman-Kittel-Kasuya-Yoshida spin ordering. We find that multiparticle entangled states are present for finite magnetic field as well as in the mixed valence regime and away from half filling. Our results emphasize the role of charge fluctuations.

  7. Tensor Rank and Stochastic Entanglement Catalysis for Multipartite Pure States

    CERN Document Server

    Chen, Lin; Duan, Runyao; Ji, Zhengfeng; Winter, Andreas

    2010-01-01

    The tensor rank (aka generalized Schmidt rank) of multipartite pure states plays an important role in the study of entanglement classifications and transformations. We employ powerful tools from the theory of homogeneous polynomials to investigate the tensor rank of symmetric states such as the tripartite state $\\ket{W_3}=\\tfrac{1}{\\sqrt{3}}(\\ket{100}+\\ket{010}+\\ket{001})$ and its $N$-partite generalization $\\ket{W_N}$. Previous tensor rank estimates are dramatically improved and we show that (i) three copies of $\\ket{W_3}$ has rank either 15 or 16, (ii) two copies of $\\ket{W_N}$ has rank $3N-2$, and (iii) $n$ copies of $\\ket{W_N}$ has rank O(N). A remarkable consequence of these results is that certain multipartite transformations, impossible even probabilistically, can become possible when performed in multiple copy bunches or when assisted by some catalyzing state. This novel effect is impossible for bipartite pure states.

  8. Multiple-copy entanglement transformation and entanglement catalysis

    International Nuclear Information System (INIS)

    We prove that any multiple-copy entanglement transformation [S. Bandyopadhyay, V. Roychowdhury, and U. Sen, Phys. Rev. A 65, 052315 (2002)] can be implemented by a suitable entanglement-assisted local transformation [D. Jonathan and M. B. Plenio, Phys. Rev. Lett. 83, 3566 (1999)]. Furthermore, we show that the combination of multiple-copy entanglement transformation and the entanglement-assisted one is still equivalent to the pure entanglement-assisted one. The mathematical structure of multiple-copy entanglement transformations then is carefully investigated. Many interesting properties of multiple-copy entanglement transformations are presented, which exactly coincide with those satisfied by the entanglement-assisted ones. Most interestingly, we show that an arbitrarily large number of copies of state should be considered in multiple-copy entanglement transformations

  9. An important property of entanglement: pairwise entanglement that can only be transferred by an entangled pair

    Institute of Scientific and Technical Information of China (English)

    Xi Xiao-Qiang; Liu Wu-Ming

    2007-01-01

    Based on the calculation of all the pairwise entanglements in the n(n≤6)-qubit Heisenberg ⅩⅩ open chain with system impurity, we find an important result: pairwise entanglement can only be transferred by an entangled pair. The non-nearest pairwise entanglements will have the possibility to exist as long as there has been even number of qubits in their middle. This point indicates that we can obtain longer distance entanglement in a solid system.

  10. Multipartite entanglement in three-mode Gaussian states of continuous variable systems: Quantification, sharing structure and decoherence

    CERN Document Server

    Adesso, G; Serafini, A; Adesso, Gerardo; Illuminati, Fabrizio; Serafini, Alessio

    2005-01-01

    We present a complete analysis of multipartite entanglement of three-mode Gaussian states of continuous variable systems. We derive standard forms which characterize the covariance matrix of pure and mixed three-mode Gaussian states up to local unitary operations, showing that the local entropies of pure Gaussian states are bound to fulfill a relationship which is stricter than the general Araki-Lieb inequality. Quantum correlations will be quantified by a proper convex roof extension of the squared logarithmic negativity (the contangle), satisfying a monogamy relation for multimode Gaussian states, whose proof will be reviewed and elucidated. The residual contangle, emerging from the monogamy inequality, is an entanglement monotone under Gaussian local operations and classical communication and defines a measure of genuine tripartite entanglement. We analytically determine the residual contangle for arbitrary pure three-mode Gaussian states and study the distribution of quantum correlations for such states. ...

  11. Preparation of entangled squeezed states and quantification of their entanglement

    Institute of Scientific and Technical Information of China (English)

    蔡新华; 匡乐满

    2002-01-01

    We propose a scheme for generating bipartite and multipartite entangled squeezed states via the Jaynes-Cummingsmodel with large detuning. Bipartite entanglement of these entangled states is quantified by the concurrence. We alsouse the N-tangle to compute multipartite entanglement of these multipartite entangled squeezed states. Finally wediscuss two limiting cases which arise from r → oo and r → 0, in which the multipartite entangled squeezed statereduces correspondingly into an N-qubit Greenberger-Horne-Zeilinger state and an N-qubit W state.

  12. Speed Limits for Entanglement

    CERN Document Server

    Hartman, Thomas

    2015-01-01

    We show that in any relativistic system, entanglement entropy obeys a speed limit set by the entanglement in thermal equilibrium. The bound is derived from inequalities on relative entropy with respect to a thermal reference state. Thus the thermal state constrains far-from-equilibrium entanglement dynamics whether or not the system actually equilibrates, in a manner reminiscent of fluctuation theorems in classical statistical mechanics. A similar shape-dependent bound constrains the full nonlinear time evolution, supporting a simple physical picture for entanglement propagation that has previously been motivated by holographic calculations in conformal field theory. We discuss general quantum field theories in any spacetime dimension, but also derive some results of independent interest for thermal relative entropy in 1+1d CFT.

  13. Entangled Cloud Storage

    DEFF Research Database (Denmark)

    Ateniese, Giuseppe; Dagdelen, Özgür; Damgård, Ivan Bjerre;

    2012-01-01

    Entangled cloud storage enables a set of clients {P_i} to “entangle” their files {f_i} into a single clew c to be stored by a (potentially malicious) cloud provider S. The entanglement makes it impossible to modify or delete significant part of the clew without affecting all files in c. A clew...... keeps the files in it private but still lets each client P_i recover his own data by interacting with S; no cooperation from other clients is needed. At the same time, the cloud provider is discouraged from altering or overwriting any significant part of c as this will imply that none of the clients can...... recover their files. We provide theoretical foundations for entangled cloud storage, introducing the notion of an entangled encoding scheme that guarantees strong security requirements capturing the properties above. We also give a concrete construction based on privacy-preserving polynomial interpolation...

  14. Covariant holographic entanglement negativity

    CERN Document Server

    Chaturvedi, Pankaj; Sengupta, Gautam

    2016-01-01

    We conjecture a holographic prescription for the covariant entanglement negativity of $d$-dimensional conformal field theories dual to non static bulk $AdS_{d+1}$ gravitational configurations in the framework of the $AdS/CFT$ correspondence. Application of our conjecture to a $AdS_3/CFT_2$ scenario involving bulk rotating BTZ black holes exactly reproduces the entanglement negativity of the corresponding $(1+1)$ dimensional conformal field theories and precisely captures the distillable quantum entanglement. Interestingly our conjecture for the scenario involving dual bulk extremal rotating BTZ black holes also accurately leads to the entanglement negativity for the chiral half of the corresponding $(1+1)$ dimensional conformal field theory at zero temperature.

  15. Converting Nonclassicality into Entanglement.

    Science.gov (United States)

    Killoran, N; Steinhoff, F E S; Plenio, M B

    2016-02-26

    Quantum mechanics exhibits a wide range of nonclassical features, of which entanglement in multipartite systems takes a central place. In several specific settings, it is well known that nonclassicality (e.g., squeezing, spin squeezing, coherence) can be converted into entanglement. In this work, we present a general framework, based on superposition, for structurally connecting and converting nonclassicality to entanglement. In addition to capturing the previously known results, this framework also allows us to uncover new entanglement convertibility theorems in two broad scenarios, one which is discrete and one which is continuous. In the discrete setting, the classical states can be any finite linearly independent set. For the continuous setting, the pertinent classical states are "symmetric coherent states," connected with symmetric representations of the group SU(K). These results generalize and link convertibility properties from the resource theory of coherence, spin coherent states, and optical coherent states, while also revealing important connections between local and nonlocal pictures of nonclassicality. PMID:26967398

  16. Holographic Entanglement Entropy

    CERN Document Server

    Rangamani, Mukund

    2016-01-01

    We review the developments in the past decade on holographic entanglement entropy, a subject that has garnered much attention owing to its potential to teach us about the emergence of spacetime in holography. We provide an introduction to the concept of entanglement entropy in quantum field theories, review the holographic proposals for computing the same, providing some justification for where these proposals arise from in the first two parts. The final part addresses recent developments linking entanglement and geometry. We provide an overview of the various arguments and technical developments that teach us how to use field theory entanglement to detect geometry. Our discussion is by design eclectic; we have chosen to focus on developments that appear to us most promising for further insights into the holographic map. This is a preliminary draft of a few chapters of a book which will appear sometime in the near future, to be published by Springer. The book in addition contains a discussion of application o...

  17. Geometry of entangled states

    CERN Document Server

    Kus, M; Kus, Marek; Zyczkowski, Karol

    2001-01-01

    Geometric properties of the set of quantum entangled states are investigated. We propose an explicit method to compute the dimension of local orbits for any mixed state of the general K x M problem. In particular we analyze the simplest case of 2 x 2 problem finding a stratification of the 6-D set of N=4 pure states. The set of effectively different states (which cannot be related by local transformations) is one dimensional. It starts at a 3-D manifold of maximally entangled states, cuts generic 5-D manifolds of entangled states (labeled by non-zero values of the entropy of entanglement), and ends at a single 4-D manifold of separable states.

  18. Entanglement in neutrino oscillations

    International Nuclear Information System (INIS)

    Flavor oscillations in elementary particle physics are related to multimode entanglement of single-particle states. We show that mode entanglement can be expressed in terms of flavor transition probabilities, and therefore that single-particle entangled states acquire a precise operational characterization in the context of particle mixing. We treat in detail the physically relevant cases of two- and three-flavor neutrino oscillations, including the effective measure of CP violation. We discuss experimental schemes for the transfer of the quantum information encoded in single-neutrino states to spatially delocalized two-flavor charged-lepton states, thus showing, at least in principle, that single-particle entangled states of neutrino mixing are legitimate physical resources for quantum information tasks. (authors)

  19. Converting Nonclassicality into Entanglement.

    Science.gov (United States)

    Killoran, N; Steinhoff, F E S; Plenio, M B

    2016-02-26

    Quantum mechanics exhibits a wide range of nonclassical features, of which entanglement in multipartite systems takes a central place. In several specific settings, it is well known that nonclassicality (e.g., squeezing, spin squeezing, coherence) can be converted into entanglement. In this work, we present a general framework, based on superposition, for structurally connecting and converting nonclassicality to entanglement. In addition to capturing the previously known results, this framework also allows us to uncover new entanglement convertibility theorems in two broad scenarios, one which is discrete and one which is continuous. In the discrete setting, the classical states can be any finite linearly independent set. For the continuous setting, the pertinent classical states are "symmetric coherent states," connected with symmetric representations of the group SU(K). These results generalize and link convertibility properties from the resource theory of coherence, spin coherent states, and optical coherent states, while also revealing important connections between local and nonlocal pictures of nonclassicality.

  20. An observable entanglement measure

    International Nuclear Information System (INIS)

    Although entanglement constitutes one of the most remarkable differences between classical and quantum mechanics, and it does have directly observable consequences, it is not an observable like for example momentum or energy. Unlike a regular observable that has an associated hermitean operator, an entanglement measure is rather a non-linear functional of a large set of such observables. Therefore, one typically needs to perform many different measurements, in order to determine the degree of entanglement of a given quantum state. We show, how the entanglement measure concurrence is given in terms of collective observables of two identically prepared quantum states. This allows for a direct experimental estimate of the concurrence of arbitrary finite dimensional quantum states as it is demonstrated in a laboratory experiments with pure twin photon states

  1. An observable entanglement measure

    Energy Technology Data Exchange (ETDEWEB)

    Mintert, Florian [Department of Physics, Harvard University (United Kingdom); Aolita, Leandro [Universidade Federal do Rio de Janeiro (Brazil); Max Planck Institut fuer Physik Komplexer Systeme, Dresden (Germany); Demkowicz Dobrzanski, Rafal; Kus, Marek [Centrum Fizyki Teoretycznej Polskiej Akademii Nauk, Warszawa (Poland); Walborn, Stephen; Souto Ribeiro, Paulo; Davidovich, Luiz [Universidade Federal do Rio de Janeiro (Brazil); Buchleitner, Andreas [Max Planck Institut fuer Physik Komplexer Systeme, Dresden (Germany)

    2007-07-01

    Although entanglement constitutes one of the most remarkable differences between classical and quantum mechanics, and it does have directly observable consequences, it is not an observable like for example momentum or energy. Unlike a regular observable that has an associated hermitean operator, an entanglement measure is rather a non-linear functional of a large set of such observables. Therefore, one typically needs to perform many different measurements, in order to determine the degree of entanglement of a given quantum state. We show, how the entanglement measure concurrence is given in terms of collective observables of two identically prepared quantum states. This allows for a direct experimental estimate of the concurrence of arbitrary finite dimensional quantum states as it is demonstrated in a laboratory experiments with pure twin photon states.

  2. Cosmological quantum entanglement

    CERN Document Server

    Martin-Martinez, Eduardo

    2012-01-01

    We review recent literature on the connection between quantum entanglement and cosmology, with an emphasis on the context of expanding universes. We discuss recent theoretical results reporting on the production of entanglement in quantum fields due to the expansion of the underlying spacetime. We explore how these results are affected by the statistics of the field (bosonic or fermionic), the type of expansion (de Sitter or asymptotically stationary), and the coupling to spacetime curvature (conformal or minimal). We then consider the extraction of entanglement from a quantum field by coupling to local detectors and how this procedure can be used to distinguish curvature from heating by their entanglement signature. We review the role played by quantum fluctuations in the early universe in nucleating the formation of galaxies and other cosmic structures through their conversion into classical density anisotropies during and after inflation. We report on current literature attempting to account for this trans...

  3. Entanglement in neutrino oscillations

    Energy Technology Data Exchange (ETDEWEB)

    Blasone, M.; Dell' Anno, F.; De Siena, S.; Illuminati, F. [Universita degli Studi di Salerno Via Ponte don Melillon, Dipt. di Matematica e Informatica, Fisciano SA (Italy); INFN Sezione di Napoli, Gruppo collegato di Salerno - Baronissi SA (Italy); Dell' Anno, F.; De Siena, S.; Illuminati, F. [CNR-INFM Coherentia - Napoli (Italy); Blasone, M. [ISI Foundation for Scientific Interchange, Torino (Italy)

    2009-03-15

    Flavor oscillations in elementary particle physics are related to multimode entanglement of single-particle states. We show that mode entanglement can be expressed in terms of flavor transition probabilities, and therefore that single-particle entangled states acquire a precise operational characterization in the context of particle mixing. We treat in detail the physically relevant cases of two- and three-flavor neutrino oscillations, including the effective measure of CP violation. We discuss experimental schemes for the transfer of the quantum information encoded in single-neutrino states to spatially delocalized two-flavor charged-lepton states, thus showing, at least in principle, that single-particle entangled states of neutrino mixing are legitimate physical resources for quantum information tasks. (authors)

  4. Entanglement is Sometimes Enough

    CERN Document Server

    Qian, X -F

    2013-01-01

    For many decades the word "entanglement" has been firmly attached to the world of quantum mechanics. So is the phrase "Bell violation". Here we show, without contradicting quantum mechanics, that classical non-deterministic fields also provide a natural basis for entanglement and Bell analyses. Surprisingly, such fields are not eliminated by the Clauser-Horne-Shimony-Holt Bell violation test as viable alternatives to quantum theory. An experimental setup for verification is proposed.

  5. Anomalies and Entanglement Entropy

    CERN Document Server

    Nishioka, Tatsuma

    2015-01-01

    We initiate a systematic study of entanglement and Renyi entropies in the presence of gauge and gravitational anomalies in even-dimensional quantum field theories. We argue that the mixed and gravitational anomalies are sensitive to boosts and obtain a closed form expression for their behavior under such transformations. Explicit constructions exhibiting the dependence of entanglement entropy on boosts is provided for theories on spacetimes with non-trivial magnetic fluxes and (or) non-vanishing Pontryagin classes.

  6. Entanglement in Classical Optics

    OpenAIRE

    Ghose, Partha; Mukherjee, Anirban

    2013-01-01

    The emerging field of entanglement or nonseparability in classical optics is reviewed, and its similarities with and differences from quantum entanglement clearly pointed out through a recapitulation of Hilbert spaces in general, the special restrictions on Hilbert spaces imposed in quantum mechanics and the role of Hilbert spaces in classical polarization optics. The production of Bell-like states in classical polarization optics is discussed, and new theorems are proved to discriminate betw...

  7. Correlation and Entanglement

    Institute of Scientific and Technical Information of China (English)

    Shun-long Luo; You-feng Luo

    2003-01-01

    In quantum mechanics, it is long recognized that there exist correlations between observables which are much stronger than the classical ones. These correlations are usually called entanglement, and cannot be accounted for by classical theory. In this paper, we will study correlations between observables in terms of covariance and the Wigner-Yanase correlation, and compare their merits in characterizing entanglement. We will show that the Wigner-Yanase correlation has some advantages over the conventional covariance.

  8. Multipartite entanglement in three-mode Gaussian states of continuous-variable systems: Quantification, sharing structure, and decoherence

    International Nuclear Information System (INIS)

    We present a complete analysis of the multipartite entanglement of three-mode Gaussian states of continuous-variable systems. We derive standard forms which characterize the covariance matrix of pure and mixed three-mode Gaussian states up to local unitary operations, showing that the local entropies of pure Gaussian states are bound to fulfill a relationship which is stricter than the general Araki-Lieb inequality. Quantum correlations can be quantified by a proper convex roof extension of the squared logarithmic negativity, the continuous-variable tangle, or contangle. We review and elucidate in detail the proof that in multimode Gaussian states the contangle satisfies a monogamy inequality constraint [G. Adesso and F. Illuminati, New J. Phys8, 15 (2006)]. The residual contangle, emerging from the monogamy inequality, is an entanglement monotone under Gaussian local operations and classical communications and defines a measure of genuine tripartite entanglements. We determine the analytical expression of the residual contangle for arbitrary pure three-mode Gaussian states and study in detail the distribution of quantum correlations in such states. This analysis yields that pure, symmetric states allow for a promiscuous entanglement sharing, having both maximum tripartite entanglement and maximum couplewise entanglement between any pair of modes. We thus name these states GHZ/W states of continuous-variable systems because they are simultaneous continuous-variable counterparts of both the GHZ and the W states of three qubits. We finally consider the effect of decoherence on three-mode Gaussian states, studying the decay of the residual contangle. The GHZ/W states are shown to be maximally robust against losses and thermal noise

  9. Multipartite entanglement in three-mode Gaussian states of continuous-variable systems: Quantification, sharing structure, and decoherence

    Science.gov (United States)

    Adesso, Gerardo; Serafini, Alessio; Illuminati, Fabrizio

    2006-03-01

    We present a complete analysis of the multipartite entanglement of three-mode Gaussian states of continuous-variable systems. We derive standard forms which characterize the covariance matrix of pure and mixed three-mode Gaussian states up to local unitary operations, showing that the local entropies of pure Gaussian states are bound to fulfill a relationship which is stricter than the general Araki-Lieb inequality. Quantum correlations can be quantified by a proper convex roof extension of the squared logarithmic negativity, the continuous-variable tangle, or contangle. We review and elucidate in detail the proof that in multimode Gaussian states the contangle satisfies a monogamy inequality constraint [G. Adesso and F. Illuminati, New J. Phys8, 15 (2006)]. The residual contangle, emerging from the monogamy inequality, is an entanglement monotone under Gaussian local operations and classical communications and defines a measure of genuine tripartite entanglements. We determine the analytical expression of the residual contangle for arbitrary pure three-mode Gaussian states and study in detail the distribution of quantum correlations in such states. This analysis yields that pure, symmetric states allow for a promiscuous entanglement sharing, having both maximum tripartite entanglement and maximum couplewise entanglement between any pair of modes. We thus name these states GHZ/W states of continuous-variable systems because they are simultaneous continuous-variable counterparts of both the GHZ and the W states of three qubits. We finally consider the effect of decoherence on three-mode Gaussian states, studying the decay of the residual contangle. The GHZ/W states are shown to be maximally robust against losses and thermal noise.

  10. Maximal Entanglement - A New Measure of Entanglement

    OpenAIRE

    Beigi, Salman

    2014-01-01

    Maximal correlation is a measure of correlation for bipartite distributions. This measure has two intriguing features: (1) it is monotone under local stochastic maps; (2) it gives the same number when computed on i.i.d. copies of a pair of random variables. This measure of correlation has recently been generalized for bipartite quantum states, for which the same properties have been proved. In this paper, based on maximal correlation, we define a new measure of entanglement which we call maxi...

  11. Entanglement Swapping: Entangling Atoms That Never Interacted

    CERN Document Server

    Guerra, E S

    2005-01-01

    In this paper we discuss four different proposals of entangling atomic states of particles which have never interacted. The experimental realization proposed makes use of the interaction of Rydberg atoms with a micromaser cavity prepared in either a coherent state or in a superposition of the zero and one field Fock states. We consider atoms in either a three-level cascade or lambda configuration

  12. Entanglement swapping of two arbitrarily degraded entangled states

    Science.gov (United States)

    Kirby, Brian T.; Santra, Siddhartha; Malinovsky, Vladimir S.; Brodsky, Michael

    2016-07-01

    We consider entanglement swapping, a key component of quantum network operations and entanglement distribution. Pure entangled states, which are the desired input to the swapping protocol, are typically mixed by environmental interactions, causing a reduction in their degree of entanglement. Thus an understanding of entanglement swapping with partially mixed states is of importance. Here we present a general analytical solution for entanglement swapping of arbitrary two-qubit states. Our result provides a comprehensive method for analyzing entanglement swapping in quantum networks. First, we show that the concurrence of a partially mixed state is conserved when this state is swapped with a Bell state. Then, we find upper and lower bounds on the concurrence of the state resulting from entanglement swapping for various classes of input states. Finally, we determine a general relationship between the ranks of the initial states and the rank of the final state after swapping.

  13. Entanglement properties in a system of a pairwise entangled state

    Institute of Scientific and Technical Information of China (English)

    Liu Tang-Kun; Cheng Wei-Wen; Shan Chuan-Jia; Gao Yun-Feng; Wang Ji-Suo

    2007-01-01

    Based on the quantum information theory, this paper has investigated the entanglement properties of a system which is composed of the two entangled two-level atoms interacting with the two-mode entangled coherent fields. The influences of the strength of light field and the two parameters of entanglement between the two-mode fields on the field entropy and on the negative eigenvalues of partial transposition of density matrix are discussed by using numerical calculations. The result shows that the entanglement properties in a system of a pairwise entangled states can be controlled by appropriately choosing the two parameters of entanglement between the two-mode entangled coherent fields and the strength of two light fields respectively.

  14. Entanglement entropy and entanglement spectrum of the Kitaev model.

    Science.gov (United States)

    Yao, Hong; Qi, Xiao-Liang

    2010-08-20

    In this letter, we obtain an exact formula for the entanglement entropy of the ground state and all excited states of the Kitaev model. Remarkably, the entanglement entropy can be expressed in a simple separable form S = SG+SF, with SF the entanglement entropy of a free Majorana fermion system and SG that of a Z2 gauge field. The Z2 gauge field part contributes to the universal "topological entanglement entropy" of the ground state while the fermion part is responsible for the nonlocal entanglement carried by the Z2 vortices (visons) in the non-Abelian phase. Our result also enables the calculation of the entire entanglement spectrum and the more general Renyi entropy of the Kitaev model. Based on our results we propose a new quantity to characterize topologically ordered states--the capacity of entanglement, which can distinguish the st ates with and without topologically protected gapless entanglement spectrum.

  15. On-chip continuous-variable quantum entanglement

    Science.gov (United States)

    Masada, Genta; Furusawa, Akira

    2016-09-01

    Entanglement is an essential feature of quantum theory and the core of the majority of quantum information science and technologies. Quantum computing is one of the most important fruits of quantum entanglement and requires not only a bipartite entangled state but also more complicated multipartite entanglement. In previous experimental works to demonstrate various entanglement-based quantum information processing, light has been extensively used. Experiments utilizing such a complicated state need highly complex optical circuits to propagate optical beams and a high level of spatial interference between different light beams to generate quantum entanglement or to efficiently perform balanced homodyne measurement. Current experiments have been performed in conventional free-space optics with large numbers of optical components and a relatively large-sized optical setup. Therefore, they are limited in stability and scalability. Integrated photonics offer new tools and additional capabilities for manipulating light in quantum information technology. Owing to integrated waveguide circuits, it is possible to stabilize and miniaturize complex optical circuits and achieve high interference of light beams. The integrated circuits have been firstly developed for discrete-variable systems and then applied to continuous-variable systems. In this article, we review the currently developed scheme for generation and verification of continuous-variable quantum entanglement such as Einstein-Podolsky-Rosen beams using a photonic chip where waveguide circuits are integrated. This includes balanced homodyne measurement of a squeezed state of light. As a simple example, we also review an experiment for generating discrete-variable quantum entanglement using integrated waveguide circuits.

  16. Entanglement diversion and quantum teleportation of entangled coherent states

    Institute of Scientific and Technical Information of China (English)

    Cai Xin-Hua; Guo Jie-Rong; Nie Jian-Jun; Jia Jin-Ping

    2006-01-01

    The proposals on entanglement diversion and quantum teleportation of entangled coherent states are presented.In these proposals,the entanglement between two coherent states,|α〉and |-α〉,with the same amplitude but a phase difference of π is utilized as a quantum channel.The processes of the entanglement diversion and the teleportation are achieved by using the 5050 symmetric beam splitters,the phase shifters and the photodetectors with the help of classical information.

  17. Entanglement of Superpositions of Orthogonal Maximally Entangled States

    Institute of Scientific and Technical Information of China (English)

    ZHANG Dao-Hua; ZHOU Duan-Lu; FAN Heng

    2010-01-01

    @@ We study the entanglement properties of the superposed state of orthogonal maximally entangled states.It is shown that the superposed state is maximally entangled and the superposed state is separable.The relation between the superposed state and the mutually unbiased state is discussed.

  18. Hessian geometry and entanglement thermodynamics

    CERN Document Server

    Matsueda, Hiroaki

    2015-01-01

    We reconstruct entanglement thermodynamics by means of Hessian geometry, since this method exactly generalizes thermodynamics into much wider exponential family cases including quantum entanglement. Starting with the correct first law of entanglement thermodynamics, we derive that a proper choice of the Hessian potential leads to both of the entanglement entropy scaling for quantum critical systems and hyperbolic metric (or AdS space with imaginary time). We also derive geometric representation of the entanglement entropy in which the entropy is described as integration of local conserved current of information flowing across an entangling surface. We find that the entangling surface is equivalent to the domain boundary of the Hessian potential. This feature originates in a special property of critical systems in which we can identify the entanglement entropy with the Hessian potential after the second derivative by the canonical parameters, and this identification guarantees violation of extensive nature of ...

  19. Generic entangling through quantum indistinguishability

    Indian Academy of Sciences (India)

    Sougato Bose; Dipankar Home

    2002-08-01

    We present a general scheme for entangling any degree of freedom of two uncorrelated identical particles from independent sources by a combination of two-particle interferometry and which-way detection. We show that this entanglement generation procedure works for completely random initial states of the variable to be entangled. We also demonstrate a curious complementarity exhibited by our scheme and its applications in estimating the generated entanglement as a function of wave packet overlap at the beamsplitter.

  20. Entangled subspaces and quantum symmetries

    OpenAIRE

    Bracken, A. J.

    2003-01-01

    Entanglement is defined for each vector subspace of the tensor product of two finite-dimensional Hilbert spaces, by applying the notion of operator entanglement to the projection operator onto that subspace. The operator Schmidt decomposition of the projection operator defines a string of Schmidt coefficients for each subspace, and this string is assumed to characterize the entanglement of the subspace, so that a first subspace is more entangled than a second, if the Schmidt string of the sec...

  1. Multipartite entanglement in neutrino oscillations

    International Nuclear Information System (INIS)

    Particle mixing is related to multi-mode entanglement of single-particle states The occupation number of both flavor eigenstates and mass eigenstates can be used to define a multiqubit space. In such a framework, flavor neutrino states can be interpreted as multipartite mode-entangled states. By using two different entanglement measures, we analyze the behavior of multipartite entanglement in the phenomenon of neutrino oscillations.

  2. Multipartite entanglement in neutrino oscillations

    Energy Technology Data Exchange (ETDEWEB)

    Blasone, Massimo; Dell' Anno, Fabio; De Siena, Silvio; Illuminati, Fabrizio, E-mail: blasone@sa.infn.i [Dipartimento di Matematica e Informatica, Universita degli Studi di Salerno, Via Ponte don Melillo, I-84084 Fisciano (Italy)

    2009-06-01

    Particle mixing is related to multi-mode entanglement of single-particle states The occupation number of both flavor eigenstates and mass eigenstates can be used to define a multiqubit space. In such a framework, flavor neutrino states can be interpreted as multipartite mode-entangled states. By using two different entanglement measures, we analyze the behavior of multipartite entanglement in the phenomenon of neutrino oscillations.

  3. Entanglement quantification by local unitaries

    OpenAIRE

    A. Monras; Adesso, G.; Giampaolo, S. M.; Gualdi, G.; Davies, G. B.; Illuminati, F.

    2011-01-01

    Invariance under local unitary operations is a fundamental property that must be obeyed by every proper measure of quantum entanglement. However, this is not the only aspect of entanglement theory where local unitaries play a relevant role. In the present work we show that the application of suitable local unitary operations defines a family of bipartite entanglement monotones, collectively referred to as "mirror entanglement". They are constructed by first considering the (squared) Hilbert-S...

  4. Electromagnetically Induced Entanglement.

    Science.gov (United States)

    Yang, Xihua; Xiao, Min

    2015-08-28

    Quantum entanglement provides an essential resource for quantum computation, quantum communication, and quantum network. How to conveniently and efficiently produce entanglement between bright light beams presents a challenging task to build realistic quantum information processing networks. Here, we present an efficient and convenient way to realize a novel quantum phenomenon, named electromagnetically induced entanglement, in the conventional Λ-type three-level atomic system driven by a strong pump field and a relatively weak probe field. Nearly perfect entanglement between the two fields can be achieved with a low coherence decay rate between the two lower levels, high pump-field intensity, and large optical depth of the atomic ensemble. The physical origin is quantum coherence between the lower doublet produced by the pump and probe fields, similar to the well-known electromagnetically induced transparency. This method would greatly facilitate the generation of nondegenerate narrow-band continuous-variable entanglement between bright light beams by using only coherent laser fields, and may find potential and broad applications in realistic quantum information processing.

  5. Entanglement versus disentanglement: Quantum Cryptography

    OpenAIRE

    Mitra, Arindam

    2000-01-01

    In quantum information, the role of entanglement and disentanglement is itself a subject of research and debate. Earlier works on quantum cryptography have almost established that entanglement has no special advantage in quantum cryptography. In this paper we reveal that entanglement is better ingredient than disentanglement for our alternative quantum cryptography.

  6. Quantum Statistics and Entanglement Problems

    OpenAIRE

    Trainor, L. E. H.; Lumsden, Charles J.

    2002-01-01

    Interpretations of quantum measurement theory have been plagued by two questions, one concerning the role of observer consciousness and the other the entanglement phenomenon arising from the superposition of quantum states. We emphasize here the remarkable role of quantum statistics in describing the entanglement problem correctly and discuss the relationship to issues arising from current discussions of intelligent observers in entangled, decohering quantum worlds.

  7. Simulating Entangling Unitary Operator Using Non-maximally Entangled States

    Institute of Scientific and Technical Information of China (English)

    LI Chun-Xian; WANG Cheng-Zhi; NIE Liu-Ying; LI Jiang-Fan

    2009-01-01

    We use non-maximally entangled states (NMESs) to simulate an entangling unitary operator (EUO) w/th a certain probability. Given entanglement resources, the probability of the success we achieve is a decreasing function of the parameters of the EUO. Given an EUO, for certain entanglement resources the result is optimal, i.e., the probability obtains a maximal value, and for optimal result higher parameters of the EUO match more amount of entanglement resources. The probability of the success we achieve is higher than the known results under some condition.

