WorldWideScience

Sample records for bacterium rhodobacter sphaeroides

  1. Osmoregulation in Rhodobacter sphaeroides.

    OpenAIRE

    Abee, T; Palmen, R; Hellingwerf, K J; Konings, W N

    1990-01-01

    Betaine (N,N,N-trimethylglycine) functioned most effectively as an osmoprotectant in osmotically stressed Rhodobacter sphaeroides cells during aerobic growth in the dark and during anaerobic growth in the light. The presence of the amino acids L-glutamate, L-alanine, or L-proline in the growth medium did not result in a significant increase in the growth rate at increased osmotic strengths. The addition of choline to the medium stimulated growth at increased osmolarities but only under aerobi...

  2. Native Mass Spectrometry Characterizes the Photosynthetic Reaction Center Complex from the Purple Bacterium Rhodobacter sphaeroides

    Science.gov (United States)

    Zhang, Hao; Harrington, Lucas B.; Lu, Yue; Prado, Mindy; Saer, Rafael; Rempel, Don; Blankenship, Robert E.; Gross, Michael L.

    2016-08-01

    Native mass spectrometry (MS) is an emerging approach to study protein complexes in their near-native states and to elucidate their stoichiometry and topology. Here, we report a native MS study of the membrane-embedded reaction center (RC) protein complex from the purple photosynthetic bacterium Rhodobacter sphaeroides. The membrane-embedded RC protein complex is stabilized by detergent micelles in aqueous solution, directly introduced into a mass spectrometer by nano-electrospray (nESI), and freed of detergents and dissociated in the gas phase by collisional activation. As the collision energy is increased, the chlorophyll pigments are gradually released from the RC complex, suggesting that native MS introduces a near-native structure that continues to bind pigments. Two bacteriochlorophyll a pigments remain tightly bound to the RC protein at the highest collision energy. The order of pigment release and their resistance to release by gas-phase activation indicates the strength of pigment interaction in the RC complex. This investigation sets the stage for future native MS studies of membrane-embedded photosynthetic pigment-protein and related complexes.

  3. Induction and anisotropy of fluorescence of reaction center from photosynthetic bacterium Rhodobacter sphaeroides.

    Science.gov (United States)

    Sipka, Gábor; Maróti, Péter

    2016-01-01

    Submillisecond dark-light changes of the yield (induction) and anisotropy of fluorescence under laser diode excitation were measured in the photosynthetic reaction center of the purple bacterium Rhodobacter sphaeroides. Narrow band (1-2 nm) laser diodes emitting at 808 and 865 nm were used to selectively excite the accessory bacteriochlorophyll (B, 800 nm) or the upper excitonic state of the bacteriochlorophyll dimer (P-, 810 nm) and the lower excitonic state of the dimer (P+, 865 nm), respectively. The fluorescence spectrum of the wild type showed two bands centered at 850 nm (B) and 910 nm (P-). While the monotonous decay of the fluorescence yield at 910 nm tracked the light-induced oxidation of the dimer, the kinetics of the fluorescence yield at 850 nm showed an initial rise before a decrease. The anisotropy of the fluorescence excited at 865 nm (P-) was very close to the limiting value (0.4) across the whole spectral range. The excitation of both B and P- at 808 nm resulted in wavelength-dependent depolarization of the fluorescence from 0.35 to 0.24 in the wild type and from 0.30 to 0.24 in the reaction center of triple mutant (L131LH-M160LH-M197FH). The additivity law of the anisotropies of the fluorescence species accounts for the wavelength dependence of the anisotropy. The measured fluorescence yields and anisotropies are interpreted in terms of very fast energy transfer from (1)B* to (1)P- (either directly or indirectly by internal conversion from (1)P+) and to the oxidized dimer. PMID:25698106

  4. Osmoregulation in Rhodobacter sphaeroides.

    Science.gov (United States)

    Abee, T; Palmen, R; Hellingwerf, K J; Konings, W N

    1990-01-01

    Betaine (N,N,N-trimethylglycine) functioned most effectively as an osmoprotectant in osmotically stressed Rhodobacter sphaeroides cells during aerobic growth in the dark and during anaerobic growth in the light. The presence of the amino acids L-glutamate, L-alanine, or L-proline in the growth medium did not result in a significant increase in the growth rate at increased osmotic strengths. The addition of choline to the medium stimulated growth at increased osmolarities but only under aerobic conditions. Under these conditions choline was converted via an oxygen-dependent pathway to betaine, which was not further metabolized. The initial rates of choline uptake by cells grown in media with low and high osmolarities were measured over a wide range of concentrations (1.9 microM to 2.0 mM). Only one kinetically distinguishable choline transport system could be detected. Kt values of 2.4 and 3.0 microM and maximal rates of choline uptake (Vmax) of 5.4 and 4.2 nmol of choline/min.mg of protein were found in cells grown in the minimal medium without or with 0.3 M NaCl, respectively. Choline transport was not inhibited by a 25-fold excess of L-proline or betaine. Only one kinetically distinguishable betaine transport system was found in cells grown in the low-osmolarity minimal medium as well as in a high-osmolarity medium containing 0.3 M NaCl. In cells grown and assayed in the absence of NaCl, betaine transport occurred with a Kt of 15.1 microM and a Vmax of 3.2 nmol/min . mg of protein, whereas in cells that were grown and assayed in the presence of 0.3 M NaCl, the corresponding values were 18.2 microM and 9.2 nmol of betaine/min . mg of protein. This system was also able to transport L-proline, but with a lower affinity than that for betaine. The addition of choline of betaine to the growth medium did not result in the induction of additional transport systems. PMID:2294084

  5. Effects of temperature and deltaGo on electron transfer from cytochrome c2 to the photosynthetic reaction center of the purple bacterium Rhodobacter sphaeroides.

    OpenAIRE

    Venturoli, G; Drepper, F; Williams, J C; Allen, J P; X. Lin; MATHIS,P

    1998-01-01

    The kinetics of electron transfer from cytochrome c2 to the primary donor (P) of the reaction center from the photosynthetic purple bacterium Rhodobacter sphaeroides have been investigated by time-resolved absorption spectroscopy. Rereduction of P+ induced by a laser pulse has been measured at temperatures from 300 K to 220 K in a series of specifically mutated reaction centers characterized by altered midpoint redox potentials of P+/P varying from 410 mV to 765 mV (as compared to 505 mV for ...

  6. Unidirectional, intermittent rotation of the flagellum of Rhodobacter sphaeroides.

    OpenAIRE

    Armitage, J P; Macnab, R M

    1987-01-01

    The single flagellum of the photosynthetic bacterium Rhodobacter sphaeroides was found to be medially located on the cell body. Observation of free-swimming bacteria, and bacteria tethered by their flagellar filaments, revealed that the flagellum could only rotate in the clockwise direction; switching of the direction of rotation was never observed. Flagellar rotation stopped periodically, typically several times a minute for up to several seconds each. Reorientation of swimming cells appeare...

  7. Crystal structure of bacterioferritin from Rhodobacter sphaeroides

    International Nuclear Information System (INIS)

    Iron is essential for the survival of organisms, but either excess or deficient levels of iron induce oxidative stress, thereby causing cell damage. As a result, iron regulation is essential for proper cell growth and proliferation in most organisms. Bacterioferritin is a ferritin-like family protein that contains a heme molecule and a ferroxidase site at the di-iron center. This protein plays a primary role in intracellular iron storage for iron homeostasis, as well as in the maintenance of iron in a soluble and non-toxic form. Although several bacterioferritin structures have been determined, no structural studies have successfully elucidated the molecular function of the heme molecule and the ferroxidase center. Here, we report the crystal structure of bacterioferritin from Rhodobacter sphaeroides. This protein exists in a roughly spherical configuration via the assembly of 24 subunits. We describe the oligomeric arrangement, ferroxidase center and heme-binding site based on this structure. The protein contains a single iron-binding configuration in the ferroxidase center, which allows for the release of iron by His130 when the protein is in the intermediate state. The heme molecule in RsBfr is stabilized by shifting of the van der Waals interaction center between the porphyrin of the heme and Trp26. We anticipate that further structural analysis will provide a more complete understanding of the molecular mechanisms of members of the ferritin-like family.

  8. Feasibility of biohydrogen production from tofu wastewater with glutamine auxotrophic mutant of Rhodobacter sphaeroides

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, G.H.; Wang, L.; Kang, Z.H. [School of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, 1239 Siping road, Shanghai 200092 (China)

    2010-12-15

    NH{sub 4}{sup +}, which is normally the integrant in organic wastewater, such as Tofu wastewater, is an inhibitor to hydrogen production by anoxygenic phototrophic bacterium. In order to release inhibition of NH{sub 4}{sup +} to biohydrogen generation by Rhodobacter sphaeroides, a glutamine auxotrophic mutant R. sphaeroides TJ-0803 was obtained by mutagenizing with ethyl methane sulfonate. The mutant could generate biohydrogen efficiently in the medium with high NH{sub 4}{sup +} concentration, because the inhibition of NH{sub 4}{sup +} to nitrogenase was released. Under suitable conditions, TJ-0803 could effectively produce biohydrogen from tofu wastewater, which commonly containing 50-60 mg L{sup -1} NH{sub 4}{sup +}, and the generation rate was increased by more than 100% compared with that from wild-type R. sphaeroides. (author)

  9. Characterization of genes encoding dimethyl sulfoxide reductase of Rhodobacter sphaeroides 2.4.1T: an essential metabolic gene function encoded on chromosome II.

    OpenAIRE

    Mouncey, N J; Choudhary, M.; Kaplan, S.

    1997-01-01

    Rhodobacter sphaeroides 2.4.1T is a purple nonsulfur facultative phototrophic bacterium which exhibits remarkable metabolic diversity as well as genomic complexity. Under anoxic conditions, in the absence of light and the presence of dimethyl sulfoxide (DMSO) or trimethylamine N-oxide (TMAO), R. sphaeroides 2.4.1T utilizes DMSO or TMAO as the terminal electron acceptor for anaerobic respiration, which is mediated by the molybdoenzyme DMSO reductase. Sequencing of a 13-kb region of chromosome ...

  10. Hydrogen production from tofu wastewater by Rhodobacter sphaeroides immobilized in agar gels

    Energy Technology Data Exchange (ETDEWEB)

    Zuh, H. [Utsunomiya Univ., Tochigi (Japan). Agricultural Faculty; National Inst. of Bioscience and Human Technology, Ibaraki (Japan); Suzuki, Tomoo; Tsygankov, A.A.; Asada, Yasuo; Miyake, Jun [National Inst. of Bioscience and Human Technology, Ibaraki (Japan)

    1999-04-01

    Hydrogen production from the wastewater of tofu factory was examined by using anoxygenic phototrophic bacterium Rhodobacter sphaeroides immobilized in agar gels. The maximum rate of hydrogen production observed from the wastewater was 2.l l h(-1) m(2) gel which was even slightly higher than that from a glucose medium (as control). The hydrogen production lasted up to 50 h. The yield of hydrogen was 1.9 ml/ml wastewater or 0.24 ml/mg carbohydrates contained in the wastewater. This yield corresponds to 53% or 65% of that from the glucose medium, according to the different expressions of the yield The TOC (total organic carbon) removal ratio in 85 h reached 41% which was comparable to that from the glucose medium. The immobilization protected the bacterium from the inhibitory effect of ammonium ion. (Author)

  11. Dimerization of core complexes as an efficient strategy for energy trapping in Rhodobacter sphaeroides.

    Science.gov (United States)

    Chenchiliyan, Manoop; Timpmann, Kõu; Jalviste, Erko; Adams, Peter G; Hunter, C Neil; Freiberg, Arvi

    2016-06-01

    In the purple phototrophic bacterium Rhodobacter sphaeroides, light harvesting LH2 complexes transfer absorbed solar energy to RC-LH1-PufX core complexes, which are mainly found in the dimeric state. Many other purple phototrophs have monomeric core complexes and the basis for requiring dimeric cores is not fully established, so we analysed strains of Rba. sphaeroides that contain either native dimeric core complexes or altered monomeric cores harbouring a deletion of the first 12 residues from the N-terminus of PufX, which retains the PufX polypeptide but removes the major determinant of core complex dimerization. Membranes were purified from strains with dimeric or monomeric cores, and with either high or low levels of the LH2 complex. Samples were interrogated with absorption, steady-state fluorescence, and picosecond time-resolved fluorescence kinetic spectroscopies to reveal their light-harvesting and energy trapping properties. We find that under saturating excitation light intensity the photosynthetic membranes containing LH2 and monomeric core complexes have fluorescence lifetimes nearly twice that of membranes with LH2 plus dimeric core complexes. This trend of increased lifetime is maintained with RCs in the open state as well, and for two different levels of LH2 content. Thus, energy trapping is more efficient when photosynthetic membranes of Rba. sphaeroides consist of RC-LH1-PufX dimers and LH2 complexes. PMID:27013332

  12. Transient dynamic phenotypes as criteria for model discrimination: fold-change detection in Rhodobacter sphaeroides chemotaxis.

    Science.gov (United States)

    Hamadeh, Abdullah; Ingalls, Brian; Sontag, Eduardo

    2013-03-01

    The chemotaxis pathway of the bacterium Rhodobacter sphaeroides shares many similarities with that of Escherichia coli. It exhibits robust adaptation and has several homologues of the latter's chemotaxis proteins. Recent theoretical results have correctly predicted that the E. coli output behaviour is unchanged under scaling of its ligand input signal; this property is known as fold-change detection (FCD). In the light of recent experimental results suggesting that R. sphaeroides may also show FCD, we present theoretical assumptions on the R. sphaeroides chemosensory dynamics that can be shown to yield FCD behaviour. Furthermore, it is shown that these assumptions make FCD a property of this system that is robust to structural and parametric variations in the chemotaxis pathway, in agreement with experimental results. We construct and examine models of the full chemotaxis pathway that satisfy these assumptions and reproduce experimental time-series data from earlier studies. We then propose experiments in which models satisfying our theoretical assumptions predict robust FCD behaviour where earlier models do not. In this way, we illustrate how transient dynamic phenotypes such as FCD can be used for the purposes of discriminating between models that reproduce the same experimental time-series data. PMID:23293140

  13. Cloning, nucleotide sequence, and expression of the Rhodobacter sphaeroides Y thioredoxin gene.

    OpenAIRE

    Pille, S.; Chuat, J C; Breton, A M; Clément-Métral, J D; Galibert, F

    1990-01-01

    Synthetic oligodeoxynucleotide probes based on the known amino acid sequence of Rhodobacter sphaeroides Y thioredoxin were used to identify, clone, and sequence the structural gene. The amino acid sequence derived from the DNA sequence of the R. sphaeroides gene was identical to the known amino acid sequence of R. sphaeroides thioredoxin. An NcoI site was created by directed mutagenesis at the beginning of the thioredoxin gene, inducing in the encoded protein the replacement of serine in posi...

  14. Scanning electrochemical microscopy of living cells. 3. Rhodobacter sphaeroides.

    Science.gov (United States)

    Cai, Chenxin; Liu, Biao; Mirkin, Michael V; Frank, Harry A; Rusling, James F

    2002-01-01

    The scanning electrochemical microscope (SECM) was used to probe the redox activity of individual purple bacteria (Rhodobacter sphaeroides). The approaches developed in our previous studies of mammalian cells were expanded to measure the rates and investigate the pathway of transmembrane charge transfer in bacteria. The two groups of redox mediators (i.e., hydrophilic and hydrophobic redox species) were used to shuttle the electrons between the SECM tip electrode in solution and the redox centers inside the cell. The analysis of the dependencies of the measured rate constant on formal potential and concentration of mediator species in solution yielded information about the permeability of the outer cell membrane to different ionic species and intracellular redox properties. The maps of redox reactivity of the cell surface were obtained with a micrometer or submicrometer spatial resolution. PMID:11795778

  15. Cu2+ site in photosynthetic bacterial reaction centers from Rhodobacter sphaeroides, Rhodobacter capsulatus, and Rhodopseudomonas viridis.

    Science.gov (United States)

    Utschig, L M; Poluektov, O; Schlesselman, S L; Thurnauer, M C; Tiede, D M

    2001-05-22

    The interaction of metal ions with isolated photosynthetic reaction centers (RCs) from the purple bacteria Rhodobacter sphaeroides, Rhodobacter capsulatus, and Rhodopseudomonas viridis has been investigated with transient optical and magnetic resonance techniques. In RCs from all species, the electrochromic response of the bacteriopheophytin cofactors associated with Q(A)(-)Q(B) --> Q(A)Q(B)(-) electron transfer is slowed in the presence of Cu(2+). This slowing is similar to the metal ion effect observed for RCs from Rb. sphaeroides where Zn(2+) was bound to a specific site on the surface of the RC [Utschig et al. (1998) Biochemistry 37, 8278]. The coordination environments of the Cu(2+) sites were probed with electron paramagnetic resonance (EPR) spectroscopy, providing the first direct spectroscopic evidence for the existence of a second metal site in RCs from Rb. capsulatus and Rps. viridis. In the dark, RCs with Cu(2+) bound to the surface exhibit axially symmetric EPR spectra. Electron spin echo envelope modulation (ESEEM) spectral results indicate multiple weakly hyperfine coupled (14)N nuclei in close proximity to Cu(2+). These ESEEM spectra resemble those observed for Cu(2+) RCs from Rb. sphaeroides [Utschig et al. (2000) Biochemistry 39, 2961] and indicate that two or more histidines ligate the Cu(2+) at the surface site in each RC. Thus, RCs from Rb. sphaeroides, Rb. capsulatus, and Rps. viridis each have a structurally analogous Cu(2+) binding site that is involved in modulating the Q(A)(-)Q(B) --> Q(A)Q(B)(-) electron-transfer process. Inspection of the Rps. viridis crystal structure reveals four potential histidine ligands from three different subunits (M16, H178, H72, and L211) located beneath the Q(B) binding pocket. The location of these histidines is surprisingly similar to the grouping of four histidine residues (H68, H126, H128, and L211) observed in the Rb. sphaeroides RC crystal structure. Further elucidation of these Cu(2+) sites will provide

  16. Extract from a mutant Rhodobacter sphaeroides as an enriched carotenoid source

    Directory of Open Access Journals (Sweden)

    Chih-Chiang Wang

    2016-03-01

    Full Text Available Background: The extract Lycogen™ from the phototrophic bacterium Rhodobacter sphaeroides (WL-APD911 has attracted significant attention because of its promising potential as a bioactive mixture, attributed in part to its anti-inflammatory properties and anti-oxidative activity. Objective: This study aims to investigate the components of Lycogen™ and its anti-inflammatory properties and anti-oxidative activity. Design and results: The mutant strain R. sphaeroides (WL-APD911 whose carotenoid 1,2-hydratase gene has been altered by chemical mutagenesis was used for the production of a new carotenoid. The strain was grown at 30°C on Luria–Bertani (LB agar plates. After a 4-day culture period, the mutant strain displayed a 3.5-fold increase in carotenoid content, relative to the wild type. In the DPPH test, Lycogen™ showed more potent anti-oxidative activity than lycopene from the wild-type strain. Primary skin irritation test with hamsters showed no irritation response in hamster skins after 30 days of treatment with 0.2% Lycogen™. Chemical investigations of Lycogen™ using nuclear magnetic resonance (NMR 1H, 13C, and COSY/DQCOSY spectra have identified spheroidenone and methoxyneurosporene. Quantitative analysis of these identified compounds based on spectral intensities indicates that spheroidenone and methoxyneurosporene are major components (approximately 1:1; very small quantities of other derivatives are also present in the sample. Conclusions: In this study, we identified the major carotenoid compounds contained in Lycogen™, including spheroidenone and methoxyneurosporene by high-resolution NMR spectroscopy analysis. The carotenoid content of this mutant strain of R. sphaeroides was 3.5-fold higher than that in normal strain. Furthermore, Lycogen™ from the mutant strain is more potent than lycopene from the wild-type strain and does not cause irritation in hamster skins. These findings suggest that this mutant strain has the

  17. Rhodobacter sphaeroides mutants which accumulate 5-aminolevulinic acid under aerobic and dark conditions.

    Science.gov (United States)

    Nishikawa, S; Watanabe, K; Tanaka, T; Miyachi, N; Hotta, Y; Murooka, Y

    1999-01-01

    The photosynthetic bacterium Rhodobacter sphaeroides accumulates 5-aminolevulinic acid (ALA), which is a precursor in tetrapyrrole biosynthesis, under light illumination and upon addition of levulinic acid as an inhibitor of ALA dehydratase. To generate an industrial strain which produces ALA in the absence of light, we sequentially mutated R. sphaeroides CR-286 using N-methyl-N'-nitro-N-nitrosoguanidine (NTG). The mutant strains were screened by cultivating in the absence of light and assayed for ALA by the Ehrlich reaction in a 96-well microtiter plate. The mutant strain CR-386, derived from R. sphaeroides CR-286, was selected as a mutant that exhibited significant ALA accumulation. While CR-286 required light illumination for ALA production, CR-386 was able to accumulate 1.5 mM ALA in the presence of 50 mM glucose, 60 mM glycine, 15 mM levulinic acid and 1.0% (w/v) yeast extract under conditions of agitation in the absence of light. The mutant strain CR-450, derived from strain CR-386, was selected further as a mutant that exhibited significant ALA accumulation but no accumulation of aminoacetone, analogue of ALA. CR-450 accumulated 3.8 mM ALA under the same conditions. In the presence of 50 mM glucose, 60 mM glycine, 5 mM levulinic acid and 1.0% (w/v) yeast extract, the mutant strain CR-520, derived from strain CR-450, and strain CR-606, derived from strain CR-520, accumulated 8.1 mM and 11.2 mM ALA, respectively. In batch fermentation, the strain CR-606 accumulated 20 mM ALA over 18 h after the addition of glycine, levulinic acid, glucose and yeast extract. PMID:16232557

  18. Assembly of functional photosystem complexes in Rhodobacter sphaeroides incorporating carotenoids from the spirilloxanthin pathway.

    Science.gov (United States)

    Chi, Shuang C; Mothersole, David J; Dilbeck, Preston; Niedzwiedzki, Dariusz M; Zhang, Hao; Qian, Pu; Vasilev, Cvetelin; Grayson, Katie J; Jackson, Philip J; Martin, Elizabeth C; Li, Ying; Holten, Dewey; Neil Hunter, C

    2015-02-01

    Carotenoids protect the photosynthetic apparatus against harmful radicals arising from the presence of both light and oxygen. They also act as accessory pigments for harvesting solar energy, and are required for stable assembly of many light-harvesting complexes. In the phototrophic bacterium Rhodobacter (Rba.) sphaeroides phytoene desaturase (CrtI) catalyses three sequential desaturations of the colourless carotenoid phytoene, extending the number of conjugated carbon-carbon double bonds, N, from three to nine and producing the yellow carotenoid neurosporene; subsequent modifications produce the yellow/red carotenoids spheroidene/spheroidenone (N=10/11). Genomic crtI replacements were used to swap the native three-step Rba. sphaeroides CrtI for the four-step Pantoea agglomerans enzyme, which re-routed carotenoid biosynthesis and culminated in the production of 2,2'-diketo-spirilloxanthin under semi-aerobic conditions. The new carotenoid pathway was elucidated using a combination of HPLC and mass spectrometry. Premature termination of this new pathway by inactivating crtC or crtD produced strains with lycopene or rhodopin as major carotenoids. All of the spirilloxanthin series carotenoids are accepted by the assembly pathways for LH2 and RC-LH1-PufX complexes. The efficiency of carotenoid-to-bacteriochlorophyll energy transfer for 2,2'-diketo-spirilloxanthin (15 conjugated CC bonds; N=15) in LH2 complexes is low, at 35%. High energy transfer efficiencies were obtained for neurosporene (N=9; 94%), spheroidene (N=10; 96%) and spheroidenone (N=11; 95%), whereas intermediate values were measured for lycopene (N=11; 64%), rhodopin (N=11; 62%) and spirilloxanthin (N=13; 39%). The variety and stability of these novel Rba. sphaeroides antenna complexes make them useful experimental models for investigating the energy transfer dynamics of carotenoids in bacterial photosynthesis. PMID:25449968

  19. Extract from a mutant Rhodobacter sphaeroides as an enriched carotenoid source

    Science.gov (United States)

    Wang, Chih-Chiang; Ding, Shangwu; Chiu, Kuo-Hsun; Liu, Wen-Sheng; Lin, Tai-Jung; Wen, Zhi-Hong

    2016-01-01

    Background The extract Lycogen™ from the phototrophic bacterium Rhodobacter sphaeroides (WL-APD911) has attracted significant attention because of its promising potential as a bioactive mixture, attributed in part to its anti-inflammatory properties and anti-oxidative activity. Objective This study aims to investigate the components of Lycogen™ and its anti-inflammatory properties and anti-oxidative activity. Design and results The mutant strain R. sphaeroides (WL-APD911) whose carotenoid 1,2-hydratase gene has been altered by chemical mutagenesis was used for the production of a new carotenoid. The strain was grown at 30°C on Luria–Bertani (LB) agar plates. After a 4-day culture period, the mutant strain displayed a 3.5-fold increase in carotenoid content, relative to the wild type. In the DPPH test, Lycogen™ showed more potent anti-oxidative activity than lycopene from the wild-type strain. Primary skin irritation test with hamsters showed no irritation response in hamster skins after 30 days of treatment with 0.2% Lycogen™. Chemical investigations of Lycogen™ using nuclear magnetic resonance (NMR) 1H, 13C, and COSY/DQCOSY spectra have identified spheroidenone and methoxyneurosporene. Quantitative analysis of these identified compounds based on spectral intensities indicates that spheroidenone and methoxyneurosporene are major components (approximately 1:1); very small quantities of other derivatives are also present in the sample. Conclusions In this study, we identified the major carotenoid compounds contained in Lycogen™, including spheroidenone and methoxyneurosporene by high-resolution NMR spectroscopy analysis. The carotenoid content of this mutant strain of R. sphaeroides was 3.5-fold higher than that in normal strain. Furthermore, Lycogen™ from the mutant strain is more potent than lycopene from the wild-type strain and does not cause irritation in hamster skins. These findings suggest that this mutant strain has the potential to be used

  20. Construction and Validation of the Rhodobacter sphaeroides 2.4.1 DNA Microarray: Transcriptome Flexibility at Diverse Growth Modes

    Energy Technology Data Exchange (ETDEWEB)

    Pappas, Christopher T. [University of Wyoming, Laramie; Sram, Jakub [University of Wyoming, Laramie; Moskvin, Oleg V. [University of Wyoming, Laramie; Ivanov, Pavel S. [University of Wyoming, Laramie; Mackenzie, Christopher [University of Texas; Choudhary, Madhusudan [University of Texas; Land, Miriam L [ORNL; Larimer, Frank W [ORNL; Kaplan, Samuel [ORNL; Gomelsky, Mark [University of Wyoming, Laramie

    2004-07-01

    A high-density oligonucleotide DNA microarray, a genechip, representing the 4.6-Mb genome of the facultative phototrophic proteobacterium, Rhodobacter sphaeroides 2.4.1, was custom-designed and manufactured by Affymetrix, Santa Clara, Calif. The genechip contains probe sets for 4,292 open reading frames (ORFs), 47 rRNA and tRNA genes, and 394 intergenic regions. The probe set sequences were derived from the genome annotation generated by Oak Ridge National Laboratory after extensive revision, which was based primarily upon codon usage characteristic of this GC-rich bacterium. As a result of the revision, numerous missing ORFs were uncovered, nonexistent ORFs were deleted, and misidentified start codons were corrected. To evaluate R. sphaeroides transcriptome flexibility, expression profiles for three diverse growth modes-aerobic respiration, anaerobic respiration in the dark, and anaerobic photosynthesis-were generated. Expression levels of one-fifth to one-third of the R. sphaeroides ORFs were significantly different in cells under any two growth modes. Pathways involved in energy generation and redox balance maintenance under three growth modes were reconstructed. Expression patterns of genes involved in these pathways mirrored known functional changes, suggesting that massive changes in gene expression are the major means used by R. sphaeroides in adaptation to diverse conditions. Differential expression was observed for genes encoding putative new participants in these pathways (additional photosystem genes, duplicate NADH dehydrogenase, ATP synthases), whose functionality has yet to be investigated. The DNA microarray data correlated well with data derived from quantitative reverse transcription-PCR, as well as with data from the literature, thus validating the R. sphaeroides genechip as a powerful and reliable tool for studying unprecedented metabolic versatility of this bacterium.

  1. Connectivity of the intracytoplasmic membrane of Rhodobacter sphaeroides: a functional approach.

    Science.gov (United States)

    Verméglio, André; Lavergne, Jérôme; Rappaport, Fabrice

    2016-01-01

    The photosynthetic apparatus in the bacterium Rhodobacter sphaeroides is mostly present in intracytoplasmic membrane invaginations. It has long been debated whether these invaginations remain in topological continuity with the cytoplasmic membrane, or form isolated chromatophore vesicles. This issue is revisited here by functional approaches. The ionophore gramicidin was used as a probe of the relative size of the electro-osmotic units in isolated chromatophores, spheroplasts, or intact cells. The decay of the membrane potential was monitored from the electrochromic shift of carotenoids. The half-time of the decay induced by a single channel in intact cells was about 6 ms, thus three orders of magnitude slower than in isolated chromatophores. In spheroplasts obtained by lysis of the cell wall, the single channel decay was still slower (~23 ms) and the sensitivity toward the gramicidin concentration was enhanced 1,000-fold with respect to isolated chromatophores. These results indicate that the area of the functional membrane in cells or spheroplasts is about three orders of magnitude larger than that of isolated chromatophores. Intracytoplasmic vesicles, if present, could contribute to at most 10% of the photosynthetic apparatus in intact cells of Rba. sphaeroides. Similar conclusions were obtained from the effect of a ∆pH-induced diffusion potential in intact cells. This caused a large electrochromic response of carotenoids, of similar amplitude as the light-induced change, indicating that most of the system is sensitive to a pH change of the external medium. A single internal membrane and periplasmic space may offer significant advantages concerning renewal of the photosynthetic apparatus and reallocation of the components shared with other bioenergetic pathways. PMID:25512104

  2. Plasmid content and localization of the genes encoding the denitrification enzymes in two strains of Rhodobacter sphaeroides.

    Science.gov (United States)

    Schwintner, C; Sabaty, M; Berna, B; Cahors, S; Richaud, P

    1998-08-15

    Plasmid content and localization of the genes encoding the reductases of the denitrification pathway were determined in the photosynthetic bacterium Rhodobacter sphaeroides forma sp. denitrificans by transverse alternating-field electrophoresis (TAFE) and hybridization with digoxigenin-labeled homologous probes. Two large plasmids of 102 and 115 kb were found. The genes encoding the various reductases are not clustered on a single genetic unit. The nap locus (localized with a napA probe), the nirK gene and the norCB genes encoding the nitrate, nitrite and nitric oxide reductases, respectively, were found on different AseI and SnaBI digested chromosomal DNA fragments, whereas the nos locus (localized with a nosZ probe), encoding the nitrous oxide reductase, was identified on the 115-kb plasmid. Furthermore, the genes encoding two proteins of unknown function, one periplasmic and the other cytoplasmic, but whose synthesis is highly induced by nitrate, were found on a different chromosomal fragment. For comparison, the same experiments were carried out on the well-characterized strain Rhodobacter sphaeroides 2.4.1. PMID:9742704

  3. Study of the selenite reduction in Rhodobacter sphaeroides f. sp. denitrificans

    International Nuclear Information System (INIS)

    Selenium is an essential element for all living organisms at the low level; however it becomes toxic and mutagenic at higher concentrations. The predominant forms of selenium in natural environments are selenate and selenite which are toxic. Bacteria can use several mechanisms of detoxification such as methylation in volatile compounds or reduction in elemental selenium. In this way, our model, Rhodobacter sphaeroides f. sp. denitrificans, is able to reduce selenite into selenium. We have combined biochemical and molecular approaches to better characterize the mechanism and protagonists of this reduction. After studying the physiological response of the bacterium in the presence of selenite, we screened a transposon library in order to isolate mutants with a weakened reduction ability. Two of these selected mutants are affected in genes involved in the molybdenum cofactor synthesis, moaA and mogA. Several reductases, the molybdo enzymes, required this cofactor. Furthermore the addition of tungsten, a competitor for the molybdenum, in the culture medium, dramatically reduces the rate of selenite reduction. These results strongly suggest that a molybdo enzyme is involved in one of the selenite reduction pathways. The potential role of different proteins has been investigated, especially for the nitrate reductase, the DMSO reductase and the biotin sulfoxide reductase. We have also selected a mutant affected in the smoM gene which encodes a peri-plasmic component of a TRAP transporter. The phenotype of this mutant suggests the involvement of this transporter in the selenite import. (author)

  4. The Flagellar Filament of Rhodobacter sphaeroides: pH-Induced Polymorphic Transitions and Analysis of the fliC Gene

    OpenAIRE

    Shah, Deepan S. H.; Perehinec, Tania; Stevens, Susan M; Aizawa, Shin-Ichi; Sockett, R. Elizabeth

    2000-01-01

    Flagellar motility in Rhodobacter sphaeroides is notably different from that in other bacteria. R. sphaeroides moves in a series of runs and stops produced by the intermittent rotation of the flagellar motor. R. sphaeroides has a single, plain filament whose conformation changes according to flagellar motor activity. Conformations adopted during swimming include coiled, helical, and apparently straight forms. This range of morphological transitions is larger than that in other bacteria, where...

  5. Interaction of Product Analogs with the Active Site of Rhodobacter sphaeroides Dimethylsulfoxide Reductase

    OpenAIRE

    George, Graham N.; Nelson, Kimberly Johnson; Harris, Hugh H.; Doonan, Christian J.; Rajagopalan, K V

    2007-01-01

    We report a structural characterization using X-ray absorption spectroscopy of Rhodobacter sphaeroides dimethylsulfoxide (DMSO) reductase reduced with trimethylarsine, and show that this is structurally analogous to the physiologically relevant dimethylsulfide-reduced DMSO reductase. Our data unambiguously indicate that these species should be regarded as formal MoIV species, and indicate a classical coordination complex of trimethylarsine oxide, with no special structural distortions. The si...

  6. Whole-genome shotgun optical mapping of Rhodobacter sphaeroides strain 2.4. 1 and its use for whole-genome shotgun sequence assembly

    Energy Technology Data Exchange (ETDEWEB)

    Shou, S. [Univ. Wisc.-Madison; Kvikstad, E. [Univ. Wisc.-Madison; Kile, A. [Univ. Wisc.-Madison; Severin, J. [Whole-genome shotgun optical mapping of Rhodobacter sphaeroides strain 2.4. 1 and its use for whole-genome shotgun sequence assembly; Forrest, D. [Univ. Wisc.-Madison; Runnheim, R. [Univ. Wisc.-Madison; Churas, C. [Univ. Wisc.-Madison; Hickman, J. W. [Univ. Wisc.-Madison; Mackenzie, C. [University of Texas–Houston Medical School; Choudhary, M. [University of Texas–Houston Medical School; Donohue, T. [Univ. Wisc.-Madison; Kaplan, S. [University of Texas–Houston Medical School; Schwartz, D. C. [Univ. Wisc.-Madison

    2003-09-01

    Rhodobacter sphaeroides 2.4.1 is a facultative photoheterotrophic bacterium with tremendous metabolic diversity, which has significantly contributed to our understanding of the molecular genetics of photosynthesis, photoheterotrophy, nitrogen fixation, hydrogen metabolism, carbon dioxide fixation, taxis, and tetrapyrrole biosynthesis. To further understand this remarkable bacterium, and to accelerate an ongoing sequencing project, two whole-genome restriction maps (EcoRI and HindIII) of R. sphaeroides strain 2.4.1 were constructed using shotgun optical mapping. The approach directly mapped genomic DNA by the random mapping of single molecules. The two maps were used to facilitate sequence assembly by providing an optical scaffold for high-resolution alignment and verification of sequence contigs. Our results show that such maps facilitated the closure of sequence gaps by the early detection of nascent sequence contigs during the course of the whole-genome shotgun sequencing process.

  7. Gene co-expression network analysis in Rhodobacter capsulatus and application to comparative expression analysis of Rhodobacter sphaeroides

    Energy Technology Data Exchange (ETDEWEB)

    Pena-Castillo, Lourdes; Mercer, Ryan; Gurinovich, Anastasia; Callister, Stephen J.; Wright, Aaron T.; Westbye, Alexander; Beatty, J. T.; Lang, Andrew S.

    2014-08-28

    The genus Rhodobacter contains purple nonsulfur bacteria found mostly in freshwater environments. Representative strains of two Rhodobacter species, R. capsulatus and R. sphaeroides, have had their genomes fully sequenced and both have been the subject of transcriptional profiling studies. Gene co-expression networks can be used to identify modules of genes with similar expression profiles. Functional analysis of gene modules can then associate co-expressed genes with biological pathways, and network statistics can determine the degree of module preservation in related networks. In this paper, we constructed an R. capsulatus gene co-expression network, performed functional analysis of identified gene modules, and investigated preservation of these modules in R. capsulatus proteomics data and in R. sphaeroides transcriptomics data. Results: The analysis identified 40 gene co-expression modules in R. capsulatus. Investigation of the module gene contents and expression profiles revealed patterns that were validated based on previous studies supporting the biological relevance of these modules. We identified two R. capsulatus gene modules preserved in the protein abundance data. We also identified several gene modules preserved between both Rhodobacter species, which indicate that these cellular processes are conserved between the species and are candidates for functional information transfer between species. Many gene modules were non-preserved, providing insight into processes that differentiate the two species. In addition, using Local Network Similarity (LNS), a recently proposed metric for expression divergence, we assessed the expression conservation of between-species pairs of orthologs, and within-species gene-protein expression profiles. Conclusions: Our analyses provide new sources of information for functional annotation in R. capsulatus because uncharacterized genes in modules are now connected with groups of genes that constitute a joint functional

  8. Biohydrogen Production from Tofu Wastewater with Glutamine Auxotrophic Mutant of Rhodobacter sphaeroides

    Science.gov (United States)

    Zheng, G. H.; Kang, Z. H.; Qian, Y. F.; Wang, L.; Zhou, Q.; Zhu, H. G.

    2008-02-01

    Hydrogen production from organic wastewater by photo-bacteria has been attracted more attention, not only because hydrogen is a clean energy, but also because it can be a process for organic wastewater pre-treatment. However NH4+, which normally is the integrant in organic wastewater, is the inhibitor to hydrogen production with photo-bacteria. In this study, the NH4+ effect on biohydrogen generation and nitrogenase activity of anoxygenic phototrophic bacteria-Rhodobacter sphaeroides was studied. Biohydrogen generation with wild-type R. sphaeroides was found to be more sensitive to NH4+ due to the obvious inhibition of NH4+ to its nitrogenase. For avoiding inhibition of NH4+ to biohydrogen generation of R. sphaeroides, a glutamine auxotrophic mutant R. sphaeroides AR-3 was obtained by EMS treatment. The mutant could generate biohydrogen efficiently in the medium with higher NH4+ concentration. Under suitable conditions, AR-3 produced biohydrogen from tofu wastewater with an average generation rate of 14.2 ml L-1h-1, it was increased by more than 100% compared with that from wild-type R. sphaeroides.

  9. A Cluster of Four Homologous Small RNAs Modulates C1 Metabolism and the Pyruvate Dehydrogenase Complex in Rhodobacter sphaeroides under Various Stress Conditions

    OpenAIRE

    Billenkamp, Fabian; Peng, Tao; Berghoff, Bork A.; Klug, Gabriele

    2015-01-01

    In bacteria, regulatory RNAs play an important role in the regulation and balancing of many cellular processes and stress responses. Among these regulatory RNAs, trans-encoded small RNAs (sRNAs) are of particular interest since one sRNA can lead to the regulation of multiple target mRNAs. In the purple bacterium Rhodobacter sphaeroides, several sRNAs are induced by oxidative stress. In this study, we focused on the functional characterization of four homologous sRNAs that are cotranscribed wi...

  10. Photo dynamics of BLUF domain mutant H44R of AppA from Rhodobacter sphaeroides

    Energy Technology Data Exchange (ETDEWEB)

    Zirak, P. [Institut II - Experimentelle und Angewandte Physik, Universitaet Regensburg, Universitaetstrasse 31, D-93053 Regensburg (Germany); Penzkofer, A. [Institut II - Experimentelle und Angewandte Physik, Universitaet Regensburg, Universitaetstrasse 31, D-93053 Regensburg (Germany)], E-mail: alfons.penzkofer@physik.uni-regensburg.de; Hegemann, P.; Mathes, T. [Institut fuer Biologie, Experimentelle Biophysik, Humboldt-Universitaet zu Berlin, Invalidenstr. 42, D-10115 Berlin (Germany)

    2007-05-21

    The photo-cycle dynamics of the H44R mutant of the BLUF domain of the transcriptional anti-repressor protein AppA (AppA-H44R) from the non-sulfur anoxyphototropic purple bacterium Rhodobacter sphaeroides is studied in order to gain information on the involvement of His44 in the photo-cyclic mechanism of the AppA BLUF domain and to add information to the involved processes. The amino acid residue histidine at position 44 is replaced by arginine. A 12 nm red-shifted signalling state is formed upon blue-light excitation, while in wild-type AppA (AppA-wt) the red-shift is 16 nm. The recovery to the receptor dark state is approximately a factor of 2.5 faster ({tau}{sub rec} {approx} 6.5 min) than the recovery of the wild-type counterpart. Extended light exposure of the mutant causes photo-degradation of flavin (mainly free flavin conversion to lumichrome and re-equilibration between free and non-covalently bound flavin) and protein aggregation (showing up as light scattering). No photo-degradation was observed for AppA-wt. The quantum efficiency of signalling-state formation determined by intensity dependent absorption measurements is found to be {phi}{sub s} {approx} 0.3 (for AppA-wt: {phi}{sub s} {approx} 0.24). A two-component single-exponential fluorescence relaxation was observed, which is interpreted as fast fluorescence quenching to an equilibrium value by photo-induced electron transfer followed by slower fluorescence decay due to charge recombination. Based on the experimental findings, an extended photo-cycle model for BLUF domains is proposed.

  11. Biohydrogen and polyhydroxyalkanoate co-production by Enterobacter aerogenes and Rhodobacter sphaeroides from Calophyllum inophyllum oil cake.

    Science.gov (United States)

    Arumugam, A; Sandhya, M; Ponnusami, V

    2014-07-01

    The feasibility of coupled biohydrogen and polyhydroxyalkanoate production by Enterobacter aerogenes and Rhodobacter sphaeroides using Calophyllum inophyllum oil cake was studied under dark and photo fermentation conditions. The utilization of a non-edible acidic oil cake (C. inophyllum), and exploitation of a modified minimal salt media led to reduction in the cost of media. Cost of fermentation is reduced by implementation of alternate dark-photo fermentative periods and through the use of a co-culture consisting of a dark fermentative (E. aerogenes) and a photo fermentative (R. sphaeroides) bacterium. The biohydrogen and polyhydroxyalkanoate produced were 7.95 L H2/L media and 10.73 g/L media, respectively, under alternate dark and photo fermentation and were 3.23 L H2/L media and 5.6g/L media, respectively under complete dark fermentation. The characteristics of the oil cake and alternate dark (16 h) and photo (8h) fermentative conditions were found to be supportive in producing high biohydrogen and polyhydroxyalkanoate (PHA) yield. PMID:24859207

  12. DNA Sequence Duplication in Rhodobacter sphaeroides 2.4.1: Evidence of an Ancient Partnership between Chromosomes I and II†

    OpenAIRE

    Choudhary, Madhusudan; Fu, Yun-Xin; Mackenzie, Chris; Kaplan, Samuel

    2004-01-01

    The complex genome of Rhodobacter sphaeroides 2.4.1, composed of chromosomes I (CI) and II (CII), has been sequenced and assembled. We present data demonstrating that the R. sphaeroides genome possesses an extensive amount of exact DNA sequence duplication, 111 kb or ∼2.7% of the total chromosomal DNA. The chromosomal DNA sequence duplications were aligned to each other by using MUMmer. Frequency and size distribution analyses of the exact DNA duplications revealed that the interchromosomal d...

  13. iRsp1095: A genome-scale reconstruction of the Rhodobacter sphaeroides metabolic network

    Directory of Open Access Journals (Sweden)

    Gorzalski Alexander S

    2011-07-01

    Full Text Available Abstract Background Rhodobacter sphaeroides is one of the best studied purple non-sulfur photosynthetic bacteria and serves as an excellent model for the study of photosynthesis and the metabolic capabilities of this and related facultative organisms. The ability of R. sphaeroides to produce hydrogen (H2, polyhydroxybutyrate (PHB or other hydrocarbons, as well as its ability to utilize atmospheric carbon dioxide (CO2 as a carbon source under defined conditions, make it an excellent candidate for use in a wide variety of biotechnological applications. A genome-level understanding of its metabolic capabilities should help realize this biotechnological potential. Results Here we present a genome-scale metabolic network model for R. sphaeroides strain 2.4.1, designated iRsp1095, consisting of 1,095 genes, 796 metabolites and 1158 reactions, including R. sphaeroides-specific biomass reactions developed in this study. Constraint-based analysis showed that iRsp1095 agreed well with experimental observations when modeling growth under respiratory and phototrophic conditions. Genes essential for phototrophic growth were predicted by single gene deletion analysis. During pathway-level analyses of R. sphaeroides metabolism, an alternative route for CO2 assimilation was identified. Evaluation of photoheterotrophic H2 production using iRsp1095 indicated that maximal yield would be obtained from growing cells, with this predicted maximum ~50% higher than that observed experimentally from wild type cells. Competing pathways that might prevent the achievement of this theoretical maximum were identified to guide future genetic studies. Conclusions iRsp1095 provides a robust framework for future metabolic engineering efforts to optimize the solar- and nutrient-powered production of biofuels and other valuable products by R. sphaeroides and closely related organisms.

  14. Quenching Capabilities of Long-Chain Carotenoids in Light-Harvesting-2 Complexes from Rhodobacter sphaeroides with an Engineered Carotenoid Synthesis Pathway

    Science.gov (United States)

    2016-01-01

    Six light-harvesting-2 complexes (LH2) from genetically modified strains of the purple photosynthetic bacterium Rhodobacter (Rb.) sphaeroides were studied using static and ultrafast optical methods and resonance Raman spectroscopy. These strains were engineered to incorporate carotenoids for which the number of conjugated groups (N = NC=C + NC=O) varies from 9 to 15. The Rb. sphaeroides strains incorporate their native carotenoids spheroidene (N = 10) and spheroidenone (N = 11), as well as longer-chain analogues including spirilloxanthin (N = 13) and diketospirilloxantion (N = 15) normally found in Rhodospirillum rubrum. Measurements of the properties of the carotenoid first singlet excited state (S1) in antennas from the Rb. sphaeroides set show that carotenoid-bacteriochlorophyll a (BChl a) interactions are similar to those in LH2 complexes from various other bacterial species and thus are not significantly impacted by differences in polypeptide composition. Instead, variations in carotenoid-to-BChl a energy transfer are primarily regulated by the N-determined energy of the carotenoid S1 excited state, which for long-chain (N ≥ 13) carotenoids is not involved in energy transfer. Furthermore, the role of the long-chain carotenoids switches from a light-harvesting supporter (via energy transfer to BChl a) to a quencher of the BChl a S1 excited state B850*. This quenching is manifested as a substantial (∼2-fold) reduction of the B850* lifetime and the B850* fluorescence quantum yield for LH2 housing the longest carotenoids. PMID:27285777

  15. Excited-state dynamics in light-harvesting complex of Rhodobacter sphaeroides

    Institute of Scientific and Technical Information of China (English)

    LIU KangJun; LIU WeiMin; YAN YongLi; DONG ZhiWei; XU ChunHe; QIAN ShiXiong

    2008-01-01

    Photodynamics of peripheral antenna complexes, light-harvesting complex (LH2) of Rhodobacter (Rb) Sphaeroides 601, was studied using femtosecond pump-probe technique at different laser wavelengths. The obtained results reveal dramatic dynamical evolutions within B800 and B850 absorption bands of antenna complexes LH2. At excitation wavelength around 835 nm, a sharp photobleaching signal was observed which was assigned to the contribution of the two-exciton state, which was further confirmed by the power dependence measurement. Rate equations with eight-level scheme were used to calculate the population evolution in LH2 and the transient dynamics under femtosecond pulse excitation. The research results prove that not only the transition from ground state to one-exciton state but also that from one-exciton state to two-exciton state contribute to the photodynamics of B850.

  16. Time-resolved tryptophan fluorescence in photosynthetic reaction centers from Rhodobacter sphaeroides

    Science.gov (United States)

    Godik, V. I.; Blankenship, R. E.; Causgrove, T. P.; Woodbury, N.

    1993-01-01

    Tryptophan fluorescence of reaction centers isolated from Rhodobacter sphaeroides, both stationary and time-resolved, was studied. Fluorescence kinetics were found to fit best a sum of four discrete exponential components. Half of the initial amplitude was due to a component with a lifetime of congruent to 60 ps, belonging to Trp residues, capable of efficient transfer of excitation energy to bacteriochlorophyll molecules of the reaction center. The three other components seem to be emitted by Trp ground-state conformers, unable to participate in such a transfer. Under the influence of intense actinic light, photooxidizing the reaction centers, the yield of stationary fluorescence diminished by congruent to 1.5 times, while the number of the kinetic components and their life times remained practically unchanged. Possible implications of the observed effects for the primary photosynthesis events are considered.

  17. Absence of the cbb3 Terminal Oxidase Reveals an Active Oxygen-Dependent Cyclase Involved in Bacteriochlorophyll Biosynthesis in Rhodobacter sphaeroides

    Science.gov (United States)

    Chen, Guangyu E.; Martin, Elizabeth C.; Hunter, C. Neil

    2016-01-01

    ABSTRACT The characteristic green color associated with chlorophyll pigments results from the formation of an isocyclic fifth ring on the tetrapyrrole macrocycle during the biosynthesis of these important molecules. This reaction is catalyzed by two unrelated cyclase enzymes employing different chemistries. Oxygenic phototrophs such as plants and cyanobacteria utilize an oxygen-dependent enzyme, the major component of which is a diiron protein named AcsF, while BchE, an oxygen-sensitive [4Fe-4S] cluster protein, dominates in phototrophs inhabiting anoxic environments, such as the purple phototrophic bacterium Rhodobacter sphaeroides. We identify a potential acsF in this organism and assay for activity of the encoded protein in a strain lacking bchE under various aeration regimes. Initially, cells lacking bchE did not demonstrate AcsF activity under any condition tested. However, on removal of a gene encoding a subunit of the cbb3-type respiratory terminal oxidase, cells cultured under regimes ranging from oxic to micro-oxic exhibited cyclase activity, confirming the activity of the oxygen-dependent enzyme in this model organism. Potential reasons for the utilization of an oxygen-dependent enzyme in anoxygenic phototrophs are discussed. IMPORTANCE The formation of the E ring of bacteriochlorophyll pigments is the least well characterized step in their biosynthesis, remaining enigmatic for over 60 years. Two unrelated enzymes catalyze this cyclization step; O2-dependent and O2-independent forms dominate in oxygenic and anoxygenic phototrophs, respectively. We uncover the activity of an O2-dependent enzyme in the anoxygenic purple phototrophic bacterium Rhodobacter sphaeroides, initially by inactivation of the high-affinity terminal respiratory oxidase, cytochrome cbb3. We propose that the O2-dependent form allows for the biosynthesis of a low level of bacteriochlorophyll under oxic conditions, so that a rapid initiation of photosynthetic processes is possible for

  18. Nitrite and Nitrous Oxide Reductase Regulation by Nitrogen Oxides in Rhodobacter sphaeroides f. sp. denitrificans IL106

    OpenAIRE

    Sabaty, Monique; Schwintner, Carole; Cahors, Sandrine; Richaud, Pierre; Verméglio, Andre

    1999-01-01

    We have cloned the nap locus encoding the periplasmic nitrate reductase in Rhodobacter sphaeroides f. sp. denitrificans IL106. A mutant with this enzyme deleted is unable to grow under denitrifying conditions. Biochemical analysis of this mutant shows that in contrast to the wild-type strain, the level of synthesis of the nitrite and N2O reductases is not increased by the addition of nitrate. Growth under denitrifying conditions and induction of N oxide reductase synthesis are both restored b...

  19. Effect of nanosized TiO2 on photofermentation by Rhodobacter sphaeroides NMBL-02

    International Nuclear Information System (INIS)

    Hydrogen, being a clean energy source is considered as a promising future fuel. In the present investigation, we have studied the H2 production by photosynthetic bacterial lab isolate Rhodobacter sphaeroides NMBL-02 in presence of TiO2 nanoparticles. The mixed phase (Anatase and Rutile) distributed TiO2 nanoparticles enhanced hydrogen production by R. sphaeroides NMBL-02 in the visible light and made the batch system operative for longer duration. The average size of the annealed TiO2 nanoparticles was between 8–20 nm with spherical shapes. There was no detectable amount of hydrogen produced by TiO2 nanoparticles alone in the same medium containing malate as carbon source. Whereas, significant amounts of hydrogen and CO2 were detected with pyruvate as carbon source in the same media which confirmed that the nanoparticles utilized pyruvate as preferred electron donor and facilitated conversion of the intermediate (pyruvate) into CO2 and H2. Rate of H2 production was enhanced by 1.54 folds and duration 1.88 folds in the presence of 60 μg/mL concentration of annealed TiO2 nanoparticles in comparison to the control. Maximum hydrogen produced was 1900 mL/L with 63.27% malate conversion in a batch process with annealed TiO2 nanoparticles during photofermentation by R. sphaeroides in modified Sistrom's media using malate (22.38 mM) and glutamate (1.7 mM) as carbon and nitrogen sources respectively. - Highlights: • Effect of nanosized TiO2 has been reported on photohydrogen production by R. sphaeroides-NMBL-02. • Maximum hydrogen produced was 1900 mL/L with 63.27% malate conversion with annealed TiO2 nanoparticles during photofermentation. • Rate of H2 production was enhanced by 1.54 folds and duration 1.88 folds in the presence of 60 μg/mL concentration of annealed TiO2 nanoparticles

  20. Functional assembly of the foreign carotenoid lycopene into the photosynthetic apparatus of Rhodobacter sphaeroides, achieved by replacement of the native 3-step phytoene desaturase with its 4-step counterpart from Erwinia herbicola.

    Science.gov (United States)

    Garcia-Asua, Guillermo; Cogdell, Richard J; Hunter, C Neil

    2002-04-01

    Photosynthetic organisms synthesize a diverse range of carotenoids. These pigments are important for the assembly, function and stability of photosynthetic pigment-protein complexes, and they are used to quench harmful radicals. The photosynthetic bacterium Rhodobacter sphaeroides was used as a model system to explore the origin of carotenoid diversity. Replacing the native 3-step phytoene desaturase (CrtI) with the 4-step enzyme from Erwinia herbicola results in significant flux down the spirilloxanthin pathway for the first time in Rb. sphaeroides. In Rb. sphaeroides, the completion of four desaturations to lycopene by the Erwinia CrtI appears to require the absence of CrtC and, in a crtC background, even the native 3-step enzyme can synthesize a significant amount (13%) of lycopene, in addition to the expected neurosporene. We suggest that the CrtC hydroxylase can intervene in the sequence of reactions catalyzed by phytoene desaturase. We investigated the properties of the lycopene-synthesizing strain of Rb. sphaeroides. In the LH2 light-harvesting complex, lycopene transfers absorbed light energy to the bacteriochlorophylls with an efficiency of 54%, which compares favourably with other LH2 complexes that contain carotenoids with 11 conjugated double bonds. Thus, lycopene can join the assembly pathway for photosynthetic complexes in Rb. sphaeroides, and can perform its role as an energy donor to bacteriochlorophylls. PMID:11967082

  1. Energy transfer properties of Rhodobacter sphaeroides chromatophores during adaptation to low light intensity.

    Science.gov (United States)

    Driscoll, B; Lunceford, C; Lin, S; Woronowicz, K; Niederman, R A; Woodbury, N W

    2014-08-28

    Time-resolved fluorescence spectroscopy was used to explore the pathway and kinetics of energy transfer in photosynthetic membrane vesicles (chromatophores) isolated from Rhodobacter (Rba.) sphaeroides cells harvested 2, 4, 6 or 24 hours after a transition from growth in high to low level illumination. As previously observed, this light intensity transition initiates the remodeling of the photosynthetic apparatus and an increase in the number of light harvesting 2 (LH2) complexes relative to light harvesting 1 (LH1) and reaction center (RC) complexes. It has generally been thought that the increase in LH2 complexes served the purpose of increasing the overall energy transmission to the RC. However, fluorescence lifetime measurements and analysis in terms of energy transfer within LH2 and between LH2 and LH1 indicate that, during the remodeling time period measured, only a portion of the additional LH2 generated are well connected to LH1 and the reaction center. The majority of the additional LH2 fluorescence decays with a lifetime comparable to that of free, unconnected LH2 complexes. The presence of large LH2-only domains has been observed by atomic force microscopy in Rba. sphaeroides chromatophores (Bahatyrova et al., Nature, 2004, 430, 1058), providing structural support for the existence of pools of partially connected LH2 complexes. These LH2-only domains represent the light-responsive antenna complement formed after a switch in growth conditions from high to low illumination, while the remaining LH2 complexes occupy membrane regions containing mixtures of LH2 and LH1-RC core complexes. The current study utilized a multi-parameter approach to explore the fluorescence spectroscopic properties related to the remodeling process, shedding light on the structure-function relationship of the photosynthetic assembles. Possible reasons for the accumulation of these largely disconnected LH2-only pools are discussed. PMID:25008288

  2. Charge separation in Rhodobacter sphaeroides mutant reaction centers with increased midpoint potential of the primary electron donor.

    Science.gov (United States)

    Khmelnitskiy, A Yu; Khatypov, R A; Khristin, A M; Leonova, M M; Vasilieva, L G; Shuvalov, V A

    2013-01-01

    Primary charge separation dynamics in four mutant reaction centers (RCs) of the purple bacterium Rhodobacter sphaeroides with increased midpoint potential of the primary electron donor P (M160LH, L131LH, M197FH, and M160LH + L131LH + M197FH) have been studied by femtosecond transient absorption spectroscopy at room temperature. The decay of the excited singlet state in the wild-type and mutant RCs is complex and has two main exponential components, which indicates heterogeneity of electron transfer rates or the presence of reverse electron transfer reactions. The radical anion band of monomeric bacteriochlorophyll B(A) at 1020 nm was first observed in transient absorbance difference spectra of single mutants. This band remains visible, although with somewhat reduced amplitude, even at delays up to tens of picoseconds when stimulated emission is absent and the reaction centers are in the P(+)H(A)(-) state. The presence of this band in this time period indicates the existence of thermodynamic equilibrium between the P(+)B(A)(-)H(A) and P(+)B(A)H(A)(-) states. The data give grounds for assuming that the value of the energy difference between the states P*, P(+)B(A)(-)H(A), and P(+)B(A)H(A)(-) at early times is of the same order of magnitude as the energy kT at room temperature. Besides, monomeric bacteriochlorophyll B(A) is found to be an immediate electron acceptor in the single mutant RCs, where electron transfer is hampered due to increased energy of the P(+)B(A)(-) state with respect to P*. PMID:23379560

  3. Replacement of bacteriopheophytin in reaction centers from Rhodobacter sphaeroides RS601 with plant pheophytin

    Institute of Scientific and Technical Information of China (English)

    曾小华; 吴永强; 沈允钢; 徐春和

    2000-01-01

    In the presence of acetone and an excess of exogenous plant pheophytins, bacterio-pheophytins in the reaction centers from Rhodobacter sphaeroides RS601 were replaced by pheophytins at sites HA and HB, when incubated at 43.5℃ for more than 15 min. The substitution of bacteriopheophytins in the reaction centers was 50% and 71% with incubation of 15 and 60 min, respectively. In the absorption spectra of pheophytin-replaced reaction centers (Phe RCs), bands assigned to the transition moments Qx (537 nm) and QY (758 nm) of bacteriopheophytin disappeared, and three distinct bands assigned to the transition moments Qx (509/542 nm) and QY (674 nm) of pheophytin appeared instead. Compared to that of the control reaction centers, the photochemical activities of Phe RCs are 78% and 71% of control, with the incubation time of 15 and 60 min. Differences might exist between the redox properties of Phe RC and of native reaction centers, but the substitution is significant, and the new system is available for further

  4. Transient grating spectroscopy in photosynthetic purple bacteria Rhodobacter sphaeroides 2.4.1

    International Nuclear Information System (INIS)

    The vibronic coherence of photosynthetic pigment-protein complexes has been investigated by means of transient grating spectroscopy using sub 20 fs optical pulses. In the present work, we focus our attention on the LH2 antenna complexes from Rhodobacter sphaeroides 2.4.1 because the information about their structure investigated by the electron and atomic force microscopy is available and the electric levels of pigments are well resolved, resulting in clear absorption spectrum. The vibronic coherent oscillations with a period of a few tens of femtoseconds have been clearly observed. We found that the temporal change of the coherent oscillations reflects the vibrational relaxation in the ground state. Calculations based on the Brownian oscillator model were performed under the impulsive excitation limit. The spectral density has been determined from the Raman measurement of spheroidene. Good agreement between the calculation and the experimental results has been achieved in the linear absorption spectrum and transient grating signal, which strongly supports the validity of our model.

  5. Amelioration of dextran sodium sulfate-induced colitis in mice by Rhodobacter sphaeroides extract.

    Science.gov (United States)

    Liu, Wen-Sheng; Chen, Man-Chin; Chiu, Kuo-Hsun; Wen, Zhi-Hong; Lee, Che-Hsin

    2012-01-01

    Bacteria can produce some compounds in response to their environment. These compounds are widely used in cosmetic and pharmaceutical applications. Some probiotics have immunomodulatory activities and modulate the symptoms of several diseases. Autoimmune diseases represent a complex group of conditions that are thought to be mediated through the development of autoreactive immunoresponses. Inflammatory bowel disease (IBD) is common autoimmune disease that affects many individuals worldwide. Previously, we found that the extracts of Rhodobacter sphaeroides (Lycogen) inhibited nitric oxide production and inducible nitric-oxide synthase expression in activated macrophages. In this study, the effect of Lycogen, a potent anti-inflammatory agent, was evaluated in mice with dextran sodium sulfate (DSS)-induced colitis. Oral administration of Lycogen reduced the expressions of proinflammatory cytokines (tumor necrosis factor-α and interleukin-1β) in female BABL/c mice. In addition, the increased number of bacterial flora in the colon induced by DSS was amelirated by Lycogen. The histological score of intestinal inflammation in 5% DSS-treated mice after oral administration of Lycogen was lower than that of control mice. Meanwhile, Lycogen dramatically prolonged the survival of mice with severe colitis. These findings identified that Lycogen is an anti-inflammatory agent with the capacity to ameliorate DSS-induced colitis. PMID:23159923

  6. Amelioration of Dextran Sodium Sulfate-Induced Colitis in Mice by Rhodobacter sphaeroides Extract

    Directory of Open Access Journals (Sweden)

    Che-Hsin Lee

    2012-11-01

    Full Text Available Bacteria can produce some compounds in response to their environment. These compounds are widely used in cosmetic and pharmaceutical applications. Some probiotics have immunomodulatory activities and modulate the symptoms of several diseases. Autoimmune diseases represent a complex group of conditions that are thought to be mediated through the development of autoreactive immunoresponses. Inflammatory bowel disease (IBD is common autoimmune disease that affects many individuals worldwide. Previously, we found that the extracts of Rhodobacter sphaeroides (Lycogen inhibited nitric oxide production and inducible nitric-oxide synthase expression in activated macrophages. In this study, the effect of Lycogen™, a potent anti-inflammatory agent, was evaluated in mice with dextran sodium sulfate (DSS-induced colitis. Oral administration of Lycogen™ reduced the expressions of proinflammatory cytokines (tumor necrosis factor-α and interleukin-1β in female BABL/c mice. In addition, the increased number of bacterial flora in the colon induced by DSS was amelirated by Lycogen™. The histological score of intestinal inflammation in 5% DSS-treated mice after oral administration of Lycogen™ was lower than that of control mice. Meanwhile, Lycogen™ dramatically prolonged the survival of mice with severe colitis. These findings identified that Lycogen™ is an anti-inflammatory agent with the capacity to ameliorate DSS-induced colitis.

  7. The Extract of Rhodobacter sphaeroides Inhibits Melanogenesis through the MEK/ERK Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Chen-Hsun Liu

    2013-06-01

    Full Text Available Reducing hyperpigmentation has been a big issue for years. Even though pigmentation is a normal mechanism protecting skin from UV-causing DNA damage and oxidative stress, it is still an aesthetic problem for many people. Bacteria can produce some compounds in response to their environment. These compounds are widely used in cosmetic and pharmaceutical applications. Some probiotics have immunomodulatory activities and modulate the symptoms of several diseases. Previously, we found that the extracts of Rhodobacter sphaeroides (Lycogen™ inhibited nitric oxide production and inducible nitric-oxide synthase expression in activated macrophages. In this study, we sought to investigate an anti-melanogenic signaling pathway in α-melanocyte stimulating hormone (α-MSH-treated B16F10 melanoma cells and zebrafish. Treatment with Lycogen™ inhibited the cellular melanin contents and expression of melanogenesis-related protein, including microphthalmia-associated transcription factor (MITF and tyrosinase in B16F10 cells. Moreover, Lycogen™ reduced phosphorylation of MEK/ERK without affecting phosphorylation of p38. Meanwhile, Lycogen™ decreased zebrafish melanin expression in a dose-dependent manner. These findings establish Lycogen™ as a new target in melanogenesis and suggest a mechanism of action through the ERK signaling pathway. Our results suggested that Lycogen™ may have potential cosmetic usage in the future.

  8. Influence of pigment substitution on the electrochemical properties of Rhodobacter sphaeroides 601 reaction centers

    Institute of Scientific and Technical Information of China (English)

    邹永龙; 赵杰权; 陈志龙; 孔继烈; 曾小华; 徐春和

    2001-01-01

    With the help of pigment substitution, self-assembled monolayer film and square wave voltammetry, the influence of pigment substitution on the electrochemical properties of Rhodobacter sphaeroides 601 reaction centers was investigated. Results showed that the charge separation could also be driven by externally electric field, similar to the primary photochemical reaction in purple bacterial reaction center. On the surface of Au electrode, a self-assembled monolayer film (the RC-PDDA-DMSA film) was made up of 2,3-dimercaptosuccinic acid (DMSA), poly-dimeth-yldiallylammonium chloride (PDDA) and reaction center (RC). When square wave voltammetry was used to study the RC-PDDA-DMSA film, four redox pairs in the photochemical reaction of RC were observed by changing frequency. With nonlinear fitting, the standard potential of P/P+ and the corresponding electrode reaction rate constant were determined to be 0.522 V and 13.04 S-1, respectively. It was found that the redox peak at -0.02 V changed greatly when bacteriopheophytin was substituted by plant pheophytin in the reaction center. Further studies indicated that this change resulted from the decrease in electron transfer rate between Bphe-/Bphe (Phe-/Phe) and QA-/QA after pigment substitution. After investigations of spectra and electrochemical properties of different RCs and comparisons of different function groups of pigments, it was indicated that the phytyl tail, similar to other substituted groups of pheophytin, affected the efficiencies of pigment substitution.

  9. Acquirement and characterization of a carotenoid mutant (GM309) of Rhodobacter sphaeroides 601

    Institute of Scientific and Technical Information of China (English)

    LIU; Yuan; ZHANG; Wei; WU; Yongqiang; XU; Chunhe

    2004-01-01

    A green mutant was obtained among the chemically induced mutants of Rhodobacter sphaeroides 601 (RS601) and named GM309. A blue shift of 20 nm of the carotenoid absorption spectrum was found in the light-harvesting complex II (LH2) of GM309. Different from LH2 of RS601, it was found that the carotenoids in GM309-LH2 changed to be neurosporene by mutation. Neurosporene lacks a conjugate double bond, compared with the spheroidene in RS601-LH2 which has ten conjugate double bonds. As shown by absorption and circular dichroism spectroscopy, the overall structure of GM309-LH2 is little affected by this change. From fluorescence emission spectra, it is found that GM309-LH2 can transfer energy from carotenoids to Bchl-B850 without any change in efficiency. But the efficiency of energy transfer from B800 to B850 in GM309-LH2 is decreased to be 42% of that of the native. This work would provide a novel method to investigate the mechanism of excitation energy transfer in LH2.

