WorldWideScience

Sample records for baikal rift zone

  1. Lower crustal intrusions beneath the southern Baikal Rift Zone

    DEFF Research Database (Denmark)

    Nielsen, Christoffer; Thybo, Hans

    2009-01-01

    centre. The BEST (Baikal Explosion Seismic Transect) project acquired a 360-km long, deep seismic, refraction/wide-angle reflection profile in 2002 across southern Lake Baikal. The data from this project is used for identification of large-scale crustal structures and modelling of the seismic velocities......The Cenozoic Baikal Rift Zone (BRZ) is situated in south-central Siberia in the suture between the Precambrian Siberian Platform and the Amurian plate. This more than 2000-km long rift zone is composed of several individual basement depressions and half-grabens with the deep Lake Baikal at its...... of the crust and uppermost mantle. Previous interpretation and velocity modelling of P-wave arrivals in the BEST data has revealed a multi layered crust with smooth variation in Moho depth between the Siberian Platform (41 km) and the Sayan-Baikal fold belt (46 km). The lower crust exhibits normal...

  2. No Moho uplift below the Baikal Rift Zone

    DEFF Research Database (Denmark)

    Nielsen, Christoffer; Thybo, Hans

    2009-01-01

    .4-7.6 ± 0.2 km/s), slightly offset to the northeast from the rift axis. We interpret this feature as resulting from mafic intrusions. Their presence may explain the flat Moho by compensation of lower crustal thinning by intrusion of mafic melts. The Pn wave velocities (8.15-8.2 km/s) are normal for the area...

  3. Gas-oil fluids in the formation of travertines in the Baikal rift zone

    Science.gov (United States)

    Tatarinov, A. A.; Yalovik, L. I.; Shumilova, T. G.; Kanakin, S. V.

    2016-07-01

    Active participation of gas-oil fluids in the processes of mineral formation and petrogenesis in travertines of the Arshan and Garga hot springs is substantiated. The parageneses of the products of pyrolytic decomposition and oxidation of the gas-oil components of hydrothermal fluids (amorphous bitumen, graphite-like CM, and graphite) with different genetic groups of minerals crystallized in a wide range of P-T conditions were established. Travertines of the Baikal rift zone were formed from multicomponent hydrous-gas-oil fluids by the following basic mechanisms of mineral formation: chemogenic, biogenic, cavitation, fluid pyrometamorphism, and pyrolysis.

  4. THE VELOCITY STRUCTURE OF THE UPPER MANTLE AND REGIONAL DEEP THERMODYNAMICS OF THE BAIKAL RIFT ZONE

    Directory of Open Access Journals (Sweden)

    Alexander V. Pospeev

    2015-10-01

    Full Text Available The article is aimed at discussion of geological and geophysical aspects of the ‘asthenospheric’ interpretation of the ‘anomalous’ mantle layer that is revealed in the Baikal rift zone by deep seismic sounding (DSS methods. Based on the analysis of the geoelectrical model, estimations of rheological properties, regional geothermal and deep petrological data, it is concluded that the ‘anomalous’ mantle phenomenon should be interpreted within the framework of solid-phase models. It is shown that the actual minimum depth to the top of the asthenosphere is about 60–70 km in the region under study, and temperatures at the surface of the Earth’s mantle varies from 600 to 900 °С. It is most probable that velocities are reduced in the ‘anomalous’ mantle layer due to the presence of hightemperature spinel-pyroxene facies of the mantle rocks.

  5. First experience of seismodeformation monitoring of Baikal rift zone (by the example of South-Baikal earthquake of 27 August 2008)

    OpenAIRE

    Vstovsky, G. V.; S. A. Bornyakov

    2010-01-01

    A novel method of data processing – a structural functions curvature analysis method – was applied to the time series of seismodeformation monitoring of Baikal rift zone from April to November 2008, revealing the unique features of monitoring variable behaviour that can be considered as a revelation of precursors to the intensive South-Biakal earthquake (M=6.3, at 09:31 on 27 August 2008). The idea of a new approach leans upon basic ideas of modern physics of self-organized...

  6. First experience of seismodeformation monitoring of Baikal rift zone (by the example of South-Baikal earthquake of 27 August 2008

    Directory of Open Access Journals (Sweden)

    G. V. Vstovsky

    2010-04-01

    Full Text Available A novel method of data processing – a structural functions curvature analysis method – was applied to the time series of seismodeformation monitoring of Baikal rift zone from April to November 2008, revealing the unique features of monitoring variable behaviour that can be considered as a revelation of precursors to the intensive South-Biakal earthquake (M=6.3, at 09:31 on 27 August 2008. The idea of a new approach leans upon basic ideas of modern physics of self-organized criticality and open non-equilibrium systems in general.

  7. Mineralogical-geochemical features of travertines of the modern continental hydrotherms: A G-1 well, Tunka depression, Baikal rift zone

    Science.gov (United States)

    Soktoev, B. R.; Rikhvanov, L. P.; Ilenok, S. S.; Baranovskaya, N. V.; Taisaev, T. T.

    2015-07-01

    The mineral and chemical composition of travertines is studied in the modern discharge zone of the hydrothermal fluids of the Tunka depression, Baikal rift zone. The matrix of travertines is mostly made up of aragonite and calcite, which host about 20 mineral phases of Ag, Au, Pb, Cu, Sb, Sn, Fe, and other chemical elements. Similar rocks have previously been found in areas of modern submarine ore formation and tectonically active structures of the crust (New Zealand, the Cheleken Peninsula and others). Our materials confirm the opinion of some researchers who study modern hydrothermal ore formation in spreading zones that the formation of hydrothermal deposits requires favorable geochemical barriers rather than significant contents of metals in thermal waters. It is shown that microbial communities, concentrating chemical elements playing an important role in formation of ore mineralization in the discharge zones of thermal waters may be these barriers. According to our data, at the territory of the Tunka depression, thermal carbonic waters with endogenic components are delivered to the upper crustal horizons, involved in the existing hydrogeological systems, mixed with waters of active water exchange, and contribute to their chemical composition. This is manifested in the specific elemental and micromineral (Au, Ag, etc.) composition of the limescale of drinking water. In this local discharge zone, an effect of radioactive orphans has been found, which is similar to that established in barite chimneys from the Juan-de-Fuca Ridge.

  8. Spatial changes of seismic attenuation and multiscale geological heterogeneity in the Baikal rift and surroundings from analysis of coda waves

    Science.gov (United States)

    Dobrynina, Anna A.; Sankov, Vladimir A.; Chechelnitsky, Vladimir V.; Déverchère, Jacques

    2016-04-01

    The Baikal rift system is undergoing an active tectonic deformation expressed by a high level of seismic activity. This deformation leads to physical and mechanical changes of crustal properties which can be investigated by the seismic quality factor and its frequency dependence. Using a single backscattering model, a seismic quality-factor (QC), a frequency parameter (n) and an attenuation coefficient (δ) have been estimated by analyzing coda waves of 274 local earthquakes of the Baikal rift system for nineteen lapse time windows (W) from 10 to 100 s every 5 s and for six central frequencies (0.3, 0.75, 1.5, 3, 6 and 12 Hz). The average QC value increases with the frequency and lapse time window from 46 ± 52 (at 0.75 Hz) to 502 ± 109 (at 12 Hz) for W = 10 s and from 114 ± 49 (at 0.3 Hz) to 1865 ± 679 (at 12 Hz) for W = 100 s. The values of QC(f) and δ were estimated for the whole Baikal rift system and for separate tectonic blocks: the stable Siberian Platform, main rift basins, spurs and uplifts. Along the rift system, the Q0-value (QC-factor at the frequency f = 1 Hz) varies within 72-109 and the frequency parameter n ranges from 0.87 to 1.22, whereas Q0 is 134 and n is 0.48 for the stable Siberian Platform. Vertical variations of attenuation reveal that sharp changes of δ and n are confined to the velocity discontinuities. The comparison of lateral variations of seismic wave attenuation and geological and geophysical characteristics of the Baikal rift system shows that attenuation is correlated with both seismic activity and heat flow and in a lesser degree with the surface fault density and the age of the crust. Seismic wave attenuation found across the main shear zones of the south-western Baikal rift (Main Sayan strike-slip fault zone and Tunka, Obruchev and Primorsky normal faults) is increased by more than 25-60% compared to the neighboring areas.

  9. Tectonics of the baikal rift deduced from volcanism and sedimentation: a review oriented to the Baikal and Hovsgol lake systems.

    Science.gov (United States)

    Ivanov, Alexei V; Demonterova, Elena I

    2009-01-01

    As known from inland sedimentary records, boreholes, and geophysical data, the initiation of the Baikal rift basins began as early as the Eocene. Dating of volcanic rocks on the rift shoulders indicates that volcanism started later, in the Early Miocene or probably in the Late Oligocene. Prominent tectonic uplift took place at about 20 Ma, but information (from both sediments and volcanics) on the initial stage of the rifting is scarce and incomplete. A comprehensive record of sedimentation derived from two stacked boreholes drilled at the submerged Akademichesky ridge indicates that the deep freshwater Lake Baikal existed for at least 8.4 Ma, while the exact formation of the lake in its roughly present-day shape and volume is unknown. Four important events of tectonic/environmental changes at about approximately 7, approximately 5, approximately 2.5, and approximately 0.1 Ma are seen in that record. The first event probably corresponds to a stage of rift propagation from the historical center towards the wings of the rift system. Rifting in the Hovsgol area was initiated at about this time. The event of ~5 Ma is a likely candidate for the boundary between slow and fast stages of rifting. It is reflected in a drastic change of sedimentation rate due to isolation of the Akademichesky ridge from the central and northern Lake Baikal basins. The youngest event of 0.1 Ma is reflected by the (87)0Sr/ (86)Sr ratio increase in Lake Baikal waters and probably related to an increasing rate of mountain growth (and hence erosion) resulting from glacial rebounding. The latter is responsible for the reorganization of the outflow pattern with the termination of the paleo-Manzurka outlet and the formation of the Angara outlet. The event of approximately 2.5 Ma is reflected in the decrease of the (87)Sr/(86)Sr and Na/Al ratios in Lake Baikal waters. We suggest that it is associated with a decrease of the dust load due to a reorganization of the atmospheric circulations in Mainland

  10. LATE CREATACEOUS-CENOZOIC SEDIMENTS OF THE BAIKAL RIFT BASIN AND CHANGING NATURAL CONDITIONS

    Directory of Open Access Journals (Sweden)

    Viktor D. Mats

    2015-09-01

    Full Text Available The late Cretaceous-Cenozoic sediments of fossil soils and weathering crusts of the Baikal rift have been subject to long-term studies. Based on our research results, it is possible to distinguish the following litho-stratigraphic complexes which are related to particular stages of the rift development: the late Cretaceous–early Oligocene (crypto-rift Arheo-baikalian, the late Oligocene–early Pliocene (ecto-rift early orogenic Pra-baikalian, and the late Pliocene-Quaternary (ecto-rift late orogenic Pra-baikalian – Baikalian complexes. Changes of weathering modes (Cretaceous-quarter, soil formation (Miocene-quarter and differences of precipitation by vertical and lateral stratigraphy are analysed with regard to specific features of climate, tectonics and facial conditions of sedimentation. Tectonic phases are defined in the Cenozoic period of the Pribaikalie.

  11. Large mammals from the Upper Neopleistocene reference sections in the Tunka rift valley, southwestern Baikal Region

    Science.gov (United States)

    Shchetnikov, A. A.; Klementiev, A. M.; Filinov, I. A.; Semeney, E. Yu.

    2015-03-01

    This work presents the data on new finds of fossil macrotheriofauna in the reference sections of the Upper Neopleistocene sediments in the Tunka rift valley (southwestern Baikal Region). The osteological material of a number of Late Neopleistocene mammals including extinct species rare for the Baikal region such as Crocuta spelaea, Panthera spelaea, and Spirocerus kiakhtensis (?) was directly dated with a radiocarbon (AMS) method. The obtained 14C data (18000-35000 years) allow one to rejuvenate significantly the upper limit of the common age interval of habitat of these animals in southern part of Eastern Siberia. Cave hyena and spiral-horned antelope lived in the Tunka rift valley in the Baikal region in Late Kargino time (37-24 ka), and cave lion survived the maximum in the Sartan cryochron in the region (21-20 ka). The study of collected paleontological collections provides a basis for selection of independent Kargino (MIS 3) faunal assemblages to use them for regional biostratigraphic analysis of Pleistocene deposits. Radiocarbon age dating of samples allows one to attribute confidently all paleofaunal remains available to the second half of the Late Pleistocene.

  12. THE BAIKAL RIFT: PLIOCENE (MIOCENE – QUATERNARY EPISODE OR PRODUCT OF EXTENDED DEVELOPMENT SINCE THE LATE CRETACEOUS UNDER VARIOUS TECTONIC FACTORS. A REVIEW

    Directory of Open Access Journals (Sweden)

    V. D. Mats

    2015-12-01

    into account an extension of the BR evolution by 60 to 70 Ma, we propose a new concept of the BR development and introduce a three‐stage model (Fig. 7 (as a replacement of the well‐known two‐stage model [Logachev, 2003] and an impactogenic model as a supplement to the passive and active rifting models [Mats, 2012; Mats, Perepelova, 2011]. In our model, the first stage of the BR development is the Late Cretaceous‐Early Oligocene (70–30 Ma: in conditions of the general extension of the lithosphere, BR forms as a slot‐type (the term proposed by E.E. Milanovsky rift and develops, as shown by the passive rifting model, at the background of the original peneplain until the time when the Baikal region is impacted by stresses resulting from the Indo‐Eurasian collision; the rift structure is a single‐sided basin that comprises the seismically transparent seismostratigraphic complex (SSC‐1; it is bordered at NW by the zone of listric faults. The second stage is the Late Oligocene‐Early Pliocene (30–5 Ma: BR develops under the impact of stresses resulting from the Indo‐Eurasian collision; the dual‐sided graben is formed; it comprises SSC‐2 that is stratified and deformed. The third stage is the Late Pliocene – Quarter (5 Ma till present: BR develops under the impact of stresses generated by local deep sources, as shown by the active rifting model [Logachev, Zorin, 1987; Zorin et al., 2003]; another single‐sided graben is formed; it is bordered by listric faults from the NW and comprises SSC‐3 that is stratified but not deformed.

  13. THE STRUCTURE OF THE LITHOSPHERIC MANTLE OF THE SIBERAIN CRATON AND SEISMODYNAMICS OF DEFORMATION WAVES IN THE BAIKAL SEISMIC ZONE

    Directory of Open Access Journals (Sweden)

    A. A. Stepashko

    2015-09-01

    mantle lense (Fig 6, A; it is one of four main tectonical units that compose the basement of the Siberian craton [Mironyuk, Zagruzina, 1983]. As evidenced by the zonal composition of the mantle lense, the centre of the lense is highly dense, and this explains the location of a seismic anomaly there (Fig. 6, B which is determined to a depth of about 50–60 km [Pavlenkova G.A., Pavlenkova N.I., 2006]. The high-velocity root located in this segment of the craton is traced by seismic tomography [Koulakov, Bushenkova, 2010] to a depth of about 600 km (Fig. 7. The southward-stretching edge of the sub-cratonic mantle has played a major role in the evolution of the Central Asian orogenic belt. In the Paleozoic, the position and the configuration of the accretional margin of the Siberian paleocontinent were determined by the hidden boundary of the craton (Fig. 8, A. Along the craton’s boundary, rifting zones of various ages are located, and intrusions are concentrated, which genesis was related to extension settings (Fig. 8, B. The Cenozoic sedimentary basins are located above the hidden edge of the Siberian craton, which gives evidence of involvement of the deep lithospheric structure in the formation of the recent destruction zone. The basin of Lake Baikal is located along the mantle edge of the Siberian craton, and the basin’s crescent shape accentuates the strike of the mantle edge.In the region under study, the wave nature of seismicity is most evidently manifested by the cyclicity of the strongest earthquakes in the Baikal zone (Table 2. Three seismic cycles are distinguished as follows: (1 at the turn of the 20th century (earthquakes in the period from 1885 to 1931, M=6.6–8.2, (2 the middle of the 20th century (earthquakes from 1950 to 1967, M=6.8–8.1, and (3 at the turn of the 21st century (earthquakes from 1991 to 2012, M=6.3–7.3. While moving in the mantle, the deformation front collapses with the craton’s basement, partially releases its energy to the

  14. RESULTS OF COMPREHENSIVE STUDIES OF THE UNDERGROUND HYDROSPHERE WITHIN THE WESTERN SHOULDER OF THE BAIKAL RIFT (AS EXEMPLIFIED BY THE BAYANDAI – KRESTOVSKY CAPE SITE

    Directory of Open Access Journals (Sweden)

    Konstantin Zh. Seminsky

    2015-09-01

    Full Text Available The subject of comprehensive studies is the underground hydrosphere of the upper crust of the western shoulder of the Baikal rift, being characterized by high tectonic activity in the recent stage of tectogenesis. The studies were focused on the Bayandai – Krestovsky Cape site, considering it as a benchmark for the territory of the Western Pribiakalie (Fig. 1. The available hydrogeological survey database is used to study underground waters circulating at depth of several kilometers. Analyses of deeper waters are conducted on the basis of geophysical data. According to results of initial geological and geophysical studies [Семинский и др., 2010], the crust at the junction of the Siberian crater and the SayanBaikal folded belt is characterized by a hierarchic zoneblock structure (Fig. 2. Regardless of the scale of studies, the territory under study can be divided into sections of two types, that alternate from NW to SE and represent wide highly destructed zones and relatively monolithic blocks of the crust. The Obruchev fault system is distinguished as the main interblock zone (the 2nd hierarchic level in the study area. It represents the 50 km long NW shoulder of the Baikal rift (the1st hierarchic level and includes the Morskaya, Primorskaya and Prikhrebtovaya interplate zones (the 3rd hierarchic level. These zones are traced from depth of dozens of kilometers; at the surface, they are represented by fault structures of the highest hierarchic levels.Specific features of the current zoneblock divisibility of the crust serve as the structural basis for interpreting the materials obtained by hydrogeological studies conducted on the Bayandai – Krestovsky Cape site to research the distribution, mineralization and macrocomponent compositions of waters which represent the subsurface part of the underground lithosphere in the study area. The research is based on analyses of the underground water samples from 46 observation points

  15. Water chemistry and plankton composition in the mixing zone of the Selenga River with Lake Baikal

    Science.gov (United States)

    Tomberg, Irina; Sorokovikova, larisa; Popovskaya, Galina; Belykh, Olga; Bashenkhaeva, Nadya; Parfenova, Valentina

    2014-05-01

    Seasonal and inter-annual variations of chemical components, bacterio- and phytoplankton and autotrophic picoplankton (APP) were studied in the distributaries of the Selenga River, Selenga shallow waters (Selenga shoal) and Lake Baikal for 2003-2013. Major variations in the chemical composition of river waters were recorded at a distance of 1-3 km off the mouths of the Selenga River distributaries (mixing zone). The total quantity of major ions and plankton composition and abundance served as indicators to distinguish between river and lake waters. Phytoplankton concentration was high in the mixing zone and caused the reduction of nutrients in this area. Changes in species composition of phytoplankton, APP, dominant groups of bacterioplankton were observed in the Selenga shoal. River phytoplankton prevailed near the mouths of distributaries, in the mixing zone these were replaced by lake species, and at a distance of 7 km offshore phytoplankton composition was typical of Lake Baikal. Organotrophic microorganisms dominated in the Selenga River water. In the mixing zone, all bacterial groups were represented in equal proportions. Oligotrophic and psychrotolerant bacteria prevailed in Lake Baikal. As the distance from the river delta increased, phycocyanin-rich picocyanobacteria were replaced by phycoerythrin-rich picocyanobacteria and the contribution of picoplankton biomass to total phytoplankton biomass was raised. Near the mouth of distributaries, APP biomass was 5 times lower than the phytoplankton biomass whilst at a distance of 7 km it was 2 times higher than typical values for Baikal phytoplankton.

  16. Active faults of the Baikal depression

    Science.gov (United States)

    Levi, K.G.; Miroshnichenko, A.I.; San'kov, V. A.; Babushkin, S.M.; Larkin, G.V.; Badardinov, A.A.; Wong, H.K.; Colman, S.; Delvaux, D.

    1997-01-01

    The Baikal depression occupies a central position in the system of the basins of the Baikal Rift Zone and corresponds to the nucleus from which the continental lithosphere began to open. For different reasons, the internal structure of the Lake Baikal basin remained unknown for a long time. In this article, we present for the first time a synthesis of the data concerning the structure of the sedimentary section beneath Lake Baikal, which were obtained by complex seismic and structural investigations, conducted mainly from 1989 to 1992. We make a brief description of the most interesting seismic profiles which provide a rough idea of a sedimentary unit structure, present a detailed structural interpretation and show the relationship between active faults in the lake, heat flow anomalies and recent hydrothermalism.

  17. Search for ancient microorganisms in Lake Baikal

    Energy Technology Data Exchange (ETDEWEB)

    Hunter-Cevera, Jennie C.; Repin, Vladimir E.; Torok, Tamas

    2000-06-14

    Lake Baikal in Russia, the world's oldest and deepest continental lake lies in south central Siberia, near the border to Mongolia. The lake is 1,643 m deep and has an area of about 46,000 km2. It holds one-fifth of all the terrestrial fresh water on Earth. Lake Baikal occupies the deepest portion of the Baikal Rift Zone. It was formed some 30-45 million years ago. The isolated Lake Baikal ecosystem represents a unique niche in nature based on its historical formation. The microbial diversity present in this environment has not yet been fully harvested or examined for products and processes of commercial interest and value. Thus, the collection of water, soil, and sub-bottom sediment samples was decided to characterize the microbial diversity of the isolated strains and to screen the isolates for their biotechnological value.

  18. Classification of the rift zones of venus: Rift valleys and graben belts

    Science.gov (United States)

    Guseva, E. N.

    2016-05-01

    The spatial distribution of rift zones of Venus, their topographic configuration, morphometric parameters, and the type of volcanism associating with rifts were analyzed. This allowed the main characteristic features of rifts to be revealed and two different types of rift-forming structures, serving for classification of rift zones as rift valleys and graben belts, to be isolated. These structural types (facies) of rift zones are differently expressed in the relief: rift valleys are individual deep (several kilometers) W-shaped canyons, while graben belts are clusters of multiple V-shaped and rather shallow (hundreds of meters) depressions. Graben belts are longer and wider, as compared to rift valleys. Rift valleys are spatially associated with dome-shaped volcanic rises and large volcanos (concentrated volcanic sources), while graben belts do not exhibit such associations. Volcanic activity in the graben belts are presented by spacious lava fields with no apparent sources of volcanism. Graben belts and rift valleys were formed during the Atlian Period of geologic history of Venus, and they characterized the tectonic style of the planet at the late stages of its geologic evolution. Formation of this or that structural facies of the rift zones of Venus were probably governed by the thickness of the lithosphere, its rheological properties, and the development degree of the mantle diapirs associating with rift zones.

  19. Kīlauea's Upper East Rift Zone: A Rift Zone in Name Only

    Science.gov (United States)

    Swanson, D. A.; Fiske, R. S.

    2014-12-01

    Kīlauea's upper east rift zone (UERZ) extends ~3 km southeastward from the summit caldera to the Koáe fault system, where it starts to bend into the main part of the ENE-trending rift zone. The UERZ lacks a distinct positive gravity anomaly (though coverage is poor) and any evidence of deformation associated with magma intrusion. All ground ruptures—and the Puhimau thermal area—trend ENE, crossing the UERZ at a high angle. Lua Manu, Puhimau, and Kóokóolau craters are the only surface evidence of the UERZ. Yet the UERZ is seismically active, and all magma entering the rest of the rift zone must pass through it. Rather than a rift zone in the traditional sense, with abundant dikes and ground ruptures along its trend, the UERZ cuts across the ENE structural grain and serves only as a connector to the rest of the rift zone, not a locus of dike formation along its length. The UERZ probably developed as a consequence of gradual SSE migration of the active part of the main east rift zone at the trailing edge of the south flank. During migration, a connection to the summit reservoir complex must be maintained; otherwise, the middle and lower east rift zone would starve and magma from Kīlauea's summit reservoir complex would have to go elsewhere. Over time, the UERZ lengthened and rotated clockwise to maintain the connection. Near the caldera, the UERZ may be widening westward as the summit reservoir complex migrates southward from the center of the caldera to its present position. A layered stress regime results in the upper 2-3 km mimicking the pervasive ENE structural grain of most of Kīlauea, whereas the underlying magmatic part of the UERZ responds to stresses related to SE magma transport. Magma intruding upward from the connector forms a dike that follows the ENE structural grain, as during the 1974 eruption. The active east rift zone has been migrating since ~100 ka, estimated by applying a 700-y extension rate across the Koa'e fault system to the ~6.5 km

  20. Ez-response as a monitor of a Baikal rift fault electrical resistivity: 3D modelling studies

    Directory of Open Access Journals (Sweden)

    I. L. Trofimov

    2004-06-01

    Full Text Available 3D numerical studies have shown that the vertical voltage above the Baikal deep-water fault is detectable and that respective transfer functions, Ez-responses, are sensitive to the electrical resistivity changes of the fault, i.e. these functions appear actually informative with respect to the resistivity «breath» of the fault. It means that if the fault resistivity changed, conventional electromagnetic instruments would be able to detect this fact by measurement of the vertical electric field, Ez, or the vertical electric voltage just above the fault as well as horizontal magnetic field on the shore. Other electromagnetic field components (Ex, Ey, Hz do not seem to be sensitive to the resistivity changes in such a thin fault (as wide as 500 m. On the other hand, such changes are thought to be able to indicate a change of a stress state in the earthquake preparation zone. Besides, the vertical profile at the bottom of Lake Baikal is suitable for electromagnetic monitoring of the fault electrical resistivity changes. Altogether, the vertical voltage above the deep-water fault might be one of earthquake precursors.

  1. [Genetic Differentiation of Populations of Baikal Endemic Sergentia baicalensis Tshern. (Diptera, Chironomidae)].

    Science.gov (United States)

    Kravtsova, L S; Bukin, Yu S; Peretolchina, T E; Shcherbakov, D Yu

    2015-07-01

    The population structure of endemic species Sergentia baicalensis (Diptera, Chironomidae) from Lake Baikal was studied using the first subunit of the cytochrome C oxidase mitochondrial gene (Col). Two populations inhabiting different basins of this lake, the southern-central and northern, were detected. It was confirmed that the divergence time of this species was dated to Late Miocene (9.53 ± 3.9 Mya), during the period when geographically separated basins existed in the Baikal rift zone. PMID:26410937

  2. Magmatism in rifting and basin formation

    Science.gov (United States)

    Thybo, H.

    2008-12-01

    Whether heating and magmatism cause rifting or rifting processes cause magmatic activity is highly debated. The stretching factor in rift zones can be estimated as the relation between the initial and the final crustal thickness provided that the magmatic addition to the crust is insignificant. Recent research demonstrates substantial magmatic intrusion into the crust in the form of sill like structures in the lowest crust in the presently active Kenya and Baikal rift zones and the DonBas palaeo-rift zone in Ukraine. This result may be surprising as the Kenya Rift is associated with large amounts of volcanic products, whereas the Baikal Rift shows very little volcanism. Identification of large amounts of magmatic intrusion into the crust has strong implications for estimation of stretching factor, which in the case of Baikal Rift Zone is around 1.7 but direct estimation gives a value of 1.3-1.4 if the magmatic addition is not taken into account. This may indicate that much more stretching has taken place on rift systems than hitherto believed. Wide sedimentary basins may form around aborted rifts due to loading of the lithosphere by sedimentary and volcanic in-fill of the rift. This type of subsidence will create wide basins without faulting. The Norwegian- Danish basin in the North Sea area also has subsided gradually during the Triassic without faulting, but only few rift structures have been identified below the Triassic sequences. We have identified several mafic intrusions in the form of large batholiths, typically more than 100 km long, 20-40 km wide and 20 km thick. The associated heating would have lifted the surface by about 2 km, which may have been eroded before cooling. The subsequent contraction due to solidification and cooling would create subsidence in a geometry similar to basins that developed by loading. These new aspects of magmatism will be discussed with regard to rifting and basin formation.

  3. Kilauea east rift zone magmatism: An episode 54 perspective

    Science.gov (United States)

    Thornber, C.R.; Heliker, C.; Sherrod, D.R.; Kauahikaua, J.P.; Miklius, Asta; Okubo, P.G.; Trusdell, F.A.; Budahn, J.R.; Ridley, W.I.; Meeker, G.P.

    2003-01-01

    On January 29 30, 1997, prolonged steady-state effusion of lava from Pu'u'O'o was briefly disrupted by shallow extension beneath Napau Crater, 1 4 km uprift of the active Kilauea vent. A 23-h-long eruption (episode 54) ensued from fissures that were overlapping or en echelon with eruptive fissures formed during episode 1 in 1983 and those of earlier rift zone eruptions in 1963 and 1968. Combined geophysical and petrologic data for the 1994 1999 eruptive interval, including episode 54, reveal a variety of shallow magmatic conditions that persist in association with prolonged rift zone eruption. Near-vent lava samples document a significant range in composition, temperature and crystallinity of pre-eruptive magma. As supported by phenocryst liquid relations and Kilauea mineral thermometers established herein, the rift zone extension that led to episode 54 resulted in mixture of near-cotectic magma with discrete magma bodies cooled to ???1100??C. Mixing models indicate that magmas isolated beneath Napau Crater since 1963 and 1968 constituted 32 65% of the hybrid mixtures erupted during episode 54. Geophysical measurements support passive displacement of open-system magma along the active east rift conduit into closed-system rift-reservoirs along a shallow zone of extension. Geophysical and petrologic data for early episode 55 document the gradual flushing of episode 54 related magma during magmatic recharge of the edifice.

  4. Shear zone reactivation during South Atlantic rifting in NW Namibia

    Science.gov (United States)

    Koehn, D.; Passchier, C. W.; Salomon, E.

    2013-12-01

    Reactivation of inherited structures during rifting as well as an influence of inherited structures on the orientation of a developing rift has long been discussed (e.g. Piqué & Laville, 1996; Younes & McClay, 2002). Here, we present a qualitative and quantitative study of shear zone reactivation during the South Atlantic opening in NW Namibia. The study area comprises the Neo-Proterozoic rocks of the Kaoko Belt which was formed during the amalgamation of Gondwana. The Kaoko Belt encompasses the prominent ~500 km long ductile Purros shear zone and the Three Palms shear zone, both running sub-parallel to the present continental margin. The Kaoko Belt is partly overlain by the basalts of the Paraná-Etendeka Large Igneous Province, which with an age of ~133 Ma were emplaced just before or during the onset of the Atlantic rifting at this latitude. Combining the analysis of satellite imagery and digital elevation models with extensive field work, we identified numerous faults tracing the old shear zones along which the Etendeka basalts were down-faulted. The faults are often listric, yet we also found evidence for a regional scale basin formation. Our analysis allowed for constructing the geometry of three of these faults and we could thus estimate the vertical offsets to ~150 m, ~500 m, and ~1100 m, respectively. Our results contribute to the view that the basement inheritance plays a significant role on rifting processes and that the reactivation of shear zones can accumulate significant amounts of displacement. References: Pique, A. and E. Laville (1996). The Central Atlantic rifting: Reactivation of Paleozoic structures?. J. Geodynamics, 21, 235-255. Younes, I.A. and K. McClay (2002). Development of accommodation zones in the Gulf of Suez-Red Sea rift, Egypt. AAPG Bulletin, 86, 1003-1026.

  5. Pyrogenic Impact on Gray Humus Soils of Pine Forests in the Central Ecological Zone of the Baikal Lake Natural Territory

    OpenAIRE

    Yu. N. Krasnoshchekov

    2014-01-01

    The data of experimental research on the dynamics of post pirogenic gray humus soils of pine forests in the central ecological zone of the Baikal natural territory are analysed. Ground litter-humus fires transforms type diagnostic surface organic soil horizons, lead to the formation of new organogenic pyrogenic horizons (Opir). Negative impact of surface fires of varying intensity on stock change, quality of fractional composition of soil organic horizons, and their chemical composition is sh...

  6. Pyrogenic Impact on Gray Humus Soils of Pine Forests in the Central Ecological Zone of the Baikal Lake Natural Territory

    Directory of Open Access Journals (Sweden)

    Yu. N. Krasnoshchekov

    2014-04-01

    Full Text Available The data of experimental research on the dynamics of post pirogenic gray humus soils of pine forests in the central ecological zone of the Baikal natural territory are analysed. Ground litter-humus fires transforms type diagnostic surface organic soil horizons, lead to the formation of new organogenic pyrogenic horizons (Opir. Negative impact of surface fires of varying intensity on stock change, quality of fractional composition of soil organic horizons, and their chemical composition is shown.

  7. Ez-response as a monitor of a Baikal rift fault electrical resistivity: 3D modelling studies

    OpenAIRE

    Trofimov, I.L.; V. S. Shneyer; D. B. Avdeev; A. V. Kuvshinov; O. V. Pankratov

    2004-01-01

    3D numerical studies have shown that the vertical voltage above the Baikal deep-water fault is detectable and that respective transfer functions, Ez-responses, are sensitive to the electrical resistivity changes of the fault, i.e. these functions appear actually informative with respect to the resistivity «breath» of the fault. It means that if the fault resistivity changed, conventional electromagnetic instruments would be able to detect this fact by measurement of the vertical ele...

  8. Early vendian age of polyphase gabbro-granites complexes of Karalon-Mamakan Zone of Baikal-Muisky Belt: U-Pb-zircon dating

    International Nuclear Information System (INIS)

    For confirming the assumption on the formation of magmatic rocks in the Karalon segment of the Baikal-Muisky Belt in a narrow time range of early vendian age the U-Pb zircon dating of the Tallainsky complex gabbroids and Padorinsky complex granites in Karalon-Mamakan Zone was conducted. Estimated isotopic age of the gabbroids and granites mentioned amounts to 604±7 m.a. and 598±4 m.a. respectively. The early vendian age is shown to be a period of large-scale magmatism in the history of the Baikal-Muisky Belt formation, which gave rise to folded deformations, their boundary 590 m.a

  9. Falling phytoplankton: altered access to the photic zone over 60 years of warming in Lake Baikal, Siberia

    Science.gov (United States)

    Hampton, S. E.; Izmest'eva, L. R.; Moore, M.; Katz, S. L.

    2011-12-01

    Vertical stratification of aquatic ecosystems can be strongly reinforced by long-term warming, altering access to suitable habitat differentially across plankton taxa. Surface waters in the world's most voluminous freshwater lake - Lake Baikal in Siberia - are warming at an average rate of 2.01°C century-1, with more dramatic warming in the summer (3.78°C century-1). This long-term warming trend occurs within seasonal cycles of freezing and thawing, and against the larger backdrop of shorter-term climate dynamics, such as those associated with the Pacific Decadal Oscillation and Arctic Oscillation, with which shifting Siberian weather patterns affect the timing of seasonal changes (e.g., stratification) at the lake. While the increasing temperature difference between surface and deeper waters implies stronger stratification in the summer in general, the available long-term temperature data are not sufficiently fine-scaled across depth to further resolve stratification patterns. However, analysis of long-term vertical phytoplankton distributions may give perspectives on the dynamics of the physical environment that plankton experience. For example, many of Lake Baikal's endemic, cold-adapted phytoplankton species are large and heavy diatoms that require strong mixing to remain suspended, a process that is suppressed by stronger summer stratification. Observed vertical patterns of algal distribution are consistent with the predictions of increased warming and intensified stratification with diatoms present in summer increasingly sinking far beyond the photic zone. Specifically, the average depth of diatoms in August, the most reliably stratified month at Lake Baikal, has increased from depths roughly aligned with photic zone (0.1% light penetration) limits (ca. 40 m) in the 1970s to average depths approximately 48 m below the photic zone by the end of the century. Concurrently, smaller motile algae such as cryptomonads have maintained or increased their presence in

  10. Magma paths at Piton de la Fournaise volcano: a synthesis of Hawaiian and Etnean rift zones

    Science.gov (United States)

    Michon, Laurent; Ferrazzini, Valérie; Di Muro, Andrea; Chaput, Marie; Famin, Vincent

    2014-05-01

    On ocean basaltic volcanoes, magma transfer to the surface occurs along sub-vertical ascent from the mantle lithosphere through the oceanic crust and the volcanic edifice, eventually followed by lateral propagation along rift zones. We use a 17-years-long database of volcano-tectonic seismic events and a detailed mapping of the pyroclastic cones to determine the geometry and the dynamics of the magma paths intersecting the edifice of Piton de la Fournaise volcano. We show that the overall plumbing system, from about 30 km depth to the surface, is composed of two structural levels that feed distinct types of rift zones. The lower plumbing system has a southeastward (N120) orientation and permits magma transfer from the lithospheric mantle to the base of the La Réunion edifice (5 km bsl). The related rift zone is wide, linear, spotted by small to large pyroclastic cones and related lava flows and involving magma resulting from high-pressure fractionation of ol ± cpx and presents an eruption periodicity of around 200 years over the last 30 kyrs. Seismic data suggest that the long-lasting activity of this rift zone result from a regional NNE-SSW extension reactivating inherited lithospheric faults by the effect of underplating and/or thermal erosion of the mantle lithosphere. The upper plumbing system originates at the base of the edifice in the vertical continuity of the lower plumbing system. It feeds frequent (1 eruption every 9 months on average), short-lived summit and distal (flank) eruptions along summit and outer rift zones, respectively. Summit rift zones are short and present an orthogonal pattern restricted to the central active cone of Piton de la Fournaise whereas outer rift zones extend from inside the Enclos Fouqué caldera to the NE and SE volcano flanks. We show that the outer rift zones are genetically linked to the east flank seaward displacements, whose most recent events where detected in 2004 and 2007. The lateral movements are themselves

  11. No thermal anomalies in the mantle transition zone beneath an incipient continental rift: evidence from the first receiver function study across the Okavango Rift Zone, Botswana

    Science.gov (United States)

    Yu, Y.; Liu, K. H.; Moidaki, M.; Reed, C. A.; Gao, S. S.

    2015-08-01

    Mechanisms leading to the initiation and early-stage development of continental rifts remain enigmatic, in spite of numerous studies. Among the various rifting models, which were developed mostly based on studies of mature rifts, far-field stresses originating from plate interactions (passive rifting) and nearby active mantle upwelling (active rifting) are commonly used to explain rift dynamics. Situated atop of the hypothesized African Superplume, the incipient Okavango Rift Zone (ORZ) of northern Botswana is ideal to investigate the role of mantle plumes in rift initiation and development, as well as the interaction between the upper and lower mantle. The ORZ developed within the Neoproterozoic Damara belt between the Congo Craton to the northwest and the Kalahari Craton to the southeast. Mantle structure and thermal status beneath the ORZ are poorly known, mostly due to a complete paucity of broad-band seismic stations in the area. As a component of an interdisciplinary project funded by the United States National Science Foundation, a broad-band seismic array was deployed over a 2-yr period between mid-2012 and mid-2014 along a profile 756 km in length. Using P-to-S receiver functions (RFs) recorded by the stations, the 410 and 660 km discontinuities bordering the mantle transition zone (MTZ) are imaged for the first time. When a standard Earth model is used for the stacking of RFs, the apparent depths of both discontinuities beneath the Kalahari Craton are about 15 km shallower than those beneath the Congo Craton. Using teleseismic P- and S-wave traveltime residuals obtained by this study and lithospheric thickness estimated by previous studies, we conclude that the apparent shallowing is the result of a 100-150 km difference in the thickness of the lithosphere between the two cratons. Relative to the adjacent tectonically stable areas, no significant anomalies in the depth of the MTZ discontinuities or in teleseismic P- and S-wave traveltime residuals are

  12. Transfer zones and fault reactivation in inverted rift basins: Insights from physical modelling

    Science.gov (United States)

    Konstantinovskaya, Elena A.; Harris, Lyal B.; Poulin, Jimmy; Ivanov, Gennady M.

    2007-08-01

    Lateral transfer zones of deformation and fault reactivation were investigated in multilayered silicone-sand models during extension and subsequent co-axial shortening. Model materials were selected to meet similarity criteria and to be distinguished on CT scans; this approach permitted non-destructive visualisation of the progressive evolution of structures. Transfer zones were initiated by an orthogonal offset in the geometry of a basal mobile aluminium sheet and/or by variations of layer thickness or material rheology in basal layers. Transfer zones affected rift propagation and fault kinematics in models. Propagation and overlapping rift culminations occurred in transfer zones during extension. During shortening, deviation in the orientation of frontal thrusts and fold axes occurred within transfer zones in brittle and ductile layers, respectively. CT scans showed that steep (58-67°) rift-margin normal faults were reactivated as reverse faults. The reactivated faults rotated to shallower dips (19-38°) with continuing shortening after 100% inversion. Rotation of rift phase faults appears to be due to deep level folding and uplift during the inversion phase. New thrust faults with shallow dips (20-34°) formed outside the inverted graben at late stages of shortening. Frontal ramps propagated laterally past the transfer structure during shortening. During inversion, the layers filling the rift structures underwent lateral compression at the depth, the graben fill was pushed up and outwards creating local extension near the surface. Sand marker layers in inverted graben have showed fold-like structures or rotation and tilting in the rifts and on the rift margins. The results of our experiments conform well to natural examples of inverted graben. Inverted rift basins are structurally complex and often difficult to interpret in seismic data. The models may help to unravel the structure and evolution of these systems, leading to improved hydrocarbon exploration

  13. Structural evolution of the southern transfer zone of the Gulf of Suez rift, Egypt

    Science.gov (United States)

    Abd-Allah, Ali M. A.; Abdel Aal, Mohamed H.; El-Said, Mohamed M.; Abd El-Naby, Ahmed

    2014-08-01

    We present a detailed study about the initiation and reactivations of Zeit-El Tor transfer zone, south Gulf of Suez rift, and its structural setting and tectonic evolution with respect to the Cretaceous-Cenozoic tectonic movements in North Egyptian margin. NE trending zone of opposed-dipping faults (22 km wide) has transferred the NE and SW rotations of the sub-basins in central and south Gulf of Suez rift, respectively. The evolution of this zone started by reactivation of the NE oriented late Neoproterozoic fractures that controlled the occurrence of Dokhan Volcanics in the rift shoulders. Later, the Syrian Arc contraction reactivated these fractures by a sinistral transpression during the Late Cretaceous-Eocene time. N64°E extension of the Oligo-Miocene rift reactivated the NE fractures by a sinistral transtension. During this rifting, the NE trending faults forming the transfer zone were more active than the rift-bounding faults; the Upper Cretaceous reverse faults in the blocks lying between these NE trending faults were rotated; and drape-related reverse faults and the positive flower structures were formed. Tectonic inversion from contraction to extension controlled the distribution and thickness of the Upper Cretaceous-Miocene rocks.

  14. Relationships and origin of endemic Lake Baikal gastropods (Caenogastropoda: Rissooidea) based on mitochondrial DNA sequences.

    Science.gov (United States)

    Hausdorf, Bernhard; Röpstorf, Peter; Riedel, Frank

    2003-03-01

    The phylogenetic relationships and the origin of two groups of rissooid freshwater snails endemic to Lake Baikal were investigated using partial mitochondrial COI, 12S rDNA, and 16S rDNA sequences. The Baikalian Benedictiinae proved to be closely related to the Lithoglyphinae. According to a molecular clock estimate the two groups diverged in the Paleogene. The Benedictiinae might have evolved autochthonously in precursors of Lake Baikal. The Baikalian Baicaliidae are probably most closely related to the Amnicolidae and the Bithyniidae. These groups diverged at the latest during the Cretaceous. Thus the origin of the Baicaliidae predates the origin of the Baikal rift zone. The Baicaliidae evolved probably in other Central Asian freshwater reservoirs. However, the radiation of the extant Baicaliidae only started in the Neogene and might have occurred autochthonously in Lake Baikal. The conchological similarity of the Baicaliidae and the Pyrgulidae is due to convergence. The Pyrgulidae diverged from the common stem lineage of the other hydrobiid families at the latest in the Jurassic. The Bithyniidae is derived from hydrobiids and is related to the Amnicolidae. PMID:12644402

  15. Baikal: Myth and Image

    Directory of Open Access Journals (Sweden)

    Konstantin Lidin

    2013-09-01

    Full Text Available Baikal is not only one of the greatest lakes of the world. Baikal is a system of myths and images which has been formed for many centuries. The analysis of old maps shows that only 200-300 years ago the existence of Baikal was the subject of wild speculations. Today the image of Baikal is a world brand. However citizens of Irkutsk and other towns located around Baikal can hardly make any profit on it. The reason is the absence of specialists who would be able to work with such a complex and strong image as Baikal.

  16. Investigations into early rift development and geothermal resources in the Pyramid Lake fault zone, Western Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Eisses, A.; Kell, A.; Kent, G.; Driscoll, N. [UCSD; Karlin, R.; Baskin, R. [USGS; Louie, J. [UNR; Pullammanappallil, S. [Optim

    2016-08-01

    A. K. Eisses, A. M. Kell, G. Kent, N. W. Driscoll, R. E. Karlin, R. L. Baskin, J. N. Louie, S. Pullammanappallil, 2010, Investigations into early rift development and geothermal resources in the Pyramid Lake fault zone, Western Nevada: Abstract T33C-2278 presented at 2010 Fall Meeting, AGU, San Francisco, Calif., 13-17 Dec.

  17. A refinement of the chronology of rift-related faulting in the Broadly Rifted Zone, southern Ethiopia, through apatite fission-track analysis

    Science.gov (United States)

    Balestrieri, Maria Laura; Bonini, Marco; Corti, Giacomo; Sani, Federico; Philippon, Melody

    2016-03-01

    To reconstruct the timing of rift inception in the Broadly Rifted Zone in southern Ethiopia, we applied the fission-track method to basement rocks collected along the scarp of the main normal faults bounding (i) the Amaro Horst in the southern Main Ethiopian Rift and (ii) the Beto Basin in the Gofa Province. At the Amaro Horst, a vertical traverse along the major eastern scarp yielded pre-rift ages ranging between 121.4 ± 15.3 Ma and 69.5 ± 7.2 Ma, similarly to two other samples, one from the western scarp and one at the southern termination of the horst (103.4 ± 24.5 Ma and 65.5 ± 4.2 Ma, respectively). More interestingly, a second traverse at the Amaro northeastern terminus released rift-related ages spanning between 12.3 ± 2.7 and 6.8 ± 0.7 Ma. In the Beto Basin, the ages determined along the base of the main (northwestern) fault scarp vary between 22.8 ± 3.3 Ma and 7.0 ± 0.7 Ma. We ascertain through thermal modeling that rift-related exhumation along the northwestern fault scarp of the Beto Basin started at 12 ± 2 Ma while in the eastern margin of the Amaro Horst faulting took place later than 10 Ma, possibly at about 8 Ma. These results suggest a reconsideration of previous models on timing of rift activation in the different sectors of the Ethiopian Rift. Extensional basin formation initiated more or less contemporaneously in the Gofa Province (~ 12 Ma) and Northern Main Ethiopian Rift (~ 10-12 Ma) at the time of a major reorganization of the Nubia-Somalia plate boundary (i.e., 11 ± 2 Ma). Afterwards, rift-related faulting involved the Southern MER (Amaro Horst) at ~ 8 Ma, and only later rifting seemingly affected the Central MER (after ~ 7 Ma).

  18. Local stresses, dyke arrest and surface deformation in volcanic edificesand rift zones

    Directory of Open Access Journals (Sweden)

    L. S. Brenner

    2004-06-01

    Full Text Available Field studies indicate that nearly all eruptions in volcanic edifices and rift zones are supplied with magma through fractures (dykes that are opened by magmatic overpressure. While (inferred dyke injections are frequent during unrest periods, volcanic eruptions are, in comparison, infrequent, suggesting that most dykes become arrested at certain depths in the crust, in agreement with field studies. The frequency of dyke arrest can be partly explained by the numerical models presented here which indicate that volcanic edifices and rift zones consisting of rocks of contrasting mechanical properties, such as soft pyroclastic layers and stiff lava flows, commonly develop local stress fields that encourage dyke arrest. During unrest, surface deformation studies are routinely used to infer the geometries of arrested dykes, and some models (using homogeneous, isotropic half-spaces infer large grabens to be induced by such dykes. Our results, however, show that the dyke-tip tensile stresses are normally much greater than the induced surface stresses, making it difficult to explain how a dyke can induce surface stresses in excess of the tensile (or shear strength while the same strength is not exceeded at the (arrested dyke tip. Also, arrested dyke tips in eroded or active rift zones are normally not associated with dyke-induced grabens or normal faults, and some dykes arrested within a few metres of the surface do not generate faults or grabens. The numerical models show that abrupt changes in Young's moduli(stiffnesses, layers with relatively high dyke-normal compressive stresses (stress barriers, and weak horizontal contacts may make the dyke-induced surface tensile stresses too small for significant fault or graben formation to occur in rift zones or volcanic edifices. Also, these small surface stresses may have no simple relation to the dyke geometry or the depth to its tip. Thus, for a layered crust with weak contacts, straightforward

  19. Molecular phylogenetic studies on the origin of biodiversity in Lake Baikal.

    Science.gov (United States)

    Yu Sherbakov D

    1999-03-01

    Lake Baikal is host to some 2500 metazoan species, maybe more, the majority of which are endemic. When studies of the lake shifted from purely descriptive work to a more analytical approach in the second half of this century, the question of the origin of its fauna became central and is still one of the main challenges to researchers of Baikalian biodiversity. Current research is investigating whether biodiversity can be explained by a few adaptive radiations since the Miocene, whether it results from the accumulation of diversity throughout the whole history of the Baikalian rift zone (about 70 million years) or whether it stems from even older events. PMID:10322507

  20. Structure of continental rifts: Role of older features and magmatism

    Energy Technology Data Exchange (ETDEWEB)

    Keller, G.R. [Univ. of Texas, El Paso, TX (United States)

    1996-12-31

    Recent geological and geophysical studies in several continental rifts have begun to shed light on the details of the processes which govern the structural evolution of these important exploration targets. In Kenya and Tanzania, the classic East African rift has been the object of several investigations which reveal that its location follows the boundary (suture ?) between the Tanzanian craton (Archean) and Mozambiquan belt (Proterozoic), The Baikal rift also follows a similar boundary, and the Mid-continent rift of North America appears to do the same. Rifts themselves often act as zones of weakness which are reactivated by younger tectonic regimes. The classic North American example of this effect is the Eocambrian Southern Oklahoma aulacogen which was deformed to create the Anadarko basin and Wichita uplift in the late Paleozoic. The Central basin platform has a similar history although the original rift formed at {approximately}1,100Ma. Integration of geophysical data with petrologic and geochemical data from several rift zones has also provided a new picture of the nature and extent of magmatic modification of the crust. An interesting contradiction is that Phanerozoic rifts, except the Afar region, show little evidence for major magmatic modification of the crust whereas, at least in North America, many Precambrian rifts are associated with very large mafic bodies in the crust. The Kenya rift displays evidence for modification of the lower crust in a two-phase magmatic history, but upper crustal magmatic features are limited to local intrusions associated with volcanoes. In this rift, complex basement structure plays a much more important role than previously realized, and the geophysical signatures of basement structure and magmatism are easy to confuse. If this is also the case in other rifts, additional rift basins remain to be discovered.

  1. Structure of continental rifts: Role of older features and magmatism

    Energy Technology Data Exchange (ETDEWEB)

    Keller, G.R. (Univ. of Texas, El Paso, TX (United States))

    1996-01-01

    Recent geological and geophysical studies in several continental rifts have begun to shed light on the details of the processes which govern the structural evolution of these important exploration targets. In Kenya and Tanzania, the classic East African rift has been the object of several investigations which reveal that its location follows the boundary (suture ) between the Tanzanian craton (Archean) and Mozambiquan belt (Proterozoic), The Baikal rift also follows a similar boundary, and the Mid-continent rift of North America appears to do the same. Rifts themselves often act as zones of weakness which are reactivated by younger tectonic regimes. The classic North American example of this effect is the Eocambrian Southern Oklahoma aulacogen which was deformed to create the Anadarko basin and Wichita uplift in the late Paleozoic. The Central basin platform has a similar history although the original rift formed at [approximately]1,100Ma. Integration of geophysical data with petrologic and geochemical data from several rift zones has also provided a new picture of the nature and extent of magmatic modification of the crust. An interesting contradiction is that Phanerozoic rifts, except the Afar region, show little evidence for major magmatic modification of the crust whereas, at least in North America, many Precambrian rifts are associated with very large mafic bodies in the crust. The Kenya rift displays evidence for modification of the lower crust in a two-phase magmatic history, but upper crustal magmatic features are limited to local intrusions associated with volcanoes. In this rift, complex basement structure plays a much more important role than previously realized, and the geophysical signatures of basement structure and magmatism are easy to confuse. If this is also the case in other rifts, additional rift basins remain to be discovered.

  2. Genesis of rare-metal pegmatites and alkaline apatite-fluorite rocks of Burpala massi, Northern Baikal folded zone

    Science.gov (United States)

    Sotnikova, Irina; Vladykin, Nikolai

    2015-04-01

    Burpalinsky rare metal alkaline massif in the Northern Baikal folded zone in southern margin of Siberian Platform, is a of intrusion central type, created 287 Ma covering area of about 250 km2. It is composed of nepheline syenites and pulaskites grading to quartz syenites in the contacts. Veines and dykes are represented by shonkinites, sodalite syenite, leucocratic granophyres, alkali granites and numerous rare metal alkaline syenite pegmatites and two dykes of carbonatites. All rocks except for granites are cut by a large apatite-fluorite dyke rocks with mica and magnetite, which in turn is cut by alaskite granites dyke. The massif has been studied by A.M. Portnov, A.A. Ganzeev et al. (1992) Burpalinsky massif is highly enriched with trace elements, which are concentrated in pegmatite dykes. About 70 rare-metal minerals we found in massif. Zr-silicates: zircon, eudialyte, lovenite, Ti-lovenite, velerite, burpalite, seidozerite, Ca- seidozerite, Rosenbuschite, vlasovite, katapleite, Ca-katapleite, elpidite. Ti- minerals:- sphene, astrophyllite, ramsaite, Mn-neptunite bafertisite, chevkinite, Mn-ilmenite, pirofanite, Sr-perrerit, landauite, rutile, anatase, brookite; TR- minerals - loparite, metaloparite, britolite, rinkolite, melanocerite, bastnesite, parisite, ankilite, monazite, fluocerite, TR-apatite; Nb- minerals - pyrochlore, loparite. Other rare minerals leucophanite, hambergite, pyrochlore, betafite, torite, thorianite, tayniolite, brewsterite, cryolite and others. We have proposed a new scheme massif: shonkinites - nepheline syenites - alkaline syenite - quartz syenites - veined rocks: mariupolites, rare-metal pegmatites, apatite, fluorite rock alyaskite and alkaline granites and carbonatites (Sotnikova, 2009). Apatite-fluorite rocks are found in the central part of massif. This is a large vein body of 2 km length and a 20 m width cutting prevailing pulaskites. Previously, these rocks were regarded as hydrothermal low-temperature phase. New geological and

  3. Spatial and temporal variations in magma-assisted rifting, Taupo Volcanic Zone, New Zealand

    Science.gov (United States)

    Rowland, Julie V.; Wilson, Colin J. N.; Gravley, Darren M.

    2010-02-01

    Taupo Volcanic Zone (TVZ), New Zealand, is a NNE-trending rifting arc, active for ~ 2 Myr, with a 125-km-long central segment characterized by exceptionally voluminous rhyolite volcanism. The volcanic segmentation reflects along-axis variations in magmatism with implications for the thermal state of the crust and consequent rifting dynamics. Along the zone to the north and south of Central TVZ, the limbs of broad monoclines, disrupted to various degrees by normal faults, dip SE against major NW-facing fault zones. In these northern and southern segments, the loci of magmatism (shown by the position of volcanoes) and rifting (manifested by the distribution of seismicity and modern (TFB)) coincide. Mantle-derived magmas are localized within the crust in a plexus of small bodies, dikes and sills, and dike-assisted rifting operates at times (but not always) as shown by the historic record. In contrast, throughout most of Central TVZ the loci of magmatism and tectonism (shown by the distribution of high-temperature geothermal systems and inferred from geophysical models and surface fault studies) are offset laterally and extensional strain appears to be partitioned accordingly. Geological, geophysical and geodetic studies indicate the following magma-assisted mechanisms of extension in Central TVZ: 1) mafic dike intrusion of length scale > 20 km and width > 1 m oriented perpendicular to the extension direction; 2) fault slips of < 2 m on structures along-strike from and coeval with silicic eruptions, some of which were triggered by mafic dike intrusion; 3) rifting episodes associated with regional-scale uplift, multi-fault rupture (slips < 2 m) and transient subsidence, arguably driven by changes in state at shallow depths. Volcanic studies of < 340 ka deposits demonstrate that an additional, but less frequent, mechanism involves temporally higher rates of fault slip with regional-scale collapse of rift basins in association with large-scale silicic eruptions. TVZ

  4. Geophysical and geochemical models of the Earth's shields and rift zones

    International Nuclear Information System (INIS)

    This report summarizes a collection of, synthesis of, and speculation on the geophysical and geochemical models of the earth's stable shields and rift zones. Two basic crustal types, continental and oceanic, and two basic mantle types, stable and unstable, are described. It is pointed out that both the crust and upper mantle play a strongly interactive role with surface geological phenomena ranging from the occurrence of mountains, ocean trenches, oceanic and continental rifts to geographic distributions of earthquakes, faults, and volcanoes. On the composition of the mantle, there is little doubt regarding the view that olivine constitutes a major fraction of the mineralogy of the earth's upper mantle. Studies are suggested to simulate the elasticity and composition of the earth's lower crust and upper mantle

  5. Rifting and intraplate axial volcanic zone: Near-surface crustal model of the Tengchong volcanic area in China

    Science.gov (United States)

    Tong, V.; Qian, R.

    2013-12-01

    Tengchong in southwest China is dominated by rift-related volcanism and is one of the major intraplate geothermal areas in Asia. The Tengchong rift and the associated north-trending faults are the key tectonic features found in the area. Previous seismic imaging efforts provided important constraints on the regional and relatively deep crustal and upper mantle structures beneath Tengchong. However, little is known about the local rift-related tectonic and magmatic structures in the shallow subsurface. The aim of our study is to investigate the relationships between rifting, intraplate volcanism and patterns of geothermal activities by presenting the first controlled-source seismic images of Tengchong. We first identify a rift-parallel intraplate axial volcanic zone by examining the spatial distribution of the well-defined volcanic craters in the area. We then present new seismic reflection images and seismic velocity models of the near-surface crust (top 1.5 km) across the intraplate axial volcanic zone. Our results show that the crust immediately beneath the volcanic clusters in the intraplate axial volcanic zone is characterized by anomalously low seismic velocity. Whilst the distribution of off-axis thermal springs indicates the presence of an active cross-axis hydrothermal system, the existence of on-axis thermal springs suggests that the along-axis hydrothermal system parallel to the rift is also significant. Moreover, our seismic results show that the crust in the vicinity of the on-axis thermal springs is associated with significantly different seismic velocity variations when compared with the crust near the volcanic clusters. By integrating our results with previously proposed models, we conclude that magma is mainly supplied from the upper mantle to the southern part of the intraplate axial volcanic zone. Our crustal model therefore suggests that rift-related tectonic structures may provide important along-axis magma and hydrothermal pathways in this rift

  6. Volcanic geology and eruption frequency, lower east rift zone of Kilauea volcano, Hawaii

    Science.gov (United States)

    Moore, R.B.

    1992-01-01

    Detailed geologic mapping and radiocarbon dating of tholeiitic basalts covering about 275 km2 on the lower east rift zone (LERZ) and adjoining flanks of Kilauea volcano, Hawaii, show that at least 112 separate eruptions have occurred during the past 2360 years. Eruptive products include spatter ramparts and cones, a shield, two extensive lithic-rich tuff deposits, aa and pahoehoe flows, and three littoral cones. Areal coverage, number of eruptions and average dormant interval estimates in years for the five age groups assigned are: (I) historic, i.e. A D 1790 and younger: 25%, 5, 42.75; (II) 200-400 years old: 50%, 15, 14.3: (III) 400-750 years old: 20%, 54, 6.6; (IV) 750-1500 years old: 5%, 37, 20.8; (V) 1500-3000 years old: erupted from the LERZ during the past 1500 years. Estimated volumes of the exposed products of individual eruptions range from a few tens of cubic meters for older units in small kipukas to as much as 0.4 km3 for the heiheiahulu shield. The average dormant interval has been about 13.6 years during the past 1500 years. The most recent eruption occurred in 1961, and the area may be overdue for its next eruption. However, eruptive activity will not resume on the LERZ until either the dike feeding the current eruption on the middle east rift zone extends farther down rift, or a new dike, unrelated to the current eruption, extends into the LERZ. ?? 1992 Springer-Verlag.

  7. The Central Metasedimentary Belt (Grenville Province) as a failed back-arc rift zone: Nd isotope evidence

    Science.gov (United States)

    Dickin, A. P.; McNutt, R. H.

    2007-07-01

    Nd isotope data are presented for granitoid orthogneisses from the Central Metasedimentary Belt (CMB) of the Grenville Province in order to map the extent of juvenile Grenvillian-age crust within this orogenic belt that is composed mostly of older crustal terranes. The data reveal a 150 km-wide belt of juvenile crust in Ontario, but this belt contains a block of pre-Grenvillian crust (containing the Elzevir pluton) which yields an estimated crustal formation age of 1.5 Ga. The recognition of an older block within the CMB has profound implications for its structure and tectonic evolution, because it implies that juvenile Grenvillian crust, apparently forming a wide NE-SW belt, is in fact distributed in two narrower segments with approximately N-S strike. We suggest that the CMB comprises an en echelon series of ensimatic rift segments, created by back-arc spreading behind a continental margin arc. These rift segments extend southwards (in the subsurface) into the northeastern Unites States. The rift segments contain abundant marble outcrops, consistent with marine incursion into the rift zone, and these deposits also continue northwards into a 'Marble domain' of the CMB in Quebec. However, crustal formation ages in the latter domain are largely pre-Grenvillian, implying that the Quebec rift segment was ensialic. Hence, we interpret the CMB in Ontario and Quebec as the northern termination of a failed back-arc rift zone.

  8. Internal structure of Puna Ridge: evolution of the submarine East Rift Zone of Kilauea Volcano, Hawai ̀i

    Science.gov (United States)

    Leslie, Stephen C.; Moore, Gregory F.; Morgan, Julia K.

    2004-01-01

    Multichannel seismic reflection, sonobuoy, gravity and magnetics data collected over the submarine length of the 75 km long Puna Ridge, Hawai ̀i, resolve the internal structure of the active rift zone. Laterally continuous reflections are imaged deep beneath the axis of the East Rift Zone (ERZ) of Kilauea Volcano. We interpret these reflections as a layer of abyssal sediments lying beneath the volcanic edifice of Kilauea. Early arrival times or 'pull-up' of sediment reflections on time sections imply a region of high P-wave velocity ( Vp) along the submarine ERZ. Refraction measurements along the axis of the ridge yield Vp values of 2.7-4.85 km/s within the upper 1 km of the volcanic pile and 6.5-7 km/s deeper within the edifice. Few coherent reflections are observed on seismic reflection sections within the high-velocity area, suggesting steeply dipping dikes and/or chaotic and fractured volcanic materials. Southeastward dipping reflections beneath the NW flank of Puna Ridge are interpreted as the buried flank of the older Hilo Ridge, indicating that these two ridges overlap at depth. Gravity measurements define a high-density anomaly coincident with the high-velocity region and support the existence of a complex of intrusive dikes associated with the ERZ. Gravity modeling shows that the intrusive core of the ERZ is offset to the southeast of the topographic axis of the rift zone, and that the surface of the core dips more steeply to the northwest than to the southeast, suggesting that the dike complex has been progressively displaced to the southeast by subsequent intrusions. The gravity signature of the dike complex decreases in width down-rift, and is absent in the distal portion of the rift zone. Based on these observations, and analysis of Puna Ridge bathymetry, we define three morphological and structural regimes of the submarine ERZ, that correlate to down-rift changes in rift zone dynamics and partitioning of intrusive materials. We propose that these

  9. Mapping landslide processes in the North Tanganyika - Lake Kivu rift zones: towards a regional hazard assessment

    Science.gov (United States)

    Dewitte, Olivier; Monsieurs, Elise; Jacobs, Liesbet; Basimike, Joseph; Delvaux, Damien; Draida, Salah; Hamenyimana, Jean-Baptiste; Havenith, Hans-Balder; Kubwimana, Désiré; Maki Mateso, Jean-Claude; Michellier, Caroline; Nahimana, Louis; Ndayisenga, Aloys; Ngenzebuhoro, Pierre-Claver; Nkurunziza, Pascal; Nshokano, Jean-Robert; Sindayihebura, Bernard; Philippe, Trefois; Turimumahoro, Denis; Kervyn, François

    2015-04-01

    The mountainous environments of the North Tanganyika - Lake Kivu rift zones are part of the West branch of the East African Rift. In this area, natural triggering and environmental factors such as heavy rainfalls, earthquake occurrences and steep topographies favour the concentration of mass movement processes. In addition anthropogenic factors such as rapid land use changes and urban expansion increase the sensibility to slope instability. Until very recently few landslide data was available for the area. Now, through the initiation of several research projects and the setting-up of a methodology for data collection adapted to this data-poor environment, it becomes possible to draw a first regional picture of the landslide hazard. Landslides include a wide range of ground movements such as rock falls, deep failure of slopes and shallow debris flows. Landslides are possibly the most important geohazard in the region in terms of recurring impact on the populations, causing fatalities every year. Many landslides are observed each year in the whole region, and their occurrence is clearly linked to complex topographic, lithological and vegetation signatures coupled with heavy rainfall events, which is the main triggering factor. Here we present the current knowledge of the various slope processes present in these equatorial environments. A particular attention is given to urban areas such as Bukavu and Bujumbura where landslide threat is particularly acute. Results and research perspectives on landslide inventorying, monitoring, and susceptibility and hazard assessment are presented.

  10. Rift zones and magma plumbing system of Piton de la Fournaise volcano: How do they differ from Hawaii and Etna?

    Science.gov (United States)

    Michon, Laurent; Ferrazzini, Valérie; Di Muro, Andrea; Villeneuve, Nicolas; Famin, Vincent

    2015-09-01

    On ocean basaltic volcanoes, magma transfer to the surface proceeds by subvertical ascent from the mantle lithosphere through the oceanic crust and the volcanic edifice, possibly followed by lateral propagation along rift zones. We use a 19-year-long database of volcano-tectonic seismic events together with detailed mapping of the cinder cones and eruptive fissures to determine the geometry and the dynamics of the magma paths intersecting the edifice of Piton de la Fournaise volcano. We show that the overall plumbing system, from about 30 km depth to the surface, is composed of two structural levels that feed distinct types of rift zones. The deep plumbing system is rooted between Piton des Neiges and Piton de la Fournaise volcanoes and has a N30-40 orientation. Above 20 km below sea level (bsl), the main axis switches to a N120 orientation, which permits magma transfer from the lithospheric mantle to the base of the oceanic crust, below the summit of Piton de la Fournaise. The related NW-SE rift zone is 15 km wide, linear, spotted by small to large pyroclastic cones and related lava flows and emits slightly alkaline magmas resulting from high-pressure fractionation of clinopyroxene ± olivine. This rift zone has low magma production rate of ~ 0.5-3.6 × 10- 3 m3s- 1 and an eruption periodicity of around 200 years over the last 30 ka. Seismic data suggest that the long-lasting activity of this rift zone result from regional NNE-SSW extension, which reactivates inherited lithospheric faults by the effect of underplating and/or thermal erosion of the mantle lithosphere. The shallow plumbing system (deep plumbing system by a relatively large aseismic zone between 8 and 11 km bsl, which may represent a deep storage level of magma. The shallow plumbing system feeds frequent, short-lived summit and flank (NE and SE flanks) eruptions along summit and outer rift zones, respectively. Summit rift zones are very active (~ 0.1-0.25 m3s- 1), short (2-3 km), and present an

  11. Variations of seismic velocities in the Kachchh rift zone, Gujarat, India, during 2001-2013

    Science.gov (United States)

    Mandal, Prantik

    2016-03-01

    We herein study variations of seismic velocities in the main rupture zone (MRZ) of the Mw 7.7 2001 Bhuj earthquake for the time periods [2001-05, 2006-08, 2009-10 and 2011-13], by constructing dVp(%), dVs(%) and d(Vp/Vs)(%) tomograms using high-quality arrival times of 28,902 P- and 28,696 S-waves from 4644 precise JHD (joint hypocentral determination) relocations of local events. Differential tomograms for 2001-05 reveal a marked decrease in seismic velocities (low dVp, low dVs and high d(Vp/Vs)) in the MRZ (at 5-35 km depths) during 2001-10, which is attributed to an increase in crack/fracture density (higher pore fluid pressure) resulted from the intense fracturing that occurred during the mainshock and post-seismic periods. While we observe a slight recovery or increase in seismic velocities 2011-13, this could be related to the healing process (lower pore fluid pressure due to sealing of cracks) of the causative fault zone of the 2001 Bhuj mainshock. The temporal reduction in seismic velocities is observed to be higher at deeper levels (more fluid enrichment under near-lithostatic pressure) than that at shallower levels. Fluid source for low velocity zone (LVZ) at 0-10 km depths (with high d(Vp/Vs)) could be attributed to the presence of meteoric water or soft alluvium sediments with higher water content, while fluid source for LVZ at 10-35 km depths could be due to the presence of brine fluids (released from the metamorphic dewatering) and volatile CO2 (emanating from the crystallization of carbonatite melts in the asthenosphere), in fractures and pores. We also imaged two prominent LVZs associated with the Katrol Hill fault zone and Island Belt fault zone, extending from shallow upper-crust to sub-crustal depth, which might be facilitating the deeper circulation of metamorphic fluids/volatile CO2, thereby, the generation of lower crustal earthquakes occurring in the Kachchh rift zone.

  12. Edifice growth, deformation and rift zone development in basaltic setting : insights from Piton de la Fournaise shield volcano (Reunion Island)

    OpenAIRE

    Michon, L.; Cayol, V.; Letourneur, L.; PELTIER, A.; Villeneuve, Nicolas; Staudacher, T.

    2009-01-01

    The overall morphology of basaltic volcanoes mainly depends on their eruptive activity (effusive vs. explosive), the geometry of the rift zones and the characteristics of both endogenous and exogenous growth processes. The origin of the steep geometry of the central cone of Piton de la Fournaise volcano, which is unusual for a basaltic effusive volcano, and its deformation are examined with a combination of a detailed morphological analysis, field observations, GPS data from the Piton de la F...

  13. Oxidation state of iron in mantle-derived magmas of the Icelandic rift zone

    International Nuclear Information System (INIS)

    Olivine tholeiites are mantle-derived magmas that are formed by partial melting of their deep sources and which have equilibrated with mineral assemblages at slightly different subcrustal pressure-temperature conditions prior to eruption. The minimum depth of the pre-eruptive reservoirs of these magmas is in the order of 10-15 km and their liquidus temperatures fall within the range of 1180-1240 C. Three types of primitive olivine tholeiites are exposed along the rift zones in Iceland. In the present study, the ferric/ferrous ratios of natural glasses (pillow crusts) of the three types of olivine tholeiites were obtained by Moessbauer spectrometry. This technique is particularly well suited for the analysis of high-Mg glasses since it resolves microcrystallites of olivine which contribute to ferrous iron in chemical analysis. All results fall within 10-15% Fe(III). At the liquidus temperature of these glasses, this ferric/ferrous ratio corresponds to fugacity close to the fayalite-magnetite-quartz-oxygen (FMQ) buffer with an uncertainty of less than one log unit in fO2. This result confirms that there is no significant difference in the oxidation state of the three magma types. (orig.)

  14. ACADEMICIAN N.A. LOGATCHEV AND HIS SCIENTIFIC SCHOOL: CONTRUBITION TO STUDIES OF THE CENOZOIC CONTINENTAL RIFTING

    Directory of Open Access Journals (Sweden)

    Sergey V. Rasskazov

    2015-09-01

    Full Text Available N.A. Florensov and N.A. Logatchev pioneered development of fundamental concepts of the structure and evolution of the Baikal system of rift basins. At the turn to the 21st century, in view of the wide availability of scientific research data on the Cenozoic continental rift zones located in Eurasia, Africa and North America, and taking into account the application of new research methods and options to process and analyze huge amounts of geological and geophysical data, a priority was comprehensive modeling of rifting from its origin to the current period of time. This scientific challenge was addressed by the research team under the leadership of N.A. Logachev.

  15. Crustal Structure Across the Okavango Rift Zone, Botswana: Initial Results From the PRIDE-SEISORZ Active-Source Seismic Profile

    Science.gov (United States)

    Canales, J. P.; Moffat, L.; Lizarralde, D.; Laletsang, K.; Harder, S. H.; Kaip, G.; Modisi, M.

    2015-12-01

    The PRIDE project aims to understand the processes of continental rift initiation and evolution by analyzing along-axis trends in the southern portion of the East Africa Rift System, from Botswana through Zambia and Malawi. The SEISORZ active-source seismic component of PRIDE focused on the Okavango Rift Zone (ORZ) in northwestern Botswana, with the main goal of imaging the crustal structure across the ORZ. This will allow us to estimate total crustal extension, determine the pattern and amount of thinning, assess the possible presence of melt within the rift zone, and assess the contrasts in crustal blocks across the rift, which closely follows the trend of a fold belt. In November 2014 we conducted a crustal-scale, 450-km-long seismic refraction/wide-angle reflection profile consisting of 19 sources (shots in 30-m-deep boreholes) spaced ~25 km apart from each other, and 900 receivers (IRIS/PASSCAL "Texan" dataloggers and 4.5Hz geophones) with ~500 m spacing. From NW to SE, the profile crosses several tectonic domains: the Congo craton, the Damara metamorphic belt and the Ghanzi-Chobe fold belt where the axis of the ORZ is located, and continues into the Kalahari craton. The record sections display clear crustal refraction (Pg) and wide-angle Moho reflection (PmP) phases for all 17 of the good-quality shots, and a mantle refraction arrival (Pn), with the Pg-PmP-Pn triplication appearing at 175 km offset. There are distinct changes in the traveltime and amplitude of these phases along the transect, and on either side of the axis, that seem to correlate with sharp transitions across tectonic terrains. Initial modeling suggests: (1) the presence of a sedimentary half-graben structure at the rift axis beneath the Okavango delta, bounded to the SE by the Kunyere-Thamalakane fault system; (2) faster crustal Vp in the domains to the NW of the ORZ; and (3) thicker crust (45-50 km) at both ends of the profile within the Congo and Kalahari craton domains than at the ORZ and

  16. Class@Baikal: the Endurance of the UNESCO Training-Through-Research Programme

    Science.gov (United States)

    Mazzini, A.; Akhmanov, G.; Khlystov, O.; Tokarev, M.; Korost, D. V.; Poort, J.; Fokina, A.; Giliazetdinova, D. R.; Yurchenko, A.; Vodopyanov, S.

    2014-12-01

    In July 2014, by the initiative of the Moscow State University and Limnological Institute of Russian Academy of Sciences, the first Training-through-Research Class@Baikal was launched in Lake Baikal, Russia. The cruise program focused on seafloor sampling and acoustic investigations of gas seeps, flares, mud volcanoes, slumps and debris flows, canyons and channels in the coastal proximity. A comprehensive multidisciplinary program to train students has been developed to cover sedimentology, fluid geochemistry, biology, geophysics and marine geology in general. Daily lectures were conducted on board by academics presenting pertinent research projects, and cruise planning and preliminary results were discussed with all the scientific crew. A daily blog with updates on the expedition activities, images, and ongoing cruise results, was also completed (i.e. visit the cruise blog: http://baikal.festivalnauki.ru/) and gave the opportunity to interact with experts as well as attract the interest also of a broader audience. This project is a follow up to the well-established UNESCO Training-through-Research (TTR) Floating University Programme (http://floatinguniversity.ru/) that covered large areas on the European and arctic margins since 1991 with 18 research cruises attended by about 1000 BSc, MSc and PhD students from Europe, Asia, Africa and America. The crucial goal of both programmes is the training of new generations of scientists through active research directly on the field. Students can access the collected data and samples for their Master and PhD projects. Typically an extensive set of analyses and data processing is completed in-house and the results and interpretations are presented at post cruise meetings and international conferences. The Baikal lake is 25 million years old rift zone and provides a large variety of active geological features that can be easily reached at daily sailing distance. This represents an extraordinary opportunity to switch and focus

  17. The Baikal Neutrino Telescope: Status and plans

    OpenAIRE

    Wischnewski, R; Baikal Collaboration

    2007-01-01

    The high energy neutrino telescope NT200+ is currently in operation in Lake Baikal. We review the status of the Baikal the Baikal Neutrino Telescope, and describe recent progress on key components of the next generation kilometer-cube (km3) Lake Baikal detector, like investigation of new large area phototubes, integrated into the telescope.

  18. Lake Baikal Bibliography, 1989- 1999

    OpenAIRE

    Limnological Institute of RAS SB

    1999-01-01

    This is a bibliography of 839 papers published in English in 1989- 1999 by members of Limnological Institute of RAS SB and by their partners within the framework of the Baikal International Center for Ecological Research. Some of the titles are accompanied by abstracts. Coverage is on different aspects of Lake Baikal.

  19. Structure of backarc inner rifts as a weakest zone of arc-backarc system: a case study of the Sea of Japan

    Science.gov (United States)

    Sato, Hiroshi; Ishiyama, Tasuya; Kato, Naoko; Abe, Susumu; Saito, Hideo; Shiraishi, Kazuya; Abe, Shiori; Iwasaki, Takaya; Inaba, Mitsuru; No, Tetsuo; Sato, Takeshi; Kodaira, Shuichi; Takeda, Tetsuya; Matsubara, Makoto; Kodaira, Chihiro

    2015-04-01

    A backarc inner rift is formed after a major opening of backarc basin near a volcanic front away from the spreading center of a major backarc basin. An obvious example is the inner rift along the Izu-Bonin arc. Similar inner rift zones have been developed along the Sea of Japan coast of Honshu island, Japan. NE and SW Japan arcs experienced strong shortening after the Miocene backarc rifting. The amount of shortening shows its maximum along the backarc inner rifts, forming a fold-and-thrust of thick post-rift sediments over all the structure of backarc. The rift structure has been investigated by onshore-offshore deep seismic reflection/wide-angle reflection surveys. We got continuous onshore-offshore image using ocean bottom cable and collected offshore seismic reflection data using two ships to obtain large offset data in the difficult area for towing a long streamer cable. The velocity structure beneath the rift basin was deduced by refraction tomography in the upper curst and earthquake tomography in the deeper part. It demonstrates larger P-wave velocity in upper mantle and lower crust, suggesting a large amount of mafic intrusion and thinning of upper continental crust. The deeper seismicity in the lower crust beneath the rift basin accords well to the mafic intrusive rocks. Syn-rift volcanism was bimodal, comprising a reflective unit of mafic rocks around the rift axis and a non-reflective unit of felsic rocks near the margins of the basins. Once rifting ended, thermal subsidence, and subsequently, mechanical subsidence related to the onset of the compressional regime, allowed deposition of up to 5 km of post-rift, deep marine to fluvial sedimentation. Continued compression produced fault-related folds in the post-rift sediments, characterized by thin-skin style of deformation. The syn-rift mafic intrusion in the crust forms convex shape and the boundary between pre-rift crust and mafic intrusive shows outward dipping surface. Due to the post rift

  20. Hydrothermal Zoning of Rift Zones Inferred From Magnetic Susceptibility Variations: Implications for the Collapse of Hawaiian Shield Volcanoes, and for Ore-genesis Processes.

    Science.gov (United States)

    Cañòn-Tapia, E.; Herrero-Bervera, E.