  8. Deriving covariant holographic entanglement

    CERN Document Server

    Dong, Xi; Rangamani, Mukund

    2016-01-01

    We provide a gravitational argument in favour of the covariant holographic entanglement entropy proposal. In general time-dependent states, the proposal asserts that the entanglement entropy of a region in the boundary field theory is given by a quarter of the area of a bulk extremal surface in Planck units. The main element of our discussion is an implementation of an appropriate Schwinger-Keldysh contour to obtain the reduced density matrix (and its powers) of a given region, as is relevant for the replica construction. We map this contour into the bulk gravitational theory, and argue that the saddle point solutions of these replica geometries lead to a consistent prescription for computing the field theory Renyi entropies. In the limiting case where the replica index is taken to unity, a local analysis suffices to show that these saddles lead to the extremal surfaces of interest. We also comment on various properties of holographic entanglement that follow from this construction.

  9. Entanglement in Classical Optics

    CERN Document Server

    Ghose, Partha

    2013-01-01

    The emerging field of entanglement or nonseparability in classical optics is reviewed, and its similarities with and differences from quantum entanglement clearly pointed out through a recapitulation of Hilbert spaces in general, the special restrictions on Hilbert spaces imposed in quantum mechanics and the role of Hilbert spaces in classical polarization optics. The production of Bell-like states in classical polarization optics is discussed, and new theorems are proved to discriminate between separable and nonseparable states in classical wave optics where no discreteness is involved. The influence of the Pancharatnam phase on a classical Bell-like state is deived. Finally, to what extent classical polarization optics can be used to simulate quantum information processing tasks is also discussed. This should be of great practical importance because coherence and entanglement are robust in classical optics but not in quantum systems.

  10. Inter-universal entanglement

    CERN Document Server

    Robles-Pérez, Salvador J

    2012-01-01

    Quantum information theory and the multiverse are two of the greatest outcomes of the XX century physics. The consideration of entanglement between the quantum states of two or more universes in a multiverse scenario provides us with a completely new paradigm that opens the door to novel approaches for traditionally unsolved problems in cosmology. More precisely, the problems of the cosmological constant, the arrow of time and the choice of boundary conditions, among others. It also encourages us to adopt new points of view about major philosophical ideas. In this chapter, we shall present the main features that may characterize inter-universal entanglement and it will be addressed the customary problems of cosmology from the new perspective that the quantum multiverse scenario supplies us with. In summary, the appropriate boundary condition that has to be imposed on the quantum state of the whole multiverse allows us to interpret it as made up of entangled pairs of universes. Then, a quantum thermodynamical ...

  11. Entangled black holes as ciphers of hidden information

    CERN Document Server

    Braunstein, Samuel L; Zyczkowski, Karol \\

    2009-01-01

    The black-hole information paradox has fueled a fascinating effort to reconcile the predictions of general relativity and those of quantum mechanics. Gravitational considerations teach us that black holes must trap everything that falls into them. Quantum mechanically the mass of a black hole leaks away as featureless (Hawking) radiation. However, if Hawking's analysis turned out to be accurate then the information would be irretrievably lost and a fundamental axiom of quantum mechanics, that of unitary evolution, would likewise fail. Here we show that the information about the matter that collapses to form a black hole becomes encoded into pure correlations within a tripartite quantum system, the quantum analog of a one-time pad until very late in the evaporation, provided we accept the view that the thermodynamic entropy of a black hole is due to entropy of entanglement. In this view the black hole entropy is primarily due to trans-event horizon entanglement between external modes neighboring the black hole...

  12. Images in quantum entanglement

    International Nuclear Information System (INIS)

    A system for classifying and quantifying entanglement in spin 1/2 pure states is presented based on simple images. From the image point of view, an entangled state can be described as a linear superposition of separable object wavefunction ΨO plus a portion of its own inverse image. Bell states can be defined in this way: Ψ= 1/√2 (ΨO±ΨI ). Using the method of images, the three-spin 1/2 system is discussed in some detail. This system can exhibit exclusive three-particle ν123 entanglement, two-particle entanglements ν12, ν13, ν23 and/or mixtures of all four. All four image states are orthogonal both to each other and to the object wavefunction. In general, five entanglement parameters ν12, ν13, ν23, ν123 and φ123 are required to define the general entangled state. In addition, it is shown that there is considerable scope for encoding numbers, at least from the classical point of view but using quantum-mechanical principles. Methods are developed for their extraction. It is shown that concurrence can be used to extract even-partite, but not odd-partite information. Additional relationships are also presented which can be helpful in the decoding process. However, in general, numerical methods are mandatory. A simple roulette method for decoding is presented and discussed. But it is shown that if the encoder chooses to use transcendental numbers for the angles defining the target function (α1, β1), etc, the method rapidly turns into the Devil's roulette, requiring finer and finer angular steps.

  13. Images in quantum entanglement

    Energy Technology Data Exchange (ETDEWEB)

    Bowden, G J [School of Physics and Astronomy, University of Southampton, SO17 1BJ (United Kingdom)

    2009-08-28

    A system for classifying and quantifying entanglement in spin 1/2 pure states is presented based on simple images. From the image point of view, an entangled state can be described as a linear superposition of separable object wavefunction {psi}{sub O} plus a portion of its own inverse image. Bell states can be defined in this way: {psi}= 1/{radical}2 ({psi}{sub O}{+-}{psi}{sub I} ). Using the method of images, the three-spin 1/2 system is discussed in some detail. This system can exhibit exclusive three-particle {nu}{sub 123} entanglement, two-particle entanglements {nu}{sub 12}, {nu}{sub 13}, {nu}{sub 23} and/or mixtures of all four. All four image states are orthogonal both to each other and to the object wavefunction. In general, five entanglement parameters {nu}{sub 12}, {nu}{sub 13}, {nu}{sub 23}, {nu}{sub 123} and {phi}{sub 123} are required to define the general entangled state. In addition, it is shown that there is considerable scope for encoding numbers, at least from the classical point of view but using quantum-mechanical principles. Methods are developed for their extraction. It is shown that concurrence can be used to extract even-partite, but not odd-partite information. Additional relationships are also presented which can be helpful in the decoding process. However, in general, numerical methods are mandatory. A simple roulette method for decoding is presented and discussed. But it is shown that if the encoder chooses to use transcendental numbers for the angles defining the target function ({alpha}{sub 1}, {beta}{sub 1}), etc, the method rapidly turns into the Devil's roulette, requiring finer and finer angular steps.

  14. Images in quantum entanglement

    Science.gov (United States)

    Bowden, G. J.

    2009-08-01

    A system for classifying and quantifying entanglement in spin 1/2 pure states is presented based on simple images. From the image point of view, an entangled state can be described as a linear superposition of separable object wavefunction ΨO plus a portion of its own inverse image. Bell states can be defined in this way: \\Psi = 1/\\sqrt 2 (\\Psi _O \\pm \\Psi _I ). Using the method of images, the three-spin 1/2 system is discussed in some detail. This system can exhibit exclusive three-particle ν123 entanglement, two-particle entanglements ν12, ν13, ν23 and/or mixtures of all four. All four image states are orthogonal both to each other and to the object wavefunction. In general, five entanglement parameters ν12, ν13, ν23, ν123 and phi123 are required to define the general entangled state. In addition, it is shown that there is considerable scope for encoding numbers, at least from the classical point of view but using quantum-mechanical principles. Methods are developed for their extraction. It is shown that concurrence can be used to extract even-partite, but not odd-partite information. Additional relationships are also presented which can be helpful in the decoding process. However, in general, numerical methods are mandatory. A simple roulette method for decoding is presented and discussed. But it is shown that if the encoder chooses to use transcendental numbers for the angles defining the target function (α1, β1), etc, the method rapidly turns into the Devil's roulette, requiring finer and finer angular steps.

  15. Wormholes and entanglement

    Science.gov (United States)

    Baez, John C.; Vicary, Jamie

    2014-11-01

    Maldacena and Susskind have proposed a correspondence between wormholes and entanglement, dubbed ER=EPR. We study this in the context of three-dimensional topological quantum field theory (TQFT), where we show that the formation of a wormhole is the same process as creating a particle-antiparticle pair. A key feature of the ER=EPR proposal is that certain apparently entangled degrees of freedom turn out to be the same. We name this phenomenon ‘fake entanglement’, and show how it arises in our TQFT model.

  16. Holographic entanglement chemistry

    CERN Document Server

    Caceres, Elena; Pedraza, Juan F

    2016-01-01

    We use the Iyer-Wald formalism to derive an extended first law of entanglement that includes variations in the cosmological constant, Newton's constant and --in the case of higher derivative theories-- all the additional couplings of the theory. In Einstein gravity, where the number of degrees of freedom $N^2$ of the dual field theory is a function of $\\Lambda$ and $G$, our approach allows us to vary $N$ keeping the field theory scale fixed or to vary the field theory scale keeping $N$ fixed. We also derive an extended first law of entanglement for Gauss-Bonnet and Lovelock gravity.

  17. Continuous Variable Entanglement Swapping

    Science.gov (United States)

    Polkinghorne, R. E. S.; Ralph, T. C.

    1999-09-01

    We investigate the efficacy with which polarization entanglement can be teleported using a continuous measurement scheme. We show that by using the correct gain for the classical channel the degree of violation of locality that can be demonstrated (using a CH-type inequality) is not a function of the level of entanglement squeezing used in the teleportation. This is possible because a gain condition can always be chosen such that passage through the teleporter is equivalent to pure attenuation of the input field.

  18. Sudden Death of Entanglement

    CERN Document Server

    Yu, Ting

    2009-01-01

    A new development in the dynamical behavior of elementary quantum systems is the surprising discovery that correlation between two quantum units of information called qubits can be degraded by environmental noise in a way not seen previously in studies of dissipation. This new route for dissipation attacks quantum entanglement, the essential resource for quantum information as well as the central feature in the Einstein-Podolsky-Rosen so-called paradox and in discussions of the fate of Schr\\"{o}inger's cat. The effect has been labeled ESD, which stands for early-stage disentanglement or, more frequently, entanglement sudden death. We review recent progress in studies focused on this phenomenon.

  19. Application of Tripartite Entangled State Representation in Solving the Dynamics of a Kind of Three Coupled Oscillators

    Institute of Scientific and Technical Information of China (English)

    PANG Qian-Jun

    2005-01-01

    We study the eigenstate problem of a kind of three coupled oscillators in a new quantum mechanical representation composed by the spontaneous eigenvectors 〈p, q2, q3| for three operators (p1 +p2 +p3), (x3 - x2), and (x3 - x1). The eigenvalues and eigenvectors of the Hamiltonian are obtained. With the same method, the eigenstate problem of a generalized three-coupled oscillator Hamiltonian is studied, which has never been studied before.

  20. Greenberger-Horne-Zeilinger Paradox in Tripartite Systems of Arbitrary Dimension

    CERN Document Server

    Lee, J; Kim, M S; Lee, Jinhyoung; Lee, Seung-Woo

    2004-01-01

    We present a generalized Greenberger-Horne-Zeilinger (GHZ) paradox in a tripartite system with each subsystem of arbitrary even dimension. Contrary to conventional approaches of compatible observables, in order to prove Bell's theorem, we employ concurrent observables, that are mutually incompatible but still have a common eigenstate such that they are involved in elements of physical reality. It is proved that our formulation of the generalized GHZ paradox is genuinely multi-dimensional. The present approach enables a tripartite system to suffice for the truly d-dimensional GHZ paradox, contrary to previous works which require a (d+1)-partite system.

  1. Recovering entanglement by local operations

    Energy Technology Data Exchange (ETDEWEB)

    D’Arrigo, A., E-mail: antonio.darrigo@dmfci.unict.it [CNR-IMM UOS Università (MATIS), Consiglio Nazionale delle Ricerche, Via Santa Sofia 64, 95123 Catania (Italy); Dipartimento di Fisica e Astronomia, Università degli Studi Catania, Via Santa Sofia 64, 95123 Catania (Italy); Centro Siciliano di Fisica Nucleare e Struttura della Materia (CSFNSM), Via Santa Sofia 64, 95123 Catania (Italy); Lo Franco, R. [Dipartimento di Fisica e Chimica, Università di Palermo, via Archirafi 36, 90123 Palermo (Italy); Centro Siciliano di Fisica Nucleare e Struttura della Materia (CSFNSM), Via Santa Sofia 64, 95123 Catania (Italy); Benenti, G. [CNISM and Center for Nonlinear and Complex Systems, Università degli Studi dell’Insubria, Via Valleggio 11, 22100 Como (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Milano, via Celoria 16, 20133 Milano (Italy); Paladino, E.; Falci, G. [Dipartimento di Fisica e Astronomia, Università degli Studi Catania, Via Santa Sofia 64, 95123 Catania (Italy); CNR-IMM UOS Università (MATIS), Consiglio Nazionale delle Ricerche, Via Santa Sofia 64, 95123 Catania (Italy); Centro Siciliano di Fisica Nucleare e Struttura della Materia (CSFNSM), Via Santa Sofia 64, 95123 Catania (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Catania, Viale S. Sofia 64, 95123 Catania (Italy)

    2014-11-15

    We investigate the phenomenon of bipartite entanglement revivals under purely local operations in systems subject to local and independent classical noise sources. We explain this apparent paradox in the physical ensemble description of the system state by introducing the concept of “hidden” entanglement, which indicates the amount of entanglement that cannot be exploited due to the lack of classical information on the system. For this reason this part of entanglement can be recovered without the action of non-local operations or back-transfer process. For two noninteracting qubits under a low-frequency stochastic noise, we show that entanglement can be recovered by local pulses only. We also discuss how hidden entanglement may provide new insights about entanglement revivals in non-Markovian dynamics.

  2. Entanglement in the Bogoliubov vacuum

    DEFF Research Database (Denmark)

    Poulsen, Uffe Vestergaard; Meyer, T.; Lewenstein, M.

    2005-01-01

    We analyze the entanglement properties of the Bogoliubov vacuum, which is obtained as a second-order approximation to the ground state of an interacting Bose-Einstein condensate. We work in one- and two-dimensional lattices and study the entanglement between two groups of sites as a function...... of the geometry of the configuration and the strength of the interactions. As our measure of entanglement we use the logarithmic negativity, supplemented by an algorithmic check for bound entanglement where appropiate. The short-range entanglement is found to grow approximately linearly with the group sizes...... and to be favoured by strong interactions. Conversely, long-range entanglement is favoured by relatively weak interactions. No examples of bound entanglement are found....

  3. Quantum channels that preserve entanglement

    CERN Document Server

    Arveson, William

    2008-01-01

    Let M and N be full matrix algebras. A unital completely positive (UCP) map \\phi:M\\to N is said to preserve entanglement if its inflation \\phi\\otimes \\id_N : M\\otimes N\\to N\\otimes N has the following property: for every maximally entangled pure state \\rho of N\\otimes N, \\rho\\circ(\\phi\\otimes \\id_N) is an entangled state of M\\otimes N. We show that there is a dichotomy in that every UCP map that is not entanglement breaking in the sense of Horodecki-Shor-Ruskai must preserve entanglement, and that entanglement preserving maps of every possible rank exist in abundance. We also show that with probability 1, {\\em all} UCP maps of relatively small rank preserve entanglement, but that this is not so for UCP maps of maximum rank.

  4. Neutrino flavor entanglement

    International Nuclear Information System (INIS)

    Neutrino oscillations can be equivalently described in terms of (dynamical) entanglement of neutrino flavor modes. We review previous results derived in the context of quantum mechanics and extend them to the quantum field theory framework, were a rich structure of quantum correlations appears

  5. Postcolonial Entanglements: Unruling Stories

    Science.gov (United States)

    Pacini-Ketchabaw, Veronica

    2012-01-01

    In this article, I use Donna Haraway's philosophy to think about postcolonial encounters between different species. I follow entangled stories of the deer/settler-child figure to trouble colonialisms and untangle the histories and trajectories that we inhabit with other species through colonial histories. I shy away from generalizations and…

  6. Neutrino flavor entanglement

    Energy Technology Data Exchange (ETDEWEB)

    Blasone, Massimo [Dipartimento di Fisica, Università degli Studi di Salerno, Via Ponte don Melillo, I-84084 Fisciano (Italy); INFN Sezione di Napoli, Gruppo collegato di Salerno (Italy); Dell' Anno, Fabio; De Siena, Silvio; Illuminati, Fabrizio [Dipartimento di Ingegneria Industriale, Università degli Studi di Salerno, Via Ponte don Melillo, I-84084 Fisciano (Italy)

    2013-04-15

    Neutrino oscillations can be equivalently described in terms of (dynamical) entanglement of neutrino flavor modes. We review previous results derived in the context of quantum mechanics and extend them to the quantum field theory framework, were a rich structure of quantum correlations appears.

  7. Are all maximally entangled states pure?

    Science.gov (United States)

    Cavalcanti, D.; Brandão, F. G. S. L.; Terra Cunha, M. O.

    2005-10-01

    We study if all maximally entangled states are pure through several entanglement monotones. In the bipartite case, we find that the same conditions which lead to the uniqueness of the entropy of entanglement as a measure of entanglement exclude the existence of maximally mixed entangled states. In the multipartite scenario, our conclusions allow us to generalize the idea of the monogamy of entanglement: we establish the polygamy of entanglement, expressing that if a general state is maximally entangled with respect to some kind of multipartite entanglement, then it is necessarily factorized of any other system.

  8. Are all maximally entangled states pure?

    CERN Document Server

    Cavalcanti, D; Terra-Cunha, M O

    2005-01-01

    In this Letter we study if all maximally entangled states are pure through several entanglement monotones. Our conclusions allow us to generalize the idea of monogamy of entanglement. Then we propose a polygamy of entanglement, which express that if a general multipartite state is maximally entangled it is necessarily factorized by any other system.

  9. General polygamy inequality of multiparty quantum entanglement

    Science.gov (United States)

    Kim, Jeong San

    2012-06-01

    Using entanglement of assistance, we establish a general polygamy inequality of multiparty entanglement in arbitrary-dimensional quantum systems. For multiparty closed quantum systems, we relate our result with the monogamy of entanglement, and clarify that the entropy of entanglement bounds both monogamy and polygamy of multiparty quantum entanglement.

  10. Creation of Entanglement with Nonlocal Operations

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yong; CAO Wan-Cang; LONG Gui-Lu

    2005-01-01

    We discuss how to create more entanglement with nonlocal operations acting on two-particle states. For a given nonlocal operation, we find that some input states cannot produce entanglement and some produce the maximal entanglement, and find that any initial entangled states can produce more entanglement than initial product states.

  11. Bound entangled states invariant under Ux

    Institute of Scientific and Technical Information of China (English)

    Wang Zhen; Wang Zhi-Xi

    2008-01-01

    This paper obtains an entangled condition for isotropic-like states by using an atomic map. It constructs a class of bound entangled states from the entangled condition and shows that the partial transposition of the state from the constructed bound entangled class is an edge bound entangled state by using range criterion.

  12. Probabilistic Teleportation of the Three-Particle Entangled State viaEntanglement Swapping

    Institute of Scientific and Technical Information of China (English)

    路洪

    2001-01-01

    A scheme of teleportation of a three-particle entangled state via entanglement swapping is proposed. It is shown that if a two-particle entangled state and a three-particle entangled state (both are not maximum entangled states) are used as quantum channels, probabilistic teleportation of the three-particle entangled state can be realized.

  13. Entanglement polytopes: multiparticle entanglement from single-particle information.

    Science.gov (United States)

    Walter, Michael; Doran, Brent; Gross, David; Christandl, Matthias

    2013-06-01

    Entangled many-body states are an essential resource for quantum computing and interferometry. Determining the type of entanglement present in a system usually requires access to an exponential number of parameters. We show that in the case of pure, multiparticle quantum states, features of the global entanglement can already be extracted from local information alone. This is achieved by associating any given class of entanglement with an entanglement polytope-a geometric object that characterizes the single-particle states compatible with that class. Our results, applicable to systems of arbitrary size and statistics, give rise to local witnesses for global pure-state entanglement and can be generalized to states affected by low levels of noise.

  14. Testing the tripartite model in young adolescents : Is hyperarousal specific for anxiety and not depress ion?

    NARCIS (Netherlands)

    Greaves-Lord, Kirstin; Ferdinand, Robert F.; Sondeijker, Frouke E. P. L.; Dietrich, Andrea; Oldehinkel, Albertine J.; Rosmalen, Judith G. M.; Ormel, Johan; Verhulst, Frank C.

    2007-01-01

    Background: To clarify the distinction between anxiety and depression, the tripartite model was introduced. According to this model, physiological hyperarousal (PH, i.e. autonomic hyperactivity) is specific for anxiety and not depression. Research on the relation between anxiety, depression and phys

  15. Genome adaptations of a tripartite motif protein for retroviral defense in cattle and sheep

    Science.gov (United States)

    Tripartite motif (TRIM) genes encode proteins composed of RING, B-box, and coiled coil motif domains. Primate TRIM5' has been shown to be a primary determinant of retroviral host cell range restriction in primates. TRIM5 restriction was originally thought to be a primate-specific defense mechanism...

  16. Branding the Land Grant University: Stakeholders' Awareness and Perceptions of the Tripartite Mission

    Science.gov (United States)

    Abrams, Katie; Meyers, Courtney; Irani, Tracy; Baker, Lauri

    2010-01-01

    Several land-grant institutions have adopted a name to encompass the teaching, research, and Extension components of the university, creating a brand identity for those public services. But, in the mind of stakeholders, has the connection between the tripartite mission and the brand name been made? The study reported here sought to determine…

  17. Stressful Life Events and the Tripartite Model: Relations to Anxiety and Depression in Adolescent Females

    Science.gov (United States)

    Fox, Jeremy K.; Halpern, Leslie F.; Ryan, Julie L.; Lowe, Kelly A.

    2010-01-01

    Although the tripartite model reliably distinguishes anxiety and depression in adolescents, it remains unclear how negative affectivity (NA) and positive affectivity (PA) influence developmental pathways to internalizing problems. Based on models which propose that affectivity shapes how youth react to stress, the present study attempted to…

  18. Gendered Perspectives about Water Risks and Policy Strategies: A Tripartite Conceptual Approach

    Science.gov (United States)

    Larson, Kelli L.; Ibes, Dorothy C.; White, Dave D.

    2011-01-01

    Previous research has examined gendered perspectives on a variety of environmental risks. Mixed results complicate the ability to make generalizations about human-ecological judgments, largely because of the use of inconsistent conceptual and methodological approaches in previous work. Following the tripartite model, we examine differences between…

  19. Degree of Entanglement for Some Bipartite Entangled Bosonic Systems

    Institute of Scientific and Technical Information of China (English)

    LIANG Xian-Ting

    2004-01-01

    We calculate the degree of entanglement for some bipartite entangled states of continuous variables.These states include common two-mode squeezed vacuum state, thermal vacuum state of a free single particle (where the fictitious tilde system is regarded as another particle), and the squeezed vacuum state of two coupling harmonic oscillators.The degree of entanglement for these quantum systems are shown clearly by using the technique of integration within an ordered product of operators.

  20. Entangled Fractional Fourier Transform for the Multipartite Entangled State Representation

    Institute of Scientific and Technical Information of China (English)

    QIAN Xiao-Qing; SONG Tong-Qiang

    2006-01-01

    We deduce entangled fractional Fourier transformation (EFFT) for the multipartite entangled state representation, which was newly constructed with two mutually conjugate n-mode entangled states of continuum variables in n-mode Fock space. We establish a formalism of EFFT for quantum mechanical wave functions, which provides us a convenient way to derive some wave functions. We find that the eigenmode of EFFT is different from the usual Hermite Polynomials. We also derive the EFFT of the n-mode squeezed state.

  1. Efficient entanglement purification for doubly entangled photon state

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    In this paper,we present an efficient purification scheme that improves the efficiency of entanglement purification of the recently proposed entanglement purification scheme for doubly entangled photon states (Phys.Rev.A,2008,77:042315).This modified scheme contains the bit-flip error correction where all the photon pairs can be kept while all the bit-flip errors are corrected and the entanglement purification of phase-flip errors where a wavelength conversion process is used.This scheme has the advantage of high efficiency and a much lower minimum fidelity of the original state.It works under existing technology.

  2. Classification and Measurement of Multipartite Quantum Entanglements

    OpenAIRE

    Sheikholeslam, Seyed Arash; Gulliver, Thomas Aaron

    2012-01-01

    This paper presents a new measure of entanglement which can be employed for multipartite entangled systems. The classification of multipartite entangled systems based on this measure is considered. Two approaches to applying this measure to mixed quantum states are discussed.

  3. Entangled network and quantum communication

    Energy Technology Data Exchange (ETDEWEB)

    Metwally, Nasser, E-mail: Nmetwally@gmail.com [Math. Dept., Faculty of Science, South Valley University, Aswan (Egypt); Math. Dept., College of Science, University of Bahrain, P.O. Box 32038 (Bahrain)

    2011-11-21

    A theoretical scheme is introduced to generate entangled network via Dzyaloshinskii–Moriya (DM) interaction. The dynamics of entanglement between different nodes, which is generated by direct or indirect interaction, is investigated. It is shown that, the direction of (DM) interaction and the locations of the nodes have a sensational effect on the degree of entanglement. The minimum entanglement generated between all the nodes is quantified. The upper and lower bounds of the entanglement depend on the direction of DM interaction, and the repetition of the behavior depends on the strength of DM. The generated entangled nodes are used as quantum channel to perform quantum teleportation, where it is shown that the fidelity of teleporting unknown information between the network members depends on the locations of the members.

  4. Boundary effects in entanglement entropy

    CERN Document Server

    Berthiere, Clement

    2016-01-01

    We present a number of explicit calculations of Renyi and entanglement entropies in situations where the entangling surface intersects the boundary in $d$-dimensional Minkowski spacetime. When the boundary is a single plane we compute the contribution to the entropy due to this intersection, first in the case of the Neumann and Dirichlet boundary conditions, and then in the case of a generic Robin type boundary condition. The flow in the boundary coupling between the Neumann and Dirichlet phases is analyzed in arbitrary dimension $d$ and is shown to be monotonic, the peculiarity of $d=3$ case is noted. We argue that the translational symmetry along the entangling surface is broken due the presence of the boundary which reveals that the entanglement is not homogeneous. In order to characterize this quantitatively, we introduce a density of entanglement entropy and compute it explicitly. This quantity clearly indicates that the entanglement is maximal near the boundary. We then consider the situation where the ...

  5. Quantum entanglement from random measurements

    Science.gov (United States)

    Tran, Minh Cong; Dakić, Borivoje; Arnault, François; Laskowski, Wiesław; Paterek, Tomasz

    2015-11-01

    We show that the expectation value of squared correlations measured along random local directions is an identifier of quantum entanglement in pure states, which can be directly experimentally assessed if two copies of the state are available. Entanglement can therefore be detected by parties who do not share a common reference frame and whose local reference frames, such as polarizers or Stern-Gerlach magnets, remain unknown. Furthermore, we also show that in every experimental run, access to only one qubit from the macroscopic reference is sufficient to identify entanglement, violate a Bell inequality, and, in fact, observe all phenomena observable with macroscopic references. Finally, we provide a state-independent entanglement witness solely in terms of random correlations and emphasize how data gathered for a single random measurement setting per party reliably detects entanglement. This is only possible due to utilized randomness and should find practical applications in experimental confirmation of multiphoton entanglement or space experiments.

  6. Entanglement structures in qubit systems

    International Nuclear Information System (INIS)

    Using measures of entanglement such as negativity and tangles we provide a detailed analysis of entanglement structures in pure states of non-interacting qubits. The motivation for this exercise primarily comes from holographic considerations, where entanglement is inextricably linked with the emergence of geometry. We use the qubit systems as toy models to probe the internal structure, and introduce some useful measures involving entanglement negativity to quantify general features of entanglement. In particular, our analysis focuses on various constraints on the pattern of entanglement which are known to be satisfied by holographic sates, such as the saturation of Araki–Lieb inequality (in certain circumstances), and the monogamy of mutual information. We argue that even systems as simple as few non-interacting qubits can be useful laboratories to explore how the emergence of the bulk geometry may be related to quantum information principles. (paper)

  7. Entanglement structures in qubit systems

    Science.gov (United States)

    Rangamani, Mukund; Rota, Massimiliano

    2015-09-01

    Using measures of entanglement such as negativity and tangles we provide a detailed analysis of entanglement structures in pure states of non-interacting qubits. The motivation for this exercise primarily comes from holographic considerations, where entanglement is inextricably linked with the emergence of geometry. We use the qubit systems as toy models to probe the internal structure, and introduce some useful measures involving entanglement negativity to quantify general features of entanglement. In particular, our analysis focuses on various constraints on the pattern of entanglement which are known to be satisfied by holographic sates, such as the saturation of Araki-Lieb inequality (in certain circumstances), and the monogamy of mutual information. We argue that even systems as simple as few non-interacting qubits can be useful laboratories to explore how the emergence of the bulk geometry may be related to quantum information principles.

  8. Entanglement structures in qubit systems

    CERN Document Server

    Rangamani, Mukund

    2015-01-01

    Using measures of entanglement such as negativity and tangles we provide a detailed analysis of entanglement structures in pure states of non-interacting qubits. The motivation for this exercise primarily comes from holographic considerations, where entanglement is inextricably linked with the emergence of geometry. We use the qubit systems as toy models to probe the internal structure, and introduce some useful measures involving entanglement negativity to quantify general features of entanglement. In particular, our analysis focuses on various constraints on the pattern of entanglement which are known to be satisfied by holographic sates, such as the saturation of Araki-Lieb inequality (in certain circumstances), and the monogamy of mutual information. We argue that even systems as simple as few non-interacting qubits can be useful laboratories to explore how the emergence of the bulk geometry may be related to quantum information principles.

  9. High-dimensional entanglement certification.

    Science.gov (United States)

    Huang, Zixin; Maccone, Lorenzo; Karim, Akib; Macchiavello, Chiara; Chapman, Robert J; Peruzzo, Alberto

    2016-06-17

    Quantum entanglement is the ability of joint quantum systems to possess global properties (correlation among systems) even when subsystems have no definite individual property. Whilst the 2-dimensional (qubit) case is well-understood, currently, tools to characterise entanglement in high dimensions are limited. We experimentally demonstrate a new procedure for entanglement certification that is suitable for large systems, based entirely on information-theoretics. It scales more efficiently than Bell's inequality and entanglement witness. The method we developed works for arbitrarily large system dimension d and employs only two local measurements of complementary properties. This procedure can also certify whether the system is maximally entangled. We illustrate the protocol for families of bipartite states of qudits with dimension up to 32 composed of polarisation-entangled photon pairs.

  10. Entanglement quantification by local unitaries

    CERN Document Server

    Monras, A; Giampaolo, S M; Gualdi, G; Davies, G B; Illuminati, F

    2011-01-01

    Invariance under local unitary operations is a fundamental property that must be obeyed by every proper measure of quantum entanglement. However, this is not the only aspect of entanglement theory where local unitaries play a relevant role. In the present work we show that the application of suitable local unitary operations defines a family of bipartite entanglement monotones, collectively referred to as "shield entanglement". They are constructed by first considering the (squared) Hilbert- Schmidt distance of the state from the set of states obtained by applying to it a given local unitary. To the action of each different local unitary there corresponds a different distance. We then minimize these distances over the sets of local unitaries with different spectra, obtaining an entire family of different entanglement monotones. We show that these shield entanglement monotones are organized in a hierarchical structure, and we establish the conditions that need to be imposed on the spectrum of a local unitary f...

  11. Entangled Network and Quantum Communication

    CERN Document Server

    Metwally, Nasser

    2011-01-01

    A theoretical scheme is introduced to generate entangled network via Dzyaloshinskii- Moriya (DM)interaction. The dynamics of entanglement generated between different nodes by direct or indirect interaction is investigated. It is shown that, the direction of (DM) interaction and the location of the nodes have a sensational effect on the degree of entanglement. We quantify the minimum entanglement generated between all the nodes. The upper and lower bound of the entanglement of the generated network depends on the direction of DM interaction and the repetition of the behavior depends on the strength of DM. The generated entangled nodes are used as quantum channel to perform quantum teleportation, where we show that the fidelity of teleporting unknown information between the network members depends on the location of the members.