  10. Nitrite and nitrous oxide reductase regulation by nitrogen oxides in Rhodobacter sphaeroides f. sp. denitrificans IL106.

    Science.gov (United States)

    Sabaty, M; Schwintner, C; Cahors, S; Richaud, P; Verméglio, A

    1999-10-01

    We have cloned the nap locus encoding the periplasmic nitrate reductase in Rhodobacter sphaeroides f. sp. denitrificans IL106. A mutant with this enzyme deleted is unable to grow under denitrifying conditions. Biochemical analysis of this mutant shows that in contrast to the wild-type strain, the level of synthesis of the nitrite and N(2)O reductases is not increased by the addition of nitrate. Growth under denitrifying conditions and induction of N oxide reductase synthesis are both restored by the presence of a plasmid containing the genes encoding the nitrate reductase. This demonstrates that R. sphaeroides f. sp. denitrificans IL106 does not possess an efficient membrane-bound nitrate reductase and that nitrate is not the direct inducer for the nitrite and N(2)O reductases in this species. In contrast, we show that nitrite induces the synthesis of the nitrate reductase. PMID:10498715

  11. Insights into the species-specific TLR4 signaling mechanism in response to Rhodobacter sphaeroides lipid A detection

    OpenAIRE

    Anwar, Muhammad Ayaz; Panneerselvam, Suresh; Shah, Masaud; Choi, Sangdun

    2015-01-01

    TLR4 in complex with MD2 senses the presence of lipid A (LA) and initiates a signaling cascade that curb the infection. This complex is evolutionarily conserved and can initiate the immune system in response to a variety of LAs. In this study, molecular dynamics simulation (25 ns) was performed to elucidate the differential behavior of TLR4/MD2 complex in response to Rhodobacter sphaeroides lipid A (RsLA). Penta-acyl chain-containing RsLA is at the verge of agonist (6 acyl-chains) and antagon...

  12. Multi-PAS domain-mediated protein oligomerization of PpsR from Rhodobacter sphaeroides

    Energy Technology Data Exchange (ETDEWEB)

    Heintz, Udo; Meinhart, Anton; Winkler, Andreas, E-mail: andreas.winkler@mpimf-heidelberg.mpg.de [Max Planck Institute for Medical Research, Heidelberg (Germany)

    2014-03-01

    Crystal structures of two truncated variants of the transcription factor PpsR from R. sphaeroides are presented that enabled the phasing of a triple PAS domain construct. Together, these structures reveal the importance of α-helical PAS extensions for multi-PAS domain-mediated protein oligomerization and function. Per–ARNT–Sim (PAS) domains are essential modules of many multi-domain signalling proteins that mediate protein interaction and/or sense environmental stimuli. Frequently, multiple PAS domains are present within single polypeptide chains, where their interplay is required for protein function. Although many isolated PAS domain structures have been reported over the last decades, only a few structures of multi-PAS proteins are known. Therefore, the molecular mechanism of multi-PAS domain-mediated protein oligomerization and function is poorly understood. The transcription factor PpsR from Rhodobacter sphaeroides is such a multi-PAS domain protein that, in addition to its three PAS domains, contains a glutamine-rich linker and a C-terminal helix–turn–helix DNA-binding motif. Here, crystal structures of two N-terminally and C-terminally truncated PpsR variants that comprise a single (PpsR{sub Q-PAS1}) and two (PpsR{sub N-Q-PAS1}) PAS domains, respectively, are presented and the multi-step strategy required for the phasing of a triple PAS domain construct (PpsR{sub ΔHTH}) is illustrated. While parts of the biologically relevant dimerization interface can already be observed in the two shorter constructs, the PpsR{sub ΔHTH} structure reveals how three PAS domains enable the formation of multiple oligomeric states (dimer, tetramer and octamer), highlighting that not only the PAS cores but also their α-helical extensions are essential for protein oligomerization. The results demonstrate that the long helical glutamine-rich linker of PpsR results from a direct fusion of the N-cap of the PAS1 domain with the C-terminal extension of the N-domain that

  13. Ultrafast Electron Transfer Kinetics in the LM Dimer of Bacterial Photosynthetic Reaction Center from Rhodobacter sphaeroides.

    Science.gov (United States)

    Sun, Chang; Carey, Anne-Marie; Gao, Bing-Rong; Wraight, Colin A; Woodbury, Neal W; Lin, Su

    2016-06-23

    It has become increasingly clear that dynamics plays a major role in the function of many protein systems. One system that has proven particularly facile for studying the effects of dynamics on protein-mediated chemistry is the bacterial photosynthetic reaction center from Rhodobacter sphaeroides. Previous experimental and computational analysis have suggested that the dynamics of the protein matrix surrounding the primary quinone acceptor, QA, may be particularly important in electron transfer involving this cofactor. One can substantially increase the flexibility of this region by removing one of the reaction center subunits, the H-subunit. Even with this large change in structure, photoinduced electron transfer to the quinone still takes place. To evaluate the effect of H-subunit removal on electron transfer to QA, we have compared the kinetics of electron transfer and associated spectral evolution for the LM dimer with that of the intact reaction center complex on picosecond to millisecond time scales. The transient absorption spectra associated with all measured electron transfer reactions are similar, with the exception of a broadening in the QX transition and a blue-shift in the QY transition bands of the special pair of bacteriochlorophylls (P) in the LM dimer. The kinetics of the electron transfer reactions not involving quinones are unaffected. There is, however, a 4-fold decrease in the electron transfer rate from the reduced bacteriopheophytin to QA in the LM dimer compared to the intact reaction center and a similar decrease in the recombination rate of the resulting charge-separated state (P(+)QA(-)). These results are consistent with the concept that the removal of the H-subunit results in increased flexibility in the region around the quinone and an associated shift in the reorganization energy associated with charge separation and recombination. PMID:27243380

  14. Identification of key residues that confer Rhodobacter sphaeroides LPS activity at horse TLR4/MD-2.

    Directory of Open Access Journals (Sweden)

    Katherine L Irvine

    Full Text Available The molecular determinants underpinning how hexaacylated lipid A and tetraacylated precursor lipid IVa activate Toll-like receptor 4 (TLR4 are well understood, but how activation is induced by other lipid A species is less clear. Species specificity studies have clarified how TLR4/MD-2 recognises different lipid A structures, for example tetraacylated lipid IVa requires direct electrostatic interactions for agonism. In this study, we examine how pentaacylated lipopolysaccharide from Rhodobacter sphaeroides (RSLPS antagonises human TLR4/MD-2 and activates the horse receptor complex using a computational approach and cross-species mutagenesis. At a functional level, we show that RSLPS is a partial agonist at horse TLR4/MD-2 with greater efficacy than lipid IVa. These data suggest the importance of the additional acyl chain in RSLPS signalling. Based on docking analysis, we propose a model for positioning of the RSLPS lipid A moiety (RSLA within the MD-2 cavity at the TLR4 dimer interface, which allows activity at the horse receptor complex. As for lipid IVa, RSLPS agonism requires species-specific contacts with MD-2 and TLR4, but the R2 chain of RSLA protrudes from the MD-2 pocket to contact the TLR4 dimer in the vicinity of proline 442. Our model explains why RSLPS is only partially dependent on horse TLR4 residue R385, unlike lipid IVa. Mutagenesis of proline 442 into a serine residue, as found in human TLR4, uncovers the importance of this site in RSLPS signalling; horse TLR4 R385G/P442S double mutation completely abolishes RSLPS activity without its counterpart, human TLR4 G384R/S441P, being able to restore it. Our data highlight the importance of subtle changes in ligand positioning, and suggest that TLR4 and MD-2 residues that may not participate directly in ligand binding can determine the signalling outcome of a given ligand. This indicates a cooperative binding mechanism within the receptor complex, which is becoming increasingly

  15. A distant homologue of the FlgT protein interacts with MotB and FliL and is essential for flagellar rotation in Rhodobacter sphaeroides.

    Science.gov (United States)

    Fabela, Salvador; Domenzain, Clelia; De la Mora, Javier; Osorio, Aurora; Ramirez-Cabrera, Victor; Poggio, Sebastian; Dreyfus, Georges; Camarena, Laura

    2013-12-01

    In this work, we describe a periplasmic protein that is essential for flagellar rotation in Rhodobacter sphaeroides. This protein is encoded upstream of flgA, and its expression is dependent on the flagellar master regulator FleQ and on the class III flagellar activator FleT. Sequence comparisons suggest that this protein is a distant homologue of FlgT. We show evidence that in R. sphaeroides, FlgT interacts with the periplasmic regions of MotB and FliL and with the flagellar protein MotF, which was recently characterized as a membrane component of the flagellum in this bacterium. In addition, the localization of green fluorescent protein (GFP)-MotF is completely dependent on FlgT. The Mot(-) phenotype of flgT cells was weakly suppressed by point mutants of MotB that presumably keep the proton channel open and efficiently suppress the Mot(-) phenotype of motF and fliL cells, indicating that FlgT could play an additional role beyond the opening of the proton channel. The presence of FlgT in purified filament-hook-basal bodies of the wild-type strain was confirmed by Western blotting, and the observation of these structures under an electron microscope showed that the basal bodies from flgT cells had lost the ring that covers the LP ring in the wild-type structure. Moreover, MotF was detected by immunoblotting in the basal bodies obtained from the wild-type strain but not from flgT cells. From these results, we suggest that FlgT forms a ring around the LP ring, which anchors MotF and stabilizes the stator complex of the flagellar motor. PMID:24056105

  16. Coherent phenomena of charge separation in reaction centers of LL131H and LL131H/LM160H/FM197H mutants of Rhodobacter sphaeroides.

    Science.gov (United States)

    Yakovlev, A G; Vasilieva, L G; Shkuropatov, A Y; Shuvalov, V A

    2011-10-01

    Primary stage of charge separation and transfer of charges was studied in reaction centers (RCs) of point mutants LL131H and LL131H/LM160H/FM197H of the purple bacterium Rhodobacter sphaeroides by differential absorption spectroscopy with temporal resolution of 18 fsec at 90 K. Difference absorption spectra measured at 0-4 psec delays after excitation of dimer P at 870 nm with 30 fsec step were obtained in the spectral range of 935-1060 nm. It was found that a decay of P* due to charge separation is considerably slower in the mutant RCs in comparison with native RCs of Rba. sphaeroides. Coherent oscillations were found in the kinetics of stimulated emission of the P* state at 940 nm. Fourier analysis of the oscillations revealed a set of characteristic bands in the frequency range of 20-500 cm(-1). The most intense band has the frequency of ~130 cm(-1) in RCs of mutant LL131H and in native RCs and the frequency of ~100 cm(-1) in RCs of the triple mutant. It was found that an absorption band of bacteriochlorophyll anion B(A)(-) which is registered in the difference absorption spectra of native RCs at 1020 nm is absent in the analogous spectra of the mutants. The results are analyzed in terms of the participation of the B(A) molecule in the primary electron transfer in the presence of a nuclear wave packet moving along the inharmonic surface of P* potential energy. PMID:22098236

  17. Photobiological transformation of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) using Rhodobacter sphaeroides.

    Science.gov (United States)

    Millerick, Kayleigh A; Johnston, Juliet T; Finneran, Kevin T

    2016-09-01

    Pump-and-treat strategies for groundwater containing explosives may be necessary when the contaminated water approaches sensitive receptors. This project investigated bacterial photosynthesis as a strategy for ex situ treatment, using light as the primary energy source to facilitate RDX transformation. The objective was to characterize the ability of photosynthetic Rhodobacter sphaeroides (strain ATCC(®) 17023 ™) to transform the high-energy explosive RDX. R. sphaeroides transformed 30 μM RDX within 40 h under light conditions; RDX was not fully transformed in the dark (non-photosynthetic conditions), suggesting that photosynthetic electron transfer was the primary mechanism. Experiments with RDX demonstrated that succinate and malate were the most effective electron donors for photosynthesis, but glycerol was also utilized as a photosynthetic electron donor. RDX was transformed irrespective of the presence of carbon dioxide. The electron shuttling compound anthraquinone-2,6-disulfonate (AQDS) increased transformation kinetics in the absence of CO2, when the cells had excess NADPH that needed to be re-oxidized because there was limited CO2 for carbon fixation. When CO2 was added, the cells generated more biomass, and AQDS had no stimulatory effect. End products indicated that RDX carbon became CO2, biomass, and a soluble, uncharacterized aqueous metabolite, determined using (14)C-labeled RDX. These data are the first to suggest that photobiological explosives transformation is possible and will provide a framework for which phototrophy can be used in environmental restoration of explosives contaminated water. PMID:27285383

  18. Correlation of paramagnetic states and molecular structure in bacterial photosynthetic reaction centers: The symmetry of the primary electron donor in Rhodopseudomonas viridis and Rhodobacter sphaeroides R-26

    International Nuclear Information System (INIS)

    The orientation of the principal axes of the primary electron donor triplet state measured in single crystals of photosynthetic reaction centers is compared to the x-ray structures of the bacteria Rhodobacter (Rb.) sphaeroides R-26 and Rhodopseudomonas (Rps.) viridis. The primary donor of Rps. viridis is significantly different from that of Rb. sphaeroides. The measured directions of the axes indicate that triplet excitation is almost completely localized on the L-subunit half of the dimer in Rps. viridis but is more symmetrically distributed on the dimeric donor in Rb. sphaeroides R-26. The large reduction of the zero field splitting parameters relative to monomeric bacteriochlorophyll triplet in vitro suggests significant participation of asymmetrical charge transfer electronic configurations in the special pair triplet state of both organisms

  19. Biohydrogen production by purple non-sulfur bacteria Rhodobacter sphaeroides: Effect of low-intensity electromagnetic irradiation.

    Science.gov (United States)

    Gabrielyan, Lilit; Sargsyan, Harutyun; Trchounian, Armen

    2016-09-01

    The present work was focused on the effects of low-intensity (the flux capacity was of 0.06mWcm(-2)) electromagnetic irradiation (EMI) of extremely high frequencies or millimeter waves on the growth and hydrogen (H2) photoproduction by purple non-sulfur bacteria Rhodobacter sphaeroides MDC6521 (from Armenian mineral springs). After exposure of R. sphaeroides, grown under anaerobic conditions upon illumination, to EMI (51.8GHz and 53.0GHz) for 15min an increase of specific growth rate by ~1.2-fold, in comparison with control (non-irradiated cells), was obtained. However, the effect of EMI depends on the duration of irradiation: the exposure elongation up to 60min caused the delay of the growth lag phase and the decrease specific growth rate by ~1.3-fold, indicating the bactericidal effect of EMI. H2 yield of the culture, irradiated by EMI for 15min, determined during 72h growth, was ~1.2-fold higher than H2 yield of control cells, whereas H2 production by cultures, irradiated by EMI for 60min was not observed during 72h growth. This difference in the effects of extremely high frequency EMI indicates a direct effect of radiation on the membrane transfer and the enzymes of these bacteria. Moreover, EMI increased DCCD-inhibited H(+) fluxes across the bacterial membrane and DCCD-sensitive ATPase activity of membrane vesicles, indicating that the proton FoF1-ATPase is presumably a basic target for extremely high frequency EMI related to H2 production by cultures. PMID:27479839

  20. Monomeric RC-LH1 core complexes retard LH2 assembly and intracytoplasmic membrane formation in PufX-minus mutants of Rhodobacter sphaeroides

    Energy Technology Data Exchange (ETDEWEB)

    Adams, Peter G. [University of Sheffield (United Kingdom); Mothersole, David J. [University of Sheffield (United Kingdom); Ng, Irene W. [University of Sheffield (United Kingdom); Olsen, John D. [University of Sheffield (United Kingdom); Hunter, C. Neil [University of Sheffield (United Kingdom)

    2011-01-01

    In the model photosynthetic bacterium Rhodobacter sphaeroides domains of light-harvesting 2 (LH2) complexes surround and interconnect dimeric reaction centre–light-harvesting 1–PufX (RC–LH1–PufX) ‘core’ complexes, forming extensive networks for energy transfer and trapping. These complexes are housed in spherical intracytoplasmic membranes (ICMs), which are assembled in a stepwise process where biosynthesis of core complexes tends to dominate the early stages of membrane invagination. The kinetics of LH2 assembly were measured in PufX mutants that assemble monomeric core complexes, as a consequence of either a twelve-residue N-terminal truncation of PufX (PufXΔ12) or the complete removal of PufX (PufX-). Lower rates of LH2 assembly and retarded maturation of membrane invagination were observed for the larger and less curved ICM from the PufX- mutant, consistent with the proposition that local membrane curvature, initiated by arrays of bent RC–LH1–PufX dimers, creates a favourable environment for stable assembly of LH2 complexes. Transmission electron microscopy and high-resolution atomic force microscopy were used to examine ICM morphology and membrane protein organisation in these mutants. Some partitioning of core and LH2 complexes was observed in PufX- membranes, resulting in locally ordered clusters of monomeric RC–LH1 complexes. The distribution of core and LH2 complexes in the three types of membrane examined is consistent with previous models of membrane curvature and domain formation (Frese et al., 2008), which demonstrated that a combination of crowding and asymmetries in sizes and shapes of membrane protein complexes drives membrane organisation.

  1. The site-directed mutation I(L177)H in Rhodobacter sphaeroides reaction center affects coordination of P(A) and B(B) bacteriochlorophylls.

    Science.gov (United States)

    Vasilieva, L G; Fufina, T Y; Gabdulkhakov, A G; Leonova, M M; Khatypov, R A; Shuvalov, V A

    2012-08-01

    To explore the influence of the I(L177)H single mutation on the properties of the nearest bacteriochlorophylls (BChls), three reaction centers (RCs) bearing double mutations were constructed in the photosynthetic purple bacterium Rhodobacter sphaeroides, and their properties and pigment content were compared with those of the correspondent single mutant RCs. Each pair of the mutations comprised the amino acid substitution I(L177)H and another mutation altering histidine ligand of BChl P(A) or BChl B(B). Contrary to expectations, the double mutation I(L177)H+H(L173)L does not bring about a heterodimer RC but causes a 46nm blue shift of the long-wavelength P absorbance band. The histidine L177 or a water molecule were suggested as putative ligands for P(A) in the RC I(L177)H+H(L173)L although this would imply a reorientation of the His backbone and additional rearrangements in the primary donor environment or even a repositioning of the BChl dimer. The crystal structure of the mutant I(L177)H reaction center determined to a resolution of 2.9Å shows changes at the interface region between the BChl P(A) and the monomeric BChl B(B). Spectral and pigment analysis provided evidence for β-coordination of the BChl B(B) in the double mutant RC I(L177)H+H(M182)L and for its hexacoordination in the mutant reaction center I(L177)H. Computer modeling suggests involvement of two water molecules in the β-coordination of the BChl B(B). Possible structural consequences of the L177 mutation affecting the coordination of the two BChls P(A) and B(B) are discussed. This article is part of a Special Issue entitled: Photosynthesis Research for Sustainability: from Natural to Artificial. PMID:22365928

  2. Electronic Structure and Dynamics of Higher-Lying Excited States in Light Harvesting Complex 1 from Rhodobacter sphaeroides.

    Science.gov (United States)

    Dahlberg, Peter D; Ting, Po-Chieh; Massey, Sara C; Martin, Elizabeth C; Hunter, C Neil; Engel, Gregory S

    2016-06-23

    Light harvesting in photosynthetic organisms involves efficient transfer of energy from peripheral antenna complexes to core antenna complexes, and ultimately to the reaction center where charge separation drives downstream photosynthetic processes. Antenna complexes contain many strongly coupled chromophores, which complicates analysis of their electronic structure. Two-dimensional electronic spectroscopy (2DES) provides information on energetic coupling and ultrafast energy transfer dynamics, making the technique well suited for the study of photosynthetic antennae. Here, we present 2DES results on excited state properties and dynamics of a core antenna complex, light harvesting complex 1 (LH1), embedded in the photosynthetic membrane of Rhodobacter sphaeroides. The experiment reveals weakly allowed higher-lying excited states in LH1 at 770 nm, which transfer energy to the strongly allowed states at 875 nm with a lifetime of 40 fs. The presence of higher-lying excited states is in agreement with effective Hamiltonians constructed using parameters from crystal structures and atomic force microscopy (AFM) studies. The energy transfer dynamics between the higher- and lower-lying excited states agree with Redfield theory calculations. PMID:27232937

  3. Concomitant biohydrogen and poly-β-hydroxybutyrate production from dark fermentation effluents by adapted Rhodobacter sphaeroides and mixed photofermentative cultures.

    Science.gov (United States)

    Ghimire, Anish; Valentino, Serena; Frunzo, Luigi; Pirozzi, Francesco; Lens, Piet N L; Esposito, Giovanni

    2016-10-01

    This work aimed at investigating concomitant production of biohydrogen and poly-β-hydroxybutyrate (PHB) by photofermentation (PF) using dark fermentation effluents (DFE). An adapted culture of Rhodobacter sphaeroides AV1b (pH 6.5, 24±2°C) achieved H2 and PHB yields of 256 (±2) NmLH2/g Chemical Oxygen Demand (COD) and 273.8mgPHB/gCOD (32.5±3% of the dry cells weight (DCW)), respectively. When a diluted (1:2) DFE medium was applied to the adapted pure and mixed photofermentative culture, the respective H2 yields were 164.0 (±12) and 71.3 (±6) NmLH2/gCOD and the PHB yields were 212.1 (±105.2) and 50.7 (±2.7) mgPHB/gCOD added, corresponding to 24 (±0.7) and 6.3 (±0) % DCW, respectively. The concomitant H2 and PHB production from the PF process gave a good DFE post treatment achieving up to 80% COD removal from the initial DFE. PMID:27005789

  4. The L(M196)H mutation in Rhodobacter sphaeroides reaction center results in new electrostatic interactions.

    Science.gov (United States)

    Fufina, Tatiana Y; Vasilieva, Lyudmila G; Gabdulkhakov, Azat G; Shuvalov, Vladimir A

    2015-08-01

    New histidine residue was introduced in M196 position in the reaction center of Rhodobacter sphaeroides in order to alter polarity of the BChl dimer's protein environment and to study how it affects properties and structure of the primary electron donor P. It was shown that in the absorption spectrum of the mutant RC the 6 nm red shift of the Q Y P band was observed together with considerable decrease of its amplitude. The mid-point potential of P/P (+) in the mutant RC was increased by +65 (±15) mV as compared to the E m P/P (+) value in the wild-type RC suggesting that the mutation resulted in new pigment-protein interactions. Crystal structure of RC L(M196)H determined at 2.4 Å resolution implies that BChl Р В and introduced histidine-M196 organize new electrostatic contact that may be specified either as π-π staking or as hydrogen-π interaction. Besides, the structure of the mutants RC shows that His-M196 apparently became involved in hydrogen bond network existing in BChl Р В vicinity that may favor stability of the mutant RC. PMID:25480338

  5. Characterization of ‘Pinky’ Strain Grown in Culture of Rhodobacter sphaeroides R26.1

    Institute of Scientific and Technical Information of China (English)

    PAN Yan; XIE Jing; KOYAMA Yasushi; LI Shi-hao; WANG En-si; HOU A-li

    2013-01-01

    In the process of cultivating Rhodobater sphaeroides R26.1,some of which turned from blue to pink due to the irradiation of a beam of leaking white light.The mutant strains were named ‘pinky’ strains,which were cultivated in the red light and in the dark for a comparative study.It turned out that the strains did not grow in the dark,so they might be photosynthetic bacteria.The electronic absorption spectrum of the ‘pinky’ strains was measured,which shows they contained two main photosynthetic pigments,carotenoids(Cars) and bacteriochlorophylls(BChls).And then they were extracted and analyzed.It proves that Bchls included Bchl a and Bchl a'.Nuclear magnetic resonance (NMR) spectra were exploited to determine the chemical structure of Cars.The results indicate that there were seven kinds of Cars,including lycopene,rhodopin,anhydrorhodovibrin,3,4-dihydroanhydrorhodovibrin,3,3,4-dihydrospirilloxanthin,3,4,3',4'-tetrahydrospirilloxanthin and spirilloxanthin.Based on the above results,it was found that most identified Cars formed via spirilloxanthin biosynthesis pathway.The analyzed results of 16S rRNA gene show that the homology of ‘pinky’ strains with Rhodopseudomonas palusteris was 99%.Rhodopseudomonas palusteris has been cultivated in our laboratory.Because of its strong vitality,it did not become extinct with so many years passing.When Rhodobater sphaeroides R26.1 was cultivated,it got rejuvenated under the appropriate conditions and caused Rhodobater sphaeroides R26.1 to be contaminated.

  6. Expression, purification, crystallization and preliminary X-ray structure analysis of wild-type and L(M196)H-mutant Rhodobacter sphaeroides reaction centres

    International Nuclear Information System (INIS)

    The expression, purification, crystallization and preliminary crystallographic characterization of wild-type and L(M196)H-mutant reaction centres of Rba. sphaeroides strain RV are reported. The electron and proton transport mediated by protein-bound cofactors in photosynthesis have been investigated by various methods in order to determine the energetics, the dynamics and the pathway of this process. In purple bacteria, primary photosynthetic charge separation and the build-up of a proton gradient across the periplasmic membrane are catalyzed by the photosynthetic reaction centre (RC). Here, the purification, crystallization and preliminary X-ray analysis of wild-type and L(M196)H-mutant RCs of Rhodobacter sphaeroides are presented, enabling study of the influence of the protein environment of the primary electron donor on the spectral properties and photochemical activity of the RC

  7. PucC and LhaA direct efficient assembly of the light-harvesting complexes in Rhodobacter sphaeroides

    DEFF Research Database (Denmark)

    Mothersole, David; Jackson, Philip J.; Vasilev, Cvetelin; Tucker, Jaimey D.; Brindley, Amanda A.; Dickman, Mark J.; Hunter, C. Neil

    2016-01-01

    The mature architecture of the photosynthetic membrane of the purple phototroph Rhodobacter sphaeroides has been characterised to a level where an atomic-level membrane model is available, but the roles of the putative assembly proteins LhaA and PucC in establishing this architecture are unknown....... interactions between pigments newly arriving from BchG and nascent proteins within the SecYEG-SecDF-YajC-YidC assembly machinery, thereby co-ordinating pigment delivery, the co-translational insertion of LH polypeptides and their folding and assembly to form photosynthetic complexes....

  8. Effect of the mutation of carotenoids on the dynamics of energy transfer in light- harvesting complexes (LH2) from Rhodobacter sphaeroides 601 at room temperature

    Institute of Scientific and Technical Information of China (English)

    Liu Wei-Min; Liu Yuan; Liu Rang-Jun; Yan Yong-Li; Guo Li-Jun; Xu Chun-He; Qian Shi-Xiong

    2006-01-01

    Energy transfers in two kinds of peripheral light-harvesting complexes (LH2) of Rhodobacter sphaeroides (RS) 601 are studied by using femtosecond pump-probe spectroscopy with tunable laser wavelength at room temperature. These two complexes are native LH2 (RS601) and green carotenoid mutated LH2 (GM309). The obtained results demonstrate that, compared with spheroidenes with ten conjugated double bonds in native RS601, carotenoid in GM309 containing neurosporenes with nine conjugated double bonds can lead to a reduction in energy transfer rate in the B800-to-B850 band and the disturbance in the energy relaxation processes within the excitonic B850 band.

  9. Interdependent expression of the ccoNOQP-rdxBHIS loci in Rhodobacter sphaeroides 2.4.1.

    Science.gov (United States)

    Roh, Jung Hyeob; Kaplan, Samuel

    2002-10-01

    The rdxBHIS gene cluster of Rhodobacter sphaeroides 2.4.1, located downstream of the ccoNOQP operon encoding the cbb(3) cytochrome c oxidase, is required for the posttranscriptional modification of the cbb(3) cytochrome c oxidase. The cbb(3) cytochrome c oxidase is the main terminal oxidase under microaerobic conditions, as well as a component of the signal transduction pathway controlling photosynthesis gene expression. Because of the intimate functional and positional relationships of the ccoNOQP operon and the rdxBHIS gene cluster, we have examined the transcriptional activities of this DNA region in order to understand their expression and regulation. Northern blot analysis and reverse transcription-PCR, together with earlier complementation analysis, suggested that the ccoNOQP-rdxBHIS cluster is transcribed as ccoNOQP-, ccoNOQP-rdxBH-, rdxBH-, and rdxIS-specific transcripts. Multiple transcriptional start sites have been identified by primer extension analyses: five for ccoN, four for rdxB, and one for rdxI. Transcription from P1(N) of ccoN and P1(B) of rdxB is dependent on the presence of FnrL. LacZ fusion analysis support the above-described studies, especially the importance of FnrL. Expression of the cco-rdx cluster is closely related to photosynthesis gene expression, suggesting that transcript stoichiometry and presumably the stoichiometry of the gene products are critical factors in controlling photosynthesis gene expression. PMID:12218019

  10. Different effects of identical symmetry-related mutations near the bacteriochlorophyll dimer in the photosynthetic reaction center of Rhodobacter sphaeroides.

    Science.gov (United States)

    Vasilieva, L G; Fufina, T Y; Gabdulkhakov, A G; Shuvalov, V A

    2015-06-01

    In the bacterial photosynthetic reaction center (RC), asymmetric protein environment of the bacteriochlorophyll (BChl) dimer largely determines the photophysical and photochemical properties of the primary electron donor. Previously, we noticed significant differences in properties of Rhodobacter sphaeroides RCs with identical mutations in symmetry-related positions - I(M206)H and I(L177)H. The substitution I(L177)H resulted in covalent binding of BChl PA with the L-subunit, as well as in 6-coordination of BChl BB, whereas in RC I(M206)H no such changes of pigment-protein interactions were found. In addition, the yield of RC I(M206)H after its isolation from membranes was significantly lower than the yield of RC I(L177)H. This study shows that replacement of amino acid residues in the M203-M206 positions near BChls PB and BA by symmetry-related residues from the L-subunit near BChls PA and BB leads to further decrease in RC amount in the membranes associated obviously with poor assembly of the complex. Introduction of a new hydrogen bond between BChl PB and its protein environment by means of the F(M197)H mutation stabilized the mutant RC but did not affect its low yield. We suggest that the mutation I(M206)H and substitution of amino acid residues in M203-M205 positions could disturb glycolipid binding on the RC surface near BChl BA that is important for stable assembly of the complex in the membrane. PMID:26531011

  11. Antioxidant Activity of Carotenoids from Rhodobacter sphaeroides%类球红细菌类胡萝卜素抗氧化活性研究

    Institute of Scientific and Technical Information of China (English)

    安君; 李祖明; 张静; 白志辉; 杨卫东; 王栋

    2015-01-01

    The effects of grinding, ultrasonic, ultrasonic assisted with acidolysis and thallus concentration on antioxi-dant activity of carotenoids from Rhodobacter sphaeroides were studied in this paper.The results showed that the carot-enoids extracted with different methods and solid-liquid proportion from R.sphaeroides 3757 possessed activities of scavenging DPPH free radicals, reducing power and resistance against lipid peroxidation.Carotenoids extracted by ul-trasonic assisted with acidolysis from R.sphaeroides 3757 has the highest production rate and the best antioxidant ac-tivities.Caratenoids from R.sphaeroides possessed a certain antioxidant activities, and the antioxidant activities in-creased as the thallus concentration increased.%研究了研磨法、超声波法、酸溶辅助超声波法和菌体浓度对类球红细菌类胡萝卜素抗氧化活性的影响。结果表明,不同提取方法和固液比条件下,类球红细菌类胡萝卜素均具有清除DPPH自由基能力、抗脂质过氧化能力和还原能力。酸溶辅助超声波法提取的类胡萝卜素产率最高、抗氧化活性最好。类球红细菌类胡萝卜素具有一定的抗氧化活性,其抗氧化活性随菌体浓度的增加而增加。

  12. Femtosecond Dynamics of Energy Transfer in Native B800-B850 and B800-Released LH2 Complexes of Rhodobacter Sphaeroides

    Institute of Scientific and Technical Information of China (English)

    刘伟民; 朱荣毅; 夏辰安; 刘源; 徐春和; 钱士雄

    2003-01-01

    Two kinds of antenna complexes LH2 of Rhodobacter sphaeroides, wild type RS601 and the removal of B800 pigments (B800-released), were used in our experiment. These two LH2 complexes show quite different behaviour in absorption and femtosecond dynamics. By using the femtosecond pump-probe technique, the energy transfer processes occurring in two complexes were studied. Because of removing the B800 pigment from the LH2 in B800-released LH2 complex, the energy transfer between the B800 to B850 pigment was completely eliminated,while the pure internal energy transfer within the exciton states of B850 pigment could be carefully investigated.The results show that, at B800 absorption band, B800-released LH2 obviously shows a dominated transient absorption different from the photobleaching observed in RS601; while at the B850 band, these two complexes show similar photobleaching behaviour.

  13. Expression, purification, crystallization and preliminary X-ray structure analysis of wild-type and L(M196)H-mutant Rhodobacter sphaeroides reaction centres.

    Science.gov (United States)

    Gabdulkhakov, A G; Fufina, T Y; Vasilieva, L G; Mueller, U; Shuvalov, V A

    2013-05-01

    The electron and proton transport mediated by protein-bound cofactors in photosynthesis have been investigated by various methods in order to determine the energetics, the dynamics and the pathway of this process. In purple bacteria, primary photosynthetic charge separation and the build-up of a proton gradient across the periplasmic membrane are catalyzed by the photosynthetic reaction centre (RC). Here, the purification, crystallization and preliminary X-ray analysis of wild-type and L(M196)H-mutant RCs of Rhodobacter sphaeroides are presented, enabling study of the influence of the protein environment of the primary electron donor on the spectral properties and photochemical activity of the RC. PMID:23695564

  14. Enhancement of phototrophic hydrogen production by Rhodobacter sphaeroides ZX-5 using a novel strategy - shaking and extra-light supplementation approach

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xu; Wang, Yong-Hong; Zhang, Si-Liang; Chu, Ju; Zhang, Ming; Huang, Ming-Zhi; Zhuang, Ying-Ping [State Key Laboratory of Bioreactor Engineering, P.O. Box 329, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237 (China)

    2009-12-15

    Biohydrogen has gained attention due to its potential as a sustainable alternative to conventional methods for hydrogen production. In this study, the effect of light intensity as well as cultivation method (standing- and shaking-culture) on the cell growth and hydrogen production of Rhodobacter sphaeroides ZX-5 were investigated in 38-ml anaerobic photobioreactor with RCVBN medium. Thus, a novel shaking and extra-light supplementation (SELS) approach was developed to enhance the phototrophic H{sub 2} production by R. sphaeroides ZX-5 using malate as the sole carbon source. The optimum illumination condition for shaking-culture by strain ZX-5 increased to 7000-8000 lux, markedly higher than that for standing-culture (4000-5000 lux). Under shaking and elevated illumination (7000-8000 lux), the culture was effective in promoting photo-H{sub 2} production, resulting in a 59% and 56% increase of the maximum and average hydrogen production rate, respectively, in comparison with the culture under standing and 4000-5000 lux conditions. The highest hydrogen-producing rate of 165.9 ml H{sub 2}/l h was observed under the application of SELS approach. To our knowledge, this record is currently the highest hydrogen production rate of non-immobilized purple non-sulphur (PNS) bacteria. This optimal performance of photo-H{sub 2} production using SELS approach is a favorable choice of sustainable and economically feasible strategy to improve phototrophic H{sub 2} production efficiency. (author)

  15. Effect of physico-chemical parameters on biohydrogen production and growth characteristics by batch culture of Rhodobacter sphaeroides CIP 60.6

    International Nuclear Information System (INIS)

    In this paper, Rhodobacter sphaeroides CIP 60.6 strain was newly used for the biohydrogen production in a perfectly shaken column photobioreactor, grown in batch culture under anaerobic and illumination conditions, to investigate the effects of some physico-chemical parameters in microbial hydrogen photofermentation. Luedeking-Piret model was considered for the data fitting to find out the mode of hydrogen generation and the relationship between the cell growth and hydrogen production. The results show that, both growth cells and resting cells can produce hydrogen at light intensities greater or equal to 2500 lux, however, at the weak intensities hydrogen is a metabolite associated to growth. Growth rate and hydrogen production rate increase with the increasing of light intensity. Moreover, hydrogen production rate become higher in stationary phase than that in logarithmic phase, with the enhancement of light intensity. Maximum hydrogen production rate obtained was 39.88 ± 0.14 ml/l/h, at the optimal conditions (4500-8500 lux). Modified Gompertz equation was applied for the data fitting to verify the accuracy and the agreement of the model with experimental results. It is revealed that, in the modified Gompertz equation, the lag time represents time for which hydrogen production becomes maximal, not the beginning time of hydrogen production. The stop of stirring reduced hydrogen production rate and created unstable hydrogen production in reactor. The pH ranges of 7.5 ± 0.1 were the favorable pH for hydrogen production.

  16. Chronic exposure to Rhodobacter sphaeroides extract Lycogen™ prevents UVA-induced malondialdehyde accumulation and procollagen I down-regulation in human dermal fibroblasts.

    Science.gov (United States)

    Yang, Tsai-Hsiu; Lai, Ying-Hsiu; Lin, Tsuey-Pin; Liu, Wen-Sheng; Kuan, Li-Chun; Liu, Chia-Chyuan

    2014-01-01

    UVA contributes to the pathogenesis of skin aging by downregulation of procollagen I content and induction of matrix metalloproteinase (MMP)-associated responses. Application of antioxidants such as lycopene has been demonstrated as a convenient way to achieve protection against skin aging. Lycogen™, derived from the extracts of Rhodobacter sphaeroides, exerts several biological effects similar to that of lycopene whereas most of its anti-aging efficacy remains uncertain. In this study, we attempted to examine whether Lycogen™ could suppress malondialdehyde (MDA) accumulation and restore downregulated procollagen I expression induced by UVA exposure. In human dermal fibroblasts Hs68 cells, UVA repressed cell viability and decreased procollagen I protein content accompanied with the induction of MMP-1 and MDA accumulation. Remarkably, incubation with 50 µM Lycogen™ for 24 h ameliorated UVA-induced cell death and restored UVA-induced downregulation of procollagen in a dose-related manner. Lycogen™ treatment also prevented the UVA-induced MMP-1 upregulation and intracellular MDA generation in Hs68 cells. Activation of NFκB levels, one of the downstream events induced by UVA irradiation and MMP-1 induction, were also prevented by Lycogen™ administration. Taken together, our findings demonstrate that Lycogen™ may be an alternative agent that prevents UVA-induced skin aging and could be used in cosmetic and pharmaceutical applications. PMID:24463291

  17. Properties of Rhodobacter sphaeroides photosynthetic reaction center with double amino acid substitution I(L177)H+H(M182)L.

    Science.gov (United States)

    Fufina, T Yu; Vasilieva, L G; Khatypov, R A; Shuvalov, V A

    2011-04-01

    Histidine M182 in the reaction center (RC) of Rhodobacter sphaeroides serves as the fifth ligand of the bacteriochlorophyll (BChl) B(B) Mg atom. When this His is substituted by an amino acid that is not able to coordinate Mg, bacteriopheophytin appears in the B(B) binding site instead of BChl (Katilius, E., et al. (1999) J. Phys. Chem. B, 103, 7386-7389). We have shown that in the presence of the additional mutation I(L177)H the coordination of the BChl B(B) Mg atom in the double mutant I(L177)H+H(M182)L RC still remains. Changes in the double mutant RC absorption spectrum attributed to BChl absorption suggest that BChl B(B) Mg atom axial ligation might be realized not from the usual α-side of the BChl macrocycle, but from the opposite, β-side. Weaker coordination of BChl B(B) Mg atom compared to the other mutant RC BChl molecules suggests that not an amino acid residue but a water molecule might be a possible ligand. The results are discussed in the light of the structural changes that occurred in the RC upon Ile/His substitution in the L177 position. PMID:21585320

  18. The roles of Rhodobacter sphaeroides copper chaperones PCuAC and Sco (PrrC) in the assembly of the copper centers of the aa3-type and the cbb3-type cytochrome c oxidases

    OpenAIRE

    Thompson, Audie K.; Gray, Jimmy; Liu, Aimin; Hosler, Jonathan P.

    2012-01-01

    The α proteobacter Rhodobacter sphaeroides accumulates two cytochrome c oxidases (CcO) in its cytoplasmic membrane during aerobic growth: a mitochondrial-like aa3-type CcO containing a di-copper CuA center and mono-copper CuB, plus a cbb3-type CcO that contains CuB but lacks CuA. Three copper chaperones are located in the periplasm of R. sphaeroides, PCuAC, PrrC (Sco) and Cox11. Cox11 is required to assemble CuB of the aa3-type but not the cbb3-type CcO. PrrC is homologous to mitochondrial Sc...

  19. Primary electron transfer in reaction centers of YM210L and YM210L/HL168L mutants of Rhodobacter sphaeroides.

    Science.gov (United States)

    Yakovlev, A G; Vasilieva, L G; Khmelnitskaya, T I; Shkuropatova, V A; Shkuropatov, A Ya; Shuvalov, V A

    2010-07-01

    The role of tyrosine M210 in charge separation and stabilization of separated charges was studied by analyzing of the femtosecond oscillations in the kinetics of decay of stimulated emission from P* and of a population of the primary charge separated state P(+)B(A)(-) in YM210L and YM210L/HL168L mutant reaction centers (RCs) of Rhodobacter sphaeroides in comparison with those in native Rba. sphaeroides RCs. In the mutant RCs, TyrM210 was replaced by Leu. The HL168L mutation placed the redox potential of the P(+)/P pair 123 mV below that of native RCs, thus creating a theoretical possibility of P(+)B(A)(-) stabilization. Kinetics of P* decay at 940 nm of both mutants show a significant slowing of the primary charge separation reaction in comparison with native RCs. Distinct damped oscillations in these kinetics with main frequency bands in the range of 90-150 cm(-1) reflect mostly nuclear motions inside the dimer P. Formation of a very small absorption band of B(A)(-) at 1020 nm is registered in RCs of both mutants. The formation of the B(A)(-) band is accompanied by damped oscillations with main frequencies from ~10 to ~150 cm(-1). Only a partial stabilization of the P(+)B(A)(-) state is seen in the YM210L/HL168L mutant in the form of a small non-oscillating background of the 1020-nm kinetics. A similar charge stabilization is absent in the YM210L mutant. A model of oscillatory reorientation of the OH-group of TyrM210 in the electric fields of P(+) and B(A)(-) is proposed to explain rapid stabilization of the P(+)B(A)(-) state in native RCs. Small oscillatory components at ~330-380 cm(-1) in the 1020-nm kinetics of native RCs are assumed to reflect this reorientation. We conclude that the absence of TyrM210 probably cannot be compensated by lowering of the P(+)B(A)(-) free energy that is expected for the double YM210L/HL168L mutant. An oscillatory motion of the HOH55 water molecule under the influence of P(+) and B(A)(-) is assumed to be another potential

  20. Urea Utilization in the Phototrophic Bacterium Rhodobacter capsulatus Is Regulated by the Transcriptional Activator NtrC

    OpenAIRE

    Masepohl, Bernd; Kaiser, Björn; Isakovic, Nazila; Richard, Cynthia L.; Kranz, Robert G.; Klipp, Werner

    2001-01-01

    The phototrophic nonsulfur purple bacterium Rhodobacter capsulatus can use urea as a sole source of nitrogen. Three transposon Tn5-induced mutations (Xan-9, Xan-10, and Xan-19), which led to a Ure− phenotype, were mapped to the ureF and ureC genes, whereas two other Tn5 insertions (Xan-20 and Xan-22) were located within the ntrC and ntrB genes, respectively. As in Klebsiella aerogenes and other bacteria, the genes encoding urease (ureABC) and the genes required for assembly of the nickel meta...

  1. Determination of the total triterpenes in mistletoe transformed by rhodobac-ter sphaeroides%球形红细菌生物转化槲寄生中总三萜类化合物的测定

    Institute of Scientific and Technical Information of China (English)

    侯晓峰; 郑庆红; 漆小梅; 杨官娥; 张肇铭

    2011-01-01

    Objective: To establish methods for the determination of total triterpenes in mistletoe and its transformation products by rhodobacter sphaeroides, and to compare the contents of each sample. Methods: Oleanolic acid was taken as the standard, the content of total triterpenes was measured by spectrophotometry with 5% vanillin-glacial acetic acid solution and perchloric acid as color-developing agent and the detection wavelength was at 535 nm. Results: The linear correlation of oleanolic acid calibration curve was good in the range of 2-12 |jLg/ml, and the calibration curve regression equation was A =21.988C-0.072, r=0.989 5. Compared with 75% ethanol extract of mistletoe (sample 1), the content of total triterpenes in 75% ethanol mistletoe extract cultured with half amount of conventional medium and rhodobacter sphaeroides (sample 3) increased by 141%. Conclusion: The content of total triterpenes in mistletoe extract can be enhanced after bio-umand by rhodobacter sphaeroides%目的:建立槲寄生及球形红细菌转化槲寄生培养液中总三萜类化合物的含量测定方法,并对各个样品的含量进行比较研究.方法:采用紫外分光光度法,以齐墩果酸为对照品,5%的香草醛-冰醋酸溶液和高氯酸为显色系统,535 nm 波长处测定总三萜类化合物的含量.结果:齐墩果酸在2~12 μg/ml 的范围内线性关系良好,标准曲线回归方程为A=21.988C-0.072,r=0.989 5.75%的乙醇提取、半量常规培养基、游离球形红细菌培养,所得培养液(样品3)总三萜含量和槲寄生75%的乙醇提取液(样品1)相比增加141%.结论:经过球形红细菌转化可以增加槲寄生提取液中总三萜类化合物的含量.

  2. Effect of co-substrate on production of poly-β- hydroxybutyrate (PHB and copolymer PHBV from newly identified mutant Rhodobacter sphaeroides U7 cultivated under aerobic-dark condition

    Directory of Open Access Journals (Sweden)

    Kemarajt Kemavongse

    2007-07-01

    Full Text Available Photosynthetic bacterial mutant strain U7 was identified using both classical and molecular (16S rDNA techniques to be Rhodobacter sphaeroides. The glutamate-acetate (GA medium containing sodium acetate and sodium glutamate as carbon and nitrogen sources was used for production of poly-β-hydroxybutyrate (PHB from R. sphaeroides U7 cultivated under aerobic-dark condition (200 rpm at 37oC. Effect of auxiliary carbon sources (propionate and valerate and concentrations (molar ratio of 40/0, 40/20, 40/40 and 40/80 on copolymer production were studied. Both combinations of acetate with valerate and acetate with propionate were found to induce the accumulation of poly-β-hydroxybutyrate-co-β-hydroxyvalerate (PHBV within the cell. Acetate with propionate in the molar ratio of 40/40 gave the highest poly-β-hydroxyalkanoates (PHA content (77.68%, followed by acetate with valerate at the same molar ratio (77.42%. Although their polymer contents were similar, the presence of 40 mM valerate gave more than 4 times higher hydroxyvalerate (HV fraction (84.77% than in the presence of 40 mM propionate (19.12% HV fraction.

  3. Extracellular production of tellurium nanoparticles by the photosynthetic bacterium Rhodobacter capsulatus.

    Science.gov (United States)

    Borghese, Roberto; Brucale, Marco; Fortunato, Gianuario; Lanzi, Massimiliano; Mezzi, Alessio; Valle, Francesco; Cavallini, Massimiliano; Zannoni, Davide

    2016-05-15

    The toxic oxyanion tellurite (TeO3(2-)) is acquired by cells of Rhodobacter capsulatus grown anaerobically in the light, via acetate permease ActP2 and then reduced to Te(0) in the cytoplasm as needle-like black precipitates. Interestingly, photosynthetic cultures of R. capsulatus can also generate Te(0) nanoprecipitates (TeNPs) outside the cells upon addition of the redox mediator lawsone (2-hydroxy-1,4-naphtoquinone). TeNPs generation kinetics were monitored to define the optimal conditions to produce TeNPs as a function of various carbon sources and lawsone concentration. We report that growing cultures over a 10 days period with daily additions of 1mM tellurite led to the accumulation in the growth medium of TeNPs with dimensions from 200 up to 600-700nm in length as determined by atomic force microscopy (AFM). This result suggests that nucleation of TeNPs takes place over the entire cell growth period although the addition of new tellurium Te(0) to pre-formed TeNPs is the main strategy used by R. capsulatus to generate TeNPs outside the cells. Finally, X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared (FT-IR) analysis of TeNPs indicate they are coated with an organic material which keeps the particles in solution in aqueous solvents. PMID:26894294

  4. Introduction of new carotenoids into the bacterial photosynthetic apparatus by combining the carotenoid biosynthetic pathways of Erwinia herbicola and Rhodobacter sphaeroides.

    OpenAIRE

    Hunter, C N; Hundle, B S; Hearst, J E; Lang, H.P.; Gardiner, A.T.; Takaichi, S; Cogdell, R. J.

    1994-01-01

    Carotenoids have two major functions in bacterial photosynthesis, photoprotection and accessory light harvesting. The genes encoding many carotenoid biosynthetic pathways have now been mapped and cloned in several different species, and the availability of cloned genes which encode the biosynthesis of carotenoids not found in the photosynthetic genus Rhodobacter opens up the possibility of introducing a wider range of foreign carotenoids into the bacterial photosynthetic apparatus than would ...

  5. Urea Utilization in the Phototrophic Bacterium Rhodobacter capsulatus Is Regulated by the Transcriptional Activator NtrC

    Science.gov (United States)

    Masepohl, Bernd; Kaiser, Björn; Isakovic, Nazila; Richard, Cynthia L.; Kranz, Robert G.; Klipp, Werner

    2001-01-01

    The phototrophic nonsulfur purple bacterium Rhodobacter capsulatus can use urea as a sole source of nitrogen. Three transposon Tn5-induced mutations (Xan-9, Xan-10, and Xan-19), which led to a Ure− phenotype, were mapped to the ureF and ureC genes, whereas two other Tn5 insertions (Xan-20 and Xan-22) were located within the ntrC and ntrB genes, respectively. As in Klebsiella aerogenes and other bacteria, the genes encoding urease (ureABC) and the genes required for assembly of the nickel metallocenter (ureD and ureEFG) are clustered in R. capsulatus (ureDABC-orf136-ureEFG). No homologues of Orf136 were found in the databases, and mutational analysis demonstrated that orf136 is not essential for urease activity or growth on urea. Analysis of a ureDA-lacZ fusion showed that maximum expression of the ure genes occurred under nitrogen-limiting conditions (e.g., serine or urea as the sole nitrogen source), but ure gene expression was not substrate (urea) inducible. Expression of the ure genes was strictly dependent on NtrC, whereas ς54 was not essential for urease activity. Expression of the ure genes was lower (by a factor of 3.5) in the presence of ammonium than under nitrogen-limiting conditions, but significant transcription was also observed in the presence of ammonium, approximately 10-fold higher than in an ntrC mutant background. Thus, ure gene expression in the presence of ammonium also requires NtrC. Footprint analyses demonstrated binding of NtrC to tandem binding sites upstream of the ureD promoter. Phosphorylation of NtrC increased DNA binding by at least eightfold. Although urea is effectively used as a nitrogen source in an NtrC-dependent manner, nitrogenase activity was not repressed by urea. PMID:11133958

  6. Genome Shuffling of Rhodobacter Sphaeroides to Improve Coenzyme Q10 Production%利用基因组改组技术提高辅酶Q10产量

    Institute of Scientific and Technical Information of China (English)

    宋丽雅; 乔志新; 李伟静; 贺敏; 于群

    2012-01-01

    Coenzyme Q10 (CoQ10 ) is an important electron transfer molecule in the respiratory chain and the indispensable coenzyme in the production of ATP, and it is widely used in therapeutic applications for several diseases such as heart diseases, hepatitis, Parkinson and so on. In order to improve the production of CoQ10, this paper studies the screening of the mutant Rhodobacter sphaeroides aiming for a higher CoQ10 production by genome shuffling. According to the biosynthetic pathway and its mechanism, various resistance markers are selected, including the roxithromycin, the kanamycin, the p-hydroxy benzcic acid, the vitamin K3 and sodium sulfide (Na2S). Their concentrations are determined according to the tolerance experiments on Rhodobacter sphaeroides. The improved starting population including nine mutant strains is generated by different resistance markers and different mutagenesis ways, such as the ultraviolet irradiation, the ultraviolet/lithium chloride, the diethyl sulfate, the microwave radiation and the y Co60. Several high CoQ10-producing colonies, including PN13, are selected from the first shuffled library. The CoQ10 content of the PN13 reaches 2.39mg/g, 2.52 times of that of the wild-type strain.%辅酶Q10(CoQ10)是生物细胞呼吸链中的重要递氢体,已广泛应用于心脏病、肝炎、帕金森症等多种疾病的治疗中.为了提高微生物法生产CoQ10的产量,本文利用基因组改组技术选育类球红细菌辅酶Q10高产菌株.根据CoQ10的合成途径及作用机理,确定了不同的抗性筛选标记物:罗红霉素、卡那霉素、对羟基苯甲酸、维生素K3和硫化钠.根据类球红细菌对标记物的耐受性确定了抗性筛选浓度.通过紫外线、紫外线/氯化锂、硫酸二乙酯、微波及钴60 5种诱变方式以及抗性培养基筛选获得了9株改良的突变株作为出发菌株.通过一轮基因组改组得到了几株高产菌株,其中PN13产CoQ10的量可达到2.39mg/g,是原菌的252倍.

  7. Optimization of fermentation conditions for carotenoids production by Rhodobacter sphaeroides%类球红细菌发酵生产类胡萝卜素条件优化

    Institute of Scientific and Technical Information of China (English)

    孔丽娜; 李祖明; 高兆兰; 杨卫东; 王栋; 白志辉

    2015-01-01

    Fermentation medium and cultural conditions were optimized for the production of carotenoids by Rhodobacter sphaeroides 3757 . The results showed that the optimized fermentation medium contained (%):glucose 2 . 0 ,sodium malate 0. 5,yeast extract 1. 3,ammonium sulfate 0. 9,K2 HPO4 0. 09,KH2 PO4 0. 06,vitamin solution 1% and pH 8. 0. The vitamin solution contained (%):VB1 0. 1,nicotinamide (VPP)0. 1,and biotin 0. 0016. After inoculated with 5%of a 24-h-old inoculum culture and incubated at 32 ℃ for 40 h at 200 r/min,the yield of carotenoids was increased by 76. 2% in contrast with that of its initial fermentation conditions.%本文对类球红细菌3757产类胡萝卜素进行了发酵条件优化,结果得到了较优的培养基组成:葡萄糖2%,苹果酸钠0.5%,酵母浸粉1.3%,硫酸铵0.9%,磷酸氢二钾0.09%,磷酸二氢钾0 .06%,生长因子溶液1%,pH 8 .0;其中,生长因子溶液配方:维生素 B10.1%,烟酰胺(VPP )0.1%,生物素0.0016%。较优培养条件为:接种量5%,转速200 r/min,种龄24 h,发酵温度32℃,发酵时间40 h。优化后类胡萝卜素产率较优化前提高了76.2%。

  8. Role of B800 in carotenoid-bacteriochlorophyll energy and electron transfer in LH2 complexes from the purple bacterium Rhodobacter sphaeroides

    Czech Academy of Sciences Publication Activity Database

    Polívka, Tomáš; Niedzwiedzki, D.; Fuciman, M.; Sundström, V.; Frank, H.A.

    2007-01-01

    Roč. 111, č. 25 (2007), s. 7422-7431. ISSN 1520-6106 R&D Projects: GA AV ČR IAA608170604 Institutional research plan: CEZ:AV0Z50510513 Keywords : carotenoid radicals * energy transfer Subject RIV: BO - Biophysics Impact factor: 4.086, year: 2007

  9. Occurrence and sequence of Sphaeroides Heme Protein and Diheme Cytochrome C in purple photosynthetic bacteria in the family Rhodobacteraceae

    Directory of Open Access Journals (Sweden)

    Kyndt John A

    2010-06-01

    Full Text Available Abstract Background Sphaeroides Heme Protein (SHP was discovered in the purple photosynthetic bacterium, Rhodobacter sphaeroides, and is the only known c-type heme protein that binds oxygen. Although initially not believed to be widespread among the photosynthetic bacteria, the gene has now been found in more than 40 species of proteobacteria and generally appears to be regulated. Rb. sphaeroides is exceptional in not having regulatory genes associated with the operon. We have thus analyzed additional purple bacteria for the SHP gene and examined the genetic context to obtain new insights into the operon, its distribution, and possible function. Results We found SHP in 9 out of 10 strains of Rb. sphaeroides and in 5 out of 10 purple photosynthetic bacterial species in the family Rhodobacteraceae. We found a remarkable similarity within the family including the lack of regulatory genes. Within the proteobacteria as a whole, SHP is part of a 3-6 gene operon that includes a membrane-spanning diheme cytochrome b and one or two diheme cytochromes c. Other genes in the operon include one of three distinct sensor kinase - response regulators, depending on species, that are likely to regulate SHP. Conclusions SHP is not as rare as generally believed and has a role to play in the photosynthetic bacteria. Furthermore, the two companion cytochromes along with SHP are likely to function as an electron transfer pathway that results in the reduction of SHP by quinol and formation of the oxygen complex, which may function as an oxygenase. The three distinct sensors suggest at least as many separate functional roles for SHP. Two of the sensors are not well characterized, but the third is homologous to the QseC quorum sensor, which is present in a number of pathogens and typically appears to regulate genes involved in virulence.

  10. Rhodobase, a meta-analytical tool for reconstructing gene regulatory networks in a model photosynthetic bacterium.

    Science.gov (United States)

    Moskvin, Oleg V; Bolotin, Dmitry; Wang, Andrew; Ivanov, Pavel S; Gomelsky, Mark

    2011-02-01

    We present Rhodobase, a web-based meta-analytical tool for analysis of transcriptional regulation in a model anoxygenic photosynthetic bacterium, Rhodobacter sphaeroides. The gene association meta-analysis is based on the pooled data from 100 of R. sphaeroides whole-genome DNA microarrays. Gene-centric regulatory networks were visualized using the StarNet approach (Jupiter, D.C., VanBuren, V., 2008. A visual data mining tool that facilitates reconstruction of transcription regulatory networks. PLoS ONE 3, e1717) with several modifications. We developed a means to identify and visualize operons and superoperons. We designed a framework for the cross-genome search for transcription factor binding sites that takes into account high GC-content and oligonucleotide usage profile characteristic of the R. sphaeroides genome. To facilitate reconstruction of directional relationships between co-regulated genes, we screened upstream sequences (-400 to +20bp from start codons) of all genes for putative binding sites of bacterial transcription factors using a self-optimizing search method developed here. To test performance of the meta-analysis tools and transcription factor site predictions, we reconstructed selected nodes of the R. sphaeroides transcription factor-centric regulatory matrix. The test revealed regulatory relationships that correlate well with the experimentally derived data. The database of transcriptional profile correlations, the network visualization engine and the optimized search engine for transcription factor binding sites analysis are available at http://rhodobase.org. PMID:21070832

  11. A model invalidation-based approach for elucidating biological signalling pathways, applied to the chemotaxis pathway in R. sphaeroides

    Directory of Open Access Journals (Sweden)

    Hamadeh Abdullah

    2009-10-01

    Full Text Available Abstract Background Developing methods for understanding the connectivity of signalling pathways is a major challenge in biological research. For this purpose, mathematical models are routinely developed based on experimental observations, which also allow the prediction of the system behaviour under different experimental conditions. Often, however, the same experimental data can be represented by several competing network models. Results In this paper, we developed a novel mathematical model/experiment design cycle to help determine the probable network connectivity by iteratively invalidating models corresponding to competing signalling pathways. To do this, we systematically design experiments in silico that discriminate best between models of the competing signalling pathways. The method determines the inputs and parameter perturbations that will differentiate best between model outputs, corresponding to what can be measured/observed experimentally. We applied our method to the unknown connectivities in the chemotaxis pathway of the bacterium Rhodobacter sphaeroides. We first developed several models of R. sphaeroides chemotaxis corresponding to different signalling networks, all of which are biologically plausible. Parameters in these models were fitted so that they all represented wild type data equally well. The models were then compared to current mutant data and some were invalidated. To discriminate between the remaining models we used ideas from control systems theory to determine efficiently in silico an input profile that would result in the biggest difference in model outputs. However, when we applied this input to the models, we found it to be insufficient for discrimination in silico. Thus, to achieve better discrimination, we determined the best change in initial conditions (total protein concentrations as well as the best change in the input profile. The designed experiments were then performed on live cells and the resulting

  12. Selective isolation of UV-sensitive Rhodopseudomonas sphaeroides mutants

    International Nuclear Information System (INIS)

    Application of penicillin selection method after UV irradiation (λ=254 nm) increases by an order efficiency of mutant selection sensible to ulraviolet radiation (uvs mutants), phototrophic bacterium Rhodopseudomonas sphaeroides induced with nitrosomethylurea (NMM). Over 30% of uvs mutants produced by means of this method possessed increased sensitivity not only to short-wave (sUV, λ=254 nm) but also to long-wave (lUV, λ>280 nm) UV radiations. No correlation in the degree of sensitivity of uvs mutants to sUV and lUV irradiations is discovered. Mutants, which are high-sensitive to lethal effect of lUV, are separated

  13. Inactivation of Mg Chelatase during Transition from Anaerobic to Aerobic Growth in Rhodobacter capsulatus

    OpenAIRE

    Willows, Robert D; Lake, Vanessa; Roberts, Thomas Hugh; Beale, Samuel I.

    2003-01-01

    The facultative photosynthetic bacterium Rhodobacter capsulatus can adapt from an anaerobic photosynthetic mode of growth to aerobic heterotrophic metabolism. As this adaptation occurs, the cells must rapidly halt bacteriochlorophyll synthesis to prevent phototoxic tetrapyrroles from accumulating, while still allowing heme synthesis to continue. A likely control point is Mg chelatase, the enzyme that diverts protoporphyrin IX from heme biosynthesis toward the bacteriochlorophyll biosynthetic ...

  14. Hydrogen generation by Rhodobacter spahaeroides O.U. 001: the effect of photo-bioreactor construction material

    International Nuclear Information System (INIS)

    Generation of hydrogen by purple, non-sulfur bacteria of Rhodobacter sphaeroides O.U.001 was tested in photo-bioreactors made of different materials. Reactors made of ordinary sodium-type glass, borosilicate glass (Pyrex) or polycarbonate were applied in the present study. The applied medium containing malic acid and sodium glutamate inoculated with 0.11 or 0.31 g dry wt. of Rhodobacater sphaeroides was illuminated with 5 or 17 klx. Simultaneous measurements of evolved hydrogen, biomass growth, and COD were performed. The concentration of carotenoids and bacterio-chlorophyll was tested. In all tests the highest yield of hydrogen was obtained applying sodium glass photo-bioreactors illuminated with of 5 klx. Application of borosilicate glass or polycarbonate reactors reduced the amount of evolved hydrogen by 75 %. The best yield of hydrogen (2.1 dm3 of H2 per dm3 of medium) was obtained after illumination with 5 klx. (authors)

  15. Energy transfer in an LH4-like light harvesting complex from the aerobic purple photosynthetic bacterium Roseobacter denitrificans

    Energy Technology Data Exchange (ETDEWEB)

    Niedzwiedzki, Dariusz; Fuciman, Marcel; Frank, Harry A; Blankenship, R. E.

    A peripheral light-harvesting complex from the aerobic purple bacterium Roseobacter (R.) denitrificans was purified and its photophysical properties characterized. The complex contains two types of pigments, bacteriochlorophyll (BChl) a and the carotenoid (Car) spheroidenone and possesses unique spectroscopic properties. It appears to lack the B850 bacteriochlorophyll a Q{sub y} band that is typical for similar light-harvesting complex 2 antennas. Circular dichroism and low temperature steady-state absorption spectroscopy revealed that the B850 band is present but is shifted significantly to shorter wavelengths and overlaps with the B800 band at room temperature. Such a spectral signature classifies this protein as a member of the light-harvesting complex 4 class of peripheral light-harvesting complexes, along with the previously known light-harvesting complex 4 from Rhodopseudomonas palustris. The influence of the spectral change on the light-harvesting ability was studied using steady-state absorption, fluorescence, circular dichroism, femtosecond and microsecond time-resolved absorption and time-resolved fluorescence spectroscopies. The results were compared to the properties of the similar (in pigment composition) light-harvesting complex 2 from aerobically grown Rhodobacter sphaeroides and are understood within the context of shared similarities and differences and the putative influence of the pigments on the protein structure and its properties.

  16. A Cu{sup 2+} site common to photosynthetic bacterial reaction centers from Rb. sphaeroides, Rb. capsulatus, and Rps. viridis.

    Energy Technology Data Exchange (ETDEWEB)

    Utschig, L. M.; Poluektov, O.; Schlesselman, S. L.; Thurnauer, M. C.; Tiede, D. M.; Chemistry

    2001-05-22

    The interaction of metal ions with isolated photosynthetic reaction centers (RCs) from the purple bacteria Rhodobacter sphaeroides, Rhodobacter capsulatus, and Rhodopseudomonas viridis has been investigated with transient optical and magnetic resonance techniques. In RCs from all species, the electrochromic response of the bacteriopheophytin cofactors associated with Q{sub A}{sup -}Q{sub B} {yields} Q{sub A}Q{sub B}{sup -} electron transfer is slowed in the presence of Cu{sup 2+}. This slowing is similar to the metal ion effect observed for RCs from Rb. sphaeroides where Zn{sup 2+} was bound to a specific site on the surface of the RC [Utschig et al. (1998) Biochemistry 37, 8278]. The coordination environments of the Cu{sup 2+} sites were probed with electron paramagnetic resonance (EPR) spectroscopy, providing the first direct spectroscopic evidence for the existence of a second metal site in RCs from Rb. capsulatus and Rps. viridis. In the dark, RCs with Cu{sup 2+} bound to the surface exhibit axially symmetric EPR spectra. Electron spin echo envelope modulation (ESEEM) spectral results indicate multiple weakly hyperfine coupled {sup 14}N nuclei in close proximity to Cu{sup 2+}. These ESEEM spectra resemble those observed for Cu{sup 2+} RCs from Rb. sphaeroides [Utschig et al. (2000) Biochemistry 39, 2961] and indicate that two or more histidines ligate the Cu{sup 2+} at the surface site in each RC. Thus, RCs from Rb. sphaeroides, Rb. capsulatus, and Rps. viridis each have a structurally analogous Cu{sup 2+} binding site that is involved in modulating the Q{sub A}{sup -}Q{sub B} {yields} Q{sub A}Q{sub B}{sup -} electron-transfer process. Inspection of the Rps. viridis crystal structure reveals four potential histidine ligands from three different subunits (M16, H178, H72, and L211) located beneath the Q{sub B} binding pocket. The location of these histidines is surprisingly similar to the grouping of four histidine residues (H68, H126, H128, and L211) observed in

  17. BIOREMEDIATION OF SLAUGHTER HOUSE WASTE WATER BY RHODOBACTER SP. GSKRLMBKU-02

    Directory of Open Access Journals (Sweden)

    Kadari Rajyalaxmi

    2015-07-01

    Full Text Available Biological treatment of waste waters is a sustainable alternative for waste treatment to existing treatment methods. Microbial metabolism effects pH, BOD, COD, DO and concentration of suspended solids present in slaughter house waste water. Rhodobacter sp. GSKRLMBKU-02 from paper mill waste water was used in the present study to remediate slaughter house waste water. Treatment with this bacterium caused a significant decrease in some of the parameters tested for waste water. Remediation of slaughter house waste water of Warangal by Rhodobacter sp. GSKRLMBKU-02 showed a 28% decrease in DO, 52% decrease in BOD, 76% decrease in COD and organic matter decreased to the extent of 55%. Further a reduction in the levels of Chloride (68%, sulphates (69% and bicarbonates (34% were also noticed due to the growth of this bacterium.