    2009-05-01

    Hawaiian shield volcanoes have experienced large scale landslides throughout their history. These collapses are due in part to the failure of the surrounding sea floor to support the weight of the spreading volcano as it grows. Nevertheless, these collapses also might be promoted by the weakening of the volcanic edifice due to the injection of dykes within rift zones, and by the alteration of the rock due to hydrothermal activity along these zones. In turn, hydrothermal alteration modifies the rock bulk magnetic susceptibility, and such relationship provides a good opportunity to estimate the zoning of alteration by completing measurements of magnetic susceptibility. In this work we show preliminary evidence suggesting that a hydrothermal zoning can be inferred to have existed in the Hawaiian Shield volcanoes, probably reflecting the variation of the optimum temperature for alteration as a function of distance from the magma center. The mechanical destabilization of the volcanic edifice due to dyke injection and that related to alteration of the rocks seems to have been inversely related, therefore resulting in an average destabilization of approximately equal magnitude along the whole extension of the rift zone. Such uniform destabilization seemingly favors the collapse of large sectors of the volcanic shield once a critical mass is achieved. In the context of ore-genesis, zoning is known to be related to paleogeography and temperature variations among other factors. Actually, different patterns of orebody zoning are known to take place depending on the conditions prevalent in each region, and it is of interest to determine the details of zoning of the deposit to understand its genesis. Despite the fact that Hawaiian volcanoes are not the most economically important places to study ore-genesis processes, the better understanding of the processes of hydrothermal alteration gained in these settings should contribute to gain a better knowledge of the distribution of

  1. Root zone of a continental rift: the Neoproterozoic Kebnekaise Intrusive Complex, northern Swedish Caledonides

    DEFF Research Database (Denmark)

    Kirsch, Moritz; Svenningsen, Olaf

    2016-01-01

    Mafic magmatic rocks formed between ca. 615 and 560 Ma along the Neoproterozoic margins of Baltica and Laurentia are classically attributed to continental rifting heralding the opening of the Iapetus Ocean. We report new data for the Kebnekaise Intrusive Complex (KIC) exposed in the Seve Nappes in...... northern Sweden. The KIC consists of sheeted dolerite dykes and gabbroic bodies with mutually intrusive relations. Major and trace element data exhibit a transitional- to normal-mid-ocean-ridge basalt-type geochemical signature. Differentiation processes and late-stage liquid immiscibility of a tholeiitic...... represent a high-level magma plumbing system in a late-stage continental rift. The composition and volume of rift-related igneous rocks in the Seve Nappes are inconsistent with a mantle plume origin, but are thought to record progressive lithospheric thinning and increasing involvement of an asthenospheric...

  2. Strontium hydrogeochemistry of thermal groundwaters from Baikal and Xinzhou

    Institute of Scientific and Technical Information of China (English)

    王焰新; 沈照理

    2001-01-01

    This paper reports our work on the strontium hydrogeochemistry of thermal groundwa-ters in the Baikal Rift System (BRS) in Russia and Mongolia and the Xinzhou basin of the Shanxi Rift System (SRS) in northern China. Though similar in geological background, groundwaters from the BRS and the Xinzhou basin have different strontium isotope compositions. Both the strontium contents and the 87Sr/86Sr ratios of thermal water samples from Xinzhou are higher than those of most samples from Baikal. The major reason is the difference in hostrock geochemistry. The hos-trocks of the Xinzhou waters are Archaean metamorphic rocks, while those of the Baikal waters except the Kejielikov spring are Proterozoic or younger rocks. In the study areas, cold groundwaters usually show lower 87Sr/86Sr ratio due to shorter water-rock interaction history and lower equilibration degree. Strontium hydrogeochemistry often provides important information about mixing processes. Ca/Sr ratio can be used as an important hydrogeochemical pa

  3. Selected time-lapse movies of the east rift zone eruption of KĪlauea Volcano, 2004–2008

    Science.gov (United States)

    Orr, Tim R.

    2011-01-01

    Since 2004, the U.S. Geological Survey's Hawaiian Volcano Observatory has used mass-market digital time-lapse cameras and network-enabled Webcams for visual monitoring and research. The 26 time-lapse movies in this report were selected from the vast collection of images acquired by these camera systems during 2004–2008. Chosen for their content and broad aesthetic appeal, these image sequences document a variety of flow-field and vent processes from Kīlauea's east rift zone eruption, which began in 1983 and is still (as of 2011) ongoing.

  4. Near the Lake and around the Lake: Artists and Baikal

    OpenAIRE

    Marina Tkacheva; Iraida Fedchina

    2013-01-01

    The article considers several aspects of how Lake Baikal influences artists’ work:Baikal as a theme for painting and exhibiting;Creative events at Baikal;Baikal as a place where artists live;Half-amateur paintings for sale.

  5. Fracturing and earthquake activity within the Prestahnúkur fissure swarm in the Western Volcanic Rift Zone of Iceland

    Science.gov (United States)

    Hjartardóttir, Ásta Rut; Hjaltadóttir, Sigurlaug; Einarsson, Páll; Vogfjörd, Kristín.; Muñoz-Cobo Belart, Joaquín.

    2015-12-01

    The Prestahnúkur fissure swarm is located within the ultraslowly spreading Western Volcanic Zone in Iceland. The fissure swarm is characterized by normal faults, open fractures, and evidence of subglacial fissure eruptions (tindars). In this study, fractures and faults within the Prestahnúkur fissure swarm were mapped in detail from aerial photographs to determine the extent and activity of the fissure swarm. Earthquakes during the last ~23 years were relocated to map the subsurface fault planes that they delineate. The Prestahnúkur fissure swarm is 40-80 km long and up to ~20 km wide. Most of the areas of the fissure swarm have been glacially eroded, although a part of it is covered by postglacial lava flows. The fissure swarm includes numerous faults with tens of meters vertical offset within the older glacially eroded part, whereas open fractures are found within postglacial lava flows. Comparison of relocated earthquakes and surface fractures indicates that some of the surface fractures have been activated at depth during the last ~23 years, although no dike intrusions have been ongoing. The existence of tindars nevertheless indicates that dike intrusions and rifting events do occur within the Prestahnúkur fissure swarm. The low-fracture density within postglacial lava flows and low density of postglacial eruptive fissures indicate that rifting episodes occur less often than in the faster spreading Northern Volcanic Zone.

  6. Diverse Eruptions at Approximately 2,200 Years B.P. on the Great Rift, Idaho: Inferences for Magma Dynamics Along Volcanic Rift Zones

    Science.gov (United States)

    Hughes, S. S.; Nawotniak, S. E. Kobs; Borg, C.; Mallonee, H. C.; Purcell, S.; Neish, C.; Garry, W. B.; Haberle, C. W.; Lim, D. S. S.; Heldmann, J. L.

    2016-01-01

    Compositionally and morphologically diverse lava flows erupted on the Great Rift of Idaho approximately 2.2 ka (kilo-annum, 1000 years ago) during a volcanic "flare-up" of activity following an approximately 2 ky (kiloyear, 1000 years) hiatus in eruptions. Volcanism at Craters of the Moon (COTM), Wapi and Kings Bowl lava fields around this time included primitive and evolved compositions, separated over 75 kilometers along the approximately 85 kilometers-long rift, with striking variability in lava flow emplacement mechanisms and surface morphologies. Although the temporal associations may be coincidental, the system provides a planetary analog to better understand magma dynamics along rift systems, including that associated with lunar floor-fractured craters. This study aims to help bridge the knowledge gap between ancient rift volcanism evident on the Moon and other terrestrial planets, and active rift volcanism, e.g., at Hawai'i and Iceland.

  7. Results From a Borehole Seismometer Array I: Microseismicity at a Productive Geothermal Field, Kilauea Lower East Rift Zone, Puna, Hawaii

    Science.gov (United States)

    Kenedi, C. L.; Shalev, E.; Malin, P.; Kaleikini, M.; Dahl, G.

    2008-12-01

    Borehole seismometer arrays have proven successful in both the exploration and monitoring of geothermal fields. Because the seismometers are located at depth, they are isolated from human noise and record microearthquakes with clearly identifiable seismic phases that can be used for event location. Further analysis of these events can be used to resolve earthquake clouds into identifiable faults. The local fault and dike structures in Puna, in southeastern Hawaii, are of interest both in terms of electricity production and volcanic hazard monitoring. The geothermal power plant at Puna has a 30MW capacity and is built on a section of the Kilauea Lower East Rift Zone where lava flows erupted as recently as 1955. In order to improve seismic monitoring in this area, we installed eight 3-component borehole seismometers. The instrument depths range from 24 to 210 m (80 to 690 ft); the shallower instruments have 2 Hz geophones and the deepest have 4.5 Hz geophones. The seismometers are located at the vertices of two rhombs, 2 km wide x 4 km long and 4 km wide x 8 km long, both centered at the power plant. Since June 2006, we have located >4500 earthquakes; P- and S-wave arrivals were hand picked and events located using Hypoinverse-2000. Most of the earthquakes occurred at depths between 2.5 and 3 km. The large majority of events were M-0.5 to M0.5; the Gutenberg-Richter b-value is 1.4, which is consistent with microearthquake swarms. Frequency analysis indicates a 7-day periodicity; a Schuster diagram confirms increased seismicity on a weekly cycle. The location, depth, and period of the microearthquakes suggest that power plant activity affects local seismicity. Southwest of the geothermal facility, up-rift towards the Kilauea summit, earthquakes were progressively deeper at greater distances. Depths also increased towards the south, which is consistent with the eastern extension of the south-dipping, east-striking Hilina fault system. To the northeast, down-rift of the

  8. The Class@Baikal project: studying recent tectonics, sedimentology and geochemistry on Lake Baikal

    Science.gov (United States)

    Akhmanov, Grigorii; Khlystov, Oleg; Mazzini, Adriano; Poort, Jeffrey; Giliazetdinova, Dina

    2016-04-01

    a modern canyon-like erosional valley dissecting a large fault block at the bottom of Baikal near Olkhon Island was surveyed. Clastic material is gathered from the flanks of the central Baikal deep and then transported by gravity flows for considerable distance to the northeast where it is deposited with terminal lobes. The transit part of the system is confined by the step flanks of the deep from the northwest and by extensive fault block from the southeast. Preliminary analysis of the data allows to identify three major facies zones which follow each other along the main clastic transport direction. At the proximal part the seabed is dominated by a system of multiple small unconfined channels without a preferred direction. Downslope this zone is followed by a system of two relatively large channels running in sub-parallel direction. These channels merge into one in the next downdip zone adjacent to the canyon-like valley. "Slide of Kukuy Griva (ridge)" were surveyed and for the first time sampled during Class@Baikal-2014 expedition. The data provided new insights on the morphology of the slope of Kukuy Griva and on Quaternary history of mass transport in the area.

  9. Population genetic structure and mating system in the hybrid zone between Pinus sibirica Du Tour and P. pumila (Pall. Regel at the Eastern Baikal Lake shore

    Directory of Open Access Journals (Sweden)

    E.A. Petrova

    2013-12-01

    Full Text Available Genetic structure of sympatric Pinus sibirica Du Tour and P. pumila (Pall. Regel populations and putative interspecific hybrids between them was analyzed in the Baikal Lake region (Barguzin Biosphere Natural Reserve, Davsha River basin by means of 31 allozyme loci controlling 18 enzyme systems. Several alleles at loci Adh-1, Fest-2, Lap-3, Pgi-1, Sod-3 and Skdh-1 were diagnostic for P. sibirica, while alleles typical for P. pumila were detected at loci Gdh, Got-3, Lap-3, Mdh-2, Mdh-4, Pepca, Pgi-1, Pgd-2, Pgd-3, Pgm-1 and Pgm-2. All hybrids were heterozygous for the diagnostic Skdh-2 locus. Classification into hybrids and parental species using PCA analysis of multilocus allozyme genotypes had good correspondence with diagnoses made by morphological and anatomical analyses. Approximately 27% of embryos in P. pumila seeds had P. sibirica paternal contribution, and 8% of haplotypes in effective pollen pool combined alleles typical for P. pumila and P. sibirica, and therefore were classified as pollinated by the hybrids. About 83% of embryos in seeds from the hybrids most likely originated from fertilization by P. sibirica pollen, 14% from P. pumila and 3% from hybrid trees. This result favours the view that hybrids make both male and female contributions to the reproductive output of the population and confirm the presence of backcrosses and F2 hybrids.

  10. San Andres Rift, Nicaraguan Shelf: A 346-Km-Long, North-South Rift Zone Actively Extending the Interior of the "Stable" Caribbean Plate

    Science.gov (United States)

    Carvajal, L. C.; Mann, P.

    2015-12-01

    The San Andres rift (SAR) is an active, 015°-trending, bathymetric and structural rift basin that extends for 346 km across the Nicaraguan platform and varies in bathymetric width from 11-27 km and in water depth from 1,250 to 2,500 m. We used four 2D regional seismic lines tied to two offshore, industry wells located west of the SAR on the Nicaraguan platform to map normal faults, transfer faults, and possibly volcanic features with the rift. The Colombian islands of San Andres (26 km2) and Providencia (17 km2) are footwall uplifts along west-dipping, normal fault bounding the eastern margin of the rift. Mapping indicates the pre-rift section is Late Cretaceous to Oligocene in age and that the onset of rifting began in the early to middle Miocene as shown by wedging of the Miocene and younger sedimentary fill controlled by north-south-striking normal faults. Structural restorations at two locations across the rift shows that the basin opened mainly by dip-slip fault motions producing a total, east-west extension of 18 km in the north and 15 km in the south. Structural restoration shows the rift formed on a 37-km-wide, elongate basement high - possibly of late Cretaceous, volcanic origin and related to the Caribbean large igneous province. Previous workers have noted that the SAR is associated with province of Pliocene to Quaternary seamounts and volcanoes which range from non-alkaline to mildly alkaline, including volcanic rocks on Providencia described as andesites and rhyolites. The SAR forms one of the few recognizable belts of recorded seismicity within the Caribbean plate. The origin of the SAR is related to Miocene and younger left-lateral displacement along the Pedro Banks fault to the north and the southwestern Hess fault to the south. We propose that the amount of left-lateral displacement that created the rift is equivalent to the amount of extension that formed it: 18-20 km.

  11. Baikal-GVD: first cluster Dubna

    CERN Document Server

    Avrorin, A D; Aynutdinov, V M; Bannash, R; Belolaptikov, I A; Bogorodsky, D Yu; Brudanin, V B; Budnev, N M; Danilchenko, I A; Demidov, S V; Domogatsky, G V; Doroshenko, A A; Dyachok, A N; Dzhilkibaev, Zh -A M; Fialkovsky, S V; Gafarov, A R; Gaponenko, O N; Golubkov, K V; Gress, T I; Honz, Z; Kebkal, K G; Kebkal, O G; Konischev, K V; Korobchenko, A V; Koshechkin, A P; Koshel, F K; Kozhin, A V; Kulepov, V F; Kuleshov, D A; Ljashuk, V I; Milenin, M B; Mirgazov, R A; Osipova, E R; Panfilov, A I; Pan'kov, L V; Pliskovsky, E N; Rozanov, M I; Rjabov, E V; Shaybonov, B A; Sheifler, A A; Shelepov, M D; Skurihin, A V; Smagina, A A; Suvorova, O V; Tabolenko, V A; Tarashansky, B A; Yakovlev, S A; Zagorodnikov, A V; Zhukov, V A; Zurbanov, V L

    2015-01-01

    In April 2015 the demonstration cluster "Dubna" was deployed and started to take data in Lake Baikal. This array is the first cluster of the cubic kilometer scale Gigaton Volume Detector (Baikal-GVD), which is constructed in Lake Baikal. In this contribution we will review the design and status of the array.

  12. Incipient Crustal Stretching across AN Active Collision Belt: the Case of the Siculo-Calabrian Rift Zone (central Mediterranean)

    Science.gov (United States)

    Catalano, S.; Tortorici, G.; Romagnoli, G.; Pavano, F.

    2012-12-01

    In the Central Mediterranean, the differential roll-back of the subducting Nubia Plate caused the Neogene-Quaternary extrusion of the Calabrian arc onto the oceanic Ionian slab, and the opening of the oceanic Tyrrhenian Basin, in the overriding Eurasia Plate. The differential motion at the edges of the arc was largely accommodated along transform faults that propagated across the orogenic belt. Since the Late Quaternary, the southern edge of the arc has been replaced by the roughly N-S oriented Siculo-Calabrian Rift Zone (SCRZ) that formed as the NNW-directed normal faults of NE Sicily, crossing the orogenic belt, have linked the NNE-oriented Tyrrhenian margin of southern Calabria with the NNW-trending Africa-Ionian boundary of southeastern Sicily. Our study focused on the Sicily shoulder of the SCRZ, where the transition zone between the extensional belt and the still active Nubia-Eurasia convergent margin is characterized by two distinct mobile crustal wedges, both lying on an upwarped Mantle, where a re-orientations of the σ1 is combined with volcanism (e.g. Etna, Aeolian islands) and a huge tectonic uplift. In southeastern Sicily, the Hyblean-Etnean region evolved, since about 0.85 Ma, as an indipendent crustal wedge, moving towards the NNW and pointing to the active Mt. Etna volcano. A local ENE crustal stretching accompanied the traslation of the block and pre-dated the ESE-oriented extension governing the propagation of the southernmost branch of the SCR, which started at about 330 ka B.P.. Similarly, the Peloritani-Aeolian region, flanked by the 125 ka-old NE-Sicily branch of the rift zone, represents a mostly submerged crustal wedge that migrates towards the NE, diverging from the rest of the Sicily collision zone and pointing to the Stromboli volcano. The Peloritani-Aeolian block is characterized by the occurrence of a wide central NE-oriented collapsed basin contoured by an actively uplifting region, whose tectonic boundaries are evidenced by a sharp

  13. Exploring for geothermal resource in a dormant volcanic system: The Haleakala Southwest Rift Zone, Maui, Hawai'i

    Science.gov (United States)

    Martini, B. A.; Lewicki, J. L.; Kennedy, B. M.; Lide, C.; Oppliger, G.; Drakos, P. S.

    2011-12-01

    Suites of new geophysical and geochemical surveys provide compelling evidence for geothermal resource at the Haleakala Southwest Rift Zone (HSWRZ) on Maui Island, Hawai'i. Ground-based gravity (~400 stations) coupled with heli-borne magnetics (~1500 line kilometers) define both deep and shallow fractures/faults while also delineating potentially widespread subsurface hydrothermal alteration on the lower flanks (below approximately 1800 feet a.s.l.). Multi-level, upward continuation calculations and 2-D gravity and magnetic modeling provide information on source depths, but lack of lithologic information leaves ambiguity in the estimates. Lithology and physical property data from future drilling will improve these interpretations. Additionally, several well-defined gravity lows (possibly vent zones) lie coincident with magnetic highs suggesting the presence of dike intrusions at depth; a potentially young source of heat for a modern geothermal system. Soil CO2 fluxes were measured along transects across geophysically-defined faults and fractures as well as young cinder cones along the HSWRZ; a weak anomalous flux signal was observed at one young cinder cone location. Dissolved inorganic carbon concentrations and δ13C compositions and 3He/4He values measured in several shallow groundwater samples indicate addition of magmatic CO2 and He to the groundwater system. The general lack of observed magmatic surface CO2 signals on the HSWRZ is therefore likely due to a combination of groundwater 'scrubbing' of CO2 and relatively high biogenic surface CO2 fluxes that mask magmatic CO2. Similar surveys at the Puna geothermal field on the Kilauea Lower East Rift Zone (KLERZ) also showed a lack of surface CO2 flux signals attributed to a magmatic source, while aqueous geochemistry indicated contribution of magmatic CO2 and He to shallow groundwaters at both Maui and Puna. As magma has been intercepted in geothermal drilling at the Puna field, the lack of measured surface CO2

  14. Isotopic Ages of the Carbonatitic Volcanic Rocks in the Kunyang Rift Zone in Central Yunnan,China

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yongbei; WANG Guilan; NIE Jianfeng; ZHAO Chongshun; XU Chengyan; QIU Jiaxiang; Wang Hao

    2003-01-01

    The Mesoproterozoic Kunyang rift, which is located on the western margin of the Yangtze platform and the southern section of the Kangdian axis, is a rare massive Precambrian iron-copper polymetallic mineralization zone in China. The Mesoproterozoic Wulu (Wuding(Lufeng) basin in the middle of the rift is an elliptic basin controlled by a ring fracture system. Moreover, volcanic activities in the basin display zonation of an outer ring, a middle ring and an inner ring with carbonatitic volcanic rocks and sub-volcanic dykes discovered in the outer and middle rings. The Sm-Nd isochron ages have been determined for the outer-ring carbonatitic lavas (1685 Ma) and basaltic porphyrite of the radiating dyke swarm (1645 Ma) and the Rb-Sr isochron ages for the out-ring carbonatitic lavas (893 Ma) and the middle-ring dykes (1048 Ma). In combination of the U-Pb concordant ages of zircon (1743 Ma) in trachy-andesite of the corresponding period and stratum (1569 Ma) of the Etouchang Formation, as well as the Rb-Sr isochron age (1024 Ma) and K-Ar age (1186 Ma) of the dykes in the middle ring, the age of carbonatites in the basin is preliminarily determined. It is ensured that all of these carbonatites were formed in the Mesoproterozoic period, whereby two stages could be identified as follows: in the first stage, carbonatitic volcanic groups, such as lavas, pyroclastic rocks and volcaniclastic sedimentary rocks, were formed in the outer ring; in the second stage, carbonatitic breccias and dykes appeared in the middle ring. The metamorphic age of the carbonatitic lavas in the outer ring was determined to be concurrent with the end of the first stage of the Neoproterozoic period, corresponding to the Jinning movement in central Yunnan.

  15. Poisson's Ratio Structure Through a Zone of Exhumed Mantle at the Goban Spur Rifted Margin, Southwest of the UK.

    Science.gov (United States)

    Bullock, A. D.; Minshull, T. A.

    2004-12-01

    Zones of exhumed mantle have been identified at the west Iberia and Goban Spur rifted margins in the eastern North Atlantic where they form a transition zone up to 130 km wide between thinned continental crust and oceanic crust further seaward. P-wave velocities range from ˜4~km~s-1 at top basement to 7.2-7.6~km~s-1 at 4-6~km depth into basement and taken in isolation are consistent with a wide range of contrasting lithologies. Poisson's ratio may be used as a discriminator between possible compositions as, for P-wave velocities sonobuoys across this region at a separation of ˜15~km; S-wave arrivals are observed on five ocean-bottom hydrophones in this region as P-to-S conversions occurring at top basement. A regularised inversion with smoothing constraints was used to define the P- and S-wave velocity structures individually and the Poisson's ratio computed from these models.

  16. Gas hydrates of Lake Baikal

    OpenAIRE

    Khlystov, O.; De Batist, M.; Shoji, H; Nishio, S.; L. Naudts; J. Poort

    2011-01-01

    This paper reviews some of the results of recent gas-hydrate studies in Lake Baikal, the only fresh-water lake in the world containing gas hydrates in its sedimentary infill. We give a historical overview of the different investigations and discoveries and highlight some recent breakthroughs in our understanding of the Baikal hydrate system. The importance of mapping mud volcanoes and gas seeps is stressed, as these are currently the only locations where gas hydrates at or very close to the f...

  17. Pb isotope geochemistry of lead, zinc, gold and silver deposit clustered region, Liaodong rift zone,northeastern China

    Institute of Scientific and Technical Information of China (English)

    CHEN; Jiangfeng; YU; Gang; XUE; Chunji; QIAN; Hui; HE; Jian

    2005-01-01

    33 Pb isotopic analyses were reported for sulfide and hydrothermal carbonate minerals and marble of the Xiquegou lead-zinc, the Zhenzigou zinc-lead and the Gaojiapuzi silver deposits from the Qingchengzi ore field and the Beiwagou zinc-lead deposit in the west, Proterozoic Liaodong rift zone. Pb isotopic ratios of the marble from the Qingchengzi ore field range from 18.24 to 30.63 for 206Pb/204Pb, 15.59 to 17.05 for 207Pb/204Pb and 37.43 to 38.63 for 208Pb/204Pb. The marble gives a Pb-Pb isochron age of 1822±92 Ma, which is interpreted as the age of the metamorphism of the marble. Ore Pb, including Pb of sulfide and hydrothermal carbonate minerals, from the Qingchengzi ore field shows limited variation with 206Pb/204Pb=17.66-17.96, 207Pb/204Pb=15.60-15.74 and 208Pb/204Pb=37.94-38.60. In contrast, ore Pb from the Beiwagou deposit gives different Pb isotopic ratios with 206Pb/204Pb=15.68-15.81, 207Pb/204Pb= 15.34-15.45 and 208Pb/204Pb=35.30-35.68. Pb of all deposits from the Liaodong rift zone is derived from the upper crust. Ore Pb of the Qingchengzi deposits is derived from a young upper crust. The model Th/U ratios of 4.40 to 4.74 for ore Pb are significantly different from that of 1.7 to 4.4 given by the marble of the Qingchengzi ore field, suggesting that marble is not the source of the ore Pb. Ore Pb of the Beiwagou deposit is extracted from its source and the deposit is formed at the Paleoproterozoic era. Different Pb isotopic ratios of the Qingchengzi ore field and the Beiwagou deposit are due to different ages of the deposits and suggest that the two types of deposits are derived from different sources and are possibly formed by different ore-forming processes.

  18. Electromagnetic mapping of subsurface formations in the lower northeast Rift zone of Piton de la Fournaise volcano : geological and hydrogeological implications

    OpenAIRE

    Courteaud, M.; Robineau, B; Ritz, Michel; Descloitres, Marc

    1998-01-01

    Time-domain electromagnetic (TDEM) and audiomagnetotelluric (AMT) surveys were conducted on the lower northeast rift zone of Piton de la Fournaise volcano, as a part of a groundwater exploration project. The objective of the study was twofold : to evaluate the possibility of mapping of volcanic medium in areas where little is known about the subsurface geology and to infer shallow geological structure from the electrical interpretation, and to identigy formations that may present good aquifer...

  19. Pressurized magma reservoir within the east rift zone of Kīlauea Volcano, Hawai`i: Evidence for relaxed stress changes from the 1975 Kalapana earthquake

    Science.gov (United States)

    Baker, Scott; Amelung, Falk

    2015-03-01

    We use 2000-2012 InSAR data from multiple satellites to investigate magma storage in Kīlauea's east rift zone (ERZ). The study period includes a surge in magma supply rate and intrusion-eruptions in 2007 and 2011. The Kupaianaha area inflated by ~5 cm prior to the 2007 intrusion and the Nāpau Crater area by ~10 cm following the 2011 intrusion. For the Nāpau Crater area, elastic modeling suggests an inflation source at 5 ± 2 km depth or more below sea level. The reservoir is located in the deeper section of the rift zone for which secular magma intrusion was inferred for the period following the 1975 Mw7.7 décollement earthquake. Reservoir pressurization suggests that in this section of the ERZ, extensional stress changes due to the earthquake have largely been compensated for and that this section is approaching its pre-1975 state. Reservoir pressurization also puts the molten core model into question for this section of Kīlauea's rift zone.

  20. The optical module of Baikal-GVD

    Directory of Open Access Journals (Sweden)

    Avrorin A.D.

    2016-01-01

    Full Text Available The Baikal-GVD neutrino telescope in Lake Baikal is intended for studying astrophysical neutrino fluxes by recording the Cherenkov radiation of the secondary muons and showers generated in neutrino interactions. The first stage of Baikal-GVD will be equipped with about 2300 optical modules. We describe the design of the optical module, the front-end electronics and the laboratory characterization and calibration before deployment.

  1. The Gigaton Volume Detector in Lake Baikal

    International Nuclear Information System (INIS)

    The objective of the Baikal Project is the creation of a kilometer-scale high-energy neutrino observatory: the Gigaton Volume Detector (GVD) in Lake Baikal. Basic elements of the GVD - new optical modules, FADC readout units, and underwater communication systems - were investigated and tested in Lake Baikal with prototype strings in 2008-2010. We describe the results of prototype strings operation and review the preliminary design and expected sensitivity of the GVD telescope.

  2. Transient Hydrothermal Alteration in Fault Zones Cutting the Lower Oceanic Crust, Hess Deep Rift

    Science.gov (United States)

    McCaig, Andrew; Titarenko, Sofya; Cliff, Robert; Ivan, Savov; Adrian, Boyce

    2015-04-01

    IODP Expedition 345 drilled the first holes in the lower plutonic crust at a fast-spreading ridge, recovering primitive layered gabbros [1]. Alteration occurred as: 1) a largely static pseudomorphic alteration, predominantly in the greenschist and sub-greenschist facies with mainly talc and serpentine replacing olivine, and prehnite replacing plagioclase. Talc sometimes overprints serpentine mesh texture. 2) an overprinting metasomatic alteration, spatially related to cataclastic fault zones and macroscopic veins, dominated by prehnite and chlorite. Secondary clinopyroxene and epidote locally overprint the prehnite-chlorite assemblage, but the last events are veins of prehnite and zeolite. Metamorphosed dykes show chilled margins within the cataclasites, and are themselves affected by cataclastic deformation. Faults, dykes and overprinting alteration are all inferred to be related to the westward propagation of Cocos-Nazca spreading forming Hess Deep. 87Sr/86Sr ratios of small whole rock samples of cataclasites and dyke rocks are in the range 0.7037 - 0.7048, indicating alteration by seawater at moderate integrated fluxes. The highest values were in cataclasites overprinted by prehnite. Sampling of individual minerals has been undertaken using a microscope mounted drill, and shows that alteration is mainly affecting secondary minerals, with late prehnite veins ranging up to Sr isotope ratios of 0.7054. δ18O values range from +1 to + 6 per mil. Combined with metamorphic data this indicates alteration at temperatures between 200 and 400 °C. Secondary clinopyroxene and talc replacing serpentine are interpreted to indicate transient prograde hydrothermal events. Preliminary modelling using Comsol Multiphysics suggests that the temperatures of the overprinting alteration, as well as transient prograde events, could be achieved in a permeable fault slot cutting through crust 0.5 to 1 m.y. old. The prehnite-chlorite assemblage is predicted to be important in off

  3. East African Rift

    Science.gov (United States)

    2008-01-01

    Places where the earth's crust has formed deep fissures and the plates have begun to move apart develop rift structures in which elongate blocks have subsided relative to the blocks on either side. The East African Rift is a world-famous example of such rifting. It is characterized by 1) topographic deep valleys in the rift zone, 2) sheer escarpments along the faulted walls of the rift zone, 3) a chain of lakes within the rift, most of the lakes highly saline due to evaporation in the hot temperatures characteristic of climates near the equator, 4) voluminous amounts of volcanic rocks that have flowed from faults along the sides of the rift, and 5) volcanic cones where magma flow was most intense. This example in Kenya displays most of these features near Lake Begoria. The image was acquired December 18, 2002, covers an area of 40.5 x 32 km, and is located at 0.1 degrees north latitude, 36.1 degrees east longitude. The U.S. science team is located at NASA's Jet Propulsion Laboratory, Pasadena, Calif. The Terra mission is part of NASA's Science Mission Directorate.

  4. Archaeology in the Kilauea East Rift Zone: Part 1, Land-use model and research design, Kapoho, Kamaili and Kilauea Geothermal Subzones, Puna District, Hawaii Island

    Energy Technology Data Exchange (ETDEWEB)

    Burtchard, G.C.; Moblo, P. [International Archaeological Research Inst., Inc., Honolulu, HI (United States)

    1994-07-01

    The Puna Geothermal Resource Subzones (GRS) project area encompasses approximately 22,000 acres centered on the Kilauea East Rift Zone in Puna District, Hawaii Island. The area is divided into three subzones proposed for geothermal power development -- Kilauea Middle East Rift, Kamaili and Kapoho GRS. Throughout the time of human occupation, eruptive episodes along the rift have maintained a dynamic landscape. Periodic volcanic events, for example, have changed the coastline configuration, altered patterns of agriculturally suitable sediments, and created an assortment of periodically active, periodically quiescent, volcanic hazards. Because of the active character of the rift zone, then, the area`s occupants have always been obliged to organize their use of the landscape to accommodate a dynamic mosaic of lava flow types and ages. While the specific configuration of settlements and agricultural areas necessarily changed in response to volcanic events, it is possible to anticipate general patterns in the manner in which populations used the landscape through time. This research design offers a model that predicts the spatial results of long-term land-use patterns and relates them to the character of the archaeological record of that use. In essence, the environmental/land-use model developed here predicts that highest population levels, and hence the greatest abundance and complexity of identifiable prehistoric remains, tended to cluster near the coast at places that maximized access to productive fisheries and agricultural soils. With the possible exception of a few inland settlements, the density of archaeological remains expected to decrease with distance from the coastline. The pattern is generally supported in the regions existing ethnohistoric and archaeological record.

  5. Recent and Hazardous Volcanic Activity Along the NW Rift Zone of Piton De La Fournaise Volcano, La Réunion Island

    Science.gov (United States)

    Walther, G.; Frese, I.; Di Muro, A.; Kueppers, U.; Michon, L.; Metrich, N.

    2014-12-01

    Shield volcanoes are a common feature of basaltic volcanism. Their volcanic activity is often confined to a summit crater area and rift systems, both characterized by constructive (scoria and cinder cones; lava flows) and destructive (pit craters; caldera collapse) phenomena. Piton de la Fournaise (PdF) shield volcano (La Réunion Island, Indian Ocean) is an ideal place to study these differences in eruptive behaviour. Besides the frequent eruptions in the central Enclos Fouqué caldera, hundreds of eruptive vents opened along three main rift zones cutting the edifice during the last 50 kyrs. Two short rift zones are characterized by weak seismicity and lateral magma transport at shallow depth (above sea level). Here we focus on the third and largest rift zone (15km wide, 20 km long), which extends in a north-westerly direction between PdF and nearby Piton des Neiges volcanic complex. It is typified by deep seismicity (up to 30 km), emitting mostly primitive magmas, testifying of high fluid pressures (up to 5 kbar) and large-volume eruptions. We present new field data (including stratigraphic logs, a geological map of the area, C-14 dating and geochemical analyses of the eruption products) on one of the youngest (~6kyrs) and largest lava field (Trous Blancs eruption). It extends for 24km from a height of 1800 m asl, passing Le Tampon and Saint Pierre cities, until reaching the coast. The source area of this huge lava flow has been identified in an alignment of four previously unidentified pit craters. The eruption initiated with intense fountaining activity, producing a m-thick bed of loose black scoria, which becomes densely welded in its upper part; followed by an alternation of volume rich lava effusions and strombolian activity, resulting in the emplacement of meter-thick, massive units of olivine-basalt alternating with coarse scoria beds in the proximal area. Activity ended with the emplacement of a dm-thick bed of glassy, dense scoria and a stratified lithic

  6. Monitoring the NW volcanic rift-zone of Tenerife, Canary Islands, Spain: sixteen years of diffuse CO_{2} degassing surveys

    Science.gov (United States)

    Rodríguez, Fátima; Halliwell, Simon; Butters, Damaris; Padilla, Germán; Padrón, Eleazar; Hernández, Pedro A.; Pérez, Nemesio M.

    2016-04-01

    Tenerife is the largest of the Canary Islands and, together with Gran Canaria, is the only one that has developed a central volcanic complex characterized by the eruption of differentiated magmas. At present, one of the most active volcanic structures in Tenerife is the North-West Rift-Zone (NWRZ), which has hosted two historical eruptions: Arenas Negras in 1706 and Chinyero in 1909. Since the year 2000, 47 soil CO2 efflux surveys have been undertaken at the NWRZ of Tenerife Island to evaluate the temporal and spatial variations of CO2 efflux and their relationships with the volcanic-seismic activity. We report herein the last results of diffuse CO2 efflux survey at the NWRZ carried out in July 2015 to constrain the total CO2 output from the studied area. Measurements were performed in accordance with the accumulation chamber method. Spatial distribution maps were constructed following the sequential Gaussian simulation (sGs) procedure. During 2015 survey, soil CO2 efflux values ranged from non-detectable up to 103 g m‑2 d‑1. The total diffuse CO2 output released to atmosphere was estimated at 403 ± 17 t d‑1, values higher than the background CO2 emission estimated on 143 t d‑1. For all campaigns, soil CO2 efflux values ranged from non-detectable up to 141 g m‑2 d‑1, with the highest values measured in May 2005. Total CO2 output from the studied area ranged between 52 and 867 t d‑1. Temporal variations in the total CO2 output showed a temporal correlation with the onsets of seismic activity, supporting unrest of the volcanic system, as is also suggested by anomalous seismic activity recorded in the area during April 22-29, 2004. Spatial distribution of soil CO2 efflux values also showed changes in magnitude and amplitude, with higher CO2 efflux values located along a trending WNW-ESE area. Subsurface magma movement is proposed as a cause for the observed changes in the total output of diffuse CO2 emission, as well as for the spatial distribution of

  7. Concentration of nutrients in the water of Southern Baikal in summer

    Science.gov (United States)

    Sakirko, M. V.; Domysheva, V. M.; Pestunov, D. A.; Netsvetaeva, O. G.; Panchenko, M. V.

    2015-11-01

    Optical characteristics of Baikal water and their inter-annual, seasonal and diurnal variability depend on plankton composition, suspended particles of organic and inorganic substances, and dissolved chemical compounds. This work analyses the results of comprehensive studies on spatial distribution of nutrients (nitrogen, phosphorus, carbon, and silicon) in the water area of Southern Baikal performed in August 2014. The authors also compare the results of spatial measurements with the data of long-term observations in the littoral zone for summer conditions carried out at the Scientific Research Station of Limnological Institute of the Siberian Branch of the Russian Academy of Sciences.

  8. Bottom sediments and pore waters near a hydrothermal vent in Lake Baikal (Frolikha Bay)

    Science.gov (United States)

    Granina, L.Z.; Klerkx, J.; Callender, E.; Leermakers, M.; Golobokova, L.P.

    2007-01-01

    We discuss the redox environments and the compositions of bottom sediments and sedimentary pore waters in the region of a hydrothermal vent in Frolikha Bay, Lake Baikal. According to our results, the submarine vent and its companion nearby spring on land originate from a common source. The most convincing evidence for their relation comes from the proximity of stable oxygen and hydrogen isotope compositions in pore waters and in the spring water. The isotope composition indicates a meteoric origin of pore waters, but their major- and minor-element chemistry bears imprint of deep water which may seep through permeable faulted crust. Although pore waters near the submarine vent have a specific enrichment in major and minor constituents, hydrothermal discharge at the Baikal bottom causes a minor impact on the lake water chemistry, unlike the case of freshwater geothermal lakes in the East-African Rift and North America. ?? 2007.

  9. The Teisseyre-Tornquist Zone - early Palaeozoic strike-slip plate boundary or Ediacaran rifted margin of Baltica?

    Science.gov (United States)

    Mazur, Stanislaw; Krzywiec, Piotr; Malinowski, Michal; Lewandowski, Marek; Buffenmeyer, Vinton; Green, Christopher

    2016-04-01

    The Teisseyre-Tornquist Zone (TTZ) is the longest European tectonic and geophysical lineament extending from the Baltic Sea in the northwest to the Black Sea in the southeast. This tectonic feature defines a transition between the thick crust of the East European Craton (EEC) and the thinner crust of the Palaeozoic Platform to the southwest. Being a profound zone of crustal and lithospheric thickness perturbation, the TTZ has usually been considered a Caledonian tectonic suture formed due to the closure of the Tornquist Ocean. The suture was hypothesised to originate from the collision between Baltica and Avalonia or large-scale strike-slip displacement along strike of the Caledonian Orogen. However, some minority views postulated the continuation of Baltica crystalline basement farther to the southwest up to the Elbe Lineament and the margin of the Variscan Belt. We studied the ION Geophysical PolandSPAN survey that consists of 10 regional, seismic depth profiles covering the SW margin of the EEC and the TTZ in Poland. Since the PolandSPAN profiles image to ~30 km depth their interpretation was integrated with the potential fields data and earlier results of refraction sounding to better image the deep structure of the TTZ. Our data show that the NW and central sections of the TTZ correspond, at the Moho level, to a relatively narrow crustal keel and a significant Moho step at the transition from the EEC to the Palaeozoic Platform. However, top of basement above the TTZ is smooth and moderately sloping towards the southwest. In the central part of the TTZ, top of Precambrian is covered by undisturbed lower Palaeozoic sediments. In contrast, the lower Palaeozoic sediments are involved in a latest Silurian, thin-skinned fold-and-thrust belt along the NW section of the TTZ, where the sharply defined Caledonian Deformation Front adjoins a rigid basement buttress above the TTZ. Finally, the crustal keel is mostly missing from the SE section of the TTZ. Instead, this

  10. Archaeology in the Kilauea East Rift Zone: Part 2, A preliminary sample survey, Kapoho, Kamaili and Kilauea geothermal subzones, Puna District, Hawaii island

    Energy Technology Data Exchange (ETDEWEB)

    Sweeney, M.T.K.; Burtchard, G.C. [International Archaeological Research Inst., Inc., Honolulu, HI (United States)

    1995-05-01

    This report describes a preliminary sample inventory and offers an initial evaluation of settlement and land-use patterns for the Geothermal Resources Subzones (GRS) area, located in Puna District on the island of Hawaii. The report is the second of a two part project dealing with archaeology of the Puna GRS area -- or more generally, the Kilauea East Rift Zone. In the first phase of the project, a long-term land-use model and inventory research design was developed for the GRS area and Puna District generally. That report is available under separate cover as Archaeology in the Kilauea East Rift Zone, Part I: Land-Use Model and Research Design. The present report gives results of a limited cultural resource survey built on research design recommendations. It offers a preliminary evaluation of modeled land-use expectations and offers recommendations for continuing research into Puna`s rich cultural heritage. The present survey was conducted under the auspices of the United States Department of Energy, and subcontracted to International Archaeological Research Institute, Inc. (IARII) by Martin Marietta Energy Systems, Inc. The purpose of the archaeological work is to contribute toward the preparation of an environmental impact statement by identifying cultural materials which could be impacted through completion of the proposed Hawaii Geothermal Project.

  11. Spatial and temporal variations of diffuse CO_{2} degassing at the N-S volcanic rift-zone of Tenerife (Canary Islands, Spain) during 2002-2015 period

    Science.gov (United States)

    Alonso, Mar; Ingman, Dylan; Alexander, Scott; Barrancos, José; Rodríguez, Fátima; Melián, Gladys; Pérez, Nemesio M.

    2016-04-01

    Tenerife is the largest of the Canary Islands and, together with Gran Canaria Island, is the only one with a central volcanic complex that started to grow at about 3.5 Ma. Nowadays the central complex is formed by Las Cañadas caldera, a volcanic depression measuring 16×9 km that resulted from multiple vertical collapses and was partially filled by post-caldera volcanic products. Up to 297 mafic monogenetic cones have been recognized on Tenerife, and they represent the most common eruptive activity occurring on the island during the last 1 Ma (Dóniz et al., 2008). Most of the monogenetic cones are aligned following a triple junction-shaped rift system, as result of inflation produced by the concentration of emission vents and dykes in bands at 120o to one another as a result of minimum stress fracturing of the crust by a mantle upwelling. The main structural characteristic of the southern volcanic rift (N-S) of the island is an apparent absence of a distinct ridge, and a fan shaped distribution of monogenetic cones. Four main volcanic successions in the southern volcanic rift zone of Tenerife, temporally separated by longer periods (˜70 - 250 ka) without volcanic activity, have been identified (Kröchert and Buchner, 2008). Since there are currently no visible gas emissions at the N-S rift, diffuse degassing surveys have become an important geochemical tool for the surveillance of this volcanic system. We report here the last results of diffuse CO2 efflux survey at the N-S rift of Tenerife, performed using the accumulation chamber method in the summer period of 2015. The objectives of the surveys were: (i) to constrain the total CO2 output from the studied area and (ii) to evaluate occasional CO2 efflux surveys as a volcanic surveillance tool for the N-S rift of Tenerife. Soil CO2 efflux values ranged from non-detectable up to 31.7 g m‑2 d‑1. A spatial distribution map, constructed following the sequential Gaussian simulation (sGs) procedure, did not show an

  12. The Ability of Microbial Community of Lake Baikal Bottom Sediments Associated with Gas Discharge to Carry Out the Transformation of Organic Matter under Thermobaric Conditions

    Science.gov (United States)

    Bukin, Sergei V.; Pavlova, Olga N.; Manakov, Andrei Y.; Kostyreva, Elena A.; Chernitsyna, Svetlana M.; Mamaeva, Elena V.; Pogodaeva, Tatyana V.; Zemskaya, Tamara I.

    2016-01-01

    The ability to compare the composition and metabolic potential of microbial communities inhabiting the subsurface sediment in geographically distinct locations is one of the keys to understanding the evolution and function of the subsurface biosphere. Prospective areas for study of the subsurface biosphere are the sites of hydrocarbon discharges on the bottom of the Lake Baikal rift, where ascending fluxes of gas-saturated fluids and oil from deep layers of bottom sediments seep into near-surface sediment. The samples of surface sediments collected in the area of the Posolskaya Bank methane seep were cultured for 17 months under thermobaric conditions (80°C, 5 MPa) with the addition of complementary organic substrate, and a different composition for the gas phase. After incubation, the presence of intact cells of microorganisms, organic matter transformation and the formation of oil biomarkers was confirmed in the samples, with the addition of Baikal diatom alga Synedra acus detritus, and gas mixture CH4:H2:CO2. Taxonomic assignment of the 16S rRNA sequence data indicates that the predominant sequences in the enrichment were Sphingomonas (55.3%), Solirubrobacter (27.5%) and Arthrobacter (16.6%). At the same time, in heat-killed sediment and in sediment without any additional substrates, which were cultivated in a CH4 atmosphere, no geochemical changes were detected, nor the presence of intact cells and 16S rRNA sequences of Bacteria and Archaea. This data may suggest that the decomposition of organic matter under culturing conditions could be performed by microorganisms from low-temperature sediment layers. One possible explanation of this phenomenon is migration of the representatives of the deep thermophilic community through fault zones in the near surface sediment layers, together with gas-bearing fluids. PMID:27242716

  13. Results From a Borehole Seismometer Array II: 3-D Mapping of an Active Geothermal Field at the Kilauea Lower Rift Zone

    Science.gov (United States)

    Shalev, E.; Kenedi, C. L.; Malin, P.

    2008-12-01

    The geothermal power plant in Puna, in southeastern Hawaii, is located in a section of the Kilauea Lower East Rift Zone that was resurfaced by lava flows as recently as 1955, 1960, and 1972. In 2006 a seismic array consisting of eight 3-component stations was installed around the geothermal field in Puna. The instrument depths range from 24 to 210 m. The shallower instruments have 2 Hz geophones and the deeper have 4.5 Hz geophones. 3-D tomographic analyses of P-wave velocity, S-wave velocity, and the Vp/Vs ratio show an area of very fast P-wave velocity at the relatively shallow depth of 2.5 km in the southern section of the field. The same area shows moderate S-wave velocity. This high P-wave velocity anomaly at the southern part of the geothermal field may indicate the presence of dense rock material usually found at greater depths.

  14. Rifts in spreading wax layers

    CERN Document Server

    Ragnarsson, R; Santangelo, C D; Bodenschatz, E; Ragnarsson, Rolf; Ford, J Lewis; Santangelo, Christian D; Bodenschatz, Eberhard

    1995-01-01

    We report experimental results on the rift formation between two freezing wax plates. The plates were pulled apart with constant velocity, while floating on the melt, in a way akin to the tectonic plates of the earth's crust. At slow spreading rates, a rift, initially perpendicular to the spreading direction, was found to be stable, while above a critical spreading rate a "spiky" rift with fracture zones almost parallel to the spreading direction developed. At yet higher spreading rates a second transition from the spiky rift to a zig-zag pattern occurred. In this regime the rift can be characterized by a single angle which was found to be dependent on the spreading rate. We show that the oblique spreading angles agree with a simple geometrical model. The coarsening of the zig-zag pattern over time and the three-dimensional structure of the solidified crust are also discussed.

  15. Rift propagation

    Science.gov (United States)

    Parmentier, E. M.; Schubert, G.

    1989-01-01

    A model for rift propagation which treats the rift as a crack in an elastic plate which is filled from beneath by upwelling viscous asthenosphere as it lengthens and opens. Growth of the crack is driven by either remotely applied forces or the pressure of buoyant asthenosphere in the crack and is resisted by viscous stresses associated with filling the crack. The model predicts a time for a rift to form which depends primarily on the driving stress and asthenosphere viscosity. For a driving stress on the order of 10 MPa, as expected from the topography of rifted swells, the development of rifts over times of a few Myr requires an asthenosphere viscosity of 10 to the 16th Pa s (10 to the 17th poise). This viscosity, which is several orders of magnitude less than values determined by postglacial rebound and at least one order of magnitude less than that inferred for spreading center propagation, may reflect a high temperature or large amount of partial melting in the mantle beneath a rifted swell.

  16. INTERBLOCK ZONES IN THE CRUST OF THE SOUTHERN REGIONS OF EAST SIBERIA: TECTONOPHYSICAL INTERPRETATION OF GEOLOGICAL AND GEOPHYSICAL DATA

    Directory of Open Access Journals (Sweden)

    K. Zh. Seminsky

    2015-09-01

    Full Text Available The zone-block structure of the lithosphere is represented by a hierarchically organized pattern of stable blocks and mobile zones which border such blocks and contain highly dislocated geological medium (Fig. 1. Today, different specialists adhere to different concepts of blocks and zones, which are two main elements of the lithosphere structure. Differences are most significant in determinations of ‘interblock zones’ that are named as deformation / destructive / contact / mobile / fracture zones etc. due to their diversity in different conditions of deformation. One of the most effective approaches to studying the zone-block structure of the lithosphere is a combination of geological and geophysical studies of interblock zones tectonic features on various scales, which can make it possible to reveal the most common patterns of the interblock zones, general regularities of their development and relationships between the interblock zones.The main objectives of our study were (1 to identify the zone-block structure of the crust in the southern regions of East Siberia from tectonophysical analysis of geological and geophysical surveys conducted on four different scales along the 500 km long Shertoy-Krasny Chikoy transect crossing the marginal segment of the Siberian block, the Baikal rift and the Transbaikalian block (Fig. 2; (2 to clarify structural features of the central part of the Baikal rift (representing the tectonic type of interblock extension zone by applying new research methods, such as radon emanation survey, to the Shertoy-Krasny Chikoy transect and using the previously applied methods, such as magnetotelluric sounding, on a smaller scale; and (3 to study manifestation of interblock zones of various ranks in different geological and geophysical fields, to reveal common specific features of their structural patterns for the upper crust, and to establish regularities of hierarchic and spatial relationships between the interblock

  17. The Lake Baikal telescope NT-36

    International Nuclear Information System (INIS)

    Since April 13th, 1993 the underwater Cherenkov telescope NT-36 consisting of 36 photomultipliers attached to 3 strings, is operated in lake Baikal. We describe this first stationary underwater multistring array and present results from the first months of operation. (orig.)

  18. Physics-based and statistical earthquake forecasting in a continental rift zone: the case study of Corinth Gulf (Greece)

    Science.gov (United States)

    Segou, Margarita

    2016-01-01

    I perform a retrospective forecast experiment in the most rapid extensive continental rift worldwide, the western Corinth Gulf (wCG, Greece), aiming to predict shallow seismicity (depth 4.5 earthquakes correspond to spontaneous events and identify, if possible, different triggering characteristics between aftershock sequences and swarm-type seismicity periods. I find that: (1) ETAS models outperform CRS models in most time intervals achieving very low rejection ratio RN = 6 per cent, when I test their efficiency to forecast the total number of events inside the study area, (2) the best rejection ratio for CRS models reaches RN = 17 per cent, when I use varying target depths and receiver plane geometry, (3) 75 per cent of the 1995 Aigio aftershocks that occurred within the first month can be explained by static stress changes, (4) highly variable performance on behalf of both statistical and physical models is suggested by large confidence intervals of information gain per earthquake and (5) generic ETAS models can adequately predict the temporal evolution of seismicity during swarms. Furthermore, stochastic reconstruction of seismicity makes possible the identification of different triggering processes between specific seismic crises (2001, 2003-04, 2006-07) and the 1995 aftershock sequence. I find that: (1) seismic events with M ≥ 5.0 are not a part of a preceding earthquake cascade, since they are characterized by high probability being a background event (average Pback > 0.8) and (2) triggered seismicity within swarms is characterized by lower event productivity when compared with the corresponding value during aftershock sequences. I conclude that physics-based models contribute on the determination of the `new-normal' seismicity rate at longer time intervals and that their joint implementation with statistical models is beneficial for future operational forecast systems.

  19. Nature and evolution of lithospheric mantle beneath the southern Ethiopian rift zone: evidence from petrology and geochemistry of mantle xenoliths

    Science.gov (United States)

    Alemayehu, Melesse; Zhang, Hong-Fu; Sakyi, Patrick Asamoah

    2016-06-01

    Mantle xenoliths hosted in Quaternary basaltic lavas from the Dillo and Megado areas of the southern Ethiopian rift are investigated to understand the geochemical composition and associated processes occurring in the lithospheric mantle beneath the region. The xenoliths are comprised of predominantly spinel lherzolite with subordinate harzburgite and clinopyroxenite. Fo content of olivine and Cr# of spinel for peridotites from both localities positively correlate and suggest the occurrence of variable degrees of partial melting and melt extraction. The clinopyroxene from lherzolites is both LREE depleted (La/Sm(N) = 0.11-0.37 × Cl) and LREE enriched (La/Sm(N) = 1.88-15.72 × Cl) with flat HREEs (Dy/Lu(N) = 0.96-1.31 × Cl). All clinopyroxene from the harzburgites and clinopyroxenites exhibits LREE-enriched (La/Sm(N) = 2.92-27.63.1 × Cl and, 0.45 and 1.38 × Cl, respectively) patterns with slight fractionation of HREE. The 143Nd/144Nd and 176Hf/177Hf ratios of clinopyroxene from lherzolite range from 0.51291 to 0.51370 and 0.28289 to 0.28385, respectively. Most of the samples define ages of 900 and 500 Ma on Sm-Nd and Lu-Hf reference isochrons, within the age range of Pan-African crustal formation. The initial Nd and Hf isotopic ratios were calculated at 1, 1.5, 2 and 2.5 Ga plot away from the trends defined by MORB, DMM and E-DMM which were determined from southern Ethiopian peridotites, thus indicating that the Dillo and Megado xenoliths could have been produced by melt extraction from the asthenosphere during the Pan-African orogenic event. There is no significant difference in 87Sr/86Sr ratios between the depleted and enriched clinopyroxene. This suggests that the melts that caused the enrichment of the clinopyroxene are mainly derived from the depleted asthenospheric mantle from which the xenoliths are extracted. Largely, the mineralogical and isotopic compositions of the xenoliths show heterogeneity of the CLM that could have been produced from various

  20. Estimate of the vertical plankton biomass profile on the basis of measurements of fluorescent characteristics in pelagial of Lake Baikal

    Science.gov (United States)

    Panchenko, Mikhail V.; Sakirko, Maria V.; Usoltseva, Marina V.; Popovskaya, Galina I.; Domysheva, Valentina M.; Shimaraev, Mikhail N.; Zavoruev, Valerii V.; Pestunov, Dmitrii A.

    2014-11-01

    We study the effect of physical, chemical and biological processes on gas exchange of CO2 in the air-water system in Lake Baikal. Photosynthesis of aquatic biota is known to play a crucial role in changing the concentration of carbon dioxide in the water. Fluorescent methods are considered to be of high performance in problems of determining quantitative characteristics of biomass, however they require preliminary calibration directly for a specific type of plankton. In the pelagic zone of Lake Baikal the species composition, quantitative and spatial distribution of phytoplankton are characterized by strong spatial and temporal variability. Therefore, the fluorescent devices calibration on a single reference does not provide acceptable accuracy of quantitative assessment of the biomass. The results discussed in the paper were obtained by shipboard measurements during the Baikal campaign of 2010-2011. Correlation between the biomass in 25-meter water layer and the integral value of the fluorescent signal in this layer was obtained for calibration. The report discusses the advantages and disadvantages of the chosen methods and the results of retrieval of the vertical profiles of the biomass for stations in the pelagic zone of Lake Baikal in spring for the 2010-2011 biennium.

  1. Status of the Lake Baikal telescope

    International Nuclear Information System (INIS)

    A first large deep underwater detector for muons and neutrinos, NT-200, is currently under construction in Lake Baikal. Part of the detector consisting of 36 optical modules (NT-36) has been operated over nearly 2 years in 1993 and 1994. In March 1995, a 72-PMT version was deployed. We describe the construction and performance of the detector, and review the main results obtained so far. (orig.)

  2. The East African rift system

    Science.gov (United States)

    Chorowicz, Jean

    2005-10-01

    This overview paper considers the East African rift system (EARS) as an intra-continental ridge system, comprising an axial rift. It describes the structural organization in three branches, the overall morphology, lithospheric cross-sections, the morphotectonics, the main tectonic features—with emphasis on the tension fractures—and volcanism in its relationships with the tectonics. The most characteristic features in the EARS are narrow elongate zones of thinned continental lithosphere related to asthenospheric intrusions in the upper mantle. This hidden part of the rift structure is expressed on the surface by thermal uplift of the rift shoulders. The graben valleys and basins are organized over a major failure in the lithospheric mantle, and in the crust comprise a major border fault, linked in depth to a low angle detachment fault, inducing asymmetric roll-over pattern, eventually accompanied by smaller normal faulting and tilted blocks. Considering the kinematics, divergent movements caused the continent to split along lines of preexisting lithospheric weaknesses marked by ancient tectonic patterns that focus the extensional strain. The hypothesis favored here is SE-ward relative divergent drifting of a not yet well individualized Somalian plate, a model in agreement with the existence of NW-striking transform and transfer zones. The East African rift system comprises a unique succession of graben basins linked and segmented by intracontinental transform, transfer and accommodation zones. In an attempt to make a point on the rift system evolution through time and space, it is clear that the role of plume impacts is determinant. The main phenomenon is formation of domes related to plume effect, weakening the lithosphere and, long after, failure inducing focused upper mantle thinning, asthenospheric intrusion and related thermal uplift of shoulders. The plume that had formed first at around 30 Ma was not in the Afar but likely in Lake Tana region (Ethiopia

  3. Mapping of zones potentially occupied by Aedes vexans and Culex poicilipes mosquitoes, the main vectors of Rift Valley fever in Senegal

    Directory of Open Access Journals (Sweden)

    Yves M. Tourre

    2008-11-01

    Full Text Available A necessary condition for Rift Valley fever (RVF emergence is the presence of Aedes (Aedimorphus vexans and Culex (Culex poicilipes mosquitoes carrying the arbovirus and responsible for the infection. This paper presents a detailed mapping in the Sahelian region of Senegal of zones potentially occupied by these mosquitoes (ZPOMs whose population density is directly linked to ecozones in the vicinity of small ponds. The vectors habitats and breeding sites have been characterized through an integrated approach combining remote sensing technology, geographical information systems, geographical positioning systems and field observations for proper geo-referencing. From five SPOT-5 images (~10 m spatial resolution with appropriate channels, a meridional composite transect of 290 x 60 km was first constructed at the height of the summer monsoon. Subsequent ZPOMs covered major ecozones from north to south with different hydrological environments and different patterns pond distributions. It was found that an overall area of 12,817 ha ± 10% (about 0.8% of the transect is occupied by ponds with an average ZPOM 17 times larger than this (212,813 ha ± 10% or about 14% of the transect. By comparing the very humid year of 2003 with 2006 which had just below normal rainfall, the ZPOMs inter-annual variability was analyzed in a sandy-clayey ecozone with an important hydrofossil riverbed within the Ferlo region of Senegal. Very probably contributing to an increased abundance of vectors by the end of August 2003, it was shown that the aggregate pond area was already about 22 times larger than in August 2006, corresponding to an approximately five times larger total ZPOM. The results show the importance of pin-pointing small ponds (sizes down to 0.1 ha and their geographical distribution in order to assess animal exposure to the RVF vectors.

  4. The data acquisition system for Baikal-GVD

    Directory of Open Access Journals (Sweden)

    Avrorin A.D.

    2016-01-01

    Full Text Available Baikal-GVD will be a neutrino telescope at the cubic-kilometer scale in Lake Baikal. The first out of 10-12 clusters of the first phase of GVD has been deployed and commissioned in April 2015. This paper describes design and implementation of the dataacquisition system of GVD.

  5. Green Economy’s Prospects in Russia: Case of Baikal Area

    Directory of Open Access Journals (Sweden)

    Alla A. Pakina

    2014-06-01

    Full Text Available Transition to a green economy is one of key directions of Russian modernisation. According to the “eastern vector” of the Russian economy, principles of a green development are crucial for regions of Eastern Siberia, one of which is the Baikal area. Actual directions of economic activities are a mining industry on a base of polymetallic ore fields, and a touristic industry in a frame of Special Economic ZoneBaikal haven”. Economic growth is a necessary condition for improvement of living standards of the local population, but environmental and economic indicators of these development directions differ considerably. Transition from traditional economic indicators, oriented on consumption, to effective development, focused on preserving of ecological services of natural landscapes, is one of the most important issues of green economy in a practice. This article considers perspective directions of economic development within the Republic of Buryatia as a part of the Baikal Natural Area, and evaluates possibilities of transition to a green economy.

  6. The Selenga River delta - a geochemical barrier for the waters of Lake Baikal

    Science.gov (United States)

    Chalov, Sergey; Thorslund, Josefin; Pietron, Jan; Jarsjö, Jerker

    2016-04-01

    Delta systems play an important role in retention of sediments and contaminants to downstream recipients, through processes such as gravitational sedimentation, flocculation and biofiltration. The Selenga river delta is one of the world's largest inland deltas, providing a huge buffer zone between Lake Baikal and upstream waters of the Selenga river basin. Understanding the delta functioning is critical for the planning of water management measures in the Selenga River Basin and for protection of the waters of Lake Baikal. We here study the current state and functioning of the delta's ecosystem and hydrogeochemical processes. More specifically, we considered spatio-temporal changes in water flow, morphology and transport of sediments and metals within the delta and what potential impacts these changes may have on the delta functions. Results show that the delta network has a large influence on the mass of metals reaching the Lake Baikal at the delta outlet. Regions with high density of wetlands and small channels, in contrast to main channel regions, show a consistent pattern of considerable contaminant filtering and removal (between 77-99% for key metals), during both high and low flow conditions, following with a significant increase (2-3 times) of bottom sediment pollution. Geomorphological processes also governs the barrier function of the delta, due to partitioning of flow between different channel systems. These results are particularly relevant in the light of recent and expected future changes involving both the hydrology and water quality in the Lake Baikal basin. Taken together, this emphasizes the importance of understanding the interface between flow partitioning, delta morphology, and sediment and metal patterns and storage rates for fully capturing and quantifying the variety in delta functions. This is particularly relevant coupled to hydroclimatic changes in the region, which could lead to significant decline in barrier functions of the delta due to

  7. Tectonically controlled methane escape in Lake Baikal

    OpenAIRE

    Klerkx, J.; De Batist, M.; J. Poort; Hus, R.; Van Rensbergen, P.; Khlystov, O.; Granin, N.

    2006-01-01

    Methane, which is at least partly stored in the bottom sediments of Lake Baikal as gas hydrates, is released on the lake floor in the deeper parts of the basin along major faults, forming venting structures similar to small mud volcanoes. The CH4 venting structures are considered to be the surface expression of escape pathways for excess CH4 generated by the dissociation of pre-existing hydrates. The existence of a local heat flow anomaly associated with the seep area is most likely due to a ...

  8. Status and perspectives of the BAIKAL-GVD project

    Directory of Open Access Journals (Sweden)

    Avrorin A.D.

    2016-01-01

    Full Text Available The neutrino telescope Baikal-GVD in Lake Baikal will be a research infrastructure aimed mainly at studying astrophysical neutrino fluxes. The telescope will consist of clusters of strings – functionally independent sub-arrays. The deployment of the first demonstration cluster has been started in April 2013. In 2014 the deployment of the second stage of the demonstration cluster has been performed. We describe the configuration and design of the first GVD cluster and review the current status of cluster deployment in Lake Baikal.

  9. Continental Rifts

    Science.gov (United States)

    Rosendahl, B. R.

    Continental Rifts, edited by A. M. Quennell, is a new member of the Benchmark Papers in Geology Series, edited in toto by R. W. Fairbridge. In this series the individual volume editors peruse the literature on a given topic, select a few dozen papers of ostensibly benchmark quality, and then reorder them in some sensible fashion. Some of the original papers are republished intact, but many are chopped into “McNuggets™” of information. Depending upon the volume editor, the chopping process can range from a butchering job to careful and prudent pruning. The collecting, sifting, and reorganizing tasks are, of course, equally editor-sensitive. The end product of this series is something akin to a set of Reader's Digest of Geology.

  10. Physics capabilities of the second stage Baikal detector NT-200

    Energy Technology Data Exchange (ETDEWEB)

    Spiering, C.; Heller, R.; Heukenkamp, H.; Krabi, J.; Mikolajski, T.; Thon, T.; Wischnewski, R. [Institut fuer Hochenergiephysik, Zeuthen (Germany); Alatin, S.D.; Fialkovsky, S.V.; Kulepov, V.F.; Milenin, M.B. [Polytechnical Inst., Nizhni Novgorod (Russia); Belolaptikov, I.A.; Bezrukov, L.B.; Borisovets, B.A.; Bugaev, E.V.; Djilkibaev, Zh.A.M.; Domogatsky, G.V.; Donskich, L.A.; Doroshenko, A.A.; Galperin, M.D.; Gushtan, M.N.; Klabukov, A.M.; Klimushin, S.I.; Lanin, O.J.; Lubsandorzhiev, B.K.; Ogievietzky, N.V.; Panfilov, A.I.; Sokalsky, I.A.; Trofimenko, I.I. [Inst. for Nuclear Research, Moscow (Russia); Budnev, N.M.; Chensky, A.G.; Dobrynin, V.I.; Gress, O.A.; Koshechkin, A.P.; Lanin, J.B.; Litunenko, G.A.; Lopin, A.L.; Naumov, V.A.; Nemchenko, M.I.; Parfenov, Yu.V.; Pavlov, A.A.; Pokalev, O.P.; Primin, V.A.; Sumanov, A.A.; Tarashansky, V.A.; Zurbanov, V.L. [Irkutsk State Univ. (Russia); Dudkin, G.N.; Egorov, V.Yu.; Lukanin, A.A.; Ovcharov, A.M.; Padalko, V.M.; Padusenko, A.H. [Tomsk Polytechnical Inst. (Russia); Golikov, A.V.; Kabikov, V.B.; Kuzmichov, L.A.; Osipova, E.A.; Zaslavskaya, E.S. [Moscow State Univ. (Russia); Jenek, L.; Kiss, D.; Tanko, L. [Central Research Inst. of Fundamental Physics, Budapest (Hungary)]|[Joint Inst. for Nuclear Research, Dubna (Russia); Kusner, Yu.S.; Poleschuk, V.A.; Sherstyankin, P.P. [Limnological Inst., Irkutsk (Russia); Levin, A.A.; Nikiforov, A.I.; Rosanov, M.I. [Marine Technical Univ., St. Petersburg (Russia); BAIKAL Collaboration

    1991-12-01

    We describe the lake Baikal deep underwater detector `NT-200` and discuss its physics capabilities to investigate problems in the field of neutrino astrophysics, cosmic ray physics and particle physics. (orig.).

  11. Physics capabilities of the second stage Baikal detector NT-200

    International Nuclear Information System (INIS)

    We describe the lake Baikal deep underwater detector 'NT-200' and discuss its physics capabilities to investigate problems in the field of neutrino astrophysics, cosmic ray physics and particle physics. (orig.)

  12. The lake Baikal neutrino experiment: present status and future prospects

    CERN Document Server

    Lubsandorzhiev, B K

    2003-01-01

    We review the present status of the lake Baikal neutrino experiment with some selected physics results on high-energy atmospheric and extraterrestrial neutrino fluxes. Future prospects of the experiment are highlighted as well.

  13. Recognition of hyper-extended rifted margin remnants in the internal zone of the Alpine belt: A tribute to Marco Beltrando

    Science.gov (United States)

    Mohn, Geoffroy; Manatschal, Gianreto

    2016-04-01

    Marco Beltrando was part of the young generation of Alpine geologists who challenged the interpretation of the Western Alps by combining a classical field approach and modern techniques (e.g. 40Ar/39Ar and (U-Th)/He thermochronology). His work provides the foundation to re-interpret some of the classical sections through the Alpine belt and may impact the way of thinking about the nature and structure of internal parts of collisional orogens. This contribution will present the main outcomes of the work of Marco Beltrando and their implications for the understanding of Alpine type orogens. Since his PhD, Marco Beltrando focused most of his work on the study of the internal parts of the Western Alps. He investigated in great details the complex, multiphase structural and metamorphic evolution of the Penninic units in the Western Alps. He concluded that these units went through several cycles of shortening and extension during the Alpine orogeny, with major implications for the Alps but also other orogenic belts. After his PhD, he focused his research on the pre-orogenic evolution of the Alpine belt. He first worked on the Petit St. Bernard area, where he identified relics of the former hyper-extended Tethyan rifted margin. Thanks to his work and his amazing knowledge of the Western Alps, he understood the potential importance of rift-inheritance in controlling the architecture and evolution of the Alpine belt. In parallel to the study of the orogenic evolution, he developed a new methodology to recognize rift-related lithostratigraphic units in highly deformed and metamorphosed parts of the Alps. His innovative work allowed a re-assessment of several areas in the Western Alps and demonstrates the importance of rift inheritance. Recently, he started a new research project on the evolution of the Southern Alps highlighting the importance of heating and cooling cycles resulting from complex successions of rifting events. In spite of his young age, Marco Beltrando was at

  14. Canine distemper virus in Lake Baikal seals (Phoca sibirica).

    OpenAIRE

    Mamaev, L.V.; Visser, Ilona; Belikov, S.I.; Denikina, N.N.; Harder, Timm; Goatley, L.; Rima, B.; Edginton, B.; Osterhaus, Albert; Barrett, Thomas,

    1996-01-01

    textabstractThe virus epizootic which resulted in significant mortality in Siberian seals (Phoca sibirica) in Lake Baikal during 1987/88 was caused by canine distemper virus. Sequence analysis of the virus glycoprotein genes revealed that it was most closely related to recent European field isolates of canine distemper virus. This paper presents evidence that the same virus continued to circulate in seals in Lake Baikal after the initial epizootic. Three out of 45 brain tissue samples collect...

  15. The optical detection unit for Baikal-GVD neutrino telescope

    Directory of Open Access Journals (Sweden)

    Avrorin A.D.

    2016-01-01

    Full Text Available The first stage of the GVD-cluster composed of five strings was deployed in April 2014. Each string consists of two sections with 12 optical modules per section. A section is the basic detection unit of the Baikal neutrino telescope. We will describe the section design, review its basic elements – optical modules, FADC readout units, slow control and calibration systems, and present selected results for section in-situ tests in Lake Baikal.

  16. A prototype device for acoustic neutrino detection in Lake Baikal

    CERN Document Server

    Budnev, N M

    2007-01-01

    In April 2006, a 4-channel acoustic antenna has been put in long-term operation on Lake Baikal. The detector was installed at a depth of about 100 m on the instrumentation string of Baikal Neutrino Telescope NT200+. This detector may be regarded as a prototype of a subunit for a future underwater acoustic neutrino telescope. We describe the design of acoustic detector and present first results obtained from data analysis.

  17. Mesozoic and early Tertiary rift tectonics in East Africa

    Science.gov (United States)

    Bosworth, William

    1992-08-01

    A complex history of crustal extension occurred in east and central Africa during the Mesozoic and early Tertiary. Beginning in the Late Jurassic, this resulted in a large system of rifts, the Central African rift system, that spanned from central Sudan to southern Kenya. Late Jurassic rifting is best documented in the White and Blue Nile rifts of the Sudan, and records east-west extension in half-graben that were connected by large-scale shear zones and pull-apart basins. Early Cretaceous rifting re-activated Jurassic basins and spread to the large South Sudan rifts and Anza rift in Kenya. By the Late Cretaceous, the extension direction shifted to the NE-SW, and the presently observed large-scale rift geometry was established. In the early Tertiary, some Mesozoic basins were again reactivated, while other regions underwent wrench faulting and basin inversion. The large number of basins preserved in the Central African rift system can be used to construct an evolutionary model of continental rift tectonics. Early phases of extension at low strains produced alternating half-graben/accommodation zone geometries similar to those observed in most young and active continental rifts. At higher strains, some border faults were abandoned so that through-going, simpler active fault systems could evolve. This is interpreted as representing a switch from complex, oppositely dipping detachment structures, with strike dimensions of 50-150 km, to regional detachment structures that continue for hundreds of kilometers parallel to the rift. This change in the type of detachment was accompanied by a shift in the position of the subsidence away from the breakaway to a position focused further within the regional upper plate. Non-rotational, high angle, normal faulting dominates in the development of these late basin geometries. Deciphering similar rift basin histories from passive continental margins may, in many cases, exceed the limits of available reflection seismic data. East

  18. Contemporary limnological and sedimentary analyses to investigate anthropogenic changes in nutrient fluxes at Lake Baikal, Siberia

    Science.gov (United States)

    Roberts, S.; McGowan, S.; Swann, G. E. A.; Mackay, A. W.; Panizzo, V.; Vologina, E.

    2014-12-01

    Large tectonic freshwater lakes face serious threats to their water quality, biological diversity and endemism through pollution and global warming. Lake Baikal is an important example as anthropogenic stressors (industrial pollution and cultural eutrophication) along with climate change could greatly affect the lake's unique ecosystem and pristine water conditions. Phosphorus, nitrogen and silica are thought to control phytoplankton development, however recent changes in nutrient impacts on Lake Baikal's phytoplankton remains unproven. This research aims to investigate the effect of anthropogenic and environmentally-driven changes on this large and biodiverse lake through seasonal sampling of the phytoplankton community (determined by chlorophyll and carotenoid pigments), chemical parameters (total phosphorus, dissolved organic carbon, silicate, nitrate and other major ions) and vertical profiles of pH, temperature and photosynethetically active radiation. Results show seasonal, vertical and spatial variability in the lake's phytoplankton biomass and composition with higher summer mixed-layer pigment concentrations in the south basin resulting in higher light attenuation coefficients and lower photic zone depths (R2=0.86, p mixing layer, with the strongest negative correlation between picoplankton biomarkers and dissolved organic carbon concentrations (R2=-0.60, p < 0.05). Geochemical biomarkers (pigments and organic carbon [δ13Corganic]) from several sediment cores place these modern day observations within an historical context and allow the impact of past environmental changes on Lake Baikal's primary productivity over the last 60 years and natural climate-driven trends in past centuries to be assessed. These results show clear spatial and temporal changes between sites over this interval with greater increases in chlorophylls and their transformation products, along with biomarkers for diatoms, cryptophytes, green algae and cyanobacteria within the south and

  19. Hydrocarbon gases in Baikal bottom sediments: preliminary results of the Second international Class@Baikal cruise

    Science.gov (United States)

    Vidischeva, Olesya; Akhmanov, Grigorii; Khlystov, Oleg; Giliazetdinova, Dina

    2016-04-01

    In July 2015 the research cruise in the waters of Lake Baikal was carried out onboard RV "G.Yu. Vereshchagin". The expedition was organized by Lomonosov Moscow State University and Limnological Institute of Russian Academy of Sciences. The main purpose of the expedition was to study the modern sedimentation and natural geological processes on the bottom of Lake Baikal. One of the tasks of the cruise was to conduct gas-geochemical survey of bottom sediments. The samples of hydrocarbon gases were collected during the cruise. Subsequent study of the composition and origin of the sampled gas was carried out in the laboratories of Moscow State University. 708 samples from 61 bottom sampling stations were studied. Analyzed samples are from seven different areas located in the southern and central depressions of the lake: (1) "Goloustnoe" seepage area; (2) Bolshoy mud volcano; (3) Elovskiy Area; (4) "Krasny Yar" Seep; (5) "St. Petersburg" Seep; (6) Khuray deep-water depositional system; and (7) Kukuy Griva (Ridge) area. The results of molecular composition analysis indicate that hydrocarbon gases in bottom sediments from almost all sampling stations are represented mostly by pure methane. Ethane was detected only in some places within "Krasny Yar", "Goloustnoe" and "St. Petersburg" seepage areas. The highest concentrations of methane were registered in the sediments from the "Krasny Yar" area - 14 457 μl/l (station TTR-BL15-146G) - and from the "St. Petersburg" area - 13 684 μl/l (station TTR-BL15-125G). The sediments with high concentrations of gases were sampled from active fluid discharge areas, which also can be well distinguished on the seismic profiles. Gas hydrates were obtained in the areas of "Krasny Yar", "Goloustnoe", and "St. Petersburg" seeps and in the area of the Bolshoy mud volcano. Isotopic composition δ13C(CH4) was studied for 100 samples of hydrocarbon gases collected in areas with high methane concentration in bottom sediments. The average value is

  20. Elements of the iron and manganese cycles in Lake Baikal

    Science.gov (United States)

    Granina, L.Z.; Callender, E.

    2007-01-01

    Using data obtained in recent years, we considered the external mass balance and characteristics of internal iron and manganese cycles in Lake Baikal (biological uptake, remineralization, sedimentary and diffusive fluxes, accumulation in sediments, time of renewal, etc.). Some previous results and common concepts were critically reevaluated. ?? Pleiades Publishing, Ltd. 2007.

  1. Survey of the Sun in the Lake Baikal Neutrino Experiment

    CERN Document Server

    Dzhilkibaev, Zh -A

    2009-01-01

    Upward through-going muons in the Lake Baikal Neutrino Experiment arriving from the ecliptic plane have been analyzed using NT200 data samples of the years 1998-2002 (1007 live days). We derive upper limits on muon fluxes from annihilation processes of hypothetical WIMP dark matter particles in the center of the Sun.

  2. Canine distemper virus in Lake Baikal seals (Phoca sibirica).

    NARCIS (Netherlands)

    L.V. Mamaev; I.K.G. Visser (Ilona); S.I. Belikov; N.N. Denikina; T.C. Harder (Timm); L. Goatley; B. Rima; B. Edginton; A.D.M.E. Osterhaus (Albert); T. Barrett (Thomas)

    1996-01-01

    textabstractThe virus epizootic which resulted in significant mortality in Siberian seals (Phoca sibirica) in Lake Baikal during 1987/88 was caused by canine distemper virus. Sequence analysis of the virus glycoprotein genes revealed that it was most closely related to recent European field isolates

  3. Rift Valley Fever Virus

    Science.gov (United States)

    Rift Valley fever virus (RVFV) is a mosquito-transmitted virus or arbovirus that is endemic in sub-Saharan Africa. In the last decade, Rift Valley fever (RVF) outbreaks have resulted in loss of human and animal life, as well as had significant economic impact. The disease in livestock is primarily a...

  4. Hydrocarbon habitat in rifted basins

    Energy Technology Data Exchange (ETDEWEB)

    Ziegler, P.A. [Basel Univ. (Switzerland)

    1996-12-01

    Tectonically active rifts, palaeo-rifts and passive margin basins contain major hydrocarbon provinces. Their hydrocarbon charge can rely exclusively on pre-rift, syn-rift sedimentary sequences or a combination thereof. Maturation of source-rocks can be achieved during the syn-and/or post-rift stage of basin evolution. During rifting, conductive and convective heat transfer accounts for elevated geothermal gradients; these play an important role in the maturation of pre- and syn-rift source-rocks; as geothermal gradients decrease asymptotically during the post-rift stage, maturation of late syn- and post-rift source-rocks depends on massif overburden thicknesses. In most rift structuration and trap-formation predate or are contemporaneous with peak oil and gas generation. Post-rift subsidence and stress-induced basin tilting or inversion can cause modification of trap configurations, causing loss of hydrocarbons. (author). 58 refs., 1 fig., 1 tab.

  5. Seismic structure of the Central US crust and shallow upper mantle: Uniqueness of the Reelfoot Rift

    Science.gov (United States)

    Pollitz, Fred F.; Mooney, Walter D.

    2014-09-01

    Using seismic surface waves recorded with Earthscope's Transportable Array, we apply surface wave imaging to determine 3D seismic velocity in the crust and uppermost mantle. Our images span several Proterozoic and early Cambrian rift zones (Mid-Continent Rift, Rough Creek Graben-Rome trough, Birmingham trough, Southern Oklahoma Aulacogen, and Reelfoot Rift). While ancient rifts are generally associated with low crustal velocity because of the presence of thick sedimentary sequences, the Reelfoot Rift is unique in its association with low mantle seismic velocity. Its mantle low-velocity zone (LVZ) is exceptionally pronounced and extends down to at least 200 km depth. This LVZ is of variable width, being relatively narrow (∼50 km wide) within the northern Reelfoot Rift, which hosts the New Madrid Seismic Zone (NMSZ). We hypothesize that this mantle volume is weaker than its surroundings and that the Reelfoot Rift consequently has relatively low elastic plate thickness, which would tend to concentrate tectonic stress within this zone. No other intraplate ancient rift zone is known to be associated with such a deep mantle low-velocity anomaly, which suggests that the NMSZ is more susceptible to external stress perturbations than other ancient rift zones.