  12. Tomography from Entanglement

    CERN Document Server

    Lin, Jennifer; Ooguri, Hirosi; Stoica, Bogdan

    2014-01-01

    The Ryu-Takayanagi formula relates the entanglement entropy in a conformal field theory to the area of a minimal surface in its holographic dual. We show that this relation can be inverted for any state in the conformal field theory to compute the bulk stress-energy tensor near the boundary of the bulk spacetime, reconstructing the local data in the bulk from the entanglement on the boundary. We also show that positivity, monotonicity, and convexity of the relative entropy for small spherical domains between the reduced density matrices of any state and of the ground state of the conformal field theory, follow from positivity conditions on the bulk matter energy density. We discuss an information theoretical interpretation of the convexity in terms of the Fisher metric.

  13. Entanglement and topological interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Brehm, E.; Brunner, I.; Jaud, D.; Schmidt-Colinet, C. [Arnold Sommerfeld Center, Ludwig-Maximilians-Universitaet, Theresienstrasse 37, 80333, Muenchen (Germany)

    2016-06-15

    In this paper we consider entanglement entropies in two-dimensional conformal field theories in the presence of topological interfaces. Tracing over one side of the interface, the leading term of the entropy remains unchanged. The interface however adds a subleading contribution, which can be interpreted as a relative (Kullback-Leibler) entropy with respect to the situation with no defect inserted. Reinterpreting boundaries as topological interfaces of a chiral half of the full theory, we rederive the left/right entanglement entropy in analogy with the interface case. We discuss WZW models and toroidal bosonic theories as examples. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  14. Review of Entangled Coherent States

    CERN Document Server

    Sanders, Barry C

    2011-01-01

    We review entangled coherent state research since its first implicit use in 1967 to the present. Entangled coherent states are important to quantum superselection principles, quantum information processing, quantum optics, and mathematical physics. Despite their inherent fragility they have produced in a conditional propagating-wave quantum optics realization. Fundamentally the states are intriguing because they are entanglements of the coherent states, which are in a sense the most classical of all states of a dynamical system.

  15. Substituting Quantum Entanglement for Communication

    OpenAIRE

    Cleve, Richard; Buhrman, Harry

    1997-01-01

    We show that quantum entanglement can be used as a substitute for communication when the goal is to compute a function whose input data is distributed among remote parties. Specifically, we show that, for a particular function among three parties (each of which possesses part of the function's input), a prior quantum entanglement enables one of them to learn the value of the function with only two bits of communication occurring among the parties, whereas, without quantum entanglement, three ...

  16. Entanglement in quantum catastrophes

    CERN Document Server

    Emary, C; Brandes, T; Emary, Clive; Lambert, Neill; Brandes, Tobias

    2005-01-01

    We classify entanglement singularities for various two-mode bosonic systems in terms of catastrophe theory. Employing an abstract phase-space representation, we obtain exact results in limiting cases for the entropy in cusp, butterfly, and two-dimensional catastrophes. We furthermore use numerical results to extract the scaling of the entropy with the non-linearity parameter, and discuss the role of mixing entropies in more complex systems.

  17. Hyperspherical entanglement entropy

    Energy Technology Data Exchange (ETDEWEB)

    Dowker, J S, E-mail: dowker@man.ac.u [Theory Group, School of Physics and Astronomy, University of Manchester, Manchester (United Kingdom)

    2010-11-05

    The coefficient of the log term in the entanglement entropy associated with hyperspherical surfaces in flat spacetime is shown to equal the conformal anomaly by conformally transforming Euclideanized spacetime to a sphere and using already existing formulae for the relevant heat-kernel coefficients after cyclic factoring. The result follows from the fact that the conformal anomaly on this lune has an extremum at the ordinary sphere limit. A proof is given. Agreement with a recent evaluation of the coefficient is found.

  18. A quantum-information theoretic analysis of three-flavor neutrino oscillations. Quantum entanglement, nonlocal and nonclassical features of neutrinos

    Energy Technology Data Exchange (ETDEWEB)

    Banerjee, Subhashish; Alok, Ashutosh Kumar [Indian Institute of Technology Jodhpur, Jodhpur (India); Srikanth, R. [Poornaprajna Institute of Scientific Research, Banglore (India); Hiesmayr, Beatrix C. [University of Vienna, Vienna (Austria)

    2015-10-15

    Correlations exhibited by neutrino oscillations are studied via quantum-information theoretic quantities. We show that the strongest type of entanglement, genuine multipartite entanglement, is persistent in the flavor changing states. We prove the existence of Bell-type nonlocal features, in both its absolute and genuine avatars. Finally, we show that a measure of nonclassicality, dissension, which is a generalization of quantum discord to the tripartite case, is nonzero for almost the entire range of time in the evolution of an initial electron-neutrino. Via these quantum-information theoretic quantities, capturing different aspects of quantum correlations, we elucidate the differences between the flavor types, shedding light on the quantum-information theoretic aspects of the weak force. (orig.)

  19. A quantum-information theoretic analysis of three-flavor neutrino oscillations. Quantum entanglement, nonlocal and nonclassical features of neutrinos

    Science.gov (United States)

    Banerjee, Subhashish; Alok, Ashutosh Kumar; Srikanth, R.; Hiesmayr, Beatrix C.

    2015-10-01

    Correlations exhibited by neutrino oscillations are studied via quantum-information theoretic quantities. We show that the strongest type of entanglement, genuine multipartite entanglement, is persistent in the flavor changing states. We prove the existence of Bell-type nonlocal features, in both its absolute and genuine avatars. Finally, we show that a measure of nonclassicality, dissension, which is a generalization of quantum discord to the tripartite case, is nonzero for almost the entire range of time in the evolution of an initial electron-neutrino. Via these quantum-information theoretic quantities, capturing different aspects of quantum correlations, we elucidate the differences between the flavor types, shedding light on the quantum-information theoretic aspects of the weak force.

  20. Higher-order quantum entanglement

    Science.gov (United States)

    Zeilinger, Anton; Horne, Michael A.; Greenberger, Daniel M.

    1992-01-01

    In quantum mechanics, the general state describing two or more particles is a linear superposition of product states. Such a superposition is called entangled if it cannot be factored into just one product. When only two particles are entangled, the stage is set for Einstein-Podolsky-Rosen (EPR) discussions and Bell's proof that the EPR viewpoint contradicts quantum mechanics. If more than two particles are involved, new possibilities and phenomena arise. For example, the Greenberger, Horne, and Zeilinger (GHZ) disproof of EPR applies. Furthermore, as we point out, with three or more particles even entanglement itself can be an entangled property.

  1. A Logical Approach to Entanglement

    Science.gov (United States)

    Das, Abhishek

    2016-10-01

    In this paper we innovate a logical approach to develop an intuition regarding the phenomenon of quantum entanglement. In the vein of the logic introduced we substantiate that particles that were entangled in the past will be entangled in perpetuity and thereby abide a rule that restricts them to act otherwise. We also introduce a game and by virtue of the concept of Nash equilibrium we have been able to show that entangled particles will mutually correspond to an experiment that is performed on any one of the particle.

  2. Spin-photon entangling diode

    DEFF Research Database (Denmark)

    Flindt, Christian; Sørensen, A. S.; Lukin, M. D.;

    2007-01-01

    We propose a semiconductor device that can electrically generate entangled electron spin-photon states, providing a building block for entanglement of distant spins. The device consists of a p-i-n diode structure that incorporates a coupled double quantum dot. We show that electronic control...... of the diode bias and local gating allow for the generation of single photons that are entangled with a robust quantum memory based on the electron spins. Practical performance of this approach to controlled spin-photon entanglement is analyzed....

  3. Stabilizing entanglement against local dissipation

    Energy Technology Data Exchange (ETDEWEB)

    Sauer, Simeon; Gneiting, Clemens; Buchleitner, Andreas [Albert-Ludwigs-Universitaet, Freiburg (Germany)

    2013-07-01

    Natural dissipative processes in multipartite quantum systems are mostly of local nature and therefore affect entanglement adversely. In their presence, initially highly entangled states generically evolve into at most weakly entangled states. We investigate by what means this detrimental process can be counteracted. It is shown that a suitable, dissipator-adapted static system Hamiltonian can preserve entanglement in the stationary state to a significant but limited extend. We then extend our analysis to the general class of periodically driven Hamiltonians and show that they are subject to similar limitations. Finally, we develop incoherent but local control strategies which overcome these limits.

  4. Extracting entanglement from identical particles.

    Science.gov (United States)

    Killoran, N; Cramer, M; Plenio, M B

    2014-04-18

    Identical particles and entanglement are both fundamental components of quantum mechanics. However, when identical particles are condensed in a single spatial mode, the standard notions of entanglement, based on clearly identifiable subsystems, break down. This has led many to conclude that such systems have limited value for quantum information tasks, compared to distinguishable particle systems. To the contrary, we show that any entanglement formally appearing amongst the identical particles, including entanglement due purely to symmetrization, can be extracted into an entangled state of independent modes, which can then be applied to any task. In fact, the entanglement of the mode system is in one-to-one correspondence with the entanglement between the inaccessible identical particles. This settles the long-standing debate about the resource capabilities of such states, in particular spin-squeezed states of Bose-Einstein condensates, while also revealing a new perspective on how and when entanglement is generated in passive optical networks. Our results thus reveal new fundamental connections between entanglement, squeezing, and indistinguishability.

  5. Entanglement Continuous Unitary Transformations

    CERN Document Server

    Sahin, S; Orus, R

    2016-01-01

    Continuous unitary transformations are a powerful tool to extract valuable information out of quantum many-body Hamiltonians, in which the so-called flow equation transforms the Hamiltonian to a diagonal or block-diagonal form in second quantization. Yet, one of their main challenges is how to approximate the infinitely-many coupled differential equations that are produced throughout this flow. Here we show that tensor networks offer a natural and non-perturbative truncation scheme in terms of entanglement. The corresponding scheme is called "entanglement-CUT" or eCUT. It can be used to extract the low-energy physics of quantum many-body Hamiltonians, including quasiparticle energy gaps. We provide the general idea behind eCUT and explain its implementation for finite 1d systems using the formalism of matrix product operators, and we present proof-of-principle results for the spin-1/2 1d quantum Ising model in a transverse field. Entanglement-CUTs can also be generalized to higher dimensions and to the thermo...

  6. Warped entanglement entropy

    International Nuclear Information System (INIS)

    We study the applicability of the covariant holographic entanglement entropy proposal to asymptotically warped AdS3 spacetimes with an SL(2,ℝ)×U(1) isometry. We begin by applying the proposal to locally AdS3 backgrounds which are written as an ℝ1 fibration over AdS2. We then perturb away from this geometry by considering a warping parameter a=1+δ to get an asymptotically warped AdS3 spacetime and compute the dual entanglement entropy perturbatively in δ. We find that for large separation in the fiber coordinate, the entanglement entropy can be computed to all orders in δ and takes the universal form appropriate for two-dimensional CFTs. The warping-dependent central charge thus identified exactly agrees with previous calculations in the literature. Performing the same perturbative calculations for the warped BTZ black hole again gives universal two-dimensional CFT answers, with the left-moving and right-moving temperatures appearing appropriately in the result

  7. Continuous-variable quantum teleportation of entanglement

    International Nuclear Information System (INIS)

    Entangled coherent states can be used to determine the entanglement fidelity for a device that is designed to teleport coherent states. This entanglement fidelity is universal in that the calculation is independent of the use of entangled coherent states and applies generally to the teleportation of entanglement using coherent states. The average fidelity is shown to be a poor indicator of the capability of teleporting entanglement; i.e., very high average fidelity for the quantum teleportation apparatus can still result in low entanglement fidelity for one-mode of the two-mode entangled coherent states

  8. Evaluable multipartite entanglement measures: Multipartite concurrences as entanglement monotones

    International Nuclear Information System (INIS)

    We discuss the monotonicity of systematically constructed quantities aiming at the quantification of the entanglement properties of multipartite quantum systems, under local operations and classical communication. We provide a necessary and sufficient condition for the monotonicity of generalized multipartite concurrences which qualifies them as legitimate entanglement measures

  9. Evaluable multipartite entanglement measures: are multipartite concurrences entanglement monotones?

    OpenAIRE

    Demkowicz-Dobrzanski, Rafal; Buchleitner, Andreas; Kus, Marek; Mintert, Florian

    2006-01-01

    We discuss the monotonicity under local operations and classical communication (LOCC) of systematically constructed quantities aiming at quantification of entanglement properties of multipartite quantum systems. The so-called generalized multipartite concurrences can qualify as legitimate entanglement measures if they are monotonous under LOCC. In the paper we give a necessary and sufficient criterion for their monotonicity.

  10. Universal corner contributions to entanglement negativity

    CERN Document Server

    Kim, Keun-Young; Pang, Da-Wei

    2016-01-01

    It has been realised that corners in entangling surfaces can induce new universal contributions to the entanglement entropy and R\\'enyi entropy. In this paper we study universal corner contributions to entanglement negativity in three- and four-dimensional CFTs using both field theory and holographic techniques. We focus on the quantity $\\chi$ defined by the ratio of the universal part of the entanglement negativity over that of the entanglement entropy, which may characterise the amount of distillable entanglement. We find that for most of the examples $\\chi$ takes bigger values for singular entangling regions, which may suggest increase in distillable entanglement. However, there also exist counterexamples where distillable entanglement decreases for singular surfaces. We also explore the behaviour of $\\chi$ as the coupling varies and observe that for singular entangling surfaces, the amount of distillable entanglement is mostly largest for free theories, while counterexample exists for free Dirac fermion i...

  11. Entanglement Entropy of Black Holes

    Science.gov (United States)

    Solodukhin, Sergey N.

    2011-12-01

    The entanglement entropy is a fundamental quantity, which characterizes the correlations between sub-systems in a larger quantum-mechanical system. For two sub-systems separated by a surface the entanglement entropy is proportional to the area of the surface and depends on the UV cutoff, which regulates the short-distance correlations. The geometrical nature of entanglement-entropy calculation is particularly intriguing when applied to black holes when the entangling surface is the black-hole horizon. I review a variety of aspects of this calculation: the useful mathematical tools such as the geometry of spaces with conical singularities and the heat kernel method, the UV divergences in the entropy and their renormalization, the logarithmic terms in the entanglement entropy in four and six dimensions and their relation to the conformal anomalies. The focus in the review is on the systematic use of the conical singularity method. The relations to other known approaches such as ’t Hooft’s brick-wall model and the Euclidean path integral in the optical metric are discussed in detail. The puzzling behavior of the entanglement entropy due to fields, which non-minimally couple to gravity, is emphasized. The holographic description of the entanglement entropy of the blackhole horizon is illustrated on the two- and four-dimensional examples. Finally, I examine the possibility to interpret the Bekenstein-Hawking entropy entirely as the entanglement entropy.

  12. Constructing optimal entanglement witnesses. II

    CERN Document Server

    Chruscinski, Dariusz

    2010-01-01

    We provide a class of optimal nondecomposable entanglement witnesses for 4N x 4N composite quantum systems or, equivalently, a new construction of nondecomposable positive maps in the algebra of 4N x 4N complex matrices. This construction provides natural generalization of the Robertson map. It is shown that their structural physical approximations give rise to entanglement breaking channels.

  13. Superposition, Entanglement and Quantum Computation

    OpenAIRE

    Forcer, T.M.; Hey, A. J. G.; Ross, D. A.; P.G.R.Smith

    2002-01-01

    The paper examines the roles played by superposition and entanglement in quantum computing. The analysis is illustrated by discussion of a 'classical' electronic implementation of Grover's quantum search algorithm. It is shown explicitly that the absence of multi-particle entanglement leads to exponentially rising resources for implementing such quantum algorithms.

  14. Entanglement Entropy of Black Holes

    Directory of Open Access Journals (Sweden)

    Sergey N. Solodukhin

    2011-10-01

    Full Text Available The entanglement entropy is a fundamental quantity, which characterizes the correlations between sub-systems in a larger quantum-mechanical system. For two sub-systems separated by a surface the entanglement entropy is proportional to the area of the surface and depends on the UV cutoff, which regulates the short-distance correlations. The geometrical nature of entanglement-entropy calculation is particularly intriguing when applied to black holes when the entangling surface is the black-hole horizon. I review a variety of aspects of this calculation: the useful mathematical tools such as the geometry of spaces with conical singularities and the heat kernel method, the UV divergences in the entropy and their renormalization, the logarithmic terms in the entanglement entropy in four and six dimensions and their relation to the conformal anomalies. The focus in the review is on the systematic use of the conical singularity method. The relations to other known approaches such as ’t Hooft’s brick-wall model and the Euclidean path integral in the optical metric are discussed in detail. The puzzling behavior of the entanglement entropy due to fields, which non-minimally couple to gravity, is emphasized. The holographic description of the entanglement entropy of the black-hole horizon is illustrated on the two- and four-dimensional examples. Finally, I examine the possibility to interpret the Bekenstein-Hawking entropy entirely as the entanglement entropy.

  15. Entanglement for All Quantum States

    Science.gov (United States)

    de la Torre, A. C.; Goyeneche, D.; Leitao, L.

    2010-01-01

    It is shown that a state that is factorizable in the Hilbert space corresponding to some choice of degrees of freedom becomes entangled for a different choice of degrees of freedom. Therefore, entanglement is not a special case but is ubiquitous in quantum systems. Simple examples are calculated and a general proof is provided. The physical…

  16. Spread of entanglement and causality

    Science.gov (United States)

    Casini, Horacio; Liu, Hong; Mezei, Márk

    2016-07-01

    We investigate causality constraints on the time evolution of entanglement entropy after a global quench in relativistic theories. We first provide a general proof that the so-called tsunami velocity is bounded by the speed of light. We then generalize the free particle streaming model of [1] to general dimensions and to an arbitrary entanglement pattern of the initial state. In more than two spacetime dimensions the spread of entanglement in these models is highly sensitive to the initial entanglement pattern, but we are able to prove an upper bound on the normalized rate of growth of entanglement entropy, and hence the tsunami velocity. The bound is smaller than what one gets for quenches in holographic theories, which highlights the importance of interactions in the spread of entanglement in many-body systems. We propose an interacting model which we believe provides an upper bound on the spread of entanglement for interacting relativistic theories. In two spacetime dimensions with multiple intervals, this model and its variations are able to reproduce intricate results exhibited by holographic theories for a significant part of the parameter space. For higher dimensions, the model bounds the tsunami velocity at the speed of light. Finally, we construct a geometric model for entanglement propagation based on a tensor network construction for global quenches.

  17. Emergence of Symmetries from Entanglement

    CERN Document Server

    CERN. Geneva

    2016-01-01

    Maximal Entanglement appears to be a key ingredient for the emergence of symmetries. We first illustrate this phenomenon using two examples: the emergence of conformal symmetry in condensed matter systems and  the relation of tensor networks to holography. We further present a Principle of Maximal Entanglement that seems to dictate to a large extend the structure of gauge symmetry.

  18. Evaluating convex roof entanglement measures.

    Science.gov (United States)

    Tóth, Géza; Moroder, Tobias; Gühne, Otfried

    2015-04-24

    We show a powerful method to compute entanglement measures based on convex roof constructions. In particular, our method is applicable to measures that, for pure states, can be written as low order polynomials of operator expectation values. We show how to compute the linear entropy of entanglement, the linear entanglement of assistance, and a bound on the dimension of the entanglement for bipartite systems. We discuss how to obtain the convex roof of the three-tangle for three-qubit states. We also show how to calculate the linear entropy of entanglement and the quantum Fisher information based on partial information or device independent information. We demonstrate the usefulness of our method by concrete examples.

  19. Attachment, the tripartite influence model, and the development of body dissatisfaction.

    Science.gov (United States)

    Hardit, Saroj K; Hannum, James W

    2012-09-01

    The tripartite model of influence proposes that three primary core sources of influence-parents, peers and media-contribute to the development of body dissatisfaction and disordered eating. In the current study, this model was examined in a sample of 205 undergraduate women. This study added to previous research by investigating mother and father criticism separately and by examining the potential moderating effects of parental attachment in the pathway to body dissatisfaction. Results indicated partial support for the tripartite model of influence. Sociocultural influences (media) were found to be a significant predictor of body dissatisfaction, but not parental or peer criticism. Anxious attachment was found to be a significant moderator on the effects of sociocultural attitudes in body dissatisfaction. Limitations and future research implications are discussed. PMID:22795652

  20. Tripartite associations among bacteriophage WO, Wolbachia, and host affected by temperature and age in Tetranychus urticae.

    Science.gov (United States)

    Lu, Ming-Hong; Zhang, Kai-Jun; Hong, Xiao-Yue

    2012-11-01

    A phage density model of cytoplasmic incompatibility (CI), which means lytic phages reduce bacterial density associated with CI, significantly enhances our understanding of the tripartite associations among bacteriophage WO, Wolbachia and host. However, WO may alternate between lytic and lysogenic life cycles or change phage production under certain conditions including temperature, host age and host species background. Here, extreme temperatures can induce an alteration in the life cycle of WO and change the tripartite associations among WO, Wolbachia and CI. Based on the accumulation of the WO load, WO can transform into the lytic life cycle with increasing age. These findings confirmed that the environment plays an important role in the associations among WO, Wolbachia and host. PMID:22669278

  1. Entanglement Entropy and Duality

    CERN Document Server

    Radicevic, Djordje

    2016-01-01

    Using the algebraic approach to entanglement entropy, we study several dual pairs of lattice theories and show how the entropy is completely preserved across each duality. Our main result is that a maximal algebra of observables in a region typically dualizes to a non-maximal algebra in a dual region. In particular, we show how the usual notion of tracing out external degrees of freedom dualizes to a tracing out coupled to an additional summation over superselection sectors. We briefly comment on possible extensions of our results to more intricate dualities, including holographic ones.

  2. Spacetime Equals Entanglement

    CERN Document Server

    Nomura, Yasunori; Sanches, Fabio; Weinberg, Sean J

    2016-01-01

    We study the Hilbert space structure of classical spacetimes under the assumption that entanglement in holographic theories determines semiclassical geometry. We show that this simple assumption has profound implications; for example, a superposition of classical spacetimes may lead to another classical spacetime. Despite its unconventional nature, this picture admits the standard interpretation of superpositions of well-defined semiclassical spacetimes in the limit that the number of holographic degrees of freedom becomes large. We illustrate these ideas using a model for the holographic theory of cosmological spacetimes.

  3. Introducing the Tripartite Digitization Model for Engaging with the Intangible Cultural Heritage of the City

    DEFF Research Database (Denmark)

    Rehm, Matthias; Rodil, Kasper

    2016-01-01

    In this paper we investigate the notion of intangible cultural heritage as a driver for smart city learning applications. To this end, we shortly explore the notion of intangible heritage before presenting the tripartite digitization model that was originally developed for indigenous cultural...... heritage but can equally be applied to the smart city context. We then discuss parts of the model making use of a specific case study aiming at re-creating places in the city....

  4. Tri-partite complex for axonal transport drug delivery achieves pharmacological effect

    Directory of Open Access Journals (Sweden)

    Frederickson Martyn

    2010-01-01

    Full Text Available Abstract Background Targeted delivery of pharmaceutical agents into selected populations of CNS (Central Nervous System neurons is an extremely compelling goal. Currently, systemic methods are generally used for delivery of pain medications, anti-virals for treatment of dermatomal infections, anti-spasmodics, and neuroprotectants. Systemic side effects or undesirable effects on parts of the CNS that are not involved in the pathology limit efficacy and limit clinical utility for many classes of pharmaceuticals. Axonal transport from the periphery offers a possible selective route, but there has been little progress towards design of agents that can accomplish targeted delivery via this intraneural route. To achieve this goal, we developed a tripartite molecular construction concept involving an axonal transport facilitator molecule, a polymer linker, and a large number of drug molecules conjugated to the linker, then sought to evaluate its neurobiology and pharmacological behavior. Results We developed chemical synthesis methodologies for assembling these tripartite complexes using a variety of axonal transport facilitators including nerve growth factor, wheat germ agglutinin, and synthetic facilitators derived from phage display work. Loading of up to 100 drug molecules per complex was achieved. Conjugation methods were used that allowed the drugs to be released in active form inside the cell body after transport. Intramuscular and intradermal injection proved effective for introducing pharmacologically effective doses into selected populations of CNS neurons. Pharmacological efficacy with gabapentin in a paw withdrawal latency model revealed a ten fold increase in half life and a 300 fold decrease in necessary dose relative to systemic administration for gabapentin when the drug was delivered by axonal transport using the tripartite vehicle. Conclusion Specific targeting of selected subpopulations of CNS neurons for drug delivery by axonal

  5. The Role of the Tripartite Glutamatergic Synapse in the Pathophysiology of Alzheimer’s Disease

    OpenAIRE

    Rudy, Carolyn C.; Hunsberger, Holly C.; Weitzner, Daniel S.; Reed, Miranda N.

    2015-01-01

    Alzheimer’s disease (AD) is the most common form of dementia in individuals over 65 years of age and is characterized by accumulation of beta-amyloid (Aβ) and tau. Both Aβ and tau alter synaptic plasticity, leading to synapse loss, neural network dysfunction, and eventually neuron loss. However, the exact mechanism by which these proteins cause neurodegeneration is still not clear. A growing body of evidence suggests perturbations in the glutamatergic tripartite synapse, comprised of a presyn...

  6. Scattering of entangled two-photon states

    CERN Document Server

    Schotland, John C; Norris, Theodore B

    2015-01-01

    We consider the scattering of entangled two-photon states from collections of small particles. We also study the related Mie problem of scattering from a sphere. In both cases, we calculate the entropy of entanglement and investigate the influence of the entanglement of the incident field on the entanglement of the scattered field.

  7. Universal quantum computation with little entanglement.

    Science.gov (United States)

    Van den Nest, Maarten

    2013-02-01

    We show that universal quantum computation can be achieved in the standard pure-state circuit model while the entanglement entropy of every bipartition is small in each step of the computation. The entanglement entropy required for large-scale quantum computation even tends to zero. Moreover we show that the same conclusion applies to many entanglement measures commonly used in the literature. This includes e.g., the geometric measure, localizable entanglement, multipartite concurrence, squashed entanglement, witness-based measures, and more generally any entanglement measure which is continuous in a certain natural sense. These results demonstrate that many entanglement measures are unsuitable tools to assess the power of quantum computers.

  8. Entanglement distillation in circuit quantum electrodynamics

    Science.gov (United States)

    Oppliger, Markus; Heinsoo, Johannes; Salathe, Yves; Potocnik, Anton; Mondal, Mintu; Wallraff, Andreas; Paraoanu, Gheorghe Sorin

    Entanglement is an essential resource for quantum information processing, such as quantum error correction, quantum teleportation and quantum communication. Such algorithms perform optimally with maximally entangled states. In practice entangled quantum states are very fragile due to a wide range of decoherence mechanisms. When two parties share degraded entangled states they are still able to generate an entangled state with higher fidelity using local operations and classical communication. This process is commonly referred to as entanglement distillation. Here we demonstrate distillation of highly entangled Bell states from two copies of less entangled states on a four transmon qubit device realized in the circuit-QED architecture. We characterize the output state for different degrees of entanglement at the input with quantum state tomography. A clear improvement of the entanglement measures is observed at the output.

  9. The entangled accelerating universe

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez-Diaz, Pedro F. [Colina de los Chopos, Instituto de Fisica Fundamental, Consejo Superior de Investigaciones Cientificas, Serrano 121, 28006 Madrid (Spain); Estacion Ecologica de Biocosmologia, Pedro de Alvarado, 14, 06411-Medellin (Spain)], E-mail: p.gonzalezdiaz@imaff.cfmac.csic.es; Robles-Perez, Salvador [Colina de los Chopos, Instituto de Fisica Fundamental, Consejo Superior de Investigaciones Cientificas, Serrano 121, 28006 Madrid (Spain); Estacion Ecologica de Biocosmologia, Pedro de Alvarado, 14, 06411-Medellin (Spain)

    2009-08-31

    Using the known result that the nucleation of baby universes in correlated pairs is equivalent to spacetime squeezing, we show in this Letter that there exists a T-duality symmetry between two-dimensional warp drives, which are physically expressible as localized de Sitter little universes, and two-dimensional Tolman-Hawking and Gidding-Strominger baby universes respectively correlated in pairs, so that the creation of warp drives is also equivalent to spacetime squeezing. Perhaps more importantly, it has been also seen that the nucleation of warp drives entails a violation of the Bell's inequalities, and hence the phenomena of quantum entanglement, complementarity and wave function collapse. These results are generalized to the case of any dynamically accelerating universe filled with dark or phantom energy whose creation is also physically equivalent to spacetime squeezing and to the violation of the Bell's inequalities, so that the universe we are living in should be governed by essential sharp quantum theory laws and must be a quantum entangled system.

  10. Classical Maxwellian polarization entanglement

    CERN Document Server

    Carroll, John E

    2015-01-01

    An explanation of polarization entanglement is presented using Maxwells classical electromagnetic theory.Two key features are required to understand these classical origins.The first is that all waves diffract and weakly diffracting waves,with a principal direction of propagation in the laboratory frame, travel along that direction at speeds ever so slightly less than c.This allows nontrivial Lorentz transformations that can act on selected forward F waves or selected waves R traveling in the opposite direction to show that both can arise from a single zero momentum frame where all the waves are transverse to the original principal direction.Such F and R waves then both belong to a single relativistic entity where correlations between the two are unremarkable.The second feature requires the avoidance of using the Coulomb gauge.Waves, tending to plane waves in the limit of zero diffraction,can then be shown to be composed of two coupled sets of E and B fields that demonstrate the classical entanglement of F an...

  11. The entangled accelerating universe

    International Nuclear Information System (INIS)

    Using the known result that the nucleation of baby universes in correlated pairs is equivalent to spacetime squeezing, we show in this Letter that there exists a T-duality symmetry between two-dimensional warp drives, which are physically expressible as localized de Sitter little universes, and two-dimensional Tolman-Hawking and Gidding-Strominger baby universes respectively correlated in pairs, so that the creation of warp drives is also equivalent to spacetime squeezing. Perhaps more importantly, it has been also seen that the nucleation of warp drives entails a violation of the Bell's inequalities, and hence the phenomena of quantum entanglement, complementarity and wave function collapse. These results are generalized to the case of any dynamically accelerating universe filled with dark or phantom energy whose creation is also physically equivalent to spacetime squeezing and to the violation of the Bell's inequalities, so that the universe we are living in should be governed by essential sharp quantum theory laws and must be a quantum entangled system.

  12. Quantum entanglement analysis based on abstract interpretation

    OpenAIRE

    Perdrix, Simon

    2008-01-01

    Entanglement is a non local property of quantum states which has no classical counterpart and plays a decisive role in quantum information theory. Several protocols, like the teleportation, are based on quantum entangled states. Moreover, any quantum algorithm which does not create entanglement can be efficiently simulated on a classical computer. The exact role of the entanglement is nevertheless not well understood. Since an exact analysis of entanglement evolution induces an exponential sl...

  13. Quantum Entanglement on a Hypersphere

    Science.gov (United States)

    Peters, James F.; Tozzi, Arturo

    2016-08-01

    A quantum entanglement's composite system does not display separable states and a single constituent cannot be fully described without considering the other states. We introduce quantum entanglement on a hypersphere - which is a 4D space undetectable by observers living in a 3D world -, derived from signals originating on the surface of an ordinary 3D sphere. From the far-flung branch of algebraic topology, the Borsuk-Ulam theorem states that, when a pair of opposite (antipodal) points on a hypersphere are projected onto the surface of 3D sphere, the projections have matching description. In touch with this theorem, we show that a separable state can be achieved for each of the entangled particles, just by embedding them in a higher dimensional space. We view quantum entanglement as the simultaneous activation of signals in a 3D space mapped into a hypersphere. By showing that the particles are entangled at the 3D level and un-entangled at the 4D hypersphere level, we achieved a composite system in which each local constituent is equipped with a pure state. We anticipate this new view of quantum entanglement leading to what are known as qubit information systems.