  18. BIOREMEDIATION OF SLAUGHTER HOUSE WASTE WATER BY RHODOBACTER SP. GSKRLMBKU-02

    OpenAIRE

    Kadari Rajyalaxmi; Ramchander Merugu; S.Girisham; Reddy SM

    2015-01-01

    Biological treatment of waste waters is a sustainable alternative for waste treatment to existing treatment methods. Microbial metabolism effects pH, BOD, COD, DO and concentration of suspended solids present in slaughter house waste water. Rhodobacter sp. GSKRLMBKU-02 from paper mill waste water was used in the present study to remediate slaughter house waste water. Treatment with this bacterium caused a significant decrease in some of the parameters tested for waste water. Remediation of sl...

  19. The effect of temperature and light intensity on hydrogen production by Rhodobacter capsulatus

    Energy Technology Data Exchange (ETDEWEB)

    Eroglu, Inci [Middle East Technical Univ., Ankara (Turkey). Dept. of Chemical Engineering; Sevinc, Pelin [Middle East Technical Univ., Ankara (Turkey). Dept. of Biotechnology; Guenduez, Ufuk; Yucel, Meral [Middle East Technical Univ., Ankara (Turkey). Dept. of Biological Sciences

    2010-07-01

    Rhodobacter capsulatus is a purple non-sulfur photosynthetic bacterium which can produce hydrogen by photofermentation on acetate and lactate. Hydrogen productivity depends on several parameters such as medium composition, pH, light intensity and temperature. In the present study, the effects of temperature and light intensity on hydrogen production were investigated. The cell growth curve has been fitted to the logistic model and hydrogen productivity was interpreted by Modified Gompertz Equation. The maximum productivity was obtained at 30 C and light intensity of 4000 lux. (orig.)

  20. Ferrochelatase from Rhodopseudomonas sphaeroides: substrate specificity and role of sulfhydryl and arginyl residues

    International Nuclear Information System (INIS)

    Purified ferrochelatase from the bacterium Rhodopseudomonas sphaeroides was examined to determine the roles of cationic and sulfhydryl residues in substrate binding. Reaction of the enzyme sulfhydryl residues with N-ethylmaleimide or monobromobimane resulted in a rapid loss of enzyme activity. Ferrous iron, but not porphyrin substrate, had a protective effect against inactivation by these two reagents. Quantitation with 3H-labeled N-ethylmaleimide revealed that inactivation required one to two sulfhydryl groups to be modified. Modification of arginyl residues with either 2,3-butanedione or camphorquinone 10-sulfonate resulted in a loss of ferrochelatase activity. A kinetic analysis of the modified enzyme showed that the K/sub m/ for ferrous iron was not altered but that the K/sub m/ for the prophyrin substrate was increased. These data suggested that arginyl residues may be involved in porphyrin binding, possibly via charge pair interactions between the arginyl residue and the anionic porphyrin propionate side chain. Modification of lysyl residues had no effect on enzyme activity. The authors also examined the ability of bacterial ferrochelatase to use various 2,4-disubstituted porphyrins as substrates. The authors found that 2,4-bis-acetal- and 2,4-disulfonate deuteroporphyrins were effective substrates for the purified bacterial enzyme and that N-methylprotoporphyrin was an effective inhibitor of the enzyme. Data for the ferrochelatase of R. sphaeroides are compared with previously published data for the eucaryotic enzyme

  1. Enhanced photo-fermentative H2 production using Rhodobacter sphaeroides by ethanol addition and analysis of soluble microbial products

    OpenAIRE

    KIM, DONG-HOON; Lee, Ji-Hye; Kang, Seoktae; Hallenbeck, Patrick C.; Kim, Eui-Jin; Lee, Jeong K.; Kim, Mi-Sun

    2014-01-01

    Background Biological fermentation routes can provide an environmentally friendly way of producing H2 since they use renewable biomass as feedstock and proceed under ambient temperature and pressure. In particular, photo-fermentation has superior properties in terms of achieving high H2 yield through complete degradation of substrates. However, long-term H2 production data with stable performance is limited, and this data is essential for practical applications. In the present work, continuou...

  2. Complete Genome Sequences of Five Bacteriophages That Infect Rhodobacter capsulatus

    Science.gov (United States)

    Bernardoni, Brooke; Bockman, Matthew R.; Miller, Brenda M.; Russell, Daniel A.; Delesalle, Veronique A.; Krukonis, Gregory P.; Hatfull, Graham F.; Cross, Madeline R.; Szewczyk, Marlena M.; Eppurath, Atul

    2016-01-01

    Five bacteriophages that infect the Rhodobacter capsulatus strain YW1 were isolated from stream water near Bloomington, Illinois, USA. Two distinct genome types are represented in the newly isolated bacteriophages. These genomes are different from other bacteriophage genomes previously described. PMID:27231352

  3. Crystallization of a flavodoxin involved in nitrogen fixation in Rhodobacter capsulatus

    Energy Technology Data Exchange (ETDEWEB)

    Pérez-Dorado, Inmaculada [Grupo de Cristalografía Macromolecular y Biología Estructural, Instituto de Química-Física Rocasolano, CSIC, Serrano 119, 28006 Madrid (Spain); Bortolotti, Ana; Cortez, Néstor [Instituto de Biología Molecular y Celular de Rosario (Universidad Nacional de Rosario y CONICET), Suipacha 531, S2002LRK Rosario (Argentina); Hermoso, Juan A., E-mail: xjuan@iqfr.csic.es [Grupo de Cristalografía Macromolecular y Biología Estructural, Instituto de Química-Física Rocasolano, CSIC, Serrano 119, 28006 Madrid (Spain)

    2008-05-01

    The flavodoxin NifF from R. capsulatus, a candidate for nitrogenase reduction during nitrogen fixation, has been crystallized using the hanging-drop vapour-diffusion method. Preliminary X-ray data processing at 2.17 Å resolution allowed determination of the crystal system and unit-cell parameters. Flavodoxins are small electron-transfer proteins that contain one molecule of noncovalently bound flavin mononucleotide (FMN). The flavodoxin NifF from the photosynthetic bacterium Rhodobacter capsulatus is reduced by one electron from ferredoxin/flavodoxin:NADP(H) reductase and was postulated to be an electron donor to nitrogenase in vivo. NifF was cloned and overexpressed in Escherichia coli, purified and concentrated for crystallization using the hanging-drop vapour-diffusion method at 291 K. Crystals grew from a mixture of PEG 3350 and PEG 400 at pH 5.5 and belong to the tetragonal space group P4{sub 1}2{sub 1}2, with unit-cell parameters a = b = 66.49, c = 121.32 Å. X-ray data sets have been collected to 2.17 Å resolution.

  4. Crystallization of a flavodoxin involved in nitrogen fixation in Rhodobacter capsulatus

    International Nuclear Information System (INIS)

    The flavodoxin NifF from R. capsulatus, a candidate for nitrogenase reduction during nitrogen fixation, has been crystallized using the hanging-drop vapour-diffusion method. Preliminary X-ray data processing at 2.17 Å resolution allowed determination of the crystal system and unit-cell parameters. Flavodoxins are small electron-transfer proteins that contain one molecule of noncovalently bound flavin mononucleotide (FMN). The flavodoxin NifF from the photosynthetic bacterium Rhodobacter capsulatus is reduced by one electron from ferredoxin/flavodoxin:NADP(H) reductase and was postulated to be an electron donor to nitrogenase in vivo. NifF was cloned and overexpressed in Escherichia coli, purified and concentrated for crystallization using the hanging-drop vapour-diffusion method at 291 K. Crystals grew from a mixture of PEG 3350 and PEG 400 at pH 5.5 and belong to the tetragonal space group P41212, with unit-cell parameters a = b = 66.49, c = 121.32 Å. X-ray data sets have been collected to 2.17 Å resolution

  5. Two distinct ferredoxins from Rhodobacter capsulatus: complete amino acid sequences and molecular evolution.

    Science.gov (United States)

    Saeki, K; Suetsugu, Y; Yao, Y; Horio, T; Marrs, B L; Matsubara, H

    1990-09-01

    Two distinct ferredoxins were purified from Rhodobacter capsulatus SB1003. Their complete amino acid sequences were determined by a combination of protease digestion, BrCN cleavage and Edman degradation. Ferredoxins I and II were composed of 64 and 111 amino acids, respectively, with molecular weights of 6,728 and 12,549 excluding iron and sulfur atoms. Both contained two Cys clusters in their amino acid sequences. The first cluster of ferredoxin I and the second cluster of ferredoxin II had a sequence, CxxCxxCxxxCP, in common with the ferredoxins found in Clostridia. The second cluster of ferredoxin I had a sequence, CxxCxxxxxxxxCxxxCM, with extra amino acids between the second and third Cys, which has been reported for other photosynthetic bacterial ferredoxins and putative ferredoxins (nif-gene products) from nitrogen-fixing bacteria, and with a unique occurrence of Met. The first cluster of ferredoxin II had a CxxCxxxxCxxxCP sequence, with two additional amino acids between the second and third Cys, a characteristics feature of Azotobacter-[3Fe-4S] [4Fe-4S]-ferredoxin. Ferredoxin II was also similar to Azotobacter-type ferredoxins with an extended carboxyl (C-) terminal sequence compared to the common Clostridium-type. The evolutionary relationship of the two together with a putative one recently found to be encoded in nifENXQ region in this bacterium [Moreno-Vivian et al. (1989) J. Bacteriol. 171, 2591-2598] is discussed. PMID:2277040

  6. Improving the hydrogen production capacity of Rhodobacter capsulatus by genetically modifying redox balancing pathways

    Energy Technology Data Exchange (ETDEWEB)

    Oeztuerk, Yavuz [TUEBITAK Research Institute for Genetic Engineering and Biotechnology, Gebze Kocaeli (Turkey); Goekce, Abdulmecit [Istanbul Technical Univ. (Turkey). Dept. of Molecular Biology and Genetics; Guergan, Muazzez; Yuecel, Meral [Middle East Technical Univ., Ankara (Turkey). Dept. of Biology

    2010-07-01

    In Rhodobacter capsulatus, balancing the oxidation-reduction potential (redox-balance) is maintained via a number of inter-dependent regulatory mechanisms that enable these organisms to accommodate divergent growth modes. In order to maintain redox homeostasis, this bacterium possesses regulatory mechanisms functioning as electron sinks affecting the oxidation-reduction state of the ubiquinone pool. Under the photoheterotrophic growth conditions with reduced carbon sources, the excess reducing equivalents are primarily consumed via the reduction of CO{sub 2} through the Calvin-Benson-Bassham (CBB) pathway or by the reduction of protons into hydrogen with the use of dinitrogenase enzyme system. In this study, our aim was to develop strategies to funnel the excess reducing equivalents to nitrogenase-dependent hydrogen production by blocking the carbon-fixation pathway. To realize this purpose, CO{sub 2} fixation was blocked by inactivating the Phosphoribulokinase (PRK) of CBB pathway in wild type (MT1131), uptake-hydrogenase (YO3) and cyt cbb{sub 3} oxidase deficient (YO4) strains. The hydrogen production capacity of newly generated strains deficient in the Calvin-Benson-Bassham pathway were analyzed and compared with wild type strains. The results indicated that, the hydrogen production efficiency and capacity of R. capsulatus was further improved by directing the excess reducing equivalents to dinitrogenase-dependent hydrogen production. (orig.)

  7. Complete genome sequence of the photosynthetic purple nonsulfur bacterium Rhodobacter capsulatus SB 1003

    Czech Academy of Sciences Publication Activity Database

    Strnad, Hynek; Lapidus, A.; Pačes, Jan; Ulbrich, P.; Vlček, Čestmír; Pačes, Václav; Haselkorn, R.

    2010-01-01

    Roč. 192, č. 13 (2010), s. 3545-3546. ISSN 0021-9193 R&D Projects: GA MŠk 1M0520 Institutional research plan: CEZ:AV0Z50520514 Keywords : transfer-RNA genes * identification * annotation Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.726, year: 2010

  8. Embryonic, Larval, and Early Juvenile Development of the Tropical Sea Urchin, Salmacis sphaeroides (Echinodermata: Echinoidea)

    OpenAIRE

    M. Aminur Rahman; Fatimah Md. Yusoff; Arshad, A.; Mariana Nor Shamsudin; Amin, S.M.N.

    2012-01-01

    Salmacis sphaeroides (Linnaeus, 1758) is one of the regular echinoids, occuring in the warm Indo-West Pacific, including Johor Straits, between Malaysia and Singapore. In order to investigate the developmental basis of morphological changes in embryos and larvae, we documented the ontogeny of S. sphaeroides in laboratory condition. Gametes were obtained from adult individuals by 0.5 M KCl injection into the coelomic cavity. Fertilization rate at limited sperm concentration (10−5 dilution) was...

  9. Rhodobacter capsulatus porphobilinogen synthase, a high activity metal ion independent hexamer

    Directory of Open Access Journals (Sweden)

    Fairman Robert

    2004-11-01

    Full Text Available Abstract Background The enzyme porphobilinogen synthase (PBGS, which is central to the biosynthesis of heme, chlorophyll and cobalamins, has long been known to use a variety of metal ions and has recently been shown able to exist in two very different quaternary forms that are related to metal ion usage. This paper reports new information on the metal ion independence and quaternary structure of PBGS from the photosynthetic bacterium Rhodobacter capsulatus. Results The gene for R. capsulatus PBGS was amplified from genomic DNA and sequencing revealed errors in the sequence database. R. capsulatus PBGS was heterologously expressed in E. coli and purified to homogeneity. Analysis of an unusual phylogenetic variation in metal ion usage by PBGS enzymes predicts that R. capsulatus PBGS does not utilize metal ions such as Zn2+, or Mg2+, which have been shown to act in other PBGS at either catalytic or allosteric sites. Studies with these ions and chelators confirm the predictions. A broad pH optimum was determined to be independent of monovalent cations, approximately 8.5, and the Km value shows an acidic pKa of ~6. Because the metal ions of other PBGS affect the quaternary structure, gel permeation chromatography and analytical ultracentrifugation experiments were performed to examine the quaternary structure of metal ion independent R. capsulatus PBGS. The enzyme was found to be predominantly hexameric, in contrast with most other PBGS, which are octameric. A protein concentration dependence to the specific activity suggests that the hexameric R. capsulatus PBGS is very active and can dissociate to smaller, less active, species. A homology model of hexameric R. capsulatus PBGS is presented and discussed. Conclusion The evidence presented in this paper supports the unusual position of the R. capsulatus PBGS as not requiring any metal ions for function. Unlike other wild-type PBGS, the R. capsulatus protein is a hexamer with an unusually high specific

  10. Molecular genetic and molecular evolutionary studies on the bacteriochlorophyll synthesis genes of Rhodobacter capsulatus

    Energy Technology Data Exchange (ETDEWEB)

    Burke-Agueero, D.H.

    1992-08-01

    Rhodobacter capsulatus, purple bacterium capable of either aerobic or photosynthetic growth, has proven to be very useful in genetic studies of photosynthesis. Forty-four genes clustered together within a 46 kilobase region are required to establish photosynthetic ability in R. capsulatus. Approximately twenty of these genes are involved in bacteriochlorophyll synthesis of which eight bch'' genes are the subject of this thesis. Six of these genes were found to code for the two ring reductases. The first converts protochlorophyllide (PChlide) into a chlorin, the immediate precursor to chlorophyll a, and then into a bacteriochlorin. Each reductase is shown to be made up of three subunits. PChlide reductase is coded by the genes bchN, bchB, and bchL. Proteins with amino acid sequences markedly similar to those of bchN and bchL have been shown in other organisms to be required for chlorophyll synthesis; hence, their designation as chlN and chlB. A third chloroplast-encoded gene of heretofore unknown function shares amino acid identities with bchB and is probably the third subunit of the plant PChlide reductase. The bchA locus, which encodes the chlorin reductase, is found to be made up of three separate, translationally coupled genes, referred to as bchX, bchY, and bchZ. Amino acid similarities between bchX, bchL, and the nitrogenase reductase protein nifH suggest that all three classes of proteins share certain three-dimensional structural features, including elements that are central to the enzymatic mechanism of nifH. PChlide reductase and chlorin reductase are clearly derived from a common ancestor. Several lines of analysis suggests the ancestor of both enzyme systems reduced PChlide twice to produce bacteriochlorophyll supporting the concept bacteriochlorophyll as the ancestral reaction center pigment.

  11. Molecular genetic and molecular evolutionary studies on the bacteriochlorophyll synthesis genes of Rhodobacter capsulatus

    Energy Technology Data Exchange (ETDEWEB)

    Burke-Agueero, D.H.

    1992-08-01

    Rhodobacter capsulatus, purple bacterium capable of either aerobic or photosynthetic growth, has proven to be very useful in genetic studies of photosynthesis. Forty-four genes clustered together within a 46 kilobase region are required to establish photosynthetic ability in R. capsulatus. Approximately twenty of these genes are involved in bacteriochlorophyll synthesis of which eight ``bch`` genes are the subject of this thesis. Six of these genes were found to code for the two ring reductases. The first converts protochlorophyllide (PChlide) into a chlorin, the immediate precursor to chlorophyll a, and then into a bacteriochlorin. Each reductase is shown to be made up of three subunits. PChlide reductase is coded by the genes bchN, bchB, and bchL. Proteins with amino acid sequences markedly similar to those of bchN and bchL have been shown in other organisms to be required for chlorophyll synthesis; hence, their designation as chlN and chlB. A third chloroplast-encoded gene of heretofore unknown function shares amino acid identities with bchB and is probably the third subunit of the plant PChlide reductase. The bchA locus, which encodes the chlorin reductase, is found to be made up of three separate, translationally coupled genes, referred to as bchX, bchY, and bchZ. Amino acid similarities between bchX, bchL, and the nitrogenase reductase protein nifH suggest that all three classes of proteins share certain three-dimensional structural features, including elements that are central to the enzymatic mechanism of nifH. PChlide reductase and chlorin reductase are clearly derived from a common ancestor. Several lines of analysis suggests the ancestor of both enzyme systems reduced PChlide twice to produce bacteriochlorophyll supporting the concept bacteriochlorophyll as the ancestral reaction center pigment.

  12. Blaulichtabhängige Genregulation in Rhodobacter sphaeroides : Untersuchungen zur physiologischen Funktion der Blaulichtphotorezeptoren AppA, CryB und LOV

    OpenAIRE

    Metz, Sebastian

    2010-01-01

    Licht stellt einen bedeutenden Umweltfaktor der Photosynthesegenregulation von phototropen Organismen dar. Da es neben seiner Funktion als Energieträger auch schädlichen Einfluss haben kann, müssen phototrophe Organismen Mechanismen entwickeln, um vorhandene Lichtreize in eine Genantwort umzusetzen. Blaulichtrezeptoren stellen dabei die häufigsten Proteine zur Lichtwahrnehmung in Prokaryoten dar und erlauben es ihnen, ihre Genantwort an die Bedingungen der Außenwelt anzupassen. In R. spha...

  13. Hydrogen production by Hup{sup -} mutant and wild type strains of Rhodobacter capsulatus on dark fermenter effluent of sugar beet thick juice in batch and continuous photobioreactors

    Energy Technology Data Exchange (ETDEWEB)

    Oezguer, Ebru [Middle East Technical Univ., Ankara (Turkey). Dept. of Chemical Engineering; Uyar, Basar [Kocaeli Univ. (Turkey). Dept. of Chemical Engineering; Guergan, Muazzez; Yuecel, Meral [Middle East Technical Univ., Ankara (Turkey). Dept. of Biology

    2010-07-01

    The HYVOLUTION project (EU 6th frame) is aimed to develop an integrated process in which biomass is fermented to acetate, lactate, CO{sub 2} and hydrogen followed by photofermentation of acetate and lactate to hydrogen and CO{sub 2} with photosynthetic purple nonsulfur bacteria (PNS bacteria). Growth and hydrogen production of Rhodobacter capsulatus was investigated on the dark fermenter effluent of thick juice (processed raw sugar beet juice) which contained acetate and NH{sub 4}Cl. In this effluent media, the hydrogen production of wild type bacterium and an uptake-hydrogenase deficient mutant (hup-) were compared in small scale (55 ml) batch and large scale (4 L) continuous photobioreactors in indoor conditions under constant illumination of 2000 lux. In continuous operation mode, the overall hydrogen production yields were 1.84 and 1.92 mol H{sub 2}/mol acetate, the maximum hydrogen productivities were 1.29 and 0.89 mmol H{sub 2}/L.h, for the wild type and mutant strains, respectively. On the other hand, in batch operation mode, the overall hydrogen production yields were 1.25 and 1.44 mol H{sub 2}/mol acetate, the maximum hydrogen productivities were 0.28 and 0.52 mmol H{sub 2}/L.h, for the wild type and mutant strains, respectively. The results show that Rhodobacter capsulatus is capable of using sugar beet thick juice effluent as substrate for hydrogen production; which makes it a suitable bacterium to be employed in integrated termophilic fermentation-photofermentation process. (orig.)

  14. RsaI: a new sequence-specific endonuclease activity from Rhodopseudomonas sphaeroides.

    OpenAIRE

    Lynn, S P; Cohen, L K; Kaplan, S; Gardner, J F

    1980-01-01

    A new type II sequence-specific endonuclease, RsaI, has been identified from Rhodopseudomonas sphaeroides strain 28/5. An RsaI purification scheme that yields enzyme which is free of contaminating exonuclease and phosphatase activities after a single column fractionation has been developed. The enzyme recognized the tetranucleotide sequence 5'-GTAC-3' and cleaved between the T and A, thereby generating flush ends. RsaI should be extremely useful in deoxyribonucleic acid sequencing experiments.

  15. Heat modifiability and detergent solubility of outer membrane proteins of Rhodopseudomonas sphaeroides.

    OpenAIRE

    Kent, N E; Wisnieski, B J

    1983-01-01

    The outer membrane fraction from Rhodopseudomonas sphaeroides was isolated by isopycnic density centrifugation. The purity of this fraction was assayed by several methods. When the outer membrane fraction obtained after French press lysis of cells was compared with the outer membrane fragments released during spheroplast formation, the polypeptide profiles were identical. Detergent solubilization of membrane fractions showed that Triton X-100 nonselectively solubilizes both the cytoplasmic me...

  16. Colony development and physiological characterization of the edible blue-green alga, Nostoc sphaeroides (Nostocaceae, Cyanophyta)

    Institute of Scientific and Technical Information of China (English)

    Zhongyang Deng; Qiang Hu; Fan Lu; Guoxiang Liu; Zhengyu Hu

    2008-01-01

    The edible blue-green alga,Nostoc sphaeroides Kützing,is able to form microcolorties and spherical macrocolonies.It has been used as a potent herbal medicine and dietary supplement for centuries because of its nutraceutical and pharmacological benefits.However,lim-ited information is available on the development of the spherical macrocolonies and the environmental factors that affect their structure.This report described the morphogenesis of N.Sphaeroides from single trichomes to macrocolonies.During the process,most structural features of macrocolonies of various sizes were dense maculas,rings,the compact core and the formation of liquid core;and the filaments within the macrocolonies showed different lengths and arrays depending on the sizes of macrocolonies.Meanwhile temperature and light intensity also strongly affected the internal structure of macrocolonies.As microcolonies further increased in size to form 30 mm mac-rocolonies,the colonies differentiated into distinct outer,middle and inner layers.The filaments of the outer layer showed higher max-imum photosynthetic rates,higher light saturation point,and higher photosynthetic efficiency than those of the inner layer;whereas the filaments of the inner layer had a higher content of chlorophyll a and phycobiliproteins than those of the outer layer.The results obtained in this study were important for the mass cultivation of N.Sphaeroides as a nutraceutical product.

  17. Nostoc sphaeroides Kützing, an excellent candidate producer for CELSS

    Science.gov (United States)

    Hao, Zongjie; Li, Dunhai; Li, Yanhui; Wang, Zhicong; Xiao, Yuan; Wang, Gaohong; Liu, Yongding; Hu, Chunxiang; Liu, Qifang

    2011-11-01

    Some phytoplankton can be regarded as possible candidates in the establishment of Controlled Ecological Life Support System (CELSS) for some intrinsic characteristics, the first characteristic is that they should grow rapidly, secondly, they should be able to endure some stress factors and develop some corresponding adaptive strategies; also it is very important that they could provide food rich in nutritious protein and vitamins for the crew; the last but not the least is they can also fulfill the other main functions of CELSS, including supplying oxygen, removing carbon dioxide and recycling the metabolic waste. According to these characteristics, Nostoc sphaeroides, a potential healthy food in China, was selected as the potential producer in CELSS. It was found that the oxygen average evolution rate of this algae is about 150 μmol O 2 mg -1 h -1, and the size of them are ranged from 2 to 20 mm. Also it can be cultured with high population density, which indicated that the potential productivity of Nostoc sphaeroides is higher than other algae in limited volume. We measured the nutrient contents of the cyanobacterium and concluded it was a good food for the crew. Based on above advantages, Nostoc sphaeroides was assumed to a suitable phytoplankton for the establishment of Controlled Ecological Life Support System. We plan to develop suitable bioreactor with the cyanobacterium for supplying oxygen and food in future space missions.

  18. Bacterial Ortholog of Mammalian Translocator Protein (TSPO) with Virulence Regulating Activity

    OpenAIRE

    Chapalain, Annelise; Chevalier, Sylvie; Orange, Nicole; Murillo, Laurence; Papadopoulos, Vassilios; Feuilloley, Marc G J

    2009-01-01

    The translocator protein (TSPO), previously designated as peripheral-type benzodiazepine receptor, is a protein mainly located in the outer mitochondrial membrane of eukaryotic cells. TSPO is implicated in major physiological functions and functionally associated with other proteins such as the voltage-dependent anionic channel, also designated as mitochondrial porin. Surprisingly, a TSPO-related protein was identified in the photosynthetic bacterium Rhodobacter sphaeroides but it was initial...

  19. Cloning and characterization of the gene product of the form II ribulose-1,5-bisphosphate carboxylase gene of Rhodopseudomonas sphaeroides.

    OpenAIRE

    Muller, E D; Chory, J; Kaplan, S

    1985-01-01

    We report the cloning and characterization of the gene product of the gene for the form II ribulose bisphosphate carboxylase from Rhodopseudomonas sphaeroides. We present evidence that the form II enzyme is encoded by a single gene in R. sphaeroides; however, this gene does hybridize to a second chromosomal locus.

  20. 葛仙米表层结构的扫描电子显微镜观察%Obsevation for Epidermal Ultrastructure of Nostoc sphaeroides Kutzing under Scanning Electron Microscope

    Institute of Scientific and Technical Information of China (English)

    李莉

    2009-01-01

    [Objective]The experiment aimed to explore a new way for observing surface structure of Nostoc sphaeroides Kutzing. [Method] The scanning electron microscope was used to observe the epidermal ultrastructure of wild and cultured Nostoc sphaeroides Kutzing. [Result] The epidermis of wild and cultured Nostoc sphaeroides Kutzing showed mixture structure of fibril colloid which was reticular arranged. The difference between wild and cultured Nostoc sphaeroides Kutzing was that the outer epidermis of cultured Nostoc sphaeroides Kutzing had trichome distribution but the wild Nostoc sphaeroides Kutzing did not has such distribution. The obsevation results of under smaller than 10 μm by scanning electron microscope was touched thick and showed many folds and distortions.[Conclusion] The scanning electron microscope was an effective way to study development of Nostoc sphaeroides Kutzing colony and it was worth popularizing.

  1. Embryonic, larval, and early juvenile development of the tropical sea urchin, Salmacis sphaeroides (Echinodermata: Echinoidea).

    Science.gov (United States)

    Rahman, M Aminur; Yusoff, Fatimah Md; Arshad, A; Shamsudin, Mariana Nor; Amin, S M N

    2012-01-01

    Salmacis sphaeroides (Linnaeus, 1758) is one of the regular echinoids, occuring in the warm Indo-West Pacific, including Johor Straits, between Malaysia and Singapore. In order to investigate the developmental basis of morphological changes in embryos and larvae, we documented the ontogeny of S. sphaeroides in laboratory condition. Gametes were obtained from adult individuals by 0.5 M KCl injection into the coelomic cavity. Fertilization rate at limited sperm concentration (10(-5) dilution) was 96.6 ± 1.4% and the resulting embryos were reared at 24°C. First cleavage (2-cell), 4-cell, 8-cell, 16-cell, 32-cell, and multicell (Morulla) stages were achieved 01.12, 02.03, 02.28, 02.51, 03.12, and 03.32 h postfertilization. Ciliated blastulae with a mean length of 174.72 ± 4.43 μm hatched 08.45 h after sperm entry. The gastrulae formed 16.15 h postfertilization and the archenteron elongated constantly while ectodermal red-pigmented cells migrated synchronously to the apical plate. Pluteus larva started to feed unicellular algae in 2 d, grew continuously, and finally attained metamorphic competence in 35 d after fertilization. Metamorphosis took approximately 1 h 30 min from attachment to the complete resorption of larval tissues and the development of complete juvenile structure with adult spines, extended tubefeet and well-developed pedicellaria, the whole event of which usually took place within 1 d postsettlement. This study represents the first successful investigation on embryonic, larval, and early juvenile development of S. sphaeroides. The findings would greatly be helpful towards the understanding of ontogeny and life-history strategies, which will facilitate us to develop the breeding, seed production, and culture techniques of sea urchins in captive condition. PMID:23055824

  2. Embryonic, Larval, and Early Juvenile Development of the Tropical Sea Urchin, Salmacis sphaeroides (Echinodermata: Echinoidea

    Directory of Open Access Journals (Sweden)

    M. Aminur Rahman

    2012-01-01

    Full Text Available Salmacis sphaeroides (Linnaeus, 1758 is one of the regular echinoids, occuring in the warm Indo-West Pacific, including Johor Straits, between Malaysia and Singapore. In order to investigate the developmental basis of morphological changes in embryos and larvae, we documented the ontogeny of S. sphaeroides in laboratory condition. Gametes were obtained from adult individuals by 0.5 M KCl injection into the coelomic cavity. Fertilization rate at limited sperm concentration (10−5 dilution was 96.6±1.4% and the resulting embryos were reared at 24°C. First cleavage (2-cell, 4-cell, 8-cell, 16-cell, 32-cell, and multicell (Morulla stages were achieved 01.12, 02.03, 02.28, 02.51, 03.12, and 03.32 h postfertilization. Ciliated blastulae with a mean length of 174.72±4.43 μm hatched 08.45 h after sperm entry. The gastrulae formed 16.15 h postfertilization and the archenteron elongated constantly while ectodermal red-pigmented cells migrated synchronously to the apical plate. Pluteus larva started to feed unicellular algae in 2 d, grew continuously, and finally attained metamorphic competence in 35 d after fertilization. Metamorphosis took approximately 1 h 30 min from attachment to the complete resorption of larval tissues and the development of complete juvenile structure with adult spines, extended tubefeet and well-developed pedicellaria, the whole event of which usually took place within 1 d postsettlement. This study represents the first successful investigation on embryonic, larval, and early juvenile development of S. sphaeroides. The findings would greatly be helpful towards the understanding of ontogeny and life-history strategies, which will facilitate us to develop the breeding, seed production, and culture techniques of sea urchins in captive condition.

  3. Nostoc sphaeroides Kütz, a candidate producer par excellence for CELSS

    Science.gov (United States)

    Wang, Gaohong; Hao, Zongjie; Liu, Yongding

    A lot of aquatic organisms could be regarded as suitable candidates par excellence in the establishment of CELSS, since they are relatively easy and fast to grow and resistant to changes in environmental condition as well as providing nutritious, protein-and vitamin-rich foods for the crew, which can fulfill the main functions of CELSS, including supplying oxygen, water and food, removing carbon dioxide and making daily life waste reusable. Our labotory has developed mass culture of Nostoc sphaeroides Kütz, which is one of traditional healthy food in China and. The oxygen evolution rate of the cyanobacterium is about 150 molO2.mg-1.h-1, and it usually grows into colony with size between 2-20mm, which is easy to be harvested. It also can be cultured with high density, which show that the productivity of the cyanobacterium in limited volume is higher than other microalgae. We had measured the nutrient content of the cyanobacterium and developed some Chinese Dishes and Soups with Nostoc sphaeroides Kütz, which showed that it was a good food for crew. Using remote sensing technique, we also investigated its growth in Closed System under microgravity by SHENZHOU-2 spacecraft in January 2001. We plan to develop suitable bioreactor with the cyanobacterium for supplying oxygen and food to crew in future.

  4. Photoregulated or Energy Dependent Process of Hormogonia Differentiation in Nostoc sphaeroides Kützing (Cyanobacterium)

    Institute of Scientific and Technical Information of China (English)

    Dun-Hai LI; Lan-Zhou CHEN; Gen-Bao LI; Gao-Hong WANG; Li-Rong SONG; Yong-Ding LIU

    2005-01-01

    Hormogonium, which was thought to play an important role in the dispersal and survival of these microorganisms in their natural habitats, is a distinguishable developmental stage of heterocystous cyanobacteria. The present study examined the effects of different light conditions and sugars on the of hormogonia was light dependent in the absence of sugar, but that close to 100% of cyanobacteria differentiated to hormogonia in the presence of glucose or sucrose, irrespective of the light conditions. This differentiation was inhibited, even in the presence of sugars, upon application of an inhibitor of respiration.Following the testing of different sugars, the effects of different lights were examined. It was found that 5-10 μmol.m-2.s-1 photon flux density was optimal for hormogonia differentiation. One hundred percent differentiation was obtained with white light irradiation, in contrast with irradiation with green light (80%differentiation) and red light (0-10% differentiation). Although they showed different efficiencies in induc ing hormogonia differentiation in N. sphaeroides, the green and red radiation did not display antagonistic effects. When the additional aspect of time dependence was investigated through the application of different light radiations and an inhibitor of protein synthesis, it was found that the initial 6 h of the differentiation process was crucial for hormogonia differentiation. Taken together, these results show that hormogonia differentiation in N. sphaeroides is either a photoregulated or an energy dependent process.

  5. Chemical proprieties of the iron-quinone complex in mutated reaction centers of Rb. sphaeroides

    Energy Technology Data Exchange (ETDEWEB)

    Halas, Agnieszka [AGH University, Faculty of Physics and Computer Science, Department of Medical Physics and Biophysics (Poland); Derrien, Valerie; Sebban, Pierre [University of Paris XI, Laboratoire de Chimie Physique (France); Matlak, Krzysztof; Korecki, Jozef [AGH University, Faculty of Physics and Computer Science, Department of Solid State Physics (Poland); Kruk, Jerzy [Jagiellonian University, Faculty of Biochemistry, Biophysics and Biotechnology (Poland); Burda, Kvetoslava, E-mail: kvetoslava.burda@fis.agh.edu.pl [AGH University, Faculty of Physics and Computer Science, Department of Medical Physics and Biophysics (Poland)

    2012-03-15

    We investigated type II bacterial photosynthetic reaction centers, which contain a quinone - iron complex (Q{sub A}-Fe-Q{sub B}) on their acceptor side. Under physiological conditions it was observed mainly in a reduced high spin state but its low spin ferrous states were also observed. Therefore, it was suggested that it might regulate the dynamical properties of the iron-quinone complex and the protonation and deprotonation events in its neighbourhood. In order to get insight into the molecular mechanism of the NHFe low spin state formation, we preformed Moessbauer studies of a wild type of Rb. sphaeroides and its two mutated forms. Our Moessbauer measurements show that the hydrophobicity of the Q{sub A} binding site can be crucial for stabilization of the high spin ferrous state of NHFe.

  6. Cloning, characterization, and regulation of nifF from Rhodobacter capsulatus.

    OpenAIRE

    G. de Gennaro; Hübner, P.; Sandmeier, U; Yakunin, A. F.; Hallenbeck, P C

    1996-01-01

    The Rhodobacter capsulatus nifF gene and upstream sequence were cloned by using a probe based on the N-terminal sequence of NifF. nifF was found to not be contained in the previously described nif regions I, II, and III. Comparison of the deduced amino acid sequence showed that it is highly similar to NifF from Azotobacter vinelandii and NifF from Klebsiella pneumoniae. Analysis of translational fusions demonstrated that the regulation of transcription was the same as previously reported at t...

  7. Lactococcus lactis - a diploid bacterium

    DEFF Research Database (Denmark)

    Michelsen, Ole; Hansen, Flemming G.; Jensen, Peter Ruhdal

    In contrast to higher eukaryotes, bacteria are haploid, i.e. they store their genetic information in a single chromosome, which is then duplicated during the cell cycle. If the growth rate is sufficiently low, the bacterium is born with only a single copy of the chromosome, which gets duplicated...... before the bacterium divides. Fast-growing bacteria have overlapping rounds of replication, and can contain DNA corresponding to more than four genome equivalents. However, the terminus region of the chromosome is still present in just one copy after division, and is not duplicated until right before...... the next division. Thus, the regions of the chromosome that are the last to be replicated are haploid even in fast-growing bacteria. In contrast to this general rule for bacteria, we found that Lactococcus lactis, a bacterium which has been exploited for thousands of years for the production of fermented...

  8. Single Bacterium Detection Using Sers

    Science.gov (United States)

    Gonchukov, S. A.; Baikova, T. V.; Alushin, M. V.; Svistunova, T. S.; Minaeva, S. A.; Ionin, A. A.; Kudryashov, S. I.; Saraeva, I. N.; Zayarny, D. A.

    2016-02-01

    This work is devoted to the study of a single Staphylococcus aureus bacterium detection using surface-enhanced Raman spectroscopy (SERS) and resonant Raman spectroscopy (RS). It was shown that SERS allows increasing sensitivity of predominantly low frequency lines connected with the vibrations of Amide, Proteins and DNA. At the same time the lines of carotenoids inherent to this kind of bacterium are well-detected due to the resonance Raman scattering mechanism. The reproducibility and stability of Raman spectra strongly depend on the characteristics of nanostructured substrate, and molecular structure and size of the tested biological object.

  9. Conditions Optimization of Ultrasonic Assisted with HCl Extraction of Carotenoid from Rhodobacter sphaeroides%酸溶辅助超声波法提取类球红细菌类胡萝卜素条件优化

    Institute of Scientific and Technical Information of China (English)

    李祖明; 张猛; 张静; 高丽萍; 惠伯棣; 杨卫东; 王栋; 白志辉

    2014-01-01

    通过单因素和正交试验,对类球红细菌3757产类胡萝卜素的提取条件进行了研究.先采用超声波法、酸溶法、研磨法、冻融法、酸溶辅助超声波法和冻融辅助超声波法优化了从类球红细菌3757菌株中提取类胡萝卜紊的方法,然后开展了酸溶辅助超声波法的单因素和正交实验,最后进行了重复性实验.结果表明,酸溶辅助超声波法是较优的提取方法,丙酮是较好的提取溶剂.最佳提取条件为料液比1∶10、超声波处理总时间20 min、酸浓度3 mol/L、酸溶时间25 min、超声波振幅40%、超声工作/间隔时间2 min/1 min、酸溶温度27℃,实验重现较好.优化后类胡萝卜素的提取率较优化前提高了74.8%,为其产业化创造了条件.

  10. Enhanced photo-fermentative hydrogen production by Rhodobacter capsulatus with pigment content manipulation.

    Science.gov (United States)

    Ma, Chao; Wang, Xueqing; Guo, Liejin; Wu, Xiaomin; Yang, Honghui

    2012-08-01

    High content of pigment in purple nonsulfur photosynthetic bacteria hinders its photo-hydrogen production rate under intense light irradiation. In order to alleviate the light shielding effect and improve its photo-fermentative hydrogen production performance, pufQ, which is the regulatory gene of bacteriochlorophyll biosynthesis in Rhodobacter capsulatus, was cloned and relocated in the genome under cbb3 promoter by homologous recombination. The UV-vis spectra indicated that the light absorption of the mutant between 300 and 900 nm was reduced. Photo-hydrogen production experiments by the recombinant and wild type strain were carried out in 350 mL photo bioreactors using acetic and butyric acid as substrate. The results showed that the hydrogen production of recombinant with reduced pigment was 27% higher than that of its parental strain, indicating that it is effective on enhancing photo-fermentative hydrogen production by manipulating pigment biosynthesis in purple nonsulfur photosynthetic bacteria. PMID:22717568

  11. Cloning, characterization, and regulation of nifF from Rhodobacter capsulatus.

    Science.gov (United States)

    Gennaro, G; Hübner, P; Sandmeier, U; Yakunin, A F; Hallenbeck, P C

    1996-07-01

    The Rhodobacter capsulatus nifF gene and upstream sequence were cloned by using a probe based on the N-terminal sequence of NifF. nifF was found to not be contained in the previously described nif regions I, II, and III. Comparison of the deduced amino acid sequence showed that it is highly similar to NifF from Azotobacter vinelandii and NifF from Klebsiella pneumoniae. Analysis of translational fusions demonstrated that the regulation of transcription was the same as previously reported at the protein level. Insertional mutagen esis showed that NifF contributes significantly to nitrogenase activity under normal nitrogen-fixing conditions and that it is absolutely required for nitrogen fixation under iron limitation. PMID:8682802

  12. Replacement of sugars to hydrogen production by Rhodobacter capsulatus using dark fermentation effluent as substrate.

    Science.gov (United States)

    Silva, Felipe Thales Moreira; Moreira, Luiza Rojas; de Souza Ferreira, Juliana; Batista, Fabiana Regina Xavier; Cardoso, Vicelma Luiz

    2016-01-01

    Hydrogen is a promising alternative for the increased global energy demand since it has high energy density and is a clean fuel. The aim of this work was to evaluate the photo-fermentation by Rhodobacter capsulatus, using the dark fermentation effluent as substrate. Different systems were tested by changing the type of sugar in the dark fermentation, investigating the influence of supplementing DFE with sugar and adding alternate and periodically lactose and glucose throughout the process. The supplementation of the DFE with sugar resulted in higher H2 productivity and the replacement of the sugars repeatedly during the photo-fermentation process was important to maintain the cell culture active. By controlling the residual amount of sugar, bacteria inhibition was avoided; lactic acid, that was toxic to the biomass, was consumed and the metabolic route of butyric acid production was predominant. Under optimum conditions, the H2 productivity reached 208.40mmolH2/Ld in 52h. PMID:26476167

  13. Effect of dietary Rhodobacter capsulatus on egg-yolk cholesterol and laying hen performance.

    Science.gov (United States)

    Salma, U; Miah, A G; Tareq, K M A; Maki, T; Tsujii, H

    2007-04-01

    The present study was conducted to investigate the effects of dietary Rhodobacter capsulatus on the laying hen. A total of forty 23-wk-old Hy-Line Brown laying hens were randomly assigned into 4 treatment groups (10 laying hens/group) and fed diets supplemented with 0 (control), 0.01, 0.02, and 0.04% R. capsulatus during the 60-d feeding period. Dietary supplementation of R. capsulatus (0.04%) reduced (P color was improved (P effects on egg production, shell weight, shell thickness, Haugh unit, yolk index, and feed conversion efficiency compared with the same parameters for the control laying hens. It is postulated that known and unknown factors are present in R. capsulatus presumably responsible for the hypocholesterolemic effect on laying hens. Therefore, the dietary supplementation of R. capsulatus may lead to the development of low-cholesterol chicken eggs as demanded by health-conscious consumers. PMID:17369543

  14. Photoactive yellow protein from the halophilic bacterium Salinibacter ruber.

    Science.gov (United States)

    Memmi, Samy; Kyndt, John; Meyer, Terry; Devreese, Bart; Cusanovich, Michael; Van Beeumen, Jozef

    2008-02-19

    A gene for photoactive yellow protein (PYP) was identified from the genome sequence of the extremely halophilic aerobic bacterium Salinibacter ruber (Sr). The sequence is distantly related to the prototypic PYP from Halorhodospira halophila (Hh) (37% identity) and contains most of the amino acid residues identified as necessary for function. However, the Sr pyp gene is not flanked by its two biosynthetic genes as in other species. To determine as to whether the Sr pyp gene encodes a functional protein, we cloned and expressed it in Escherichia coli, along with the genes for chromophore biosynthesis from Rhodobacter capsulatus. The Sr PYP has a 31-residue N-terminal extension as compared to other PYPs that appears to be important for dimerization; however, truncation of these extra residues did not change the spectral and photokinetic properties. Sr PYP has an absorption maximum at 431 nm, which is at shorter wavelengths than the prototypical Hh PYP (at 446 nm). It is also photoactive, being reversibly bleached by either blue or white light. The kinetics of dark recovery is slower than any of the PYPs reported to date (4.27 x 10(-4) s(-1) at pH 7.5). Sr PYP appears to have a normal photocycle with the I1 and I2 intermediates. The presence of the I2' intermediate is also inferred on the basis of the effects of temperature and alchohol on recovery. Sr PYP has an intermediate spectral form in equilibrium with the 431 nm form, similar to R. capsulatus PYP and the Y42F mutant of Hh PYP. Increasing ionic strength stabilizes the 431 nm form at the expense of the intermediate spectral form, and the kinetics of recovery is accelerated 6.4-fold between 0 and 3.5 M salt. This is observed with ions from both the chaotropic and the kosmotropic series. Ionic strength also stabilizes PYP against thermal denaturation, as the melting temperature is increased from 74 degrees C in buffer alone to 92 degrees C in 2 M KCl. Sr accumulates KCl in the cytoplasm, like Halobacterium, to

  15. Structural and Phylogenetic Analysis of Rhodobacter capsulatus NifF: Uncovering General Features of Nitrogen-fixation (nif-Flavodoxins

    Directory of Open Access Journals (Sweden)

    Inmaculada Pérez-Dorado

    2013-01-01

    Full Text Available Analysis of the crystal structure of NifF from Rhodobacter capsulatus and its homologues reported so far reflects the existence of unique structural features in nif flavodoxins: a leucine at the re face of the isoalloxazine, an eight-residue insertion at the C-terminus of the 50’s loop and a remarkable difference in the electrostatic potential surface with respect to non-nif flavodoxins. A phylogenetic study on 64 sequences from 52 bacterial species revealed four clusters, including different functional prototypes, correlating the previously defined as “short-chain” with the firmicutes flavodoxins and the “long-chain” with gram-negative species. The comparison of Rhodobacter NifF structure with other bacterial flavodoxin prototypes discloses the concurrence of specific features of these functional electron donors to nitrogenase.

  16. ESR in zero field of the photoinduced triplet state in isolated reaction centers of rhodopseudomonas sphaeroides R-26 detected by the singlet ground-state absorbance

    Science.gov (United States)

    Den Blanken, H. J.; Van Der Zwet, G. P.; Hoff, A. J.

    1982-01-01

    We have measured zero-field resonance transitions of the triplet state of the primary donor monitoring the transmittance at 890 nm at 1.2 K in isolated reaction centers of Rhodopseudomonas sphaeroides R-26. The transitions correspond to a decrease in transmittance, confirming the energy transfer model for the transitions detected via the antenna fluorescence in whole cells.

  17. Transcriptional Profiling of Hydrogen Production Metabolism of Rhodobacter capsulatus under Temperature Stress by Microarray Analysis.

    Science.gov (United States)

    Gürgan, Muazzez; Erkal, Nilüfer Afşar; Özgür, Ebru; Gündüz, Ufuk; Eroglu, Inci; Yücel, Meral

    2015-01-01

    Biohydrogen is a clean and renewable form of hydrogen, which can be produced by photosynthetic bacteria in outdoor large-scale photobioreactors using sunlight. In this study, the transcriptional response of Rhodobacter capsulatus to cold (4 °C) and heat (42 °C) stress was studied using microarrays. Bacteria were grown in 30/2 acetate/glutamate medium at 30 °C for 48 h under continuous illumination. Then, cold and heat stresses were applied for two and six hours. Growth and hydrogen production were impaired under both stress conditions. Microarray chips for R. capsulatus were custom designed by Affymetrix (GeneChip®. TR_RCH2a520699F). The numbers of significantly changed genes were 328 and 293 out of 3685 genes under cold and heat stress, respectively. Our results indicate that temperature stress greatly affects the hydrogen production metabolisms of R. capsulatus. Specifically, the expression of genes that participate in nitrogen metabolism, photosynthesis and the electron transport system were induced by cold stress, while decreased by heat stress. Heat stress also resulted in down regulation of genes related to cell envelope, transporter and binding proteins. Transcriptome analysis and physiological results were consistent with each other. The results presented here may aid clarification of the genetic mechanisms for hydrogen production in purple non-sulfur (PNS) bacteria under temperature stress. PMID:26086826

  18. Stark effect in wild-type and heterodimer-containing reaction centers from Rhodobacter capsulatus

    International Nuclear Information System (INIS)

    The effect of an external electric field on the optical absorption spectra of wild-type Rhodobacter capsulatus and two Rb. capsulatus reaction centers that have been genetically modified through site-directed mutagenesis was measured at 77 K. The two genetically modified reaction centers replace histidine M200, the axial ligand to the M-side bacteriochlorophyll of the special pair, with either leucine or phenylalanine. These substitutions results in the replacement of the M-side bacteriochlorophyll with bacteriopheophytin, forming a bacteriochlorophyll-bacteriopheophytin heterodimer. The magnitude of the change in dipole moment from the ground to excited state (Δμapp) and the angle δ between the Qy transition moment and the direction of Δμapp were measured for the special pair absorption band for all three reaction centers. The differences in the magnitude of Δμapp and the angle δ between wild-type and heterodimer reaction centers are consistent with increased charge transfer in the heterodimer special pair. These results support calculations that place the special pair charge-transfer state higher in energy than the excited singlet state in wild-type Rb. capsulatus RCs

  19. Detergent effects on primary charge separation in wild-type and mutant Rhodobacter capsulatus reaction centers

    International Nuclear Information System (INIS)

    The primary electron-transfer processes in reaction centers (RCs) from wild-type and several mutants of Rhodobacter capsulatus have been investigated as a function of the detergent used to extract the RC protein from the membrane. Wild-type and L(M212)H mutant RCs that have been isolated using the detergent Deriphat 160-C both display somewhat slower initial charge separation (longer P* lifetimes) than the same RCs isolated using the detergent LDAO. For the F(L181)Y/Y(M208)F/L(M212)H triple mutant, the differences in the initial charge separation events for Deriphat-versus LDAO-isolated RCs are more significant. In all cases, use of Deriphat 160-C to extract the protein from the membrane yields RCs in which the QY band of P is retained at its native position near 865 nm, whereas LDAO extraction yields RCs that have the P band near 850 nm. Origins of the differences in both the ground state spectrum and the photochemistry, including possible RC-lipid associations, are considered

  20. Transcriptional Profiling of Hydrogen Production Metabolism of Rhodobacter capsulatus under Temperature Stress by Microarray Analysis

    Directory of Open Access Journals (Sweden)

    Muazzez Gürgan

    2015-06-01

    Full Text Available Biohydrogen is a clean and renewable form of hydrogen, which can be produced by photosynthetic bacteria in outdoor large-scale photobioreactors using sunlight. In this study, the transcriptional response of Rhodobacter capsulatus to cold (4 °C and heat (42 °C stress was studied using microarrays. Bacteria were grown in 30/2 acetate/glutamate medium at 30 °C for 48 h under continuous illumination. Then, cold and heat stresses were applied for two and six hours. Growth and hydrogen production were impaired under both stress conditions. Microarray chips for R. capsulatus were custom designed by Affymetrix (GeneChip®. TR_RCH2a520699F. The numbers of significantly changed genes were 328 and 293 out of 3685 genes under cold and heat stress, respectively. Our results indicate that temperature stress greatly affects the hydrogen production metabolisms of R. capsulatus. Specifically, the expression of genes that participate in nitrogen metabolism, photosynthesis and the electron transport system were induced by cold stress, while decreased by heat stress. Heat stress also resulted in down regulation of genes related to cell envelope, transporter and binding proteins. Transcriptome analysis and physiological results were consistent with each other. The results presented here may aid clarification of the genetic mechanisms for hydrogen production in purple non-sulfur (PNS bacteria under temperature stress.

  1. Potential use of thermophilic dark fermentation effluents in photofermentative hydrogen production by Rhodobacter capsulatus

    Energy Technology Data Exchange (ETDEWEB)

    Ozgura, E.; Afsar, N.; Eroglu, I. [Middle East Technical University, Department of Chemical Engineering, 06531 Ankara (Turkey); De Vrije, T.; Claassen, P.A.M. [Wageningen UR, Agrotechnology and Food Sciences Group, Wageningen UR, P.O. Box 17, 6700 AA Wageningen (Netherlands); Yucel, M.; Gunduz, U. [Middle East Technical University, Department of Biology, 06531 Ankara (Turkey)

    2010-12-15

    Biological hydrogen production by a sequential operation of dark and photofermentation is a promising route to produce hydrogen. The possibility of using renewable resources, like biomass and agro-industrial wastes, provides a dual effect of sustainability in biohydrogen production and simultaneous waste removal. In this study, photofermentative hydrogen production on effluents of thermophilic dark fermentations on glucose, potato steam peels (PSP) hydrolysate and molasses was investigated in indoor, batch operated bioreactors. An extreme thermophile Caldicellulosiruptor saccharolyticus was used in the dark fermentation step, and Rhodobacter capsulatus (DSM1710) was used in the photofermentation step. Addition of buffer, Fe and Mo to dark fermentor effluents (DFEs) improved the overall efficiency of hydrogen production. The initial acetate concentration in the DFE needed to be adjusted to 30-40 mM by dilution to increase the yield of hydrogen in batch light-supported fermentations. The thermophilic DFEs are suitable for photofermentative hydrogen production, provided that they are supplemented with buffer and nutrients. The overall hydrogen yield of the two-step fermentations was higher than the yield of single step dark fermentations.

  2. The bluF gene of Rhodobacter capsulatus is involved in conversion of cobinamide to cobalamin (vitamin B12).

    OpenAIRE

    Pollich, M; Wersig, C; Klug, G

    1996-01-01

    The bluF gene of Rhodobacter capsulatus is the first gene of the bluFEDCB operon which is involved in late steps of the cobalamin synthesis. To determine the function of the bluF gene product, a bluF::omega-Km mutant strain was constructed and characterized. This vitamin B12 auxotrophic mutant strain shows a 3.5-times higher vitamin B12 requirement under phototrophic growth conditions than under chemotrophic growth conditions. Surprisingly, the bluF promoter activity does not respond to alter...

  3. Content Determination of Total Triterpenes Compound and Oleanolic Acid in scum coloratura and Its Photosynthetic Bacterium Transformation Products%槲寄生与光合细菌转化槲寄生培养液中总三萜类化合物与齐墩果酸的含量测定

    Institute of Scientific and Technical Information of China (English)

    李建文; 张忠鹏; 牛红军; 杨官娥

    2011-01-01

    OBJECTIVE: To establish the methods for the content determination of total triterpenes compound and oleanolic acid in Viscum coloratum and its photosynthetic bacterium transformation products, and to compare the contents of each sample.METHODS: With oleanolic acid as control, total triterpenes compound was measured by UV spectrophotometry with 5% vanillin-glacial acetic acid solution and perchloric acid as color-developing agent at detection wavelength of 548 nm. The content of oleanolic acid was determined by HPLC. The determination was performed on Diamonsil C18(200 mm×4.6 mm, 5 μm) column with mobile phase consisted of methanol-0.18% phosphoric acid water (86: 14) with the detection wavelength at 210 nm and the column temperature at 25 ℃. RESULTS: The linear range of total triterpenes compound was 2~ 12 μg·mL-1 (r=0.995 3), and the linear range of oleanolic acid was 0.41~4.1 μg· mL-1(r=0.999 1 ). 75% ethanol extracts of V. coloratum was transformed by Rhodobacter sphaeroides and Rhodopseudononas palustris respectively. The contents of the total triterpenes increased by 36.0% and 14.7%, and the contents of oleanolic acid increased by 880.0% and 260.0%, respectively. CONCLUSION: The contents of total triterpenes and oleanolic acid in 75% ethanol extracts of mistletoe could be increased by the transformation of two kinds of photosynthetic bacterium. It may lead to the production of some enzymes. The experiments lay a foundation for the research of chemical constituents and transformation mechanism of V. coloratum.%目的:建立测定槲寄生与光合细菌转化槲寄生培养液中总三萜类化合物与齐墩果酸含量的方法,并对各个样品的含量进行比较.方法:采用紫外分光光度法测定总三萜类化合物的含量,以齐墩果酸为对照品,以5%香草醛冰醛酸溶液、高氯酸为显色系统,检测波长为548nm;采用高效液相色谱法测定齐墩果酸的含量,色谱柱为Diamonsil C18(200mmx4.6mm

  4. Optimizing multi-step B-side charge separation in photosynthetic reaction centers from Rhodobacter capsulatus

    Energy Technology Data Exchange (ETDEWEB)

    Faries, Kaitlyn M. [Washington Univ., St. Louis, MO (United States); Kressel, Lucas L. [Argonne National Lab. (ANL), Argonne, IL (United States); Dylla, Nicholas P. [Argonne National Lab. (ANL), Argonne, IL (United States); Wander, Marc J. [Argonne National Lab. (ANL), Argonne, IL (United States); Hanson, Deborah K. [Argonne National Lab. (ANL), Argonne, IL (United States); Holten, Dewey [Washington Univ., St. Louis, MO (United States); Laible, Philip D. [Argonne National Lab. (ANL), Argonne, IL (United States); Kirmaier, Christine [Washington Univ., St. Louis, MO (United States)

    2016-02-01

    Using high-throughput methods for mutagenesis, protein isolation and charge-separation functionality, we have assayed 40 Rhodobacter capsulatus reaction center (RC) mutants for their P+ QB- yield (P is a dimer of bacteriochlorophylls and Q is a ubiquinone) as produced using the normally inactive B-side cofactors BB and HB (where B is a bacteriochlorophyll and H is a bacteriopheophytin). Two sets of mutants explore all possible residues at M131 (M polypeptide, native residue Val near HB) in tandem with either a fixed His or a fixed Asn at L181 (L polypeptide, native residue Phe near BB). A third set of mutants explores all possible residues at L181 with a fixed Glu at M131 that can form a hydrogen bond to HB. For each set of mutants, the results of a rapid millisecond screening assay that probes the yield of P+ QB- are compared among that set and to the other mutants reported here or previously. For a subset of eight mutants, the rate constants and yields of the individual B-side electron transfer processes are determined via transient absorption measurements spanning 100 fs to 50 μs. The resulting ranking of mutants for their yield of P+ QB- from ultrafast experiments is in good agreement with that obtained from the millisecond screening assay, further validating the efficient, high-throughput screen for B-side transmembrane charge separation. Results from mutants that individually show progress toward optimization of P+ HB- → P+ QB- electron transfer or initial P* → P+ HB- conversion highlight unmet challenges of optimizing both processes simultaneously.

  5. Exploration of the hydrogen producing potential of Rhodobacter capsulatus chemostat cultures: The application of deceleration-stat and gradient-stat methodology

    NARCIS (Netherlands)

    Hoekema, S.; Breukelen, van F.R.; Janssen, M.G.J.; Tramper, J.; Wijffels, R.H.

    2009-01-01

    In this work, the dependency of the volumetric hydrogen production rate of ammonium-limited Rhodobacter capsulatus chemostat cultures on their imposed biomass concentration and dilution rate was investigated. A deceleration-stat experiment was performed by lowering the dilution rate from 1.0 d-1 to

  6. IDENTIFICATION OF THE BACTERIUM TOMATO STEM CANKER

    Directory of Open Access Journals (Sweden)

    Goner A. Shaker

    2014-01-01

    Full Text Available Diseased tomato samples were collected from green house was evaluated for isolation, pathogenicity and biochemical tests. The symptoms of the infected tomato plants were as sudden wilting after curled on leaves and necrotic streak regions developed at the crown and base of the stem and the cavities deepen and expand up and down, brown discoloration and necrosis occurring on xylem and phloem vasculer. All of ages of tomato plant were susceptible to bacteria when the weather condition favorable and immediately, seen collapse symptom on tomato plant at once fail and die. The bacterium was isolated from diseased plant in all regions on nutrient Agar; a yellow bacterium was isolated from infected tomato plant in green houses and fields in Abu-Ghraib, Rashiedia and Qanat Al-Geiaysh nurseries in Baghdad provinces of Iraq. The bacterium was found gram positive, rod-shaped, non-motile and capable an aerobic growth and based on the morphological and biochemical characteristics revealed that this bacterium belongs to: Clavibacter michiganensis subsp. michiganensis. (smith pathogenicity and hypersensitivity of the bacterium Cmm showed the disease index were 18.33, 6.66, 16.66, 5, 0% for tomato seedlings were inoculated treatments as the wounding roots, without wounding roots, crown of the stem, petiole and control respectively.

  7. Dicty_cDB: Contig-U10443-1 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available E010300 |pid:none) Leptospira interrogans serovar ... 198 2e-49 CP000143_2577( CP000143 |pid:none) Rhodobacter sphaeroides... 2.4.1 c... 198 3e-49 CP000577_2604( CP000577 |pid:none) Rhodobacter sphaeroides... ATCC 17... 197 4e-49 CP001150_2354( CP001150 |pid:none) Rhodobacter sphaeroides KD131 c... 197...4 CP000492_703( CP000492 |pid:none) Chlorobium phaeobacteroides DSM ... 182 2e-44 CP000285_1209( CP000285 |p...3e-40 CP000557_916( CP000557 |pid:none) Geobacillus thermodenitrificans ... 168 3

  8. Microflora of urogenital tract in pregnancy with asymptomatic bacterium

    International Nuclear Information System (INIS)

    The article contains results of research interrelationship from colonization of vagina and urinary tract diseases. E.coli one of the main factors in development asymptomatic bacterium. Presented high effects of penicillin medicaments and nitrofurans in treatment of asymptomatic bacterium

  9. In vitro and in vivo safety assessment of edible blue-green algae, Nostoc commune var. sphaeroides Kützing and Spirulina plantensis

    OpenAIRE

    Yang, Yue; Park, Youngki; Cassada, David A.; Snow, Daniel D; Rogers, Douglas G.; Lee, Jiyoung

    2011-01-01

    Blue-green algae (BGA) have been consumed as food and herbal medicine for centuries. However, safety for their consumption has not been well investigated. This study was undertaken to evaluate in vitro and in vivo toxicity of cultivated Nostoc commune var. sphaeroides Kützing (NO) and Spirulina platensis (SP). Neither NO nor SP contained detectable levels of microcystin (MC)-LA, MC-RR, MC-LW and MC-LR by LC/MS/MS. Cell viability remained ~70-80% when HepG2 cells were incubated with 0-500 μg/m...

  10. Dietary Karaya Saponin and Rhodobacter capsulatus Exert Hypocholesterolemic Effects by Suppression of Hepatic Cholesterol Synthesis and Promotion of Bile Acid Synthesis in Laying Hens

    OpenAIRE

    Hirotada Tsujii; Abdul Gaffar Miah; Md. Sharoare Hossain; Ummay Salma; Sadia Afrose

    2010-01-01

    This study was conducted to elucidate the mechanism underlying the hypolipidemic action of karaya saponin or Rhodobacter (R.) capsulatus. A total of 40 laying hens (20-week-old) were assigned into four dietary treatment groups and fed a basal diet (as a control) or basal diets supplemented with either karaya saponin, R. capsulatus, or both for 60 days. The level of serum low-density-lipoprotein cholesterol and the levels of cholesterol and triglycerides in the serum, liver, and egg yolk were ...

  11. NCBI nr-aa BLAST: CBRC-CJAC-01-1021 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-CJAC-01-1021 ref|YP_001042953.1| integral membrane sensor hybrid ... histidine kinase [Rhodobac ... TCC 17029] gb|ABN76181.1| integral membrane sensor hybrid ... histidine kinase [Rhodobacter sphaeroides ATCC 170 ...

  12. Cold adaptation of the mononuclear molybdoenzyme periplasmic nitrate reductase from the Antarctic bacterium Shewanella gelidimarina.

    Science.gov (United States)

    Simpson, Philippa J L; Codd, Rachel

    2011-11-01

    The reduction of nitrate to nitrite is catalysed in bacteria by periplasmic nitrate reductase (Nap) which describes a system of variable protein subunits encoded by the nap operon. Nitrate reduction occurs in the NapA subunit, which contains a bis-molybdopterin guanine dinucleotide (Mo-MGD) cofactor and one [4Fe-4S] iron-sulfur cluster. The activity of periplasmic nitrate reductase (Nap) isolated as native protein from the cold-adapted (psychrophilic) Antarctic bacterium Shewanella gelidimarina (Nap(Sgel)) and middle-temperature adapted (mesophilic) Shewanella putrefaciens (Nap(Sput)) was examined at varied temperature. Irreversible deactivation of Nap(Sgel) and Nap(Sput) occurred at 54.5 and 65°C, respectively. When Nap(Sgel) was preincubated at 21-70°C for 30 min, the room-temperature nitrate reductase activity was maximal and invariant between 21 and 54°C, which suggested that Nap(Sgel) was poised for optimal catalysis at modest temperatures and, unlike Nap(Sput), did not benefit from thermally-induced refolding. At 20°C, Nap(Sgel) reduced selenate at 16% of the rate of nitrate reduction. Nap(Sput) did not reduce selenate. Sequence alignment showed 46 amino acid residue substitutions in Nap(Sgel) that were conserved in NapA from mesophilic Shewanella, Rhodobacter and Escherichia species and could be associated with the Nap(Sgel) cold-adapted phenotype. Protein homology modeling of Nap(Sgel) using a mesophilic template with 66% amino acid identity showed the majority of substitutions occurred at the protein surface distal to the Mo-MGD cofactor. Two mesophilic↔psychrophilic substitutions (Asn↔His, Val↔Trp) occurred in a region close to the surface of the NapA substrate funnel resulting in potential interdomain π-π and/or cation-π interactions. Three mesophilic↔psychrophilic substitutions occurred within 4.5Å of the Mo-MGD cofactor (Phe↔Met, Ala↔Ser, Ser↔Thr) resulting in local regions that varied in hydrophobicity and hydrogen bonding

  13. Isolation of a Bacterium Strain Degraded Agar

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    One in 58 strains of bacteria isolated from the compost showed clear colonies after a few days of growth on the plates containing medium made of only agar and water.Water suspension contained only agar (2 and 8g·L -1 ) with two controls (normal saline,LB medium) was inoculated with the bacterium BR5-1 to see whether there was an increasement of the alive bacteria concentration after 48 h of the growth.The results showed that there was a significant rising of the alive bacteria concentration in the agar susp...

  14. Hydrogen production by photosynthetic bacteria Rhodobacter capsulatus Hup{sup -} strain on acetate in continuous panel photobioreactors

    Energy Technology Data Exchange (ETDEWEB)

    Deo Androga, Dominic; Ozgur, Ebru; Eroglu, Inci [Middle East Technical Univ., Ankara (Turkey). Dept. of Chemical Engineering; Guenduez, Ufuk [Middle East Technical Univ., Ankara (Turkey). Dept. of Biology

    2010-07-01

    Photobiological hydrogen production from organic acids occurs in the presence of light and under anaerobic conditions. Stable and optimized operation of the photobioreactors is the most challenging task in the photofermentation process. The aim of this study was to achieve a stable and high hydrogen production on acetate, using the photosynthetic bacteria Rhodobacter capsulatus Hup{sup -} (uptake hydrogenase deleted strain) in continuous panel photobioreactors. An indoor experiment with continuous illumination (1500-2500 lux, corresponding to 101-169 W/m{sup 2}) and controlled temperature was carried out in a 8 L panel photobioreactor. A modified form of basal culture media containing 40 mM of acetate and 2 mM of glutamate with a feeding rate of 0.8 L/day was used. Stable hydrogen productivity of 0.7 mmol H{sub 2}/l{sub c}.h was obtained, however, biomass decreased during the continuous operation. Further indoor experiments with a biomass recycle and different feed compositions were carried out to optimise the feed composition for a stable biomass and hydrogen production. The highest hydrogen productivity of 0.8 mmol H{sub 2}/l{sub c}.h and yield of 88% was obtained in the 40 mM/ 4 mM acetate/glutamate continuously fed photobioreactor for a period of 21 days. (orig.)