  6. Kinematics of the South Atlantic rift

    Directory of Open Access Journals (Sweden)

    C. Heine

    2013-01-01

    Full Text Available The South Atlantic rift basin evolved as branch of a large Jurassic-Cretaceous intraplate rift zone between the African and South American plates during the final breakup of western Gondwana. While the relative motions between South America and Africa for post-breakup times are well resolved, many issues pertaining to the fit reconstruction and particular the relation between kinematics and lithosphere dynamics during pre-breakup remain unclear in currently published plate models. We have compiled and assimilated data from these intraplated rifts and constructed a revised plate kinematic model for the pre-breakup evolution of the South Atlantic. Based on structural restoration of the conjugate South Atlantic margins and intracontinental rift basins in Africa and South America, we achieve a tight fit reconstruction which eliminates the need for previously inferred large intracontinental shear zones, in particular in Patagonian South America. By quantitatively accounting for crustal deformation in the Central and West African rift zone, we have been able to indirectly construct the kinematic history of the pre-breakup evolution of the conjugate West African-Brazilian margins. Our model suggests a causal link between changes in extension direction and velocity during continental extension and the generation of marginal structures such as the enigmatic Pre-salt sag basin and the São Paulo High. We model an initial E–W directed extension between South America and Africa (fixed in present-day position at very low extensional velocities until Upper Hauterivian times (≈126 Ma when rift activity along in the equatorial Atlantic domain started to increase significantly. During this initial ≈17 Myr-long stretching episode the Pre-salt basin width on the conjugate Brazilian and West African margins is generated. An intermediate stage between 126.57 Ma and Base Aptian is characterised by strain localisation, rapid lithospheric weakening in the

  7. Lake-catchment systems and sediment information in Baikal district (Siberia and Mongolia)

    Institute of Scientific and Technical Information of China (English)

    KASHIWAYA Kenji

    2011-01-01

    Sediment information is closely related to a lake-catchment system. Lake Baikal and Lake Khuvsgul in the Baikal depression have shown different sedimentary trends during the past 800 ka; the sediment discharge (sedimentation rate) in Baikal basically followed the global climatic change, whereas that in Khuvsgul did not always do so. An elementary mathematical model is used to explain the difference, considering changes in the catchment area and water level. Numerical calculations based on the model suggest that sedimentary conditions are closely related to changes in the water level and erosion area, which probably had a signiifcant inlfuence on Lake Khuvsgul and little inlfuence on Lake Baikal.

  8. Kinematics of the South Atlantic rift

    CERN Document Server

    Heine, Christian; Müller, R Dietmar

    2013-01-01

    The South Atlantic rift basin evolved as branch of a large Jurassic-Cretaceous intraplate rift zone between the African and South American plates during the final breakup of western Gondwana. By quantitatively accounting for crustal deformation in the Central and West African rift zone, we indirectly construct the kinematic history of the pre-breakup evolution of the conjugate West African-Brazilian margins. Our model suggests a causal link between changes in extension direction and velocity during continental extension and the generation of marginal structures such as the enigmatic Pre-salt sag basin and the S\\~ao Paulo High. We model an initial E-W directed extension between South America and Africa (fixed in present-day position) at very low extensional velocities until Upper Hauterivian times ($\\approx$126 Ma) when rift activity along in the equatorial Atlantic domain started to increase significantly. During this initial $\\approx$17 Myr-long stretching episode the Pre-salt basin width on the conjugate Br...

  9. Organic matter degradation in Lake Baikal - a sediment trap study

    DEFF Research Database (Denmark)

    Schubert, Carsten J.; Niggemann, Jutta; Lomstein, Bente Aagaard;

    Lake Baikal offers a unique opportunity to study water column processes in a freshwater system with conditions similar to oceanic systems, e. g. great water depth and oxygenated water column. Investigations on sediment trap material provide information on the early stages of organic matter...... degradation in the water column. Sediment trap material from 18 different water depths has been analysed for bulk organic matter parameters, including organic carbon and nitrogen isotopic compositions, chlorin concentrations, and Chlorin Indices [1]. Detailed studies focused on the concentration and...... composition of amino acids and fatty acids. The extent of organic matter degradation in the water column of Lake Baikal is reflected in the fluxes of total organic carbon, chlorins, amino acids, and fatty acids at different water depths. In line with earlier studies in marine systems, the labile compounds...

  10. Crustal-scale recycling in caldera complexes and rift zones along the Yellowstone hotspot track: O and Hf isotopic evidence in diverse zircons from voluminous rhyolites of the Picabo volcanic field, Idaho

    Science.gov (United States)

    Drew, Dana L.; Bindeman, Ilya N.; Watts, Kathryn E.; Schmitt, Axel K.; Fu, Bin; McCurry, Michael

    2013-01-01

    followed by rapid batch assembly prior to eruption. However, due to the greater abundance of low-δ18O rhyolites at Picabo, the eruptive framework may reflect an intertwined history of caldera collapse and coeval Basin and Range rifting and hydrothermal alteration. We speculate that the source rocks with pre-existing low-δ18O alteration may be related to: (1) deeply buried and unexposed older deposits of Picabo-age or Twin Falls-age low-δ18O volcanics; and/or (2) regionally-abundant late Eocene Challis volcanics, which were hydrothermally altered near the surface prior to or during peak Picabo magmatism. Basin and Range extension, specifically the formation of metamorphic core complexes exposed in the region, could have facilitated the generation of low-δ18O magmas by exhuming heated rocks and creating the large water-rock ratios necessary for shallow hydrothermal alteration of tectonically (rift zones) and volcanically (calderas) buried volcanic rocks. These interpretations highlight the major processes by which supereruptive volumes of magma are generated in the SRP, mechanisms applicable to producing rhyolites worldwide that are facilitated by plume driven volcanism and extensional tectonics.

  11. Uranium anomalies in deep-water sediments of Lake Baikal

    International Nuclear Information System (INIS)

    On the base of data of the element analysis of the Lake Baikal water and deep-water sediments are investigated the causes of uranium anomalous content in terrigenous pelitic silts. It is established that the anomaly cause is uranium accumulation by silt diatom aches component due to its complexation with humic acids. An attempt is made to carry out the uranium material balance with account for uranium coming with river water and sedimentation with diatom aceous slits

  12. The Lake Baikal Neutrino Telescope NT-200: Status, results, future

    International Nuclear Information System (INIS)

    The Baikal Neutrino Telescope NT-200 has been put into operation on April 6th, 1998. We describe the parameters and structure of NT-200 and present results with various stages of the stepwise increasing detector: from NT-36 to NT-96. Results cover atmospheric muons, neutrino events, search for neutrino events from WIMPS annihilation, search for magnetic monopoles. We also give preliminary results of the combined operation of the underwater array and a Cherenkov EAS array, placed on the ice surface

  13. The Baikal Deep Underwater Neutrino Experiment Results, Status, Future

    CERN Document Server

    Spiering, C; Belolaptikov, I A; Bezrukov, L B; Budnev, N M; Chensky, A G; Danilchenko, I A; Djilkibaev, Z A M; Domogatsky, G V; Doroshenko, A A; Fialkovsky, S V; Gaponenko, O N; Garus, A A; Gress, T I; Klabukov, A M; Klimov, A I; Klimushin, S I; Koshechkin, A P; Kulepov, V F; Kuzmichev, L A; Lovtsov, S V; Lubsandorzhiev, B K; Milenin, M B; Mirgazov, R R; Moroz, A V; Moseiko, N I; Nikiforov, S A; Osipova, E A; Panfilov, A I; Parfenov, Yu V; Pavlov, A A; Petukhov, D P; Pokhil, P G; Pokolev, P A; Popova, E G; Rozanov, M I; Rubzov, V Yu; Sokalski, I A; Spiering, C; Streicher, O; Tarashansky, B A; Thon, T; Wischnewski, R; Yashin, I V; Spiering, Ch.

    1998-01-01

    We review the present status of the Baikal Underwater Neutrino Experiment and present results obtained with the various stages of the stepwise increasing detector: NT-36 (1993-95), NT-72 (1995-96) and NT-96 (1996-97). Results cover atmospheric muons, first clear neutrino events, search for neutrinos from WIMP annihilation in the center of the Earth, search for magnetic monopoles, and -- far from astroparticle physics -- limnology.

  14. The optical module of the Baikal deep underwater neutrino telescope

    OpenAIRE

    Bagduev, R. I.

    1999-01-01

    A deep underwater Cherenkov telescope has been operating since 1993 in stages of growing size at 1.1 km depth in Lake Baikal. The key component of the telescope is the Optical Module (OM) which houses the highly sensitive phototube QUASAR-370. We describe design and parameters of the QUASAR-370, the layout of the optical module, the front-end electronics and the calibration procedures, and present selected results from the five-year operation underwater. Also, future developments with respect...

  15. Lithospheric thinning beneath rifted regions of Southern California.

    Science.gov (United States)

    Lekic, Vedran; French, Scott W; Fischer, Karen M

    2011-11-11

    The stretching and break-up of tectonic plates by rifting control the evolution of continents and oceans, but the processes by which lithosphere deforms and accommodates strain during rifting remain enigmatic. Using scattering of teleseismic shear waves beneath rifted zones and adjacent areas in Southern California, we resolve the lithosphere-asthenosphere boundary and lithospheric thickness variations to directly constrain this deformation. Substantial and laterally abrupt lithospheric thinning beneath rifted regions suggests efficient strain localization. In the Salton Trough, either the mantle lithosphere has experienced more thinning than the crust, or large volumes of new lithosphere have been created. Lack of a systematic offset between surface and deep lithospheric deformation rules out simple shear along throughgoing unidirectional shallow-dipping shear zones, but is consistent with symmetric extension of the lithosphere. PMID:21979933

  16. BAIKAL experiment: Main results obtained with the neutrino telescope NT200.

    OpenAIRE

    Baikal Collaboration

    2006-01-01

    The Baikal Neutrino Telescope NT200 takes data since April 1998. On April 9th, 2005, the 10 Mton scale detector NT200$+$ was put into operation in Lake Baikal. Selected results obtained during 1998-2002 with the neutrino telescope NT200 are presented.

  17. Measurements of group velocity of light in the lake Baikal water

    CERN Document Server

    Lubsandorzhiev, B K; Vasilev, R V; Vyatchin, Y E

    2003-01-01

    The results of direct measurements of group velocity of light in the lake Baikal water at the depth of 1100 m are presented. The lake Baikal water dispersion has been measured at three wavelengths: 370 nm, 470 nm and 525 nm. The results are in a rather good agreement with theoretical predictions.

  18. Hierarchical segmentation of the Malawi Rift: The influence of inherited lithospheric heterogeneity and kinematics in the evolution of continental rifts

    Science.gov (United States)

    Laó-Dávila, Daniel A.; Al-Salmi, Haifa S.; Abdelsalam, Mohamed G.; Atekwana, Estella A.

    2015-12-01

    We used detailed analysis of Shuttle Radar Topography Mission-digital elevation model and observations from aeromagnetic data to examine the influence of inherited lithospheric heterogeneity and kinematics in the segmentation of largely amagmatic continental rifts. We focused on the Cenozoic Malawi Rift, which represents the southern extension of the Western Branch of the East African Rift System. This north trending rift traverses Precambrian and Paleozoic-Mesozoic structures of different orientations. We found that the rift can be hierarchically divided into first-order and second-order segments. In the first-order segmentation, we divided the rift into Northern, Central, and Southern sections. In its Northern Section, the rift follows Paleoproterozoic and Neoproterozoic terrains with structural grain that favored the localization of extension within well-developed border faults. The Central Section occurs within Mesoproterozoic-Neoproterozoic terrain with regional structures oblique to the rift extent. We propose that the lack of inherited lithospheric heterogeneity favoring extension localization resulted in the development of the rift in this section as a shallow graben with undeveloped border faults. In the Southern Section, Mesoproterozoic-Neoproterozoic rocks were reactivated and developed the border faults. In the second-order segmentation, only observed in the Northern Section, we divided the section into five segments that approximate four half-grabens/asymmetrical grabens with alternating polarities. The change of polarity coincides with flip-over full-grabens occurring within overlap zones associated with ~150 km long alternating border faults segments. The inherited lithospheric heterogeneity played the major role in facilitating the segmentation of the Malawi Rift during its opening resulting from extension.

  19. The Baikal underwater neutrino telescope design, performance and first results

    CERN Document Server

    Belolaptikov, I A; Borisovets, B A; Budnev, N M; Bugaev, E V; Chensky, A G; Danilchenko, I A; Djilkibaev, J A M; Dobrynin, V I; Domogatsky, G V; Donskych, L A; Doroshenko, A A; Dudkin, G N; Egorov, V Yu; Fialkovsky, S V; Garus, A A; Gaponenko, A N; Golikov, A V; Gress, O A; Gress, T A; Gushtan, M N; Heller, R; Kabikov, V B; Heukenkamp, H; Karle, A; Klabukov, A M; Klimov, A I; Klimushin, S I; Koshechkin, A P; Krabi, J; Kulepov, V F; Kuzmichov, L A; Lanin, O Yu; Lopin, A L; Lubsandorzhiev, B K; Milenin, M B; Mikolajski, T; Mirgazov, R R; Moroz, A V; Moseiko, N I; Nemchenko, M N; Nikiforov, S A; Ogievetsky, N V; Osipova, E A; Padusenko, A H; Panfilov, A I; Parfenov, Yu V; Pavlov, A A; Petukhov, D P; Pocheikin, K A; Pokhil, P G; Pokolev, P A; Rosanov, M I; Rubzov, V Yu; Rzhetshizki, A V; Sinegovsky, S I; Sokalski, I A; Spiering, C; Streicher, O; Sumanov, A A; Tanko, L; Thon, T; Tarashansky, V A; Trofimenko, I I; Wiebusch, C; Wischnewski, R; Zurbanov, V L

    1997-01-01

    The deep underwater Cherenkov neutrino telescope NT-200 is currently under construction at Lake Baikal. The "subdetectors" NT-36 (1993-95) and NT-72 (1995-96) have been operating successfully over 3 years. Various techniques have been developed to search for magnetic monopoles with these arrays. Here we describe a method used to detect superheavy slowly moving (beta = v/c = 0.00001 - 0.001) monopoles catalyzing baryon decay. We present results obtained from the preliminary analysis of the data taken with NT-36 detector in 1993. Furthermore, possibilities to observe faster (beta = 0.2 - 1) monopoles via other effects are discussed.

  20. Track reconstruction and background rejection in the BAIKAL neutrino telescope

    Energy Technology Data Exchange (ETDEWEB)

    Belolaptikov, I.A. [Joint Inst. for Nuclear Research, Dubna (Russian Federation); Djilkibaev, J.A.M. [Russian Academy of Sciences, Moscow (Russian Federation). Inst. of Nuclear Research (INR); Klimushin, S.I. [Russian Academy of Sciences, Moscow (Russian Federation). Inst. of Nuclear Research (INR); Krabi, J. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). Inst. fuer Hochenergiephysik; Lanin, O.Yu. [Russian Academy of Sciences, Moscow (Russian Federation). Inst. of Nuclear Research (INR); Hasselmann, N. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). Inst. fuer Hochenergiephysik; Osipova, E.A. [Moskovskij Gosudarstvennyj Univ., Moscow (Russian Federation); Pavlov, A.A. [Irkutskij Gosudarstvennyj Univ., Irkutsk (Russian Federation); Spiering, C. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). Inst. fuer Hochenergiephysik; Wischnewski, R. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). Inst. fuer Hochenergiephysik; BAIKAL Collaboration

    1994-03-01

    We describe procedures for reconstructing muon tracks in the BAIKAL Neutrino Telescope, including filtering out badly reconstructed events. Special attention is paid to rejecting those downward going muons which fake upward going muons from neutrino interactions. It is shown that a suppression factor of 10{sup 6} - necessary to operate an underwater neutrino telescope at 1100 m depth - can be achieved with an array consisting of 200 photomultipliers. We present first results from NT-36, an array of 36 PMTs deployed in April 1993. We observe satisfactory agreement between Monte Carlo results and experimental data, providing confidence that our simultions of the full detector are indeed realistic. (orig.)

  1. Track reconstruction and background rejection in the BAIKAL neutrino telescope

    International Nuclear Information System (INIS)

    We describe procedures for reconstructing muon tracks in the BAIKAL Neutrino Telescope, including filtering out badly reconstructed events. Special attention is paid to rejecting those downward going muons which fake upward going muons from neutrino interactions. It is shown that a suppression factor of 106 - necessary to operate an underwater neutrino telescope at 1100 m depth - can be achieved with an array consisting of 200 photomultipliers. We present first results from NT-36, an array of 36 PMTs deployed in April 1993. We observe satisfactory agreement between Monte Carlo results and experimental data, providing confidence that our simultions of the full detector are indeed realistic. (orig.)

  2. The optical module of the Baikal Deep underwater neutrino telescope

    CERN Document Server

    Bagduev, R I; Belolaptikov, I A; Bezrukov, L B; Budnev, N M; Borisovets, B A; Domogatsky, G V; Donskych, L A; Doroshenko, A A; Garus, A A; Golikov, A V; Gluchovskoj, B M; Heller, R; Kabikov, V B; Khripunova, M P; Klabukov, A M; Klimushin, S I; Koshechkin, A P; Kuzmichov, L A; Lisovski, G V; Lubsandorzhiev, B K; Mikolajski, T; Osipova, E A; Pokhil, P G; Pokolev, P A; Putilov, P A; Spiering, C; Stepanenko, Z I; Streicher, O; Thon, T; Vorobev, A A; Wischnewski, R

    1999-01-01

    A deep underwater Cherenkov telescope has been operating since 1993 in stages of growing size at 1.1 km depth in Lake Baikal. The key component of the telescope is the Optical Module (OM) which houses the highly sensitive phototube QUASAR-370. We describe design and parameters of the QUASAR-370, the layout of the optical module, the front-end electronics and the calibration procedures, and present selected results from the five-year operation underwater. Also, future developments with respect to a telescope consisting from several thousand OMs are discussed.

  3. North America's Midcontinent Rift: when Rift MET Lip

    Science.gov (United States)

    Stein, C. A.; Stein, S. A.; Kley, J.; Keller, G. R., Jr.; Bollmann, T. A.; Wolin, E.; Zhang, H.; Frederiksen, A. W.; Ola, K.; Wysession, M. E.; Wiens, D.; Alequabi, G.; Waite, G. P.; Blavascunas, E.; Engelmann, C. A.; Flesch, L. M.; Rooney, T. O.; Moucha, R.; Brown, E.

    2015-12-01

    Rifts are segmented linear depressions, filled with sedimentary and igneous rocks, that form by extension and often evolve into plate boundaries. Flood basalts, a class of Large Igneous Provinces (LIPs), are broad regions of extensive volcanism due to sublithospheric processes. Typical rifts are not filled with flood basalts, and typical flood basalts are not associated with significant crustal extension and faulting. North America's Midcontinent Rift (MCR) is an unusual combination. Its 3000-km length formed as part of the 1.1 Ga rifting of Amazonia (Precambrian NE South America) from Laurentia (Precambrian North America) and became inactive once seafloor spreading was established, but contains an enormous volume of igneous rocks. MCR volcanics are significantly thicker than other flood basalts, due to deposition in a narrow rift rather than a broad region, giving a rift geometry but a LIP's magma volume. Structural modeling of seismic reflection data shows an initial rift phase where flood basalts filled a fault-controlled extending basin, and a postrift phase where volcanics and sediments were deposited in a thermally subsiding basin without associated faulting. The crust thinned during rifting and rethickened during the postrift phase and later compression, yielding the present thicker crust. The coincidence of a rift and LIP yielded the world's largest deposit of native copper. This combination arose when a new rift associated with continental breakup interacted with a mantle plume or anomalously hot or fertile upper mantle. Integration of diverse data types and models will give insight into questions including how the magma source was related to the rifting, how their interaction operated over a long period of rapid plate motion, why the lithospheric mantle below the MCR differs only slightly from its surroundings, how and why extension, volcanism, and compression varied along the rift arms, and how successful seafloor spreading ended the rift phase. Papers

  4. Geophysical evidence of pre-sag rifting and post-rifting fault reactivation in the Parnaíba basin, Brazil

    Science.gov (United States)

    Lopes de Castro, David; Hilário Bezerra, Francisco; Adolfo Fuck, Reinhardt; Vidotti, Roberta Mary

    2016-04-01

    This study investigated the rifting mechanism that preceded the prolonged subsidence of the Paleozoic Parnaíba basin in Brazil and shed light on the tectonic evolution of this large cratonic basin in the South American platform. From the analysis of aeromagnetic, aerogravity, seismic reflection and borehole data, we concluded the following: (1) large pseudo-gravity and gravity lows mimic graben structures but are associated with linear supracrustal strips in the basement. (2) Seismic data indicate that 120-200 km wide and up to 300 km long rift zones occur in other parts of the basins. These rift zones mark the early stage of the 3.5 km thick sag basin. (3) The rifting phase occurred in the early Paleozoic and had a subsidence rate of 47 m Myr-1. (4) This rifting phase was followed by a long period of sag basin subsidence at a rate of 9.5 m Myr-1 between the Silurian and the late Cretaceous, during which rift faults propagated and influenced deposition. These data interpretations support the following succession of events: (1) after the Brasiliano orogeny (740-580 Ma), brittle reactivation of ductile basement shear zones led to normal and dextral oblique-slip faulting concentrated along the Transbrasiliano Lineament, a continental-scale shear zone that marks the boundary between basement crustal blocks. (2) The post-orogenic tectonic brittle reactivation of the ductile basement shear zones led to normal faulting associated with dextral oblique-slip crustal extension. In the west, pure-shear extension induced the formation of rift zones that crosscut metamorphic foliations and shear zones within the Parnaíba block. (3) The rift faults experienced multiple reactivation phases. (4) Similar processes may have occurred in coeval basins in the Laurentia and Central African blocks of Gondwana.

  5. An interesting natural phenomenon - giant rings on Lake Baikal ice

    Science.gov (United States)

    Kouraev, Alexei; Shimaraev, Michail; Remy, Frederique; Ivanov, Andrei; Golubov, Boris

    2010-05-01

    Starting from May 2009 scientific community and large public have been puzzled by the formation of giant rings on Baikal ice. These rings (diameter 5-7 km, thickness of dark layer - 1 - 1.8 km) have almost perfect circular shape what makes them so interesting and attractive not only to scientists, but also for large public. . The rings have been observed since 1999 by various satellites and sensors (AVHRR, MODIS, Landsat, SPOT) as early as 1999 but probably also in 1984 and 1994 (Shuttle missions). These rings are usually well observed in April, when snow cover is thin or absent. Rings have been observed in the southern tip of the lake (2009), and in three places in the central part: near Krestovskiy cape (1999, 2003, 2005 and 2008), near Turka (2008), and near Cape Nizhnee Izgolovye (2009). All these places are located in the region of steep bottom topography, over depths of more than 500 m. According to in situ measurements done by the Limnological Institute in Irkutsk in 2009, ice thickness is about 70 cm in the center and on the outside of the ring, and 40 cm in the ring itself. It is known that the Baikal lake has important hydrothermal activity, and there are numerous observations of gas (methane etc) seepage from its 7 km-thick layer of bottom sediments. Local-scale absence of ice cover (steamthroughs or "propariny") is typical for some places in Lake Baikal. They result from gas emissions (associated with rise of warm water), near capes and straits (due to better vertical mixing), thermal sources, outlets of large rivers. Often they are observed near Capes Big and Small Kadil'niy, and in the Olkhonskiye vorota strait. However they size ranges from just a half a meter to several hundreds of meters (but not several kilometers) and this could not be an explanation for the formation of giant rings. We present several existing hypotheses of the origin of these rings including gas emission, heat flux, cyclonic subsurface currents and mega-bubble formation due to

  6. An integrated geophysical study of the northern Kenya rift

    Science.gov (United States)

    Mariita, Nicolas O.; Keller, G. Randy

    2007-06-01

    The Kenyan part of the East African rift is among the most studied rift zones in the world. It is characterized by: (1) a classic rift valley, (2) sheer escarpments along the faulted borders of the rift valley, (3) voluminous volcanics that flowed from faults and fissures along the rift, and (4) axial and flank volcanoes where magma flow was most intense. In northern Kenya, the rift faults formed in an area where the lithosphere was weakened and stretched by Cretaceous-Paleogene extension, and in central and southern Kenya, it formed along old zones of weakness at the contact between the Archean Tanzania craton and the Proterozoic Mozambique orogenic belt. Recent geophysical investigations focused on the tectonic evolution of the East African rift and on exploration for geothermal energy in the southern portion of the Kenyan rift provide considerable information and insight on the structure and evolution of the lithosphere. In the north, a variety of other data exist. However, the lack of an integrated regional analysis of these data was the motivation for this study. Our study began with the collection and compilation of gravity data, and then we used the seismic refraction results from the Kenya Rift International Seismic Project (KRISP), published seismic reflection data, aeromagnetic data, and geologic and drilling data as constraints in the construction of integrated gravity models. These models and gravity anomaly maps provide insight on spatial variations in crustal thickness and upper mantle structure. In addition, they show the distribution of basins and help characterize the distribution of magmatism along the axis of the northern sector of the rift. Our main observations are the following: (1) the region of thinning and anomalous mantle widens northward in agreement with previous studies showing that the crust thins from about 35 km in the south to 20 km in the north; (2) as observed in the south, gravity highs observed along the axis are due to mafic

  7. Varying styles of magmatic strain accommodation across the East African Rift

    Science.gov (United States)

    Muirhead, James D.; Kattenhorn, Simon A.; Le Corvec, Nicolas

    2015-09-01

    Observations of active dike intrusions provide present day snapshots of the magmatic contribution to continental rifting. However, unravelling the contributions of upper crustal dikes over the timescale of continental rift evolution is a significant challenge. To address this issue, we analyzed the morphologies and alignments of >1500 volcanic cones to infer the distribution and trends of upper crustal dikes in various rift basins across the East African Rift (EAR). Cone lineament data reveal along-axis variations in the distribution and geometries of dike intrusions as a result of changing tectonomagmatic conditions. In younger (segments, referred to here as transfer zones. Cone lineament trends are highly variable, resulting from the interplay between (1) the regional stress field, (2) local magma-induced stress fields, and (3) stress rotations related to mechanical interactions between rift segments. We find similar cone lineament trends in transfer zones in the western branch of the EAR, such as the Virunga Province, Democratic Republic of the Congo. The distributions and orientations of upper crustal dikes in the eastern branch of the EAR vary during continental rift evolution. In early-stage rifts (10 Ma) in Ethiopia and the Kenya Rift, rift-parallel dikes accommodate upper crustal extension along the full length of the basin.

  8. Dike intrusions during rifting episodes obey scaling relationships similar to earthquakes.

    Science.gov (United States)

    Passarelli, L; Rivalta, E; Shuler, A

    2014-01-01

    As continental rifts evolve towards mid-ocean ridges, strain is accommodated by repeated episodes of faulting and magmatism. Discrete rifting episodes have been observed along two subaerial divergent plate boundaries, the Krafla segment of the Northern Volcanic Rift Zone in Iceland and the Manda-Hararo segment of the Red Sea Rift in Ethiopia. In both cases, the initial and largest dike intrusion was followed by a series of smaller intrusions. By performing a statistical analysis of these rifting episodes, we demonstrate that dike intrusions obey scaling relationships similar to earthquakes. We find that the dimensions of dike intrusions obey a power law analogous to the Gutenberg-Richter relation, and the long-term release of geodetic moment is governed by a relationship consistent with the Omori law. Due to the effects of magma supply, the timing of secondary dike intrusions differs from that of the aftershocks. This work provides evidence of self-similarity in the rifting process. PMID:24469260

  9. The role of inherited crustal structures and magmatism in the development of rift segments: Insights from the Kivu basin, western branch of the East African Rift

    Science.gov (United States)

    Smets, Benoît; Delvaux, Damien; Ross, Kelly Ann; Poppe, Sam; Kervyn, Matthieu; d'Oreye, Nicolas; Kervyn, François

    2016-06-01

    The study of rift basin's morphology can provide good insights into geological features influencing the development of rift valleys and the distribution of volcanism. The Kivu rift segment represents the central section of the western branch of the East African Rift and displays morphological characteristics contrasting with other rift segments. Differences and contradictions between several structural maps of the Kivu rift make it difficult to interpret the local geodynamic setting. In the present work, we use topographic and bathymetric data to map active fault networks and study the geomorphology of the Kivu basin. This relief-based fault lineament mapping appears as a good complement for field mapping or mapping using seismic reflection profiles. Results suggest that rifting reactivated NE-SW oriented structures probably related to the Precambrian basement, creating transfer zones and influencing the location and distribution of volcanism. Both volcanic provinces, north and south of the Kivu basin, extend into Lake Kivu and are connected to each other with a series of eruptive vents along the western rift escarpment. The complex morphology of this rift basin, characterized by a double synthetic half-graben structure, might result from the combined action of normal faulting, magmatic underplating, volcanism and erosion processes.

  10. What is controlling shallow active methane seeps in Lake Baikal? Posolsky Bank case-study

    OpenAIRE

    L. Naudts; Granin, N.; Khlystov, O.; Chensky, A.G.; J. Poort; De Batist, M.

    2008-01-01

    Active methane seeps and gas hydrates occur worldwide in the marine environment especially at continental margins. Lake Baikal represents a unique case to study active methane seeps and gas hydrates in an active tectonic, lacustrine setting. In this study we present and explain the distribution of several shallow active methane seeps located on the Posolsky Bank, a major tilted fault block in the central part of Lake Baikal.Active methane seeps were detected with a single-beam echosounder, wh...

  11. Acoustic search for high-energy neutrinos in Lake Baikal: status and perspectives

    CERN Document Server

    Aynutdinov, V; Balkanov, V; Belolaptikov, I; Bogorodsky, D; Budnev, N; Danilchenk, I; Domogatsky, G; Doroshenko, A; Dyachok, A; Dzhilkibaev, Zh -A; Fialkovskyk, S; Gaponenko, O; Golubkov, K; Gress, O; Gress, T; Grishin, O; Klabukov, A; Klimov, A; Kochanov, A; Konischev, K; Koshechkin, A; Kulepovk, V; Kuleshov, D; Kuzmichev, L; Lyashuk, V; Middell, E; Mikheyev, S; Milenink, M; Mirgazov, R; Osipova, E; Pan'kov, G; Pan'kov, L; Panfilov, A; Petukhov, D; Pliskovsky, E; Pokhil, P; Poleschuk, V; Popova, E; Prosin, V; Rozanov, M; Rubtzov, V; Sheifler, A; Suvorova, O; Shirokov, A; Shoibonov, B; Spiering, Ch; Tarashansky, B; Wischnewski, R; Yashin, I; Zhukov, V

    2009-01-01

    We report theoretical and experimental results of on-going feasibility studies to detect cosmic neutrinos acoustically in Lake Baikal. In order to examine ambient noise conditions and to develop respective pulse detection techniques a prototype device was created. The device is operating at a depth of 150 m at the site of the Baikal Neutrino Telescope and is capable to detect and classify acoustic signals with different shapes, as well as signals from neutrino-induced showers.

  12. Composition of Humic Acids of the Lake Baikal Sediments

    Science.gov (United States)

    Vishnyakova, O.; Chimitdorzhieva, G.; Andreeva, D.

    2012-04-01

    Humic substances are the final stage of the biogeochemical transformation of organic matter in the biosphere. Its natural compounds are found not only in soil, peat, coal, and sediments of basins. Chemical composition and properties of humic substances are determined by the functioning of the ecosystem as a whole. Therefore the study of the unique Lake Baikal sediments can provide information about their genesis, as well as the processes of organic matter transformation. For this purpose, preparations of humic acids (HA) were isolated by alkaline extraction method. The composition of HA was investigated by the elemental analyzer CHNS/O PerkinElmer Series II. Various located sediments of the Lake Baikal were the objects of the study: 1 - Chivyrkuisky Bay, 2 - Kotovo Bay, 3 - Selenga river delta near Dubinino village, 4 - Selenga river delta near Murzino village. Data on the elemental composition of HA in terms of ash-free portion show that the carbon content (CC) is of 50-53% with a maximum value in a sample 3, and minimum - in a sample 2. Such values are characteristic also for the soils with low biochemical activity. The hydrogen content is of 4,2-5,3%, a maximum value is in a sample 1. Data recalculation to the atomic percentages identified following regularities. The CC of HA is of 35-39 at. %. Hydrogen content is of 37-43 at. %. According to the content of these elements investigated substances are clearly divided into two groups: HA of the sediments of the Lake Baikal and river Selenga delta. The magnitude of the atomic ratio H/C can be seen varying degrees of condensation of the molecules of humic acids. The high atomic ratio H/C in HA of the former group indicates the predominance of aliphatic structures in the molecules. Humic acids of the later group are characterized by a low value H/C (acids such as cystine, cysteine, methionine, which is reflected in the composition of HA. Oxygen content is about 33,8-39,1% (17-22 at. %). Data analysis of the elemental

  13. Quaternary terrestrial climatic response to orbital forcing printed in Lake Baikal sediment

    Institute of Scientific and Technical Information of China (English)

    OCHIAI Shinya; KASHIWAYA Kenji

    2011-01-01

    The long sediment core BDP98 obtained from Lake Baikal was analyzed in order to discuss the periodicity of glacial cycles in the terrestrial climatic record of the past 2.6 Ma. Spectral analysis shows that the Baikal grain size record has been dominated by orbit-related cycles with periods of about 100 ka, 41 ka, and 23 ka, similar to those in the marine isotope record. However, there are some notable differences between the Baikal and oceanic records. In the marine isotope record, the 41 ka cycle was dominant before 1 Ma and the 100 ka cycle became signiifcant only afterward. Conversely, in the Baikal record, the 100 ka period has appeared continuously throughout the past 2.6 Ma, and no appreciable shift in period is detected. These results suggest that the terrestrial climatic response to orbital forcing, as imprinted in the Baikal sediment, is different from the oceanic response. The 100 ka cycle detected in the Baikal record from before 1 Ma may be attributable to relatively long interglacials with skipping of two or three 41 ka obliquity cycles. This result may support the hypothesis that the 100 ka cycle is paced by the obliquity cycle.

  14. The South China sea margins: Implications for rifting contrasts

    Science.gov (United States)

    Hayes, D.E.; Nissen, S.S.

    2005-01-01

    Implications regarding spatially complex continental rifting, crustal extension, and the subsequent evolution to seafloor spreading are re-examined for the northern and southern-rifted margins of the South China Sea. Previous seismic studies have shown dramatic differences in the present-day crustal thicknesses as the manifestations of the strain experienced during the rifting of the margin of south China. Although the total crustal extension is presumed to be the same along the margin and adjacent ocean basin, the amount of continental crustal extension that occurred is much less along the east and central segments of the margin than along the western segment. This difference was accommodated by the early formation of oceanic crust (creating the present-day South China Sea basin) adjacent to the eastern margin segment while continued extension of continental crust was sustained to the west. Using the observed cross-sectional areas of extended continental crust derived from deep penetration seismics, two end-member models of varying rift zone widths and varying initial crustal thicknesses are qualitatively examined for three transects. Each model implies a time difference in the initiation of seafloor spreading inferred for different segments along the margin. The two models examined predict that the oceanic crust of the South China Sea basin toward the west did not begin forming until sometime between 6-12 my after its initial formation (???32 Ma) toward the east. These results are compatible with crustal age interpretations of marine magnetic anomalies. Assuming rifting symmetry with conjugate margin segments now residing along the southern portions of the South China Sea basin implies that the total width of the zone of rifting in the west was greater than in the east by about a factor of two. We suggest the most likely causes of the rifting differences were east-west variations in the rheology of the pre-rift crust and associated east-west variations in the

  15. How oblique extension and structural inheritance control rift segment linkage: Insights from 4D analogue models

    Science.gov (United States)

    Zwaan, Frank; Schreurs, Guido

    2016-04-01

    INTRODUCTION During the early stages of rifting, rift segments may form along non-continuous and/or offset pre-existing weaknesses. It is important to understand how these initial rift segments interact and connect to form a continuous rift system. A previous study of ours (Zwaan et al., in prep) investigated the influence of dextral oblique extension and rift offset on rift interaction. Here we elaborate upon our previous work by using analogue models to assess the added effects of 1) sinistral oblique extension as observed along the East African Rift and 2) the geometry of linked and non-linked inherited structures. METHODS Our set-up involves a base of foam and plexiglass that forces distributed extension in the overlying model materials: a sand layer for the brittle upper crust and a viscous sand/silicone mixture for ductile lower crust. A mobile base plate allows lateral motion for oblique extension. We create inherited structures, along which rift segments develop, with right-stepping offset lines of silicone (seeds) on top of the basal viscous layer. These seeds can be connected by an additional weak seed that represents a secondary inherited structural grain (model series 1) or disconnected and laterally discontinuous (over/underlap, model series 2). Selected models are run in an X-ray computer topographer (CT) to reveal the 3D evolution of internal structures with time that can be quantified with particle image velocitmetry (PIV) techniques. RESULTS Models in both series show that rift segments initially form along the main seeds and then generally propagate approximately perpendicular to the extension direction: with orthogonal extension they propagate in a parallel fashion, dextral oblique extension causes them to grow towards each other and connect, while with sinistral oblique extension they grow away from each other. However, sinistral oblique extension can also promote rift linkage through an oblique- or strike-slip zone oriented almost parallel to

  16. Evolutionary model of the oblique rift basins- Central African Rifts

    Science.gov (United States)

    Yang, Kenn-Ming; Cheng, I.-Wen; Wu, Jong-Chang

    2016-04-01

    The geometry of oblique-rifting basin is strongly related with the angle (α) between the trend of rift and that of regional major extensional stress. The main purpose of this study is to investigate characteristics of geometry and kinematics of structure and tectono-stratigraphy during basin evolution of Central African Rifts (CAS). In this study, we simulated the formation of oblique-rifting basin with Particle Flow Code 3-Dimensions-(PFC 3D) and compared the simulation results with the tectonic settings of a series of basin in CAS. CAS started to develop in Early Cretaceous (130Ma) and lasted until the Late Cretaceous (85Ma-80Ma). The following collision between the African and Eurasian plates imposed compressional stress on CAS and folded the strata in the rift basins. Although the characteristics of rift basin formation remain controversial, palinspastic sections constructed in this study show that, in the Early Cretaceous, the rift basins are mainly characterized by normal faults and half-grabens. In the Late Cretaceous, the morphology of the rift basins was altered by large-scaled tectonic compression with the active Borogop Fault of regional scale. Also, en echelon trend of normal faults in the basins were measured and the angles between the trend with that of the rift axes of each basin were demonstrated, indicating that the development of CAS was affected by the regional extensional stress with a dextral component during the rifting process and, therefore, the rift basins were formed by oblique-rifting. In this study, we simulated the oblique-rifting basin model of various α with Particle Flow Code 3-Dimensions-(PFC 3D). The main theory of PFC 3D is based on the Discrete Element Method (DEM), in which parameters are applied to every particle in the models. We applied forces acting on both sides of rift axis, which α are 45°, 60°, 75° and 90° respectively, to simulate basin formation under oblique-rifting process. The study results of simulation

  17. Recent geodynamics and evolution of the Moma rift, Northeast Asia.

    Science.gov (United States)

    Imaev, V. S.; Imaeva, L. P.; Kozmin, B. M.; Fujita, K. S.; Mackey, K. G.

    2009-04-01

    springs with temperatures up to +20°C are found within the Moma and Selnnyakh basins proper.The crustal inhomogeneity is also reflected in the upper mantle as indicated by a 40° rotation of the Rayleigh wave polarization angle from teleseisms recorded at Tiksi that cross the Moma rift system as opposed to those that do not. Cenozoic volcanism, chemically similar to basalts and rhyolites from rift zones elsewhere is found in the Moma rift proper. Balagan-Tas is a basaltic cinder cone which has been dated at 286,000 years based on Ar-Ar dating, while Uraga-Khaya is an undated, presumed Quaternary, rhyolitic dome. All these factors indicate that the Moma rift system originated as a continental rift, probably as an extension of the Arctic (Gakkel) Mid-Ocean Ridge. At the present, however, compressional conditions prevail within the Moma rift zone. Seismicity is generally absent from the rift basins proper or their margins; most seismicity is concentrated to the southwest of the Moma rift basins along major strike-slip fault systems. Focal mechanisms of the largest earthquakes in the Chersky Range also all show transpression. Field mapping indicates that the majority of the faults mapped in the field are strike-slip, thrust and reverse faults (86%) with only a small number of normal faults (14%) and that the Cenozoic deposits within the Moma rift are intensely folded. Re-leveling surveys conducted along the Indigirka River, which cuts across the Moma rift system, reveal a moderate rate of presnt-day vertical uplift (up to +4 mm/yr). Thus, the Moma rift system is no longer acting as a rift, but is undergoing transpression. This conclusion is also supported by recent plate motion calculations based on GPS and VLBI data, as well as slip-vectors of earthquakes, which indicates that the Euler pole between North America and Eurasia is located around 68-70°N, near the coast of the Laptev Sea. This places the Moma rift system in a zone of convergence between North America and

  18. Complex seismicity patterns in the Rwenzori region: insights to rifting processes at the Albertine Rift.

    Science.gov (United States)

    Lindenfeld, M.; Rümpker, G.; Wölbern, I.; Batte, A. G.; Schumann, A.

    2012-04-01

    Numerous seismological studies in East Africa have focused on the northern and eastern branches of the East African Rift System (EARS). However, the seismic activity along the western branch is much more pronounced. Here, the Rwenzori Mountains are located within the Albertine rift valley, at the border between Uganda and D.R. Congo. During a seismic monitoring campaign between February 2006 and September 2007 we have recorded more than 800 earthquakes per month in the Rwenzori area. The earthquake distribution is highly heterogeneous. The majority of located events lie within faults zones to the East and West of the Rwenzoris with the highest seismic activity observed in the northeastern area, were the mountains are in contact with the rift shoulders. The hypocentral depth distribution peaks at 16 km depth and extends down to the Moho which was found at 20 - 32 km depths by teleseismic receiver functions. Local magnitudes range from -0.5 to 5.1 with a b-value of 1.1. Fault plane solutions of 304 events were derived from P-polarities and SV/P amplitude ratios. More than 70% of the source mechanisms exhibit normal faulting. T-axis trends are highly uniform and oriented WNW-ESE, which is perpendicular to the rift axis and in good agreement with kinematic rift models. The area of highest seismic activity NE of the Rwenzoris is characterized by the occurrence of several earthquake clusters in 5 -20 km depth. They have stable positions throughout time and form elongated pipes with 1-2 km diameter and vertical extensions of 3-5 km. From petrological considerations we presume that these earthquake swarms are triggered by fluids and gasses which originate from a magmatic source below the crust. The existence of a magmatic source within the lithosphere is supported by the detection of a shear-wave velocity reduction in 55-80 km depth from receiver-function analysis and the location of mantle earthquakes at about 60 km. We interpret these observations as indication for an

  19. ALVIN-SeaBeam studies of the Sumisu Rift, Izu-Bonin arc

    Science.gov (United States)

    Taylor, B.; Brown, G.; Fryer, P.; Gill, J. B.; Hochstaedter, A. G.; Hotta, H.; Langmuir, C. H.; Leinen, M.; Nishimura, A.; Urabe, T.

    1990-10-01

    Bimodal volcanism, normal faulting, rapid sedimentation, and hydrothermal circulation characterize the rifting of the Izu-Bonin arc at 31°N. Analysis of the zigzag pattern, in plan view, of the normal faults that bound Sumisu Rift indicates that the extension direction (080° ± 10°) is orthogonal to the regional trend of the volcanic front. Normal faults divide the rift into an inner rift on the arc side, which is the locus for maximum subsidence and sedimentation, and an outer rift further west. Transfer zones that link opposing master faults and/or rift flank uplifts further subdivide the rift into three segments along strike. Volcanism is concentrated along the ENE-trending transfer zone which separates the northern and central rift segments. The differential motion across the zone is accommodated by interdigitating north-trending normal faults rather than by ENE-trending oblique-slip faults. Volcanism in the outer rift has built 50-700 m high edifices without summit craters whereas in the inner rift it has formed two multi-vent en echelon ridges (the largest is 600 m high and 16 km long). The volcanism is dominantly basaltic, with compositions reflecting mantle sources little influenced by arc components. An elongate rhyolite dome and low-temperature hydrothermal deposits occur at the en echelon step in the larger ridge, which is located at the intersection of the transfer zone with the inner rift. The chimneys, veins, and crusts are composed of silica, barite and iron oxide, and are of similar composition to the ferruginous chert that mantles the Kuroko deposits. A 1.2-km transect of seven ALVIN heat flow measurements at 30°48.5'N showed that the inner-rift-bounding faults may serve as water recharge zones, but that they are not necessarily areas of focussed hydrothermal outflow, which instead occurs through the thick basin sediments. The rift basin and arc margin sediments are probably dominated by permeable rhyolitic pumice and ash erupted from submarine

  20. Information support of territorial wildlife management of Lake Baikal and the surrounding areas (Russia)

    Science.gov (United States)

    Lesnykh, Svetlana

    2013-04-01

    The UNESCO World Heritage Committee inscribed Lake Baikal in the World Heritage List under all four natural criteria as the most outstanding example of a freshwater ecosystem. It is the oldest and deepest lake in the world, which is the main freshwater reserve surrounded by a system of protected areas that have high scientific and natural values. However, there is a conflict between three main interests within the territory: the preservation of the unique ecosystem of the lake and its surrounding areas, the need for regional economic development, and protection of interests of the population, living on the shores of Lake Baikal. Solutions to the current challenges are seen in the development of control mechanisms for the wildlife management to ensure sustainable development and conservation of lake and the surrounding regions. For development mechanisms of territorial management of the complex and valuable area it is necessary to analyze features of its functioning and self-control (adaptable possibilities), allowing ecosystems to maintain their unique properties under influence of various external factors: anthropogenic (emissions, waste water, streams of tourists) and natural (climate change) load. While determining the direction and usage intensity of the territory these possibilities and their limits should be considered. Also for development of management strategy it is necessary to consider the relation of people to land and water, types of wildlife management, ownership, rent, protection from the negative effects, and etc. The relation of people to the natural area gives a chance to prioritize the direction in the resource use and their protection. Results of the scientific researches (reaction of an ecosystem on influence of various factors and system of relations to wildlife management objects) are the basis for the nature protection laws in the field of wildlife management and environmental protection. The methodology of legal zoning of the territory was

  1. A 4D Analogue Modeling Study Assessing the Effects of Transtension and Inherited Structures on Rift Interaction

    Science.gov (United States)

    Zwaan, F.; Schreurs, G.; Naliboff, J.; Buiter, S. J.

    2015-12-01

    The interaction of individual rift segments determines the evolution of a rift system and subsequent continental break-up. Inherited heterogeneities control where initial rifts will form and since these are often not properly aligned, rift segments form separately and need to interact. Another important factor affecting rift-segment interaction is the obliquity of plate divergence (transtension), which also promotes eventual continent break-up (Brune et al., 2012). Both analogue and numerical techniques have been used to model rift interaction (e.g. Acocella et al., 1999; Allken et al., 2012) but transtension has never been applied. Here we present a first-order analogue study that elaborates upon earlier studies by assessing the effects of (1) transtension, (2) rift offset and (3) presence and geometry of inherited weak zones that link rift segments. An improved analogue set-up allows more freedom in inherited structure geometry and model analysis with X-Ray Computer Tomography (CT) techniques reveals internal structures with time (Fig. 2 and 3). Our experiments yield the following conclusions: Increasing the degree of transtension (decreasing angle α in Fig. 1) controls general rift structures: from wide rifts in orthogonal divergence settings to narrower rifts with oblique internal structures under transtensional conditions to narrow strike-slip dominated systems towards the strike-slip domain; Rift linkage through transfer zones (hard linkage) is generally promoted by 1) decreasing rift offset and 2) increasing the degree of transtension. However, initial rift linkage might involve relay ramps (soft linkage) due to the interplay of divergence direction and rift offset; Inherited rift-linking weak zones have little effect on rift interaction unless they are oriented ca. perpendicular to the divergence direction; Since the orthogonal divergence models resemble natural examples (Fig. 3), our transtension models might predict what structures can be expected in

  2. The isolation and characterization of actinobacteria from dominant benthic macroinvertebrates endemic to Lake Baikal.

    Science.gov (United States)

    Axenov-Gribanov, Denis; Rebets, Yuriy; Tokovenko, Bogdan; Voytsekhovskaya, Irina; Timofeyev, Maxim; Luzhetskyy, Andriy

    2016-03-01

    The high demand for new antibacterials fosters the isolation of new biologically active compounds producing actinobacteria. Here, we report the isolation and initial characterization of cultured actinobacteria from dominant benthic organisms' communities of Lake Baikal. Twenty-five distinct strains were obtained from 5 species of Baikal endemic macroinvertebrates of amphipods, freshwater sponges, turbellaria worms, and insects (caddisfly larvae). The 16S ribosomal RNA (rRNA)-based phylogenic analysis of obtained strains showed their affiliation to Streptomyces, Nocardia, Pseudonocardia, Micromonospora, Aeromicrobium, and Agromyces genera, revealing the diversity of actinobacteria associated with the benthic organisms of Lake Baikal. The biological activity assays showed that 24 out of 25 strains are producing compounds active against at least one of the test cultures used, including Gram-negative bacteria and Candida albicans. Complete dereplication of secondary metabolite profiles of two isolated strains led to identification of only few known compounds, while the majority of detected metabolites are not listed in existing antibiotic databases. PMID:26347255

  3. Uranium distribution in Baikal sediments using SSNTD method for paleoclimate reconstruction

    CERN Document Server

    Zhmodik, S M; Nemirovskaya, N A; Zhatnuev, N S

    1999-01-01

    First data on local distribution of uranium in the core of Lake Baikal floor sediments (Academician ridge, VER-95-2, St 3 BC, 53 deg. 113'12'N/108 deg. 25'01'E) are presented in this paper. They have been obtained using (n,f)-radiography. Various forms of U-occurrence in floor sediments are shown, i.e. evenly disseminated, associated with clayey and diatomaceous components; micro- and macroinclusions of uranium bearing minerals - microlocations with uranium content 10-50 times higher than U-concentrations associated with clayey and diatomaceous components. Relative and absolute U-concentration can be determined for every mineral. Signs of various order periodicity of U-distribution in the core of Lake Baikal floor sediments have been found. Using (n,f)-radiography method of the study of Baikal floor sediment permits gathering of new information that can be used at paleoclimate reconstruction.

  4. Overview of geology and tectonic evolution of the Baikal-Tuva area.

    Science.gov (United States)

    Gladkochub, Dmitry; Donskaya, Tatiana

    2009-01-01

    This chapter provides the results of geological investigations of the main tectonic units of the Baikal-Tuva region (southwestern part of Siberia) during the last decades: the ancient Siberian craton and adjacent areas of the Central Asian Orogenic belt. In the framework of these main units we describe small-scale blocks (terranes) with focus on details of their inner structure and evolution through time. As well as describing the geology and tectonics of the area studied, we give an overview of underwater sediments, neotectonics, and some phenomena of history and development of the Baikal, Khubsugul, Chargytai, and Tore-Chol Lakes basins of the Baikal-Tuva region. It is suggested that these lakes' evolution was controlled by neotectonic processes, modern seismic activity, and global climate changes. PMID:19198771

  5. Uranium distribution in Baikal sediments using SSNTD method for paleoclimate reconstruction

    International Nuclear Information System (INIS)

    First data on local distribution of uranium in the core of Lake Baikal floor sediments (Academician ridge, VER-95-2, St 3 BC, 53 deg. 113'12'N/108 deg. 25'01'E) are presented in this paper. They have been obtained using (n,f)-radiography. Various forms of U-occurrence in floor sediments are shown, i.e. evenly disseminated, associated with clayey and diatomaceous components; micro- and macroinclusions of uranium bearing minerals - microlocations with uranium content 10-50 times higher than U-concentrations associated with clayey and diatomaceous components. Relative and absolute U-concentration can be determined for every mineral. Signs of various order periodicity of U-distribution in the core of Lake Baikal floor sediments have been found. Using (n,f)-radiography method of the study of Baikal floor sediment permits gathering of new information that can be used at paleoclimate reconstruction

  6. 3D acoustic imaging applied to the Baikal neutrino telescope

    International Nuclear Information System (INIS)

    A hydro-acoustic imaging system was tested in a pilot study on distant localization of elements of the Baikal underwater neutrino telescope. For this innovative approach, based on broad band acoustic echo signals and strictly avoiding any active acoustic elements on the telescope, the imaging system was temporarily installed just below the ice surface, while the telescope stayed in its standard position at 1100 m depth. The system comprised an antenna with four acoustic projectors positioned at the corners of a 50 m square; acoustic pulses were 'linear sweep-spread signals'-multiple-modulated wide-band signals (10→22 kHz) of 51.2 s duration. Three large objects (two string buoys and the central electronics module) were localized by the 3D acoustic imaging, with an accuracy of ∼0.2 m (along the beam) and ∼1.0 m (transverse). We discuss signal forms and parameters necessary for improved 3D acoustic imaging of the telescope, and suggest a layout of a possible stationary bottom based 3D imaging setup. The presented technique may be of interest for neutrino telescopes of km3-scale and beyond, as a flexible temporary or as a stationary tool to localize basic telescope elements, while these are completely passive.

  7. 3D acoustic imaging applied to the Baikal neutrino telescope

    Energy Technology Data Exchange (ETDEWEB)

    Kebkal, K.G. [EvoLogics GmbH, Blumenstrasse 49, 10243 Berlin (Germany)], E-mail: kebkal@evologics.de; Bannasch, R.; Kebkal, O.G. [EvoLogics GmbH, Blumenstrasse 49, 10243 Berlin (Germany); Panfilov, A.I. [Institute for Nuclear Research, 60th October Anniversary pr. 7a, Moscow 117312 (Russian Federation); Wischnewski, R. [DESY, Platanenallee 6, 15735 Zeuthen (Germany)

    2009-04-11

    A hydro-acoustic imaging system was tested in a pilot study on distant localization of elements of the Baikal underwater neutrino telescope. For this innovative approach, based on broad band acoustic echo signals and strictly avoiding any active acoustic elements on the telescope, the imaging system was temporarily installed just below the ice surface, while the telescope stayed in its standard position at 1100 m depth. The system comprised an antenna with four acoustic projectors positioned at the corners of a 50 m square; acoustic pulses were 'linear sweep-spread signals'-multiple-modulated wide-band signals (10{yields}22 kHz) of 51.2 s duration. Three large objects (two string buoys and the central electronics module) were localized by the 3D acoustic imaging, with an accuracy of {approx}0.2 m (along the beam) and {approx}1.0 m (transverse). We discuss signal forms and parameters necessary for improved 3D acoustic imaging of the telescope, and suggest a layout of a possible stationary bottom based 3D imaging setup. The presented technique may be of interest for neutrino telescopes of km{sup 3}-scale and beyond, as a flexible temporary or as a stationary tool to localize basic telescope elements, while these are completely passive.

  8. Mesozoic Rifting in the German North Sea

    Science.gov (United States)

    Lutz, R.; Jähne, F.; Arfai, J.

    2013-12-01

    The Central Graben is the southernmost expressions of the Mesozoic North Sea rift system that includes the Viking Graben, Moray Firth-Witch Ground grabens and the Horda-Egersund half graben. In the southern North Sea the Central Graben extends across the Dutch and the German exclusive economic zones. The structure of the Central Graben in German territorial waters was mapped in great detail in 2D and 3D seismic data and the stratigraphy has been constraint by borehole data. We provide a detailed review of the rifting activity in the German North Sea sector both in time and space and the link between rifting and salt movement. Major rifting activity started in the Central Graben during the Late Triassic and peaked during the Late Jurassic when extensive rift grabens formed, further influenced by halokinetic movements. First subsidence in the Central Graben area appears in the Early Triassic. This is documented by thickness variations in the sedimentary strata from the Triassic to the Jurassic. Remarkably thick sediments were deposited during the Late Triassic along the eastern border fault of the Central Graben and in the Late Jurassic sediments accumulated along graben-wide extensional faults and in rim-synclines of salt-structures. A basin inversion commenced in the Late Cretaceous resulting in an erosion of wide portions of Lower Cretaceous rocks or even complete removal in some parts. The area to the east of the Central Graben faced a completely different evolution. In this area major rifting activity initiated already in the Early to Middle Triassic. This is evident from huge packages of Middle Buntsandstein to Muschelkalk (Middle Triassic) sediments in the Horn Graben. Jurassic doming, forming the Mid-North Sea High, resulted in almost complete erosion of Lower and Middle Jurassic sediments in the central German North Sea. Sedimentation continued during the Early and Late Cretaceous. The Glückstadt Graben, which is a structure located farther east has a

  9. Differential bioaccumulation of potentially toxic elements in benthic and pelagic food chains in Lake Baikal.

    Science.gov (United States)

    Ciesielski, Tomasz M; Pastukhov, Mikhail V; Leeves, Sara A; Farkas, Julia; Lierhagen, Syverin; Poletaeva, Vera I; Jenssen, Bjørn M

    2016-08-01

    Lake Baikal is located in eastern Siberia in the center of a vast mountain region. Even though the lake is regarded as a unique and pristine ecosystem, there are existing sources of anthropogenic pollution to the lake. In this study, the concentrations of the potentially toxic trace elements As, Cd, Pb, Hg, and Se were analyzed in water, plankton, invertebrates, and fish from riverine and pelagic influenced sites in Lake Baikal. Concentrations of Cd, Hg, Pb and Se in Lake Baikal water and biota were low, while concentrations of As were similar or slightly higher compared to in other freshwater ecosystems. The bioaccumulation potential of the trace elements in both the pelagic and the benthic ecosystems differed between the Selenga Shallows (riverine influence) and the Listvenichnyĭ Bay (pelagic influence). Despite the one order of magnitude higher water concentrations of Pb in the Selenga Shallows, Pb concentrations were significantly higher in both pelagic and benthic fish from the Listvenichnyĭ Bay. A similar trend was observed for Cd, Hg, and Se. The identified enhanced bioavailability of contaminants in the pelagic influenced Listvenichnyĭ Bay may be attributed to a lower abundance of natural ligands for contaminant complexation. Hg was found to biomagnify in both benthic and pelagic Baikal food chains, while As, Cd, and Pb were biodiluted. At both locations, Hg concentrations were around seven times higher in benthic than in pelagic fish, while pelagic fish had two times higher As concentrations compared to benthic fish. The calculated Se/Hg molar ratios revealed that, even though Lake Baikal is located in a Se-deficient region, Se is still present in excess over Hg and therefore the probability of Hg induced toxicity in the endemic fish species of Lake Baikal is assumed to be low. PMID:27130338

  10. New evidence for important lake-level changes in Lake Baikal during the Last Glaciation

    OpenAIRE

    Khlystov, O.M.; E. Y. Osipov; De Batist, M.; Hus, R.

    2006-01-01

    In recent years, a number of estimates have been proposed of fluctuations of the Baikal lake level caused by climate changes. They were mainly based on the interpretation of reflection seismic data from the Selenga delta area (eastern coast of Lake Baikal). These estimates range between 2 m [Colman, 1998] and 600 m [Romashkin et al., 1997]. Better-constrained values of lake-level changes during the last 100 ky were presented by Urabe et al. [2004]. According to their reflection seismic data f...

  11. Deformation during the 1975–1984 Krafla rifting crisis, NE Iceland, measured from historical optical imagery

    OpenAIRE

    Hollingsworth, James; Leprince, Sébastien; Ayoub, François; Avouac, Jean-Philippe

    2012-01-01

    We measure the displacement field resulting from the 1975–1984 Krafla rifting crisis, NE Iceland, using optical image correlation. Images are processed using the COSI-Corr software package. Surface extension is accommodated on normal faults and fissures which bound the rift zone, in response to dike injection at depth. Correlation of declassified KH-9 spy and SPOT5 satellite images reveals extension between 1977–2002 (2.5 m average opening over 80 km), while correlation of aerial photos betwe...

  12. Current ecosystem processes in steppe near Lake Baikal

    Science.gov (United States)

    Vanteeva, Julia

    2015-04-01

    The steppes and forest steppes complexes of Priol'khonie at the Lake Baikal (southern Siberia, Russia) were studied in this research. Recreational activity has a significant impact on the Priol'khonie region. During soviet time this area was actively used for agriculture. Nowadays, this territory is the part of Pribaikalskyi National Park and special protection is needed. As the landscapes satisfy different human demands there are many land-management conflicts. The specific climate and soil conditions and human activity lead to erosion processes on study area. Sediment loads are transferred into the Lake Baikal and cause water pollution. Consequently, vegetation cover and phytomass play an important role for regulating hydrological processes in the ecosystems. The process of phytomass formation and its proactive role playing on sedimentation and mitigate silt detaching by rill and inter-rill erosion are considered in the research as important indicators of the ecosystem functions for steppe landscapes. These indicators were studied for the different land cover types identified on the area because the study area has a large variety of steppe and forest steppe complexes, differing in the form of relief, soil types, vegetation species composition and degree of land degradation. The fieldwork was conducted in the study area in the July and August of 2013. Thirty-two experimental sites (10 x 10 m) which characterized different types of ecosystem were established. The level of landscape degradation was estimated. The method of clipping was used for the valuation of above-ground herbaceous phytomass. The phytomass of tree stands was calculated using the volume-conversion rates for forest-steppe complexes. For the quantification of transferred silt by inter-rill erosion in different conditions (vegetation, slope, soil type, anthropogenic load) a portable rainfall simulator was created with taking into account the characteristics of the study area. The aboveground

  13. Sensitivity of the Baikal neutrino telescope NT-200 to point sources of very high energy neutrinos

    International Nuclear Information System (INIS)

    The sensitivity of the deep underwater muon and neutrino detector 'NT-200' in lake Baikal to point sources of extraterrestrial neutrinos is calculated. Results are given for different assumptions on the neutrino source spectrum and the reconstruction capabilities of the detector. (orig.)

  14. The Lake Baikal telescope NT-36. A first deep underwater multistring array

    Energy Technology Data Exchange (ETDEWEB)

    Belolaptikov, I.A.; Bezrukov, L.B.; Borisovets, B.A.; Budnev, N.M.; Chensky, A.G.; Djilkibaev, Zh.A.M.; Dobrynin, V.I.; Domogatsky, G.V.; Donskych, L.A.; Doroshenko, A.A.; Fialkovsky, S.V.; Gress, O.A.; Golikov, A.V.; Heller, R.; Heukenkamp, H.; Kabikov, V.B.; Klabukov, A.M.; Klimov, A.I.; Klimushin, S.I.; Konopleva, T.A.; Koshechkin, A.P.; Krabi, J.; Kulepov, V.F.; Kuzmichov, L.A.; Lanin, O.J.; Lubsandorzhiev, B.K.; Milenin, M.B.; Mikolajski, T.; Mirgazov, R.R.; Nikiforov, S.A.; Ogievietzky, N.V.; Osipova, E.A.; Padusenko, A.H.; Panfilov, A.I.; Parfenov, Yu.V.; Pavlov, A.A.; Petuchov, D.P.; Pocheikin, K.A.; Pochil, P.G.; Pokalev, O.P.; Rosanov, M.I.; Rzhetshizki, A.V.; Rubzov, V.Yu.; Sinegovsky, S.I.; Sokalsky, I.A.; Spiering, C.; Streicher, O.; Tarashansky, V.A.; Thon, T.; Trofimenko, I.I.; Wischnewski, R.; Zurbanov, V.L. [Inst. for Nuclear Research, Russian Academy of Science, Moscow (Russian Federation)]|[Irkutsk State Univ. (Russian Federation)]|[Moscow State Univ. (Russian Federation)]|[Tomsk Polytechnical Inst. (Russian Federation)]|[Polytechnical Inst., Nizhni Novgorod (Russian Federation)]|[Marine Technical Univ., St. Petersburg (Russian Federation)]|[Kurchatov Inst. of Atomic Energy, Moscow (Russian Federation)]|[Joint Inst. for Nuclear Research, Dubna (Russian Federation)]|[DESY, Inst. for High Energy Physics, Zeuthen (Germany); Baikal Collaboration

    1994-03-01

    Since April 13th, 1993 the underwater Cherenkov telescope NT-36 consisting of 36 photomultipliers attached to 3 strings, is operated in lake Baikal. We describe this first stationary underwater multistring array and present results from the first months of operation. (orig.)

  15. Development of a method for energy reconstruction of muons with the Baikal neutrino telescope NT-96

    International Nuclear Information System (INIS)

    1cm This thesis describes the development of a method for energy reconstruction of muons which are detected in underwater telescopes using the amplitudes and hit patterns of the photo multipliers. The method is applied to the data of the Baikal NT-96 muon and neutrino telescope. (orig.)

  16. Hydrocarbon potential of intracratonic rift basins

    Energy Technology Data Exchange (ETDEWEB)

    Baker, D.G.; Derksen, S.J.

    1984-09-01

    Significant world oil reserves have been added in recent years from rift system. Examples of petroliferous rift basins may be found on nearly every major continent. As our understanding of the mechanisms of sedimentation and structure in rift basins grows, more rift systems will be found. With a few notable exceptions, rifts that have been explored in the past are those that formed along continental margins. These contain marine sediments, and the conditions of source rock, sediment type, depositional environment, and structural style are well-known exploration concepts. Intracratonic rift systems containing continental sediments, and also because of the problems perceived to accompany continental sedimentation. A good modern analog is the East African rift system. Several companies have made significant oil discoveries in different components of the Central African rift system. Average daily production for 1982 from the basins associated with the Benue trough was 107.928 BOPD. In the Abu Gabra rift component, where Marathon is currently exploring, Chevron has drilled approximately 60 wells. Nineteen of these were discoveries and tested an average rate per well of 3,500 BOPD. The Abu Gabra rift may contain up to 10 billion bbl of oil. Research indicates that this type of rift system is present in other areas of the world. Ongoing worldwide exploration has shown that intracratonic rift basins have the potential to make a significant contribution to world oil reserves.

  17. Is the Proterozoic Ladoga Rift (SE Baltic Shield) a rift?

    DEFF Research Database (Denmark)

    Artemieva, Irina; Shulgin, Alexey

    2015-01-01

    interpreted as an intracratonic Ladoga rift (graben). We question the validity of this geodynamic interpretation by analyzing regional geophysical data (crustal structure, heat flow, Bouguer gravity anomalies, magnetic anomalies, and mantle Vs velocities). We provide a complete list of tectonic, magmatic, and...

  18. Western closure of the Corinth Rift: Stratigraphy and structure of the Lakka fault block

    Science.gov (United States)

    Palyvos, Nikos; Ford, Mary; Mancini, Marco; Esu, Daniela; Girotti, Odoardo; Urban, Brigitte

    2013-04-01

    In the Corinth Gulf, seismicity is highest in the west, where the active Psathopyrgos-Neos Erineos-Aegion fault zone (PNEAFZ;30 km long, N dip) defines the south coast. To the south and SE the inactive early rift records N and NW migration of deformation since the Pliocene. When was the PNEAFZ initiated? How did it grow? What is the relevance of this fault zone within the full rift history? This paper presents new data for the onshore westernmost rift, indicating that it had a distinct early rifting history (Early to Middle Pleistocene) before being overprinted around 400 ka by the NW migrating Corinth rift. Two syn rift stratigraphic groups are recognised in the uplifted Lakka fault block in the footwall of the PNEAFZ. The youngest Galada group, comprises marine deposits and terraces that mainly document footwall uplift since initiation of the PNEAFZ at around 400-350 ka (Palyvos et al. 2010). The oldest sediments derived from the footwall of the Lakka fault are the 400-350 ka old Aravonitsa Gilbert delta (Palyvos et al. 2010), suggesting this fault is not significantly older than the PNEAFZ. The Galada group records a gradual eastward block tilting due to differential footwall uplift as the PNEAFZ propagated east. The underlying Profitis Ilias group, (pre 400 ka, Greece). Geological Journal, 45, 78-104.

  19. Sm-Nd age of ultrabasite-basite massifs of east part of Baikal-Mujya ophiolite belt

    International Nuclear Information System (INIS)

    Two stratified ultrabasite-basite massifs of the Urals mountains were selected for isotope-geochemical studies. The intrusives, related to plutonic members of the island-arc associations, were used for dating. The Sm-Nd method indicated that one more belt, namely the Vend belt, is taking shape in the Baikal-Mujya tectonic collage alongside with the later Riphean (pre-Baikal) episubconduction belt of stratified intrusives

  20. The NE Rift of Tenerife: towards a model on the origin and evolution of ocean island rifts; La dorsal NE de Tenerife: hacia un modelo del origen y evolucion de los rifts de islas oceanicas

    Energy Technology Data Exchange (ETDEWEB)

    Carracedo, J. C.; Guillou, H.; Rodriguez Badiola, E.; Perez-Torrado, F. J.; Rodriguez Gonzalez, A.; Peris, R.; Troll, V.; Wiesmaier, S.; Delcamp, A.; Fernandez-Turiel, J. L.

    2009-07-01

    , plume-related fractures acting throughout the entire growth of the islands. Basaltic volcanism forms the bulk of the islands and rift zones. However, collapses of the flanks of the rifts disrupt their established fissural feeding system, frequently favouring magma accumulation and residence at shallow emplacements, leading to differentiation of magmas, and intermediate to felsic nested eruptions. Rifts and their collapse may therefore act as an important factor in providing petrological variability to oceanic volcanoes. Conversely, the possibility exists that the presence of important felsic volcanism may indicate lateral collapses in oceanic shields and ridge-like volcanoes, even if they are concealed by post-collapse volcanism or partially mass-wasted by erosion. (Author) 76 refs.

  1. Deformation during the 1975-1984 Krafla rifting crisis, NE Iceland, measured from historical optical imagery

    Science.gov (United States)

    Hollingsworth, James; Leprince, SéBastien; Ayoub, FrançOis; Avouac, Jean-Philippe

    2012-11-01

    We measure the displacement field resulting from the 1975-1984 Krafla rifting crisis, NE Iceland, using optical image correlation. Images are processed using the COSI-Corr software package. Surface extension is accommodated on normal faults and fissures which bound the rift zone, in response to dike injection at depth. Correlation of declassified KH-9 spy and SPOT5 satellite images reveals extension between 1977-2002 (2.5 m average opening over 80 km), while correlation of aerial photos between 1957-1990 provide measurements of the total extension (average 4.3 m opening over 80 km). Our results show ˜8 m of opening immediately north of Krafla caldera, decreasing to 3-4 m at the northern end of the rift. Correlation of aerial photos from 1957-1976 reveal a bi-modal pattern of opening along the rift during the early crisis, which may indicate either two different magma sources located at either end of the rift zone (a similar pattern of opening was observed in the 2005 Afar rift crisis in East Africa), or variations in rock strength along the rift. Our results provide new information on how past dike injection events accommodate long-term plate spreading, as well as providing more details on the Krafla rift crisis. This study also highlights the potential of optical image correlation using inexpensive declassified spy satellite and aerial photos to measure deformation of the Earth's surface going back many decades, thus providing a new tool for measuring Earth surface dynamics, e.g. glaciers, landsliding, coastal erosion, volcano monitoring and earthquake studies, when InSAR and GPS data are not available.

  2. Rapid spatiotemporal variations in rift structure during development of the Corinth Rift, central Greece

    Science.gov (United States)

    Nixon, Casey W.; McNeill, Lisa C.; Bull, Jonathan M.; Bell, Rebecca E.; Gawthorpe, Robert L.; Henstock, Timothy J.; Christodoulou, Dimitris; Ford, Mary; Taylor, Brian; Sakellariou, Dimitris; Ferentinos, George; Papatheodorou, George; Leeder, Mike R.; Collier, Richard E. LI.; Goodliffe, Andrew M.; Sachpazi, Maria; Kranis, Haralambos

    2016-05-01

    The Corinth Rift, central Greece, enables analysis of early rift development as it is young (marine geophysical data, complemented by onshore data, is used to develop a high-resolution chronostratigraphy and detailed fault history for the offshore Corinth Rift, integrating interpretations and reconciling previous discrepancies. Rift migration and localization of deformation have been significant within the rift since inception. Over the last circa 2 Myr the rift transitioned from a spatially complex rift to a uniform asymmetric rift, but this transition did not occur synchronously along strike. Isochore maps at circa 100 kyr intervals illustrate a change in fault polarity within the short interval circa 620-340 ka, characterized by progressive transfer of activity from major south dipping faults to north dipping faults and southward migration of discrete depocenters at ~30 m/kyr. Since circa 340 ka there has been localization and linkage of the dominant north dipping border fault system along the southern rift margin, demonstrated by lateral growth of discrete depocenters at ~40 m/kyr. A single central depocenter formed by circa 130 ka, indicating full fault linkage. These results indicate that rift localization is progressive (not instantaneous) and can be synchronous once a rift border fault system is established. This study illustrates that development processes within young rifts occur at 100 kyr timescales, including rapid changes in rift symmetry and growth and linkage of major rift faults.

  3. Tectonic Framework of the Kachchh Rift Basin

    Science.gov (United States)

    Talwani, P.; Gangopadhyay, A. K.

    2001-05-01

    Evaluation of available geological data has allowed us to determine the tectonic framework of the Kachchh rift basin (KRB), the host to the 1819 Kachchh (MW 7.8), 1956 Anjar ( M 6.0) and the recent January 26, 2001 Bhachau (MW 7.6) earthquakes. The ~ 500 km x 200 km east-west trending KRB was formed during the Mesozoic following the break-up of Gondwanaland. It is bounded to the north and south by the Nagar Parkar and Kathiawar faults which separate it from the Precambrian granitic rocks of the Indian craton. The eastern border is the Radanpur-Barmer arch (defined by an elongate belt of gravity highs) which separates it from the early Cretaceous Cambay rift basin. KRB extends ~ 150 km offshore to its western boundary, the continental shelf. Following India's collision with Eurasia, starting ~ 50 MY ago, there was a stress reversal, from an extensional to the (currently N-S) compressional regime. Various geological observations attest to continuous tectonic activity within the KRB. Mesozoic sediments were uplifted and folded and then intruded by Deccan trap basalt flows in late Cretaceous. Other evidence of continuous tectonic activity include seismically induced soft sediment deformation features in the Upper Jurassic Katrol formation on the Kachchh Mainland and in the Holocene sequences in the Great Rann. Pleistocene faulting in the fluvial sequence along the Mahi River (in the bordering Cambay rift) and minor uplift during late Quaternary at Nal Sarovar, prehistoric and historic seismicity associated with surface deformation further attest to ongoing tectonic activity. KRB has responded to N-S compressional stress regime by the formation of east-west trending folds associated with Allah Bund, Kachchh Mainland, Banni, Vigodi, Katrol Hills and Wagad faults. The Allah Bund, Katrol Hill and Kachchh Mainland faults were associated with the 1819, 1956 and 2001 earthquakes. Northeast trending Median High, Bhuj fault and Rajkot-Lathi lineament cut across the east

  4. Evolution of the East African Rift System With Special Emphasis on the Central Rift of Kenya: A new Model

    International Nuclear Information System (INIS)

    The East African rift system has been of immense interest to geoscientist since its first account was given by Gregory (1896). Several recent views have followed, showing continuing interest in its evolution Baker et al. 19971; Baker et al. 1972; Baker and Wohlenberg 1971; McConnell 1972; Nyabok 1983; Williams and Truckle 1980; Williams, MacDonald and Leat 1983). This interest is being refueled by modern views which are emerging from our better understanding of plate tectonic processes. The major tectonic events took place during the Miocene and late Pliocene with the attendant volcanism which continued into the late Pleistocene. The late Pleistocene volcanism provided the heat source for the long on-going geothermal activity in the rift zone

  5. Changing of the HSP70 Content in the Baikal Endemic Sponges Lubomirskiidae Under Conditions of Hyperthermia

    Directory of Open Access Journals (Sweden)

    Itskovich V.B.

    2015-12-01

    Full Text Available Baikal endemic sponges (Lubomirskiidae make up the bulk of the benthos biomass of the lake. For the first time the changes in the content of HSP70 in response to elevated environment temperature were analyzed in three endemic species of Baikal sponges: Baikalospongia bacillifera (Dybowski, 1880, B. intermedia (Dybowski, 1880 and Swartschewskia papyracea (Dybowski, 1880. Interspecific variability of constitutive HSP70 level was revealed for representatives of the three analyzed Lubomirskiidae species. After exposure at 13 °С for 3 and 7 days opposite changes were noted in the amount of HSP70. Under conditions of hyperthermia the protein level decrease at Baikalospongia species, while at the S. papyracea HSP70 content slightly increased. The differences in the mechanisms of stress adaptation probably affect the thermal resistance of the species, as well as are evidence supporting their specific status.

  6. Results of the Baikal experiment on observations of macroscopic nonlocal correlations in reverse time

    CERN Document Server

    Korotaev, S M; Kiktenko, E O; Budnev, N M; Gorohov, J V

    2015-01-01

    Although the general theory macroscopic quantum entanglement of is still in its infancy, consideration of the matter in the framework of action-at-a distance electrodynamics predicts for the random dissipative processes observability of the advanced nonlocal correlations. These correlations were really revealed in our previous experiments with some large-scale heliogeophysical processes as the source ones and the lab detectors as the probe ones. Recently a new experiment has been performing on the base of Baikal Deep Water Neutrino Observatory. The thick water layer is an excellent shield against any local impacts on the detectors. The first annual series 2012/2013 has demonstrated that detector signals respond to the heliogeophysical processes and causal connection of the signals directed downwards: from the Earth surface to the Baikal floor. But this nonlocal connection proved to be in reverse time. In addition advanced nonlocal correlation of the detector signal with the regional source-process: the random...

  7. Simultaneous thermoluminescence and optically stimulated luminescence dating of late Pleistocene sediments from Lake Baikal

    International Nuclear Information System (INIS)

    When the thermoluminescence (TL) method is applied to dating of partially bleached sediments the need to correct for the residual TL signal left in the mineral crystals at time of deposition is a complicated problem. In dating sediments from Lake Baikal we have attempted a combination of TL and optical stimulated luminescence (OSL). The method was applied to three samples from the uppermost 50 m of the sediment cored within the Baikal drilling project in 1993. The results indicate a fairly constant sedimentation rate back to 250 ka BP. This contradicts with results from radiocarbon dating of the same core but agrees reasonably well with preliminary paleomagnetic data and disequilibrium U-Th age determinations

  8. Colorado Basin Structure and Rifting, Argentine passive margin

    Science.gov (United States)

    Autin, Julia; Scheck-Wenderoth, Magdalena; Loegering, Markus; Anka, Zahie; Vallejo, Eduardo; Rodriguez, Jorge; Marchal, Denis; Reichert, Christian; di Primio, Rolando

    2010-05-01

    The Argentine margin presents a strong segmentation with considerable strike-slip movements along the fracture zones. We focus on the volcanic segment (between the Salado and Colorado transfer zones), which is characterized by seaward dipping reflectors (SDR) all along the ocean-continent transition [e.g. Franke et al., 2006; Gladczenko et al., 1997; Hinz et al., 1999]. The segment is structured by E-W trending basins, which differs from the South African margin basins and cannot be explained by classical models of rifting. Thus the study of the relationship between the basins and the Argentine margin itself will allow the understanding of their contemporary development. Moreover the comparison of the conjugate margins suggests a particular evolution of rifting and break-up. We firstly focus on the Colorado Basin, which is thought to be the conjugate of the well studied Orange Basin [Hirsch et al., 2009] at the South African margin [e.g. Franke et al., 2006]. This work presents results of a combined approach using seismic interpretation and structural, isostatic and thermal modelling highlighting the structure of the crust. The seismic interpretation shows two rift-related discordances: one intra syn-rift and the break-up unconformity. The overlying sediments of the sag phase are less deformed (no sedimentary wedges) and accumulated before the generation of oceanic crust. The axis of the Colorado Basin trends E-W in the western part, where the deepest pre-rift series are preserved. In contrast, the basin axis turns to a NW-SE direction in its eastern part, where mainly post-rift sediments accumulated. The most distal part reaches the margin slope and opens into the oceanic basin. The general basin direction is almost orthogonal to the present-day margin trend. The most frequent hypothesis explaining this geometry is that the Colorado Basin is an aborted rift resulting from a previous RRR triple junction [e.g. Franke et al., 2002]. The structural interpretation

  9. Magmatism in a Cambrian Laurentian Plate Rift

    Science.gov (United States)

    Gilbert, M. C.

    2008-12-01

    Evidences of the Cambrian Southern Oklahoma Aulacogen extend over 1000km from about Dallas out to the Uncompahgre Plateau in SW Colorado. The signature of this originally extensional feature can be traced geophysically, and in some places at the present surface, petrologically and temporally, by the presence of mafic rock. It appears to have been the intracontinental third arm of a plume-generated? triple junction which helped to dismember the southern part of Laurentia on the final break-up of a Neoproterozoic supercontinent. Other parts of Laurentia rifted away and are now found in the Precordillera of Argentina. Rift magmatism appears to have been concentrated nearer the plate edge during the breakup. Perhaps as much as 40,000 km3 of mostly subaerial silicic volcanics and shallow-seated granites overlay and filled the top of the rift in the area of SW Oklahoma. The rift fill below the silicic rocks is large, layered mafic complexes and smaller, layered, hydrous gabbros, the whole set appearing as a shallow AMCG complex. Unusually, direct rift sediments are not obvious. Furthermore, silicic and mafic rocks have identical Nd signatures. Finally, about 20 Ma after rifting ceased and later into the Paleozoic during sea incursion, overlying sediments are thickened 4X compared to equivalent units 100's of kms to the rift sides. This rift appears distinct from most modern rifts. Conclusions are 1) This was a hot, narrow rift; 2) Basaltic magmatism , not sedimentation, filled the rift; 3) Magmatic intensity varied along the rift strike; 4) Silicic rocks were generated mostly directly from new mantle-derived basalt liquids through fractionation, not melting of older crustal rocks; 5) Laurentian lithosphere was weak allowing centering of the Early/Middle Paleozoic large "Oklahoma" basin (pre-Anadarko) over the rift.