  14. Lethal entanglement in baleen whales.

    Science.gov (United States)

    Cassoff, Rachel M; Moore, Kathleen M; McLellan, William A; Barco, Susan G; Rotsteins, David S; Moore, Michael J

    2011-10-01

    Understanding the scenarios whereby fishing gear entanglement of large whales induces mortality is important for the development of mitigation strategies. Here we present a series of 21 cases involving 4 species of baleen whales in the NW Atlantic, describing the available sighting history, necropsy observations, and subsequent data analyses that enabled the compilation of the manners in which entanglement can be lethal. The single acute cause of entanglement mortality identified was drowning from entanglement involving multiple body parts, with the animal's inability to surface. More protracted causes of death included impaired foraging during entanglement, resulting in starvation after many months; systemic infection arising from open, unresolved entanglement wounds; and hemorrhage or debilitation due to severe gear-related damage to tissues. Serious gear-induced injury can include laceration of large vessels, occlusion of the nares, embedding of line in growing bone, and massive periosteal proliferation of new bone in an attempt to wall off constricting, encircling lines. These data show that baleen whale entanglement is not only a major issue for the conservation of some baleen whale populations, but is also a major concern for the welfare of each affected individual.

  15. Spread of entanglement and causality

    CERN Document Server

    Casini, Horacio; Mezei, Márk

    2015-01-01

    We investigate causality constraints on the time evolution of entanglement entropy after a global quench in relativistic theories. We first provide a general proof that the so-called tsunami velocity is bounded by the speed of light. We then generalize the free particle streaming model of arXiv:cond-mat/0503393 to general dimensions and to an arbitrary entanglement pattern of the initial state. In more than two spacetime dimensions the spread of entanglement in these models is highly sensitive to the initial entanglement pattern, but we are able to prove an upper bound on the normalized rate of growth of entanglement entropy, and hence the tsunami velocity. The bound is smaller than what one gets for quenches in holographic theories, which highlights the importance of interactions in the spread of entanglement in many-body systems. We propose an interacting model which we believe provides an upper bound on the spread of entanglement for interacting relativistic theories. In two spacetime dimensions with multi...

  16. Boundary effects in entanglement entropy

    Science.gov (United States)

    Berthiere, Clément; Solodukhin, Sergey N.

    2016-09-01

    We present a number of explicit calculations of Renyi and entanglement entropies in situations where the entangling surface intersects the boundary of d-dimensional Minkowski spacetime. When the boundary is a single plane we compute the contribution to the entropy due to this intersection, first in the case of the Neumann and Dirichlet boundary conditions, and then in the case of a generic Robin type boundary condition. The flow in the boundary coupling between the Neumann and Dirichlet phases is analyzed in arbitrary dimension d and is shown to be monotonic, the peculiarity of d = 3 case is noted. We argue that the translational symmetry along the entangling surface is broken due the presence of the boundary which reveals that the entanglement is not homogeneous. In order to characterize this quantitatively, we introduce a density of entanglement entropy and compute it explicitly. This quantity clearly indicates that the entanglement is maximal near the boundary. We then consider the situation where the boundary is composed of two parallel planes at a finite separation and compute the entanglement entropy as well as its density in this case. The complete contribution to entanglement entropy due to the boundaries is shown not to depend on the distance between the planes and is simply twice the entropy in the case of single plane boundary. Additionally, we find how the area law, the part in the entropy proportional to the area of entire entangling surface, depends on the size of the separation between the two boundaries. The latter is shown to appear in the UV finite part of the entropy.

  17. Constructing new optimal entanglement witnesses

    CERN Document Server

    Chruscinski, Dariusz; Sarbicki, Gniewomir

    2009-01-01

    We provide a new class of indecomposable entanglement witnesses. In 4 x 4 case it reproduces the well know Breuer-Hall witness. We prove that these new witnesses are optimal and atomic, i.e. they are able to detect the "weakest" quantum entanglement encoded into states with positive partial transposition (PPT). Equivalently, we provide a new construction of indecomposable atomic maps in the algebra of 2k x 2k complex matrices. It is shown that their structural physical approximations give rise to entanglement breaking channels. This result supports recent conjecture by Korbicz et. al.

  18. Quantum entanglement survives a firewall

    CERN Document Server

    Martin-Martinez, Eduardo

    2015-01-01

    We analyze how pre-existing entanglement between two Unruh-DeWitt particle detectors evolves when one of the detectors falls through a Rindler firewall in (1+1)-dimensional Minkowski space. The firewall effect is minor and does not wash out the detector-detector entanglement, in some regimes even preserving the entanglement better than Minkowski vacuum. The absence of cataclysmic events should continue to hold for young black hole firewalls. A firewall's prospective ability to resolve the information paradox must hence hinge on its detailed gravitational structure, presently poorly understood.

  19. Zero Modes and Entanglement Entropy

    CERN Document Server

    Yazdi, Yasaman K

    2016-01-01

    Ultraviolet divergences are widely discussed in studies of entanglement entropy. Also present, but much less understood, are infrared divergences due to zero modes in the field theory. In this note, we discuss the importance of carefully handling zero modes in entanglement entropy. We give an explicit example for a chain of harmonic oscillators in 1D, where a mass regulator is necessary to avoid an infrared divergence due to a zero mode. We also comment on a surprising contribution of the zero mode to the UV-scaling of the entanglement entropy.

  20. Teleportation of Squeezed Entangled State

    Institute of Scientific and Technical Information of China (English)

    HU Li-Yun; ZHOU Nan-Run

    2007-01-01

    Based on the coherent entangled state |α, x> we introduce the squeezed entangled state (SES). Then we propose a teleportation protocol for the SES by using Einstein-Podolsky-Rosen entangled state |η>as a quantum channel.The calculation is greatly simplified by virtue of the Schmidt decompositions of both |α, x>and |η>. Any bipartite states that can be expanded in terms of |α, x>may be teleported in this way due to the completeness of |α, x>.

  1. Quantitative two-qutrit entanglement

    Energy Technology Data Exchange (ETDEWEB)

    Eltschka, Christopher [Institut fuer Theoretische Physik, Universitaet Regensburg, D-93040 Regensburg (Germany); Siewert, Jens [Departamento de Quimica Fisica, Universidad del Pais Vasco UPV/EHU, 48080 Bilbao (Spain); IKERBASQUE, Basque Foundation for Science, 48011 Bilbao (Spain)

    2013-07-01

    We introduce the new concept of axisymmetric bipartite states. For d x d-dimensional systems these states form a two-parameter family of nontrivial mixed states that include the isotropic states. We present exact quantitative results for class-specific entanglement as well as for the negativity and I-concurrence of two-qutrit axisymmetric states. These results have interesting applications such as for quantitative witnesses of class-specific entanglement in arbitrary two-qutrit states and as device-independent witness for the number of entangled dimensions.

  2. Entangled Harmonic Oscillators and Space-Time Entanglement

    Directory of Open Access Journals (Sweden)

    Sibel Başkal

    2016-06-01

    Full Text Available The mathematical basis for the Gaussian entanglement is discussed in detail, as well as its implications in the internal space-time structure of relativistic extended particles. It is shown that the Gaussian entanglement shares the same set of mathematical formulas with the harmonic oscillator in the Lorentz-covariant world. It is thus possible to transfer the concept of entanglement to the Lorentz-covariant picture of the bound state, which requires both space and time separations between two constituent particles. These space and time variables become entangled as the bound state moves with a relativistic speed. It is shown also that our inability to measure the time-separation variable leads to an entanglement entropy together with a rise in the temperature of the bound state. As was noted by Paul A. M. Dirac in 1963, the system of two oscillators contains the symmetries of the O ( 3 , 2 de Sitter group containing two O ( 3 , 1 Lorentz groups as its subgroups. Dirac noted also that the system contains the symmetry of the S p ( 4 group, which serves as the basic language for two-mode squeezed states. Since the S p ( 4 symmetry contains both rotations and squeezes, one interesting case is the combination of rotation and squeeze, resulting in a shear. While the current literature is mostly on the entanglement based on squeeze along the normal coordinates, the shear transformation is an interesting future possibility. The mathematical issues on this problem are clarified.

  3. Entanglement entropy and entanglement spectrum of triplet topological superconductors.

    Science.gov (United States)

    Oliveira, T P; Ribeiro, P; Sacramento, P D

    2014-10-22

    We analyze the entanglement entropy properties of a 2D p-wave superconductor with Rashba spin-orbit coupling, which displays a rich phase-space that supports non-trivial topological phases, as the chemical potential and the Zeeman term are varied. We show that the entanglement entropy and its derivatives clearly signal the topological transitions and we find numerical evidence that for this model the derivative with respect to the magnetization provides a sensible signature of each topological phase. Following the area law for the entanglement entropy, we systematically analyze the contributions that are proportional to or independent of the perimeter of the system, as a function of the Hamiltonian coupling constants and the geometry of the finite subsystem. For this model, we show that even though the topological entanglement entropy vanishes, it signals the topological phase transitions in a finite system. We also observe a relationship between a topological contribution to the entanglement entropy in a half-cylinder geometry and the number of edge states, and that the entanglement spectrum has robust modes associated with each edge state, as in other topological systems.

  4. Entanglement entropy and entanglement spectrum of triplet topological superconductors.

    Science.gov (United States)

    Oliveira, T P; Ribeiro, P; Sacramento, P D

    2014-10-22

    We analyze the entanglement entropy properties of a 2D p-wave superconductor with Rashba spin-orbit coupling, which displays a rich phase-space that supports non-trivial topological phases, as the chemical potential and the Zeeman term are varied. We show that the entanglement entropy and its derivatives clearly signal the topological transitions and we find numerical evidence that for this model the derivative with respect to the magnetization provides a sensible signature of each topological phase. Following the area law for the entanglement entropy, we systematically analyze the contributions that are proportional to or independent of the perimeter of the system, as a function of the Hamiltonian coupling constants and the geometry of the finite subsystem. For this model, we show that even though the topological entanglement entropy vanishes, it signals the topological phase transitions in a finite system. We also observe a relationship between a topological contribution to the entanglement entropy in a half-cylinder geometry and the number of edge states, and that the entanglement spectrum has robust modes associated with each edge state, as in other topological systems. PMID:25274448

  5. Philosophical lessons of entanglement

    CERN Document Server

    Sudbery, Anthony

    2011-01-01

    The quantum-mechanical description of the world, including human observers, makes substantial use of entanglement. In order to understand this, we need to adopt concepts of truth, probability and time which are unfamiliar in modern scientific thought. There are two kinds of statements about the world: those made from inside the world, and those from outside. The conflict between contradictory statements which both appear to be true can be resolved by recognising that they are made in different perspectives. Probability, in an objective sense, belongs in the internal perspective, and to statements in the future tense. Such statements obey a many-valued logic, in which the truth values are identified as probabilities.

  6. The entangled accelerating universe

    CERN Document Server

    González-Díaz, Pedro F

    2009-01-01

    Using the known result that the nucleation of baby universes in correlated pairs is equivalent to spacetime squeezing, we show in this letter that there exists a T-duality symmetry between two-dimensional warp drives, which are physically expressible as localized de Sitter little universes, and two dimensional Tolman-Hawking and Gidding-Strominger baby universes respectively correlated in pairs, so that the creation of warp drives is also equivalent to spacetime squeezing. Perhaps more importantly, it has been also seen that the nucleation of warp drives entails a violation of the Bell's inequalities, and hence the phenomena of quantum entanglement, complementarity and wave function collapse. These results are generalized to the case of any dynamically accelerating universe filled with dark or phantom energy whose creation is also physically equivalent to spacetime squeezing and to the violation of the Bell's inequalities, so that the universe we are living in should be governed by essential sharp quantum the...

  7. Entanglement enhanced atomic gyroscope

    CERN Document Server

    Cooper, J J; Dunningham, J A

    2010-01-01

    The advent of increasingly precise gyroscopes has played a key role in the technological development of navigation systems. Ring-laser and fibre-optic gyroscopes, for example, are widely used in modern inertial guidance systems and rely on the interference of unentangled photons to measure mechanical rotation. The sensitivity of these devices scales with the number of particles used as $1/ \\sqrt{N}$. Here we demonstrate how, by using sources of entangled particles, it is possible to do better and even achieve the ultimate limit allowed by quantum mechanics where the precision scales as 1/N. We propose a gyroscope scheme that uses ultra-cold atoms trapped in an optical ring potential.

  8. Generating entangled superqubit states

    CERN Document Server

    Borsten, L; Duff, M J

    2014-01-01

    We introduce the global unitary supergroup $\\text{UOSp}((3^n+1)/2 | (3^n-1)/2)$ for an $n$-superqubit system, which contains as a subgroup the local unitary supergroup $[\\text{UOSp}(2|1)]^n$. While for $4>n>1$ the bosonic subgroup in $\\text{UOSp}((3^n+1)/2 | (3^n-1)/2)$ does not contain the standard global unitary group $\\text{SU}(2^n)$, it does have an $\\text{USp}(2^n)\\subset\\text{SU}(2^n)$ subgroup which acts transitively on the $n$-qubit subspace, as required for consistency with the conventional multi-qubit framework. For two superqubits the $\\text{UOSp}(5|4)$ action is used to generate entangled states from the "bosonic" separable state $|00>$.

  9. Gaussian Entanglement Distribution via Satellite

    CERN Document Server

    Hosseinidehaj, Nedasadat

    2014-01-01

    In this work we analyse three quantum communication schemes for the generation of Gaussian entanglement between two ground stations. Communication occurs via a satellite over two independent atmospheric fading channels dominated by turbulence-induced beam wander. In our first scheme the engineering complexity remains largely on the ground transceivers, with the satellite acting simply as a reflector. Although the channel state information of the two atmospheric channels remains unknown in this scheme, the Gaussian entanglement generation between the ground stations can still be determined. On the ground, distillation and Gaussification procedures can be applied, leading to a refined Gaussian entanglement generation rate between the ground stations. We compare the rates produced by this first scheme with two competing schemes in which quantum complexity is added to the satellite, thereby illustrating the trade-off between space-based engineering complexity and the rate of ground-station entanglement generation...

  10. Bell's Theorem and Entangled Solitons

    Science.gov (United States)

    Rybakov, Yu. P.; Kamalov, T. F.

    2016-09-01

    Entangled solitons construction being introduced in the nonlinear spinor field model, the Einstein—Podolsky—Rosen (EPR) spin correlation is calculated and shown to coincide with the quantum mechanical one for the 1/2-spin particles.

  11. Orbital entanglement in quantum chemistry

    CERN Document Server

    Boguslawski, Katharina

    2014-01-01

    The basic concepts of orbital entanglement and its application to chemistry are briefly reviewed. The calculation of orbital entanglement measures from correlated wavefunctions is discussed in terms of reduced $n$-particle density matrices. Possible simplifications in their evaluation are highlighted in case of seniority-zero wavefunctions. Specifically, orbital entanglement allows us to dissect electron correlation effects in its strong and weak contributions, to determine bond orders, to assess the quality and stability of active space calculations, to monitor chemical reactions, and to identify points along the reaction coordinate where electronic wavefunctions change drastically. Thus, orbital entanglement represents a useful and intuitive tool to interpret complex electronic wavefunctions and to facilitate a qualitative understanding of electronic structure and how it changes in chemical processes.

  12. Wavelength-multiplexed entanglement distribution

    Science.gov (United States)

    Lim, Han Chuen; Yoshizawa, Akio; Tsuchida, Hidemi; Kikuchi, Kazuro

    2010-08-01

    The realization of an entanglement distribution optical fiber network connecting multiple parties would permit implementation of many information security applications such as entanglement-based quantum key distribution and quantum secret sharing. However, due to material absorption and scattering in optical fiber, photons that are the carriers of quantum entanglement experience loss during propagation and the overall photon arrival rate can be very low in such a network. One way to increase photon arrival rate is to make full use of the available transmission bandwidth of optical fiber and this is achievable via wavelength-multiplexing. We review our recent work on wavelength-multiplexed entanglement distribution and discuss system design considerations from a telecommunication engineering perspective.

  13. DNA Replication via Entanglement Swapping

    CERN Document Server

    Pusuluk, Onur

    2010-01-01

    Quantum effects are mainly used for the determination of molecular shapes in molecular biology, but quantum information theory may be a more useful tool to understand the physics of life. Molecular biology assumes that function is explained by structure, the complementary geometries of molecules and weak intermolecular hydrogen bonds. However, both this assumption and its converse are possible if organic molecules and quantum circuits/protocols are considered as hardware and software of living systems that are co-optimized during evolution. In this paper, we try to model DNA replication as a multiparticle entanglement swapping with a reliable qubit representation of nucleotides. In the model, molecular recognition of a nucleotide triggers an intrabase entanglement corresponding to a superposition state of different tautomer forms. Then, base pairing occurs by swapping intrabase entanglements with interbase entanglements.

  14. Entanglement Distribution in Optical Networks

    CERN Document Server

    Ciurana, Alex; Martinez-Mateo, Jesus; Schrenk, Bernhard; Peev, Momtchil; Poppe, Andreas

    2014-01-01

    The ability to generate entangled photon-pairs over a broad wavelength range opens the door to the simultaneous distribution of entanglement to multiple users in a network by using centralized sources and flexible wavelength-division multiplexing schemes. Here we show the design of a metropolitan optical network consisting of tree-type access networks whereby entangled photon-pairs are distributed to any pair of users, independent of their location. The network is constructed employing commercial off-the-shelf components and uses the existing infrastructure, which allows for moderate deployment costs. We further develop a channel plan and a network-architecture design to provide a direct optical path between any pair of users, thus allowing classical and one-way quantum communication as well as entanglement distribution. This allows the simultaneous operation of multiple quantum information technologies. Finally, we present a more flexible backbone architecture that pushes away the load limitations of the ori...

  15. Entanglement properties of quantum polaritons

    Science.gov (United States)

    Suárez-Forero, D. G.; Cipagauta, G.; Vinck-Posada, H.; Fonseca Romero, K. M.; Rodríguez, B. A.; Ballarini, D.

    2016-05-01

    Exciton polaritons are coupled states of matter and light, originated by the strong interaction between an optical mode and semiconductor excitons. This interaction can be obtained also at a single-particle level, in which case it has been shown that a quantum treatment is mandatory. In this work we study the light-matter entanglement of polaritons from a fully quantum formalism including pumping and dissipation. We find that the entanglement is completely destroyed if the exciton and photon are tuned at the resonance condition, even under very low pumping rates. Instead, the best condition for maximizing entanglement and purity of the steady state is when the exciton and photon are out of resonance and when incoherent pumping exactly compensates the dissipation rate. In the presence of multiple quantum dots coupled to the light mode, matter-light entanglement survives only at larger detuning for a higher number of quantum dots considered.

  16. Continuous-Variable Entanglement Swapping

    Directory of Open Access Journals (Sweden)

    Kevin Marshall

    2015-05-01

    Full Text Available We present a very brief overview of entanglement swapping as it relates to continuous-variable quantum information. The technical background required is discussed and the natural link to quantum teleportation is established before discussing the nature of Gaussian entanglement swapping. The limitations of Gaussian swapping are introduced, along with the general applications of swapping in the context of to quantum communication and entanglement distribution. In light of this, we briefly summarize a collection of entanglement swapping schemes which incorporate a non-Gaussian ingredient and the benefits of such schemes are noted. Finally, we motivate the need to further study and develop such schemes by highlighting requirements of a continuous-variable repeater.

  17. Quantum entanglement distillation with metamaterials.

    Science.gov (United States)

    al Farooqui, Md Abdullah; Breeland, Justin; Aslam, Muhammad I; Sadatgol, Mehdi; Özdemir, Şahin K; Tame, Mark; Yang, Lan; Güney, Durdu Ö

    2015-07-13

    We propose a scheme for the distillation of partially entangled two-photon Bell and three-photon W states using metamaterials. The distillation of partially entangled Bell states is achieved by using two metamaterials with polarization dependence, one of which is rotated by π/2 around the direction of propagation of the photons. On the other hand, the distillation of three-photon W states is achieved by using one polarization dependent metamaterial and two polarization independent metamaterials. Upon transmission of the photons of the partially entangled states through the metamaterials the entanglement of the states increases and they become distilled. This work opens up new directions in quantum optical state engineering by showing how metamaterials can be used to carry out a quantum information processing task.

  18. Entanglement distribution in quantum networks

    International Nuclear Information System (INIS)

    This Thesis contributes to the theory of entanglement distribution in quantum networks, analyzing the generation of long-distance entanglement in particular. We consider that neighboring stations share one partially entangled pair of qubits, which emphasizes the difficulty of creating remote entanglement in realistic settings. The task is then to design local quantum operations at the stations, such that the entanglement present in the links of the whole network gets concentrated between few parties only, regardless of their spatial arrangement. First, we study quantum networks with a two-dimensional lattice structure, where quantum connections between the stations (nodes) are described by non-maximally entangled pure states (links). We show that the generation of a perfectly entangled pair of qubits over an arbitrarily long distance is possible if the initial entanglement of the links is larger than a threshold. This critical value highly depends on the geometry of the lattice, in particular on the connectivity of the nodes, and is related to a classical percolation problem. We then develop a genuine quantum strategy based on multipartite entanglement, improving both the threshold and the success probability of the generation of long-distance entanglement. Second, we consider a mixed-state definition of the connections of the quantum networks. This formalism is well-adapted for a more realistic description of systems in which noise (random errors) inevitably occurs. New techniques are required to create remote entanglement in this setting, and we show how to locally extract and globally process some error syndromes in order to create useful long-distance quantum correlations. Finally, we turn to networks that have a complex topology, which is the case for most real-world communication networks such as the Internet for instance. Besides many other characteristics, these systems have in common the small-world feature, stating that any two nodes are separated by a

  19. Entanglement distribution in quantum networks

    Energy Technology Data Exchange (ETDEWEB)

    Perseguers, Sebastien

    2010-04-15

    This Thesis contributes to the theory of entanglement distribution in quantum networks, analyzing the generation of long-distance entanglement in particular. We consider that neighboring stations share one partially entangled pair of qubits, which emphasizes the difficulty of creating remote entanglement in realistic settings. The task is then to design local quantum operations at the stations, such that the entanglement present in the links of the whole network gets concentrated between few parties only, regardless of their spatial arrangement. First, we study quantum networks with a two-dimensional lattice structure, where quantum connections between the stations (nodes) are described by non-maximally entangled pure states (links). We show that the generation of a perfectly entangled pair of qubits over an arbitrarily long distance is possible if the initial entanglement of the links is larger than a threshold. This critical value highly depends on the geometry of the lattice, in particular on the connectivity of the nodes, and is related to a classical percolation problem. We then develop a genuine quantum strategy based on multipartite entanglement, improving both the threshold and the success probability of the generation of long-distance entanglement. Second, we consider a mixed-state definition of the connections of the quantum networks. This formalism is well-adapted for a more realistic description of systems in which noise (random errors) inevitably occurs. New techniques are required to create remote entanglement in this setting, and we show how to locally extract and globally process some error syndromes in order to create useful long-distance quantum correlations. Finally, we turn to networks that have a complex topology, which is the case for most real-world communication networks such as the Internet for instance. Besides many other characteristics, these systems have in common the small-world feature, stating that any two nodes are separated by a

  20. Mixtures of maximally entangled pure states

    Science.gov (United States)

    Flores, M. M.; Galapon, E. A.

    2016-09-01

    We study the conditions when mixtures of maximally entangled pure states remain entangled. We found that the resulting mixed state remains entangled when the number of entangled pure states to be mixed is less than or equal to the dimension of the pure states. For the latter case of mixing a number of pure states equal to their dimension, we found that the mixed state is entangled provided that the entangled pure states to be mixed are not equally weighted. We also found that one can restrict the set of pure states that one can mix from in order to ensure that the resulting mixed state is genuinely entangled. Also, we demonstrate how these results could be applied as a way to detect entanglement in mixtures of the entangled pure states with noise.

  1. Purification of Logic-Qubit Entanglement.

    Science.gov (United States)

    Zhou, Lan; Sheng, Yu-Bo

    2016-01-01

    Recently, the logic-qubit entanglement shows its potential application in future quantum communication and quantum network. However, the entanglement will suffer from the noise and decoherence. In this paper, we will investigate the first entanglement purification protocol for logic-qubit entanglement. We show that both the bit-flip error and phase-flip error in logic-qubit entanglement can be well purified. Moreover, the bit-flip error in physical-qubit entanglement can be completely corrected. The phase-flip in physical-qubit entanglement error equals to the bit-flip error in logic-qubit entanglement, which can also be purified. This entanglement purification protocol may provide some potential applications in future quantum communication and quantum network. PMID:27377165

  2. Highly entangled states with almost no secrecy.

    Science.gov (United States)

    Christandl, Matthias; Schuch, Norbert; Winter, Andreas

    2010-06-18

    In this Letter we illuminate the relation between entanglement and secrecy by providing the first example of a quantum state that is highly entangled, but from which, nevertheless, almost no secrecy can be extracted. More precisely, we provide two bounds on the bipartite entanglement of the totally antisymmetric state in dimension d×d. First, we show that the amount of secrecy that can be extracted from the state is low; to be precise it is bounded by O(1/d). Second, we show that the state is highly entangled in the sense that we need a large amount of singlets to create the state: entanglement cost is larger than a constant, independent of d. In order to obtain our results we use representation theory, linear programming, and the entanglement measure known as squashed entanglement. Our findings also clarify the relation between the squashed entanglement and the relative entropy of entanglement. PMID:20867285

  3. Experimental implementation of a NMR entanglement witness

    CERN Document Server

    Filgueiras, J G; Auccaise, R E; Vianna, R O; Sarthour, R S; Oliveira, I S

    2012-01-01

    Entanglement witnesses (EW) allow the detection of entanglement in a quantum system, from the measurement of some few observables. They do not require the complete determination of the quantum state, which is regarded as a main advantage. On this paper it is experimentally analyzed an entanglement witness recently proposed in the context of Nuclear Magnetic Resonance (NMR) experiments to test it in some Bell-diagonal states. We also propose some optimal entanglement witness for Bell-diagonal states. The efficiency of the two types of EW's are compared to a measure of entanglement with tomographic cost, the generalized robustness of entanglement. It is used a GRAPE algorithm to produce an entangled state which is out of the detection region of the EW for Bell-diagonal states. Upon relaxation, the results show that there is a region in which both EW fails, whereas the generalized robustness still shows entanglement, but with the entanglement witness proposed here with a better performance.

  4. Stability of Pairwise Entanglement in Decoherence Environment

    Institute of Scientific and Technical Information of China (English)

    蔡建明

    2004-01-01

    @@ Consider the dynamics of a bipartite entangled system in the decoherence environment, we investigate the stability of pairwise entanglement under decoherence.We find that with the same initial entanglement, the lifetime of entanglement in pure states and some mixed states is the longest.We call these special entangled states as Decoherence Path States (DPS).Besides, we present simple analytic evolution equations of the entanglement in these states.The lifetimes can also be obtained easily.Furthermore, we also study the stability of the nearest neighbor entanglement in the ground state of an antiferromagnetic spin-1/2 ring.Coincidentally, the conclusion is that it is as stable as Decoherence Path States.Thus the nearest neighbor entanglement in the ground state is not maximized but it is the most stable.This interesting result links the energy and entanglement in a spin system from a new point of view.

  5. Purification of Logic-Qubit Entanglement.

    Science.gov (United States)

    Zhou, Lan; Sheng, Yu-Bo

    2016-07-05

    Recently, the logic-qubit entanglement shows its potential application in future quantum communication and quantum network. However, the entanglement will suffer from the noise and decoherence. In this paper, we will investigate the first entanglement purification protocol for logic-qubit entanglement. We show that both the bit-flip error and phase-flip error in logic-qubit entanglement can be well purified. Moreover, the bit-flip error in physical-qubit entanglement can be completely corrected. The phase-flip in physical-qubit entanglement error equals to the bit-flip error in logic-qubit entanglement, which can also be purified. This entanglement purification protocol may provide some potential applications in future quantum communication and quantum network.

  6. Holographic Entanglement Entropy in NMG

    CERN Document Server

    Basanisi, Luca

    2016-01-01

    In this paper, we show that a higher derivative theory, such as New Massive Gravity, allows the existence of new entangling surfaces with non-zero extrinsic curvature. We perform the analysis for Lifshitz and Warped $AdS$ space times, revealing the role of the higher derivative contributions in the calculation of the holographic entanglement entropy. Finally, as an outcome of our holographic analysis we briefly comment on the dual boundary theory.

  7. Entanglement for all quantum states

    Energy Technology Data Exchange (ETDEWEB)

    De la Torre, A C; Goyeneche, D; Leitao, L [IFIMAR, (CONICET-UNMDP) Departamento de Fisica, Universidad Nacional de Mar del Plata, Funes 3350, 7600 Mar del Plata (Argentina)], E-mail: delatorre@mdp.edu.ar, E-mail: dgoyene@mdp.edu.ar, E-mail: lleitao@mdp.edu.ar

    2010-03-15

    It is shown that a state that is factorizable in the Hilbert space corresponding to some choice of degrees of freedom becomes entangled for a different choice of degrees of freedom. Therefore, entanglement is not a special case but is ubiquitous in quantum systems. Simple examples are calculated and a general proof is provided. The physical relevance of the change of tensor product structure is mentioned.

  8. Entanglement for all quantum states

    CERN Document Server

    de la Torre, A C; Leitao, L; 10.1088/0143-0807/31/2/010

    2010-01-01

    It is shown that a state that is factorizable in the Hilbert space corresponding to some choice of degrees of freedom, becomes entangled for a different choice of degrees of freedom. Therefore, entanglement is not a special case but is ubiquitous in quantum systems. Simple examples are calculated and a general proof is provided. The physical relevance of the change of tensor product structure is mentioned.

  9. Entanglement witnessing in superconducting beamsplitters

    Science.gov (United States)

    Soller, H.; Hofstetter, L.; Reeb, D.

    2013-06-01

    We analyse a large class of superconducting beamsplitters for which the Bell parameter (CHSH violation) is a simple function of the spin detector efficiency. For these superconducting beamsplitters all necessary information to compute the Bell parameter can be obtained in Y-junction setups for the beamsplitter. Using the Bell parameter as an entanglement witness, we propose an experiment which allows to verify the presence of entanglement in Cooper pair splitters.

  10. Entanglement swapping using continuous variables

    OpenAIRE

    Polkinghorne, R. E. S.; Ralph, T.C.

    1999-01-01

    We investigate the efficacy with which entanglement can be teleported using a continuous measurement scheme. We show that by using the correct gain for the classical channel the degree of violation of locality that can be demonstrated (using a CH type inequality) is {\\it not} a function of the level of entanglement squeezing used in the teleportation. This is possible because a gain condition can always be choosen such that passage through the teleporter is equivalent to pure attenuation of t...

  11. Quantum Entanglement and Communication Complexity

    OpenAIRE

    Buhrman, Harry; Cleve, Richard; Van Dam

    1997-01-01

    We consider a variation of the multi-party communication complexity scenario where the parties are supplied with an extra resource: particles in an entangled quantum state. We show that, although a prior quantum entanglement cannot be used to simulate a communication channel, it can reduce the communication complexity of functions in some cases. Specifically, we show that, for a particular function among three parties (each of which possesses part of the function's input), a prior quantum ent...

  12. Multipartite geometric entanglement in finite size XY model

    International Nuclear Information System (INIS)

    We investigate the behavior of the multipartite entanglement in the finite size XY model by means of the hierarchical geometric measure of entanglement. By selecting specific components of the hierarchy, we study both global entanglement and genuinely multipartite entanglement.

  13. Multipartite geometric entanglement in finite size XY model

    Energy Technology Data Exchange (ETDEWEB)

    Blasone, Massimo; Dell' Anno, Fabio; De Siena, Silvio; Giampaolo, Salvatore Marco; Illuminati, Fabrizio, E-mail: blasone@sa.infn.i [Dipartimento di Matematica e Informatica, Universita degli Studi di Salerno, Via Ponte don Melillo, I-84084 Fisciano (Italy)

    2009-06-01

    We investigate the behavior of the multipartite entanglement in the finite size XY model by means of the hierarchical geometric measure of entanglement. By selecting specific components of the hierarchy, we study both global entanglement and genuinely multipartite entanglement.