  15. Biodegradation of heavy oils by halophilic bacterium

    Institute of Scientific and Technical Information of China (English)

    Ruixia Hao; Anhuai Lu

    2009-01-01

    A halophilic bacterial strain TM-1 was isolated from the reservoir of the Shengli oil field in East China. Strain TM-1, which was found to be able to degrade crude oils, is a gram-positive non-motile bacterium with a coccus shape that can grow at temperatures of up to 58 ℃ and in 18% NaCl solution. Depending on the culture conditions, the organism may occur in tetrads. In addition, strain TM-1 pro-duced acid from glucose without gas formation and was catalase-negative. Furthermore, strain TM-I was found to be a facultative aer-obe capable of growth under anaerobic conditions. Moreover, it produced butylated hydroxytoluene, 1,2-benzenedicarboxylic acid-bis ester and dibutyl phthalate and could use different organic substrates. Laboratory studies indicated that strain TM-1 affected different heavy oils by degrading various components and by changing the chemical properties of the oils. In addition, growth of the bacterium in heavy oils resulted in the loss of aromatic hydrocarbons, resins and asphaltenes, and enrichment with light hydrocarbons and an overall redistribution of these hydrocarbons.

  16. Cold adaptation of the mononuclear molybdoenzyme periplasmic nitrate reductase from the Antarctic bacterium Shewanella gelidimarina

    International Nuclear Information System (INIS)

    Highlights: ► Cold-adapted phenotype of NapA from the Antarctic bacterium Shewanella gelidimarina. ► Protein homology model of NapA from S. gelidimarina and mesophilic homologue. ► Six amino acid residues identified as lead candidates governing NapA cold adaptation. ► Molecular-level understanding of designing cool-temperature in situ oxyanion sensors. -- Abstract: The reduction of nitrate to nitrite is catalysed in bacteria by periplasmic nitrate reductase (Nap) which describes a system of variable protein subunits encoded by the nap operon. Nitrate reduction occurs in the NapA subunit, which contains a bis-molybdopterin guanine dinucleotide (Mo–MGD) cofactor and one [4Fe–4S] iron–sulfur cluster. The activity of periplasmic nitrate reductase (Nap) isolated as native protein from the cold-adapted (psychrophilic) Antarctic bacterium Shewanella gelidimarina (NapSgel) and middle-temperature adapted (mesophilic) Shewanella putrefaciens (NapSput) was examined at varied temperature. Irreversible deactivation of NapSgel and NapSput occurred at 54.5 and 65 °C, respectively. When NapSgel was preincubated at 21–70 °C for 30 min, the room-temperature nitrate reductase activity was maximal and invariant between 21 and 54 °C, which suggested that NapSgel was poised for optimal catalysis at modest temperatures and, unlike NapSput, did not benefit from thermally-induced refolding. At 20 °C, NapSgel reduced selenate at 16% of the rate of nitrate reduction. NapSput did not reduce selenate. Sequence alignment showed 46 amino acid residue substitutions in NapSgel that were conserved in NapA from mesophilic Shewanella, Rhodobacter and Escherichia species and could be associated with the NapSgel cold-adapted phenotype. Protein homology modeling of NapSgel using a mesophilic template with 66% amino acid identity showed the majority of substitutions occurred at the protein surface distal to the Mo–MGD cofactor. Two mesophilic ↔ psychrophilic substitutions (Asn

  17. Cold adaptation of the mononuclear molybdoenzyme periplasmic nitrate reductase from the Antarctic bacterium Shewanella gelidimarina

    Energy Technology Data Exchange (ETDEWEB)

    Simpson, Philippa J.L. [School of Chemistry, University of Sydney, New South Wales 2006 (Australia); Codd, Rachel, E-mail: rachel.codd@sydney.edu.au [School of Chemistry, University of Sydney, New South Wales 2006 (Australia); School of Medical Sciences (Pharmacology) and Bosch Institute, University of New South Wales, New South Wales 2006 (Australia)

    2011-11-04

    Highlights: Black-Right-Pointing-Pointer Cold-adapted phenotype of NapA from the Antarctic bacterium Shewanella gelidimarina. Black-Right-Pointing-Pointer Protein homology model of NapA from S. gelidimarina and mesophilic homologue. Black-Right-Pointing-Pointer Six amino acid residues identified as lead candidates governing NapA cold adaptation. Black-Right-Pointing-Pointer Molecular-level understanding of designing cool-temperature in situ oxyanion sensors. -- Abstract: The reduction of nitrate to nitrite is catalysed in bacteria by periplasmic nitrate reductase (Nap) which describes a system of variable protein subunits encoded by the nap operon. Nitrate reduction occurs in the NapA subunit, which contains a bis-molybdopterin guanine dinucleotide (Mo-MGD) cofactor and one [4Fe-4S] iron-sulfur cluster. The activity of periplasmic nitrate reductase (Nap) isolated as native protein from the cold-adapted (psychrophilic) Antarctic bacterium Shewanella gelidimarina (Nap{sub Sgel}) and middle-temperature adapted (mesophilic) Shewanella putrefaciens (Nap{sub Sput}) was examined at varied temperature. Irreversible deactivation of Nap{sub Sgel} and Nap{sub Sput} occurred at 54.5 and 65 Degree-Sign C, respectively. When Nap{sub Sgel} was preincubated at 21-70 Degree-Sign C for 30 min, the room-temperature nitrate reductase activity was maximal and invariant between 21 and 54 Degree-Sign C, which suggested that Nap{sub Sgel} was poised for optimal catalysis at modest temperatures and, unlike Nap{sub Sput}, did not benefit from thermally-induced refolding. At 20 Degree-Sign C, Nap{sub Sgel} reduced selenate at 16% of the rate of nitrate reduction. Nap{sub Sput} did not reduce selenate. Sequence alignment showed 46 amino acid residue substitutions in Nap{sub Sgel} that were conserved in NapA from mesophilic Shewanella, Rhodobacter and Escherichia species and could be associated with the Nap{sub Sgel} cold-adapted phenotype. Protein homology modeling of Nap{sub Sgel} using a

  18. The Effects of Rhodobacter capsulatus KCTC-2583 on Cholesterol Metabolism, Egg Production and Quality Parameters during the Late Laying Periods in Hens

    OpenAIRE

    Lokhande, Anushka; Ingale, S. L.; Lee, S. H.; Kim, J. S.; Lohakare, J. D.; Chae, B. J.; Kwon, I. K.

    2013-01-01

    An experiment was conducted to investigate the effects of dietary supplementation of Rhodobacter capsulatus KCTC-2583 on egg-yolk and serum cholesterol, egg production and quality parameters during the late laying periods in hens. A total of 160 Hy-Line Brown layers (54 wk-old) were randomly allotted to 4 treatment groups on the basis of laying performance. Each treatment had 4 replicates with 10 birds each (40 birds per treatment). Two hens were confined individually with cage size 35×35×40 ...

  19. Coordinated Expression of fdxD and Molybdenum Nitrogenase Genes Promotes Nitrogen Fixation by Rhodobacter capsulatus in the Presence of Oxygen

    OpenAIRE

    Hoffmann, Marie-Christine; Müller, Alexandra; Fehringer, Maria; Pfänder, Yvonne; Narberhaus, Franz; Masepohl, Bernd

    2014-01-01

    Rhodobacter capsulatus is able to grow with N2 as the sole nitrogen source using either a molybdenum-dependent or a molybdenum-free iron-only nitrogenase whose expression is strictly inhibited by ammonium. Disruption of the fdxD gene, which is located directly upstream of the Mo-nitrogenase genes, nifHDK, abolished diazotrophic growth via Mo-nitrogenase at oxygen concentrations still tolerated by the wild type, thus demonstrating the importance of FdxD under semiaerobic conditions. In contras...

  20. Rhodobacter capsulatus nifA1 Promoter: High-GC −10 Regions in High-GC Bacteria and the Basis for Their Transcription

    OpenAIRE

    Richard, Cynthia L.; Tandon, Animesh; Kranz, Robert G.

    2004-01-01

    It was previously shown that the Rhodobacter capsulatus NtrC enhancer-binding protein activates the R. capsulatus housekeeping RNA polymerase but not the Escherichia coli RNA polymerase at the nifA1 promoter. We have tested the hypothesis that this activity is due to the high G+C content of the −10 sequence. A comparative analysis of R. capsulatus and other α-proteobacterial promoters with known transcription start sites suggests that the G+C content of the −10 region is higher than that for ...

  1. Overproduction of CcmG and CcmFHRc Fully Suppresses the c-Type Cytochrome Biogenesis Defect of Rhodobacter capsulatus CcmI-Null Mutants

    OpenAIRE

    Sanders, Carsten; Deshmukh, Meenal; Astor, Doniel; Kranz, Robert G.; Daldal, Fevzi

    2005-01-01

    Gram-negative bacteria like Rhodobacter capsulatus use intertwined pathways to carry out the posttranslational maturation of c-type cytochromes (Cyts). This periplasmic process requires at least 10 essential components for apo-Cyt c chaperoning, thio-oxidoreduction, and the delivery of heme and its covalent ligation. One of these components, CcmI (also called CycH), is thought to act as an apo-Cyt c chaperone. In R. capsulatus, CcmI-null mutants are unable to produce c-type Cyts and thus sust...

  2. Ratoon stunting disease of sugarcane: isolation of the causal bacterium.

    Science.gov (United States)

    Davis, M J; Gillaspie, A G; Harris, R W; Lawson, R H

    1980-12-19

    A small coryneform bacterium was consistently isolated from sugarcane with ratoon stunting disease and shown to be the causal agent. A similar bacterium was isolated from Bermuda grass. Both strains multiplied in sugarcane and Bermuda grass, but the Bermuda grass strain did not incite the symptoms of ratoon stunting disease in sugarcane. Shoot growth in Bermuda grass was retarded by both strains. PMID:17817853

  3. Oxygen-­dependent regulation of bacterial lipid production

    Energy Technology Data Exchange (ETDEWEB)

    Lemmer, Kimberly C.; Dohnalkova, Alice; Noguera, Daniel R.; Donohue, Timothy J.

    2015-05-12

    Understanding the mechanisms of lipid accumulation in microorganisms is important for several reasons. In addition to providing insight into assembly of biological membranes, lipid accumulation has important applications in the production of renewable fuels and chemicals. The photosynthetic bacterium Rhodobacter sphaeroides is an attractive organism to study lipid accumulation, as it has the somewhat unique ability to increase membrane production at low O₂ tensions. Under these conditions, R. sphaeroides develops invaginations of the cytoplasmic membrane to increase its membrane surface area for housing of the membrane-bound components of its photosynthetic apparatus. Here we use fatty acid levels as a reporter of membrane lipid content. We show that, under low-O₂ and anaerobic conditions, the total fatty acid content per cell increases 3-fold. We also find that the increases in the amount of fatty acid and photosynthetic pigment per cell are correlated as O₂ tensions or light intensity are changed. To ask if lipid and pigment accumulation were genetically separable, we analyzed strains with mutations in known photosynthetic regulatory pathways. While a strain lacking AppA failed to induce photosynthetic pigment-protein complex accumulation, it increased fatty acid content under low O2 conditions. We also found that an intact PrrBA pathway is required for low O2-induced fatty acid accumulation. Our findings suggest a previously unknown role of R. sphaeroides transcriptional regulators in increasing fatty acid and phospholipid accumulation in response to decreased O₂ tension.

  4. Hydrogen gas production by fermentation from various organic wastewater using Clostridium butyricum NCIB 9576 and Rhodopseudomonas sphaeroides E15-1

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Young Sue; Kim, Hyun Kyung; Rye, Hye Yeon; Lee, In Gu; Kim, Mi Sun [Biomass Research Team, Korea Institute of Energy Research, Taejeon (Korea)

    2000-03-01

    Anaerobic fermentation using Clostidium butyricum NCIB 9576, and phto-fermentation using Rhodopseudomonas sphaeroides E15-1 were studied for the production of hydrogen from Makkoli, fruits (orange and apple, watermelon and melon) and Tofu wastewaters. From the Makkoli wastewater, which contained 0.94 g/liter sugars and 2.74 g/liter solubel starch, approximately 49 mM H{sub 2}/liter wastewater was produced during the initial 18h of the anaerobic fermentation with pH control between 6.5-7.0. Several organic acids such as butyric acid, acetic acid, propionic acid, lactic acid and ethanol were also produced. From watermelon and melon wastewater, which contained 43 g/liter sugars, generated about approximately 71 mM H{sub 2}/liter wastewater was produced during the initial 24h of the anaerobic fermentation. Tofu wastewater, pH 6.5, containing 12.6 g/liter soluble starch and 0.74 g/liter sugars, generated about 30mM H{sub 2}/liter wastewater, along with some organic acids, during the initial 24 h of anaerobic fermentation. Makkoli and Tofu wastewaters as substrates for the photo-fermentation by Rhodopseudomonas sphaeroides E15-1 produced approximately 37.9 and 22.2 {mu}M H{sub 2}/ml wastewaters, respectively for 9 days of incubation under the average of 9,000010,000 lux illumination at the surface of reactor using tungsten halogen lamps. Orange and apple wastewater, which contained 93.4 g/l produced approximately 13.1 {mu}M H{sub 2}/ml wastewater only for 2 days of photo-fermentation and the growth of Rhodopseudomonas spnaeroides E15-1 and hydrogen production were stopped. 22 refs, 4 figs., 2 tabs.

  5. NCBI nr-aa BLAST: CBRC-CJAC-01-1021 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-CJAC-01-1021 ref|YP_352469.1| periplasmic sensor hybrid ... histidine kinase [Rhodobacter sphae ... roides 2.4.1] gb|ABA78568.1| periplasmic sensor hybrid ... histidine kinase [Rhodobacter sphaeroides 2.4.1] Y ...

  6. Heterologous Carotenoid-Biosynthetic Enzymes: Functional Complementation and Effects on Carotenoid Profiles in Escherichia coli

    OpenAIRE

    Song, Gyu Hyeon; Kim, Se Hyeuk; Choi, Bo Hyun; Han, Se Jong; Lee, Pyung Cheon

    2013-01-01

    A limited number of carotenoid pathway genes from microbial sources have been studied for analyzing the pathway complementation in the heterologous host Escherichia coli. In order to systematically investigate the functionality of carotenoid pathway enzymes in E. coli, the pathway genes of carotenogenic microorganisms (Brevibacterium linens, Corynebacterium glutamicum, Rhodobacter sphaeroides, Rhodobacter capsulatus, Rhodopirellula baltica, and Pantoea ananatis) were modified to form syntheti...

  7. Fluctuation-Enhanced Sensing of Bacterium Odors

    CERN Document Server

    Chang, Hung-Chih; King, Maria D; Kwan, Chiman

    2009-01-01

    The goal of this paper is to explore the possibility to detect and identify bacteria by sensing their odor via fluctuation-enhanced sensing with commercial Taguchi sensors. The fluctuations of the electrical resistance during exposure to different bacterial odors, Escherichia coli and anthrax-surrogate Bacillus subtilis, have been measured and analyzed. In the present study, the simplest method, the measurement and analysis of power density spectra was used. The sensors were run in the normal heated and the sampling-and-hold working modes, respectively. The results indicate that Taguchi sensors used in these fluctuation-enhanced modes are effective tools of bacterium detection and identification even when they are utilizing only the power density spectrum of the stochastic sensor signal.

  8. Genome Sequence of the Soil Bacterium Janthinobacterium sp. KBS0711

    OpenAIRE

    Shoemaker, William R.; Muscarella, Mario E.; Lennon, Jay T

    2015-01-01

    We present a draft genome of Janthinobacterium sp. KBS0711 that was isolated from agricultural soil. The genome provides insight into the ecological strategies of this bacterium in free-living and host-associated environments.

  9. Trichloroethylene Biodegradation by a Methane-Oxidizing Bacterium

    OpenAIRE

    Little, C. Deane; Palumbo, Anthony V; Herbes, Stephen E.; Lidstrom, Mary E.; Tyndall, Richard L.; Gilmer, Penny J.

    1988-01-01

    Trichloroethylene (TCE), a common groundwater contaminant, is a suspected carcinogen that is highly resistant to aerobic biodegradation. An aerobic, methane-oxidizing bacterium was isolated that degrades TCE in pure culture at concentrations commonly observed in contaminated groundwater. Strain 46-1, a type I methanotrophic bacterium, degraded TCE if grown on methane or methanol, producing CO2 and water-soluble products. Gas chromatography and 14C radiotracer techniques were used to determine...

  10. 硫酸酯化修饰葛仙米多糖工艺研究%Sulfation Modification of Polysaccharide Extracted from Nostoc sphaeroides Ktzing

    Institute of Scientific and Technical Information of China (English)

    朱玉婷; 谭姚; 莫开菊

    2011-01-01

    The orthogonal array design method was used to optimize three reaction conditions,including esterification reagent,temperature and reaction time,for the sulfation of crude polysaccharides extracted from Nostoc sphaeroides Ku..tzing by water extraction and subsequent alcohol precipitation.Besides,FTIR spectroscopic analysis was carried out to identify the structural difference of Nostoc sphaeroides Ku..tzing polysaccharides as a result of the sulfation reaction,and a correlation analysis was done between FTIR A1261/A1418 and degree of substitution(DS) of sulfated polysaccharides,as determined by the barium chloride-gelation method.The optimal sulfation reaction conditions were found to be: 1:4 chlorosulfonic acid-pyridine as esterification reagent for 6 h reaction at 70 ℃.Under the optimal sulfation conditions,the DS of the final products was 1.042.Meanwhile,the sulfated polysaccharide obtained revealed typical sulfated functional groups.The correlation coefficient between FTIR A1261/A1418 and DS of sulfated Nostoc sphaeroides Ku..tzing polysaccharides was 0.974.Therefore,infrared spectroscopy can be used to characterize the structural difference of sulfated polysaccharides and quantify the DS of sulfate groups.%采用氯磺酸-吡啶法合成硫酸酯化葛仙米多糖,利用正交设计对酯化试剂比例、反应温度及反应时间进行优化。通过傅里叶红外光谱分析酯化前后的结构差异,氯化钡-明胶比浊法测定取代度,并分析红外光谱法与取代度之间的相关性。结果表明:葛仙米多糖硫酸酯化修饰的最佳条件为V(氯磺酸)与V(吡啶)比例1:4、反应温度70℃、反应时间6h,此条件下取代度达到1.042;红外光谱分析表明,硫酸酯化后的葛仙米多糖具有硫酸酯键的特征吸收峰,其吸光度比值A1261/A1418与化学方法所测得的硫酸酯化取代度的相关系数达到0.974。红外光谱不仅可以表征硫酸酯化多

  11. Taxonomic characterization of the cellulose-degrading bacterium NCIB 10462

    Energy Technology Data Exchange (ETDEWEB)

    Dees, C.; Ringleberg, D.; Scott, T.C. [Oak Ridge National Lab., TN (United States); Phelps, T. [Univ. of Tennessee, Knoxville, TN (United States)

    1994-06-01

    The gram negative cellulase-producing bacterium NCIB 10462 has been previously named Pseudomonas fluorescens subsp. or var. cellulosa. Since there is renewed interest in cellulose-degrading bacteria for use in bioconversion of cellulose to chemical feed stocks and fuels, we re-examined the characteristics of this microorganism to determine its proper taxonomic characterization and to further define it`s true metabolic potential. Metabolic and physical characterization of NCIB 10462 revealed that this was an alkalophilic, non-fermentative, gram negative, oxidase positive, motile, cellulose-degrading bacterium. The aerobic substrate utilization profile of this bacterium was found to have few characteristics consistent with a classification of P. fluorescens with a very low probability match with the genus Sphingomonas. Total lipid analysis did not reveal that any sphingolipid bases are produced by this bacterium. NCIB 10462 was found to grow best aerobically but also grows well in complex media under reducing conditions. NCIB 10462 grew slowly under full anaerobic conditions on complex media but growth on cellulosic media was found only under aerobic conditions. Total fatty acid analysis (MIDI) of NCIB 10462 failed to group this bacterium with a known pseudomonas species. However, fatty acid analysis of the bacteria when grown at temperatures below 37{degrees}C suggest that the organism is a pseudomonad. Since a predominant characteristic of this bacterium is it`s ability to degrade cellulose, we suggest it be called Pseudomonas cellulosa.

  12. Synthetic Antenna Functioning As Light Harvester in the Whole Visible Region for Enhanced Hybrid Photosynthetic Reaction Centers.

    Science.gov (United States)

    Hassan Omar, Omar; la Gatta, Simona; Tangorra, Rocco Roberto; Milano, Francesco; Ragni, Roberta; Operamolla, Alessandra; Argazzi, Roberto; Chiorboli, Claudio; Agostiano, Angela; Trotta, Massimo; Farinola, Gianluca M

    2016-07-20

    The photosynthetic reaction center (RC) from the Rhodobacter sphaeroides bacterium has been covalently bioconjugated with a NIR-emitting fluorophore (AE800) whose synthesis was specifically tailored to act as artificial antenna harvesting light in the entire visible region. AE800 has a broad absorption spectrum with peaks centered in the absorption gaps of the RC and its emission overlaps the most intense RC absorption bands, ensuring a consistent increase of the protein optical cross section. The covalent hybrid AE800-RC is stable and fully functional. The energy collected by the artificial antenna is transferred to the protein via FRET mechanism, and the hybrid system outperforms by a noteworthy 30% the overall photochemical activity of the native protein under the entire range of visible light. This improvement in the optical characteristic of the photoenzyme demonstrates the effectiveness of the bioconjugation approach as a suitable route to new biohybrid materials for energy conversion, photocatalysis, and biosensing. PMID:27245093

  13. Hydrogen production by hup(-) mutant and wild-type strains of Rhodobacter capsulatus from dark fermentation effluent of sugar beet thick juice in batch and continuous photobioreactors.

    Science.gov (United States)

    Uyar, Basar; Gürgan, Muazzez; Özgür, Ebru; Gündüz, Ufuk; Yücel, Meral; Eroglu, Inci

    2015-10-01

    Photofermentative production of hydrogen is a promising and sustainable process; however, it should be coupled to dark fermentation to become cost effective. In order to integrate dark fermentation and photofermentation, the suitability of dark fermenter effluents for the photofermentative hydrogen production must be demonstrated. In this study, thermophilic dark fermenter effluent (DFE) of sugar beet thick juice was used as a substrate in photofermentation process to compare wild-type and uptake hydrogenase-deficient (hup (-)) mutant strains of Rhodobacter capsulatus by means of hydrogen production and biomass growth. The tests were conducted in small-scale (50 mL) batch and large-scale (4 L) continuous photobioreactors in indoor conditions under continuous illumination. In small scale batch conditions, maximum cell concentrations were 0.92 gdcw/L c and 1.50 gdcw/L c, hydrogen yields were 34 % and 31 %, hydrogen productivities were 0.49 mmol/(L c·h) and 0.26 mmol/(Lc·h), for hup (-) and wild-type cells, respectively. In large-scale continuous conditions, maximum cell concentrations were 1.44 gdcw/L c and 1.87 gdcw/L c, hydrogen yields were 48 and 46 %, and hydrogen productivities were 1.01 mmol/(L c·h) and 1.05 mmol/(L c·h), for hup (-) and wild-type cells, respectively. Our results showed that Rhodobacter capsulatus hup (-) cells reached to a lower maximum cell concentration but their hydrogen yield and productivity were in the same range or superior compared to the wild-type cells in both batch and continuous operating modes. The maximum biomass concentration, yield and productivity of hydrogen were higher in continuous mode compared to the batch mode with both bacterial strains. PMID:26164274

  14. In vitro and in vivo safety assessment of edible blue-green algae, Nostoc commune var. sphaeroides Kützing and Spirulina plantensis.

    Science.gov (United States)

    Yang, Yue; Park, Youngki; Cassada, David A; Snow, Daniel D; Rogers, Douglas G; Lee, Jiyoung

    2011-07-01

    Blue-green algae (BGA) have been consumed as food and herbal medicine for centuries. However, safety for their consumption has not been well investigated. This study was undertaken to evaluate in vitro and in vivo toxicity of cultivated Nostoc commune var. sphaeroides Kützing (NO) and Spirulina platensis (SP). Neither NO nor SP contained detectable levels of microcystin (MC)-LA, MC-RR, MC-LW and MC-LR by LC/MS/MS. Cell viability remained ∼70-80% when HepG2 cells were incubated with 0-500 μg/ml of hexane, chloroform, methanol and water-extractable fractions of NO and SP. Four-week-old male and female C57BL/6J mice were fed an AIN-93G/M diet supplemented with 0%, 2.5% or 5% of NO and SP (wt/wt) for 6 months. For both genders, BGA-rich diets did not induce noticeable abnormality in weight gain and plasma alanine aminotransferase (ALT) and aspartate aminotransferase concentrations except a significant increase in plasma ALT levels by 2.5% NO supplementation in male mice at 6 month. Histopathological analysis of livers, however, indicated that BGA did not cause significant liver damage compared with controls. In conclusion, our results suggest that NO and SP are free of MC and the long-term dietary supplementation of up to 5% of the BGA may be consumed without evident toxic side-effects. PMID:21473896

  15. Properties of a Tn5 insertion mutant defective in the structural gene (fruA) of the fructose-specific phosphotransferase system of Rhodobacter capsulatus and cloning of the fru regulon.

    OpenAIRE

    Daniels, G A; Drews, G; Saier, M H

    1988-01-01

    In photosynthetic bacteria such as members of the genera Rhodospirillum, Rhodopseudomonas, and Rhodobacter a single sugar, fructose, is transported by the phosphotransferase system-catalyzed group translocation mechanism. Previous studies indicated that syntheses of the three fructose catabolic enzymes, the integral membrane enzyme II, the peripheral membrane enzyme I, and the soluble fructose-1-phosphate kinase, are coordinately induced. To characterize the genetic apparatus encoding these e...

  16. Extreme Ionizing-Radiation-Resistant Bacterium

    Science.gov (United States)

    Vaishampayan, Parag A.; Venkateswaran, Kasthuri J.; Schwendner, Petra

    2013-01-01

    potential for transfer, and subsequent proliferation, on another solar body such as Mars and Europa. These organisms are more likely to escape planetary protection assays, which only take into account presence of spores. Hence, presences of extreme radiation-resistant Deinococcus in the cleanroom facility where spacecraft are assembled pose a serious risk for integrity of life-detection missions. The microorganism described herein was isolated from the surfaces of the cleanroom facility in which the Phoenix Lander was assembled. The isolated bacterial strain was subjected to a comprehensive polyphasic analysis to characterize its taxonomic position. This bacterium exhibits very low 16SrRNA similarity with any other environmental isolate reported to date. Both phenotypic and phylogenetic analyses clearly indicate that this isolate belongs to the genus Deinococcus and represents a novel species. The name Deinococcus phoenicis was proposed after the Phoenix spacecraft, which was undergoing assembly, testing, and launch operations in the spacecraft assembly facility at the time of isolation. D. phoenicis cells exhibited higher resistance to ionizing radiation (cobalt-60; 14 kGy) than the cells of the D. radiodurans (5 kGy). Thus, it is in the best interest of NASA to thoroughly characterize this organism, which will further assess in determining the potential for forward contamination. Upon the completion of genetic and physiological characteristics of D. phoenicis, it will be added to a planetary protection database to be able to further model and predict the probability of forward contamination.

  17. The Rhodobacter capsulatus genome

    Czech Academy of Sciences Publication Activity Database

    Haselkorn, R.; Lapidus, A.; Kogan, Y.; Vlček, Čestmír; Pačes, Jan; Pačes, Václav; Ulbrich, P.; Pečenková, Tamara; Rebrekov, D.; Milgram, A.; Mazur, M.; Cox, R.; Kyrpides, N.; Ivanova, N.; Kapatral, V.; Los, T.; Lykidis, A.; Mikhailova, N.; Reznik, G.; Vasieva, O.; Fonstein, M.

    2001-01-01

    Roč. 70, č. 1 (2001), s. 43-52. ISSN 0166-8595 R&D Projects: GA MŠk LN00A079 Institutional research plan: CEZ:AV0Z5052915 Keywords : genome * expression * gene Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 1.739, year: 2001

  18. Molybdate Reduction to Molybdenum Blue by an Antarctic Bacterium

    OpenAIRE

    S. A. Ahmad; Shukor, M. Y.; Shamaan, N. A.; W. P. Mac Cormack; Syed, M. A.

    2013-01-01

    A molybdenum-reducing bacterium from Antarctica has been isolated. The bacterium converts sodium molybdate or Mo6+ to molybdenum blue (Mo-blue). Electron donors such as glucose, sucrose, fructose, and lactose supported molybdate reduction. Ammonium sulphate was the best nitrogen source for molybdate reduction. Optimal conditions for molybdate reduction were between 30 and 50 mM molybdate, between 15 and 20°C, and initial pH between 6.5 and 7.5. The Mo-blue produced had a unique absorption spe...

  19. Draft Genome Sequence of Oral Bacterium Streptococcus mutans JH1140

    OpenAIRE

    Escano, Jerome; Deng, Peng; Lu, Shi-En; Smith, Lief

    2016-01-01

    Streptococcus mutans JH1140 is an oral bacterium known to produce the bacteriocin mutacin 1140, and the strain has been genetically engineered to combat dental caries. Here, we report the 2.0-Mb draft genome of S. mutans JH1140. This genome provides new insights into the strain’s superior colonization properties and its utility in replacement therapy.

  20. Genome of a mosquito-killing bacterium decoded

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    @@ Researchers with the CAS Wuhan Institute of Virology (WHIOV) recently completed the genome sequencing of a mosquitocidal bacterium Bacillus shaericus C3-41. The feat, first of its kind in China, is expected to further promote the bio-control studies of mosquitoes.

  1. Rnf Genes in Purple Sulfur Bacterium Allochromatium vinosum

    OpenAIRE

    DİNÇTÜRK, H. Benan; DEMİR, Volkan

    2006-01-01

    Allochromatium vinosum is a photosynthetic, diazotrophic purple sulfur bacterium that oxidizes reduced sulfur compounds hydrogen sulfide, elemental sulfur and thiosulfide. In this article, we report the presence of rnf genes in Allochromatium vinosum, some of which have been reported to take part in nitrogen fixation in some species.

  2. Draft Genome Sequence of Oral Bacterium Streptococcus mutans JH1140

    Science.gov (United States)

    Escano, Jerome; Deng, Peng; Lu, Shi-En

    2016-01-01

    Streptococcus mutans JH1140 is an oral bacterium known to produce the bacteriocin mutacin 1140, and the strain has been genetically engineered to combat dental caries. Here, we report the 2.0-Mb draft genome of S. mutans JH1140. This genome provides new insights into the strain’s superior colonization properties and its utility in replacement therapy. PMID:27257196

  3. Shotgun Genome Sequence of the Large Purple Photosynthetic Bacterium Rhodospirillum photometricum DSM122

    OpenAIRE

    Duquesne, K.; Sturgis, James N.

    2012-01-01

    Here, we present the shotgun genome sequence of the purple photosynthetic bacterium Rhodospirillum photometricum DSM122. The photosynthetic apparatus of this bacterium has been particularly well studied by microscopy. The knowledge of the genome of this oversize bacterium will allow us to compare it with the other purple bacterial organisms to follow the evolution of the photosynthetic apparatus.

  4. Dietary Karaya Saponin and Rhodobacter capsulatus Exert Hypocholesterolemic Effects by Suppression of Hepatic Cholesterol Synthesis and Promotion of Bile Acid Synthesis in Laying Hens

    Directory of Open Access Journals (Sweden)

    Sadia Afrose

    2010-01-01

    Full Text Available This study was conducted to elucidate the mechanism underlying the hypolipidemic action of karaya saponin or Rhodobacter (R. capsulatus. A total of 40 laying hens (20-week-old were assigned into four dietary treatment groups and fed a basal diet (as a control or basal diets supplemented with either karaya saponin, R. capsulatus, or both for 60 days. The level of serum low-density-lipoprotein cholesterol and the levels of cholesterol and triglycerides in the serum, liver, and egg yolk were reduced by all the supplementations (<.05. Liver bile acid concentration and fecal concentrations of cholesterol, triacylglycerol, and bile acid were simultaneously increased by the supplementation of karaya saponin, R. capsulatus, and the combination of karaya saponin and R. capsulatus (<.05. The supplementation of karaya saponin, R. capsulatus, and the combination of karaya saponin and R. capsulatus suppressed the incorporation of 14C from 1-14C-palmitic acid into the fractions of total lipids, phospholipids, triacylglycerol, and cholesterol in the liver in vitro (<.05. These findings suggest that the hypocholesterolemic effects of karaya saponin and R. capsulatus are caused by the suppression of the cholesterol synthesis and the promotion of cholesterol catabolism in the liver.

  5. Removal of the effect of ammonium on the regulation of nitrogenase enzyme in Rhodobacter capsulatus DSM1710 for improved hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Pekgoez, Guelsah; Guenduez, Ufuk [Middle East Technical Univ. (Turkey). Dept. of Biology; Eroglu, Inci [Middle East Technical Univ. (Turkey). Dept. of Chemical Engineering; Rakhely, Gabor [Szeged Univ. (Hungary). Dept. of Biotechnology

    2010-07-01

    Photofermentative biohydrogen production by purple non-sulfur (PNS) bacteria is a renewable and clean way of producing hydrogen. Hydrogen production by PNS bacteria, Rhodobacter capsulatus, is mediated mainly by nitrogenases, which primarily fix molecular nitrogen to ammonium and produce hydrogen as byproduct. The reaction catalyzed by nitrogenases requires a lot of energy. Hence, there is a complex regulation on nitrogenase enzyme complex, consequently, on hydrogen production. Whenever ammonium, which is the end product of nitrogen fixation reaction, is found in the environment, hydrogen production stops. GlnB and GlnK proteins are the critical regulatory proteins in ammonium dependent regulation of the nitrogenase gene expression. In this study, the aim is to release the ammonium regulation on nitrogenase enzyme by inactivating glnB and glnK genes. For this purpose, relevant recombinant vectors were constructed; R.capsulatus glnB- strain was obtained. The double R.capsulatus glnB{sup -}glnK{sup -} strain, able to produce hydrogen independent of ammonium concentration of the environment is to be obtained. (orig.)

  6. A Streamlined Strategy for Biohydrogen Production with an Alkaliphilic Bacterium

    Energy Technology Data Exchange (ETDEWEB)

    Elias, Dwayne A [ORNL; Wall, Judy D. [University of Missouri; Mormile, Dr. Melanie R. [Missouri University of Science and Technology; Begemann, Matthew B [University of Wisconsin, Madison

    2012-01-01

    Biofuels are anticipated to enable a shift from fossil fuels for renewable transportation and manufacturing fuels, with biohydrogen considered attractive since it could offer the largest reduction of global carbon budgets. Currently, biohydrogen production remains inefficient and heavily fossil fuel-dependent. However, bacteria using alkali-treated biomass could streamline biofuel production while reducing costs and fossil fuel needs. An alkaliphilic bacterium, Halanaerobium strain sapolanicus, is described that is capable of biohydrogen production at levels rivaling neutrophilic strains, but at pH 11 and hypersaline conditions. H. sapolanicus ferments a variety of 5- and 6- carbon sugars derived from hemicellulose and cellulose including cellobiose, and forms the end products hydrogen and acetate. Further, it can also produce biohydrogen from switchgrass and straw pretreated at temperatures far lower than any previously reported and in solutions compatible with growth. Hence, this bacterium can potentially increase the efficiency and efficacy of biohydrogen production from renewable biomass resources.

  7. Rock Phosphate Solubilization Mechanisms of One Fungus and One Bacterium

    Institute of Scientific and Technical Information of China (English)

    LIN Qi-mei; ZHAO Xiao-rong; ZHAO Zi-juan; LI Bao-guo

    2002-01-01

    Many microorganisms can dissolve the insoluble phosphates like apatite. However, the mechanisms are still not clear. This study was an attempt to investigate the mechanisms of rock phosphate solubilization by an Aspergillus 2TCiF2 and an Arthrobacter1TCRi7. The results indicated that the fungus produced a large amount of organic acids, mainly oxalic acid. The total quantity of the organic acids produced by the fungus was 550 times higher than that by the bacterium. Different organic acids had completely different capacities to solubilize the rock. Oxalic acid and citric acid had stronger capacity to dissolve the rock than malic acid, tartaric acid, lactic acid, acetic acid, malonic acid and succinic acid. The fungus solubilized the rock through excreting both proton and organic acids. The rock solubilization of the bacterium depended on only proton.

  8. A physical map of the hyperthermophilic bacterium Aquifex pyrophilus chromosome.

    OpenAIRE

    Shao, Z; Mages, W; Schmitt, R.

    1994-01-01

    A genomic map of the hyperthermophilic hydrogen-oxidizing bacterium Aquifex pyrophilus was established with NotI (GC/GGCCGC), SpeI (A/CTAGT), and XbaI (T/CTAGA). Linking clones and cross-hybridization of restriction fragments revealed a single circular chromosome of 1.6 Mbp. A single flagellin gene and six rRNA gene units were located on this map by Southern hybridization.

  9. Isolation of a Bacterium Capable of Degrading Peanut Hull Lignin

    OpenAIRE

    Kerr, Thomas J.; Kerr, Robert D.; Benner, Ronald

    1983-01-01

    Thirty-seven bacterial strains capable of degrading peanut hull lignin were isolated by using four types of lignin preparations and hot-water-extracted peanut hulls. One of the isolates, tentatively identified as Arthrobacter sp., was capable of utilizing all four lignin preparations as well as extracted peanut hulls as a sole source of carbon. The bacterium was also capable of degrading specifically labeled [14C]lignin-labeled lignocellulose and [14C]cellulose-labeled lignocellulose from the...

  10. The Brucella abortus cyclic beta-1,2-glucan virulence factor is substituted with O-ester-linked succinyl residues.

    Science.gov (United States)

    Roset, Mara S; Ciocchini, Andrés E; Ugalde, Rodolfo A; Iñón de Iannino, Nora

    2006-07-01

    Brucella periplasmic cyclic beta-1,2-glucan plays an important role during bacterium-host interaction. Nuclear magnetic resonance spectrometry analysis, thin-layer chromatography, and DEAE-Sephadex chromatography were used to characterize Brucella abortus cyclic glucan. In the present study, we report that a fraction of B. abortus cyclic beta-1,2-glucan is substituted with succinyl residues, which confer anionic character on the cyclic beta-1,2-glucan. The oligosaccharide backbone is substituted at C-6 positions with an average of two succinyl residues per glucan molecule. This O-ester-linked succinyl residue is the only substituent of Brucella cyclic glucan. A B. abortus open reading frame (BAB1_1718) homologous to Rhodobacter sphaeroides glucan succinyltransferase (OpgC) was identified as the gene encoding the enzyme responsible for cyclic glucan modification. This gene was named cgm for cyclic glucan modifier and is highly conserved in Brucella melitensis and Brucella suis. Nucleotide sequencing revealed that B. abortus cgm consists of a 1,182-bp open reading frame coding for a predicted membrane protein of 393 amino acid residues (42.7 kDa) 39% identical to Rhodobacter sphaeroides succinyltransferase. cgm null mutants in B. abortus strains 2308 and S19 produced neutral glucans without succinyl residues, confirming the identity of this protein as the cyclic-glucan succinyltransferase enzyme. In this study, we demonstrate that succinyl substituents of cyclic beta-1,2-glucan of B. abortus are necessary for hypo-osmotic adaptation. On the other hand, intracellular multiplication and mouse spleen colonization are not affected in cgm mutants, indicating that cyclic-beta-1,2-glucan succinylation is not required for virulence and suggesting that no low-osmotic stress conditions must be overcome during infection. PMID:16816173

  11. Salt-inducible promoter derivable from a lactic acid bacterium, and its use in a lactic acid bacterium for production of a desired protein

    NARCIS (Netherlands)

    Sanders, Jan Willem; Kok, Jan; Venema, Gerard; Ledeboer, Adrianus Marinus

    1998-01-01

    The invention provides a salt-inducible promoter present in SEQ ID NO: 10 and derivable from a lactic acid bacterium in isolation from the coding sequence normally controlled by said promoter in a wild-type lactic acid bacterium, with modifications and important parts thereof. Also provided are a re

  12. Open reading frame 5 (ORF5), encoding a ferredoxinlike protein, and nifQ are cotranscribed with nifE, nifN, nifX, and ORF4 in Rhodobacter capsulatus.

    OpenAIRE

    Moreno-Vivian, C; Hennecke, S; Pühler, A; Klipp, W

    1989-01-01

    DNA sequence analysis of a 1,600-base-pair fragment located downstream of nifENX in nif region A of Rhodobacter capsulatus revealed two additional open reading frames (ORFs): ORF5, encoding a ferredoxinlike protein, and nifQ. The ferredoxinlike gene product contained two cysteine motifs, typical of ferredoxins coordinating two 4Fe-4S clusters, but the distance between these two motifs was unusual for low-molecular-weight ferredoxins. The R. capsulatus nifQ gene product shared a high degree of...

  13. Research Progress and Perspectives of Nitrogen Fixing Bacterium, Gluconacetobacter diazotrophicus, in Monocot Plants

    Directory of Open Access Journals (Sweden)

    N. Eskin

    2014-01-01

    Full Text Available Gluconacetobacter diazotrophicus is a nitrogen fixing bacterium originally found in monocotyledon sugarcane plants in which the bacterium actively fixes atmosphere nitrogen and provides significant amounts of nitrogen to plants. This bacterium mainly colonizes intercellular spaces within the roots and stems of plants and does not require the formation of the complex root organ like nodule. The bacterium is less plant/crop specific and indeed G. diazotrophicus has been found in a number of unrelated plant species. Importantly, as the bacterium was of monocot plant origin, there exists a possibility that the nitrogen fixation feature of the bacterium may be used in many other monocot crops. This paper reviews and updates the research progress of G. diazotrophicus for the past 25 years but focuses on the recent research development.

  14. Study on Anti-Coagulant Activity of Sulfated Nsotoc Sphaeroides Kützing Polysaccharide%葛仙米多糖硫酸酯抗凝血活性研究

    Institute of Scientific and Technical Information of China (English)

    朱玉婷; 袁杰; 杨洁; 田瑞; 曾智; 莫开菊

    2014-01-01

    This paper investigated the anticoagulant activity of Nostoc Sphaeroides Kützing polysaccha-ride’ s sulfuric acid ester,whose substitution degrees were 0,0.51,1.01 respectively.The results showed:Nostoc Sphaeroides Kützing polysaccharide’ s sulfuric acid ester could obviously prolong APTT and TT, and depended on the concentration but did not play a significant role to PT.So the results mainly illustra-ted that it played the function of anticlotting through inhibiting endogenous blood coagulation process and conjunct blood coagulation way,but it showed weak effect on exogenous blood coagulation way.%以取代度为0、0.51、1.01的葛仙米多糖硫酸酯为原料,探讨了各样品的抗凝血活性.结果表明:葛仙米多糖硫酸酯能显著延长人活化部分凝血活酶时间(APTT)和凝血酶时间(TT),且具有一定的剂量效应关系,但对凝血酶原时间(PT)的作用不明显.说明其主要是通过抑制内源性凝血过程及共同凝血途径发挥抗凝血作用,对外源凝血途径影响较弱.

  15. The Effects of Rhodobacter capsulatus KCTC-2583 on Cholesterol Metabolism, Egg Production and Quality Parameters during the Late Laying Periods in Hens.

    Science.gov (United States)

    Lokhande, Anushka; Ingale, S L; Lee, S H; Kim, J S; Lohakare, J D; Chae, B J; Kwon, I K

    2013-06-01

    An experiment was conducted to investigate the effects of dietary supplementation of Rhodobacter capsulatus KCTC-2583 on egg-yolk and serum cholesterol, egg production and quality parameters during the late laying periods in hens. A total of 160 Hy-Line Brown layers (54 wk-old) were randomly allotted to 4 treatment groups on the basis of laying performance. Each treatment had 4 replicates with 10 birds each (40 birds per treatment). Two hens were confined individually with cage size 35×35×40 cm and each 10 birds (5 cages) shared a common feed trough between them forming one experimental unit. Dietary treatments were; basal diet supplemented with 0 (control), 0.05, 0.10 and 0.15% R. capsulatus KCTC-2583. Experimental diets were fed in meal form for 56 d. Dietary supplementation of increasing levels of R. capsulatus KCTC-2583 reduced (linear, pLaying hens fed a diet supplemented with increasing levels of R. capsulatus KCTC-2583 had increased (linear; p0.05) on feed intake of laying hens. At d 28 and 56, breaking strength and yolk colour of eggs were linearly improved (playing hens fed dietary increasing levels of R. capsulatus KCTC-2583. Dietary treatment had no effects (linear or quadratic; p>0.05) on albumin height, shell thickness and shell weight at any period of experiment. These results indicate that dietary supplementation of R. capsulatus KCTC-2583 has the potential to improve the laying hen performance and lead to the development of low cholesterol eggs during late laying period in Hy-Line Brown hens. PMID:25049857

  16. Overproduction of CcmG and CcmFHRc Fully Suppresses the c-Type Cytochrome Biogenesis Defect of Rhodobacter capsulatus CcmI-Null Mutants

    Science.gov (United States)

    Sanders, Carsten; Deshmukh, Meenal; Astor, Doniel; Kranz, Robert G.; Daldal, Fevzi

    2005-01-01

    Gram-negative bacteria like Rhodobacter capsulatus use intertwined pathways to carry out the posttranslational maturation of c-type cytochromes (Cyts). This periplasmic process requires at least 10 essential components for apo-Cyt c chaperoning, thio-oxidoreduction, and the delivery of heme and its covalent ligation. One of these components, CcmI (also called CycH), is thought to act as an apo-Cyt c chaperone. In R. capsulatus, CcmI-null mutants are unable to produce c-type Cyts and thus sustain photosynthetic (Ps) growth. Previously, we have shown that overproduction of the putative heme ligation components CcmF and CcmHRc (also called Ccl1 and Ccl2) can partially bypass the function of CcmI on minimal, but not on enriched, media. Here, we demonstrate that either additional overproduction of CcmG (also called HelX) or hyperproduction of CcmF-CcmHRc is needed to completely overcome the role of CcmI during the biogenesis of c-type Cyts on both minimal and enriched media. These findings indicate that, in the absence of CcmI, interactions between the heme ligation and thioreduction pathways become restricted for sufficient Cyt c production. We therefore suggest that CcmI, along with its apo-Cyt chaperoning function, is also critical for the efficacy of holo-Cyt c formation, possibly via its close interactions with other components performing the final heme ligation steps during Cyt c biogenesis. PMID:15937187

  17. Rhodobacter capsulatus nifA1 Promoter: High-GC −10 Regions in High-GC Bacteria and the Basis for Their Transcription

    Science.gov (United States)

    Richard, Cynthia L.; Tandon, Animesh; Kranz, Robert G.

    2004-01-01

    It was previously shown that the Rhodobacter capsulatus NtrC enhancer-binding protein activates the R. capsulatus housekeeping RNA polymerase but not the Escherichia coli RNA polymerase at the nifA1 promoter. We have tested the hypothesis that this activity is due to the high G+C content of the −10 sequence. A comparative analysis of R. capsulatus and other α-proteobacterial promoters with known transcription start sites suggests that the G+C content of the −10 region is higher than that for E. coli. Both in vivo and in vitro results obtained with nifA1 promoters with −10 and/or −35 variations are reported here. A major conclusion of this study is that α-proteobacteria have evolved a promiscuous sigma factor and core RNA polymerase that can transcribe promoters with high-GC −10 regions in addition to the classic E. coli Pribnow box. To facilitate studies of R. capsulatus transcription, we cloned and overexpressed all of the RNA polymerase subunits in E. coli, and these were reconstituted in vitro to form an active, recombinant R. capsulatus RNA polymerase with properties mimicking those of the natural polymerase. Thus, no additional factors from R. capsulatus are necessary for the recognition of high-GC promoters or for activation by R. capsulatus NtrC. The addition of R. capsulatus σ70 to the E. coli core RNA polymerase or the use of −10 promoter mutants did not facilitate R. capsulatus NtrC activation of the nifA1 promoter by the E. coli RNA polymerase. Thus, an additional barrier to activation by R. capsulatus NtrC exists, probably a lack of the proper R. capsulatus NtrC-E. coli RNA polymerase (protein-protein) interaction(s). PMID:14729700

  18. Phosphate enhances levan production in the endophytic bacterium Gluconacetobacter diazotrophicus Pal5

    OpenAIRE

    Idogawa, Nao; Amamoto, Ryuta; Murata, Kousaku; Kawai, Shigeyuki

    2014-01-01

    Gluconacetobacter diazotrophicus is a gram-negative and endophytic nitrogen-fixing bacterium that has several beneficial effects in host plants; thus, utilization of this bacterium as a biofertilizer in agriculture may be possible. G. diazotrophicus synthesizes levan, a D-fructofuranosyl polymer with β-(2→6) linkages, as an exopolysaccharide and the synthesized levan improves the stress tolerance of the bacterium. In this study, we found that phosphate enhances levan production by G. diazotro...

  19. A Plant Growth-Promoting Bacterium That Decreases Nickel Toxicity in Seedlings

    OpenAIRE

    Burd, Genrich I.; Dixon, D. George; Glick, Bernard R.

    1998-01-01

    A plant growth-promoting bacterium, Kluyvera ascorbata SUD165, that contained high levels of heavy metals was isolated from soil collected near Sudbury, Ontario, Canada. The bacterium was resistant to the toxic effects of Ni2+, Pb2+, Zn2+, and CrO4−, produced a siderophore(s), and displayed 1-aminocyclopropane-1-carboxylic acid deaminase activity. Canola seeds inoculated with this bacterium and then grown under gnotobiotic conditions in the presence of high concentrations of nickel chloride w...

  20. Magnetic guidance of the magnetotactic bacterium Magnetospirillum gryphiswaldense.

    Science.gov (United States)

    Loehr, Johannes; Pfeiffer, Daniel; Schüler, Dirk; Fischer, Thomas M

    2016-04-21

    Magnetospirillum gryphiswaldense is a magnetotactic bacterium with a permanent magnetic moment capable of swimming using two bipolarly located flagella. In their natural environment these bacteria swim along the field lines of the homogeneous geomagnetic field in a typical run and reversal pattern and thereby create non-differentiable trajectories with sharp edges. In the current work we nevertheless achieve stable guidance along curved lines of mechanical instability by using a heterogeneous magnetic field of a garnet film. The successful guidance of the bacteria depends on the right balance between motility and the magnetic moment of the magnetosome chain. PMID:26972517

  1. Intracellular iron minerals in a dissimilatory iron-reducing bacterium.

    Science.gov (United States)

    Glasauer, Susan; Langley, Sean; Beveridge, Terry J

    2002-01-01

    Among prokaryotes, there are few examples of controlled mineral formation; the formation of crystalline iron oxides and sulfides [magnetite (Fe3O4) or greigite (Fe3S4)] by magnetotactic bacteria is an exception. Shewanella putrefaciens CN32, a Gram-negative, facultative anaerobic bacterium that is capable of dissimilatory iron reduction, produced microscopic intracellular grains of iron oxide minerals during growth on two-line ferrihydrite in a hydrogen-argon atmosphere. The minerals, formed at iron concentrations found in the soil and sedimentary environments where these bacteria are active, could represent an unexplored pathway for the cycling of iron by bacteria. PMID:11778045

  2. Factors Affecting Zebra Mussel Kill by the Bacterium Pseudomonas fluorescens

    Energy Technology Data Exchange (ETDEWEB)

    Daniel P. Molloy

    2004-02-24

    The specific purpose of this research project was to identify factors that affect zebra mussel kill by the bacterium Pseudomonas fluorescens. Test results obtained during this three-year project identified the following key variables as affecting mussel kill: treatment concentration, treatment duration, mussel siphoning activity, dissolved oxygen concentration, water temperature, and naturally suspended particle load. Using this latter information, the project culminated in a series of pipe tests which achieved high mussel kill inside power plants under once-through conditions using service water in artificial pipes.

  3. Screening, identification and desilication of a silicate bacterium

    Institute of Scientific and Technical Information of China (English)

    ZHOU Hong-bo; ZENG Xiao-xi; LIU Fei-fei; QIU Guan-zhou; HU Yue-hua

    2006-01-01

    The strain Lv1-2 isolated from the Henan bauxite was characterized by morphological observation, biochemical and physiological identification, and 16S rDNA sequence analysis. The influences of temperature, initial pH value, the volume of medium, shaking speed and illite concentration on the desilicating ability of the strain Lv1-2 were investigated. The results show that the bacterium is a Gram-negative rod-shaped bacterium with oval endspores and thick capsule, but without flagellum. The biochemical and physiological tests indicate that the strain Lv1-2 is similar to Bacillus mucilaginosus. In GenBank the 16S rDNA sequence similarity of the strain Lv1-2 and the B. mucilaginosus YNUCC0001 (AY571332) is more than 99 %. Based on the above results, the strain Lv1-2 is identified as B. mucilaginosus. The optimum conditions for the strain Lv1-2 to remove silicon from illite are as follows: temperature is 30℃ ;initial pH value is 7.5; medium volume in 200 mL bottle is 60 mL; shaking speed of rotary shaker is 220 r/m; illite concentration is 1%.

  4. Biological Control of Meloidogyne hapla Using an Antagonistic Bacterium

    Directory of Open Access Journals (Sweden)

    Jiyeong Park

    2014-09-01

    Full Text Available We examined the efficacy of a bacterium for biocontrol of the root-knot nematode (RKN Meloidogyne hapla in carrot (Daucus carota subsp. sativus and tomato (Solanum lycopersicum. Among 542 bacterial isolates from various soils and plants, the highest nematode mortality was observed for treatments with isolate C1-7, which was identified as Bacillus cereus based on cultural and morphological characteristics, the Biolog program, and 16S rRNA sequencing analyses. The population density and the nematicidal activity of B. cereus C1-7 remained high until the end of culture in brain heart infusion broth, suggesting that it may have sustainable biocontrol potential. In pot experiments, the biocontrol efficacy of B. cereus C1-7 was high, showing complete inhibition of root gall or egg mass formation by RKN in carrot and tomato plants, and subsequently reducing RKN damage and suppressing nematode population growth, respectively. Light microscopy of RKN-infected carrot root tissues treated with C1-7 showed reduced formation of gall cells and fully developed giant cells, while extensive gall cells and fully mature giant cells with prominent cell wall ingrowths formed in the untreated control plants infected with RKNs. These histopathological characteristics may be the result of residual or systemic biocontrol activity of the bacterium, which may coincide with the biocontrol efficacies of nematodes in pots. These results suggest that B. cereus C1-7 can be used as a biocontrol agent for M. hapla.

  5. Isolation and characterization of luminescent bacterium for sludge biodegradation.

    Science.gov (United States)

    Zahaba, Maryam; Halmi, Mohd Izuan Effendi; Ahmad, Siti Aqlima; Shukor, Mohd Yunus; Syed, Mohd Arif

    2015-11-01

    Microtox is based on the inhibition of luminescence of the bacterium Vibrio fischeri by the toxicants. This technique has been accepted by the USEPA (United States Environmental Protection Agency) as a biomonitoring tool for remediation of toxicants such as hydrocarbon sludge. In the present study, a luminescent bacterium was isolated from yellow striped scad (Selaroides leptolepis) and was tentatively identified as Vibrio sp. isolate MZ. This aerobic isolate showed high luminescence activity in a broad range of temperature from 25 to 35 °C. In addition, optimal conditions for high bioluminescence activity in range of pH 7.5 to 8.5 and 10 gl(-1) of sodium chloride, 10 gl(-1) of peptone and 10 gl(-1) of sucrose as carbon source. Bench scale biodegradation 1% sludge (w/v) was set up and degradation was determined using gas chromatography with flame ionised detector (GC-FID). In this study, Rhodococcus sp. strain AQ5NOL2 was used to degrade the sludge. Based on the preliminary results obtained, Vibrio sp. isolate MZwas able to monitor the biodegradation of sludge. Therefore, Vibrio sp. isolate MZ has the potential to be used as a biomonitoring agent for biomonitoring of sludge biodegradation particularly in the tropical ranged environment. PMID:26688958

  6. Polysaccharide degradation systems of the saprophytic bacterium Cellvibrio japonicus.

    Science.gov (United States)

    Gardner, Jeffrey G

    2016-07-01

    Study of recalcitrant polysaccharide degradation by bacterial systems is critical for understanding biological processes such as global carbon cycling, nutritional contributions of the human gut microbiome, and the production of renewable fuels and chemicals. One bacterium that has a robust ability to degrade polysaccharides is the Gram-negative saprophyte Cellvibrio japonicus. A bacterium with a circuitous history, C. japonicus underwent several taxonomy changes from an initially described Pseudomonas sp. Most of the enzymes described in the pre-genomics era have also been renamed. This review aims to consolidate the biochemical, structural, and genetic data published on C. japonicus and its remarkable ability to degrade cellulose, xylan, and pectin substrates. Initially, C. japonicus carbohydrate-active enzymes were studied biochemically and structurally for their novel polysaccharide binding and degradation characteristics, while more recent systems biology approaches have begun to unravel the complex regulation required for lignocellulose degradation in an environmental context. Also included is a discussion for the future of C. japonicus as a model system, with emphasis on current areas unexplored in terms of polysaccharide degradation and emerging directions for C. japonicus in both environmental and biotechnological applications. PMID:27263016

  7. Structure and morphology of magnetite anaerobically-produced by a marine magnetotactic bacterium and a dissimilatory iron-reducing bacterium

    Science.gov (United States)

    Sparks, N.H.C.; Mann, S.; Bazylinski, D.A.; Lovley, D.R.; Jannasch, H.W.; Frankel, R.B.

    1990-01-01

    Intracellular crystals of magnetite synthesized by cells of the magnetotactic vibroid organism, MV-1, and extracellular crystals of magnetite produced by the non-magnetotactic dissimilatory iron-reducing bacterium strain GS-15, were examined using high-resolution transmission electron microscopy, electron diffraction and 57Fe Mo??ssbauer spectroscopy. The magnetotactic bacterium contained a single chain of approximately 10 crystals aligned along the long axis of the cell. The crystals were essentially pure stoichiometric magnetite. When viewed along the crystal long axis the particles had a hexagonal cross-section whereas side-on they appeared as rectangules or truncated rectangles of average dimension, 53 ?? 35 nm. These findings are explained in terms of a three-dimensional morphology comprising a hexagonal prism of {110} faces which are capped and truncated by {111} end faces. Electron diffraction and lattice imaging studies indicated that the particles were structurally well-defined single crystals. In contrast, magnetite particles produced by the strain, GS-15 were irregular in shape and had smaller mean dimensions (14 nm). Single crystals were imaged but these were not of high structural perfection. These results highlight the influence of intracellular control on the crystallochemical specificity of bacterial magnetites. The characterization of these crystals is important in aiding the identification of biogenic magnetic materials in paleomagnetism and in studies of sediment magnetization. ?? 1990.

  8. Treatment of common warts with the immune stimulant Propionium bacterium parvum Tratamento das verrugas vulgares com o imunoestimulante Propionium bacterium parvum

    OpenAIRE

    Nilton Nasser

    2012-01-01

    BACKGROUND: Warts are epithelial proliferations in the skin and mucous membrane caused by various types of HPV. They can decrease spontaneously or increase in size and number according to the patient's immune status. The Propionium bacterium parvum is a strong immune stimulant and immune modulator and has important effects in the immune system and it is able to produce antibodies in the skin. OBJECTIVE: To show the efficacy of the Propionium bacterium parvum in saline solution in the treatmen...

  9. Dense populations of a giant sulfur bacterium in Namibian shelf sediments

    DEFF Research Database (Denmark)

    Schulz, HN; Brinkhoff, T.; Ferdelman, TG;

    1999-01-01

    A previously unknown giant sulfur bacterium is abundant in sediments underlying the oxygen minimum zone of the Benguela Current upwelling system. The bacterium has a spherical cell that exceeds by up to 100-fold the biovolume of the largest known prokaryotes. On the basis of 16S ribosomal DNA...

  10. Draft Genome Sequence of Ensifer adhaerens M78, a Mineral-Weathering Bacterium Isolated from Soil.

    Science.gov (United States)

    Wang, Yuanli; Chen, Wei; He, Linyan; Wang, Qi; Sheng, Xia-Fang

    2016-01-01

    Ensifer adhaerens M78, a bacterium isolated from soil, can weather potash feldspar and release Fe, Si, and Al from rock under nutrient-poor conditions. Here, we report the draft genome sequence of strain M78, which may facilitate a better understanding of the molecular mechanism involved in mineral weathering by the bacterium. PMID:27609930

  11. Burkholderia phytofirmans sp. nov., a novel plant-associated bacterium with plant-beneficial properties

    NARCIS (Netherlands)

    Sessitsch, A; Coenye, T; Sturz, AV; Vandamme, P; Barka, EA; Salles, JF; Van Elsas, JD; Faure, D; Reiter, B; Glick, BR; Wang-Pruski, G; Nowak, J

    2005-01-01

    A Gram-negative, non-sporulating, rod-shaped, motile bacterium, with a single polar flagellum, designated strain PsJNT, was isolated from surface-sterilized onion roots. This isolate proved to be a highly effective plant-beneficial bacterium, and was able to establish rhizosphere and endophytic popu

  12. Dynamics of Rhodobacter capsulatus [2Fe-2S] Ferredoxin VI and Aquifex aeolicus Ferredoxin 5 Via Nuclear Resonance Vibrational Spectroscopy (NRVS) and Resonance Raman Spectroscopy.

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Yuming; Tan, Ming-Liang; Ichiye, Toshiko; Wang, Hongxin; Guo, Yisong; Smith, Matt C.; Meyer, Jacques; Sturhahn, Wolfgang; Alp, E. E.; Zhao, Jiyong; Yoda, Yoshitaka; Cramer, Stephen P.

    2008-06-24

    We have used (57)Fe nuclear resonance vibrational spectroscopy (NRVS) to study the Fe(2)S(2)(Cys)(4) sites in oxidized and reduced [2Fe-2S] ferredoxins from Rhodobacter capsulatus (Rc FdVI) and Aquifex aeolicus (Aa Fd5). In the oxidized forms, nearly identical NRVS patterns are observed, with strong bands from Fe-S stretching modes peaking around 335 cm(-1), and additional features observed as high as the B(2u) mode at approximately 421 cm(-1). Both forms of Rc FdVI have also been investigated by resonance Raman (RR) spectroscopy. There is good correspondence between NRVS and Raman frequencies, but because of different selection rules, intensities vary dramatically between the two kinds of spectra. For example, the B(3u) mode at approximately 288 cm(-1), attributed to an asymmetric combination of the two FeS(4) breathing modes, is often the strongest resonance Raman feature. In contrast, it is nearly invisible in the NRVS, as there is almost no Fe motion in such FeS(4) breathing. NRVS and RR analysis of isotope shifts with (36)S-substituted into bridging S(2-) ions in Rc FdVI allowed quantitation of S(2-) motion in different normal modes. We observed the symmetric Fe-Fe stretching mode at approximately 190 cm(-1) in both NRVS and RR spectra. At still lower energies, the NRVS presents a complex envelope of bending, torsion, and protein modes, with a maximum at 78 cm(-1). The (57)Fe partial vibrational densities of states (PVDOS) were interpreted by normal-mode analysis with optimization of Urey-Bradley force fields. Progressively more complex D(2h) Fe(2)S(2)S'(4), C(2h) Fe(2)S(2)(SCC)(4), and C(1) Fe(2)S(2)(Cys)(4) models were optimized by comparison with the experimental spectra. After modification of the CHARMM22 all-atom force field by the addition of refined Fe-S force constants, a simulation employing the complete protein structure was used to reproduce the PVDOS, with better results in the low frequency protein mode region. This process was then repeated

  13. Nucleotide sequence and genetic analysis of the Rhodobacter capsulatus ORF6-nifUI SVW gene region: possible role of NifW in homocitrate processing.

    Science.gov (United States)

    Masepohl, B; Angermüller, S; Hennecke, S; Hübner, P; Moreno-Vivian, C; Klipp, W

    1993-04-01

    DNA sequence analysis of a 3494-bp HindIII-BclI fragment of the Rhodobacter capsulatus nif region A revealed genes that are homologous to ORF6, nifU, nifS, nifV and nifW from Azotobacter vinelandii and Klebsiella pneumoniae. R. capsulatus nifU, which is present in two copies, encodes a novel type of NifU protein. The deduced amino acid sequences of NifUI and NifUII share homology only with the C-terminal domain of NifU from A. vinelandii and K. pneumoniae. In contrast to nifA and nifB, which are almost perfectly duplicated, the predicted amino acid sequences of the two NifU proteins showed only 39% sequence identity. Expression of the ORF6-nifUISVW operon, which is preceded by a putative sigma 54-dependent promoter, required the function of NifA and the nif-specific rpoN gene product encoded by nifR4. Analysis of defined insertion and deletion mutants demonstrated that only nifS was absolutely essential for nitrogen fixation in R. capsulatus. Strains carrying mutations in nifV were capable of very slow diazotrophic growth, whereas ORF6, nifUI and nifW mutants as well as a nifUI/nifUII double mutant exhibited a Nif+ phenotype. Interestingly, R. capsulatus nifV mutants were able to reduce acetylene not only to ethylene but also to ethane under conditions preventing the expression of the alternative nitrogenase system. Homocitrate added to the growth medium repressed ethane formation and cured the NifV phenotype in R. capsulatus. Higher concentrations of homocitrate were necessary to complement the NifV phenotype of a polar nifV mutant (NifV-NifW-), indicating a possible role of NifW either in homocitrate transport or in the incorporation of this compound into the iron-molybdenum cofactor of nitrogenase. PMID:8492805

  14. Effects of high LET radiation on radioresistant bacterium Deinococcus radiodurans

    International Nuclear Information System (INIS)

    It is known that Deinococcus radiodurans is extremely resistant to ionizing and ultraviolet (UV) radiations, as well as chemical agents and hyperthermia (heat treatment) which cause DNA damage. It was reported in this paper that studies on the synergistic killing effect of high LET (linear energy transfer) radiation and hyperthermia in D. radiodurans were performed in Research Reactor Institute, Kyoto University as the Visiting Researcher's Program. The difference of cellular response in this bacterium against low LET (i.e. gamma) and high LET (i.e. BNC beam and heavy ion beam) radiations was analyzed by using Kyoto University Reactor (KUR) operated at 5 MW and AVF cyclotron in Takasaki Ion Accelerator for Radiation Application (TIARA). Also, The DNA sequence specificity (hot spot) for mutation on supF gene of a shuttle vector plasmid pZ189 induced by BNC beam is being researched using Escherichia coli DNA repair capability. (author)

  15. Genome analysis of the Anerobic Thermohalophilic bacterium Halothermothrix orenii

    Energy Technology Data Exchange (ETDEWEB)

    Mavromatis, Konstantinos; Ivanova, Natalia; Anderson, Iain; Lykidis, Athanasios; Hooper, Sean D.; Sun, Hui; Kunin, Victor; Lapidus, Alla; Hugenholtz, Philip; Patel, Bharat; Kyrpides, Nikos C.

    2008-11-03

    Halothermothirx orenii is a strictly anaerobic thermohalophilic bacterium isolated from sediment of a Tunisian salt lake. It belongs to the order Halanaerobiales in the phylum Firmicutes. The complete sequence revealed that the genome consists of one circular chromosome of 2578146 bps encoding 2451 predicted genes. This is the first genome sequence of an organism belonging to the Haloanaerobiales. Features of both Gram positive and Gram negative bacteria were identified with the presence of both a sporulating mechanism typical of Firmicutes and a characteristic Gram negative lipopolysaccharide being the most prominent. Protein sequence analyses and metabolic reconstruction reveal a unique combination of strategies for thermophilic and halophilic adaptation. H. orenii can serve as a model organism for the study of the evolution of the Gram negative phenotype as well as the adaptation under thermohalophilic conditions and the development of biotechnological applications under conditions that require high temperatures and high salt concentrations.