  10. Molecular analyses of ostracod flocks from Lake Baikal and Lake Tanganyika

    OpenAIRE

    SCHON, Isa; Martens, Koen

    2012-01-01

    Ancient lakes are excellent laboratories for evolutionary research, where species can be studied in the cradle where they originated. In this article, we investigate two endemic ostracod species flocks from the two oldest lakes in the world, Lake Baikal (LB) (ca. 28 myr) and Lake Tanganyika (LT) (ca. 12 myr), with DNA sequence data. Nuclear ITS1 failed to resolve the phylogeny of both flocks. Whilst most phylogenetic relationships of the Tanganyika flock are resolved with mitochondrial COI, t...

  11. Leman-Baikal: Remote sensing of lakes using an ultralight plane

    OpenAIRE

    Akhtman, Yosef; Constantin, Dragos; Rehak, Martin; Nouchi, Vincent Maurice; Bouffard, Damien; Pasche, Natacha; Shinkareva, Galina; Chalov, Sergey; Lemmin, Ulrich; Merminod, Bertrand

    2014-01-01

    The Leman-Baikal project constitutes an international Swiss-Russian collaborative research initiative in the field of physical limnology. The three-year framework involves the development and deployment of a novel multispectral and hyperspectral remote sensing platform optimised for the sensing of land and water surfaces from an ultralight aircraft. In this paper we discuss the developed remote sensing methodology and the initial obtained results.

  12. Detrital input and early diagenesis in sediments from Lake Baikal revealed by rock magnetism

    OpenAIRE

    Demory, F.; Hedi Oberhänsli; Norbert Nowaczyk; Matthias Gottschalk; Richard Wirth; Rudolf Naumann

    2005-01-01

    A rock magnetic study was performed on sediment cores from six locations in Lake Baikal. For a comprehensive approach of the processes influencing the rock magnetic signal, additional data are presented such as total organic carbon (TOC), total sulphur (TS), opal, water content and relative variations in iron and titanium measured on selected intervals. In glacial sediments, the magnetic signal is dominated by magnetite, which is considered to be of detrital origin. This predominance of magne...

  13. New Records of Lake Baikal Leech Fauna: Species Diversity and Spatial Distribution in Chivyrkuy Gulf

    OpenAIRE

    KAYGORODOVA, Irina A.; Nikolay M. Pronin

    2013-01-01

    The study of several Lake Baikal leech collections offered us the possibility to determine species diversity in the Chivyrkuy Gulf, the biggest one in the lake. As a result, the first information on the Chivyrkuy Hirudinea fauna (Annelida, Clitellata) has been revealed. There are two orders and four families of leeches in the Chivyrkuy Gulf: order Rhynchobdellida (families Glossiphoniidae and Piscicolidae) and order Arhynchobdellida (families Erpobdellidae and Haemopidae). In total, 22 leech ...

  14. Biological diversity and population history of Middle Holocene hunter-gatherers from the Cis-Baikal region of Siberia.

    Science.gov (United States)

    Movsesian, Alla A; Bakholdina, Varvara Yu; Pezhemsky, Denis V

    2014-12-01

    In the past decades, prehistoric hunter-gatherers of the Cis-Baikal region has been a subject of multidisciplinary research. In this study, we used nonmetric cranial traits to assess the genetic relationships between various spatial and temporal groups of Cis-Baikal Middle Holocene hunter-gatherers and to reveal genetic continuity between the Cis-Baikal Neolithic-Bronze Age population and modern native Siberians. Cranial series belonging to the bearers of the Early Neolithic Kitoi (n = 72), Late Neolithic Serovo (n = 54), and Early Bronze Glazkovo (n = 98) cultures were examined. Phenotypic differentiation was analyzed by the mean measure of divergence and Nei's genetic distances. Our results revealed several patterns of spatiotemporal biodiversity among the Cis-Baikal Middle Holocene populations, including biological similarity between the Early and Late Neolithic-Bronze Age groups, which suggests that the temporal hiatus between the Early and Late Neolithic does not necessarily imply genetic discontinuity in the region. The following possible scenarios of population history in the Cis-Baikal region are proposed: 1) continuous occupation with outside invasion of new migrant groups in the Late Neolithic and Bronze Age and 2) migration of the Early Neolithic groups to the nearby regions and subsequent return of their descendants to the ancestral territory. A comparison of Cis-Baikal Neolithic populations with modern Siberian natives suggests that the Сis-Baikal region could have been a source area for population expansions into different parts of Siberia in the Neolithic and Bronze Age times. PMID:25176172

  15. Can silicon isotopes be used to assess anthropogenic impacts and nutrient utilisation in Lake Baikal, Siberia?

    Science.gov (United States)

    Swann, G. E. A.; Panizzo, V. N.; Mackay, A. W.; Roberts, S.; Vologina, E.; Horstwood, M. S.

    2014-12-01

    Silicon isotope geochemistry (28Si, 29Si, 30Si) represents a growing field in Earth Sciences providing information to constrain and understand biogeochemical cycling on land and in oceans. Here we present records of δ30Si (30Si/28Si) from the Lake Baikal drainage basin in central Siberia to understand silicon cycling through the dominant river tributaries and into Lake Baikal itself, the world's deepest and most voluminous lake containing one fifth of all freshwater not stored in glaciers and ice caps.Waters were collected along an upstream transect for the five dominant Lake Baikal inflows as well as from the Selenga Delta which account for >50% of the annual riverine flow to the lake. Samples for dissolved silicon (DSi) concentrations and silicon isotopic signatures (δ30SiDSi) were filtered and acidified in the field with isotopic analyses conducted on a Neptune + Multi-Collector ICP-MS using wet plasma mode with Mg doping of samples and standard-sample-standard bracketing. Analytical reproducibility is 0.11‰ (2σ) and blanks are urbanisation, deforestation, agriculture and mining have impacted biogeochemical cycling.

  16. Late neoproterozoic igneous complexes of the western Baikal-Muya Belt: Formation stages

    Science.gov (United States)

    Fedotova, A. A.; Razumovskiy, A. A.; Khain, E. V.; Anosova, M. O.; Orlova, A. V.

    2014-07-01

    The paper presents new geological, geochemical, and isotopic data on igneous rocks from a thoroughly studied area in the western Baikal-Muya Belt, which is a representative segment of the Neoproterozoic framework of the Siberian Craton. Three rock associations are distinguished in the studied area: granulite-enderbite-charnockite and ultramafic-mafic complexes followed by the latest tonalite-plagiogranitegranite series corresponding to adakite in geochemical characteristics. Tonalites and granites intrude the metamorphic and gabbroic rocks of the Tonky Mys Point, as well as Slyudyanka and Kurlinka intrusions. The tonalites yielded a U-Pb zircon age of 595 ± 5 Ma. The geochronological and geological information indicate that no later than a few tens of Ma after granulite formation they were transferred to the upper lithosphere level. The Sm-Nd isotopic data show that juvenile material occurs in rocks of granitoid series (ɛNd(t) = 3.2-7.1). Ophiolites, island-arc series, eclogites, and molasse sequences have been reviewed as indicators of Neoproterozoic geodynamic settings that existed in the Baikal-Muya Belt. The implications of spatially associated granulites and ultramafic-mafic intrusions, as well as granitoids with adakitic geochemical characteristics for paleogeodynamic reconstructions of the western Baikal-Muya Belt, are discussed together with other structural elements of the Central Asian Belt adjoining the Siberian Platform in the south.

  17. The Role of Rheological Weakening in the Formation of Narrow Rifts on Venus

    Science.gov (United States)

    Martone, Alexis; Montesi, Laurent

    2015-11-01

    The rift zones on Venus are remarkably similar to those seen on Earth, despite Venus’ current lack of plate tectonics. The Devana Chasma rift on Beta Regio accommodates extension in a narrow zone and is associated with volcanism. As a result, it has often been compared to the East African Rift (Burov and Gerya, 2014; Foster and Nimmo, 1996). It has been suggested that plate boundaries develop on Earth because an interconnected network of localized shear zones (areas of concentrated weakening) can form through the lithosphere (Regenauer-Lieb and Yuen, 2001). If Venusian rifts, such as Devana Chasma, are similar to terrestrial plate boundaries, then it is possible that shear zones should form in those locations.Montesi (2013) showed that water-bearing minerals, such as micas, which are probably not present on Venus, largely dominate weakening in the Earth’s crust. On Venus, melts are likely to play the role of the weak phase that allows for localization, due to its low viscosity relative to host rocks. Weakening due to grain size reduction is also possible if a dislocation-accommodated grain boundary sliding mechanism is active on Venus (Montesi, 2013).Rift stability for Venus-like conditions has been analyzed using the model of Buck (1991). This model links the evolution of lithospheric strength with the style of rifting (wide, narrow, or metamorphic core complex). The crust and mantle are assumed to be dry diabase and dry olivine, respectively (diabase rheological parameters are from Mackwell et. al. (1998), olivine rheological parameters are from Hirth and Kohlstedt (2003)). The crustal thickness and surface heat flux are varied based on estimated values from the literature (Nimmo and McKenzie, 1998; Buck, 2002). Without the inclusion of a weakening mechanism the large majority of model runs predict wide rifts developing. Adding a simplistic exponential decay to the lithospheric yield strength allows for more narrow rift formation to occur. Including explicit

  18. Modeling the 2-D seismic velocity structure across the Kenya rift

    Science.gov (United States)

    Braile, L. W.; Wang, B.; Daudt, C. R.; Keller, G. R.; Patel, J. P.

    1994-09-01

    A 460-km-long seismic refraction/wide-angle reflection profile across the East African rift in Kenya has been interpreted using a travel-time inversion method to calculate a two-dimensional crustal and uppermost mantle seismic velocity model. The derived model is consistent with the crustal structure determined by independent interpretation of axial (along the rift) and flank (near the eastern end of the cross profile) data sets. The velocity model indicates that the Kenya rift at this location (near the Equator) is a relatively narrow (about 100 km wide) feature from surface expression (fault-bounded basins) to upper-mantle depths. A 5-km-deep, sediment- and volcanic-filled basin is present beneath the rift valley. Seismic velocities in the underlying crust are slightly higher directly beneath the rift valley than in the adjacent terranes. Additionally, the crust thins by about 8 km (to a thickness of about 30 km) in a 100-km-wide zone beneath the rift valley and anomalously low upper-mantle seismic velocity (Pn ≈ 7.6 km/s) is present only beneath the thinned crust and extends to depths of greater than 120 km.

  19. Geophysical exploration of the Boku geothermal area, Central Ethiopian Rift

    Energy Technology Data Exchange (ETDEWEB)

    Abiye, Tamiru A. [School of Geosciences, Faculty of Science, University of the Witwatersrand, Private Bag X3, P.O. Box Wits, 2050 Johannesburg (South Africa); Tigistu Haile [Department of Geology and Geophysics, Addis Ababa University, P.O. Box 1176, Addis Ababa (Ethiopia)

    2008-12-15

    The Boku central volcano is located within the axial zone of the Central Ethiopian Rift near the town of Nazareth, Ethiopia. An integrated geophysical survey involving thermal, magnetic, electrical and gravimetric methods has been carried out over the Boku geothermal area in order to understand the circulation of fluids in the subsurface, and to localize the 'hot spot' providing heat to the downward migrating groundwaters before they return to the surface. The aim of the investigations was to reconstruct the geometry of the aquifers and the fluid flow paths in the Boku geothermal system, the country's least studied. Geological studies show that it taps heat from the shallow acidic Quaternary volcanic rocks of the Rift floor. The aquifer system is hosted in Quaternary Rift floor ignimbrites that are intensively fractured and receive regional meteoric water recharge from the adjacent escarpment and locally from precipitation and the Awash River. Geophysical surveys have mapped Quaternary faults that are the major geologic structures that allow the ascent of the hotter fluids towards the surface, as well as the cold-water recharge of the geothermal system. The shallow aquifers are mapped, preferred borehole sites for the extraction of thermal fluids are delineated and the depths to deeper thermal aquifers are estimated. (author)

  20. Combining hydrologic and groundwater modelling to characterize a regional aquifer system within a rift setting (Gidabo River Basin, Main Ethiopian Rift)

    Science.gov (United States)

    Birk, Steffen; Mechal, Abraham; Wagner, Thomas; Dietzel, Martin; Leis, Albrecht; Winkler, Gerfried; Mogessie, Aberra

    2016-04-01

    heads measured in 72 wells. To account for the incomplete knowledge of the aquifer system several model set-ups differing in the number of transmissivity zones as well as in the implementation of fault zones, rivers, and model boundaries were evaluated using information criteria. The general pattern of the hydraulic-head distribution resulting from the plausible model set-ups agrees reasonably well with that obtained from the observations. Likewise the simulated baseflow is similar (though slightly higher) to that obtained by baseflow separation from measured discharge. The estimated transmissivity increases from the highland (in the order of 10-100 m²/day) toward the rift floor (in the order of 100-1000 m²/day). Although the rift-floor aquifers are mainly (65%) supplied by recharge from precipitation, groundwater flow from the highland (mountain block recharge) is found to provide a significant contribution (35%). At present, less than 1% of the groundwater flow is abstracted by pumping wells, suggesting a high potential for groundwater development both in the highland and the rift floor. With regard to the rift floor, potential effects of climate change on groundwater resources deserve further investigation, as the hydrological model suggests a high sensitivity of groundwater recharge to changes of precipitation and air temperature particularly within this part of the watershed.

  1. Heat and mass transfer effects during displacement of deepwater methane hydrate to the surface of Lake Baikal

    Science.gov (United States)

    Egorov, Alexander V.; Nigmatulin, Robert I.; Rozhkov, Aleksey N.

    2016-06-01

    The present paper focuses on heat and mass exchange processes in methane hydrate fragments during in situ displacement from the gas hydrate stability zone (GHSZ) to the water surface of Lake Baikal. After being extracted from the methane hydrate deposit at the lakebed, hydrate fragments were placed into a container with transparent walls and a bottom grid. There were no changes in the hydrate fragments during ascent within the GHSZ. The water temperature in the container remained the same as that of the ambient water (~3.5 °C). However, as soon as the container crossed the upper border of the GHSZ, first signs of hydrate decomposition and transformation into free methane gas were observed. The gas filled the container and displaced water from it. At 300 m depth, the upper and lower thermometers in the container simultaneously recorded noticeable decreases of temperature. The temperature in the upper part of the container decreased to -0.25 °C at about 200 m depth, after which the temperature remained constant until the water surface was reached. The temperature at the bottom of the container reached -0.25 °C at about 100 m depth, after which it did not vary during further ascent. These observed effects could be explained by the formation of a gas phase in the container and an ice layer on the hydrate surface caused by heat consumption during hydrate decomposition (self-preservation effect). However, steady-state simulations suggest that the forming ice layer is too thin to sustain the hydrate internal pressure required to protect the hydrate from decomposition. Thus, the mechanism of self-preservation remains unclear.

  2. Mapping of uranium and phosphorus in sediments of Lakes Baikal and Issyk-Kul by neutron-induced autoradiography

    International Nuclear Information System (INIS)

    The uranium and phosphorus distribution in sediment cores from the axial part of the Akademicheskiy Ridge in Lake Baikal and in the southern coastal part of Lake Issyk-Kul were studied using neutron-induced autoradiography based on the 235U(n,f) and 31P(n,β)32P reactions. The composition, morphology and structure of the mineral phases which include U and P, were studied by an electron microprobe, combined with scanning and transmission electron microscopy. Layers and concretions of uranium-bearing phosphorite (U and P concentration of about 50 ppm and 19.2 wt%, respectively) were identified by autoradiography in the sediments of Lake Baikal. These layers may be considered as good paleomarkers for sediment chronology in Lake Baikal. The phosphorites consist of a metastable phase of calcium-deficient phosphate which has not been observed before in sediments and rocks

  3. Simultaneous measurements of water optical properties by AC9 trasmissometer and ASP-15 Inherent Optical Properties meter in Lake Baikal

    CERN Document Server

    Balkanov, V A; Masullo, R; Migneco, E; Petruccetti, M; Riccobene, G

    2003-01-01

    Measurements of optical properties in media enclosing Cherenkov neutrino telescopes are important not only at the moment of the selection of an adequate site, but also for the continuous characterization of the medium as a function of time. Over the two last decades, the Baikal collaboration has been measuring the optical properties of the deep water in Lake Baikal (Siberia) where, since April 1998, the neutrino telescope NT-200 is in operation. Measurements have been made with custom devices. The NEMO Collaboration, aiming at the construction of a km3 Cherenkov neutrino detector in the Mediterranean Sea, has developed an experimental setup for the measurement of oceanographic and optical properties of deep sea water. This setup is based on a commercial transmissometer. During a joint campaign of the two collaborations in March and April 2001, light absorption, scattering and attenuation in water have been measured. The results are compatible with previous ones reported by the Baikal Collaboration and show co...

  4. Rift to post-rift evolution of a ``passive'' continental margin: the Ponta Grossa Arch, SE Brazil

    Science.gov (United States)

    Franco-Magalhaes, A. O. B.; Hackspacher, P. C.; Glasmacher, U. A.; Saad, A. R.

    2010-10-01

    Low-temperature thermochronology was applied at the Brazilian passive continental margin in order to understand and reconstruct the post-rift evolution since the break-up of southwestern Gondwana. Thermochronological data obtained from apatite fission-track analysis of Neoproterozoic metamorphic and Paleozoic to Mesozoic siliciclastic rocks as well as Mesozoic dikes and alkaline intrusions from the Ponta Grossa Arch provided ages between 66.2 (1.3) and 5.9 (0.8) Ma. These data clearly indicate a post-rift reactivation during Late Cretaceous and Paleogene times. Integrating the results of older thermochronological studies, the reactivation of the southeastern Brazilian margin could be described in three main phases related to the rift to post-rift evolution of SE Brazil. Furthermore, the spatial distribution of age data indicates the presence of two age groups: a NE age-group (NE of Curitiba), with ages around 20 Ma and a SW age-group (Curitiba and NW) with ages of around 50 Ma. The change of ages follows the NW-SE trending São Jerônimo-Curiúva fault zone that can be traced offshore into the southern end of the Santos basin. Within the Santos basin, this lineament ends up to the salt occurrence in the south and seams to play a major role in the structural evolution of the Santos basin and the Rio Grande Rise. Sedimentological studies in the Santos basin evidenced that the transport direction changed in Miocene from WNW to WNW/NNW. During the Oligocene and earlier, the sediments were transported mainly from southeastwards to the direction of the “Curitiba area” into the Santos basin. Within the Miocene, an additional transport direction from an area north of Curitiba developed.

  5. The structure and sedimentary sequence of intracratonic rift from Late Sinian to Early Cambrian in the Sichuan Basin, South China

    Science.gov (United States)

    Gu, Zhidong; Zhang, Baomin; Lu, Weihu; Zhai, Xiufen; Jiang, Hua

    2016-04-01

    Sichuan Basin is located in the northwest of Upper Yangtze craton of South China, and there is developed an intracratonic rift from Late Sinian to Early Cambrian in the middle of Sichuan Basin, and the paper systematically discusses the structure and sedimentary sequence of the intracratonic rift based on the fields, drilling and seismic data, and so on. Detailed structural interpretation of 2D and 3D seismic profiles displays the development of two stages of intracratonic rift due to regional extension with the depth of 2000m, and plane distribution of intracratonic rift presents the V-pattern from the northwest to the southeast in the middle of Sichuan Basin with the width from 100km to 20km. The drilling data from the intracratonic rift shows the obvious thinning of Upper Sinian and thickening of Lower Cambrian. And field outcrops situated in the intracratonic rift reveal that the Upper Sinian is mainly composed of siliceous rock, shale and carbonate, with the thickness of less than 100m, but the thickness of Upper Sinian on the platform reaches 1000m by contrast; They also reveals that Lower Cambrian is mainly composed of shale, mudstone, and siltstone with the development of gravity current, and the thickness of Lower Cambrian reaches 2000m. The formation of intracratonic rift may be initiated by pre-existing basement weakness zone and deep mantle dynamics.

  6. A 9,000 Year History of Seal Hunting on Lake Baikal, Siberia: The Zooarchaeology of Sagan-Zaba II

    OpenAIRE

    Nomokonova, Tatiana; Losey, Robert J.; Goriunova, Ol’ga I.; Novikov, Alexei G.; Weber, Andrzej W.

    2015-01-01

    Sagan-Zaba II, a habitation site on the shore of Siberia’s Lake Baikal, contains a record of seal hunting that spans much of the Holocene, making it one of the longest histories of seal use in North Asia. Zooarchaeological analyses of the 16,000 Baikal seal remains from this well-dated site clearly show that sealing began here at least 9000 calendar years ago. The use of these animals at Sagan-Zaba appears to have peaked in the Middle Holocene, when foragers used the site as a spring hunting ...

  7. Weathering in the Lake Baikal watershed during the Kazantsevo (Eemian) interglacial: Evidence from the lacustrine clay record

    OpenAIRE

    Fagel, Nathalie; Mackay, Anson W.

    2008-01-01

    The clay-mineralogical record of a piston core recovered on an elevated plateau in the northern basin of Lake Baikal has been investigated for the Kazantsevo interglacial period (i.e., Eemian s.s. equivalent in northern Europe). The age model (as inferred from palaeomagnetic intensity) suggests that this stage spans ca. 128 to 117 kyr BP. Relative clay mineral abundances and clay-mineral ratios are used to reconstruct the weathering conditions within the Baikal watershed at a sub-millennial r...

  8. Mapping hyper-extended rift systems offshore and onshore: insights from the Bay of Biscay- Western Pyrenees

    Science.gov (United States)

    Tugend, Julie; Manatschal, Gianreto; Kusznir, Nicolas J.; Masini, Emmanuel; Thinon, Isabelle

    2013-04-01

    . Results from both the interpretation of Bay of Biscay rift system and of the crustal thickness map suggest that (1) the spatial evolution of the hyper-extended rift system is more complex than previously assumed and (2) the rift system is strongly segmented at different scales by inherited transfer faults and shear zones bounding different rift basins (e.g. the Pamplona fault, onshore) or delimiting major changes of architecture (e.g. the South Armorican Shear Zone, offshore). Through this work, we aim to illustrate and investigate the processes related to the formation the Bay of Biscay-Western Pyrenees rift system. Moreover, the mapping methods used in this study may be applied to better understand other hyper-extended rift systems.

  9. Modes of rifting in magma-rich settings: Tectono-magmatic evolution of Central Afar

    Science.gov (United States)

    Stab, Martin; Bellahsen, Nicolas; Pik, Raphaël.; Quidelleur, Xavier; Ayalew, Dereje; Leroy, Sylvie

    2016-01-01

    Recent research in Afar (northern Ethiopia) has largely focused on the formation of the present-day ocean-continent transition at active segments (e.g., Manda Hararo). However, the Oligo-Miocene history of extension, from the onset of rifting at ~25 Ma to the eruption of the massive Stratoïd flood basalts at ~4 Ma, remains poorly constrained. Here we present new structural data and radiometric dating from Central Afar, obtained along a zone stretching from the undeformed Oligocene Ethiopian plateau to the Manda Hararo and Tat'Ale active volcanic segments. Basaltic and rhyolitic formations were mapped in two key areas corresponding to the proximal and distal parts of a half-rift. We present a balanced composite cross section of Central Afar, reconstructed using our new data and previously published geophysical data on the crustal structure. Our main findings are as follows: (1) Extension during the Mio-Pliocene corresponds to a "wide rift" style of rifting. (2) The lower crust has been underplated/intruded and rethickened during rifting by magmatic injection. (3) Our restoration points to the existence of midcrustal shear zones that have helped to distribute extension in the upper crust and to localize extension at depth in a necking zone. Moreover, we suggest that there is a close relationship between the location of a shear zone and the underplated/intruded material. In magma-rich environments such as Central Afar, breakup should be achieved once the initial continental crust has been completely replaced by the newly, magmatically accreted crust. Consequently, and particularly in Afar, crustal thickness is not necessarily indicative of breakup but instead reflects differences in tectono-magmatic regimes.

  10. A Late Cretaceous Orogen Triggering the Tertiary Rifting of the West Sunda Plate; Andaman Sea Region

    Science.gov (United States)

    Sautter, B.; Pubellier, M. F.; Menier, D.

    2015-12-01

    Rifted Basins often develop in internal zones of orogenic belts, although the latter may not be easy to unravel. We chose the example of the super-stretched Andaman sea region affected by several stages of rifting in the internal zone of a composite collage of allochthonous terranes. We made use of a set of geophysical, geochronological and structural data to analyze the rifting evolution and reconstruct the previous compressional structures. - Starting in the late Oligocene the East Andaman Basin opened as a back arc in a right-lateral pull- apart. The rifting propagated Westward to the central Andaman basin in the Middle Miocene, and to the oceanic spreading stage in the Pliocene. - An early extension occurred in the Paleogene, marked by widespread opening of isolated continental basins onshore Malay Peninsula and offshore Andaman Shelf and Malacca Straits. The rifting was accommodated by LANF's along preexisting weakness zones such as hinges of folds and granitic batholiths. Continuous extension connected the isolated basins offshore, whereas onshore, the grabens remained confined. There, AFT data show an uplift phase around 30Ma. In the Late Cretaceous, a major deformation occurred oblique to the pre-existing Indosinian basement fabrics. The convergence was partitioned into thrusting and uplift of the Cretaceous volcanic arc in Thailand and Myanmar, inversion of Mesozoic basins, and coeval wrenching responsible for large phacoid-shaped crustal slivers bounded by wide strike slip fault zones. The slivers share similar characteristics: a thick continental core of lower Paleozoic sedimentary basins units surrounded by Late Cretaceous granitoids. Radiometric data and fission tracks indicate a widespread thermal anomaly in all West Sunda Plate synchronous to a strong uplift. In the Latest Mesozoic, the Western Margin of Sunda plate was subjected to a major E-W compression, accommodated by oblique conjugate strike slip faults, leading to the formation of a large

  11. Magmatism and Mineralization in the Vardar Zone Compressional Area, SE-Europe

    OpenAIRE

    Serafimovski, Todor; Tasev, Goran

    2002-01-01

    The area of the Vardar Zone has been defined as zone of ophiolite melange, zone of crushing and cataclasts, zone of intensive magmatism from Jurassic to Pliocene and zone of numerous polymetallic ore deposits and occurrences. The Vardar Zone is known as a rift zone but also as a zone of subduction where Jurassic ocean crust was subducted beneath the crystalline schist of the Serbo-Macedonian Massif. Magmatism and mineralizations are of various ages, Jurassic to Pliocene. The ma...

  12. The Role of Rift Obliquity in Formation of the Gulf of California

    Science.gov (United States)

    Bennett, Scott Edmund Kelsey

    The Gulf of California illustrates how highly oblique rift geometries, where transform faults are kinematically linked to large-offset normal faults in adjacent pull-apart basins, enhance the ability of continental lithosphere to rupture and, ultimately, hasten the formation of new oceanic basins. The Gulf of California rift has accommodated oblique divergence of the Pacific and North America tectonic plates in northwestern Mexico since Miocene time. Due to its infancy, the rifted margins of the Gulf of California preserve a rare onshore record of early continental break-up processes from which to investigate the role of rift obliquity in strain localization. Using new high-precision paleomagnetic vectors from tectonically stable sites in north-central Baja California, I compile a paleomagnetic transect of Miocene ignimbrites across northern Baja California and Sonora that reveals the timing and distribution of dextral shear associated with inception of this oblique rift. I integrate detailed geologic mapping, basin analysis, and geochronology of pre-rift and syn-rift volcanic units to determine the timing of fault activity on Isla Tiburon, a proximal onshore exposure of the rifted North America margin, adjacent to the axis of the Gulf of California. The onset of strike-slip faulting on Isla Tiburon, ca. 8 - 7 Ma, was synchronous with the onset of transform faulting along a significant length of the nascent plate boundary within the rift. This tectonic transition coincides with a clockwise azimuthal shift in Pacific-North America relative motion that increased rift obliquity. I constrain the earliest marine conditions on southwest Isla Tiburon to ca. 6.4 - 6.0 Ma, coincident with a regional latest Miocene marine incursion in the northern proto-Gulf of California. This event likely flooded a narrow, incipient topographic depression along a ˜650 km-long portion of the latest Miocene plate boundary and corresponds in time and space with formation of a newly

  13. Active destabilisation of gas hydrate accumulations in Lake Baikal by tectonically induced fluid-flow

    OpenAIRE

    M. De Batist; Klerkx, J.; Vanneste, M.; Poort, J.; Van Rensbergen, P.; Golmshtok, A.; Kremlev, A.; Khlystov, O.

    2001-01-01

    Multi-channel seismic profiling and deep drilling have evidenced the presence of gas hydrates in Lake Baikal, Siberia. They occur in the deep basins around the large Selenga River Delta. The presence of the hydrates is evident on seismic records by virtue of a distinct high-amplitude, reversed-polarity, cross-cutting BSR. Locally, however, the BSR shows a very anomalous behaviour. In the vicinity of some of the main, active, intra-basin faults, its depth strongly fluctuates, with undulations ...

  14. Environmental Policy and Politics of Lake Baikal: A review of physical, psychological, and political contexts

    Directory of Open Access Journals (Sweden)

    Sarah Beckham Hooff

    2010-11-01

    Full Text Available This paper will describe the physical, political, and psychological contexts of the Lake Baikal environmental debate and how environmental organizations in Irkutsk, Russia have reacted to these contexts. To do so, a wide range of materials will be used, including journalism on local issues, secondary and tertiary texts, and primary documents including internet posts made by activists. The initial results of original field research, which began in 2010 and are ongoing as this paper is being written, will also be presented. Materials collected include a survey and interviews with leaders and members of environmental organizations in Irkutsk.

  15. [Vertical distribution of acanthocephalans of the order Echinorhynchida in Lake Baikal].

    Science.gov (United States)

    Baldanova, D R

    2008-01-01

    Vertical distribution of acanthocephalans of the order Echinorhynchida is studied in Lake Baikal. Four species and subspecies from cottid fishes (Perciformes: Cottoidei) were examined, namely Pseudoechinorhynchus borealis (Linstow, 1901), Metechinorhynchus salmonis salmonis (Muller, 1780), M.s. baicalensis Bogolepova, 1957, M. truttae (Schrank, 1788). In the littoral (0-5 m) and sublittoral (5-100 m) areas all these species and subspecies were occurred, white in the profundal (100-300 m) and abyssal (900-1600 m) areas only Metechinorhynchus salmonis baisalensis has been found. PMID:18727364

  16. Distribution of lacustrine gas seeps and mud volcanoes in Lake Baikal, Siberia

    OpenAIRE

    L. Naudts; De Batist, M.; Granin, N.; Khlystov, O.; Van Rensbergen, P.; J. Poort; Criel, W.; Klerkx, J.; SONIC Team, SONIC

    2005-01-01

    Gas seepage and mud volcanism in a lacustrine environment was first discovered on the deep basin floors of Lake Baikal in 1999. Later on gas seeps were also detected in shallow parts of the lake on echosounder recordings or by visualization of gas bubbles at the lake surface. In this presentation we want to give an overview of the distribution of gas seepage and mud volcanism in relation to the geologic settings of the different seep areas.From the integration of the available data sets (echo...

  17. Molecular evidence reveals a polyphyletic origin and chromosomal speciation of Lake Baikal's endemic asellid isopods.

    Science.gov (United States)

    Hidding, B; Michel, E; Natyaganova, A V; Sherbakov, D Yu

    2003-06-01

    The six endemic isopod species of Lake Baikal have been regarded as a small species flock with uncertain affinities to related asellids. We provide evidence from 16S rRNA sequences for polyphyletic origins of Baikalian Asellidae. One clade of two species is related to the Eurasian genus Asellus. The other clade, Baicalasellus, shows affinities to North American asellids and may have a long evolutionary history within the lake basin. Some speciation events within Baicalasellus clearly have a chromosomal basis. In contrast with numerous taxa exhibiting monophyletic radiations in ancient lakes, the endemic Baikalian isopods arose by multiple invasions and chromosomal mechanisms. PMID:12755879

  18. Investigation of flora and fauna species of Lake Baikal by electron-probe microanalysis

    International Nuclear Information System (INIS)

    Complete text of publication follows. Baikal is an ancient unique lake. The sweet water of Baikal is crystal clean; it concentrates oxygen and contains scarce silicon. This feature is provoked very particular interest for scientists and poses some awkward questions concerning the preservation of Baikal's ecosystem. A profound investigation of fish otholiths, animal teeth, sponges, valves of mollusks and diatom algae provides chronological information, possibility to reconstruct the events proceeding in the environment based on variations of their chemical composition. Because these study objects are small-sized, and some of them are micron-size, application of the electron-probe microanalysis turns to be quite productive. The goal of this study is to disclose performance capabilities of this method while investigating the Baikal flora and fauna. Investigations were performed by devices JCXA-733 and JXA-8200 using the electron microscope and x-ray microprobe modes. Measurements of intensities were carried out by wave spectrometers and energy-dispersive spectrometers Sahara (Prinston Gamma-Tech Ltd) and EX-84055MU. Samples were prepared differently for every species: sponges, diatom valves and mollusk shells were saturated with epoxy resin, fish otholiths and seal teeth were cut across and length-wise and sealed with epoxy resin. Examination of obtained surfaces using back scattering and secondary electrons and x-rays recognized the pattern of element distribution in fish otholiths, seal teeth, sponge spicules, and mollusk and diatom valves. The results of such investigations are provided as maps and curves of distribution of element contents through the sections selected. The chemical composition of omul and golomyanka otholiths, seal teeth, sponge spicules, mollusk and diatom valves are tabulated. Some distinctions have been identified in the concentrations of sodium and calcium in different parts of otholiths. The teeth tissue of seal has a layered structure, and

  19. From orogenic collapse to rifting ; structures of the South China Sea

    Science.gov (United States)

    Pubellier, M.; Chan, L. S.; Chamot Rooke, N.; Shen, W.; Ringenbach, J. C.

    2009-04-01

    The opening of the South China Sea has been a matter of debate for many years because of its internal structure, the differences between the conjugate margins and the variations of rifting and spreading directions. Although it is considered as being a back-arc basin, it is not sitting directly above a subduction zone, and the rifting process lasted for an unusually long duration. Among the specific characteristics is the early phase of rifting which took place early in place of the former Yanshanian andean-type mountain range. This stage is marked by narrow basins filled with deformed conglomerate, and initiated around 70My ago within a framework where the oblique subduction marked by igneous activity and ductile wrench faults, was replaced by orogenic collapse. The rifting stage is marked by Eocene syntectonic normal faults and occasional volcanics centres and has proceeded from NW-SE to NS extension. The NW stretching created at least two aborted basins which remained at rift stage. Extension was followed by spreading from 33 to ~20 Ma in the South China Sea. The ocean floor spreading also changed direction to NW-SE with a propagator inside the Sunda shelf from 20 to 17My ago. However the propagator opening implies that deformation is also taken by rifting around a southern wedge which in turn created strain inside the thinned crust. Another extension parallel to the margin is also observed althought the spreading was in process. The southward motion of the southern conjugate margin was later accommodated by its subduction beneath the NW Borneo wedge until completion of the Proto South China Sea subduction. Variations of rifting spreading through time and variations of structural styles are discussed in terms of boundary forces acting to the SE.

  20. Extension velocity partitioning, rheological crust-mantle and intra-crustal decoupling and tectonically inherited structures: consequences for continental rifting dynamics.

    Science.gov (United States)

    Wang, Kun; Mezri, Leila; Burov, Evgueni; Le Pourhiet, Laetitia

    2015-04-01

    We implemented series of systematic thermo-mechanical numerical models testing the importance of the rheological structure and extension rate partitioning for continental rift evolution. It is generally assumed that styles of continental rifting are mainly conditioned by the initial integrated strength of the lithosphere. For example, strong plates are expected to undergo extension in narrow rifting mode, while weak lithospheres would stretch in wide rifting mode. However, we show that this classification is largely insufficient because the notion of the integrated strength ignores the internal rheological structure of the lithosphere that may include several zones of crust-mantle or upper-crust-intermediate (etc) crust decoupling. As well, orogenic crusts characterizing most common sites of continental extension may exhibit inverted lithological sequences, with stronger and denser formerly lower crustal units on top of weaker and lighter upper crustal units. This all may result in the appearance of sharp rheological strength gradients and presence of decoupling zones, which may lead to substantially different evolution of the rift system. Indeed, strong jump-like contrasts in the mechanical properties result in mechanical instabilities while mechanical decoupling between the competent layers results in overall drop of the flexural strength of the system and may also lead to important horizontal flow of the ductile material. In particular, the commonly inferred concept of level of necking (that assumes the existence of a stationary horizontal stretching level during rifting) looses its sense if necking occurs at several distinct levels. In this case, due to different mechanical strength of the rheological layers, several necking levels develop and switch from one depth to another resulting in step-like variations of rifting style and accelerations/decelerations of subsidence during the active phase of rifting. During the post-rifting phase, initially decoupled

  1. Pre-rift basement structure and syn-rift faulting at the eastern onshore Gulf of Corinth Rift

    Science.gov (United States)

    Kranis, Haralambos; Skourtsos, Emmanuel; Gawthorpe, Robert; Leeder, Mike; Stamatakis, Michael

    2015-04-01

    %B We present results of recent field-based research with a view to providing information about and constraints on the initiation and evolution of the Gulf of Corinth (GoC) Rift. The onshore geology and structure of the GoC rift has been studied intensively and extensively; however most research efforts have focused on the western and partly the central parts. The last few years, efforts are being made to extend the scope of research in less-studied areas, such as the eastern southern onshore part of the GoC rift, trying to address two major issues in rift initiation and evolution, namely syn-rift faulting and pre-rift basement structure. While fault spacing and length appears to be well-constrained for the western and central parts of the GoC Rift, further east -and especially in the uplifted onshore southern part- this is thought to increase dramatically, as there are practically no mapped faults. We argue, however, that this may be a false image, owing to (i) the difficulty in identifying fault structures within a thick, fairly monotonous syn-rift sequence; (ii) the lesser attention this part has drawn; and (ii) the fact that the published summary geological and tectonic maps of the GoC area are based on the dated geological maps that cover the eastern and northern onshore shoulders of the Rift. Moreover, new field data provide new information on pre-rift structure: while only the topmost thrust sheet of the Hellenide nappe stack (Pindos Unit) was thought to crop out at the eastern southern onshore part, we mapped the underlying, non-metamorphic carbonate Unit (Tripolis Unit), which crops out within the footwall of a key intra-basin block (Xylokastro block). A minor outcrop further east, may also belong to this Unit, providing basement control, in connection with recently published offshore fault data. The mapping of these outcrops, combined with a revised stratigraphical framework for the early syn-rift deposits, allows the identification and mapping of faults

  2. Mantle Anisotropy, Collisional Rifts and the Magmatic Evolution of Southern Africa: Old (Mantle) Fabric Never Dies.

    Science.gov (United States)

    Silver, P. G.; Fouch, M.; Gao, S.; Schmitz, M.

    2003-12-01

    plane striking parallel to the splitting fast polarization direction. In particular, we suggest that three major Precambrian magmatic events: the Great Dyke, the Ventersdorp, and Bushveld all represent extensional failure along planes oriented parallel to the local splitting fast polarization direction. In each case, the rift orientations associated with these magmatic events are locally subparallel to values of φ , with the Great Dyke being the most dramatic example. In addition, each of these magmatic events is likely a collisional rift, similar to the Baikal rift of northern Eurasia, where the stress field associated with a collision produces extension and rifting for orientations at a high angle to the belt of the collision. Precise crustal geochronology associates the Ventersdorp and Great Dyke with the earliest and latest phases of the Neo-Archean Limpopo collision, respectively, whereas the Bushveld is temporally linked to the Proterozoic Magondi orogen, which is also responsible for the reactivation of Neo-Archean structures in the Limpopo and surrounding areas. In all cases the rifts are at a high angle to the collisional belt as predicted for a collisional rift.

  3. Impact of Placer Mining on Sediment Transport in Headwaters of the Lake Baikal Basin.

    Science.gov (United States)

    Pietron, J.; Jarsjo, J.; Chalov, S.

    2015-12-01

    Adverse practices in alluvial surface mining (placer mining) can lead to shifts in sediment transport regimes of rivers. However, some placer mines are located in remote parts of river basins, which constrain data availability in mining impact assessments. One such mining area is the Zaamar Goldfield (Northern Mongolia) which stretches 60 km along the Tuul River. The area is located in the headwaters of the Lake Baikal Basin, and may impact the UNESCO World Heritage Site of Lake Baikal. Previous studies indicate that the mining industry in the Zaamar Goldfield loads the river system with considerable amount of contaminated sediments (heavy metals). Still, transport processes and possible changes in local to regional sediment transport need to be better understood. In this work, we use snapshot field measurements and various flow and transport modelling techniques to analyze (1) the impact of placer mining in the sediment delivery to the river system and (2) the dynamics of further sediment transport to downstream Tuul River. Our results indicate that surface mining operations and waste management have considerable impact on the sediment input from the landscape. Furthermore, dynamic in-channel storage of sediments can act as intermittent sources of mining sediments. These effects occur in addition to impacts of on-going changes in hydro-climatic conditions of the area. We hope that our methodology and results will aid in studying similar unmonitored and mining-affected river basins.

  4. Climate-induced fluctuations of 10Be concentration in Lake Baikal sediments

    International Nuclear Information System (INIS)

    Sedimentary 10Be records covering the last 150 kyr were obtained from three cores collected at the Academician Ridge (BDP-96/hole2 core and VER96/st.3 core) and at the Buguldeika Saddle (BDP-93/hole2 core) in Lake Baikal. The 10Be concentrations of the three cores varied between 0.5x109 and 1.5x109 atoms/g, and coincidently dropped at the stratigraphic intervals of marine oxygen isotope stages (MIS) 2, 4, 5d and 6. The depositional fluxes of 10Be, on the other hand, generally rose in those stages having an increase in the dry bulk densities and sediment accumulation rates. These results are consistent with previous work (Horiuchi et al., 1999), suggesting that the dilution effects of low-10Be-concentration particles principally controlled the fluctuations of the 10Be concentrations of Lake Baikal sediments. Low-10Be-concentration particles have been intensively produced by mechanical weathering and physical erosion under the cold and dry climatic conditions during the peak glaciation period, and have been directly brought from the source areas into the lake as a result of the thin vegetative cover of the watershed

  5. Characterising East Antarctic Lithosphere and its Rift Systems using Gravity Inversion

    Science.gov (United States)

    Vaughan, Alan P. M.; Kusznir, Nick J.; Ferraccioli, Fausto; Leat, Phil T.; Jordan, Tom A. R. M.; Purucker, Michael E.; Golynsky, A. V. Sasha; Rogozhina, Irina

    2013-04-01

    Since the International Geophysical Year (1957), a view has prevailed that East Antarctica has a relatively homogeneous lithospheric structure, consisting of a craton-like mosaic of Precambrian terranes, stable since the Pan-African orogeny ~500 million years ago (e.g. Ferracioli et al. 2011). Recent recognition of a continental-scale rift system cutting the East Antarctic interior has crystallised an alternative view of much more recent geological activity with important implications. The newly defined East Antarctic Rift System (EARS) (Ferraccioli et al. 2011) appears to extend from at least the South Pole to the continental margin at the Lambert Rift, a distance of 2500 km. This is comparable in scale to the well-studied East African rift system. New analysis of RadarSat data by Golynsky & Golynsky (2009) indicates that further rift zones may form widely distributed extension zones within the continent. A pilot study (Vaughan et al. 2012), using a newly developed gravity inversion technique (Chappell & Kusznir 2008) with existing public domain satellite data, shows distinct crustal thickness provinces with overall high average thickness separated by thinner, possibly rifted, crust. Understanding the nature of crustal thickness in East Antarctica is critical because: 1) this is poorly known along the ocean-continent transition, but is necessary to improve the plate reconstruction fit between Antarctica, Australia and India in Gondwana, which will also better define how and when these continents separated; 2) lateral variation in crustal thickness can be used to test supercontinent reconstructions and assess the effects of crystalline basement architecture and mechanical properties on rifting; 3) rift zone trajectories through East Antarctica will define the geometry of zones of crustal and lithospheric thinning at plate-scale; 4) it is not clear why or when the crust of East Antarctica became so thick and elevated, but knowing this can be used to test models of

  6. Assessment of climate and land use changes impacts on the rivers inflow to the Lake Baikal

    Science.gov (United States)

    Kurovskaia, Victoriia; Semenova, Olga; Vinogradova, Tatyana

    2016-04-01

    Baikal is the deepest lake in the world and one of the biggest reservoirs of fresh water. The aim of this research was to analyze the long-term variability of characteristics of river inflow to the Lake using the historical data and project possible changes in the face of non-stationary climate and land use based on hydrological modelling. The basin of the Lake Baikal has area about 545 000 km2, half of which is situated in Russia. It is characterized by different climate and landscape conditions with annual flow depth varying from 30 to more than 600 mm. Nowadays active development and use of natural resources as well as climate changes have a strong impact on the regime of rivers inflow to the Lake. The watersheds response caused by environmental non-stationarity can be variable and unpredictable. Therefore adequate hydrological models with robust parametrization are required for future projections. This study consisted of two parts. Initially we compiled the database of daily runoff data for about 50 gauges in the basin of the Baikal Lake with continuous period of observations 30-50 years. The data was used to assess the characteristics of river inflow to the Lake for the historical period and estimate observed changes due to current climate change. For the development of future projections we have chosen several small and middle-size representative watersheds in different parts of the Lake basin with area from 151 to 7800 km2 and various types of hydrological regime. The data base for modelling was developed which included the information about landscapes, soils, dominating hydrological processes. The hydrological model parameters for different dominant landscapes were estimated based on that information. We applied distributed process-based hydrological model Hydrograph developed in State Hydrological Institute, Russia (Vinogradov et al., 2011; Semenova et al., 2013). It describes all essential processes of land hydrological cycle including detailed algorithm

  7. Facies distributions within contrasting structural components of a rift lake: Lake Tanganyika, Africa

    Energy Technology Data Exchange (ETDEWEB)

    Soreghan, M.J.; Cohen, A.S. (Univ. of Arizona, Tucson (United States))

    1991-03-01

    Lake Tanganyika is the most widely cited modern analog for interpreting ancient rift lakes; thus, understanding controls on its facies distribution is critical for refining stratigraphic models for rifts. Four recurrent margin types occur along the alternating half-graben structure of the lake: rift axes, platforms, escarpments, and accommodation zones. Data from study sites in the northern part of the lake suggest that predictable facies differences exist between these structural margin types. The rift axis site comprises a low-gradient, clastic (wave/current)-dominated deltaic system, with strong facies asymmetry and minor carbonate accumulations on raised benches. The platform margin site comprises a series of structurally controlled benches over which long, continuous facies tracts occur. Carbonate sands, muds, and shell gravel dominate; clastics are limited to moderate-sized silty deltas and long, narrow shoreface sands. The escarpment margin site is a steep-gradient system along which small ({lt}1 km{sup 2}) fan deltas alternate with cemented talus. The accommodation zone margin sites are also dominated by rugged structural relief, generally small fan deltas, and semicontinuous shoreface sand belts ({gt}5 km) onshore and poorly sorted silts offshore. TOC from fine-grained samples reflects the contrast in margin types. TOC values for the platform and rift axis range from 0.4 - 2.1 wt. % (avg. 1.3%), whereas accommodation zone and escarpment margin values range from 0.5-5.5% (avg. 3.0%). Acid insoluble sulfur shows a similar trend. Although all data are significantly correlated with depth, the relative area of the lake margin above and below the oxicline is directly controlled by the structural style of the lake margin.

  8. Discussion of Continental Rifts and Their Structure

    Science.gov (United States)

    Gilbert, M. C.

    2011-12-01

    When continental crust rifts, two chief modifications of that crust occur: 1)stretching of older, existing crust; 2)addition of new rift mass--sediments and mantle mafic units. However, paleorifts, such as the Cambrian Southern Oklahoma Aulacogen differ from neorifts, such as the East African. Much of this difference may be reflected in the nature of the lower rift crust. Stretching of the upper crust is accomplished primarily through faulting while the lower crust flows. Concurrently addition of sediments occurs in downdropped faulted blocks in the upper crust, and of mafic magmas risen and emplaced as intrusive layered complexes through the rift and as extrusive flows. All this happens in a regime of higher temperatures and higher heat flow. Consequences of this can include either melting of the stretched existing crust, or direct fractionation of rising mafic magma or melting of already crystallized mafic complexes, forming new silicic magmas. Geochemistry of these different magmatic bodies elucidates which of these possible processes seems dominant. Most geophysical studies of rifts have two results: 1)higher gravity anomalies indicating addition of new mafic masses, usually interpreted to be concentrated in the upper rift crust; and 2)seismic characteristics indicating crustal mottling and layering of the upper rift crust. What is not clearly indicated is nature of the lower crust, and of the mantle-crust contact (M discontinuity). Comparison of paleorifts and neorifts, and later geological history of paleorifts, suggests interesting interpretations of lower rift crust,especially in paleorifts, and some of the difficulties in sorting out answers.

  9. The main features of the interaction of mantle magmas with granulite complexes of the lower crust and their relationship with granitic melts (exemplified by the Early Caledonides of the West Baikal Region, Russia)

    Science.gov (United States)

    Vladimirov, Alexandr; Khromykh, Sergei; Mekhonoshin, Alexei; Volkova, Nina; Travin, Alexei; Mikheev, Evgeny; Vladimirova, Anna

    2016-04-01

    Granulite complexes occurring in the Early Caledonian southern folded framing of the Siberian Craton are deeply eroded fragments of the Vendian-Early Paleozoic accretionary prism, which is an indicator of the early stages of the Paleo-Asian Ocean (Gladkochub et al., 2010). The main feature of the granulite complexes is a wide development of gabbro-pyroxenites composing tectonic plates, synmetamorphic intrusive bodies, and numerous disintegrated fragments (boudins and enclaves), immersed in a metamorphic matrix. The volume of basites reaches 5-10 %, which allows us to consider mantle magmatism as a heat source for the granulite metamorphism. The most studied polygon is Chernorud granulite zone, which is a part of the Olkhon metamorphic terrane, West Baikal Region. Just this polygon was used for considering the problems of interaction of mantle magmas with lower crust granulite complexes and their relationship with granitic melts. The Chernorud Zone is a typical example of the accretionary prism with a predominance of metabasalts (70-80 %), subordinate amounts of marbles, quartzites and metapelites that have been subjected to granulite facies metamorphism and viscoelastic flow of rock masses. Study of two-pyroxene granulites (metabasalts) and garnet-sillimanite gneisses (metapelites) allows us to estimate P-T metamorphic conditions (P = 7.7-8.6 kbar, T = 770-820°C) and their U-Pb metamorphic age (530-500 Ma). Metabasalts correspond in their geochemistry to the island-arc tholeiitic series (Volkova et al., 2010; Gladkochub et al., 2010). Sin-metamorphic gabbro-pyroxenites formed in two stages: 1) Chernorud complex - tectonic slices and body's exhumed from deep earth crust levels (10-12 kb) and composed of arc tholeiitic series rocks (age T ≥ 500 Ma); 2) Ulan-Khargana complex - supply magmatic canals and fragmented tabular intrusions. This rocks composition corresponds to subalkaline petrochemical series (OIB) and U/Pb age is equal to 485±10 Ma (Travin et al., 2009

  10. Modelling of sea floor spreading initiation and rifted continental margin formation

    Science.gov (United States)

    Tymms, V. J.; Isimm Team

    2003-04-01

    Recent observations of depth dependent (heterogeneous) stretching where upper crustal extension is much less than that of the lower crust and lithospheric mantle at both non-volcanic and volcanic margins plus the discovery of broad domains of exhumed continental mantle at non-volcanic rifted margins are not predicted by existing quantitative models of rifted margin formation which are usually based on intra-continental rift models subjected to very large stretching factors. New conceptual and quantitative models of rifted margin formation are required. Observations and continuum mechanics suggest that the dominant process responsible for rifted continental margin formation is sea-floor spreading of the young ocean ridge, rather than pre-breakup intra-continental rifting. Simple fluid flow models of ocean ridge processes using analytical iso-viscous corner-flow demonstrate that the divergent motion of the upwelling mantle beneath the ocean ridge, when viewed in the reference frame of the young continental margin, shows oceanward flow of the lower continental crust and lithospheric mantle of the young rifted margin giving rise to depth dependent stretching as observed. Single-phase fluid-models have been developed to model the initiation of sea-floor spreading and the thermal, stretching and thinning evolution of the young rifted continental margin. Finite element fluid-flow modelling incorporating the evolving temperature dependent viscosity field on the fluid flow also show depth dependent stretching of the young continental margin. Two-phase flow models of ocean ridges incorporating the transport of both solid matrix and melt fluid (Spiegelman &Reynolds 1999) predict the divergent motion of the asthenosphere and lithosphere matrix, and the focusing of basaltic melt into the narrow axial zone spreading centre at ocean ridges. We are adapting two-phase flow models for application to the initiation of sea-floor spreading and rifted continental margin formation. i

  11. A computer-assisted thin-section study of Lake Baikal sediments: a tool for understanding sedimentary processes and deciphering their climatic signal

    Science.gov (United States)

    Francus, Pierre; Karabanov, Eugene

    A freeze-drying technique for cutting thin-sections of soft sediments without disturbance is used to study several Lake Baikal sedimentary microstructures. Image analysis methodology is applied to selected thin-sections. This new technique provides quantification of the size, shape, orientation and packing of the objects forming the sedimentary structures. Sedimentary processes, which were previously poorly documented, have been identified, and others are better understood. Spheroidal lens-like pure aggregates of the diatom genus Synedra are found in hemipelagic sediments, providing a new insight into their traditional paleoecological interpretation. They are possibly related to a transportation mechanism from the littoral zone or to lacustrine snow. Laminae of Aulacoseira have also been recorded. Evidence of rapid sedimentation suggests they are due to massive algal blooms. The depositional mechanism that was suggested by other studies for explaining the laminations at the Buguldeika uplift is confirmed: the hemipelagic sedimentation is interrupted by terrigenous pulses due to discharge events. The sedimentation rate appears to be increasing during these pulses. Preliminary results from the Academician Ridge show stronger microbioturbation during cold periods. This observation strengthens the hypothesis of intense water circulation during colder times. Thin-section image analysis provides crucial information for deciphering lacustrine records and their regional and palaeoclimatic significance.

  12. Seasonal Dynamics of Stress Proteins in Leaves of Medicinal Plants in a Natural Environment of Irkutsk and on the Shores of the Lake Baikal

    Directory of Open Access Journals (Sweden)

    M.A. Zhivetiev

    2014-12-01

    Full Text Available We study leafs of five plant species, growing in Irkutsk city and on the southeastern shore of Lake Baikal. These species are Achillea asiatica Serg., Taraxacum officinale Wigg., Plantago major L., Veronica chamaedrys L. and Alchemilla subcrenata Buser. In its leafs we identify some types of stress-induced proteins. In autumn, the accumulation of stress proteins in leafs of plants both from shores of Lake Baikal and from Irkutsk have been registered.

  13. Rift activity, characteristics of granite and uranium minerogenesis in eastern part of northern Qinling

    International Nuclear Information System (INIS)

    In the eastern part of Northern Qinling the differential geological evolution in the early stage of the crustal formation resulted in higher maturity of the sial crust, more intense acidic magmatism and higher U abundance in the western region than those in the eastern one. The rift activity occurred on a large scale through Proterozoic Era, but the intercontinental rift developed in the early stage, the continental marginal rift in the middle stage and the rift activity subducted in the late stage due to the intense orogeny. Rift activity took place locally in early palaeozoic Era. Multi-rift activities led the U-confeut in protevozoic inherit the distribution characteristic of U-abundance of high in west and low in east from Archean. Granites in this area may be apparently divided into magmatic (syntectic) type and migmatitic (metasomatic) one. Most of the syntectic type granites is characterized by initial 87Sr/86Sr ratio less than 0.710, δ18O less than +10permille, high LREE/HREE ratio, no obvious depletion in Eu, Sr content higher than that of wall rock and Rb/Sr less than 1. As compared with the same one in southern China, the syntectic granite contains more materials introduced from the lower crust. Yanshanian-Himalayan intense tectonic-magmatic activities caused uranium to be mobilized from rocks, migrated and concentrated in favourable environments. By researching on U-Pb isotopic system, it is suggested that greater possibility and probability of uranium supply is present in some granites, which is favourable for the formation of uranium deposits. The authors consider that endo-and exo-contact zones of granites within outcropped area of Archan and intersected position between NW-trend and NE-trend structures are favourable places for prospecting U-ore deposits

  14. Seismicity at the Rwenzori Mountains, East African Rift: earthquake distribution, magnitudes and source mechanisms

    Directory of Open Access Journals (Sweden)

    M. Lindenfeld

    2012-05-01

    Full Text Available We have analysed the microseismic activity within the Rwenzori Mountains area in the western branch of the East African Rift. Seismogram recordings from a temporary array of up to 27 stations reveal approximately 800 events per month with local magnitudes ranging from –0.5 to 5.1. The earthquake distribution is highly heterogeneous. The majority of located events lie within faults zones to the East and West of the Rwenzoris with the highest seismic activity observed in the northeastern area, where the mountains are in contact with the rift shoulders. The hypocentral depth distribution exhibits a pronounced peak of seismic energy release at 15 km depth. The maximum extent of seismicity ranges from 20 to 32 km and correlates well with Moho depths that were derived from teleseismic receiver functions. We observe two general features: (i beneath the rift shoulders seismicity extends from the surface down to ca. 30 km depth; (ii beneath the rift valley seismicity is confined to depths greater than 10 km. From the observations there is no indication for a crustal root beneath the Rwenzori Mountains. The magnitude frequency distribution reveals a b-value of 1.1, which is consistent with the hypothesis that part of the seismicity is caused by magmatic processes within the crust. Fault plane solutions of 304 events were derived from P-polarities and SV/P amplitude ratios. More than 70 % of the source mechanisms exhibit pure or predominantly normal faulting. T-axis trends are highly uniform and oriented WNW-ESE, which is perpendicular to the rift axis and in good agreement with kinematic rift models. At the northernmost part of the region we observe a rotation of the T-axis trends to NEN-SWS, which may be indicative of a local perturbation of the regional stress field.

  15. The Late Paleozoic Southern Margin of the Siberian paleocontinent: transformation from an active continental margin to intracontinental rifting

    Science.gov (United States)

    Kozlovsky, A. M.; Yarmolyuk, V. V.; Sal'Nikova, E. B.

    2009-04-01

    The large volcanoplutonic belt was formed on the southern margin of Siberian paleocontinent in the Early Carboniferous-Early Permian. Now it's stretched through whole Mongolia and the adjacent region of China. In the belt structure there are defined the successive rock complexes: the older one represented by differentiated basalt-andesite-rhyodacite series and younger bimodal complex of basalt-comendite-trachyrhyolite composition. The granodiorite-plagiogranite and diorite-monzonite-granodiorite plutonic massifs are associated with the former, while peralkaline granite massifs are characteristic of the latter. Geochronological results and geological relations between rocks of the bimodal and differentiated complexes showed first that rocks of the differentiated complex originated 350 to 330 Ma ago at the initial stage of forming of the marginal continental belt, linked with development active continental margin. This is evident from geochronological dates obtained for the Adzh-Bogd and Edrengiyn-Nuruu massifs and for volcanic associations of the complex. The dates are consistent with paleontological data. The bimodal association was formed later, 320 to 290 Ma ago. The time span separating formation of two igneous complexes ranges from several to 20-30 m.y. in different areas of the marginal belt. The bimodal magmatism was interrelated with rifting responsible for development of the Gobi-Tien Shan rift zone in the belt axial part and the Main Mongolian lineament along the belt northern boundary. Loci of bimodal rift magmatism likely migrated with time: the respective magmatic activity first initiated on the west of the rift system and then advanced gradually eastward with development of rift structures. Normal granitoids untypical but occurring nevertheless among the products of rift magmatism in addition to peralkaline massifs are assumed to have been formed, when the basic magmatism associated with rifting stimulated crustal anatexis and generation of crustal

  16. Seismicity at the Rwenzori Mountains, East African Rift: earthquake distribution, magnitudes and source mechanisms

    OpenAIRE

    M. Lindenfeld; G. Rümpker; A. Batte; Schumann, A.

    2012-01-01

    We have analysed the microseismic activity within the Rwenzori Mountains area in the western branch of the East African Rift. Seismogram recordings from a temporary array of up to 27 stations reveal approximately 800 events per month with local magnitudes ranging from –0.5 to 5.1. The earthquake distribution is highly heterogeneous. The majority of located events lie within faults zones to the East and West of the Rwenzoris with the highest seismic activity observed in the northeastern area, ...

  17. Identification of a putatively multixenobiotic resistance related Abcb1 transporter in amphipod species endemic to the highly pristine Lake Baikal.

    Science.gov (United States)

    Pavlichenko, Vasiliy V; Protopopova, Marina V; Timofeyev, Maxim; Luckenbach, Till

    2015-04-01

    The fauna of Lake Baikal in Eastern Siberia, the largest freshwater body on Earth, is characterized by high degrees of biodiversity and endemism. Amphipods, a prominent taxon within the indigenous fauna, occur in an exceptionally high number of endemic species. Considering the specific water chemistry of Lake Baikal with extremely low levels of potentially toxic natural organic compounds, it seems conceivable that certain adaptions to adverse environmental factors are missing in endemic species, such as cellular defense mechanisms mitigating toxic effects of chemicals. The degree to which the endemic fauna is affected by the recently occurring anthropogenic water pollution of Lake Baikal may depend on the existence of such cellular defense mechanisms in those species. We here show that endemic amphipods express transcripts for Abcb1, a major component of the cellular multixenobiotic resistance (MXR) defense against toxic chemicals. Based on a partial abcb1 cDNA sequence from Gammarus lacustris, an amphipod species common across Northern Eurasia but only rarely found in Lake Baikal, respective homologous sequences were cloned from five amphipods endemic to Lake Baikal, Eulimnogammarus verrucosus, E. vittatus, E. cyaneus, E. marituji, and Gmelinoides fasciatus, confirming that abcb1 is transcribed in those species. The effects of thermal (25 °C) and chemical stress (1-2 mg L(-1) phenanthrene) in short-term exposures (up to 24 h) on transcript levels of abcb1 and heat shock protein 70 (hsp70), used as a proxy for cellular stress in the experiments, were exemplarily examined in E. verrucosus, E. cyaneus, and Gammarus lacustris. Whereas increases of abcb1 transcripts upon treatments occurred only in the Baikalian species E. verrucosus and E. cyaneus but not in Gammarus lacustris, changes of hsp70 transcript levels were seen in all three species. At least for species endemic to Lake Baikal, the data thus indicate that regulation of the identified amphipod abcb1 is

  18. A study of the chemical budget of Lake Baikal using neutron activation and synchrotron radiation

    International Nuclear Information System (INIS)

    Beginning in 1993, neutron activation analysis (NAA) and synchrotron radiation X-ray fluorescence analysis (SRXFA) have been used to investigate the composition of particles suspended in Lake Baikal and its major tributaries. Both techniques have provided data on the concentration of a wide range of elements with neutron activation offering the first data on several rare earth elements and other minor elements. While each technique appears to be more suitable for determining the concentration of certain elements than an alternate technique, both techniques are in close agreement in their analysis of most of the elements studied. International standard reference materials were used to calibrate and validate the analyses and allow results from the two methods to be compared. The results of this study have been combined with published data to calculate the total elemental input into the lake

  19. Improving physical health international students enrolled in a technical college in Baikal region

    Directory of Open Access Journals (Sweden)

    Kolokoltsev M.M.

    2014-01-01

    Full Text Available Purpose : to improve the physical health of foreign students enrolled in a technical college Baikal region using an extended motor mode. Material : in the experiment participated 57 students attending the training of South-East Asia, 74 - from Central Asia and 455 - Slavs, natives of the Irkutsk region. Results : it was found poor fitness and low functional performance among foreign students. For this purpose they had used advanced motoring. It included, besides training curriculum additional group activities in the form of sports, participating in sports events and guided independent study physical education. Conclusion : the end of follow foreign students involved in the extended motor mode, significantly outperform their peers engaged on normal functional parameters (heart rate, a test with 20 squats, the recovery time after exercise, dynamometry hands, breath tests, adaptive capacity as well as motor qualities.

  20. Storage of ionizing radiation ampoule sources on the base of stand complex 'Baikal-1'

    International Nuclear Information System (INIS)

    Repository for spent ionizing irradiation ampoule sources (IRAS) on the basis of scientific-research reactor complex 'Baikal-1' was established and put into operation in 1995. It is meant for placing for the long-term storage of spent IRAS delivered from different enterprises and institutions of the Republic of Kazakhstan. Earlier spent IRAS were sent for processing and storage to enterprises of Russian Federation. Activities on acceptance, transportation and placing for storage of the spent IRAS helped to improve essentially the ecology in many regions of Kazakhstan and to restart the activity in oncological centers. At present there was accepted and placed into the repository more than 16,000 IRAS and among them 27 sources with oncological activity more than 2,000 Ci every. (author)

  1. Distribution and isotope uranium composition in river run-off and in lake Baikal water

    International Nuclear Information System (INIS)

    Uranium geochemistry investigation in a river run-off and conditions of its accumulation in the Baikal sea sediments is carried out. It is shown that uranium content, exceeding 0.2-0.5 μg/l is observed in the river waters, whatersheds whereof are composed of granitoid or metamorphic rocks, containing uranium and thorium. The uranium balance evaluation showed that the difference in the uranium quantity between its ingress (51.7 t/year) and discharge from the lake (25.4 t/year) constitutes 26.3 t/year. the intensity of uranium sedimentation changes from 1.8 up to 5.8x10-5 g/cm2x103 years. Diatom algae are depleted by uranium whereas organic fraction is enriched by it. 15 refs.; 4 figs.; 2 tabs

  2. In situ measurements of optical parameters in Lake Baikal with the help of a Neutrino Telescope

    CERN Document Server

    Balkanov, V A

    1999-01-01

    We present results of an experiment performed in Lake Baikal at a depth of about 1 km. The photomultipliers of an underwater neutrino telescope under construction at this site have been illuminated by a distant laser. The experiment not only provided a useful cross-check of the time calibration of the detector, but also allowed to determine inherent optical parameters of the water in a way complementary to standard methods. In 1997, we have measured an absorption length of 22 m and an asymptotic attenuation length of 18 m. The effective scattering length was measured as 480 m. Using = 0.95 (0.90) for the average scattering angle, this corresponds to a geometrical scattering length of 24 (48) m.

  3. LAKE GUSINOE TO BAIKAL VIA SELENGA DELTA: PROTECTION-DESTRUCTION SPIRAL

    Directory of Open Access Journals (Sweden)

    Hidetoshi Naganawa

    2012-06-01

    Full Text Available Lake Gusinoe is the largest water body in the Buryat Republic (South Siberia, Russia and still the only source of both drinking and industrial water supply. All the wastewater is thrown away into the same lake. Most of the tributaries, concentrated on the western lakeshore, disappear into the coarse deposits of alluvial fans soon after they emerge from the mountains. Anthropogenic impacts on the lake ecosystem increased during the 20th century. The biggest environmental polluters are the Gusinoozersk coal mine, the Kholboldzhinsky opencut coal mine, and the Gusinoozersk State Regional Power Plant (Gusinoozersk SRPP. The Gusinoozersk SRPP takes a large amount of freshwater from the Zagustai River, the longest influent of Lake Gusinoe, to produce hot water and steam for the turbines. The warm wastewater is discharged back into the lake. As a result of this, an unfrozen patch of water measuring about 2 km2 is formed on the lake in winter, and the water temperature in the upper layer is 13–14°C higher than the lower ones. Some chemical components (e.g., sulfate, phenol, iron ions of both the lake water and surface/groundwater of the Lake Gusinoe Basin are with constant excess of the maximum allowable concentration (MAC. The Gusinoozersk SRPP is also the main air polluter. Now Lake Gusinoe is constantly polluted and in the state of degradation. Lake Gusinoe might be possible one of the largest pollution sources in the Baikal region, because the connecting transboundary Selenga River is the main inflow of Lake Baikal

  4. The lakes of the Jordan Rift Valley

    International Nuclear Information System (INIS)

    This paper presents a summary of the proceedings of a workshop on the Lakes of the Jordan Rift Valley that was held in conjunction with the CRP on The Use of Isotope Techniques in Lake Dynamics Investigations. The paper presents a review of the geological, hydrogeological and physical limnological setting of the lakes in the Jordan Rift Valley, Lake Hula, Lake Kinneret and the Dead Sea. This is complemented by a description of the isotope hydrology of the system that includes the use of a wide range of isotopes: oxygen-18, deuterium, tritium, carbon-14, carbon-13, chlorine isotopes, boron-11 and helium-3/4. Environmental isotope aspects of the salt balances of the lakes, their palaeolimnology and biogeochemical tracers are also presented. The scope of application of isotopic tracers is very broad and provides a clear insight into many aspects of the physical, chemical and biological limnology of the Rift Valley Lakes. (author)

  5. Submarine thermal springs on the Galapagos Rift

    Science.gov (United States)

    Corliss, J.B.; Dymond, J.; Gordon, L.I.; Edmond, J.M.; Von Herzen, R. P.; Ballard, Richard D.; Green, K.; Williams, D.; Bainbridge, A.; Crane, K.; Van Andel, T. H.

    1979-01-01

    The submarine hydrothermal activity on and near the Galápagos Rift has been explored with the aid of the deep submersible Alvin. Analyses of water samples from hydrothermal vents reveal that hydrothermal activity provides significant or dominant sources and sinks for several components of seawater; studies of conductive and convective heat transfer suggest that two-thirds of the heat lost from new oceanic lithosphere at the Galápagos Rift in the first million years may be vented from thermal springs, predominantly along the axial ridge within the rift valley. The vent areas are populated by animal communities. They appear to utilize chemosynthesis by sulfur-oxidizing bacteria to derive their entire energy supply from reactions between the seawater and the rocks at high temperatures, rather than photosynthesis

  6. Submarine thermal springs on the Galapagos rift

    Energy Technology Data Exchange (ETDEWEB)

    Corliss, J.B. (Oregon State Univ., Corvallis); Dymond, J.; Gordon, L.I.; Edmond, J.M.; von Herzen, R.P.; Ballard, R.D.; Green, K.; Williams, D.; Bainbridge, A.; Crane, K.; van Andel, T.H.

    1979-03-16

    The submarine hydrothermal activity on and near the Galapagos Rift has been explored with the aid of the deep submersible Alvin. Analyses of water samples from hydrothermal vents reveal that hydrothermal activity provides significant or dominant sources and sinks for several components of seawater; studies of conductive and convective heat transfer suggest that two-thirds of the heat lost from new oceanic lithosphere at the Galapagos Rift in the first million years may be vented from thermal springs, predominantly along the axial ridge within the rift valley. The vent areas are populated by animal communities. They appear to utilize chemosynthesis by sulfur-oxidizing bacteria to derive their entire energy supply from reactions between the seawater and the rocks at high temperatures, rather than photosynthesis.

  7. Submarine thermal sprirngs on the galapagos rift.

    Science.gov (United States)

    Corliss, J B; Dymond, J; Gordon, L I; Edmond, J M; von Herzen, R P; Ballard, R D; Green, K; Williams, D; Bainbridge, A; Crane, K; van Andel, T H

    1979-03-16

    The submarine hydrothermal activity on and near the Galápagos Rift has been explored with the aid of the deep submersible Alvin. Analyses of water samples from hydrothermal vents reveal that hydrothermal activity provides significant or dominant sources and sinks for several components of seawater; studies of conductive and convective heat transfer suggest that two-thirds of the heat lost from new oceanic lithosphere at the Galápagos Rift in the first million years may be vented from thermal springs, predominantly along the axial ridge within the rift valley. The vent areas are populated by animal communities. They appear to utilize chemosynthesis by sulfur-oxidizing bacteria to derive their entire energy supply from reactions between the seawater and the rocks at high temperatures, rather than photosynthesis. PMID:17776033

  8. Imaging the lithosphere of rifted passive margins using waveform tomography: North Atlantic, South Atlantic and beyond

    Science.gov (United States)

    Lebedev, Sergei; Schaeffer, Andrew; Celli, Nicolas Luca

    2016-04-01

    Lateral variations in seismic velocities in the upper mantle reflect variations in the temperature of the rocks at depth. Seismic tomography thus provides a proxy for lateral changes in the temperature and thickness of the lithosphere. It can map the deep boundaries between tectonic blocks with different properties and age of the lithosphere. Our 3D tomographic models of the upper mantle and the crust at the Atlantic and global scales are constrained by an unprecedentedly large global dataset of broadband waveform fits (over one million seismograms) and provide improved resolution of the lithosphere, compared to other available models. The most prominent high-velocity anomalies, seen down to 150-200 km depths, indicate the cold, thick, stable mantle lithosphere beneath Precambrian cratons, including those in North America, Greenland, northern and eastern Europe, Africa and South America. The dominant, large-scale, low-velocity feature is the global system of mid-ocean ridges, with broader low-velocity regions near hotspots, including Iceland. Currently active continental rifts show highly variable expression in the upper mantle, from pronounced low velocities to weak anomalies; this correlates with the amount of magmatism within the rift zone. Rifted passive margins have typically undergone cooling since the rifting and show more subtle variations in their seismic-velocity structure. Their thermal structure and evolution, however, are also shaped by 3D geodynamic processes since their formation, including cooling by the adjacent cratonic blocks inland and heating by warm oceanic asthenosphere.

  9. Variation in styles of rifting in the Gulf of California.

    Science.gov (United States)

    Lizarralde, Daniel; Axen, Gary J; Brown, Hillary E; Fletcher, John M; González-Fernández, Antonio; Harding, Alistair J; Holbrook, W Steven; Kent, Graham M; Paramo, Pedro; Sutherland, Fiona; Umhoefer, Paul J

    2007-07-26

    Constraints on the structure of rifted continental margins and the magmatism resulting from such rifting can help refine our understanding of the strength of the lithosphere, the state of the underlying mantle and the transition from rifting to seafloor spreading. An important structural classification of rifts is by width, with narrow rifts thought to form as necking instabilities (where extension rates outpace thermal diffusion) and wide rifts thought to require a mechanism to inhibit localization, such as lower-crustal flow in high heat-flow settings. Observations of the magmatism that results from rifting range from volcanic margins with two to three times the magmatism predicted from melting models to non-volcanic margins with almost no rift or post-rift magmatism. Such variations in magmatic activity are commonly attributed to variations in mantle temperature. Here we describe results from the PESCADOR seismic experiment in the southern Gulf of California and present crustal-scale images across three rift segments. Over short lateral distances, we observe large differences in rifting style and magmatism--from wide rifting with minor synchronous magmatism to narrow rifting in magmatically robust segments. But many of the factors believed to control structural evolution and magmatism during rifting (extension rate, mantle potential temperature and heat flow) tend to vary over larger length scales. We conclude instead that mantle depletion, rather than low mantle temperature, accounts for the observed wide, magma-poor margins, and that mantle fertility and possibly sedimentary insulation, rather than high mantle temperature, account for the observed robust rift and post-rift magmatism. PMID:17653189

  10. Characterising Antarctic and Southern Ocean Lithosphere with Magnetic and Gravity Imaging of East Antarctic Rift Systems

    Science.gov (United States)

    Vaughan, A. P.; Kusznir, N. J.; Ferraccioli, F.; Jordan, T. A.; Purucker, M. E.; Golynsky, A. V.; Rogozhina, I.

    2012-12-01

    Since the International Geophysical Year (1957), a view has prevailed that the lithospheric structure of East Antarctica is relatively homogeneous, forming a geological block of largely cratonic nature, consisting of a mosaic of Precambrian terranes, stable since the Pan-African orogeny ~500 million years ago. Recent recognition of a continental-scale rift system cutting the East Antarctic interior indicates that this is incorrect, and has crystallised an alternative view of much more recent geological activity with important implications for tectonic reconstructions and controls on ice sheet formation and stability. The newly defined East Antarctic Rift System appears to extend from at least the South Pole to the continental margin at the Lambert Rift, a distance of 2500 km. This is comparable in scale to the well-studied East African rift system. New analysis of RadarSat data pioneered by Golynsky & Golynsky indicates that further rift zones may extend the East Antarctic Rift System into widely distributed extension zones within the continent. We have carried out a pilot study, using a newly developed gravity inversion technique with existing public domain satellite data, which shows that East Antarctica consists of distinct crustal thickness provinces with anomalously thick areas separated by thin, possibly rifted crust and overall high average thickness. Understanding the nature of crustal thickness in East Antarctica is critical because: 1) Better understanding of crustal thickness in Antarctica, especially along the ocean-continent transition (OCT), will make it possible to improve the plate reconstruction fit between Antarctica, Australia and India in Gondwana and also refine constraints on how and when these continents separated; 2) crustal thickness provinces can be used to aid supercontinent reconstructions and provide new assessments of the influence of basement architecture and mechanical properties on rifting processes; 3) tracking rift zones through

  11. Emission of CO2 from the arable soils polluted by heavy metals of Baikal forest-steppe region

    International Nuclear Information System (INIS)

    The influence of arable soil contamination by heavy metals on C02 emission in Lake Baikal region had been studied during the period from 1992 till 2005. It was shown, that the way of agroecosystems response on technogenic impact vary from year to year following the changes in both the temperature and humidity. The contamination mostly resulted in soil organic matter mineralization increase and, consequently, increased carbon losses in the form of CO2.

  12. Preliminary results on a search for neutrinos from the center of the earth with the Baikal underwater telescope

    CERN Document Server

    Bezrukov, L B

    1996-01-01

    The deep underwater Cherenkov neutrino telescope NT-200 is currently under construction at lake Baikal. Its first stage NT-36 consisting of 36 optical modules has operated over 2 years since April 1993 till March 1995. Here we present a method to search for nearly vertical upward going muons from neutralino annihilation in the center of the Earth. We present preliminary results obtained from experimental data taken with the NT-36 array in 1994.

  13. The role of fluids in lower-crustal earthquakes near continental rifts.

    Science.gov (United States)

    Reyners, Martin; Eberhart-Phillips, Donna; Stuart, Graham

    2007-04-26

    The occurrence of earthquakes in the lower crust near continental rifts has long been puzzling, as the lower crust is generally thought to be too hot for brittle failure to occur. Such anomalous events have usually been explained in terms of the lower crust being cooler than normal. But if the lower crust is indeed cold enough to produce earthquakes, then the uppermost mantle beneath it should also be cold enough, and yet uppermost mantle earthquakes are not observed. Numerous lower-crustal earthquakes occur near the southwestern termination of the Taupo Volcanic Zone (TVZ), an active continental rift in New Zealand. Here we present three-dimensional tomographic imaging of seismic velocities and seismic attenuation in this region using data from a dense seismograph deployment. We find that crustal earthquakes accurately relocated with our three-dimensional seismic velocity model form a continuous band along the rift, deepening from mostly less than 10 km in the central TVZ to depths of 30-40 km in the lower crust, 30 km southwest of the termination of the volcanic zone. These earthquakes often occur in swarms, suggesting fluid movement in critically loaded fault zones. Seismic velocities within the band are also consistent with the presence of fluids, and the deepening seismicity parallels the boundary between high seismic attenuation (interpreted as partial melt) within the central TVZ and low seismic attenuation in the crust to the southwest. This linking of upper and lower-crustal seismicity and crustal structure allows us to propose a common explanation for all the seismicity, involving the weakening of faults on the periphery of an otherwise dry, mafic crust by hot fluids, including those exsolved from underlying melt. Such fluids may generally be an important driver of lower-crustal seismicity near continental rifts. PMID:17460671

  14. A 9,000 Year History of Seal Hunting on Lake Baikal, Siberia: The Zooarchaeology of Sagan-Zaba II.

    Directory of Open Access Journals (Sweden)

    Tatiana Nomokonova

    Full Text Available Sagan-Zaba II, a habitation site on the shore of Siberia's Lake Baikal, contains a record of seal hunting that spans much of the Holocene, making it one of the longest histories of seal use in North Asia. Zooarchaeological analyses of the 16,000 Baikal seal remains from this well-dated site clearly show that sealing began here at least 9000 calendar years ago. The use of these animals at Sagan-Zaba appears to have peaked in the Middle Holocene, when foragers used the site as a spring hunting and processing location for yearling and juvenile seals taken on the lake ice. After 4800 years ago, seal use declined at the site, while the relative importance of ungulate hunting and fishing increased. Pastoralists began occupying Sagan-Zaba at some point during the Late Holocene, and these groups too utilized the lake's seals. Domesticated animals are increasingly common after about 2000 years ago, a pattern seen elsewhere in the region, but spring and some summer hunting of seals was still occurring. This use of seals by prehistoric herders mirrors patterns of seal use among the region's historic and modern groups. Overall, the data presented in the paper demonstrate that Lake Baikal witnessed thousands of years of human use of aquatic resources.