  14. Quantum Entanglement and Chemical Reactivity.

    Science.gov (United States)

    Molina-Espíritu, M; Esquivel, R O; López-Rosa, S; Dehesa, J S

    2015-11-10

    The water molecule and a hydrogenic abstraction reaction are used to explore in detail some quantum entanglement features of chemical interest. We illustrate that the energetic and quantum-information approaches are necessary for a full understanding of both the geometry of the quantum probability density of molecular systems and the evolution of a chemical reaction. The energy and entanglement hypersurfaces and contour maps of these two models show different phenomena. The energy ones reveal the well-known stable geometry of the models, whereas the entanglement ones grasp the chemical capability to transform from one state system to a new one. In the water molecule the chemical reactivity is witnessed through quantum entanglement as a local minimum indicating the bond cleavage in the dissociation process of the molecule. Finally, quantum entanglement is also useful as a chemical reactivity descriptor by detecting the transition state along the intrinsic reaction path in the hypersurface of the hydrogenic abstraction reaction corresponding to a maximally entangled state.

  15. Proposal for quantum entanglement of six photons

    Institute of Scientific and Technical Information of China (English)

    You Jun; Li Jia-Hua; Xie Xiao-Tao

    2005-01-01

    We propose a different scheme to achieve six-photon entangled states based entirely on the concept of quantum erasure. To begin with, a scheme for making use of a group of four entangled photons to generate six-photon entangled states is presented. Then, with the same technique, the preparation of the six-photon entanglement from five-particle entanglement which is then combined with Bell states is considered. Our experimental methods can be used for the investigations of measurement-based quantum computation and multi-party quantum communication. We find that the success probability is determined by the small coefficients of the entangled states.

  16. General polygamy inequality of multi-party quantum entanglement

    CERN Document Server

    Kim, Jeong San

    2012-01-01

    Using entanglement of assistance, we establish a general polygamy inequality of multi-party entanglement in arbitrary dimensional quantum systems. For multi-party closed quantum systems, we relate our result with the monogamy of entanglement to show that the entropy of entanglement is an universal entanglement measure that bounds both monogamy and polygamy of multi-party quantum entanglement.

  17. Entanglement Properties in Two-Component Bose-Einstein Condensate

    Science.gov (United States)

    Jiang, Di-You

    2016-05-01

    We investigate entanglement inseparability and bipartite entanglement of in two-component Bose-Einstein condensate in the presence of the nonlinear interatomic interaction, interspecies interaction. Entanglement inseparability and bipartite entanglement have the similar properties. More entanglement can be generated by adjusting the nonlinear interatomic interaction and control the time interval of the entanglement by adjusting interspecies interaction.

  18. Entanglement Properties in Two-Component Bose-Einstein Condensate

    Science.gov (United States)

    Jiang, Di-You

    2016-10-01

    We investigate entanglement inseparability and bipartite entanglement of in two-component Bose-Einstein condensate in the presence of the nonlinear interatomic interaction, interspecies interaction. Entanglement inseparability and bipartite entanglement have the similar properties. More entanglement can be generated by adjusting the nonlinear interatomic interaction and control the time interval of the entanglement by adjusting interspecies interaction.

  19. [Histological structure of tripartite mushroom bodies in ground beetles (Insecta, Coleoptera: Carabidae)].

    Science.gov (United States)

    Panov, A A

    2013-01-01

    Contrary to members of the suborder Polyphaga; ground beetles have been found to possess tripartite mushroom bodies, which are poorly developed in members of basal taxa and maximally elaborated in evolutionarily advanced groups. Nevertheless, they do not reach the developmental stage, which has been previously found in particular families of beetles. It has been pointed out that anew formation of the Kenyon cells occurs during at least the first months of adult life, and inactive neuroblasts are found even in one-year-old beetles. It has been suggested that there is a relation between the Kenyon cell number and development of the centers of Kenyon cell new-formation.

  20. Generation and Purification of Atomic Entangled States

    Institute of Scientific and Technical Information of China (English)

    YANG Ming; SONG Wei; LI Yingqun; SHI Shouhua; CAO Zhuoliang

    2004-01-01

    @@ Entangled state plays a more and more important role in quantum information, so the generation of entangled state is of scientific value and practical significance.Although the experimental realization of entangled pairs of atoms and polarized photons have been reported recently, the current preparation schemes cannot meet the need of the practical application of entangled state in Quantum Communication and Quantum Computation.At the same time, resulting from the coupling between the quantum systems and its environment, decoherence of the quantum systems is unavoidable, which sets a vital obstacle on the way of the application of entanglement.There exist some entanglement generation and purification schemes, but the range of its application is relative small.So we proposed a more efficient scheme for entanglement generation and purification.The scheme is mainly based on the combination of linear optics and Cavity QED technique.The entanglement generation scheme can entangle two atoms by using MZI plus an optical cavity.Pure maximally entangled atomic states can be generated from product states or mixed states.Using a MZI, we can extract not only two-atom near-maximally entangled states but also four-atom maximally entangled states from less entangled pure or mixed states.

  1. Entangled Harmonic Oscillators and Space-time Entanglement

    CERN Document Server

    Baskal, Sibel; Noz, Marilyn E

    2016-01-01

    The mathematical basis for the Gaussian entanglement is discussed in detail, as well as its implications in the internal space-time structure of relativistic extended particles. It is shown that the Gaussian entanglement shares the same set of mathematical formulas with the harmonic oscillator in the Lorentz-covariant world. It is thus possible to transfer the concept of entanglement to the Lorentz-covariant picture of the bound state which requires both space and time separations between two constituent particles. These space and time variables become entangled as the bound state moves with a relativistic speed. It is shown also that our inability to measure the time-separation variable leads to an entanglement entropy together with a rise in the temperature of the bound state. As was noted by Paul A. M. Dirac in 1963, the system of two oscillators contains the symmetries of O(3,2) de Sitter group containing two O(3,1) Lorentz groups as its subgroups. Dirac noted also that the system contains the symmetry of...

  2. Teleportation of N-particle entangled W state via entanglement swapping

    Institute of Scientific and Technical Information of China (English)

    Zhan You-Bang

    2004-01-01

    A scheme for teleporting an unknown N-particle entangled W state is proposed via entanglement swapping. In this scheme, N maximally entangled particle pairs are used as quantum channel. As a special case, the teleportation of an unknown four-particle entangled W state is studied.

  3. Studies of Quantum Entanglement in 100 Dimensions

    CERN Document Server

    Krenn, Mario; Fickler, Robert; Lapkiewicz, Radek; Ramelow, Sven; Zeilinger, Anton

    2013-01-01

    Entangled quantum systems have properties that have fundamentally overthrown a classical worldview. Increasing the complexity of entangled states by expanding their dimensionality not only allows the implementation of novel fundamental tests of nature, but also enables genuinely new protocols for quantum communication and quantum computation. In our experiment we generate photons entangled in angular momentum and radial modes. We unambiguously verify that these photons are highly entangled in most 2x2-dimensional subspaces of a 34.500-dimensional Hilbert space, which suggests the generation of genuine high dimensional entanglement. We develop a source-independent criterion that reveals an entanglement dimensionality of over 100. For the criterion we propose a mathematical conjecture for which we have strong numerical evidence and theoretical arguments. Furthermore, the size of the entangled Hilbert space is of the same magnitude as the largest entangled multipartite systems experimentally measured so far. Thi...

  4. Experimental entanglement distillation of mesoscopic quantum states

    DEFF Research Database (Denmark)

    Dong, Ruifang; Lassen, Mikael Østergaard; Heersink, Joel;

    2008-01-01

    The distribution of entangled states between distant parties in an optical network is crucial for the successful implementation of various quantum communication protocols such as quantum cryptography, teleportation and dense coding(1-3). However, owing to the unavoidable loss in any real optical...... channel, the distribution of loss-intolerant entangled states is inevitably afflicted by decoherence, which causes a degradation of the transmitted entanglement. To combat the decoherence, entanglement distillation, a process of extracting a small set of highly entangled states from a large set of less...... entangled states, can be used(4-14). Here we report on the distillation of deterministically prepared light pulses entangled in continuous variables that have undergone non-Gaussian noise. The entangled light pulses(15-17) are sent through a lossy channel, where the transmission is varying in time similarly...

  5. HMSRP Hawaiian Monk Seal Entanglement data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The data set contains records of all entanglements of Hawaiian monk seals in marine debris. The data set comprises records of seals entangled by derelict fishing...

  6. Separability criteria for genuine multiparticle entanglement

    NARCIS (Netherlands)

    Guehne, O.; Seevinck, M.P.

    2010-01-01

    We present a method to derive separability criteria for different classes of multiparticle entanglement, especially genuine multiparticle entanglement. The resulting criteria are necessary and sufficient for certain families of states. This, for example, completely solves the problem of classifying

  7. Experimental distribution of entanglement with separable carriers.

    Science.gov (United States)

    Fedrizzi, A; Zuppardo, M; Gillett, G G; Broome, M A; Almeida, M P; Paternostro, M; White, A G; Paterek, T

    2013-12-01

    The key requirement for quantum networking is the distribution of entanglement between nodes. Surprisingly, entanglement can be generated across a network without direct transfer-or communication-of entanglement. In contrast to information gain, which cannot exceed the communicated information, the entanglement gain is bounded by the communicated quantum discord, a more general measure of quantum correlation that includes but is not limited to entanglement. Here, we experimentally entangle two communicating parties sharing three initially separable photonic qubits by exchange of a carrier photon that is unentangled with either party at all times. We show that distributing entanglement with separable carriers is resilient to noise and in some cases becomes the only way of distributing entanglement through noisy environments.

  8. Entanglement tsunami: universal scaling in holographic thermalization.

    Science.gov (United States)

    Liu, Hong; Suh, S Josephine

    2014-01-10

    We consider the time evolution of entanglement entropy after a global quench in a strongly coupled holographic system, whose subsequent equilibration is described in the gravity dual by the gravitational collapse of a thin shell of matter resulting in a black hole. In the limit of large regions of entanglement, the evolution of entanglement entropy is controlled by the geometry around and inside the event horizon of the black hole, resulting in regimes of pre-local-equilibration quadratic growth (in time), post-local-equilibration linear growth, a late-time regime in which the evolution does not carry memory of the size and shape of the entangled region, and a saturation regime with critical behavior resembling those in continuous phase transitions. Collectively, these regimes suggest a picture of entanglement growth in which an "entanglement tsunami" carries entanglement inward from the boundary. We also make a conjecture on the maximal rate of entanglement growth in relativistic systems.

  9. Entanglement, Tensor Networks and Black Hole Horizons

    CERN Document Server

    Molina-Vilaplana, Javier

    2014-01-01

    We elaborate on a previous proposal by Hartman and Maldacena on a tensor network which accounts for the scaling of the entanglement entropy in a system at a finite temperature. In this construction, the ordinary entanglement renormalization flow given by the class of tensor networks known as the Multi Scale Entanglement Renormalization Ansatz (MERA), is supplemented by an additional entanglement structure at the length scale fixed by the temperature. The network comprises two copies of a MERA circuit with a fixed number of layers and a pure matrix product state which joins both copies by entangling the infrared degrees of freedom of both MERA networks. The entanglement distribution within this bridge state defines reduced density operators on both sides which cause analogous effects to the presence of a black hole horizon when computing the entanglement entropy at finite temperature in the AdS/CFT correspondence. The entanglement and correlations during the thermalization process of a system after a quantum q...

  10. Entanglement Dynamics of Electrons and Photons

    Science.gov (United States)

    Wu, Xiang-Yao; Liu, Xiao-Jing; Lu, Jing-Bin; Li, Tian-Shun; Zhang, Si-Qi; Liang, Yu; Ma, Ji; Li, Hong

    2016-08-01

    Entanglement is a fundamental feature of quantum theory as well as a key resource for quantum computing and quantum communication, but the entanglement mechanism has not been found at present. We think when the two subsystems exist interaction directly or indirectly, they can be in entanglement state. such as, in the Jaynes-Cummings model, the entanglement between the atom and the light field comes from their interaction. In this paper, we have studied the entanglement mechanism of electron-electron and photon-photon, which are from the spin-spin interaction. We found their total entanglement states are relevant both space state and spin state. When two electrons or two photons are far away, their entanglement states should be disappeared even if their spin state is entangled.

  11. Entanglement properties between two atoms in the binomial optical field interacting with two entangled atoms

    Institute of Scientific and Technical Information of China (English)

    刘堂昆; 张康隆; 陶宇; 单传家; 刘继兵

    2016-01-01

    The temporal evolution of the degree of entanglement between two atoms in a system of the binomial optical field interacting with two arbitrary entangled atoms is investigated. The influence of the strength of the dipole–dipole interaction between two atoms, probabilities of the Bernoulli trial, and particle number of the binomial optical field on the temporal evolution of the atomic entanglement are discussed. The result shows that the two atoms are always in the entanglement state. Moreover, if and only if the two atoms are initially in the maximally entangled state, the entanglement evolution is not affected by the parameters, and the degree of entanglement is always kept as 1.

  12. Experimental Creation of Entanglement Using Separable States

    Institute of Scientific and Technical Information of China (English)

    YANG Xiao-Dong; WANG An-Min; MA Xiao-San; XU Feng; YOU Hao; NIU Wan-Qing

    2005-01-01

    @@ We experimentally demonstrate that the entanglement can be created on two distant particles using separable states. We show that two working particles can share some entanglement, while one ancilla particle always remains separable from the two working particles during the experimental evolution of the system. Our experiment can be viewed as a benchmark to illustrate the idea that no prior entanglement is necessary to create entanglement.

  13. Energy entanglement relation for quantum energy teleportation

    Energy Technology Data Exchange (ETDEWEB)

    Hotta, Masahiro, E-mail: hotta@tuhep.phys.tohoku.ac.j [Department of Physics, Faculty of Science, Tohoku University, Sendai 980-8578 (Japan)

    2010-07-26

    Protocols of quantum energy teleportation (QET), while retaining causality and local energy conservation, enable the transportation of energy from a subsystem of a many-body quantum system to a distant subsystem by local operations and classical communication through ground-state entanglement. We prove two energy-entanglement inequalities for a minimal QET model. These relations help us to gain a profound understanding of entanglement itself as a physical resource by relating entanglement to energy as an evident physical resource.

  14. Entanglement induced Sub-Planck structures

    OpenAIRE

    Bhatt, Jitesh R.; Panigrahi, Prasanta K.; Vyas, Manan

    2007-01-01

    We study Wigner function of a system describing entanglement of two cat-states. Quantum interferece arising due to entanglement is shown to produce sub-Planck structures in the phase-space plots of the Wigner function. Origin of these structures in our case depends on entanglement unlike those in Zurek \\cite{Zurek}. It is argued that the entangled cat-states are better suited for carrying out precision measurements.

  15. Entanglement of Polarization and Orbital Angular Momentum

    OpenAIRE

    Bhatti, Daniel; von Zanthier, Joachim; Agarwal, Girish S.

    2015-01-01

    We investigate two-photon entangled states using two important degrees of freedom of the electromagnetic field, namely orbital angular momentum (OAM) and spin angular momentum. For photons propagating in the same direction we apply the idea of $\\textit{entanglement duality}$ and develop schemes to do $\\textit{entanglement sorting}$ based either on OAM or polarization. In each case the entanglement is tested using appropriate witnesses. We finally present generalizations of these ideas to thre...

  16. Quantum entanglement and the Bell matrix

    Science.gov (United States)

    Lai, Anna Chiara; Pedicini, Marco; Rognone, Silvia

    2016-07-01

    We present a class of maximally entangled states generated by a high-dimensional generalisation of the cnot gate. The advantage of our constructive approach is the simple algebraic structure of both entangling operator and resulting entangled states. In order to show that the method can be applied to any dimension, we introduce new sufficient conditions for global and maximal entanglement with respect to Meyer and Wallach's measure.

  17. Entanglement entropy of electronic excitations.

    Science.gov (United States)

    Plasser, Felix

    2016-05-21

    A new perspective into correlation effects in electronically excited states is provided through quantum information theory. The entanglement between the electron and hole quasiparticles is examined, and it is shown that the related entanglement entropy can be computed from the eigenvalue spectrum of the well-known natural transition orbital (NTO) decomposition. Non-vanishing entanglement is obtained whenever more than one NTO pair is involved, i.e., in the case of a multiconfigurational or collective excitation. An important implication is that in the case of entanglement it is not possible to gain a complete description of the state character from the orbitals alone, but more specific analysis methods are required to decode the mutual information between the electron and hole. Moreover, the newly introduced number of entangled states is an important property by itself giving information about excitonic structure. The utility of the formalism is illustrated in the cases of the excited states of two interacting ethylene molecules, the conjugated polymer para-phenylene vinylene, and the naphthalene molecule.

  18. Entanglement Fidelity as a Measure of Preservation of Entanglement in Local Noisy Process

    Institute of Scientific and Technical Information of China (English)

    XIANG Yang; XIONG Shi-Jie

    2011-01-01

    A new formula of entanglement fidelity has been introduced, which can serve as a measure of the preservation of entanglement between two initially entangled subsystems exposed to local noisy environments. For a simple model we derive analytic expressions of concurrence and entanglement fidelity and draw the relationship between them. We find that such entanglement fidelity exhibits the behavior similar to that of the concurrence in quantum evolutions.

  19. Concentration of Unknown Atomic Entangled States via Entanglement Swapping through Raman Interaction

    Institute of Scientific and Technical Information of China (English)

    ZOU Jin-Hua; HU Xiang-Ming

    2008-01-01

    We show that entanglement concentration of unknown atomic entangled states is achieved via the implementation of entanglement swapping based on Raman interaction in cavity QED. A maximally entangled state is obtained from a pair of partially entangled states probabilistically. Due to Raman interaction of two atoms with a cavity mode and an external driving field, the influence of atomic spontaneous emission has been eliminated. Because of the virtual excitation of the cavity mode, the decoherence of cavity decay and thermal field is neglected.

  20. Entanglement swapping between atom and cavity and generation of entangled state of cavity fields

    Institute of Scientific and Technical Information of China (English)

    Chen Ai-Xi; Deng Li

    2007-01-01

    This paper proposes a scheme where entanglement swapping between atom and cavity can be realized. A-type three-level atoms interacting resonantly with cavity field are considered. By detecting atom and cavity field, it realizes entanglement swapping between atom and cavity. It uses the technique of entanglement swapping to generate an entangled state of two cavity fields by measuring on atoms. It discusses the experimental feasibility of the proposed scheme and application of entangled state of cavity fields.

  1. Toward a Resolution of the Tripartite Structure of Subjective Well-Being.

    Science.gov (United States)

    Busseri, Michael A

    2015-08-01

    Diener (1984) introduced the concept of "subjective well-being" (SWB) as comprising three primary components: life satisfaction (LS), positive affect (PA), and negative affect (NA). Busseri and Sadava (2011) identified multiple competing conceptualizations of the tripartite structure of SWB and delineated problems with this ambiguity with respect to defining, operationalizing, analyzing, and synthesizing information concerning SWB. The present work provides an empirical evaluation of four competing structural approaches in which SWB is conceptualized variously as three separate components (Model 1), a hierarchical construct (Model 2), a causal system (Model 3), and a composite (Model 4). Data from a longitudinal study of middle-aged Americans (N = 3,707; 20-75 years old, 55% female, 94% Caucasian) were used to examine the relatedness versus independence of the three SWB components within and across time, as well as predictive effects on SWB. The various structural models differ in how adequately they accommodate the joint relatedness/independence of the SWB components and lead to different conclusions concerning predictive effects on SWB. Conceptual and empirical considerations are considered within and across models. Implications and next steps for further understanding the tripartite structure of SWB are discussed.

  2. Remarks on entanglement assisted classical capacity

    OpenAIRE

    Fan, Heng

    2003-01-01

    The property of the optimal signal ensembles of entanglement assisted channel capacity is studied. A relationship between entanglement assisted channel capacity and one-shot capacity of unassisted channel is obtained. The data processing inequalities, convexity and additivity of the entanglement assisted channel capacity are reformulated by simple methods.

  3. Use of entanglement in quantum optics

    Science.gov (United States)

    Horne, Michael A.; Bernstein, Herbert J.; Greenberger, Daniel M.; Zeilinger, Anton

    1992-01-01

    Several recent demonstrations of two-particle interferometry are reviewed and shown to be examples of either color entanglement or beam entanglement. A device, called a number filter, is described and shown to be of value in preparing beam entanglements. Finally, we note that all three concepts (color and beam entaglement, and number filtering) may be extended to three or more particles.

  4. Polygamy of entanglement in multipartite quantum systems

    Science.gov (United States)

    Kim, Jeong San

    2009-08-01

    We show that bipartite entanglement distribution (or entanglement of assistance) in multipartite quantum systems is by nature polygamous. We first provide an analytical upper bound for the concurrence of assistance in bipartite quantum systems and derive a polygamy inequality of multipartite entanglement in arbitrary-dimensional quantum systems.

  5. Remarks on entanglement assisted classical capacity

    International Nuclear Information System (INIS)

    The property of the optimal signal ensembles of entanglement assisted channel capacity is studied. A relationship between entanglement assisted channel capacity and one-shot capacity of unassisted channel is obtained. The data processing inequalities, convexity and additivity of the entanglement assisted channel capacity are reformulated by simple methods

  6. Remarks on entanglement assisted classical capacity

    Science.gov (United States)

    Fan, Heng

    2003-06-01

    The property of the optimal signal ensembles of entanglement assisted channel capacity is studied. A relationship between entanglement assisted channel capacity and one-shot capacity of unassisted channel is obtained. The data processing inequalities, convexity and additivity of the entanglement assisted channel capacity are reformulated by simple methods.

  7. Universal corner contributions to entanglement negativity

    Science.gov (United States)

    Kim, Keun-Young; Niu, Chao; Pang, Da-Wei

    2016-09-01

    It has been realised that corners in entangling surfaces can induce new universal contributions to the entanglement entropy and Rényi entropy. In this paper we study universal corner contributions to entanglement negativity in three- and four-dimensional CFTs using both field theory and holographic techniques. We focus on the quantity χ defined by the ratio of the universal part of the entanglement negativity over that of the entanglement entropy, which may characterise the amount of distillable entanglement. We find that for most of the examples χ takes bigger values for singular entangling regions, which may suggest increase in distillable entanglement. However, there also exist counterexamples where distillable entanglement decreases for singular surfaces. We also explore the behaviour of χ as the coupling varies and observe that for singular entangling surfaces, the amount of distillable entanglement is mostly largest for free theories, while counterexample exists for free Dirac fermion in three dimensions. For holographic CFTs described by higher derivative gravity, χ may increase or decrease, depending on the sign of the relevant parameters. Our results may reveal a more profound connection between geometry and distillable entanglement.

  8. Entanglement purification for high dimensional multipartite systems

    CERN Document Server

    Cheong, Y W; Lee, J; Lee, S W; Cheong, Yong Wook; Lee, Hai-Woong; Lee, Jinhyoung; Lee, Seung-Woo

    2005-01-01

    If entangled states are transmitted through noisy quantum channel, then the correlation properties of the states can be changed. This fact can be usefully employed to error detection, which is closely linked to entanglement purification protocols (EPPs). We propose new EPPs which extract a generalized GHZ state from ensemble of mixed entangled state with a framework of error detection.

  9. Remarks on entanglement assisted classical capacity

    CERN Document Server

    Fan, H

    2003-01-01

    The property of the optimal signal ensembles of entanglement assisted channel capacity is studied. A relationship between entanglement assisted channel capacity and capacities of unassisted and enviornment channels is obtained. The data processing inequalities, convexity and additivity of the entanglement assisted channel capacity are reformulated by simple methods.

  10. Balance Problems

    Science.gov (United States)

    ... often, it could be a sign of a balance problem. Balance problems can make you feel unsteady or as ... fall-related injuries, such as hip fracture. Some balance problems are due to problems in the inner ...

  11. Tensor Networks for Entanglement Evolution

    CERN Document Server

    Meznaric, Sebastian

    2012-01-01

    The intuitiveness of the tensor network graphical language is becoming well known through its use in numerical simulations using methods from tensor network algorithms. Recent times have also seen rapid progress in developing equations of motion to predict the time evolution of quantum entanglement [Nature Physics, 4(\\textbf{4}):99, 2008]. Here we cast these recent results into a tensor network framework and in doing so, construct a theory which exposes the topological equivalence of the evolution of a family of entanglement monotones in arbitrary dimensions. This unification was accomplished by tailoring a form of channel state duality through the interpretation of graphical tensor network rewrite rules. The introduction of tensor network methods to the theory of entanglement evolution opens the door to apply methods from the rapidly evolving area known as tensor network states.

  12. Entanglement Entropy for Singular Surfaces

    CERN Document Server

    Myers, Robert C

    2012-01-01

    We study entanglement entropy for regions with a singular boundary in higher dimensions using the AdS/CFT correspondence and find that various singularities make new universal contributions. When the boundary CFT has an even spacetime dimension, we find that the entanglement entropy of a conical surface contains a term quadratic in the logarithm of the UV cut-off. In four dimensions, the coefficient of this contribution is proportional to the central charge 'c'. A conical singularity in an odd number of spacetime dimensions contributes a term proportional to the logarithm of the UV cut-off. We also study the entanglement entropy for various boundary surfaces with extended singularities. In these cases, similar universal terms may appear depending on the dimension and curvature of the singular locus.

  13. Relativity of pure states entanglement

    CERN Document Server

    Zyczkowski, K; Zyczkowski, Karol; Bengtsson, Ingemar

    2002-01-01

    Entanglement of any pure state of an N times N bi-partite quantum system may be characterized by the vector of coefficients arising by its Schmidt decomposition. We analyze various measures of entanglement derived from the generalized entropies of the vector of Schmidt coefficients. For N >= 3 they generate different ordering in the set of pure states and for some states their ordering depends on the measure of entanglement used. This odd-looking property is acceptable, since these incomparable states cannot be transformed to each other with unit efficiency by any local operation. In analogy to special relativity the set of pure states equivalent under local unitaries has a causal structure so that at each point the set splits into three parts: the 'Future', the 'Past' and the set of noncomparable states.

  14. Entanglement entropy in particle decay

    CERN Document Server

    Lello, Louis; Holman, Richard

    2013-01-01

    The decay of a parent particle into two or more daughter particles results in an entangled quantum state, as a consequence of conservation laws in the decay process. We use the Wigner-Weisskopf formalism to construct an approximation to this state that evolves in time in a {\\em manifestly unitary} way. We then construct the entanglement entropy for one of the daughter particles by use of the reduced density matrix obtained by tracing out the unobserved states and follow its time evolution. We find that it grows over a time scale determined by the lifetime of the parent particle to a maximum, which when the width of the parent particle is narrow, describes the phase space distribution of maximally entangled Bell-like states.

  15. Entanglement in fermionic Fock space

    CERN Document Server

    Sárosi, Gábor

    2013-01-01

    We propose a generalization of the usual SLOCC and LU classification of entangled pure state fermionic systems based on the Spin group. Our generalization uses the fact that there is a representation of this group acting on the fermionic Fock space which when restricted to fixed particle number subspaces recovers naturally the usual SLOCC transformations. The new ingredient is the occurrence of Bogoliubov transformations of the whole Fock space changing the particle number. The classification scheme built on the Spin group prohibits naturally entanglement between states containing even and odd number of fermions. In our scheme the problem of classification of entanglement types boils down to the classification of spinors where totally separable states are represented by so called pure spinors. We construct the basic invariants of the Spin group and show how some of the known SLOCC invariants are just their special cases. As an example we present the classification of fermionic systems with a Fock space based ...

  16. Non-Gaussian entanglement swapping

    CERN Document Server

    Dell'Anno, F; Nocerino, G; De Siena, S; Illuminati, F

    2016-01-01

    We investigate the continuous-variable entanglement swapping protocol in a non-Gaussian setting, with non- Gaussian states employed either as entangled inputs and/or as swapping resources. The quality of the swapping protocol is assessed in terms of the teleportation fidelity achievable when using the swapped states as shared entangled resources in a teleportation protocol. We thus introduce a two-step cascaded quantum communication scheme that includes a swapping protocol followed by a teleportation protocol. The swapping protocol is fed by a general class of tunable non-Gaussian states, the squeezed Bell states, which, by means of controllable free parameters, allows for a continuous morphing from Gaussian twin beams up to maximally non-Gaussian squeezed number states. In the realistic instance, taking into account the effects of losses and imperfections, we show that as the input two-mode squeezing increases, optimized non-Gaussian swapping resources allow for a monotonically increasing enhancement of the ...

  17. Benchmarks and statistics of entanglement dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Tiersch, Markus

    2009-09-04

    In the present thesis we investigate how the quantum entanglement of multicomponent systems evolves under realistic conditions. More specifically, we focus on open quantum systems coupled to the (uncontrolled) degrees of freedom of an environment. We identify key quantities that describe the entanglement dynamics, and provide efficient tools for its calculation. For quantum systems of high dimension, entanglement dynamics can be characterized with high precision. In the first part of this work, we derive evolution equations for entanglement. These formulas determine the entanglement after a given time in terms of a product of two distinct quantities: the initial amount of entanglement and a factor that merely contains the parameters that characterize the dynamics. The latter is given by the entanglement evolution of an initially maximally entangled state. A maximally entangled state thus benchmarks the dynamics, and hence allows for the immediate calculation or - under more general conditions - estimation of the change in entanglement. Thereafter, a statistical analysis supports that the derived (in-)equalities describe the entanglement dynamics of the majority of weakly mixed and thus experimentally highly relevant states with high precision. The second part of this work approaches entanglement dynamics from a topological perspective. This allows for a quantitative description with a minimum amount of assumptions about Hilbert space (sub-)structure and environment coupling. In particular, we investigate the limit of increasing system size and density of states, i.e. the macroscopic limit. In this limit, a universal behaviour of entanglement emerges following a ''reference trajectory'', similar to the central role of the entanglement dynamics of a maximally entangled state found in the first part of the present work. (orig.)

  18. Benchmarks and statistics of entanglement dynamics

    International Nuclear Information System (INIS)

    In the present thesis we investigate how the quantum entanglement of multicomponent systems evolves under realistic conditions. More specifically, we focus on open quantum systems coupled to the (uncontrolled) degrees of freedom of an environment. We identify key quantities that describe the entanglement dynamics, and provide efficient tools for its calculation. For quantum systems of high dimension, entanglement dynamics can be characterized with high precision. In the first part of this work, we derive evolution equations for entanglement. These formulas determine the entanglement after a given time in terms of a product of two distinct quantities: the initial amount of entanglement and a factor that merely contains the parameters that characterize the dynamics. The latter is given by the entanglement evolution of an initially maximally entangled state. A maximally entangled state thus benchmarks the dynamics, and hence allows for the immediate calculation or - under more general conditions - estimation of the change in entanglement. Thereafter, a statistical analysis supports that the derived (in-)equalities describe the entanglement dynamics of the majority of weakly mixed and thus experimentally highly relevant states with high precision. The second part of this work approaches entanglement dynamics from a topological perspective. This allows for a quantitative description with a minimum amount of assumptions about Hilbert space (sub-)structure and environment coupling. In particular, we investigate the limit of increasing system size and density of states, i.e. the macroscopic limit. In this limit, a universal behaviour of entanglement emerges following a ''reference trajectory'', similar to the central role of the entanglement dynamics of a maximally entangled state found in the first part of the present work. (orig.)

  19. Classification of 4-qubit Entangled Graph States According to Bipartite Entanglement, Multipartite Entanglement and Non-local Properties

    Science.gov (United States)

    Assadi, Leila; Jafarpour, Mojtaba

    2016-07-01

    We use concurrence to study bipartite entanglement, Meyer-Wallach measure and its generalizations to study multi-partite entanglement and MABK and SASA inequalities to study the non-local properties of the 4-qubit entangled graph states, quantitatively. Then, we present 3 classifications, each one in accordance with one of the aforementioned properties. We also observe that the classification according to multipartite entanglement does exactly coincide with that according to nonlocal properties, but does not match with that according to bipartite entanglement. This observation signifies the fact that non-locality and multipartite entanglement enjoy the same basic underlying principles, while bipartite entanglement may not reveal the non-locality issue in its entirety.