  16. A bacterium that degrades and assimilates poly(ethylene terephthalate).

    Science.gov (United States)

    Yoshida, Shosuke; Hiraga, Kazumi; Takehana, Toshihiko; Taniguchi, Ikuo; Yamaji, Hironao; Maeda, Yasuhito; Toyohara, Kiyotsuna; Miyamoto, Kenji; Kimura, Yoshiharu; Oda, Kohei

    2016-03-11

    Poly(ethylene terephthalate) (PET) is used extensively worldwide in plastic products, and its accumulation in the environment has become a global concern. Because the ability to enzymatically degrade PET has been thought to be limited to a few fungal species, biodegradation is not yet a viable remediation or recycling strategy. By screening natural microbial communities exposed to PET in the environment, we isolated a novel bacterium, Ideonella sakaiensis 201-F6, that is able to use PET as its major energy and carbon source. When grown on PET, this strain produces two enzymes capable of hydrolyzing PET and the reaction intermediate, mono(2-hydroxyethyl) terephthalic acid. Both enzymes are required to enzymatically convert PET efficiently into its two environmentally benign monomers, terephthalic acid and ethylene glycol. PMID:26965627

  17. Algicidal lactones from the marine Roseobacter clade bacterium Ruegeria pomeroyi

    Directory of Open Access Journals (Sweden)

    Ramona Riclea

    2012-06-01

    Full Text Available Volatiles released by the marine Roseobacter clade bacterium Rugeria pomeroyi were collected by use of a closed-loop stripping headspace apparatus (CLSA and analysed by GC–MS. Several lactones were found for which structural proposals were derived from their mass spectra and unambiguously verified by the synthesis of reference compounds. An enantioselective synthesis of two exemplary lactones was performed to establish the enantiomeric compositions of the natural products by enantioselective GC–MS analyses. The lactones were subjected to biotests to investigate their activity against several bacteria, fungi, and algae. A specific algicidal activity was observed that may be important in the interaction between the bacteria and their algal hosts in fading algal blooms.

  18. The capacity of phototrophic sulfur bacterium Thiocapsa roseopersicina for chemosynthesis.

    Science.gov (United States)

    Kondratieva, E N; Zhukov, V G; Ivanovsky, R N; Petushkova, U P; Monosov, E Z

    1976-07-01

    Purple sulfur bacterium Thiocapsa roseopersicina strain BBS requiring vitamin B12 may grow in the dark in media containing no other organic compounds. Under such conditions the cells oxidize sulfide and thiosulfate with the use of O2 and assimilate carbon dioxide. After 10--30s assimilation of NaH14CO3 about 60% of radioactivity is found in phosphorylated compounds characteristic for the reductive pentose phosphate cycle. The possibility of the function of this cycle in the dark in the presence of O2 is confirmed by the capacity of cells grown under such conditions to synthesize ribulose-1,5-diphosphate carboxylase. All this evidence suggests the ability of T. roseopersicina to change from phototrophy to aerobic chemolithoautotrophy. PMID:942280

  19. Effect of Spray Freeze Drying on Antioxidant Activity of Phycocyprotein from Nostoc sphaeroides KUting%喷雾冷冻干燥对葛仙米藻胆蛋白抗氧化特性的影响

    Institute of Scientific and Technical Information of China (English)

    程超; 朱玉婷; 田瑞; 汪兴平; 潘思轶

    2012-01-01

    研究喷雾冷冻干燥对葛仙米藻胆蛋白抗氧化特性的影响,并与冷冻干燥技术进行比较。主要测定ABTS+·、铁还原抗氧化能力(FRAP)、对羟自由基(·OH)清除作用和H2O2诱导的脂质过氧化的抑制作用,结果发现,喷雾冷冻干燥(SFD)对葛仙米藻胆蛋白的抗氧化特性有一定的影响,在基于电子转移和氢原子转移的抗氧化测定方法中,SFD与冷冻干燥(FD)制备的样品差异不明显,但在基于活性氧自由基清除的测定方法中,SFD显著优于FD。表明SFD非常适合于高活性成分的干燥。%In this study, the effect of spray freeze drying on the antioxidant activity of phycobiliprotein fromNostoc sphaeroides KUting was studied and compared with that of common freeze drying. The scavenging effect of phycobiliprotein on ABTS+· and hydroxyl radicals (·OH), H2O2-induced lipid peroxidation and ferric-ion reducing power (FRAP) were evaluated. The results indicated that spray freeze drying method had obvious effect on antioxidant activity of phycobiliprotein from Nostoc sphaeroides Kuting. The samples dried by two different methods showed no significant difference in the antioxidant activity determined based on electron transfer and hydrogen atom transfer. The free radical scavenging activity of the sample dried by spray freeze drying method was markedly higher than that of the sample dried by common freeze drying method. These data suggest that spray freeze drying is more suitable for drying active substances.

  20. Evaluación experimental de la producción de hidrógeno a partir de suero de leche como sustrato en la fotosíntesis de microorganismos recombinados de Rhodobacter Capsulatus

    OpenAIRE

    Castillo Moreno, Patricia

    2012-01-01

    Se realizó el estudio de la producción de hidrógeno mediante fotofermentación con una cepa de Rhodobacter capsulatus (B10 LacZ) utilizando como sustrato lactosuero ácido industrial. Con el fin de establecer y estudiar los parámetros más influyentes para este proceso se aplicó el método de diseño de experimentos (DOE) en dos etapas en las cuales se utilizó suero sintético y se utilizaron dos cepas diferentes (B10 y B10 LacZ). Se empleó con éxito el modelo “D-optimal” basado en la metodología d...

  1. Moritella viscosa, a pathogenic bacterium affecting the fillet quality in fish

    DEFF Research Database (Denmark)

    Ingerslev, Hans-Christian; Nielsen, Michael Engelbrecht

    2011-01-01

    Moritella viscosa is a bacterium belonging to the family Moritellaceae and was formerly known as Vibrio viscosus. The name ‘viscosa’ originates from the slimy nature of the bacterium. M. viscosa is considered to be the main causative agent of the phenomenon ‘winter ulcer’ or ‘cold-water ulcer......’ which affects various fish species in seawater during cold periods (Lunder et al. 1995). The bacterium is mainly a problem for farmed salmonid species, such as Atlantic salmon (Salmo salar) and rainbow trout (Oncorhynchus mykiss), but has also been isolated from other fish species, including Atlantic...

  2. GenBank blastx search result: AK111944 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK111944 001-022-C09 AF016236.1 Rhodobacter sphaeroides DMSO/TMAO-sensor kinase (dorS), DMSO.../TMAO-response regulator (dorR), DMSO/TMAO-cytochrome c-containing subunit (dorC), DMSO-membrane protein (dorB), and DMSO

  3. Deactivation of excitation energy in bacterial photosynthetic reaction centres in Langmuir-Blodgett films

    Science.gov (United States)

    Miyake, J.; Hara, M.; Goc, J.; Planner, A.; Wróbel, D.

    1997-08-01

    Absorption, photoacoustic and time-resolved in μs time range delayed luminescence spectra have been measured in order to follow the interaction among chromophores when Rhodobacter sphaeroides and Rhodopseudomonas viridis reaction centres are closely packed in a form of Langmuir-Blodgett multilayers. Two types of Langmuir-Blodgett samples have been prepared and investigated: multilayers consist of one type of reaction centre ( Rhodobacter sphaeroides or Rhodopseudomonas viridis) and multilayers composed of mixed reaction centres ( Rhodobacter sphaeroides mixed with Rhodopseudomonas viridis). Using the Langmuir-Blodgett multilayers composed of two types of bacteria reaction centres mixture, we were able to extend the spectral region of the light/solar energy absorbed by the system. It was shown that each form of pigment participates in thermal dissipation but to a different degree. A special pair (bacteriochlorophyll dimer) does not contribute to delayed luminescence. Delayed luminescence in Rhodopseudomonas viridis and Rhodobacter sphaeroides differs very significantly from each other. Bacteriopheophytin as well as dihydromesochlorophyll contribute to delayed luminescence but the degree of their participation in this radiative process depends strongly on the type of reaction centre. Delayed luminescence and thermal processes have been indicated as important processes of deactivation of the photoexcited chromophores in reaction centres.

  4. Treatment of common warts with the immune stimulant Propionium bacterium parvum Tratamento das verrugas vulgares com o imunoestimulante Propionium bacterium parvum

    Directory of Open Access Journals (Sweden)

    Nilton Nasser

    2012-08-01

    Full Text Available BACKGROUND: Warts are epithelial proliferations in the skin and mucous membrane caused by various types of HPV. They can decrease spontaneously or increase in size and number according to the patient's immune status. The Propionium bacterium parvum is a strong immune stimulant and immune modulator and has important effects in the immune system and it is able to produce antibodies in the skin. OBJECTIVE: To show the efficacy of the Propionium bacterium parvum in saline solution in the treatment of skin warts. METHODS: A randomized double-blind study. Twenty patients with multiple warts were divided into two groups: one received 0,1ml intradermal injection of placebo solution in just one of the warts and the other received 0,1 ml of saline solution of Propionium bacterium parvum, one dose a month, for 3 to 5 months. RESULTS: Among the 20 patients who participated in the study, ten received the placebo and ten received the saline solution with Propionium bacterium parvum. In 9 patients treated with the Propionium bacterium parvum solution the warts disappeared without scars and in 1 patient it decreased in size. In 9 patients who received the placebo no change to the warts was observed and in 1 it decreased in size. CONCLUSIONS: The immune modulator and immune stimulant Propionium bacterium parvum produced antibodies in the skin which destroyed the warts without scars, with statistically significant results (PFUNDAMENTOS: Verrugas são proliferações epiteliais na pele e mucosas causadas por diversos tipos de HPV. Elas podem involuir espontaneameme ou aumentar em número e tamanho de acordo com estado imunitário do paciente. O Propionium bacterium parvum é urn potente imunoestimulador e imunomodulador e tem efeitos importantes no sistema imune e é capaz de produzir anticorpos na pele. OBJETIVO: Mostrar a eficácia do Propionium bacterium parvum diluído em solução salina no tratamento de verrugas cutâneas. MÊTODOS: Estudo duplo

  5. High cell density cultivation of the chemolithoautotrophic bacterium Nitrosomonas europaea.

    Science.gov (United States)

    Papp, Benedek; Török, Tibor; Sándor, Erzsébet; Fekete, Erzsébet; Flipphi, Michel; Karaffa, Levente

    2016-05-01

    Nitrosomonas europaea is a chemolithoautotrophic nitrifier, a gram-negative bacterium that can obtain all energy required for growth from the oxidation of ammonia to nitrite, and this may be beneficial for various biotechnological and environmental applications. However, compared to other bacteria, growth of ammonia oxidizing bacteria is very slow. A prerequisite to produce high cell density N. europaea cultures is to minimize the concentrations of inhibitory metabolic by-products. During growth on ammonia nitrite accumulates, as a consequence, N. europaea cannot grow to high cell concentrations under conventional batch conditions. Here, we show that single-vessel dialysis membrane bioreactors can be used to obtain substantially increased N. europaea biomasses and substantially reduced nitrite levels in media initially containing high amounts of the substrate. Dialysis membrane bioreactor fermentations were run in batch as well as in continuous mode. Growth was monitored with cell concentration determinations, by assessing dry cell mass and by monitoring ammonium consumption as well as nitrite formation. In addition, metabolic activity was probed with in vivo acridine orange staining. Under continuous substrate feed, the maximal cell concentration (2.79 × 10(12)/L) and maximal dry cell mass (0.895 g/L) achieved more than doubled the highest values reported for N. europaea cultivations to date. PMID:26358065

  6. Bioconversion of methane to lactate by an obligate methanotrophic bacterium

    Science.gov (United States)

    Henard, Calvin A.; Smith, Holly; Dowe, Nancy; Kalyuzhnaya, Marina G.; Pienkos, Philip T.; Guarnieri, Michael T.

    2016-01-01

    Methane is the second most abundant greenhouse gas (GHG), with nearly 60% of emissions derived from anthropogenic sources. Microbial conversion of methane to fuels and value-added chemicals offers a means to reduce GHG emissions, while also valorizing this otherwise squandered high-volume, high-energy gas. However, to date, advances in methane biocatalysis have been constrained by the low-productivity and limited genetic tractability of natural methane-consuming microbes. Here, leveraging recent identification of a novel, tractable methanotrophic bacterium, Methylomicrobium buryatense, we demonstrate microbial biocatalysis of methane to lactate, an industrial platform chemical. Heterologous overexpression of a Lactobacillus helveticus L-lactate dehydrogenase in M. buryatense resulted in an initial titer of 0.06 g lactate/L from methane. Cultivation in a 5 L continuously stirred tank bioreactor enabled production of 0.8 g lactate/L, representing a 13-fold improvement compared to the initial titer. The yields (0.05 g lactate/g methane) and productivity (0.008 g lactate/L/h) indicate the need and opportunity for future strain improvement. Additionally, real-time analysis of methane utilization implicated gas-to-liquid transfer and/or microbial methane consumption as process limitations. This work opens the door to develop an array of methanotrophic bacterial strain-engineering strategies currently employed for biocatalytic sugar upgrading to “green” chemicals and fuels. PMID:26902345

  7. Presence of an unusual methanogenic bacterium in coal gasification waste

    Energy Technology Data Exchange (ETDEWEB)

    Tomei, F.A.; Rouse, D.; Maki, J.S.; Mitchell, R.

    1988-12-01

    Methanogenic bacteria growing on a pilot-scale, anaerobic filter processing coal gasification waste were enriched in a mineral salts medium containing hydrogen and acetate as potential energy sources. Transfer of the enrichments to methanol medium resulted in the initial growth of a strain of Methanosarcina barkeri, but eventually small cocci became dominant. The cocci growing on methanol produced methane and exhibited the typical fluorescence of methanogenic bacteria. They grew in the presence of the cell wall synthesis-inhibiting antibiotics D-cycloserine, fosfomycin, penicillin G, and vancomycin as well as in the presence of kanamycin, an inhibitor of protein synthesis in eubacteria. The optimal growth temperature was 37 degrees C, and the doubling time was 7.5 h. The strain lysed after reaching stationary phase. The bacterium grew poorly with hydrogen as the energy source and failed to grow on acetate. Morphologically, the coccus shared similarities with Methanosarcina sp. Cells were 1 ..mu..m wide, exhibited the typical thick cell wall and cross-wall formation, and formed tetrads. Packets and cysts were not formed. 62 refs., 4 figs.

  8. Bioconversion of methane to lactate by an obligate methanotrophic bacterium.

    Science.gov (United States)

    Henard, Calvin A; Smith, Holly; Dowe, Nancy; Kalyuzhnaya, Marina G; Pienkos, Philip T; Guarnieri, Michael T

    2016-01-01

    Methane is the second most abundant greenhouse gas (GHG), with nearly 60% of emissions derived from anthropogenic sources. Microbial conversion of methane to fuels and value-added chemicals offers a means to reduce GHG emissions, while also valorizing this otherwise squandered high-volume, high-energy gas. However, to date, advances in methane biocatalysis have been constrained by the low-productivity and limited genetic tractability of natural methane-consuming microbes. Here, leveraging recent identification of a novel, tractable methanotrophic bacterium, Methylomicrobium buryatense, we demonstrate microbial biocatalysis of methane to lactate, an industrial platform chemical. Heterologous overexpression of a Lactobacillus helveticus L-lactate dehydrogenase in M. buryatense resulted in an initial titer of 0.06 g lactate/L from methane. Cultivation in a 5 L continuously stirred tank bioreactor enabled production of 0.8 g lactate/L, representing a 13-fold improvement compared to the initial titer. The yields (0.05 g lactate/g methane) and productivity (0.008 g lactate/L/h) indicate the need and opportunity for future strain improvement. Additionally, real-time analysis of methane utilization implicated gas-to-liquid transfer and/or microbial methane consumption as process limitations. This work opens the door to develop an array of methanotrophic bacterial strain-engineering strategies currently employed for biocatalytic sugar upgrading to "green" chemicals and fuels. PMID:26902345

  9. Electromicrobiology of Dissimilatory Sulfur Reducing Bacterium Desulfuromonas acetexigens

    KAUST Repository

    Bin Bandar, Khaled

    2014-12-01

    Bioelectrochmical systems (BES) are engineered electrochemical devices that harness hidden chemical energy of the wastewater in to the form of electricity or hydrogen. Unique microbial communities enrich in these systems for oxidation of organic matter as well as transfer of resulted electron to anode, known them as “electricigens” communities. Exploring novel electricigenesis microbial communities in the nature and understanding their electromicrobiology is one the important aspect for BES systems scale up. Herein, we report first time the electricigenesis property of an anaerobic, fresh water sediment, sulfur reducing bacterium Desulfuromona acetexigens. The electrochemical behavior of D. acetexigens biofilms grown on graphite-rod electrodes in batch-fed mode under an applied potential was investigated with traditional electroanalytical tools, and correlate the electron transfer from biofilms to electrode with a model electricigen Geobacter sulfurreducens electrochemical behavior. Research findings suggest that D. acetexigens has the ability to use electrode as electron acceptor in BES systems through establishing the direct contact with anode by expressing the membrane bound redox proteins, but not due to the secretion of soluble redox mediators. Preliminary results revealed that D. acetexigens express three distinct redox proteins in their membranes for turnover of the electrons from biofilm to electrode, and the 4 whole electricigenesis process observed to be unique in the D. acetexigens compared to that of well-studied model organism G. sulfurreducens.

  10. Molecular study on cloned endoglucanase gene from rumen bacterium.

    Science.gov (United States)

    Ozkose, Emin; Akyol, Ismail; Ekinci, Mehmet Sait

    2004-01-01

    An endoglucanase gene was subcloned from anaerobic rumen bacterium Ruminococcus flavefaciens strain 17. To express endoglucanase gene in Escherichia coli and Streptococcus bovis JB1, an endoglucanase gene fragment was inserted into pVA838-based shuttle vectors. Removal of endoglucanase gene promoter and expression of endoglucanase by promoter of S. bovis JB1 alpha-amylase gene (pACMCS) was also achieved. Survival of constructs pVACMCI, pTACMC and pACMCS, which carry endoglucanase gene, and stability of endoglucanase gene in S. bovis JB1, were observed. Maximal endoglucanase activities from S. bovis JB1/pVACMCI were 2- to 3-fold higher than from E. coli/pVACMCI. Specific cell activity of E. coli/pACMCS was found to be approximately 2- to -3 fold higher than the both E. coli/pVACMCI and E. coli/pTACMC. Specific cell activity of S. bovis JB1/pACMCS was also found to be approximately 2-fold higher than the both S. bovis/pVACMCI and S. bovis JB1/pTACMC. PMID:15925902

  11. Denitrification characteristics of a marine origin psychrophilic aerobic denitrifying bacterium.

    Science.gov (United States)

    Zheng, Haiyan; Liu, Ying; Sun, Guangdong; Gao, Xiyan; Zhang, Qingling; Liu, Zhipei

    2011-01-01

    A psychrophilic aerobic denitrifying bacterium, strain S1-1, was isolated from a biological aerated filter conducted for treatment of recirculating water in a marine aquaculture system. Strain S1-1 was preliminarily identified as Psychrobacter sp. based on the analysis of its 16S rRNA gene sequence, which showed 100% sequence similarity to that of Psychrobacter sp. TSBY-70. Strain S1-1 grew well either in high nitrate or high nitrite conditions with a removal of 100% nitrate or 63.50% nitrite, and the total nitrogen removal rates could reach to 46.48% and 31.89%, respectively. The results indicated that nitrate was mainly reduced in its logarithmic growth phase with a very low level accumulation of nitrite, suggesting that the aerobic denitrification process of strain S1-1 occurred mainly in this phase. The GC-MS results showed that N2O was formed as the major intermediate during the aerobic denitrifying process of strain S1-1. Finally, factors affecting the growth of strain S1-1 and its aerobic denitrifying ability were also investigated. Results showed that the optimum aerobic denitrification conditions for strain S1-1 were sodium succinate as carbon source, C/N ratio15, salinity 10 g/L NaCl, incubation temperature 20 degrees C and initial pH 6.5. PMID:22432315

  12. Denitrification characteristics of a marine origin psychrophilic aerobic denitrifying bacterium

    Institute of Scientific and Technical Information of China (English)

    Haiyan Zheng; Ying Liu; Guangdong Sun; Xiyan Gao; Qingling Zhang; Zhipei Liu

    2011-01-01

    A psychrophilic aerobic denitrifying bacterium,strain S1-1,was isolated from a biological aerated filter conducted for treatment of recirculating water in a marine aquaculture system.Strain S1-1 was preliminarily identified as Psychrobacter sp.based on the analysis of its 16S rRNA gene sequence,which showed 100% sequence similarity to that of Psychrobacter sp.TSBY-70.Strain S 1-1 grew well either in high nitrate or high nitrite conditions with a removal of 100% nitrate or 63.50% nitrite,and the total nitrogen removal rates could reach to 46.48% and 31.89%,respectively.The results indicated that nitrate was mainly reduced in its logarithmic growth phase with a very low leve 1 accumulation of nitrite,suggesting that the aerobic denitrification process of strain S l-1 occurred mainly in this phase.The GC-MS results showed that N2O was formed as the major intermediate during the aerobic denitrifying process of strain S1-1.Finally,factors affecting the growth of strain Sl-1 and its aerobic denitrifying ability were also investigated.Results showed that the optimum aerobic denitrification conditions for strain S1-1 were sodium succinate as carbon source,C/N ratio15,salinity 10 g/L NaCl,incubation temperature 20℃ and initial pH 6.5.

  13. Isolation and characterization of Caldicellulosiruptor lactoaceticus sp. nov., an extremely thermophilic, cellulolytic, anaerobic bacterium

    DEFF Research Database (Denmark)

    Mladenovska, Zuzana; Mathrani, Indra M.; Ahring, Birgitte Kiær

    1995-01-01

    An anaerobic, extremely thermophilic, cellulolytic, non-spore-forming bacterium, strain 6A, was isolated from an alkaline hot spring in Hverageroi, Iceland. The bacterium was non-motile, rod-shaped (1.5-3.5 x 0.7 mu m) and occurred singly, in pairs or in chains and stained gram-negative. The growth...... temperature was between 50 and 78 degrees C with a temperature optimum near 68 degrees C. Growth occurred between pH 5.8 and 8.2 with an optimum mum near 7.0. The bacterium fermented microcrystalline cellulose (Avicel) and produced lactate, acetate and H-2 as the major fermentation products, and CO2...... and ethanol occurred as minor fermentation products. Only a restricted number of carbon sources (cellulose, xylan, starch, pectin, cellobiose, xylose, maltose and lactose) were used as substrates. During growth on Avicel, the bacterium produced free cellulases with carboxymethylcellulase and avicelase...

  14. Dinoroseobacter shibae gen. nov., sp. nov., a new aerobic phototrophic bacterium isolated from dinoflagellates

    Czech Academy of Sciences Publication Activity Database

    Biebl, H.; Allgaier, M.; Tindall, B. J.; Koblížek, Michal; Lünsdorf, H.; Pukall, R.; Wagner-Döbler, I.

    2005-01-01

    Roč. 55, - (2005), s. 1089-1096. ISSN 1466-5026 Institutional research plan: CEZ:AV0Z50200510 Keywords : Dinoroseobacter shibae * phototrophic bacterium Subject RIV: EE - Microbiology, Virology Impact factor: 2.744, year: 2005

  15. Carbohydrate utilization patterns for the extremely thermophilic bacterium Caldicellulosiruptor saccharolyticus reveal broad growth substrate preferences

    NARCIS (Netherlands)

    Vanfossen, A.L.; Verhaart, M.R.A.; Kengen, S.W.M.; Kelly, R.M.

    2009-01-01

    Co-utilization of hexoses and pentoses derived from lignocellulose is an attractive trait in microorganisms considered for consolidated biomass processing to biofuels. This issue was examined for the H2-producing, extremely thermophilic bacterium Caldicellulosiruptor saccharolyticus growing on indiv

  16. Genome Sequence of the Haloalkaliphilic Methanotrophic Bacterium Methylomicrobium alcaliphilum 20Z

    OpenAIRE

    Vuilleumier, Stéphane; Khmelenina, Valentina N; Bringel, Françoise; Reshetnikov, Alexandr S.; Lajus, Aurélie; Mangenot, Sophie; Rouy, Zoé; Op Den Camp, Huub J M; Jetten, Mike S. M.; DiSpirito, Alan A.; Dunfield, Peter; Klotz, Martin G.; Semrau, Jeremy D.; Stein, Lisa Y.; Barbe, Valérie

    2012-01-01

    Methylomicrobium strains are widespread in saline environments. Here, we report the complete genome sequence of Methylomicrobium alcaliphilum 20Z, a haloalkaliphilic methanotrophic bacterium, which will provide the basis for detailed characterization of the core pathways of both single-carbon metabolism and responses to osmotic and high-pH stresses. Final assembly of the genome sequence revealed that this bacterium contains a 128-kb plasmid, making M. alcaliphilum 20Z the first methanotrophic...

  17. Effect of alginic acid decomposing bacterium on the growth of Laminaria japonica (Phaeophyceae)

    Institute of Scientific and Technical Information of China (English)

    WANG You; TANG Xue-xi; YANG Zhen; YU Zhi-ming

    2006-01-01

    We collected the diseased blades of Laminaria japonica from Yantai Sea Farm from October to December 2002, and the alginic acid decomposing bacterium on the diseased blade was isolated and purified, and was identified as Alteromonas espejiana. This bacterium was applied as the causative pathogen to infect the blades of L. japonica under laboratory conditions. The aim of the present study was to identify the effects of the bacterium on the growth of L. japonica, and to find the possibly effective mechanism. Results showed that: (1)The blades of L.japonica exhibited symptoms of lesion,bleaching and deterioration when infected by the bacterium,and their growth and photosynthesis were dramatically suppressed. At the same time, the reactive oxygen species (ROS) generation enhanced obviously, and the relative membrane permeability increased significantly. The contents of malonaldehyde (MDA) and free fatty acid in the microsomol membrane greatly elevated, but the phospholipid content decreased. Result suggested an obvious peroxidation and deesterrification in the blades of L. japonica when infected by the bacterium. (2) The simultaneous assay on the antioxidant enzyme activities demonstrated that superoxide dismutase (SOD) and catalase (CAT) increased greatly when infected by the bacterium, but glutathione peroxidase (Gpx) and ascorbate peroxidase (APX) did not exhibit active responses to the bacterium throughout the experiment. (3) The histomorphological observations gave a distinctive evidence of the severity of the lesions as well as the relative abundance in the bacterial population on the blades after infection. The bacterium firstly invaded into the endodermis of L. japonica and gathered around there, and then resulted in the membrane damage, cells corruption and ultimately, the death of L.japonica.

  18. High Prevalence of Antibodies against the Bacterium Treponema pallidum in Senegalese Guinea Baboons (Papio papio)

    OpenAIRE

    Knauf, Sascha; Barnett, Ulrike; Maciej, Peter; Klapproth, Matthias; Ndao, Ibrahima; Frischmann, Sieghard; Fischer, Julia; Zinner, Dietmar; Liu, Hsi

    2015-01-01

    The bacterium Treponema pallidum is known to cause syphilis (ssp. pallidum), yaws (ssp. pertenue), and endemic syphilis (ssp. endemicum) in humans. Nonhuman primates have also been reported to be infected with the bacterium with equally versatile clinical manifestations, from severe skin ulcerations to asymptomatic. At present all simian strains are closely related to human yaws-causing strains, an important consideration for yaws eradication. We tested clinically healthy Guinea baboons (Papi...

  19. Draft Genome Sequence of DLB, a Dyella-Like Bacterium from the Planthopper Hyalesthes obsoletus

    Science.gov (United States)

    Lahav, Tamar; Zchori-Fein, Einat; Naor, Vered; Freilich, Shiri

    2016-01-01

    We report here the draft genome sequence of a Dyella-like bacterium (DLB) isolated from Hyalesthes obsoletus, the insect vector of the uncultivable mollicute bacterium “Candidatus Phytoplasma.” This isolate inhibits Spiroplasma melliferum, a cultivable mollicute. The draft genome of DLB consists of 4,196,214 bp, with a 68.6% G+C content, and 3,757 genes were predicted. PMID:27445378

  20. Biosynthesis Of Gold Nanoparticles By Marine Purple Non Sulphur Bacterium, Rhodopseudomonas Sp.

    OpenAIRE

    Abirami. G; Asmathunisha. N; Kathiresan. K

    2013-01-01

    This paper describes for the first time that an anaerobic marine bacterium is capable of producing gold nanoparticles. A marine purple non-sulphur bacterium was isolated from mangrove sediment and identified as Rhodopseudomonas sp. . The bacterial culture was tested for the synthesis of gold nanoparticles by using aqueous HAuCl4 solution as substrate in darkness. The gold nanoparticles synthesized were found to be of cubical structure in the size range of 10–20 nm.

  1. Carbonate biomineralization induced by soil bacterium Bacillus megaterium

    Science.gov (United States)

    Lian, Bin; Hu, Qiaona; Chen, Jun; Ji, Junfeng; Teng, H. Henry

    2006-11-01

    Biogenic carbonates spawned from microbial activities are common occurrences in soils. Here, we investigate the carbonate biomineralization mediated by the bacterium Bacillus megaterium, a dominant strain separated from a loess profile in China. Upon completing bacterial cultivation, the ensuring products are centrifuged, and the resultant supernatant and the concentrated bacterial sludge as well as the un-separated culture are added separately into a Ca-CO 3 containing solution for crystallization experiments. Results of XRD and SEM analysis indicate that calcite is the dominant mineral phase formed when the bacteria are present. When the supernatant alone is used, however, a significant portion of vaterite is also precipitated. Experimental results further reveal that the bacteria have a strong tendency to colonize the center area of the calcite {1 0 1¯ 4} faces. Observed crystal morphology suggests that the bacterial colony may promote the growth normal to each individual {1 0 1¯ 4} face of calcite when the cell concentration is high, but may retard it or even cause dissolution of the immediate substrate surfaces when the concentration is low. SEM images taken at earlier stages of the crystallization experiments demonstrate the nucleation of calcite on the bacterial cell walls but do not show obvious morphological changes on the nanometer- to submicron-sized nuclei. δ 13C measurements unveil that the crystals grown in the presence of bacteria are further enriched in the heavy carbon isotope, implying that the bacterial metabolism may not be the carbon sources for the mineralization. Based upon these findings, we propose a mechanism for the B. megaterium mediated calcite mineralization and conclude that the whole process involves epi- and inter-cellular growth in the local microenvironments whose conditions may be controlled by cell sequestration and proton pumping during bacterial respiration.

  2. Metabolic evolution of a deep-branching hyperthermophilic chemoautotrophic bacterium.

    Science.gov (United States)

    Braakman, Rogier; Smith, Eric

    2014-01-01

    Aquifex aeolicus is a deep-branching hyperthermophilic chemoautotrophic bacterium restricted to hydrothermal vents and hot springs. These characteristics make it an excellent model system for studying the early evolution of metabolism. Here we present the whole-genome metabolic network of this organism and examine in detail the driving forces that have shaped it. We make extensive use of phylometabolic analysis, a method we recently introduced that generates trees of metabolic phenotypes by integrating phylogenetic and metabolic constraints. We reconstruct the evolution of a range of metabolic sub-systems, including the reductive citric acid (rTCA) cycle, as well as the biosynthesis and functional roles of several amino acids and cofactors. We show that A. aeolicus uses the reconstructed ancestral pathways within many of these sub-systems, and highlight how the evolutionary interconnections between sub-systems facilitated several key innovations. Our analyses further highlight three general classes of driving forces in metabolic evolution. One is the duplication and divergence of genes for enzymes as these progress from lower to higher substrate specificity, improving the kinetics of certain sub-systems. A second is the kinetic optimization of established pathways through fusion of enzymes, or their organization into larger complexes. The third is the minimization of the ATP unit cost to synthesize biomass, improving thermodynamic efficiency. Quantifying the distribution of these classes of innovations across metabolic sub-systems and across the tree of life will allow us to assess how a tradeoff between maximizing growth rate and growth efficiency has shaped the long-term metabolic evolution of the biosphere. PMID:24516572

  3. Interaction of Cadmium With the Aerobic Bacterium Pseudomonas Mendocina

    Science.gov (United States)

    Schramm, P. J.; Haack, E. A.; Maurice, P. A.

    2006-05-01

    The fate of toxic metals in the environment can be heavily influenced by interaction with bacteria in the vadose zone. This research focuses on the interactions of cadmium with the strict aerobe Pseudomonas mendocina. P. mendocina is a gram-negative bacterium that has shown potential in the bioremediation of recalcitrant organic compounds. Cadmium is a common environmental contaminant of wide-spread ecological consequence. In batch experiments P. mendocina shows typical bacterial growth curves, with an initial lag phase followed by an exponential phase and a stationary to death phase; concomitant with growth was an increase in pH from initial values of 7 to final values at 96 hours of 8.8. Cd both delays the onset of the exponential phase and decreases the maximum population size, as quantified by optical density and microscopic cell counts (DAPI). The total amount of Cd removed from solution increases over time, as does the amount of Cd removed from solution normalized per bacterial cell. Images obtained with transmission electron microscopy (TEM) showed the production of a cadmium, phosphorus, and iron containing precipitate that was similar in form and composition to precipitates formed abiotically at elevated pH. However, by late stationary phase, the precipitate had been re-dissolved, perhaps by biotic processes in order to obtain Fe. Stressed conditions are suggested by TEM images showing the formation of pili, or nanowires, when 20ppm Cd was present and a marked decrease in exopolysaccharide and biofilm material in comparison to control cells (no cadmium added).

  4. Metabolic evolution of a deep-branching hyperthermophilic chemoautotrophic bacterium.

    Directory of Open Access Journals (Sweden)

    Rogier Braakman

    Full Text Available Aquifex aeolicus is a deep-branching hyperthermophilic chemoautotrophic bacterium restricted to hydrothermal vents and hot springs. These characteristics make it an excellent model system for studying the early evolution of metabolism. Here we present the whole-genome metabolic network of this organism and examine in detail the driving forces that have shaped it. We make extensive use of phylometabolic analysis, a method we recently introduced that generates trees of metabolic phenotypes by integrating phylogenetic and metabolic constraints. We reconstruct the evolution of a range of metabolic sub-systems, including the reductive citric acid (rTCA cycle, as well as the biosynthesis and functional roles of several amino acids and cofactors. We show that A. aeolicus uses the reconstructed ancestral pathways within many of these sub-systems, and highlight how the evolutionary interconnections between sub-systems facilitated several key innovations. Our analyses further highlight three general classes of driving forces in metabolic evolution. One is the duplication and divergence of genes for enzymes as these progress from lower to higher substrate specificity, improving the kinetics of certain sub-systems. A second is the kinetic optimization of established pathways through fusion of enzymes, or their organization into larger complexes. The third is the minimization of the ATP unit cost to synthesize biomass, improving thermodynamic efficiency. Quantifying the distribution of these classes of innovations across metabolic sub-systems and across the tree of life will allow us to assess how a tradeoff between maximizing growth rate and growth efficiency has shaped the long-term metabolic evolution of the biosphere.

  5. Paenibacillus xylanilyticus sp. nov., an airborne xylanolytic bacterium.

    Science.gov (United States)

    Rivas, Raúl; Mateos, Pedro F; Martínez-Molina, Eustoquio; Velázquez, Encarna

    2005-01-01

    During a search for xylan-degrading micro-organisms, a sporulating bacterium was recovered from xylan-containing agar plates exposed to air in a research laboratory (Salamanca University, Spain). The airborne isolate (designated strain XIL14T) was identified by 16S rRNA gene sequencing as representing a Paenibacillus species most closely related to Paenibacillus illinoisensis JCM 9907T (99.3 % sequence similarity) and Paenibacillus pabuli DSM 3036T (98 % sequence similarity). Phenotypic, chemotaxonomic and DNA-DNA hybridization data indicated that the isolate belongs to a novel species of the genus Paenibacillus. Cells of strain XIL14T were motile, sporulating, rod-shaped, Gram-positive and facultatively anaerobic. The predominant cellular fatty acids were anteiso-C(15 : 0) and C(16 : 0). The DNA G+C content of strain XIL14T was 50.5 mol%. Growth was observed with many carbohydrates, including xylan, as the only carbon source and gas production was not observed from glucose. Catalase was positive and oxidase was negative. The airborne isolate produced a variety of hydrolytic enzymes, including xylanases, amylases, gelatinase and beta-galactosidase. DNA-DNA hybridization levels between strain XIL14T and P. illinoisensis DSM 11733T and P. pabuli DSM 3036T were 43.3 and 36.3 %, respectively. According to the data obtained, strain XIL14T is considered to represent a novel species for which the name Paenibacillus xylanilyticus sp. nov. is proposed (=LMG 21957T=CECT 5839T). PMID:15653909

  6. Regulation of Polyhydroxybutyrate Synthesis in the Soil Bacterium Bradyrhizobium diazoefficiens.

    Science.gov (United States)

    Quelas, J I; Mesa, S; Mongiardini, E J; Jendrossek, D; Lodeiro, A R

    2016-07-15

    Polyhydroxybutyrate (PHB) is a carbon and energy reserve polymer in various prokaryotic species. We determined that, when grown with mannitol as the sole carbon source, Bradyrhizobium diazoefficiens produces a homopolymer composed only of 3-hydroxybutyrate units (PHB). Conditions of oxygen limitation (such as microoxia, oxic stationary phase, and bacteroids inside legume nodules) were permissive for the synthesis of PHB, which was observed as cytoplasmic granules. To study the regulation of PHB synthesis, we generated mutations in the regulator gene phaR and the phasin genes phaP1 and phaP4 Under permissive conditions, mutation of phaR impaired PHB accumulation, and a phaP1 phaP4 double mutant produced more PHB than the wild type, which was accumulated in a single, large cytoplasmic granule. Moreover, PhaR negatively regulated the expression of phaP1 and phaP4 as well as the expression of phaA1 and phaA2 (encoding a 3-ketoacyl coenzyme A [CoA] thiolases), phaC1 and phaC2 (encoding PHB synthases), and fixK2 (encoding a cyclic AMP receptor protein [CRP]/fumarate and nitrate reductase regulator [FNR]-type transcription factor of genes for microoxic lifestyle). In addition to the depressed PHB cycling, phaR mutants accumulated more extracellular polysaccharides and promoted higher plant shoot dry weight and competitiveness for nodulation than the wild type, in contrast to the phaC1 mutant strain, which is defective in PHB synthesis. These results suggest that phaR not only regulates PHB granule formation by controlling the expression of phasins and biosynthetic enzymes but also acts as a global regulator of excess carbon allocation and symbiosis by controlling fixK2 IMPORTANCE: In this work, we investigated the regulation of polyhydroxybutyrate synthesis in the soybean-nodulating bacterium Bradyrhizobium diazoefficiens and its influence in bacterial free-living and symbiotic lifestyles. We uncovered a new interplay between the synthesis of this carbon reserve polymer

  7. A plant growth-promoting bacterium that decreases nickel toxicity in seedlings

    Energy Technology Data Exchange (ETDEWEB)

    Burd, G.I.; Dixon, D.G.; Glick, B.R. [Univ. of Waterloo, Ontario (Canada). Dept. of Biology

    1998-10-01

    A plant growth-promoting bacterium, Kluyvera ascorbata SUD165, that contained high levels of heavy metals was isolated from soil collected near Sudbury, Ontario, Canada. The bacterium was resistant to the toxic effects of Ni{sup 2+}, Pb{sup 2+}, Zn{sup 2+}, and CrO{sub 4}{sup {minus}}, produced a siderophore(s), and displayed 1-aminocyclopropane-1-carboxylic acid deaminase activity. Canola seeds inoculated with this bacterium and then grown under gnotobiotic conditions in the presence of high concentrations of nickel chloride were partially protected against nickel toxicity. In addition, protection by the bacterium against nickel toxicity was evident in pot experiments with canola and tomato seeds. The presence of K. ascorbata SUD165 had no measurable influence on the amount of nickel accumulated per milligram (dry weight) of either roots or shoots of canola plants. Therefore, the bacterial plant growth-promoting effect in the presence of nickel was probably not attributable to the reduction of nickel uptake by seedlings. Rather, it may reflect the ability of the bacterium to lower the level of stress ethylene induced by the nickel.

  8. Carotenoid biosynthesis in bacteria: In vitro studies of a crt/bch transcription factor from Rhodobacter capsulatus and carotenoid enzymes from Erwinia herbicola

    Energy Technology Data Exchange (ETDEWEB)

    O' Brien, D.A.

    1992-11-01

    A putative transcription factor in Rhodobactor capsulatus which binds upstream of the crt and bch pigment biosynthesis operons and appears to play a role in the adaptation of the organism from the aerobic to the anaerobic-photosynthetic growth mode was characterized. Chapter 2 describes the identification of this factor through an in vitro mobility shift assay, as well as the determination of its binding properties and sequence specificity. Chapter 3 focuses on the isolation of this factor. Biochemistry of later carotenoid biosynthesis enzymes derived from the non-photosynthetic bacterium, Erwinia herbicola. Chapter 4 describes the separate overexpression and in vitro analysis of two enzymes involved in the main sequence of the carotenoid biosynthesis pathway, lycopene cyclase and 5-carotene hydroxylase. Chapter 5 examines the overexpression and enzymology of functionally active zeaxanthin glucosyltransferase, an enzyme which carries out a more unusual transformation, converting a carotenoid into its more hydrophilic mono- and diglucoside derivatives. In addition, amino acid homology with other glucosyltransferases suggests a putative binding site for the UDP-activated glucose substrate.

  9. Action of the Selenomorpholine Compounds on the Bacterium Growth by Microcalorimetry

    Institute of Scientific and Technical Information of China (English)

    LI,Xi(李曦); LIU,Yi(刘义); WU,Jun(吴军); QU,Song-Sheng(屈松生)

    2002-01-01

    The action of β-(N-selenomorpholine) ethyl phenyl ketone hy drochloride and 4-(N-selenomorpholine)-2-butanone hydrochloride on Escherichia coli and Staphylococcus aureus was studied by microcalorimetry. Differences in their capacities to affect the metabolism of this bacterium were observed. The kinetics shows that the selenomorphline compounds had action on the metabolism process of Escherichia coli and Staphylococcus aureus. The rate constant (k) of the studied bacterium in the presence of the drugs are concentration-dependant. The growth rate constants decrease with an increase in the mass of the selenomorpholine compounds, but their relationship is different. As deduced from the rate constant (k) of the studied bacterium (in log phase) and the half inhibitory concentration (IC50), the experimental results reveal that the studied selenomorphline compounds all have good antibiotic activity and better antibacterial activity on Staphylococcus aureus than on Escherichia coli.

  10. Studies on the pathogenic bacterium of ulcer disease in Epinephelus awoara

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Studies were conducted to determine the cause of the acute mortality of cage-cultured Epinephelus awoara in the Tong'an Bay of Xiamen, China during the summer of 2002. Predominant bacteria strain TS-628 was isolated from the diseased grouper. The virulence test confirmed that TS-628 was the pathogenic bacterium. Biochemical characteristics of the isolates were determined using the automatic bacterial identification system and standard tube tests. To further confirm the identification, a 1 121 bp 16S rRNA gene sequence of the isolate was amplified by PCR, which had been deposited into Genbank (accession number: AY747308). According to the biochemical characteristics and by comparing the 16S rRNA gene homology of the isolate, the pathogenic bacterium was identified as Vibrio harveyi. Drug sensitivity tests showed that this pathogenic bacterium was sensitive to 16 antibacterials, especially to chloramphenicol and actinospectacin, but completely resistant to antibacterials likes vancomycin, penicillin, lincomycin, and so on.

  11. Action of the Selenomorpholine Compounds on the Bacterium Growth by Microcalorimetry

    Institute of Scientific and Technical Information of China (English)

    李曦; 刘义; 等

    2002-01-01

    The action of β-(N-selenomorpholine) ethyl phenyl ketone hydrochloride and 4-(N-selenomorpholine)-2-butanone hydro-chloride on Escherichia coli and Staphylococcus aureus was studied by microcalorimetry,Differences in their capacities to affect the metabolism of this bacterium were observed.The kinetics shows that the selenomorpholine compounds had action on the metabolism process of Escherichia coli and Staphylococcus aureus.The rate constant (k) of the studied bacterium in the presence of the drugs are concentration-dependant.The growth rate constants decrease with an increase in the mass of the selenomorpholine compounds ,but their relationship is different.As deduced from the rate constant(k) of the studied bacterium(in log phase )and the half inhibitory concentration (IC50),the experimental results reveal that the studied selenomorpholine compounds all have good antibiotic activity and better antibacterial activity on Staphylcoccus aureus than on Escherichia coli.

  12. Complete Genome Sequence of a thermotolerant sporogenic lactic acid bacterium, Bacillus coagulans strain 36D1

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Gary [Los Alamos National Laboratory (LANL); Dalin, Eileen [U.S. Department of Energy, Joint Genome Institute; Tice, Hope [U.S. Department of Energy, Joint Genome Institute; Chertkov, Olga [Los Alamos National Laboratory (LANL); Land, Miriam L [ORNL

    2011-01-01

    Bacillus coagulans is a ubiquitous soil bacterium that grows at 50-55 C and pH 5.0 and fer-ments various sugars that constitute plant biomass to L (+)-lactic acid. The ability of this sporogenic lactic acid bacterium to grow at 50-55 C and pH 5.0 makes this organism an attractive microbial biocatalyst for production of optically pure lactic acid at industrial scale not only from glucose derived from cellulose but also from xylose, a major constituent of hemi-cellulose. This bacterium is also considered as a potential probiotic. Complete genome squence of a representative strain, B. coagulans strain 36D1, is presented and discussed.

  13. Complete Genome Sequence of a thermotolerant sporogenic lactic acid bacterium, Bacillus coagulans strain 36D1

    Energy Technology Data Exchange (ETDEWEB)

    Rhee, Mun Su [University of Florida, Gainesville; Moritz, Brelan E. [University of Florida, Gainesville; Xie, Gary [Los Alamos National Laboratory (LANL); Glavina Del Rio, Tijana [U.S. Department of Energy, Joint Genome Institute; Dalin, Eileen [U.S. Department of Energy, Joint Genome Institute; Tice, Hope [U.S. Department of Energy, Joint Genome Institute; Bruce, David [Los Alamos National Laboratory (LANL); Goodwin, Lynne A. [Los Alamos National Laboratory (LANL); Chertkov, Olga [Los Alamos National Laboratory (LANL); Brettin, Thomas S [ORNL; Han, Cliff [Los Alamos National Laboratory (LANL); Detter, J. Chris [U.S. Department of Energy, Joint Genome Institute; Pitluck, Sam [U.S. Department of Energy, Joint Genome Institute; Land, Miriam L [ORNL; Patel, Milind [University of Florida, Gainesville; Ou, Mark [University of Florida, Gainesville; Harbrucker, Roberta [University of Florida, Gainesville; Ingram, Lonnie O. [University of Florida; Shanmugam, Keelnathan T. [University of Florida

    2011-01-01

    Bacillus coagulans is a ubiquitous soil bacterium that grows at 50-55 C and pH 5.0 and fer- ments various sugars that constitute plant biomass to L (+)-lactic acid. The ability of this spo- rogenic lactic acid bacterium to grow at 50-55 C and pH 5.0 makes this organism an attrac- tive microbial biocatalyst for production of optically pure lactic acid at industrial scale not only from glucose derived from cellulose but also from xylose, a major constituent of hemi- cellulose. This bacterium is also considered as a potential probiotic. Complete genome se- quence of a representative strain, B. coagulans strain 36D1, is presented and discussed.

  14. Removal of corper(II) Ions from aqueous solution by a lactic acid bacterium

    OpenAIRE

    M. Yilmaz(Department of Physics, Gazi University, Ankara); T. Tay; M. Kivanc; H. Turk

    2010-01-01

    Enterococcus faecium, a lactic acid bacterium (LAB), was evaluated for its ability to remove copper(II) ions from water. The effects of the pH, contact time, initial concentration of copper(II) ions, and temperature on the biosorption rate and capacity were studied. The initial concentrations of copper(II) ions used to determine the maximum amount of biosorbed copper(II) ions onto lyophilised lactic acid bacterium varied from 25 mg L-1 to 500 mg L-1. Maximum biosorption capacities were attain...

  15. Sensitivity of the bacterium Bacillus Thuringiensis as an insect disease agent to gamma-rays

    International Nuclear Information System (INIS)

    The effect of gamma radiation on the viability of the entomopathogenic spore-forming bacterium, Bacillus thuringiensis, was tested. The different gamma doses varied much in their effect on such bacterium. All irradiated Bacillus suspensions with doses below 85 krad showed different degrees of inhibitory activity. However, bacterial suspensions irradiated at a dose of 90 krad. proved to promote spore germination. Changes in the physiological, and morphological characters of the irradiated Bacillus at these levels were detected. The new observed characters were induced at a particular dose level of 90 krad. These new characters are assumed to be due to genetic changes induced at this particular gamma dose

  16. Physiological and taxonomic description of the novel autotrophic, metal oxidizing bacterium, Pseudogulbenkiania sp. strain 2002

    OpenAIRE

    Weber, Karrie A; Hedrick, David B.; Peacock, Aaron D.; Thrash, J. Cameron; White, David C.; Achenbach, Laurie A.; Coates, John D.

    2009-01-01

    A lithoautotrophic, Fe(II) oxidizing, nitrate-reducing bacterium, strain 2002 (ATCC BAA-1479; =DSM 18807), was isolated as part of a study on nitrate-dependent Fe(II) oxidation in freshwater lake sediments. Here we provide an in-depth phenotypic and phylogenetic description of the isolate. Strain 2002 is a gram-negative, non-spore forming, motile, rod-shaped bacterium which tested positive for oxidase, catalase, and urease. Analysis of the complete 16S rRNA gene sequence placed strain 2002 in...

  17. Aminomonas paucivorans gen. nov., sp. nov., a mesophilic, anaerobic, amino-acid-utilizing bacterium

    OpenAIRE

    Baena, S.; Fardeau, Marie-Laure; Ollivier, Bernard; Labat, Marc; Thomas, P; Garcia, Jean-Louis; Patel, B.K.C.

    1999-01-01

    A novel, asaccharolytic, amino-acid-degrading bacterium, designated strain GLU-3T, was isolated from an anaerobic lagoon of a dairy wastewater treatment plant. Strain GLU-3T stained Gram-negative and was an obligately anaerobic, non-spore-forming, slightly curved, rod-shaped bacterium (0.3 x 4.0-6.0 micrometers) which existed singly or in pairs. The DNA G+C content was 43 mol%. Optimum growth occurred at 35°C and pH 7.5 on arginine, histidine, threonine and glycine. Acetate was the end-produc...

  18. Genome sequence of Symbiobacterium thermophilum, an uncultivable bacterium that depends on microbial commensalism

    OpenAIRE

    Ueda, Kenji; YAMASHITA Atsushi; Ishikawa, Jun; Shimada, Masafumi; Watsuji, Tomo-o; Morimura, Kohji; Ikeda, Haruo; Hattori, Masahira; Beppu, Teruhiko

    2004-01-01

    Symbiobacterium thermophilum is an uncultivable bacterium isolated from compost that depends on microbial commensalism. The 16S ribosomal DNA-based phylogeny suggests that this bacterium belongs to an unknown taxon in the Gram-positive bacterial cluster. Here, we describe the 3.57 Mb genome sequence of S.thermophilum. The genome consists of 3338 protein-coding sequences, out of which 2082 have functional assignments. Despite the high G + C content (68.7%), the genome is closest to that of Fir...

  19. Marinobacter hydrocarbonoclasticus NY-4, a novel denitrifying, moderately halophilic marine bacterium

    OpenAIRE

    Li, Rongpeng; Zi, Xiaoli; Wang, Xinfeng; Zhang, Xia; Gao, Haofeng; Hu, Nan

    2013-01-01

    The isolation and characterization of a novel halophilic denitrifying marine bacterium is described. The halophilic bacterium, designated as NY-4, was isolated from soil in Yancheng City, China, and identified as Marinobacter hydrocarbonoclasticus by 16S rRNA gene sequence phylogenetic analysis. This organism can grow in NaCl concentrations ranging from 20 to 120 g/L. Optimum growth occurs at 80 g/L NaCl and pH 8.0. The organism can grow on a broad range of carbon sources and demonstrated eff...

  20. Purification and Characterization of Haloalkaline, Organic Solvent Stable Xylanase from Newly Isolated Halophilic Bacterium-OKH

    OpenAIRE

    Sanghvi, Gaurav; Jivrajani, Mehul; Patel, Nirav; Jivrajani, Heta; Bhaskara, Govinal Badiger; Patel, Shivani

    2014-01-01

    A novel, alkali-tolerant halophilic bacterium-OKH with an ability to produce extracellular halophilic, alkali-tolerant, organic solvent stable, and moderately thermostable xylanase was isolated from salt salterns of Mithapur region, Gujarat, India. Identification of the bacterium was done based upon biochemical tests and 16S rRNA sequence. Maximum xylanase production was achieved at pH 9.0 and 37°C temperature in the medium containing 15% NaCl and 1% (w/v) corn cobs. Sugarcane bagasse and whe...

  1. Enhanced Cadmium (Cd) Phytoextraction from Contaminated Soil using Cd-Resistant Bacterium

    OpenAIRE

    Kunchaya Setkit; Acharaporn Kumsopa; Jaruwan Wongthanate; Benjaphorn Prapagdee

    2014-01-01

    A cadmium (Cd)-resistant bacterium, Micrococcus sp. MU1, is able to produce indole-3-acetic acid and promotes root elongation and plant growth. The potential of this bacterium on enhancement of Cd uptake and bioaccumulation of Cd in Helianthus annuus L. planted in Cd-contaminated soil was evaluated in greenhouse condition. The results showed that Micrococcus sp. MU1promoted the growth of H. annuus L. by increasing the root length, stem height, dry biomass, root to shoot ratio and also signifi...

  2. EPR at 24 T of the primary donor radical cation from Blastochloris viridis

    International Nuclear Information System (INIS)

    The g-matrix of photosynthetic pigments has been studied in the last decade due to the advent of high-field EPR techniques. It can be observed when the spectral splitting of the principal g-factor components is larger than the linewidth due to unresolved hyperfine splitting and if there is no g-strain obscuring it. For large organic molecules such as the primary electron donor in photosynthetic reaction centers (RC) this usually requires fields above 11 T, or, for fields between 3 and 11 T, full deuteration and/or single crystal work. Here we present for the first time the fully resolved rhombic EPR spectrum of the primary donor of Blastochloris viridis (formerly called Rhodopseudomonas viridis), a purple photosynthetic bacterium containing bacteriochlorophyll b. As was the case for Rhodobacter sphaeroides, g-strain is negligible for this radical up to a field of 24 T. The temperature dependence of the g-anisotropy is presented and compared with that of the bacteriochlorophyll a-containing Rb. sphaeroides and plant photosystem I. A slight shift in the principal components of the g-matrix is observed at temperatures below 70 K, where it becomes more axial. The experimental work is complemented with theoretical calculations for g using the semi-empirical INDO/S method as implemented in the program ZINDO. The theoretical results generally agree well with the experiment. This indicates that a satisfactory description of the anisotropic g-tensor for radical cations of large planar molecules like the chlorophylls as well as their aggregates, e.g., reaction center primary donor special pairs, is possible with this relatively cheap semi-empirical approach

  3. Temperature dependent LH1→RC energy transfer in purple bacteria Tch. tepidum with shiftable LH1-Qy band: A natural system to investigate thermally activated energy transfer in photosynthesis.

    Science.gov (United States)

    Ma, Fei; Yu, Long-Jiang; Wang-Otomo, Zheng-Yu; van Grondelle, Rienk

    2016-04-01

    The native LH1-RC complex of the purple bacterium Thermochromatium (Tch.) tepidum has an ultra-red LH1-Qy absorption at 915nm, which can shift to 893 and 882nm by means of chemical modifications. These unique complexes are a good natural system to investigate the thermally activated energy transfer process, with the donor energies different while the other factors (such as the acceptor energy, special pair at 890nm, and the distance/relative orientation between the donor and acceptor) remain the same. The native B915-RC, B893-RC and B882-RC complexes, as well as the LH1-RC complex of Rhodobacter (Rba.) sphaeroides were studied by temperature-dependent time-resolved absorption spectroscopy. The energy transfer time constants, kET(-1), are 65, 45, 46 and 45ps at room temperature while 225, 58, 85, 33ps at 77K for the B915-RC, B893-RC, B882-RC and Rba. sphaeroides LH1-RC, respectively. The dependences of kET on temperature have different trends. The reorganization energies are determined to be 70, 290, 200 and 45cm(-1), respectively, by fitting kET vs temperature using Marcus equation. The activation energies are 200, 60, 115 and 20cm(-1), respectively. The influences of the structure (the arrangement of the 32 BChl a molecules) on kET are discussed based on these results, to reveal how the B915-RC complex accomplishes its energy transfer function with a large uphill energy of 290cm(-1). PMID:26702949

  4. Open reading frame 5 (ORF5), encoding a ferredoxinlike protein, and nifQ are cotranscribed with nifE, nifN, nifX, and ORF4 in Rhodobacter capsulatus.

    Science.gov (United States)

    Moreno-Vivian, C; Hennecke, S; Pühler, A; Klipp, W

    1989-05-01

    DNA sequence analysis of a 1,600-base-pair fragment located downstream of nifENX in nif region A of Rhodobacter capsulatus revealed two additional open reading frames (ORFs): ORF5, encoding a ferredoxinlike protein, and nifQ. The ferredoxinlike gene product contained two cysteine motifs, typical of ferredoxins coordinating two 4Fe-4S clusters, but the distance between these two motifs was unusual for low-molecular-weight ferredoxins. The R. capsulatus nifQ gene product shared a high degree of homology with Klebsiella pneumoniae and Azotobacter vinelandii NifQ, including a typical cysteine motif located in the C-terminal part. nifQ insertion mutants and also an ORF5-nifQ double deletion mutant showed normal diazotrophic growth only in the presence of high concentrations of molybdate. This demonstrated that the gene encoding the ferredoxinlike protein is not essential for nitrogen fixation. No NifA-activated consensus promoter could be found in the intergenic region between nifENX-ORF4 and ORF5-nifQ. Analyses of a nifQ-lacZYA fusion revealed that transcription of nifQ was initiated at a promoter in front of nifE. In contrast to other nitrogen-fixing organisms, R. capsulatus nifE, nifN, nifX, ORF4, ORF5, and nifQ were organized in one transcriptional unit. PMID:2708314

  5. Isolation from swine feces of a bacterium which decarboxylates p-hydroxyphenylacetic acid to 4-methylphenol (p-cresol).

    OpenAIRE

    L. A. Ward; Johnson, K A; Robinson, I.M.; Yokoyama, M T

    1987-01-01

    An obligate anaerobe has been isolated from swine feces which decarboxylates p-hydroxyphenylacetic acid to 4-methylphenol (p-cresol). The bacterium was an ovoid rod, gram positive, nonsporeforming, and nonmotile. Lactate and acetate were major end products of glucose fermentation. Based on its characteristics, the bacterium is tentatively assigned to the genus Lactobacillus.

  6. New recombinant bacterium comprises a heterologous gene encoding glycerol dehydrogenase and/or an up-regulated native gene encoding glycerol dehydrogenase, useful for producing ethanol

    DEFF Research Database (Denmark)

    2010-01-01

    TECHNOLOGY FOCUS - BIOTECHNOLOGY - Preparation (claimed): Producing recombinant bacterium having enhanced ethanol production characteristics when cultivated in growth medium comprising glycerol comprises: (a) transforming a parental bacterium by (i) the insertion of a heterologous gene encoding...... glycerol dehydrogenase; and/or (ii) up-regulating a native gene encoding glycerol dehydrogenase; and (b) obtaining the recombinant bacterium. Preferred Bacterium: In the recombinant bacterium above, the inserted heterologous gene and/or the up-regulated native gene is encoding a glycerol dehydrogenase...... dehydrogenase encoding region of the bacterium, or is inserted into a phosphotransacetylase encoding region of the bacterium, or is inserted into an acetate kinase encoding region of the bacterium. It is operably linked to an inducible, a regulated or a constitutive promoter. The up-regulated glycerol...

  7. Isolation and Structure Elucidation of a Novel Yellow Pigment from the Marine Bacterium Pseudoalteromonas tunicata

    Directory of Open Access Journals (Sweden)

    N. Kumar

    2005-10-01

    Full Text Available The marine environment is a major source for many novel natural compounds. A new yellow pigment has been isolated from the marine bacterium P. tunicata and identified as a new member of the tambjamine class of compounds. The structural identification was achieved by a combination of 1D and 2D-NMR spectroscopy and high resolution mass spectrometry data.

  8. Complete Genome Sequence of Enterobacter cloacae B2-DHA, a Chromium-Resistant Bacterium.

    Science.gov (United States)

    Rahman, Aminur; Nahar, Noor; Olsson, Björn; Mandal, Abul

    2016-01-01

    Previously, we reported a chromium-resistant bacterium, Enterobacter cloacae B2-DHA, isolated from the landfills of tannery industries in Bangladesh. Here, we investigated its genetic composition using massively parallel sequencing and comparative analysis with other known Enterobacter genomes. Assembly of the sequencing reads revealed a genome of ~4.21 Mb in size. PMID:27257201

  9. Identification and Characterization of Clostridium paraputrificum, a Chitinolytic Bacterium of Human Digestive Tract

    Czech Academy of Sciences Publication Activity Database

    Šimůnek, Jiří; Kopečný, Jan; Hodrová, Blanka; Bartoňová, Hana

    2002-01-01

    Roč. 47, č. 5 (2002), s. 559-564. ISSN 0015-5632 R&D Projects: GA AV ČR KSK5020115; GA ČR GA525/00/0984; GA AV ČR KSK5052113 Keywords : Clostridium paraputrificum * Chitinolytic bacterium * digestive tract Subject RIV: EE - Microbiology, Virology Impact factor: 0.979, year: 2002

  10. Complete genome sequence of the bioleaching bacterium Leptospirillum sp. group II strain CF-1.

    Science.gov (United States)

    Ferrer, Alonso; Bunk, Boyke; Spröer, Cathrin; Biedendieck, Rebekka; Valdés, Natalia; Jahn, Martina; Jahn, Dieter; Orellana, Omar; Levicán, Gloria

    2016-03-20

    We describe the complete genome sequence of Leptospirillum sp. group II strain CF-1, an acidophilic bioleaching bacterium isolated from an acid mine drainage (AMD). This work provides data to gain insights about adaptive response of Leptospirillum spp. to the extreme conditions of bioleaching environments. PMID:26853478

  11. Draft Genome Sequence of the Moderately Thermophilic Bacterium Schleiferia thermophila Strain Yellowstone (Bacteroidetes)

    OpenAIRE

    Thiel, Vera; Hamilton, Trinity L.; Tomsho, Lynn P.; Burhans, Richard; Gay, Scott E.; Ramaley, Robert F.; Stephan C Schuster; Steinke, Laurey; Bryant, Donald A.

    2014-01-01

    The draft genome sequence of the moderately thermophilic bacterium Schleiferia thermophila strain Yellowstone (Bacteroidetes), isolated from Octopus Spring (Yellowstone National Park, WY, USA) was sequenced and comprises 2,617,694 bp in 35 contigs. The draft genome is predicted to encode 2,457 protein coding genes and 37 tRNA encoding genes and two rRNA operons.

  12. Genome Sequence of the Acetogenic Bacterium Moorella mulderi DSM 14980T

    Science.gov (United States)

    Castillo Villamizar, Genis Andrés

    2016-01-01

    Here, we report the draft genome sequence of Moorella mulderi DSM 14980T, a thermophilic acetogenic bacterium, which is able to grow autotrophically on H2 plus CO2 using the Wood-Ljungdahl pathway. The genome consists of a circular chromosome (2.99 Mb). PMID:27231372

  13. Removal of zinc from aqueous solution by metal resistant symbiotic bacterium Mesorhizobium amorphae

    DEFF Research Database (Denmark)

    Hao, Xiuli; Mohamad, Osama Abdalla; Xie, Pin;

    2014-01-01

    Biosorption of zinc by living biomasses of metal resistant symbiotic bacterium Mesorhizobium amorphae CCNWGS0123 was investigated under optimal conditions at pH 5.0, initial metal concentrations of 100 mg L-1, and a dose of 1.0 g L-1. M. amorphae exhibited an efficient removal of Zn2+ from aqueous...

  14. Cloning, sequencing, and sequence analysis of two novel plasmids from the thermophilic anaerobic bacterium Anaerocellum thermophilum

    DEFF Research Database (Denmark)

    Clausen, Anders; Mikkelsen, Marie Just; Schrøder, I.;

    2004-01-01

    The nucleotide sequence of two novel plasmids isolated from the extreme thermophilic anaerobic bacterium Anaerocellum thermophilum DSM6725 (A. thermophilum), growing optimally at 70degreesC, has been determined. pBAS2 was found to be a 3653 bp plasmid with a GC content of 43%, and the sequence...

  15. Thermaerobacter litoralis sp. nov., a strictly aerobic and thermophilic bacterium isolated from a coastal hydrothermal field

    DEFF Research Database (Denmark)

    Tanaka, Reiji; Kawaichi, Satoshi; Nishimura, Hiroshi;

    2006-01-01

    A novel thermophilic bacterium, strain KW1T, was isolated from a coastal hydrothermal field on the Satsuma Peninsula, Kagoshima Prefecture, Japan. The variably Gram-stained cells were motile rods with flagella, did not form spores and proliferated at 52-78°C (optimum, 70°C), pH 5-8 (optimum, pH 7...

  16. The atherogenic bacterium Porphyromonas gingivalis evades circulating phagocytes by adhering to erythrocytes

    DEFF Research Database (Denmark)

    Belstrøm, Daniel; Holmstrup, Palle; Damgaard, Christian;

    2011-01-01

    A relationship between periodontitis and coronary heart disease has been investigated intensively. A pathogenic role for the oral bacterium Porphyromonas gingivalis has been suggested for both diseases. We examined whether complement activation by P. gingivalis strain ATCC 33277 allows the bacter......A relationship between periodontitis and coronary heart disease has been investigated intensively. A pathogenic role for the oral bacterium Porphyromonas gingivalis has been suggested for both diseases. We examined whether complement activation by P. gingivalis strain ATCC 33277 allows...... the bacterium to adhere to human red blood cells (RBCs) and thereby evade attack by circulating phagocytes. On incubation with normal human serum, the P. gingivalis strain efficiently fixed complement component 3 (C3). Incubation of bacteria with washed whole blood cells suspended in autologous serum resulted......) and that by monocytes after between 15 min and 30 min of incubation (by 66% and 53%, respectively). The attachment of C3b/iC3b to bacterium-bearing RBCs decreased progressively after 15 min, indicating that conversion of C3 fragments into C3dg occurred, decreasing the affinity for CR1 on RBCs. We propose that P...

  17. Isolation and algae-lysing characteristics of the algicidal bacterium B5

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Water blooms have become a worldwide environmental problem. Recently, algicidal bacteria have attracted wide attention as possible agents for inhibiting algal water blooms. In this study, one strain of algicidal bacterium B5 was isolated from activated sludge. On the basis of analysis of its physiological characteristics and 16S rDNA gene sequence, it was identified as Bacillus fusiformis. Its algae-lysing characteristics on Microcystis aeruginosa, Chlorella and Scenedesmus were tested. The results showed that: (1) the algicidal bacterium B5 is a Gram-negative bacterium. The 16S rDNA nucleotide sequence homology of strain B5 with 2 strains of B. fusiformis reached 99.86%, so B5 was identified as B. fusiformis; (2) the algal-lysing effects of the algicidal bacterium B5 on M. aeruginosa, Chlorella and Scenedesmus were pronounced. The initial bacterial and algal cell densities strongly influence the removal rates of chlorophyll-a. The greater the initial bacterial cell density, the faster the degradation of chlorophyll-a. The greater the initial algal cell density, the slower the degradation of chlorophyll-a. When the bacterial cell density was 3.6 × 107 cells/ml, nearly 90% of chlorophyll-a was removed. When the chlorophyll-a concentration was less than 550 μg/L, about 70 % was removed; (3) the strain B5 lysed algae not directly but by secreting metabolites and these metabolites could bear heat treatment.

  18. Engineering a predatory bacterium as a proficient killer agent for intracellular bio-products recovery

    DEFF Research Database (Denmark)

    Martinez, Virginia; Herencias, Cristina; Jurkevitch, Edouard;

    2016-01-01

    This work examines the potential of the predatory bacterium Bdellovibrio bacteriovorus HD100, an obligate predator of other Gram-negative bacteria, as an external cell-lytic agent for recovering valuable intracellular bio-products produced by prey cultures. The bio-product targets to be recovered...