  15. Syn-rift unconformities punctuating the lower-middle Cambrian transition in the Atlas Rift, Morocco

    Science.gov (United States)

    Álvaro, J. Javier; Ezzouhairi, Hassan; Clausen, Sébastien; Ribeiro, M. Luisa; Solá, Rita

    2015-04-01

    The Cambrian Tamdroust and Bab n'Ali Volcanic Complexes represent two magmatic episodes developed in the latest Ediacaran-Cambrian Atlas Rift of Morocco. Their rifting pulses were accompanied by accumulation of volcanosedimentary edifices (dominated by effusive lava flows in the former and explosive acidic aprons in the latter) associated with active tilting and uplift. Sealing of their peneplaned horst-and-graben palaeotopographies led to the onset of distinct onlapping geometries and angular discordances capping eroded basements ranging from the Ediacaran Ouarzazate Supergroup to the Cambrian Asrir Formation. Previous interpretations of these discordances as pull-apart or compressive events are revised here and reinterpreted in an extensional (rifting) context associated with active volcanism. The record of erosive unconformities, stratigraphic gaps, condensed beds and onlapping patterns across the traditional "lower-middle Cambrian" (or Cambrian Series 2-3) transition of the Atlas Rift must be taken into consideration for global chronostratigraphic correlation based on their trilobite content.

  16. Oppositely directed pairs of propagating rifts in back-arc basins: Double saloon door seafloor spreading during subduction rollback

    Science.gov (United States)

    Martin, A. K.

    2006-06-01

    When a continent breaks up into two plates, which then separate from each other about a rotation pole, it can be shown that if initial movement is taken up by lithospheric extension, asthenospheric breakthrough and oceanic accretion propagate toward the pole of rotation. Such a propagating rift model is then applied to an embryonic centrally located rift which evolves into two rifts propagating in opposite directions. The resultant rhombic shape of the modeled basin, initially underlain entirely by thinned continental crust, is very similar to the Oligocene to Burdigalian back-arc evolution of the Valencia Trough and the Liguro-Provencal Basin in the western Mediterranean. Existing well and seismic stratigraphic data confirm that a rift did initiate in the Gulf of Lion and propagated southwest into the Valencia Trough. Similarly, seismic refraction, gravity, and heat flow data demonstrate that maximum extension within the Valencia Trough/Liguro-Provencal Basin occurred in an axial position close to the North Balearic Fracture Zone. The same model of oppositely propagating rifts, when applied to the Burdigalian/Langhian episode of back-arc oceanic accretion within the Liguro-Provencal and Algerian basins, predicts a number of features which are borne out by existing geological and geophysical, particularly magnetic data. These include the orientation of subparallel magnetic anomalies, presumed to be seafloor spreading isochrons, in both basins; concave-to-the-west fracture zones southwest of the North Balearic Fracture Zone, and concave-to-the-east fracture zones to its northeast; a spherical triangular area of NW oriented seafloor spreading isochrons southwest of Sardinia; the greater NW extension of the central (youngest?) magnetic anomaly within this triangular area, in agreement with the model-predicted northwestward propagation of a rift in this zone; successively more central (younger) magnetic anomalies abutting thinned continental crust nearer to the pole of

  17. Volcanic field elongation, vent distribution and tectonic evolution of continental rift: The Main Ethiopian Rift example

    Science.gov (United States)

    Mazzarini, Francesco; Le Corvec, Nicolas; Isola, Ilaria; Favalli, Massimiliano

    2015-04-01

    Magmatism and faulting operate in continental rifts and interact at a variety of scales, however their relationship is complex. The African rift, being the best example for both active continental rifting and magmatism, provides the ideal location to study the interplay between the two mechanisms. The Main Ethiopian Rift (MER), which connects the Afar depression in the north with the Turkana depression and Kenya Rift to the south, consists of two distinct systems of normal faults and its floor is scattered with volcanic fields formed by tens to several hundreds monogenetic, generally basaltic, small volcanoes and composite volcanoes and small calderas. The distribution of vents defines the overall shape of the volcanic field. Previous work has shown that the distribution of volcanic vents and the shape of a field are linked to its tectonic environment and its magmatic system. In order to distinguish the impact of each mechanism, we analyzed four volcanic fields located at the boundary between the central and northern MER, three of them (Debre Zeyit, Wonji and Kone) grew in the rift valley and one (Akaki) on the western rift shoulder. The elongation and shape of the fields were analyzed based on their vent distribution using the Principal Component Analysis (PCA), the Vent-to-Vent Distance (VVD), and the two dimensional symmetric Gaussian kernel density estimate methods. We extracted from these methods several parameters characterizing the spatial distribution of points (e.g., eccentricity (e), eigenvector index (evi), angular dispersion (Da)). These parameters allow to define at least three types of shape for volcanic fields: strong elongate (line and ellipse), bimodal/medium elongate (ellipse) and dispersed (circle) shapes. Applied to the natural example, these methods well differentiate each volcanic field. For example, the elongation of the field increases from shoulder to rift axis inversely to the angular dispersion. In addition, the results show that none of

  18. Active folding along a rift-flank: The Catania region case history (SE Sicily)

    Science.gov (United States)

    Catalano, Stefano; Torrisi, Salvatore; Tortorici, Giuseppe; Romagnoli, Gino

    2011-01-01

    In this paper a new kinematic and dynamic model on the Recent and active contractional deformation of the Catania region, eastern Sicily, is discussed. The study area represents one of the most seismically active region of the Mediterranean, located at the intersection between the front of the Sicily collision belt and the seismogenic Siculo-Calabrian Rift-Zone. The analysed contractional tectonics form an active triangle zone that originated from the tectonic inversion of a Lower-Middle Pleistocene extensional basin, which was located at the northern edge of the African foreland. The triangle zone consists of two antithetic ENE-WSW oriented thrust-ramps that show evidence of motion during the Holocene and bound a folded belt that involves alluvial deposits as young as 40 ka. These contractional structures represent the final product of the positive tectonic inversion of extensional features located, in the Hyblean Plateau in SE Sicily, along the flank of the active rift zone. The Late Quaternary motions along the inverted structures was accommodated to the west by a major N-S oriented left-lateral fault zone, which separates the active contractional domains from the adjacent sectors of the African margin. As a whole, the Late Quaternary contractional tectonics of SE Sicily have been related to a NW-verging crustal stacking, related to a Mantle intrusion beneath the Hyblean Plateau that developed as effect of the rift-flank deformation. The crustal lineaments, which compose the new kinematic model, represents potentially active seismogenic sources that might be considered in the frame of the seismotectonic picture of the Catania region.

  19. Rifte Guaritas basin compartmentation in Camaqua

    International Nuclear Information System (INIS)

    The study contributes to the knowledge of the tectonic evolution of the Guaritas rift basin in Camaqua. Were used aero magnetic geophysical data for modeling the geometry and the depth of the structures and geological units. The research was supported in processing and interpretation of Aster images (EOS-Terra), which were extracted from geophysical models and digital image

  20. Molecular Rift: Virtual Reality for Drug Designers.

    Science.gov (United States)

    Norrby, Magnus; Grebner, Christoph; Eriksson, Joakim; Boström, Jonas

    2015-11-23

    Recent advances in interaction design have created new ways to use computers. One example is the ability to create enhanced 3D environments that simulate physical presence in the real world--a virtual reality. This is relevant to drug discovery since molecular models are frequently used to obtain deeper understandings of, say, ligand-protein complexes. We have developed a tool (Molecular Rift), which creates a virtual reality environment steered with hand movements. Oculus Rift, a head-mounted display, is used to create the virtual settings. The program is controlled by gesture-recognition, using the gaming sensor MS Kinect v2, eliminating the need for standard input devices. The Open Babel toolkit was integrated to provide access to powerful cheminformatics functions. Molecular Rift was developed with a focus on usability, including iterative test-group evaluations. We conclude with reflections on virtual reality's future capabilities in chemistry and education. Molecular Rift is open source and can be downloaded from GitHub. PMID:26558887

  1. Diagnostic approaches for Rift Valley Fever

    Science.gov (United States)

    Disease outbreaks caused by arthropod-borne animal viruses (arboviruses) resulting in significant livestock and economic losses world-wide appear to be increasing. Rift Valley fever (RVF) virus (RVFV) is an important arbovirus that causes lethal disease in cattle, camels, sheep and goats in Sub-Saha...

  2. Land use changing and land use optimization of Lake Baikal basin on the example of two key areas

    Science.gov (United States)

    Solodyankina, S.

    2012-04-01

    Lake Baikal contains roughly 20% of the world's unfrozen surface fresh water. It was declared a UNESCO World Heritage Site in 1996. Today levels of urbanization and economic stress on environmental resources is increasing on the shorts of the lake Baikal. The potential of economic development (industry, local tourism, and mining) of the Severobaykalsky and Sludyansky districts is rather high although they are characterized not only by beneficial features for local economy but also by considerable disadvantages for nature of this world valuable territory. This investigation show human-caused landscape changes during economic development of the two key areas in Baikal water catchment basin during 10 years (point of reference is 2000 year). Key areas are 1) the Baikalo-Patomskoe highland in the north of the Baikal catchment basin (Severobaykalsky district, Republic of Buryatia); 2) Khamar-Daban mountain system in the south of the Baikal catchment basin (Sludyansky districy, Irkutsk region). Since 2000 year land use of the territory has changed. Areas of agriculture were reduced but recreation activity on the bank of the lake was increased. Methods of GIS analysis and local statistic analysis of landscape characteristic were used. Nature, rural and urban areas ratio are estimated. Vegetation and soil condition assessment were made. The essence of this research is in helping to make decisions linked to upcoming problems: situation identification, evaluation and forecasting of the potential landscape condition, optimization of land use, mitigation of impact and mapping of territories and nature resources which have a high ecological value or endangered by industrial impact. For this purpose landscape maps of the territories on the base of the remote sensing information and field investigations were created. They used to calculate potential landscape functions of the territory without taking into account present impact of anthropogenic actions. Land use maps for years

  3. Geology and Petrology of the Southeast Mariana Forearc Rift

    Science.gov (United States)

    Ribeiro, J. M.; Anthony, E. Y.; Bloomer, S. H.; Girard, G.; Ishizuka, O.; Kelley, K. A.; Manton, W. I.; Martinez, F.; Merle, S. G.; Ohara, Y.; Reagan, M. K.; Ren, M.; Stern, R. J.

    2011-12-01

    The southernmost Mariana convergent margin is tectonically and magmatically very active, with submarine arc volcanoes that are sub-parallel to the Malaguana-Gadao Ridge backarc spreading center at ~110km from the trench axis. This activity reflects widening of the S. Mariana Trough. Stretching formed 3 southeast-facing, broad rifts extending from the trench to an extinct arc volcano chain (~80km from the trench axis) that is mostly composed of outcrops and fragments of pillow lavas partially covered by sediments. The 3 rifts comprise the S.E. Mariana Forearc Rift (SEMFR) and are 50-56km long and 3600 to 8200m deep, with axial valleys that narrow near the extinct arc. We studied the SEMFR using one Shinkai 6500 dive in 2008 and two Shinkai 6500 dives and 7 deep-tows in 2010. Near the trench, the SEMFR flanks are very steep and dominated by talus slopes of lava, fine-grained gabbro, diabase and peridotite, sometimes covered by thin volcaniclastic sediments. Few outcrops of pillow lavas, lava flows and volcaniclastics are observed, strongly suggesting that SEMFR morphology is dominated by faulting and landsliding. Lava outcrops are smoother and better preserved towards the extinct arc, suggesting that magmatic activity dominates that part of the rift. 40Ar-39Ar ages of 3 SEMFR lavas are 3.0-3.7Ma, so post-magmatic rifting is younger than ~3Ma. SEMFR pillow lavas are vesicular and microporphyritic with crystallite-rich glassy rinds, indicating they erupted underwater at near-liquidus conditions. In contrast, the lava flows are more crystallized and less vesicular. SEMFR lavas exhibit similar ranges in mineral composition with 2 kinds of plagioclase (An>80% and An90 and Fo<90), suggesting magma mixing. Gabbroic rocks are slightly altered and have olivine and clinopyroxene compositions similar to those of the lavas, but contain less anorthitic plagioclase with a wider range in composition (An20-70) than the lavas. One sample of the extinct arc lava is vesicular and

  4. Torque exerted on the side of crustal blocks controls the kinematics of Ethiopian Rift

    Science.gov (United States)

    Muluneh, Ameha A.; Kidane, Tesfaye; Cuffaro, Marco; Doglioni, Carlo

    2016-04-01

    Plate tectonic stress at active plate boundary can arises from 1) a torque applied on the side of lithospheric blocks and 2) a torque at the base of the lithosphere due to the flow of the underlying mantle. In this paper we use a simple force balance analysis to compare side and basal shear stresses and their contribution in driving kinematics and deformation in the Ethiopian Rift (ER), in the northern part of the East African Rift System (EARS). Assuming the constraints of the ER given by the dimension of the lithospheric blocks, the strain rate, the viscosity of the low velocity zone (LVZ) and the depth of the brittle-ductile transition zone, the lateral torque is several orders of magnitude higher than the basal torque. The minor contribution of basal torque might be due to low viscosity in the LVZ. Both Africa and Somalia plates are moving to the "west" relative to the mantle and there are not slabs that can justify this pull and consequent motion. Therefore, we invoke that westerly oriented tidal torque on Africa and Somalia plates in providing the necessary side torque in the region. This plate motion predicts significant sinistral transtension along the ER and rift parallel strike-slip faulting similar to the estimated angular velocity vector for tectonic blocks and GPS observations. Vertical axis block rotations are observed in areas where the lithospheric mantle is removed and strain is widely distributed.

  5. Negative gravity anomaly over spreading rift valleys: Mid-Atlantic Ridge at 26°N

    Science.gov (United States)

    Bowin, Carl; Milligan, Julie

    1985-03-01

    A pronounced negative free-air gravity anomaly commonly occurs over the median valley of slow spreading ocean ridges. Previous results, using Wiener filtering and cross-spectral analysis techniques for the Mid-Atlantic Ridge, obtained estimates of the elastic plate thickness in the range of 7-13 km and the existence of a residual negative gravity anomaly over the median rift valley, suggesting that the rift valley has a response function different than the remainder of the spreading ridge. In this paper we have improved the derivation of the topography-gravity admittance function for spreading ocean crust by carefully avoiding several sources of spectral splattering when processing the data: (1) selecting data from a cruise that followed a flowline of central North Atlantic relative plate motion and hence is least corrupted by fracture zones; and (2) accounting for the difference in distance between the gravity meter and the regional variation in elevation as the ridge crest is traversed. Improvements of lesser importance include the use of cubic splines to interpolate to equally spaced data rather than linear interpolation, and correction of the free-air anomaly values for long-wavelength variations of the indirect effect. Comparison of the resulting admittance function to elastic flexure response functions suggests an elastic plate thickness of about 8 km. The improved admittance function, when convolved with the ridge topography, provides a predicted gravity profile that accounts very well for the negative anomaly over the rift valley. Therefore, the isostatic response function for the rift valley is similar to that for the topography away from the rift valley.

  6. Graben width controlling syn-rift sedimentation: the Palaeogene southern Upper Rhine Graben as an example

    Science.gov (United States)

    Hinsken, Sebastian; Ustaszewski, Kamil; Wetzel, Andreas

    2007-11-01

    Eocene to Early Oligocene syn-rift deposits of the southern Upper Rhine Graben (URG) accumulated in restricted environments. Sedimentation was controlled by local clastic supply from the graben flanks, as well as by strong intra-basinal variations in accommodation space due to differential tectonic subsidence, that in turn led to pronounced lateral variations in depositional environment. Three large-scale cycles of intensified evaporite sedimentation were interrupted by temporary changes towards brackish or freshwater conditions. They form three major base level cycles that can be traced throughout the basin, each of them representing a stratigraphic sub-unit. A relatively constant amount of horizontal extension ( ΔL) in the range of 4 5 km has been estimated for the URG from numerous cross-sections. The width of the rift ( L f ), however, varies between 35 and more than 60 km, resulting in a variable crustal stretching factor between the bounding masterfaults. Apart from block tilting, tectonic subsidence was, therefore, largely controlled by changes in the initial rift width ( L 0). The along-strike variations of the graben width are responsible for the development of a deep, trough-like evaporite basin (Potash Basin) in the narrowest part of the southern URG, adjacent to shallow areas in the wider parts of the rift such as the Colmar Swell in the north and the Rhine Bresse Transfer Zone that delimits the URG to the south. Under a constant amount of extension, the along-strike variation in rift width is the principal factor controlling depo-centre development in extensional basins.

  7. Lignin phenols in sediments of Lake Baikal, Siberia: Application to paleoenvironmental studies

    Science.gov (United States)

    Orem, W.H.; Colman, Steven M.; Lerch, H.E.

    1997-01-01

    Sediments from three cores obtained from distinct depositional environments in Lake Baikal, Siberia were analyzed for organic carbon, total nitrogen and lignin phenol concentration and composition. Results were used to examine changes in paleoenvironmental conditions during climatic cycles of the late Quaternary (lignin phenol contents were generally lower in the late Pleistocene compared to the Holocene, but with several peaks in concentration during the late Pleistocene. These late Pleistocene peaks in total sedimentary lignin content (dated at about 80, 50 and 30 ka) directly precede or occur during peaks in sedimentary biogenic silica contents. These periods likely represent relatively warm interstadial times, with increased precipitation producing the observed increase in terrestrial runoff and aquatic productivity. Lignin phenol ratios (S/V, C/V and P/V) were used to examine changes in terrestrial vegetation type resulting from changes in paleoenvironmental conditions during the late Pleistocene. A degree of caution must be used in the interpretation of these ratios with regard to vegetation sources and paleoenvironmental conditions, because of potential compositional changes in lignin resulting from biodegradation. Nevertheless, results show that long glacial periods were characterized by terrestrial vegetation composed of a mix of non-woody angiosperm vegetation and minor gymnosperm forest. Shorter interstadial periods are defined by a change to dominant gymnosperm forest and were observed at about 80, 75, 63, 50 and 30 ka, ranging from about 2-6 kyr in duration. These interstadial periods of the late Pleistocene defined by lignin phenol ratios generally occur during longer periods of enhanced sedimentary biogenic silica content (about 10-15 ka in duration), providing corroborative evidence of these warm interstadial periods.Sediments obtained in Lake Baikal were analyzed for organic carbon, total nitrogen and lignin phenol composition and used to study

  8. Semiarid landscapes response to Aeolian processes during Holocene in Baikal Region

    Science.gov (United States)

    Dan'ko, Lidia; Opekunova, Marina

    2010-05-01

    Arid and semiarid landscapes play a significant role in global climate, biogeochemical, and hydrological processes. Regional analysis of the past aeolian processes is essential for improve our understanding of how various landscape and ecosystems responded to climate change in the past. Our investigation presents details on sand dunes and on loess-like sediments. The study areas are situated in the northern part of Baikal Region (Eastern Siberia). In its depressions, the so-called Barguzinskaya and Tunkinskaya Valley surrounded mountain ranges local dunefieds and loess-like sediments have developed. Present climate in the study areas is continental, characterized by low precipitation(mean annual 250-450 mm) and wide annual range of temperature. Field investigations indicate that the Holocene deposits of the Barguzinskaya and Tunkinskaya Valley are sealed the pedo-sedimentary interface. The analytical results suggest that one's represents a changeover from intensified soil formation to accelerated aeolian dust accumulation. The original content of calcium carbonate and gypsum at the base of some sections of loess-like sediments indicates the aeolian origin of these sediments. In whole, the soil horizons are a proof for humid phases. The change was forced by climatic aridity. Absolute dating of the organogenic components of soils (14C) indicate the age positions of the arid and humid climate phases. Our results indicate not only 1-4 long-time episodes of aeolian dust accumulation during the Holocene, but shot-time aeolian accumulation episodes, that were specific for Late Holocene. For example, in the Tunkinskaya Valley the Late Holocene soil formation replaced by aeolian deposit at 1700 - 1900, 800 and 200-250 years ago, in the Barguzinskaya Valley - about 3100 - 2900, 2300 and 600 years ago. It can be concluded that a periodical formation of the aeolian deposits in the semiarid landscapes during Holocene can be postulated. Aeolian and loess-like sediments of the

  9. Magmatic cycles pace tectonic and morphological expression of rifting (Afar depression, Ethiopia)

    Science.gov (United States)

    Medynski, S.; Pik, R.; Burnard, P.; Dumont, S.; Grandin, R.; Williams, A.; Blard, P.-H.; Schimmelpfennig, I.; Vye-Brown, C.; France, L.; Ayalew, D.; Benedetti, L.; Yirgu, G.

    2016-07-01

    The existence of narrow axial volcanic zones of mid-oceanic ridges testifies of the underlying concentration of both melt distribution and tectonic strain. As a result of repeated diking and faulting, axial volcanic zones therefore represent a spectacular topographic expression of plate divergence. However, the submarine location of oceanic ridges makes it difficult to constrain the interplay between tectonic and magmatic processes in time and space. In this study, we use the Dabbahu-Manda Hararo (DMH) magmatic rift segment (Afar, Ethiopia) to provide quantitative constraints on the response of tectonic processes to variations in magma supply at divergent plate boundaries. The DMH magmatic rift segment is considered an analogue of an oceanic ridge, exhibiting a fault pattern, extension rate and topographic relief comparable to intermediate- to slow-spreading ridges. Here, we focus on the northern and central parts of DMH rift, where we present quantitative slip rates for the past 40 kyr for major and minor normal fault scarps in the vicinity of a recent (September 2005) dike intrusion. The data obtained show that the axial valley topography has been created by enhanced slip rates that occurred during periods of limited volcanism, suggestive of reduced magmatic activity, probably in association with changes in strain distribution in the crust. Our results indicate that the development of the axial valley topography has been regulated by the lifetimes of the magma reservoirs and their spatial distribution along the segment, and thus to the magmatic cycles of replenishment/differentiation (<100 kyr). Our findings are also consistent with magma-induced deformation in magma-rich rift segments. The record of two tectonic events of metric vertical amplitude on the fault that accommodated the most part of surface displacement during the 2005 dike intrusion suggests that the latter type of intrusion occurs roughly every 10 kyr in the northern part of the DMH segment.

  10. Fault deformation mechanisms and fault rocks in micritic limestones: Examples from Corinth rift normal faults

    Science.gov (United States)

    Bussolotto, M.; Benedicto, A.; Moen-Maurel, L.; Invernizzi, C.

    2015-08-01

    A multidisciplinary study investigates the influence of different parameters on fault rock architecture development along normal faults affecting non-porous carbonates of the Corinth rift southern margin. Here, some fault systems cut the same carbonate unit (Pindus), and the gradual and fast uplift since the initiation of the rift led to the exhumation of deep parts of the older faults. This exceptional context allows superficial active fault zones and old exhumed fault zones to be compared. Our approach includes field studies, micro-structural (optical microscope and cathodoluminescence), geochemical analyses (δ13C, δ18O, trace elements) and fluid inclusions microthermometry of calcite sin-kinematic cements. Our main results, in a depth-window ranging from 0 m to about 2500 m, are: i) all cements precipitated from meteoric fluids in a close or open circulation system depending on depth; ii) depth (in terms of P/T condition) determines the development of some structures and their sealing; iii) lithology (marly levels) influences the type of structures and its cohesive/non-cohesive nature; iv) early distributed rather than final total displacement along the main fault plane is the responsible for the fault zone architecture; v) petrophysical properties of each fault zone depend on the variable combination of these factors.

  11. Spatial instability of the rift in the St. Paul multifault transform fracture system, Atlantic Ocean

    Science.gov (United States)

    Sokolov, S. Yu.; Zaraiskaya, Yu. A.; Mazarovich, A. O.; Efimov, V. N.; Sokolov, N. S.

    2016-05-01

    The structure of the acoustic basement of the eastern part of the St. Paul multifault transform fracture system hosts rift paleovalleys and a paleonodal depression that mismatch the position of the currently active zones. This displacement zone, which is composed of five fault troughs, is unstable in terms of the position of the rift segments, which jumped according to redistribution of stresses. The St. Paul system is characterized by straightening of the transform transition between two remote segments of the Mid-Atlantic Ridge (MAR). The eastern part of the system contains anomalous bright-spot-like reflectors on the flattened basement, which is a result of atypical magmatism, that forms the standard ridge relief of the acoustic basement. Deformations of the acoustic basement have a presedimentation character. The present-day deformations with lower amplitude in comparison to the basement are accompanied by acoustic brightening of the sedimentary sequence. The axial Bouguer anomalies in the east of the system continue to the north for 120 km from the active segments of the St. Paul system. Currently seismically active segments of the spreading system are characterized by increasing amplitudes of the E-W displacement along the fault troughs. Cross-correlation of the lengths of the active structural elements of the MAR zone (segments of the ridge and transform fracture zones of displacement) indicates that, statistically, the multifault transform fracture system is a specific type of oceanic strike-slip faults.

  12. Stock structure of Lake Baikal omul as determined by whole-body morphology

    Science.gov (United States)

    Bronte, Charles R.; Fleischer, G.W.; Maistrenko, S.G.; Pronin, N.M.

    1999-01-01

    In Lake Baikal, three morphotypes of omul Coregonus autumnalis migratorius are recognized; the littoral, pelagic, and deep-water forms. Morphotype assignment is difficult, and similar to that encountered in pelagic and deep-water coregonines in the Laurentian Great Lakes. Principal component analysis revealed separation of all three morphotypes based on caudal peduncle length and depth, length and depth of the body between the dorsal and anal fin, and distance between the pectoral and the pelvic fins. Strong negative loadings were associated with head measurements. Omul of the same morphotype captured at different locations were classified to location of capture using step-wise discriminant function analysis. Jackknife correct classifications ranged from 43 to 78% for littoral omul from five locations, and 45–86% for pelagic omul from four locations. Patterns of location misclassification of littoral omul suggested that the sub-population structure, hence stock affinity, may be influenced by movements and intermixing of individuals among areas that are joined bathymetrically. Pelagic omul were more distinguishable by site and may support a previous hypothesis of a spawning-based rather than a foraging-based sub-population structure. Omul morphotypes may reflect adaptations to both ecological and local environmental conditions, and may have a genetic basis.

  13. Temporality of Movements of Northern Baikal Reindeer Herders, Hunters and Fishermen

    Directory of Open Access Journals (Sweden)

    Vladimir Davydov

    2012-06-01

    Full Text Available This article addresses the topic of temporality of movement among northern Baikal reindeer herders, hunters, and fishermen. It proposes the distinction between short-term and long-term movements based on the return to places of intensive use. Short-term movements usually do not cover large distances and imply a return to the same place within a relatively short period of time. This type of movement implies the use of one main point where a movement starts and finishes. In contrast to short-term movements, long-term movements require intensive preparation, imply the use of several bases and cover larger distances. They are built upon a set of short-term movements which involve return to certain points of a route from which people operate. Hunting and reindeer herding are not connected only to movement in the taiga; these activities imply the use of stationary and mobile structures and hunting bases. In this context, the village also functions as a kind of base and serves as a point of constant return.

  14. Rift to Post-rift evolution of a "passive" continental margin: The Ponta Grossa Arch, SE Brazil

    Science.gov (United States)

    Franco-Magalhaes, Ana. O. B.; Hackspacher, Peter C.; Glasmacher, Ulrich A.; Saad, A. R.

    2010-05-01

    Low-temperature thermochronology was applied at the Brazilian passive continental margin in order to understand and reconstruct the post-rift evolution since the break-up of southwestern Gondwana. Thermochronological data obtained from apatite fission-track analysis of Neoproterozoic metamorphic and Paleozoic to Mesozoic siliciclastic rocks as well as Mesozoic dikes from the Ponta Grossa Arch provided ages between 66.2 (1.3) and 5.9 (0.8) Ma. These data clearly indicate a post-rift reactivation during the Late Cretaceous and Paleogene. Integrating the results of older thermochronological studies, the reactivation of the southeastern Brazilian margin could be described in three main phases. Furthermore, the spatial distribution of age data indicate a NE-age group (NE of Curitiba) of about 20 Ma and a SW-age group (Curitiba and NW) of about 50 Ma. The change of ages follows the NW-SE trending São Jerônimo-Curiúva fault zone that can be traced offshore into the southern end of the Santos basin. Within the Santos basin these lineament terminates the salt occurrence in the south. It seams to play a major role in the structural evolution of the Santos basin and the Rio Grande Rise. Sedimentological studies in the Santos basin evidenced that the transport direction changed in Miocene time. During the Oligocene and earlier the sediments were transported mainly from the direction of the "Curitiba area" into the Santos basin. Within the Miocene an additional transport direction from an area north of Curitiba developed.

  15. Integration of geophysical and geochemical data for the study of the North-Est Rift dynamics on Mount Etna volcano

    Science.gov (United States)

    Tripaldi, Simona; Balasco, Marianna; Lapenna, Vincenzo; Loddo, Mariano; Moretti, Pierpaolo; Neri, Marco; Piscitelli, Sabatino; Romano, Gerardo; Schiavone, Domenico; Siniscalchi, Agata

    2010-05-01

    Mount Etna volcano is located at the front of the Apennine-Maghrebian Chain, along the Malta Escarpment, and lies on the Pliocene-Pleistocene foredeep deposits. The apparatus is characterized by a central conduit divided, at surface, into four summit craters, with a maximum elevation of 3329 m above sea level. In the upper part (>1500 m), three main "rift zones" can be identified: the NE Rift, the S Rift and the W Rift. These structures are probably shallow, do not tap deep magma and are usually directly fed by the central conduit, rather than from an underlying shallow magma chamber. The volcano is characterized by the displacement of its eastern to southern flanks, involving an on-shore area of >700 km2. This is confined to the north by the Pernicana fault system (PFS). The PFS, located on the NE sector of Mt. Etna, is >18 km long, from the NE Rift to the coastline. The western PFS is seismogenetic, while the eastern PFS undergoes creep movements. In its westernmost section, the PFS is divided into two main segments, the more northerly of these starting from the Monte Nero area of the NE Rift and the more southerly from Piano Provenzana. The PFS is kinematically connected, with a feedback mechanism, to eruptions occurring on the NE Rift. In spite of this relationship, the PFS has shown continuous activity between 1947 and 2002, a period when no eruptions occurred on the NE Rift, with major surface fracturing and seismic activity in 1984-1988. Geophysical-geochemical investigation were conducted in the area where PFS is connected with the NE Rift, including the areas characterized by a consistent slip, as well as those structures through which the motion occurs. The aim of this work is to provide a multidisciplinary frame to characterize this dynamic and structural natural system. Magnetotelluric, geoelectric, self-potential and and soil gas emissions measurements give a comprehensive view on the geometry and depth of the lithological units together with fluid

  16. Two-dimensional surface velocity field across the Asal Rift (Afar Depression) from 11 years of InSAR data

    Science.gov (United States)

    Tomic, J.; Peltzer, G.; Doubre, C.

    2010-12-01

    We analyze two-dimensional surface velocity maps of the 200x400 km2 region covering the Asal Rift located at the western tip of the Aden Ridge, using the 1997-2008 archive of InSAR data from the RADARSAT satellite. The large phase signal due to turbulent tropospheric conditions over the Afar region is mostly removed from the 11-year average line of sight (LOS) velocity maps, revealing a clear deformation signal across the rift. Assuming the horizontal velocity to be parallel to the direction predicted by the Arabia/Somalia rotation pole (Vigny et al., 2007), we compute the fields of the vertical and horizontal components of the velocity from the ascending and descending line of sight (LOS) velocity maps. The horizontal velocity field shows the divergence between the Arabia and Somalia plates concentrated along the Asal rift, and veering toward the south-west, into the Derella-Gaggade basin system. The Asal rift shoulders open at a rate of ~15 mm/yr, while the horizontal velocity decreases away from the rift down to the plate motion rate of ~11-12 mm/yr. The vertical velocity field shows a ~60 km wide zone of doming centered over the rift associated with shoulder uplift and subsidence of the rift inner floor. The differential movement between the shoulders and the rift floor is accommodated by two main antithetic faults: the south-dipping Fault γ well developed in the topography and the recent north-dipping Fault E with a small topographic scarp. We explain the observed velocity field with 2D-forward and 3D-inverse models combining dislocations of rectangular elements in an elastic half-space. The forward model allows us to estimate the overall geometry and rates of an inflating body at 5 km depth (represented by a combination of a dike and a horizontal sill) and creep on two faults. The least-squares inverse model shows an inflating body located under the Fieale volcano expanding at 2 106 m3/yr. Faults bordering the rift show down-dip and opening motion especially

  17. The North Polar Spur and Aquila Rift

    CERN Document Server

    Sofue, Yoshiaki

    2014-01-01

    Soft X-ray intensity at 0.89 keV along the North Polar Spur is shown to follow the extinction law due to the interstellar gas in the Aquila Rift by analyzing the ROSAT archival data, which proves that the NPS is located behind the rift. The Aquila-Serpens molecular clouds, where the X-ray optical depth exceeds unity, are shown to have a mean LSR velocity of v=7.33 +/- 1.94 km/s, corresponding to a kinematic distance of r=0.642 +/- 0.174 kpc. Assuming a shell structure, a lower limit of the distance to NPS is derived to be 1.01 +/- 0.25 kpc, with the shell center being located farther than 1.1 kpc. Based on the distance estimation, we argue that the NPS is a galactic halo object.

  18. Conflict Motives in Kenya's North Rift Region

    OpenAIRE

    Van den Broeck, Jan

    2011-01-01

    Kenya’s North Rift Region continuous to suffer from violent conflict in which a series of actors are involved. Armed groups perform widespread and devastating raids against neighbouring communities. The strength of these warrior groups varies regionally and from case to case. Security operations are often typified by disproportionate brutality. Power figures are known to instigate violence or organise and finance armed militias. Uasin Gishu and Trans-Nzoia bore the brunt of the...

  19. Landscapes of Lake Baikal: «To protect or to build» Town planning motivations of the stable development of the region

    OpenAIRE

    Andrei Bolshakov

    2006-01-01

    Building, planning, engineering facilities of the inhabited places of Lake Baikal and organization of the recreational areas for tourists, as well as organization of the particularly reserved natural territories should maintain everlastingly untouched the beauty and the cleanness, the natural diversity and the uniqueness of the nature of Lake Baikal, that makes it glorious and attracts tourists and inhabitants so much. Is it possible? And how to combine technical conditions of civilization, t...

  20. GLIMPCE Seismic reflection evidence of deep-crustal and upper-mantle intrusions and magmatic underplating associated with the Midcontinent Rift system of North America

    Science.gov (United States)

    Behrendt, J. C.; Hutchinson, D. R.; Lee, M.; Thornber, C. R.; Tréhu, A.; Cannon, W.; Green, A.

    1990-02-01

    Deep-crustal and Moho reflections, recorded on vertical incidence and wide angle ocean bottom Seismometer (OBS) data in the 1986 GLIMPCE (Great Lakes International Multidisciplinary Program on Crustal Evolution) experiment, provide evidence for magmatic underplating and intrusions within the lower crust and upper mantle contemporaneous with crustal extension in the Midcontinent Rift system at 1100 Ma. The rift fill consists of 20-30 km (7-10 s) of basalt flows, secondary syn-rift volcaniclastic and post-basalt sedimentary rock. Moho reflections recorded in Lake Superior over the Midcontinent Rift system have times from 14-18 s (about 46 km to as great as 58 km) in contrast to times of about 11-13 s (about 36-42 km crustal thickness) beneath the surrounding Great Lakes. The Seismically complex deep-crust to mantle transition zone (30-60 km) in north-central Lake Superior, which is 100 km wider than the rift half-graben, reflects the complicated products of tectonic and magmatic interaction of lower-crustal and mantle components during evolution or shutdown of the aborted Midcontinent Rift. In effect, mantle was changed into crust by lowering Seismic velocity (through intrusion of lower density magmatic rocks) and increasing Moho (about 8.1 km s-1 depth.

  1. Morphotectonic architecture of the Transantarctic Mountains rift flank between the Royal Society Range and the Churchill Mountains based on geomorphic analysis

    Science.gov (United States)

    Demyanick, Elizabeth; Wilson, Terry J.

    2007-01-01

    Extensional forces within the Antarctic Plate have produced the Transantarctic Mountains rift-flank uplift along the West Antarctic rift margin. Large-scale linear morphologic features within the mountains are controlled by bedrock structure and can be recognized and mapped from satellite imagery and digital elevation models (DEMs). This study employed the Antarctic Digital Database DEM to obtain slope steepness and aspect maps of the Transantarctic Mountains (TAM) between the Royal Society Range and the Churchill Mountains, allowing definition of the position and orientation of the morphological axis of the rift-flank. The TAM axis, interpreted as a fault-controlled escarpment formed by coast-parallel retreat, provides a marker for the orientation of the faulted boundary between the TAM and the rift system. Changes in position and orientation of the TAM axis suggests the rift flank is segmented into tectonic blocks bounded by relay ramps and transverse accommodation zones. The transverse boundaries coincide with major outlet glaciers, supporting interpretation of rift structures between them. The pronounced morphological change across Byrd Glacier points to control by structures inherited from the Ross orogen.

  2. Thermo-mechanical modeling of continental rift evolution over mantle upwelling in presence of far-field stresses

    Science.gov (United States)

    Koptev, Alexander; Burov, Evgueni; Calais, Eric; Leroy, Sylvie; Gerya, Taras

    2016-04-01

    We conducted fully-coupled high resolution rheologically consistent 3D thermo-mechanical numerical models to investigate the processes of mantle-lithosphere interaction (MLI) in presence of preexisting far-field tectonic stresses. MLI-induced topography exhibits strongly asymmetric small-scale 3D features, such as rifts, flexural flank uplifts and complex faults structures. This suggests a dominant role of continental rheological structure and intra-plate stresses in controlling continental rifting and break-up processes above mantle upwelling while reconciling the passive (far-field tectonic stresses) versus active (plume-activated) rift concepts as our experiments show both processes in action. We tested different experiments by varying two principal controlling parameters: 1) horizontal extension velocity and 2) Moho temperature used as simplified indicator of the thermal and rheological lithosphere layering. An increase in the applied extension expectedly gives less localized deformation at lithospheric scale: the growth of external velocity from 1.5 mm/years to 6 mm/years leads to enlargement of the rift zones from 75-175 km to 150-425 km width. On the contrary, increasing of the lithospheric geotherm has an opposite effect leading to narrowing of the rift zone: the change of the Moho isotherm from 600°C to 800°C causes diminution of the rift width from 175-425 km to 75-150 km. Some of these finding are contra-intuitive in terms of usual assumptions. The models refer to strongly non-linear impact of far-field extension rates on timing of break-up processes. Experiments with relatively fast far-field extension (6 mm/years) show intensive normal fault localization in crust and uppermost mantle above the plume head at 15-20 Myrs after the onset of the experiment. When plume head material reaches the bottom of the continental crust (at 25 Myrs), the latter is rapidly ruptured (<1 Myrs) and several steady oceanic floor spreading centers develop. Slower (3 mm

  3. Anomalous deep earthquakes beneath the East African Rift: evidence for rift induced delamination of the lithosphere?

    Science.gov (United States)

    Lindenfeld, Michael; Rümpker, Georg; Schmeling, Harro; Wallner, Herbert

    2010-05-01

    The over 5000 m high Rwenzori Mountains are situated within the western branch of the East African Rift System, at the border between Uganda and the Democratic Republic of Congo. They represent a basement block within the rift valley whose origin and relation to the evolution of the EARS are highly puzzling. During 2006/2007 a network of 27 seismological stations was operated in this area to investigate crustal and upper mantle structure in conjunction with local seismicity. The data analysis revealed unexpectedly high microseismic activity. On average more than 800 events per month could be located with magnitudes ranging from 0.5 to 5.1. Hypocentral depths go as deep as 30 km with a pronounced concentration of activity at a depth of about 15 km. This presentation focuses on a cluster of seven earthquakes that were located at anomalous depths between 53 and 60 km. According to our present knowledge these are the deepest events so far observed within the EARS and the African Plate. Their origin might be connected to magmatic intrusions. However, the existence of earthquakes at this depth is enigmatic, especially within a rifting regime were one expects hot and weak material close to the surface, which is not capable of seismogenic deformation. We think that these events are closely related to the evolution of the Rwenzoris. A recent hypothesis to explain the extreme uplift of the Rwenzori Mountains is rift induced delamination (RID) of mantle lithosphere that is captured between two approaching rift segments. By numerical modelling we show that the RID-process is also able to bring material that is cold and brittle enough to release seismic energy into greater depth. Therefore the RID-mechanism gives a consistent explanation for the detected deep events as well as for the uplift of a mountain block in a rift setting.

  4. A search for neutrino signal from dark matter annihilation in the center of the Milky Way with Baikal NT200

    CERN Document Server

    Avrorin, A D; Aynutdinov, V M; Bannasch, R; Belolaptikov, I A; Bogorodsky, D Yu; Brudanin, V B; Budnev, N M; Danilchenko, I A; Demidov, S V; Domogatsky, G V; Doroshenko, A A; Dyachok, A N; Dzhilkibaev, Zh -A M; Fialkovsky, S V; Gafarov, A R; Gaponenko, O N; Golubkov, K V; Gress, T I; Honz, Z; Kebkal, K G; Kebkal, O G; Konischev, K V; Korobchenko, A V; Koshechkin, A P; Koshel, F K; Kozhin, A V; Kulepov, V F; Kuleshov, D A; Ljashuk, V I; Milenin, M B; Mirgazov, R A; Osipova, E R; Panfilov, A I; Pan'kov, L V; Pliskovsky, E N; Rozanov, M I; Rjabov, E V; Shaybonov, B A; Sheifler, A A; Shelepov, M D; Shkurihin, A V; Smagina, A A; Suvorova, O V; Tabolenko, V A; Tarashansky, B A; Yakovlev, S A; Zagorodnikov, A V; Zhukov, V A; Zurbanov, V L

    2015-01-01

    We reanalyze dataset collected during 1998-2003 years by the low energy threshold (10 GeV) neutrino telescope NT200 in the lake Baikal in searches for neutrino signal from dark matter annihilations near the center of the Milky Way. Two different approaches are used in the present analysis: counting events in the cones around the direction towards the Galactic Center and the maximum likelihood method. We assume that the dark matter particles annihilate dominantly over one of the annihilation channels $b\\bar{b}$, $W^+W^-$, $\\tau^+\\tau^-$, $\\mu^+\\mu^-$ or $\

  5. Lake Baikal climatic record between 310 and 50 ky BP: Interplay between diatoms, watershed weathering and orbital forcing

    OpenAIRE

    T. Grygar; A. Bláhová; D. Hradil; Bezdička, P. (Petr); J. Kadlec; Schnabl, P.; G. Swann; Hedi Oberhänsli

    2007-01-01

    The environmental record from Lake Baikal, Russia, from 310 to 50 ky BP (MIS 9a to MIS 3) was interpreted using rock magnetic, UV–Vis spectral, mineralogical, and diatom analyses. The age model was based on a correlation of the diatom and chemical weathering records and the summer insolation curve at 55°N and checked against an age model based on the proxy of relative palaeointensity of the Earth's magnetic field. Peaks in chemical weathering within the watershed, inferred from maximum concen...

  6. Seismicity of the Earth 1900-2013 East African Rift

    Science.gov (United States)

    Hayes, Gavin P.; Jones, Eric S.; Stadler, Timothy J.; Barnhart, William D.; McNamara, Daniel E.; Benz, Harley M.; Furlong, Kevin P.; Villaseñor, Antonio

    2014-01-01

    The East African Rift system (EARS) is a 3,000-km-long Cenozoic age continental rift extending from the Afar triple junction, between the horn of Africa and the Middle East, to western Mozambique. Sectors of active extension occur from the Indian Ocean, west to Botswana and the Democratic Republic of the Congo (DRC). It is the only rift system in the world that is active on a continent-wide scale, providing geologists with a view of how continental rifts develop over time into oceanic spreading centers like the Mid-Atlantic Ridge.

  7. Gravity study of the Central African Rift system: A model of continental disruption 1. The Ngaoundere and Abu Gabra Rifts

    Science.gov (United States)

    Browne, S. E.; Fairhead, J. D.

    1983-05-01

    A regional compilation of published and unpublished gravity data for Central Africa is presented and reveals the presence of a major rift system, called here, the Central African Rift System. It is proposed that the junction area between the Ngaoundere and Abu Gabra rift arms in Western Sudan forms an incipient intraplate, triple-junction with the as yet unfractured, but domally uplifted and volcanically active, Darfur swell. It is only the Darfur swell that shows any similarities to the uplift and rift history of East Africa. The other two rifts arms are considered to be structurally similar to the early stages of passive margin development and thus reflect more closely the initial processes of continental fragmentation than the structures associated with rifting in East Africa.

  8. Post-rift tectonic reactivation and its effect on deep-water deposits in the Qiongdongnan Basin, northwestern South China Sea

    Science.gov (United States)

    Mao, Kainan; Xie, Xinong; Xie, Yuhong; Ren, Jianye; Chen, Hui

    2015-09-01

    The post-rift evolution of extensional basins is traditionally thought to be dominated by thermal subsidence due to cessation of the major fault activity during the post-rift stage. The Qiongdongnan Basin, which is located in the northwestern continental margins of the South China Sea, has exhibited significant deviations from typical post-rift characteristics. In the basin, a distinct tectonic reactivation occurred since the Late Miocene (11.6 Ma). Three notable aspects of the observed tectonic reactivation during the post-rift stage include, (1) pre-existing fault reactivation, (2) multiple large-scale magmatic intrusions, and (3) rapid post-rift subsidence. During this period the basin infill significantly changed in depositional environments shifting rapidly from littoral-neritic to bathyal-abyssal environments since Late Miocene. The pre-existing fault activity along the No. 2 fault of the basin resulted in the formation of initial shelf breaks and led to the development of continental slope. In addition, the pre-existing faults along the Central Depression zone created a small sub-basin with distinctive axial negative topography characteristics formed between structural highs. These geomorphological changes led to the formation of the Central Canyon. Large-scale magmatic intrusions occurred along the fault zone in the Central Depression of the basin during the post-rift stage. Those deviations, as evidenced from pre-existing fault reactivation, magmatic intrusions, and rapid post-rift subsidence in the Qiongdongnan Basin is believed to be related to the Hainan Plume event.

  9. Magmatic cycles pace tectonic and morphological expression of rifting (Afar depression, Ethiopia)

    Science.gov (United States)

    Medynski, Sarah; Pik, Raphael; Burnard, Peter; Blard, Pierre-Henri

    2016-04-01

    Dyking and faulting at mid-oceanic ridges are concentrated in narrow axial volcanic zones due to focussing of both melt distribution and tectonic strain along the plate boundary. Due to the predominantly submarine location of oceanic ridges, the interplay between these processes remain poorly constrained in time and space. In this study, we use the Dabbahu-Manda Hararo (DMH) magmatic rift segment (MRS) (Afar, Ethiopia) to answers the long debated chicken-egg question about magmatic and tectonic processes in extensive context: which on comes first, and how those two processes interplay to finally form oceanic ridges? The DMH MRS is an oceanic ridge analogue and here we present quantitative slip rates on major and minor normal fault scarps for the past 40 kyr in the vicinity of a recent (September 2005) dike intrusion. Our data show that the long-term-vertical slip rates of faults that ruptured in 2005 are too low to explain the present rift topography and that the 2005 strain distribution is not the main stress accommodating mechanism in the DMH segment. Instead, we show that the axial valley topography is created by enhanced slip rates which occur only when the amount of magma available in magma reservoirs is limited, thus preventing dykes from reaching the surface. Our results suggest that development of the axial valley topography is regulated by the magma reservoir lifetime and, thus, to the magmatic cycles of replenishment/differentiation (< 100 ky). This implies that in the DMH rift system (with a magma supply typical of an intermediate spreading centre), significant topography of the axial rift valley is transient, and is expressed only when magma available in the reservoirs decreases. The absence of tilting on the rift margins over the last 200 kyr also suggests that amagmatic accommodation of extension is not required over this time period. Extension instead is accommodated by dykes injected laterally from multiple ephemeral reservoirs located along the DMH

  10. How Is Lower Crust Modified As A Neo-Rift Becomes A Paleo-Rift and Part Of The Craton?

    Science.gov (United States)

    Gilbert, M. C.

    2004-12-01

    The Southern Oklahoma Aulacogen (SOA), at the southern end of Laurentia (present coordinates), if behaving as neo-rifts, such as the Rio Grande Rift, presumably possessed a rift structure in the Cambrian with a continental thickness of about 28km. Seismic data, though sparse, suggest a present thickness of the SOA is about 45km, indistinguishable from adjacent rifted Proterozoic crust. By what process do we add 15km to the original SOA crust: underplating, eclogite-gabbro transformation, or deformation? This question has bearing on how we understand and interpret all paleo-rifts now a part of continental cores. Geology of the southern Midcontinent of North America does not show evidence of significant thermal events in the Phanerozoic. This effectively rules out underplating and phase transformation as a cause of change in M-discontinuity depth. Present SOA outcrops are in the Wichita Mountains of southwestern Oklahoma, part of the easternmost Ancestral Rockies. These outcrops are in the Wichita-Amarillo crustal block uplifted about 7km in the Pennsylvanian. The Anadarko Basin to the north went down about 7km. Large Pennsylvanian thrust faults in the upper brittle crust are documented. Thus it appears that compressive deformation may be able to account for the change in crustal thickness from neo-rift type to paleo-rift and craton type. However, the accommodation made in the lower crust may be more dramatic than deformation in the upper crust because shortening, and thickening of the order of 2X, is probably required. Comparisons with other paleo-rifts in North America, such as the Middle Proterozoic Midcontinent Rift and the NeoProterozoic Reelfoot Rift, show that their crustal thicknesses now also match their previously rifted margins. Can the same sequence, as seems to be the case with the SOA, apply to other paleo-rifts?

  11. Drift dives and prolonged surfacing periods in Baikal seals: resting strategies in open waters?

    Science.gov (United States)

    Watanabe, Yuuki Y; Baranov, Eugene A; Miyazaki, Nobuyuki

    2015-09-01

    Many pinnipeds frequently rest on land or ice, but some species remain in open waters for weeks or months, raising the question of how they rest. A unique type of dive, called drift dives, has been reported for several pinnipeds with suggested functions of rest, food processing and predator avoidance. Prolonged surfacing periods have also been observed in captive seals and are thought to aid food processing. However, information from other species in a different environment would be required to better understand the nature and function of this behavior. In this study, we attached multi-sensor tags to Baikal seals Pusa sibirica, a rare, freshwater species that has no aquatic predators and few resting grounds during the ice-free season. The seals exhibited repeated drift dives (mean depth, 116 m; duration, 10.1 min) in the daytime and prolonged periods at the surface (mean duration, 1.3 h) mainly around dawn. Drift dives and prolonged surfacing periods were temporally associated and observed between a series of foraging dives, suggesting a similar function, i.e. a combination of resting and food processing. The maximum durations of both drift and foraging dives were 15.4 min, close to the aerobic dive limit of this species; therefore, metabolic rates might not be significantly depressed during drift dives, further supporting the function of food processing rather than purely resting. Our results also show that drift diving can occur in a predator-free environment, and thus predator avoidance is not a general explanation of drift dives in pinnipeds. PMID:26139663

  12. GRAVITY VARIATIONS AND RECENT GEODYNAMICS OF THE SOUTH-WESTERN PART OF THE BAIKAL REGION

    Directory of Open Access Journals (Sweden)

    V. Yu. Timofeev

    2015-09-01

    Full Text Available Modern methods for determination of gravity values make it possible to obtain measurements with the accuracy up to 10–9 from g0 of the normal value (up to 1 microgal = 10 m/sec2. While all the systematic and periodic effects are excluded, a question is raised about stability of the gravity field of the Earth over time. Changes of the altitude (the Earth’s radius with time can be estimated with an accuracy of 0.1 mm by modern space geodetic techniques, such as VLBI method. Our experiments for evaluation of stability of the gravity values over the past decades are based on the data obtained by Russian and foreign observatories using absolute ballistic laser gravimeters. The results put a limit of 10–10 per year to changes of the Earth’s radius. These estimations can be useful for testing hypotheses in tectonics.Measurements of non-tidal variations of gravity (Δg, which were obtained from 1992 to 2012 at the Talaya seismic station (located in the south-western part of the Baikal region, are interpreted together with GPS observation data. At the Talaya seismic station, the linear component of gravity variations corresponds to changes in the elevation of this site. The correlation coefficient is close to the normal value of the vertical gradient of gravity. At this site, coseismic gravity variations at the time of the Kultuk earthquake (27 August 2008, Mw=6.3 were caused by a combined effect of the change of the site’s elevation and deformation of the crust. Our estimations of the coseismic effects are consistent with results obtained by modeling based on the available seismic data.

  13. [Anoxygenic phototrophic bacteria from microbial communities of Goryachinsk Thermal Spring (Baikal Area, Russia)].

    Science.gov (United States)

    Kalashnikov, A M; Gaĭsin, V A; Sukhacheva, M V; Namsaraeva, B B; Panteleeva, A N; Nuianzina-Boldareva, E N; Kuznetsov, B B; Gorlenko, V M

    2014-01-01

    Species composition of anoxygenic phototrophic bacteria in microbial mats of the Goryachinsk thermal spring was investigated along the temperature gradient. The spring belonging to nitrogenous alkaline hydrotherms is located at the shore of Lake Baikal 188 km north-east from Ulan-Ude. The water is of the sulfate-sodium type, contains trace amounts of sulfide, salinity does not exceed 0.64 g/L, pH 9.5. The temperature at the outlet of the spring may reach 54 degrees C. The cultures of filamentous anoxygenic phototrophic bacteria, nonsulfur and sulfur purple bacteria, and aerobic anoxygenic phototrophic bacteria were identified using the pufLM molecular marker. The fmoA marker was used for identification of green sulfur bacteria. Filamentous cyanobacteria predominated in the mats, with anoxygenic phototrophs comprising a minor component of the phototrophic communities. Thermophilic bacteria Chloroflexus aurantiacus were detected irn the samples from both the thermophilic and mesophilic mats. Cultures ofnonsulfur purple bacteria similar to Blastochloris sulfoviridis and Rhodomicrobium vannielii were isolatd from the mats developing at high (50.6-49.4 degrees C) and low temperatures (45-20 degrees C). Purple sulfur bacteria Allochromatium sp. and Thiocapsa sp., as well as green sulfur bacteria Chlorobium sp., were revealedin low-temperature mats. Truly thermophilic purple and gree sulfur bacteria were not found in the spring. Anoxygenic phototrophic bacteria found in the spring were typical of the sulfuret communities, for which the sulfur cycle is mandatory. The presence of aerobic bacteriochlorophylla-containing bacteria identified as Agrobacterium (Rhizobium) tumifaciens in the mesophilic (20 degrees C) mat is of interest. PMID:25844460

  14. Crustal Architecture of the Inverted Central Lapland Rift Along the HUKKA 2007 Profile

    Science.gov (United States)

    Tiira, Timo; Janik, Tomasz; Kozlovskaya, Elena; Grad, Marek; Korja, Annakaisa; Komminaho, Kari; HegedŰs, Endre; Kovács, Csaba Attila; Silvennoinen, Hanna; BrŰckl, Ewald

    2014-07-01

    We have studied the lateral velocity variations along a partly buried inverted paleo-rift in Central Lapland, Northern Europe with a 2D wide-angle reflection and refraction experiment, HUKKA 2007. The experiment was designed to use seven chemical explosions from commercial and military sites as sources of seismic energy. The shots were recorded by 102 stations with an average spacing of 3.45 km. Two-dimensional crustal models of variations in P-wave velocity and Vp/Vs-ratio were calculated using the ray tracing forward modeling technique. The HUKKA 2007 experiment comprises a 455 km long profile that runs NNW-SSE parallel to the Kittilä Shear Zone, a major deformation zone hosting gold deposits in the area. The profile crosses Paleoproterozoic and reactivated Archean terranes of Central Lapland. The velocity model shows a significant difference in crustal velocity structure between the northern (distances 0-120 km) and southern parts of the profile. The difference in P-wave velocities and Vp/Vs ratio can be followed through the whole crust down to the Moho boundary indicating major tectonic boundaries. Upper crustal velocities seem to vary with the terranes/compositional differences mapped at the surface. The lower layer of the upper crust displays velocities of 6.0-6.1 km/s. Both Paleoproterozoic and Archean terranes are associated with high velocity bodies (6.30-6.35 km/s) at 100 and 200-350 km distances. The Central Lapland greenstone belt and Central Lapland Granitoid complex are associated with a 4 km-thick zone of unusually low velocities (distances between 120 and 220 km. We interpret the HUKKA 2007 profile to image an old, partly buried, inverted continental rift zone that has been closed and modified by younger tectonic events. It has structural features typical of rifts: inward dipping rift shoulders, undulating thickness of the middle crust, high velocity lower crust and a rather uniform crustal thickness of 48 km.

  15. Geodetic measurements and numerical models of rifting in Northern Iceland for 1993-2008

    Science.gov (United States)

    Ali, S. T.; Feigl, K. L.; Carr, B. B.; Masterlark, T.; Sigmundsson, F.

    2014-03-01

    Rifting occurs as episodes of active deformation in individual rift segments of the Northern Volcanic Zone (NVZ) in Iceland. Here, we simulate deformation around the Krafla central volcano and rift system in the NVZ using a 3-D numerical model in order to explain synthetic aperture radar data acquired by the ERS and Envisat satellite missions between 1993 and 2008. The deformation is non-linear in time over the observed interval. The observed deformation can be explained by a combination of three processes, including: (i) secular plate spreading between the North American and Eurasian plates at a rate of 18.2 mm yr-1, (ii) viscoelastic relaxation following the Krafla Fires rifting episode between 1975 and 1984 and (iii) inflation/deflation of shallow magma chambers beneath the Theistareykir and Krafla central volcanoes. We minimize the misfit between the observed and modelled values of the range change gradient, averaged over all samples, using a simulated annealing algorithm that uses a first-order Taylor series to approximate the fitting function. The calibration parameters include the locking depth of the plate boundary and the rheological properties of the lower crust and mantle. The 68-per cent confidence intervals for the parameters in the solution that best fits the data are: (i) a locking depth of 8.0 to 9.5 km, (ii) a viscosity of 19 to 49 EPa.s (1 EPa.s =1018 Pa.s) in the lower crust at depths between 8 and 24 km and (iii) a viscosity of 5 to 9 EPa.s in the upper mantle below 24 km.

  16. Tectonic focusing of voluminous basaltic eruptions in magma-deficient backarc rifts

    Science.gov (United States)

    Anderson, Melissa O.; Hannington, Mark D.; Haase, Karsten; Schwarz-Schampera, Ulrich; Augustin, Nico; McConachy, Timothy F.; Allen, Katie

    2016-04-01

    The Coriolis Troughs of the New Hebrides subduction zone are among the youngest backarc rifts in the world. They reach depths of >3 km, despite their small size (morphology is characteristic of magma-deficient arc rifts in the early stages of backarc extension, where the rate of extension and subsidence exceeds the magmatic input. Unexpectedly, the youngest graben, the Vate Trough, contains a centrally-located 1000-m tall and 14-km wide shield volcano with a large, 5 × 8 km breached summit caldera. The Nifonea axial volcano has a volume of ∼126 km3, reflecting unusually high extrusion rates, given its young age (lake, the first described from a submarine backarc setting. Extensive diffuse hydrothermal venting and several clusters of black smoker chimneys, with the highest recorded fluid temperatures (368 °C) in the SW Pacific, occur on the youngest lava flows. Comparison with similar axial volcanoes on the mid-ocean ridges suggests that the 46 ×106 m3 of sheet flows in the caldera could have been erupted in <30 hours. The focusing of voluminous basaltic eruptions into an otherwise magma-deficient backarc has been linked to strong left-lateral transtension caused by clockwise rotation and segmentation of the southern portion of the arc after collision with d'Entrecasteaux ridge. This study shows that the upper plate stresses can result in dramatic variability in magma supply and hydrothermal activity at the earliest stages of arc rifting and could explain the wide range of melt compositions, volcanic styles and mineral deposit types found in nascent backarc rifts.

  17. Timing of the volcanism of the southern Kivu province: Implications for the evolution of the western branch of the East African rift system

    International Nuclear Information System (INIS)

    New K-Ar datings of a large rock sampling from the South Kivu volcanic province (Zaire, Rwanda, Burundi) are reported. No ages older than 10 Ma have been obtained. This result contrasts with older assumptions and puts severe constraints on the relations between volcanism and rift evolution. From 10 to 7.5 Ma tholeiitic volcanism predominates corresponding to an episode of fissural eruptions; from 7.5 to 5 Ma alkali basalts and their differentiates are mainly erupted in localized rifts. A culmination of activity occurs between 6.0 and 5.5 Ma ago. Pleistocene alkalic volcanism is restricted to localized areas. The transition from tholeiites to alkali-basaltic volcanism dated around 7.5 Ma would correspond to a major rifting phase which corresponds with the initiation of Lake Kivu Basin formation. The distribution of tholeiitic rocks in the central part of the rift, and predominantly alkalic rocks along the western active border fault, strengthens the idea that the former are associated with tension, the latter with vertical, possibly also strike-slip movements. Volcanism in the Western Rift is restricted to areas where tension occurs in a zone which is located between two zones of strike-slip. In the South Kivu area normal faults intersect strike-slip faults and this seems to have determined the location of volcanic activity. Magma formation is considered to be related with shear heating combined with adiabatic decompression in ascending diapirs. This implies heating at the lithosphere-asthenosphere boundary as a result of extension. Generation of tholeiitic or alkalic magmas is connected with the variable ascent velocity of mantle diapirs or with variable shear heating along the shear zone. Changes in both magma composition and intensity of volcanic activity with time are considered to be related to major phases of rift evolution. (orig.)

  18. Hydrothermal bitumen generated from sedimentary organic matter of rift lakes - Lake Chapala, Citala Rift, western Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Zarate del Valle, Pedro F. [Departamento de Quimica, Universidad de Guadalajara - CUCEI, Ap. Postal 4-021, Guadalajara, Jalisco CP 44410 (Mexico); Simoneit, Bernd R.T. [Environmental and Petroleum Geochemistry Group, College of Oceanic and Atmospheric Sciences, Oregon State University, Building 104, Corvallis, OR 97331-5503 (United States)]. E-mail: simoneit@coas.oregonstate.edu

    2005-12-15

    Lake Chapala is in the Citala Rift of western Mexico, which in association with the Tepic-Zacoalco and Colima Rifts, form the well-known neotectonic Jalisco continental triple junction. The rifts are characterized by evidence for both paleo- and active hydrothermal activity. At the south shore of the lake, near the Los Gorgos sublacustrine hydrothermal field, there are two tar emanations that appear as small islands composed of solid, viscous and black bitumen. Aliquots of tar were analyzed by GC-MS and the mixtures are comprised of geologically mature biomarkers and an UCM. PAH and n-alkanes are not detectable. The biomarkers consist mainly of hopanes, gammacerane, tricyclic terpanes, carotane and its cracking products, steranes, and drimanes. The biomarker composition and bulk C isotope composition ({delta} {sup 13}C = -21.4%) indicate an organic matter source from bacteria and algae, typical of lacustrine ecosystems. The overall composition of these tars indicates that they are hydrothermal petroleum formed from lacustrine organic matter in the deeper sediments of Lake Chapala exceeding 40 ka ({sup 14}C) in age and then forced to the lakebed by tectonic activity. The absence of alkanes and the presence of an UCM with mature biomarkers are consistent with rapid hydrothermal oil generation and expulsion at temperatures of 200-250 deg. C. The occurrence of hydrothermal petroleum in continental rift systems is now well known and should be considered in future energy resource exploration in such regions.

  19. Hydrothermal bitumen generated from sedimentary organic matter of rift lakes - Lake Chapala, Citala Rift, western Mexico

    International Nuclear Information System (INIS)

    Lake Chapala is in the Citala Rift of western Mexico, which in association with the Tepic-Zacoalco and Colima Rifts, form the well-known neotectonic Jalisco continental triple junction. The rifts are characterized by evidence for both paleo- and active hydrothermal activity. At the south shore of the lake, near the Los Gorgos sublacustrine hydrothermal field, there are two tar emanations that appear as small islands composed of solid, viscous and black bitumen. Aliquots of tar were analyzed by GC-MS and the mixtures are comprised of geologically mature biomarkers and an UCM. PAH and n-alkanes are not detectable. The biomarkers consist mainly of hopanes, gammacerane, tricyclic terpanes, carotane and its cracking products, steranes, and drimanes. The biomarker composition and bulk C isotope composition (δ 13C = -21.4%) indicate an organic matter source from bacteria and algae, typical of lacustrine ecosystems. The overall composition of these tars indicates that they are hydrothermal petroleum formed from lacustrine organic matter in the deeper sediments of Lake Chapala exceeding 40 ka (14C) in age and then forced to the lakebed by tectonic activity. The absence of alkanes and the presence of an UCM with mature biomarkers are consistent with rapid hydrothermal oil generation and expulsion at temperatures of 200-250 deg. C. The occurrence of hydrothermal petroleum in continental rift systems is now well known and should be considered in future energy resource exploration in such regions

  20. Tectono-magmatic evolution of the younger Gardar southern rift, South Greenland

    Directory of Open Access Journals (Sweden)

    Brian G.J. Upton

    2013-11-01

    Full Text Available The 1300–1140 Ma Gardar period in South Greenland involved continental rifting, sedimentation and alkaline magmatism. The latest magmatism was located along two parallel rift zones, Isortoq–Nunarsuit in the north and the Tuttutooq–Ilimmaasaq–Narsarsuaq zone in the south addressed here. The intrusive rocks crystallised at a depth of <4 km and are essentially undisturbed by later events. Magmatism in the southern zone began with the emplacement of two giant, ≤800 m wide dykes and involved intrusion of transitional olivine basaltic, high Al/Ca magmas crystallising to troctolitic gabbros. These relatively reduced magmas evolved through marked iron enrichment to alkaline salic differentiates. In the Older giant dyke complex, undersaturated augite syenites grade into sodalite foyaite. The larger, c. 1163 Ma Younger giant dyke complex (YGDC mainly consists of structureless troctolite with localised developments of layered cumulates. A layered pluton (Klokkenis considered to be coeval and presumably comagmatic with the YGDC. At the unconformitybetween the Ketilidian basement and Gardar rift deposits, the YGDC expanded into a gabbroic lopolith. Its magma may represent a sample from a great, underplated mafic magma reservoir, parental to all the salic alkaline rocks in the southern rift. The bulk of these are silica undersaturated; oversaturated differentiates are probably products of combined fractional crystallisation and crustalassimilation.A major dyke swarm 1–15 km broad was intruded during declining crustal extension, with decreasing dyke widths and increasing differentiation over time. Intersection of the dyke swarm and E–W-trending sinistral faults controlled the emplacement of at least three central complexes (Narssaq, South Qôroq and early Igdlerfigssalik. Three post-extensional complexes (Tugtutôq,Ilímaussaq and late Igdlerfigssalik along the former rift mark the end of magmatism at c. 1140 Ma. The latter two complexes have

  1. Spectral tuning and molecular evolution of rod visual pigments in the species flock of cottoid fish in Lake Baikal.

    Science.gov (United States)

    Hunt, D M; Fitzgibbon, J; Slobodyanyuk, S J; Bowmaker, J K

    1996-05-01

    Lake Baikal in Eastern Siberia is the deepest and one of the largest and most ancient lakes in the world. However, even in the deepest regions, oxygenation levels do not fall below 75-80% of the surface levels. This has enabled a remarkable flock of largely endemic teleost fish of the sub-order Cottoidei to colonize all depth habitats. We have previously shown that species that occupy progressively deeper habitats show a blue shift in the peak wavelength of absorbance (lambda max) of both their rod and cone visual pigments; for the rod pigments, a number of stepwise shifts occur from about 516 nm in littoral species to about 484 nm in abyssal species. By sequencing the rod opsin gene from 11 species of Baikal cottoids that include representatives from all depth habitats, we have been able to identify four amino acid substitutions that would account for these shifts. The effect of each substitution on lambda max is approximately additive and each corresponds to a particular lineage of evolution. PMID:8711901

  2. Application of the solid solution model for the description of the mineral composition of lake Baikal bottom settings

    International Nuclear Information System (INIS)

    The study of clay minerals, accumulated in the Baikal bottom settings, provides valuable information about climate changes in Asia during the Cenozoic Era. However, the depth of a sedimentary section does not allow conducting mineralogical studies at a pitch providing a reconstruction of the paleoclimate record with high resolution. Earlier, the mineral composition of the Baikal sediments has been calculated on the basis of the results of a chemical analysis [1]. At a preliminary stage the simplex-method, used in this approach, requires the determination of a chemical composition of the clay sedimentary components and the calculation of conditional stoichiometric formulas of mixed-layer aluminosilicates, being the markers of the most important paleoclimate episodes. In this article the improved method for calculating the mineral composition of sediments is used to determine the mixed-layer minerals of a solid solution model, is represented. It allowed eliminating the preliminary stage of clay matter chemical composition calculation and computerizing the determination of minerals stoichiometric formulas, corresponding to warm and cold climate episodes in the reconstruction of paleoclimate changes

  3. Chronology and origin of Au-Cu deposits related to Paleozoic intracontinental rifting in West Tianshan Mountains, NW China

    Institute of Scientific and Technical Information of China (English)

    LI; Huaqin(李华芹); CHEN; Fuwen(陈富文)

    2002-01-01

    Located between the Tarim platform and Junggar massif, the West Tianshan intracontinental rift abuts against the China-Kazakhstan boundary in the west part, borders on the Yilianhabierga late Paleozoic relic ocean basin and the South Tianshan late Paleozoic ocean basin respectively in the northeast separated by the Aibi Lake fault and in the southeast by the fault along the southern margin of the Yili massif. During the development and after the close of the West Tianshan intracontinental rifting in the Carboniferous-Permian period, a series of nonferrous and precious metal mineralizations occurred with the Au-Cu deposits being the most important. Isotopic chronologic study of representative deposits of different types shows that gold-copper mineralization in the West Tianshan intracontinental rift zone mainly happened during the middle-late Hercynian Period, among which the Axi volcanic hydrothermal type gold deposit was formed during the Carboniferous with a fluid inclusion Rb-Sr isochron age of (339 ± 28) Ma; the Qiabukanzhuota quartzolite type gold deposit has a Rb-Sr isochron age of (312 ± 46) Ma; the Tawuerbieke porphyry type gold deposit has a Rb-Sr isochron age of (295 ± 16) Ma; the Jingbulak magmatic liquation Cu-Ni deposit and the Musizaote porphyry type Cu deposit have the forming ages of 300 Ma ± and 250 Ma ±, respectively. Analyses of crustal evolution and metallogenetic geological backgrounds of Au-Cu mineralizations in the studied area shows a close correlation with the rifting.

  4. Strain distribution in the East African Rift from GPS measurements

    Science.gov (United States)

    Stamps, S. D.; Saria, E.; Calais, E.; Delvaux, D.; Ebinger, C.; Combrinck, L.

    2008-12-01

    Rifting of continental lithosphere is a fundamental process that controls the growth and evolution of continents and the birth of ocean basins. Most rifting models assume that stretching results from far-field lithospheric stresses from plate motions, but there is evidence that asthenospheric processes play an active role in rifting, possibly through viscous coupling and/or the added buoyancy and thermal weakening from melt intrusions. The distribution of strain during rifting is a key observable to constrain such models but is however poorly known. The East African Rift (EAR) offers a unique opportunity to quantify strain distribution along and across an active continental rift and to compare a volcanic (Eastern branch) and a non-volcanic (Western branch) segment. In 2006, we established and first surveyed a network of 35 points across Tanzania and installed one continuous station in Dar Es Salaam (TANZ), followed in 2008 by a second occupation campaign. We present a preliminary velocity field for the central part of the EAR, spanning both the Western and Eastern rift branches. We compare our results with a recent kinematic model of the EAR (Stamps et al., GRL, 2008) and discuss its significance for understanding rifting processes.

  5. Transfer/transform relationships in continental rifts and margins and their control on syn- and post-rift denudation: the case of the southeastern Gulf of Aden, Socotra Island, Yemen

    Science.gov (United States)

    Pik, Raphael; Bellahsen, Nicolas; Leroy, Sylvie; Denele, Yoann; Razin, Philippe; Ahmed, Abdulhakim; Khanbari, Khaled

    2013-04-01

    Transfer zones are ubiquist features in continental rifts and margins, as well as transform faults in oceanic lithosphere. Here, we present the structural study of such a structure (the Hadibo Transfer Zone, HTZ) from the southeastern Gulf of Aden, in Socotra Island, Yemen. There, from field data, the HTZ is interpreted as being reactivated, obliquely to divergence, since early rifting stages. Then, from a short review of transfer/transform fault zone geometries worldwide, we derive a classification in terms of relative importance (1st, 2nd, 3rd order), geometry, and location. We suggest that the HTZ is a 1st order transfer fault zone as it controls the initiation of a 1st order oceanic transform fault zone. We then investigate the denudation history of the region surrounding the HTZ in order to highlight the interplay of normal and transfer/transform tectonic structures in the course of rift evolution. Samples belong from two distinct East and West domains of the Socotra Island, separated by the (HTZ). Tectonic denudation started during the Priabonian-Rupelian along flat normal faults and removed all the overlying sedimentary formations, allowing basement exhumation up to the surface (~ 1.2 - 1.6 km of exhumation). Forward t-T modelling of the data requires a slightly earlier date and shorter period for development of rifting in the E-Socotra domain (38 - 34 Ma), compared to the W-Socotra domain (34 - 25 Ma), which suggests that the HTZ was already active at that time. A second major event of basement cooling and exhumation (additional ~ 0.7 - 1 km), starting at about ~ 20 Ma, has only been recorded on the E-Socotra domain. This second denudation phase significantly post-dates local rifting period but appears synchronous with Ocean Continent Transition (OCT: 20 - 17.6 Ma). This late syn-OCT uplift is maximum close to the HTZ, in the wedge of hangingwall delimited by this transfer system and the steep north-dipping normal faults that accommodated the vertical

  6. Landscapes of Lake Baikal: «To protect or to build» Town planning motivations of the stable development of the region

    Directory of Open Access Journals (Sweden)

    Andrei Bolshakov

    2006-03-01

    Full Text Available Building, planning, engineering facilities of the inhabited places of Lake Baikal and organization of the recreational areas for tourists, as well as organization of the particularly reserved natural territories should maintain everlastingly untouched the beauty and the cleanness, the natural diversity and the uniqueness of the nature of Lake Baikal, that makes it glorious and attracts tourists and inhabitants so much. Is it possible? And how to combine technical conditions of civilization, to which we have got used so much (energy supply, canalization, asphalt roads, automobile transport, oilpipelines, developed cities and villages, and aspiration of many investors, who would like to organize a profitable tourist business, together with the goal to protect the nature of Lake Baikal.To protect or to develop the landscapes of Lake Baikal, and which landscapes to urbanize and which to restore, and how to equip the developed territories, and how to maintain the protected natural landscapes–these questions compose a complex national task. Its accomplishment is firstly based on studying and maintaining the diversity of landscapes of the region and its importance as the global natural heritage. Secondly, the stable development of the region is possible only when solving the conflicts of landutilization motivations in a right way at the expense of building the rational network of the Baikal landscapes from the reserved to the urbanized ones.

  7. Combining detrital geochronology and sedimentology to assess basin development in the Rukwa Rift of the East African Rift System

    Science.gov (United States)

    Hilbert-Wolf, Hannah; Roberts, Eric; Mtelela, Cassy; Downie, Bob

    2015-04-01

    We have employed a multifaceted approach to sedimentary provenance analysis in order to assess the timing and magnitude of tectonic events, sedimentation, and landscape development in the Western Branch of the East African Rift System. Our approach, termed 'Sedimentary Triple Dating', integrates: (1) U-Pb dating via LA-ICPMS; (2) fission track; and (3) (U-Th)/He thermochronology of detrital zircon and apatite. We integrate geochronology, thermochronology, and provenance analysis to relate the initiation of rifting events to regional dynamic uplift, sedimentation patterns, and interpret the far-reaching climatic and evolutionary effects of fluctuating rift flank topography in the Rukwa Rift, a segment of the Western Branch. This work provides additional data to support the recent concept of synchronous development of the Western and Eastern branches of the East African Rift System ~25 Ma, and better constrains the age, location and provenance of subsequent rifting and sedimentation events in the Rukwa Rift Basin. Investigation of well cuttings and outcrop samples from the Neogene-Recent Lake Beds Succession in the Rukwa Rift Basin revealed a suite of previously unrecognized tuffaceous deposits at the base of the succession. A population of euhedral, magmatic zircons from a basal Lake Beds tuff and Miocene-Pliocene detrital zircons from well cuttings suggest that Neogene rift reactivation and volcanism began ~9-10 Ma. This timing is consistent with demonstrated rifting in Uganda and Malawi, as well as with the initiation of volcanism in the Rungwe Volcanic Province at the southern end of the Rukwa Rift, and the estimated development of Lake Tanganyika to the north. Moreover, there appear to be a suite of unconformity bounded stratigraphic units that make up the Lower Lake Beds succession, and detrital zircon maximum depositional ages from these units suggests episodic sedimentation in the rift, punctuated by long hiatuses or uplift, rather than steady subsidence and

  8. Lithologic Hydrocarbon Deposits in Rift Lake Basins in Eastern China

    Institute of Scientific and Technical Information of China (English)

    ZHENG Herong; HE Zongquan

    2004-01-01

    The rift lake basins in the eastern China have abundant hydrocarbon resources of lithologic deposits, which resulted from excellent source rocks and multi-type sandbodies developed during strong rifting. Vertically, the lithologic deposits are mainly distributed in the lowstand, lacustrine invasion and early highstand systems of third-order sequence corresponding to a secondary tectonic episode of strong rifting, and laterally they are closely related to various fans and turbidite sandbodies controlled by syn-sedimentary faults. A variety of lithologic traps have been developed in the rift lake basins, and they generally have favorable conditions of source-reservoir-seal assemblage and hydrocarbon accumulation dynamics, indicating that there is a great exploration potential of lithologic deposits in the rift lake basins.In order to obtain satisfactory effects of lithologic deposit exploration, it is required to combine new theories with advanced technical methods.

  9. The Formation of Non-Volcanic Rifted Margins by the Progressive Extension of the Continental Lithosphere

    Science.gov (United States)

    Reston, T. J.; Perez-Gussinye, M.; Gaw, V.; Phipps Morgan, J.

    2003-12-01

    Rifted margins include two main end-members: those termed "Volcanic Rifted Margins - VRMs" where magmatism is much more voluminous than predicted by passive asthenospheric upwelling (e.g. White et al., 1989), and those where magmatism is consistent or even less than the same predictions. The latter are termed "Non-Volcanic Rifted Margins - NVRMs" to emphasise the contrast with the VRMs: the name does not exclude the presence of minor amounts of magmatic activity. The NVRMs are typified by the North Biscay, south Australian, SW Greenland, and the West Iberian margins, which share a number of common characteristics: - extreme crustal thinning, increasing towards the ocean; - presence of well-defined rotated fault blocks. However at the feather edge of the continent there is an extension discrepancy: the amount that can be inferred from the geometry of these faults is far less than that indicated by the crustal thinning observed; - presence in places of a detachment fault at the base of the fault blocks; - little evidence for synrift magmatism; - the presence of a broad zone of partially serpentinised mantle (Boillot et al., 1988; Whitmarsh et al., 1996; Krawczyk et al., 1996; Pickup et al., 1996), both occurring beneath the highly thinned and faulted continental crust, and as a zone of exhumed continental mantle, now largely buried by postrift sediments. We show that such margins are the logical result of progressive extension of continental lithosphere above cool sub-lithospheric mantle. The key factors controlling the development of the margin are the rheological evolution of the crust (explaining the serpentinisation of the mantle), the occurrence of multiple phases of faulting (explaining the apparent extension discrepancy), and the temperature structure of the sub-continental mantle (explaining the lack of magmatism).