  20. Entanglement entropy of scattering particles

    Science.gov (United States)

    Peschanski, Robi; Seki, Shigenori

    2016-07-01

    We study the entanglement entropy between the two outgoing particles in an elastic scattering process. It is formulated within an S-matrix formalism using the partial wave expansion of two-body states, which plays a significant role in our computation. As a result, we obtain a novel formula that expresses the entanglement entropy in a high energy scattering by the use of physical observables, namely the elastic and total cross sections and a physical bound on the impact parameter range, related to the elastic differential cross-section.

  1. Quantum Watermarking Using Entanglement Swapping

    Science.gov (United States)

    Fatahi, Negin; Naseri, Mosayeb

    2012-07-01

    Digital watermarking is the process of embedding information into a digital signal in a way that is difficult to remove. In this article a secure quantum watermarking using entanglement swapping is proposed. Here the entanglement swapping is employed to build up a hidden layer of secure message under the conventional first layer of secure information sequence. In this protocol by insuring the security of transmission of the first layer of information sequence the security of the hidden secret messages is also proved to be reliable regardless of whether the hidden channel has been detected or not.

  2. Bosonic behavior of entangled fermions

    DEFF Research Database (Denmark)

    C. Tichy, Malte; Alexander Bouvrie, Peter; Mølmer, Klaus

    2012-01-01

    Two bound, entangled fermions form a composite boson, which can be treated as an elementary boson as long as the Pauli principle does not affect the behavior of many such composite bosons. The departure of ideal bosonic behavior is quantified by the normalization ratio of multi-composite-boson st......Two bound, entangled fermions form a composite boson, which can be treated as an elementary boson as long as the Pauli principle does not affect the behavior of many such composite bosons. The departure of ideal bosonic behavior is quantified by the normalization ratio of multi...

  3. Entanglement Entropy of Periodic Sublattices

    CERN Document Server

    He, Temple; Vandoren, Stefan

    2016-01-01

    We study the entanglement entropy (EE) of Gaussian systems on a lattice with periodic boundary conditions, both in the vacuum and at nonzero temperatures. By restricting the reduced subsystem to periodic sublattices, we can compute the entanglement spectrum and EE exactly. We illustrate this for a free (1+1)-dimensional massive scalar field at a fixed temperature. Consistent with previous literature, we demonstrate that for a sufficiently large periodic sublattice the EE grows extensively, even in the vacuum. Furthermore, the analytic expression for the EE allows us probe its behavior both in the massless limit and in the continuum limit at any temperature.

  4. Entanglement Enhanced Multiplayer Quantum Games

    CERN Document Server

    Du, J; Xu, X; Shi, M; Zhou, X; Han, R; Du, Jiangfeng; Li, Hui; Xu, Xiaodong; Shi, Mingjun; Zhou, Xianyi; Han, Rongdian

    2002-01-01

    Recently two player quantum games have drawn great interest. However, investigating quantum games in multiqubit system could be more interesting. In this paper, we study the property of quantum games with more than two players. For the particular case of 3-player Prisoner's Dilemma, a novel Nash equilibrium which can remove the original dilemma emerges. Based on this Equilibrium strategy, we found the game is enhanced by the entanglement of the game's state. When all players resort to the Nash equilibrium, the players' payoffs increase monotonously with respect to the amount of entanglement.

  5. Entanglement entropy of round spheres

    Energy Technology Data Exchange (ETDEWEB)

    Solodukhin, Sergey N., E-mail: Sergey.Solodukhin@lmpt.univ-tours.f [Laboratoire de Mathematiques et Physique Theorique, Universite Francois-Rabelais Tours Federation Denis Poisson - CNRS, Parc de Grandmont, 37200 Tours (France)

    2010-10-18

    We propose that the logarithmic term in the entanglement entropy computed in a conformal field theory for a (d-2)-dimensional round sphere in Minkowski spacetime is identical to the logarithmic term in the entanglement entropy of extreme black hole. The near horizon geometry of the latter is H{sub 2}xS{sub d-2}. For a scalar field this proposal is checked by direct calculation. We comment on relation of this and earlier calculations to the 'brick wall' model of 't Hooft. The case of generic 4d conformal field theory is discussed.

  6. Quantum entanglement: theory and applications

    Energy Technology Data Exchange (ETDEWEB)

    Schuch, N.

    2007-10-10

    This thesis deals with various questions concerning the quantification, the creation, and the application of quantum entanglement. Entanglement arises due to the restriction to local operations and classical communication. We investigate how the notion of entanglement changes if additional restrictions in form of a superselection rule are imposed and show that they give rise to a new resource. We characterize this resource and demonstrate that it can be used to overcome the restrictions, very much as entanglement can overcome the restriction to local operations by teleportation. We next turn towards the optimal generation of resources. We show how squeezing can be generated as efficiently as possible from noisy squeezing operations supplemented by noiseless passive operations, and discuss the implications of this result to the optimal generation of entanglement. The difficulty in describing the behaviour of correlated quantum many-body systems is ultimately due to the complicated entanglement structure of multipartite states. Using quantum information techniques, we investigate the ground state properties of lattices of harmonic oscillators. We derive an exponential decay of correlations for gapped systems, compute the dependence of correlation length and gap, and investigate the notion of criticality by relating a vanishing energy gap to an algebraic decay of correlations. Recently, ideas from entanglement theory have been applied to the description of many-body systems. Matrix Product States (MPS), which have a particularly simple interpretation from the point of quantum information, perform extremely well in approximating the ground states of local Hamiltonians. It is generally believed that this is due to the fact that both ground states and MPS obey an entropic area law. We clarify the relation between entropy scaling laws and approximability by MPS, and in particular find that an area law does not necessarily imply approximability. Using the quantum

  7. Quantum entanglement: theory and applications

    International Nuclear Information System (INIS)

    This thesis deals with various questions concerning the quantification, the creation, and the application of quantum entanglement. Entanglement arises due to the restriction to local operations and classical communication. We investigate how the notion of entanglement changes if additional restrictions in form of a superselection rule are imposed and show that they give rise to a new resource. We characterize this resource and demonstrate that it can be used to overcome the restrictions, very much as entanglement can overcome the restriction to local operations by teleportation. We next turn towards the optimal generation of resources. We show how squeezing can be generated as efficiently as possible from noisy squeezing operations supplemented by noiseless passive operations, and discuss the implications of this result to the optimal generation of entanglement. The difficulty in describing the behaviour of correlated quantum many-body systems is ultimately due to the complicated entanglement structure of multipartite states. Using quantum information techniques, we investigate the ground state properties of lattices of harmonic oscillators. We derive an exponential decay of correlations for gapped systems, compute the dependence of correlation length and gap, and investigate the notion of criticality by relating a vanishing energy gap to an algebraic decay of correlations. Recently, ideas from entanglement theory have been applied to the description of many-body systems. Matrix Product States (MPS), which have a particularly simple interpretation from the point of quantum information, perform extremely well in approximating the ground states of local Hamiltonians. It is generally believed that this is due to the fact that both ground states and MPS obey an entropic area law. We clarify the relation between entropy scaling laws and approximability by MPS, and in particular find that an area law does not necessarily imply approximability. Using the quantum

  8. Experimental distribution of entanglement via separable states

    CERN Document Server

    Fedrizzi, A; Gillett, G G; Broome, M A; de Almeida, M; Paternostro, M; White, A G; Paterek, T

    2013-01-01

    Information gain in communication is bounded by the information encoded in the physical systems exchanged between sender and receiver. Surprisingly, this does not hold for quantum entanglement, which can increase even though the communicated system carries no entanglement at all. Here we demonstrate this phenomenon in a four-photon experiment where two parties sharing initially separable (unentangled) state get entangled by exchanging a photon that is {\\it at all times} not entangled with either of them. Our result validates a long-standing assert in quantum information and has important practical implications in quantum networking, where entanglement must be reliably distributed across many nodes at low resource-cost.

  9. Approaches to measuring entanglement in chemical magnetometers.

    Science.gov (United States)

    Tiersch, M; Guerreschi, G G; Clausen, J; Briegel, H J

    2014-01-01

    Chemical magnetometers are radical pair systems such as solutions of pyrene and N,N-dimethylaniline (Py-DMA) that show magnetic field effects in their spin dynamics and their fluorescence. We investigate the existence and decay of quantum entanglement in free geminate Py-DMA radical pairs and discuss how entanglement can be assessed in these systems. We provide an entanglement witness and propose possible observables for experimentally estimating entanglement in radical pair systems with isotropic hyperfine couplings. As an application, we analyze how the field dependence of the entanglement lifetime in Py-DMA could in principle be used for magnetometry and illustrate the propagation of measurement errors in this approach.

  10. Entanglement enhances cooling in microscopic quantum refrigerators.

    Science.gov (United States)

    Brunner, Nicolas; Huber, Marcus; Linden, Noah; Popescu, Sandu; Silva, Ralph; Skrzypczyk, Paul

    2014-03-01

    Small self-contained quantum thermal machines function without external source of work or control but using only incoherent interactions with thermal baths. Here we investigate the role of entanglement in a small self-contained quantum refrigerator. We first show that entanglement is detrimental as far as efficiency is concerned-fridges operating at efficiencies close to the Carnot limit do not feature any entanglement. Moving away from the Carnot regime, we show that entanglement can enhance cooling and energy transport. Hence, a truly quantum refrigerator can outperform a classical one. Furthermore, the amount of entanglement alone quantifies the enhancement in cooling.

  11. Universal distortion-free entanglement concentration

    CERN Document Server

    Hayashi, M; Hayashi, Masahito; Matsumoto, Keiji

    2002-01-01

    Entanglement concentration from many copies of unknown pure states is discussed, and we propose the protocol which not only achieves entropy rate, but also produces the perfect maximally entangled state. Our protocol is induced naturally from symmetry of $n$-tensored pure state, and is optimal for all the protocols which concentrates entanglement from unknown pure states, in the sense of failure probability. In the proof of optimality, the statistical estimation theory plays a key role, for concentrated entanglement gives a natural estimate of the entropy of entanglement.

  12. Quantum cobwebs: Universal entangling of quantum states

    Indian Academy of Sciences (India)

    Arun Kumar Pati

    2002-08-01

    Entangling an unknown qubit with one type of reference state is generally impossible. However, entangling an unknown qubit with two types of reference states is possible. To achieve this, we introduce a new class of states called zero sum amplitude (ZSA) multipartite, pure entangled states for qubits and study their salient features. Using shared-ZSA states, local operations and classical communication, we give a protocol for creating multipartite entangled states of an unknown quantum state with two types of reference states at remote places. This provides a way of encoding an unknown pure qubit state into a multiqubit entangled state.

  13. Squashed entanglement and approximate private states

    Science.gov (United States)

    Wilde, Mark M.

    2016-09-01

    The squashed entanglement is a fundamental entanglement measure in quantum information theory, finding application as an upper bound on the distillable secret key or distillable entanglement of a quantum state or a quantum channel. This paper simplifies proofs that the squashed entanglement is an upper bound on distillable key for finite-dimensional quantum systems and solidifies such proofs for infinite-dimensional quantum systems. More specifically, this paper establishes that the logarithm of the dimension of the key system (call it log 2K ) in an ɛ -approximate private state is bounded from above by the squashed entanglement of that state plus a term that depends only ɛ and log 2K . Importantly, the extra term does not depend on the dimension of the shield systems of the private state. The result holds for the bipartite squashed entanglement, and an extension of this result is established for two different flavors of the multipartite squashed entanglement.

  14. Analysis of the Entanglement with Centers

    CERN Document Server

    Huang, Xing

    2016-01-01

    Entanglement in gauge theories is difficult to define because of the issue of a tensor product decomposition of a Hilbert space. We choose centers to define quantities that quantify the entanglement, and also use quantization algebras and constraints to analyze the existence of the ambiguities in a system of first-order formulation. In interacting theories, lattice simulations is required to obtain quantitative behaviors of entanglement. Thus, we propose a method to study entanglement with centers on finite spacing lattice without breaking gauge symmetry. We also understand the relation between the extended lattice model and boundary condition, and discuss magnetic choices in the extended lattice model. Then we compute the entanglement entropy in $p$-form free theory in $2p+2$ dimensional Euclidean flat background with a $S^{2p}$ entangling surface, our results support that the ambiguities in non-gauge theories only affect the regulator dependent terms. The universal terms of the entanglement entropy in $p$-f...

  15. Multi-photon entanglement in high dimensions

    Science.gov (United States)

    Malik, Mehul; Erhard, Manuel; Huber, Marcus; Krenn, Mario; Fickler, Robert; Zeilinger, Anton

    2016-04-01

    Forming the backbone of quantum technologies today, entanglement has been demonstrated in physical systems as diverse as photons, ions and superconducting circuits. Although steadily pushing the boundary of the number of particles entangled, these experiments have remained in a two-dimensional space for each particle. Here we show the experimental generation of the first multi-photon entangled state where both the number of particles and dimensions are greater than two. Two photons in our state reside in a three-dimensional space, whereas the third lives in two dimensions. This asymmetric entanglement structure only appears in multiparticle entangled states with d > 2. Our method relies on combining two pairs of photons, high-dimensionally entangled in their orbital angular momentum. In addition, we show how this state enables a new type of ‘layered’ quantum communication protocol. Entangled states such as these serve as a manifestation of the complex dance of correlations that can exist within quantum mechanics.

  16. Bounds on entanglement in qudit subsystems

    CERN Document Server

    Kendon, V M; Munro, W J; Kendon, Vivien M; Zyczkowski, Karol; Munro, William J

    2002-01-01

    The entanglement in a pure state of N qudits (d-dimensional distinguishable quantum particles) can be characterised by specifying how entangled its subsystems are. A generally mixed subsystem of m qudits is obtained by tracing over the other N-m qudits. We examine the entanglement in this mixed space of m qudits. We show that for a typical pure state of N qudits, its subsystems smaller than N/3 qudits will have a positive partial transpose and hence are separable or bound entangled. Additionally, our numerical results show that the probability of finding entangled subsystems smaller than N/3 falls exponentially in the dimension of the Hilbert space. The bulk of pure state Hilbert space thus consists of highly entangled states with multipartite entanglement encompassing at least a third of the qudits in the pure state.

  17. Teleportation of entanglement over 143 km

    CERN Document Server

    Herbst, Thomas; Fink, Matthias; Handsteiner, Johannes; Wittmann, Bernhard; Ursin, Rupert; Zeilinger, Anton

    2014-01-01

    As a direct consequence of the no-cloning theorem, the deterministic amplification as in classical communication is impossible for quantum states. This calls for more advanced techniques in a future global quantum network, e.g. for cloud quantum computing. A unique solution is the teleportation of an entangled state, i.e. entanglement swapping, representing the central resource to relay entanglement between distant nodes. Together with entanglement purification and a quantum memory it constitutes a so-called quantum repeater. Since the afore mentioned building blocks have been individually demonstrated in laboratory setups only, the applicability of the required technology in real-world scenarios remained to be proven. Here we present a free-space entanglement-swapping experiment between the Canary Islands of La Palma and Tenerife, verifying the presence of quantum entanglement between two previously independent photons separated by 143 km. We obtained an expectation value for the entanglement-witness operato...

  18. Evolution and Symmetry of Multipartite Entanglement

    Science.gov (United States)

    Gour, Gilad

    2010-11-01

    We discover a simple factorization law describing how multipartite entanglement of a composite quantum system evolves when one of the subsystems undergoes an arbitrary physical process. This multipartite entanglement decay is determined uniquely by a single factor we call the entanglement resilience factor. Since the entanglement resilience factor is a function of the quantum channel alone, we find that multipartite entanglement evolves in exactly the same way as bipartite (two qudits) entanglement. For the two qubits case, our factorization law reduces to the main result of [T. Konrad, Nature Phys. 4, 99 (2008)NPAHAX1745-247310.1038/nphys885]. In addition, for a permutation P, we provide an operational definition of P asymmetry of entanglement, and find the conditions when a permuted version of a state can be achieved by local means.

  19. Restoring broken entanglement by injecting separable correlations

    CERN Document Server

    Pirandola, Stefano

    2012-01-01

    The distribution of entanglement is central in many protocols of quantum information and computation. However it is also known to be a very fragile process when loss and noise come into play. The inevitable interaction of the quantum systems with the external environment induces effects of decoherence which may be so strong to destroy any input entanglement, a phenomenon known as "entanglement breaking". Here we study this catastrophic process in a correlated-noise environment showing how the presence of classical-type correlations can restore the distribution of entanglement. In particular, we consider a Gaussian environment whose thermal noise is strong enough to break the entanglement of two bosonic modes of the electromagnetic field. In this scenario, we show that the injection of separable correlations from the same environment is able to reactivate the broken entanglement. This paradoxical effect happens both in schemes of direct distribution, where a third party (Charlie) broadcasts entangled states to...

  20. Packaged entanglement states and particle teleportation

    CERN Document Server

    Ma, Rongchao

    2015-01-01

    The entanglement states of particles are now widely used in quantum communication. However, these entanglement states usually relate to only one of the particles' physical quantities. Here we theoretically show that there exists a packaged entanglement state which encapsulates all the necessary physical quantities for completely identifying the particles. We first show that a particle-antiparticle pair can form a packaged entanglement state in which the particles are indeterminate. Thereafter, we gave a possible experimental scheme for testing the packaged entanglement state. Finally, we proposed a protocol for teleporting a particle to an arbitrarily large distance using the packaged entanglement states. These packaged entanglement states could be important for particle physics and be useful in matter teleportation, medicine, remote control, and energy transfer.

  1. Multipartite quantum entanglement evolution in photosynthetic complexes.

    Science.gov (United States)

    Zhu, Jing; Kais, Sabre; Aspuru-Guzik, Alán; Rodriques, Sam; Brock, Ben; Love, Peter J

    2012-08-21

    We investigate the evolution of entanglement in the Fenna-Matthew-Olson (FMO) complex based on simulations using the scaled hierarchical equations of motion approach. We examine the role of entanglement in the FMO complex by direct computation of the convex roof. We use monogamy to give a lower bound for entanglement and obtain an upper bound from the evaluation of the convex roof. Examination of bipartite measures for all possible bipartitions provides a complete picture of the multipartite entanglement. Our results support the hypothesis that entanglement is maximum primary along the two distinct electronic energy transfer pathways. In addition, we note that the structure of multipartite entanglement is quite simple, suggesting that there are constraints on the mixed state entanglement beyond those due to monogamy.

  2. Heralded quantum entanglement between two crystals

    CERN Document Server

    Usmani, Imam; Bussieres, Felix; Sangouard, Nicolas; Afzelius, Mikael; Gisin, Nicolas

    2011-01-01

    Quantum networks require the crucial ability to entangle quantum nodes. A prominent example is the quantum repeater which allows overcoming the distance barrier of direct transmission of single photons, provided remote quantum memories can be entangled in a heralded fashion. Here we report the observation of heralded entanglement between two ensembles of rare-earth-ions doped into separate crystals. A heralded single photon is sent through a 50/50 beamsplitter, creating a single-photon entangled state delocalized between two spatial modes. The quantum state of each mode is subsequently mapped onto a crystal, leading to an entangled state consisting of a single collective excitation delocalized between two crystals. This entanglement is revealed by mapping it back to optical modes and by estimating the concurrence of the retrieved light state. Our results highlight the potential of rare-earth-ions doped crystals for entangled quantum nodes and bring quantum networks based on solid-state resources one step clos...

  3. Multi-photon entanglement in high dimensions

    CERN Document Server

    Malik, Mehul; Huber, Marcus; Krenn, Mario; Fickler, Robert; Zeilinger, Anton

    2015-01-01

    Entanglement lies at the heart of quantum mechanics $-$ as a fundamental tool for testing its deep rift with classical physics, while also providing a key resource for quantum technologies such as quantum computation and cryptography. In 1987 Greenberger, Horne, and Zeilinger realized that the entanglement of more than two particles implies a non-statistical conflict between local realism and quantum mechanics. The resulting predictions were experimentally confirmed by entangling three photons in their polarization. Experimental efforts since have singularly focused on increasing the number of particles entangled, while remaining in a two-dimensional space for each particle. Here we show the experimental generation of the first multi-photon entangled state where both $-$ the number of particles and the number of dimensions $-$ are greater than two. Interestingly, our state exhibits an asymmetric entanglement structure that is only possible when one considers multi-particle entangled states in high dimensions....

  4. Should Entanglement Measures be Monogamous or Faithful?

    CERN Document Server

    Lancien, Cécilia; Huber, Marcus; Piani, Marco; Adesso, Gerardo; Winter, Andreas

    2016-01-01

    "Is entanglement monogamous?" asks the title of a popular article [B. Terhal, IBM J. Res. Dev. 48, 71 (2004)], celebrating C. H. Bennett's legacy on quantum information theory. While the answer is certainly affirmative in the qualitative sense, the situation is far less clear if monogamy is intended as a quantitative limitation on the distribution of bipartite entanglement in a multipartite system, given some particular measure of entanglement. Here, we clarify the most general form of a universal quantitative monogamy relation for a bipartite measure of entanglement. We then go on to show that an important class of entanglement measures fail to be monogamous in this most general sense of the term, with monogamy violations becoming generic with increasing dimension. In particular, we show that entanglement measures cannot satisfy monogamy while at the same time faithfully capturing the entanglement of the fully antisymmetric state in arbitrary dimension. Nevertheless, monogamy can be recovered if one allows f...

  5. Investigating student understanding of quantum entanglement

    CERN Document Server

    Kohnle, Antje

    2015-01-01

    Quantum entanglement is a central concept of quantum theory for multiple particles. Entanglement played an important role in the development of the foundations of the theory and makes possible modern applications in quantum information technology. As part of the QuVis Quantum Mechanics Visualization Project, we developed an interactive simulation "Entanglement: The nature of quantum correlations" using two-particle entangled spin states. We investigated student understanding of entanglement at the introductory and advanced undergraduate levels by collecting student activity and post-test responses using two versions of the simulation and carrying out a small number of student interviews. Common incorrect ideas found include statements that all entangled states must be maximally entangled (i.e. show perfect correlations or anticorrelations along all common measurement axes), that the spins of particles in a product state must have definite values (cannot be in a superposition state with respect to spin) and di...

  6. Are childhood and adult life adversities differentially associated with specific symptom dimensions of depression and anxiety? Testing the tripartite model

    NARCIS (Netherlands)

    van Veen, T.; Wardenaar, K. J.; Carlier, I. V. E.; Spinhoven, P.; Penninx, B. W. J. H.; Zitman, F. G.

    2013-01-01

    Background: Different types of adverse events may have general or specific effects on depression and anxiety symptomatology. We examined the effects of adversities on the dimensions of the tripartite model: general distress, anhedonic depression and anxious arousal. Methods: Data were from 2615 indi

  7. Higher Education Institutions and Work-Based Learning in the UK: Employer Engagement within a Tripartite Relationship

    Science.gov (United States)

    Basit, Tehmina N.; Eardley, Alan; Borup, Rosemary; Shah, Hanifa; Slack, Kim; Hughes, Amanda

    2015-01-01

    Higher education institutions (HEIs) in the UK are increasingly engaging in work-based learning. The tripartite relationship between the HEI, the employer and the employee is viewed to be of great significance in work-based learning, not only in the initial stages of procurement of a contract, but also in designing and delivering the programme to…

  8. The Concept of Innovation as Perceived by Public Sector Frontline Staff--Outline of a Tripartite Empirical Model of Innovation

    Science.gov (United States)

    Wegener, Charlotte; Tanggaard, Lene

    2013-01-01

    This article investigates the innovation concept in two key welfare areas where the demands for innovation are substantial, namely vocational education and elder care. On the basis of ethnographic fieldwork and interviews on the collaboration between an educational institution and elder care services, the article develops a tripartite empirical…

  9. Activation of entanglement in teleportation

    International Nuclear Information System (INIS)

    We study the activation of entanglement in teleportation protocols. To this end, we present a derivation of the average fidelity of the teleportation process with a noisy classical channel for qudits. In our work, we do not make any assumptions about the entangled states shared by communicating parties. Our result allows us to specify the minimum amount of classical information required to beat the classical limit when the protocol is based on the Bell measurements. We also compare the average fidelity of teleportation obtained using a noisy and perfect classical channel with restricted capacity. The most important insight into the intricacies of quantum information theory that we gain is that, although entanglement is obviously a necessary resource for efficient teleportation, it requires a certain threshold amount of classical communication to be more useful than classical communication. Another interesting finding is that the amount of classical communication required to activate entanglement for teleportation purposes depends on the dimension d of the system being teleported but is not monotonic, reaching a maximum for d = 4. (paper)

  10. Entangling light in high dimensions

    NARCIS (Netherlands)

    Pors, Jan Bardeus

    2011-01-01

    Quantum entanglement is a fundamental trait of quantum mechanics that causes the information about the properties of two (or more) objects to be inextricably linked. When a measurement on one of the objects is performed, the state of the other object is immediately altered, even when these objects a

  11. Entangled subspaces and quantum symmetries

    International Nuclear Information System (INIS)

    Entanglement is defined for each vector subspace of the tensor product of two finite-dimensional Hilbert spaces, by applying the notion of operator entanglement to the projection operator onto that subspace. The operator Schmidt decomposition of the projection operator defines a string of Schmidt coefficients for each subspace, and this string is assumed to characterize its entanglement, so that a first subspace is more entangled than a second, if the Schmidt string of the second majorizes the Schmidt string of the first. The idea is applied to the antisymmetric and symmetric tensor products of a finite-dimensional Hilbert space with itself, and also to the tensor product of an angular momentum j with a spin 1/2. When adapted to the subspaces of states of the nonrelativistic hydrogen atom with definite total angular momentum (orbital plus spin), within the space of bound states with a given total energy, this leads to a complete ordering of those subspaces by their Schmidt strings

  12. Entangled subspaces and quantum symmetries

    CERN Document Server

    Bracken, A J

    2003-01-01

    Entanglement is defined for each vector subspace of the tensor product of two finite-dimensional Hilbert spaces, by applying the notion of operator entanglement to the projection operator onto that subspace. The operator Schmidt decomposition of the projection operator defines a string of Schmidt coefficients for each subspace, and this string is assumed to characterize the entanglement of the subspace, so that a first subspace is more entangled than a second, if the Schmidt string of the second subspace majorizes the Schmidt string of the first. The idea is applied to the antisymmetric and symmetric tensor products of a finite-dimensional Hilbert space with itself, and also to the tensor product of an angular momentum j with a spin 1/2. When adapted to the subspaces of states of the nonrelativistic hydrogen atom with definite total angular momentum (orbital plus spin), within the space of bound states with a given total energy, this leads to a complete ordering of those subspaces by their Schmidt strings.

  13. Entanglement entropy for odd spheres

    CERN Document Server

    Dowker, J S

    2010-01-01

    It is shown, non--rigorously, that the effective action on a Z_q factored odd spheres (lune) has a vanishing derivative at q=1. This leaves the effective action on the ordinary odd d-sphere as (minus) the value of the entanglement entropy associated with a (d-2)-sphere. Some numbers are given.

  14. Entanglement concentration and teleportation of multipartite entangled states in an ion trap

    Institute of Scientific and Technical Information of China (English)

    Pan Chang-Ning; Fang Mao-Fa

    2007-01-01

    We propose an effective scheme for the entanglement concentration of a four-particle state via entanglement swapping in an ion trap. Taking the maximally entangled state after concentration as a quantum channel, we can faithfully and determinatively teleport quantum entangled states from Alice to Bob without the joint Bell-state measurement. In the process of constructing the quantum channel, we adopt entanglement swapping to avoid the decrease of entanglement during the distribution of particles. Thus our scheme provides a new prospect for quantum teleportation over a longer distance. Furthermore, the success probability of our scheme is 1.0.

  15. Displacement-enhanced entanglement distillation of single-mode-squeezed entangled states

    DEFF Research Database (Denmark)

    Tipsmark, Anders; Neergaard-Nielsen, Jonas Schou; Andersen, Ulrik Lund

    2013-01-01

    It has been shown that entanglement distillation of Gaussian entangled states by means of local photon subtraction can be improved by local Gaussian transformations. Here we show that a similar effect can be expected for the distillation of an asymmetric Gaussian entangled state that is produced...... by a single squeezed beam. We show that for low initial entanglement, our largely simplified protocol generates more entanglement than previous proposed protocols. Furthermore, we show that the distillation scheme also works efficiently on decohered entangled states as well as with a practical photon...

  16. Radiation protection and radiation safety: CERN and its host states to sign a tripartite agreement.

    CERN Multimedia

    2010-01-01

    On 15 November CERN and its Host States will sign a tripartite agreement that replaces the existing bilateral agreements in matters of radiation protection and radiation safety at CERN. It will provide, for the first time, a single forum where the three parties will discuss how maximum overall safety can best be achieved in the specific CERN context.   CERN has always maintained close collaboration with its Host States in matters of safety. “The aim of this collaboration is especially to ensure best practice in the field of radiation protection and the safe operation of CERN’s facilities”, explains Ralf Trant, Head of the Occupational Health & Safety and Environmental Protection (HSE) Unit. Until today, CERN’s collaboration with its Host States was carried out under two sets of bilateral agreements: depending on which side of the French-Swiss border they were being carried out on, a different framework applied to the same activities. This approach has b...

  17. Amplitude damping effects on controlled teleportation of a qubit by a tripartite W state

    International Nuclear Information System (INIS)

    We investigate the influence of amplitude damping at every stage of the unitary operation of controlled teleportation of a qubit by a tripartite W state in the Bloch sphere representation. We use the average fidelity to describe how much information is transferred from the initial state to the teleported state. It is shown that when a depolarized three-particle W state is used as the quantum channel, the average fidelity of teleportation is a function of the decoherence rate p and the depolarizing rate p'. The larger the depolarizing rate is, the smaller the amplitude damping effect on the average fidelity is. Moreover, the average fidelity of teleportation with values larger than 2/3 can be obtained when the values of p and p' are chosen properly

  18. Refinement of the tripartite influence model for men: dual body image pathways to body change behaviors.

    Science.gov (United States)

    Tylka, Tracy L

    2011-06-01

    Although muscularity and body fat concerns are central to conceptualizing men's body image, they have not been examined together within existing structural models. This study refined the tripartite influence model (Thompson, Heinberg, Altabe, & Tantleff-Dunn, 1999) by including dual body image pathways (muscularity and body fat dissatisfaction) to engagement in muscular enhancement and disordered eating behaviors, respectively, and added dating partners as a source of social influence. Latent variable structural equation modeling analyses supported this quadripartite model in 473 undergraduate men. Nonsignificant paths were trimmed and two unanticipated paths were added. Muscularity dissatisfaction and body fat dissatisfaction represented dual body image pathways to men's engagement in muscularity enhancement behaviors and disordered eating behaviors, respectively. Pressures to be mesomorphic from friends, family, media, and dating partners made unique contributions to the model. Internalization of the mesomorphic ideal, muscularity dissatisfaction, and body fat dissatisfaction played key meditational roles within the model. PMID:21664886

  19. Amplitude damping effects on controlled teleportation of a qubit by a tripartite W state

    Energy Technology Data Exchange (ETDEWEB)

    Han Xiaoping; Liu Jinming [State Key Laboratory of Precision Spectroscopy, Department of Physics, East China Normal University, Shanghai 200062 (China)], E-mail: jmliu@phy.ecnu.edu.cn

    2008-07-15

    We investigate the influence of amplitude damping at every stage of the unitary operation of controlled teleportation of a qubit by a tripartite W state in the Bloch sphere representation. We use the average fidelity to describe how much information is transferred from the initial state to the teleported state. It is shown that when a depolarized three-particle W state is used as the quantum channel, the average fidelity of teleportation is a function of the decoherence rate p and the depolarizing rate p'. The larger the depolarizing rate is, the smaller the amplitude damping effect on the average fidelity is. Moreover, the average fidelity of teleportation with values larger than 2/3 can be obtained when the values of p and p' are chosen properly.