  19. The Mechanism and Usage for Enhanced Oil Recovery by Chemotaxis of Bacterium BS2

    Institute of Scientific and Technical Information of China (English)

    LiYiqian; JingGuicheng; GaoShusheng; XungWei

    2005-01-01

    Due to its chemotaxis, the motion ability of bacterium BS2 is very strong, and under the microscope, the distribution grads of bacterium concentration can be seen at the oil-water interface. During the experiments in glass box, it can be observed, with eyes, because of the chemotaxis, that muddy gets thicker and thicker at the interface gradually, and it is measured there, from sampling, that the bacterium concentration is 109 cells/mL, pH value 4.4 and the concentration of bio-surfactant 2.87%; The microbial oil-displacement experiments are carried out in emulational network models, and the oil-displacement mechanism by the bacterium and its metabolizing production is studied. And, during oil-displacement experiments in the gravel-input glass models, because of the profile control of thalli and the production, the sweep area of subsequent waterflood becomes wider, which can be seen with eyes and the recovery is enhanced by 13.6%. Finally, the successful field test is introduced in brief: the ratio of response producers is 85.7%, and the water-cut degrades by 6.4%, while 20038t oil has increased in accumulative total in 2 years.

  20. Two-dimensional gel-based alkaline proteome of the probiotic bacterium Lactobacillus acidophilus NCFM

    DEFF Research Database (Denmark)

    Majumder, Avishek; Cai, Liyang; Ejby, Morten;

    2012-01-01

    Lactobacillus acidophilus NCFM (NCFM) is a well‐documented probiotic bacterium isolated from human gut. Detailed 2D gel‐based NCFM proteomics addressed the so‐called alkaline range, i.e., pH 6–11. Proteins were identified in 150 of the 202 spots picked from the Coomassie Brilliant Blue stained 2D...

  1. Photobacterium galatheae sp. nov., a bioactive bacterium isolated from a mussel in the Solomon Sea

    DEFF Research Database (Denmark)

    Machado, Henrique; Giubergia, Sonia; Mateiu, Ramona Valentina;

    2015-01-01

    A novel, Gram-negative marine bacterium, S2753T, was isolated from a mussel of the Solomon Sea, Solomon Islands. Analysis of the 16S rRNA gene sequence and whole genome sequence data placed strain S2753T in the genus Photobacterium with the closest relative being Photobacterium halotolerans...

  2. Design of semi industrial radium separator by a new bacterium MGF-48

    International Nuclear Information System (INIS)

    Following of a research work which has been recently published in AEOI scientific Bulletin no. 14, a semi industrial bioreactor has been designed for separation of radium using a new bacterium MGF-48. This bioreactor could be utilized for a high rate separation of radium in semi industrial scale. (author)

  3. Complete Genome Sequence of Sphingomonas sp. Strain NIC1, an Efficient Nicotine-Degrading Bacterium

    Science.gov (United States)

    Zhu, Xiongyu; Wang, Weiwei; Xu, Ping

    2016-01-01

    Sphingomonas sp. strain NIC1, an efficient nicotine-degrading bacterium, was isolated from tobacco leaves. Here, we present the complete genome sequence of strain NIC1, which contains one circular chromosome and two circular plasmids. The genomic information will provide insights into its molecular mechanism for nicotine degradation. PMID:27417841

  4. First Insights into the Genome of the Moderately Thermophilic Bacterium Clostridium tepidiprofundi SG 508T.

    Science.gov (United States)

    Poehlein, Anja; Friedrich, Ines; Krüger, Larissa; Daniel, Rolf

    2016-01-01

    The moderately thermophilic bacterium Clostridium tepidiprofundi is Gram-positive and belongs to clostridial cluster I. It was isolated from a hydrothermal vent chimney. Substrates utilized by C. tepidiprofundi include casein, peptone, tryptone, yeast extract, beef extract, starch, maltose, and glucose. The genome consists of one replicon (3.06 Mb). PMID:27174286

  5. First Insights into the Genome of the Moderately Thermophilic Bacterium Clostridium tepidiprofundi SG 508T

    OpenAIRE

    Poehlein, Anja; Friedrich, Ines; Krüger, Larissa; Daniel, Rolf

    2016-01-01

    The moderately thermophilic bacterium Clostridium tepidiprofundi is Gram-positive and belongs to clostridial cluster I. It was isolated from a hydrothermal vent chimney. Substrates utilized by C. tepidiprofundi include casein, peptone, tryptone, yeast extract, beef extract, starch, maltose, and glucose. The genome consists of one replicon (3.06 Mb).

  6. Draft Genome Sequence of Photorhabdus luminescens subsp. laumondii HP88, an Entomopathogenic Bacterium Isolated from Nematodes.

    Science.gov (United States)

    Ghazal, Shimaa; Oshone, Rediet; Simpson, Stephen; Morris, Krystalynne; Abebe-Akele, Feseha; Thomas, W Kelley; Khalil, Kamal M; Tisa, Louis S

    2016-01-01

    Photorhabdus luminescens subsp. laumondii HP88 is an entomopathogenic bacterium that forms a symbiotic association with Heterorhabditis nematodes. We report here a 5.27-Mbp draft genome sequence for P. luminescens subsp. laumondii HP88, with a G+C content of 42.4% and containing 4,243 candidate protein-coding genes. PMID:26988056

  7. Draft Genome Sequence of Photorhabdus luminescens subsp. laumondii HP88, an Entomopathogenic Bacterium Isolated from Nematodes

    OpenAIRE

    Ghazal, Shimaa; Oshone, Rediet; Simpson, Stephen; Morris, Krystalynne; Abebe-Akele, Feseha; Thomas, W Kelley; Khalil, Kamal M.; Tisa, Louis S.

    2016-01-01

    Photorhabdus luminescens subsp. laumondii HP88 is an entomopathogenic bacterium that forms a symbiotic association with Heterorhabditis nematodes. We report here a 5.27-Mbp draft genome sequence for P. luminescens subsp. laumondii HP88, with a G+C content of 42.4% and containing 4,243 candidate protein-coding genes.

  8. Draft Genome Sequence of the Ionic Liquid-Tolerant Bacterium Bacillus amyloliquefaciens CMW1

    OpenAIRE

    Kurata, Atsushi; Hirose, Yuu; Misawa, Naomi; Hurunaka, Kohei; Kishimoto, Noriaki

    2014-01-01

    Here, we report the draft genome sequence of an ionic liquid-tolerant bacterium, Bacillus amyloliquefaciens CMW1, which is newly isolated from a Japanese fermented soybean paste. The genome sequence will allow for a characterization of the molecular mechanism of its ionic liquid tolerance.

  9. Draft Genome Sequence of a Bacillus Bacterium from the Atacama Desert Wetlands Metagenome

    OpenAIRE

    Vilo, Claudia; Galetovic, Alexandra; Araya, Jorge E.; Gómez-Silva, Benito; Dong, Qunfeng

    2015-01-01

    We report here the draft genome sequence of a Bacillus bacterium isolated from the microflora of Nostoc colonies grown at the Andean wetlands in northern Chile. We consider this genome sequence to be a molecular tool for exploring microbial relationships and adaptation strategies to the prevailing extreme conditions at the Atacama Desert.

  10. Draft Genome Sequence of a Bacillus Bacterium from the Atacama Desert Wetlands Metagenome.

    Science.gov (United States)

    Vilo, Claudia; Galetovic, Alexandra; Araya, Jorge E; Gómez-Silva, Benito; Dong, Qunfeng

    2015-01-01

    We report here the draft genome sequence of a Bacillus bacterium isolated from the microflora of Nostoc colonies grown at the Andean wetlands in northern Chile. We consider this genome sequence to be a molecular tool for exploring microbial relationships and adaptation strategies to the prevailing extreme conditions at the Atacama Desert. PMID:26294639

  11. Genome Sequence of Bacillus mycoides B38V, a Growth-Promoting Bacterium of Sunflower.

    Science.gov (United States)

    Ambrosini, Adriana; Sant'Anna, Fernando Hayashi; de Souza, Rocheli; Tadra-Sfeir, Michele; Faoro, Helisson; Alvarenga, Samuel M; Pedrosa, Fabio Oliveira; Souza, Emanuel Maltempi; Passaglia, Luciane M P

    2015-01-01

    Bacillus mycoides B38V is a bacterium isolated from the sunflower rhizosphere that is able to promote plant growth and N uptake. The genome of the isolate has approximately 5.80 Mb and presents sequence codifiers for plant growth-promoting characteristics, such as nitrate reduction and ammonification and iron-siderophore uptake. PMID:25838494

  12. Genome Sequence of Bacillus mycoides B38V, a Growth-Promoting Bacterium of Sunflower

    OpenAIRE

    Ambrosini, Adriana; Sant’Anna, Fernando Hayashi; de Souza, Rocheli; Tadra-Sfeir, Michele; Faoro, Helisson; Alvarenga, Samuel M.; Pedrosa, Fabio Oliveira; Souza, Emanuel Maltempi; Passaglia, Luciane M. P.

    2015-01-01

    Bacillus mycoides B38V is a bacterium isolated from the sunflower rhizosphere that is able to promote plant growth and N uptake. The genome of the isolate has approximately 5.80 Mb and presents sequence codifiers for plant growth-promoting characteristics, such as nitrate reduction and ammonification and iron-siderophore uptake.

  13. Draft Genome Sequence of Perfluorooctane Acid-Degrading Bacterium Pseudomonas parafulva YAB-1

    OpenAIRE

    Yi, Langbo; Tang, Chongjian; Peng, Qingjing; Peng, Qingzhong; Chai, Liyuan

    2015-01-01

    Pseudomonas parafulva YAB-1, isolated from perfluorinated compound-contaminated soil, has the ability to degrade perfluorooctane acid (PFOA) compound. Here, we report the draft genome sequence and annotation of the PFOA-degrading bacterium P. parafulva YAB-1. The data provide the basis to investigate the molecular mechanism of PFOA metabolism.

  14. Draft Genome Sequence of Perfluorooctane Acid-Degrading Bacterium Pseudomonas parafulva YAB-1

    Science.gov (United States)

    Tang, Chongjian; Peng, Qingjing; Peng, Qingzhong

    2015-01-01

    Pseudomonas parafulva YAB-1, isolated from perfluorinated compound-contaminated soil, has the ability to degrade perfluorooctane acid (PFOA) compound. Here, we report the draft genome sequence and annotation of the PFOA-degrading bacterium P. parafulva YAB-1. The data provide the basis to investigate the molecular mechanism of PFOA metabolism. PMID:26337877

  15. Comment on "A bacterium that degrades and assimilates poly(ethylene terephthalate)".

    Science.gov (United States)

    Yang, Yu; Yang, Jun; Jiang, Lei

    2016-08-19

    Yoshida et al (Report, 11 March 2016, p. 1196) reported that the bacterium Ideonella sakaiensis 201-F6 can degrade and assimilate poly(ethylene terephthalate) (PET). However, the authors exaggerated degradation efficiency using a low-crystallinity PET and presented no straightforward experiments to verify depolymerization and assimilation of PET. Thus, the authors' conclusions are rather misleading. PMID:27540159

  16. Draft Genome Sequence of Burkholderia cenocepacia Strain 869T2, a Plant-Beneficial Endophytic Bacterium.

    Science.gov (United States)

    Ho, Ying-Ning; Huang, Chieh-Chen

    2015-01-01

    An endophytic bacterium, Burkholderia cenocepacia 869T2, isolated from vetiver grass, has shown its abilities for both in planta biocontrol and plant growth promotion. Its draft genome sequence was determined to provide insights into those metabolic pathways involved in plant-beneficial activity. This is the first genome report for endophytic B. cenocepacia. PMID:26564046

  17. Expression of Heterogenous Arsenic Resistance Genes in the Obligately Autotrophic Biomining Bacterium Thiobacillus ferrooxidans

    OpenAIRE

    Peng, Ji-Bin; Yan, Wang-Ming; Bao, Xue-Zhen

    1994-01-01

    Two arsenic-resistant plasmids were constructed and introduced into Thiobacillus ferrooxidans strains by conjugation. The plasmids with the replicon of wide-host-range plasmid RSF1010 were stable in T. ferrooxidans. The arsenic resistance genes originating from the heterotroph were expressed in this obligately autotrophic bacterium, but the promoter derived from T. ferrooxidans showed no special function in its original host.

  18. Draft Genome Sequence of Sphingobium yanoikuyae TJ, a Halotolerant Di-n-Butyl-Phthalate-Degrading Bacterium

    Science.gov (United States)

    Jin, Decai; Zhu, Ying; Wang, Xinxin; Kong, Xiao; Liu, Huijun; Wang, Yafeng

    2016-01-01

    Sphingobium yanoikuyae TJ is a halotolerant di-n-butyl-phthalate-degrading bacterium, isolated from the Haihe estuary in Bohai Bay, Tianjin, China. Here, we report the 5.1-Mb draft genome sequence of this strain, which will provide insights into the diversity of Sphingobium spp. and the mechanism of phthalate ester degradation in the estuary. PMID:27313307

  19. Whole-Genome Shotgun Sequence of Pseudomonas viridiflava, a Bacterium Species Pathogenic to Arabidopsis thaliana

    OpenAIRE

    Lefort, Francois; Calmin, Gautier; Crovadore, Julien; Osteras, Magne; Farinelli, Laurent

    2013-01-01

    We report here the first whole-genome shotgun sequence of Pseudomonas viridiflava strain UASWS38, a bacterium species pathogenic to the biological model plant Arabidopsis thaliana but also usable as a biological control agent and thus of great scientific interest for understanding the genetics of plant-microbe interactions.

  20. Biohydrogen Production by the Thermophilic Bacterium Caldicellulosiruptor saccharolyticus: Current Status and Perspectives

    NARCIS (Netherlands)

    Bielen, A.A.M.; Verhaart, M.R.A.; Oost, van der J.; Kengen, S.W.M.

    2013-01-01

    Caldicellulosiruptor saccharolyticus is one of the most thermophilic cellulolytic organisms known to date. This Gram-positive anaerobic bacterium ferments a broad spectrum of mono-, di- and polysaccharides to mainly acetate, CO2 and hydrogen. With hydrogen yields approaching the theoretical limit fo

  1. Genome sequence of the mycorrhizal helper bacterium Pseudomonas fluorescens BBc6R8

    Energy Technology Data Exchange (ETDEWEB)

    Deveau, Aurelie [French National Insitute for Agricultural Research (INRA); Grob, Harald [University of Bonn, Germany; Morin, Emmanuelle [INRA, Nancy, France; Karpinets, Tatiana V [ORNL; Utturkar, Sagar M [ORNL; Mehnaz, Samina [University of the Punjab, Pakistan; Kurz, Sven [University of Bonn, Germany; Martin, Francis [INRA, Nancy, France; Frey-Klett, Pascale [INRA, Nancy, France; Labbe, Jessy L [ORNL

    2014-01-01

    We report the draft genome sequence of the mycorrhiza helper bacterium Pseudomonas fluorescens strain BBc6R8 . Several traits which could be involved in the mycorrhiza helper ability of the bacterial strain such as multiple secretion systems, auxin metabolism and phosphate mobilization were evidenced in the genome.

  2. Complete genome sequence of a novel chlorpyrifos degrading bacterium, Cupriavidus nantongensis X1.

    Science.gov (United States)

    Fang, Lian-Cheng; Chen, Yi-Fei; Zhou, Yan-Long; Wang, Dao-Sheng; Sun, Le-Ni; Tang, Xin-Yun; Hua, Ri-Mao

    2016-06-10

    Cupriavidus nantongensis X1 is a chlorpyrifos degrading bacterium, which was isolated from sludge collected at the drain outlet of a chlorpyrifos manufacture plant. It is the first time to report the complete genome sequence of C. nantongensis species, which has been reported as a novel species of Cupriavidus genus. It could provide further pathway information in chlorpyrifos degradation. PMID:27063140

  3. Toxicity of herbicides used in the sugarcane crop to diazotrophic bacterium Herbaspirillum seropedicae

    OpenAIRE

    Sergio de Oliveira Procópio; Marcelo Ferreira Fernandes; Daniele Araújo Teles; José Guedes Sena Filho; Alberto Cargnelutti Filho; Marcelo Araújo Resende; Leandro Vargas

    2014-01-01

    The objective of this work was to identify herbicides used in the sugarcane crop that affects neither the growth, the development, of nor the process of biological nitrogen fixation (BNF) by the diazotrophic bacterium Herbaspirillum seropedicae. Eighteen herbicides (paraquat, ametryne, tebuthiuron, amicarbazone, diuron, metribuzin, [hexazinone + diuron], [hexazinone + clomazone], clomazone, isoxaflutole, sulfentrazone, oxyfluorfen, imazapic, imazapyr, [trifloxysulfuron sodium + ametryne], gly...

  4. An ATP transport system in the intracellular bacterium, Bdellovibrio bacteriovorus 109J.

    OpenAIRE

    Ruby, E G; McCabe, J B

    1986-01-01

    The intracellularly growing bacterium Bdellovibrio bacteriovorus 109J transports intact ATP by a specific, energy-requiring process. ATP transport does not involve either an ADP-ATP or an AMP-ATP exchange mechanism but, instead, has characteristics of an active transport permease. Kinetically distinct systems for ATP transport are expressed by the two developmental stages of the bdellovibrio life cycle.

  5. Complete Genome Sequence of Enterobacter cloacae B2-DHA, a Chromium-Resistant Bacterium

    Science.gov (United States)

    Rahman, Aminur; Nahar, Noor; Olsson, Björn

    2016-01-01

    Previously, we reported a chromium-resistant bacterium, Enterobacter cloacae B2-DHA, isolated from the landfills of tannery industries in Bangladesh. Here, we investigated its genetic composition using massively parallel sequencing and comparative analysis with other known Enterobacter genomes. Assembly of the sequencing reads revealed a genome of ~4.21 Mb in size. PMID:27257201

  6. Draft Genome Sequence of the Radioresistant Bacterium Deinococcus grandis, Isolated from Freshwater Fish in Japan

    Science.gov (United States)

    Onodera, Takefumi; Omoso, Kota; Takeda-Yano, Kiyoko; Katayama, Takeshi; Oono, Yutaka; Narumi, Issay

    2016-01-01

    Deinococcus grandis is a radioresistant bacterium isolated from freshwater fish in Japan. Here we reported the draft genome sequence of D. grandis (4.1 Mb), which will be useful for elucidating the common principles of radioresistance in Deinococcus species through the comparative analysis of genomic sequences. PMID:26868384

  7. Genome Sequence of the Spinosyns-Producing Bacterium Saccharopolyspora spinosa NRRL 18395 ▿

    Science.gov (United States)

    Pan, Yuanlong; Yang, Xi; Li, Jing; Zhang, Ruifen; Hu, Yongfei; Zhou, Yuguang; Wang, Jun; Zhu, Baoli

    2011-01-01

    Saccharopolyspora spinosa is a Gram-positive bacterium that produces spinosad, a well-known biodegradable insecticide that is used for agricultural pest control and has an excellent environmental and mammalian toxicological profile. Here, we present the first draft genome sequence of the type strain Saccharopolyspora spinosa NRRL 18395, which consists of 22 scaffolds. PMID:21478350

  8. Genome Sequence of Marichromatium gracile YL-28, a Purple Sulfur Bacterium with Bioremediation Potential

    Science.gov (United States)

    Zhang, Xiaobo; Zhao, Chungui; Hong, Xuan

    2016-01-01

    The draft genome sequence of Marichromatium gracile YL-28 contains 3,840,251 bp, with a G+C content of 68.84%. The annotated genome sequence provides the genetic basis for revealing its role as a purple sulfur bacterium in the harvesting of energy and the development of bioremediation applications. PMID:27151789

  9. Draft Genome Sequence of the Oyster Larval Probiotic Bacterium Vibrio sp. Strain OY15

    OpenAIRE

    Harold J. Schreier; Schott, Eric J.

    2014-01-01

    We report the draft genome sequence of Vibrio sp. strain OY15, a Gram-negative marine bacterium isolated from an oyster (Crassostrea virginica) digestive tract and shown to possess probiotic activity. The availability of this genome sequence will facilitate the study of the mechanisms of probiotic activity as well as virulence capacity.

  10. Genome Sequence of the Highly Efficient Arsenite-Oxidizing Bacterium Achromobacter arsenitoxydans SY8

    OpenAIRE

    Li, Xiangyang; Hu, Yao; Gong, Jing; Lin, Yanbing; Johnstone, Laurel; Rensing, Christopher; Wang, Gejiao

    2012-01-01

    We report the draft genome sequence of Achromobacter arsenitoxydans SY8, the first reported arsenite-oxidizing bacterium belonging to the genus Achromobacter and containing a genomic arsenic island, an intact type III secretion system, and multiple metal(loid) transporters. The genome may be helpful to explore the mechanisms intertwining metal(loid) resistance and pathogenicity.

  11. A commensal symbiotic interrelationship for the growth of Symbiobacterium toebii with its partner bacterium, Geobacillus toebii

    Directory of Open Access Journals (Sweden)

    Masui Ryoji

    2011-10-01

    Full Text Available Abstract Background Symbiobacterium toebii is a commensal symbiotic thermophile that absolutely requires its partner bacterium Geobacillus toebii for growth. Despite development of an independent cultivation method using cell-free extracts, the growth of Symbiobacterium remains unknown due to our poor understanding of the symbiotic relationship with its partner bacterium. Here, we investigated the interrelationship between these two bacteria for growth of S. toebii using different cell-free extracts of G. toebii. Results Symbiobacterium toebii growth-supporting factors were constitutively produced through almost all growth phases and under different oxygen tensions in G. toebii, indicating that the factor may be essential components for growth of G. toebii as well as S. toebii. The growing conditions of G. toebii under different oxygen tension dramatically affected to the initial growth of S. toebii and the retarded lag phase was completely shortened by reducing agent, L-cysteine indicating an evidence of commensal interaction of microaerobic and anaerobic bacterium S. toebii with a facultative aerobic bacterium G. toebii. In addition, the growth curve of S. toebii showed a dependency on the protein concentration of cell-free extracts of G. toebii, demonstrating that the G. toebii-derived factors have nutrient-like characters but not quorum-sensing characters. Conclusions Not only the consistent existence of the factor in G. toebii during all growth stages and under different oxygen tensions but also the concentration dependency of the factor for proliferation and optimal growth of S. toebii, suggests that an important biosynthetic machinery lacks in S. toebii during evolution. The commensal symbiotic bacterium, S. toebii uptakes certain ubiquitous and essential compound for its growth from environment or neighboring bacteria that shares the equivalent compounds. Moreover, G. toebii grown under aerobic condition shortened the lag phase of S

  12. Reengineering the optical absorption cross-section of photosynthetic reaction centers.

    Science.gov (United States)

    Dutta, Palash K; Lin, Su; Loskutov, Andrey; Levenberg, Symon; Jun, Daniel; Saer, Rafael; Beatty, J Thomas; Liu, Yan; Yan, Hao; Woodbury, Neal W

    2014-03-26

    Engineered cysteine residues near the primary electron donor (P) of the reaction center from the purple photosynthetic bacterium Rhodobacter sphaeroides were covalently conjugated to each of several dye molecules in order to explore the geometric design and spectral requirements for energy transfer between an artificial antenna system and the reaction center. An average of 2.5 fluorescent dye molecules were attached at specific locations near P. The enhanced absorbance cross-section afforded by conjugation of Alexa Fluor 660 dyes resulted in a 2.2-fold increase in the formation of reaction center charge-separated state upon intensity-limited excitation at 650 nm. The effective increase in absorbance cross-section resulting from the conjugation of two other dyes, Alexa Fluor 647 and Alexa Fluor 750, was also investigated. The key parameters that dictate the efficiency of dye-to-reaction center energy transfer and subsequent charge separation were examined using both steady-state and time-resolved fluorescence spectroscopy as well as transient absorbance spectroscopy techniques. An understanding of these parameters is an important first step toward developing more complex model light-harvesting systems integrated with reaction centers. PMID:24568563

  13. Delayed fluorescence from the photosynthetic reaction center measured by electronic gating of the photomultiplier.

    Science.gov (United States)

    Filus, Z; Laczkó, G; Wraight, C A; Maróti, P

    The decay of the delayed fluorescence (920 nm) of reaction centers from the photosynthetic bacterium Rhodobacter sphaeroides R26 in the P(+)Q(A)(-) charge-separated state (P and Q(A) are the primary donor and quinone, respectively) has been monitored in a wide (100 ns to 100 ms) time range. The photomultiplier (Hamamatsu R3310-03) was protected from the intense prompt fluorescence by application of gating potential pulses (-280 V) to the first, third, and fifth dynodes during the laser pulse. The gain of the photomultiplier dropped transiently by a factor of 1 x 10(6). The delayed fluorescence showed a smooth but nonexponential decay from 100 ns to 1 ms that was explained by the relaxation of the average free energy between P* and P(+)Q(A)(-) changing from -580 to -910 meV. This relaxation is due to the slow protein response to charge separation and can be described by a Kohlrausch relaxation function with time constant of 65 micros and a stretching exponent of alpha = 0.45. PMID:15137102

  14. DNA sequence and genetic analysis of the Rhodobacter capsulatus nifENX gene region: homology between NifX and NifB suggests involvement of NifX in processing of the iron-molybdenum cofactor.

    Science.gov (United States)

    Moreno-Vivian, C; Schmehl, M; Masepohl, B; Arnold, W; Klipp, W

    1989-04-01

    Rhodobacter capsulatus genes homologous to Klebsiella pneumoniae nifE, nifN and nifX were identified by DNA sequence analysis of a 4282 bp fragment of nif region A. Four open reading frames coding for a 51,188 (NifE), a 49,459 (NifN), a 17,459 (NifX) and a 17,472 (ORF4) dalton protein were detected. A typical NifA activated consensus promoter and two imperfect putative NifA binding sites were located in the 377 bp sequence in front of the nifE coding region. Comparison of the deduced amino acid sequences of R. capsulatus NifE and NifN revealed homologies not only to analogous gene products of other organisms but also to the alpha and beta subunits of the nitrogenase iron-molybdenum protein. In addition, the R. capsulatus nifE and nifN proteins shared considerable homology with each other. The map position of nifX downstream of nifEN corresponded in R. capsulatus and K. pneumoniae and the deduced molecular weights of both proteins were nearly identical. Nevertheless, R. capsulatus NifX was more related to the C-terminal end of NifY from K. pneumoniae than to NifX. A small domain of approximately 33 amino acid residues showing the highest degree of homology between NifY and NifX was also present in all nifB proteins analyzed so far. This homology indicated an evolutionary relationship of nifX, nifY and nifB and also suggested that NifX and NifY might play a role in maturation and/or stability of the iron-molybdenum cofactor. The open reading frame (ORF4) downstream of nifX in R. capsulatus is also present in Azotobacter vinelandii but not in K. pneumoniae.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:2747620

  15. Extraction and Separation of Carotenoids of Hydrogen-Producing Rhodobacter sp%产氢红杆菌类胡萝卜素含量和组分分析

    Institute of Scientific and Technical Information of China (English)

    张晓蓉; 赵春贵; 杨素萍

    2007-01-01

    类胡萝卜素在调节光合细菌产氢中具有重要作用.采用丙酮-甲醇有机溶剂法和KOH甲醇皂化法对产氢红杆菌(Rhodobacter sp.)R7菌株类胡萝卜素进行了提取纯化,并进一步采用硅胶G薄板层析法对提取的类胡萝卜素进行了分离,并结合光谱法对分离的类胡萝卜素进行了定性和定量分析.结果表明,丙酮-甲醇(7:2,VIV)提取3次可将色素提取完全;最佳提取时间为2h;超声波处理与否对提取率影响不明显;该工艺提取类胡萝卜素产率为2.81mg/g湿菌体.硅胶G薄板层析表明该菌株类胡萝卜素有4个主要组分:黄色、红色、浅红色和浅黄色,黄色和红色为主要成分,光谱学数据显示黄色组分为球形烯,红色组分为螺菌黄质系类胡萝卜素,表明产氢红杆菌类胡萝卜素代谢途径独特.

  16. Evaluation of Biosynthetic Pathways of 2Н- and 13С-Labeled Amino Acids by an Obligate Methylotrophic Bacterium Methylobacillus Flagellatum and a Facultative Methylotrophic Bacterium Brevibacterium Methylicum

    Directory of Open Access Journals (Sweden)

    Oleg Mosin

    2016-06-01

    Full Text Available By the method of electron impact mass-spectrometry was studied the pathways of biosynthesis of 2H, 13C-labeled amino acids of a facultative methylotrophic bacterium Brevibacterium methylicum and an obligate methylotrophic bacterium Methylobacillus flagellatum obtained on growth media containing as a source of stable isotopes [2H]methanol, [13C]methanol and 2H2O. For mass-spectrometric analysis the multicomponential mixtures of 2H- and 13C-labeled amino acids, derived from cultural media and protein hydrolysates after hydrolysis in 6 M 2HСl (3 % phenol and 2 M Ва(OH2 were modified into N-benzyloxycarbonyl-derivatives of amino acids as well as into methyl esters of N-5-(dimethylaminonaphthalene-1-sulfonyl chloride (dansyl derivatives of [2H, 13С]amino acids, which were preparative separated using a method of reverse-phase HCLP. Biosynthetically obtained 2H- and 13C-labeled amino acids represented the mixtures differing in quantities of isotopes incorporated into molecule. The levels of 2H and 13С enrichment of secreted amino acids and amino acid resigues of protein were found to vary from 20,0 atom % to L-leucine/isoleucine up to 97,5 atom % for L-alanine depending on concentration of 2H- and 13C-labelled substrates.

  17. Antagonistic Activities of Purple Non-sulfur Bacterial Extracts Against Antibiotic Resistant Vibrio sp.

    Directory of Open Access Journals (Sweden)

    Chandrasekaran, R.

    2011-01-01

    Full Text Available Solvent extracts of native purple non-sulfur bacterial (PNSB isolates from the effluents of brackish shrimp culture ponds, near Nagapattinam coast (South India were evaluated for antibacterial activity by the disc diffusion method. Best results were shown by the chloroform extracts against oxytetracycline resistant Vibrio harveyi and Vibrio fischerii. Among the purple non-sulfur bacterial isolates, Rhodobacter sphaeroides, showed maximum antagonistic activity. The findings suggest that the antagonistic extracts from Rba. sphaeroides could be used as an effective antibiotic in controlling Vibrio spp., in aquaculture systems.

  18. Molecular Regulation of Photosynthetic Carbon Dioxide Fixation in Nonsulfur Purple Bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Tabita, Fred Robert [The Ohio State Univ., Columbus, OH (United States)

    2015-12-01

    The overall objective of this project is to determine the mechanism by which a transcriptional activator protein affects CO2 fixation (cbb) gene expression in nonsulfur purple photosynthetic bacteria, with special emphasis to Rhodobacter sphaeroides and with comparison to Rhodopseudomonas palustris. These studies culminated in several publications which indicated that additional regulators interact with the master regulator CbbR in both R. sphaeroides and R. palustris. In addition, the interactive control of the carbon and nitrogen assimilatory pathways was studied and unique regulatory signals were discovered.

  19. Influence of pH and Oxidant Ozone to Amount of Bacterium Coliform at Hospital Waste

    International Nuclear Information System (INIS)

    Influence of pH and oxidant ozone to amount of bacterium coliform at hospital waste have been done. As sample is liquid waste Public Hospital of town (RSUD) Yogyakarta. Sample waste processed by 3 kinds of treatment, that is first certain ozone waste during, that is waste given by the third and just chalk of waste given by the certain and ozonization chalk during. From third the treatment, in the reality third treatment which can give the maximal result, that is waste given the chalk until pH waste 8.5 and ozonization during 40 minute give the following result : bacterium coliform from 810.000 MPN become 0 MPN ( cell / 100 mL). This result have fulfilled the conditions as according to decision of Governor of DIY no. 65 year 1999 for the waste of faction II, that is waste used for the irrigation of fishery and agriculture. (author)

  20. Crystal structure of ribosomal protein L1 from the bacterium Aquifex aeolicus

    Science.gov (United States)

    Nikonova, E. Yu.; Tishchenko, S. V.; Gabdulkhakov, A. G.; Shklyaeva, A. A.; Garber, M. B.; Nikonov, S. V.; Nevskaya, N. A.

    2011-07-01

    The crystal structure of ribosomal protein L1 from the bacterium Aquifex aeolicus was solved by the molecular-replacement method and refined to R cryst = 19.4% and R free = 25.1% at 2.1 Å protein consists of two domains linked together by a flexible hinge region. In the structure under consideration, the domains are in close proximity and adopt a closed conformation. Earlier, this conformation has been found in the structure of protein L1 from the bacterium Thermus thermophilus, whereas the structures of archaeal L1 proteins and the structures of all L1 proteins in the RNA-bound form have an open conformation. The fact that a closed conformation was found in the structures of two L1 proteins which crystallize in different space groups and belong to different bacteria suggests that this conformation is a characteristic feature of L1 bacterial proteins in the free form.

  1. Isolation and characterization of a new arsenic methylating bacterium from soil

    Energy Technology Data Exchange (ETDEWEB)

    Honschopp, S. [Bremen Univ. (Germany). Abt. Mikrobiologie; Brunken, N. [Bremen Univ. (Germany). Inst. fuer Anorganische und Physikalische Chemie; Nehrkorn, A. [Bremen Univ. (Germany). Abt. Mikrobiologie; Breunig, H.J. [Bremen Univ. (Germany). Inst. fuer Anorganische und Physikalische Chemie

    1996-12-31

    An arsenic resistant and arsenic methylating bacterium belonging to the Flavobacterium-Cytophaga group was isolated from soil with an arsenic content of 1.5 ppm. The growth of the bacterium is enhanced in the presence of As compounds in concentrations up to 200 ppm in the cultural media with a stronger effect of As(V) than of As(III) compounds. As a volatile product of the methylation of both NaH{sub 2}AsO{sub 3} and NaH{sub 2}AsO{sub 4} exclusively, Me{sub 3}As was formed and detected by mass spectrometry. Quantitative aspects of the methylation were studied with GC/MS. The intracellular accumulation of arsenic in the methylating strain was compared with two non methylating strains from the same soil. (orig.)

  2. Effect of Sulfate Reduced Bacterium on Corrosion Behavior of 10CrMoAl Steel

    Institute of Scientific and Technical Information of China (English)

    WANG Hua; LIANG Cheng-hao

    2007-01-01

    The effects of sulfate reduced bacterium (SRB) on the corrosion behavior of 10CrMoAl steel in seawater were studied by chemical immersion, potentiodynamic polarization, electrochemical impedance spectroscopy measurement, and scanning electron microscope techniques. The results show that the content of element sulfur in the corrosion product of 10CrMoAl steel in seawater with SRB is up to 9.23%, which is higher than that of the same in sterile seawater. X-ray diffraction demonstrates that the main corrosion product is FeS. SRB increases the corrosion rate by anodic depolarization of the metabolized sulfide product. SEM observation indicates that the corrosion product is not distributed continuously; in addition, bacilliform sulfate-reduced bacterium accumulates on the local surface of 10CrMoAl steel. Hence, SRB enhances sensitivity to the localized corrosion of 10CrMoAl steel in seawater.

  3. Isolation and biological characteristics of aerobic marine magnetotactic bacterium YSC-1

    Institute of Scientific and Technical Information of China (English)

    GAO Jun; PAN Hongmiao; YUE Haidong; SONG Tao; ZHAO Yong; CHEN Guanjun; Wu Longfei; XIAO Tian

    2006-01-01

    Magnetotactic bacteria have become a hot spot of research in microbiology attracting intensive interest of researchers in multiple disciplinary fields. However, the studies were limited in few fastidious bacteria. The objective of this study aims at isolating new marine magnetic bacteria and better comprehension of magnetotactic bacteria. In this study, an aerobic magnetotactic bacterium YSC-1 was isolated from sediments in the Yellow Sea Cold Water Mass (YSCWM). In TEM, magnetic cells have one or several circular magnetosomes in dimeter of 100nm, and consist of Fe and Co shown on energy dispersive X-ray spectrum. The biological and physiological characteristics of this bacterium were also described. The colour of YSC-1 colony is white in small rod. The gran stain is negative. Results showed that Strain YSC-1 differs from microaerophile magnetotactic bacteria MS-1 and WD-1 in biology.

  4. Microbiologically influenced corrosion of NiZn alloy coatings by Delftia acidovorans bacterium

    International Nuclear Information System (INIS)

    Highlights: ► Delftia acidovorans isolated from water treatment pipe system. ► Bacterium attached to the alloy coatings. ► Ecorr exhibited cathodic shift. ► Mass loss reached highest value after inoculation. ► Crevice corrosion was observed on the surface due to bacterium. - Abstract: In this study, Delftia acidovorans was isolated from water treatment pipe system and used to demonstrate microbiologically influenced corrosion of NiZn alloy coatings using electrochemical techniques. The surface morphologies and the corrosion products were determined using scanning electron microscopy (SEM) and energy dispersive X-ray spectra (EDS) analysis. Results showed that when the metabolic activity reached maximum level, corrosion activity of NiZn alloy coatings significantly increased in correlation with Ecorr, Icorr, QCM and Rct. Furthermore, crevice corrosion which has been seen due to bacterial adhesion confirms that D. acidovorans plays an important role in corrosion of NiZn alloy coating.

  5. N-Acyl Dehydrotyrosines, Tyrosinase Inhibitors from the Marine Bacterium Thalassotalea sp. PP2-459.

    Science.gov (United States)

    Deering, Robert W; Chen, Jianwei; Sun, Jiadong; Ma, Hang; Dubert, Javier; Barja, Juan L; Seeram, Navindra P; Wang, Hong; Rowley, David C

    2016-02-26

    Thalassotalic acids A-C and thalassotalamides A and B are new N-acyl dehydrotyrosine derivatives produced by Thalassotalea sp. PP2-459, a Gram-negative bacterium isolated from a marine bivalve aquaculture facility. The structures were elucidated via a combination of spectroscopic analyses emphasizing two-dimensional NMR and high-resolution mass spectrometric data. Thalassotalic acid A (1) displays in vitro inhibition of the enzyme tyrosinase with an IC50 value (130 μM) that compares favorably to the commercially used control compounds kojic acid (46 μM) and arbutin (100 μM). These are the first natural products reported from a bacterium belonging to the genus Thalassotalea. PMID:26824128

  6. Economic Game Theory to Model the Attenuation of Virulence of an Obligate Intracellular Bacterium.

    Science.gov (United States)

    Tago, Damian; Meyer, Damien F

    2016-01-01

    Diseases induced by obligate intracellular pathogens have a large burden on global human and animal health. Understanding the factors involved in the virulence and fitness of these pathogens contributes to the development of control strategies against these diseases. Based on biological observations, a theoretical model using game theory is proposed to explain how obligate intracellular bacteria interact with their host. The equilibrium in such a game shows that the virulence and fitness of the bacterium is host-triggered and by changing the host's defense system to which the bacterium is confronted, an evolutionary process leads to an attenuated strain. Although, the attenuation procedure has already been conducted in practice in order to develop an attenuated vaccine (e.g., with Ehrlichia ruminantium), there was a lack of understanding of the theoretical basis behind this process. Our work provides a model to better comprehend the existence of different phenotypes and some underlying evolutionary mechanisms for the virulence of obligate intracellular bacteria. PMID:27610355

  7. The bacterium Xenorhabdus nematophila inhibits phospholipases A2 from insect, prokaryote, and vertebrate sources

    Science.gov (United States)

    Park, Youngjin; Kim, Yonggyun; Stanley, David

    The bacterium, Xenorhabdus nematophila, is a virulent insect pathogen. Part of its pathogenicity is due to impairing cellular immunity by blocking biosynthesis of eicosanoids, the major recognized signal transduction system in insect cellular immunity. X. nematophila inhibits the first step in eicosanoid biosynthesis, phospholipase A2 (PLA2). Here we report that the bacterium inhibits PLA2 from two insect immune tissues, hemocytes and fat body, as well as PLA2s selected to represent a wide range of organisms, including prokaryotes, insects, reptiles, and mammals. Our finding on a bacterial inhibitor of PLA2 activity contributes new insight into the chemical ecology of microbe-host interactions, which usually involve actions rather than inhibitors of PLA2s.

  8. A Streamlined Strategy for Biohydrogen Production with Halanaerobium hydrogeniformans, an Alkaliphilic Bacterium

    Directory of Open Access Journals (Sweden)

    Matthew eBegemann

    2012-03-01

    Full Text Available Biofuels are anticipated to enable a shift from fossil fuels for renewable transportation and manufacturing fuels, with biohydrogen considered attractive since it could offer the largest reduction of global carbon budgets. Currently, lignocellulosic biohydrogen production remains inefficient with pretreatments that are heavily fossil fuel-dependent. However, bacteria using alkali-treated biomass could streamline biofuel production while reducing costs and fossil fuel needs. An alkaliphilic bacterium, Halanaerobium hydrogeniformans, is described that is capable of biohydrogen production at levels rivaling neutrophilic strains, but at pH 11 and hypersaline conditions. H. hydrogeniformans ferments a variety of 5- and 6- carbon sugars derived from hemicellulose and cellulose including cellobiose, and forms the end products hydrogen, acetate and formate. Further, it can also produce biohydrogen from switchgrass and straw pretreated at temperatures far lower than any previously reported and in solutions compatible with growth. Hence, this bacterium can potentially increase the efficiency and efficacy of biohydrogen production from renewable biomass resources.

  9. Chlorhexidine resistance in a Gram-negative bacterium isolated from an aquatic source

    OpenAIRE

    Sekavec, Jeffrey G.; Moore, William T.; Gillock, Eric T.

    2013-01-01

    Aeromonas hydrophila is a Gram-negative bacterium of considerable importance in both clinical, especially nosocomial infections, and zoonotic respects, both aquatic and terrestrial infections. In addition to the ability to thrive in a wide range of conditions, A. hydrophila is resistant to numerous antibiotics and antimicrobials. In conjunction with Kansas State University and the Kansas Water Office, water samples from various locations within Kansas were screened for organisms resistant to ...

  10. Sensitivity of ribosomes of the hyperthermophilic bacterium Aquifex pyrophilus to aminoglycoside antibiotics.

    OpenAIRE

    Bocchetta, M; Huber, R.; Cammarano, P

    1996-01-01

    A poly(U)-programmed cell-free system from the hyperthermophilic bacterium Aquifex pyrophilus has been developed, and the susceptibility of Aquifex ribosomes to the miscoding-inducing and inhibitory actions of all known classes of aminoglycoside antibiotics has been assayed at temperatures (75 to 80 degrees C) close to the physiological optimum for cell growth. Unlike Thermotoga maritima ribosomes, which are systematically refractory to all known classes of aminoglycoside compounds (P. Londei...

  11. Calcium-ion mediated assembly and function of glycosylated flagellar sheath of marine magnetotactic bacterium

    OpenAIRE

    Lefèvre, Christopher T; Santini, Claire-Lise; Bernadac, Alain; Zhang, Wei-Jia; Ying LI; Wu, Long-Fei

    2010-01-01

    Abstract Flagella of some pathogens or marine microbes are sheathed by an apparent extension of the outer cell membrane. Although flagellar sheath has been reported for almost 60 years, little is known about its function and the mechanism of its assembly. Recently, we have observed a novel type of sheath that encloses a flagellar bundle, instead of a single flagellum, in a marine magnetotactic bacterium MO-1. Here, we reported isolation and characterization of the sheath which can ...

  12. Campylobacter pylori, the spiral bacterium associated with human gastritis, is not a true Campylobacter sp.

    OpenAIRE

    Romaniuk, P J; Zoltowska, B; Trust, T J; Lane, D J; Olsen, G.J.; Pace, N R; Stahl, D A

    1987-01-01

    Comparison of partial 16S rRNA sequences from representative Campylobacter species indicates that the Campylobacter species form a previously undescribed basic eubacterial group, which is related to the other major groups only by very deep branching. This analysis was extended to include the spiral bacterium associated with human gastritis, Campylobacter pylori (formerly Campylobacter pyloridis). The distance between C. pylori and the other Campylobacter species is sufficient to exclude the p...

  13. The Complete Genome Sequence of the Plant Growth-Promoting Bacterium Pseudomonas sp. UW4

    OpenAIRE

    Duan, Jin; Jiang, Wei; Cheng, Zhenyu; Heikkila, John J.; Bernard R. Glick

    2013-01-01

    The plant growth-promoting bacterium (PGPB) Pseudomonas sp. UW4, previously isolated from the rhizosphere of common reeds growing on the campus of the University of Waterloo, promotes plant growth in the presence of different environmental stresses, such as flooding, high concentrations of salt, cold, heavy metals, drought and phytopathogens. In this work, the genome sequence of UW4 was obtained by pyrosequencing and the gaps between the contigs were closed by directed PCR. The P. sp. UW4 gen...

  14. Physiological Adaptation of the Bacterium Lactococcus lactis in Response to the Production of Human CFTR*

    OpenAIRE

    A. Steen; Wiederhold, E.; T Gandhi; Breitling, R.; D. J. Slotboom

    2010-01-01

    Biochemical and biophysical characterization of CFTR (the cystic fibrosis transmembrane conductance regulator) is thwarted by difficulties to obtain sufficient quantities of correctly folded and functional protein. Here we have produced human CFTR in the prokaryotic expression host Lactococcus lactis. The full-length protein was detected in the membrane of the bacterium, but the yields were too low (< 0.1% of membrane proteins) for in vitro functional and structural characterization, and indu...

  15. Bioinformatic Prediction of Gene Functions Regulated by Quorum Sensing in the Bioleaching Bacterium Acidithiobacillus ferrooxidans

    OpenAIRE

    Alvaro Banderas; Nicolas Guiliani

    2013-01-01

    The biomining bacterium Acidithiobacillus ferrooxidans oxidizes sulfide ores and promotes metal solubilization. The efficiency of this process depends on the attachment of cells to surfaces, a process regulated by quorum sensing (QS) cell-to-cell signalling in many Gram-negative bacteria. At. ferrooxidans has a functional QS system and the presence of AHLs enhances its attachment to pyrite. However, direct targets of the QS transcription factor AfeR remain unknown. In this study, a bioinforma...

  16. Functional Genomic Analysis of Three Nitrogenase Isozymes in the Photosynthetic Bacterium Rhodopseudomonas palustris‡

    OpenAIRE

    Oda, Yasuhiro; Samanta, Sudip K.; Rey, Federico E.; Wu, Liyou; Liu, Xiudan; Yan, Tingfen; Zhou, Jizhong; Harwood, Caroline S.

    2005-01-01

    The photosynthetic bacterium Rhodopseudomonas palustris is one of just a few prokaryotes described so far that has vnf and anf genes for alternative vanadium cofactor (V) and iron cofactor (Fe) nitrogenases in addition to nif genes for a molybdenum cofactor (Mo) nitrogenase. Transcriptome data indicated that the 32 genes in the nif gene cluster, but not the anf or vnf genes, were induced in wild-type and Mo nitrogenase-expressing strains grown under nitrogen-fixing conditions in Mo-containing...

  17. Identifying the assembly pathway of cyanophage inside the marine bacterium using electron cryo-tomography

    Directory of Open Access Journals (Sweden)

    Wei Dai

    2014-01-01

    Full Text Available Advances in electron cryo-tomography open up a new avenue to visualize the 3-D internal structure of a single bacterium before and after its infection by bacteriophages in its native environment, without using chemical fixatives, fluorescent dyes or negative stains. Such direct observation reveals the presence of assembly intermediates of the bacteriophage and thus allows us to map out the maturation pathway of the bacteriophage inside its host.

  18. Two New Cholic Acid Derivatives from the Marine Ascidian-Associated Bacterium Hasllibacter halocynthiae

    Directory of Open Access Journals (Sweden)

    Sung Hun Kim

    2012-10-01

    Full Text Available The investigation of secondary metabolites in liquid cultures of a recently discovered marine bacterium, Hasllibacter halocynthiae strain KME 002T, led to the isolation of two new cholic acid derivatives. The structures of these compounds were determined to be 3,3,12-trihydroxy-7-ketocholanic acid (1 and 3,3,12-trihydroxy-7-deoxycholanic acid (2 through HRFABMS and NMR data analyses.

  19. Draft Genome Sequence of Uncultured SAR324 Bacterium lautmerah10, Binned from a Red Sea Metagenome

    KAUST Repository

    Haroon, Mohamed F.

    2016-02-11

    A draft genome of SAR324 bacterium lautmerah10 was assembled from a metagenome of a surface water sample from the Red Sea, Saudi Arabia. The genome is more complete and has a higher G+C content than that of previously sequenced SAR324 representatives. Its genomic information shows a versatile metabolism that confers an advantage to SAR324, which is reflected in its distribution throughout different depths of the marine water column.

  20. Draft Genome Sequence of the Antitrypanosomally Active Sponge-Associated Bacterium Actinokineospora sp. Strain EG49

    KAUST Repository

    Harjes, Janno

    2014-03-06

    The marine sponge-associated bacterium Actinokineospora sp. strain EG49 produces the antitrypanosomal angucycline-like compound actinosporin A. The draft genome of Actinokineospora sp. EG49 has a size of 7.5 megabases and a GC content of 72.8% and contains 6,629 protein-coding sequences (CDS). antiSMASH predicted 996 genes residing in 36 secondary metabolite gene clusters.

  1. Encapsulated in silica: genome, proteome and physiology of the thermophilic bacterium Anoxybacillus flavithermus WK1

    OpenAIRE

    Saw, Jimmy H; Mountain, Bruce W; Feng, Lu; Omelchenko, Marina V; Hou, Shaobin; Saito, Jennifer A.; Stott, Matthew B.; Li, Dan; Zhao, Guang; Wu, Junli; Galperin, Michael Y.; Koonin, Eugene V.; Makarova, Kira S.; Wolf, Yuri I; Rigden, Daniel J.

    2008-01-01

    Background Gram-positive bacteria of the genus Anoxybacillus have been found in diverse thermophilic habitats, such as geothermal hot springs and manure, and in processed foods such as gelatin and milk powder. Anoxybacillus flavithermus is a facultatively anaerobic bacterium found in super-saturated silica solutions and in opaline silica sinter. The ability of A. flavithermus to grow in super-saturated silica solutions makes it an ideal subject to study the processes of sinter formation, whic...

  2. The Genome Sequence of the Obligately Chemolithoautotrophic, Facultatively Anaerobic Bacterium Thiobacillus denitrificans

    OpenAIRE

    Beller, Harry R.; Chain, Patrick S. G.; Letain, Tracy E.; Chakicherla, Anu; Larimer, Frank W.; Richardson, Paul M.; Coleman, Matthew A.; Wood, Ann P.; Kelly, Donovan P.

    2006-01-01

    The complete genome sequence of Thiobacillus denitrificans ATCC 25259 is the first to become available for an obligately chemolithoautotrophic, sulfur-compound-oxidizing, β-proteobacterium. Analysis of the 2,909,809-bp genome will facilitate our molecular and biochemical understanding of the unusual metabolic repertoire of this bacterium, including its ability to couple denitrification to sulfur-compound oxidation, to catalyze anaerobic, nitrate-dependent oxidation of Fe(II) and U(IV), and to...

  3. Photobacterium damselae subsp. damselae, a bacterium pathogenic for marine animals and humans

    OpenAIRE

    Amable J. Rivas; Lemos, Manuel L.; Osorio, Carlos R.

    2013-01-01

    Photobacterium damselae subsp. damselae (formerly Vibrio damsela) is a pathogen of a variety of marine animals including fish, crustaceans, molluscs, and cetaceans. In humans, it can cause opportunistic infections that may evolve into necrotizing fasciitis with fatal outcome. Although the genetic basis of virulence in this bacterium is not completely elucidated, recent findings demonstrate that the phospholipase-D Dly (damselysin) and the pore-forming toxins HlyApl and HlyAch play a main role...

  4. A Highly Stable d-Amino Acid Oxidase of the Thermophilic Bacterium Rubrobacter xylanophilus

    OpenAIRE

    Takahashi, Shouji; Furukawara, Makoto; Omae, Keishi; Tadokoro, Namiho; Saito, Yayoi; Abe, Katsumasa; Kera, Yoshio

    2014-01-01

    d-Amino acid oxidase (DAO) is a biotechnologically attractive enzyme that can be used in a variety of applications, but its utility is limited by its relatively poor stability. A search of a bacterial genome database revealed a gene encoding a protein homologous to DAO in the thermophilic bacterium Rubrobacter xylanophilus (RxDAO). The recombinant protein expressed in Escherichia coli was a monomeric protein containing noncovalently bound flavin adenine dinucleotide as a cofactor. This protei...

  5. Sexual transmission of a plant pathogenic bacterium, Candidatus Liberibacter asiaticus, between conspecific insect vectors during mating.

    Directory of Open Access Journals (Sweden)

    Rajinder S Mann

    Full Text Available Candidatus Liberibacter asiaticus is a fastidious, phloem-inhabiting, gram-negative bacterium transmitted by Asian citrus psyllid, Diaphorina citri Kuwayama (Hemiptera: Psyllidae. The bacterium is the presumed causal agent of huanglongbing (HLB, one of the most destructive and economically important diseases of citrus. We investigated whether Las is transmitted between infected and uninfected D. citri adults during courtship. Our results indicate that Las was sexually transmitted from Las-infected male D. citri to uninfected females at a low rate (<4% during mating. Sexual transmission was not observed following mating of infected females and uninfected males or among adult pairs of the same sex. Las was detected in genitalia of both sexes and also in eggs of infected females. A latent period of 7 days or more was required to detect the bacterium in recipient females. Rod shaped as well as spherical structures resembling Las were observed in ovaries of Las-infected females with transmission electron microscopy, but were absent in ovaries from uninfected D. citri females. The size of the rod shaped structures varied from 0.39 to 0.67 µm in length and 0.19 to 0.39 µm in width. The spherical structures measured from 0.61 to 0.80 µm in diameter. This investigation provides convincing evidence that a plant pathogenic bacterium is sexually transmitted from male to female insects during courtship and established evidence that bacteria persist in reproductive organs. Moreover, these findings provide an alternative sexually horizontal mechanism for the spread of Las within populations of D. citri, even in the absence of infected host trees.

  6. Expression of Heterogenous Arsenic Resistance Genes in the Obligately Autotrophic Biomining Bacterium Thiobacillus ferrooxidans.

    Science.gov (United States)

    Peng, J B; Yan, W M; Bao, X Z

    1994-07-01

    Two arsenic-resistant plasmids were constructed and introduced into Thiobacillus ferrooxidans strains by conjugation. The plasmids with the replicon of wide-host-range plasmid RSF1010 were stable in T. ferrooxidans. The arsenic resistance genes originating from the heterotroph were expressed in this obligately autotrophic bacterium, but the promoter derived from T. ferrooxidans showed no special function in its original host. PMID:16349341

  7. Physiological features of Halomonas lionensis sp. nov., a novel bacterium isolated from a Mediterranean Sea sediment

    OpenAIRE

    Gaboyer, Frederic; Vandenabeele-Trambouze, Odile; Cao, Junwei; Ciobanu, Maria-Cristina; Jebbar, Mohamed; Le Romancer, Marc; Alain, Karine

    2014-01-01

    A novel halophilic bacterium, strain RHS90T, was isolated from marine sediments from the Gulf of Lions, in the Mediterranean Sea. Its metabolic and physiological characteristics were examined under various cultural conditions, including exposure to stressful ones (oligotrophy, high pressure and high concentrations of metals). Based on phylogenetic analysis of the 16S rRNA gene, the strain was found to belong to the genus Halomonas in the class Gammaproteobacteria. Its closest relatives are H....

  8. The Potential Biotechnological Applications of the Exopolysaccharide Produced by the Halophilic Bacterium Halomonas almeriensis

    OpenAIRE

    Victoria Béjar; Emilia Quesada; Juan Antonio Mata; Inmaculada Llamas; Hakima Amjres

    2012-01-01

    We have studied the extracellular polysaccharide (EPS) produced by the type strain, M8T, of the halophilic bacterium Halomonas almeriensis, to ascertain whether it might have any biotechnological applications. All the cultural parameters tested influenced both bacterial growth and polysaccharide production. EPS production was mainly growth-associated and under optimum environmental and nutritional conditions M8T excreted about...

  9. Biohydrogen Production by the Thermophilic Bacterium Caldicellulosiruptor saccharolyticus: Current Status and Perspectives

    OpenAIRE

    Kengen, Servé W. M.; Verhaart, Marcel R. A.; John van der Oost; Abraham A. M. Bielen

    2013-01-01

    Caldicellulosiruptor saccharolyticus is one of the most thermophilic cellulolytic organisms known to date. This Gram-positive anaerobic bacterium ferments a broad spectrum of mono-, di- and polysaccharides to mainly acetate, CO2 and hydrogen. With hydrogen yields approaching the theoretical limit for dark fermentation of 4 mol hydrogen per mol hexose, this organism has proven itself to be an excellent candidate for biological hydrogen production. This review provides an overview of the resear...

  10. Copper-induced production of copper-binding supernatant proteins by the marine bacterium Vibrio alginolyticus.

    OpenAIRE

    Harwood-Sears, V; Gordon, A S

    1990-01-01

    Growth of the marine bacterium Vibrio alginolyticus is temporarily inhibited by micromolar levels of copper. During the copper-induced lag phase, supernatant compounds which complex and detoxify copper are produced. In this study two copper-inducible supernatant proteins having molecular masses of ca. 21 and 19 kilodaltons (CuBP1 and CuBP2) were identified; these proteins were, respectively, 25 and 46 times amplified in supernatants of copper-challenged cultures compared with controls. Experi...

  11. Dynamic detection of a single bacterium: nonlinear rotation rate shifts of driven magnetic microsphere stages

    OpenAIRE

    McNaughton, Brandon H.; Agayan, Rodney R.; Kopelman, Raoul

    2006-01-01

    We report on a new technique which was used to detect single Escherichia coli that is based on the changes in the nonlinear rotation of a magnetic microsphere driven by an external magnetic field. The presence of one Escherichia Coli bacterium on the surface of a 2.0 micron magnetic microsphere caused an easily measurable change in the drag of the system and, therefore, in the nonlinear rotation rate. The straight-forward measurement uses standard microscopy techniques and the observed averag...

  12. Five new amicoumacins isolated from a marine-derived Bacterium bacillus subtilis

    KAUST Repository

    Li, Yongxin

    2012-02-03

    Four novel amicoumacins, namely lipoamicoumacins A-D (1-4), and one new bacilosarcin analog (5) were isolated from culture broth of a marine-derived bacterium Bacillus subtilis, together with six known amicoumacins. Their structures were elucidated on the basis of extensive spectroscopic (2D NNR, IR, CD and MS) analysis and in comparison with data in literature. 2012 by the authors; licensee MDPI.

  13. Novel Poly[(R)-3-Hydroxybutyratel-producing bacterium isolated from a bolivian hypersaline lake

    OpenAIRE

    Rodríguez Contreras, Alejandra María; Koller, Martin; de Sousa Dias, Miranda; Calafell Monfort, Margarita; Braunegg, Gerhart; Marqués Calvo, M. Soledad

    2013-01-01

    Poly [ ( R )-3-hydroxybutyrate ] (PHB) constitutes a biopolymer synthesized from renew- able resources by various microorganisms. This work focuses on finding a new PHB-produc- ing bacterium capable of growing in conventional media used for industrial biopolymer production, its taxonomical identification, and characterization of its biopolymer. Thus, a bacterial isolation process was carried out from environmental samples of water and mud. Among the isolates, ...

  14. Purification and Characterization of a Feruloyl Esterase from the Intestinal Bacterium Lactobacillus acidophilus

    OpenAIRE

    Wang, Xiaokun; Geng, Xin; Egashira, Yukari; Sanada, Hiroo

    2004-01-01

    Dietary ferulic acid (FA), a significant antioxidant substance, is currently the subject of extensive research. FA in cereals exists mainly as feruloylated sugar ester. To release FA from food matrices, it is necessary to cleave ester cross-linking by feruloyl esterase (FAE) (hydroxycinnamoyl esterase; EC 3.1.1.73). In the present study, the FAE from a human typical intestinal bacterium, Lactobacillus acidophilus, was isolated, purified, and characterized for the first time. The enzyme was pu...

  15. Cadmium resistance and uptake by bacterium, Salmonella enterica 43C, isolated from industrial effluent.

    Science.gov (United States)

    Khan, Zaman; Rehman, Abdul; Hussain, Syed Z; Nisar, Muhammad A; Zulfiqar, Soumble; Shakoori, Abdul R

    2016-12-01

    Cadmium resistant bacterium, isolated from industrial wastewater, was characterized as Salmonella enterica 43C on the basis of biochemical and 16S rRNA ribotyping. It is first ever reported S. enterica 43C bared extreme resistance against heavy metal consortia in order of Pb(2+)>Cd(2+)>As(3+)>Zn(2+)>Cr(6+)>Cu(2+)>Hg(2+). Cd(2+) stress altered growth pattern of the bacterium in time dependent manner. It could remove nearly 57 % Cd(2+) from the medium over a period of 8 days. Kinetic and thermodynamic studies based on various adsorption isotherm models (Langmuir and Freundlich) depicted the Cd(2+) biosorption as spontaneous, feasible and endothermic in nature. Interestingly, the bacterium followed pseudo first order kinetics, making it a good biosorbent for heavy metal ions. The S. enterica 43C Cd(2+) processivity was significantly influenced by temperature, pH, initial Cd(2+) concentration, biomass dosage and co-metal ions. FTIR analysis of the bacterium revealed the active participation of amide and carbonyl moieties in Cd(2+) adsorption confirmed by EDX analysis. Electron micrographs beckoned further surface adsorption and increased bacterial size due to intracellular Cd(2+) accumulation. An overwhelming increase in glutathione and other non-protein thiols levels played a significant role in thriving oxidative stress generated by metal cations. Presence of metallothionein clearly depicted the role of such proteins in bacterial metal resistance mechanism. The present study results clearly declare S. enterica 43C a suitable candidate for green chemistry to bioremediate environmental Cd(2+). PMID:27491862

  16. Studies of the Extracellular Glycocalyx of the Anaerobic Cellulolytic Bacterium Ruminococcus albus 7▿

    OpenAIRE

    Weimer, Paul J.; Price, Neil P. J.; Kroukamp, Otini; Joubert, Lydia-Marie; Wolfaardt, Gideon M.; Van Zyl, Willem H

    2006-01-01

    Anaerobic cellulolytic bacteria are thought to adhere to cellulose via several mechanisms, including production of a glycocalyx containing extracellular polymeric substances (EPS). As the compositions and structures of these glycocalyces have not been elucidated, variable-pressure scanning electron microscopy (VP-SEM) and chemical analysis were used to characterize the glycocalyx of the ruminal bacterium Ruminococcus albus strain 7. VP-SEM revealed that growth of this strain was accompanied b...

  17. Purification and Characterization of EDTA Monooxygenase from the EDTA-Degrading Bacterium BNC1

    OpenAIRE

    Payne, Jason W.; Bolton, Harvey; Campbell, James A.; XUN, Luying

    1998-01-01

    The synthetic chelating agent EDTA can mobilize radionuclides and heavy metals in the environment. Biodegradation of EDTA should reduce this mobilization. Although several bacteria have been reported to mineralize EDTA, little is known about the biochemistry of EDTA degradation. Understanding the biochemistry will facilitate the removal of EDTA from the environment. EDTA-degrading activities were detected in cell extracts of bacterium BNC1 when flavin mononucleotide (FMN), NADH, and O2 were p...

  18. Regulation of dissimilatory sulfur oxidation in the purple sulfur bacterium Allochromatium vinosum

    OpenAIRE

    Frauke eGrimm; Bettina eFranz; Christiane eDahl

    2011-01-01

    In the purple sulfur bacterium Allochromatium vinosum, thiosulfate oxidation is strictly dependent on the presence of three periplasmic Sox proteins encoded by the soxBXAK and soxYZ genes. It is also well documented that proteins encoded in the dissimilatory sulfite reductase (dsr) operon, dsrABEFHCMKLJOPNRS, are essential for the oxidation of sulfur that is stored intracellularly as an obligatory intermediate during the oxidation of thiosulfate and sulfide. Until recently, detailed knowledge...

  19. Comprehensive insights into the response of Alexandrium tamarense to algicidal component secreted by a marine bacterium

    OpenAIRE

    Lei, Xueqian; Li, Dong; Li, Yi; Chen, Zhangran; Chen, Yao; Cai, Guanjing; Yang, Xujun; Zheng, Wei; Zheng, Tianling

    2015-01-01

    Harmful algal blooms occur throughout the world, threatening human health, and destroying marine ecosystems. Alexandrium tamarense is a globally distributed and notoriously toxic dinoflagellate that is responsible for most paralytic shellfish poisoning incidents. The culture supernatant of the marine algicidal bacterium BS02 showed potent algicidal effects on A. tamarense ATGD98-006. In this study, we investigated the effects of this supernatant on A. tamarense at physiological and biochemica...

  20. Isolation and characterization of an anaerobic ruminal bacterium capable of degrading hydrolyzable tannins.

    OpenAIRE

    Nelson, K E; A. N. Pell; Schofield, P; Zinder, S

    1995-01-01

    An anaerobic diplococcoid bacterium able to degrade hydrolyzable tannins was isolated from the ruminal fluid of a goat fed desmodium (Desmodium ovalifolium), a tropical legume which contains levels as high as 17% condensed tannins. This strain grew under anaerobic conditions in the presence of up to 30 g of tannic acid per liter and tolerated a range of phenolic monomers, including gallic, ferulic, and p-coumaric acids. The predominant fermentation product from tannic acid breakdown was pyrog...

  1. Metabolism of 4-chloro-2-nitrophenol in a Gram-positive bacterium, Exiguobacterium sp. PMA

    OpenAIRE

    Arora Pankaj; Sharma Ashutosh; Mehta Richa; Shenoy Belle; Srivastava Alok; Singh Vijay

    2012-01-01

    Abstract Background Chloronitrophenols (CNPs) are widely used in the synthesis of dyes, drugs and pesticides, and constitute a major group of environmental pollutants. 4-Chloro-2-nitrophenol (4C2NP) is an isomer of CNPs that has been detected in various industrial effluents. A number of physicochemical methods have been used for treatment of wastewater containing 4C2NP. These methods are not as effective as microbial degradation, however. Results A 4C2NP-degrading bacterium, Exiguobacterium s...

  2. Coregulation of beta-galactoside uptake and hydrolysis by the hyperthermophilic bacterium Thermotoga neapolitana

    OpenAIRE

    Galperin, MY; Noll, KM; Romano, AH

    1997-01-01

    Regulation of the beta-galactoside transport system in response to growth substrates in the extremely thermophilic anaerobic bacterium Thermotoga neapolitana was studied with the nonmetabolizable analog methyl-beta-D-thiogalactopyranoside (TMG) as the transport substrate. T. neapolitana cells grown on galactose or lactose accumulated TMG against a concentration gradient in an intracellular free sugar pool that was exchangeable with external galactose or lactose and showed induced levels of be...

  3. Desulfotomaculum thermobenzoicum subsp. thermosyntrophicum subsp. nov., a thermophilic, syntrophic, propionate-oxidizing, spore-forming bacterium

    OpenAIRE

    Plugge, C. M.; Balk, M.; Stams, A.J.M.

    2002-01-01

    From granular sludge from a laboratory-scale upflow anaerobic sludge bed reactor operated at 55 degrees C with a mixture of volatile fatty acids as feed, a novel anaerobic, moderately thermophilic, syntrophic, spore-forming bacterium, strain TPO, was enriched on propionate in co-culture with Methanobacterium thermoautotrophicum Z245. The axenic culture was obtained by using pyruvate as the sole source of carbon and energy. The cells were straight rods with pointed ends and became lens-shaped ...

  4. Direct bioconversion of brown algae into ethanol by thermophilic bacterium Defluviitalea phaphyphila

    OpenAIRE

    Ji, Shi-Qi; Wang, Bing; Lu, Ming; Li, Fu-Li

    2016-01-01

    Background Brown algae are promising feedstocks for biofuel production with inherent advantages of no structural lignin, high growth rate, and no competition for land and fresh water. However, it is difficult for one microorganism to convert all components of brown algae with different oxidoreduction potentials to ethanol. Defluviitalea phaphyphila Alg1 is the first characterized thermophilic bacterium capable of direct utilization of brown algae. Results Defluviitalea phaphyphila Alg1 can si...

  5. Fourier transform infrared spectroscopic study of intact cells of the nitrogen-fixing bacterium Azospirillum brasilense

    Science.gov (United States)

    Kamnev, A. A.; Ristić, M.; Antonyuk, L. P.; Chernyshev, A. V.; Ignatov, V. V.