  10. the role of magmatism and segmentation in the structural evolution of the Afar Rift

    Science.gov (United States)

    Stab, Martin; Bellahsen, Nicolas; Pik, Raphaël; Quidelleur, Xavier; Ayalew, Dereje; Leroy, Sylvie

    2015-04-01

    A common issue at volcanic passive margins (VPM) is the lack of observation of the structures that accommodate stretching and thinning. Indeed, the most distal parts and the Ocean-Continent Transition is often masked by thick seaward-dipping reflectors (SDR) sequences. Some current challenges are then to know if the observed thinning fit the divergence (thinning vs dyking); and what is the rheological effect of magma supply that re-thickens the crust during extension? In the Central Afar magmatic rift (Ethiopia), the structures related to rifting since Oligocene are cropping out onshore and are well preserved. We present here a new structural model based on field data and lavas (U-Th/He and K/Ar) datings along a balanced cross-section of the Central Afar Western Margin. We mapped continent-ward normal fault array affecting highly tilted trapp series (29-30 Ma) unconformably overlain by tilted Oligo-Miocene (25-7 Ma) acid series. The main extensional and necking/thinning event took place during the end of this Miocene magmatic episode. The Pliocene flood basalt (Stratoid series) is erupted over an already thinned crust. The bulk extension for the Afar Western Margin is ß ~ 2.50. Our main findings are: - Oligo-Miocene deformation in Central Afar appears to be largely distributed through space and time ("magmatic wide rift"). It has been accommodated in a 200-300 km wide strip being a diffuse incipient plate boundary during the whole rifting history until the formation of present-day magmatic segments. There is a period of tectonic quiescence accompanied with few magma erupted at the surface between 25 Ma and 7 Ma. We suggest that tectonic and magmatic activity was focused at that time on the highly faulted Danakil block and Southern Red Sea, away from our study zone. - ß ~ 2.50 is higher than the thinning factor of ~1.30 observed in geophysical studies. We propose that the continental crust in Central Afar has been re-thickened during extension by the syn-rift

  11. Structural pattern at the northwestern sector of the Tepic-Zacoalco rift and tectonic implications for the Jalisco block, western Mexico

    Science.gov (United States)

    Urrutia-Fucugauchi, Jaime; González-Morán, Tomás

    2006-10-01

    Analysis of the aeromagnetic anomalies over the northwestern sector of the Tepic-Zacoalco rift documents a NE-SW pattern of lineaments that are perpendicular to the inferred NW-SE boundary between the Jalisco block and the Sierra Madre Occidental. The boundary lies within the central sector of the Tepic-Zacoalco rift immediately north of the Ceboruco and Tepetiltic stratovolcanoes and extends up to the San Juan stratovolcano, where it intersects the NE-SW magnetic anomaly lineament that runs toward the Pacific coast (which intersects two volcanic centers). This N35°E lineament separates the central rift zone of low amplitude mainly negative anomalies (except those positive anomalies over the stratovolcanoes) from the zone to the north and west characterized by high amplitude positive long wavelength anomalies. The NE-SW lineament is parallel to the western sector of the Ameca graben and the offshore Bahia de Banderas graben and to the structural features of the Punta Mita peninsula at the Pacific coast, and thus seems to form part of a regional NE-SW pattern oblique to the proposed westward or northwestward motion of the Jalisco block. The orientation of this regional structural pattern at the northern end of the Tepic-Zacoalco rift seems consistent with proposed dominant SW-directed extension along the rift during the Pliocene and Quaternary, rather than with NW-SE lateral strike-slip faulting. The orthogonal pattern that characterizes the northernmost boundary of the Tepic-Zacoalco rift is oblique to the pattern observed in the Grande de Santiago river (which conforms the northern limit of the rift) and for the central-eastern sectors of the Ameca graben (south of the rift). This spatial arrangement of major lineaments and structural elements points to a complex tectonic history for the region that includes the rifting of the Gulf of California and margin deformation due to plate convergence and kinematic re-organization events, and which may have resulted in

  12. The evolution of passive rifting: contributions from field and laboratory studies to the interpretation of modelling results

    Science.gov (United States)

    Piccardo, Giovanni; Ranalli, Giorgio

    2015-04-01

    Direct field/laboratory, structural/petrologic investigations of mantle lithosphere from orogenic peridotites in Alpine-Apennine ophiolites provide significant constraints to the rift evolution of the Jurassic Ligurian Tethys ocean (Piccardo et al., 2014, and references therein). These studies have shown that continental extension and passive rifting were characterized by an important syn-rift "hidden" magmatic event, pre-dating continental break-up and sea-floor spreading. Occurrence of km-scale bodies of reactive spinel-harzburgites and impregnated plagioclase-peridotites, formed by melt/peridotite interaction, and the lack of any extrusive counterpart, show that the percolating magmas remained stored inside the mantle lithosphere. Petrologic-geochemical data/modelling and mineral Sm/Nd age constraints evidence that the syn-rift melt infiltration and reactive porous-flow percolation through the lithosphere were induced by MORB-type parental liquids formed by decompression melting of the passively upwelling asthenosphere. Melt thermal advection through, and melt stagnation within the lithosphere, heated the mantle column to temperatures close to the dry peridotite solidus ("asthenospherization" of mantle lithosphere). Experimental results of numerical/analogue modelling of the Ligurian rifting, based on field/laboratory constraints, show that: (1) porous flow percolation of asthenospheric melts resulted in considerable softening of the mantle lithosphere, decreasing total strength TLS from 10 to 1 TN m-1 as orders of magnitude (Ranalli et al. 2007), and (2) the formation of an axial lithospheric mantle column, with softened rheological characteristics (Weakened Lithospheric Mantle - WLM), induced necking instability in the extending lithosphere and subsequent active upwelling of the asthenosphere inside the WLM zone (Corti et al., 2007). Therefore, the syn-rift hidden magmatism (melt thermo-chemical-mechanical erosion, melt thermal advection and melt storage

  13. Uppermost mantle (Pn) velocity model for the Afar region, Ethiopia: an insight into rifting processes

    Science.gov (United States)

    Stork, A. L.; Stuart, G. W.; Henderson, C. M.; Keir, D.; Hammond, J. O. S.

    2013-04-01

    The Afar Depression, Ethiopia, offers unique opportunities to study the transition from continental rifting to oceanic spreading because the process is occurring onland. Using traveltime tomography and data from a temporary seismic deployment, we describe the first regional study of uppermost mantle P-wave velocities (VPn). We find two separate low VPn zones (as low as 7.2 km s-1) beneath regions of localized thinned crust in northern Afar, indicating the existence of high temperatures and, potentially, partial melt. The zones are beneath and off-axis from, contemporary crustal magma intrusions in active magmatic segments, the Dabbahu-Manda-Hararo and Erta'Ale segments. This suggests that these intrusions can be fed by off-axis delivery of melt in the uppermost mantle and that discrete areas of mantle upwelling and partial melting, thought to characterize segmentation of the uppermost mantle at seafloor spreading centres, are initiated during the final stages of break-up.

  14. Carbon fluxes and the carbon budget in agroecosystems on agro-gray soils of the forest-steppe in the Baikal region

    Science.gov (United States)

    Pomazkina, L. V.; Sokolova, L. G.; Zvyagintseva, E. N.

    2013-06-01

    Field studies devoted to the transformation of the carbon cycle in agroecosystems on agro-gray soils (including soils contaminated with fluorides from aluminum smelters) in dependence on the changes in the hydrothermic conditions were performed for the first time within the framework of the long-term (1996-2010) soil monitoring in the forest-steppe zone of the Baikal region. The major attention was paid to the impact of the environmental factors on the synthesis and microbial destruction of organic carbon compounds. Certain differences in the fluxes and budget of carbon were found for the plots with cereal and row crops and for the permanent and annual fallow plots. The adverse effect of fluorides manifested itself in the enhanced C-CO2 emission under unfavorable water and temperature conditions. The long-term average C-CO2 emission from the soils contaminated with fluorides in agroecosystems with wheat after fallow was higher than that from the uncontaminated soil (179 and 198 g of C/m2, respectively) and higher than that in the agroecosystems with a potato monoculture (129 and 141 g of C/m2, respectively). At the same time, no significant variations in the content of the carbon of the microbial biomass (Cmicr) in dependence on the environmental factors were found. The utilization of carbon for respiration and for growth of the soil microorganisms on the contaminated soil were unbalanced in particular years and for the entire period of the observations. The ratio between the fluxes of the net mineralized and re-immobilized carbon was used for the integral assessment of the functioning regime of the agroecosystems and the loads on them. Independently from the soil contamination with fluorides, the loads on the agroecosystems with wheat were close to the maximum permissible value, and the loads on the agroecosystems with potatoes were permissible. It was shown that the carbon deficit in the uncontaminated soils was similar under the wheat and potatoes (-30 and -28 g

  15. A Middle-Upper Miocene fluvial-lacustrine rift sequence in the Song Ba Rift, Vietnam

    DEFF Research Database (Denmark)

    Lars H., Nielsen; Henrik I., Petersen; Nguyen D., Dau;

    2007-01-01

    development sedimentation rate outpaced the formation of accommodation space and fluvial activity increased again. During periods when the general sedimentation rate was in balance with the creation of accommodation space the environment changed frequently between lake deposition and intermittent vigorous...... the footwall granites. In addition to the structural and climatic signals recorded by the graben-fill, sediment partitioning among the partly isolated basins along the rift axis seems to have been important....

  16. Groundwater fluoride enrichment in an active rift setting: Central Kenya Rift case study.

    Science.gov (United States)

    Olaka, Lydia A; Wilke, Franziska D H; Olago, Daniel O; Odada, Eric O; Mulch, Andreas; Musolff, Andreas

    2016-03-01

    Groundwater is used extensively in the Central Kenya Rift for domestic and agricultural demands. In these active rift settings groundwater can exhibit high fluoride levels. In order to address water security and reduce human exposure to high fluoride in drinking water, knowledge of the source and geochemical processes of enrichment are required. A study was therefore carried out within the Naivasha catchment (Kenya) to understand the genesis, enrichment and seasonal variations of fluoride in the groundwater. Rocks, rain, surface and groundwater sources were sampled for hydrogeochemical and isotopic investigations, the data was statistically and geospatially analyzed. Water sources have variable fluoride concentrations between 0.02-75 mg/L. 73% exceed the health limit (1.5mg/L) in both dry and wet seasons. F(-) concentrations in rivers are lower (0.2-9.2mg/L) than groundwater (0.09 to 43.6 mg/L) while saline lake waters have the highest concentrations (0.27-75 mg/L). The higher values are confined to elevations below 2000 masl. Oxygen (δ(18)O) and hydrogen (δD) isotopic values range from -6.2 to +5.8‰ and -31.3 to +33.3‰, respectively, they are also highly variable in the rift floor where they attain maximum values. Fluoride base levels in the precursor vitreous volcanic rocks are higher (between 3750-6000 ppm) in minerals such as cordierite and muscovite while secondary minerals like illite and kaolinite have lower remnant fluoride (water reservoirs, b) secondary concentration fortification of natural reservoirs through evaporation, through reduced recharge and/or enhanced abstraction and c) through additional enrichment of fluoride after volcanic emissions. The findings are useful to help improve water management in Naivasha as well as similar active rift setting environments. PMID:26775113

  17. Crustal structure and kinematics of the TAMMAR propagating rift system on the Mid-Atlantic Ridge from seismic refraction and satellite altimetry gravity

    Science.gov (United States)

    Kahle, Richard L.; Tilmann, Frederik; Grevemeyer, Ingo

    2016-08-01

    The TAMMAR segment of the Mid-Atlantic Ridge forms a classic propagating system centred about two degrees south of the Kane Fracture Zone. The segment is propagating to the south at a rate of 14 mm yr-1, 15 per cent faster than the half-spreading rate. Here, we use seismic refraction data across the propagating rift, sheared zone and failed rift to investigate the crustal structure of the system. Inversion of the seismic data agrees remarkably well with crustal thicknesses determined from gravity modelling. We show that the crust is thickened beneath the highly magmatic propagating rift, reaching a maximum thickness of almost 8 km along the seismic line and an inferred (from gravity) thickness of about 9 km at its centre. In contrast, the crust in the sheared zone is mostly 4.5-6.5 km thick, averaging over 1 km thinner than normal oceanic crust, and reaching a minimum thickness of only 3.5 km in its NW corner. Along the seismic line, it reaches a minimum thickness of under 5 km. The PmP reflection beneath the sheared zone and failed rift is very weak or absent, suggesting serpentinisation beneath the Moho, and thus effective transport of water through the sheared zone crust. We ascribe this increased porosity in the sheared zone to extensive fracturing and faulting during deformation. We show that a bookshelf-faulting kinematic model predicts significantly more crustal thinning than is observed, suggesting that an additional mechanism of deformation is required. We therefore propose that deformation is partitioned between bookshelf faulting and simple shear, with no more than 60 per cent taken up by bookshelf faulting.

  18. Rifting of Continental Interiors: Some New Geophysical Data and Interpretations

    Science.gov (United States)

    Keller, G. R.

    2005-12-01

    Rifting is one of the major processes that affect the evolution of the continents. This process sometimes leads to continental breakup and the formation of new oceans, but more often does not. This is presumably due to extension not progressing sufficiently to form a new plate margin resulting in a structure, which remains isolated in an intra-plate environment. The Southern Oklahoma aulacogen is such a feature, and the continental portion of the East African rift system may be a modern example. As more detailed geophysical and geological studies of rifts have become available in recent years, a complex picture of rift structure and evolution has emerged. Global patterns that reveal the connections between lithospheric structure (deep and shallow), magmatism (amount and style), amount of extension, uplift, and older structures remain elusive. However, our geophysical studies of modern and paleo rifts in North America, East Africa, and Europe makes it possible to make some general observations: 1). Magmatism in rifts is modest without the presence of a (pre-existing?) thermal anomaly in the mantle. 2). Magmatic modification of the crust takes many forms which probably depend on the nature of older structures present and the state of the lithosphere when rifting is initiated (i.e. cold vs. hot; fertility), 3) There is no clear relation between amount of extension and the amount of magmatic modification of the crust. 4) Brittle deformation in the upper crustal is complex, often asymmetrical and older features often play important roles in focusing deformation. However on a lithospheric scale, rift structure is usually symmetrical. 5) A better understanding of rift processes is emerging as we achieve higher levels of integration of a wide variety of geoscience data.

  19. Controls on mineralisation during early Damara rifting in Namibia

    International Nuclear Information System (INIS)

    The late Proterozoic Damara Orogen in central Namibia initiated as a triple junction centred near the present coastal town of Swakopmund. Early rifting within the inland arm is believed to have been controlled by two north-northwest-dipping detachment faults. Of the two resulting asymmetric rift basins, the southern one developed into a small ocean, the Khomas sea. It is concluded that the present distribution of mineral deposits in the inland branch of the Damara Orogen was controlled by detachment faulting and associated fluid flows during the rifting stage of the basin development. Subsequent processes may have led to further concentration of initially metal-enriched protoliths. 1 fig., 10 refs

  20. Diffuse Radiation from the Aquila Rift

    CERN Document Server

    Jyothy, S N; Karuppath, Narayanankutty; Sujatha, N V

    2015-01-01

    We present an analysis of the diffuse ultraviolet (UV) background in a low latitude region near the Aquila Rift based on observations made by the Galaxy Evolution Explorer (GALEX). The UV background is at a level of about 2000 ph cm^-2 s^-1 sr^-1 \\AA^-1 with no correlation with either the Galactic latitude or the 100 micron infrared (IR) emission. Rather, the UV emission falls off with distance from the bright B2 star HIP 88149, which is in the centre of the field. We have used a Monte Carlo model to derive an albedo of 0.6 - 0.7 in the UV with a phase function asymmetry factor (g) of 0.2 - 0.4. The value for the albedo is dependent on the dust distribution while g is determined by the extent of the halo.

  1. An epidemiological model of Rift Valley fever

    Directory of Open Access Journals (Sweden)

    Nicole P. Leahy

    2007-08-01

    Full Text Available We present and explore a novel mathematical model of the epidemiology of Rift Valley Fever (RVF. RVF is an Old World, mosquito-borne disease affecting both livestock and humans. The model is an ordinary differential equation model for two populations of mosquito species, those that can transmit vertically and those that cannot, and for one livestock population. We analyze the model to find the stability of the disease-free equlibrium and test which model parameters affect this stability most significantly. This model is the basis for future research into the predication of future outbreaks in the Old World and the assessment of the threat of introduction into the New World.

  2. Regional magnetic anomaly constraints on continental rifting

    Science.gov (United States)

    Vonfrese, R. R. B.; Hinze, W. J.; Olivier, R.; Bentley, C. R.

    1985-01-01

    Radially polarized MAGSAT anomalies of North and South America, Europe, Africa, India, Australia and Antarctica demonstrate remarkably detailed correlation of regional magnetic lithospheric sources across rifted margins when plotted on a reconstruction of Pangea. These major magnetic features apparently preserve their integrity until a superimposed metamorphoric event alters the magnitude and pattern of the anomalies. The longevity of continental scale magnetic anomalies contrasts markedly with that of regional gravity anomalies which tend to reflect predominantly isostatic adjustments associated with neo-tectonism. First observed as a result of NASA's magnetic satellite programs, these anomalies provide new and fundamental constraints on the geologic evolution and dynamics of the continents and oceans. Accordingly, satellite magnetic observations provide a further tool for investigating continental drift to compliment other lines of evidence in paleoclimatology, paleontology, paleomagnetism, and studies of the radiometric ages and geometric fit of the continents.

  3. A search for neutrino signal from dark matter annihilation in the center of the Milky Way with Baikal NT200

    Science.gov (United States)

    Avrorin, A. D.; Avrorin, A. V.; Aynutdinov, V. M.; Bannasch, R.; Belolaptikov, I. A.; Bogorodsky, D. Yu.; Brudanin, V. B.; Budnev, N. M.; Danilchenko, I. A.; Demidov, S. V.; Domogatsky, G. V.; Doroshenko, A. A.; Dyachok, A. N.; Dzhilkibaev, Zh.-A. M.; Fialkovsky, S. V.; Gafarov, A. R.; Gaponenko, O. N.; Golubkov, K. V.; Gress, T. I.; Honz, Z.; Kebkal, K. G.; Kebkal, O. G.; Konischev, K. V.; Korobchenko, A. V.; Koshechkin, A. P.; Koshel, F. K.; Kozhin, A. V.; Kulepov, V. F.; Kuleshov, D. A.; Ljashuk, V. I.; Milenin, M. B.; Mirgazov, R. A.; Osipova, E. R.; Panfilov, A. I.; Pan'kov, L. V.; Pliskovsky, E. N.; Rozanov, M. I.; Rjabov, E. V.; Shaybonov, B. A.; Sheifler, A. A.; Shelepov, M. D.; Skurihin, A. V.; Smagina, A. A.; Suvorova, O. V.; Tabolenko, V. A.; Tarashansky, B. A.; Yakovlev, S. A.; Zagorodnikov, A. V.; Zhukov, V. A.; Zurbanov, V. L.

    2016-08-01

    We reanalyze the dataset collected during the years 1998-2003 by the deep underwater neutrino telescope NT200 in the lake Baikal with the low energy threshold (10 GeV) in searches for neutrino signal from dark matter annihilations near the center of the Milky Way. Two different approaches are used in the present analysis: counting events in the cones around the direction towards the Galactic Center and the maximum likelihood method. We assume that the dark matter particles annihilate dominantly over one of the annihilation channels bbbar , W+W- , τ+τ- , μ+μ- or ννbar . No significant excess of events towards the Galactic Center over expected neutrino background of atmospheric origin is found and we derive 90% CL upper limits on the annihilation cross section of dark matter.

  4. Comparative analysis of a tourism cluster in the Baikal region: role of cooperation as a factor of development

    Directory of Open Access Journals (Sweden)

    Nina Nikolayevna Danilenko

    2014-06-01

    Full Text Available The article investigates cooperation in the field of tourism as a factor and feature of tourism clusters development. The analysis of tourism clusters development, trends and most common forms of cooperation between the participants in two regions of the Baikal region (Irkutsk region and the Republic of Buryatia was carried out based on the results of interviews with representatives of tourism business, education and government. The results indicate that compared with European practice, the areas of cooperation of Russian tourism sector enterprises with other economic actors are less diverse. Some attributes of cluster development based on cooperation are indicated in the Republic of Buryatia, whereas they are missing in the Irkutsk region, although two regions are the objects of a number of national and regional development programs aimed at tourism clusters development.

  5. Search for neutrino emission from relic dark matter in the Sun with the Baikal NT200 detector

    CERN Document Server

    Avrorin, A D; Aynutdinov, V M; Bannasch, R; Belolaptikov, I A; Bogorodsky, D Yu; Brudanin, V B; Budnev, N M; Danilchenko, I A; Demidov, S V; Domogatsky, G V; Doroshenko, A A; Dyachok, A N; Dzhilkibaev, Zh-A M; Fialkovsky, S V; Gafarov, A R; Gaponenko, O N; Golubkov, K V; Gress, T I; Honz, Z; Kebkal, K G; Kebkal, O G; Konishchev, K V; Konstantinov, E N; Korobchenko, A V; Koshechkin, A P; Koshel, F K; Kozhin, V A; Kulepov, V F; Kuleshov, D A; Ljashuk, V I; Milenin, M B; Mirgazov, R A; Osipova, E A; Panfilov, A I; Panjkov, L V; Perevalov, A A; Pliskovsky, E N; Poleshuk, V A; Rozanov, M I; Rubtsov, V F; Rjabov, E V; Shaybonov, B A; Sheifler, A A; Skurikhin, A V; Smagina, A A; Suvorova, O V; Tarashchansky, B A; Yakovlev, S A; Zagorodnikov, A V; Zhukov, V A; Zurbanov, V L

    2014-01-01

    We have analyzed a data set taken over 2.76 years live time with the Baikal neutrino telescope NT200. The goal of the analysis is to search for neutrinos from dark matter annihilation in the center of the Sun. Apart from the conventional annihilation channels $b\\bar{b}$, $W^+W^-$ and $\\tau^+\\tau^-$ we consider also the annihilation of dark matter particles into monochromatic neutrinos. From the absence of any excess of events from the direction of the Sun over the expected background, we derive 90% upper limits on the fluxes of muons and muon neutrinos from the Sun, as well as on the elastic cross sections of dark matter scattering on protons.

  6. Burying dogs in ancient Cis-Baikal, Siberia: temporal trends and relationships with human diet and subsistence practices.

    Science.gov (United States)

    Losey, Robert J; Garvie-Lok, Sandra; Leonard, Jennifer A; Katzenberg, M Anne; Germonpré, Mietje; Nomokonova, Tatiana; Sablin, Mikhail V; Goriunova, Olga I; Berdnikova, Natalia E; Savel'ev, Nikolai A

    2013-01-01

    The first objective of this study is to examine temporal patterns in ancient dog burials in the Lake Baikal region of Eastern Siberia. The second objective is to determine if the practice of dog burial here can be correlated with patterns in human subsistence practices, in particular a reliance on terrestrial mammals. Direct radiocarbon dating of a suite of the region's dog remains indicates that these animals were given burial only during periods in which human burials were common. Dog burials of any kind were most common during the Early Neolithic (∼7-8000 B.P.), and rare during all other time periods. Further, only foraging groups seem to have buried canids in this region, as pastoralist habitation sites and cemeteries generally lack dog interments, with the exception of sacrificed animals. Stable carbon and nitrogen isotope data indicate that dogs were only buried where and when human diets were relatively rich in aquatic foods, which here most likely included river and lake fish and Baikal seal (Phoca sibirica). Generally, human and dog diets appear to have been similar across the study subregions, and this is important for interpreting their radiocarbon dates, and comparing them to those obtained on the region's human remains, both of which likely carry a freshwater old carbon bias. Slight offsets were observed in the isotope values of dogs and humans in our samples, particularly where both have diets rich in aquatic fauna. This may result from dietary differences between people and their dogs, perhaps due to consuming fish of different sizes, or even different tissues from the same aquatic fauna. This paper also provides a first glimpse of the DNA of ancient canids in Northeast Asia. PMID:23696851

  7. Burying dogs in ancient Cis-Baikal, Siberia: temporal trends and relationships with human diet and subsistence practices.

    Directory of Open Access Journals (Sweden)

    Robert J Losey

    Full Text Available The first objective of this study is to examine temporal patterns in ancient dog burials in the Lake Baikal region of Eastern Siberia. The second objective is to determine if the practice of dog burial here can be correlated with patterns in human subsistence practices, in particular a reliance on terrestrial mammals. Direct radiocarbon dating of a suite of the region's dog remains indicates that these animals were given burial only during periods in which human burials were common. Dog burials of any kind were most common during the Early Neolithic (∼7-8000 B.P., and rare during all other time periods. Further, only foraging groups seem to have buried canids in this region, as pastoralist habitation sites and cemeteries generally lack dog interments, with the exception of sacrificed animals. Stable carbon and nitrogen isotope data indicate that dogs were only buried where and when human diets were relatively rich in aquatic foods, which here most likely included river and lake fish and Baikal seal (Phoca sibirica. Generally, human and dog diets appear to have been similar across the study subregions, and this is important for interpreting their radiocarbon dates, and comparing them to those obtained on the region's human remains, both of which likely carry a freshwater old carbon bias. Slight offsets were observed in the isotope values of dogs and humans in our samples, particularly where both have diets rich in aquatic fauna. This may result from dietary differences between people and their dogs, perhaps due to consuming fish of different sizes, or even different tissues from the same aquatic fauna. This paper also provides a first glimpse of the DNA of ancient canids in Northeast Asia.

  8. Hydrothermal Petroleum in Active Continental Rift: Lake Chapala, Western Mexico, Initial Results.

    Science.gov (United States)

    Zarate-del Valle, P. F.; Simoneit, B. R.; Ramirez-Sanchez, H. U.

    2003-12-01

    Lake Chapala in western Mexico is located partially in the Citala Rift, which belongs to the well-known neotectonic Jalisco continental triple junction. The region is characterized by active volcanism (Ceboruco, Volcan de Fuego), tectonic (1995 earthquake, M=8, 40-50 mm to SW) and hydrothermal (San Juan Cosala & Villa Corona spas and La Calera sinter deposit) activities. Hydrothermal petroleum has been described in active continental rift (East African Rift) and marine spreading zones (Guaymas Basin, Gulf of California). In 1868 the Mexican local press reported that manifestations of bitumen were appearing in front of the Columba Cap on the mid south shore of Lake Chapala. This bitumen is linked to the lake bottom and when the water level decreases sufficiently it is possible to access these tar bodies as islands. Because of these manifestations the Mexican oil company (PEMEX) drilled an exploration well (2,348m) at Tizapan El Alto without success. Hydrothermal activity is evident in the tar island zone as three in-shore thermal springs (26.8 m depth, 48.5° C, pH 7.8 and oriented N-S). The preliminary analyses by GC-MS of the tar from these islands indicate hydrothermal petroleum derived from lake sedimentary organic matter, generated at low temperatures (150° -200° C). The tars contain no n-alkanes, no PAH or other aromatics, but a major UCM of branched and cyclic hydrocarbons and mature biomarkers derived from lacustrine biota. The biomarkers consist of mainly 17α (H),21β (H)-hopanes ranging from C27 to C34 (no C28), gammacerane, tricyclic terpanes (C20-C26), carotane and its cracking products, and drimanes (C14-C16). The biomarker composition indicates an organic matter source from bacteria and algae, typical of lacustrine ecosystems. 14C dating of samples from two tar islands yielded ages exceeding 40 kyrs, i.e., old carbon from hydrothermal/tectonic remobilization of bitumen from deeper horizons to the surface. The occurrence of hydrothermal petroleum in

  9. Graben formation during the Bárðarbunga rifting event in central Iceland

    KAUST Repository

    Ruch, Joel

    2015-04-01

    On the 16th of August 2014, an intense seismic swarm was detected at the Bárðarbunga caldera (central Iceland), which migrated to the east and then to the northeast during the following days. The swarm, highlighting magma propagation pathway from the caldera, migrated laterally during the following two weeks over 40 km. By the end of August, a volcanic eruption had started along a north-south oriented fissure located ~45 km from the caldera. Here we focus on the near-field deformation related to the dike emplacement in the shallow crust, which generated in few days an 8 km long by 0.8 km wide graben (depression) structure. The new graben extends from the northern edge of the Vatnajökull glacier and to the north to the eruptive fissure. We analyze the temporal evolution of the graben by integrating structural mapping using multiple acquisitions of TerraSAR-X amplitude radar images, InSAR and ground-truth data with GPS and structural measurements. Pixel-offset tracking of radar amplitude images shows clearly the graben subsidence, directly above the intrusion pathway, of up to 6 meters in the satellite line-of-sight direction. We installed a GPS profile of 15 points across the graben in October 2014 and measured its depth up to 8 meters, relative to the flanks of the graben. Field structural observations show graben collapse structures that typically accompany dike intrusions, with two tilted blocks dipping toward the graben axis, bordered by two normal faults. Extensive fractures at the center of the graben and at the graben edges show a cumulative extension of ~8 meters. The formation of the graben was also accompanied by strong seismic activity locally, constraining the time frame period of the main graben formation subsidence. Our results show a rare case of a graben formation captured from space and from ground observations. Such structures are the dominant features along rift zones, however, their formation remain poorly understood. The results also provide

  10. SHRIMP U-Pb dating of recurrent Cryogenian and Late Cambrian-Early Ordovician alkalic magmatism in central Idaho: Implications for Rodinian rift tectonics

    Science.gov (United States)

    Lund, K.; Aleinikoff, J.N.; Evans, K.V.; duBray, E.A.; deWitt, E.H.; Unruh, D.M.

    2010-01-01

    Composite alkalic plutonic suites and tuffaceous diamictite, although discontinuously exposed across central Idaho in roof pendants and inliers within the Idaho batholith and Challis volcanic-plutonic complex, define the >200-km-long northwest-aligned Big Creek-Beaverhead belt. Sensitive highresolution ion microprobe (SHRIMP) U-Pb zircon dates on these igneous rocks provide direct evidence for the orientation and location of the Neoproterozoic-Paleozoic western Laurentian rift margin in the northern U.S. Cordillera. Dating delimits two discrete magmatic pulses at ca. 665-650 Ma and 500-485 Ma at the western and eastern ends, respectively, of this belt. Together with the nearby 685 Ma volcanic rocks of the Edwardsburg Formation, there is a 200 Ma history of recurrent extensional magmatic pulses along the belt. A similar history of recurrent uplift is reflected in the stratigraphic record of the associated miogeoclinal and cratonal platform basins, suggesting that the Big Creek-Beaverhead belt originated as a border fault during continental rift events. The magmatic belt is paired with the recurrently emergent Lemhi Arch and narrow miogeoclinal facies belts and it lies inboard of a northwest-striking narrow zone of thinned continental crust. These features define a northeast-extending upper-plate extensional system between southeast Washington and southeast Idaho that formed a segment of the Neoproterozoic-Paleozoic miogeocline. This segment was flanked on the north by the St. Mary-Moyie transform zone (south of a narrow southern Canadian upper-plate margin) and on the south by the Snake River transfer zone (north of a broad Great Basin lower-plate margin). These are the central segments of a zigzagshaped Cordilleran rift system of alternating northwest-striking extensional zones offset by northeast-striking transfers and transforms. The data substantiate polyphase rift and continental separation events that included (1) pre-and syn-Windermere rifting, (2) Windermere

  11. a system approach to the long term forecasting of the climat data in baikal region

    Science.gov (United States)

    Abasov, N.; Berezhnykh, T.

    2003-04-01

    The Angara river running from Baikal with a cascade of hydropower plants built on it plays a peculiar role in economy of the region. With view of high variability of water inflow into the rivers and lakes (long-term low water periods and catastrophic floods) that is due to climatic peculiarities of the water resource formation, a long-term forecasting is developed and applied for risk decreasing at hydropower plants. Methodology and methods of long-term forecasting of natural-climatic processes employs some ideas of the research schools by Academician I.P.Druzhinin and Prof. A.P.Reznikhov and consists in detailed investigation of cause-effect relations, finding out physical analogs and their application to formalized methods of long-term forecasting. They are divided into qualitative (background method; method of analogs based on solar activity), probabilistic and approximative methods (analog-similarity relations; discrete-continuous model). These forecasting methods have been implemented in the form of analytical aids of the information-forecasting software "GIPSAR" that provides for some elements of artificial intelligence. Background forecasts of the runoff of the Ob, the Yenisei, the Angara Rivers in the south of Siberia are based on space-time regularities that were revealed on taking account of the phase shifts in occurrence of secular maxima and minima on integral-difference curves of many-year hydrological processes in objects compared. Solar activity plays an essential role in investigations of global variations of climatic processes. Its consideration in the method of superimposed epochs has allowed a conclusion to be made on the higher probability of the low-water period in the actual inflow to Lake Baikal that takes place on the increasing branch of solar activity of its 11-year cycle. The higher probability of a high-water period is observed on the decreasing branch of solar activity from the 2nd to the 5th year after its maximum. Probabilistic method

  12. Remelting in caldera and rift environments and the genesis of hot, “recycled” rhyolites

    Science.gov (United States)

    Simakin, A. G.; Bindeman, I. N.

    2012-07-01

    Large and small volume rhyolites are generated in calderas and rift zones, inheriting older and isotopically diverse crystal populations from their volcanic predecessors. Low-δ18O values in many of these rhyolites suggest that they were derived from the remelting of solid, hydrothermally altered by meteoric water protoliths that were once close to the surface, but become buried by caldera collapse or rifting. These rhyolites persist for millions of years in these environments with little evidence of coeval basalts. We present a series of numerical experiments on convective melting of roof-rocks by the underplated by near liquidus to superheated silicic melts, generated at the base of the chamber by basaltic intrusions in shallow crustal conditions. We used a range of temperatures and compositions, an appropriate phase diagram with a defined extended eutectic zone appropriate for these environments, varied sill thickness, viscosity of the boundary layer, and considered hydrothermal and lower boundary heat losses. The goal was to estimate melting rates and mechanisms, define conditions that are required for efficient and rapid remelting in the upper crust, quantitatively describe novel details of the dynamics of convecting melting, and compare it to the earlier parametric and numerical treatments of roof melting by underplating. Resolution of numerical experiments allowed us to track mixed thermal and two-phase plume-like convection in silicic magma with a bulk viscosity of 104.5-105.5 Pa s. The following results were obtained: (1) remarkably fast melting/magma generation rates of many meters per year, (2) intrinsic inhomogeneities in the roof accelerates convection and melting rates via rapid gravitational settling of refractory blocks and exposing detachment scars to the melting front, (3) due to rapid melting, hydrothermal heat loss through the roof, and conductive heat dissipation through the bottom are less important on melting timescales. (4) Convective

  13. The Okavango Dike Swarm (ODS) of Northern Botswana: Was it associated with a failed Rift System?

    Science.gov (United States)

    LePera, Alan; Atekwana, Estella; Abdelsalam, Mohamed

    2014-05-01

    Dikes and dike swarms often play a significant role in the initiation and extension of rift zones. The giant ODS in northern Botswana, Africa represents a Jurassic aged (~180Ma) thermo-tectonic event which developed during the initial lithospheric weakening phase of Gondwana. Detailed investigations of the mafic dike swarm over the last four decades have provided insights into its age, shape, orientation, and chemistry but have thus far been limited in addressing the crustal structure below the swarm. Historically, the ODS has been interpreted as a failed rift arm based on its association with the Bouvet Hotspot and geometric relationship with two other prominent dike swarms. More recent studies suggest instead that the ODS was emplaced along a preexisting Precambrian basement fabric. Accordingly, the origin of the swarm still remains a matter of debate. The objectives of this study were: (1) determine the role of crustal heterogeneities on the emplacement of the dikes, (2) determine variations in crustal thickness below the ODS and geographically related Okavango Rift Zone (ORZ), a zone of incipient rifting and (3) determine along-strike variations in Curie Point Depth (CPD) below the swarm. We used high resolution aeromagnetic data and applied mathematical filters to enhance structures associated with the swarm's oblique geometry. Crustal thicknesses were estimated using the radial average power spectrum method, applied to 1.2km spatial resolution gravity data. 3D inversions were used to map the magnetic basement and determine the depth to the base of the swarm. Our results showed: (1) There were no apparent basement structures with the same 110° orientation as the ODS. (2) Crustal thickness below the swarm ranges from 39 to 45km with an average of 42± 3km, comparable with thicknesses derived from the Southern African Seismic Experiment (SASE). In contrast, crustal thickness below the ORZ is 9 to 16km thinner than the surrounding blocks. (3) The magnetic

  14. Serpentized mantle at rifted margins: The Goban Spur example

    Science.gov (United States)

    Bullock, A. D.; Minshull, T. A.

    2002-12-01

    The crustal structure of rifted continental margins can tell us about the processes that operated from continental extension to eventual break-up and sea floor spreading. Variations between margins may record different processes operating during extension or indicate changes in the external geological controls such as mantle plume influence. Extension between Europe and North America began in the mid Cretaceous, dated at the Goban Spur-Flemish Cap rift as late Hauterivian-early Barremian (126-128 Ma) from deep sea drilling (DSDP leg 80) results on the Goban Spur margin. Marine magnetic anomaly 34 can be identified clearly on both margins and indicates that sea floor spreading began no later than 83 Ma. Syn-rift volcanism is limited to a 20 km basaltic body, with considerable lateral extent, at the foot of the continental slope, emplaced at the end of continental rifting. \

  15. Flora of the forests as the indicator of climate change of Baikal Region (South Siberia)

    Science.gov (United States)

    Krivobokov, Leonid; Anenkhonov, Oleg

    2010-05-01

    The problem of global climate warming and its consequences for nature and civilization has been actively discussed in scientific and political publications during last 15 years. Although quantitative estimations of the rate of warming can be rather differ by results of different authors. A relevant component of such assessment is the prognosis of vegetation development under conditions of climate warming. Our study was carried out on the western macroslope of the Ikatskii Ridge in the northern Baikal region (South Siberia). This area is located on the territory where permafrost may have a continuous, discontinuous, or insular distribution. The plant cover of study area is characterized by dominance of larch (Larix gmelinii (Rupr.) Rupr.) and pine (Pinus sylvestris L.) forests that form a forest belt. In this belt, two parts can be distinguished: the lower, forest-steppe part (550-900 m a.s.l.), which is limited by steppe at the lower part and the upper, mountain-taiga part (800-1600 m a.s.l.) with mountain tundra on the top. Pine forests by Braun-Blanquet approach include to hemiboreal forests Rhytidio rugosi-Laricetea sibiricae K. Korotkov et Ermakov 1999. Larch forests presented by boreal forests Vaccinio-Piceetea Br.-Bl. in Br.-Bl., Siss. et Vlieger 1939. Floristic compositions of these classes were analyzed as cenofloras. Floristic complexes of cenofloras included the species of dark coniferous, light coniferous, preboreal, forest-steppe, mountain steppe, true steppe, montane, and meadow zonal groups. The cenoflora of class Rhytidio-Laricetea is presented by 222 species of vascular plants. This cenoflora mostly has the steppe and forest floristic complexes, respectively 54.4 and 35.5%. The cenoflora of class Vaccinio-Piceetea include 153 species and the light coniferous group of the forest floristic complex prevailed. The total share of forest species in the cenoflora reaches 70.6%. Other floristic complexes (meadow, steppe, and mountain) has the similar

  16. Indirect detection of subsurface outflow from a Rift Valley lake

    OpenAIRE

    Darling, W. G.; Allen, D J; Armannsson, H.

    1990-01-01

    Naivasha, highest of the Kenya (Gregory) Rift Valley lakes, has no surface outlet. However, unlike other Rift lakes it has not become saline despite high potential evaporation rates, which indicates that there must be some subsurface drainage. The fate ofthis outflow has been the subject of speculation for many years, especially during the general decline in lake water level during the I980's. Particularly to the south of the lake, there are few opportunities to obtain information from direct...

  17. Water balance of lakes in the Kenya Rift Valley

    International Nuclear Information System (INIS)

    The Rift Valley of Kenya contains lakes which cover the spectrum from comparatively fresh to hypersaline (here denoting high bicarbonate rather than chloride concentration). Lake water chemistry is the product of the balance between inflows, outflows and evaporation, and therefore provides a key to the understanding of lake hydrology. Isotope techniques are particularly important in an area like the Rift Valley, where lakes have no surface egress, but may have considerable subsurface outflow. 1 fig

  18. Magnetic characteristics of fracture zones in young volcanic terrains

    International Nuclear Information System (INIS)

    Complete text of publication follows. Detailed magnetic anomaly surveys over the central and southern sector of the Colima rift, western Mexico are used to investigate the subsurface structure and faults/fractures in the volcanic terrains formed by activity in the Colima volcanic complex (CVC). The CVC is located within the large north-south Colima rift in western Mexico. The Colima rift is a major active tectonic structure, trending perpendicular to the Middle America trench and related to subduction of the Rivera and Cocos plates. Volcanic activity in the CVC has migrated southward towards the trench. Analyses of faults and recent deformation in the CVC and Colima rift are of major interest in volcano tectonic studies and for hazard assessment. Structural analyses and fault mapping are however difficult as young volcanic and pyroclastic rocks obscure structural features and stratigraphy. Most of the southern Colima rift is covered by volcanic avalanches and volcanoclastic units, which have resulted in re-surfacing of the volcanic terrains. Here we show that magnetic anomalies permit identification of faults in the volcanic terrain and mapping of volcano-sedimentary and volcanic units. Total magnetic field measurements spaced every 0.5 km along 8 profiles, with an overall length of 284.5 km and covering the CVC sector of the Colima rift, have been obtained.We recognize fractures and fault zones of local and regional character from their characteristic magnetic anomaly response. Large mapped structures include N-S Montitlan, NE-SW La Lumbre, and E-W La Escondida faults, which can be traced across the area from the magnetic profiles. Fault magnetic anomalies are modelled by lateral contrasts in terms of step models assuming thin dipping elongated zones along the fault planes. The study shows that faults/fractures in young volcanic terrains can be investigated by magnetic surveying.

  19. Tracing the sources of recharge to groundwater in the specific meteorological and geological context of the Ethiopian rift and bordering plateau, using environmental isotopes

    International Nuclear Information System (INIS)

    Over 45 isotope data from the Ethiopian plateau bordering the rift valley were gathered and analyzed in order to get a good picture on the groundwater dynamics. Three sectors can be distinguished based on the isotope signature of meteoric waters. The Afar rift and Djibouti, the Main Ethiopian Rift and The Ethiopian Plateau. This difference in isotope signature can be used as an opportunity to trace groundwater flow in the region. These three zones have also different local Evaporation lines owing to different climate or difference in sources of evaporating water. The role of lakes and surface waters in recharging the groundwater and the role of groundwater in recharging lakes and other surface waters has been obtained form the relation between δ18O vs Electrical conductivity or δD. To fully benefit from the isotope data one has to consider therefore d excess values combined with geochemistry and hydrological information. It was concluded that 1) the presence of modern recharge from sporadic rainfall within the moisture deficit zone of the rift can not be ruled out, 2) deeper older (pre-bomb) and convecting thermal groundwater seems to exist in the northern sector of the rift (Afar and Djibouti) (this deeper system seems to interacts with the relatively shallow cold groundwater systems), 3) meteoric waters on Ethiopian plateau plays a major role in the recharging the aquifers in southern and central sector of the rift valley, 4) source of salinity (>600mg/L) in many rift valley river waters comes from influx of saline groundwater than en route evaporation, lakes in the central sector of the Ethiopian rift plays a major role in recharging adjacent aquifers, 5) based on deuterium excess the recharge of deep thermal water in Afar and Djibouti from present day Ethiopian plateaus meteoric waters can be ruled out, 6) limitations exist to fully utilize stable isotopes because of lack of strong altitude and/or latitude effect; these are mainly related to complex rainfall

  20. Exploring the contrasts between fast and slow rifting

    Science.gov (United States)

    Morgan, Jason P.; de Monserrat, Albert; White, Lloyd; Hall, Robert

    2016-04-01

    Researchers are now finding that extension sometimes occurs at rates much faster than the mean rates observed in the development of passive margins. Examples of rapid and ultra-rapid extension are found in several locations in Eastern Indonesia. This includes in northern and central Sulawesi as well as in eastern- and westernmost New Guinea. The periods of extension are associated with sedimentary basin growth as well as phases of crustal melting and rapid uplift. This is recorded through seismic imagery of basins offshore Sulawesi and New Guinea as well as through new field studies of the onshore geology in these regions. A growing body of new geochronological and biostratigraphic data provide some control on the rates of processes, indicating that rates of extension are typically at least twice as fast and potentially an order of magnitude faster than the fastest rates applied for more commonly studied rift settings (e.g. Atlantic opening, East African Rift, Australia-Antarctica opening). Here we explore a suite of experiments more appropriate for rifting episodes in Eastern Indonesia, and compare the evolution of these 'fast' (20-100 mm/year full rate) rifting models to experiments with the same crustal geometries rifting at ~5-20 mm/year. In particular, we explore to what depths hot lower crust and mantle can be exhumed by fast rifting, and whether we can produce the p-T-t paths implied by recent onshore geological studies.

  1. HORMONAL FUNCTION OF TYROID GLAND AND MALE MUSKRAT GONADS IN THE PERIOD OF POSTNATAL ONTOGENESIS AND IN THE SEXUAL ACTIVITY DECAY PERIOD OF BAIKAL REGIONAL ECOSYSTEM

    OpenAIRE

    Silkin, I.

    2011-01-01

    Basing on their own observations the authors have analyzed the dynamics of hormones concentration in thyroid gland and male muskrat gonads depending on the stage of postnatal ontogenesis and in the sexual activity decay period. As a result a number of new regularities of thyroid gland hormonal activity function in age aspect and the sexual activity decay period in muskrat males inhabiting under conditions of Baikal regional ecosystem,have been revealed.

  2. Tectonic history along the South Gabon Basin: Anomalous early post-rift subsidence

    International Nuclear Information System (INIS)

    An integrated study of the South Gabon Margin (South Atlantic) based on reflection seismic and well data has been performed to quantify tectonic activity. A regional profile crossing the entire basin together with subsidence analysis, highlights important aspects of the post-rift history. The most striking event in the margin evolution appears to be the anomalous extra subsidence during the early post-rift period characterized by high sedimentation rates, equivalent to one third of the syn-rift subsidence. Although the presence of evaporite layers restricts knowledge of the underlying structures essentially composed of pre-rift and syn-rift sequences, the outcome of this post-rift tectonic study has strong implications for the rifting history. The early post-rift subsidence patterns can be related to a high thermal anomaly during the early rifting thermal state of the lithosphere. These findings are highly relevant for petroleum system studies and have implications for hydrocarbon generation. (author)

  3. Pre-existing oblique transfer zones and transfer/transform relationships in continental margins: New insights from the southeastern Gulf of Aden, Socotra Island, Yemen

    Science.gov (United States)

    Bellahsen, N.; Leroy, S.; Autin, J.; Razin, P.; d'Acremont, E.; Sloan, H.; Pik, R.; Ahmed, A.; Khanbari, K.

    2013-11-01

    Transfer zones are ubiquitous features in continental rifts and margins, as are transform faults in oceanic lithosphere. Here, we present a structural study of the Hadibo Transfer Zone (HTZ), located in Socotra Island (Yemen) in the southeastern Gulf of Aden. There, we interpret this continental transfer fault zone to represent a reactivated pre-existing structure. Its trend is oblique to the direction of divergence and it has been active from the early up to the latest stages of rifting. One of the main oceanic fracture zones (FZ), the Hadibo-Sharbithat FZ, is aligned with and appears to be an extension of the HTZ and is probably genetically linked to it. Comparing this setting with observations from other Afro-Arabian rifts as well as with passive margins worldwide, it appears that many continental transfer zones are reactivated pre-existing structures, oblique to divergence. We therefore establish a classification system for oceanic FZ based upon their relationship with syn-rift structures. Type 1 FZ form at syn-rift structures and are late syn-rift to early syn-OCT. Type 2 FZ form during the OCT formation and Type 3 FZ form within the oceanic domain, after the oceanic spreading onset. The latter are controlled by far-field forces, magmatic processes, spreading rates, and oceanic crust rheology.

  4. Thermochronological response to rifting and subduction in the Corsica-Sardinia block

    Science.gov (United States)

    Malusà, Marco Giovanni; Danišík, Martin; Kuhlemann, Joachim

    2014-05-01

    The linkage between deep-seated tectonic processes and surface processes provides a key to investigate the geological evolution of complex plate boundaries starting from the analysis of low-temperature geochronological systems. Here, we integrate published thermochronological data from Corsica (Danišík et al., 2007) with a new multi-thermochronological dataset (i.e., zircon and apatite fission track (ZFT and AFT), and apatite (U-Th)/He (AHe) data) from Sardinia, in order to tackle the Western Mediterranean tectonic issue and constrain the problematic transition in space and time between the opposite-dipping Alpine (European) and Apenninic (Adriatic) subductions. Mesozoic AFT ages (169-201 Ma) and AHe ages (133-204 Ma), found on mountain ridges of central Sardinia and on the eastern coast of the island, indicate that rocks now exposed at the surface have resided since Jurassic times at very shallow depth, i.e., above the partial annealing zone of the AFT system (~60-110°C) or even above the partial retention zone of the AHe system (~40-80°C). The observed age pattern and track length distributions are consistent with those predicted after rising of isothermal surfaces during rifting and subsequent thermal relaxation after continental break-up. We demonstrate that the crustal sections now exposed in central and eastern Sardinia were originally located closer to the Tethyan rift axis than crustal sections exposed in NW Sardinia and Corsica, pointing to a NNE trend for the continental crust isopachs of the northern Tethyan margin (ENE before Corsica-Sardinia rotation), with burial depth progressively increasing from SE to NW. In Alpine Corsica, the low-T geochronological evidence of Jurassic rifting was largely obliterated by Cenozoic metamorphism, but it is still recognized in high-T systems. AFT and AHe ages set after Tethyan rifting but not thermally affected by Neogene backarc extension, define a SE-NW trend of decreasing ages from southern Sardinia to northern

  5. Rift Valley fever ecology and early warning

    International Nuclear Information System (INIS)

    Full text: Rift Valley fever (RVF) once again dramatically affected the Horn of Africa (Kenya, Somalia, and Tanzania) in 2006-2007. This outbreak was linked to unusual rainfall associated with climatic events (El Nino), which affected the populations of the mosquitoes acting as vectors and reservoirs of the disease. The disease also reappeared in Sudan in the autumn of 2007, following excessive rainfall driven by a post-El Nino, unusually warm sea temperature in the Indian Ocean. In the same year and in 2008, the disease affected southern Africa countries (Swaziland, South Africa) and islands in the Indian Ocean (Comoros, Mayotte, Madagascar). Based on near real-time climatic data, forecasting models and Early Warning Systems were available at the continental level and proved to be efficient in raising the alert before the onset of the epidemic, at least for the coastal countries of eastern Africa. In addition, these recent events gave an opportunity to review the natural history of RVF, especially in some places where its ecology was poorly documented. FAO and WHO officers widely use outcomes from the different models and then identified gaps or needs that could be filled in order to improve the use of these predictions. A brainstorming meeting was organized in Rome in September 2008 to discuss adjustments and complementarities of the existing models, as forecasting and early warning systems are the key points that may provide a time window for preventive measures, before the amplification of the virus is out of control. (author)

  6. Crustal structure and rift tectonics across the Cauvery–Palar basin, Eastern Continental Margin of India based on seismic and potential field modelling

    Indian Academy of Sciences (India)

    D Twinkle; G Srinivasa Rao; M Radhakrishna; K S R Murthy

    2016-03-01

    The Cauvery–Palar basin is a major peri-cratonic rift basin located along the Eastern Continental Margin of India (ECMI) that had formed during the rift-drift events associated with the breakup of eastern Gondwanaland (mainly India–Sri Lanka–East Antarctica). In the present study, we carry out an integrated analysis of the potential field data across the basin to understand the crustal structure and the associated rift tectonics. The composite-magnetic anomaly map of the basin clearly shows the onshore-tooffshore structural continuity, and presence of several high-low trends related to either intrusive rocks or the faults. The Curie depth estimated from the spectral analysis of offshore magnetic anomaly data gave rise to 23 km in the offshore Cauvery–Palar basin. The 2D gravity and magnetic crustal models indicate several crustal blocks separated by major structures or faults, and the rift-related volcanic intrusiverocks that characterize the basin. The crustal models further reveal that the crust below southeast Indian shield margin is ∼36 km thick and thins down to as much as 13–16 km in the Ocean Continent Transition (OCT) region and increases to around 19–21 km towards deep oceanic areas of the basin. Thefaulted Moho geometry with maximum stretching in the Cauvery basin indicates shearing or low angle rifting at the time of breakup between India–Sri Lanka and the East Antarctica. However, the additional stretching observed in the Cauvery basin region could be ascribed to the subsequent rifting of Sri Lanka from India. The abnormal thinning of crust at the OCT is interpreted as the probable zone of emplaced Proto-Oceanic Crust (POC) rocks during the breakup. The derived crustal structure along with other geophysical data further reiterates sheared nature of the southern part of the ECMI.

  7. Crustal structure and rift tectonics across the Cauvery-Palar basin, Eastern Continental Margin of India based on seismic and potential field modelling

    Science.gov (United States)

    Twinkle, D.; Rao, G. Srinivasa; Radhakrishna, M.; Murthy, K. S. R.

    2016-03-01

    The Cauvery-Palar basin is a major peri-cratonic rift basin located along the Eastern Continental Margin of India (ECMI) that had formed during the rift-drift events associated with the breakup of eastern Gondwanaland (mainly India-Sri Lanka-East Antarctica). In the present study, we carry out an integrated analysis of the potential field data across the basin to understand the crustal structure and the associated rift tectonics. The composite-magnetic anomaly map of the basin clearly shows the onshore-to-offshore structural continuity, and presence of several high-low trends related to either intrusive rocks or the faults. The Curie depth estimated from the spectral analysis of offshore magnetic anomaly data gave rise to 23 km in the offshore Cauvery-Palar basin. The 2D gravity and magnetic crustal models indicate several crustal blocks separated by major structures or faults, and the rift-related volcanic intrusive rocks that characterize the basin. The crustal models further reveal that the crust below southeast Indian shield margin is ˜36 km thick and thins down to as much as 13-16 km in the Ocean Continent Transition (OCT) region and increases to around 19-21 km towards deep oceanic areas of the basin. The faulted Moho geometry with maximum stretching in the Cauvery basin indicates shearing or low angle rifting at the time of breakup between India-Sri Lanka and the East Antarctica. However, the additional stretching observed in the Cauvery basin region could be ascribed to the subsequent rifting of Sri Lanka from India. The abnormal thinning of crust at the OCT is interpreted as the probable zone of emplaced Proto-Oceanic Crust (POC) rocks during the breakup. The derived crustal structure along with other geophysical data further reiterates sheared nature of the southern part of the ECMI.

  8. Fault-controlled hydration of the upper mantle during continental rifting

    Science.gov (United States)

    Bayrakci, G.; Minshull, T. A.; Sawyer, D. S.; Reston, T. J.; Klaeschen, D.; Papenberg, C.; Ranero, C.; Bull, J. M.; Davy, R. G.; Shillington, D. J.; Perez-Gussinye, M.; Morgan, J. K.

    2016-05-01

    Water and carbon are transferred from the ocean to the mantle in a process that alters mantle peridotite to create serpentinite and supports diverse ecosystems. Serpentinized mantle rocks are found beneath the sea floor at slow- to ultraslow-spreading mid-ocean ridges and are thought to be present at about half the world’s rifted margins. Serpentinite is also inferred to exist in the downgoing plate at subduction zones, where it may trigger arc magmatism or hydrate the deep Earth. Water is thought to reach the mantle via active faults. Here we show that serpentinization at the rifted continental margin offshore from western Spain was probably initiated when the whole crust cooled to become brittle and deformation was focused along large normal faults. We use seismic tomography to image the three-dimensional distribution of serpentinization in the mantle and find that the local volume of serpentinite beneath thinned, brittle crust is related to the amount of displacement along each fault. This implies that sea water reaches the mantle only when the faults are active. We estimate the fluid flux along the faults and find it is comparable to that inferred for mid-ocean ridge hydrothermal systems. We conclude that brittle processes in the crust may ultimately control the global flux of sea water into the Earth.

  9. The Angola-Gabon rifted margin: reappraisal of the upper- and lower-plate concept

    Science.gov (United States)

    Peron-Pinvidic, Gwenn; Manatschal, Gianreto; Masini, Emmanuel; Sutra, Emilie; Flament, Jean Marie; Haupert, Isabelle; Unternehr, Patrick

    2015-04-01

    In this contribution we summarize observations from the South Atlantic Angola-Gabon rifted margin. Our study is based on interpretation of a selection of deep penetration depth migrated seismic reflection profiles. We describe the dip architecture of the margin under five structural domains (proximal, necking, distal, outer and oceanic), listing their characteristics. We further explain the necking domain and discuss the architecture of the distal domain as a combination of hyper-extended crust and exhumed mantle. The mapping and characterization of these domains permit to illustrate the along strike structural and stratigraphic variability of the margin. We interpret this variability as the result of a shift from an upper-plate setting (central segment, South Congo to North Angola) to lower-plate settings (southward with the inner Kwanza Basin, and northward with the Gabon Basin). The transfer from one setting to the other is either sharp, typified by a major regional normal fault on the northern flank of a (residual) H-block, identified offshore Cabinda-Zaire, or more diffuse southward. First order screening of conjugate profiles confirmed the segmentation and the structural characteristics of the transfer zones. The studied dataset also permitted identifying key sections that can be considered as type-examples of upper-plate and lower-plate settings, what permits us reviewing the characteristics of upper- and lower-plate rifted margins.

  10. Climate in continental interior Asia during the longest interglacial of the past 500 000 years: the new MIS 11 records from Lake Baikal, SE Siberia

    Directory of Open Access Journals (Sweden)

    A. A. Prokopenko

    2010-01-01

    Full Text Available A synthesis of paleoclimate responses from Lake Baikal during the MIS 11 interglacial is presented based on proxy records from two drill sites 245 km apart. BDP-99 is located in vicinity of the delta of the major Baikal tributary, whereas the BDP-96 site represents hemipelagic setting distant from riverine influence. The comparison of thicknesses of interglacial intervals in these contrasting depositional settings confirms the extended ca. 33-kyr duration of the MIS 11 interglacial. The new BDP-99 diatom biostratigraphic record matches that of the BDP-96-2 holostratotype and thus allows establishing establishes robust correlation between the records on the same orbitally-tuned timescale.

    The first detailed MIS 11 palynological record from the BDP-99 drill core indicates the dominance of boreal conifer (taiga forest vegetation in the Baikal region throughout the MIS 11 interglacial, since at least 424 ka till ca. 396 ka. The interval ca. 420–405 ka stands out as a "conifer optimum" with abundant Abies sibirica, indicative of climate significantly warmer and less continental than today. The closest Baikal analog to this type of vegetation in the history of the current Holocene interglacial is at ca. 9–7 ka. The warm conifer phase lasted for ca. 15 kyr during MIS 11 interrupted by two millennial-scale cooling episodes at ca. 411–410 and 405–404 ka. Reconstructed annual precipitation of 450–550 mm/yr during the MIS 11 interglacial is by ca. 100 mm higher than during the Holocene; regional climate was less continental with warmer mean temperatures both in summer and in winter.

    At both drill sites, the two-peak structure of the MIS 11 diatom abundance profiles reflects the orbital signature of precession in the interglacial paleoclimate record of continental Eurasia. MIS 11 interglacial was characterized by the sustained high level of primary production and accumulation of autochthonous organic matter at both study

  11. The centuries-old and thousand- year oscillations of uranium distribution in the Lake Baikal sediments, according to the neutron-fission (n,f)-autoradiography

    Science.gov (United States)

    Kirichenko, Ivan; Zhmodik, Sergey; Belyanin, Dmitriy; Khlistov, Oleg

    2016-04-01

    The trace elements local distribution data, particularly (U, P, Br, Mo, BiSi et. all) in a lake and oceans bottom sediments reflects the conditions of those sediments formation, and correlates with changes in paleoclimatic conditions. In papers [Colman et all, 1995; Goldberg et all, 2000, etc.] established that the concentrations of some elements contained in the bottom sediments of Lake Baikal, in particular BiSi, Sr / Ba, Sr / Rb, Ti, U et al., reflect changes in insolation caused by periodic oscillations parameters Earth's orbit (Milankovitch cycles). At the same time, a bottom sediments of the largest continental lake (Lake Baikal), can keep a record of changes less periodicity. Our research focuses on the study of the spatial distribution of uranium with high resolution in the bottom sediments of Lake Baikal. The purpose of this research is determination the centure-old and thousand- old year oscillations in the concentration of uranium in the sediments of Lake Baikal. Fragments of the lake sediment columns taken from the axial part of the Akademicheskiy Ridge in Lake Baikal (stations coordinates St -8 (53 32'15"N 107 56'25"E); - and St11 - (53 33'51"N 108 00'05"E) were studied using complex of local analysis methods, such as: n, f - and n, β-autoradiography, SEM. The distributions of uranium and phosphorus in the authigenic component of sediments along the whole columns length (with the resolution of 10 micron which corresponds to the time resolution of about six months) have been studied by the autoradiography method. Statistical data analysis (Fourier and wavelet analysis) were used for detection oscillations in the uranium concentration Three main different factors of concentrators were established for uranium and phosphorus in the sediments of the Academic mountain range:1) sedimentation, 2) nutrient,3) diagenetic. The periodicity (range from 100 to 1,000 years), in the distribution of authigenic uranium in the sediment column were identified by

  12. Structural comparison of archetypal Atlantic rifted margins (Angola - Esperito Santo, Iberia - Newfoundland, mid.Norway - East Greenland)

    Science.gov (United States)

    Peron-Pinvidic, Gwenn; Manatschal, Gianreto; Terje Osmundsen, Per

    2013-04-01

    In the last decade, a number of new geological and numerical models have been proposed to explain intriguing observations from deep margin settings that were previously not well understood. These new models, together with the increasing amount of high-quality geophysical data, now allow to compare observations from different margins. Key areas are the Iberia-Newfoundland conjugates, the North-East and South Atlantic systems. A first-order structural similarity appears between the architectures of these rifted margins, including magma-poor as well as magma-rich ones. Typical is the seawards arrangement of characteristic entities such as platforms, necking zones, ocean-continent transitions and marginal/outer highs. The arrangement appears to reflect a commonality with respect to the tectonic processes involved in rifted margin formation. The study of magma-poor and magma-rich margins notably suggests that hyper-extension does not preclude a magmatic breakup. We propose to clarify the definition of a number of terms typically used in rifted margin studies. Then we will present a review of available information from the Angola-Gabon, Iberia-Newfoundland and Norway-Greenland margins, usually referred to as the archetypes of hyper-extended, magma-poor or volcanic margins. We will discuss their similarities and differences and review the related deformation modes.

  13. Transition From a Magmatic to a Tectonic Rift System : Seismotectonics of the Eyasi- Manyara Region, Northern Tanzania, East Africa

    Science.gov (United States)

    Albaric, J.; Perrot, J.; Deschamps, A.; Deverchere, J.; Wambura, R. F.; Tiberi, C.; Petit, C.; Le Gall, B.; Sue, C.

    2008-12-01

    How a rift system propagates and breaks throughout a cold and thick continental crust remains poorly known. Only few places allow to address the question. In the East African Rift System (EARS), the eastern magma- rich branch abruptly splits into two amagmatic arms (the Eyasi and Manyara faulted systems), south of a E-W volcanic chain (the Ngorongoro-Kilimanjaro transverse volcanic belt), as crossing the Archaean Tanzanian craton margin. We present the first detailed seismotectonic picture of the Eyasi-Manyara rifts where a network of ~25 seismometers was settled from June to November 2007 (SEISMO-TANZ'07 seismological experiment). From the seismicity recorded by the network, we identify active faults and discuss the stress field framework obtained from the inversion of focal mechanisms. We use the determined depth of earthquakes (1) to discuss the crustal structure of the transition zone from a magma-rich to a magma-starved section of the EARS and (2) to further emphasize the rheological control on depth distributions in the EARS (Albaric et al., Tectonophysics, 2008). The stress and strain directions deduced from our work are also used to question recently published kinematics and conceptual models of the EARS (Calais et al., Geol. Soc. London, 2006 ; Le Gall et al., Tectonophysics, 2008).

  14. The Late Oligocene to Early Miocene early evolution of rifting in the southwestern part of the Roer Valley Graben

    Science.gov (United States)

    Deckers, Jef

    2016-06-01

    The Roer Valley Graben is a Mesozoic continental rift basin that was reactivated during the Late Oligocene. The study area is located in the graben area of the southwestern part of the Roer Valley Graben. Rifting initiated in the study area with the development of a large number of faults in the prerift strata. Some of these faults were rooted in preexisting zones of weakness in the Mesozoic strata. Early in the Late Oligocene, several faults died out in the study area as strain became focused upon others, some of which were able to link into several-kilometer-long systems. Within the Late Oligocene to Early Miocene northwestward prograding shallow marine syn-rift deposits, the number of active faults further decreased with time. A relatively strong decrease was observed around the Oligocene/Miocene boundary and represents a further focus of strain onto the long fault systems. Miocene extensional strain was not accommodated by further growth, but predominantly by displacements along the long fault systems. Since the Oligocene/Miocene boundary coincides with a radical change in the European intraplate stress field, the latter might have contributed significantly to the simultaneous change of fault kinematics in the study area.

  15. Orogenic structural inheritance and rifted passive margin formation

    Science.gov (United States)

    Salazar Mora, Claudio A.; Huismans, Ritske S.

    2016-04-01

    Structural inheritance is related to mechanical weaknesses in the lithosphere due to previous tectonic events, e.g. rifting, subduction and collision. The North and South Atlantic rifted passive margins that formed during the breakup of Western Gondwana, are parallel to the older Caledonide and the Brasiliano-Pan-African orogenic belts. In the South Atlantic, 'old' mantle lithospheric fabric resulting from crystallographic preferred orientation of olivine is suggested to play a role during rifted margin formation (Tommasi and Vauchez, 2001). Magnetometric and gravimetric mapping of onshore structures in the Camamu and Almada basins suggest that extensional faults are controlled by two different directions of inherited older Brasiliano structures in the upper lithosphere (Ferreira et al., 2009). In the South Atlantic Campos Basin, 3D seismic data indicate that inherited basement structures provide a first order control on basin structure (Fetter, 2009). Here we investigate the role of structural inheritance on the formation of rifted passive margins with high-resolution 2D thermo-mechanical numerical experiments. The numerical domain is 1200 km long and 600 km deep and represents the lithosphere and the sublithospheric mantle. Model experiments were carried out by creating self-consistent orogenic inheritance where a first phase of orogen formation is followed by extension. We focus in particular on the role of varying amount of orogenic shortening, crustal rheology, contrasting styles of orogen formation on rifted margin style, and the time delay between orogeny and subsequent rifted passive formation. Model results are compared to contrasting structural styles of rifted passive margin formation as observed in the South Atlantic. Ferreira, T.S., Caixeta, J.M., Lima, F.D., 2009. Basement control in Camamu and Almada rift basins. Boletim de Geociências da Petrobrás 17, 69-88. Fetter, M., 2009. The role of basement tectonic reactivation on the structural evolution

  16. Rift architecture and evolution: The Sirt Basin, Libya: The influence of basement fabrics and oblique tectonics

    Science.gov (United States)

    Abdunaser, K. M.; McCaffrey, K. J. W.

    2014-12-01

    zones and adjoining highs. Late Eocene rocks exposed in the western part of the basin exhibit a complex network of branching segmented normal and strike-slip faults, generally with a NNW-SSE structural orientations. Many surface structural features have been interpreted from satellite images which confirm sinistral strike-slip kinematics. Relay ramp structures, numerous elongate asymmetric synclines associated with shallow west limbs and steeper dipping east limbs are developed in the hangingwalls adjacent to west downthrowing normal faults. These structural patterns reflect Cretaceous/Tertiary extensional tectonics with additional control by underlying pre-existing Pan-African basement fabrics and ENE-WSW trending Hercynian structures. We relate the Sirt Basin rift development as exemplified in our study area to the break-up of Gondwana represented by the structural evolution of the West-Central African rift system, and the South and Central Atlantic, the Tethys and the Indian Oceans.

  17. Diagnosis of Farmers' Conditions Using Wealth Ranking Approach- A Case study of North Rift

    International Nuclear Information System (INIS)

    characterization of farming systems based on resources endowment was done in five districts of north rift in 1997/1999. Multi-stage sampling technique was used to select districts, divisions and villages. The villages were randomly selected from each administrative agricultural division in 15 major agro- ecological zones. Key informants, who were mainly village elders, were the respondents. A total of 360 respondents were interviewed during the survey. The households were grouped into high, average and low resource groups based on key indicators of wealth status. These were: farm size, off-farm employment, number of livestock, use of external purchasable inputs, use and ownership of farm machinery. There were distinct similarities and differences in farm types based and major producer of agricultural products. Therefore these categories of farmers form favourable target groups for technology for perceptible impact on increased crop and livestock productivity

  18. Volcanism in the western part of the rift valley in Southern Kenya

    Science.gov (United States)

    Crossley, R.; Knight, R. M.

    1981-06-01

    The stratigraphy, tectonic history, petrography and major oxide petrochemistry of the volcanic sequences in the western part of the rift valley in southern Kenya is summarised. Volcanism and rift faulting began 15 and 7 m.y. ago respectively. A recurrent feature of Miocene and Pliocene volcanism was the tendency for salic magmas to be preferentially erupted in the northern part of the area: the accumulation of a northward-thickening Pliocene trachyte pile is particularly notable. Transitional-mildly alkalic basalts and trachytes were erupted only after the onset of rift faulting, from sites within the rift structure, and so can be considered «rift dependent». Nephelinites, melanephelinites, limburgites and phonolites were erupted before and after onset of rift faulting, from sites within and outside the rift structure, and so can be considered «rift independent».

  19. Du Lac de Geneve au Lac Baikal: deux metropoles en construction

    Directory of Open Access Journals (Sweden)

    Guy Mettan

    2006-08-01

    centres de recherche et de haute technologie.3 promouvoir la region comme un ensemble coherent et solidaire tant aupres des autorites federales, des autres regions du pays que vis-a-vis de l'etranger. La promotion economique, la vision politique, le developpement des infrastructures, le tourisme doivent faire l'objet d'une communication commune car les etrangers ne font pas tres bien la difference entre les divers elements qui composent la region. Un label commun a ainsi ete cree sou l'appellation de Lake Geneva Region.4 L'equilibre entre les partenaires doit etre respecte. On ne rapproche pas des villes comme on fusion des entreprises. Pour reussir, les objectifs doivent etre partages et chacun doit etre respecte. C'est pour cela que de tels rapprochement consomment beaucoup de temps, d'energie et exigent de la patience. C'est tres long d'apprendre a voir ce qui unit plutot que ce qui separe. C'est ainsi que toutes les tentatives de rapprochement entre Geneve et Lausanne ont, pendant des decennies, echoue parce que beaucoup de riches habitants du canton de Vaud viennent travailler a Geneve mais paient les impots dans le canton de Vaud selon le droit national, ce que Geneve trouve injuste car c'est elle qui doit financer les infrastructures publiques. Desormais, on a decide de laisser le probleme en suspens pour s'attaquer seulement aux projets communs, que chacun peut financer de facon equitable.Voila en quelques mots, l'etat d'avancement de la metropole lemanique. Le projet avance, des habitudes de collaboration sont prises. En Suisse, a cause de la complexite des procedures democratiques, les changements sont tres lents. Il est donc possible d'aller plus vite. Mais a condition de respecter les quatre principes enonces plus haut. Dans cette perspective, je souhaite donc bonne chance a la future megapole Irkutsk-Baikal!

  20. Chemical and isotopic characteristics of hot springs along the along the Neogene Malawi rift.

    Science.gov (United States)

    Atekwana, E. A.; Tsokonombwe, G. W.; Elsenbeck, J.; Wanless, V. D.; Atekwana, E. A.

    2015-12-01

    We measured the concentrations of major ions and dissolved inorganic carbon (DIC) and the stable isotopes of carbon (δ13CDIC), hydrogen (δD) and oxygen (δ18O) of hot springs along the Neogene Malawi rift. We compared the results with those of streams and a cold spring. We aimed to assess the hot springs for evidence of addition of mantle mass, specifically water and carbon and (2) determine the processes that control the chemical and isotopic evolution of the hot springs. Understanding the source(s) of heat for the springs and if the chemical and isotopic characteristics show evidence of mantle processes is an important goal of the Project for Rift Initiation, Development and Evolution (PRIDE). The temperature of the hot springs ranged from 35 to 80 ºC. High temperature anomalies are observed between latitudes 10 to 11, 12 to 13 and 15 to 16 degrees south along the rift axis. The δD and δ18O for the cold spring, hot springs and streams had a similar range, were positively correlated and lie on the trend of the local meteoric water line. We suggest negligible contribution of water from a connate or magmatic source and limited oxygen exchange from water-rock interaction or CO2 exchange from deep sedimentary carbonates. The DIC concentrations of the hot springs are higher (5 to 61 mg C/L) than those of streams (2 to 28 mg C/L) indicating addition of carbon to the DIC pool during the circulation of some springs. The range in the δ13CDIC of the hot springs (-17 to -8‰) is broader and lower compared to streams (-12 to -5‰) due to addition of carbon with a δ13CDIC of -15‰ to the spring water during circulation. Our results indicate that (1) the source of water for the hot springs is meteoric, (2) the hot springs have not experienced extensive water-rock interaction due to fast circulation suggesting highly permeable fault zones, (3) the source of carbon in the DIC of the hot springs is mostly CO2(g) from the soil zone and (4) the springs are heated by normal

  1. Magnetotelluric pilot study in the Rio Grande Rift, southwest USA

    Science.gov (United States)

    Feucht, D. W.; Bedrosian, P. A.; Sheehan, A. F.

    2012-12-01

    A magnetotelluric (MT) pilot study consisting of approximately 25 stations distributed in and around the Rio Grande Rift of the southwest United States was carried out in the summer of 2012. Both broadband (100 Hz to 1000 s) and long-period (up to 10 000 s) MT data were collected across two profiles that run perpendicular to the rift axis near Denver, Colorado and Taos, New Mexico, respectively. Time-domain EM data was also collected at each site to account for galvanic distortion in the near-surface. The tectonic forces and rheologic properties behind the initiation and propagation of the rift are poorly understood. Surface mapping of volcanism, normal faulting and sedimentary basins reveals a narrow band of crustal deformation confined to a region in close proximity to the rift axis while geophysical results suggest that deformation is distributed across a much broader and deeper region of the lithosphere. In particular, seismic tomography shows low seismic wave speeds into the lower crust and upper mantle. The magnetotelluric technique is a well-proven passive electromagnetic method that allows for the detection of apparent resistivity at a wide range of depth scales. Complimenting the seismic results with MT data will provide important new information on the geologic and geophysical properties that control the rifting process in this low-strain rate environment. Properties to which the MT method is particular sensitive include temperature, fluid content, and mineral alteration. Preliminary results from this most recent survey are encouraging, showing good data quality up to 10 000 s. In an important precursor to full 2D modeling, the magnetotelluric phase tensor has been used to assess the dimensionality of the electrical resistivity structure at depth. This pilot study provides proof of concept for a much larger magnetotelluric experiment planned to take place in the Rio Grande Rift in 2013.

  2. Unified Scaling Law for Earthquakes: Seismic hazard and risk assessment for Himalayas, Lake Baikal, and Central China regions

    Science.gov (United States)

    Nekrasova, Anastasia; Kossobokov, Vladimir; Parvez, Imtiyaz; Tao, Xiaxin

    2015-04-01

    The Unified Scaling Law for Earthquakes (USLE), that generalizes the Gutenberg-Richter recurrence relation, has evident implications since any estimate of seismic hazard depends on the size of the territory that is used for investigation, averaging, and extrapolation into the future. Therefore, the hazard may differ dramatically when scaled down to the proportion of the area of interest (e.g. territory occupied by a city) from the enveloping area of investigation. In fact, given the observed patterns of distributed seismic activity the results of multi-scale analysis embedded in USLE approach demonstrate that traditional estimations of seismic hazard and risks for cities and urban agglomerations are usually underestimated. Moreover, the USLE approach provides a significant improvement when compared to the results of probabilistic seismic hazard analysis, e.g. the maps resulted from the Global Seismic Hazard Assessment Project (GSHAP). We apply the USLE approach to evaluating seismic hazard and risks to population of the three territories of different size representing a sub-continental and two different regional scales of analysis, i.e. the Himalayas and surroundings, Lake Baikal, and Central China regions.

  3. Spatial variation of the aftershock activity across the Kachchh Rift Basin and its seismotectonic implications

    Indian Academy of Sciences (India)

    A P Singh; O P Mishra; Dinesh Kumar; Santosh Kumar; R B S Yadav

    2012-04-01

    We analyzed 3365 relocated aftershocks with magnitude of completeness () ≥ 1.7 that occurred in the Kachchh Rift Basin (KRB) between August 2006 and December 2010. The analysis of the new aftershock catalogue has led to improved understanding of the subsurface structure and of the aftershock behaviour. We characterized aftershock behaviour in terms of -value, -value, spatial fractal dimension (s), and slip ratio (ratio of the slip that occurred on the primary fault and that of the total slip). The estimated -value is 1.05, which indicates that the earthquake occurred due to active tectonics in the region. The three dimensional -value mapping shows that a high -value region is sandwiched around the 2001 Bhuj mainshock hypocenter at depths of 20–25 km between two low -value zones above and below this depth range. The s-value was estimated from the double-logarithmic plot of the correlation integral and distance between hypocenters, and is found to be 2.64 ± 0.01, which indicates random spatial distribution beneath the source zone in a two-dimensional plane associated with fluid-filled fractures. A slip ratio of about 0.23 reveals that more slip occurred on secondary fault systems in and around the 2001 Bhuj earhquake (Mw 7.6) source zone in KRB.

  4. Vertical stability and the Brunt-Väisäla frequency of deep natural waters by the example of Lake Baikal, Lake Tanganyika, and the World Ocean

    Science.gov (United States)

    Sherstyankin, P. P.; Kuimova, L. N.

    2009-12-01

    Theoretical analysis, calculations, and comparison with the results of observations in Lake Baikal, Lake Tanganyika, and the World Ocean are performed for the vertical stability E and the Brunt-Väisäla frequency N in the form of N 2 with regard to all components (at the constant temperature T and the salinity S, the common adiabatic form at T, S Const). The adiabatic stability E ad and the Väisäla frequency N in the form of N {/ad 2} are always positive; at a change from the inverse to the direct temperature stratification, they have deep minimums reaching 10-16 m-1 and 10-15 s-2 and less; the minimums have the form of a special point, a reversal point of the first kind called a “cusp.” The reality of these reversal points is confirmed by the analysis of the investigation procedure, comparison with the results of previous theoretical (Sherstyankin, et al., 2007), and experimental (observations in Baikal, Shimaraev et al., 1994) works. The features of vertical profiles of E ad , E and N {/ad 2}, N 2, as well as the layers where the Brunt-Väisäla frequency is less than the inertial frequency, are studied. The analysis with regard to all components of the stability E ad and the Brunt-Väisäla frequency N makes a great contribution to understanding of mixing processes in theoretical and experimental investigations; it is valid in all reservoirs of the Earth with inverse and direct temperature stratification, including Lake Baikal, Lake Tanganyika, and the World Ocean.

  5. Anorogenic nature of magmatism in the Northern Baikal volcanic belt: Evidence from geochemical, geochronological (U-Pb), and isotopic (Pb, Nd) data

    Science.gov (United States)

    Neymark, L.A.; Larin, A.M.; Nemchin, A.A.; Ovchinnikova, G.V.; Rytsk, E. Yu

    1998-01-01

    The Northern Baikal volcanic belt has an age of 1.82-1.87 Ga and extends along the boundary between the Siberian Platform and the Baikal foldbelt. The volcanic belt is composed of volcanics of the Akitkan Group and granitic rocks of the Irel and Primorsk complexes. The geochemistry of the rocks points to the intraplate anorogenic nature of the belt. U-Pb zircon dating of the Chuya granitoids revealed that they are older (2020-2060 Ma) than the Northern Baikal volcanic belt and, thus, cannot be regarded as its component. Data on the Pb isotopic system of feldspars from the granitoids confirm the contemporaneity of all volcanic rocks of the belt except the volcanics of the upper portion of the Akitkan Group (Chaya Formation). Our data suggest its possibly younger (???1.3 Ga) age. The isotopic Nd and Pb compositions of the acid volcanic rocks provide evidence of the heterogeneity of their crustal protoliths. The volcanics of the Malaya Kosa Formation have ??Nd(T) = -6.1, ??2 = 9.36, and were most probably produced with the participation of the U-depleted lower continental crust of Archean age. Other rocks of the complex show ??Nd(T) from -0.1 to -2.4, ??2 = 9.78, and could have been formed by the recycling of the juvenile crust. The depletion of the Malaya Kosa volcanics in most LILEs and HFSEs compared with other acid igneous rocks of the belt possibly reflects compositional differences between the Late Archean and Early Proterozoic crustal sources. The basaltic rocks of the Malaya Kosa Formation (??Nd varies from -4.6 to -5.4) were produced by either the melting of the enriched lithospheric mantle or the contamination of derivatives of the depleted mantle by Early Archean lower crustal rocks, which are not exposed within the area. Copyright ?? 1998 by MAEe Cyrillic signK Hay??a/Interperiodica Publishing.