  20. A factor analytic investigation of the Tripartite model of affect in a clinical sample of young Australians

    Directory of Open Access Journals (Sweden)

    Cosgrave Elizabeth M

    2008-09-01

    Full Text Available Abstract Background The Mood and Anxiety Symptom Questionnaire (MASQ was designed to specifically measure the Tripartite model of affect and is proposed to offer a delineation between the core components of anxiety and depression. Factor analytic data from adult clinical samples has shown mixed results; however no studies employing confirmatory factor analysis (CFA have supported the predicted structure of distinct Depression, Anxiety and General Distress factors. The Tripartite model has not been validated in a clinical sample of older adolescents and young adults. The aim of the present study was to examine the validity of the Tripartite model using scale-level data from the MASQ and correlational and confirmatory factor analysis techniques. Methods 137 young people (M = 17.78, SD = 2.63 referred to a specialist mental health service for adolescents and young adults completed the MASQ and diagnostic interview. Results All MASQ scales were highly inter-correlated, with the lowest correlation between the depression- and anxiety-specific scales (r = .59. This pattern of correlations was observed for all participants rating for an Axis-I disorder but not for participants without a current disorder (r = .18. Confirmatory factor analyses were conducted to evaluate the model fit of a number of solutions. The predicted Tripartite structure was not supported. A 2-factor model demonstrated superior model fit and parsimony compared to 1- or 3-factor models. These broad factors represented Depression and Anxiety and were highly correlated (r = .88. Conclusion The present data lend support to the notion that the Tripartite model does not adequately explain the relationship between anxiety and depression in all clinical populations. Indeed, in the present study this model was found to be inappropriate for a help-seeking community sample of older adolescents and young adults.

  1. Assess suitability of hydroaeroponic culture to establish tripartite symbiosis between different AMF species, beans, and rhizobia

    Directory of Open Access Journals (Sweden)

    Jansa Jan

    2009-06-01

    Full Text Available Abstract Background Like other species of the Phaseoleae tribe, common bean (Phaseolus vulgaris L. has the potential to establish symbiosis with rhizobia and to fix the atmospheric dinitrogen (N2 for its N nutrition. Common bean has also the potential to establish symbiosis with arbuscular mycorrhizal fungi (AMF that improves the uptake of low mobile nutrients such as phosphorus, from the soil. Both rhizobial and mycorrhizal symbioses can act synergistically in benefits on plant. Results The tripartite symbiosis of common bean with rhizobia and arbuscular mycorrhizal fungi (AMF was assessed in hydroaeroponic culture with common bean (Phaseolus vulgaris L., by comparing the effects of three fungi spp. on growth, nodulation and mycorrhization of the roots under sufficient versus deficient P supplies, after transfer from initial sand culture. Although Glomus intraradices Schenck & Smith colonized intensely the roots of common bean in both sand and hydroaeroponic cultures, Gigaspora rosea Nicolson & Schenck only established well under sand culture conditions, and no root-colonization was found with Acaulospora mellea Spain & Schenck under either culture conditions. Interestingly, mycorrhization by Glomus was also obtained by contact with mycorrhized Stylosanthes guianensis (Aubl. sw in sand culture under deficient P before transfer into hydroaeroponic culture. The effect of bean genotype on both rhizobial and mycorrhizal symbioses with Glomus was subsequently assessed with the common bean recombinant inbreed line 7, 28, 83, 115 and 147, and the cultivar Flamingo. Significant differences among colonization and nodulation of the roots and growth among genotypes were found. Conclusion The hydroaeroponic culture is a valuable tool for further scrutinizing the physiological interactions and nutrient partitioning within the tripartite symbiosis.

  2. Genetic Diversity and Reassortment of Hantaan Virus Tripartite RNA Genomes in Nature, the Republic of Korea.

    Directory of Open Access Journals (Sweden)

    Jeong-Ah Kim

    2016-06-01

    Full Text Available Hantaan virus (HTNV, a negative sense tripartite RNA virus of the Family Bunyaviridae, is the most prevalent hantavirus in the Republic of Korea (ROK. It is the causative agent of Hemorrhagic Fever with Renal Syndrome (HFRS in humans and maintained in the striped field mouse, Apodemus agrarius, the primary zoonotic host. Clinical HFRS cases have been reported commonly in HFRS-endemic areas of Gyeonggi province. Recently, the death of a member of the ROK military from Gangwon province due to HFRS prompted an investigation of the epidemiology and distribution of hantaviruses in Gangwon and Gyeonggi provinces that border the demilitarized zone separating North and South Korea.To elucidate the geographic distribution and molecular diversity of HTNV, whole genome sequences of HTNV Large (L, Medium (M, and Small (S segments were acquired from lung tissues of A. agrarius captured from 2003-2014. Consistent with the clinical incidence of HFRS established by the Korea Centers for Disease Control & Prevention (KCDC, the prevalence of HTNV in naturally infected mice in Gangwon province was lower than for Gyeonggi province. Whole genomic sequences of 34 HTNV strains were identified and a phylogenetic analysis showed geographic diversity of the virus in the limited areas. Reassortment analysis first suggested an occurrence of genetic exchange of HTNV genomes in nature, ROK.This study is the first report to demonstrate the molecular prevalence of HTNV in Gangwon province. Whole genome sequencing of HTNV showed well-supported geographic lineages and the molecular diversity in the northern region of ROK due to a natural reassortment of HTNV genomes. These observations contribute to a better understanding of the genetic diversity and molecular evolution of hantaviruses. Also, the full-length of HTNV tripartite genomes will provide a database for phylogeographic analysis of spatial and temporal outbreaks of hantavirus infection.

  3. A tripartite equilibrium for carbon emission allowance allocation in the power-supply industry

    International Nuclear Information System (INIS)

    In the past decades, there has been a worldwide multilateral efforts to reduce carbon emissions. In particular, the “cap-and-trade” mechanism has been regarded as an effective way to control emissions. This is a market-based approach focused on the efficient allocation of initial emissions allowances. Based on the “grandfather” allocation method, this paper develops an alternative method derived from Boltzmann distribution to calculate the allowances. Further, with fully considering the relationship between the regional authority, power plants and grid company, a three-level multi-objective model for carbon emission allowance allocations in the power-supply industry is presented. To achieve tripartite equilibrium, the impacts on electricity output, carbon emissions and carbon intensity of the allocation method, allocation cap, and emission limits are assessed. The results showed that the greatest impact was seen in the emission limits rather than the allocation cap or allocation method. It also indicated that to effectively achieve reduction targets, it is necessary to allocate greater allowances to lower carbon intensity power plants. These results demonstrated the practicality and efficiency of the proposed model in seeking optimal allocation policies. -- Highlights: •A three-level decision model is proposed for allowance allocation policy-making. •The relationship between the regional authority, power plants and grid company is considered. •GA is combined with KKT conditions to search for the tripartite equilibrium. •Appropriate emission limits have a great effect on achieving the reduction target. •Power plants with lower carbon intensity should be allocated more allowances

  4. Electronic Elections: A Balancing Act

    Science.gov (United States)

    Rezende, Pedro A. D.

    This article aims to share some major lessons learned from the pioneering experience in Brazil with the world's first full national implementation of universal electronic voting. Differing notions of security, and their "collateral entanglements", appear to play a key role and are contrasted in Brazil's pioneering electronic voting saga. After an introduction, we puzzle through what election security may mean. We elaborate on how technological innovations may affect the underlying risks, their nature, corrections and balance. Then we describe some ways in which innovations have been deployed and validated, and how the results are being perceived, before some closing remarks.

  5. Entanglement Preserving in Quantum Copying of Three-Qubit Entangled State

    Institute of Scientific and Technical Information of China (English)

    TONGZhao-Yang; KUANGLe-Man

    2002-01-01

    We study the degree to which quantum entanglement survives when a three-qubit entangled state is copied by using local and non-local processes,respectively,and investigate iterating quantum copying for the three-qubit system.There may exist inter-three-qubit entanglement and inter-two-qubit entanglement for the three-qubit system.We show that both local and non-local copying processes degrade quantum entanglement in the three-particle system due to a residual correlation between the copied output and the copying machine.we also show that the inter-two-qubit entanglement is preserved better than the inter-three-qubit entanglement in the local cloning process.We find that non-local cloning is much more efficient than the local copying for broadcasting entanglement,and output state via non-local cloning exhiits the fidelity better than local cloning.

  6. Entanglement Capabilities of Non-local Hamiltonians with Maximally Entangled Ancillary Particles

    Institute of Scientific and Technical Information of China (English)

    YE Peng; ZHENG Yizhuang

    2004-01-01

    @@ The entanglement capacity of non-local two-qubit Hamiltonians with maximally entangled ancillary particles are investigated.We gain a complete expression of entanglement capacity and show that the maximal entanglement capacity Γmax of a non-local Hamiltonian with ancillary particles will be never less than the maximal entanglement capacity Γ*max of the non-local Hamiltonian without ancillary particles.By defining relative entanglement rate η=Γmax /Γ*max (Γmax, Γ*max are maximal entanglement rate with and without ancillas respectively), we find the range of the values of relative entanglement rate is 1η1.3220.

  7. Improving entanglement of even entangled coherent states by a coherent superposition of photon subtraction and addition

    OpenAIRE

    Liu, Shi-you; Huang, Jie-Hui; Hu, Li-Yun; Duan, Zheng-lu; Xu, Xue-xiang; JI, YING-HUA

    2014-01-01

    A new entangled quantum state is introduced by applying local coherent superposition (ra^+ +ta) of photon subtraction and addition to each mode of even entangled coherent state (EECS) and the properties of entanglement are investigated. It is found that the Shchukin-Vogel inseparability, the degree of entanglement and the average fidelity of quantum teleportation of the EECS can be improved due to the coherent superposition operation. The effects of improvement by coherent superposition opera...

  8. Delayed birth of distillable entanglement in the evolution of bound entangled states

    CERN Document Server

    Derkacz, Łukasz

    2010-01-01

    The dynamical creation of entanglement between three-level atoms coupled to the common vacuum is investigated. For the class of bound entangled initial states we show that the dynamics of closely separated atoms generates stationary distillable entanglement of asymptotic states. We also find that the effect of delayed sudden birth of distillable entanglement occurs in the case of atoms separated by a distance comparable with the radiation wavelength.

  9. Entanglement Enhancement in an XY Spin Chain

    Institute of Scientific and Technical Information of China (English)

    SU Xiao-Qiang

    2011-01-01

    We study evolution of entanglement in an XY-type spin channel and find that the entanglement can be enhanced by the spin channel. The parameter regions of the initial states for different numbers of sites are obtained.Furthermore, we consider a common spin environment coupling to the spin chains and find that the entanglement enhancement can also be implemented only for the chains with the odd numbers of sites.%@@ We study evolution of entanglement in an XY-type spin channel and find that the entanglement can be enhanced by the spin channel.The parameter regions of the initial states for different numbers of sites are obtained.Furthermore,we consider a common spin environment coupling to the spin chains and find that the entanglement enhancement can also be implemented only for the chains with the odd numbers of sites.

  10. Multipartite Quantum Entanglement Evolution in Photosynthetic Complexes

    CERN Document Server

    Zhu, Jing; Aspuru-Guzik, Alán; Rodriques, Sam; Brock, Ben; Love, Peter J

    2012-01-01

    We investigate the evolution of entanglement in the Fenna-Matthew-Olson (FMO) complex based on simulations using the scaled hierarchy equation of motion (HEOM) approach. We examine the role of multipartite entanglement in the FMO complex by direct computation of the convex roof optimization for a number of measures, including some that have not been previously evaluated. We also consider the role of monogamy of entanglement in these simulations. We utilize the fact that the monogamy bounds are saturated in the single exciton subspace. This enables us to compute more measures of entanglement exactly and also to validate the evaluation of the convex roof. We then use direct computation of the convex roof to evaluate measures that are not determined by monogamy. This approach provides a more complete account of the entanglement in these systems than has been available to date. Our results support the hypothesis that multipartite entanglement is maximum primary along the two distinct electronic energy transfer pa...

  11. Measuring multipartite entanglement through dynamic susceptibilities

    Science.gov (United States)

    Hauke, Philipp; Heyl, Markus; Tagliacozzo, Luca; Zoller, Peter

    2016-08-01

    Entanglement is considered an essential resource in quantum technologies, and central to the understanding of quantum many-body physics. Developing protocols to detect and quantify the entanglement of many-particle quantum states is thus a key challenge for present experiments. Here, we show that the quantum Fisher information, a witness for genuinely multipartite entanglement, becomes measurable for thermal ensembles by means of the dynamic susceptibility--that is, with resources readily available in present cold atomic-gas and condensed-matter experiments. This establishes a connection between multipartite entanglement and many-body correlations contained in response functions, with immediate implications close to quantum phase transitions, where the quantum Fisher information becomes universal, allowing us to identify strongly entangled phase transitions with a divergent multipartite entanglement. We illustrate our framework using paradigmatic quantum Ising models, and point out potential signatures in optical-lattice experiments and strongly correlated materials.

  12. Entanglement rules for holographic Fermi surfaces

    Directory of Open Access Journals (Sweden)

    Dibakar Roychowdhury

    2016-08-01

    Full Text Available In this paper, based on the notion of Gauge/Gravity duality, we explore the laws of entanglement thermodynamics for most generic classes of Quantum Field Theories with hyperscaling violation. In our analysis, we note that for Quantum Field Theories with compressible quark like excitation, the first law of entanglement thermodynamics gets modified due to the presence of an additional term that could be identified as the entanglement chemical potential associated with hidden Fermi surfaces of the boundary theory. Most notably, we find that the so called entanglement chemical potential does not depend on the size of the entangling region and is purely determined by the quark d.o.f. encoded within the entangling region.

  13. Orbital angular momentum-entanglement frequency transducer

    CERN Document Server

    Zhou, Zhi-Yuan; Li, Yan; Ding, Dong-Sheng; Zhang, Wei; Shi, Shuai; Dong, Ming-Xin; Shi, Bao-Sen; Guo, Guang-Can

    2016-01-01

    Entanglement is a vital resource for realizing many tasks such as teleportation, secure key distribution, metrology and quantum computations. To effectively build entanglement between different quantum systems and share information between them, a frequency transducer to convert between quantum states of different wavelengths while retaining its quantum features is indispensable. Information encoded in the photons orbital angular momentum OAM degrees of freedom is preferred in harnessing the information carrying capacity of a single photon because of its unlimited dimensions. A quantum transducer, which operates at wavelengths from 1558.3 nm to 525 nm for OAM qubits, OAMpolarization hybrid entangled states, and OAM entangled states, is reported for the first time. Nonclassical properties and entanglements are demonstrated following the conversion process by performing quantum tomography, interference, and Bell inequality measurements. Our results demonstrate the capability to create an entanglement link betwe...

  14. Efficient entanglement distillation without quantum memory

    Science.gov (United States)

    Abdelkhalek, Daniela; Syllwasschy, Mareike; Cerf, Nicolas J.; Fiurášek, Jaromír; Schnabel, Roman

    2016-05-01

    Entanglement distribution between distant parties is an essential component to most quantum communication protocols. Unfortunately, decoherence effects such as phase noise in optical fibres are known to demolish entanglement. Iterative (multistep) entanglement distillation protocols have long been proposed to overcome decoherence, but their probabilistic nature makes them inefficient since the success probability decays exponentially with the number of steps. Quantum memories have been contemplated to make entanglement distillation practical, but suitable quantum memories are not realised to date. Here, we present the theory for an efficient iterative entanglement distillation protocol without quantum memories and provide a proof-of-principle experimental demonstration. The scheme is applied to phase-diffused two-mode-squeezed states and proven to distil entanglement for up to three iteration steps. The data are indistinguishable from those that an efficient scheme using quantum memories would produce. Since our protocol includes the final measurement it is particularly promising for enhancing continuous-variable quantum key distribution.

  15. Entanglement of Distillation for Lattice Gauge Theories

    Science.gov (United States)

    Van Acoleyen, Karel; Bultinck, Nick; Haegeman, Jutho; Marien, Michael; Scholz, Volkher B.; Verstraete, Frank

    2016-09-01

    We study the entanglement structure of lattice gauge theories from the local operational point of view, and, similar to Soni and Trivedi [J. High Energy Phys. 1 (2016) 1], we show that the usual entanglement entropy for a spatial bipartition can be written as the sum of an undistillable gauge part and of another part corresponding to the local operations and classical communication distillable entanglement, which is obtained by depolarizing the local superselection sectors. We demonstrate that the distillable entanglement is zero for pure Abelian gauge theories at zero gauge coupling, while it is in general nonzero for the non-Abelian case. We also consider gauge theories with matter, and show in a perturbative approach how area laws—including a topological correction—emerge for the distillable entanglement. Finally, we also discuss the entanglement entropy of gauge fixed states and show that it has no relation to the physical distillable entropy.

  16. Gaussian entanglement in the turbulent atmosphere

    Science.gov (United States)

    Bohmann, M.; Semenov, A. A.; Sperling, J.; Vogel, W.

    2016-07-01

    We provide a rigorous treatment of the entanglement properties of two-mode Gaussian states in atmospheric channels by deriving and analyzing the input-output relations for the corresponding entanglement test. A key feature of such turbulent channels is a nontrivial dependence of the transmitted continuous-variable entanglement on coherent displacements of the quantum state of the input field. Remarkably, this allows one to optimize the entanglement certification by modifying local coherent amplitudes using a finite, but optimal amount of squeezing. In addition, we propose a protocol which, in principle, renders it possible to transfer the Gaussian entanglement through any turbulent channel over arbitrary distances. Therefore, our approach provides the theoretical foundation for advanced applications of Gaussian entanglement in free-space quantum communication.

  17. Evolution and Symmetry of Multipartite Entanglement

    CERN Document Server

    Gour, Gilad

    2010-01-01

    We discover a simple dramatic factorization law describing how multipartite entanglement of a composite quantum system evolves when one of the subsystems undergoes an arbitrary physical process. This multipartite entanglement decay is determined uniquely by a single factor we call the entanglement resilient factor (ERF). Since the ERF is a function of the quantum channel alone, we find that multipartite entanglement evolves in exactly the same way as bipartite (two qudits) entanglement. For the two qubits case, our factorization law reduces to the main result of Nature Physics \\textbf{4}, 99 (2008). In addition, for a permutation $P$, we provide an operational definition of $P$-asymmetry of entanglement, and find the conditions when a permuted version of a state can be achieved by local means.

  18. Efficient entanglement distillation without quantum memory.

    Science.gov (United States)

    Abdelkhalek, Daniela; Syllwasschy, Mareike; Cerf, Nicolas J; Fiurášek, Jaromír; Schnabel, Roman

    2016-01-01

    Entanglement distribution between distant parties is an essential component to most quantum communication protocols. Unfortunately, decoherence effects such as phase noise in optical fibres are known to demolish entanglement. Iterative (multistep) entanglement distillation protocols have long been proposed to overcome decoherence, but their probabilistic nature makes them inefficient since the success probability decays exponentially with the number of steps. Quantum memories have been contemplated to make entanglement distillation practical, but suitable quantum memories are not realised to date. Here, we present the theory for an efficient iterative entanglement distillation protocol without quantum memories and provide a proof-of-principle experimental demonstration. The scheme is applied to phase-diffused two-mode-squeezed states and proven to distil entanglement for up to three iteration steps. The data are indistinguishable from those that an efficient scheme using quantum memories would produce. Since our protocol includes the final measurement it is particularly promising for enhancing continuous-variable quantum key distribution. PMID:27241946

  19. Electronic entanglement in late transition metal oxides.

    Science.gov (United States)

    Thunström, Patrik; Di Marco, Igor; Eriksson, Olle

    2012-11-01

    We present a study of the entanglement in the electronic structure of the late transition metal monoxides--MnO, FeO, CoO, and NiO--obtained by means of density-functional theory in the local density approximation combined with dynamical mean-field theory. The impurity problem is solved through exact diagonalization, which grants full access to the thermally mixed many-body ground state density operator. The quality of the electronic structure is affirmed through a direct comparison between the calculated electronic excitation spectrum and photoemission experiments. Our treatment allows for a quantitative investigation of the entanglement in the electronic structure. Two main sources of entanglement are explicitly resolved through the use of a fidelity based geometrical entanglement measure, and additional information is gained from a complementary entropic entanglement measure. We show that the interplay of crystal field effects and Coulomb interaction causes the entanglement in CoO to take a particularly intricate form.

  20. Efficient entanglement distillation without quantum memory.

    Science.gov (United States)

    Abdelkhalek, Daniela; Syllwasschy, Mareike; Cerf, Nicolas J; Fiurášek, Jaromír; Schnabel, Roman

    2016-05-31

    Entanglement distribution between distant parties is an essential component to most quantum communication protocols. Unfortunately, decoherence effects such as phase noise in optical fibres are known to demolish entanglement. Iterative (multistep) entanglement distillation protocols have long been proposed to overcome decoherence, but their probabilistic nature makes them inefficient since the success probability decays exponentially with the number of steps. Quantum memories have been contemplated to make entanglement distillation practical, but suitable quantum memories are not realised to date. Here, we present the theory for an efficient iterative entanglement distillation protocol without quantum memories and provide a proof-of-principle experimental demonstration. The scheme is applied to phase-diffused two-mode-squeezed states and proven to distil entanglement for up to three iteration steps. The data are indistinguishable from those that an efficient scheme using quantum memories would produce. Since our protocol includes the final measurement it is particularly promising for enhancing continuous-variable quantum key distribution.

  1. Spatial entanglement of bosons in optical lattices.

    Science.gov (United States)

    Cramer, M; Bernard, A; Fabbri, N; Fallani, L; Fort, C; Rosi, S; Caruso, F; Inguscio, M; Plenio, M B

    2013-01-01

    Entanglement is a fundamental resource for quantum information processing, occurring naturally in many-body systems at low temperatures. The presence of entanglement and, in particular, its scaling with the size of system partitions underlies the complexity of quantum many-body states. The quantitative estimation of entanglement in many-body systems represents a major challenge, as it requires either full-state tomography, scaling exponentially in the system size, or the assumption of unverified system characteristics such as its Hamiltonian or temperature. Here we adopt recently developed approaches for the determination of rigorous lower entanglement bounds from readily accessible measurements and apply them in an experiment of ultracold interacting bosons in optical lattices of ~10(5) sites. We then study the behaviour of spatial entanglement between the sites when crossing the superfluid-Mott insulator transition and when varying temperature. This constitutes the first rigorous experimental large-scale entanglement quantification in a scalable quantum simulator.

  2. Squeezing and Entanglement in Continuous Variable Systems

    Institute of Scientific and Technical Information of China (English)

    XIA Yun-Jie; GUO Guang-Can

    2004-01-01

    Based on total variance of a pair of Einstein-Podolsky-Rosen (EPR) type operators, the generalized EPR entangled states in continuous variable systems are defined. We show that such entangled states must correspond to two-mode squeezing states whether these states are Gaussian or not and whether they are pure or not. With help of the relation between the total variance and the entanglement, the degree of such entanglement is also defined. Through analysing some specific cases, we see that this method is very convenient and easy in practical applications. In addition, an entangled state with no squeezing is studied, which reveals that there certainly exists something unknown about entanglement in continuous variable systems.

  3. Entanglement rules for holographic Fermi surfaces

    Science.gov (United States)

    Roychowdhury, Dibakar

    2016-08-01

    In this paper, based on the notion of Gauge/Gravity duality, we explore the laws of entanglement thermodynamics for most generic classes of Quantum Field Theories with hyperscaling violation. In our analysis, we note that for Quantum Field Theories with compressible quark like excitation, the first law of entanglement thermodynamics gets modified due to the presence of an additional term that could be identified as the entanglement chemical potential associated with hidden Fermi surfaces of the boundary theory. Most notably, we find that the so called entanglement chemical potential does not depend on the size of the entangling region and is purely determined by the quark d.o.f. encoded within the entangling region.

  4. Asymmetric EPR entanglement in continuous variable systems

    CERN Document Server

    Wagner, Katherine; Armstrong, Seiji; Morizur, Jean-Francois; Lam, Ping Koy; Bachor, Hans-Albert

    2012-01-01

    Continuous variable entanglement can be produced in nonlinear systems or via interference of squeezed states. In many of optical systems, such as parametric down conversion or interference of optical squeezed states, production of two perfectly symmetric subsystems is usually used for demonstrating the existence of entanglement. This symmetry simplifies the description of the concept of entanglement. However, asymmetry in entanglement may arise naturally in a real experiment, or be intentionally introduced in a given quantum information protocol. These asymmetries can emerge from having the output beams experience different losses and environmental contamination, or from the availability of non-identical input quantum states in quantum communication protocols. In this paper, we present a visualisation of entanglement using quadrature amplitude plots of the twin beams. We quantitatively discuss the strength of asymmetric entanglement using EPR and inseparability criteria and theoretically show that the optimal...

  5. Entanglement in non-Hermitian quantum theory

    Indian Academy of Sciences (India)

    Arun K Pati

    2009-09-01

    Entanglement is one of the key features of quantum world that has no classical counterpart. This arises due to the linear superposition principle and the tensor product structure of the Hilbert space when we deal with multiparticle systems. In this paper, we will introduce the notion of entanglement for quantum systems that are governed by non-Hermitian yet $\\mathcal{PT}$ -symmetric Hamiltonians. We will show that maximally entangled states in usual quantum theory behave like non-maximally entangled states in $\\mathcal{PT}$ -symmetric quantum theory. Furthermore, we will show how to create entanglement between two $\\mathcal{PT}$ qubits using non-Hermitian Hamiltonians and discuss the entangling capability of such interaction Hamiltonians that are non-Hermitian in nature.

  6. Entangled photons and quantum communication

    Energy Technology Data Exchange (ETDEWEB)

    Yuan Zhensheng, E-mail: yuanzs@ustc.edu.c [Hefei National Laboratory for Physical Sciences at Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Physikalisches Institut, Universitaet Heidelberg, Philosophenweg 12, 69120 Heidelberg (Germany); Bao Xiaohui [Hefei National Laboratory for Physical Sciences at Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Physikalisches Institut, Universitaet Heidelberg, Philosophenweg 12, 69120 Heidelberg (Germany); Lu Chaoyang; Zhang Jun; Peng Chengzhi [Hefei National Laboratory for Physical Sciences at Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Pan Jianwei, E-mail: pan@ustc.edu.c [Hefei National Laboratory for Physical Sciences at Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Physikalisches Institut, Universitaet Heidelberg, Philosophenweg 12, 69120 Heidelberg (Germany)

    2010-12-15

    This article reviews the progress of quantum communication that utilizes photonic entanglement. We start with a survey of various methods for generating entangled photons, followed by an introduction of the theoretical principles and the experimental implementations of quantum key distribution. We then move on to a discussion of more involved quantum communication protocols including quantum dense coding, teleportation and quantum communication complexity. After that, we review the progress in free-space quantum communication, decoherence-free subspace, and quantum repeater protocols which are essential ingredients for long-distance quantum communication. Practical realizations of quantum repeaters, which require an interface between photons and quantum memories, are discussed briefly. Finally, we draw concluding remarks considering the technical challenges, and put forward an outlook on further developments of this field.

  7. Entanglement Entropy in Jammed CFTs

    CERN Document Server

    Mefford, Eric

    2016-01-01

    We construct solutions to the Einstein equations for asymptotically locally Anti-de Sitter spacetimes with four, five, and six dimensional Reissner-Nordstr\\"om boundary metrics. These spacetimes are gravitational duals to "jammed" CFTs on those backgrounds at infinite N and strong coupling. For these spacetimes, we calculate the boundary stress tensor as well as compute entanglement entropies for ball shaped regions as functions of the boundary black hole temperature $T_{BH}$. From this, we see how the CFT prevents heat flow from the black hole to the vacuum at spatial infinity. We also compute entanglement entropies for a three dimensional boundary black hole using the AdS C-metric. We compare our results to previous work done in similar spacetimes.

  8. Quantum steganography using prior entanglement

    Energy Technology Data Exchange (ETDEWEB)

    Mihara, Takashi, E-mail: mihara@toyo.jp

    2015-06-05

    Steganography is the hiding of secret information within innocent-looking information (e.g., text, audio, image, video, etc.). A quantum version of steganography is a method based on quantum physics. In this paper, we propose quantum steganography by combining quantum error-correcting codes with prior entanglement. In many steganographic techniques, embedding secret messages in error-correcting codes may cause damage to them if the embedded part is corrupted. However, our proposed steganography can separately create secret messages and the content of cover messages. The intrinsic form of the cover message does not have to be modified for embedding secret messages. - Highlights: • Our steganography combines quantum error-correcting codes with prior entanglement. • Our steganography can separately create secret messages and the content of cover messages. • Errors in cover messages do not have affect the recovery of secret messages. • We embed a secret message in the Steane code as an example of our steganography.

  9. Quantum entanglement without eigenvalue spectra

    CERN Document Server

    Chen, H

    2001-01-01

    We introduce algebraic sets in complex projective spaces for the mixed states in bipartite quantum systems, which are independent of their eigenvalues and only measure the "position" of their eigenvectors, as their nonlocal invariants (ie., remaining invariant after local unitary transformations). The algebraic sets have to be the union of the linear subspaces if the mixed state is separable, and thus we give a "eigenvalue-free" criterion of separability. Based on our criterion, examples are given to illustrate that entangled mixed states which are invariant under partial transposition or fufill entropy and disorder criterion of separability can be constructed systematically. A by-product is a interesting lower bound of the Schmidt numbers of the "random" rank m mixed states in mxm sysytems. We reveal that a large part of quantum entanglement is independent of eigenvalue spectra and develop a method to measure this part of quantum enatnglement.

  10. Psychological games of entangled players

    CERN Document Server

    Zak, Michail

    2012-01-01

    The paper introduces a new approach to theory of differential games in which entangled players try to predict and influence actions of their adversaries. The entanglement is generated be a joint probability density known by the players. Incase of complex density, its imaginary part represents a measure of uncertainty of the density distribution. The novelty of the approach is in non-Newtonian mathematical formalism thatis based upon a behavioral model of Livings. The model is quantum-inspired: it represented by a modified Madelung equation which the quantum potential is replaced by different, specially chosen "computational" potential. It consists of motor dynamics simulating actual behavior of the object, and mental dynamics representing evolution of the corresponding knowledge-based and incorporating this knowledge in the for m of information flows into the motor dynamics. Due to feedback from mental dynamics, motor dynamics attains quantum-like properties: its trajectory splits into a family of different t...

  11. Experimental quantum computing without entanglement.

    Science.gov (United States)

    Lanyon, B P; Barbieri, M; Almeida, M P; White, A G

    2008-11-14

    Deterministic quantum computation with one pure qubit (DQC1) is an efficient model of computation that uses highly mixed states. Unlike pure-state models, its power is not derived from the generation of a large amount of entanglement. Instead it has been proposed that other nonclassical correlations are responsible for the computational speedup, and that these can be captured by the quantum discord. In this Letter we implement DQC1 in an all-optical architecture, and experimentally observe the generated correlations. We find no entanglement, but large amounts of quantum discord-except in three cases where an efficient classical simulation is always possible. Our results show that even fully separable, highly mixed, states can contain intrinsically quantum mechanical correlations and that these could offer a valuable resource for quantum information technologies.

  12. Entangled States and the Gravitational Quantum Well

    CERN Document Server

    Alves, Rui; Bertolami, Orfeu

    2016-01-01

    We study the continuous variable entanglement of a system of two particles under the influence of Earth's gravitational field. We determine a phase-space description of this bipartite system by calculating its Wigner function and verify its entanglement by applying a generalization of the PPT criterion for non-Gaussian states. We also examine the influence of gravity on an idealized entanglement protocol to be shared between stations at different potentials based on the correlation of states of the gravitational quantum well.

  13. Mutually Unbiased Bases and Bound Entanglement

    OpenAIRE

    Hiesmayr, Beatrix C.; Löffler, Wolfgang

    2013-01-01

    In this contribution we relate two different key concepts: mutually unbiased bases (MUBs) and entanglement; in particular we focus on bound entanglement, i.e. highly mixed states which cannot be distilled by local operations and classical communications. For a certain class of states --for which the state-space forms a "magic" simplex-- we analyze the set of bound entangled states detected by the MUB criterion for different dimensions d and number of particles n. We find that the geometry is ...

  14. Entanglement entropy, conformal invariance and extrinsic geometry

    OpenAIRE

    Solodukhin, Sergey N.

    2008-01-01

    We use the conformal invariance and the holographic correspondence to fully specify the dependence of entanglement entropy on the extrinsic geometry of the 2d surface $\\Sigma$ that separates two subsystems of quantum strongly coupled ${\\mathcal{N}}=4$ SU(N) superconformal gauge theory. We extend this result and calculate entanglement entropy of a generic 4d conformal field theory. As a byproduct, we obtain a closed-form expression for the entanglement entropy in flat space-time when $\\Sigma$ ...