    1997-06-01

    The data of Fourier transform infrared (FTIR) spectroscopic measurements performed on intact cells of the soil nitrogen-fixing bacterium Azospirillum brasilense grown in a standard medium and under the conditions of an increased metal uptake are compared and discussed. The structural FTIR information obtained is considered together with atomic absorption spectrometry (AAS) data on the content of metal cations in the bacterial cells. Some methodological aspects concerning preparation of bacterial cell samples for FTIR measurements are also discussed.

  6. Genome Sequence of the Endophytic Bacterium Bacillus thuringiensis Strain KB1, a Potential Biocontrol Agent against Phytopathogens

    OpenAIRE

    Jeong, Haeyoung; Jo, Sung Hee; Hong, Chi Eun; Park, Jeong Mee

    2016-01-01

    Bacillus thuringiensis is the most widely known microbial pesticide used in agricultural applications. Herein, we report a draft genome sequence of the endophytic bacterium Bacillus thuringiensis strain KB1, which exhibits antagonism against phytopathogens.

  7. Genome Sequence of the Endophytic Bacterium Bacillus thuringiensis Strain KB1, a Potential Biocontrol Agent against Phytopathogens.

    Science.gov (United States)

    Jeong, Haeyoung; Jo, Sung Hee; Hong, Chi Eun; Park, Jeong Mee

    2016-01-01

    ITALIC! Bacillus thuringiensisis the most widely known microbial pesticide used in agricultural applications. Herein, we report a draft genome sequence of the endophytic bacterium ITALIC! Bacillus thuringiensisstrain KB1, which exhibits antagonism against phytopathogens. PMID:27103716

  8. Draft Genome Sequence of Paenibacillus polymyxa EBL06, a Plant Growth-Promoting Bacterium Isolated from Wheat Phyllosphere

    OpenAIRE

    Liang, Shengxian; Jin, Decai; Wang, Xinxin; Fan, Haiyan; Bai, Zhihui

    2015-01-01

    Paenibacillus polymyxa strain EBL06 is a plant growth-promoting bacterium with high antifungal activity. The estimated genome of this strain is 5.68 Mb in size and harbors 4,792 coding sequences (CDSs).

  9. Phosphate enhances levan production in the endophytic bacterium Gluconacetobacter diazotrophicus Pal5.

    Science.gov (United States)

    Idogawa, Nao; Amamoto, Ryuta; Murata, Kousaku; Kawai, Shigeyuki

    2014-01-01

    Gluconacetobacter diazotrophicus is a gram-negative and endophytic nitrogen-fixing bacterium that has several beneficial effects in host plants; thus, utilization of this bacterium as a biofertilizer in agriculture may be possible. G. diazotrophicus synthesizes levan, a D-fructofuranosyl polymer with β-(2→6) linkages, as an exopolysaccharide and the synthesized levan improves the stress tolerance of the bacterium. In this study, we found that phosphate enhances levan production by G. diazotrophicus Pal5, a wild type strain that showed a stronger mucous phenotype on solid medium containing 28 mM phosphate than on solid medium containing 7 mM phosphate. A G. diazotrophicus Pal5 levansucrase disruptant showed only a weak mucous phenotype regardless of the phosphate concentration, indicating that the mucous phenotype observed on 28 mM phosphate medium was caused by levan. To our knowledge, this is the first report of the effect of a high concentration of phosphate on exopolysaccharide production. PMID:24717418

  10. Studies on culture condition of new marine bacterium Zooshikella sp. SY01

    Institute of Scientific and Technical Information of China (English)

    Wenjian LAN; Linfeng MO; Chuanghua CAI; Yipin ZHOU; Junhua YAO; Houjin LI

    2008-01-01

    New marine bacterium Zooshikella sp. SY01, producer of prodigiosin, was isolated from the seawaters of Sanya Bay. The culture conditions of this bacterium were investigated. Zooshikella sp. SY01 was cultured in 2216E media which contained tryptophan, histidine, lac-tonic acid, camphor, limonene, casein, diphenyl guani-dine, coumarin and 1,3-dinitrobenzene, respectively. After 5 days cultivation, the extracts of different culture broths were detected by direct infusion mass spectroscopy using positive ESI mode. As the results, tryptophan, his-tidine and casein didn't show any observable influences on the biosynthesis of prodigiosin. Lactonic acid, camphor, limonene, diphenyl guanidine, coumarin could inhibit the bacterium growth and prodigiosin biosynthesis to a cer-tain extent, slower the culture broth to turn red. However, 1, 3-dinitrobenzene inhibited the bacteria to produce pro-digiosin completely. MS data suggested that various metabolites with chemodiversity were produced in differ-ent culture media. In particular, a series of high-molecu-lar-weight compounds with high relative abundances were observed in the medium containing limonene. To further optimize the culture condition, more new prodigiosin ana-logues and lead compounds can be obtained and the goal of "one strain-many compounds" can be achieved.

  11. Programmed cell death in Laminaria japonica (Phaeophyta) tissues infected with alginic acid decomposing bacterium

    Institute of Scientific and Technical Information of China (English)

    WANG Gaoge; LIN Wei; ZHANG Lijing; YAN Xiaojun; DUAN Delin

    2004-01-01

    TdT-mediated dUTP-biotin nick end labeling (TUNEL) is a sensitive and valid method for detecting DNA cleavage in programmed cell death (PCD). Using this method, DNA cleavage was observed in Laminaria japonica sporophytic tissues, which were infected with alginic acid decomposing bacterium. It was found that DNA cleavage occurred 5 min after the infection, the fragments with 3′-OH groups of cleaved nuclear DNA increased with time of infection and spread from the infection site. Although no typical DNA ladder (200 bp/180 bp) was detected by routine agarose gel electrophoresis, the cleavage of nuclear DNA fragments of 97~48.5 kb could be detected by pulsed field gel electrophoresis (PFGE). By using CaspGLOWTM fluorescein active caspase-3 staining method, caspase-3 activity has been detected in response to the infection of alginic acid decomposing bacterium. Our results are similar to the observations in hypersensitive response (HR) of higher plant, suggesting that the rapid cell death of L. Japonica infected by alginic acid decomposing bacterium might be involved in PCD, and indicating that the occurrence of PCD is an active defense process against the pathogen's infection.

  12. Antagonism and Molecular Identification of an Antibiotic Bacterium BS04 Against Phytopathogenic Fungi and Bacteria

    Institute of Scientific and Technical Information of China (English)

    Xie Jing(谢晶); Ge Shaorong; Tao Yong; Gao Ping; Liu Kun; Liu Shigui

    2004-01-01

    Through a modified agar well diffusion assay, antagonism of bacterium BS04 is tested. The data show that BS04 has antibiotic activity against phytopathogenic fungi and bacteria, including Phoma wasabiae Yokogi, Cochlibolus Heterostrophu, Exserohilum Turcicum, Curuvularia Lunata (Walk) Boed, Thantephorus cucumris, Fusarium graminearum, Xanthomonas axonopodis pv. Citri (Hasse) Dye and Xanthomonas zingiberi (Uyeda) Savulescu. The products of bacterium BS04 can endure the treatment of a wide range of pH, and maintain the antibiotic activity after treatment of 100℃ for 30 min. The result suggests that bacterium BS04 has the potential as a promising biocontrol agent. In order to determine the taxonomic placement, the molecular identification of BS04 is performed. The comparative analysis of 16s rDNA sequences indicates that the 16s rDNA sequence of BS04 is highly homologous with sequences of typical Paenibacillus bacteria from the RPD library (from 92% to 99%). And the constructed phylogenetic tree by using maximum-likelihood method with Bootstrap Trial 1000 proves that BS04 is subjected to Paenibacillus polymyxa.

  13. The effect of Pseudoxanthomonas sp. as manganese oxidizing bacterium on the corrosion behavior of carbon steel

    International Nuclear Information System (INIS)

    The present study investigated the role of manganese oxidizing bacterium (MOB), namely Pseudoxanthomonas sp. on the corrosion behavior of carbon steel. This bacterium was isolated from sewage treatment plants and identified by biochemical and molecular methods. The electrochemical techniques such as open circuit potentiometry, electrochemical impedance spectroscopy, potentiodynamic and cyclic polarization were used to measure the corrosion rate and observe the corrosion mechanism. Also, scanning electron microscopy and X-ray diffraction studies were applied to surface analysis. This study revealed the strong adhesion of the biofilm on the metal surface in the presence of Pseudoxanthomonas sp. that enhanced the corrosion of carbon steel. X-ray diffraction patterns identified a high content of MnO2 deposition within these biofilms. This is the first report that discloses the involvement of Pseudoxanthomonas sp. as manganese oxidizing bacteria on the corrosion of carbon steel. - Highlights: ► A new type of manganese oxidizing bacteria, namely Pseudoxanthomonas sp. was indicated. ► This bacterium can create a biofilm on the part of metal surface and affect localized corrosion. ► In the presence of biofilm, the diffusion of oxygen vacancies and manganese ions has occurred.

  14. Chitin Degradation Proteins Produced by the Marine Bacterium Vibrio harveyi Growing on Different Forms of Chitin

    Science.gov (United States)

    Svitil, A. L.; Chadhain, S.; Moore, J. A.; Kirchman, D. L.

    1997-01-01

    Relatively little is known about the number, diversity, and function of chitinases produced by bacteria, even though chitin is one of the most abundant polymers in nature. Because of the importance of chitin, especially in marine environments, we examined chitin-degrading proteins in the marine bacterium Vibrio harveyi. This bacterium had a higher growth rate and more chitinase activity when grown on (beta)-chitin (isolated from squid pen) than on (alpha)-chitin (isolated from snow crab), probably because of the more open structure of (beta)-chitin. When exposed to different types of chitin, V. harveyi excreted several chitin-degrading proteins into the culture media. Some chitinases were present with all of the tested chitins, while others were unique to a particular chitin. We cloned and identified six separate chitinase genes from V. harveyi. These chitinases appear to be unique based on DNA restriction patterns, immunological data, and enzyme activity. This marine bacterium and probably others appear to synthesize separate chitinases for efficient utilization of different forms of chitin and chitin by-products. PMID:16535505

  15. Antimicrobial activity and biosynthesis of nanoparticles by endophytic bacterium inhabiting Coffee arabica L.

    Directory of Open Access Journals (Sweden)

    Syed Baker

    2012-12-01

    Full Text Available The interface between endophytes and nanomaterials is a relatively new and unexplored area the present study evaluates screening of bacterial endophytes from surfaced sterilized leaf and stem segments of agro economical plant Coffee arabica L. towards synthesis of silver nanoparticles and antimicrobial metabolites. Among thirty two endophytes isolated nine isolates exhibited antimicrobial activity among which one bacterium was capable of extracellular synthesis of silver nanoparticles upon evaluation of supernatant with 1 mM of silver nitrate, biosynthesis of silver nanoparticles were assessed by UV-Visible Spectroscopy and the bacterium was capable of secreting antimicrobial secondary metabolites upon crude ethyl acetate extract evaluated for antimicrobial activity against panel of both gram positive and gram negative as well as phytopathogenic fungi. Partial characterization was carried out via bioautographic technique with Rf value 0.3 and 0.6 exhibiting antimicrobial activity against MRSA strain. Further studies in this area will be promising enough for molecular characterization of endophytic bacterium and chemical profiling of antimicrobial metabolites at the same time physiochemical characterization of nanoparticles will be valuable to reveal the size and shape. 

  16. Genetic Engineering of a Radiation-Resistant Bacterium for Biodegradation of Mixed Wastes. Final Report

    International Nuclear Information System (INIS)

    Aqueous mixed low level wastes (MLLW) containing radionuclides, solvents, and/or heavy metals represent a serious current and future problem for DOE environmental management and cleanup. In order to provide low-cost treatment alternatives under mild conditions for such contained wastes, we have proposed to use the radiation-resistant bacterium, Deinococcus radiodurans. This project has focused on developing D. radiodurans strains for dual purpose processes: cometabolic treatment of haloorganics and other solvents and removal of heavy metals from waste streams in an above-ground reactor system. The characteristics of effective treatment strains that must be attained are: (a) high biodegradative and metal binding activity; (b) stable treatment characteristics in the absence of selection and in the presence of physiological stress; (c) survival and activity under harsh chemical conditions, including radiation. The result of this project has been a suite of strains with high biodegradative capabilities that are candidates for pilot stage treatment systems. In addition, we have determined how to create conditions to precipitate heavy metals on the surface of the bacterium, as the first step towards creating dual-use treatment strains for contained mixed wastes of importance to the DOE. Finally, we have analyzed stress response in this bacterium, to create the foundation for developing treatment processes that maximize degradation while optimizing survival under high stress conditions

  17. Deinococcus mumbaiensis sp. nov., a radiation-resistant pleomorphic bacterium isolated from Mumbai, India.

    Science.gov (United States)

    Shashidhar, Ravindranath; Bandekar, Jayant R

    2006-01-01

    A radiation-resistant, Gram-negative and pleomorphic bacterium (CON-1) was isolated from a contaminated tryptone glucose yeast extract agar plate in the laboratory. It was red pigmented, nonmotile, nonsporulating, and aerobic, and contained MK-8 as respiratory quinone. The cell wall of this bacterium contained ornithine. The major fatty acids were C16:0, C16:1, C17:0, C18:1 and iso C18:0. The DNA of CON-1 had a G+C content of 70 mol%. Phylogenetic analysis based on 16S rRNA gene sequences showed that CON-1 exhibited a maximum similarity (94.72%) with Deinococcus grandis. Based on the genotypic, phenotypic and chemotaxonomic characteristics, the bacterium CON-1 was identified as a new species of the genus Deinococcus, for which the name Deinococcus mumbaiensis sp. nov. is proposed. The type strain of D. mumbaiensis is CON-1 (MTCC 7297(T)=DSM 17424(T)). PMID:16445756

  18. Genetic Engineering of a Radiation-Resistant Bacterium for Biodegradation of Mixed Wastes--Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Mary E. Lidstrom

    2003-12-26

    Aqueous mixed low level wastes (MLLW) containing radionuclides, solvents, and/or heavy metals represent a serious current and future problem for DOE environmental management and cleanup. In order to provide low-cost treatment alternatives under mild conditions for such contained wastes, we have proposed to use the radiation-resistant bacterium, Deinococcus radiodurans. This project has focused on developing D. radiodurans strains for dual purpose processes: cometabolic treatment of haloorganics and other solvents and removal of heavy metals from waste streams in an above-ground reactor system. The characteristics of effective treatment strains that must be attained are: (a) high biodegradative and metal binding activity; (b) stable treatment characteristics in the absence of selection and in the presence of physiological stress; (c) survival and activity under harsh chemical conditions, including radiation. The result of this project has been a suite of strains with high biodegradative capabilities that are candidates for pilot stage treatment systems. In addition, we have determined how to create conditions to precipitate heavy metals on the surface of the bacterium, as the first step towards creating dual-use treatment strains for contained mixed wastes of importance to the DOE. Finally, we have analyzed stress response in this bacterium, to create the foundation for developing treatment processes that maximize degradation while optimizing survival under high stress conditions.

  19. The Role of Exopolymers in Protection of Ralstonia sp., a Cadmium-resistant Bacterium, from Cadmium Toxicity

    OpenAIRE

    Anchulee Watcharamusik; Benjaphorn Prapagdee

    2008-01-01

    Production of exopolymers is one of heavy metal resistance mechanisms in bacteria. Ralstonia sp. TAK1, a cadmium-resistant bacterium, was isolated from a high cadmium (Cd) contaminated soil at the zinc mine, Tak province, Thailand. The bacterium was cultivated in LB broth and its growth was monitored. The yields of exopolymers were measured by the phenol-sulfuric method at different growth phases. The levels of Cd resistance were quantitatively determined by survival cell assay. The highest a...

  20. Photoproduction of hydrogen by a non-sulphur bacterium isolated from root zones of water fern Azolla pinnata

    Energy Technology Data Exchange (ETDEWEB)

    Singh, S.P.; Srivastava, S.C.; Pandey, K.D. (Banaras Hindu Univ., Varanasi (IN). Centre of Advanced Study in Botany)

    1990-01-01

    A photosynthetic bacterium Rhodopseudomonas sp. BHU strain 1 was isolated from the root zone of water fern Azolla pinnata. The bacterium was found to produce hydrogen with potato starch under phototrophic conditions. The immobilized bacterial cells showed sustained hydrogen production with a more than 4-fold difference over free cell suspensions. The data have been discussed in the light of possible utilization of relatively cheaper raw materials by non-sulphur bacteria to evolve hydrogen. (author).

  1. Anaerobic, Nitrate-Dependent Oxidation of U(IV) Oxide Minerals by the Chemolithoautotrophic Bacterium Thiobacillus denitrificans

    Energy Technology Data Exchange (ETDEWEB)

    Beller, H R

    2004-06-25

    Under anaerobic conditions and at circumneutral pH, cells of the widely-distributed, obligate chemolithoautotrophic bacterium Thiobacillus denitrificans oxidatively dissolved synthetic and biogenic U(IV) oxides (uraninite) in nitrate-dependent fashion: U(IV) oxidation required the presence of nitrate and was strongly correlated to nitrate consumption. This is the first report of anaerobic U(IV) oxidation by an autotrophic bacterium.

  2. Pontibacter diazotrophicus sp. nov., a novel nitrogen-fixing bacterium of the family Cytophagaceae.

    Directory of Open Access Journals (Sweden)

    Linghua Xu

    Full Text Available Few diazotrophs have been found to belong to the family Cytophagaceae so far. In the present study, a Gram-negative, rod-shaped bacterium that forms red colonies, was isolated from sands of the Takalamakan desert. It was designated H4XT. Phylogenetic and biochemical analysis indicated that the isolate is a new species of the genus Pontibacter. The 16S rRNA gene of H4XT displays 94.2-96.8% sequence similarities to those of other strains in Pontibacter. The major respiratory quinone is menaquinone-7 (MK-7. The DNA G+C content is 46.6 mol%. The major cellular fatty acids are iso-C15∶0, C16∶1ω5c, summed feature 3 (containing C16∶1ω6c and/or C16∶1ω7c and summed feature 4 (comprising anteiso-C17∶1B and/or iso-C17∶1I. The major polar lipids are phosphatidylethanolamine (PE, one aminophospholipid (APL and some unknown phospholipids (PLs. It is interesting to see that this bacterium can grow very well in a nitrogen-free medium. PCR amplification suggested that the bacterium possesses at least one type of nitrogenase gene. Acetylene reduction assay showed that H4XT actually possesses nitrogen-fixing activity. Therefore, it can be concluded that H4XT is a new diazotroph. We thus referred it to as Pontibacter diazotrophicus sp. nov. The type strain is H4XT ( = CCTCC AB 2013049T = NRRL B-59974T.

  3. Treatment of Alkaline Cr(VI)-Contaminated Leachate with an Alkaliphilic Metal-Reducing Bacterium.

    Science.gov (United States)

    Watts, Mathew P; Khijniak, Tatiana V; Boothman, Christopher; Lloyd, Jonathan R

    2015-08-15

    Chromium in its toxic Cr(VI) valence state is a common contaminant particularly associated with alkaline environments. A well-publicized case of this occurred in Glasgow, United Kingdom, where poorly controlled disposal of a cementitious industrial by-product, chromite ore processing residue (COPR), has resulted in extensive contamination by Cr(VI)-contaminated alkaline leachates. In the search for viable bioremediation treatments for Cr(VI), a variety of bacteria that are capable of reduction of the toxic and highly soluble Cr(VI) to the relatively nontoxic and less mobile Cr(III) oxidation state, predominantly under circumneutral pH conditions, have been isolated. Recently, however, alkaliphilic bacteria that have the potential to reduce Cr(VI) under alkaline conditions have been identified. This study focuses on the application of a metal-reducing bacterium to the remediation of alkaline Cr(VI)-contaminated leachates from COPR. This bacterium, belonging to the Halomonas genus, was found to exhibit growth concomitant to Cr(VI) reduction under alkaline conditions (pH 10). Bacterial cells were able to rapidly remove high concentrations of aqueous Cr(VI) (2.5 mM) under anaerobic conditions, up to a starting pH of 11. Cr(VI) reduction rates were controlled by pH, with slower removal observed at pH 11, compared to pH 10, while no removal was observed at pH 12. The reduction of aqueous Cr(VI) resulted in the precipitation of Cr(III) biominerals, which were characterized using transmission electron microscopy and energy-dispersive X-ray analysis (TEM-EDX) and X-ray photoelectron spectroscopy (XPS). The effectiveness of this haloalkaliphilic bacterium for Cr(VI) reduction at high pH suggests potential for its use as an in situ treatment of COPR and other alkaline Cr(VI)-contaminated environments. PMID:26048926

  4. Studies of the extracellular glycocalyx of the anaerobic cellulolytic bacterium Ruminococcus albus 7.

    Science.gov (United States)

    Weimer, Paul J; Price, Neil P J; Kroukamp, Otini; Joubert, Lydia-Marie; Wolfaardt, Gideon M; Van Zyl, Willem H

    2006-12-01

    Anaerobic cellulolytic bacteria are thought to adhere to cellulose via several mechanisms, including production of a glycocalyx containing extracellular polymeric substances (EPS). As the compositions and structures of these glycocalyces have not been elucidated, variable-pressure scanning electron microscopy (VP-SEM) and chemical analysis were used to characterize the glycocalyx of the ruminal bacterium Ruminococcus albus strain 7. VP-SEM revealed that growth of this strain was accompanied by the formation of thin cellular extensions that allowed the bacterium to adhere to cellulose, followed by formation of a ramifying network that interconnected individual cells to one another and to the unraveling cellulose microfibrils. Extraction of 48-h-old whole-culture pellets (bacterial cells plus glycocalyx [G] plus residual cellulose [C]) with 0.1 N NaOH released carbohydrate and protein in a ratio of 1:5. Boiling of the cellulose fermentation residue in a neutral detergent solution removed almost all of the adherent cells and protein while retaining a residual network of adhering noncellular material. Trifluoroacetic acid hydrolysis of this residue (G plus C) released primarily glucose, along with substantial amounts of xylose and mannose, but only traces of galactose, the most abundant sugar in most characterized bacterial exopolysaccharides. Linkage analysis and characterization by nuclear magnetic resonance suggested that most of the glucosyl units were not present as partially degraded cellulose. Calculations suggested that the energy demand for synthesis of the nonprotein fraction of EPS by this organism represents only a small fraction (<4%) of the anabolic ATP expenditure of the bacterium. PMID:17028224

  5. Adhesive properties of a symbolic bacterium from a wood-boreing marine shipworm

    International Nuclear Information System (INIS)

    Adhesive properties of cellulolytic, nitrogen-fixing bacterium isolated from a marine shipworm are described. 35S-labeled cells of the shipworm bacterium bound preferentially Whatman no.1 cellulose filter paper, compared with its binding to other cellulose substrata or substrata lacking cellulose. The ability of the bacteria to bind to Whatman no. 1 filter paper was significantly reduced by glutaraldehyde or heat treatment of cells. Pretreatment of cells with azide, valinomycin, gramicidin-D, bis-hexafluoroacetylacetone (1799), or carbonyl cyanide-p-trifluoromethoxyphenylhydrazone inhibited adhesion activity. Cells pretreated with pronase or trypsin also exhibited reduced binding activity, but chymotrypsin and peptidase had no effect on adhesion activity. Cellodextrins and methyl cellulose 15 inhibited the adhesion of the shipworm bacteria to filter paper, whereas glucose, cellobiose, and soluble carboxymethyl cellulose had no significant effect. The divalent cation chelators EDTA and EGTA [ethylene hlycol-bis(β-aminoethyl ether)-N,N,N'N'-tetraacetic acid] had little or no effect on adhesive properties of shipworm bacteria. Also, preabsorbing the substratum with extracellular endoglucanase isolated from the ship worm bacterium or 1% bovine serum albumin had no apparent effect on bacterial binding. Low concentration (0.01%) of sodium dodecyl sulfate solubilized a fraction from whole cells, which appeared to be involved in cellular binding activity. After removal of sodium dodecyl, sulfate, several proteins in this fraction associated with intact cells. These cells exhibited up to 50% enhanced binding to filter paper in comparison to cells which had not been exposed to the sodium dodecyl sulfate-solubilized fraction

  6. Biochemical Analyses of Multiple Endoxylanases from the Rumen Bacterium Ruminococcus albus 8 and Their Synergistic Activities with Accessory Hemicellulose-Degrading Enzymes ▿ †

    OpenAIRE

    Moon, Young Hwan; Iakiviak, Michael; Bauer, Stefan; Roderick I. Mackie; Cann, Isaac K. O.

    2011-01-01

    Ruminococcus albus 8 is a ruminal bacterium capable of metabolizing hemicellulose and cellulose, the major components of the plant cell wall. The enzymes that allow this bacterium to capture energy from the two polysaccharides, therefore, have potential application in plant cell wall depolymerization, a process critical to biofuel production. For this purpose, a partial genome sequence of R. albus 8 was generated. The genomic data depicted a bacterium endowed with multiple forms of plant cell...

  7. Leucyl-tRNA synthetase from the ancestral bacterium Aquifex aeolicus contains relics of synthetase evolution

    OpenAIRE

    Zhao, Ming-Wei; Zhu, Bin; Hao, Rui; Xu, Min-Gang; Eriani, Gilbert; Wang, En-Duo

    2005-01-01

    The editing reactions catalyzed by aminoacyl-tRNA synthetases are critical for the faithful protein synthesis by correcting misactivated amino acids and misaminoacylated tRNAs. We report that the isolated editing domain of leucyl-tRNA synthetase from the deep-rooted bacterium Aquifex aeolicus (αβ-LeuRS) catalyzes the hydrolytic editing of both mischarged tRNALeu and minihelixLeu. Within the domain, we have identified a crucial 20-amino-acid peptide that confers editing capacity when transplan...

  8. Microbial coal desulfurization in an airlift bioreactor by sulfur-oxidizing bacterium Thiobacillus ferooxidans

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, H.W.; Chang, Y.K.; Kim, S.D. (Korea Advanced Institute of Science and Technology, Taejon (Republic of Korea). Dept. of Chemical Engineering and BioProcess Engineering Research Center)

    1993-12-01

    Microbial desulfurization of a domestic anthracite coal by using an acidophilic, sulfur-oxidizing bacterium, [ital Thiobacillus ferrooxidans] has been studied in an airlift slurry reactor of 12 L volume. Effects of coal slurry density and CO[sub 2] supplement on microbial pyrite removal have been evaluated. High sulfur removal rates have been obtained even for very high coal slurry densities (up to 70% w/v). About 90-95% of the sulfur in the coal could be removed in 15-20 days. The efficiency of microbial desulfurization was significantly improved with CO[sub 2] enriched air supply for high coal slurry densities. 17 refs., 5 figs.

  9. Biodegradation of bisphenol A and other bisphenols by a gram-negative aerobic bacterium.

    OpenAIRE

    Lobos, J. H.; Leib, T K; Su, T. M.

    1992-01-01

    A novel bacterium designated strain MV1 was isolated from a sludge enrichment taken from the wastewater treatment plant at a plastics manufacturing facility and shown to degrade 2,2-bis(4-hydroxyphenyl)propane (4,4'-isopropylidenediphenol or bisphenol A). Strain MV1 is a gram-negative, aerobic bacillus that grows on bisphenol A as a sole source of carbon and energy. Total carbon analysis for bisphenol A degradation demonstrated that 60% of the carbon was mineralized to CO2, 20% was associated...

  10. Isolation and Characterization of a Sulfate-Reducing Bacterium That Anaerobically Degrades Alkanes

    OpenAIRE

    So, Chi Ming; Young, L. Y.

    1999-01-01

    An alkane-degrading, sulfate-reducing bacterial strain, AK-01, was isolated from an estuarine sediment with a history of chronic petroleum contamination. The bacterium is a short, nonmotile, non-spore-forming, gram-negative rod. It is mesophilic and grows optimally at pH 6.9 to 7.0 and at an NaCl concentration of 1%. Formate, fatty acids (C4 to C16) and hydrogen were readily utilized as electron donors. Sulfate, sulfite, and thiosulfate were used as electron acceptors, but sulfur, nitrite, an...

  11. Aggregation of the rhizospheric bacterium Azospirillum brasilense in response to oxygen

    Science.gov (United States)

    Abdoun, Hamid; McMillan, Mary; Pereg, Lily

    2016-04-01

    Azospirillum brasilense spp. have ecological, scientific and agricultural importance. As model plant growth promoting rhizobacteria they interact with a large variety of plants, including important food and cash crops. Azospirillum strains are known for their production of plant growth hormones that enhance root systems and for their ability to fix nitrogen. Azospirillum cells transform in response to environmental cues. The production of exopolysaccharides and cell aggregation during cellular transformation are important steps in the attachment of Azospirillum to roots. We investigate signals that induce cellular transformation and aggregation in the Azospirillum and report on the importance of oxygen to the process of aggregation in this rhizospheric bacterium.

  12. Bisucaberin B, a Linear Hydroxamate Class Siderophore from the Marine Bacterium Tenacibaculum mesophilum

    Directory of Open Access Journals (Sweden)

    Ryuichi Sakai

    2013-04-01

    Full Text Available A siderophore, named bisucaberin B, was isolated from Tenacibaculum mesophilum bacteria separated from a marine sponge collected in the Republic of Palau. Using spectroscopic and chemical methods, the structure of bisucaberin B (1 was clearly determined to be a linear dimeric hydroxamate class siderophore. Although compound 1 is an open form of the known macrocyclic dimer bisucaberin (2, and was previously described as a bacterial degradation product of desferrioxamine B (4, the present report is the first description of the de novo biosynthesis of 1. To the best of our knowledge, compound 1 is the first chemically characterized siderophore isolated from a bacterium belonging to the phylum Bacteroidetes.

  13. Bisucaberin B, a linear hydroxamate class siderophore from the marine bacterium Tenacibaculum mesophilum.

    Science.gov (United States)

    Fujita, Masaki J; Nakano, Koji; Sakai, Ryuichi

    2013-01-01

    A siderophore, named bisucaberin B, was isolated from Tenacibaculum mesophilum bacteria separated from a marine sponge collected in the Republic of Palau. Using spectroscopic and chemical methods, the structure of bisucaberin B (1) was clearly determined to be a linear dimeric hydroxamate class siderophore. Although compound 1 is an open form of the known macrocyclic dimer bisucaberin (2), and was previously described as a bacterial degradation product of desferrioxamine B (4), the present report is the first description of the de novo biosynthesis of 1. To the best of our knowledge, compound 1 is the first chemically characterized siderophore isolated from a bacterium belonging to the phylum Bacteroidetes. PMID:23549298

  14. Isolation and identification of a novel alginate-degrading bacterium, Ochrobactrum sp.

    Directory of Open Access Journals (Sweden)

    Xiao-wei Zhao

    2008-03-01

    Full Text Available An alginate-degrading bacterium, identified as Ochrobactrum sp. on the basis of 16S rDNA gene sequencing, was isolated from brown algal samples collected from the waters in close vicinity to the Dongtou Isles in the East China Sea. The strain, designated WZUH09-1, is a short rod, gram-negative, obligatory aerobic, grows under the following conditions: 5-40oC, pH 3-9, and 0-2 times of the seawater concentration, and is able to depolymerize alginates with higher enzyme activity than that of others reported so far.

  15. Mutagenesis and reparation processes in the methylotrophic bacterium Pseudomonas methanolica after UV irradiation

    International Nuclear Information System (INIS)

    High resistance of cells of methylotrophic bacterium Pseudomonas methanolica to bactericidal and mutagenous effects of ultraviolet irradiation is shown as well as activity of reparation processes after UV irradiation. The presence of low photoreactivating activity in P. methanolica is shown as well. Observed recovery in innutritious medium and decrease of irradiated cells survival rates under effect of reparation inhibitors (coffeine and acriflavine) testify to activity of excision reparation and, perhaps, recombination branch of postreplicative reparation. No manifestation of inducible reparation system is discovered. It is concluded that increased resistance of P. methanolica cells to bactericidal and mutagenous effects of short-wave ultraviolet radiation is related to activity of exact reparation systems

  16. Aerobic Reduction of Arsenate by a Bacterium Isolated From Activated Sludge

    Science.gov (United States)

    Kozai, N.; Ohnuki, T.; Hanada, S.; Nakamura, K.; Francis, A. J.

    2006-12-01

    Microlunatus phosphovorus strain NM-1 is a polyphosphate-accumulating bacterium isolated from activated sludge. This bacterium takes up a large amount of polyphosphate under aerobic conditions and release phosphate ions by hydrolysis of polyphosphate to orthophosphate under anaerobic conditions to derive energy for taking up substrates. To understand the nature of this strain, especially, influence of potential contaminants in sewage and wastewater on growth, we have been investigating behavior of this bacterium in media containing arsenic. The present paper mainly reports reduction of arsenate by this bacterium under aerobic conditions. The strain NM-1 (JCM 9379) was aerobically cultured at 30 °C in a nutrient medium containing 2.5 g/l peptone, 0.5 g/l glucose, 1.5 g/l yeast extract, and arsenic [Na2HAsO4 (As(V)) or Na3AsO3 (As(III))] at concentrations between 0 and 50 mM. The cells collected from arsenic-free media were dispersed in buffer solutions containing 2mM HEPES, 10mM NaCl, prescribed concentrations of As(V), and 0-0.2 percent glucose. Then, this cell suspension was kept at 20 °C under aerobic or anaerobic conditions. The speciation of arsenic was carried out by ion chromatography and ICP-MS. The growth of the strain under aerobic conditions was enhanced by the addition of As(V) at the concentration between 1 and 10 mM. The maximum optical density of the culture in the medium containing 5mM As(V) was 1.4 times greater than that of the control culture. Below the As(V) concentration of 10mM, most of the As(V) was reduced to As(III). The growth of the strain under anaerobic conditions has not been observed so far. The cells in the buffer solutions reduced As(V) under aerobic condition. The reduction was enhanced by the addition of glucose. However, the cell did not reduce As(V) under anaerobic conditions. The strain NM-1 showed high resistance to As(V) and As(III). The maximum optical density of the culture grown in a medium containing 50 mM As(V) was only

  17. Acetylcholinesterase-Inhibiting Activity of Pyrrole Derivatives from a Novel Marine Gliding Bacterium, Rapidithrix thailandica

    OpenAIRE

    Khanit Suwanborirux; Anuchit Plubrukarn; Kornkanok Ingkaninan; Akkharawit Kanjana-opas; Supreeya Yuenyongsawad; Oraphan Sakulkeo; Yutthapong Sangnoi

    2008-01-01

    Acetylcholinesterase-inhibiting activity of marinoquinoline A (1), a new pyrroloquinoline from a novel species of a marine gliding bacterium Rapidithrix thailandica, was assessed (IC50 4.9 mM). Two related pyrrole derivatives, 3-(2'-aminophenyl)-pyrrole (3) and 2,2-dimethyl-pyrrolo-1,2-dihydroquinoline (4), were also isolated from two other strains of R. thailandica. The isolation of 3 froma natural source is reported here for the first time. Compound 4 was proposed to be an isolation artifac...

  18. Acetylcholinesterase-Inhibiting Activity of Pyrrole Derivatives from a Novel Marine Gliding Bacterium, Rapidithrix thailandica

    OpenAIRE

    Sangnoi, Yutthapong; Sakulkeo, Oraphan; Yuenyongsawad, Supreeya; Kanjana-opas, Akkharawit; Ingkaninan, Kornkanok; Plubrukarn, Anuchit; Suwanborirux, Khanit

    2008-01-01

    Acetylcholinesterase-inhibiting activity of marinoquinoline A (1), a new pyrroloquinoline from a novel species of a marine gliding bacterium Rapidithrix thailandica, was assessed (IC50 4.9 μM). Two related pyrrole derivatives, 3-(2′-aminophenyl)-pyrrole (3) and 2,2-dimethyl-pyrrolo-1,2-dihydroquinoline (4), were also isolated from two other strains of R. thailandica. The isolation of 3 from a natural source is reported here for the first time. Compound 4 was proposed to be an isolation artifa...

  19. Complete genome sequence of Pseudomonas azotoformans S4, a potential biocontrol bacterium.

    Science.gov (United States)

    Fang, Yang; Wu, Lijuan; Chen, Guoqing; Feng, Guozhong

    2016-06-10

    Pseudomonas azotoformans is a Gram-negative bacterium and infects cereal grains, especially rice. P. azotoformans S4 from soil sample derived from Lijiang, Yunnan Province, China, appeared to be strong inhibitory activity against Fusarium fujikurio, a serious rice fungal pathogen. Here, we present the complete genome of P. azotoformans S4, which consists of 6,859,618bp with a circle chromosome, 5991 coding DNA sequences, 70 tRNA and 19 rRNA. The genomic analysis revealed that 9 candidate gene clusters are involved in the biosynthesis of secondary metabolites. PMID:27080451

  20. Genome sequence of the marine bacterium Corynebacterium maris type strain Coryn-1T (= DSM 45190T)

    OpenAIRE

    Schaffert, Lena; Albersmeier, Andreas; Bednarz, Hanna; Niehaus, Karsten; Kalinowski, Jörn; Rückert, Christian

    2013-01-01

    Corynebacterium maris Coryn-1T Ben-Dov et al. 2009 is a member of the genus Corynebacterium which contains Gram-positive, non-spore forming bacteria with a high G+C content. C. maris was isolated from the mucus of the Scleractinian coral Fungia granulosa and belongs to the aerobic and non-haemolytic corynebacteria. It displays tolerance to salts (up to 10%) and is related to the soil bacterium Corynebacterium halotolerans . As this is a type strain in a subgroup of Corynebacterium without com...

  1. A bacterium that can grow by using arsenic instead of phosphorus

    Energy Technology Data Exchange (ETDEWEB)

    Wolfe-Simon, F; Blum, J S; Kulp, T R; Gordon, G W; Hoeft, S E; Pett-Ridge, J; Stolz, J F; Webb, S M; Weber, P K; Davies, P W; Anbar, A D; Oremland, R S

    2010-11-01

    Life is mostly composed of the elements carbon, hydrogen, nitrogen, oxygen, sulfur and phosphorus. Although these six elements make up nucleic acids, proteins and lipids and thus the bulk of living matter, it is theoretically possible that some other elements in the periodic table could serve the same functions. Here we describe a bacterium, strain GFAJ-1 of the Halomonadaceae, isolated from Mono Lake, CA, which substitutes arsenic for phosphorus to sustain its growth. Our data show evidence for arsenate in macromolecules that normally contain phosphate, most notably nucleic acids and proteins. Exchange of one of the major bio-elements may have profound evolutionary and geochemical significance.

  2. Characterization of Two New Glycosyl Hydrolases from the Lactic Acid Bacterium Carnobacterium piscicola Strain BA

    OpenAIRE

    Coombs, Jonna; Brenchley, Jean E.

    2001-01-01

    Three genes with homology to glycosyl hydrolases were detected on a DNA fragment cloned from a psychrophilic lactic acid bacterium isolate, Carnobacterium piscicola strain BA. A 2.2-kb region corresponding to an α-galactosidase gene, agaA, was followed by two genes in the same orientation, bgaB, encoding a 2-kb β-galactosidase, and bgaC, encoding a structurally distinct 1.76-kb β-galactosidase. This gene arrangement had not been observed in other lactic acid bacteria, including Lactococcus la...

  3. Role for Vitamin B12 in Light Induction of Gene Expression in the Bacterium Myxococcus xanthus

    OpenAIRE

    Cervantes, María; Murillo, Francisco J.

    2002-01-01

    A light-inducible promoter (PB) drives the carB operon (carotenoid genes) of the bacterium Myxococcus xanthus. A gene encoding a regulator of carotenoid biosynthesis was identified by studying mutant strains carrying a transcriptional fusion to PB and deletions in three candidate genes. Our results prove that the identified gene, named carA, codes for a repressor of the PB promoter in the dark. They also show that the carA gene product does not participate in the light activation of two other...

  4. Halomonas olivaria sp nov., a moderately halophilic bacterium isolated from olive-processing effluents

    OpenAIRE

    Amouric, A.; Liebgott, Pierre-Pol; Joseph, Manon; Brochier-Armanet, C; LORQUIN, Jean

    2014-01-01

    A moderately halophilic, Gram-stain-negative, non-sporulating bacterium designed as strain TYRC17(T) was isolated from olive-processing effluents. The organism was a straight rod, motile by means of peritrichous flagella and able to respire both oxygen and nitrate. Growth occurred with 0-25 % (w/v) NaCl (optimum, 7%), at pH 5-11 (optimum, pH 7.0) and at 4-50 degrees C (optimally at 35 degrees C). It accumulated poly-beta-hydroxyalkanoate granules and produced exopolysaccharides. The predomina...

  5. Sequencing and Characterization of the xyl Operon of a Gram-Positive Bacterium, Tetragenococcus halophila

    OpenAIRE

    TAKEDA, YASUO; Takase, Kazuma; Yamato, Ichiro; Abe, Keietsu

    1998-01-01

    The xyl operon of a gram-positive bacterium, Tetragenococcus halophila (previously called Pediococcus halophilus), was cloned and sequenced. The DNA was about 7.7 kb long and contained genes for a ribose binding protein and part of a ribose transporter, xylR (a putative regulatory gene), and the xyl operon, along with its regulatory region and transcription termination signal, in this order. The DNA was AT rich, the GC content being 35.8%, consistent with the GC content of this gram-positive ...

  6. Mageeibacillus indolicus gen. nov., sp. nov: A novel bacterium isolated from the female genital tract

    OpenAIRE

    Austin, Michele N.; Rabe, Lorna K.; Srinivasan, Sujatha; Fredricks, David N.; Wiesenfeld, Harold C.; Hillier, Sharon L.

    2014-01-01

    Three isolates of a bacterium recovered from human endometrium using conventional culture methods were characterized biochemically and subjected to 16S rRNA gene sequencing and phylogenetic analysis. Isolates were non-motile, obligately anaerobic, non-spore forming, asaccharolytic, non-cellulolytic, indole positive, Gram positive rods. Cell wall fatty acid profiling revealed C14:0, C16:0, C18:2 ω6, 9c, C18:1 ω9c and C18:0 to be the major fatty acid composition. The DNA mol % G+C was determine...

  7. Ercella succinigenes gen. nov., sp. nov., ananaerobic succinate-producing bacterium

    OpenAIRE

    Van Gelder, A.H.; Sousa, D.Z.; Rijpstra, W.I.C.; J. S. Sinninghe Damsté; Stams, A. J. M.; Sánchez-Andrea, I.

    2014-01-01

    A novel anaerobic succinate-producing bacterium, strain ZWBT, was isolated from sludge collected from a biogas desulfurization bioreactor (Eerbeek, The Netherlands). Cells were non-spore forming, motile, slightly curved rods (0.4 to 0.5 µm in diameter and 2 to 3 µm in length), and stained Gram-negative. The temperature range for growth was 25 to 40°C, with an optimum at 37°C. The pH range for growth was 7.0 to 9.0, with an optimum at pH 7.5. Strain ZWBT ferments glycerol and several carbohydr...

  8. (Per)chlorate reduction by an acetogenic bacterium, Sporomusa sp., isolated from an underground gas storage

    OpenAIRE

    2010-01-01

    A mesophilic bacterium, strain An4, was isolated from an underground gas storage reservoir with methanol as substrate and perchlorate as electron acceptor. Cells were Gram-negative, spore-forming, straight to curved rods, 0.5–0.8 μm in diameter, and 2–8 μm in length, growing as single cells or in pairs. The cells grew optimally at 37°C, and the pH optimum was around 7. Strain An4 converted various alcohols, organic acids, fructose, acetoin, and H2/CO2 to acetate, usually as the only product. ...

  9. (Per)chlorate reduction by an acetogenic bacterium, Sporomusa sp., isolated from an underground gas storage

    OpenAIRE

    Balk, M.; Mehboob, F.; Gelder, van, M.; Rijpstra, I.; Sinninghe-Damsté, J.S.; Stams, A.J.M.

    2010-01-01

    A mesophilic bacterium, strain An4, was isolated from an underground gas storage reservoir with methanol as substrate and perchlorate as electron acceptor. Cells were Gram-negative, spore-forming, straight to curved rods, 0.5-0.8 microm in diameter, and 2-8 microm in length, growing as single cells or in pairs. The cells grew optimally at 37 degrees C, and the pH optimum was around 7. Strain An4 converted various alcohols, organic acids, fructose, acetoin, and H(2)/CO(2) to acetate, usually a...

  10. Pseudomonas chloritidismutans sp. nov., a non-denitrifying chlorate-reducing bacterium

    OpenAIRE

    Wolterink, A.F.W.M.; Jonker, A.B.; Kengen, S.W.M.; Stams, A.J.M.

    2002-01-01

    A Gram-negative, facultatively anaerobic, rod-shaped, dissimilatory chlorate-reducing bacterium, strain AW-1(T), was isolated from biomass of an anaerobic chlorate-reducing bioreactor. Phylogenetic analysis of the 16S rDNA sequence showed 100␜equence similarity to Pseudomonas stutzeri DSM 50227 and 98.6␜equence similarity to the type strain of P. stutzeri (DSM 5190(T)). The species P. stutzeri possesses a high degree of genotypic and phenotypic heterogeneity. Therefore, eight genomic groups, ...

  11. (Per)chlorate reduction by an acetogenic bacterium, Sporomusa sp., isolated from an underground gas storage

    OpenAIRE

    Balk, M.; Mehboob, F.; van Gelder, T; Rijpstra, W.I.C.; J. S. Sinninghe Damsté; Stams, A.J.M.

    2010-01-01

    A mesophilic bacterium, strain An4, was isolated from an underground gas storage reservoir with methanol as substrate and perchlorate as electron acceptor. Cells were Gram-negative, spore-forming, straight to curved rods, 0.5–0.8 μm in diameter, and 2–8 μm in length, growing as single cells or in pairs. The cells grew optimally at 37°C, and the pH optimum was around 7. Strain An4 converted various alcohols, organic acids, fructose, acetoin, and H2/CO2 to acetate, usually as the only product. ...

  12. Genome Sequence of the Boron-Tolerant and -Requiring Bacterium Bacillus boroniphilus

    OpenAIRE

    ÇÖL, Bekir; Özkeserli, Zeynep; Kumar, Dibyendu; ÖZDAĞ, Hilal; Alakoç, Yeşim D.

    2014-01-01

    Bacillus boroniphilus is a highly boron-tolerant bacterium that also requires this element for its growth. The complete genome sequence of B. boroniphilus was determined by a combination of shotgun sequencing and paired-end sequencing using 454 pyrosequencing technology. A total of 84,872,624 reads from shotgun sequencing and a total of 194,092,510 reads from paired-end sequencing were assembled using Newbler 2.3. The estimated size of the draft genome is 5.2 Mb.

  13. Clostridium peptidivorans sp. nov., a peptide-fermenting bacterium from an olive mill wastewater treatment digester

    OpenAIRE

    Mechichi, T.; Fardeau, Marie-Laure; Labat, Marc; Garcia, Jean-Louis; Verhé, F.; Patel, B.K.C.

    2000-01-01

    A new peptid-degrading, strictly anaerobic bacterium, designated strain TMC4T, was isolated from an olive mill wastewater treatment digester. Cells of strain TMC4T were motile, rod-shaped (5-10 x 0.6-1.2 microns), stained Gram-positive and formed terminal to subterminal spores that distended the cells. Optimal growth occurred at 37°C and pH 7 in an anaerobic basal medium containing 0.5% Casamino acids. Arginine, lysine, cysteine, methionine, histidine, serine, isoleucine, yeast extract, pepto...

  14. p-cresol methylhydroxylase from a denitrifying bacterium involved in anaerobic degradation of p-cresol.

    OpenAIRE

    Hopper, D. J.; Bossert, I D; Rhodes-Roberts, M E

    1991-01-01

    A bacterium, strain PC-07, previously isolated as part of a coculture capable of growing on p-cresol under anaerobic conditions with nitrate as the acceptor was identified as an Achromobacter sp. The first enzyme of the pathway, p-cresol methylhydroxylase, which converts its substrate into p-hydroxybenzyl alcohol, was purified. The enzyme had an Mr of 130,000 and the spectrum of a flavocytochrome. It was composed of flavoprotein subunits of Mr 54,000 and cytochrome subunits of Mr 12,500. The ...

  15. Response to Comments on "A Bacterium That Can Grow Using Arsenic Instead of Phosphorus"

    Energy Technology Data Exchange (ETDEWEB)

    Wolfe-Simon, F; Blum, J S; Kulp, T R; Gordon, G W; Hoeft, S E; Pett-Ridge, J; Stolz, J F; Webb, S M; Weber, P K; Davies, P W; Anbar, A D; Oremland, R S

    2011-03-07

    Concerns have been raised about our recent study describing a bacterium that can grow using arsenic (As) instead of phosphorus (P). Our data suggested that As could act as a substitute for P in major biomolecules in this organism. Although the issues raised are of investigative interest, we contend that they do not invalidate our conclusions. We argue that while no single line of evidence we presented was sufficient to support our interpretation of the data, taken as an entire dataset we find no plausible alternative to our conclusions. Here we reply to the critiques and provide additional arguments supporting the assessment of the data we reported.

  16. Coarse grained simulation reveals antifreeze properties of hyperactive antifreeze protein from Antarctic bacterium Colwellia sp.

    Science.gov (United States)

    Nguyen, Hung; Van, Thanh Dac; Le, Ly

    2015-10-01

    The novel hyperactive antifreeze protein (AFP) of Antarctic sea ice bacterium Colwellia sp. provides a target for studying the protection of psychrophilic microgoranisms against freezing environment. Interestingly, the Colwellia sp. hyperactive antifreeze protein (ColAFP) was crystallized without the structural dynamic characteristics. Here, the result indicated, through coarse grained simulation of ColAFP under various subfreezing temperature, that ColAFP remains active at temperature of equal and greater than 275 K (∼2 °C). Extensive simulation analyses also revealed the adaptive mechanism of ColAFP in subfreezing environment. Our result provides a structural dynamic understanding of the ColAFP.

  17. Penetration of the Coral-Bleaching Bacterium Vibrio shiloi into Oculina patagonica

    OpenAIRE

    Banin, E.; Israely, T.; Kushmaro, A.; Y. Loya; Orr, E; Rosenberg, E

    2000-01-01

    Inoculation of the coral-bleaching bacterium Vibrio shiloi into seawater containing its host Oculina patagonica led to adhesion of the bacteria to the coral surface via a β-d-galactose receptor, followed by penetration of the bacteria into the coral tissue. The internalized V. shiloi cells were observed inside the exodermal layer of the coral by electron microscopy and fluorescence microscopy using specific anti-V. shiloi antibodies to stain the intracellular bacteria. At 29°C, 80% of the bac...

  18. Complete Genome Sequence of the Filamentous Anoxygenic Phototrophic Bacterium Chloroflexus aurantiacus

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Kuo-Hsiang [Washington University, St. Louis; Barry, Kerrie [U.S. Department of Energy, Joint Genome Institute; Chertkov, Olga [Los Alamos National Laboratory (LANL); Dalin, Eileen [U.S. Department of Energy, Joint Genome Institute; Han, Cliff [Los Alamos National Laboratory (LANL); Hauser, Loren John [ORNL; Honchak, Barbara M [Washington University, St. Louis; Karbach, Lauren E [Washington University, St. Louis; Land, Miriam L [ORNL; Lapidus, Alla L. [Joint Genome Institute, Walnut Creek, California; Larimer, Frank W [ORNL; Mikhailova, Natalia [U.S. Department of Energy, Joint Genome Institute; Pitluck, Sam [Joint Genome Institute, Walnut Creek, California; Pierson, Beverly K [University of Puget Sound, Tacoma, WA

    2011-01-01

    Chloroflexus aurantiacus is a thermophilic filamentous anoxygenic phototrophic (FAP) bacterium, and can grow phototrophically under anaerobic conditions or chemotrophically under aerobic and dark conditions. According to 16S rRNA analysis, Chloroflexi species are the earliest branching bacteria capable of photosynthesis, and Cfl. aurantiacus has been long regarded as a key organism to resolve the obscurity of the origin and early evolution of photosynthesis. Cfl. aurantiacus contains a chimeric photosystem that comprises some characters of green sulfur bacteria and purple photosynthetic bacteria, and also has some unique electron transport proteins compared to other photosynthetic bacteria.

  19. Improved manganese-oxidizing activity of DypB, a peroxidase from a lignolytic bacterium

    OpenAIRE

    Singh, Rahul; Grigg, Jason C.; Qin, Wei; Kadla, John F.; Murphy, Michael E. P.; Eltis, Lindsay D.

    2013-01-01

    DypB, a dye-decolorizing peroxidase from the lignolytic soil bacterium Rhodococcus jostii RHA1, catalyzes the peroxide-dependent oxidation of divalent manganese (Mn2+), albeit less efficiently than fungal manganese peroxidases. Substitution of Asn246, a distal heme residue, with alanine, increased the enzyme’s apparent kcat and kcat/Km values for Mn2+ by 80- and 15-fold, respectively. A 2.2 Å resolution X-ray crystal structure of the N246A variant revealed the Mn2+ to be bound within a pocket...

  20. GenBank blastx search result: AK289073 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK289073 J090094I16 AF016236.1 AF016236 Rhodobacter sphaeroides DMSO/TMAO-sensor kinase (dorS), DMSO.../TMAO-response regulator (dorR), DMSO/TMAO-cytochrome c-containing subunit (dorC), DMSO-mem...brane protein (dorB), and DMSO/TMAO-reductase (dorA) genes, complete cds. BCT 0.0 0 ...

  1. Conserved Chloroplast Open-reading Frame ycf54 Is Required for Activity of the Magnesium Protoporphyrin Monomethylester Oxidative Cyclase in Synechocystis PCC 6803

    Czech Academy of Sciences Publication Activity Database

    Hollingshead, S.; Kopečná, Jana; Jackson, P. J.; Canniffe, D. P.; Davidson, P. A.; Dickman, M. J.; Sobotka, Roman; Hunter, C. N.

    2012-01-01

    Roč. 287, č. 33 (2012), s. 27823-27833. ISSN 0021-9258 R&D Projects: GA ČR GAP501/10/1000; GA MŠk(CZ) ED2.1.00/03.0110 Institutional support: RVO:61388971 Keywords : CHLOROPHYLL ISOCYCLIC RING * RHODOBACTER-SPHAEROIDES * SP PCC-6803 Subject RIV: CE - Biochemistry Impact factor: 4.651, year: 2012

  2. Global Analysis of Photosynthesis Transcriptional Regulatory Networks

    OpenAIRE

    Imam, Saheed; Noguera, Daniel R.; Donohue, Timothy J.

    2014-01-01

    Photosynthesis is a crucial biological process that depends on the interplay of many components. This work analyzed the gene targets for 4 transcription factors: FnrL, PrrA, CrpK and MppG (RSP_2888), which are known or predicted to control photosynthesis in Rhodobacter sphaeroides. Chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-seq) identified 52 operons under direct control of FnrL, illustrating its regulatory role in photosynthesis, iron homeostasis, nitrogen met...

  3. Global analysis of photosynthesis transcriptional regulatory networks.

    OpenAIRE

    Saheed Imam; Noguera, Daniel R.; Donohue, Timothy J.

    2014-01-01

    Photosynthesis is a crucial biological process that depends on the interplay of many components. This work analyzed the gene targets for 4 transcription factors: FnrL, PrrA, CrpK and MppG (RSP_2888), which are known or predicted to control photosynthesis in Rhodobacter sphaeroides. Chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-seq) identified 52 operons under direct control of FnrL, illustrating its regulatory role in photosynthesis, iron homeostasis, nitrogen met...

  4. A mixed incoherent feed-forward loop contributes to the regulation of bacterial photosynthesis genes

    OpenAIRE

    Mank, Nils N.; Berghoff, Bork A.; Klug, Gabriele

    2013-01-01

    Living cells use a variety of regulatory network motifs for accurate gene expression in response to changes in their environment or during differentiation processes. In Rhodobacter sphaeroides, a complex regulatory network controls expression of photosynthesis genes to guarantee optimal energy supply on one hand and to avoid photooxidative stress on the other hand. Recently, we identified a mixed incoherent feed-forward loop comprising the transcription factor PrrA, the sRNA PcrZ and photosyn...

  5. Argonaute of the archaeon Pyrococcus furiosus is a DNA-guided nuclease that targets cognate DNA

    OpenAIRE

    Swarts, Daan C.; Hegge, Jorrit W.; Hinojo, Ismael; Shiimori, Masami; Ellis, Michael A.; Dumrongkulraksa, Justin; Terns, Rebecca M.; Terns, Michael P.; van der Oost, John

    2015-01-01

    Functions of prokaryotic Argonautes (pAgo) have long remained elusive. Recently, Argonautes of the bacteria Rhodobacter sphaeroides and Thermus thermophilus were demonstrated to be involved in host defense. The Argonaute of the archaeon Pyrococcus furiosus (PfAgo) belongs to a different branch in the phylogenetic tree, which is most closely related to that of RNA interference-mediating eukaryotic Argonautes. Here we describe a functional and mechanistic characterization of PfAgo. Like the bac...

  6. Antagonistic Activities of Purple Non-sulfur Bacterial Extracts Against Antibiotic Resistant Vibrio sp.

    OpenAIRE

    Chandrasekaran, R.; Ashok Kumar, G. V.

    2011-01-01

    Solvent extracts of native purple non-sulfur bacterial (PNSB) isolates from the effluents of brackish shrimp culture ponds, near Nagapattinam coast (South India) were evaluated for antibacterial activity by the disc diffusion method. Best results were shown by the chloroform extracts against oxytetracycline resistant Vibrio harveyi and Vibrio fischerii. Among the purple non-sulfur bacterial isolates, Rhodobacter sphaeroides, showed maximum antagonistic activity. The findings suggest that the...

  7. Hydrophobic organization of membrane proteins

    OpenAIRE

    Rees, D C; DeAntonio, L.; Eisenberg, D.

    1989-01-01

    Membrane-exposed residues are more hydrophobic than buried interior residues in the transmembrane regions of the photosynthetic reaction center from Rhodobacter sphaeroides. This hydrophobic organization is opposite to that of water-soluble proteins. The relative polarities of interior and surface residues of membrane and water soluble proteins are not simply reversed, however. The hydrophobicities of interior residues of both membrane and water-soluble proteins are comparable, whereas the bi...

  8. Inflammasomes Coordinate Pyroptosis and Natural Killer Cell Cytotoxicity to Clear Infection by a Ubiquitous Environmental Bacterium.

    Science.gov (United States)

    Maltez, Vivien I; Tubbs, Alan L; Cook, Kevin D; Aachoui, Youssef; Falcone, E Liana; Holland, Steven M; Whitmire, Jason K; Miao, Edward A

    2015-11-17

    Defective neutrophils in patients with chronic granulomatous disease (CGD) cause susceptibility to extracellular and intracellular infections. Microbes must first be ejected from intracellular niches to expose them to neutrophil attack, so we hypothesized that inflammasomes detect certain CGD pathogens upstream of neutrophil killing. Here, we identified one such ubiquitous environmental bacterium, Chromobacterium violaceum, whose extreme virulence was fully counteracted by the NLRC4 inflammasome. Caspase-1 protected via two parallel pathways that eliminated intracellular replication niches. Pyroptosis was the primary bacterial clearance mechanism in the spleen, but both pyroptosis and interleukin-18 (IL-18)-driven natural killer (NK) cell responses were required for liver defense. NK cells cleared hepatocyte replication niches via perforin-dependent cytotoxicity, whereas interferon-γ was not required. These insights suggested a therapeutic approach: exogenous IL-18 restored perforin-dependent cytotoxicity during infection by the inflammasome-evasive bacterium Listeria monocytogenes. Therefore, inflammasomes can trigger complementary programmed cell death mechanisms, directing sterilizing immunity against intracellular bacterial pathogens. PMID:26572063

  9. Hyperthermostable and oxygen resistant hydrogenases from a hyperthermophilic bacterium Aquifex aeolicus: Physicochemical properties

    Energy Technology Data Exchange (ETDEWEB)

    Guiral, Marianne; Tron, Pascale; Belle, Valerie; Aubert, Corinne; Leger, Christophe; Guigliarelli, Bruno; Giudici-Orticoni, Marie-Therese [Laboratoire de Bioenergetique et Ingenierie des Proteines (BIP) IBSM, CNRS, 31 Chemin Joseph Aiguier, 13402 Marseille cedex 20 (France)

    2006-09-15

    The discovery of hydrogenases in hyperthermophiles has important ramifications not only in microbial physiology and evolution but also in biotechnologies. These organisms are the source of extremely stable enzymes (regarding temperature, pressure, and O{sub 2}). Aquifex aeolicus is a microaerophilic, hyperthermophilic bacterium containing three [NiFe] hydrogenases. It is the most hyperthermophilic bacterium known to date and grows at 85{sup o}C under a H{sub 2}/CO{sub 2}/O{sub 2} atmosphere. The Aquificales represent the earliest branching order of the bacterial domain indicating that they are the most ancient bacteria. Two Aquifex hydrogenases (one membrane-bound and one soluble) have been purified and characterized. In contrast to the majority of the [NiFe] hydrogenases, the hydrogenases from A. aeolicus are rather tolerant to oxygen. The molecular basis of the oxygen resistance of Aquifex hydrogenases has been investigated. The great stability of Aquifex hydrogenases with respect to oxygen and high temperatures make these enzymes good candidates for biotechnological uses. (author)

  10. Enrichment and physiological characterization of a novel Nitrospira-like bacterium obtained from a marine sponge.

    Science.gov (United States)

    Off, Sandra; Alawi, Mashal; Spieck, Eva

    2010-07-01

    Members of the nitrite-oxidizing genus Nitrospira are most likely responsible for the second step of nitrification, the conversion of nitrite (NO(2)(-)) to nitrate (NO(3)(-)), within various sponges. We succeeded in obtaining an enrichment culture of Nitrospira derived from the mesohyl of the marine sponge Aplysina aerophoba using a traditional cultivation approach. Electron microscopy gave first evidence of the shape and ultrastructure of this novel marine Nitrospira-like bacterium (culture Aa01). We characterized these bacteria physiologically with regard to optimal incubation conditions, especially the temperature and substrate range in comparison to other Nitrospira cultures. Best growth was obtained at temperatures between 28 degrees C and 30 degrees C in mineral medium with 70% North Sea water and a substrate concentration of 0.5 mM nitrite under microaerophilic conditions. The Nitrospira culture Aa01 is very sensitive against nitrite, because concentrations higher than 1.5 mM resulted in a complete inhibition of growth. Sequence analyses of the 16S rRNA gene revealed that the novel Nitrospira-like bacterium is separated from the sponge-specific subcluster and falls together with an environmental clone from Mediterranean sediments (98.6% similarity). The next taxonomically described species Nitrospira marina is only distantly related, with 94.6% sequence similarity, and therefore the culture Aa01 represents a novel species of nitrite-oxidizing bacteria. PMID:20511427

  11. (Per)chlorate reduction by an acetogenic bacterium, Sporomusa sp., isolated from an underground gas storage.

    KAUST Repository

    Balk, Melike

    2010-08-03

    A mesophilic bacterium, strain An4, was isolated from an underground gas storage reservoir with methanol as substrate and perchlorate as electron acceptor. Cells were Gram-negative, spore-forming, straight to curved rods, 0.5-0.8 microm in diameter, and 2-8 microm in length, growing as single cells or in pairs. The cells grew optimally at 37 degrees C, and the pH optimum was around 7. Strain An4 converted various alcohols, organic acids, fructose, acetoin, and H(2)/CO(2) to acetate, usually as the only product. Succinate was decarboxylated to propionate. The isolate was able to respire with (per)chlorate, nitrate, and CO(2). The G+C content of the DNA was 42.6 mol%. Based on the 16S rRNA gene sequence analysis, strain An4 was most closely related to Sporomusa ovata (98% similarity). The bacterium reduced perchlorate and chlorate completely to chloride. Key enzymes, perchlorate reductase and chlorite dismutase, were detected in cell-free extracts.

  12. Non-specific immune response of bullfrog Rana catesbeiana to intraperitoneal injection of bacterium Aeromonas hydrophila

    Science.gov (United States)

    Zhang, Junjie; Zou, Wenzheng; Yan, Qingpi

    2008-08-01

    Non-specific immune response of bullfrog Rana catesbeiana to pathogenic Aeromonas hydrophila was studied to 60 individuals in two groups. Each bullfrog in bacterium-injected group was injected intraperitoneally (i.p.) with 0.2 ml bacterial suspension at a density of 5.2 × 106 CFU/ml, while each one in control group injected i.p. with 0.2 ml sterile saline solution (0.85%, w/v). Three bullfrogs in both groups were sampled at 0, 1, 3, 7, 11, 15 and 20 days post-injection (dpi) for the evaluation of non-specific immune parameters. It was observed that intraperitoneal injection of A. hydrophila significantly increased the number of leucocytes and that of NBT-positive cells in peripheral blood. Significant increases in serum bactericidal activity and serum acid phosphatase activity were also observed in the bacterium-injected frogs when compared with those in the control group. However, a significant reduction was detected in vitro in phagocytosis activity of peripheral blood phagocytes. No significant difference in changes in the number of peripheral erythrocytes, serum superoxide dismutase (SOD) activity, and lysozyme activity was detected between the two groups. It is suggested that bullfrogs may produce a series of non-specific immune reactions in response to the A. hydrophila infection.

  13. Evaluation of nitrate removal by continuous culturing of an aerobic denitrifying bacterium, Paracoccus pantotrophus.

    Science.gov (United States)

    Hasegawa-Kurisu, K; Otani, Y; Hanaki, K

    2006-01-01

    Nitrate removal under aerobic conditions was investigated using pure cultures of Paracoccus pantotrophus, which is a well-known aerobic-denitrifying (AD) bacterium. When a high concentration of cultures with a high carbon/nitrogen (C/N) ratio was preserved at the beginning of batch experiments, subsequently added nitrate was completely removed. When continuous culturing was perpetuated, a high nitrate removal rate (66.5%) was observed on day 4 post-culture, although gradual decreases in AD ability with time were observed. The attenuation in AD ability was probably caused by carbon limitation, because when carbon concentration of inflow water was doubled, nitrate removal efficiency improved from 18.1% to 59.6%. Bacterial community analysis using the polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) method showed that P. pantotrophus disappeared in the suspended medium on day 8 post-culture, whereas other bacterial communities dominated by Acidovorax sp. appeared. Interestingly, this replaced bacterial community also showed AD ability. As P. pantotrophus was detected as attached colonies around the membrane and bottom of the reactor, this bacterium can therefore be introduced in a fixed form for treatment of wastewater containing nitrate with a high C/N ratio. PMID:17163031

  14. Non-specific immune response of bullfrog Rana catesbeiana to intraperitoneal injection of bacterium Aeromonas hydrophila

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Non-specific immune response of bullfrog Rana catesbeiana to pathogenic Aeromonas hydrophila was studied to 60 individuals in two groups. Each bullfrog in bacterium-injected group was injected intraperitoneally (i.p.) with 0.2 ml bacterial suspension at a density of 5.2 × 106 CFU/ml, while each one in control group injected i.p. with 0.2 ml sterile saline solution (0.85%, w/v). Three bullfrogs in both groups were sampled at 0, 1, 3, 7, 11, 15 and 20 days post-injection (dpi) for the evaluation of non-specific immune parameters. It was observed that intraperitoneal injection of A. hydrophila significantly increased the number of leucocytes and that of NBT-positive cells in peripheral blood. Significant increases in serum bactericidal activity and serum acid phosphatase activity were also observed in the bacterium-injected frogs when compared with those in the control group. However, a significant reduction was detected in vitro in phagocytosis activity of peripheral blood phagocytes. No significant difference in changes in the number of peripheral erythrocytes, serum superoxide dismutase (SOD) activity, and lysozyme activity was detected between the two groups. It is suggested that bullfrogs may produce a series of non-specific immune reactions in response to the A. hydrophila infection.