  6. Isotopic composition of dissolved inorganic carbon in subsurface sediments of gas hydrate-bearing mud volcanoes, Lake Baikal: implications for methane and carbonate origin

    OpenAIRE

    Krylov, A. A.; Khlystov, O.M.; Hachikubo, A.; Minami, H.; Nunokawa, Y.; Shoji, H; Zemskaya, T. I.; L. Naudts; Pogodaeva, T.V.; Kida, M; Kalmychkov, G. V.; J. Poort

    2010-01-01

    We report on the isotopic composition of dissolved inorganic carbon (DIC) in pore-water samples recovered by gravity coring from near-bottom sediments at gas hydrate-bearing mud volcanoes/gas flares (Malenky, Peschanka, Peschanka 2, Goloustnoe, and Irkutsk) in the Southern Basin of Lake Baikal. The d13C values of DIC become heavier with increasing subbottom depth, and vary between -9.5 and +21.4‰ PDB. Enrichment of DIC in 13C indicates active methane generation in anaerobic environments near ...

  7. Micropalaeontological (Palynological) Records of the Ohře Rift

    Czech Academy of Sciences Publication Activity Database

    Konzalová, Magda

    Prague : National Museum, 2006. ISBN 80-7036-198-0. [European Palaeobotany- Palynology Conference /7./. 06.09.2006-11.09.2006, Prague] R&D Projects: GA AV ČR IAA300130612 Institutional research plan: CEZ:AV0Z30130516 Keywords : Plant microfossils * neovolcanics * Ohře River Rift, * Paleogene * NW Bohemia Subject RIV: EF - Botanics

  8. Innovative tephra studies in the East African Rift System

    Science.gov (United States)

    WoldeGabriel, Giday; Hart, William K.; Heiken, Grant

    Geosciences investigations form the foundation for paleoanthropological research in the East African Rift System. However, innovative applications of tephra studies for constraining spatial and temporal relations of diverse geological processes, biostratigraphic records, and paleoenvironmental conditions within the East African Rift System were fueled by paleoanthropological investigations into the origin and evolution of hominids and material culture. Tephra is a collective, size-independent term used for any material ejected during an explosive volcanic eruption.The East African Rift System has become a magnet for paleoanthropological research ever since the discovery of the first hominids at Olduvai Gorge, in Tanzania, in the 1950s [Leakey et al., 1961]. Currently, numerous multidisciplinary scientific teams from academic institutions in the United States and Western Europe make annual pilgrimages for a couple of months to conduct paleoanthropological field research in the fossil-rich sedimentary deposits of the East African Rift System in Ethiopia, Kenya, and Tanzania. The field expedition consists of geological, paleontological, archaeological, and paleoenvironmental investigations.

  9. Tectonic caves of Solai in the Kenyan Rift Valley

    OpenAIRE

    Davis, Robert A.

    1998-01-01

    Tectonic caves al Solai, Kenya, were explored in 1970. These lie in a complex geological area of the Great Rift Valley in columnar-faulted ignimbrite. Fissures are presumed to have been widened by later tectonic activity -e.g. the major earthquake of January, 1928. The caves and exploration are briefly described. Questions of formation, drainage and possibilities of steam reservoirs are discussed.

  10. Complete Genome Sequence of Rift Valley Fever Virus Strain Lunyo

    OpenAIRE

    Lumley, Sarah; Horton, Daniel L.; Marston, Denise A.; Johnson, Nicholas; Ellis, Richard J.; Fooks, Anthony R.; Hewson, Roger

    2016-01-01

    Using next-generation sequencing technologies, the first complete genome sequence of Rift Valley fever virus strain Lunyo is reported here. Originally reported as an attenuated antigenic variant strain from Uganda, genomic sequence analysis shows that Lunyo clusters together with other Ugandan isolates.

  11. The Reconcavo Basin reservoirs in transition of the pre-rift and rift phases: new discussion; Os reservatorios da Bacia do Reconcavo na transicao das fases pre-rift e rift: nova discussao

    Energy Technology Data Exchange (ETDEWEB)

    Romao, Felipe [Queiroz Galvao Perfuracoes S.A., Rio de Janeiro, RJ (Brazil); Borghi, Leonardo [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil)

    2004-07-01

    The facies analysis of the stratigraphic interval represented by Sergi, Itaparica, and Agua Grande formations (Brotas and Santo Amaro groups) of Reconcavo basin was guided by cores description of the well 1-CAL-1-BA (Caldeirao 1), located in the Northwestern part of the Reconcavo Basin. Sedimentary facies (lithofacies) were described and grouped into four facies association interpreted as fluvial (upper Sergi Fm.), fluvial-lacustrine (Itaparica Fm.), and fluvial-eolian (Agua Grande Fm.) depositional systems; also, forced-regression erosive surfaces (unconformities) and transgressive ones were identified. The analysis of these results points that the upper Sergi Fm. would have subsided as consequence of the early rifting of the basin, creating space for the formation of shallow lake (Itaparica Fm.). This ancient lake undergone several forced regressions due to a continuous early tectonism (rifting), responsible by the sand input into the lake, in a coarsening up cycle topped by the expressive fluvio-eolian system of the Agua Grande Fm. Each forced regression smaller cycle is capped by lake flooding shales. Above this major CU cycle, the intensification of tectonic event subsided the basin and created a deep lake (Candeias Fm.) - the Rift Phase. So, the initial rifting would not have started during a 'Candeias time', but by earlier, in a less intense way. It must be stressed that this interpretation was based solely in only one well, but it's important to keep this new idea in mind for revision or new studies on this interval. (author)

  12. Massive and prolonged deep carbon emissions associated with continental rifting

    Science.gov (United States)

    Lee, Hyunwoo; Muirhead, James D.; Fischer, Tobias P.; Ebinger, Cynthia J.; Kattenhorn, Simon A.; Sharp, Zachary D.; Kianji, Gladys

    2016-02-01

    Carbon from Earth’s interior is thought to be released to the atmosphere mostly via degassing of CO2 from active volcanoes. CO2 can also escape along faults away from active volcanic centres, but such tectonic degassing is poorly constrained. Here we use measurements of diffuse soil CO2, combined with carbon isotopic analyses to quantify the flux of CO2 through fault systems away from active volcanoes in the East African Rift system. We find that about 4 Mt yr-1 of mantle-derived CO2 is released in the Magadi-Natron Basin, at the border between Kenya and Tanzania. Seismicity at depths of 15-30 km implies that extensional faults in this region may penetrate the lower crust. We therefore suggest that CO2 is transferred from upper-mantle or lower-crustal magma bodies along these deep faults. Extrapolation of our measurements to the entire Eastern rift of the rift system implies a CO2 flux on the order of tens of megatonnes per year, comparable to emissions from the entire mid-ocean ridge system of 53-97 Mt yr-1. We conclude that widespread continental rifting and super-continent breakup could produce massive, long-term CO2 emissions and contribute to prolonged greenhouse conditions like those of the Cretaceous.

  13. Evolution of bimodal volcanism in Gona, Ethiopia: geochemical associations and geodynamic implications for the East African Rift System

    Science.gov (United States)

    Ghosh, N.; Basu, A. R.; Gregory, R. T.; Richards, I.; Quade, J.; Ebinger, C. J.

    2013-12-01

    The East African rift system in Ethiopia formed in the Earth's youngest flood basalt province, and provides a natural laboratory to study the geochemistry of bimodal volcanism and its implications for plume-derived magmatism, mantle-lithosphere interactions and evolution of continental rifts from plate extension to rupture. Our geochemical studies of the ~6 Ma to recent eruptive products from Gona within the Afar Rift Zone are understood in context of crustal and upper mantle seismic imaging studies that provide constraints on spatial variations. Geochemical (major element, trace element and isotope) analyses of basalts and rhyolitic tuff from Gona indicate a common magma source for these bimodal volcanics. Light rare earth elements (LREEs) are enriched with a strong negative Eu anomaly and a positive Ce anomaly in some of the silicic volcanic rocks. We observe strong depletions in Sr and higher concentrations of Zr, Hf, Th, Nb and Ta. We hypothesize that the silicic rocks may be residues from a plume-derived enriched magma source, following partial melting with fractional crystallization of plagioclase at shallow magma chambers. The absence of Nb-Ta anomaly shows no crustal assimilation by magmas. Sr isotopes, in conjunction with Nd and Pb isotopes and a strong Ce anomaly could reflect interaction of the parent magma with a deep saline aquifer or brine. Nd isotopic ratios (ɛNd = 1.9 to 4.6) show similarity of the silicic tuffs and basalts in their isotopic compositions except for some ~6 Ma lavas showing MORB-like values (ɛNd = 5 to 8.7) that suggest involvement of the asthenosphere with the plume source. Except for one basaltic tuff, the whole rock oxygen isotopic ratios of the Gona basalts range from +5.8‰ to +7.9‰, higher than the δ values for typical MORB, +5.7. The oxygen isotopes in whole rocks from the rhyolite tuffs vary from 14.6‰ to 20.9‰ while their Sr isotope ratios <0.706, indicative of post-depositional low T alteration of these silicic

  14. Vestiges of an Iapetan rift basin in the New Jersey Highlands: Implfications for the Neoproterozoic Laurentian margin

    Science.gov (United States)

    Gates, A.E.; Volkert, R.A.

    2004-01-01

    Thin, discontinuous remnants of Neoproterozoic intracratonic rift-basin deposits of the Chestnut Hill Formation occur in the western New Jersey Highlands. These deposits form an important link between well-documented Iapetan rift-basins in both the northern and southern Appalachians. The close spatial relations of Chestnut Hill rocks to Paleozoic sedimentary rocks open the possibility that additional Iapetan rift-basins could be concealed beneath the rocks of the Valley and Ridge Province to the west indicating a much broader zone of rifting than has been previously proposed. The Chestnut Hill Formation is intermittently exposed along a 100 km-long band that extends northeast from Pennsylvania nearly to New York State. The lower part of the Chestnut Hill Formation is composed of interbedded lithic pebble- to boulder-conglomerate and feldspathic sandstone grading upward into interbedded phyllite, feldspathic and quartz sandstone, local paleosaprolite, quartz-pebble conglomerate, thin limestone lenses, volcanic, and volcaniclasic rocks, abundant bedded ironstone (hematite ore), and ultimately into diamictites that are interpreted as possible tilloids and containing rounded intra and extrabasinal clasts of the other lithologies. Extensive soft-sediment deformation, cross bedding, and clastic dikes are common in all but the lowest and upper facies. Banded hematite layers occur preferentially in fine-grained tuffs and tuffaceous sediments, but hematitization has affected most lithologies. Volcanic rocks consist of altered rhyolitic tuffs and lapilli tuffs that are interbedded with sediments. The Chestnut Hill Formation is interpreted to have been deposited in early alluvial, and later a complex of fluvial, lacustrine and deltaic environments. Provenance studies based upon petrographic and geochemical analysis of clastic rocks indicate that the sediments are predominantly immature and reflect derivation from local uplifted felsic basement sources in a rifted

  15. Strain accommodation by slow slip and dyking in a youthful continental rift, East Africa.

    Science.gov (United States)

    Calais, Eric; d'Oreye, Nicolas; Albaric, Julie; Deschamps, Anne; Delvaux, Damien; Déverchère, Jacques; Ebinger, Cynthia; Ferdinand, Richard W; Kervyn, François; Macheyeki, Athanas S; Oyen, Anneleen; Perrot, Julie; Saria, Elifuraha; Smets, Benoît; Stamps, D Sarah; Wauthier, Christelle

    2008-12-11

    Continental rifts begin and develop through repeated episodes of faulting and magmatism, but strain partitioning between faulting and magmatism during discrete rifting episodes remains poorly documented. In highly evolved rifts, tensile stresses from far-field plate motions accumulate over decades before being released during relatively short time intervals by faulting and magmatic intrusions. These rifting crises are rarely observed in thick lithosphere during the initial stages of rifting. Here we show that most of the strain during the July-August 2007 seismic crisis in the weakly extended Natron rift, Tanzania, was released aseismically. Deformation was achieved by slow slip on a normal fault that promoted subsequent dyke intrusion by stress unclamping. This event provides compelling evidence for strain accommodation by magma intrusion, in addition to slip along normal faults, during the initial stages of continental rifting and before significant crustal thinning. PMID:19079058

  16. Gondwana breakup via double-saloon-door rifting and seafloor spreading in a backarc basin during subduction rollback

    Science.gov (United States)

    Martin, A. K.

    2007-12-01

    A model has been developed where two arc-parallel rifts propagate in opposite directions from an initial central location during backarc seafloor spreading and subduction rollback. The resultant geometry causes pairs of terranes to simultaneously rotate clockwise and counterclockwise like the motion of double-saloon-doors about their hinges. As movement proceeds and the two terranes rotate, a gap begins to extend between them, where a third rift initiates and propagates in the opposite direction to subduction rollback. Observations from the Oligocene to Recent Western Mediterranean, the Miocene to Recent Carpathians, the Miocene to Recent Aegean and the Oligocene to Recent Caribbean point to a two-stage process. Initially, pairs of terranes comprising a pre-existing retro-arc fold thrust belt and magmatic arc rotate about poles and accrete to adjacent continents. Terrane docking reduces the width of the subduction zone, leading to a second phase during which subduction to strike-slip transitions initiate. The clockwise rotated terrane is caught up in a dextral strike-slip zone, whereas the counterclockwise rotated terrane is entrained in a sinistral strike-slip fault system. The likely driving force is a pair of rotational torques caused by slab sinking and rollback of a curved subduction hingeline. By analogy with the above model, a revised five-stage Early Jurassic to Early Cretaceous Gondwana dispersal model is proposed in which three plates always separate about a single triple rift or triple junction in the Weddell Sea area. Seven features are considered diagnostic of double-saloon-door rifting and seafloor spreading: earliest movement involves clockwise and counterclockwise rotations of the Falkland Islands Block and the Ellsworth Whitmore Terrane respectively; terranes comprise areas of a pre-existing retro-arc fold thrust belt (the Permo-Triassic Gondwanide Orogeny) attached to an accretionary wedge/magmatic arc; the Falklands Islands Block is initially

  17. The importance of rift history for volcanic margin formation.

    Science.gov (United States)

    Armitage, John J; Collier, Jenny S; Minshull, Tim A

    2010-06-17

    Rifting and magmatism are fundamental geological processes that shape the surface of our planet. A relationship between the two is widely acknowledged but its precise nature has eluded geoscientists and remained controversial. Largely on the basis of detailed observations from the North Atlantic Ocean, mantle temperature was identified as the primary factor controlling magmatic production, with most authors seeking to explain observed variations in volcanic activity at rifted margins in terms of the mantle temperature at the time of break-up. However, as more detailed observations have been made at other rifted margins worldwide, the validity of this interpretation and the importance of other factors in controlling break-up style have been much debated. One such observation is from the northwest Indian Ocean, where, despite an unequivocal link between an onshore flood basalt province, continental break-up and a hot-spot track leading to an active ocean island volcano, the associated continental margins show little magmatism. Here we reconcile these observations by applying a numerical model that accounts explicitly for the effects of earlier episodes of extension. Our approach allows us to directly compare break-up magmatism generated at different locations and so isolate the key controlling factors. We show that the volume of rift-related magmatism generated, both in the northwest Indian Ocean and at the better-known North Atlantic margins, depends not only on the mantle temperature but, to a similar degree, on the rift history. The inherited extensional history can either suppress or enhance melt generation, which can explain previously enigmatic observations. PMID:20559385

  18. Evidences for strong directional resonances in intensely deformed zones of the Pernicana fault, Mount Etna, Italy

    OpenAIRE

    Di Giulio, G.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italia; Cara, F.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italia; Rovelli, A.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italia; Lombardo, G.; University of Catania; Rigano, R..; University of Catania

    2009-01-01

    In this paper we investigate ground motion properties in the western part of the Pernicana fault. This is the major fault of Mount Etna and drives the dynamic evolution of the area. In a previous work, Rigano et al. (2008) showed that a significant horizontal polarization characterizes ground motion in fault zones of Mount Etna, both during earthquakes and ambient vibrations. We have performed denser microtremor measurements in the NE rift segment and in intensely deformed zones of the Pernic...

  19. Superimposed positive and negative inversion of the syn-rift fault network preserved in the Montagna dei Fiori Anticline, Central Apennines, Italy

    Science.gov (United States)

    Storti, Fabrizio; Balsamo, Fabrizio; Koopman, Anton; Mozafari, Mahtab; Solum, John; Swennen, Rudy; Taberner, Conxita

    2016-04-01

    Syn-rift tectono-sedimentary inheritance is common in thrust-related anticlines exposed in most foreland thrust-fold belts worldwide. Inherited extensional faults provide mechanical weakness zones that typically undergo positive inversion during contraction. This unavoidably has an impact on the evolution of contractional folds. Moreover, duplexing and imbrication of thrust sheets typically produce gravitational instability of inherited fault patterns and negative inversion can be triggered in the late stages of fault-fold interaction. Such polyphase evolutionary histories can deeply influence deformation and fluid flow patterns in fault-related folds and therefore can strongly influence the distribution of structurally controlled processes such as dolomitization. In this contribution we present the results obtained from a multidisciplinary study of the tectono-sedimentary pattern and paleofluid history in carbonates exposed in the Montagna dei Fiori Anticline, at the mountain front of the Central Apennines (central Italy), where the occurrence of both syn-rift fault zones and related sediments has been previously described. Detailed mapping of the central part of the anticline, bed-perpendicular logging of syn-rift and post-rift strata, structural, petrographical, geochemical, microthermometrical, and petrophysical analyses were used to reconstruct the evolution of this anticline, starting from the pre-orogenic architecture up to its subsequent orogenic reworking. These data reveal: (1) the pre-orogenic tectono-sedimentary architecture of a folded Jurassic fault network; (2) multiple superimposition of extensional and contractional episodes of deformation on the same fault zones; (3) the presence of at least one main dolomitization episode, the timing of which is still being deciphered; (4) demonstrate the causal link between faulting and dolomitization, which favoured formation of dolostones along fault zones, particularly in the intersection/abutting areas

  20. Using earthquake clusters to identify fracture zones at Puna geothermal field, Hawaii

    Science.gov (United States)

    Lucas, A.; Shalev, E.; Malin, P.; Kenedi, C. L.

    2010-12-01

    The actively producing Puna geothermal system (PGS) is located on the Kilauea East Rift Zone (ERZ), which extends out from the active Kilauea volcano on Hawaii. In the Puna area the rift trend is identified as NE-SW from surface expressions of normal faulting with a corresponding strike; at PGS the surface expression offsets in a left step, but no rift perpendicular faulting is observed. An eight station borehole seismic network has been installed in the area of the geothermal system. Since June 2006, a total of 6162 earthquakes have been located close to or inside the geothermal system. The spread of earthquake locations follows the rift trend, but down rift to the NE of PGS almost no earthquakes are observed. Most earthquakes located within the PGS range between 2-3 km depth. Up rift to the SW of PGS the number of events decreases and the depth range increases to 3-4 km. All initial locations used Hypoinverse71 and showed no trends other than the dominant rift parallel. Double difference relocation of all earthquakes, using both catalog and cross-correlation, identified one large cluster but could not conclusively identify trends within the cluster. A large number of earthquake waveforms showed identifiable shear wave splitting. For five stations out of the six where shear wave splitting was observed, the dominant polarization direction was rift parallel. Two of the five stations also showed a smaller rift perpendicular signal. The sixth station (located close to the area of the rift offset) displayed a N-S polarization, approximately halfway between rift parallel and perpendicular. The shear wave splitting time delays indicate that fracture density is higher at the PGS compared to the surrounding ERZ. Correlation co-efficient clustering with independent P and S wave windows was used to identify clusters based on similar earthquake waveforms. In total, 40 localized clusters containing ten or more events were identified. The largest cluster was located in the

  1. Coulomb stress evolution in the Shanxi rift system, North China, since 1303 associated with coseismic, post-seismic and interseismic deformation

    Science.gov (United States)

    Li, Bin; Sørensen, Mathilde Bøttger; Atakan, Kuvvet

    2015-12-01

    The Shanxi rift system is one of the most active intraplate tectonic zones in the North China Block, resulting in devastating seismicity. Since 1303, the rift has experienced fifteen Ms ≥ 6.5 earthquakes. Aiming at a better understanding of Coulomb stress evolution and its relationship with the seismicity in the rift system, we investigated the Coulomb stress changes due to coseismic slip and post-seismic relaxation processes following strong earthquakes as well as the interseismic tectonic loading since the 1303 Hongdong Ms = 8.0 earthquake. Our calculation applies a specified regional medium model, takes the gravity effect into account and uses the fault geometry of the next event as the receiver fault in a given calculation. Our results show that nine out of 12 Ms ≥ 6.5 earthquakes since the 1303 Hongdong earthquake and more than 82 per cent of small-medium instrumental events after the 1989 Datong-Yanggao Ms = 6.1 earthquake fall into the total stress increased areas. Our results also reveal the different roles of the coseismic, post-seismic and interseismic Coulomb stress changes in the earthquake triggering process in the Shanxi rift system. In a short period after a strong event, the stress field changes are dominated by coseismic Coulomb stress due to sudden slip of the ruptured fault, while in the long term, the stress field is mainly dominated by the accumulation of interseismic tectonic loading. Post-seismic stress changes play an important role by further modifying the distribution of stress and therefore cannot be ignored. Based on the current stress status in the Shanxi rift system, the Linfen basin, southern and northern Taiyuan basin, Xinding basin and the north part of the rift system are identified as the most likely locations of large events in the future. The results of this study can provide important clues for the further understanding of seismic hazard in the Shanxi rift system and thus help guiding earthquake risk mitigation efforts in

  2. The Lake Albert Rift (uganda, East African Rift System): Deformation, Basin and Relief Evolution Since 17 Ma

    Science.gov (United States)

    Brendan, Simon; François, Guillocheau; Cécile, Robin; Olivier, Dauteuil; Thierry, Nalpas; Martin, Pickford; Brigitte, Senut; Philippe, Lays; Philippe, Bourges; Martine, Bez

    2016-04-01

    This study is based on a coupled basin infilling study and a landforms analysis of the Lake Albert Rift located at the northern part of the western branch of the East African Rift. The basin infilling study is based on both subsurface data and outcrops analysis. The objective was to (1) obtain an age model based on onshore mammals biozones, (2) to reconstruct the 3D architecture of the rift using sequence stratigraphy correlations and seismic data interpretation, (3) to characterize the deformation and its changes through times and (4) to quantify the accommodation for several time intervals. The infilling essentially consists of isopach fault-bounded units composed of lacustrine deposits wherein were characterized two major unconformities dated at 6.2 Ma (Uppermost Miocene) and 2.7 Ma (Pliocene-Pleistocene boundary), coeval with major subsidence and climatic changes. The landforms analysis is based on the characterization and relative dating (geometrical relationships with volcanism) of Ugandan landforms which consist of stepped planation surfaces (etchplains and peplians) and incised valleys. We here proposed a seven-steps reconstruction of the deformation-erosion-sedimentation relationships of the Lake Albert Basin and its catchments: - 55-45 Ma: formation of laterites corresponding to the African Surface during the very humid period of the Lower-Middle Eocene; - 45-22: stripping of the African Surface in response of the beginning of the East-African Dome uplift and formation of a pediplain which associated base level is the Atlantic Ocean; - 17-2.5 Ma: Initiation of the Lake Albert Basin around 17 Ma and creation of local base levels (Lake Albert, Edward and George) on which three pediplains tend to adapt; - 18 - 16 Ma to 6.2 Ma: "Flexural" stage (subsidence rate: 150-200 m/Ma; sedimentation rate 1.3 km3/Ma between 17 and 12 Ma and 0.6 km3/Ma from 12 to 6 Ma) - depocenters location (southern part of Lake Albert Basin) poorly controlled by fault; - 6.2 Ma to 2

  3. A reappraisal of polymetamorphism in the Eastern Ghats belt - A view from north of the Godavari rift

    Indian Academy of Sciences (India)

    A Bhattacharya; S Gupta

    2001-12-01

    Evidence collated from different parts of the Eastern Ghats belt north of the Godavari rift (barring the ``Western Charnockite Zone") indicates that this sector evolved through a series of compressive structures (1 to 3), with prolific migmatization in quartzofeldspathic and metapelitic gneisses synchronous with 1 shortening, as was the syn- 1 emplacement of profuse megacrystic K-feldspar-bearing granitoid bodies. Thereafter, melt productivity of the rocks (synchronous with 2 - 3 folding) sharply decreased. Mineral parageneses stable in the 1, 2 and 3 fabrics indicate persistence of granulite facies conditions. P-T estimates on orthopyroxene + garnet + plagioclase + quartz assemblages anchored to recrystallized mosaic that overgrow all penetrative fabric elements in mafic granulites, granitoids and quartzofeldspathic gneisses are in the range of 900°-950°C and P ≅ 8-9 kbar. This estimate is comparable to those retrieved from sapphirine-bearing paragenesis in Mg-Al metapelites that appear to be diachronous in relation to the fabric elements, and arguably disrupt the granoblastic mosaic. These facets in the northern sector of the orogenic belt are compatible with either a single cycle of tectonic events (i.e., 1, 2 and 3 in continuum), or temporally-separate thermo-tectonic events, with the peak of earlier metamorphism (pre- to syn-1) at lower temperature (in the granulite facies) in comparison to the record of high post-3-max values. It is suggested on the basis of the above evidence that the late Proterozoic/Pan-African granulites in the Eastern Ghats belt north of the Godavari rift, are unlikely to be reworked equivalents of any older granulitic crust, such as the ∼1.6 Ga granulites south of the rift. Instead, the temporally disparate sectors may represent different crustal segments with unconnected pre-amalgamation tectonic history. However, if the ∼1.6 Ga granulites of the Western Charnockite Zone continue northwards across the rift, as suggested by

  4. Rift Valley Fever Risk Map Model and Seroprevalence in Selected Wild Ungulates and Camels from Kenya

    Science.gov (United States)

    Britch, Seth C.; Binepal, Yatinder S.; Ruder, Mark G.; Kariithi, Henry M.; Linthicum, Kenneth J.; Anyamba, Assaf; Small, Jennifer L.; Tucker, Compton J.; Ateya, Leonard O.; Oriko, Abuu A.; Gacheru, Stephen; Wilson, William C.

    2013-01-01

    Since the first isolation of Rift Valley fever virus (RVFV) in the 1930s, there have been multiple epizootics and epidemics in animals and humans in sub-Saharan Africa. Prospective climate-based models have recently been developed that flag areas at risk of RVFV transmission in endemic regions based on key environmental indicators that precede Rift Valley fever (RVF) epizootics and epidemics. Although the timing and locations of human case data from the 2006-2007 RVF outbreak in Kenya have been compared to risk zones flagged by the model, seroprevalence of RVF antibodies in wildlife has not yet been analyzed in light of temporal and spatial predictions of RVF activity. Primarily wild ungulate serum samples from periods before, during, and after the 2006-2007 RVF epizootic were analyzed for the presence of RVFV IgM and/or IgG antibody. Results show an increase in RVF seropositivity from samples collected in 2007 (31.8%), compared to antibody prevalence observed from 2000-2006 (3.3%). After the epizootic, average RVF seropositivity diminished to 5% in samples collected from 2008-2009. Overlaying maps of modeled RVF risk assessments with sampling locations indicated positive RVF serology in several species of wild ungulate in or near areas flagged as being at risk for RVF. Our results establish the need to continue and expand sero-surveillance of wildlife species Kenya and elsewhere in the Horn of Africa to further calibrate and improve the RVF risk model, and better understand the dynamics of RVFV transmission.

  5. Nephelinite lavas at early stage of rift initiation (Hanang volcano, North Tanzanian Divergence)

    Science.gov (United States)

    Baudouin, Céline; Parat, Fleurice; Denis, Carole M. M.; Mangasini, Fredrik

    2016-07-01

    North Tanzanian Divergence is the first stage of continental break-up of East African Rift (volcanoes. Hanang volcano is the southernmost volcano in the North Tanzanian Divergence and the earliest stage of rift initiation. Hanang volcano erupted silica-undersaturated alkaline lavas with zoned clinopyroxene, nepheline, andradite-schorlomite, titanite, apatite, and pyrrhotite. Lavas are low MgO-nephelinite with low Mg# and high silica content (Mg# = 22.4-35.2, SiO2 = 44.2-46.7 wt%, respectively), high incompatible element concentrations (e.g. REE, Ba, Sr) and display Nb-Ta fractionation (Nb/Ta = 36-61). Major elements of whole rock are consistent with magmatic differentiation by fractional crystallization from a parental melt with melilititic composition. Although fractional crystallization occurred at 9-12 km and can be considered as an important process leading to nephelinite magma, the complex zonation of cpx (e.g. abrupt change of Mg#, Nb/Ta, and H2O) and trace element patterns of nephelinites recorded magmatic differentiation involving open system with carbonate-silicate immiscibility and primary melilititic melt replenishment. The low water content of clinopyroxene (3-25 ppm wt. H2O) indicates that at least 0.3 wt% H2O was present at depth during carbonate-rich nephelinite crystallization at 340-640 MPa and 1050-1100 °C. Mg-poor nephelinites from Hanang represent an early stage of the evolution path towards carbonatitic magmatism as observed in Oldoinyo Lengai. Paragenesis and geochemistry of Hanang nephelinites require the presence of CO2-rich melilititic liquid in the southern part of North Tanzanian Divergence and carbonate-rich melt percolations after deep partial melting of CO2-rich oxidized mantle source.

  6. Albertine Rift, Uganda: Deformation-Sedimentation-Erosion relationships

    Science.gov (United States)

    Simon, Brendan; Guillocheau, François; Robin, Cécile; Dauteuil, Olivier; Nalpas, Thierry; Bourges, Philippe; Bez, Martine; Lays, Philippe

    2014-05-01

    The Albertine Rift is the northern part of the western branch of the East African Rift that runs over a distance of around 2000 km from Lake Albert in the north to Lake Malawi in the south. Lake Albert Basin is assumed to be a classical half-graben initiated around 12 Ma and oriented NNW-SSW, with a major northwesterly bounding fault - the Bunia fault - located along the western Congolese shoreline (Ebinger, 1989; Pickford & al., 1993). The aim of this study is to understand the relationships between deformation, erosion, and sedimentation of the rift through time by restoring (1) the timing and amplitude of vertical movements (subsidence, uplift), (2) the geometry and paleo-environmental evolution (including climate) of the sedimentary infilling and (3) the geomorphological evolution of the surrounding area and associated erosion budget. Seismic data and outcrops studies suggest a much more complex history than previously described. (1) The age model, mainly based on mammal fossils (Pickford et al., 1993; Van Damme and Pickford, 2003), is debated, but the early stage of the rift is probably Middle Miocene. (2) No half-graben geometry has been characterized: the infilling consists of juxtaposed tabular compartments with sharp thicknesses variations along bounding faults, in response of either low rate extensional or combined strike-slip/extensional movements. The following onshore-offshore evolution is proposed: - Middle Miocene (~ 13 Ma) to Late Miocene (?): rifting 1 - differential subsidence along N60° faults - major deepening from fluvio-deltaic to deep lacustrine environments (maximum flooding at 8 Ma) - uplift, erosion and reworking of weathered profiles - first generation of pediments. - Late Miocene (?) to Late Pliocene (~ 3 Ma): quiescence phase - homogenous subsidence - lacustrine clays interbedded with sandy flood-lobes - uplift, erosion and reworking of ferruginous laterite (iron duricrusts) - second generation of pediments. - Late Pliocene (~ 3Ma) to

  7. Tracing the sources of recharge to groundwater in the specific meteorological and geological context of the Ethiopian rift and bordering plateau, using environmental isotopes

    International Nuclear Information System (INIS)

    Full text: The Ethiopian Rift valley is part of the Great East African rift valley. This area contains a lot of lakes and geothermal springs. The area is characterized by arid to semi arid climate with very high moisture deficit through out the year. Because of lack of ample rainfall, particularly in its northern sector, people mainly rely upon groundwater as major source of water supply. In some areas where groundwater is highly saline, people condense thermal steam as source of drinking water. The numerous lakes available in the region, except few, can not be used for water supply as they are very saline owing to high evaporation to outflow ratio. Due to these quantity and quality problems, nomadic people in the region are often move from place to place to search for fresh water. Understanding the sources of ground water recharge and sources of salinity and tracing groundwater movement in this arid zone is therefore important to locate, to exploit sustainably and ultimately to change the life style of the people in the region. The area has been subject to previous geoscientific studies. Sediments in the lakes have been used as paleoclimate proxies. Geothermal systems have been widely studied. Recently the IAEA through its TC projects conducted isotope hydrological studies. These studies and few other works produce a wealth of stable isotope (δ18O, δD) data (though very scattered). No previous stable isotope data has been apparently available form the Ethiopian plateau until we recently gathered and analyzed over 45 isotope data from the Ethiopian plateau bordering the rift valley. This helped us to have a good picture on the groundwater dynamics in this arid region. Three sectors can be distinguished based on the isotope signature of meteoric waters. The Afar rift and Djibouti, the Main Ethiopian Rift and The Ethiopian Plateau. This difference in isotope signature (mainly in d excess) can be used as an opportunity to trace groundwater flow in the region

  8. Interaction between an incipient rift and a cratonic lithosphere : The North Tanzania Rift seen from some seismic tools

    Science.gov (United States)

    Gautier, Stéphanie; Plasman, Matthieu; Tiberi, Christel; Lopez, Marie; Peyrat, Sophie; Perrot, Julie; Albaric, Julie; Déverchère, Jacques; Deschamps, Anne; Ebinger, Cindy; Roecker, Steven; Mulibo, Gabriel; Wambura, Richard Ferdinand; Muzuka, Alfred; Msabi, Michael; Gama, Remigius

    2016-04-01

    The North Tanzania part of the East African Rift is the place of an incipient break up of the lithosphere. This continental rifting happens on the edge of the Tanzanian craton, and their interaction leads to major changes in the surface deformation. The evolution of the rift and its morphology is strongly linked to the inherited structures, particularly the Proterozoic belts and the craton itself. It is thus of prime interest to image the structure of the craton edges to fully understand its impact on the localisation of the current deformation at the surface. Since 2007 different multidisciplinary projects have taken place in this area to address this question. We present here a work based on a collaborative work between French, American and Tanzanian institutes that started in 2013. About 35 seismological stations were installed for 2 years in the Natron lake region, and 10 short period instruments were added for 9 months in the Manyara area to record local and telesismic events. We have analysed more than a hundred teleseismic events to compute the receiver function, and we finally obtain a Moho map of the region as well as azimuthal distribution of converted phases. The stations located on the edge of the rift and near the craton present a continuous evolution of their crustal pattern in the RF signal. Especially, we identify a clear phase at about 7s for those stations that corresponds to an interface separating a normal upper mantle from a very slow mantle at about 70 km depth. We first model those receiver functions to perfectly fit the signal, and more precisely the transverse component, which shows a strong and coherent pattern. Second, the local seismic network we have installed for 9 months in Manyara region advantageously completed the 2007 SEISMOTANZ network. In this part of the rift the seismicity is deep (20-30 km) and clustered without any magmatism record at the surface, opposite to Natron area. We could then relocalize the deep seismicity observed

  9. Eradicating tsetse from the Southern Rift Valley of Ethiopia

    International Nuclear Information System (INIS)

    Farming activities in Ethiopia, as in much of sub-Saharan Africa, are restricted by the presence of tsetse flies (Glossina spp.). These carry the livestock and human disease, trypanosomosis, which severely affects agricultural production and human well-being. In collaboration with the Ethiopian authorities, the International Atomic Energy Agency is sponsoring a Sterile Insect Technique (SIT) programme to eradicate tsetse from the Southern Rift Valley of Ethiopia. (IAEA)

  10. Re-Emergence of Rift Valley Fever in Madagascar

    Centers for Disease Control (CDC) Podcasts

    2010-05-27

    This podcast describes the re-emergence of Rift Valley Fever in Madagascar during two rainy seasons in 2008 and 2009. CDC epidemiologist Dr. Pierre Rollin discusses what researchers learned about the outbreak and about infections in the larger population in Madagascar.  Created: 5/27/2010 by National Center for Emerging and Zoonotic Infectious Diseases (NCEZID).   Date Released: 5/27/2010.

  11. DYNAMICS OF A KIND OF RIFT VALLEY FEVER MODEL

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    A novel mathematical model of the epidemiology of Rift Valley fever (RVF) is studied, which is an ordinary differential equation model for a population of mosquito species and the hosts. A disease-free equilibrium is discussed as well as its local stability. The prevalence of disease is proved under some conditions. Finally the vertical transmission is considered in a model for such a mosquito population.

  12. Magmatism of the Kenya Rift Valley : a review.

    OpenAIRE

    MacDonald, Raymond

    2003-01-01

    Tertiary–Recent magmatism in the Kenya Rift Valley was initiated c. 35 Ma, in the northern part of Kenya. Initiation of magmatism then migrated southwards, reaching northern Tanzania by 5–8 Ma. This progression was accompanied by a change in the nature of the lithosphere, from rocks of the Panafrican Mozambique mobile belt through reworked craton margin to rigid, Archaean craton. Magma volumes and the geochemistry of mafic volcanic rocks indicate that magmatism has resulted from the interacti...

  13. Origins and implications of zigzag rift patterns on lava lakes

    Science.gov (United States)

    Karlstrom, Leif; Manga, Michael

    2006-06-01

    The distinctive rift patterns observed on newly formed lava lakes are very likely a product of interaction between heat transfer (cooling of lava) and deformation of the solid crust in response to applied stresses. One common pattern consists of symmetric "zigzag" rifts separating spreading plates. Zigzags can be characterized by two measurable parameters: an amplitude A, and an angle θ between segments that make up the zigzags. Similar patterns are observed in analog wax experiments in which molten wax acts as cooling and solidifying lava. We perform a series of these wax experiments to find the relationship between θ, A, and the cooling rate. We develop a model to explain the observed relationships: θ is determined by a balance of spreading and solidification speeds; the amplitude A is limited by the thickness of the solid wax crust. Theoretical predictions agree well with experimental data; this enables us to scale the model to basaltic lava lakes. If zigzag rifts are observed on the surface of lava lakes, and if physical properties of the lava crust can be measured or inferred by other means, measurements of θ and A make it possible to calculate crust-spreading velocity and crust thickness.

  14. Ouachita trough: Part of a Cambrian failed rift system

    Science.gov (United States)

    Lowe, Donald R.

    1985-11-01

    Pre-flysch (Cambrian-Mississippian) strata of the Ouachita Mountains of Arkansas and Oklahoma include two main sandstone lithofacies: (1) a craton-derived lithofacies made up largely of mature medium- to coarse-grained quartzose and carbonate detritus and, in some units, sediment eroded from exposed basement rocks and (2) an orogen-derived facies made up mainly of fine-grained quartzose sedimentary and metasedimentary debris and possibly, in lower units, a volcaniclastic component. Paleocurrent and distribution patterns indicate that detritus of facies I in the Benton uplift was derived from north and detritus of facies II throughout the Ouachitas was derived from south and east of the depositional basin. Overall sedimentological results suggest that the Ouachita trough was a relatively narrow, two-sided basin throughout most and probably all of its existence and never formed the southern margin of the North American craton. Regional comparisons suggest that it was one of several basins, including the Southern Oklahoma aulacogen, Reelfoot Rift, Illinois Basin, and Rome trough, that formed as a Cambrian failed rift system 150 to 250 m.y. after initial rifting along the Appalachian margin of the North American craton.

  15. Structural heterogeneity in mountain belts: rift- vs. subduction-related control.

    Science.gov (United States)

    Vitale Brovarone, A.; Malavieille, J.; Beltrando, M.; Beyssac, O.; Molli, G.; Herwartz, D.; Rubatto, D.; Monié, P.; Groppo, C.; Compagnoni, R.; Hermann, J.; Martin, L.; Lagabrielle, Y.; Meresse, F.

    2012-04-01

    In subduction zones, the so-called subduction channel is believed to represent the locus where the primary exhumation of deeply subducted material occurs. It is also considered as a major zone of deformation and tectonic shuffling [1, 2]. The resulting intense deformation that is commonly observed in exhumed subduction terranes is generally considered as the cause for the lithological heterogeneity (e.g. association of continental basement rocks and meta-ophiolites) encountered in highly metamorphosed units [3]. In Alpine Corsica (Western Mediteranean), metamorphism and deformation vary from very low-grade up to lawsonite-eclogite facies conditions. Compared to similar domains of Western Alps [4], deformation in Corsica is often localized, allowing a detailed characterization of primary rift-related vs. subduction-related structures to be done through a wide spectrum of metamorphic conditions [4]. Based on extensive stratigraphic, structural, petrologic (including RSCM and pseudosection) and geochronological (U-Pb zircon; Lu-Hf garnet and lawsonite; Ar-Ar phengite) data, the main tectono-metamorphic units and their evolution from rifting to the final stages of orogenesis have been established. They show a high lithological heterogeneity that is essentially related to primary stratigraphic/tectonic processes occurring prior to subduction during continental break-up and subsequent oceanic extensional tectonics. Otherwise, each unit shows a remarkable metamorphic homogeneity over large areas. These features indicate that large volumes of subducted lithosphere behave as single and coherent tectonostratigraphic units during subduction/exhumation. As a consequence, the number of significant tectono-metamorphic boundaries is limited to the main contacts separating these large volumes of former lithosphere. Our study highlights on the major control exerted by inherited extensional structures during subduction and mountain building in opposition to the formation subduction

  16. Signature recognition for rift structures of different sediment strata in ordos basin

    International Nuclear Information System (INIS)

    The rift structure weak information of high Bouguer gravity anomaly data among different Sediment strata are extracted By the horizontal gradient Maximum modulus, the wavelet variation, stripped gravity anomaly of basement and interfaces above/under researched layer, image processing method. So the linear rift structures of different Sediment strata are recognized on data images, such as Cretaceous, Jurassic, Triassic, Permian and Carboniferous, Ordovician System. Development rifts of different Sediment strata occur in stereo structure with quasi-uniform spacing, the rift density of above Sediment stratum is more than lower in different Sediment strata, but the north rift density of the same Sediment stratum is less than south's. It is useful to study rift structure and co-explore for oil, gas, coal and uranium resources in Ordos Basin. (authors)

  17. Kantis: A new Australopithecus site on the shoulders of the Rift Valley near Nairobi, Kenya.

    Science.gov (United States)

    Mbua, Emma; Kusaka, Soichiro; Kunimatsu, Yutaka; Geraads, Denis; Sawada, Yoshihiro; Brown, Francis H; Sakai, Tetsuya; Boisserie, Jean-Renaud; Saneyoshi, Mototaka; Omuombo, Christine; Muteti, Samuel; Hirata, Takafumi; Hayashida, Akira; Iwano, Hideki; Danhara, Tohru; Bobe, René; Jicha, Brian; Nakatsukasa, Masato

    2016-05-01

    Most Plio-Pleistocene sites in the Gregory Rift Valley that have yielded abundant fossil hominins lie on the Rift Valley floor. Here we report a new Pliocene site, Kantis, on the shoulder of the Gregory Rift Valley, which extends the geographical range of Australopithecus afarensis to the highlands of Kenya. This species, known from sites in Ethiopia, Tanzania, and possibly Kenya, is believed to be adapted to a wide spectrum of habitats, from open grassland to woodland. The Kantis fauna is generally similar to that reported from other contemporaneous A. afarensis sites on the Rift Valley floor. However, its faunal composition and stable carbon isotopic data from dental enamel suggest a stronger C4 environment than that present at those sites. Although the Gregory Rift Valley has been the focus of paleontologists' attention for many years, surveys of the Rift shoulder may provide new perspective on African Pliocene mammal and hominin evolution. PMID:27178456

  18. Coastal zone

    International Nuclear Information System (INIS)

    The report entitled Climate Change Impacts and Adaptation : A Canadian Perspective, presents a summary of research regarding the impacts of climate change on key sectors over the past five years as it relates to Canada. This chapter on the coastal zone focuses on the impact of climate change on Canada's marine and Great Lakes coasts with tips on how to deal with the impacts associated with climate change in sensitive environments. This report is aimed at the sectors that will be most affected by adaptation decisions in the coastal zone, including fisheries, tourism, transportation and water resources. The impact of climate change in the coastal zone may include changes in water levels, wave patterns, storm surges, and thickness of seasonal ice cover. The Intergovernmental Panel on Climate Change projects global average sea level will rise between 9 and 88 centimetres between 1990 to 2100, but not all areas of Canada will experience the same rate of future sea level change. The main physical impact would be shoreline change that could result in a range of biophysical and socio-economic impacts, some beneficial, some negative. The report focuses on issues related to infrastructure and communities in coastal regions. It is noted that appropriate human adaptation will play a vital role in reducing the extent of potential impacts by decreasing the vulnerability of average zone to climate change. The 3 main trends in coastal adaptation include: (1) increase in soft protection, retreat and accommodation, (2) reliance on technology such as geographic information systems to manage information, and (3) awareness of the need for coastal adaptation that is appropriate for local conditions. 61 refs., 7 figs

  19. Identifying deformation styles and causes at two deforming volcanoes of the Central Main Ethiopian Rift with seismic anisotropy

    Science.gov (United States)

    Nowacki, Andy; Wilks, Matthew; Kendall, J.-Michael; Biggs, Juliet; Ayele, Atalay; Tulu, Beshahe; James, Wookey

    2016-04-01

    shown. Little evidence for a 'mushy', aseismic zone is found where geodetic studies have suggested a magma chamber is present. Hydrothermal processes may be responsible for much of the edifice loading, and we observe a positive correlation between rainfall and seismicity. At Corbetti, a completely different pattern emerges. Anisotropy is largest (up to 0.3 s) within the caldera, and weak outside. Fast shear waves are oriented northwest (NW), strongly oblique to Wonji or border faults, but parallel to a cross-rift structure, the Wendo Genet scarp, whose surface expression ends east of the caldera. Deep (20 km) earthquakes are located on this feature using the Corbetti and Aluto seismic arrays alongside Addis Ababa University stations. Intriguingly, shear wave splitting patterns are totally different for a few ray paths which avoid the Wendo Genet fault, indicating that away from this zone of deformation, the usual, rift-parallel faulting behaviour again holds sway. In this instance, the presence of anisotropy strong enough to overprint the background trend may require the alignment of fluids, and possibly melt. We suggest that this is evidence of a nascent transform zone within the rift.

  20. Isotopic evidence for evolution of sub-continental mantle during Red Sea rifting

    Science.gov (United States)

    Pallister, John S.; Hegner, Ernst

    1989-01-01

    Tertiary igneous rocks from near Al Lith, Saudi Arabia are alkaline to subalkaline and bimodal in composition, and document early and late rift volcanism (≥30 Ma to ~20 Ma, 11 Ma and 3 Ma) in the central part of the Red Sea rift. Isotopic and trace-element data from twenty-five samples are presented and used to characterize basalt sources in the early rift.

  1. Sand provenance and implications for paleodrainage in a rifted basin: the Tera Group (N. Spain)

    OpenAIRE

    González-Acebrón, L.; Arribas, J; Mas, R.

    2010-01-01

    [EN] Fluvial-fan and fluvial siliciclastic strata, developed during the rifting that generated the Cameros Basin (North Spain), record important provenance changes that reveal source areas compositions and locations, paleodrainage evolution and rift patterns. The Tera Group represents the first rifting stage in the Cameros Basin, containing fluvial-fan sediments at the lower part of the sedimentary fill that evolve to fluvial and lacustrine systems in the upper part of the record. Ou...

  2. Sand provenance and implications for paleodrainage in a rifted basin: the Tera Group (N. Spain)

    OpenAIRE

    González Acebrón, Laura; Arribas Mocoroa, José; Mas Mayoral, José Ramón

    2010-01-01

    Fluvial-fan and fluvial siliciclastic strata, developed during the rifting that generated the Cameros Basin (North Spain), record important provenance changes that reveal source areas compositions and locations, paleodrainage evolution and rift patterns. The Tera Group represents the first rifting stage in the Cameros Basin, containing fluvial-fan sediments at the lower part of the sedimentary fill that evolve to fluvial and lacustrine systems in the upper part of the record. Our qua...

  3. A model for Iapetan rifting of Laurentia based on Neoproterozoic dikes and related rocks

    Science.gov (United States)

    Burton, William C.; Southworth, Scott

    2010-01-01

    Geologic evidence of the Neoproterozoic rifting of Laurentia during breakup of Rodinia is recorded in basement massifs of the cratonic margin by dike swarms, volcanic and plutonic rocks, and rift-related clastic sedimentary sequences. The spatial and temporal distribution of these geologic features varies both within and between the massifs but preserves evidence concerning the timing and nature of rifting. The most salient features include: (1) a rift-related magmatic event recorded in the French Broad massif and the southern and central Shenandoah massif that is distinctly older than that recorded in the northern Shenandoah massif and northward; (2) felsic volcanic centers at the north ends of both French Broad and Shenandoah massifs accompanied by dike swarms; (3) differences in volume between massifs of cover-sequence volcanic rocks and rift-related clastic rocks; and (4) WNW orientation of the Grenville dike swarm in contrast to the predominately NE orientation of other Neoproterozoic dikes. Previously proposed rifting mechanisms to explain these features include rift-transform and plume–triple-junction systems. The rift-transform system best explains features 1, 2, and 3, listed here, and we propose that it represents the dominant rifting mechanism for most of the Laurentian margin. To explain feature 4, as well as magmatic ages and geochemical trends in the Northern Appalachians, we propose that a plume–triple-junction system evolved into the rift-transform system. A ca. 600 Ma mantle plume centered east of the Sutton Mountains generated the radial dike swarm of the Adirondack massif and the Grenville dike swarm, and a collocated triple junction generated the northern part of the rift-transform system. An eastern branch of this system produced the Long Range dike swarm in Newfoundland, and a subsequent western branch produced the ca. 554 Ma Tibbit Hill volcanics and the ca. 550 Ma rift-related magmatism of Newfoundland.

  4. Deformation in a hyperslow oceanic rift: Insights from the tectonics of the São Miguel Island (Terceira Rift, Azores)

    Science.gov (United States)

    Sibrant, A. L. R.; Marques, F. O.; Hildenbrand, A.; Boulesteix, T.; Costa, A. C. G.; Catalão, J.

    2016-02-01

    The evolution of hyperslow oceanic rifts, like the Terceira Rift (TR) in the Azores, is still poorly understood. Here we examine the distribution of strain and magmatism in the portion of the TR making up the Nubia-Eurasia plate boundary. We use São Miguel Island because it stretches most of the TR width, which allows to investigate the TR's architecture and shedding light on TR's age and mode of deformation. From topography and structural analysis, and new measurements of 380 faults and dikes, we show that (1) São Miguel has two main structural directions, N150 and N110, mostly concentrated in the eastern part of the island as an onshore continuation of the faults observed offshore in the NE (N110 faults) and SW (N140) TR walls; (2) a new N50-N80 fault system is identified in São Miguel; (3) fault and dike geometries indicate that eastern São Miguel comprises the TR's northern boundary, and the lack of major faults in central and western São Miguel indicates that rifting is mostly concentrated at master faults bounding the TR. Based on TR's geometry, structural observations and plate kinematics, we estimate that the TR initiated between 1.4 and 2.7 Ma ago and that there is no appreciable seafloor spreading associated with rifting. Based on plate kinematics, on the new structural data, and on São Miguel's structural and volcanic trends, we propose that the eastern two thirds of São Miguel lie along a main TR-related transform fault striking N70-N80, which connects two widely separated N130-N150 TR-trending segments.

  5. Hydrothermal vents is Lake Tanganyika, East African Rift system

    Energy Technology Data Exchange (ETDEWEB)

    Tiercelin, J.J. [Universite de Bretagne Occidentale, Brest (France); Pflumio, C.; Castrec, M. [Universite Paris VI, Paris (France)] [and others

    1993-06-01

    Sublacustrine hydrothermal vents with associated massive sulfides were discovered during April 1987 at Pemba and Cape Banza on the Zaire side of the northern basin of Lake Tanganyika, East African Rift system. New investigations by a team of ten scuba divers during the multinational (France, Zaire, Germany, and Burundi) TANGANYDRO expedition (August-October 1991) found hydrothermal vents down to a depth of 46 m along north-trending active faults bounding the Tanganyika rift on the western side. Temperatures from 53 to 103 {degrees}C were measured in hydrothermal fluids and sediments. Veins of massive sulfides 1-10 cm thick (pyrite and marcasite banding) were found associated with vents at the Pemba site. At Cape Banza, active vents are characterized by 1-70-cm-high aragonite chimneys, and there are microcrystalline pyrite coatings on the walls of hydrothermal pipes. Hydrothermal fluid end members show distinctive compositions at the two sites. The Pemba end member is a NaHCO{sub 3}-enriched fluid similar to the NaHCO{sub 3} thermal fluids form lakes Magadi and Bogoria in the eastern branch of the rift. The Cape Banza end member is a solution enriched in NaCl. Such brines may have a deep-seated basement origin, as do the Uvinza NaCl brines on the eastern flank of the Tanganyika basin. Geothermometric calculations have yielded temperatures of fluid-rock interaction of 219 and 179 {degrees}C in the Pemba and Cape Banza systems, respectively. Abundant white or reddish-brown microbial colonies resembling Beggiatoa mats were found surrounding the active vents. Thermal fluid circulation is permitted by opening of cracks related to 130{degrees}N normal-dextral faults that intersect the north-south major rift trend. The sources of heat for such hydrothermal systems may relate to the existence of magmatic bodies under the rift, which is suggested by the isotopic composition of carbon dioxide released at Pemba and Cape Banza. 21 refs., 2 figs.

  6. Ambient noise tomography of the East African Rift in Mozambique

    Science.gov (United States)

    Domingues, Ana; Silveira, Graça; Ferreira, Ana M. G.; Chang, Sung-Joon; Custódio, Susana; Fonseca, João F. B. D.

    2016-03-01

    Seismic ambient noise tomography is applied to central and southern Mozambique, located in the tip of the East African Rift (EAR). The deployment of MOZART seismic network, with a total of 30 broad-band stations continuously recording for 26 months, allowed us to carry out the first tomographic study of the crust under this region, which until now remained largely unexplored at this scale. From cross-correlations extracted from coherent noise we obtained Rayleigh wave group velocity dispersion curves for the period range 5-40 s. These dispersion relations were inverted to produce group velocity maps, and 1-D shear wave velocity profiles at selected points. High group velocities are observed at all periods on the eastern edge of the Kaapvaal and Zimbabwe cratons, in agreement with the findings of previous studies. Further east, a pronounced slow anomaly is observed in central and southern Mozambique, where the rifting between southern Africa and Antarctica created a passive margin in the Mesozoic, and further rifting is currently happening as a result of the southward propagation of the EAR. In this study, we also addressed the question concerning the nature of the crust (continental versus oceanic) in the Mozambique Coastal Plains (MCP), still in debate. Our data do not support previous suggestions that the MCP are floored by oceanic crust since a shallow Moho could not be detected, and we discuss an alternative explanation for its ocean-like magnetic signature. Our velocity maps suggest that the crystalline basement of the Zimbabwe craton may extend further east well into Mozambique underneath the sediment cover, contrary to what is usually assumed, while further south the Kaapval craton passes into slow rifted crust at the Lebombo monocline as expected. The sharp passage from fast crust to slow crust on the northern part of the study area coincides with the seismically active NNE-SSW Urema rift, while further south the Mazenga graben adopts an N-S direction

  7. La dorsal NE de Tenerife: hacia un modelo del origen y evolución de los rifts de islas oceánicas

    Directory of Open Access Journals (Sweden)

    Delcamp, A.

    2009-06-01

    primordial, plume-related fractures acting throughout the entire growth of the islands. Basaltic volcanism forms the bulk of the islands and rift zones. However, collapses of the flanks of the rifts disrupt their established fissural feeding system, frequently favouring magma accumulation and residence at shallow emplacements, leading to differentiation of magmas, and intermediate to felsic nested eruptions. Rifts and their collapse may therefore act as an important factor in providing petrological variability to oceanic volcanoes. Conversely, the possibility exists that the presence of important felsic volcanism may indicate lateral collapses in oceanic shields and ridge-like volcanoes, even if they are concealed by post-collapse volcanism or partially mass-wasted by erosion.El Rift NE de Tenerife, conocido localmente como la Dorsal de La Esperanza, es un excelente ejem plo de un rift persistente y recurrente. Su estudio ha aportado evidencias significativas del origen y diná mica de este tipo de estructuras volcánicas. Los rifts son posiblemente las estructuras más relevantes en la geología de las islas volcánicas oceánicas: 1. Controlan, tal vez desde su inicio, la construcción de los edificios insulares; 2. Son elementos sustanciales en la configuración (forma y topografía de estas islas; 3. Dan origen a sus principales formas del relieve y el paisaje; 4. Al concentrar la actividad eruptiva, son asimismo estructuras cruciales en la distribución del riesgo volcánico; 5. Condicionan la distribución de recursos naturales básicos, como el agua subterránea. En las Canarias están muy bien representados tanto los rifts típicos de los estadios juveniles de desarrollo en escudo, como los más tardíos, correspondientes a las fases de rejuvenecimiento post-ero sivo. El Rift NE es un buen ejemplo de este último tipo de rifts. El Rift NE se ha desarrollado en tres etapas diferentes separadas por periodos más largos de quiescencia o actividad reducida. La primera

  8. Study on Seismic Zoning of Sino-Mongolia Arc Areas

    Science.gov (United States)

    Xu, G.

    2015-12-01

    According to the agreement of Cooperation on seismic zoning between Institute of Geophysics, China Earthquake Administration and Research Center of Astronomy and Geophysics, Mongolian Academy of Science, the data of geotectonics, active faults, seismicity and geophysical field were collected and analyzed, then field investigation proceeded for Bolnay Faults, Ar Hutul Faults and Gobi Altay Faults, and a uniform earthquake catalogue of Mongolia and North China were established for the seismic hazard study in Sino-Mongolia arc areas. Furthermore the active faults and epicenters were mapped and 2 seismic belts and their 54 potential seismic sources are determined. Based on the data and results above mentioned the seismicity parameters for the two seismic belts and their potential sources were studied. Finally, the seismic zoning with different probability in Sino-Mongolia arc areas was carried out using China probabilistic hazard analysis method. By analyzing the data and results, we draw the following main conclusions. Firstly, the origin of tectonic stress field in the study areas is the collision and pressure of the India Plate to Eurasian Plate, passing from the Qinghai-Tibet Plateau. This is the reason why the seismicity is higher in the west than in the east, and all of earthquakes with magnitude 8 or greater occurred in the west. Secondly, the determination of the 2 arc seismic belts, Altay seismic belt and Bolnay-Baikal seismic belt, are reasonable in terms of their geotectonic location, geodynamic origin and seismicity characteristics. Finally, there are some differences between our results and the Mongolia Intensity Zoning map published in 1985 in terms of shape of seismic zoning map, especially in the areas near Ulaanbaatar. We argue that our relsults are reasonable if we take into account the data use of recent study of active faults and their parameters, so it can be used as a reference for seismic design.

  9. Backarc rifting, constructional volcanism and nascent disorganised spreading in the southern Havre Trough backarc rifts (SW Pacific)

    Science.gov (United States)

    Wysoczanski, R. J.; Todd, E.; Wright, I. C.; Leybourne, M. I.; Hergt, J. M.; Adam, C.; Mackay, K.

    2010-02-01

    High resolution multibeam (EM300 and SEABEAM) data of the Southern Havre Trough (SHT), combined with observations and sample collections from the submersible Shinkai6500 and deep-tow camera, are used to develop a model for the evolution and magmatism of this backarc system. The Havre Trough and the associated Kermadec Arc are the product of westward subduction at the Pacific-Australian plate boundary. Detailed studies focus on newly discovered features including a seamount (Saito Seamount) and a deep graben (Ngatoroirangi Rift, > 4000 m water depth floored with a constructional axial volcanic ridge > 5 km in length and in excess of 200 m high), both of which are characterised by pillow and lobate flows estimated at 4000 m) spreading systems. These discontinuous spreading systems are characterised by failed rifts, rift segmentation, and propagation. Successive episodes of magmatic intrusion into thinned faulted arc basement results in defocused asymmetrical accretion. Cross-arc volcanic chains, isolated volcanoes and underlying basement plateaus are interpreted to represent a "cap" of recent extrusives. However, they may also be composed entirely of newly accreted crust and the spatially extensive basement fabric of elongated volcanic ridges may be the surface expression of pervasive dike intrusion that has thoroughly penetrated and essentially replaced the original arc crust with newly accreted intrusives.

  10. Crustal Structure at a Young Continental Rift: A Receiver Function Study from Lake Tanganyika

    Science.gov (United States)

    Hodgson, I. D. S.; Illsley-Kemp, F.; Gallacher, R. J.; Keir, D.; Ebinger, C. J.; Drooff, C.; Khalfan, M.

    2015-12-01

    Lake Tanganyika, in western Tanzania, spans a large section of the Western rift yet there are very few constraints on bulk crustal and upper mantle structure. The Western rift system has no surface expression of magmatism, which is in stark contrast to the Eastern branch. This observation is difficult to reconcile with the approximately coeval initiation of rifting of the two branches. The variation in the nature of rifting provides a perfect setting to test current hypotheses for the initiation of continental breakup and early-stage development of continental rifts. The deployment of a seismic network of 13 broadband instruments on the south eastern shore of Lake Tanganyika, for 16 months, between 2014 and 2015 provides a unique opportunity to investigate extensional processes in thick continental lithosphere. We present here results from a P to S receiver function study that provides information on bulk crustal Vp/Vs ratio along the rift; a property that is sensitive to the presence of magmatic intrusions in the lower crust. Additionally this method allows us to map variations in crustal thickness both parallel and perpendicular to the rift axis. These results thus provide unprecedented insight into the large-scale mechanics of early-stage continental rifting along the non-volcanic Western rift.

  11. Magma Emplacement and the 3D Geometry of Igneous Bodies in Rift Basins: Insights from the Bornu Basin, Onshore NE Nigeria

    Science.gov (United States)

    Suleiman, Adamu; Jackson, Christopher; Magee, Craig; Fraser, Alastair

    2016-04-01

    Recent studies of regional unconformities in the circum-South Atlantic tectonic plates have linked unconformity age to the timing of changes in the azimuth of oceanic fracture zones, caused by plate interactions during opening of the South Atlantic. This observation is significant, proposing that a plate boundary geodynamic processes are transmitted into and expressed in plate interiors. However, it is not yet clear if and how other geologic events, such as intra-plate magmatism, may be linked to changes in the oceanic fracture azimuthal geometry. Here we use 2D and 3D seismic reflection, geochemical, borehole datasets and outcrop observations from the Bornu Basin, one of several intra-continental rift basins located in NE Nigeria to constrain the 3D geometry of igneous bodies and magmatic emplacement processes. This allows us to link South Atlantic plate boundary geodynamics and magmatism in the surrounding continental rift basins. Seismic attributes, reflection intensity, relative acoustic impedance, were used to identify and map igneous intrusions. Saucer-shaped sills are the most common type of intrusion, although en-echelon sills, up to 1.4 km in length, were also identified. The 3D geometry of the sills reveals the detailed structural components like inner sill, inclined sheets and outer sill. A mapped bifurcating network of the sills suggests magma emplacement process through upward and outward propagation. Seismic-stratigraphic observations indicate that igneous activity occurred in the Early Cretaceous, Late Cretaceous and Paleogene corresponding to the timing of major azimuth changes observed in the Kane Oceanic fracture zone in the South Atlantic Ocean. Overall, our study, suggests a possible influence of plate boundary geodynamics on intra-plate magmatism as reflected in the link between the time of changes in the azimuth of oceanic fracture zones and magmatic emplacement observed in the tectono-stratigraphy of the intra-continental rift basins.

  12. Transcontinental tidal transect: European Atlantic coast-Southern Siberia-Russian Pacific coast

    OpenAIRE

    Timofeev, V.Y.; Ducarme, B.; M. van Ruymbeke; Gornov, P.Y.; M. Everaerts; E. I. Gribanova; Parovyshnii, V.A.; Semibalamut, V.M.; Woppelmann, G.; Ardyukov, D.G.

    2008-01-01

    The paper presents results of measurements with digital tidal LaCoste-Romberg gravimeters on the European Atlantic coast-Southern Siberia-Russian Pacific coast transect in 1995-2005. The transect includes four West European (Chize, Menesplet, Mordelles, and Wikle), two South Siberian (Klyuchi and Talaya), and two Far Eastern (Zabakalskoe and Yuzhno-Sakhalinsk) stations. Gravimetric measurements at the Talaya station (SW Baikal rift zone) are supplemented by long-term laser extensometer observ...

  13. P-to-S Receiver Function Constraints on Crustal Structure and Rift Magmatism in the Southeastern United States

    Science.gov (United States)

    Parker, H., Jr.; Hawman, R. B.; Fischer, K. M.; Wagner, L. S.

    2014-12-01

    The superposition of Mesozoic continental extension on convergent structure of the Appalachian mountain belt in the southeastern United States provides an opportunity to study the possible influence of reactivation tectonics on the break-up of Pangea. Major offset rift basins are located inboard of the continental margin beneath the Atlantic Coastal Plain (South Georgia, Riddleville), and Central Atlantic Magmatic Province (CAMP) mafic dike swarms intrude rift strata and accreted terranes of the southern Appalachians. New P-to-S receiver function H-k stacking results from the 85-station SESAME array and EarthScope Transportable array provide additional constraints on Moho topography and average crustal Vp/Vs across the region. Previous crustal thickness estimates show that Moho depth gradually increases across strike of the Appalachians from ~37 km beneath the Carolina terrane to a maximum of ~55 km across the Blue Ridge Mountains. New crustal thickness estimates of 46-49 km in the southwest portion of the Inner Piedmont in Georgia also indicate significant along-strike complexity of Moho topography. Low Vp/Vs ratios (1.69-1.74) across a large region (~15,000 km2) spanning the Inner Piedmont and Carolina terrane indicate the crust has a relatively felsic composition, implying that bulk crustal modification by CAMP magmatism was volumetrically minor. Higher Vp/Vs ratios (1.75-1.80) across the Inner Piedmont, Blue Ridge, and Valley & Ridge correlate with regional crustal thickening (40-55 km), likely reflecting an increase in crustal root density unrelated to rift magmatism. Across the array, intra-crustal P-to-S conversions at 0.8-1.5 seconds (6-13 km) corresponding with the depth of the Appalachian décollement provide supporting evidence for the southeastward continuation of the detachment beneath the Carolina terrane and new constraints on the origin of reflectivity along the fault zone. This low-angle discontinuity between the Appalachian orogenic wedge and

  14. DESIRE – Dead Sea Rift Integrated Research Project: A multidisciplinary geo-scientific project to reveal the structure of the Dead Sea Rift utilizing helicopter-borne gravimetry

    OpenAIRE

    Meyer, U.; I. Heyde; C. Köhler; H.-J. Götze; Choi, S.;  

    2008-01-01

    The Dead Sea Rift has been considered since a long time as one of the world’s most unique geological sites. Until today the mechanisms that drive the transform fault generating the Dead Sea Rift and its valley are not fully understood. Some of the few established facts are that the fault extends down to the upper mantle and that the offset generated by the transform is longer than 100 km. Within this rift large extensional basins were formed with the Dead Sea or Lake of Galilee being the most...

  15. COMMUNITY ANALYSIS OF AGGREGATED BACTERIA IN SOUTHERN LAKE BAIKAL%韩国贝加尔湖南部群集细菌的群落分析

    Institute of Scientific and Technical Information of China (English)

    Ahn T. S.; Kim O. S.; Spiglazov L. P; Drucker V. V.; Hong S-H.

    2006-01-01

    This study focuses on the community structure of aggregated bacteria in Lake Baikal and relationships with free-living bacteria.Fluorescent in situ hybridization (FISH) methods were used in samples of bacteria taken in April, 2001. Bacterial counts of free-living ranged from 52.3 to 74.1% in free-living bacteria and from 39.6 to 66.7% in aggregated bacteria, respectively. Community composition of aggregated bacteria was very different from free-living bacteria, especially at 25m depth where highest phytoplankton numbers were observed. The vertical profile of aggregated bacteria community was very characteristic. Beta-Proteobacteria increased with depth down to 100m. At 250m, gamma-Proteobacteria was 44% of DAPI bound cells, while other groups were less than 1%. We conclude that community structures of free-living and aggregated bacteria were different, and they may sustain the ecosystem in independent ways.

  16. Beta Regio rift system on Venus: Geologic interpretation of Magellan images

    Science.gov (United States)

    Nikishin, A. M.; Bobina, N. N.; Borozdin, V. K.; Burba, G. A.

    1993-01-01

    Magellan SAR images and altimetric data were used to produce a new geologic map of the Northern part of Beta Regio within the frames of C1-30N279 mapsheet. It was part of our contributions into C1-formate geologic mapping efforts. The original map is at 1:8,000,000 scale. The rift structures are typical for Beta Regio on Venus. There are many large uplifted tessera areas on Beta upland. They occupy areas of higher topography. These tessera are partly burried by younger volcanic cover of plain material. These observations show that Beta upland was formed mainly due to lithospheric tectonical uplifting, and only partly was constructed by volcanic activity. A number of rift valleis traverse Beta upland and spread to the surrounding lowlands. The largest rift crosses Beta N to S. Typical width of rifts is 40 to 160 km. Rift valleis in this region are structurally represented by crustal grabens and half-grabens. There are symmetrical and asymmetrical rifts. A lot of them have shoulder uplifts with the relative high up to 0.5-1 km and width 40 to 60 km. Preliminary analysis of the largest rift valley structural cross-sections leads to the conclusion that it originated due to a 5-10 percent crustal extension. The prominent shield volcano - Theia Mons - is located at the center of Beta rift system. It could be considered as the surface manifestation of the upper mantle hot spot. Most of the rift belts are located radially to Theia Mons. The set of these data leads to conclusion that Beta rift system has an 'active-passive' origin. It was formed due to the regional tectonic lithospheric extension. Rifting was accelerated by the upper mantle hot spot located under the center of passive extension (under Beta Regio).

  17. A Strong Stress Shadow Effect of the 2004 M=9.2 Sumatra-Andaman Earthquake on the Andaman Sea Transform-Rift System 250 km Away

    Science.gov (United States)

    Sevilgen, V.; Stein, R. S.

    2010-12-01

    The 26 December 2004 earthquake ruptured a 1,300-km section of the Sunda megathrust. A transform-rift back-arc system accommodates most of the trench-parallel component of the highly oblique subduction. We used the NEIC earthquake catalog at its M≥4.7 completeness level since 1999, and at M≥4.8 since 1975, to examine the seismicity rate along the transform-rift system. We also combined teleseismic double-difference earthquake relocations from Pesicek et al (JGR, 2010) with Global CMT mechanisms, to more accurately associate focal mechanisms with their fault systems. We find a strong drop in seismicity rate along the Andaman Sea transform system east of the northern end of the 2004 rupture zone. This occurs immediately following the Sumatra-Andaman mainshock and persists to this day. The rate drop is associated with strike-slip mechanisms only; along the portions of the rift system with normal-faulting mechanisms, the seismicity rate increased. We calculate that the Sagaing-West Andaman transform in this region was subjected to a static Coulomb stress drop of 0.25 bar (for an assumed fault friction of 0.4), whereas the rift segments sustained stress increases greater than 1 bar. Both of these calculations are in accord with the observations. Because of the large distance between the megathrust source and the back-arc receiver faults, the imparted stresses are insensitive to the unknown details of the megathrust slip and geometry; because the 2004 slip is so large, the imparted stresses are nevertheless substantial 200-300 km east of the trench, where the seismicity rate changes are observed. Thus, the seismicity shutdown associated with the 2004 earthquake stress shadow furnishes an important test of the static Coulomb stress triggering hypothesis.

  18. Mafic dykes at the southwestern margin of Eastern Ghats belt: Evidence of rifting and collision

    Indian Academy of Sciences (India)

    S Bhattacharya; A K Chaudhary; W Teixeira

    2010-12-01

    The southwestern margin of the Eastern Ghats Belt characteristically exposes ma fic dykes intruding massif-type charnockites. Dykes of olivine basalt of alkaline composition have characteristic trace element signatures comparable with Ocean Island Basalt (OIB). Most importantly strong positive Nb anomaly and low values of Zr/Nb ratio are consistent with OIB source of the mafic dykes. K –Ar isotopic data indicate two cooling ages at 740 and 530 Ma. The Pan-African thermal event could be related to reactivation of major shear zones and represented by leuco-granite vein along minor shear bands. And 740 Ma cooling age may indicate the low grade metamorphic imprints, noted in some of the dykes. Although no intrusion age could be determined from the present dataset, it could be constrained by some age data of the host charnockite gneiss and Alkaline rocks of the adjacent Prakasam Province. Assuming an intrusion age of ∼1 .3 Ga, Sr –Nd isotopic composition of the dykes indicate that they preserved time-integrated LREE enrichment. In view of the chemical signatures of OIB source, the ma fic dykes could as well be related to continental rifting, around 1.3 Ga, which may have been initiated by intra-plate volcanism.

  19. Chronostratigraphy of the Miocene-Pliocene Sagantole Formation, Middle Awash Valley, Afar rift, Ethiopia

    Energy Technology Data Exchange (ETDEWEB)

    Renne, P.R. [Berkeley Geochronology Center, CA (United States)]|[Univ. of California, Berkeley, CA (United States). Dept. of Geology and Geophysics; WoldeGabriel, G.; Heiken, G. [Los Alamos National Lab., NM (United States); Hart, W.K. [Miami Univ., Oxford, OH (United States). Dept. of Geology; White, T.D. [Univ. of California, Berkeley, CA (United States)

    1999-06-01

    The Sagantole Formation comprises more than 200 m of lacustrine, alluvial, and volcaniclastic sediments, plus compositionally bimodal tephras and basaltic lavas, exposed in a domelike horst named the Central Awash Complex in the southwestern Afar rift of Ethiopia. The Sagantole Formation is widely known for abundant vertebrate faunas, including the 4.4 Ma primitive hominid Ardipithecus ramidus. New lithostratigraphic data are used to subdivide the Sagantole Formation into the Kuseralee, Gawto, Haradaso, Aramis, Beidareem, Adgantole, and Belohdelie Members, in ascending order. The members are defined on the basis of lithologic differences and laterally continuous bounding tephras. {sup 40}Ar/{sup 39}Ar dating of 12 intercalated volcanic units firmly establishes the age of the Sagantole Formation to be 5.6 to 3.9 Ma, significantly older than previous proposals based on erroneous correlations. Magnetostratigraphic data reveal eight paleomagnetic polarity zones, which can be correlated unambiguously with the Thvera, Sidufjall, Nunivak, and Cochiti Subchrons of the Gilbert Chron. Thus, by reference to the geomagnetic polarity time scale, seven additional chronological datums can be placed in the Sagantole Formation. With a total of 19 such datums, the age resolution anywhere in the Sagantole Formation is better than {+-}100 k.y., making this the best-dated Miocene-Pliocene succession in Africa.

  20. Rifts of deeply eroded Hawaiian basaltic shields: a structural analog for large Martian volcanoes

    International Nuclear Information System (INIS)

    Recently derived morphologic evidence suggests that intrusive events have not only influenced the growth of young shield volcanoes on Mars but also the distribution of volatiles surrounding these volcanoes: in addition to rift zones and flank eruptions on Arsia Mons and Pavonis Mons, melt water channels were identified to the northwest of Hecates Tholus, to the south of Hadriaca Patera, and to the SE of Olympus Mons. Melt water release could be the surface expression of tectonic deformation of the region or, potentially, intrusive events associated with dike emplacement from each of these volcanoes. In this study the structural properties of Hawaiian shield volcanoes were studied where subaerial erosion has removed a sufficient amount of the surface to enable a direct investigation of the internal structure of the volcanoes. The field investigation of dike morphology and magma flow characteristics for several volcanoes in Hawaii is reported. A comprehensive investigation was made of the Koolau dike complex that passes through the summit caldera. A study of two other dissected Hawaiian volcanoes, namely Waianae and East Molokai, was commenced. The goal is not only to understand the emplacement process and magma flow within these terrestrial dikes, but also to explore the possible role that intrusive events may have played in volcano growth and the distribution of melt water release on Mars

  1. REE partitioning between apatite and melt in a peralkaline volcanic suite, Kenya Rift Valley

    Science.gov (United States)

    Macdonald, R.; Baginski, B.; Belkin, H.E.; Dzierzanowski, P.; Jezak, L.

    2009-01-01

    Electron microprobe analyses are presented for fluorapatite phenocrysts from a benmoreite-peralkaline rhyolite volcanic suite from the Kenya Rift Valley. The rocks have previously been well characterized petrographically and their crystallization conditions are reasonably well known. The REE contents in the M site increase towards the rhyolites, with a maximum britholite component of ~35 mol.%. Chondrite-normalized REE patterns are rather flat between La and Sm and then decrease towards Yb. Sodium and Fe occupy up to 1% and 4%, respectively, of the M site. The major coupled substitution is REE3+ + Si4+ ??? Ca2+ + P5+. The substitution REE3+ + Na+ ??? 2Ca2+ has been of minor importance. The relatively large Fe contents were perhaps facilitated by the low fo2 conditions of crystallization. Zoning is ubiquitous and resulted from both fractional crystallization and magma mixing. Apatites in some rhyolites are relatively Y-depleted, perhaps reflecting crystallization from melts which had precipitated zircon. Mineral/glass (melt) ratios for two rhyolites are unusually high, with maxima at Sm (762, 1123). ?? 2008 The Mineralogical Society.

  2. Molecular Epidemiology and Emergence of Rift Valley Fever

    Directory of Open Access Journals (Sweden)

    Sall AA

    1998-01-01

    Full Text Available Rift Valley fever (RVF is a mosquito-borne viral disease which manifested itself during recent epidemics and revealed its significant potential of emergence. Studies on molecular epidemiology undertaken to better understand the factors leading to RVF emergence, have confirmed the mode of circulation of the virus and highlithted probable risks and obstacles for prevention and control. As for several other viral agents, molecular epidemiology is becoming a useful tool in the study of the emergence of RVF as a serious infectious disease.

  3. Restriction of Rift Valley Fever Virus Virulence in Mosquito Cells

    Directory of Open Access Journals (Sweden)

    Sonja R. Gerrard

    2010-02-01

    Full Text Available Arboviruses are maintained in a natural cycle that requires blood-sucking arthropod and vertebrate hosts. Arboviruses are believed to persistently infect their arthropod host without overt pathology and cause acute infection with viremia in their vertebrate host. We have focused on elucidating how a specific arbovirus, Rift Valley fever (RVF virus, causes cytopathic effect in cells derived from vertebrates and non-cytopathic infection in cells derived from arthropods. We demonstrate that the vertebrate virulence factor, NSs, is functional in arthropod cells but is expressed at significantly lower levels in infected arthropod versus infected vertebrate cells.

  4. Seismic imaging of the geodynamic activity at the western Eger rift in central Europe

    Czech Academy of Sciences Publication Activity Database

    Mullick, N.; Buske, S.; Hrubcová, Pavla; Růžek, Bohuslav; Shapiro, S.; Wigger, P.; Fischer, T.

    647-648, 19 April (2015), s. 105-111. ISSN 0040-1951 R&D Projects: GA ČR GA13-08971S Institutional support: RVO:67985530 Keywords : European Cenozoic Rift System * Eger Rift * West Bohemian Massif Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 2.872, year: 2014

  5. Melting during late-stage rifting in Afar is hot and deep.

    Science.gov (United States)

    Ferguson, D J; Maclennan, J; Bastow, I D; Pyle, D M; Jones, S M; Keir, D; Blundy, J D; Plank, T; Yirgu, G

    2013-07-01

    Investigations of a variety of continental rifts and margins worldwide have revealed that a considerable volume of melt can intrude into the crust during continental breakup, modifying its composition and thermal structure. However, it is unclear whether the cause of voluminous melt production at volcanic rifts is primarily increased mantle temperature or plate thinning. Also disputed is the extent to which plate stretching or thinning is uniform or varies with depth with the entire continental lithospheric mantle potentially being removed before plate rupture. Here we show that the extensive magmatism during rifting along the southern Red Sea rift in Afar, a unique region of sub-aerial transition from continental to oceanic rifting, is driven by deep melting of hotter-than-normal asthenosphere. Petrogenetic modelling shows that melts are predominantly generated at depths greater than 80 kilometres, implying the existence of a thick upper thermo-mechanical boundary layer in a rift system approaching the point of plate rupture. Numerical modelling of rift development shows that when breakup occurs at the slow extension rates observed in Afar, the survival of a thick plate is an inevitable consequence of conductive cooling of the lithosphere, even when the underlying asthenosphere is hot. Sustained magmatic activity during rifting in Afar thus requires persistently high mantle temperatures, which would allow melting at high pressure beneath the thick plate. If extensive plate thinning does occur during breakup it must do so abruptly at a late stage, immediately before the formation of the new ocean basin. PMID:23823795

  6. Rift valley fever in the US: Commerce networks, climate, and susceptible vector and host populations

    Science.gov (United States)

    Rift Valley fever (RVF) is a mosquito-borne hemorrhagic viral disease with substantial negative impacts on public and animal health in its endemic range of sub-Saharan Africa. Rift Valley fever virus (RVFV) could enter the United States and lead to widespread morbidity and mortality in humans, domes...