  15. Entanglement generation by electric field background

    Energy Technology Data Exchange (ETDEWEB)

    Ebadi, Zahra, E-mail: z.ebadi@ph.iut.ac.ir; Mirza, Behrouz, E-mail: b.mirza@cc.iut.ac.ir

    2014-12-15

    The quantum vacuum is unstable under the influence of an external electric field and decays into pairs of charged particles, a process which is known as the Schwinger pair production. We propose and demonstrate that this electric field can generate entanglement. Using the Schwinger pair production for constant and pulsed electric fields, we study entanglement for scalar particles with zero spins and Dirac fermions. One can observe the variation of the entanglement produced for bosonic and fermionic modes with respect to different parameters.

  16. Concurrent Remote Entanglement with Quantum Error Correction

    OpenAIRE

    Roy, Ananda; Stone, A. Douglas; Jiang, Liang

    2016-01-01

    Remote entanglement of distant, non-interacting quantum entities is a key primitive for quantum information processing. We present a new protocol to remotely entangle two stationary qubits by first entangling them with propagating ancilla qubits and then performing a joint two-qubit measurement on the ancillas. Subsequently, single-qubit measurements are performed on each of the ancillas. We describe two continuous variable implementations of the protocol using propagating microwave modes. Th...

  17. Shifting entanglement from states to observables

    Energy Technology Data Exchange (ETDEWEB)

    Ranade, Kedar [Institut fuer Quantenphysik, Universitaet Ulm, 89069 Ulm (Germany); Harshman, Nathan [Department of Physics, American University, Washington DC (United States); Institut fuer Quantenphysik, Universitaet Ulm, 89069 Ulm (Germany)

    2011-07-01

    We illustrate that for any pure state on a finite-dimensional Hilbert space we can construct observables that induce a tensor product structure such that the amount of entanglement of the state may take arbitrary values. In particular, we provide an example of how to construct observables on a d-dimensional system such that an arbitrary known pure state can be treated as maximally entangled. In effect, we show how entanglement properties can be shifted from states to observables.

  18. Cosmological dark energy effects from entanglement

    International Nuclear Information System (INIS)

    The thorny issue of relating information theory to cosmology is here addressed by assuming a possible connection between quantum entanglement measures and observable universe. In particular, we propose a cosmological toy model, where the equation of state of the cosmological fluid, which drives the today observed cosmic acceleration, can be inferred from quantum entanglement between different cosmological epochs. In such a way the dynamical dark energy results as byproduct of quantum entanglement.

  19. Surface entanglement in quantum spin networks

    OpenAIRE

    Zippilli S.; Giampaolo S.M.; Illuminati F.

    2013-01-01

    We study the ground-state entanglement in systems of spins forming the boundary of a quantum spin network in arbitrary geometries and dimensionality. We show that as long as they are weakly coupled to the bulk of the network, the surface spins are strongly entangled, even when distant and non directly interacting, thereby generalizing the phenomenon of long-distance entanglement occurring in quantum spin chains. Depending on the structure of the couplings between surface and bulk spins, we di...

  20. Modulated Entanglement Evolution Via Correlated Noises

    CERN Document Server

    Corn, Brittany

    2009-01-01

    We study entanglement dynamics in the presence of correlated environmental noises. Specifically, we investigate the quantum entanglement dynamics of two spins in the presence of correlated classical white noises, deriving Markov master equation and obtaining explicit solutions for several interesting classes of initial states including Bell states and X form density matrices. We show how entanglement can be enhanced or reduced by the correlation between the two participating noises.

  1. Entanglement entropies of coupled harmonic oscillators

    OpenAIRE

    Nakagawa, Koichi

    2016-01-01

    We investigate the quantum entanglement of systems of coupled harmonic oscillators on the basis of thermo-field dynamics (TFD). For coupled harmonic oscillators at equilibrium, the extended entanglement entropy is derived using the TFD method, and it is demonstrated to be controlled by temperature and coupling parameters. For non-equilibrium systems, in addition to temperature and coupling parameters, the time dependence of the extended entanglement entropy is calculated in accordance with th...

  2. Entanglement of Formation for Quantum States

    Institute of Scientific and Technical Information of China (English)

    ZHAO Hui; WANG Zhi-Xi

    2007-01-01

    We investigate the entanglement of formation for a class of high-dimensional quantum mixed states. We present a kind of generalized concurrence for a class of high-dimensional quantum pure states such that the entanglement of formation is a monotonically increasing convex function of the generalized concurrence. From the monotonicity and convexity the entanglement of formation for a class of high-dimensional mixed states has been calculated analytically.

  3. Cosmological dark energy effects from entanglement

    Energy Technology Data Exchange (ETDEWEB)

    Capozziello, Salvatore, E-mail: capozziello@na.infn.it [Dipartimento di Fisica, Università di Napoli “Federico II”, Via Cinthia, 80126 Napoli (Italy); Istituto Nazionale di Fisica Nucleare (INFN), Sez. di Napoli, Via Cinthia, 80126 Napoli (Italy); Luongo, Orlando [Dipartimento di Fisica, Università di Napoli “Federico II”, Via Cinthia, 80126 Napoli (Italy); Istituto Nazionale di Fisica Nucleare (INFN), Sez. di Napoli, Via Cinthia, 80126 Napoli (Italy); Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de México (UNAM) (Mexico); Mancini, Stefano [Scuola di Scienze and Tecnologie, Università di Camerino, 62032 Camerino (Italy); Istituto Nazionale di Fisica Nucleare (INFN), Sez. di Perugia, Via Pascoli, 06123 Perugia (Italy)

    2013-06-03

    The thorny issue of relating information theory to cosmology is here addressed by assuming a possible connection between quantum entanglement measures and observable universe. In particular, we propose a cosmological toy model, where the equation of state of the cosmological fluid, which drives the today observed cosmic acceleration, can be inferred from quantum entanglement between different cosmological epochs. In such a way the dynamical dark energy results as byproduct of quantum entanglement.

  4. Hybrid Long-Distance Entanglement Distribution Protocol

    DEFF Research Database (Denmark)

    Brask, J.B.; Rigas, I.; Polzik, E.S.;

    2010-01-01

    We propose a hybrid (continuous-discrete variable) quantum repeater protocol for long-distance entanglement distribution. Starting from states created by single-photon detection, we show how entangled coherent state superpositions can be generated by means of homodyne detection. We show that near......-deterministic entanglement swapping with such states is possible using only linear optics and homodyne detectors, and we evaluate the performance of our protocol combining these elements....

  5. Using entanglement against noise in quantum metrology

    OpenAIRE

    Demkowicz-Dobrzanski, Rafal; Maccone, Lorenzo

    2014-01-01

    We analyze the role of entanglement among probes and with external ancillas in quantum metrology. In the absence of noise, it is known that unentangled sequential strategies can achieve the same Heisenberg scaling of entangled strategies and that external ancillas are useless. This changes in the presence of noise: here we prove that entangled strategies can have higher precision than unentangled ones and that the addition of passive external ancillas can also increase the precision. We analy...

  6. Experimental generation of complex noisy photonic entanglement

    International Nuclear Information System (INIS)

    We present an experimental scheme based on spontaneous parametric down-conversion to produce multiple-photon pairs in maximally entangled polarization states using an arrangement of two type-I nonlinear crystals. By introducing correlated polarization noise in the paths of the generated photons we prepare mixed-entangled states whose properties illustrate fundamental results obtained recently in quantum information theory, in particular those concerning bound entanglement and privacy. (paper)

  7. Four-photon orbital angular momentum entanglement

    OpenAIRE

    Hiesmayr, B. C.; De Dood, M.J.A.; Löffler, W.

    2015-01-01

    Quantum entanglement shared between more than two particles is essential to foundational questions in quantum mechanics, and upcoming quantum information technologies. So far, up to 14 two-dimensional qubits have been entangled, and an open question remains if one can also demonstrate entanglement of higher-dimensional discrete properties of more than two particles. A promising route is the use of the photon orbital angular momentum (OAM), which enables implementation of novel quantum informa...

  8. Controllable entanglement sudden birth of Heisenberg spins

    Institute of Scientific and Technical Information of China (English)

    ZHENG Qiang; ZHI Qi-Jun; ZHANG Xiao-ping; REN Zhong-Zhou

    2011-01-01

    We investigate the Entanglement Sudden Birth (ESB) of two Heisenberg spins A and B. The third controller, qutrit C is introduced, which only has the Dzyaloshinskii-Moriya (DM) spin-orbit interaction with qubit B. We find that the DM interaction is necessary to induce the Entanglement Sudden Birth of the system qubits A and B, and the initial states of the system qubits and the qurit C are also important to control its Entanglement Sudden Birth.

  9. Bipartite and Multipartite Entanglement of Gaussian States

    OpenAIRE

    Adesso, Gerardo; Illuminati, Fabrizio

    2005-01-01

    In this chapter we review the characterization of entanglement in Gaussian states of continuous variable systems. For two-mode Gaussian states, we discuss how their bipartite entanglement can be accurately quantified in terms of the global and local amounts of mixedness, and efficiently estimated by direct measurements of the associated purities. For multimode Gaussian states endowed with local symmetry with respect to a given bipartition, we show how the multimode block entanglement can be c...

  10. Atomic entanglement near a realistic microsphere

    OpenAIRE

    Dung, Ho Trung; Scheel, S.; Welsch, D-G; Knöll, L

    2001-01-01

    We study a scheme for entangling two-level atoms located close to the surface of a dielectric microsphere. The effect is based on medium-assisted spontaneous decay, rigorously taking into account dispersive and absorptive properties of the microsphere. We show that even in the weak-coupling regime, where the Markov approximation applies, entanglement up to 0.35 ebits between two atoms can be created. However, larger entanglement and violation of Bell's inequality can only be achieved in the s...

  11. Entanglement generation in continuously coupled parametric generators

    OpenAIRE

    Herec, Jiri; Fiurasek, Jaromir; Mista Jr., Ladislav

    2003-01-01

    We investigate a compact source of entanglement. This device is composed of a pair of linearly coupled nonlinear waveguides operating by means of degenerate parametric downconversion. For the vacuum state at the input the generalized squeeze variance and logarithmic negativity are used to quantify the amount of nonclassicality and entanglement of output beams. Squeezing and entanglement generation for various dynamical regimes of the device are discussed.

  12. Probabilistic Preparation of N-particle Cat States via Entanglement Swapping and Entanglement Concentration

    Institute of Scientific and Technical Information of China (English)

    姚春梅; 李敏; 叶柳; 郭光灿

    2002-01-01

    We discuss two different schemes for the probabilistic preparation of N-particle cat states using pure multiparticle entangled states via entanglement swapping and entanglement concentration. At the centre of distribution A,Alice performs all of the operations required to achieve our goal.

  13. Minimum Entangling Power is Close to Its Maximum

    OpenAIRE

    Chen, Jianxin; Ji, Zhengfeng; Kribs, David W.; Zeng, Bei

    2012-01-01

    Given a quantum gate $U$ acting on a bipartite quantum system, its maximum (average, minimum) entangling power is the maximum (average, minimum) entanglement generation with respect to certain entanglement measure when the inputs are restricted to be product states. In this paper, we mainly focus on the 'weakest' one, i.e., the minimum entangling power, among all these entangling powers. We show that, by choosing von Neumann entropy of reduced density operator or Schmidt rank as entanglement ...

  14. Entanglement Measure and Quantum Violation of Bell-Type Inequality

    Science.gov (United States)

    Ding, Dong; He, Ying-Qiu; Yan, Feng-Li; Gao, Ting

    2016-10-01

    By calculating entanglement measures and quantum violation of Bell-type inequality, we reveal the relationship between entanglement measure and the amount of quantum violation for a family of four-qubit entangled states. It has been demonstrated that the Bell-type inequality is completely violated by these four-qubit entangled states. The plot of entanglement measure as a function of the expectation value of Bell operator shows that entanglement measure first decreases and then increases smoothly with increasing quantum violation.

  15. Gaussian Entanglement Distribution via Satellite

    OpenAIRE

    Hosseinidehaj, Nedasadat; Malaney, Robert

    2014-01-01

    In this work we analyse three quantum communication schemes for the generation of Gaussian entanglement between two ground stations. Communication occurs via a satellite over two independent atmospheric fading channels dominated by turbulence-induced beam wander. In our first scheme the engineering complexity remains largely on the ground transceivers, with the satellite acting simply as a reflector. Although the channel state information of the two atmospheric channels remains unknown in thi...

  16. Testing quantum entanglement with contextuality

    CERN Document Server

    Xie, Qing; Ding, X -M; Yang, W -L; Yue, R -H; Fan, H

    2011-01-01

    Quantum mechanics is contextual which conflicts with non-contextual hidden variable theories. We find that contextuality can detect efficiently the entangled states for both discrete and continuous variable systems. The contextuality does not depend on interference of decoherence from noise and detection loss in some systems, which allows a loophole-free test in real experiments. In addition, the contextuality is responsible for the violation of some generalized Bell inequalities.

  17. Tensor 2-sums and entanglement

    CERN Document Server

    Klavzar, Sandi

    2009-01-01

    To define a minimal mathematical framework for isolating some of the characteristic properties of quantum entanglement, we introduce a generalization of the tensor product of graphs. Inspired by the notion of a density matrix, the generalization is a simple one: every graph can be obtained by addiction modulo two, possibly with many summands, of tensor products of adjacency matrices. In this picture, we are still able to prove a combinatorial analogue of the Peres-Horodecki criterion for testing separability.

  18. Radiative processes of uniformly accelerated entangled atoms

    CERN Document Server

    Menezes, G

    2015-01-01

    We study radiative processes of uniformly accelerated entangled atoms, interacting with an electromagnetic field prepared in the Minkowski vacuum state. We discuss the structure of the rate of variation of the atomic energy for two atoms travelling in different hyperbolic world lines. We identify the contributions of vacuum fluctuations and radiation reaction to the generation of entanglement as well as to the decay of entangled states. Our results resemble the situation in which two inertial atoms are coupled individually to two spatially separated cavities at different temperatures. In addition, for equal accelerations we obtain that the maximally entangled antisymmetric Bell state is a decoherence-free state.

  19. Entanglement production in quantized chaotic systems

    Indian Academy of Sciences (India)

    Jayendra N Bandyopadhyay; Arul Lakshminarayan

    2005-04-01

    Quantum chaos is a subject whose major goal is to identify and to investigate different quantum signatures of classical chaos. Here we study entanglement production in coupled chaotic systems as a possible quantum indicator of classical chaos. We use coupled kicked tops as a model for our extensive numerical studies. We find that, in general, chaos in the system produces more entanglement. However, coupling strength between two subsystems is also a very important parameter for entanglement production. Here we show how chaos can lead to large entanglement which is universal and describable by random matrix theory (RMT). We also explain entanglement production in coupled strongly chaotic systems by deriving a formula based on RMT. This formula is valid for arbitrary coupling strengths, as well as for sufficiently long time. Here we investigate also the effect of chaos on the entanglement production for the mixed initial state. We find that many properties of the mixed-state entanglement production are qualitatively similar to the pure state entanglement production. We however still lack an analytical understanding of the mixed-state entanglement production in chaotic systems.

  20. Nonlocality and entanglement as opposite properties

    CERN Document Server

    Vallone, G; Gómez, E S; Cañas, G; Larsson, J -A; Mataloni, P; Cabello, A

    2011-01-01

    We show that, for any chained Bell inequality with any number of settings, nonlocality and entanglement are not only essentially different properties but opposite ones. We first show that, in the absence of noise, the threshold detection efficiency for a loophole-free Bell test increases with the degree of entanglement, so that the closer the quantum states are to product states, the harder it is to reproduce the quantum predictions with local models. In the presence of white noise, we show that nonlocality and entanglement are simultaneously maximized only in the presence of extreme noise; in any other case, the lowest threshold detection efficiency is obtained by reducing the entanglement.

  1. Quantum communication using a multiqubit entangled channel

    International Nuclear Information System (INIS)

    We describe a protocol in which two senders each teleport a qubit to a receiver using a multiqubit entangled state. The multiqubit channel used for teleportation is genuinely 4-qubit entangled and is not equivalent to a product of maximally entangled Bell pairs under local unitary operations. We discuss a scenario in which both senders must participate for the qubits to be successfully teleported. Such an all-or-nothing scheme cannot be implemented with standard two-qubit entangled Bell pairs and can be useful for different communication and computing tasks

  2. Quantum entanglement and quantum computational algorithms

    Indian Academy of Sciences (India)

    Arvind

    2001-02-01

    The existence of entangled quantum states gives extra power to quantum computers over their classical counterparts. Quantum entanglement shows up qualitatively at the level of two qubits. We demonstrate that the one- and the two-bit Deutsch-Jozsa algorithm does not require entanglement and can be mapped onto a classical optical scheme. It is only for three and more input bits that the DJ algorithm requires the implementation of entangling transformations and in these cases it is impossible to implement this algorithm classically

  3. Efficient entanglement purification in quantum repeaters

    Institute of Scientific and Technical Information of China (English)

    Sheng Yu-Bo; Zhou Lan; Cheng Wei-Wen; Gong Long-Yan; Zhao Sheng-Mei; Zheng Bao-Yu

    2012-01-01

    We present an efficient entanglement purification protocol (EPP) with controlled-not (CNOT) gates and linear optics.With the CNOT gates,our EPP can reach a higher fidelity than the conventional one.Moreover,it does not require the fidelity of the initial mixed state to satisfy · · 1· 2.If the initial state is not entangled,it still can be purified.With the linear optics,this protocol can get pure maximally entangled pairs with some probabilities.Meanwhile,it can be used to purify the entanglement between the atomic ensembles in distant locations.This protocol may be useful in long-distance quantum communication.

  4. Bounds on entanglement in qudit subsystems

    OpenAIRE

    Kendon, Vivien M.; Zyczkowski, Karol; Munro, William J.

    2002-01-01

    The entanglement in a pure state of N qudits (d-dimensional distinguishable quantum particles) can be characterised by specifying how entangled its subsystems are. A generally mixed subsystem of m qudits is obtained by tracing over the other N-m qudits. We examine the entanglement in the space of mixed states of m qudits. We show that for a typical pure state of N qudits, its subsystems smaller than N/3 qudits will have a positive partial transpose and hence are separable or bound entangled. ...

  5. Entanglement inside the cosmological apparent horizon

    International Nuclear Information System (INIS)

    Highlights: • We consider cosmological dark energy. • Entanglement between cosmological eras is the source. • Negativity is the leading parameter. • We consider the violation of energy conditions. - Abstract: Possible connections between quantum entanglement and cosmological eras are considered. In particular, assuming that two epochs are each other entangling, by measuring the entanglement degree, it is possible to recover dynamical properties of the universe. In particular, the effects of dark energy could be due to the entanglement between states, since a negative pressure arises at late times. In this process, we choose as ruler to quantify the “entanglement weight”, the so-called negativity of entanglement. It follows that a natural anti-gravitational effect occurs when the cosmological eras are entangled. Thus, dark energy could be seen as a straightforward consequence of entanglement. Specifically, our results can be compared with observational data. In doing so, it is possible to show that a pressureless term is recovered at a certain epoch dominating over dark energy and ruling the structure formation

  6. Entanglement classification with matrix product states.

    Science.gov (United States)

    Sanz, M; Egusquiza, I L; Di Candia, R; Saberi, H; Lamata, L; Solano, E

    2016-07-26

    We propose an entanglement classification for symmetric quantum states based on their diagonal matrix-product-state (MPS) representation. The proposed classification, which preserves the stochastic local operation assisted with classical communication (SLOCC) criterion, relates entanglement families to the interaction length of Hamiltonians. In this manner, we establish a connection between entanglement classification and condensed matter models from a quantum information perspective. Moreover, we introduce a scalable nesting property for the proposed entanglement classification, in which the families for N parties carry over to the N + 1 case. Finally, using techniques from algebraic geometry, we prove that the minimal nontrivial interaction length n for any symmetric state is bounded by .

  7. Detecting Multiparticle Entanglement of Dicke States

    DEFF Research Database (Denmark)

    Lücke, Bernd; Peise, Jan; Vitagliano, Giuseppe;

    2014-01-01

    Recent experiments demonstrate the production of many thousands of neutral atoms entangled in their spin degrees of freedom. We present a criterion for estimating the amount of entanglement based on a measurement of the global spin. It outperforms previous criteria and applies to a wider class...... of entangled states, including Dicke states. Experimentally, we produce a Dicke-like state using spin dynamics in a Bose-Einstein condensate. Our criterion proves that it contains at least genuine 28-particle entanglement. We infer a generalized squeezing parameter of −11.4(5)  dB....

  8. Entanglement Equilibrium and the Einstein Equation.

    Science.gov (United States)

    Jacobson, Ted

    2016-05-20

    A link between the semiclassical Einstein equation and a maximal vacuum entanglement hypothesis is established. The hypothesis asserts that entanglement entropy in small geodesic balls is maximized at fixed volume in a locally maximally symmetric vacuum state of geometry and quantum fields. A qualitative argument suggests that the Einstein equation implies the validity of the hypothesis. A more precise argument shows that, for first-order variations of the local vacuum state of conformal quantum fields, the vacuum entanglement is stationary if and only if the Einstein equation holds. For nonconformal fields, the same conclusion follows modulo a conjecture about the variation of entanglement entropy.

  9. Can Holographic Entanglement Entropy Distinguish Relaxation Timescales?

    CERN Document Server

    Rahimi, M; Lezgi, M

    2016-01-01

    We use gauge-gravity duality to compute entanglement entropy in a non-conformal background with an energy scale $\\Lambda$. At zero temperature, we observe that entanglement entropy decreases by raising $\\Lambda$. However, at finite temperature, we realize that both $\\frac{\\Lambda}{T}$ and entanglement entropy rise together. Comparing entanglement entropy of the non-conformal theory, $S_{A(N)}$, and of its conformal theory at the $UV$ limit, $ S_{A(C)}$, rereals that $S_{A(N)}$ can be larger or smaller than $S_{A(C)}$, depending on the value of $\\frac{\\Lambda}{T}$

  10. Experimental entanglement redistribution under decoherence channels.

    Science.gov (United States)

    Aguilar, G H; Valdés-Hernández, A; Davidovich, L; Walborn, S P; Souto Ribeiro, P H

    2014-12-12

    When an initially entangled pair of qubits undergoes local decoherence processes, there are a number of ways in which the original entanglement can spread throughout the multipartite system consisting of the two qubits and their environments. Here, we report theoretical and experimental results regarding the dynamics of the distribution of entanglement in this system. The experiment employs an all optical setup in which the qubits are encoded in the polarization degrees of freedom of two photons, and each local decoherence channel is implemented with an interferometer that couples the polarization to the path of each photon, which acts as an environment. We monitor the dynamics and distribution of entanglement and observe the transition from bipartite to multipartite entanglement and back, and show how these transitions are intimately related to the sudden death and sudden birth of entanglement. The multipartite entanglement is further analyzed in terms of three- and four-partite entanglement contributions, and genuine four-qubit entanglement is observed at some points of the evolution.

  11. Time-bin Entanglement from Quantum Dots

    CERN Document Server

    Weihs, Gregor; Predojević, Ana

    2016-01-01

    The desire to have a source of single entangled photon pairs can be satisfied using single quantum dots as emitters. However, we are not bound to pursue only polarization entanglement, but can also exploit other degrees of freedom. In this chapter we focus on the time degree of freedom, to achieve so-called time-bin entanglement. This requires that we prepare the quantum dot coherently into the biexciton state and also build special interferometers for analysis. Finally this technique can be extended to achieve time-bin and polarization hyper-entanglement from a suitable quantum dot.

  12. Entanglement property in matrix product spin systems

    Institute of Scientific and Technical Information of China (English)

    ZHU Jing-Min

    2012-01-01

    We study the entanglement property in matrix product spin-ring systems systemically by von Neumann entropy.We find that:(i) the Hilbert space dimension of one spin determines the upper limit of the maximal value of the entanglement entropy of one spin,while for multiparticle entanglement entropy,the upper limit of the maximal value depends on the dimension of the representation matrices.Based on the theory,we can realize the maximum of the entanglement entropy of any spin block by choosing the appropriate control parameter values.(ii) When the entanglement entropy of one spin takes its maximal value,the entanglement entropy of an asymptotically large spin block,i.e. the renormalization group fixed point,is not likely to take its maximal value,and so only the entanglement entropy Sn of a spin block that varies with size n can fully characterize the spin-ring entanglement feature.Finally,we give the entanglement dynamics,i.e.the Hamiltonian of the matrix product system.

  13. Asymmetric EPR entanglement in continuous variable systems

    International Nuclear Information System (INIS)

    Continuous variable entanglement can be produced in nonlinear systems or via the interference of squeezed states. In many optical systems such as parametric down conversion, the production of two perfectly symmetric subsystems is usually assumed when demonstrating the existence of entanglement. This symmetry simplifies the description of entanglement. However, asymmetry in entanglement may arise naturally in a real experiment, or be intentionally introduced in a given quantum information protocol. These asymmetries can emerge from having the output beams experience different losses and environmental contamination, or from the availability of non-identical input quantum states in quantum communication protocols. In this paper, we present a visualization of entanglement using quadrature amplitude plots of the twin beams. We quantitatively discuss the strength of asymmetric entanglement using EPR and inseparability criteria and theoretically show that the optimal beamsplitter ratio for entanglement is dependent on the asymmetries and may not be 50 : 50. To support this theory, we present experimental results showing one particular asymmetric entanglement where a 78 : 22 beamsplitter is optimal for observing entanglement. (paper)

  14. Entanglement, tensor networks and black hole horizons

    Science.gov (United States)

    Molina-Vilaplana, J.; Prior, J.

    2014-11-01

    We elaborate on a previous proposal by Hartman and Maldacena on a tensor network which accounts for the scaling of the entanglement entropy in a system at a finite temperature. In this construction, the ordinary entanglement renormalization flow given by the class of tensor networks known as the Multi Scale Entanglement Renormalization Ansatz (MERA), is supplemented by an additional entanglement structure at the length scale fixed by the temperature. The network comprises two copies of a MERA circuit with a fixed number of layers and a pure matrix product state which joins both copies by entangling the infrared degrees of freedom of both MERA networks. The entanglement distribution within this bridge state defines reduced density operators on both sides which cause analogous effects to the presence of a black hole horizon when computing the entanglement entropy at finite temperature in the AdS/CFT correspondence. The entanglement and correlations during the thermalization process of a system after a quantum quench are also analyzed. To this end, a full tensor network representation of the action of local unitary operations on the bridge state is proposed. This amounts to a tensor network which grows in size by adding succesive layers of bridge states. Finally, we discuss on the holographic interpretation of the tensor network through a notion of distance within the network which emerges from its entanglement distribution.

  15. Quantum communication using a multiqubit entangled channel

    Energy Technology Data Exchange (ETDEWEB)

    Ghose, Shohini, E-mail: sghose@wlu.ca [Department of Physics and Computer Science, Wilfrid Laurier University, Waterloo, Ontario (Canada); Institute for Quantum Computing, University of Waterloo, Ontario (Canada); Hamel, Angele [Department of Physics and Computer Science, Wilfrid Laurier University, Waterloo, Ontario (Canada)

    2015-12-31

    We describe a protocol in which two senders each teleport a qubit to a receiver using a multiqubit entangled state. The multiqubit channel used for teleportation is genuinely 4-qubit entangled and is not equivalent to a product of maximally entangled Bell pairs under local unitary operations. We discuss a scenario in which both senders must participate for the qubits to be successfully teleported. Such an all-or-nothing scheme cannot be implemented with standard two-qubit entangled Bell pairs and can be useful for different communication and computing tasks.

  16. Entanglement Cost of Quantum Channels

    CERN Document Server

    Berta, Mario; Christandl, Matthias; Wehner, Stephanie

    2011-01-01

    A natural question in characterizing the information theoretic power of quantum channels is to ask at what rate entanglement is needed in order to asymptotically simulate a quantum channel in the presence of free classical communication. We call this the entanglement cost of a channel, and prove a formula describing it for all channels. We discuss two applications. Firstly, our result has consequences for the study of the strong converse property of the quantum capacity. More precisely, we show that any coding scheme sending quantum information through a quantum channel at a rate larger than the entanglement cost of the channel is exponentially 'bad' in the number of channel uses. Secondly, and independently of the first application, we are able to link the security in the noisy-storage model to a problem of sending quantum rather than classical information through the adversary's storage device. This not only greatly improves the range of parameters where security could be shown previously, but allows us to ...

  17. Entanglement, Holography and Causal Diamonds

    CERN Document Server

    de Boer, Jan; Heller, Michal P; Myers, Robert C

    2016-01-01

    We argue that the degrees of freedom in a d-dimensional CFT can be re-organized in an insightful way by studying observables on the moduli space of causal diamonds (or equivalently, the space of pairs of timelike separated points). This 2d-dimensional space naturally captures some of the fundamental nonlocality and causal structure inherent in the entanglement of CFT states. For any primary CFT operator, we construct an observable on this space, which is defined by smearing the associated one-point function over causal diamonds. Known examples of such quantities are the entanglement entropy of vacuum excitations and its higher spin generalizations. We show that in holographic CFTs, these observables are given by suitably defined integrals of dual bulk fields over the corresponding Ryu-Takayanagi minimal surfaces. Furthermore, we explain connections to the operator product expansion and the first law of entanglement entropy from this unifying point of view. We demonstrate that for small perturbations of the va...

  18. Gaussification and entanglement distillation of continuous variable systems: a unifying picture

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, Earl; Eisert, Jens [Dahlem Center for Complex Quantum Systems, Freie Universitaet Berlin, 14195 Berlin (Germany)

    2012-07-01

    Distillation of entanglement using only Gaussian operations is an important primitive in quantum communication, quantum repeater architectures, and distributed quantum computing. Existing distillation protocols for continuous degrees of freedom are only known to converge to a Gaussian state when measurements yield precisely the vacuum outcome. In sharp contrast, non-Gaussian states can be deterministically converted into Gaussian states while preserving their second moments, albeit by usually reducing their degree of entanglement. In this work - based on a novel instance of a non-commutative central limit theorem - we introduce a picture general enough to encompass the known protocols leading to Gaussian states, and also demonstrate convergence for a class of new protocols. This gives the experimental option of balancing the merits of success probability against entanglement produced. The generality of results also opens up entirely new territory, by providing means of multi-partite distillation and more efficient hybrid quantum repeater schemes.

  19. Quantum walk on the line: Entanglement and nonlocal initial conditions

    International Nuclear Information System (INIS)

    The conditional shift in the evolution operator of a quantum walk generates entanglement between the coin and position degrees of freedom. This entanglement can be quantified by the von Neumman entropy of the reduced density operator (entropy of entanglement). We show analytically that for a Hadamard walk with local initial conditions the asymptotic entanglement is 0.872 for all initial coin states. When nonlocal initial conditions are considered, the asymptotic entanglement varies smoothly between almost complete entanglement and no entanglement (product state). An exact expression for the asymptotic (long-time) entanglement is obtained for initial conditions in the position subspace spanned by [±1>

  20. Entangling mobility and interactions in social media.

    Directory of Open Access Journals (Sweden)

    Przemyslaw A Grabowicz

    Full Text Available Daily interactions naturally define social circles. Individuals tend to be friends with the people they spend time with and they choose to spend time with their friends, inextricably entangling physical location and social relationships. As a result, it is possible to predict not only someone's location from their friends' locations but also friendship from spatial and temporal co-occurrence. While several models have been developed to separately describe mobility and the evolution of social networks, there is a lack of studies coupling social interactions and mobility. In this work, we introduce a model that bridges this gap by explicitly considering the feedback of mobility on the formation of social ties. Data coming from three online social networks (Twitter, Gowalla and Brightkite is used for validation. Our model reproduces various topological and physical properties of the networks not captured by models uncoupling mobility and social interactions such as: i the total size of the connected components, ii the distance distribution between connected users, iii the dependence of the reciprocity on the distance, iv the variation of the social overlap and the clustering with the distance. Besides numerical simulations, a mean-field approach is also used to study analytically the main statistical features of the networks generated by a simplified version of our model. The robustness of the results to changes in the model parameters is explored, finding that a balance between friend visits and long-range random connections is essential to reproduce the geographical features of the empirical networks.