  15. Biogenesis of antibacterial silver nanoparticles using the endophytic bacterium Bacillus cereus isolated from Garcinia xanthochymus

    Institute of Scientific and Technical Information of China (English)

    Swetha Sunkar; C Valli Nachiyar

    2012-01-01

    Objective:To synthesize the ecofriendly nanoparticles, which is viewed as an alternative to the chemical method which initiated the use of microbes like bacteria and fungi in their synthesis. Methods: The current study uses the endophytic bacterium Bacillus cereus isolated from the Garcinia xanthochymus to synthesize the silver nanoparticles (AgNPs). The AgNPs were synthesized by reduction of silver nitrate solution by the endophytic bacterium after incubation for 3-5 d at room temperature. The synthesis was initially observed by colour change from pale white to brown which was confirmed by UV-Vis spectroscopy. The AgNPs were further characterized using FTIR, SEM-EDX and TEM analyses. Results:The synthesized nanoparticles were found to be spherical with the size in the range of 20-40 nm which showed a slight aggregation. The energy-dispersive spectra of the nanoparticle dispersion confirmed the presence of elemental silver. The AgNPs were found to have antibacterial activity against a few pathogenic bacteria like Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, Salmonella typhi and Klebsiella pneumoniae. Conclusions:The endophytic bacteria identified as Bacillus cereus was able to synthesize silver nanoparticles with potential antibacterial activity.

  16. Production and characterization of bioemulsifier from a marine bacterium, Acinetobacter calcoaceticus subsp. anitratus SM7

    Directory of Open Access Journals (Sweden)

    Kulnaree Phetrong

    2008-05-01

    Full Text Available Marine bacterium strain SM7 was isolated as a bioemulsifier-producing bacterium from oil-spilled seawater in Songkhla lagoon, Thailand. It was identified as Acinetobacter calcoaceticus subsp. anitratus based on morphology, biochemicalcharacteristics and 16S rRNA sequence. A. calcoaceticus subsp. anitratus SM7 produced an extracellular emulsifying agent when grown in a minimal salt medium (pH 7.0 containing 0.3% (v/v n-heptadecane and 0.1% (w/v ammoniumhydrogen carbonate as carbon source and nitrogen source, respectively, at 30oC with agitation rate of 200 rpm. Crude bioemulsifier was recovered from the culture supernatant by ethanol precipitation with a yield of 2.94 g/l and had a criticalemulsifier concentration of 0.04 g/ml. The crude bioemulsifier was capable of emulsifying n-hexadecane in a broad pH range (6-12, temperatures (30-121oC and in the presence of NaCl up to 12% (w/v. The bioemulsifier was stable in saltsolution ranging from 0 to 0.1% (w/v of MgCl2 and CaCl2. The broad range of pH stability, thermostability and salt tolerance suggested that the bioemulsifier from A. calcoaceticus subsp. anitratus SM7 could be useful in environmentalapplication, especially bioremediation of oil-polluted seawater.

  17. Microfabrication of patterns of adherent marine bacterium Phaeobacter inhibens using soft lithography and scanning probe lithography.

    Science.gov (United States)

    Zhao, Chuan; Burchardt, Malte; Brinkhoff, Thorsten; Beardsley, Christine; Simon, Meinhard; Wittstock, Gunther

    2010-06-01

    Two lithographic approaches have been explored for the microfabrication of cellular patterns based on the attachment of marine bacterium Phaeobacter inhibens strain T5. Strain T5 produces a new antibiotic that makes this bacterium potentially interesting for the pharmaceutical market and as a probiotic organism in aquacultures and in controlling biofouling. The microcontact printing (microCP) method is based on the micropatterning of self-assembled monolayers (SAMs) terminated with adhesive end groups such as CH(3) and COOH and nonadhesive groups (e.g., short oligomers of ethylene glycol (OEG)) to form micropatterned substrates for the adhesion of strain T5. The scanning probe lithographic method is based on the surface modification of OEG SAM by using a microelectrode, the probe of a scanning electrochemical microscope (SECM). Oxidizing agents (e.g., Br(2)) were electrogenerated in situ at the microelectrodes from Br(-) in aqueous solution to remove OEG SAMs locally, which allows the subsequent adsorption of bacteria. Various micropatterns of bacteria could be formed in situ on the substrate without a prefabricated template. The fabricated cellular patterns may be applied to a variety of marine biological studies that require the analysis of biofilm formation, cell-cell and cell-surface interactions, and cell-based biosensors and bioelectronics. PMID:20397716

  18. INDISIM-Paracoccus, an individual-based and thermodynamic model for a denitrifying bacterium.

    Science.gov (United States)

    Araujo Granda, Pablo; Gras, Anna; Ginovart, Marta; Moulton, Vincent

    2016-08-21

    We have developed an individual-based model for denitrifying bacteria. The model, called INDISIM-Paracoccus, embeds a thermodynamic model for bacterial yield prediction inside the individual-based model INDISIM, and is designed to simulate the bacterial cell population behavior and the product dynamics within the culture. The INDISIM-Paracoccus model assumes a culture medium containing succinate as a carbon source, ammonium as a nitrogen source and various electron acceptors such as oxygen, nitrate, nitrite, nitric oxide and nitrous oxide to simulate in continuous or batch culture the different nutrient-dependent cell growth kinetics of the bacterium Paracoccus denitrificans. The individuals in the model represent microbes and the individual-based model INDISIM gives the behavior-rules that they use for their nutrient uptake and reproduction cycle. Three previously described metabolic pathways for P. denitrificans were selected and translated into balanced chemical equations using a thermodynamic model. These stoichiometric reactions are an intracellular model for the individual behavior-rules for metabolic maintenance and biomass synthesis and result in the release of different nitrogen oxides to the medium. The model was implemented using the NetLogo platform and it provides an interactive tool to investigate the different steps of denitrification carried out by a denitrifying bacterium. The simulator can be obtained from the authors on request. PMID:27179457

  19. Data supporting functional diversity of the marine bacterium Cobetia amphilecti KMM 296.

    Science.gov (United States)

    Balabanova, Larissa; Nedashkovskaya, Olga; Podvolotskaya, Anna; Slepchenko, Lubov; Golotin, Vasily; Belik, Alexey; Shevchenko, Ludmila; Son, Oksana; Rasskazov, Valery

    2016-09-01

    Data is presented in support of functionality of hyper-diverse protein families encoded by the Cobetia amphilecti KMM 296 (formerly Cobetia marina KMM 296) genome ("The genome of the marine bacterium Cobetia marina KMM 296 isolated from the mussel Crenomytilus grayanus (Dunker, 1853)" [1]) providing its nutritional versatility, adaptability and biocontrol that could be the basis of the marine bacterium evolutionary and application potential. Presented data include the information of growth and biofilm-forming properties of the food-associated isolates of Pseudomonas, Bacillus, Listeria, Salmonella and Staphylococcus under the conditions of their co-culturing with C. amphilecti KMM 296 to confirm its high inter-species communication and anti-microbial activity. Also included are the experiments on the crude petroleum consumption by C. amphilecti KMM 296 as the sole source of carbon in the presence of sulfate or nitrate to ensure its bioremediation capacity. The multifunctional C. amphilecti KMM 296 genome is a promising source for the beneficial psychrophilic enzymes and essential secondary metabolites. PMID:27508225

  20. Photobacterium damselae subsp. damselae, a bacterium pathogenic for marine animals and humans

    Directory of Open Access Journals (Sweden)

    Amable J. Rivas

    2013-09-01

    Full Text Available Photobacterium damselae subsp. damselae (formerly Vibrio damsela is a pathogen of a variety of marine animals including fish, crustaceans, molluscs and cetaceans. In humans, it can cause opportunistic infections that may evolve into necrotizing fasciitis with fatal outcome. Although the genetic basis of virulence in this bacterium is not completely elucidated, recent findings demonstrate that the phospholipase-D Dly (damselysin and the pore-forming toxins HlyApl and HlyAch play a main role in virulence for homeotherms and poikilotherms. The acquisition of the virulence plasmid pPHDD1 that encodes Dly and HlyApl has likely constituted a main driving force in the evolution of a highly hemolytic lineage within the subspecies. Interestingly, strains that naturally lack pPHDD1 show a strong pathogenic potential for a variety of fish species, indicating the existence of yet uncharacterized virulence factors. Future and deep analysis of the complete genome sequence of P. damselae subsp. damselae will surely provide a clearer picture of the virulence factors employed by this bacterium to cause disease in such a varied range of hosts.

  1. Photobacterium damselae subsp. damselae, a bacterium pathogenic for marine animals and humans.

    Science.gov (United States)

    Rivas, Amable J; Lemos, Manuel L; Osorio, Carlos R

    2013-01-01

    Photobacterium damselae subsp. damselae (formerly Vibrio damsela) is a pathogen of a variety of marine animals including fish, crustaceans, molluscs, and cetaceans. In humans, it can cause opportunistic infections that may evolve into necrotizing fasciitis with fatal outcome. Although the genetic basis of virulence in this bacterium is not completely elucidated, recent findings demonstrate that the phospholipase-D Dly (damselysin) and the pore-forming toxins HlyApl and HlyAch play a main role in virulence for homeotherms and poikilotherms. The acquisition of the virulence plasmid pPHDD1 that encodes Dly and HlyApl has likely constituted a main driving force in the evolution of a highly hemolytic lineage within the subspecies. Interestingly, strains that naturally lack pPHDD1 show a strong pathogenic potential for a variety of fish species, indicating the existence of yet uncharacterized virulence factors. Future and deep analysis of the complete genome sequence of Photobacterium damselae subsp. damselae will surely provide a clearer picture of the virulence factors employed by this bacterium to cause disease in such a varied range of hosts. PMID:24093021

  2. The fate of a nitrobenzene-degrading bacterium in pharmaceutical wastewater treatment sludge.

    Science.gov (United States)

    Ren, Yuan; Yang, Juan; Chen, Shaoyi

    2015-12-01

    This paper describes the fate of a nitrobenzene-degrading bacterium, Klebsiella oxytoca NBA-1, which was isolated from a pharmaceutical wastewater treatment facility. The 90-day survivability of strain NBA-1 after exposure to sludge under anaerobic and aerobic conditions was investigated. The bacterium was inoculated into sludge amended with glucose and p-chloronitrobenzene (p-CNB) to compare the bacterial community variations between the modified sludge and nitrobenzene amendment. The results showed that glucose had no obvious effect on nitrobenzene biodegradation in the co-metabolism process, regardless of the presence/absence of oxygen. When p-CNB was added under anaerobic conditions, the biodegradation rate of nitrobenzene remained unchanged although p-CNB inhibited the production of aniline. The diversity of the microbial community increased and NBA-1 continued to be one of the dominant strains. Under aerobic conditions, the degradation rate of both nitrobenzene and p-CNB was only 20% of that under anaerobic conditions. p-CNB had a toxic effect on the microorganisms in the sludge so that most of the DGGE (denaturing gradient gel electrophoresis) bands, including that of NBA-1, began to disappear under aerobic conditions after 90days of exposure. These data show that the bacterial community was stable under anaerobic conditions and the microorganisms, including NBA-1, were more resistant to the adverse environment. PMID:26086561

  3. Structural characterization of the lipid A from the LPS of the haloalkaliphilic bacterium Halomonas pantelleriensis.

    Science.gov (United States)

    Carillo, Sara; Pieretti, Giuseppina; Casillo, Angela; Lindner, Buko; Romano, Ida; Nicolaus, Barbara; Parrilli, Michelangelo; Giuliano, Mariateresa; Cammarota, Marcella; Lanzetta, Rosa; Corsaro, Maria Michela

    2016-09-01

    Halomonas pantelleriensis DSM9661(Τ) is a Gram-negative haloalkaliphilic bacterium isolated from the sand of the volcanic Venus mirror lake, closed to seashore in the Pantelleria Island in the south of Italy. It is able to optimally grow in media containing 3-15 % (w/v) total salt and at pH between 9 and 10. To survive in these harsh conditions, the bacterium has developed several strategies that probably concern the bacteria outer membrane, a barrier regulating the exchange with the environment. In such a context, the lipopolysaccharides (LPSs), which are among the major constituent of the Gram-negative outer membrane, are thought to contribute to the restrictive membrane permeability properties. The structure of the lipid A family derived from the LPS of Halomonas pantelleriensis DSM 9661(T) is reported herein. The lipid A was obtained from the purified LPS by mild acid hydrolysis. The lipid A, which contains different numbers of fatty acids residues, and its partially deacylated derivatives were completely characterized by means of ESI FT-ICR mass spectrometry and chemical analysis. Preliminary immunological assays were performed, and a comparison with the lipid A structure of the phylogenetic proximal Halomonas magadiensis is also reported. PMID:27329160

  4. Isolation, cloning and characterization of an azoreductase from the halophilic bacterium Halomonas elongata.

    Science.gov (United States)

    Eslami, Maryam; Amoozegar, Mohammad Ali; Asad, Sedigheh

    2016-04-01

    Azo dyes are a major class of colorants used in various industries including textile, paper and food. These dyes are regarded as pollutant since they are not readily reduced under aerobic conditions. Halomonas elongata, a halophilic bacterium, has the ability to decolorize different mono and di-azo dyes in anoxic conditions. In this study the putative azoreductase gene of H. elongata, formerly annotated as acp, was isolated, heterologously expressed in Escherichia coli, purified and characterized. The gene product, AzoH, was found to have a molecular mass of 22 kDa. The enzyme requires NADH, as an electron donor for its activity. The apparent Km was 63 μM for NADH and 12 μM for methyl red as a mono-azo dye substrate. The specific activity for methyl red was 0.27 μmol min(-1)mg(-1). The optimum enzyme activity was achieved in 50mM sodium phosphate buffer at pH 6. Although increased salinity resulted in reduced activity, AzoH could decolorize azo dye at NaCl concentrations up to 15% (w/v). The enzyme was also shown to be able to decolorize remazol black B as a representative of di-azo dyes. This is the first report describing the sequence and activity of an azo-reducing enzyme from a halophilic bacterium. PMID:26724685

  5. Emulsification potential of a newly isolated biosurfactant-producing bacterium, Rhodococcus sp. strain TA6.

    Science.gov (United States)

    Shavandi, Mahmoud; Mohebali, Ghasemali; Haddadi, Azam; Shakarami, Heidar; Nuhi, Ashrafossadat

    2011-02-01

    An indigenous biosurfactant producing bacterium, Rhodococcus sp. strain TA6 was isolated from Iranian oil contaminated soil using an efficient enrichment and screening method. During growth on sucrose and several hydrocarbon substrates as sole carbon source, the bacterium could produce biosurfactants. As a result of biosurfactant synthesis, the surface tension of the growth medium was reduced from 68mNm(-1) to values below 30mNm(-1). The biosurfactant was capable of forming stable emulsions with various hydrocarbons ranging from pentane to light motor oil. Preliminary chemical characterization revealed that the TA6 biosurfactant consisted of extracellular lipids and glycolipids. The biosurfactant was stable during exposure to high salinity (10% NaCl), elevated temperatures (120°C for 15min) and within a wide pH range (4.0-10.0). The culture broth was effective in recovering up to 70% of the residual oil from oil-saturated sand packs which indicates the potential value of the biosurfactant in enhanced oil recovery. PMID:21030223

  6. (Per)chlorate reduction by an acetogenic bacterium, Sporomusa sp., isolated from an underground gas storage.

    Science.gov (United States)

    Balk, Melike; Mehboob, Farrakh; van Gelder, Antonie H; Rijpstra, W Irene C; Damsté, Jaap S Sinninghe; Stams, Alfons J M

    2010-09-01

    A mesophilic bacterium, strain An4, was isolated from an underground gas storage reservoir with methanol as substrate and perchlorate as electron acceptor. Cells were Gram-negative, spore-forming, straight to curved rods, 0.5-0.8 microm in diameter, and 2-8 microm in length, growing as single cells or in pairs. The cells grew optimally at 37 degrees C, and the pH optimum was around 7. Strain An4 converted various alcohols, organic acids, fructose, acetoin, and H(2)/CO(2) to acetate, usually as the only product. Succinate was decarboxylated to propionate. The isolate was able to respire with (per)chlorate, nitrate, and CO(2). The G+C content of the DNA was 42.6 mol%. Based on the 16S rRNA gene sequence analysis, strain An4 was most closely related to Sporomusa ovata (98% similarity). The bacterium reduced perchlorate and chlorate completely to chloride. Key enzymes, perchlorate reductase and chlorite dismutase, were detected in cell-free extracts. PMID:20680263

  7. Enhanced Cadmium (Cd Phytoextraction from Contaminated Soil using Cd-Resistant Bacterium

    Directory of Open Access Journals (Sweden)

    Kunchaya Setkit

    2014-01-01

    Full Text Available A cadmium (Cd-resistant bacterium, Micrococcus sp. MU1, is able to produce indole-3-acetic acid and promotes root elongation and plant growth. The potential of this bacterium on enhancement of Cd uptake and bioaccumulation of Cd in Helianthus annuus L. planted in Cd-contaminated soil was evaluated in greenhouse condition. The results showed that Micrococcus sp. MU1promoted the growth of H. annuus L. by increasing the root length, stem height, dry biomass, root to shoot ratio and also significantly increased Cd accumulation in the root and above-ground tissues of H. annuus L. compared to uninoculated control. Re-inoculation with Micrococcus sp. MU1in contaminated soil helped in promoting plant growth and Cd phytoextraction throughout the cultivation period. In addition, phytoextraction coefficient and translocation factor (TF of H. annuus L. inoculated with Micrococcus sp. MU1were higher than that of uninoculated control and TF continuously increased with time. Our results suggested that Micrococcus sp. MU1 has an ability to enhance plant growth and Cd uptake in H. annuus L. Synergistic interaction between Micrococcus sp. MU1 and H. annuus L. could be further applied for Cd phytoextraction in polluted areas.

  8. Melanin from the nitrogen-fixing bacterium Azotobacter chroococcum: a spectroscopic characterization.

    Directory of Open Access Journals (Sweden)

    Aulie Banerjee

    Full Text Available Melanins, the ubiquitous hetero-polymer pigments found widely dispersed among various life forms, are usually dark brown/black in colour. Although melanins have variety of biological functions, including protection against ultraviolet radiation of sunlight and are used in medicine, cosmetics, extraction of melanin from the animal and plant kingdoms is not an easy task. Using complementary physicochemical techniques (i.e. MALDI-TOF, FTIR absorption and cross-polarization magic angle spinning solid-state (13C NMR, we report here the characterization of melanins extracted from the nitrogen-fixing non-virulent bacterium Azotobacter chroococcum, a safe viable source. Moreover, considering dihydroxyindole moiety as the main constituent, an effort is made to propose the putative molecular structure of the melanin hetero-polymer extracted from the bacterium. Characterization of the melanin obtained from Azotobacter chroococcum would provide an inspiration in extending research activities on these hetero-polymers and their use as protective agent against UV radiation.

  9. Removal of corper(II Ions from aqueous solution by a lactic acid bacterium

    Directory of Open Access Journals (Sweden)

    M. Yilmaz

    2010-06-01

    Full Text Available Enterococcus faecium, a lactic acid bacterium (LAB, was evaluated for its ability to remove copper(II ions from water. The effects of the pH, contact time, initial concentration of copper(II ions, and temperature on the biosorption rate and capacity were studied. The initial concentrations of copper(II ions used to determine the maximum amount of biosorbed copper(II ions onto lyophilised lactic acid bacterium varied from 25 mg L-1 to 500 mg L-1. Maximum biosorption capacities were attained at pH 5.0 and 6.0. Temperature variation between 20°C and 40°C did not affect the biosorption capacity of the bacterial biomass. The highest copper(II ion removal capacity was 106.4 mg per g dry biomass. The correlation regression coefficients show that the biosorption process can be well defined by the Freundlich equation. The change in biosorption capacity with time was found to fit a pseudo-second-order equation.

  10. The algae-lytic ability of bacterium DC10 and the influence of environmental factors on the ability

    Institute of Scientific and Technical Information of China (English)

    SHI; Shunyu; LIU; Yongding; SHEN; Yinwu; LI; Genbao

    2005-01-01

    A lysing-bacterium DC10, isolated from Dianchi Lake of Yunnan Province, was characterized to be Pseudomonas sp. It was able to lyse some algae well, such as Microcystis viridis, Selenastrum capricornutum, and so on. In this study, it was shown that the bacterium lysed the algae by releasing a substance; the best lytic effects were achieved at Iow temperatures and in the dark. Different concentrations of CaCI2 and NaNO3 influenced the lytic effects;the ability to lyse algae decreased in the following order: pH 4 > pH 9 > pH 7 > pH 5.5. It was significant to develop a special technology with this kind of bacterium for controlling the bloomforming planktonic microalgae.

  11. Cloning of the cnr operon into a strain of Bacillaceae bacterium for the development of a suitable biosorbent.

    Science.gov (United States)

    Fosso-Kankeu, Elvis; Mulaba-Bafubiandi, Antoine F; Piater, Lizelle A; Tlou, Matsobane G

    2016-07-01

    In this study, a potential microbial biosorbent was engineered to improve its capacity to remediate heavy metal contaminated water resources. A Bacillaceae bacterium isolated from a mining area was transformed with a plasmid carrying the (pECD312)-based cnr operon that encodes nickel and cobalt resistance. The bioadsorption ability of the transformed strain was evaluated for removal of nickel from metallurgical water relative to the wildtype strain. Results showed that transformation improved the adsorption capacity of the bacterium by 37 % at nickel concentrations equivalent to 150 mg/L. Furthermore it was possible to apply prediction modelling to study the bioadsorption behaviour of the transformed strain. As such, this work may be extended to the design of a nickel bioremediation plant utilising the newly developed Bacillaceae bacterium as a biosorbent. PMID:27263009

  12. Antibacterial Property of a Coral-Associated Bacterium Pseudoalteromonas luteoviolacea Against Shrimp Pathogenic Vibrio harveyi (In Vitro Study

    Directory of Open Access Journals (Sweden)

    OCKY KARNA RADJASA

    2005-06-01

    Full Text Available A coral-associated bacterium was successfully screened for secondary metabolites production based on PCR amplification of the nonribosomal peptide synthetase gene and was identified as closely related to Pseudoalteromonas luteoviolacea based on its 16S rDNA.The bacterium was found to inhibit the growth of shrimp pathogenic bacterium tested, Vibrio harveyi. To characterize the inhibiting metabolite, a 279 bp long DNA fragment was obtained and the deduced amino acid sequence showed conserved signature regions for peptide synthetases and revealed a high similarity to NosD (40% identity, a multifunctional peptide synthetase from Nostoc sp. GSV224, and NdaB (44% identity, a peptide synthetase module of Nodularia spumigena.

  13. Draft Genome Sequence of the Endophytic Bacterium Enterobacter spp. MR1, Isolated from Drought Tolerant Plant (Butea monosperma)

    OpenAIRE

    Parakhia, Manoj V.; Tomar, Rukam S.; Malaviya, Bipin J.; Dhingani, Rashmin M.; Rathod, Visha M.; Thakkar, Jalpa R.; Golakiya, B. A.

    2013-01-01

    Enterobacter sp. MR1 an endophytic plant growth promoting bacterium was isolated from the roots of Butea monosperma, a drought tolerant plant. Genome sequencing of Enterobacter spp. MR1 was carried out in Ion Torrent (PGM), Next Generation Sequencer. The data obtained revealed 640 contigs with genome size of 4.58 Mb and G+C content of 52.8 %. This bacterium may contain genes responsible for inducing drought tolerance in plant, including genes for phosphate solubilization, growth hormones and ...

  14. Bacterium-like Particles for efficient immune stimulation of existing vaccines and new subunit vaccines in mucosal applications

    Directory of Open Access Journals (Sweden)

    Natalija eVan Braeckel-Budimir

    2013-09-01

    Full Text Available The successful development of a mucosal vaccine critically depends on the use of a safe and effective immunostimulant and/or carrier system. This review describes the effectiveness and mode of action of an immunostimulating particle derived from bacteria in mucosal subunit vaccines. The non-living particles, designated Bacterium-like Particles (BLPs are based on the food-grade bacterium Lactococcus lactis. The focus of the overview is on the development of intranasal BLP-based vaccines to prevent diseases caused by influenza and respiratory syncytial virus, and includes a selection of Phase I clinical data for the intranasal FluGEM vaccine.

  15. Bacterium-Like Particles for Efficient Immune Stimulation of Existing Vaccines and New Subunit Vaccines in Mucosal Applications

    Science.gov (United States)

    Van Braeckel-Budimir, Natalija; Haijema, Bert Jan; Leenhouts, Kees

    2013-01-01

    The successful development of a mucosal vaccine depends critically on the use of a safe and effective immunostimulant and/or carrier system. This review describes the effectiveness and mode of action of an immunostimulating particle, derived from bacteria, used in mucosal subunit vaccines. The non-living particles, designated bacterium-like particles are based on the food-grade bacterium Lactococcus lactis. The focus of the overview is on the development of intranasal BLP-based vaccines to prevent diseases caused by influenza and respiratory syncytial virus, and includes a selection of Phase I clinical data for the intranasal FluGEM vaccine. PMID:24062748

  16. Dehalobacter restrictus gen. nov. and sp. nov., a strictly anaerobic bacterium that reductively dechlorinates tetra- and trichloroethene in an anaerobic respiration

    NARCIS (Netherlands)

    Holliger, C; Hahn, D; Harmsen, H; Ludwig, W; Schumacher, W; Tindall, B; Vazquez, F; Weiss, N; Zehnder, AJB

    1998-01-01

    The highly enriched anaerobic bacterium that couples the reductive dechlorination of tetrachloroethene to growth, previously referred to as PER-K23, was obtained in pure culture and characterized. The bacterium, which does not form spores, is a small, gram-negative rod with one lateral flagellum. It

  17. High Prevalence of Antibodies against the Bacterium Treponema pallidum in Senegalese Guinea Baboons (Papio papio.

    Directory of Open Access Journals (Sweden)

    Sascha Knauf

    Full Text Available The bacterium Treponema pallidum is known to cause syphilis (ssp. pallidum, yaws (ssp. pertenue, and endemic syphilis (ssp. endemicum in humans. Nonhuman primates have also been reported to be infected with the bacterium with equally versatile clinical manifestations, from severe skin ulcerations to asymptomatic. At present all simian strains are closely related to human yaws-causing strains, an important consideration for yaws eradication. We tested clinically healthy Guinea baboons (Papio papio at Parc National Niokolo Koba in south eastern Senegal for the presence of anti-T. pallidum antibodies. Since T. pallidum infection in this species was identified 50 years ago, and there has been no attempt to treat non-human primates for infection, it was hypothesized that a large number of West African baboons are still infected with simian strains of the yaws-bacterium. All animals were without clinical signs of treponematoses, but 18 of 20 (90% baboons tested positive for antibodies against T. pallidum based on treponemal tests. Yet, Guinea baboons seem to develop no clinical symptoms, though it must be assumed that infection is chronic or comparable to the latent stage in human yaws infection. The non-active character is supported by the low anti-T. pallidum serum titers in Guinea baboons (median = 1:2,560 versus serum titers that are found in genital-ulcerated olive baboons with active infection in Tanzania (range of medians among the groups of initial, moderate, and severe infected animals = 1:15,360 to 1:2.097e+7. Our findings provide evidence for simian infection with T. pallidum in wild Senegalese baboons. Potentially, Guinea baboons in West Africa serve as a natural reservoir for human infection, as the West African simian strain has been shown to cause sustainable yaws infection when inoculated into humans. The present study pinpoints an area where further research is needed to support the currently on-going second WHO led yaws eradication

  18. High Prevalence of Antibodies against the Bacterium Treponema pallidum in Senegalese Guinea Baboons (Papio papio)

    Science.gov (United States)

    Knauf, Sascha; Barnett, Ulrike; Maciej, Peter; Klapproth, Matthias; Ndao, Ibrahima; Frischmann, Sieghard; Fischer, Julia; Zinner, Dietmar; Liu, Hsi

    2015-01-01

    The bacterium Treponema pallidum is known to cause syphilis (ssp. pallidum), yaws (ssp. pertenue), and endemic syphilis (ssp. endemicum) in humans. Nonhuman primates have also been reported to be infected with the bacterium with equally versatile clinical manifestations, from severe skin ulcerations to asymptomatic. At present all simian strains are closely related to human yaws-causing strains, an important consideration for yaws eradication. We tested clinically healthy Guinea baboons (Papio papio) at Parc National Niokolo Koba in south eastern Senegal for the presence of anti-T. pallidum antibodies. Since T. pallidum infection in this species was identified 50 years ago, and there has been no attempt to treat non-human primates for infection, it was hypothesized that a large number of West African baboons are still infected with simian strains of the yaws-bacterium. All animals were without clinical signs of treponematoses, but 18 of 20 (90%) baboons tested positive for antibodies against T. pallidum based on treponemal tests. Yet, Guinea baboons seem to develop no clinical symptoms, though it must be assumed that infection is chronic or comparable to the latent stage in human yaws infection. The non-active character is supported by the low anti-T. pallidum serum titers in Guinea baboons (median = 1:2,560) versus serum titers that are found in genital-ulcerated olive baboons with active infection in Tanzania (range of medians among the groups of initial, moderate, and severe infected animals = 1:15,360 to 1:2.097e+7). Our findings provide evidence for simian infection with T. pallidum in wild Senegalese baboons. Potentially, Guinea baboons in West Africa serve as a natural reservoir for human infection, as the West African simian strain has been shown to cause sustainable yaws infection when inoculated into humans. The present study pinpoints an area where further research is needed to support the currently on-going second WHO led yaws eradication campaign with

  19. Metabolism of 4-chloro-2-nitrophenol in a Gram-positive bacterium, Exiguobacterium sp. PMA

    Directory of Open Access Journals (Sweden)

    Arora Pankaj

    2012-11-01

    Full Text Available Abstract Background Chloronitrophenols (CNPs are widely used in the synthesis of dyes, drugs and pesticides, and constitute a major group of environmental pollutants. 4-Chloro-2-nitrophenol (4C2NP is an isomer of CNPs that has been detected in various industrial effluents. A number of physicochemical methods have been used for treatment of wastewater containing 4C2NP. These methods are not as effective as microbial degradation, however. Results A 4C2NP-degrading bacterium, Exiguobacterium sp. PMA, which uses 4C2NP as the sole carbon and energy source was isolated from a chemically-contaminated site in India. Exiguobacterium sp. PMA degraded 4C2NP with the release of stoichiometeric amounts of chloride and ammonium ions. The effects of different substrate concentrations and various inoculum sizes on degradation of 4C2NP were investigated. Exiguobacterium sp. PMA degraded 4C2NP up to a concentration of 0.6 mM. High performance liquid chromatography and gas chromatography–mass spectrometry identified 4-chloro-2-aminophenol (4C2AP and 2-aminophenol (2AP as possible metabolites of the 4C2NP degradation pathway. The crude extract of 4C2NP-induced PMA cells contained enzymatic activity for 4C2NP reductase and 4C2AP dehalogenase, suggesting the involvement of these enzymes in the degradation of 4C2NP. Microcosm studies using sterile and non-sterile soils spiked with 4C2NP were carried out to monitor the bioremediation potential of Exiguobacterium sp. PMA. The bioremediation of 4C2NP by Exiguobacterium sp. PMA was faster in non-sterilized soil than sterilized soil. Conclusions Our studies indicate that Exiguobacterium sp. PMA may be useful for the bioremediation of 4C2NP-contaminated sites. This is the first report of (i the formation of 2AP in the 4C2NP degradation pathway by any bacterium and (iii the bioremediation of 4C2NP by any bacterium.

  20. Isolation of pigmentation mutants of the green filamentous photosynthetic bacterium Chloroflexus aurantiacus

    International Nuclear Information System (INIS)

    Mutants deficient in the production of bateriochlorophyll c (Bchl c) and one mutant lacking colored carotenoids were isolated from the filamentous gliding bacterium Chloroflexus aurantiacus, Mutagenesis was achieved by using UV radiation or N-methyl-N'-nitro-N-nitrosoguanidine. Several clones were isolated that were deficient in Bchl c synthesis. All reverted. One double mutant deficient both in Bchl c synthesis and in the synthesis of colored carotenoids under anaerobic conditions was isolated. Isolation of a revertant in Bchl c synthesis from this double mutant produced a mutant strain of Chloroflexus that grew photosynthetically under anaerobic conditions and lacked colored carotenoids. Analysis of pigment contents and growth rates of the mutants revealed a positive association between growth rate and content of Bchl c under light-limiting conditions. 11 references, 4 figures, 3 tables

  1. Two-dimensional gel-based alkaline proteome of the probiotic bacterium Lactobacillus acidophilus NCFM.

    Science.gov (United States)

    Majumder, Avishek; Cai, Liyang; Ejby, Morten; Schmidt, Bjarne G; Lahtinen, Sampo J; Jacobsen, Susanne; Svensson, Birte

    2012-04-01

    Lactobacillus acidophilus NCFM (NCFM) is a well-documented probiotic bacterium isolated from human gut. Detailed 2D gel-based NCFM proteomics addressed the so-called alkaline range, i.e., pH 6-11. Proteins were identified in 150 of the 202 spots picked from the Coomassie Brilliant Blue stained 2D gel using MALDI-TOF-MS. The 102 unique gene products among the 150 protein identifications were assigned to different functional categories, and evaluated by considering a calculated distribution of abundance as well as grand average of hydrophobicity values. None of the very few available lactic acid bacteria proteome reference maps included the range of pI >7.0. The present report of such data on the proteome of NCFM fundamentally complements current knowledge on protein profiles limited to the acid and neutral pH range. PMID:22522807

  2. A Mutant Strain of a Surfactant-Producing Bacterium with Increased Emulsification Activity

    Institute of Scientific and Technical Information of China (English)

    Liu Qingmei; Yao Jianming; Pan Renrui; Yu Zengliang

    2005-01-01

    As reported in this paper, a strain of oil-degrading bacterium Sp- 5- 3 was determined to belong to Enterobacteriaceae, which would be useful for microbial enhanced oil recovery(MEOR). The aim of our study was to generate a mutant using low energy N+ beam implantation. With 10 keV of energy and 5.2 × 10TM N+/cm2 of dose - the optimum condition, a mutant,S - 34, was obtained, which had nearly a 5-fold higher surface and a 13-fold higher of emulsification activity than the wild type. The surface activity was measured by two methods, namely, a surface tension measuring instrument and a recording of the repulsive circle of the oil film; the emulsification activity was scaled through measuring the separating time of the oil-fermentation mixture. The metabolic acid was determined as methane by means of gas chromatography.

  3. A Mutant Strain of a Surfactant-Producing Bacterium with Increased Emulsification Activity

    Science.gov (United States)

    Liu, Qingmei; Yao, Jianming; Pan, Renrui; Yu, Zengliang

    2005-06-01

    As reported in this paper, a strain of oil-degrading bacterium Sp-5-3 was determined to belong to Enterobacteriaceae, which would be useful for microbial enhanced oil recovery (MEOR). The aim of our study was to generate a mutant using low energy N+ beam implantation. With 10 keV of energy and 5.2 × 1014 N+/cm2 of dose - the optimum condition, a mutant, S-34, was obtained, which had nearly a 5-fold higher surface and a 13-fold higher of emulsification activity than the wild type. The surface activity was measured by two methods, namely, a surface tension measuring instrument and a recording of the repulsive circle of the oil film; the emulsification activity was scaled through measuring the separating time of the oil-fermentation mixture. The metabolic acid was determined as methane by means of gas chromatography.

  4. A Marine Sulfate-Reducing Bacterium Producing Multiple Antibiotics: Biological and Chemical Investigation

    Directory of Open Access Journals (Sweden)

    Xiaoliang Wang

    2009-07-01

    Full Text Available A marine sulfate-reducing bacterium SRB-22 was isolated by means of the agar shake dilution method and identified as Desulfovibrio desulfuricans by morphological, physiological and biochemical characteristics and 16S rDNA analysis. In the bioassay, its extract showed broad-spectrum antimicrobial activity using the paper disc agar diffusion method. This isolate showed a different antimicrobial profile than either ampicillin or nystatin and was found to produce at least eight antimicrobial components by bioautography. Suitable fermentation conditions for production of the active constituents were determined to be 28 day cultivation at 25 °C to 30 °C with a 10% inoculation ratio. Under these conditions, the SRB-22 was fermented, extracted and chemically investigated. So far an antimicrobial compound, mono-n-butyl phthalate, and an inactive compound, thymine, have been isolated and characterized.

  5. Genome sequence of the marine bacterium Corynebacterium maris type strain Coryn-1(T) (= DSM 45190(T)).

    Science.gov (United States)

    Schaffert, Lena; Albersmeier, Andreas; Bednarz, Hanna; Niehaus, Karsten; Kalinowski, Jörn; Rückert, Christian

    2013-07-30

    Corynebacterium maris Coryn-1(T) Ben-Dov et al. 2009 is a member of the genus Corynebacterium which contains Gram-positive, non-spore forming bacteria with a high G+C content. C. maris was isolated from the mucus of the Scleractinian coral Fungia granulosa and belongs to the aerobic and non-haemolytic corynebacteria. It displays tolerance to salts (up to 10%) and is related to the soil bacterium Corynebacterium halotolerans. As this is a type strain in a subgroup of Corynebacterium without complete genome sequences, this project, describing the 2.78 Mbp long chromosome and the 45.97 kbp plasmid pCmaris1, with their 2,584 protein-coding and 67 RNA genes, will aid the G enomic E ncyclopedia of Bacteria and Archaea project. PMID:24501635

  6. The Antitumor Components from Marine-derived Bacterium Streptoverticillium luteoverticillatum 11014 Ⅱ

    Institute of Scientific and Technical Information of China (English)

    LI Dehai; ZHU Tianjiao; FANG Yuchun; LIU Hongbing; GU Qianqun; ZHU Weiming

    2007-01-01

    Eight known compounds were isolated from a marine-derived bacterium Streptoverticillium luteoverticillatum 11014 using bioassay-guided fractionations. Their structures were identified by spectral analysis as bis (4-hydroxybenzyl) ether (1), p-hydroxyphenylethyl alcohol (2), N-(4-hydroxyphenethyl) acetamide (3), indole-3 carboxylic acid methyl ester (4), dibenzo[b,e] [1,4]dioxine (5), thymine (6), cytosine deoxyribonucleoside (7) and 2, 3-butanediol (8). These compounds were evaluated for their cytotoxic activities against K562 cell line with the SRB method for the first time. Compounds 2 and 4 showed cytotoxcities with IC50 values of 101.1 and 165.3 μmolL-1, respectively. All compounds were isolated from S. luteoverticillatum 11014 for the first time.

  7. Analysis of convergent gene transcripts in the obligate intracellular bacterium Rickettsia prowazekii.

    Directory of Open Access Journals (Sweden)

    Andrew Woodard

    Full Text Available Termination of transcription is an important component of bacterial gene expression. However, little is known concerning this process in the obligate intracellular pathogen and model for reductive evolution, Rickettsia prowazekii. To assess transcriptional termination in this bacterium, transcripts of convergent gene pairs, some containing predicted intrinsic terminators, were analyzed. These analyses revealed that, rather than terminating at a specific site within the intervening region between the convergent genes, most of the transcripts demonstrated either a lack of termination within this region, which generated antisense RNA, or a putative non-site-specific termination that occurred throughout the intervening sequence. Transcripts terminating at predicted intrinsic terminators, as well as at a putative Rho-dependant terminator, were also examined and found to vary based on the rickettsial host environment. These results suggest that transcriptional termination, or lack thereof, plays a role in rickettsial gene regulation.

  8. Identification of a denitrifying bacterium and verification of its anaerobic ammonium oxidation ability

    Institute of Scientific and Technical Information of China (English)

    HU; Baolan; ZHENG; Ping; LI; Jinye; XU; Xiangyang; JIN; Rencun

    2006-01-01

    A strain D3 of denitrifying bacterium was isolated from an anammox reactor, and identified as Pseudomonas mendocina based on the morphological and physiological assay, Vitek test,Biolog test, (G+C) mol% content, and 16S rDNA phylogenetic analysis. As a typical denitrifying bactration of 88.5 mg N/L. The optimal pH and growth temperature were 7.84 and 34.9℃, respectively.Strain D3 was able to oxidize ammonia under anaerobic condition. The maximum nitrate and ammoof ammonia to nitrate was 1:1.91. Electron microscopic observation revealed peculiar cell inclusions in strain D3. Because of its relation to anammox activity, strain D3 was presumed to be anammoxosome.The present investigation proved that denitrifying bacteria have the anammox ability, and the results have engorged the range of anammox populations.

  9. Plague bacterium as a transformer species in prairie dogs and the grasslands of western North America.

    Science.gov (United States)

    Eads, David A; Biggins, Dean E

    2015-08-01

    Invasive transformer species change the character, condition, form, or nature of ecosystems and deserve considerable attention from conservation scientists. We applied the transformer species concept to the plague bacterium Yersinia pestis in western North America, where the pathogen was introduced around 1900. Y. pestis transforms grassland ecosystems by severely depleting the abundance of prairie dogs (Cynomys spp.) and thereby causing declines in native species abundance and diversity, including threatened and endangered species; altering food web connections; altering the import and export of nutrients; causing a loss of ecosystem resilience to encroaching invasive plants; and modifying prairie dog burrows. Y. pestis poses an important challenge to conservation biologists because it causes trophic-level perturbations that affect the stability of ecosystems. Unfortunately, understanding of the effects of Y. pestis on ecosystems is rudimentary, highlighting an acute need for continued research. PMID:25817984

  10. The glucose transport system of the hyperthermophilic anaerobic bacterium Thermotoga neapolitana

    Energy Technology Data Exchange (ETDEWEB)

    Galperin, M.Y.; Noll, K.M.; Romano, A.H. [Univ. of Connecticut, Storrs, CT (United States)

    1996-08-01

    The glucose transport system of the extremely thermophilic anaerobic bacterium Thermotoga neapolitana was studied with the nonmetabolizable glucose analog 2-deoxy-D-glucose (2-DOG). T. neapolitana accumulated 2-DOG against a concentration gradient in an intracellular free sugar pool that was exchangeable with external D-glucose. This active transport of 2-DOG was dependent upon the presence of sodium ion and an external source of energy, such as pyruvate, and was inhibited by arsenate and gramicidin D. There was no phosphoenolpyruvate-dependent phosphorylation of glucose, 2-DOG, or fructose by cell extracts or toluene-treated cells, indicating the absence of a phosphoenolpyruvate:sugar phosphotransferase system. These data indicate that D-glucose is taken up by T.neapolitana via an active transport system that is energized by an ion gradient generated by ATP, derived from substrate-level phosphorylation. 33 refs., 3 figs., 1 tab.

  11. Microbially influenced corrosion of stainless steel by marine bacterium Vibrio natriegens: (I) Corrosion behavior

    Energy Technology Data Exchange (ETDEWEB)

    Cheng Sha; Tian Jintao [Institute of Materials Science and Engineering, Ocean University of China, Qingdao 266100 (China); Chen Shougang, E-mail: sgchen@ouc.edu.cn [Institute of Materials Science and Engineering, Ocean University of China, Qingdao 266100 (China); Lei Yanhua; Chang Xueting; Liu Tao [Institute of Materials Science and Engineering, Ocean University of China, Qingdao 266100 (China); Yin Yansheng, E-mail: yys2006@ouc.edu.cn [Institute of Materials Science and Engineering, Ocean University of China, Qingdao 266100 (China)

    2009-04-30

    The microbially influenced corrosion of stainless steel (SS) by marine bacterium Vibrio natriegens (V. natriegens) was investigated using surface analysis (atomic force microscopy (AFM), scanning electron microscopy (SEM), and energy dispersive X-ray analysis (EDXA)) and electrochemical techniques (the open circuit potential, electrochemical impedance spectroscopy (EIS), and potentiodynamic polarization curves ). AFM images corroborated the results from the EIS models which show biofilm attachment and subsequent detachment over time. The SEM images revealed the occurrence of micro-pitting corrosion underneath the biofilms on the metal surface after the biofilm removal. The presence of carbon, oxygen, phosphor and sulfur obtained from EDXA proved the formation of biofilm. The electrochemical results showed that the corrosion of SS was accelerated in the presence of V. natriegens based on the decrease in the resistance of the charge transfer resistance (R{sub ct}) obtained from EIS and the increase in corrosion current densities obtained from potentiodynamic polarization curves.

  12. Microbially influenced corrosion of 303 stainless steel by marine bacterium Vibrio natriegens: (II) Corrosion mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Yin Yansheng, E-mail: yys2006@ouc.edu.cn [Institute of Ocean Materials and Engineering, Shanghai Maritime University, Shanghai 200135 (China); Cheng Sha [Institute of Materials Science and Engineering, Ocean University of China, Qingdao 266100 (China); Chen Shougang, E-mail: sgchen@ouc.edu.cn [Institute of Materials Science and Engineering, Ocean University of China, Qingdao 266100 (China); Tian Jintao; Liu Tao; Chang Xueting [Institute of Materials Science and Engineering, Ocean University of China, Qingdao 266100 (China)

    2009-04-30

    Electrochemical techniques (electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization curves) and surface analysis (scanning electron microscopy (SEM)) were carried out to determine the possible mechanism of the microbially influenced corrosion of 303 stainless steel (303 SS) by marine bacterium Vibrio natriegens (V. natriegens). In order to clarify the mechanism, 303 SS coupons were immersed in four different mediums. EIS results were interpreted with different equivalent circuits to model the physicoelectric characteristics of the electrode/biofilm/solution interface. The results showed that N{sub 2}-fixation actually promoted the corrosion of 303 SS; however, the influence of the produced NH{sub 3} was negligible. It can be speculated that the electron transfer and/or the nitrogenase catalyzing the process may influence the corrosion.

  13. Uncoupling effect of fatty acids in halo- and alkalotolerant bacterium Bacillus pseudofirmus FTU.

    Science.gov (United States)

    Popova, I V; Bodrova, M E; Mokhova, E N; Muntyan, M S

    2004-10-01

    Natural uncouplers of oxidative phosphorylation, long-chain non-esterified fatty acids, cause uncoupling in the alkalo- and halotolerant bacterium Bacillus pseudofirmus FTU. The uncoupling effect in the bacterial cells was manifested as decrease of membrane potential and increase of respiratory activity. The membrane potential decrease was detected only in bacterial cells exhausted by their endogenous substrates. In proteoliposomes containing reconstituted bacterial cytochrome c oxidase, fatty acids caused a "mild" uncoupling effect by reducing membrane potential only at low rate of membrane potential generation. "Free respiration" induced by the "mild" uncouplers, the fatty acids, can be considered as possible mechanism responsible for adaptation of the bacteria to a constantly changed environment. PMID:15527418

  14. Vibrio ruber (S2A1, a Marine Bacterium that Exhibits Significant Antimicrobial Activity

    Directory of Open Access Journals (Sweden)

    Wan Norhana, N.

    2005-01-01

    Full Text Available A potential antimicrobial-producing marine bacterium, designated as S2A1, was isolated from a seagrass collected in Setiu Lagoon, Terengganu. S2A1 was a Gram negative rod that was motile by means of a polar flagellum. Phenotypic and genotypic characterisation indicated that strain S2A1 represented a species in the genus Vibrio. The antimicrobial activities of S2A1 against a number of test microorganisms showed a broad antimicrobial spectrum property with inhibition towards 25 out of 29 test microorganisms. The antimicrobial compound(s of S2A1 was more effective against Gram-positive bacteria with 100% inhibition, compared to yeast (88.8% and Gram-negative bacteria (75.0% tested. High activity scores were observed when using whole cells compared to cell free extract.

  15. Microbially influenced corrosion of 303 stainless steel by marine bacterium Vibrio natriegens: (II) Corrosion mechanism

    International Nuclear Information System (INIS)

    Electrochemical techniques (electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization curves) and surface analysis (scanning electron microscopy (SEM)) were carried out to determine the possible mechanism of the microbially influenced corrosion of 303 stainless steel (303 SS) by marine bacterium Vibrio natriegens (V. natriegens). In order to clarify the mechanism, 303 SS coupons were immersed in four different mediums. EIS results were interpreted with different equivalent circuits to model the physicoelectric characteristics of the electrode/biofilm/solution interface. The results showed that N2-fixation actually promoted the corrosion of 303 SS; however, the influence of the produced NH3 was negligible. It can be speculated that the electron transfer and/or the nitrogenase catalyzing the process may influence the corrosion.

  16. Microbially influenced corrosion of stainless steel by marine bacterium Vibrio natriegens: (I) Corrosion behavior

    International Nuclear Information System (INIS)

    The microbially influenced corrosion of stainless steel (SS) by marine bacterium Vibrio natriegens (V. natriegens) was investigated using surface analysis (atomic force microscopy (AFM), scanning electron microscopy (SEM), and energy dispersive X-ray analysis (EDXA)) and electrochemical techniques (the open circuit potential, electrochemical impedance spectroscopy (EIS), and potentiodynamic polarization curves ). AFM images corroborated the results from the EIS models which show biofilm attachment and subsequent detachment over time. The SEM images revealed the occurrence of micro-pitting corrosion underneath the biofilms on the metal surface after the biofilm removal. The presence of carbon, oxygen, phosphor and sulfur obtained from EDXA proved the formation of biofilm. The electrochemical results showed that the corrosion of SS was accelerated in the presence of V. natriegens based on the decrease in the resistance of the charge transfer resistance (Rct) obtained from EIS and the increase in corrosion current densities obtained from potentiodynamic polarization curves.

  17. A cultured greigite-producing magnetotactic bacterium in a novel group of sulfate-reducing bacteria.

    Science.gov (United States)

    Lefèvre, Christopher T; Menguy, Nicolas; Abreu, Fernanda; Lins, Ulysses; Pósfai, Mihály; Prozorov, Tanya; Pignol, David; Frankel, Richard B; Bazylinski, Dennis A

    2011-12-23

    Magnetotactic bacteria contain magnetosomes--intracellular, membrane-bounded, magnetic nanocrystals of magnetite (Fe(3)O(4)) or greigite (Fe(3)S(4))--that cause the bacteria to swim along geomagnetic field lines. We isolated a greigite-producing magnetotactic bacterium from a brackish spring in Death Valley National Park, California, USA, strain BW-1, that is able to biomineralize greigite and magnetite depending on culture conditions. A phylogenetic comparison of BW-1 and similar uncultured greigite- and/or magnetite-producing magnetotactic bacteria from freshwater to hypersaline habitats shows that these organisms represent a previously unknown group of sulfate-reducing bacteria in the Deltaproteobacteria. Genomic analysis of BW-1 reveals the presence of two different magnetosome gene clusters, suggesting that one may be responsible for greigite biomineralization and the other for magnetite. PMID:22194580

  18. An outbreak in 1965 of severe respiratory illness caused by the Legionnaires' disease bacterium.

    Science.gov (United States)

    Thacker, S B; Bennett, J V; Tsai, T F; Fraser, D W; McDade, J E; Shepard, C C; Williams, K H; Stuart, W H; Dull, H B; Eickhoff, T C

    1978-10-01

    In January 1977 an unsolved outbreak of infection at St. Elizabeth's Hospital (Washington, D.C.) that occurred in 1965 was linked with Legionnaires' disease. The link was made by fluorescent antibody testing with the bacterium isolated from tissues of persons with Legionnaires' disease in the 1976 outbreak in Philadelphia. In July and August 1965, an epidemic of severe respiratory disease characterized by abrupt onset of high fever, weakness, malaise, and nonproductive cough, frequently accompanied by radiographic evidence of pneumonia, affected at least 81 patients at St. Elizabeth's Hospital, a general psychiatric hospital. Fourteen (17%) of the affected patients died. Intensive epidemiologic and laboratory investigations in 1965 did not determine the etiology. The etiologic organism may have become airborne from sites of soil excavation. PMID:361897

  19. DNA Microarray Analysis of Gene Expression in Antifungal Bacterium of Bacillus lenthmorbus WJ5

    International Nuclear Information System (INIS)

    This simultaneous expression levels of antifungal activity related was analyzed by DNA microarray. We constructured DNA chips contained 2,000 randomly digested genome spots of the antifungal bacterium of Bacillus lentimorbus WJ5 and compared it squantitative aspect with 7 antifungal activity deficient mutants induced by gamma radiation . From the analysis of microarray hybridization by the Gene Cluster, totally 408 genes were expressed and 20 genes among them were significantly suppressed in mutants. pbuX, ywbA, ptsG,yufO, and ftsY were simultaneously down-regulated in all muatants. It suggested that they were supposed to be related to the antifungal activity of B. lentimorbus WJ5

  20. Brevibacterium rufescens nov. comb. , a facultative anaerobic methylotrophic bacterium from oil-bearing strata

    Energy Technology Data Exchange (ETDEWEB)

    Nazina, T.N.

    1981-03-01

    The paper presents the results of studying the bacterial population from the microaerophilic zone of oil-bearing strata of the Apsheron Peninsula. The incidence of bacteria capable of growing at the account of organic substances present in stratal water could reach dozens of thousands of cells in 1 ml. A bacterium predominant in the bacterial cenosis of the microaerophilic zone was islated as a pure culture. A new combination, Brevibacterium rufescens nov. comb. was created on the basis of morphological, physiologo-biochemical properties and the GC content in the DNA of the organism under study. The microorganism is adapted to its habitat in a number of properties. The necessity of recreating the genus Brevibacterium is discussed.

  1. UV-induced variability of the amylolytic thermophilic bacterium Bacillus diastaticus

    International Nuclear Information System (INIS)

    UV-induced variability of a thermophilic bacterium Bacillus diastaticus 13 by amylase formation has been studied. It has been shown, that variability limits in amylase biosynthesis vary from 2.2 to 158.7% under UV irradiation. At 41.8x102 erg/mm2 UV dose a ''plus-variant'' designated as the UV1 mutant has been prepared. Its subsequent selection without using mutagene permitted to select the UV 1-25 variant, exceeding the initial strain in amylase biosynthesis by 43.3%. Under UV irradiation two low-active in biosynthesis amylases of the mutant were prepared. Demands for growth factors of some mutant have been studied as well

  2. Triplet excited state spectra and dynamics of carotenoids from the thermophilic purple photosynthetic bacterium Thermochromatium tepidum

    Energy Technology Data Exchange (ETDEWEB)

    Niedzwiedzki, Dariusz; Kobayashi, Masayuki; Blankenship, R. E.

    2011-01-13

    Light-harvesting complex 2 from the anoxygenic phototrophic purple bacterium Thermochromatium tepidum was purified and studied by steady-state absorption, fluorescence and flash photolysis spectroscopy. Steady-state absorption and fluorescence measurements show that carotenoids play a negligible role as supportive energy donors and transfer excitation to bacteriochlorophyll-a with low energy transfer efficiency of ~30%. HPLC analysis determined that the dominant carotenoids in the complex are rhodopin and spirilloxanthin. Carotenoid excited triplet state formation upon direct (carotenoid) or indirect (bacteriochlorophyll-a Q{sub x} band) excitation shows that carotenoid triplets are mostly localized on spirilloxanthin. In addition, no triplet excitation transfer between carotenoids was observed. Such specific carotenoid composition and spectroscopic results strongly suggest that this organism optimized carotenoid composition in the light-harvesting complex 2 in order to maximize photoprotective capabilities of carotenoids but subsequently drastically suppressed their supporting role in light-harvesting process.

  3. Structure of ribose 5-phosphate isomerase from the probiotic bacterium Lactobacillus salivarius UCC118

    International Nuclear Information System (INIS)

    The crystal structure of ribose 5-phosphate isomerase has been determined to 1.72 Å resolution and is presented with a brief comparison to other known ribose 5-phosphate isomerase A structures. The structure of ribose 5-phosphate isomerase from the probiotic bacterium Lactobacillus salivarius UCC188 has been determined at 1.72 Å resolution. The structure was solved by molecular replacement, which identified the functional homodimer in the asymmetric unit. Despite only showing 57% sequence identity to its closest homologue, the structure adopted the typical α and β d-ribose 5-phosphate isomerase fold. Comparison to other related structures revealed high homology in the active site, allowing a model of the substrate-bound protein to be proposed. The determination of the structure was expedited by the use of in situ crystallization-plate screening on beamline I04-1 at Diamond Light Source to identify well diffracting protein crystals prior to routine cryocrystallography

  4. Separation and characterization of a radioresistant bacterium strain BR501 from radiation polluted soil

    International Nuclear Information System (INIS)

    Strain BR501, an extremely radioresistant bacterium isolated from the radioactive experimental soil. The optimal temperature for the growth of strain BR501 was 30 degree C. The UV radiation and γ-radiation survival curves showed the strain BR501 had highly radio-resistance. The strain was sensitive to Amp, Km, Rif, Cm and Tc. The 16S rDNA of the BR501 shared highly similarity to those of species in genus Deinococcus, especially to that of D.radiodurans r1(99%). Based on the 16S rDNA sequence analysis and the phenotype characteristics, the BR501 belongs to the evolution branch of Deinococcus and was designated Deinococcus sp. BR501. (authors)

  5. Extraction and physicochemical characteristics of a red pigment produced by marine bacterium strain S-9801

    Institute of Scientific and Technical Information of China (English)

    田黎; 何培青; 刘晨临; 边际; 苗金来

    2002-01-01

    -- A red pigment that has better biological properties is produced by marine bacterium strain S- 9801. The extraction methods, physicochemical and toxicity of the pigment have been studied.Dissolubility of pigment in the five organic solvent has been tested, and ethanol is optimally chosen for extraction. Physicochemical characteristics of this pigment was stable. The absorbance of the pigment solution was no losing when put under natural light for 10 days or treated by UV for 30 minutes, color of the pigment unchanged after 100 ℃ hythere for 1 h or 80 ℃ xerother for 2 h. The median lethal dose (LD50) of the rat by celiac injection was 670.04 mg/kg and minimum lethal dose of oral was greater than 2 000 mg/kg.

  6. Genetic manipulation of carotenoid biosynthesis in the green sulfur bacterium Chlorobium tepidum

    DEFF Research Database (Denmark)

    Frigaard, Niels-Ulrik; Maresca, Julia A; Yunker, Colleen E;

    2004-01-01

    The green sulfur bacterium Chlorobium tepidum is a strict anaerobe and an obligate photoautotroph. On the basis of sequence similarity with known enzymes or sequence motifs, nine open reading frames encoding putative enzymes of carotenoid biosynthesis were identified in the genome sequence of C....... tepidum, and all nine genes were inactivated. Analysis of the carotenoid composition in the resulting mutants allowed the genes encoding the following six enzymes to be identified: phytoene synthase (crtB/CT1386), phytoene desaturase (crtP/CT0807), zeta-carotene desaturase (crtQ/CT1414), gamma......-carotene desaturase (crtU/CT0323), carotenoid 1',2'-hydratase (crtC/CT0301), and carotenoid cis-trans isomerase (crtH/CT0649). Three mutants (CT0180, CT1357, and CT1416 mutants) did not exhibit a discernible phenotype. The carotenoid biosynthetic pathway in C. tepidum is similar to that in cyanobacteria and plants...

  7. Bioluminescent reporter bacterium for toxicity monitoring in biological wastewater treatment systems

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, C.J.; Lajoie, C.A.; Layton, A.C.; Sayler, G.S.

    1999-01-01

    Toxic shock due to certain chemical loads in biological wastewater treatment systems can result in death of microorganisms and loss of floc structure. To overcome the limitations of existing approaches to toxicity monitoring, genes encoding enzymes for light production were inserted to a bacterium (Shk 1) isolated from activated sludge. The Shk 1 bioreporter indicated a toxic response to concentrations of cadmium, 2,4-dinitrophenol, and hydroquinone by reductions in initial levels of bioluminescence on exposure to the toxicant. The decrease in bioluminescence was more severe with increasing toxicant concentration. Bioluminescence did not decrease in response to ethanol concentrations up to 1,000 mg/L or to pH conditions between 6.1 and 7.9. A continuous toxicity monitoring system using this bioreporter was developed for influent wastewater and tested with hydroquinone. The reporter exhibited a rapid and proportional decrease in bioluminescence in response to increasing hydroquinone concentrations.

  8. Genomic Sequence of Burkholderia multivorans NKI379, a Soil Bacterium That Inhibits the Growth of Burkholderia pseudomallei

    OpenAIRE

    Hsueh, Pei-Tan; Liu, Jong-Kang; Chen, Ya-Lei; Liu, Pei-Ju; Ni, Wen-Fan; Chen, Yao-Shen; Wu, Keh-Ming; Lin, Hsi-Hsun

    2015-01-01

    Burkholderia multivorans NKI379 is a soil bacterium that exhibits an antagonistic effect against the growth of Burkholderia pseudomallei, the causative agent of the infectious disease melioidosis. We report the draft genomic sequence of B. multivorans NKI379, which has a G+C content of 67% and 5,203 candidate protein-encoding genes.

  9. Complete Genome Sequence of Streptococcus salivarius HSISS4, a Human Commensal Bacterium Highly Prevalent in the Digestive Tract

    OpenAIRE

    Mignolet, Johann; Fontaine, Laetitia; Kleerebezem, Michiel; Hols, Pascal

    2016-01-01

    The human commensal bacterium Streptococcus salivarius plays a major role in the equilibrium of microbial communities of the digestive tract. Here, we report the first complete genome sequence of a Streptococcus salivarius strain isolated from the small intestine, namely, HSISS4. Its circular chromosome comprises 1,903 coding sequences and 2,100,988 nucleotides.

  10. Thermoanaerobacter pentosaceus sp. nov., an anaerobic, extreme thermophilic, high ethanol-yielding bacterium isolated from household waste

    DEFF Research Database (Denmark)

    Tomás, Ana Faria; Karakashev, Dimitar Borisov; Angelidaki, Irini

    2013-01-01

    An extremely thermophilic, xylanolytic, spore-forming and strict anaerobic bacterium DTU01(T) was isolated from a continuously stirred tank reactor fed with xylose and household waste. Cells stained Gram-negative and were rod-shaped (0.5-2 µm in length). Spores were terminal with a diameter...

  11. Marinimicrobium haloxylanilyticum sp. nov., a new moderately halophilic, polysaccharide-degrading bacterium isolated from Great Salt Lake, Utah

    DEFF Research Database (Denmark)

    Fogh Møller, Mette; Kjeldsen, Kasper Urup; Ingvorsen, Kjeld

    2010-01-01

    A new moderately halophilic, strictly aerobic, Gram-negative bacterium, strain SX15T, was isolated from hypersaline surface sediment of the southern arm of Great Salt Lake (Utah, USA). The strain grew on a number of carbohydrates and carbohydrate polymers such as xylan, starch, carboxymethyl...

  12. Complete Genome Sequence of the Bacterium Aalborg_AAW-1, Representing a Novel Family within the Candidate Phylum SR1

    DEFF Research Database (Denmark)

    Dueholm, Morten Simonsen; Albertsen, Mads; Stokholm-Bjerregaard, Mikkel;

    2015-01-01

    Here, we present the complete genome sequence of the candidate phylum SR1 bacterium Aalborg_AAW-1. Its 16S rRNA gene is only 85.5% similar to that of the closest relative, RAAC1_SR1, and the genome of Aalborg_AAW-1 consequently represents the first of a novel family within the candidate phylum SR1....

  13. Concentration and Transport of Nitrate by the Mat-Forming Sulfur Bacterium Thioploca Rid E-1821-2011

    DEFF Research Database (Denmark)

    FOSSING, H.; GALLARDO, VA; JØRGENSEN, BB;

    1995-01-01

    , at between 40 and 280 m water depth. The metabolism of this marine bacterium(5,6) remained a mystery until long after its discovery(1,7). We report here that Thioploca cells are able to concentrate nitrate to up to 500 mM in a liquid vacuole that occupies >80% of the cell volume. Gliding filaments transport...

  14. Thermoregulation of N-Acyl Homoserine Lactone-Based Quorum Sensing in the Soft Rot Bacterium Pectobacterium atrosepticum▿

    OpenAIRE

    Latour, Xavier; Diallo, Stéphanie; Chevalier, Sylvie; Morin, Danièle; Smadja, Bruno; Burini, Jean-François; Haras, Dominique; Orange, Nicole

    2007-01-01

    The psychrotolerant bacterium Pectobacterium atrosepticum produces four N-acyl homoserine lactones under a wide range of temperatures. Their thermoregulation differs from that of the exoenzyme production, described as being under quorum-sensing control. A mechanism involved in this thermoregulation consists of controlling N-acyl homoserine lactones synthase production at a transcriptional level.

  15. Extraction of DNA from orange juice and detection of bacterium Candidatus Liberibacter asiaticus by real-time PCR

    Science.gov (United States)

    Orange juice processed from Huanglongbing (HLB) affected fruit is often associated with bitter taste and/or off-flavor. HLB disease in Florida is associated with Candidatus Liberibacter asiaticus (CLas), a phloem limited bacterium. The current standard to confirm CLas for citrus trees is to take sam...

  16. Draft Genome Sequence of Photorhabdus luminescens Strain BA1, an Entomopathogenic Bacterium Isolated from Nematodes Found in Egypt.

    Science.gov (United States)

    Ghazal, Shimaa; Hurst, Sheldon G; Morris, Krystalynne; Abebe-Akele, Feseha; Thomas, W Kelley; Badr, Usama M; Hussein, Mona A; Abouzaied, Mohamed A; Khalil, Kamal M; Tisa, Louis S

    2014-01-01

    Photorhabdus luminescens strain BA1 is an entomopathogenic bacterium that forms a symbiotic association with Heterorhabditis nematodes. We report here a 5.0-Mbp draft genome sequence for P. luminscens strain BA1, with a G+C content of 42.46% and 4,250 candidate protein-coding genes. PMID:24786955

  17. Draft Genome Sequence of Photorhabdus temperata Strain Meg1, an Entomopathogenic Bacterium Isolated from Heterorhabditis megidis Nematodes

    OpenAIRE

    Hurst, Sheldon G.; Ghazal, Shimaa; Morris, Krystalynne; Abebe-Akele, Feseha; Thomas, W Kelley; Badr, Usama M.; Hussein, Mona A.; AbouZaied, Mohamed A.; Khalil, Kamal M.; Tisa, Louis S.

    2014-01-01

    Photorhabdus temperata strain Meg1 is an entomopathogenic bacterium that forms a symbiotic association with Heterorhabditis nematodes. We report here a 4.9-Mbp draft genome sequence for P. temperata strain Meg1, with a G+C content of 43.18% and containing 4,340 candidate protein-coding genes.

  18. Draft Genome Sequence of Photorhabdus temperata Strain Meg1, an Entomopathogenic Bacterium Isolated from Heterorhabditis megidis Nematodes.

    Science.gov (United States)

    Hurst, Sheldon G; Ghazal, Shimaa; Morris, Krystalynne; Abebe-Akele, Feseha; Thomas, W Kelley; Badr, Usama M; Hussein, Mona A; AbouZaied, Mohamed A; Khalil, Kamal M; Tisa, Louis S

    2014-01-01

    Photorhabdus temperata strain Meg1 is an entomopathogenic bacterium that forms a symbiotic association with Heterorhabditis nematodes. We report here a 4.9-Mbp draft genome sequence for P. temperata strain Meg1, with a G+C content of 43.18% and containing 4,340 candidate protein-coding genes. PMID:25502670

  19. Draft Genome Sequence of Photorhabdus luminescens Strain BA1, an Entomopathogenic Bacterium Isolated from Nematodes Found in Egypt

    OpenAIRE

    Ghazal, Shimaa; Hurst, Sheldon G.; Morris, Krystalynne; Abebe-Akele, Feseha; Thomas, W Kelley; Badr, Usama M.; Hussein, Mona A.; AbouZaied, Mohamed A.; Khalil, Kamal M.; Tisa, Louis S.

    2014-01-01

    Photorhabdus luminescens strain BA1 is an entomopathogenic bacterium that forms a symbiotic association with Heterorhabditis nematodes. We report here a 5.0-Mbp draft genome sequence for P. luminscens strain BA1, with a G+C content of 42.46% and 4,250 candidate protein-coding genes.

  20. Whole-Genome Shotgun Sequence of the Keratinolytic Bacterium Lysobacter sp. A03, Isolated from the Antarctic Environment

    OpenAIRE

    Pereira, Jamile Queiroz; Ambrosini, Adriana; Sant’Anna, Fernando Hayashi; Tadra-Sfeir, Michele; Faoro, Helisson; Pedrosa, Fábio de Oliveira; Souza, Emanuel Maltempi; Adriano BRANDELLI; Passaglia, Luciane M. P.

    2015-01-01

    Lysobacter sp. strain A03 is a protease-producing bacterium isolated from decomposing-penguin feathers collected in the Antarctic environment. This strain has the ability to degrade keratin at low temperatures. The A03 genome sequence provides the possibility of finding new genes with biotechnological potential to better understand its cold-adaptation mechanism and survival in cold environments.