  7. Quantitative reconstruction of the last interglacial vegetation and climate based on the pollen record from Lake Baikal, Russia

    Energy Technology Data Exchange (ETDEWEB)

    Tarasov, P. [Free University, Institute of Geological Sciences, Palaeontology Department, Berlin (Germany); Granoszewski, W. [Polish Geological Institute, Carpathian Branch, Krakow (Poland); Bezrukova, E.; Abzaeva, A. [Siberian Branch Russian Academy of Sciences, Institute of Geochemistry, Irkutsk (Russian Federation); Brewer, S. [CEREGE CNRS/University P. Cezanne, UMR 6635, BP80, Aix-en-Provence (France); Nita, M. [University of Silesia, Faculty of Earth Sciences, Sosnowiec (Poland); Oberhaensli, H. [GeoForschungsZentrum, Potsdam (Germany)

    2005-11-01

    Changes in mean temperature of the coldest (T{sub c}) and warmest month (T{sub w}), annual precipitation (P{sub ann}) and moisture index ({alpha}) were reconstructed from a continuous pollen record from Lake Baikal, Russia. The pollen sequence CON01-603-2 (53 57'N, 108 54'E) was recovered from a 386 m water depth in the Continent Ridge and dated to ca. 130-114.8 ky BP. This time interval covers the complete last interglacial (LI), corresponding to MIS 5e. Results of pollen analysis and pollen-based quantitative biome reconstruction show pronounced changes in the regional vegetation throughout the record. Shrubby tundra covered the area at the beginning of MIS 5e (ca. 130-128 ky), consistent with the end of the Middle Pleistocene glaciation. The late glacial climate was characterised by low winter and summer temperatures (T{sub c}{proportional_to} -38 to -35 C and T{sub w}{proportional_to}11-13 C) and low annual precipitation (P{sub ann}{proportional_to}300 mm). However, the wide spread of tundra vegetation suggests rather moist environments associated with low temperatures and evaporation (reconstructed {alpha}{proportional_to}1). Tundra was replaced by boreal conifer forest (taiga) by ca. 128 ky BP, suggesting a transition to the interglacial. Taiga-dominant phase lasted until ca. 117.4 ky BP, e.g. about 10 ky. The most favourable climate conditions occurred during the first half of the LI. P{sub ann} reached 500 mm soon after 128 ky BP. However, temperature changed more gradually. Maximum values of T{sub c}{proportional_to} -20 C and T{sub w}{proportional_to}16-17 C are reconstructed from about 126 ky BP. Conditions became gradually colder after ca. 121 ky BP. T{sub c} dropped to {proportional_to} -27 C and T{sub w} to {proportional_to}15 C by 119.5 ky BP. The reconstructed increase in continentality was accompanied by a decrease in P{sub ann} to {proportional_to}400-420 mm. However, the climate was still humid enough ({alpha}{proportional_to}0.9) to

  8. The changes of glaciers on northern Baikal ridges over 50 years using in-situ and remotely sensed observations

    Science.gov (United States)

    Ivanov, Egor; Alexander, Kitov

    2013-04-01

    All the glaciers lying over the Baikalsky and Barguzinsky ridges of Northern Baikal are small. They are located in hard-to-reach regions both for In-situ such and for remotely sensed observations. A researcher can reach glaciers only by using special alpine equipment. The deep ruggedness of hollows and the being of glaciers in the shade over a period of significant time prevent from remotely sensed observations. The Glaciers of Baikalsky ridge are not registered in the catalogue of the Eurasia glaciers since there are no data about the glaciers in the catalogue of the glaciers of USSR. In result of our expedition works and the analyzing of satellite photograph it was determined that the largest cirque glacier- Cherskogo sufficiently stable. Its retreat has been insignificantly in over 50 years - from 0.446 to 0.407 sq. km, id est on 8,7 %. The glaciers of Barguzinsky ridge are very poorly explored. IG SB RAS in 2011 year for the first time completed the expedition with the object of inventory of these ridge glaciers. This region is extremely difficult to approach. The space survey of ultrahigh resolution for the study area (0.5 m) was ordered before the start of the expedition. Also the accessible archive data of Landsat resolution by 15-30 meters have been received. The comparison of cartographical, distance and expedition data show essential retreat of most of glaciers and its degradation from cirque to slope glaciers. Discovered snow-glacial formations can be divided on 3 main groups: 1 -real glaciers; 2 - slope pendent glacier remains; 3 - permanent snow patches. The region is interesting because there practically are all the forms of little glaciations. In addition it can be observed not only glacier's degradation but their origins too. In the favorable year conditions the snow patches are increased with occupying of the basic of cirque bed and form the ice core and continue the formation of the cirque. The second group of glaciers has actually been reserved

  9. Normal block faulting in the Airport Graben, Managua pull-apart rift, Nicaragua: gravity and magnetic constraints

    Science.gov (United States)

    Campos-Enriquez, J. O.; Zambrana Arias, X.; Keppie, D.; Ramón Márquez, V.

    2012-12-01

    Regional scale models have been proposed for the Nicaraguan depression: 1) parallel rifting of the depression (and volcanic front) due to roll back of the underlying subducted Cocos plate; 2) right-lateral strike-slip faulting parallel to the depression and locally offset by pull-apart basins; 3) right-lateral strike-slip faulting parallel to the depression and offset by left-lateral transverse or bookshelf faults. At an intermediate scale, Funk et al. (2011) interpret the depression as half graben type structures. The E-W Airport graben lies in the southeastern part of the Managua graben (Nicaragua), across which the active Central American volcanic arc is dextrally offset, possibly the result of a subducted transform fault where the subduction angle changes. The Managua graben lies within the late Quaternary Nicaragua depression produced by backarc rifting during roll back of the Middle American Trench. The Managua graben formed as a pull-apart rift associated with dextral bookshelf faulting during dextral shear between the forearc and arc and is the locus of two historical, large earthquakes that destroyed the city of Managua. In order to asses future earthquake risk, four E-W gravity and magnetic profiles were undertaken to determine its structure across the Airport graben, which is bounded by the Cofradia and Airport fault zones, to the east and west, respectively. These data indicated the presence of a series of normal faults bounding down-thrown and up-thrown fault blocks and a listric normal fault, Sabana Grande Fault. The models imply that this area has been subjected to tectonic extension. These faults appear to be part of the bookshelf suite and will probably be the locus of future earthquakes, which could destroy the airport and surrounding part of Managua. Three regional SW-NE gravity profiles running from the Pacific Ocean up to the Caribbean See indicate a change in crustal structure: from north to south the crust thins. According to these regional

  10. P wave velocity of the uppermost mantle of the Rio Grande rift region of North Central New Mexico

    International Nuclear Information System (INIS)

    A network of seismograph stations has operated in north-central New Mexico since 1975. The network is approximtely 200 by 300 km in size and encompasses the Rio Grande rift there. Several seismic refraction experiments have been reported in the literature for the region of the network and adjacent areas. Because all of the seismic refraction lines are unreversed, P/sub n/ velocities reported were mainly of the inverse travel time slope for the direction of the corresponding line. The values of the inverse slope for those studies range from 7.6 to 8.2 km/s. The purpose of our study is to estimate the P wave velocity of the uppermost mantle by using the time term method. First, we timed the P/sub n/ waves of strong signals from five explosions and eight shallow earthquakes recorded by the network. The main data set, which contains 87 time-distance pairs, was processed by using the time term method. The P/sub n/ velocity estimated by this method is 8.0 +- 0.1 km/s. To corroborate this estimate, we then processed 10 subsets of the main data set in the same way. Almost allof the solutions show velocities 7.9--8.1 km/s, in agreement with the velocity determined for the main data set. The station time terms of the main data set also are substantied, and they suggest that the base of the crust dips northward by a few degrees in the region of the survey. The smallest value reported by other investigators for the inverse slope (7.6 km/s) appears to be related to the dip. The normal P wave velocity of the uppermost mantle of north-central New Mexico places restrictions on thermal models of the rift. For instance, the results exlude the likelihood of a wide zone of asthenosphere at the base of the crust beneath the rift, but they do not exclude a narrow such zone

  11. Rifting and Post-Rift Reactivation of The Eastern Sardinian Margin (Western Tyrrhenian Back-Arc Basin) Evidenced by the Messinian Salinity Crisis Markers and Salt Tectonics

    Science.gov (United States)

    Gaullier, V.; Chanier, F.; Vendeville, B.; Lymer, G.; Lofi, J.; Sage, F.; Maillard, A.; Thinon, I.

    2014-12-01

    The Eastern Sardinian margin formed during the opening of the Tyrrhenian Sea, a back-arc basin created by continental rifting and oceanic spreading related to the eastward migrating Apennine subduction system from middle Miocene to Pliocene times. We carried out the "METYSS" project aiming at better understanding the Miocene-Pliocene relationships between crustal tectonics and salt tectonics in this key-area, where rifting is pro parte coeval with the Messinian Salinity Crisis (MSC, 5.96-5.33 Ma) and Messinian salt décollement creates thin-skinned tectonics. Thereby, we use the MSC seismic markers and the deformation of viscous salt and its brittle overburden as proxies to better delineate the timing of rifting and post-rift reactivation, and especially to quantifying vertical and horizontal movements. Our mapping of the Messinian Erosion Surface and of Messinian Upper and Mobile Units shows that a rifted basin already existed by the Messinian times, revealing a major pre-MSC rifting episode across the entire domain. Because salt tectonics can create fan-shaped geometries in sediments, syn-rift deposits have to be carefully re-examined in order to decipher the effects of crustal tectonics (rifting) and salt tectonics. Our data surprisingly showed that there are no clues for Messinian syn-rift sediments along the East-Sardinia Basin and Cornaglia Terrace, hence no evidence for rifting after Late Tortonian times. Nevertheless, widespread deformation occurred during the Pliocene and is attributed to post-rift reactivation. Some Pliocene vertical movements have been evidenced by discovering localized gravity gliding of the salt and its Late Messinian (UU) and Early Pliocene overburden. To the South, crustal-scale southward tilting triggered along-strike gravity gliding of salt and cover recorded by upslope extension and downslope shortening. To the North, East of the Baronie Ridge, there was some post-salt crustal activity along a narrow N-S basement trough, bounded

  12. Cenozoic extension in the Kenya Rift from low-temperature thermochronology: Links to diachronous spatiotemporal evolution of rifting in East Africa

    Science.gov (United States)

    Torres Acosta, Verónica; Bande, Alejandro; Sobel, Edward R.; Parra, Mauricio; Schildgen, Taylor F.; Stuart, Finlay; Strecker, Manfred R.

    2015-12-01

    The cooling history of rift shoulders and the subsidence history of rift basins are cornerstones for reconstructing the morphotectonic evolution of extensional geodynamic provinces, assessing their role in paleoenvironmental changes and evaluating the resource potential of their basin fills. Our apatite fission track and zircon (U-Th)/He data from the Samburu Hills and the Elgeyo Escarpment in the northern and central sectors of the Kenya Rift indicate a broadly consistent thermal evolution of both regions. Results of thermal modeling support a three-phased thermal history since the early Paleocene. The first phase (~65-50 Ma) was characterized by rapid cooling of the rift shoulders and may be coeval with faulting and sedimentation in the Anza Rift basin, now located in the subsurface of the Turkana depression and areas to the east in northern Kenya. In the second phase, very slow cooling or slight reheating occurred between ~45 and 15 Ma as a result of either stable surface conditions, very slow exhumation, or subsidence. The third phase comprised renewed rapid cooling starting at ~15 Ma. This final cooling represents the most recent stage of rifting, which followed widespread flood-phonolite emplacement and has shaped the present-day landscape through rift shoulder uplift, faulting, basin filling, protracted volcanism, and erosion. When compared with thermochronologic and geologic data from other sectors of the East African Rift System, extension appears to be diachronous, spatially disparate, and partly overlapping, likely driven by interactions between mantle-driven processes and crustal heterogeneities, rather than the previously suggested north-south migrating influence of a mantle plume.

  13. Estudi exploratori per a la reconstrucció de temperatures de l'aigua i de l'aire en la conca central del llac Baikal (Sibèria) en els últims 40000 anys

    OpenAIRE

    Cuesta Abil, Nereo; Rosell Melé, Antoni

    2009-01-01

    Aquest estudi consisteix en un anàlisi exploratori que té per objectiu principal la realització d'una reconstrucció de la temperatura de l'aigua i l'aire del llac Baikal durant els últims 40.000 anys. El treball s'ha dut a terme mitjançant l'ús de les proxys de reconstrucció de la temperatura y la utilització dels mètodes TEX86, MAAT, i la d'aportació de matèria orgànica d'origen terrestre, el BIT, aplicant-les a la mostra VER93-2 st GC-24, extreta pel Baikal Drilling Project a la conca centr...

  14. Electrical Conductance Map for the Kachchh Rift Basin: Constraint on Tectonic Evolution and Seismotectonic Implications

    Science.gov (United States)

    Subba Rao, P. B. V.; Arora, B. R.; Singh, A. K.

    2014-09-01

    Geomagnetic field variations recorded by an array of magnetometers spread across the Kachchh Rift basin are reduced to a set of induction arrows as a diagnostic of lateral electrical conductivity variations. A non-uniform thin-sheet electrical conductance model is developed to account for the salient induction patterns. It indicates that the imaged conductivity anomalies can be related to the sediment-filled structural lows in between the fault bounded uplifts. It is suggested that sagging structural lows preserved the marine sediments deposited during the Mesozoic sea transgression and later developed into first order embayment basins for the deposition of sediments in association with Late Eocene transgression. Depth integrated electrical conductance helped in mapping two depo-centres: along the ENE-WSW trending Banni half-Graben bounded by the Kachchh Main fault on the south and, second, along the Vinjan depression formed in response to the subsidence between the Vigodi fault and westward extension of the Katrol Hill fault together with the westward bending of the Median High. Presence of metamorphosed graphite schist clasts in shale dominated Mesozoic sequence and/or thin films of carbon resulting from the thermal influence of Deccan activity on Carbonate-rich formations can account for the high electrical conductivity anomalies seen in the depo-centres of thick Mesozoic and Tertiary sediments. Additionally two high conductivity zones are imaged encompassing a block defined by the 2001 Bhuj earthquake and its aftershocks. In agreement with gravity, magnetic and seismic velocity signatures, aqueous fluids released by recrystallizing magmatic bodies intruded in association with Deccan trap activity account for mapped high conductivity zones. High fluid pressure in such a fractured domain, surrounding the intruded magmatic plugs, perturb the regional stress concentrations to produce frequent and low magnitude aftershocks in the shallow section of the epicentral

  15. Surveillance of Rift Valley fever in cattle, goats and sheep in Uganda

    International Nuclear Information System (INIS)

    Increasing occurrence of outbreaks of Rift Valley fever (RVF) has been witnessed in southern Somalia, north-eastern Kenya and northern Tanzania during heavy and prolonged, often unseasonal, rainfall since 1997-98. More recently epizootics were reported in Kenya, Somalia, Tanzania, Sudan, Madagascar and South Africa. Because Uganda is located in the endemic zone of RVF, surveillance was conducted to enable early detection of outbreaks. Testing of frozen and fresh bovine sera retrospectively from 1997 to 2008 using IgM ELISA revealed a seroprevalence ranging from 0 to 2.5%, while VNT revealed 9.65% prevalence. Testing of goat and sheep samples collected from 2005 to 2008 through a cross-sectional study targeting commercial farms and free-range flocks in flood-prone zones in Uganda revealed a seroprevalence ranging from 5.3-27.9% and 0-0.9% by IgG ELISA and IgM ELISA, respectively. Virus neutralization test revealed 32.3% prevalence among goat flocks from these same places. Although indigenous breeds of cattle, goats and sheep, known to be less susceptible to RVF than exotic breeds (Anon., 2005), are predominant in areas surveyed, it is likely that the RVF virus is circulating in livestock in some of these locations. Outbreaks are likely to occur once favourable conditions are met. Studies to establish the distribution of RVF vector mosquitoes and the proportion of susceptible hosts in areas with high sero-prevalence are required to further elucidate the status of RVF in Uganda

  16. Oblique rift opening revealed by reoccurring magma injection in central Iceland

    Science.gov (United States)

    Ruch, Joël; Wang, Teng; Xu, Wenbin; Hensch, Martin; Jónsson, Sigurjón

    2016-08-01

    Extension deficit builds up over centuries at divergent plate boundaries and is recurrently removed during rifting events, accompanied by magma intrusions and transient metre-scale deformation. However, information on transient near-field deformation has rarely been captured, hindering progress in understanding rifting mechanisms and evolution. Here we show new evidence of oblique rift opening during a rifting event influenced by pre-existing fractures and two centuries of extension deficit accumulation. This event originated from the Bárðarbunga caldera and led to the largest basaltic eruption in Iceland in >200 years. The results show that the opening was initially accompanied by left-lateral shear that ceased with increasing opening. Our results imply that pre-existing fractures play a key role in controlling oblique rift opening at divergent plate boundaries.

  17. Oblique rift opening revealed by reoccurring magma injection in central Iceland

    KAUST Repository

    Ruch, Joël

    2016-08-05

    Extension deficit builds up over centuries at divergent plate boundaries and is recurrently removed during rifting events, accompanied by magma intrusions and transient metre-scale deformation. However, information on transient near-field deformation has rarely been captured, hindering progress in understanding rifting mechanisms and evolution. Here we show new evidence of oblique rift opening during a rifting event influenced by pre-existing fractures and two centuries of extension deficit accumulation. This event originated from the Bárðarbunga caldera and led to the largest basaltic eruption in Iceland in >200 years. The results show that the opening was initially accompanied by left-lateral shear that ceased with increasing opening. Our results imply that pre-existing fractures play a key role in controlling oblique rift opening at divergent plate boundaries.

  18. Paleoseismology and Fault Interactions of the Pajarito Fault System, Rio Grande Rift, New Mexico

    Science.gov (United States)

    Gardner, J. N.; Lewis, C. J.; Lavine, A.; Reneau, S. L.; Schultz, E. S.

    2006-12-01

    The Pajarito fault system is the local active boundary fault of the Rio Grande rift in the vicinity of Los Alamos, New Mexico. Detailed geologic and geomorphic mapping, and displacement-length profiles, reveal a complex pattern of structural deformation that suggests interaction and connective growth among the principal faults in the system (Pajarito, Rendija Canyon, Guaje Mountain, and Santa Clara faults, totaling ~55 km in length). At the surface, the Pajarito fault is not a single shear surface but a complex zone of deformation with considerable lateral variation in structural style from south to north. In the area of detailed mapping, the Pajarito fault is a broad zone of distributed deformation: at the southwest corner of the area, structure is dominated by a large monocline, but small faults and monoclines span a breadth of about 2 km with about 125 m of displacement in the last 1.2 million years; at the west central part of the area, the Pajarito fault is expressed as mainly a large normal fault with smaller faults spread across about 1 km with about 80 m of displacement in the last 1.2 million years; and, in the northwestern part of the area, structure is again dominated by a large monocline with normal faulting in a zone about 1.5 km wide with about 65 m of displacement in the last 1.2 million years. These along-strike variations in the deformation of the Pajarito fault suggest that in most places the tip of the master fault does not break the surface; instead, most of what can be observed is subsidiary structure. The implication of the complex structure and styles of deformation in the fault is that it severely complicates paleoseismic exploration for hazard analyses because different subsidiary structures rupture in different seismic events; no individual structure can be identified with even a near- complete paleoseismic record. Additionally, surface rupture hazards must be associated with broad zones instead of individual faults. Seven paleoseismic

  19. Geomechanical and Petrophysical Properties of Rift Basin Mudstones

    Science.gov (United States)

    Zakharova, N. V.; Goldberg, D.; Collins, D.; Malkewicz, N.

    2015-12-01

    Mudstone caprocks are important components of reservoir systems in a variety of geologic and geoingeneering applications, but their properties and behavior under in situ conditions remain only partially understood. This study presents a detailed analysis of geomechanical and petrophysical properties of 20 lacustrine mudstones from the Mesozoic Newark Rift Basin, the largest of exposed rift basins in eastern North America, considered as a potential CO2 sequestration site. The samples were selected to represent variable lithology, organic content, redox state, structure (massive and thinly bedded), degree of matrix anisotropy, and burial depths. An extensive characterization program was funded by the U.S. Department of Energy's National Energy Technology Laboratory (NETL), and included laboratory CT scans, XRD, SEM, MICP, porosity, permeability, and acoustic velocity measurements, as well as geomechanical testing of both matrix and fracture strength under a range of confining pressures. Core measurements were integrated with available logging data to allow for multiscale comparison and correlation. Most of the analyzed mudstones have the clay content of 50-70%, with abundant mica and detrital grains. The pore system is dominated by narrow micropores (mostly information for caprock stability modeling in these basins.

  20. An Epidemiological Model of Rift Valley Fever with Spatial Dynamics

    Directory of Open Access Journals (Sweden)

    Tianchan Niu

    2012-01-01

    Full Text Available As a category A agent in the Center for Disease Control bioterrorism list, Rift Valley fever (RVF is considered a major threat to the United States (USA. Should the pathogen be intentionally or unintentionally introduced to the continental USA, there is tremendous potential for economic damages due to loss of livestock, trade restrictions, and subsequent food supply chain disruptions. We have incorporated the effects of space into a mathematical model of RVF in order to study the dynamics of the pathogen spread as affected by the movement of humans, livestock, and mosquitoes. The model accounts for the horizontal transmission of Rift Valley fever virus (RVFV between two mosquito and one livestock species, and mother-to-offspring transmission of virus in one of the mosquito species. Space effects are introduced by dividing geographic space into smaller patches and considering the patch-to-patch movement of species. For each patch, a system of ordinary differential equations models fractions of populations susceptible to, incubating, infectious with, or immune to RVFV. The main contribution of this work is a methodology for analyzing the likelihood of pathogen establishment should an introduction occur into an area devoid of RVF. Examples are provided for general and specific cases to illustrate the methodology.

  1. Upwarp of anomalous asthenosphere beneath the Rio Grande rift

    Science.gov (United States)

    Parker, E.C.; Davis, P.M.; Evans, J.R.; Iyer, H.M.; Olsen, K.H.

    1984-01-01

    Continental rifts are possible analogues of mid-ocean ridges, although major plate tectonic features are less clearly observed1. Current thermal models of mid-ocean ridges2-4 consist of solid lithospheric plates overlying the hotter, less viscous asthenosphere, with plate thickness increasing away from the ridge axis. The lithospheric lower boundary lies at or near the melting point isotherm, so that at greater depths higher temperatures account for lower viscosity, lower seismic velocities and possibly partial melting. Upwarp of this boundary at the ridge axis concentrates heat there, thus lowering densities by expansion and raising the sea floor to the level of thermal isostatic equilibrium. At slow spreading ridges, a major central graben forms owing to the mechanics of magma injection into the crust5. Topography, heat flow, gravity and seismic studies support these models. On the continents, a low-velocity channel has been observed, although it is poorly developed beneath ancient cratons6-9. Plate tectonic models have been applied to continental basins and margins10-12, but further similarities to the oceanic models remain elusive. Topographic uplift is often ascribed to Airy type isostatic compensation caused by crustal thickening, rather than thermal compensation in the asthenosphere. Here we discuss the Rio Grande rift, in southwestern United States. Teleseismic P-wave residuals show that regional uplift is explained by asthenosphere uplift rather than crustal thickening. ?? 1984 Nature Publishing Group.

  2. The origin of thermal waters in the northeastern part of the Eger Rift, Czech Republic

    International Nuclear Information System (INIS)

    An investigation of the thermal waters in the Ústí nad Labem area in the northeastern part of the Eger Rift has been carried out, with the principal objective of determining their origin. Waters from geothermal reservoirs in the aquifers of the Bohemian Cretaceous Basin (BCB) from depths of 240 to 616 m are exploited here. For comparison, thermal waters of the adjacent Teplice Spa area were also incorporated into the study. Results based on water chemistry and isotopes indicate mixing of groundwater from aquifers of the BCB with groundwater derived from underlying crystalline rocks of the Erzgebirge Mts. Unlike thermal waters in Děčín, which are of Ca–HCO3 type, there are two types of thermal waters in Ústí nad Labem, Na–HCO3–Cl–SO4 type with high TDS values and Na–Ca–HCO3–SO4 type with low TDS values. Carbon isotope data, speciation calculations, and inverse geochemical modeling suggest a significant input of endogenous CO2 at Ústí nad Labem in the case of high TDS groundwaters. Besides CO2 input, both silicate dissolution and cation exchange coupled with dissolution of carbonates may explain the origin of high TDS thermal waters equally well. This is a consequence of similar δ13C and 14C values in endogenous CO2 and carbonates (both sources have 14C of 0 pmc, endogenous CO2 δ13C around −3‰, carbonates in the range from −5‰ to +3‰ V-PDB). The source of Cl− seems to be relict brine formed in Tertiary lakes, which infiltrated into the deep rift zone and is being flushed out. The difference between high and low TDS groundwaters in Ústí nad Labem is caused by location of the high mineralization groundwater wells in CO2 emanation centers linked to channel-like conduits. This results in high dissolution rates of minerals and in different δ13C(DIC) and 14C(DIC) fingerprints. A combined δ34S and δ18O study of dissolved SO4 indicates multiple SO4 sources, involving SO4 from relict brines and oxidation of H2S. The study clearly

  3. Extension on rifted continental margins: Observations vs. models.

    Science.gov (United States)

    Skogseid, Jakob

    2014-05-01

    Mapping the signature of extensional deformation on rifted margins is often hampered by thick sedimentary or volcanic successions, or because salt tectonics makes sub-salt seismic imaging challenging. Over the past 20 years the literature is witnessing that lack of mapable faults have resulted in a variety of numerical models based on the assumption that the upper crust takes little or no extensional thinning, while the observed reduction of crustal thickness is taken up in the middle and lower crust, as well as in the mantle. In this presentation two case studies are used to highlight the difference that 3D seismic data may have on our understanding. The small patches of 3D resolution data allow us to get a glance of the 'real' signature of extensional faulting, which by analogy can be extrapolate from one margin segment to the next. In the South Atlantic salt tectonics represents a major problem for sub-salt imaging. The conjugate margins of Brazil and Angola are, however, characterized by pronounced crustal thinning as documented by crustal scale 2D reflection and refraction data. Off Angola the 3D 'reality' demonstrates that upper crustal extension by faulting is comparable to the full crustal, as well as lithospheric thinning as derived from refraction data and basin subsidence analysis. The mapped faults are listric low angle faults that seem to detach at mid crustal levels. 2D seismic has in the past been interpreted to indicate that almost no extensional faulting can be mapped towards the base of the so-called 'sag basin'. The whole concept of the 'sag basin', often ascribed to as crustal thinning without upper crustal deformation, is in fact related to this 'lack of observation', and furthermore, have caused the making of different types of dynamic models attempting to account for this. In the NE Atlantic significant Paleocene extensional faulting is locally seen adjacent to the 50 to more than 200 km wide volcanic cover on each side of the breakup axis

  4. Styles of continental rifting: crust-mantle detachment and mantle plumes

    Science.gov (United States)

    Zeyen, Hermann; Volker, Frank; Wehrle, Veronika; Fuchs, Karl; Sobolev, Stephan V.; Altherr, Rainer

    1997-09-01

    Observations made in different continental rift systems (European, Red Sea-Gulf of Aden, and East African Rift Systems) were investigated in terms of the influence of different parameters on the style of rifting. Apart from the lithospheric thermal regime at the time of rift initiation, the process of rifting seems to be mainly controlled by the far-field stress regime and the presence or absence of a mantle plume. In a hot lithosphere the low viscosity of the lower crust enables the upper crust to be detached from the mantle and be deformed independently under far-field stresses. Therefore, in western Europe the main rifts could open obliquely to the direction of mantle movement in crustal levels without appreciable extension in the lithospheric mantle. In contrast, the colder lithosphere of Arabia did not allow detachment of crust and mantle. Therefore, despite being in a similar tectonic situation as in western Europe, i.e. rifting in front of an orogen, the whole lithosphere deformed congruently. Rift opening occurred parallel to mantle movement, i.e. parallel to the direction of extensional stress in the lithospheric mantle induced by the pull of the subducting slab at the orogenic front. The forces needed to extend the whole relatively cool Arabian lithosphere could, however, not be produced by slab pull alone. Additional forces and weakening of the lithosphere were produced by the Afar mantle plume. Mantle plumes are generally not able to break very thick cratonic lithosphere but they deflect sidewards when hitting this kind of lithosphere. Warmer (but still relatively cool) lithosphere like in the surroundings of the East African Tanzania craton or in Arabia can, by the buoyancy of a plume, be bent strongly enough to break. As a consequence, long linear rift structures develop with generally high shoulders. The presence of a plume explains thus the position of the East African and Red Sea-Gulf of Aden rifts. Under far-field compression, rifts will open only

  5. Double layer anisotropy beneath the New Madrid seismic zone and adjacent areas: insights from teleseismic shear wave splitting

    Directory of Open Access Journals (Sweden)

    Moikwathai Dax Moidaki

    2014-02-01

    Full Text Available A total of 93 well-defined PKS, 54 SKKS, and 126 SKS shear-wave splitting parameters are determined at 25 broadband seismic stations in an approximately 1000 by 1000 km2 area centered at the New Madrid seismic zone (NMSZ in order to test the existence of two anisotropic layers and to map the direction and strength of mantle fabrics. The individual splitting parameters suggest a significant and systematic spatial and azimuthal variation in the splitting parameters. The azimuthal variations at most stations can be explained as the results of present SW ward asthenospheric flow and NNE trending lithospheric fabrics formed during past orogenic events. In the NMSZ, rift-parallel fast directions (potentially related to a long-rift flow and rift-orthogonal fast directions from small-scale mantle convection are not observed. In addition, reduction in splitting times as a result of vertical asthenospheric flow is not observed.

  6. Stable isotope variation in tooth enamel from Neogene hippopotamids: monitor of meso and global climate and rift dynamics on the Albertine Rift, Uganda

    Science.gov (United States)

    Brachert, Thomas Christian; Brügmann, Gerhard B.; Mertz, Dieter F.; Kullmer, Ottmar; Schrenk, Friedemann; Jacob, Dorrit E.; Ssemmanda, Immaculate; Taubald, Heinrich

    2010-10-01

    The Neogene was a period of long-term global cooling and increasing climatic variability. Variations in African-Asian monsoon intensity over the last 7 Ma have been deduced from patterns of eolian dust export into the Indian Ocean and Mediterranean Sea as well as from lake level records in the East African Rift System (EARS). However, lake systems not only depend on rainfall patterns, but also on the size and physiography of river catchment areas. This study is based on stable isotope proxy data (18O/16O, 13C/12C) from tooth enamel of hippopotamids (Mammalia) and aims in unravelling long-term climate and watershed dynamics that control the evolution of palaeolake systems in the western branch of the EARS (Lake Albert, Uganda) during the Late Neogene (7.5 Ma to recent). Having no dietary preferences with respect to wooded (C3) versus grassland (C4) vegetation, these territorial, water-dependant mammals are particularly useful for palaeoclimate analyses. As inhabitants of lakes and rivers, hippopotamid tooth enamel isotope data document mesoclimates of topographic depressions, such as the rift valleys and, therefore, changes in relative valley depth instead of exclusively global climate changes. Consequently, we ascribe a synchronous maximum in 18O/16O and 13C/12C composition of hippopotamid enamel centred around 1.5-2.5 Ma to maximum aridity and/or maximum hydrological isolation of the rift floor from rift-external river catchment areas in response to the combined effects of rift shoulder uplift and subsidence of the rift valley floor. Structural rearrangements by ~2.5 Ma within the northern segment of the Albertine Rift are well constrained by reversals in river flow, cannibalisation of catchments, biogeographic turnover and uplift of the Rwenzori horst. However, a growing rain shadow is not obvious in 18O/16O signatures of the hippopotamid teeth of the Albertine Rift. According to our interpretation, this is the result of the overriding effect of evaporation on 18

  7. The epidemiology and socio-economic impact of Rift Valley fever epidemics in Tanzania: A review

    Directory of Open Access Journals (Sweden)

    Calvin Sindato

    2012-06-01

    Full Text Available A review was conducted to provide comprehensive update on Rift Valley fever (RVF in Tanzania, with particular attention devoted to trend of occurrence, epidemiological factors, socio-economic impact and measures which were applied to its control. Information presented in this paper was obtained through extensive literature review. Rift Valley fever was documented for the first time in Tanzania in 1977. This was followed by epidemics in 1997 and 2007. Contrary to the latest epidemic in 2007 sporadic cases of RVF during the previous epidemics were confined to mainly livestock and mostly affecting northern parts of Tanzania. The latest disease epidemic expanded to cover wider areas (mostly northern and central zones of the country involving both human and domestic ruminants. During the latest disease outbreak 52.4% (n = 21 of regions in Tanzania mainland were affected and majority (72.7, n = 11 of the regions had concurrent infections in human and animals. Phylogenetic comparison of nucleotide and amimo acid sequences revealed different virus strains between Kenya and Tanzania.Epidemiological factors that were considered responsible for the previous RVF epidemics in Tanzania included farming systems, climatic factors, vector activities and presence of large population of ruminant species, animal movements and food consumption habits. Majority of the RVF positive cases in the latest epidemic were livestock under pastoral and agro-pastoral farming systems.The disease caused serious effects on rural people’s food security and household nutrition and on direct and indirect losses to livestock producers in the country. Psycho-social distress that communities went through was enormous, which involved the thinking about the loss of their family members and/or relatives, their livestock and crop production. Socially, the status of most livestock producers was eroded in their communities.Cessation of lucrative trade in ruminants resulted in serious

  8. Metamorphism, isotopic ages and chemistry of lower crustal granulite xenoliths from the cretaceous Salta rift, Argentina

    International Nuclear Information System (INIS)

    Full text: Crustal and upper mantle xenoliths are hosted in basanitic dikes and necks that intruded into continental sediments of the Cretaceous Salta Rift at Qebrada Las Conchas, Province Salta, Argentina. Most of the crustal xenoliths have granitoid composition ( quartz - plagioclase - k-feldspar -garnet) whereas mafic compositions (plagioclase - clinopyroxene -garnet ±hornblende) are exceedingly rare. The xenoliths show a well equilibrated granoblastic structure and the minerals are compositionally unzoned. Metamorphic conditions have been of granulite facies temperature ca. 850 - 900 at lower crustal depth with pressure of ca. 10 kbar from thermo barometric calculations. Sm-Nd mineral isochron ages are 94.9±8.4Ma, 91.6±13.5Ma, 89.0±4.2Ma (granitoid composition), and 110.7±23.2Ma (mafic composition). These ages are within the errors in good agreement with the age of basanitic volcanism. Sm-Nd isochron ages are considered as closure ages and temperature at the respective time has been still above the Sm-Nd systems' closure temperature (>600-700 ). Sm-Nd and Rb-Sr isotopic signatures (147Sm/144Nd t0=0.1225 - 0.1608); 143Nd/144Ndt0 0.512000 - 0.512324; 87Rb/86Sr = 0.099 - 0.172; 87Sr/86Sr = 0.708188 - 0.7143161) and common lead isotopic signatures (206Pb/204Pb = 18.43 - 18.48; 207Pb/204Pb = 15.62-15.70; 208Pb/204Pb = 38.22 - 38.97) of the granitoid xenoliths are indistinguishable from the isotopic composition of the Early Paleozoic metamorphic basement from NW Argentina apart from the lower 208Pb/204Pb ratios of the Early Paleozoic basement. Sm-Nd depleted mantle model ages of c. 1.8 Ga from granitoid xenoliths and Early Paleozoic basement point to a Proterozoic protoliths for both with distinct ages of the last thermal overprint. Time constraints, the well equilibrated granulite fabric, P-T conditions and lack of chemical zoning of minerals point to a high temperature gradient in a crust of nearly normal thickness at c. 90 Ma and to a prominent thermal

  9. Rifting and Subsidence in the Gulf of Mexico: Implications for Syn-rift, Sag, and Salt Sections, and Subsequent Paleogeography

    Science.gov (United States)

    Pindell, J. L.; Graham, R.; Horn, B.

    2013-05-01

    Thick (up to 5 km), rapid (subsea (shown by backstripping), and (2) deepest abyssal sediments over ocean crust onlap the top of distal salt, demonstrating that the salt itself was rapidly drowned after deposition. Study of global ION datasets demonstrates the process of "rapid outer marginal collapse" at most margins, which we believe is achieved by low-angle detachment on deep, landward-dipping, Moho-equivalent surfaces such that outer rifted margins are hanging walls of crustal scale half-grabens over mantle. The tectonic accommodation space produced (up to 3 km, separates the traditional "rift" from "drift" stages during continental margin creation. Importantly, this 2-3 km of subsidence presently is neither treated as tectonic nor as thermal in traditional subsidence analysis; thus, Beta estimates may be excessive at many outer margins. Outer marginal collapse was probably eastwardly diachronous with initiation of spreading in the GoM. Additionally, recent paleo-climate studies suggest humid Early/Middle Jurassic conditions in equatorial GoM, hindering air-filled chasm development, but North America's northward flight into middle latitudes initiated Callovian aridity.

  10. CREATING THE KULTUK POLYGON FOR EARTHQUAKE PREDICTION: VARIATIONS OF (234U/238U AND 87SR/86SR IN GROUNDWATER FROM ACTIVE FAULTS AT THE WESTERN SHORE OF LAKE BAIKAL

    Directory of Open Access Journals (Sweden)

    S. V. Rasskazov

    2015-12-01

    .5 mkg/l concentrations of uranium (components from the Medlyanka river and Kultuchnaya river, respectively. The U abundances reflect relatively reduced conditions in group 1 and more oxidized in group 2. The higher (234U/238U in the surface water with intermediate concentrations of uranium (0.009–0.500 mkg/l may indicate the admixture of a groundwater component (Fig. 3. Figure 4 shows relations between surface water and groundwater components in the Kultuk polygon in terms of U content. In Figure 5, the field of data points of U and Sr isotope ratios in groundwater from the Kultuk polygon is contoured by curved lines that meet with each other at compositions corresponding to the end members E (87Sr/86Sr=0.7205, 234U/238U=1.0 and NE (87Sr/86Sr=0.70534, 234U/238U=3.3. Uranium ratios of the former and the latter components show equilibrium and the most nonequilibrium compositions, respectively. The field is characteristic of water samples from the rocks of the southern suture zone of the Siberian craton. Shift of the data points of water from stations 26 and 1310 to the right of this data field (i.e. with relative increasing 87Sr/86Sr is due to lateral transition from the rocks of the suture zone to the Archean rocks of the Sharyzhalgai block (Fig. 6. The isotope systematics of uranium and strontium in the strongly nonequilibrium uranium segment is supplemented by the systematics of uranium in (234U/238U vs. 1/U diagram (Fig. 7. The U composition in water from station 40 reflects a combination of processes that take place at station 27 (i.e. in the central part of the deformation system and at station 38 (i.e. at its periphery. Approximately equal contents of uranium at the three above‐mentioned stations may reflect similar oxidization levels of the medium. In the Southern Baikal basin, the Irkutsk Seismic Station recorded an earthquake of class 11.2 on 08 January 2013 [Map…, 2013]. The earthquake epicentre was located near Listvyanka settlement (51.85° N, 105°16

  11. Textural and compositional variability across littoral segments of Lake Tanganyika: The effect of asymmetric basin structure on sedimentation in large rift lakes

    Energy Technology Data Exchange (ETDEWEB)

    Soreghan, M.J.; Cohen, A.S. [Univ. of Arizona, Tucson, AZ (United States)

    1996-03-01

    Lake Tanganyika, part of the East African rift system, represents one of the most widely cited modern analogs for interpreting ancient rift lakes. To date, few published detailed sedimentologic studies of the modern sediments allow for comparisons to outcrop- and well-bore-scale observations within ancient strata. Four recurrent structural margin types exist along the alternating half-graben structure of the lake: hinged margins, axial margins, accommodation zone margins, and escarpment margins. The hinged margin consists of a series of structurally controlled benches over which long, continuous tracts of bioclastic lag deposits predominate; clastic sands are limited to moderate-size silty deltas and long, narrow shoreface sands. The axial margin is dominated by a wave-dominated, silt-rich delta system. Accommodation zone margins consist of bioclastic lag deposits atop structural highs, whereas carbonate and clastic mud accumulates farther offshore. Escarpment margins contain small fan-delta deposits alternating along shore with talus deposits; offshore carbonate and clastic mud is present away from active gravity-flow deposition. Total organic carbon (TOC) and pyrolysis data from fine-grained samples subtly reflect the contrasts in margin types, but these values are controlled more directly by water depth. Although facies are similar among all margin types, their spatial distribution, in particular the degree to which facies tracts trend parallel to shore, best discriminates among the different margin types. These data suggest that unique but predictable associations of reservoir, seal, and source facies exist along each of the different margin types.

  12. Geodynamic evolution of Ossa-Morena Zone in a SW Iberian context during the Variscan cycle

    OpenAIRE

    Moreira, Noel; Araújo, Alexandre; Pedro, Jorge; Dias, Rui

    2014-01-01

    Ossa-Morena Zone (OMZ) is crucial to understanding the geodynamic evolution of the Variscan cycle in SW Iberia. We review previous data, from Early to Late Paleozoic. The early Cambrian (conglomeratic and felsic metavolcanic units) lies unconformably upon Neoproterozoic formations and shows a carbonate sequence with bimodal volcanic rocks, accompanied by intrusion of plutonic bodies (535–520 Ma). This could be interpreted as result of rifting process (Sánchez-García et al., 201...

  13. Crustal thickness and Moho sharpness beneath the Midcontinent rift from receiver functions

    Directory of Open Access Journals (Sweden)

    Moikwathai Moidaki

    2013-02-01

    Full Text Available The Mesoproterozoic Midcontinent rift (MCR in the central US is an approximately 2000 km long, 100 km wide structure from Kansas to Michigan. During the 20-40 million years of rifting, a thick (up to 20 km layer of basaltic lava was deposited in the rift valleys. Quantifying the effects of the rifting and associated volcanic eruptions on the structure and composition of the crust and mantle beneath the MCR is important for the understanding of the evolution of continental lithosphere. In this study we measure the crustal thickness (H, and the sharpness of the Moho (R at about 24 portable and permanent stations in Iowa, Kansas, and South Dakota by stacking Pto- S converted waves (PmS and their multiples (PPmS and PSmS. Under the assumption that the crustal mean velocity in the study area is the same as the IASP91 earth model, we find a significantly thickened crust beneath the MCR of about 53 km. The crustal Vp/Vs ratios increases from about 1.80 off rift to as large as 1.95 within the rift, which corresponds to an increase of Poisson’s ratio from 0.28 to 0.32, suggesting a more mafic crust beneath the MCR. The R measurements are spatially variable and are relatively small in the vicinity of the MCR, indicating the disturbance of the original sharp Moho by the rifting and magmatic intrusion and volcanic eruption.

  14. Superposed deformation in the northern Suez Rift, Egypt: relevance to hydrocarbons exploration

    Energy Technology Data Exchange (ETDEWEB)

    Moustafa, A.R. [Ain Shams Univ., Cairo (Egypt). Dept. of Geology; Khalil, M.H. [Gulf of Suez Petroleum Co., Cairo (Egypt)

    1995-07-01

    Detailed subsurface studies of the northern part of the Suez Rift and adjacent areas indicate the superposition of two different episodes of deformation. During the earlier (Late Cretaceous) phase of deformation, folds with NE-SW oriented axes were formed in northern Egypt as a result of convergence between Africa and Eurasia and the closure of the Neotethys. During the later (early Miocene) deformation, NW-oriented normal faults were formed as a result of the opening of the Suez Rift. Borehole data have shown that a belt of NE en echelon folds with NE-SW axes exists in the subsurface in the northernmost part of the rift, between Ayun Musa and the Sukhna-1 well, south of Gebel Ataqa. This fold belt represents the SW continuation of the en echelon folds exposed in the Mitla Pass, to the NE of the rift. Another pre-rift structure is the offshore extension of the Wadi Araba structure as a SE-facing monocline. This offshore structure also represents the continuation of the Gebel Somar structure, on the eastern shoulder of the Suez Rift. The Gebel Somar and Wadi Araba structures represent the southernmost pre-rift folds in northern Egypt. Pre-rift folds in the study area stood high above sea-level during the Palaeocene and early Eocene. Upper Cretaceous and/or older rocks in the cores of these folds were later uncomfortably covered by middle Eocene rocks. The presence of Late Cretaceous folds should be taken into consideration when exploring for hydrocarbons in this part of the Suez Rift. Borehole data in NE Egypt also indicate the presence of Late Cretaceous folds underneath the almost flat-lying Tertiary rocks in the northern part of the Eastern Desert. These folds are considered to be potential hydrocarbon traps in this relatively poorly-explored area. (Author)

  15. Distributed deformation ahead of the Cocos-Nazca Rift at the Galapagos triple junction

    Science.gov (United States)

    Smith, Deborah K.; Schouten, Hans; Zhu, Wen-lu; Montési, Laurent G. J.; Cann, Johnson R.

    2011-11-01

    The Galapagos triple junction is not a simple ridge-ridge-ridge (RRR) triple junction. The Cocos-Nazca Rift (C-N Rift) tip does not meet the East Pacific Rise (EPR). Instead, two secondary rifts form the link: Incipient Rift at 2°40‧N and Dietz Deep volcanic ridge, the southern boundary of the Galapagos microplate (GMP), at 1°10‧N. Recently collected bathymetry data are used to investigate the regional tectonics prior to the establishment of the GMP (∼1.5 Ma). South of C-N Rift a band of northeast-trending cracks cuts EPR-generated abyssal hills. It is a mirror image of a band of cracks previously identified north of C-N Rift on the same age crust. In both areas, the western ends of the cracks terminate against intact abyssal hills suggesting that each crack initiated at the EPR spreading center and cut eastward into pre-existing topography. Each crack formed a short-lived triple junction until it was abandoned and a new crack and triple junction initiated nearby. Between 2.5 and 1.5 Ma, the pattern of cracking is remarkably symmetric about C-N Rift providing support for a crack interaction model in which crack initiation at the EPR axis is controlled by stresses associated with the tip of the westward-propagating C-N Rift. The model also shows that offsets of the EPR axis may explain times when cracking is not symmetric. South of C-N Rift, cracks are observed on seafloor as old as 10.5 Ma suggesting that this triple junction has not been a simple RRR triple junction during that time.

  16. Anisotropic zonation in the lithosphere of Central North America: Influence of a strong cratonic lithosphere on the Mid-Continent Rift

    Science.gov (United States)

    Ola, O.; Frederiksen, A. W.; Bollmann, T.; van der Lee, S.; Darbyshire, F.; Wolin, E.; Revenaugh, J.; Stein, C.; Stein, S.; Wysession, M.

    2016-06-01

    We present shear-wave splitting analyses of SKS and SKKS waves recorded at sixteen Superior Province Rifting Earthscope Experiment (SPREE) seismic stations on the north shore of Lake Superior, as well as fifteen selected Earthscope Transportable Array instruments south of the lake. These instruments bracket the Mid-Continent Rift (MCR) and sample the Superior, Penokean, Yavapai and Mazatzal tectonic provinces. The data set can be explained by a single layer of anisotropic fabric, which we interpret to be dominated by a lithospheric contribution. The fast S polarization directions are consistently ENE-WSW, but the split time varies greatly across the study area, showing strong anisotropy (up to 1.48 s) in the western Superior, moderate anisotropy in the eastern Superior, and moderate to low anisotropy in the terranes south of Lake Superior. We locate two localized zones of very low split time (< 0.6 s) adjacent to the MCR: one in the Nipigon Embayment, an MCR-related magmatic feature immediately north of Lake Superior, and the other adjacent to the eastern end of the lake, at the southern end of the Kapuskasing Structural Zone (KSZ). Both low-splitting zones are adjacent to sharp bends in the MCR axis. We interpret these two zones, along with a low-velocity linear feature imaged by a previous tomographic study beneath Minnesota and the Dakotas, as failed lithospheric branches of the MCR. Given that all three of these branches failed to propagate into the Superior Province lithosphere, we propose that the sharp bend of the MCR through Lake Superior is a consequence of the high mechanical strength of the Superior lithosphere ca. 1.1 Ga.

  17. Tectonics and Petroleum Potential of the East China Sea Shelf Rift Basin

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    There are two Cenozoic sedimentary basins in the East China Sea. They are the East China Sea shelf basin and the Okinawa Trough basin. The former can be divided into a western and an eastern rift region. The development of the shelf basin underwent continental-margin fault depression, post-rift and then tectonic inversion stages. Available exploration results show that the distribution of source rocks is controlled by the basin architecture and its tectonic evolution. In the Xihu depression, mudstones and coals are the main source rocks. The eastern rift region has good geological conditions for the formation of large oil and gas fields.

  18. From hyper-extended rifts to orogens: the example of the Mauléon rift basin in the Western Pyrenees (SW France)

    Science.gov (United States)

    Masini, E.; Manatschal, G.; Tugend, J.

    2011-12-01

    An integral part of plate tectonic theory is that the fate of rifted margins is to be accreted into mountain belts. Thus, rift-related inheritance is an essential parameter controlling the evolution and architecture of collisional orogens. Although this link is well accepted, rift inheritance is often ignored. The Pyrenees, located along the Iberian and European plate boundary, can be considered as one of the best places to study the reactivation of former rift structures. In this orogen the Late Cretaceous and Tertiary convergence overprints a Late Jurassic to Lower Cretaceous complex intracontinental rift system related to the opening of the North Atlantic. During the rifting, several strongly subsiding basins developed in the axis of the Pyrenees showing evidence of extreme crustal extension and even locale mantle exhumation to the seafloor. Although the exact age and kinematics of rifting is still debated, these structures have an important impact in the subsequent orogenic overprint. In our presentation we discuss the example of the Mauléon basin, which escaped from the most pervasive deformations because of its specific location at the interface between the western termination of the chain and the Bay of Biscay oceanic realm. Detailed mapping combined with seismic reflection, gravity data and industry wells enabled to determine the 3D rift architecture of the Mauléon basin. Two major diachronous detachment systems can be mapped and followed through space. The Southern Mauléon Detachment (SMD) develops first, starts to thin the crust and floors the Southern Mauléon sub-Basin (SMB). The second, the Northern Mauléon Detachment (SMD) is younger and controls the final crustal thinning and mantle exhumation to the north. Both constitute the whole Mauléon basin. Like at the scale of the overall Pyrenees, the reactivation of the Mauléon Basin increases progressively from west to east, which enables to document the progressive reactivation of an aborted hyper

  19. Transtensional Rifting in the Late Proto-Gulf of California Near Bahía Kino, Sonora, México

    Science.gov (United States)

    Bennett, S. E.; Oskin, M. E.; Dorsey, R. J.

    2009-12-01

    We investigate the role of obliquity in continental rupture from the example of the Gulf of California rift. Focused transtensional strain adjacent to strike-slip faults, ubiquitous in oblique rifts, may act as a catalyst for lithospheric rupture. To test this hypothesis we completed detailed structural mapping, fault kinematic analysis, basin analysis, and paleomagnetism of pre- and syn-rift volcanic and sedimentary rocks exposed in coastal Sonora, near Bahía Kino, México. This area is host to the NW-striking, dextral Sacrificio and Bahía Kino faults onshore that are likely linked to the offshore De Mar transform fault that accommodated Gulf opening. Three fault-bounded sedimentary basins formed unconformably above the 12.50 ± 0.08 Ma Tuff of San Felipe. The 6.53 ± 0.18 Ma Tuff of Cerro Tordillo and the 6.39 ± 0.02 Ma Tuffs of Mesa Cuadrada are interbedded in the lower part of the non-marine basin fill. In one of these basins, we used these tuff markers to calibrate a sedimentation rate of 1.2 ± 0.2 mm/yr and a tilting rate of 0.12 ± 0.02 °/kyr. These rapid rates suggest transtensional strain and related basin subsidence initiated ca. 6.6 Ma, near the end of proto-Gulf time. Paleomagnetism of the Tuff of San Felipe and Tuffs of Mesa Cuadrada in coastal Sonora show variable amounts of clockwise vertical-axis rotation when compared to paleomagnetic reference sites in Baja California. Fault blocks in the central and southern parts of the study area are rotated counter-clockwise 15° to clockwise 35°. Strike-slip faults in this area accommodate up to 10 km of slip. In contrast, ~53° of clockwise rotation occurred in the northern part of the study area, where strike-slip faults are absent. In this northern area, transtensional deformation occurred primarily by block rotation and ~6 km of normal slip on the low-angle (5-15°) Punta Chueca fault. After correcting for variable amounts of rotation, fault blocks display a consistent tilt down to the ENE. Pre-rift

  20. Reconciling the shadow of a subduction signature with rift geochemistry and tectonic environment in Eastern Marie Byrd Land, Antarctica

    Science.gov (United States)

    LeMasurier, Wesley E.; Choi, Sung Hi; Hart, Stanley R.; Mukasa, Sam; Rogers, Nick

    2016-09-01

    Basalt-trachyte volcanoes in the Marie Byrd Land (MBL) Cenozoic province lie along the Amundsen Sea coast on the north flank of the West Antarctic rift. Basalts here are characterized by OIB-like geochemistry, restricted ranges of 87Sr/86Sr (0.702535-0.703284) and 143Nd/144Nd (0.512839-0.513008) and a wide range of 206Pb/204Pb (19.357-20.934). Basalts at three MBL volcanoes display two anomalies compared with the above and with all other basalts in West Antarctica. They include 143Nd/144Nd (0.512778-0.512789) values at Mt. Takahe and Mt. Siple that are 2σ lower than other West Antarctic basalts, and Ba/Nb, Ba/La, and Ba/Th values at Mt. Murphy and Mt. Takahe that are 3-8 times higher than normal OIB. Isotope and trace element data do not support crustal and lithospheric mantle contamination, or the presence of residual mantle amphibole or phlogopite as explanations of these anomalies. The apparent coincidence of these anomalies with the site of a pre-Cenozoic convergence zone along the Gondwanaland margin suggests a subduction influence. Major episodes of subduction and granitic plutonism took place in MBL during the Devonian, Permian, and Late Cretaceous. Relicts in the source region, of components from these subducted slabs, provide a credible explanation for the uncoupling of Ba from other large ion lithophile elements (LILE), for its erratic distribution, and for the anomalously low 143Nd/144Nd at Mt. Takahe. The last episode of subduction ended ~ 85 Ma, and was followed by continental break-up, rifting and lithospheric attenuation that produced the West Antarctic rift as we know it today. Thus, the enigmatic geochemical signatures in these three volcanoes seem to have been preserved roughly 61-85 m.y. after subduction ended. New calculations of source melting depth and a new determination of lithospheric thickness suggest that the source of the anomalies resides in a fossil mélange diapir that rose from the Cretaceous subducting slab, became attached to the

  1. The Jurassic of Denmark and Greenland: Shallow marine syn-rift sedimentation: Middle Jurassic Pelion Formation, Jameson Land, East Greenland

    Directory of Open Access Journals (Sweden)

    Engkilde, Michael

    2003-10-01

    Full Text Available The Middle Jurassic Pelion Formation – Fossilbjerget Formation couplet of Jameson Land, East Greenland, is a well-exposed example of the Middle Jurassic inshore–offshore successions characteristicof the rifted seaways in the Northwest European – North Atlantic region. Early Jurassic deposition took place under relatively quiet tectonic conditions following Late Permian – earliest Triassic and Early Triassic rift phases and the Lower Jurassic stratal package shows an overall layer-cake geometry. A long-term extensional phase was initiated in Middle Jurassic (Late Bajocian time, culminated in the Late Jurassic (Kimmeridgian–Volgian, and petered out in the earliest Cretaceous (Valanginian. The Upper Bajocian – Middle Callovian early-rift succession comprises shallow marine sandstones of the Pelion Formation and correlative offshore siltstones of theFossilbjerget Formation. Deposition was initiated by southwards progradation of shallow marine sands of the Pelion Formation in the Late Bajocian followed by major backstepping in Bathonian–Callovian times and drowning of the sandy depositional system in the Middle–Late Callovian. Six facies associations are recognised in the Pelion–Fossilbjerget couplet, representing estuarine, shoreface, offshore transition zone and offshore environments. The north–southtrendingaxis of the Jameson Land Basin had a low inclination, and deposition was sensitive to even small changes in relative sea level which caused the shorelines to advance or retreat over tens to several hundreds of kilometres. Eight composite sequences, termed P1–P8, are recognised and are subdivided into a total of 28 depositional sequences. The duration of the two orders of sequences was about 1–2 Ma and 360,000 years, respectively. The Upper Bajocian P1–2 sequencesinclude the most basinally positioned shallow marine sandstones, deposited during major sealevel lowstands. The lowstands were terminated by significant marine

  2. 40Ar/39Ar Geochronology, Isotope Geochemistry (Sr, Nd, Pb), and petrology of alkaline lavas near Yampa, Colorado: migration of alkaline volcanism and evolution of the northern Rio Grande rift

    Science.gov (United States)

    Cosca, Michael A.; Thompson, Ren A.; Lee, John P.; Turner, Kenzie J.; Neymark, Leonid A.; Premo, Wayne R.

    2014-01-01

    Volcanic rocks near Yampa, Colorado (USA), represent one of several small late Miocene to Quaternary alkaline volcanic fields along the northeast margin of the Colorado Plateau. Basanite, trachybasalt, and basalt collected from six sites within the Yampa volcanic field were investigated to assess correlations with late Cenozoic extension and Rio Grande rifting. In this paper we report major and trace element rock and mineral compositions and Ar, Sr, Nd, and Pb isotope data for these volcanic rocks. High-precision 40Ar/39Ar geochronology indicates westward migration of volcanism within the Yampa volcanic field between 6 and 4.5 Ma, and the Sr, Nd, and Pb isotope values are consistent with a primary source in the Proterozoic subcontinental lithospheric mantle. Relict olivine phenocrysts have Mg- and Ni-rich cores, whereas unmelted clinopyroxene cores are Na and Si enriched with finely banded Ca-, Mg-, Al-, and Ti-enriched rims, thus tracing their crystallization history from a lithospheric mantle source region to one in contact with melt prior to eruption. A regional synthesis of Neogene and younger volcanism within the Rio Grande rift corridor, from northern New Mexico to southern Wyoming, supports a systematic overall southwest migration of alkaline volcanism. We interpret this Neogene to Quaternary migration of volcanism toward the northeast margin of the Colorado Plateau to record passage of melt through subvertical zones within the lithosphere weakened by late Cenozoic extension. If the locus of Quaternary alkaline magmatism defines the current location of the Rio Grande rift, it includes the Leucite Hills, Wyoming. We suggest that alkaline volcanism in the incipient northern Rio Grande rift, north of Leadville, Colorado, represents melting of the subcontinental lithospheric mantle in response to transient infiltration of asthenospheric mantle into deep, subvertical zones of dilational crustal weakness developed during late Cenozoic extension that have been

  3. The role of pre-existing Precambrian structures in rift evolution: The Albertine and Rhino grabens, Uganda

    Science.gov (United States)

    Katumwehe, Andrew B.; Abdelsalam, Mohamed G.; Atekwana, Estella A.

    2015-04-01

    We integrated Shuttle Radar Topography Mission (SRTM) Digital Elevation Models (DEM), airborne magnetic, radiometric and three-dimensional Full Tensor Gravity Gradiometry (3D-FTG) data to investigate the role of Precambrian structures in the evolution of the largely amagmatic Miocene-Recent aged Albertine and Rhino grabens in Uganda. These grabens represent the northern segment of the Western Branch of the East African Rift System (EARS). The two NE-trending grabens are connected by a right-stepping transfer zone and they extend within the Archean-Paleoproterozoic Northeast Congo block which represents the northeastern extension of the Congo craton. Our results show the following and highlight the importance of pre-existing structures in the evolution of continental rift systems: (1) The NE-extent of the Albertine full-graben is controlled by NE-trending Precambrian fabric and the graben terminates at its northeastern end when it encounters a multiply folded Precambrian basement terrain with poorly-developed NW-trending structural grain. Additionally, the northeastern termination of the Albertine graben coincides with the presence of NW-trending right-stepping high-density bodies within the Precambrian terrain. (2) The transfer zone between the Albertine and Rhino grabens is controlled by NE-trending Precambrian structures which might have facilitated the development of relay ramp faults. (3) Strain localization within the better-developed southeastern border fault of the Rhino half-graben is facilitated by the presence of Precambrian structures better aligned in a NE-direction in the southeastern part of the basin compared to its northwestern part. (4) Further to the northeast, the Rhino graben is segmented and transitions into a narrower ENE-trending half-graben with a better-developed border fault on its northwestern side. This segmentation coincides with the presence of N-trending Precambrian structures. (5) The Rhino graben terminates farther northeast against

  4. Multiproxy Evidence for a Positive Hydrological Budget during the Little Ice Age in the East African Rift, Kenya

    Science.gov (United States)

    Goman, M.; Ashley, G. M.; Hover, V. C.; Owen, R.

    2011-12-01

    Hominin evolution took place in Africa during the Plio-Pleistocene and climate change is thought to be a factor, with Africa experiencing a general cooling and increasing aridification over the last several million years. Today, the climate of the East African Rift Valley of Kenya is characterized as semi-arid with evapotranspiration four times precipitation. Water resources are a valuable commodity for the many millions of inhabitants of the Valley. The short instrumental record shows precipitation fluctuates at sub-decadal timeframes as a result of the ENSO cycle; while during prehistory variations in monsoonal precipitation occurred on Milankovitch timescales (i.e. African Humid Period). Both timescales exhibit significant impacts on the distribution of surface water. However, little is known regarding precipitation variability over sub-millennial timescales. Emerging paleoclimate data indicates that the near surface presence of water has also varied over century length timescales. We present paleoclimate data from multiple sites along a north-south 600 km transect of the Gregory Rift Valley (Kenya) that indicate the region experienced wetter conditions during the Little Ice Age (A.D. 1400-1850). Our reconstructions of landscape and climate during this time frame rely upon a multiproxy and interdisciplinary approach. We discuss data from a variety of environmental settings (e.g. lakes, wetlands, and springs) that indicate an overall increase in hydrologic balance. Evidence is derived from biologic microfossils such as pollen, diatom and testate amoebae assemblages as well as inorganic components of the sedimentary record and geomorphic changes. The data differs significantly from studies undertaken to the west in Uganda and the Congo, where negative hydrologic balances occurred during the Little Ice Age. While the atmospheric dynamics causing this disparity are not yet recognized, interactions between the Intertropical Convergence Zone and the Congo Air Boundary

  5. Continental underthrusting and obduction during the Cretaceous closure of the Rocas Verdes rift basin, Cordillera Darwin, Patagonian Andes

    Science.gov (United States)

    Klepeis, Keith; Betka, Paul; Clarke, Geoffrey; Fanning, Mark; Hervé, Francisco; Rojas, Lisandro; Mpodozis, Constantino; Thomson, Stuart

    2010-06-01

    The Patagonian Andes record a period of Cretaceous-Neogene orogenesis that began with the compressional inversion of a Late Jurassic rift called the Rocas Verdes basin. Detrital zircon ages from sediment that filled the southern part of the basin provide a maximum depositional age of ˜148 Ma, suggesting that the basin opened approximately simultaneously along its length during the Late Jurassic. Structural data and U-Pb isotopic ages on zircon from granite plutons near the Beagle Channel (55°S) show that basin inversion involved two stages of shortening separated by tens of millions of years. An initial stage created a small (˜60 km wide) thrust wedge that placed the basaltic floor of the Rocas Verdes basin on top of adjacent continental crust prior to ˜86 Ma. Structures and metamorphic mineral assemblages preserved in an exhumed middle to lower crustal shear zone in Cordillera Darwin suggest that this obduction was accompanied by south directed subduction of the basaltic crust and underthrusting of continental crust to depths of ˜35 km beneath a coeval volcanic arc. A subsequent stage of out-of-sequence thrusting, culminating in the Paleogene, shortened basement and Upper Jurassic igneous rock in the internal part of the belt by at least ˜50 km, forming a bivergent thrust wedge. This latter period coincided with the exhumation of rocks in Cordillera Darwin and expansion of the fold-thrust belt into the Magallanes foreland basin. This orogen provides an important example of how orogenesis initiated and led to continental underthrusting and obduction of basaltic crust during closure of a quasi-oceanic rift basin.

  6. GIS Plate Tectonic Reconstruction of the Gulf of California-Salton Trough Oblique Rift

    Science.gov (United States)

    Skinner, L. A.; Bennett, S. E.; Umhoefer, P. J.; Oskin, M. E.; Dorsey, R. J.; Nava, R. A.

    2011-12-01

    We present GIS-based plate tectonic reconstruction maps for the Gulf of California-Salton Trough oblique rift. The maps track plate boundary deformation in 2 and 1 Myr slices (6-2 Ma and 2 Ma-present) using a custom ArcGIS add-in tool to close extensional basins and restore slip on dextral faults. The tool takes a set of polygons depicting present day locations of tectonic blocks and sequentially restores displacement of their centroids along a vector specific to that time slice. Tectonic blocks are defined by faults, geology, seismic data, and bathymetry/topography. Spreading center and fault-slip rates were acquired from geologic data, cross-Gulf tie points, GPS studies, and aeromagnetic data. A recent GPS study indicated that ~92% of modern-day Pacific-North America (PAC-NAM) plate motion is localized between the Baja California microplate and North America. Relative plate motion azimuth varies from ~302° in the southern Gulf to ~314° in the Salton Trough. Baja-North America GPS rates agree remarkably with ~6 Ma geologic offsets across the Gulf and are used during reconstruction steps back to 6 Ma. In the southern Gulf, unpublished GPS data indicate that modern plate motion is partitioned between the plate boundary, Gulf-margin system, and borderland faults west of Baja California. The Alarcon and Guaymas spreading centers initiated at 2.4 Ma and 6 Ma (Lizarralde et al., 2007), respectively, while the Farallon, Pescadero, and Carmen spreading centers began between ~2-1 Ma (Lonsdale, 1989). Therefore, the 2, 4, and 6 Ma reconstruction steps include a long transtensional fault zone along much of the southern Gulf, connecting the Guaymas spreading center with either the Alarcon spreading center or East Pacific Rise. In the northern Gulf, transtensional strain initiated in coastal Sonora by ~7 Ma and migrated westward as the Gulf opened. At ~6 Ma strain migrated west into marine pull-apart basins that now lie within the eastern Gulf. Seismic reflection studies

  7. Sedimentation in large rift lakes: example from the middle pleistocene - modern deposits of the Tanganyika trough, East African rift system

    Energy Technology Data Exchange (ETDEWEB)

    Bouroullec, J.L. (Societe Nationale Elf-Aquitaine (France)); Tiercelin, J.J.; Lezzar, K.E. (Brest Univ., 29 (France)); Soreghan, M.; Cohen, A.S. (Arizona Univ., Tucson, AZ (United States))

    1992-06-01

    Recent and Modern sedimentation of the second largest rift lake in the world, Lake Tanganyika, East Africa Rift System, has been studied during the GEORIFT Project of Elf-Aquitaine (1983-1986). This study was mainly based on several hundreds of kilometres of high resolution (5 kHz) seismic profiles, associated with multiple gravity coring and dredging. The modern geomorphology of Lake Tanganyika is characterized by two main bathymetric basins, North and South, subdivided in a mosaic of seven strongly asymmetric sub-basins. These sub-basins are separated by more or less developed and/or sediment-buried ridges of basement rocks. Such tectonic arrangement defines several morphological elements within the Tanganyika structure such as border fault margins, littoral platforms, midlake structural highs and axial-deep basins. Such present geomorphology strongly influences the drainage pattern, as well as the hydrology of the lacustrine domain. Sedimentation associated with border fault margins includes piedmont deposits, colluvial rockfalls, fan deltas and downslope bars, and locally, at N-S/NW-SE crossing faults, hydrothermal sediments and mineralization. Sedimentation related to littoral platforms is characterized by fan deltas and deltas associated with lateral littoral platforms, as well as by prograding deltas associated with axial littoral platforms. Sedimentation related to axial-deep basins is mainly of autochthonous origin, formed by homogeneous or laminated organic-rich muds, under anoxic conditions. Such sediments have a high petroleum potential, possibly explaining the oil occurrence in the area of Cape Kalamba, Northern Tanganyika. Such sediments and sedimentary bodies are discussed in terms of the influences of climate, tectonism and volcanism. Implications for hydrocarbon exploration in synrift series are analyzed, mainly in terms of source rocks and reservoirs. 90 refs., 10 figs.

  8. Inflation rates, rifts, and bands in a pāhoehoe sheet flow

    Science.gov (United States)

    Hoblitt, Richard P.; Orr, Tim R.; Heliker, Christina; Denlinger, Roger P.; Hon, Ken; Cervelli, Peter F.

    2012-01-01

    The margins of sheet flows—pāhoehoe lavas emplaced on surfaces sloping Inflation and rift-band formation is probably cyclic, because the pattern we observed suggests episodic or crude cyclic behavior. Furthermore, some inflation rifts contain numerous bands whose spacing and general appearances are remarkably similar. We propose a conceptual model wherein the inferred cyclicity is due to the competition between the fluid pressure in the flow's liquid core and the tensile strength of the viscoelastic layer where it is weakest—in inflation rifts. The viscoelastic layer consists of lava that has cooled to temperatures between 800 and 1070 °C. This layer is the key parameter in our model because, in its absence, rift banding and stepwise changes in the flow height would not occur.

  9. Geologic Mapping of the Juno Chasma Quadrangle, Venus: Establishing the Relation Between Rifting and Volcanism

    Science.gov (United States)

    Senske, D. A.

    2008-01-01

    To understand the spatial and temporal relations between tectonic and volcanic processes on Venus, the Juno Chasma region is mapped. Geologic units are used to establish regional stratigraphic relations and the timing between rifting and volcanism.

  10. Dynamique de l'extension intra-continentale en contexte de rift magmatique : le Rift Turkana (Nord Kenya) de l'Eocène à l'Actuel

    OpenAIRE

    VETEL, William

    2005-01-01

    La dynamique de l'extension continentale et la géométrie des rifts qui en découlent sont régies par la combinaison de nombreux paramètres (thermiques, mécaniques, cinématiques) qui interagissent à différentes échelles, dans le temps et dans l'espace. L'exemple choisi dans cette étude, afin d'apporter des éléments de réponse à la compréhension de la mise en place des structures extensives, est celui du rift Turkana (Nord Kenya) qui appartient à la branche est du Rift Est Africain (REA). Cette ...

  11. Southeast Papuan crustal tectonics: Imaging extension and buoyancy of an active rift

    Science.gov (United States)

    Abers, G. A.; Eilon, Z.; Gaherty, J. B.; Jin, G.; Kim, YH.; Obrebski, M.; Dieck, C.

    2016-02-01

    Southeast Papua hosts the world's youngest ultra-high-pressure (UHP) metamorphic rocks. These rocks are found in an extensional setting in metamorphic core complexes. Competing theories of extensional shear zones or diapiric upwelling have been suggested as driving their exhumation. To test these theories, we analyze the CDPAPUA temporary array of 31 land and 8 seafloor broadband seismographs. Seismicity shows that deformation is being actively accommodated on the core complex bounding faults, offset by transfer structures in a manner consistent with overall north-south extension rather than radial deformation. Rayleigh wave dispersion curves are jointly inverted with receiver functions for crustal velocity structure. They show crustal thinning beneath the core complexes of 30-50% and very low shear velocities at all depths beneath the core complexes. On the rift flanks velocities resemble those of normal continents and increase steadily with depth. There is no evidence for velocity inversions that would indicate that a major density inversion exists to drive crustal diapirs. Also, low-density melt seems minor within the crust. Together with the extension patterns apparent in seismicity, these data favor an extensional origin for the core complexes and limit the role of diapirism as a secondary exhumation mechanism, although deeper mantle diapirs may be undetected. A small number of intermediate-depth earthquakes, up to 120 km deep, are identified for the first time just northeast of the D'Entrecasteaux Islands. They occur at depths similar to those recorded by UHP rocks and similar temperatures, indicating that the modern seismicity occurs at the setting that generates UHP metamorphism.

  12. Rift Valley fever and a new paradigm of research and development for zoonotic disease control.

    OpenAIRE

    Dar, O.; McIntyre, S; Hogarth, S.; Heymann, D.

    2013-01-01

    Although Rift Valley fever is a disease that, through its wider societal effects, disproportionately affects vulnerable communities with poor resilience to economic and environmental challenge, Rift Valley fever virus has since its discovery in 1931 been neglected by major global donors and disease control programs. We describe recent outbreaks affecting humans and animals and discuss the serious socioeconomic effects on the communities affected and the slow pace of development of new vaccine...

  13. Characterization of Water Level Variability of the Main Ethiopian Rift Valley Lakes

    OpenAIRE

    Mulugeta Dadi Belete; Bernd Diekkrüger; Jackson Roehrig

    2015-01-01

    In this paper, the water level fluctuations of eight Ethiopian Rift Valley lakes were analyzed for their hydrological stability in terms of water level dynamics and their controlling factors. Long-term water balances and morphological nature of the lakes were used as bases for the analyses. Pettit’s homogeneity test and Mann–Kendall trend analysis were applied to test temporal variations of the lake levels. It is found that the hydrological stability of most of the Ethiopian Rift Valley lakes...

  14. Tag team tectonics: mantle upwelling and lithospheric heterogeneity ally to rift continents (Invited)

    Science.gov (United States)

    Nelson, W. R.; Furman, T.

    2013-12-01

    The configuration of continents we know today is the result of several billion years of active Wilson Cycle tectonics. The rifting of continents and subsequent development of ocean basins is an integral part of long-term planetary-scale recycling processes. The products of this process can be seen globally, and the East African Rift System (EARS) provides a unique view of extensional processes that actively divide a continent. Taken together with the adjoining Red Sea and Gulf of Aden, the EARS has experienced over 40 Ma of volcanism and ~30 Ma of extension. While early (pre-rift) volcanism in the region is attributed to mantle plume activity, much of the subsequent volcanism occurs synchronously with continental rifting. Numerous studies indicate that extension and magmatism are correlated: extension leads to decompression melting while magmatism accommodates further extension (e.g. Stein et al., 1997; Buck 2004; Corti 2012). Evaluation of the entire EARS reveals significant geochemical patterns - both spatial and temporal - in the volcanic products. Compositional variations are tied directly to the melt source(s), which changes over time. These variations can be characterized broadly by region: the Ethiopian plateau and Turkana Depression, the Kenya Rift, and the Western Rift. In the Ethiopian plateau, early flood basalt volcanism is dominated by mantle plume contributions with variable input from lherzolitic mantle lithosphere. Subsequent alkaline shield volcanism flanking the juvenile Main Ethiopian Rift records the same plume component as well as contributions from a hydrous peridotitic lithosphere. The hydrous lithosphere does not contribute indefinitely. Instead, young (role in the initiation and subsequent evolution of the rifting throughout eastern Africa.

  15. Analysis of Laminate Thickness Influence on Compressibility Behavior in a Rift Process

    OpenAIRE

    Luca Sorrentino; Costanzo Bellini

    2014-01-01

    RIFT (Resin Infusion under Flexible Tool) process modelling requires accurate material data like resin viscosity, reinforcement compressibility and reinforcement permeability. During the mould closing, the compression phase and the resin flow are important stages that strongly influence the quality of the obtained parts. In RIFT process the upper mould is a formable vacuum bag: its flexibility makes the pressure field change the local compaction state of the reinforcement and so it alters the...

  16. Augmented reality system for simulating human vision diseases based on Oculus Rift glasses

    OpenAIRE

    BUH, BOŠTJAN

    2014-01-01

    The main goal of this diploma thesis is to link Oculus Rift glasees and two cameras with a program to simulate eye diseases. Oculus Rift glases are glasses for VR and are mostly used in computer gaming. We performed simulation of five different diseases with help of AR: color blindness, tunel vision, retinopathy, myopia/hypermetropia and macular degeneration. For implementation we used Unity library to connect glasses with cameras and to simulate eye diseases, and Visual Studio for control si...

  17. Signs of Selection in Synonymous Sites of the Mitochondrial Cytochrome b Gene of Baikal Oilfish (Comephoridae by mRNA Secondary Structure Alterations

    Directory of Open Access Journals (Sweden)

    Veronika I. Teterina

    2015-01-01

    Full Text Available Studies over the past decade have shown a significant role of synonymous mutations in posttranscriptional regulation of gene expression, which is particularly associated with messenger RNA (mRNA secondary structure alterations. Most studies focused on prokaryote genomes and the nuclear genomes of eukaryotes while little is known about the regulation of mitochondrial DNA (mtDNA gene expression. This paper reveals signs of selection in synonymous sites of the mitochondrial cytochrome b gene (Cytb of Baikal oilfish or golomyankas (Comephoridae directed towards altering the secondary structure of the mRNA and probably altering the character of mtDNA gene expression. Our findings are based on comparisons of intraspecific genetic variation patterns of small golomyanka (Comephorus dybowski and two genetic groups of big golomyanka (Comephorus dybowskii. Two approaches were used: (i analysis of the distribution of synonymous mutations between weak-AT (W and strong-GC (S nucleotides within species and groups in accordance with mutation directions from central to peripheral haplotypes and (ii approaches based on the predicted mRNA secondary structure.

  18. Isotopic composition of dissolved inorganic carbon in subsurface sediments of gas hydrate-bearing mud volcanoes, Lake Baikal: implications for methane and carbonate origin

    Science.gov (United States)

    Krylov, Alexey A.; Khlystov, Oleg M.; Hachikubo, Akihiro; Minami, Hirotsugu; Nunokawa, Yutaka; Shoji, Hitoshi; Zemskaya, Tamara I.; Naudts, Lieven; Pogodaeva, Tatyana V.; Kida, Masato; Kalmychkov, Gennady V.; Poort, Jeffrey

    2010-06-01

    We report on the isotopic composition of dissolved inorganic carbon (DIC) in pore-water samples recovered by gravity coring from near-bottom sediments at gas hydrate-bearing mud volcanoes/gas flares (Malenky, Peschanka, Peschanka 2, Goloustnoe, and Irkutsk) in the Southern Basin of Lake Baikal. The δ13C values of DIC become heavier with increasing subbottom depth, and vary between -9.5 and +21.4‰ PDB. Enrichment of DIC in 13C indicates active methane generation in anaerobic environments near the lake bottom. These data confirm our previous assumption that crystallization of carbonates (siderites) in subsurface sediments is a result of methane generation. Types of methanogenesis (microbial methyl-type fermentation versus CO2-reduction) were revealed by determining the offset of δ13C between dissolved CH4 and CO2, and also by using δ13C and δD values of dissolved methane present in the pore waters. Results show that both mechanisms are most likely responsible for methane generation at the investigated locations.

  19. Zone distillation: justification

    International Nuclear Information System (INIS)

    The features of zone distillation (with zone melting of refined material and with pulling of condensate) as a new purification method are shown. The method is based on similarity of equations of distillation and crystallization refining. The analogy between some distillation and condensation methods (particularly between zone distillation and zone re-crystallization) is should up

  20. Emanation-Sedimentary Metallogenic Series and Models of the Proterozoic Rift in the Kangdian Axis

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The Kangdian axis basement can be divided into two tectonic layers. The lower tectonic layer is the crystalline basement which is made up of the Archaean Dibadu Formation and early Proterozoic Dahongshan Group. The former is a kata-metamorphic basic volcano-sedimentary formation of the old geosyncline (old continental nucleus), and the latter is a medium-grade metamorphosed alkali-rich basic volcanic (emanation)-sedimentary formation of the Yuanjiang-Dahongshan marginal rift. They are in disconformable contact. The upper tectonic layer is the folded basement, and made up of the middle-late Proterozoic Kunyang Group. It is the result of Dongchuan-Yuanjiang intercontinental rifting with discordant contract with the underlying and overlying strata. Along with the evolution of Proterozoic from early to late, four types of emanation-sedimentary deposits in the Kangdian axis rift were formed in turn: ① emanation-sedimentary iron-copper-gold deposits related to basic volcanic rocks in the Yuanmou-Dahongshan marginal rift; ② emanation-sedimentary iron-copper deposits related to